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Preface to the First Edition

We wrote this book to introduce undergraduates to some interesting ideas in algebraic
geometry and commutative algebra. Until recently, these topics involved a lot of abstract
mathematics and were only taught in graduate school. But in the 1960s, Buchberger
and Hironaka discovered new algorithms for manipulating systems of polynomial equa-
tions. Fueled by the development of computers fast enough to run these algorithms,
the last two decades have seen a minor revolution in commutative algebra. The ability
to compute efficiently with polynomial equations has made it possible to investigate
complicated examples that would be impossible to do by hand, and has changed the
practice of much research in algebraic geometry. This has also enhanced the impor-
tance of the subject for computer scientists and engineers, who have begun to use these
techniques in a whole range of problems.

It is our belief that the growing importance of these computational techniques war-
rants their introduction into the undergraduate (and graduate) mathematics curriculum.
Many undergraduates enjoy the concrete, almost nineteenth-century, flavor that a com-
putational emphasis brings to the subject. At the same time, one can do some substan-
tial mathematics, including the Hilbert Basis Theorem, Elimination Theory, and the
Nullstellensatz.

The mathematical prerequisites of the book are modest: the students should have had
a course in linear algebra and a course where they learned how to do proofs. Examples
of the latter sort of course include discrete math and abstract algebra. It is important to
note that abstract algebra is not a prerequisite. On the other hand, if all of the students
have had abstract algebra, then certain parts of the course will go much more quickly.

The book assumes that the students will have access to a computer algebra system.
Appendix C describes the features of AXIOM, Maple, Mathematica, and REDUCE that
are most relevant to the text. We do not assume any prior experience with a computer.
However, many of the algorithms in the book are described in pseudocode, which may
be unfamiliar to students with no background in programming. Appendix B contains a
careful description of the pseudocode that we use in the text.

In writing the book, we tried to structure the material so that the book could be used
in a variety of courses, and at a variety of different levels. For instance, the book could
serve as a basis of a second course in undergraduate abstract algebra, but we think that
it just as easily could provide a credible alternative to the first course. Although the

vii
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viii Preface to the First Edition

book is aimed primarily at undergraduates, it could also be used in various graduate
courses, with some supplements. In particular, beginning graduate courses in algebraic
geometry or computational algebra may find the text useful. We hope, of course, that
mathematicians and colleagues in other disciplines will enjoy reading the book as much
as we enjoyed writing it.

The first four chapters form the core of the book. It should be possible to cover them
in a 14-week semester, and there may be some time left over at the end to explore other
parts of the text. The following chart explains the logical dependence of the chapters:

1

2

3

4

8 5

9

7

6

See the table of contents for a description of what is covered in each chapter. As the
chart indicates, there are a variety of ways to proceed after covering the first four
chapters. Also, a two-semester course could be designed that covers the entire book.
For instructors interested in having their students do an independent project, we have
included a list of possible topics in Appendix D.

It is a pleasure to thank the New England Consortium for Undergraduate Science
Education (and its parent organization, the Pew Charitable Trusts) for providing the
major funding for this work. The project would have been impossible without their
support. Various aspects of our work were also aided by grants from IBM and the Sloan
Foundation, the Alexander von Humboldt Foundation, the Department of Education’s
FIPSE program, the Howard Hughes Foundation, and the National Science Foundation.
We are grateful for their help.

We also wish to thank colleagues and students at Amherst College, George Mason
University, Holy Cross College, Massachusetts Institute of Technology, Mount Holyoke
College, Smith College, and the University of Massachusetts who participated in cour-
ses based on early versions of the manuscript. Their feedback improved the book consi-
derably. Many other colleagues have contributed suggestions, and we thank you all.

Corrections, comments and suggestions for improvement are welcome!

November 1991 David Cox
John Little
Donal O’ Shea
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Preface to the Second Edition

In preparing a new edition of Ideals, Varieties, and Algorithms, our goal was to
correct some of the omissions of the first edition while maintaining the readabil-
ity and accessibility of the original. The major changes in the second edition are as
follows:
� Chapter 2: A better acknowledgement of Buchberger’s contributions and an improved

proof of the Buchberger Criterion in §6.
� Chapter 5: An improved bound on the number of solutions in §3 and a new §6 which

completes the proof of the Closure Theorem begun in Chapter 3.
� Chapter 8: A complete proof of the Projection Extension Theorem in §5 and a new

§7 which contains a proof of Bezout’s Theorem.
� Appendix C: a new section on AXIOM and an update on what we say about Maple,

Mathematica, and REDUCE.
Finally, we fixed some typographical errors, improved and clarified notation, and up-
dated the bibliography by adding many new references.

We also want to take this opportunity to acknowledge our debt to the many people
who influenced us and helped us in the course of this project. In particular, we would
like to thank:
� David Bayer and Monique Lejeune-Jalabert, whose thesis BAYER (1982) and notes

LEJEUNE-JALABERT (1985) first acquainted us with this wonderful subject.
� Frances Kirwan, whose book KIRWAN (1992) convinced us to include Bezout’s

Theorem in Chapter 8.
� Steven Kleiman, who showed us how to prove the Closure Theorem in full generality.

His proof appears in Chapter 5.
� Michael Singer, who suggested improvements in Chapter 5, including the new Propo-

sition 8 of §3.
� Bernd Sturmfels, whose book STURMFELS (1993) was the inspiration for

Chapter 7.
There are also many individuals who found numerous typographical errors and gave
us feedback on various aspects of the book. We are grateful to you all!

ix
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x Preface to the Second Edition

As with the first edition, we welcome comments and suggestions, and we pay $1 for
every new typographical error. For a list of errors and other information relevant to the
book, see our web site http://www.cs.amherst.edu/∼dac/iva.html.

October 1996 David Cox
John Little
Donal O’ Shea
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Preface to the Third Edition

The new features of the third edition of Ideals, Varieties, and Algorithms are as follows:
� A significantly shorter proof of the Extension Theorem is presented in §6 of Chapter 3.

We are grateful to A. H. M. Levelt for bringing this argument to our attention.
� A major update of the section on Maple appears in Appendix C. We also give

updated information on AXIOM, CoCoA, Macaulay 2, Magma, Mathematica, and
SINGULAR.

� Changes have been made on over 200 pages to enhance clarity and correctness.
We are also grateful to the many individuals who reported typographical errors and
gave us feedback on the earlier editions. Thank you all!

As with the first and second editions, we welcome comments and suggestions, and
we pay $1 for every new typographical error.

November, 2006 David Cox
John Little
Donal O’ Shea
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1

Geometry, Algebra, and Algorithms

This chapter will introduce some of the basic themes of the book. The geometry we
are interested in concerns affine varieties, which are curves and surfaces (and higher
dimensional objects) defined by polynomial equations. To understand affine varieties,
we will need some algebra, and in particular, we will need to study ideals in the
polynomial ring k[x1, . . . , xn]. Finally, we will discuss polynomials in one variable to
illustrate the role played by algorithms.

§1 Polynomials and Affine Space

To link algebra and geometry, we will study polynomials over a field. We all know what
polynomials are, but the term field may be unfamiliar. The basic intuition is that a field
is a set where one can define addition, subtraction, multiplication, and division with the
usual properties. Standard examples are the real numbers and the complex numbers

, whereas the integers are not a field since division fails (3 and 2 are integers, but
their quotient 3/2 is not). A formal definition of field may be found in Appendix A.

One reason that fields are important is that linear algebra works over any field. Thus,
even if your linear algebra course restricted the scalars to lie in or , most of the
theorems and techniques you learned apply to an arbitrary field k. In this book, we will
employ different fields for different purposes. The most commonly used fields will be:
� The rational numbers : the field for most of our computer examples.
� The real numbers : the field for drawing pictures of curves and surfaces.
� The complex numbers : the field for proving many of our theorems.
On occasion, we will encounter other fields, such as fields of rational functions (which
will be defined later). There is also a very interesting theory of finite fields—see the
exercises for one of the simpler examples.

We can now define polynomials. The reader certainly is familiar with polynomials in
one and two variables, but we will need to discuss polynomials in n variables x1, . . . , xn

with coefficients in an arbitrary field k. We start by defining monomials.

Definition 1. A monomial in x1, . . . , xn is a product of the form

xα1

1 · xα2

2 · · · xαn
n ,

1
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2 1. Geometry, Algebra, and Algorithms

where all of the exponents α1, . . . , αn are nonnegative integers. The total degree of
this monomial is the sum α1 + · · · + αn.

We can simplify the notation for monomials as follows: let α = (α1, . . . , αn) be an
n-tuple of nonnegative integers. Then we set

xα = xα1

1 · xα2

2 · · · xαn
n .

When α = (0, . . . , 0), note that xα = 1. We also let |α| = α1 + · · · + αn denote the
total degree of the monomial xα .

Definition 2. A polynomial f in x1, . . . , xn with coefficients in k is a finite linear
combination (with coefficients in k) of monomials. We will write a polynomial f in the
form

f =
∑

α

aαxα, aα ∈ k,

where the sum is over a finite number of n-tuples α = (α1, . . . , αn). The set of all
polynomials in x1, . . . , xn with coefficients in k is denoted k[x1, . . . , xn].

When dealing with polynomials in a small number of variables, we will usually
dispense with subscripts. Thus, polynomials in one, two, and three variables lie in
k[x], k[x, y] and k[x, y, z], respectively. For example,

f = 2x3 y2z + 3

2
y3z3 − 3xyz + y2

is a polynomial in [x, y, z]. We will usually use the letters f, g, h, p, q, r to refer to
polynomials.

We will use the following terminology in dealing with polynomials.

Definition 3. Let f = �αaαxα be a polynomial in k[x1, . . . , xn].
(i) We call aα the coefficient of the monomial xα .

(ii) If aα �= 0, then we call aαxαa term of f.
(iii) The total degree of f, denoted deg( f ), is the maximum |α| such that the coefficient

aα is nonzero.

As an example, the polynomial f = 2x3 y2z + 3
2

y3z3 − 3xyz + y2 given above has
four terms and total degree six. Note that there are two terms of maximal total degree,
which is something that cannot happen for polynomials of one variable. In Chapter 2,
we will study how to order the terms of a polynomial.

The sum and product of two polynomials is again a polynomial. We say that a
polynomial f divides a polynomial g provided that g = f h for some h ∈ k[x1, . . . , xn].

One can show that, under addition and multiplication, k[x1, . . . , xn] satisfies all of the
field axioms except for the existence of multiplicative inverses (because, for example,
1/x1 is not a polynomial). Such a mathematical structure is called a commutative ring
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§1. Polynomials and Affine Space 3

(see Appendix A for the full definition), and for this reason we will refer to k[x1, . . . , xn]
as a polynomial ring.

The next topic to consider is affine space.

Definition 4. Given a field k and a positive integer n, we define the n-dimensional
affine space over k to be the set

kn = {(a1, . . . , an) : a1, . . . , an ∈ k}.

For an example of affine space, consider the case k = . Here we get the familiar
space n from calculus and linear algebra. In general, we call k1 = k the affine line
and k2 the affine plane.

Let us next see how polynomials relate to affine space. The key idea is that a poly-
nomial f = �αaαxα ∈ k[x1, . . . , xn] gives a function

f : kn → k

defined as follows: given (a1, . . . , an) ∈ kn , replace every xi by ai in the expression
for f . Since all of the coefficients also lie in k, this operation gives an element
f (a1, . . . , an) ∈ k. The ability to regard a polynomial as a function is what makes
it possible to link algebra and geometry.

This dual nature of polynomials has some unexpected consequences. For example,
the question “is f = 0?” now has two potential meanings: is f the zero polynomial?,
which means that all of its coefficients aα are zero, or is f the zero function?, which
means that f (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ kn . The surprising fact is that these
two statements are not equivalent in general. For an example of how they can differ,
consider the set consisting of the two elements 0 and 1. In the exercises, we will see
that this can be made into a field where 1 + 1 = 0. This field is usually called 2. Now
consider the polynomial x2 − x = x(x − 1) ∈ 2[x]. Since this polynomial vanishes
at 0 and 1, we have found a nonzero polynomial which gives the zero function on the
affine space 1

2. Other examples will be discussed in the exercises.
However, as long as k is infinite, there is no problem.

Proposition 5. Let k be an infinite field, and let f ∈ k[x1, . . . , xn]. Then f = 0 in
k[x1, . . . , xn] if and only if f : kn → k is the zero function.

Proof. One direction of the proof is obvious since the zero polynomial clearly gives
the zero function. To prove the converse, we need to show that if f (a1, . . . , an) = 0
for all (a1, . . . , an) ∈ kn , then f is the zero polynomial. We will use induction on the
number of variables n.

When n = 1, it is well known that a nonzero polynomial in k[x] of degree m has at
most m distinct roots (we will prove this fact in Corollary 3 of §5). For our particular
f ∈ k[x], we are assuming f (a) = 0 for all a ∈ k. Since k is infinite, this means that
f has infinitely many roots, and, hence, f must be the zero polynomial.

Now assume that the converse is true for n − 1, and let f ∈ k[x1, . . . , xn] be a
polynomial that vanishes at all points of kn . By collecting the various powers of xn , we
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can write f in the form

f =
N∑

i=0

gi (x1, . . . , xn−1)xi
n,

where gi ∈ k[x1, . . . , xn−1]. We will show that each gi is the zero polynomial in n − 1
variables, which will force f to be the zero polynomial in k[x1, . . . , xn].

If we fix (a1, . . . , an−1) ∈ kn−1, we get the polynomial f (a1, . . . , an−1, xn) ∈ k[xn].
By our hypothesis on f , this vanishes for every an ∈ k. It follows from the case n = 1
that f (a1, . . . , an−1, xn) is the zero polynomial in k[xn]. Using the above formula for
f , we see that the coefficients of f (a1, . . . , an−1, xn) are gi (a1, . . . , an−1), and thus,
gi (a1, . . . , an−1) = 0 for all i . Since (a1, . . . , an−1) was arbitrarily chosen in kn−1, it
follows that each gi ∈ k[x1, . . . , xn−1] gives the zero function on kn−1. Our inductive
assumption then implies that each gi is the zero polynomial in k[x1, . . . , xn−1]. This
forces f to be the zero polynomial in k[x1, . . . , xn] and completes the proof of the
proposition. �

Note that in the statement of Proposition 5, the assertion “ f = 0 in k[x1, . . . , xn]”
means that f is the zero polynomial, i.e., that every coefficient of f is zero. Thus, we
use the same symbol “0” to stand for the zero element of k and the zero polynomial in
k[x1, . . . , xn]. The context will make clear which one we mean.

As a corollary, we see that two polynomials over an infinite field are equal precisely
when they give the same function on affine space.

Corollary 6. Let k be an infinite field, and let f, g ∈ k[x1, . . . , xn]. Then f = g in
k[x1, . . . , xn] if and only if f : kn → k and g : kn → k are the same function.

Proof. To prove the nontrivial direction, suppose that f, g ∈ k[x1, . . . , xn] give the
same function on kn . By hypothesis, the polynomial f − g vanishes at all points of kn .
Proposition 5 then implies that f − g is the zero polynomial. This proves that f = g
in k[x1, . . . , xn]. �

Finally, we need to record a special property of polynomials over the field of complex
numbers .

Theorem 7. Every nonconstant polynomial f ∈ [x] has a root in .

Proof. This is the Fundamental Theorem of Algebra, and proofs can be found in most
introductory texts on complex analysis (although many other proofs are known). �

We say that a field k is algebraically closed if every nonconstant polynomial in k[x]
has a root in k. Thus is not algebraically closed (what are the roots of x2 + 1?),
whereas the above theorem asserts that is algebraically closed. In Chapter 4 we will
prove a powerful generalization of Theorem 7 called the Hilbert Nullstellensatz.
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EXERCISES FOR §1

1. Let 2 = {0, 1}, and define addition and multiplication by 0 + 0 = 1 + 1 = 0, 0 + 1 =
1 + 0 = 1, 0 · 0 = 0 · 1 = 1 · 0 = 0 and 1 · 1 = 1. Explain why 2 is a field. (You need not

check the associative and distributive properties, but you should verify the existence of iden-

tities and inverses, both additive and multiplicative.)

2. Let 2 be the field from Exercise 1.

a. Consider the polynomial g(x, y) = x2 y + y2x ∈ 2[x, y]. Show that g(x, y) = 0 for ev-

ery (x, y) ∈ 2
2, and explain why this does not contradict Proposition 5.

b. Find a nonzero polynomial in 2[x, y, z] which vanishes at every point of 3
2. Try to find

one involving all three variables.

c. Find a nonzero polynomial in 2[x1, . . . , xn] which vanishes at every point of n
2. Can

you find one in which all of x1, . . . , xn appear?

3. (Requires abstract algebra). Let p be a prime number. The ring of integers modulo p is a field

with p elements, which we will denote p .

a. Explain why p − {0} is a group under multiplication.

b. Use Lagrange’s Theorem to show that a p−1 = 1 for all a ∈ p − {0}.
c. Prove that a p = a for all a ∈ p . Hint: Treat the cases a = 0 and a �= 0 separately.

d. Find a nonzero polynomial in p[x] which vanishes at every point of p . Hint: Use

part (c).

4. (Requires abstract algebra.) Let F be a finite field with q elements. Adapt the argument of

Exercise 3 to prove that xq − x is a nonzero polynomial in F[x] which vanishes at every

point of F . This shows that Proposition 5 fails for all finite fields.

5. In the proof of Proposition 5, we took f ∈ k[x1, . . . , xn] and wrote it as a polynomial in xn

with coefficients in k[x1, . . . , xn−1]. To see what this looks like in a specific case, consider

the polynomial

f (x, y, z) = x5 y2z − x4 y3 + y5 + x2z − y3z + xy + 2x − 5z + 3.

a. Write f as a polynomial in x with coefficients in k[y, z].

b. Write f as a polynomial in y with coefficients in k[x, z].

c. Write f as a polynomial in z with coefficients in k[x, y].

6. Inside of n , we have the subset n , which consists of all points with integer coordinates.

a. Prove that if f ∈ [x1, . . . , xn] vanishes at every point of n , then f is the zero polyno-

mial. Hint: Adapt the proof of Proposition 5.

b. Let f ∈ [x1, . . . , xn], and let M be the largest power of any variable that appears in f .

Let n
M+1 be the set of points of n , all coordinates of which lie between 1 and M + 1.

Prove that if f vanishes at all points of n
M+1, then f is the zero polynomial.

§2 Affine Varieties

We can now define the basic geometric object of the book.

Definition 1. Let k be a field, and let f1, . . . , fs be polynomials in k[x1, . . . , xn]. Then
we set

V( f1, . . . , fs) = {(a1, . . . , an) ∈ kn : fi (a1, . . . , an) = 0 for all 1 ≤ i ≤ s}.
We call V( f1, . . . , fs) the affine variety defined by f1, . . . , fs .
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Thus, an affine variety V( f1, . . . , fs) ⊂ kn is the set of all solutions of the system of
equations f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0. We will use the letters V, W, etc.
to denote affine varieties. The main purpose of this section is to introduce the reader to
lots of examples, some new and some familiar. We will use k = so that we can draw
pictures.

We begin in the plane 2 with the variety V(x2 + y2 − 1), which is the circle of
radius 1 centered at the origin:

1

1

x

y

The conic sections studied in analytic geometry (circles, ellipses, parabolas, and hyper-
bolas) are affine varieties. Likewise, graphs of polynomial functions are affine varieties
[the graph of y = f (x) is V(y − f (x))]. Although not as obvious, graphs of rational

functions are also affine varieties. For example, consider the graph of y = x3−1
x :

−4 −2 2 4 x

−20

−10

10

20

30 y



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX December 18, 2006 8:40

§2. Affine Varieties 7

It is easy to check that this is the affine variety V(xy − x3 + 1).
Next, let us look in the 3-dimensional space 3. A nice affine variety is given by

paraboloid of revolution V(z − x2 − y), which is obtained by rotating the parabola
z = x2 about the z-axis (you can check this using polar coordinates). This gives us the
picture:

z

y

x

You may also be familiar with the cone V(z2 − x2 − y2):

y
x

z

A much more complicated surface is given by V(x2 − y2z2 + z3):

x y

z
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In these last two examples, the surfaces are not smooth everywhere: the cone has a
sharp point at the origin, and the last example intersects itself along the whole y-axis.
These are examples of singular points, which will be studied later in the book.

An interesting example of a curve in 3 is the twisted cubic, which is the variety
V(y − x2, z − x3). For simplicity, we will confine ourselves to the portion that lies in
the first octant. To begin, we draw the surfaces y = x2 and z = x3 separately:

O
y

y = x2 z = x3

x

z

O
y

x

z

Then their intersection gives the twisted cubic:

O
y

x

z

The Twisted Cubic

Notice that when we had one equation in 2, we got a curve, which is a 1-dimensional
object. A similar situation happens in 3: one equation in 3 usually gives a surface,
which has dimension 2. Again, dimension drops by one. But now consider the twisted
cubic: here, two equations in 3 give a curve, so that dimension drops by two. Since
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each equation imposes an extra constraint, intuition suggests that each equation drops
the dimension by one. Thus, if we started in 4, one would hope that an affine variety
defined by two equations would be a surface. Unfortunately, the notion of dimension is
more subtle than indicated by the above examples. To illustrate this, consider the variety
V(xz, yz). One can easily check that the equations xz = yz = 0 define the union of
the (x, y)-plane and the z-axis:

x

y

z

Hence, this variety consists of two pieces which have different dimensions, and one of
the pieces (the plane) has the “wrong” dimension according to the above intuition.

We next give some examples of varieties in higher dimensions. A familiar case comes
from linear algebra. Namely, fix a field k, and consider a system of m linear equations
in n unknowns x1, . . . , xn with coefficients in k:

a11x1 + · · · + a1n xn = b1,

...(1)

am1x1 + · · · + amn xn = bm .

The solutions of these equations form an affine variety in kn , which we will call a
linear variety. Thus, lines and planes are linear varieties, and there are examples of
arbitrarily large dimension. In linear algebra, you learned the method of row reduction
(also called Gaussian elimination), which gives an algorithm for finding all solutions
of such a system of equations. In Chapter 2, we will study a generalization of this
algorithm which applies to systems of polynomial equations.

Linear varieties relate nicely to our discussion of dimension. Namely, if V ⊂ kn is
the linear variety defined by (1), then V need not have dimension n − m even though
V is defined by m equations. In fact, when V is nonempty, linear algebra tells us that V
has dimension n − r , where r is the rank of the matrix (ai j ). So for linear varieties, the
dimension is determined by the number of independent equations. This intuition applies
to more general affine varieties, except that the notion of “independent” is more subtle.
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Some complicated examples in higher dimensions come from calculus. Suppose, for
example, that we wanted to find the minimum and maximum values of f (x, y, z) =
x3 + 2xyz − z2 subject to the constraint g(x, y, z) = x2 + y2 + z2 = 1. The method
of Lagrange multipliers states that ∇ f = λ∇g at a local minimum or maximum [recall
that the gradient of f is the vector of partial derivatives ∇ f = ( fx , fy, fz)]. This gives
us the following system of four equations in four unknowns, x, y, z, λ, to solve:

3x2 + 2yz = 2xλ,

2xz = 2yλ,
(2)

2xy − 2z = 2zλ,

x2 + y2 + z2 = 1.

These equations define an affine variety in 4, and our intuition concerning dimension
leads us to hope it consists of finitely many points (which have dimension 0) since it is
defined by four equations. Students often find Lagrange multipliers difficult because
the equations are so hard to solve. The algorithms of Chapter 2 will provide a powerful
tool for attacking such problems. In particular, we will find all solutions of the above
equations.

We should also mention that affine varieties can be the empty set. For example, when
k = , it is obvious that V(x2 + y2 + 1) = ∅ since x2 + y2 = −1 has no real solutions
(although there are solutions when k = ). Another example is V(xy, xy − 1), which
is empty no matter what the field is, for a given x and y cannot satisfy both xy = 0 and
xy = 1. In Chapter 4 we will study a method for determining when an affine variety
over is nonempty.

To give an idea of some of the applications of affine varieties, let us consider a simple
example from robotics. Suppose we have a robot arm in the plane consisting of two
linked rods of lengths 1 and 2, with the longer rod anchored at the origin:

(x,y)

(z,w)

The “state” of the arm is completely described by the coordinates (x, y) and (z, w)
indicated in the figure. Thus the state can be regarded as a 4-tuple (x, y, z, w) ∈ 4.
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However, not all 4-tuples can occur as states of the arm. In fact, it is easy to see that
the subset of possible states is the affine variety in 4 defined by the equations

x2 + y2 = 4,

(x − z)2 + (y − w)2 = 1.

Notice how even larger dimensions enter quite easily: if we were to consider the same
arm in 3-dimensional space, then the variety of states would be defined by two equations
in 6. The techniques to be developed in this book have some important applications
to the theory of robotics.

So far, all of our drawings have been over . Later in the book, we will consider
varieties over . Here, it is more difficult (but not impossible) to get a geometric idea
of what such a variety looks like.

Finally, let us record some basic properties of affine varieties.

Lemma 2. If V, W ⊂ kn are affine varieties, then so are V ∪ W and V ∩ W .

Proof. Suppose that V = V( f1, . . . , fs) and W = V(g1, . . . , gt ). Then we claim that

V ∩ W = V( f1, . . . , fs, g1, . . . , gt ),

V ∪ W = V( fi g j : 1 ≤ i ≤ s, 1 ≤ j ≤ t).

The first equality is trivial to prove: being in V ∩ W means that both f1, . . . , fs and
g1, . . . , gt vanish, which is the same as f1, . . . , fs, g1, . . . , gt vanishing.

The second equality takes a little more work. If (a1, . . . , an) ∈ V , then all of the fi ’s
vanish at this point, which implies that all of the fi g j ’s also vanish at (a1, . . . , an). Thus,
V ⊂ V( fi g j ), and W ⊂ V( fi g j ) follows similarly. This proves that V ∪ W ⊂ V( fi g j ).
Going the other way, choose (a1, . . . , an) ∈ V( fi g j ). If this lies in V , then we are done,
and if not, then fi0

(a1, . . . , an) �= 0 for some i0. Since fi0
g j vanishes at (a1, . . . , an)

for all j , the g j ’s must vanish at this point, proving that (a1, . . . , an) ∈ W . This shows
that V( fi g j ) ⊂ V ∪ W . �

This lemma implies that finite intersections and unions of affine varieties are again
affine varieties. It turns out that we have already seen examples of unions and inter-
sections. Concerning unions, consider the union of the (x, y)-plane and the z-axis in
affine 3-space. By the above formula, we have

V(z) ∪ V(x, y) = V(zx, zy).

This, of course, is one of the examples discussed earlier in the section. As for intersec-
tions, notice that the twisted cubic was given as the intersection of two surfaces.

The examples given in this section lead to some interesting questions concerning
affine varieties. Suppose that we have f1, . . . , fs ∈ k[x1, . . . , xn]. Then:
� (Consistency) Can we determine if V( f1, . . . , fs) �= ∅, i.e., do the equations f1 =

· · · = fs = 0 have a common solution?
� (Finiteness) Can we determine if V( f1, . . . , fs) is finite, and if so, can we find all of

the solutions explicitly?
� (Dimension) Can we determine the “dimension” of V( f1, . . . , fs)?
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The answer to these questions is yes, although care must be taken in choosing the
field k that we work over. The hardest is the one concerning dimension, for it involves
some sophisticated concepts. Nevertheless, we will give complete solutions to all
three problems.

EXERCISES FOR §2

1. Sketch the following affine varieties in 2:

a. V(x2 + 4y2 + 2x − 16y + 1).

b. V(x2 − y2).

c. V(2x + y − 1, 3x − y + 2).

In each case, does the variety have the dimension you would intuitively expect it to have?

2. In 2, sketch V(y2 − x(x − 1)(x − 2)). Hint: For which x’s is it possible to solve for y?

How many y’s correspond to each x? What symmetry does the curve have?

3. In the plane 2, draw a picture to illustrate

V(x2 + y2 − 4) ∩ V(xy − 1) = V(x2 + y2 − 4, xy − 1),

and determine the points of intersection. Note that this is a special case of Lemma 2.

4. Sketch the following affine varieties in 3:

a. V(x2 + y2 + z2 − 1).

b. V(x2 + y2 − 1).

c. V(x + 2, y − 1.5, z).

d. V(xz2 − xy). Hint: Factor xz2 − xy.

e. V(x4 − zx, x3 − yx).

f. V(x2 + y2 + z2 − 1, x2 + y2 + (z − 1)2 − 1).

In each case, does the variety have the dimension you would intuitively expect it to have?

5. Use the proof of Lemma 2 to sketch V((x − 2)(x2 − y), y(x2 − y), (z + 1)(x2 − y)) in 3.

Hint: This is the union of which two varieties?

6. Let us show that all finite subsets of kn are affine varieties.

a. Prove that a single point (a1, . . . , an) ∈ kn is an affine variety.

b. Prove that every finite subset of kn is an affine variety. Hint: Lemma 2 will be useful.

7. One of the prettiest examples from polar coordinates is the four-leaved rose

−.75 −.5 −.25 .25 .5 .75

−.75

−.5

−.25

.25

.5

.75

This curve is defined by the polar equation r = sin(2θ ). We will show that this curve is an

affine variety.
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a. Using r 2 = x2 + y2, x = r cos(θ ) and y = r sin(θ ), show that the four-leaved rose is

contained in the affine variety V((x2 + y2)3 − 4x2 y2). Hint: Use an identity for sin(2θ ).

b. Now argue carefully that V((x2 + y2)3 − 4x2 y2) is contained in the four-leaved rose.

This is trickier than it seems since r can be negative in r = sin(2θ ).

Combining parts a and b, we have proved that the four-leaved rose is the affine variety

V((x2 + y2)3 − 4x2 y2).

8. It can take some work to show that something is not an affine variety. For example, consider

the set

X = {(x, x) : x ∈ , x �= 1} ⊂ 2,

which is the straight line x = y with the point (1, 1) removed. To show that X is not an

affine variety, suppose that X = V( f1, . . . , fs). Then each fi vanishes on X , and if we can

show that fi also vanishes at (1, 1), we will get the desired contradiction. Thus, here is what

you are to prove: if f ∈ [x, y] vanishes on X , then f (1, 1) = 0. Hint: Let g(t) = f (t, t),
which is a polynomial [t]. Now apply the proof of Proposition 5 of §1.

9. Let R = {(x, y) ∈ 2 : y > 0} be the upper half plane. Prove that R is not an affine variety.

10. Let n ⊂ n consist of those points with integer coordinates. Prove that n is not an affine

variety. Hint: See Exercise 6 from §1.

11. So far, we have discussed varieties over or . It is also possible to consider varieties

over the field , although the questions here tend to be much harder. For example, let n be

a positive integer, and consider the variety Fn ⊂ 2 defined by

xn + yn = 1.

Notice that there are some obvious solutions when x or y is zero. We call these trivial
solutions. An interesting question is whether or not there are any nontrivial solutions.

a. Show that Fn has two trivial solutions if n is odd and four trivial solutions if n is even.

b. Show that Fn has a nontrivial solution for some n ≥ 3 if and only if Fermat’s Last

Theorem were false.

Fermat’s Last Theorem states that, for n ≥ 3, the equation

xn + yn = zn

has no solutions where x, y, and z are nonzero integers. The general case of this conjecture

was proved by Andrew Wiles in 1994 using some very sophisticated number theory. The

proof is extremely difficult.

12. Find a Lagrange multipliers problem in a calculus book and write down the corresponding

system of equations. Be sure to use an example where one wants to find the minimum or

maximum of a polynomial function subject to a polynomial constraint. This way the equa-

tions define an affine variety, and try to find a problem that leads to complicated equations.

Later we will use Groebner basis methods to solve these equations.

13. Consider a robot arm in 2 that consists of three arms of lengths 3, 2, and 1, respectively.

The arm of length 3 is anchored at the origin, the arm of length 2 is attached to the free end

of the arm of length 3, and the arm of length 1 is attached to the free end of the arm of length

2. The “hand” of the robot arm is attached to the end of the arm of length 1.

a. Draw a picture of the robot arm.

b. How many variables does it take to determine the “state” of the robot arm?

c. Give the equations for the variety of possible states.

d. Using the intuitive notion of dimension discussed in this section, guess what the dimen-

sion of the variety of states should be.
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14. This exercise will study the possible “hand” positions of the robot arm described in Exercise

13.

a. If (u, v) is the position of the hand, explain why u2 + v2 ≤ 36.

b. Suppose we “lock” the joint between the length 3 and length 2 arms to form a straight

angle, but allow the other joint to move freely. Draw a picture to show that in these

configurations, (u, v) can be any point of the annulus 16 ≤ u2 + v2 ≤ 36.

c. Draw a picture to show that (u, v) can be any point in the disk u2 + v2 ≤ 36. Hint: These

positions can be reached by putting the second joint in a fixed, special position.

15. In Lemma 2, we showed that if V and W are affine varieties, then so are their union V ∪ W
and intersection V ∩ W . In this exercise we will study how other set-theoretic operations

affect affine varieties.

a. Prove that finite unions and intersections of affine varieties are again affine varieties.

Hint: Induction.

b. Give an example to show that an infinite union of affine varieties need not be an affine

variety. Hint: By Exercises 8–10, we know some subsets of kn that are not affine varieties.

Surprisingly, an infinite intersection of affine varieties is still an affine variety. This is a

consequence of the Hilbert Basis Theorem, which will be discussed in Chapters 2 and 4.

c. Give an example to show that the set-theoretic difference V − W of two affine varieties

need not be an affine variety.

d. Let V ⊂ kn and W ⊂ km be two affine varieties, and let

V × W = {(x1, . . . , xn, y1, . . . , ym) ∈ kn+m :

(x1, . . . , xn) ∈ V, (y1, . . . , ym) ∈ W }

be their cartesian product. Prove that V × W is an affine variety in kn+m . Hint: If V is

defined by f1, . . . , fs ∈ k[x1, . . . , xn], then we can regard f1, . . . , fs as polynomials in

k[x1, . . . , xn, y1, . . . , ym], and similarly for W . Show that this gives defining equations

for the cartesian product.

§3 Parametrizations of Affine Varieties

In this section, we will discuss the problem of describing the points of an affine variety
V( f1, . . . , fs). This reduces to asking whether there is a way to “write down” the
solutions of the system of polynomial equations f1 = · · · = fs = 0. When there are
finitely many solutions, the goal is simply to list them all. But what do we do when there
are infinitely many? As we will see, this question leads to the notion of parametrizing
an affine variety.

To get started, let us look at an example from linear algebra. Let the field be , and
consider the system of equations

x + y + z = 1,
(1)

x + 2y − z = 3.

Geometrically, this represents the line in 3 which is the intersection of the planes
x + y + z = 1 and x + 2y − z = 3. It follows that there are infinitely many solu-
tions. To describe the solutions, we use row operations on equations (1) to obtain the
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equivalent equations

x + 3z = −1,

y − 2z = 2.

Letting z = t , where t is arbitrary, this implies that all solutions of (1) are given by

x = −1 − 3t,

y = 2 + 2t,(2)

z = t

as t varies over . We call t a parameter, and (2) is, thus, a parametrization of the
solutions of (1).

To see if the idea of parametrizing solutions can be applied to other affine varieties,
let us look at the example of the unit circle

x2 + y2 = 1.(3)

A common way to parametrize the circle is using trigonometric functions:

x = cos (t),

y = sin (t).

There is also a more algebraic way to parametrize this circle:

x = 1 − t2

1 + t2
,

(4)

y = 2t

1 + t2
.

You should check that the points defined by these equations lie on the circle (3). It is
also interesting to note that this parametrization does not describe the whole circle:

since x = 1−t2

1+t2 can never equal −1, the point (−1, 0) is not covered. At the end of the
section, we will explain how this parametrization was obtained.

Notice that equations (4) involve quotients of polynomials. These are examples of
rational functions, and before we can say what it means to parametrize a variety, we
need to define the general notion of rational function.

Definition 1. Let k be a field. A rational function in t1, . . . , tm with coefficients in
k is a quotient f/g of two polynomials f, g ∈ k[t1, . . . , tm], where g is not the zero
polynomial. Furthermore, two rational functions f/g and h/k are equal, provided that
k f = gh in k[t1, . . . , tm]. Finally, the set of all rational functions in t1, . . . , tm with
coefficients in k is denoted k(t1, . . . , tm).

It is not difficult to show that addition and multiplication of rational functions are
well defined and that k(t1, . . . , tm) is a field. We will assume these facts without proof.

Now suppose that we are given a variety V = V( f1, . . . , fs) ⊂ kn . Then a rational
parametric representation of V consists of rational functions r1, . . . , rn ∈ k(t1, . . . , tm)
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such that the points given by

x1 = r1(t1, . . . , tm),

x2 = r2(t1, . . . , tm),

...

xn = rn(t1, . . . , tm)

lie in V . We also require that V be the “smallest” variety containing these points. As
the example of the circle shows, a parametrization may not cover all points of V . In
Chapter 3, we will give a more precise definition of what we mean by “smallest.”

In many situations, we have a parametrization of a variety V , where r1, . . . , rn are
polynomials rather than rational functions. This is what we call a polynomial parametric
representation of V .

By contrast, the original defining equations f1 = · · · = fs = 0 of V are called an
implicit representation of V . In our previous examples, note that equations (1) and (3)
are implicit representations of varieties, whereas (2) and (4) are parametric.

One of the main virtues of a parametric representation of a curve or surface is that it
is easy to draw on a computer. Given the formulas for the parametrization, the computer
evaluates them for various values of the parameters and then plots the resulting points.
For example, in §2 we viewed the surface V(x2 − y2z2 + z3):

x y

z

This picture was not plotted using the implicit representation x2 − y2z2 + z3 = 0.
Rather, we used the parametric representation given by

x = t(u2 − t2),

y = u,(5)

z = u2 − t2.

There are two parameters t and u since we are describing a surface, and the above picture
was drawn using t, u in the range −1 ≤ t, u ≤ 1. In the exercises, we will derive this
parametrization and check that it covers the entire surface V(x2 − y2z2 + z3).
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At the same time, it is often useful to have an implicit representation of a variety.
For example, suppose we want to know whether or not the point (1, 2, −1) is on the
above surface. If all we had was the parametrization (5), then, to decide this question,
we would need to solve the equations

1 = t(u2 − t2),

2 = u,(6)

−1 = u2 − t2

for t and u. On the other hand, if we have the implicit representation x2 − y2z2 +
z3 = 0, then it is simply a matter of plugging into this equation. Since

12 − 22(−1)2 + (−1)3 = 1 − 4 − 1 = −4 �= 0,

it follows that (1, 2, −1) is not on the surface [and, consequently, equations (6) have
no solution].

The desirability of having both types of representations leads to the following two
questions:
� (Parametrization) Does every affine variety have a rational parametric representation?
� (Implicitization) Given a parametric representation of an affine variety, can we find

the defining equations (i.e., can we find an implicit representation)?
The answer to the first question is no. In fact, most affine varieties cannot be
parametrized in the sense described here. Those that can are called unirational. In
general, it is difficult to tell whether a given variety is unirational or not. The situa-
tion for the second question is much nicer. In Chapter 3, we will see that the answer
is always yes: given a parametric representation, we can always find the defining
equations.

Let us look at an example of how implicitization works. Consider the parametric
representation

x = 1 + t,
(7)

y = 1 + t2.

This describes a curve in the plane, but at this point, we cannot be sure that it lies on
an affine variety. To find the equation we are looking for, notice that we can solve the
first equation for t to obtain

t = x − 1.

Substituting this into the second equation yields

y = 1 + (x − 1)2 = x2 − 2x + 2.

Hence the parametric equations (7) describe the affine variety V(y − x2 + 2x − 2).
In the above example, notice that the basic strategy was to eliminate the variable

t so that we were left with an equation involving only x and y. This illustrates the
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role played by elimination theory, which will be studied in much greater detail in
Chapter 3.

We will next discuss two examples of how geometry can be used to parametrize
varieties. Let us start with the unit circle x2 + y2 = 1, which was parametrized in (4)
via

x = 1 − t2

1 + t2
,

y = 2t

1 + t2
.

To see where this parametrization comes from, notice that each nonvertical line through
(−1, 0) will intersect the circle in a unique point (x, y):

1

1

(x,y)

(0,t)

(−1,0) x

y

Each nonvertical line also meets the y-axis, and this is the point (0, t) in the above
picture.

This gives us a geometric parametrization of the circle: given t , draw the line con-
necting (−1, 0) to (0, t), and let (x, y) be the point where the line meets x2 + y2 = 1.

Notice that the previous sentence really gives a parametrization: as t runs from −∞ to
∞ on the vertical axis, the corresponding point (x, y) traverses all of the circle except
for the point (−1,0).

It remains to find explicit formulas for x and y in terms of t . To do this, consider the
slope of the line in the above picture. We can compute the slope in two ways, using
either the points (−1, 0) and (0, t), or the points (−1, 0) and (x, y). This gives us the
equation

t − 0

0 − (−1)
= y − 0

x − (−1)
,
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which simplifies to become

t = y

x + 1
.

Thus, y = t(x + 1). If we substitute this into x2 + y2 = 1, we get

x2 + t2(x + 1)2 = 1,

which gives the quadratic equation

(1 + t2)x2 + 2t2x + t2 − 1 = 0.(8)

This equation gives the x-coordinates of where the line meets the circle, and it is
quadratic since there are two points of intersection. One of the points is −1, so that
x + 1 is a factor of (8). It is now easy to find the other factor, and we can rewrite (8) as

(x + 1)((1 + t2)x − (1 − t2)) = 0.

Since the x-coordinate we want is given by the second factor, we obtain

x = 1 − t2

1 + t2
.

Furthermore, y = t(x + 1) easily leads to

y = 2t

1 + t2

(you should check this), and we have now derived the parametrization given earlier.
Note how the geometry tells us exactly what portion of the circle is covered.

For our second example, let us consider the twisted cubic V(y − x2, z − x3) from
§2. This is a curve in 3-dimensional space, and by looking at the tangent lines to the
curve, we will get an interesting surface. The idea is as follows. Given one point on the
curve, we can draw the tangent line at that point:

Now imagine taking the tangent lines for all points on the twisted cubic. This gives us
the following surface:
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This picture shows several of the tangent lines. The above surface is called the tangent
surface of the twisted cubic.

To convert this geometric description into something more algebraic, notice that
setting x = t in y − x2 = z − x3 = 0 gives us a parametrization

x = t,

y = t2,

z = t3

of the twisted cubic. We will write this as r(t) = (t, t2, t3). Now fix a particular value
of t , which gives us a point on the curve. From calculus, we know that the tangent
vector to the curve at the point given by r(t) is r′(t) = (1, 2t, 3t2). It follows that the
tangent line is parametrized by

r(t) + ur′(t) = (t, t2, t3) + u(1, 2t, 3t2) = (t + u, t2 + 2tu, t3 + 3t2u),

where u is a parameter that moves along the tangent line. If we now allow t to vary,
then we can parametrize the entire tangent surface by

x = t + u,

y = t2 + 2tu,

z = t3 + 3t2u.

The parameters t and u have the following interpretations: t tells where we are on the
curve, and u tells where we are on the tangent line. This parametrization was used to
draw the picture of the tangent surface presented earlier.

A final question concerns the implicit representation of the tangent surface: how
do we find its defining equation? This is a special case of the implicitization problem
mentioned earlier and is equivalent to eliminating t and u from the above parametric
equations. In Chapters 2 and 3, we will see that there is an algorithm for doing this,
and, in particular, we will prove that the tangent surface to the twisted cubic is defined
by the equation

−4x3z + 3x2 y2 − 4y3 + 6xyz − z2 = 0.
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We will end this section with an example from Computer Aided Geometric Design
(CAGD). When creating complex shapes like automobile hoods or airplane wings,
design engineers need curves and surfaces that are varied in shape, easy to describe,
and quick to draw. Parametric equations involving polynomial and rational functions
satisfy these requirements; there is a large body of literature on this topic.

For simplicity, let us suppose that a design engineer wants to describe a curve in the
plane. Complicated curves are usually created by joining together simpler pieces, and
for the pieces to join smoothly, the tangent directions must match up at the endpoints.
Thus, for each piece, the designer needs to control the following geometric data:
� the starting and ending points of the curve;
� the tangent directions at the starting and ending points.
The Bézier cubic, introduced by Renault auto designer P. Bézier, is especially well
suited for this purpose. A Bézier cubic is given parametrically by the equations

x = (1 − t)3x0 + 3t(1 − t)2x1 + 3t2(1 − t)x2 + t3x3,
(9)

y = (1 − t)3 y0 + 3t(1 − t)2 y1 + 3t2(1 − t)y2 + t3 y3

for 0 ≤ t ≤ 1, where x0, y0, x1, y1, x2, y2, x3, y3 are constants specified by the design
engineer. We need to see how these constants correspond to the above geometric data.

If we evaluate the above formulas at t = 0 and t = 1, then we obtain

(x(0), y(0)) = (x0, y0),

(x(1), y(1)) = (x3, y3).

As t varies from 0 to 1, equations (9) describe a curve starting at (x0, y0) and ending
at (x3, y3). This gives us half of the needed data. We will next use calculus to find the
tangent directions when t = 0 and 1. We know that the tangent vector to (9) when t = 0
is (x ′(0), y′(0)). To calculate x ′(0), we differentiate the first line of (9) to obtain

x ′ = −3(1 − t)2x0 + 3((1 − t)2 − 2t(1 − t))x1 + 3(2t(1 − t) − t2)x2 + 3t2x3.

Then substituting t = 0 yields

x ′(0) = −3x0 + 3x1 = 3(x1 − x0),

and from here, it is straightforward to show that

(x ′(0), y′(0)) = 3(x1 − x0, y1 − y0),
(10)

(x ′(1), y′(1)) = 3(x3 − x2, y3 − y2).

Since (x1 − x0, y1 − y0) = (x1, y1) − (x0, y0), it follows that (x ′(0), y′(0)) is three
times the vector from (x0, y0) to (x1, y1). Hence, by placing (x1, y1), the designer
can control the tangent direction at the beginning of the curve. In a similar way, the
placement of (x2, y2) controls the tangent direction at the end of the curve.
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The points (x0, y0), (x1, y1), (x2, y2) and (x3, y3) are called the control points of the
Bézier cubic. They are usually labelled P0, P1, P2 and P3, and the convex quadrilateral
they determine is called the control polygon. Here is a picture of a Bézier curve together
with its control polygon:

In the exercises, we will show that a Bézier cubic always lies inside its control polygon.
The data determining a Bézier cubic is thus easy to specify and has a strong geometric

meaning. One issue not resolved so far is the length of the tangent vectors (x ′(0), y′(0))
and (x ′(1), y′(1)). According to (10), it is possible to change the points (x1, y1) and
(x2, y2) without changing the tangent directions. For example, if we keep the same
directions as in the previous picture, but lengthen the tangent vectors, then we get the
following curve:

Thus, increasing the velocity at an endpoint makes the curve stay close to the tangent line
for a longer distance. With practice and experience, a designer can become proficient
in using Bézier cubics to create a wide variety of curves. It is interesting to note that
the designer may never be aware of equations (9) that are used to describe the curve.

Besides CAGD, we should mention that Bézier cubics are also used in the page
description language PostScript. The curveto command in PostScript has the coordi-
nates of the control points as input and the Bézier cubic as output. This is how the above
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Bézier cubics were drawn—each curve was specified by a single curveto instruction
in a PostScript file.

EXERCISES FOR §3

1. Parametrize all solutions of the linear equations

x + 2y − 2z + w = −1,

x + y + z − w = 2.

2. Use a trigonometric identity to show that

x = cos (t),

y = cos (2t)

parametrizes a portion of a parabola. Indicate exactly what portion of the parabola is covered.

3. Given f ∈ k[x], find a parametrization of V(y − f (x)).

4. Consider the parametric representation

x = t

1 + t
,

y = 1 − 1

t2
.

a. Find the equation of the affine variety determined by the above parametric equations.

b. Show that the above equations parametrize all points of the variety found in part a except

for the point (1,1).

5. This problem will be concerned with the hyperbola x2 − y2 = 1.

−2 −1.5 −1 −.5 .5 1 1.5 2

−2

−1.5

−1

−.5

.5

1

1.5

2

a. Just as trigonometric functions are used to parametrize the circle, hyperbolic functions

are used to parametrize the hyperbola. Show that the point

x = cosh(t),

y = sinh(t)

always lies on x2 − y2 = 1. What portion of the hyperbola is covered?
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b. Show that a straight line meets a hyperbola in 0,1, or 2 points, and illustrate your answer

with a picture. Hint: Consider the cases x = a and y = mx + b separately.

c. Adapt the argument given at the end of the section to derive a parametrization of the

hyperbola. Hint: Consider nonvertical lines through the point (−1,0) on the hyperbola.

d. The parametrization you found in part c is undefined for two values of t . Explain how

this relates to the asymptotes of the hyperbola.

6. The goal of this problem is to show that the sphere x2 + y2 + z2 = 1 in 3-dimensional space

can be parametrized by

x = 2u

u2 + v2 + 1
,

y = 2v

u2 + v2 + 1
,

z = u2 + v2 − 1

u2 + v2 + 1
.

The idea is to adapt the argument given at the end of the section to 3-dimensional

space.

a. Given a point (u, v, 0) in the xy-plane, draw the line from this point to the “north pole”

(0,0,1) of the sphere, and let (x, y, z) be the other point where the line meets the sphere.

Draw a picture to illustrate this, and argue geometrically that mapping (u, v) to (x, y, z)

gives a parametrization of the sphere minus the north pole.

b. Show that the line connecting (0,0,1) to (u, v, 0) is parametrized by (tu, tv, 1 − t), where

t is a parameter that moves along the line.

c. Substitute x = tu, y = tv and z = 1 − t into the equation for the sphere x2 + y2 + z2 = 1.

Use this to derive the formulas given at the beginning of the problem.

7. Adapt the argument of the previous exercise to parametrize the “sphere” x2
1 + · · · + x2

n = 1

in n-dimensional affine space. Hint: There will be n − 1 parameters.

8. Consider the curve defined by y2 = cx2 − x3, where c is some constant. Here is a picture

of the curve when c > 0:

c              x

y
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Our goal is to parametrize this curve.

a. Show that a line will meet this curve at either 0, 1, 2, or 3 points. Illustrate your answer

with a picture. Hint: Let the equation of the line be either x = a or y = m x + b.

b. Show that a nonvertical line through the origin meets the curve at exactly one other

point when m2 �= c. Draw a picture to illustrate this, and see if you can come up with an

intuitive explanation as to why this happens.

c. Now draw the vertical line x = 1. Given a point (1, t) on this line, draw the line connecting

(1, t) to the origin. This will intersect the curve in a point (x, y). Draw a picture to illustrate

this, and argue geometrically that this gives a parametrization of the entire curve.

d. Show that the geometric description from part c leads to the parametrization

x = c − t2,

y = t(c − t2).

9. The strophoid is a curve that was studied by various mathematicians, including Isaac Barrow

(1630–1677), Jean Bernoulli (1667–1748), and Maria Agnesi (1718–1799). A trigonometric

parametrization is given by

x = a sin(t),

y = a tan(t)(1 + sin(t))

where a is a constant. If we let t vary in the range −4.5 ≤ t ≤ 1.5, we get the picture shown

at the top of the next page.

a. Find the equation in x and y that describes the strophoid. Hint: If you are sloppy, you

will get the equation (a2 − x2)y2 = x2(a + x)2. To see why this is not quite correct, see

what happens when x = −a.

b. Find an algebraic parametrization of the strophoid.

a−a x

y

10. Around 180 B.C., Diocles wrote the book On Burning-Glasses, and one of the curves he

considered was the cissoid. He used this curve to solve the problem of the duplication of

the cube [see part (c) below]. The cissoid has the equation y2(a + x) = (a − x)3, where a
is a constant. This gives the following curve in the plane:
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a x

a

−a

y

a. Find an algebraic parametrization of the cissoid.

b. Diocles described the cissoid using the following geometric construction. Given a circle

of radius a (which we will take as centered at the origin), pick x between a and −a, and

draw the line L connecting (a, 0) to the point P = (−x,
√

a2 − x2) on the circle. This

determines a point Q = (x, y) on L:

ax−x

a

−a

P

QL
↑

Prove that the cissoid is the locus of all such points Q.

c. The duplication of the cube is the classical Greek problem of trying to construct 3
√

2 using

ruler and compass. It is known that this is impossible given just a ruler and compass.

Diocles showed that if in addition, you allow the use of the cissoid, then one can construct
3
√

2. Here is how it works. Draw the line connecting (−a, 0) to (0, a/2). This line will
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meet the cissoid at a point (x, y). Then prove that

2 =
(

a − x

y

)3

,

which shows how to construct
3
√

2 using ruler, compass and cissoid.

11. In this problem, we will derive the parametrization

x = t(u2 − t2),

y = u,

z = u2 − t2,

of the surface x2 − y2z2 + z3 = 0 considered in the text.

a. Adapt the formulas in part d of Exercise 8 to show that the curve x2 = cz2 − z3 is

parametrized by

z = c − t2,

x = t(c − t2).

b. Now replace the c in part a by y2, and explain how this leads to the above parametrization

of x2 − y2z2 + z3 = 0.

c. Explain why this parametrization covers the entire surface V(x2 − y2z2 + z3). Hint: See

part (c) of Exercise 8.

12. Consider the variety V = V(y − x2, z − x4) ⊂ 3.

a. Draw a picture of V .

b. Parametrize V in a way similar to what we did with the twisted cubic.

c. Parametrize the tangent surface of V .

13. The general problem of finding the equation of a parametrized surface will be studied in

Chapters 2 and 3. However, when the surface is a plane, methods from calculus or linear

algebra can be used. For example, consider the plane in 3 parametrized by

x = 1 + u − v,

y = u + 2v,

z = −1 − u + v.

Find the equation of the plane determined this way. Hint: Let the equation of the plane be

ax + by + cz = d . Then substitute in the above parametrization to obtain a system of equa-

tions for a, b, c, d . Another way to solve the problem would be to write the parametrization

in vector form as (1, 0, −1) + u(1, 1, −1) + v(−1, 2, 1). Then one can get a quick solution

using the cross product.

14. This problem deals with convex sets and will be used in the next exercise to show that a

Bézier cubic lies within its control polygon. A subset C ⊂ 2 is convex if for all P, Q ∈ C ,

the line segment joining P to Q also lies in C .

a. If P = (x
y

)
and Q = ( z

w

)
lie in a convex set C , then show that

t

(
x

y

)
+ (1 − t)

(
z

w

)
∈ C

when 0 ≤ t ≤ 1.
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b. If Pi = (xi
yi

)
lies in a convex set C for 1 ≤ i ≤ n, then show that

n∑
i=1

ti

(
xi

yi

)
∈ C

wherever t1, . . . , tn are nonnegative numbers such that
∑n

i=1 ti = 1. Hint: Use induction

on n.

15. Let a Bézier cubic be given by

x = (1 − t)3x0 + 3t(1 − t)2x1 + 3t2(1 − t)x2 + t3x3,

y = (1 − t)3 y0 + 3t(1 − t)2 y1 + 3t2(1 − t)y2 + t3 y3.

a. Show that the above equations can be written in vector form

(
x

y

)
= (1 − t)3

(
x0

y0

)
+ 3t(1 − t)2

(
x1

y1

)
+ 3t2(1 − t)

(
x2

y2

)
+ t3

(
x3

y3

)
.

b. Use the previous exercise to show that a Bézier cubic always lies inside its control

polygon. Hint: In the above equations, what is the sum of the coefficients?

16. One disadvantage of Bézier cubics is that curves like circles and hyperbolas cannot be

described exactly by cubics. In this exercise, we will discuss a method similar to example

(4) for parametrizing conic sections. Our treatment is based on BALL (1987).

A conic section is a curve in the plane defined by a second degree equation of the

form ax2 + bxy + cy2 + dx + ey + f = 0. Conic sections include the familiar exam-

ples of circles, ellipses, parabolas, and hyperbolas. Now consider the curve parametrized

by

x = (1 − t)2x1 + 2t(1 − t)wx2 + t2x3

(1 − t)2 + 2t(1 − t)w + t2
,

y = (1 − t)2 y1 + 2t(1 − t)wy2 + t2 y3

(1 − t)2 + 2t(1 − t)w + t2

for 0 ≤ t ≤ 1. The constants w, x1, y1, x2, y2, x3, y3 are specified by the design engineer,

and we will assume that w ≥ 0. In Chapter 3, we will show that these equations parametrize a

conic section. The goal of this exercise is to give a geometric interpretation for the quantities

w, x1, y1, x2, y2, x3, y3.

a. Show that our assumption w ≥ 0 implies that the denominator in the above formulas

never vanishes.

b. Evaluate the above formulas at t = 0 and t = 1. This should tell you what x1, y1, x3, y3

mean.

c. Now compute (x ′(0), y′(0)) and (x ′(1), y′(1)). Use this to show that (x2, y2) is the inter-

section of the tangent lines at the start and end of the curve. Explain why (x1, y1), (x2, y2),

and (x3, y3) are called the control points of the curve.

d. Define the control polygon (it is actually a triangle in this case), and prove that the

curve defined by the above equations always lies in its control polygon. Hint: Adapt the

argument of the previous exercise. This gives the following picture:



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX December 18, 2006 8:40

§4. Ideals 29

(x1,y1)

(x2,y2)

(x3,y3)

It remains to explain the constant w, which is called the shape factor. A hint should

come from the answer to part (c), for note that w appears in the formulas for the tangent

vectors when t = 0 and 1. So w somehow controls the “velocity,” and a larger w should

force the curve closer to (x2, y2). In the last two parts of the problem, we will determine

exactly what w does.

e. Prove that (
x

(
1
2

)
y
(

1
2

)) = 1

1 + w

(
1

2

(
x1

y1

)
+ 1

2

(
x3

y3

))
+ w

1 + w

(
x2

y2

)
.

Use this formula to show that
(
x

(
1
2

)
, y

(
1
2

))
lies on the line segment connecting (x2, y2)

to the midpoint of the line between (x1, y1) and (x3, y3).

a

b

(x1,y1)

(x2,y2)

(x3,y3)

f. Notice that
(
x

(
1
2

)
, y

(
1
2

))
divides this line segment into two pieces, say of lengths a and

b as indicated in the above picture. Then prove that

w = a

b
,

so that w tells us exactly where the curve crosses this line segment. Hint: Use the distance

formula.

17. Use the formulas of the previous exercise to parametrize the arc of the circle x2 + y2 = 1

from (1, 0) to (0, 1). Hint: Use part (f) of Exercise 16 to show that w = 1/
√

2.

§4 Ideals

We next define the basic algebraic object of the book.
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Definition 1. A subset I ⊂ k[x1, . . . , xn] is an ideal if it satisfies:
(i) 0 ∈ I .

(ii) If f, g ∈ I , then f + g ∈ I .
(iii) If f ∈ I and h ∈ k[x1, . . . , xn], then h f ∈ I .

The goal of this section is to introduce the reader to some naturally occurring ideals
and to see how ideals relate to affine varieties. The real importance of ideals is that they
will give us a language for computing with affine varieties.

The first natural example of an ideal is the ideal generated by a finite number of
polynomials.

Definition 2. Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. Then we set

〈 f1, . . . , fs〉 =
{

s∑
i=1

hi fi : h1, . . . , hs ∈ k[x1, . . . , xn]

}
.

The crucial fact is that 〈 f1, . . . , fs〉 is an ideal.

Lemma 3. If f1, . . . , fs ∈ k[x1, . . . , xn], then 〈 f1, . . . , fs〉 is an ideal of
k[x1, . . . , xn]. We will call 〈 f1, . . . , fs〉 the ideal generated by f1, . . . , fs .

Proof. First, 0 ∈ 〈 f1, . . . , fs〉 since 0 = ∑s
i=1 0 · fi . Next, suppose that f =∑s

i=1 pi fi and g = ∑s
i=1 qi fi , and let h ∈ k[x1, . . . , xn]. Then the equations

f + g =
s∑

i=1

(pi + qi ) fi ,

h f =
s∑

i=1

(hpi ) fi

complete the proof that 〈 f1, . . . , fs〉 is an ideal. �

The ideal 〈 f1, . . . , fs〉 has a nice interpretation in terms of polynomial equations.
Given f1, . . . , fs ∈ k[x1, . . . , xn], we get the system of equations

f1 = 0,

...

fs = 0.

From these equations, one can derive others using algebra. For example, if we multiply
the first equation by h1 ∈ k[x1, . . . , xn], the second by h2 ∈ k[x1, . . . , xn], etc., and
then add the resulting equations, we obtain

h1 f1 + h2 f2 + · · · + hs fs = 0,

which is a consequence of our original system. Notice that the left-hand side of
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this equation is exactly an element of the ideal 〈 f1, . . . , fs〉. Thus, we can think
of 〈 f1, . . . , fs〉 as consisting of all “polynomial consequences” of the equations
f1 = f2 = · · · = fs = 0.

To see what this means in practice, consider the example from §3 where we took

x = 1 + t,

y = 1 + t2

and eliminated t to obtain

y = x2 − 2x + 2

[see the discussion following equation (7) in §3]. Let us redo this example using the
above ideas. We start by writing the equations as

x − 1 − t = 0,
(1)

y − 1 − t2 = 0.

To cancel the t terms, we multiply the first equation by x − 1 + t and the second by
−1:

(x − 1)2 − t = 0,

−y + 1 + t2 = 0,

and then add to obtain

(x − 1)2 − y + 1 = x2 − 2x + 2 − y = 0.

In terms of the ideal generated by equations (1), we can write this as

x2 − 2x + 2 − y = (x − 1 + t)(x − 1 − t) + (−1)(y − 1 − t2)

∈ 〈x − 1 − t, y − 1 − t2〉.
Similarly, any other “polynomial consequence” of (1) leads to an element of this ideal.

We say that an ideal I is finitely generated if there exist f1, . . . , fs ∈ k[x1, . . . , xn]
such that I = 〈 f1, . . . , fs〉, and we say that f1, . . . , fs , are a basis of I . In Chapter 2,
we will prove the amazing fact that every ideal of k[x1, . . . , xn] is finitely generated
(this is known as the Hilbert Basis Theorem). Note that a given ideal may have many
different bases. In Chapter 2, we will show that one can choose an especially useful
type of basis, called a Groebner basis.

There is a nice analogy with linear algebra that can be made here. The definition of an
ideal is similar to the definition of a subspace: both have to be closed under addition and
multiplication, except that, for a subspace, we multiply by scalars, whereas for an ideal,
we multiply by polynomials. Further, notice that the ideal generated by polynomials
f1, . . . , fs is similar to the span of a finite number of vectors v1, . . . , vs . In each case,
one takes linear combinations, using field coefficients for the span and polynomial
coefficients for the ideal generated. Relations with linear algebra are explored further
in Exercise 6.
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Another indication of the role played by ideals is the following proposition, which
shows that a variety depends only on the ideal generated by its defining equations.

Proposition 4. If f1, . . . , fs and g1, . . . , gt are bases of the same ideal in
k[x1, . . . , xn], so that 〈 f1, . . . , fs〉 = 〈g1, . . . , gt 〉, then we have V( f1, . . . , fs) =
V(g1, . . . , gt ).

Proof. The proof is very straightforward and is left as an exercise. �

As an example, consider the variety V(2x2 + 3y2 − 11, x2 − y2 − 3). It is easy
to show that 〈2x2 + 3y2 − 11, x2 − y2 − 3〉 = 〈x2 − 4, y2 − 1〉 (see Exercise 3), so
that

V(2x2 + 3y2 − 11, x2 − y2 − 3) = V(x2 − 4, y2 − 1) = {(±2, ±1)}

by the above proposition. Thus, by changing the basis of the ideal, we made it easier
to determine the variety.

The ability to change the basis without affecting the variety is very important. Later
in the book, this will lead to the observation that affine varieties are determined by
ideals, not equations. (In fact, the correspondence between ideals and varieties is the
main topic of Chapter 4.) From a more practical point of view, we will also see that
Proposition 4, when combined with the Groebner bases mentioned above, provides a
powerful tool for understanding affine varieties.

We will next discuss how affine varieties give rise to an interesting class of ideals.
Suppose we have an affine variety V = V( f1, . . . , fs) ⊂ kn defined by f1, . . . , fs ∈
k[x1, . . . , xn]. We know that f1, . . . , fs vanish on V , but are these the only ones? Are
there other polynomials that vanish on V ? For example, consider the twisted cubic
studied in §2. This curve is defined by the vanishing of y − x2 and z − x3. From the
parametrization (t, t2, t3) discussed in §3, we see that z − xy and y2 − xz are two more
polynomials that vanish on the twisted cubic. Are there other such polynomials? How
do we find them all?

To study this question, we will consider the set of all polynomials that vanish on a
given variety.

Definition 5. Let V ⊂ kn be an affine variety. Then we set

I(V ) = { f ∈ k[x1, . . . , xn] : f (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }.

The crucial observation is that I(V ) is an ideal.

Lemma 6. If V ⊂ kn is an affine variety, then I(V ) ⊂ k[x1, . . . , xn] is an ideal. We
will call I(V ) the ideal of V .

Proof. It is obvious that 0 ∈ I(V ) since the zero polynomial vanishes on all of kn , and
so, in particular it vanishes on V . Next, suppose that f, g ∈ I(V ) and h ∈ k[x1, . . . , xn].
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Let (a1, . . . , an) be an arbitrary point of V . Then

f (a1, . . . , an) + g(a1, . . . , an) = 0 + 0 = 0,

h(a1, . . . , an) f (a1, . . . , an) = h(a1, . . . , an) · 0 = 0,

and it follows that I(V ) is an ideal. �

For an example of the ideal of a variety, consider the variety {(0, 0)} consisting of
the origin in k2. Then its ideal I({(0, 0)}) consists of all polynomials that vanish at the
origin, and we claim that

I({(0, 0)}) = 〈x, y〉.
One direction of proof is trivial, for any polynomial of the form A(x, y)x + B(x, y)y
obviously vanishes at the origin. Going the other way, suppose that f = ∑

i, j ai j x i y j

vanishes at the origin. Then a00 = f (0, 0) = 0 and, consequently,

f = a00 +
∑

i, j �=0,0

ai j x
i y j

= 0 +
⎛
⎝∑

i, j
i>0

ai j x
i−1 y j

⎞
⎠ x +

(∑
j>0

a0 j y j−1

)
y ∈ 〈x, y〉.

Our claim is now proved.
For another example, consider the case when V is all of kn . Then I(kn) consists of

polynomials that vanish everywhere, and, hence, by Proposition 5 of §1, we have

I(kn) = {0} when k is infinite.

(Here, “0” denotes the zero polynomial in k[x1, . . . , xn].) Note that Proposition 5 of
§1 is equivalent to the above statement. In the exercises, we will discuss what happens
when k is a finite field.

For a more interesting example, consider the twisted cubic V = V(y − x2, z − x3) ⊂
3. We claim that

I(V ) = 〈y − x2, z − x3〉.
To prove this, we will first show that given a polynomial f ∈ [x, y, z], we can write
f in the form

f = h1(y − x2) + h2(z − x3) + r,(2)

where h1, h2 ∈ [x, y, z] and r is a polynomial in the variable x alone. First, consider
the case when f is a monomial xα yβ zγ . Then the binomial theorem tells us that

xα yβ zγ = xα(x2 + (y − x2))β(x3 + (z − x3))γ

= xα(x2β + terms involving y − x2)(x3γ + terms involving z − x3),

and multiplying this out shows that

xα yβ zγ = h1(y − x2) + h2(z − x3) + xα+2β+3γ
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for some polynomials h1, h2 ∈ [x, y, z]. Thus, (2) is true in this case. Since an arbi-
trary f ∈ [x, y, z] is an -linear combination of monomials, it follows that (2) holds
in general.

We can now prove I(V ) = 〈y − x2, z − x3〉. First, by the definition of the twisted
cubic V , we have y − x2, z − x3 ∈ I(V ), and since I(V ) is an ideal, it follows that
h1(y − x2) + h2(z − x3) ∈ I(V ). This proves that 〈y − x2, z − x3〉 ⊂ I(V ). To prove
the opposite inclusion, let f ∈ I(V ) and let

f = h1(y − x2) + h2(z − x3) + r

be the decomposition given by (2). To prove that r is zero, we will use the parametriza-
tion (t, t2, t3) of the twisted cubic. Since f vanishes on V , we obtain

0 = f (t, t2, t3) = 0 + 0 + r (t)

(recall that r is a polynomial in x alone). Since t can be any real number, r ∈ [x]
must be the zero polynomial by Proposition 5 of §1. But r = 0 shows that f has the
desired form, and I(V ) = 〈y − x2, z − x3〉 is proved.

What we did in (2) is reminiscent of the division of polynomials, except that we
are dividing by two polynomials instead of one. In fact, (2) is a special case of the
generalized division algorithm to be studied in Chapter 2.

A nice corollary of the above example is that given a polynomial f ∈ [x, y, z],
we have f ∈ 〈y − x2, z − x3〉 if and only if f (t, t2, t3) is identically zero. This gives
us an algorithm for deciding whether a polynomial lies in the ideal. However, this
method is dependent on the parametrization (t, t2, t3). Is there a way of deciding
whether f ∈ 〈y − x2, z − x3〉 without using the parametrization? In Chapter 2, we
will answer this question positively using Groebner bases and the generalized division
algorithm.

The example of the twisted cubic is very suggestive. We started with the polynomials
y − x2 and z − x3, used them to define an affine variety, took all functions vanishing
on the variety, and got back the ideal generated by the two polynomials. It is nat-
ural to wonder if this happens in general. So take f1, . . . , fs ∈ k[x1, . . . , xn]. This
gives us

polynomials variety ideal
f1, . . . , fs → V( f1, . . . , fs) → I(V( f1, . . . , fs)),

and the natural question to ask is whether I(V( f1, . . . , fs)) = 〈 f1, . . . , fs〉? The answer,
unfortunately, is not always yes. Here is the best answer we can give at this point.

Lemma 7. If f1, . . . , fs ∈ k[x1, . . . , xn], then 〈 f1, . . . , fs〉 ⊂ I(V( f1, . . . , fs)),
although equality need not occur.

Proof. Let f ∈ 〈 f1, . . . , fs〉, which means that f = ∑s
i=1 hi fi for some polynomi-

als h1, . . . , hs ∈ k[x1, . . . , xn]. Since f1, . . . , fs vanish on V( f1, . . . , fs), so must∑s
i=1 hi fi . Thus, f vanishes on V( f1, . . . , fs), which proves f ∈ I(V( f1, . . . , fs)).
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For the second part of the lemma, we need an example where I(V( f1, . . . , fs)) is
strictly larger than 〈 f1, . . . , fs〉. We will show that the inclusion

〈x2, y2〉 ⊂ I(V(x2, y2))

is not an equality. We first compute I(V(x2, y2)). The equations x2 = y2 = 0 imply
that V(x2, y2) = {(0, 0)}. But an earlier example showed that the ideal of {(0, 0)} is
〈x, y〉, so that I(V(x2, y2)) = 〈x, y〉. To see that this is strictly larger than 〈x2, y2〉, note
that x /∈ 〈x2, y2〉 since for polynomials of the form h1(x, y)x2 + h2(x, y)y2, every
monomial has total degree at least two. �

For arbitrary fields, the relationship between 〈 f1, . . . , fs〉 and I(V( f1, . . . , fs)) can
be rather subtle (see the exercises for some examples). However, over an algebraically
closed field like , there is a straightforward relation between these ideals. This will
be explained when we prove the Nullstellensatz in Chapter 4.

Although for a general field, I(V( f1, . . . , fs)) may not equal 〈 f1, . . . , fs〉, the
ideal of a variety always contains enough information to determine the variety
uniquely.

Proposition 8. Let V and W be affine varieties in kn. Then:
(i) V ⊂ W if and only if I(V ) ⊃ I(W ).

(ii) V = W if and only if I(V ) = I(W ).

Proof. We leave it as an exercise to show that (ii) is an immediate consequence of (i).
To prove (i), first suppose that V ⊂ W . Then any polynomial vanishing on W must
vanish on V , which proves I(W ) ⊂ I(V ). Next, assume that I(W ) ⊂ I(V ). We know
that W is the variety defined by some polynomials g1, . . . , gt ∈ k[x1, . . . , xn]. Then
g1, . . . , gt ∈ I(W ) ⊂ I(V ), and hence the gi ’s vanish on V . Since W consists of all
common zeros of the gi ’s, it follows that V ⊂ W . �

There is a rich relationship between ideals and affine varieties; the material presented
so far is just the tip of the iceberg. We will explore this relation further in Chapter
4. In particular, we will see that theorems proved about ideals have strong geometric
implications. For now, let us list three questions we can pose concerning ideals in
k[x1, . . . , xn]:
� (Ideal Description) Can every ideal I ⊂ k[x1, . . . , xn] be written as 〈 f1, . . . , fs〉 for

some f1, . . . , fs ∈ k[x1, . . . , xn]?
� (Ideal Membership) If f1, . . . , fs ∈ k[x1, . . . , xn], is there an algorithm to decide

whether a given f ∈ k[x1, . . . , xn] lies in 〈 f1, . . . , fs〉?
� (Nullstellensatz) Given f1, . . . , fs ∈ k[x1, . . . , xn], what is the exact relation be-

tween 〈 f1, . . . , fs〉 and I(V( f1, . . . , fs))?
In the chapters that follow, we will solve these problems completely (and we will
explain where the name Nullstellensatz comes from), although we will need to be
careful about which field we are working over.



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX December 18, 2006 8:40

36 1. Geometry, Algebra, and Algorithms

EXERCISES FOR §4

1. Consider the equations

x2 + y2 − 1 = 0,

xy − 1 = 0

which describe the intersection of a circle and a hyperbola.

a. Use algebra to eliminate y from the above equations.

b. Show how the polynomial found in part (a) lies in 〈x2 + y2 − 1, xy − 1〉. Your an-

swer should be similar to what we did in (1). Hint: Multiply the second equation by

xy + 1.

2. Let I ⊂ k[x1, . . . , xn] be an ideal, and let f1, . . . , fs ∈ k[x1, . . . , xn]. Prove that the follow-

ing statements are equivalent:

(i) f1, . . . , fs ∈ I .

(ii) 〈 f1, . . . , fs〉 ⊂ I .

This fact is useful when you want to show that one ideal is contained in another.

3. Use the previous exercise to prove the following equalities of ideals in [x, y]:

a. 〈x + y, x − y〉 = 〈x, y〉.
b. 〈x + xy, y + xy, x2, y2〉 = 〈x, y〉.
c. 〈2x2 + 3y2 − 11, x2 − y2 − 3〉 = 〈x2 − 4, y2 − 1〉.
This illustrates that the same ideal can have many different bases and that different bases

may have different numbers of elements.

4. Prove Proposition 4.

5. Show that V(x + xy, y + xy, x2, y2) = V(x, y). Hint: See Exercise 3.

6. The word “basis” is used in various ways in mathematics. In this exercise, we will see that

“a basis of an ideal,” as defined in this section, is quite different from “a basis of a subspace,”

which is studied in linear algebra.

a. First, consider the ideal I = 〈x〉 ⊂ k[x]. As an ideal, I has a basis consisting of the one

element x . But I can also be regarded as a subspace of k[x], which is a vector space over

k. Prove that any vector space basis of I over k is infinite. Hint: It suffices to find one

basis that is infinite. Thus, allowing x to be multiplied by elements of k[x] instead of just

k is what enables 〈x〉 to have a finite basis.

b. In linear algebra, a basis must span and be linearly independent over k, whereas for

an ideal, a basis is concerned only with spanning—there is no mention of any sort of

independence. The reason is that once we allow polynomial coefficients, no independence

is possible. To see this, consider the ideal 〈x, y〉 ⊂ k[x, y]. Show that zero can be written

as a linear combination of y and x with nonzero polynomial coefficients.

c. More generally, suppose that f1, . . . , fs is the basis of an ideal I ⊂ k[x1, . . . , xn]. If

s ≥ 2 and fi �= 0 for all i , then show that for any i and j , zero can be written as a linear

combination of fi and f j with nonzero polynomial coefficients.

d. A consequence of the lack of independence is that when we write an element f ∈
〈 f1, . . . , fs〉 as f = �s

i=1hi fi , the coefficients hi are not unique. As an example, consider

f = x2 + xy + y2 ∈ 〈x, y〉. Express f as a linear combination of x and y in two different

ways. (Even though the hi ’s are not unique, one can measure their lack of uniqueness.

This leads to the interesting topic of syzygies.)

e. A basis f1, . . . , fs of an ideal I is said to be minimal if no proper subset of f1, . . . , fs

is a basis of I . For example, x, x2 is a basis of an ideal, but not a minimal basis since

x generates the same ideal. Unfortunately, an ideal can have minimal bases consisting
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of different numbers of elements. To see this, show that x and x + x2, x2 are minimal

bases of the same ideal of k[x]. Explain how this contrasts with the situation in linear

algebra.

7. Show that I(V(xn, ym)) = 〈x, y〉 for any positive integers n and m.

8. The ideal I(V) of a variety has a special property not shared by all ideals. Specifically, we

define an ideal I to be radical if whenever a power f m of a polynomial f is in I , then

f itself is in I . More succinctly, I is radical when f ∈ I if and only if f m ∈ I for some

positive integer m.

a. Prove that I(V ) is always a radical ideal.

b. Prove that 〈x2, y2〉 is not a radical ideal. This implies that 〈x2, y2〉 �= I(V ) for any variety

V ⊂ k2.

Radical ideals will play an important role in Chapter 4. In particular, the Nullstellensatz will

imply that there is a one-to-one correspondence between varieties in n and radical ideals

in [x1, . . . , xn].

9. Let V = V(y − x2, z − x3) be the twisted cubic. In the text, we showed that I(V ) =
〈y − x2, z − x3〉.
a. Use the parametrization of the twisted cubic to show that y2 − xz ∈ I(V ).

b. Use the argument given in the text to express y2 − xz as a combination of y − x2 and

z − x3.

10. Use the argument given in the discussion of the twisted cubic to show that I(V(x − y)) =
〈x − y〉. Your argument should be valid for any infinite field k.

11. Let V ⊂ 3 be the curve parametrized by (t, t3, t4).

a. Prove that V is an affine variety.

b. Adapt the method used in the case of the twisted cubic to determine I(V ).

12. Let V ⊂ 3 be the curve parametrized by (t2, t3, t4).

a. Prove that V is an affine variety.

b. Determine I(V ).

This problem is quite a bit more challenging than the previous one—figuring out the proper

analogue of equation (2) is not easy. Once we study the division algorithm in Chapter 2, this

exercise will become much easier.

13. In Exercise 2 of §1, we showed that x2 y + y2x vanishes at all points of 2
2. More generally,

let I ⊂ 2[x, y] be the ideal of all polynomials that vanish at all points of 2
2. The goal of

this exercise is to show that I = 〈x2 − x, y2 − y〉.
a. Show that 〈x2 − x, y2 − y〉 ⊂ I .

b. Show that every f ∈ 2[x, y] can be written as f = A(x2 − x) + B(y2 − y) + axy +
bx + cy + d, where A, B ∈ 2[x, y] and a, b, c, d ∈ 2. Hint: Write f in the form

�i pi (x)yi and use the division algorithm (Proposition 2 of §5) to divide each pi by

x2 − x . From this, you can write f = A(x2 − x) + q1(y)x + q2(y). Now divide q1 and

q2 by y2 − y. Again, this argument will become vastly simpler once we know the division

algorithm from Chapter 2.

c. Show that axy + bx + cy + d ∈ I if and only if a = b = c = d = 0.

d. Using parts (b) and (c), complete the proof that I = 〈x2 − x, y2 − y〉.
e. Express x2 y + y2x as a combination of x2 − x and y2 − y. Hint: Remember that 2 =

1 + 1 = 0 in 2.

14. This exercise is concerned with Proposition 8.

a. Prove that part (ii) of the proposition follows from part (i).

b. Prove the following corollary of the proposition: if V and W are affine varieties in kn ,

then V ⊂
�=

W if and only if I(V ) ⊃
�=

I(W ).
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15. In the text, we defined I(V ) for a variety V ⊂ kn . We can generalize this as follows: if

S ⊂ kn is any subset, then we set

I(S) = { f ∈ k[x1, . . . , xn] : f (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ S}.

a. Prove that I(S) is an ideal.

b. Let X = {(a, a) ∈ 2 : a �= 1}. By Exercise 8 of §2, we know that X is not an affine

variety. Determine I(X ). Hint: What you proved in Exercise 8 of §2 will be useful. See

also Exercise 10 of this section.

c. Let n be the points of n with integer coordinates. Determine I( n). Hint: See Exercise

6 of §1.

§5 Polynomials of One Variable

In this section, we will discuss polynomials of one variable and study the division
algorithm from high school algebra. This simple algorithm has some surprisingly deep
consequences—for example, we will use it to determine the structure of ideals of k[x]
and to explore the idea of a greatest common divisor. The theory developed will allow us
to solve, in the special case of polynomials in k[x], most of the problems raised in earlier
sections. We will also begin to understand the important role played by algorithms.

By this point in their mathematics careers, most students have already seen a variety
of algorithms, although the term “algorithm” may not have been used. Informally,
an algorithm is a specific set of instructions for manipulating symbolic or numerical
data. Examples are the differentiation formulas from calculus and the method of row
reduction from linear algebra. An algorithm will have inputs, which are objects used
by the algorithm, and outputs, which are the results of the algorithm. At each stage of
execution, the algorithm must specify exactly what the next step will be.

When we are studying an algorithm, we will usually present it in “pseudocode,”
which will make the formal structure easier to understand. Pseudocode is similar to the
computer language Pascal, and a brief discussion is given in Appendix B. Another rea-
son for using pseudocode is that it indicates how the algorithm could be programmed on
a computer. We should also mention that most of the algorithms in this book are imple-
mented in computer algebra systems such as AXIOM, Macsyma, Maple, Mathematica,
and REDUCE. Appendix C has more details concerning these programs.

We begin by discussing the division algorithm for polynomials in k[x]. A crucial
component of this algorithm is the notion of the “leading term” of a polynomial in one
variable. The precise definition is as follows.

Definition 1. Given a nonzero polynomial f ∈ k[x], let

f = a0xm + a1xm−1 + · · · + am,

where ai ∈ k and a0 �= 0 [thus, m = deg( f )]. Then we say that a0xm is the leading
term of f, written LT( f ) = a0xm.
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For example, if f = 2x3 − 4x + 3, then LT( f ) = 2x3. Notice also that if f and g
are nonzero polynomials, then

deg( f ) ≤ deg(g) ⇐⇒ LT( f ) divides LT(g).(1)

We can now describe the division algorithm.

Proposition 2 (The Division Algorithm). Let k be a field and let g be a nonzero poly-
nomial in k[x]. Then every f ∈ k[x] can be written as

f = qg + r,

where q, r ∈ k[x], and either r = 0 or deg(r ) < deg(g). Furthermore, q and r are
unique, and there is an algorithm for finding q and r.

Proof. Here is the algorithm for finding q and r , presented in pseudocode:

Input: g, f
Output: q, r
q := 0; r := f
WHILE r �= 0 AND LT(g) divides LT(r ) DO

q := q + LT(r )/LT(g)
r := r − (LT(r )/LT(g))g

The WHILE . . . DO statement means doing the indented operations until the expression
between the WHILE and DO becomes false. The statements q := . . . and r := . . .

indicate that we are defining or redefining the values of q and r . Both q and r are
variables in this algorithm—they change value at each step. We need to show that the
algorithm terminates and that the final values of q and r have the required properties.
(For a fuller discussion of pseudocode, see Appendix B.)

To see why this algorithm works, first note that f = qg + r holds for the initial
values of q and r , and that whenever we redefine q and r , the equality f = qg + r
remains true. This is because of the identity

f = qg + r = (q + LT(r )/LT(g))g + (r − (LT(r )/LT(g))g).

Next, note that the WHILE . . . DO statement terminates when “r �= 0 and LT(g) divides
LT(r )” is false, i.e., when either r = 0 or LT(g) does not divide LT(r ). By (1), this last
statement is equivalent to deg(r ) < deg(g). Thus, when the algorithm terminates, it
produces q and r with the required properties.

We are not quite done; we still need to show that the algorithm terminates, i.e., that
the expression between the WHILE and DO eventually becomes false (otherwise, we
would be stuck in an infinite loop). The key observation is that r − (LT(r )/LT(g))g is
either 0 or has smaller degree than r . To see why, suppose that

r = a0xm + · · · + am, LT(r ) = a0xm,

g = b0xk + · · · + bk, LT(g) = b0xk,
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and suppose that m ≥ k. Then

r − (LT(r )/LT(g))g = (a0xm + · · ·) − (a0/b0)xm−k(b0xk + · · ·),
and it follows that the degree of r must drop (or the whole expression may vanish).
Since the degree is finite, it can drop at most finitely many times, which proves that the
algorithm terminates.

To see how this algorithm corresponds to the process learned in high school, consider
the following partially completed division:

1
2 x2

2x + 1 x3 + 2x2 + x + 1

x3 + 1
2 x2

3
2 x2 + x + 1.

Here, f and g are given by f = x3 + 2x2 + x + 1 and g = 2x + 1, and more
importantly, the current (but not final) values of q and r are q = 1

2
x2 and r =

3
2
x2 + x + 1. Now notice that the statements

q := q + LT(r )/LT(g),

r := r − (LT(r )/LT(g))g

in the WHILE . . . DO loop correspond exactly to the next step in the above division.
The final step in proving the proposition is to show that q and r are unique. So suppose

that f = qg + r = q ′g + r ′ where both r and r ′ have degree less than g (unless one
or both are 0). If r �= r ′, then deg(r ′ − r ) < deg(g). On the other hand, since

(q − q ′)g = r ′ − r,(2)

we would have q − q ′ �= 0, and consequently,

deg(r ′ − r ) = deg((q − q ′)g) = deg(q − q ′) + deg(g) ≥ deg(g).

This contradiction forces r = r ′, and then (2) shows that q = q ′. This completes the
proof of the proposition. �

Most computer algebra systems implement the above algorithm [with some modifi-
cations—see DAVENPORT, SIRET, and TOURNIER (1993)] for dividing polynomials.

A useful corollary of the division algorithm concerns the number of roots of a
polynomial in one variable.

Corollary 3. If k is a field and f ∈ k[x] is a nonzero polynomial, then f has at most
deg( f ) roots in k.

Proof. We will use induction on m = deg( f ). When m = 0, f is a nonzero constant,
and the corollary is obviously true. Now assume that the corollary holds for all poly-
nomials of degree m − 1, and let f have degree m. If f has no roots in k, then we are
done. So suppose a is a root in k. If we divide f by x − a, then Proposition 2 tells
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us that f = q(x − a) + r , where r ∈ k since x − a has degree one. To determine r ,
evaluate both sides at x = a, which gives 0 = f (a) = q(a)(a − a) + r = r . It follows
that f = q(x − a). Note also that q has degree m − 1.

We claim that any root of f other than a is also a root of q. To see this, let b �= a
be a root of f . Then 0 = f (b) = q(b)(b − a) implies that q(b) = 0 since k is a field.
Since q has at most m − 1 roots by our inductive assumption, f has at most m roots
in k. This completes the proof. �

Corollary 3 was used to prove Proposition 5 in §1, which states that I(kn) = {0}
whenever k is infinite. This is an example of how a geometric fact can be the conse-
quence of an algorithm.

We can also use Proposition 2 to determine the structure of all ideals of k[x].

Corollary 4. If k is a field, then every ideal of k[x] can be written in the form 〈 f 〉 for
some f ∈ k[x]. Furthermore, f is unique up to multiplication by a nonzero constant
in k.

Proof. Take an ideal I ⊂ k[x]. If I = {0}, then we are done since I = 〈0〉. Otherwise,
let f be a nonzero polynomial of minimum degree contained in I . We claim that
〈 f 〉 = I . The inclusion 〈 f 〉 ⊂ I is obvious since I is an ideal. Going the other way,
take g ∈ I . By division algorithm (Proposition 2), we have g = q f + r , where either
r = 0 or deg(r ) < deg( f ). Since I is an ideal, q f ∈ I and, thus, r = g − q f ∈ I . If r
were not zero, then deg(r ) < deg( f ), which would contradict our choice of f . Thus,
r = 0, so that g = q f ∈ 〈 f 〉. This proves that I = 〈 f 〉.

To study uniqueness, suppose that 〈 f 〉 = 〈g〉. Then f ∈ 〈g〉 implies that f = hg for
some polynomial h. Thus,

deg( f ) = deg(h) + deg(g),(3)

so that deg( f ) ≥ deg(g). The same argument with f and g interchanged shows
deg( f ) ≤ deg(g), and it follows that deg( f ) = deg(g). Then (3) implies deg(h) = 0,
so that h is a nonzero constant. �

In general, an ideal generated by one element is called a principal ideal. In view of
Corollary 4, we say that k[x] is a principal ideal domain, abbreviated PID.

The proof of Corollary 4 tells us that the generator of an ideal in k[x] is the nonzero
polynomial of minimum degree contained in the ideal. This description is not useful in
practice, for it requires that we check the degrees of all polynomials (there are infinitely
many) in the ideal. Is there a better way to find the generator? For example, how do we
find a generator of the ideal

〈x4 − 1, x6 − 1〉 ⊂ k[x]?

The tool needed to solve this problem is the greatest common divisor.

Definition 5. A greatest common divisor of polynomials f, g ∈ k[x] is a polynomial
h such that:
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(i) h divides f and g.
(ii) If p is another polynomial which divides f and g, then p divides h.

When h has these properties, we write h = GCD( f, g).

Here are the main properties of GCDs.

Proposition 6. Let f, g ∈ k[x]. Then:
(i) GCD (f, g) exists and is unique up to multiplication by a nonzero constant in k.

(ii) GCD (f, g) is a generator of the ideal 〈 f, g〉.
(iii) There is an algorithm for finding GCD(f, g).

Proof. Consider the ideal 〈 f, g〉. Since every ideal of k[x] is principal (Corollary
4), there exists h ∈ k[x] such that 〈 f, g〉 = 〈h〉. We claim that h is the GCD of f, g.
To see this, first note that h divides f and g since f, g ∈ 〈h〉. Thus, the first part of
Definition 5 is satisfied. Next, suppose that p ∈ k[x] divides f and g. This means that
f = Cp and g = Dp for some C, D ∈ k[x]. Since h ∈ 〈 f, g〉, there are A, B such
that A f + Bg = h. Substituting, we obtain

h = A f + Bg = ACp + B Dp = (AC + B D)p,

which shows that p divides h. Thus, h = GCD( f, g).
This proves the existence of the GCD. To prove uniqueness, suppose that h′ was

another GCD of f and g. Then, by the second part of Definition 5, h and h′ would each
divide the other. This easily implies that h is a nonzero constant multiple of h′. Thus,
part (i) of the corollary is proved, and part (ii) follows by the way we found h in the
above paragraph.

The existence proof just given is not useful in practice. It depends on our ability to
find a generator of 〈 f, g〉. As we noted in the discussion following Corollary 4, this
involves checking the degrees of infinitely many polynomials. Fortunately, there is a
classic algorithm, known as the Euclidean Algorithm, which computes the GCD of two
polynomials in k[x]. This is what part (iii) of the proposition is all about.

We will need the following notation. Let f, g ∈ k[x], where g �= 0, and write
f = qg + r , where q and r are as in Proposition 2. Then we set r = remainder( f, g).
We can now state the Euclidean Algorithm for finding GCD( f, g):

Input: f, g
Output: h
h := f
s := g
WHILE s �= 0 DO

rem := remainder(h, s)
h := s
s := rem
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To see why this algorithm computes the GCD, write f = qg + r as in Proposition 2.
We claim that

GCD( f, g) = GCD( f − qg, g) = GCD(r, g).(4)

To prove this, by part (ii) of the proposition, it suffices to show that the ideals 〈 f, g〉
and 〈 f − qg, g〉 are equal. We will leave this easy argument as an exercise.

We can write (4) in the form

GCD( f, g) = GCD(g, r ).

Notice that deg(g) > deg(r ) or r = 0. If r �= 0, we can make things yet smaller by
repeating this process. Thus, we write g = q ′r + r ′ as in Proposition 2, and arguing as
above, we obtain

GCD(g, r ) = GCD(r, r ′),

where deg(r ) > deg(r ′) or r = 0. Continuing in this way, we get

GCD( f, g) = GCD(g, r ) = GCD(r, r ′) = GCD(r ′, r ′′) = · · · ,(5)

where either the degrees drop

deg(g) > deg(r ) > deg(r ′) > deg(r ′′) > · · · ,
or the process terminates when one of r, r ′, r ′′, . . . becomes 0.

We can now explain how the Euclidean Algorithm works. The algorithm has variables
h and s, and we can see these variables in equation (5): the values of h are the first
polynomial in each GCD, and the values of s are the second. You should check that
in (5), going from one GCD to the next is exactly what is done in the WHILE . . . DO
loop of the algorithm. Thus, at every stage of the algorithm, GCD(h, s) = GCD( f, g).

The algorithm must terminate because the degree of s keeps dropping, so that at some
stage, s = 0. When this happens, we have GCD(h, 0) = GCD( f, g), and since 〈h, 0〉
obviously equals 〈h〉, we have GCD(h, 0) = h. Combining these last two equations, it
follows that h = GCD( f, g) when s = 0. This proves that h is the GCD of f and g
when the algorithm terminates, and the proof of Proposition 6 is now complete. �

We should mention that there is also a version of the Euclidean Algorithm for finding
the GCD of two integers. Most computer algebra systems have a command for finding
the GCD of two polynomials (or integers) that uses a modified form of the Euclidean
Algorithm [see DAVENPORT, SIRET, and TOURNIER (1993) for more details].

For an example of how the Euclidean Algorithm works, let us compute the GCD of
x4 − 1 and x6 − 1. First, we use the division algorithm:

x4 − 1 = 0(x6 − 1) + x4 − 1,

x6 − 1 = x2(x4 − 1) + x2 − 1,

x4 − 1 = (x2 + 1)(x2 − 1) + 0.
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Then, by equation (5), we have

GCD(x4 − 1, x6 − 1) = GCD(x6 − 1, x4 − 1)
= GCD(x4 − 1, x2 − 1) = GCD(x2 − 1, 0) = x2 − 1.

Note that this GCD computation answers our earlier question of finding a generator for
the ideal 〈x4 − 1, x6 − 1〉. Namely, Proposition 6 and GCD(x4 − 1, x6 − 1) = x2 − 1
imply that

〈x4 − 1, x6 − 1〉 = 〈x2 − 1〉.
At this point, it is natural to ask what happens for an ideal generated by three or

more polynomials. How do we find a generator in this case? The idea is to extend the
definition of GCD to more than two polynomials.

Definition 7. A greatest common divisor of polynomials f1, . . . , fs ∈ k[x] is a poly-
nomial h such that:
(i) h divides f1, . . . , fs .

(ii) If p is another polynomial which divides f1, . . . , fs , then p divides h.
When h has these properties, we write h = GCD( f1, . . . , fs).

Here are the main properties of these GCDs.

Proposition 8. Let f1, . . . , fs ∈ k[x], where s ≥ 2. Then:
(i) GCD( f1, . . . , fs) exists and is unique up to multiplication by a nonzero constant

in k.
(ii) GCD( f1, . . . , fs) is a generator of the ideal 〈 f1, . . . , fs〉.
(iv) If s ≥ 3, then GCD( f1, . . . , fs) = GCD( f1, GCD( f2, . . . , fs)).
(iv) There is an algorithm for finding GCD( f1, . . . , fs).

Proof. The proofs of parts (i) and (ii) are similar to the proofs given in Proposition 6
and will be omitted. To prove part (iii), let h = GCD( f2, . . . , fs). We leave it as an
exercise to show that

〈 f1, h〉 = 〈 f1, f2, . . . , fs〉.
By part (ii) of this proposition, we see that

〈GCD( f1, h)〉 = 〈GCD( f1, . . . , fs)〉.
Then GCD( f1, h) = GCD( f1, . . . , fs) follows from the uniqueness part of Corollary 4,
which proves what we want.

Finally, we need to show that there is an algorithm for finding GCD( f1, . . . , fs). The
basic idea is to combine part (iii) with the Euclidean Algorithm. For example, suppose
that we wanted to compute the GCD of four polynomials f1, f2, f3, f4. Using part (iii)
of the proposition twice, we obtain

GCD( f1, f2, f3, f4) = GCD( f1, GCD( f2, f3, f4))

= GCD( f1, GCD( f2, GCD( f3, f4))).(6)
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Then if we use the Euclidean Algorithm three times [once for each GCD in the second
line of (6)], we get the GCD of f1, f2, f3, f4. In the exercises, you will be asked to
write pseudocode for an algorithm that implements this idea for an arbitrary number
of polynomials. Proposition 8 is proved. �

The GCD command in most computer algebra systems only handles two polynomials
at a time. Thus, to work with more than two polynomials, you will need to use the method
described in the proof of Proposition 8. For an example, consider the ideal

〈x3 − 3x + 2, x4 − 1, x6 − 1〉 ⊂ k[x].

We know that GCD(x3 − 3x + 2, x4 − 1, x6 − 1) is a generator. Furthermore, you can
check that

GCD(x3 − 3x + 2, x4 − 1, x6 − 1) = GCD(x3 − 3x + 2, GCD(x4 − 1, x6 − 1))
= GCD(x3 − 3x + 2, x2 − 1) = x − 1.

It follows that

〈x3 − 3x + 2, x4 − 1, x6 − 1〉 = 〈x − 1〉.
More generally, given f1, . . . , fs ∈ k[x], it is clear that we now have an algorithm for
finding a generator of 〈 f1, . . . , fs〉.

For another application of the algorithms developed here, consider the ideal mem-
bership problem from §4: given f1, . . . , fs ∈ k[x], is there an algorithm for deciding
whether a given polynomial f ∈ k[x] lies in the ideal 〈 f1, . . . , fs〉? The answer is yes,
and the algorithm is easy to describe. The first step is to use GCDs to find a generator
h of 〈 f1, . . . , fs〉. Then, since f ∈ 〈 f1, . . . , fs〉 is equivalent to f ∈ 〈h〉, we need only
use the division algorithm to write f = qh + r , where deg(r ) < deg(h). It follows
that f is in the ideal if and only if r = 0. For example, suppose we wanted to know
whether

x3 + 4x2 + 3x − 7 ∈ 〈x3 − 3x + 2, x4 − 1, x6 − 1〉.
We saw above that x − 1 is a generator of this ideal so that our question can be rephrased
as to whether

x3 + 4x2 + 3x − 7 ∈ 〈x − 1〉.
Dividing, we find that

x3 + 4x2 + 3x − 7 = (x2 + 5x + 8)(x − 1) + 1

and it follows that x3 + 4x2 + 3x − 7 is not in the ideal 〈x3 − 3x + 2, x4 − 1,

x6 − 1〉. In Chapter 2, we will solve the ideal membership problem for polynomi-
als in k[x1, . . . , xn] using a similar strategy: we will first find a nice basis of the ideal
(called a Groebner basis) and then we will use a generalized division algorithm to
determine whether or not a polynomial is in the ideal.

In the exercises, we will see that in the one-variable case, other problems posed in
earlier sections can be solved algorithmically using the methods discussed here.
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EXERCISES FOR §5

1. Over the complex numbers , Corollary 3 can be stated in a stronger form. Namely,

prove that if f ∈ [x] is a polynomial of degree n > 0, then f can be written in the

form f = c(x − a1) · · · (x − an), where c, a1, . . . , an ∈ and c �= 0. Hint: Use Theorem

7 of §1. Note that this result holds for any algebraically closed field.

2. Although Corollary 3 is simple to prove, it has some interesting consequences. For example,

consider the n × n Vandermonde determinant determined by a1, . . . , an in a field k:

det

⎛
⎜⎜⎜⎜⎝

1 a1 a2
1 . . . an−1

1

1 a2 a2
2 . . . an−1

2

...
...

...
...

1 an a2
n . . . an−1

n

⎞
⎟⎟⎟⎟⎠ .

Prove that this determinant is nonzero when the ai ’s are distinct. Hint: If the determinant

is zero, then the columns are linearly dependent. Show that the coefficients of the linear

relation determine a polynomial of degree ≤ n − 1 which has n roots. Then use Corollary 3.

3. The fact that every ideal of k[x] is principal (generated by one element) is special to the

case of polynomials in one variable. In this exercise we will see why. Namely, consider

the ideal I = 〈x, y〉 ⊂ k[x, y]. Prove that I is not a principal ideal. Hint: If x = f g, where

f, g ∈ k[x, y], then prove that f or g is a constant. It follows that the treatment of GCDs

given in this section applies only to polynomials in one variable. GCDs can be computed for

polynomials of ≥ 2 variables, but the theory involved is more complicated [see DAVENPORT,

SIRET, and TOURNIER (1993), §4.1.2].

4. If h is the GCD of f, g ∈ k[x], then prove that there are polynomials A, B ∈ k[x] such that

A f + Bg = h.

5. If f, g ∈ k[x], then prove that 〈 f − qg, g〉 = 〈 f, g〉 for any q in k[x]. This will prove

equation (4) in the text.

6. Given f1, . . . , fs ∈ k[x], let h = GCD( f2, . . . , fs). Then use the equality 〈h〉 =
〈 f2, . . . , fs〉 to show that 〈 f1, h〉 = 〈 f1, f2, . . . , fs〉. This equality is used in the proof of

part (iii) of Proposition 8.

7. If you are allowed to compute the GCD of only two polynomials at a time (which is true for

most computer algebra systems), give pseudocode for an algorithm that computes the GCD

of polynomials f1, . . . , fs ∈ k[x], where s > 2. Prove that your algorithm works. Hint: See

(6). This will complete the proof of part (iv) of Proposition 8.

8. Use a computer algebra system to compute the following GCDs:

a. GCD(x4 + x2 + 1, x4 − x2 − 2x − 1, x3 − 1).

b. GCD(x3 + 2x2 − x − 2, x3 − 2x2 − x + 2, x3 − x2 − 4x + 4).

9. Use the method described in the text to decide whether x2 − 4 ∈ 〈x3 + x2 − 4x − 4, x3 −
x2 − 4x + 4, x3 − 2x2 − x + 2〉.

10. Give pseudocode for an algorithm that has input f, g ∈ k[x] and output h, A, B ∈ k[x]

where h = GCD( f, g) and A f + Bg = h. Hint: The idea is to add variables A, B, C, D
to the algorithm so that A f + Bg = h and C f + Dg = s remain true at every step of the

algorithm. Note that the initial values of A, B, C, D are 1, 0, 0, 1, respectively. You may find

it useful to let quotient( f, g) denote the quotient of f on division by g, i.e., if the division

algorithm yields f = qg + r , then q = quotient( f, g).

11. In this exercise we will study the one-variable case of the consistency problem from §2.

Given f1, . . . , fs ∈ k[x], this asks if there is an algorithm to decide whether V( f1, . . . , fs)

is nonempty. We will see that the answer is yes when k = .
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a. Let f ∈ [x] be a nonzero polynomial. Then use Theorem 7 of §1 to show that V( f ) = ∅
if and only if f is constant.

b. If f1, . . . , fs ∈ [x], prove V( f1, . . . , fs) = ∅ if and only if GCD( f1, . . . , fs) = 1.

c. Describe (in words, not pseudocode) an algorithm for determining whether or not

V( f1, . . . , fs) is nonempty.

When k = , the consistency problem is much more difficult. It requires giving an algorithm

that tells whether a polynomial f ∈ [x] has a real root.

12. This exercise will study the one-variable case of the Nullstellensatz problem from §4, which

asks for the relation between I(V( f1, . . . , fs)) and 〈 f1, . . . , fs〉 when f1, . . . , fs ∈ [x].

By using GCDs, we can reduce to the case of a single generator. So, in this problem, we will

explicitly determine I(V( f )) when f ∈ [x] is a nonconstant polynomial. Since we are

working over the complex numbers, we know by Exercise 1 that f factors completely, i.e.,

f = c(x − a1)r1 · · · (x − al )
rl ,

where a1, . . . , al ∈ are distinct and c ∈ − {0}. Define the polynomial

fred = c(x − a1) · · · (x − al ).

Note that f and fred have the same roots, but their multiplicities may differ. In particular,

all roots of fred have multiplicity one. It is common to call fred the reduced or square-free
part of f . To explain the latter name, notice that fred is the square-free factor of f of largest

degree.

a. Show that V( f ) = {a1, . . . , al}.
b. Show that I(V( f )) = 〈 fred〉.
Whereas part (b) describes I(V( f )), the answer is not completely satisfactory because we

need to factor f completely to find fred. In Exercises 13, 14, and 15 we will show how to

determine fred without any factoring.

13. We will study the formal derivative of f = a0xn + a1xn−1 + · · · + an−1x + an ∈ [x]. The

formal derivative is defined by the usual formulas from calculus:

f ′ = na0xn−1 + (n − 1)a1xn−2 + · · · + an−1 + 0.

Prove that the following rules of differentiation apply:

(a f )′ = a f ′ when a ∈ ,

( f + g)′ = f ′ + g′,
( f g)′ = f ′g + f g′.

14. In this exercise we will use the differentiation properties of Exercise 13 to compute

GCD( f, f ′) when f ∈ [x].

a. Suppose f = (x − a)r h in [x], where h(a) �= 0. Then prove that f ′ = (x − a)r−1h1,

where h1 ∈ [x] does not vanish at a. Hint: Use the product rule.

b. Let f = c(x − a1)rl · · · (x − al )
rl be the factorization of f , where a1, . . . , al are distinct.

Prove that f ′ is a product f ′ = (x − a1)r1−1 · · · (x − al )
rl −1 H , where H ∈ [x] is a

polynomial vanishing at none of a1, . . . , al .

c. Prove that GCD( f, f ′) = (x − a1)r1−1 · · · (x − al )
rl −1.

15. This exercise is concerned with the square-free part fred of a polynomial f ∈ [x], which

is defined in Exercise 12.

a. Use Exercise 14 to prove that fred is given by the formula

fred = f

GCD( f, f ′)
.
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The virtue of this formula is that it allows us to find the square-free part without factoring

f . This allows for much quicker computations.

b. Use a computer algebra system to find the square-free part of the polynomial

x11 − x10 + 2x8 − 4x7 + 3x5 − 3x4 + x3 + 3x2 − x − 1.

16. Use Exercises 12 and 15 to describe (in words, not pseudocode) an algorithm whose in-

put consists of polynomials f1, . . . , fs ∈ [x] and whose output consists of a basis of

I(V( f1, . . . , fs)). It is much more difficult to construct such an algorithm when dealing with

polynomials of more than one variable.

17. Find a basis for the ideal I(V(x5 − 2x4 + 2x2 − x, x5 − x4 − 2x3 + 2x2 + x − 1)).



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX December 18, 2006 7:4

2

Groebner Bases

§1 Introduction

In Chapter 1, we have seen how the algebra of the polynomial rings k[x1, . . . , xn] and
the geometry of affine algebraic varieties are linked. In this chapter, we will study the
method of Groebner bases, which will allow us to solve problems about polynomial
ideals in an algorithmic or computational fashion. The method of Groebner bases is
also used in several powerful computer algebra systems to study specific polynomial
ideals that arise in applications. In Chapter 1, we posed many problems concerning the
algebra of polynomial ideals and the geometry of affine varieties. In this chapter and
the next, we will focus on four of these problems.

Problems
a. The Ideal Description Problem: Does every ideal I ⊂ k[x1, . . . , xn] have a fi-

nite generating set? In other words, can we write I = 〈 f1, . . . , fs〉 for some
fi ∈ k[x1, . . . , xn]?

b. The Ideal Membership Problem: Given f ∈ k[x1, . . . , xn] and an ideal I =
〈 f1, . . . , fs〉, determine if f ∈ I . Geometrically, this is closely related to the problem
of determining whether V( f1, . . . , fs) lies on the variety V( f ).

c. The Problem of Solving Polynomial Equations: Find all common solutions in kn of
a system of polynomial equations

f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0.

Of course, this is the same as asking for the points in the affine variety V( f1, . . . , fs).
d. The Implicitization Problem: Let V be a subset of kn given parametrically as

x1 = g1(t1, . . . , tm),

...

xn = gn(t1, . . . , tm).

49
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If the gi are polynomials (or rational functions) in the variables t j , then V will be
an affine variety or part of one. Find a system of polynomial equations (in the xi )
that defines the variety.

Some comments are in order. Problem (a) asks whether every polynomial ideal has
a finite description via generators. Many of the ideals we have seen so far do have such
descriptions—indeed, the way we have specified most of the ideals we have studied
has been to give a finite generating set. However, there are other ways of constructing
ideals that do not lead directly to this sort of description. The main example we have
seen is the ideal of a variety, I(V ). It will be useful to know that these ideals also have
finite descriptions. On the other hand, in the exercises, we will see that if we allow
infinitely many variables to appear in our polynomials, then the answer to (a) is no.

Note that problems (c) and (d) are, so to speak, inverse problems. In (c), we ask
for the set of solutions of a given system of polynomial equations. In (d), on the other
hand, we are given the solutions, and the problem is to find a system of equations with
those solutions.

To begin our study of Groebner bases, let us consider some special cases in which
you have seen algorithmic techniques to solve the problems given above.

Example 1. When n = 1, we solved the ideal description problem in §5 of Chapter 1.
Namely, given an ideal I ⊂ k[x], we showed that I = 〈g〉 for some g ∈ k[x] (see Corol-
lary 4 of Chapter 1, §5). So ideals have an especially simple description in this case.

We also saw in §5 of Chapter 1 that the solution of the Ideal Membership Problem
follows easily from the division algorithm: given f ∈ k[x], to check whether f ∈ I =
〈g〉, we divide g into f :

f = q · g + r,

where q, r ∈ k[x] and r = 0 or deg(r ) < deg(g). Then we proved that f ∈ I if and
only if r = 0. Thus, we have an algorithmic test for ideal membership in the case n = 1.

Example 2. Next, let n (the number of variables) be arbitrary, and consider the problem
of solving a system of polynomial equations:

a11x1 + · · · + a1n xn + b1 = 0,
...

am1x1 + · · · + amn xn + bm = 0,

(1)

where each polynomial is linear (total degree 1).
For example, consider the system

2x1 + 3x2 − x3 = 0,

x1 + x2 − 1 = 0,

x1 + x3 − 3 = 0.

(2)
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We row-reduce the matrix of the system to reduced row echelon form:⎛⎝ 1 0 1 3
0 1 −1 −2
0 0 0 0

⎞⎠ .

The form of this matrix shows that x3 is a free variable, and setting x3 = t (any element
of k), we have

x1 = −t + 3,

x2 = t − 2,

x3 = t.

These are parametric equations for a line L in k3. The original system of equations (2)
presents L as an affine variety.

In the general case, one performs row operations on the matrix of (1)⎛⎜⎝ a11 · · · a1n −b1

...
...

...
am1 · · · amn −bm

⎞⎟⎠ .

until it is in reduced row echelon form (where the first nonzero entry on each row is 1,
and all other entries in the column containing a leading 1 are zero). Then we can find all
solutions of the original system (1) by substituting values for the free variables in the
reduced row echelon form system. In some examples there may be only one solution, or
no solutions. This last case will occur, for instance, if the reduced row echelon matrix
contains a row (0 . . . 0 1), corresponding to the inconsistent equation 0 = 1.

Example 3. Once again, take n arbitrary, and consider the subset V of kn parametrized
by

x1 = a11t1 + · · · + a1mtm + b1,
...

xn = an1t1 + · · · + anmtm + bn.

(3)

We see that V is an affine linear subspace of kn since V is the image of the mapping
F : km → kn defined by

F(t1, . . . , tm) = (a11t1 + · · · + a1mtm + b1, . . . , an1t1 + · · · + anmtm + bn).

This is a linear mapping, followed by a translation. Let us consider the implicitization
problem in this case. In other words, we seek a system of linear equations [as in (1)]
whose solutions are the points of V .

For example, consider the affine linear subspace V ⊂ k4 defined by

x1 = t1 + t2 + 1,

x2 = t1 − t2 + 3,

x3 = 2t1 − 2,

x4 = t1 + 2t2 − 3.
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We rewrite the equations by subtracting the xi terms from both sides and apply the row
reduction algorithm to the corresponding matrix:⎛⎜⎜⎝

1 1 −1 0 0 0 −1
1 −1 0 −1 0 0 −3
2 0 0 0 −1 0 2
1 2 0 0 0 −1 3

⎞⎟⎟⎠
(where the coefficients of the xi have been placed after the coefficients of the t j in each
row). We obtain the reduced row echelon form:⎛⎜⎜⎝

1 0 0 0 −1/2 0 1
0 1 0 0 1/4 −1/2 1
0 0 1 0 −1/4 −1/2 3
0 0 0 1 −3/4 1/2 3

⎞⎟⎟⎠ .

Because the entries in the first two columns of rows 3 and 4 are zero, the last two rows
of this matrix correspond to the following two equations with no t j terms:

x1 − (1/4)x3 − (1/2)x4 − 3 = 0,

x2 − (3/4)x3 + (1/2)x4 − 3 = 0.

(Note that this system is also in reduced row echelon form.) These two equations define
V in k4.

The same method can be applied to find implicit equations for any affine linear
subspace V given parametrically as in (3): one computes the reduced row echelon form
of (3), and the rows involving only x1, . . . , xn give the equations for V . We thus have
an algorithmic solution to the implicitization problem in this case.

Our goal in this chapter will be to develop extensions of the methods used in these
examples to systems of polynomial equations of any degrees in any number of variables.
What we will see is that a sort of “combination” of row-reduction and division of
polynomials—the method of Groebner bases mentioned at the outset—allows us to
handle all these problems.

EXERCISES FOR §1

1. Determine whether the given polynomial is in the given ideal I ⊂ [x] using the method of

Example 1.

a. f (x) = x2 − 3x + 2, I = 〈x − 2〉.
b. f (x) = x5 − 4x + 1, I = 〈x3 − x2 + x〉.
c. f (x) = x2 − 4x + 4, I = 〈x4 − 6x2 + 12x − 8, 2x3 − 10x2 + 16x − 8〉.
d. f (x) = x3 − 1, I = 〈x9 − 1, x5 + x3 − x2 − 1〉.

2. Find a parametrization of the affine variety defined by each of the following sets of equations:

a. In 3 or 3:

2x + 3y − z = 9,

x − y = 1,

3x + 7y − 2z = 17.
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b. In 4 or 4:

x1 + x2 − x3 − x4 = 0,

x1 − x2 + x3 = 0.

c. In 3 or 3:

y − x3 = 0,

z − x5 = 0.

3. Find implicit equations for the affine varieties parametrized as follows.

a. In 3 or 3:

x1 = t − 5,

x2 = 2t + 1,

x3 − t + 6.

b. In 4 or 4:

x1 = 2t − 5u,

x2 = t + 2u,

x3 = −t + u,

x4 = t + 3u.

c. In 3 or 3:

x = t,

y = t4,

z = t7.

4. Let x1, x2, x3, . . . be an infinite collection of independent variables indexed by the natural

numbers. A polynomial with coefficients in a field k in the xi is a finite linear combination

of (finite) monomials xe1
i1

. . . xen
in . Let R denote the set of all polynomials in the xi . Note that

we can add and multiply elements of R in the usual way. Thus, R is the polynomial ring

k[x1, x2, . . .] in infinitely many variables.

a. Let I = 〈x1, x2, x3, . . .〉 be the set of polynomials of the form xt1 f1 + · · · + xtm fm , where

f j ∈ R. Show that I is an ideal in the ring R.

b. Show, arguing by contradiction, that I has no finite generating set. Hint: It is not enough

only to consider subsets of {xi : i ≥ 1}.
5. In this problem you will show that all polynomial parametric curves in k2 are contained in

affine algebraic varieties.

a. Show that the number of distinct monomials xa yb of total degree ≤ m in k[x, y] is equal

to (m + 1)(m + 2)/2. [Note: This is the binomial coefficient
(

m + 2
2

)
.]

b. Show that if f (t) and g(t) are polynomials of degree ≤ n in t , then for m large enough,

the “monomials”

[ f (t)]a[g(t)]b

with a + b ≤ m are linearly dependent.
c. Deduce from part b that if C : x = f (t), y = g(t) is any polynomial parametric curve in

k2, then C is contained in V(F) for some F ∈ k[x, y].
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d. Generalize parts a, b, and c of this problem to show that any polynomial parametric surface

x = f (t, u), y = g(t, u), z = h(t, u)

is contained in an algebraic surface V(F), where F ∈ k[x, y, z].

§2 Orderings on the Monomials in k[x1, . . . , xn]

If we examine in detail the division algorithm in k[x] and the row-reduction (Gaussian
elimination) algorithm for systems of linear equations (or matrices), we see that a notion
of ordering of terms in polynomials is a key ingredient of both (though this is not often
stressed). For example, in dividing f (x) = x5 − 3x2 + 1 by g(x) = x2 − 4x + 7 by
the standard method, we would:
� Write the terms in the polynomials in decreasing order by degree in x .
� At the first step, the leading term (the term of highest degree) in f is x5 = x3 · x2 =

x3 · (leading term in g). Thus, we would subtract x3 · g(x) from f to cancel the
leading term, leaving 4x4 − 7x3 − 3x2 + 1.

� Then, we would repeat the same process on f (x) − x3 · g(x), etc., until we obtain a
polynomial of degree less than 2.

For the division algorithm on polynomials in one variable, then we are dealing with
the degree ordering on the one-variable monomials:

· · · > xm+1 > xm > · · · > x2 > x > 1.(1)

The success of the algorithm depends on working systematically with the leading terms
in f and g, and not removing terms “at random” from f using arbitrary terms from g.

Similarly, in the row-reduction algorithm on matrices, in any given row, we system-
atically work with entries to the left first—leading entries are those nonzero entries
farthest to the left on the row. On the level of linear equations, this is expressed by
ordering the variables x1, . . . , xn as follows:

x1 > x2 > · · · > xn.(2)

We write the terms in our equations in decreasing order. Furthermore, in an echelon
form system, the equations are listed with their leading terms in decreasing order. (In
fact, the precise definition of an echelon form system could be given in terms of this
ordering—see Exercise 8.)

From the above evidence, we might guess that a major component of any extension
of division and row-reduction to arbitrary polynomials in several variables will be an
ordering on the terms in polynomials in k[x1, . . . , xn]. In this section, we will discuss
the desirable properties such an ordering should have, and we will construct several
different examples that satisfy our requirements. Each of these orderings will be useful
in different contexts.

First, we note that we can reconstruct the monomial xα = xα1

1 . . . xαn
n from the n-

tuple of exponents α = (α1, . . . , αn) ∈ n
≥0. This observation establishes a one-to-one

correspondence between the monomials in k[x1, . . . , xn] and n
≥0. Futhermore, any
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ordering > we establish on the space n
≥0 will give us an ordering on monomials: if

α > β according to this ordering, we will also say that xα > xβ .
There are many different ways to define orderings on n

≥0. For our purposes, most
of these orderings will not be useful, however, since we will want our orderings to be
“compatible” with the algebraic structure of polynomial rings.

To begin, since a polynomial is a sum of monomials, we would like to be able to
arrange the terms in a polynomial unambiguously in descending (or ascending) order.
To do this, we must be able to compare every pair of monomials to establish their
proper relative positions. Thus, we will require that our orderings be linear or total
orderings. This means that for every pair of monomials xα and xβ , exactly one of the
three statements

xα > xβ, xα = xβ, xβ > xα

should be true.
Next, we must take into account the effect of the sum and product operations on

polynomials. When we add polynomials, after combining like terms, we may simply
rearrange the terms present into the appropriate order, so sums present no difficulties.
Products are more subtle, however. Since multiplication in a polynomial ring distributes
over addition, it suffices to consider what happens when we multiply a monomial times
a polynomial. If doing this changed the relative ordering of terms, significant problems
could result in any process similar to the division algorithm in k[x], in which we must
identify the “leading” terms in polynomials. The reason is that the leading term in the
product could be different from the product of the monomial and the leading term of
the original polynomial.

Hence, we will require that all monomial orderings have the following additional
property. If xα > xβ and xγ is any monomial, then we require that xαxγ > xβ xγ . In
terms of the exponent vectors, this property means that if α > β in our ordering on

n
≥0, then, for all γ ∈ n

≥0, α + γ > β + γ .
With these considerations in mind, we make the following definition.

Definition 1. A monomial ordering on k > [x1, . . . , xn] is any relation > on n
≥0, or

equivalently, any relation on the set of monomials xα, α ∈ n
≥0, satisfying:

(i) > is a total (or linear) ordering on n
≥0.

(ii) If a > β and γ ∈ n
≥0, then α + γ > β + γ .

(iii) > is a well-ordering on n
≥0. This means that every nonempty subset of n

≥0 has
a smallest element under >.

The following lemma will help us understand what the well-ordering condition of
part (iii) of the definition means.

Lemma 2. An order relation > on n
≥0 is a well-ordering if and only if every strictly

decreasing sequence in n
≥0

α(1) > α(2) > α(3) > · · ·
eventually terminates.
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Proof. We will prove this in contrapositive form: > is not a well-ordering if and only
if there is an infinite strictly decreasing sequence in n

≥0.
If > is not a well-ordering, then some nonempty subset S ⊂ n

≥0 “has no least
element. Now pick α(1) ∈ S. Since α(1) is not the least element, we can find α(1) >

α(2) in S. Then α(2) is also not the least element, so that there is α(2) > α(3) in S.
Continuing this way, we get an infinite strictly decreasing sequence

α(1) > α(2) > α(3) > · · · .
Conversely, given such an infinite sequence, then {α(1), α(2), α(3), . . .} is a nonempty
subset of n

≥0 with no least element, and thus, > is not a well-ordering. �

The importance of this lemma will become evident in the sections to follow. It will
be used to show that various algorithms must terminate because some term strictly
decreases (with respect to a fixed monomial order) at each step of the algorithm.

In §4, we will see that given parts (i) and (ii) in Definition 1, the well-ordering
condition of part (iii) is equivalent to α ≥ 0 for all α ∈ n

≥0.
For a simple example of a monomial order, note that the usual numerical order

· · · > m + 1 > m > · · · > 3 > 2 > 1 > 0

on the elements of ≥0 satisfies the three conditions of Definition 1. Hence, the degree
ordering (1) on the monomials in k[x] is a monomial ordering.

Our first example of an ordering on n-tuples will be lexicographic order (or lex order,
for short).

Definition 3 (Lexicographic Order). Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈
n
≥0. We say α >lex β if, in the vector difference α − β ∈ n, the leftmost nonzero

entry is positive. We will write xα >lex xβ if α >lex β.

Here are some examples:
a. (1, 2, 0) >lex (0, 3, 4) since α − β = (1, −1, −4).
b. (3, 2, 4) >lex (3, 2, 1) since α − β = (0, 0, 3).
c. The variables x1, . . . , xn are ordered in the usual way [see (2)] by the lex ordering:

(1, 0, . . . , 0) >lex (0, 1, 0, . . . , 0) >lex · · · >lex (0, . . . , 0, 1).

so x1 >lex x2 >lex · · · >lex xn .
In practice, when we work with polynomials in two or three variables, we will call

the variables x, y, z rather than x1, x2, x3. We will also assume that the alphabetical
order x > y > z on the variables is used to define the lexicographic ordering unless
we explicitly say otherwise.

Lex order is analogous to the ordering of words used in dictionaries (hence the name).
We can view the entries of an n-tuple α ∈ n

≥0 as analogues of the letters in a word.
The letters are ordered alphabetically:

a > b > · · · > y > z.
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Then, for instance,

arrow >lex arson

since the third letter of “arson” comes after the third letter of “arrow” in alphabetical
order, whereas the first two letters are the same in both. Since all elements α ∈ n

≥0

have length n, this analogy only applies to words with a fixed number of letters.
For completeness, we must check that the lexicographic order satisfies the three

conditions of Definition 1.

Proposition 4. The lex ordering on n
≥0 is a monomial ordering.

Proof. (i) That >lex is a total ordering follows directly from the definition and the fact
that the usual numerical order on ≥0 is a total ordering.

(ii) If α >lex β, then we have that the leftmost nonzero entry in α − β, say αk − βk ,
is positive. But xα · xγ = xα+γ and xβ · xγ = xβ+γ . Then in (α + γ ) − (β + γ ) =
α − β, the leftmost nonzero entry is again αk − βk > 0.

(iii) Suppose that >lex were not a well-ordering. Then by Lemma 2, there would be
an infinite strictly descending sequence

α(1) >lex α(2) >lex α(3) >lex · · ·

of elements of n
≥0. We will show that this leads to a contradiction.

Consider the first entries of the vectors α(i) ∈ n
≥0. By the definition of the lex or-

der, these first entries form a nonincreasing sequence of nonnegative integers. Since

≥0 is well-ordered, the first entries of the α(i) must “stabilize” eventually. That
is, there exists a k such that all the first components of the α(i) with i ≥ k are
equal.

Beginning at α(k), the second and subsequent entries come into play in determining
the lex order. The second entries of α(k), α(k + 1), . . . form a nonincreasing sequence.
By the same reasoning as before, the second entries “stabilize” eventually as well.
Continuing in the same way, we see that for some l, the α(l), α(l + 1), . . . all are equal.
This contradicts the fact that α(l) >lex α(l + 1). �

It is important to realize that there are many lex orders, corresponding to how the
variables are ordered. So far, we have used lex order with x1 > x2 > . . . > xn . But
given any ordering of the variables x1, . . . , xn , there is a corresponding lex order. For
example, if the variables are x and y, then we get one lex order with x > y and a second
with y > x . In the general case of n variables, there are n! lex orders. In what follows,
the phrase “lex order” will refer to the one with x1 > · · · > xn unless otherwise stated.

In lex order, notice that a variable dominates any monomial involving only smaller
variables, regardless of its total degree. Thus, for the lex order with x > y > z, we
have x >lex y5z3. For some purposes, we may also want to take the total degrees of
the monomials into account and order monomials of bigger degree first. One way to
do this is the graded lexicographic order (or grlex order).
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Definition 5 (Graded Lex Order). Let α, β ∈ n
≥0. We say α >grlex β if

|α| =
n∑

i=1

αi > |β| = μn
i=1βi , or |α| − |β| and α >lex β.

We see that grlex orders by total degree first, then “breaks ties” using lex order. Here
are some examples:
a. (1, 2, 3) >grlex (3, 2, 0) since |(1, 2, 3)| = 6 > |(3, 2, 0)| = 5.
b. (1, 2, 4) >grlex (1, 1, 5) since |(1, 2, 4)| = |(1, 1, 5)| and (1, 2, 4) >lex (1, 1, 5).
c. The variables are ordered according to the lex order, i.e., x1 >grlex · · · >grlex xn .

We will leave it as an exercise to show that the grlex ordering satisfies the three
conditions of Definition 1. As in the case of lex order, there are n! grlex orders on
n variables, depending on how the variables are ordered.

Another (somewhat less intuitive) order on monomials is the graded reverse lexico-
graphical order (or grevlex order). Even though this ordering “takes some getting used
to,” it has recently been shown that for some operations, the grevlex ordering is the
most efficient for computations.

Definition 6 (Graded Reverse Lex Order). Let α, β ∈ n
≥0. We say α >grevlex β if

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi , or |α| = |β| and the rightmost nonzero
entry of α − β ∈ n is negative.

Like grlex, grevlex orders by total degree, but it “breaks ties” in a different way. For
example:
a. (4, 7, 1) >grevlex (4, 2, 3) since |(4, 7, 1)| = 12 > |(4, 2, 3)| = 9.
b. (1, 5, 2) >grevlex (4, 1, 3) since |(1, 5, 2)| = |(4, 1, 3)| and (1, 5, 2) − (4, 1, 3) =

(−3, 4, −1).
You will show in the exercises that the grevlex ordering gives a monomial ordering.

Note also that lex and grevlex give the same ordering on the variables. That is,

(1, 0, . . . , 0) >grevlex (0, 1, . . . , 0) >grevlex · · · >grevlex (0, . . . , 0, 1)

or

x1 >grevlex x2 >grevlex · · · >grevlex xn.

Thus, grevlex is really different from the grlex order with the variables rearranged (as
one might be tempted to believe from the name).

To explain the relation between grlex and grevlex, note that both use total degree
in the same way. To break a tie, grlex uses lex order, so that it looks at the leftmost
(or largest) variable and favors the larger power. In contrast, when grevlex finds the
same total degree, it looks at the rightmost (or smallest) variable and favors the smaller
power. In the exercises, you will check that this amounts to a “double-reversal” of lex
order. For example,

x5 yz >grlex x4 yz2,
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since both monomials have total degree 7 and x5 yz2 >lex x4 yz2. In this case, we also
have

x5 yz >grevlex x4 yz2,

but for a different reason: x5 yz is larger because the smaller variable z appears to a
smaller power.

As with lex and grlex, there are n! grevlex orderings corresponding to how the n
variables are ordered.

There are many other monomial orders besides the ones considered here. Some of
these will be explored in the exercises to §4. Most computer algebra systems implement
lex order, and most also allow other orders, such as grlex and grevlex. Once such an
order is chosen, these systems allow the user to specify any of the n! orderings of the
variables. As we will see in §8 of this chapter and in later chapters, this facility becomes
very useful when studying a variety of questions.

We will end this section with a discussion of how a monomial ordering can be applied
to polynomials. If f = ∑

α aα Xα is a polynomial in k[x1, . . . , xn] and we have selected
a monomial ordering >, then we can order the monomials of f in an unambiguous
way with respect to >. For example, let f = 4xy2z + 4z2 − 5x3 + 7x2z2 ∈ k[x, y, z].
Then:
a. With respect to the lex order, we would reorder the terms of f in decreasing order

as

f = −5x3 + 7x2z2 + 4xy2z + 4z2.

b. With respect to the grlex order, we would have

f = 7x2z2 + 4xy2z − 5x3 + 4z2.

c. With respect to the grevlex order, we would have

f = 4xy2z + 7x2z2 − 5x3 + 4z2.

We will use the following terminology.

Definition 7. Let f = ∑
α aαxα be a nonzero polynomial in k[x1, . . . , xn] and let >

be a monomial order.
(i) The multidegree of f is

multideg( f ) = max(α ∈ n
≥0 : aα 	= 0)

(the maximum is taken with respect to >).
(ii) The leading coefficient of f is

LC( f ) = amultideg( f ) ∈ k.

(iii) The leading monomial of f is

LM( f ) = xmultideg( f )

(with coefficient 1).
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(iv) The leading term of f is

LT( f ) = LC( f ) · LM( f ).

To illustrate, let f = 4xy2z + 4z2 − 5x3 + 7x2z2 as before and let > denote the lex
order. Then

multideg( f ) = (3, 0, 0),

LC( f ) = −5,

LM( f ) = x3,

LT( f ) = −5x3.

In the exercises, you will show that the multidegree has the following useful prop-
erties.

Lemma 8. Let f, g ∈ k[x1, . . . , xn] be nonzero polynomials. Then:
(i) multideg(fg) = multideg(f) + multideg(g).

(ii) If f + g 	= 0, then multideg( f + g) ≤ max(multideg( f ), multideg(g)). If, in ad-
dition, multideg( f ) 	= multideg(g), then equality occurs.

From now on, we will assume that one particular monomial order has been selected,
and that leading terms, etc., will be computed relative to that order only.

EXERCISES FOR §2

1. Rewrite each of the following polynomials, ordering the terms using the lex order, the grlex

order, and the grevlex order, giving LM(f), LT(f), and multideg( f ) in each case.

a. f (x, y, z) = 2x + 3y + z + x2 − z2 + x3.

b. f (x, y, z) = 2x2 y8 − 3x5 yz4 + xyz3 − xy4.

2. Each of the following polynomials is written with its monomials ordered according to

(exactly) one of lex, grlex, or grevlex order. Determine which monomial order was used in

each case.

a. f (x, y, z) = 7x2 y4z − 2xy6 + x2 y2.

b. f (x, y, z) = xy3z + xy2z2 + x2z3.

c. f (x, y, z) = x4 y5z + 2x3 y2z − 4xy2z4.

3. Repeat Exercise 1 when the variables are ordered z > y > x .

4. Show that grlex is a monomial order according to Definition 1.

5. Show that grevlex is a monomial order according to Definition 1.

6. Another monomial order is the inverse lexicographic or invlex order defined by the fol-

lowing: for α, β ∈ n
≥0, α >invlex β if and only if, in α − β, the rightmost nonzero entry is

positive. Show that invlex is equivalent to the lex order with the variables permuted in a

certain way. (Which permutation?)

7. Let > be any monomial order.

a. Show that α ≥ 0 for all α ∈ n
≥0.

b. Show that if xα divides xβ , then α ≤ β. Is the converse true?

c. Show that if α ∈ n
≥0, then α is the smallest element of α + n

≥0.

8. Write a precise definition of what it means for a system of linear equations to be in echelon

form, using the ordering given in equation (2).
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9. In this exercise, we will study grevlex in more detail. Let >invlex , be the order given in

Exercise 6, and define >rinvlex to be the reversal of this ordering, i.e., for α, β ∈ n
≥0.

α >rinvlex β ⇐⇒ β >invlex α.

Notice that rinvlex is a “double reversal” of lex, in the sense that we first reverse the order

of the variables and then we reverse the ordering itself.

a. Show that α >grevlex β if and only if |α| > |β|, or |α| = |β| and α >rinvlex β.

b. Is rinvlex a monomial ordering according to Definition 1? If so, prove it; if not, say which

properties fail.

10. In ≥0 with the usual ordering, between any two integers, there are only a finite number of

other integers. Is this necessarily true in n
≥0 for a monomial order? Is it true for the grlex

order?

11. Let > be a monomial order on k[x1, . . . , xn].

a. Let f ∈ k[x1, . . . , xn] and let m be a monomial. Show that LT(m · f ) = m · LT( f ).

b. Let f, g ∈ k[x1, . . . , xn]. Is LT( f · g) necessarily the same as LT( f ) · LT(g)?

c. If fi , gi ∈ k[x1, . . . , xn], 1 ≤ i ≤ s, is LM(
∑s

i=1 fi gi ) necessarily equal to LM( fi ) ·
LM(gi ) for some i?

12. Lemma 8 gives two properties of the multidegree.

a. Prove Lemma 8. Hint: The arguments used in Exercise 11 may be relevant.

b. Suppose that multideg( f ) = multideg(g) and f + g 	= 0. Give examples to show that

multideg( f + g) may or may not equal max(multideg( f ), multideg(g)).

§3 A Division Algorithm in k[x1, . . . , xn]

In §1, we saw how the division algorithm could be used to solve the ideal membership
problem for polynomials of one variable. To study this problem when there are more
variables, we will formulate a division algorithm for polynomials in k[x1, . . . , xn]
that extends the algorithm for k[x]. In the general case, the goal is to divide f ∈
k[x1, . . . , xn] by f1, . . . , fs ∈ k[x1, . . . , xn]. As we will see, this means expressing f
in the form

f = a1 f1 + · · · + as fs + r,

where the “quotients” a1, . . . , as and remainder r lie in k[x1, . . . , xn]. Some care will
be needed in deciding how to characterize the remainder. This is where we will use
the monomial orderings introduced in §2. We will then see how the division algorithm
applies to the ideal membership problem.

The basic idea of the algorithm is the same as in the one-variable case: we want to
cancel the leading term of f (with respect to a fixed monomial order) by multiplying
some fi by an appropriate monomial and subtracting. Then this monomial becomes
a term in the corresponding ai . Rather than state the algorithm in general, let us first
work through some examples to see what is involved.

Example 1. We will first divide f = xy2 + 1 by f1 = xy + 1 and f2 = y + 1, using
lex order with x > y. We want to employ the same scheme as for division of one-
variable polynomials, the difference being that there are now several divisors and
quotients. Listing the divisors f1, f2 and the quotients a1, a2 vertically, we have the
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following setup:

a1 :
a2 :

xy + 1
y + 1

xy2 + 1

The leading terms LT( f1) = xy and LT( f2) = y both divide the leading term LT( f ) =
xy2. Since f1 is listed first, we will use it. Thus, we divide xy into xy2, leaving y, and
then subtract y · f1 from f :

a1 : y
a2 :

xy + 1
y + 1

xy2 + 1
xy2 + y

−y + 1

Now we repeat the same process on−y + 1. This time we must use f2 since LT( f1) = xy
does not divide LT(−y + 1) = −y. We obtain

a1 : y
a2 : −1

xy + 1
y + 1

xy2 + 1
xy2 + y

−y − 1−y + 1
2

Since LT( f1) and LT( f2) do not divide 2, the remainder is r = 2 and we are, done. Thus,
we have written f = xy2 + 1 in the form

xy2 + 1 = y · (xy + 1) + (−1) · (y + 1) + 2.

Example 2. In this example, we will encounter an unexpected subtlety that can occur
when dealing with polynomials of more than one variable. Let us divide f = x2 y +
xy2 + y2 by f1 = xy − 1 and f2 = y2 − 1. As in the previous example, we will use lex
order with x > y. The first two steps of the algorithm go as usual, giving us the following
partially completed division (remember that when both leading terms divide, we use f1):
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Note that neither LT( f1) = xy nor LT( f2) = y2 divides LT(x + y2 + y) = x . However,
x + y2 + y is not the remainder since LT( f 2) divides y2. Thus, if we move x to the
remainder, we can continue dividing. (This is something that never happens in the
one-variable case: once the leading term of the divisor no longer divides the leading
term of what is left under the radical, the algorithm terminates.)

To implement this idea, we create a remainder column r , to the right of the radical,
where we put the terms belonging to the remainder. Also, we call the polynomial under
the radical the intermediate dividend. Then we continue dividing until the intermediate
dividend is zero. Here is the next step, where we move x to the remainder column (as
indicated by the arrow):

Now we continue dividing. If we can divide by LT( f1) or LT( f2), we proceed as usual,
and if neither divides, we move the leading term of the intermediate dividend to the
remainder column. Here is the rest of the division:

Thus, the remainder is x + y + 1, and we obtain

x2 y + xy2 + y2 = (x + y) · (xy − 1) + 1 · (y2 − 1) + x + y + 1.(1)

Note that the remainder is a sum of monomials, none of which is divisible by the leading
terms LT( f1) or LT( f2).
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The above example is a fairly complete illustration of how the division algorithm
works. It also shows us what property we want the remainder to have: none of its terms
should be divisible by the leading terms of the polynomials by which we are dividing.
We can now state the general form of the division algorithm.

Theorem 3 (Division Algorithm in k[x1, . . . , xn]). Fix a monomial order > on n
≥0,

and let F = ( f1, . . . , fs) be an ordered s-tuple of polynomials in k[x1, . . . , xn]. Then
every f ∈ k[x1, . . . , xn] can be written as

f = a1 f1 + · · · + as fs + r,

where ai , r ∈ k[x1, . . . , xn], and either r = 0 or r is a linear combination, with coeffi-
cients in k, of monomials, none of which is divisible by any of LT( f1), . . . , LT( fs). We
will call r a remainder of f on division by F. Furthermore, if ai fi 	= 0, then we have

multideg( f ) ≥ multideg(ai fi ).

Proof. We prove the existence of a1, . . . , as and r by giving an algorithm for their
construction and showing that it operates correctly on any given input. We recommend
that the reader review the division algorithm in k[x] given in Proposition 2 of Chapter
1, §5 before studying the following generalization:

Input: f1, . . . , fs, f
Output: a1, . . . , as, r
a1 := 0; . . . ; as := 0; r := 0
p := f
WHILE p 	= 0 DO

i := 1
divisionoccurred := false
WHILE i ≤ s AND divisionoccurred = false DO

IF LT( fi ) divides (p) THEN
ai := ai + LT(p)/LT( fi )
p := p − (LT(p)/LT( fi )) fi

divisionoccurred:= true
ELSE

i := i + 1
IF divisionoccurred = false THEN

r := r + LT(p)
p := p − LT(p)

We can relate this algorithm to the previous example by noting that the variable p
represents the intermediate dividend at each stage, the variable r represents the column
on the right-hand side, and the variables a1, . . . , as are the quotients listed above the
radical. Finally, the boolean variable “divisionoccurred” tells us when some LT( fi )
divides the leading term of the intermediate dividend. You should check that each time
we go through the main WHILE . . . DO loop, precisely one of two things happens:
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� (Division Step) If some LT( fi ) divides LT(p), then the algorithm proceeds as in the
one-variable case.

� (Remainder Step) If no LT( fi ) divides LT(p), then the algorithm adds LT(p) to the
remainder.

These steps correspond exactly to what we did in Example 2.
To prove that the algorithm works, we will first show that

f = a1 f1 + · · · + as fs + p + r(2)

holds at every stage. This is clearly true for the initial values of a1, . . . , as, p, and r .
Now suppose that (2) holds at one step of the algorithm. If the next step is a Division
Step, then some LT( fi ) divides LT(p), and the equality

ai fi + p = (ai + LT(p)/LT( fi )) fi + (p − (LT(p)/LT( fi )) fi )

shows that ai fi + p is unchanged. Since all other variables are unaffected, (2) remains
true in this case. On the other hand, if the next step is a Remainder Step, then p and r
will be changed, but the sum p + r is unchanged since

p + r = (p − LT(p)) + (r + LT(p)).

As before, equality (2) is still preserved.
Next, notice that the algorithm comes to a halt when p = 0. In this situation, (2)

becomes

f = a1 f1 + · · · + as fs + r.

Since terms are added to r only when they are divisible by none of the LT( fi ), it follows
that a1, . . . , as and r have the desired properties when the algorithm terminates.

Finally, we need to show that the algorithm does eventually terminate. The key
observation is that each time we redefine the variable p, either its multidegree drops
(relative to our term ordering) or it becomes 0. To see this, first suppose that during a
Division Step, p is redefined to be

p′ = p − LT(p)

LT( fi )
fi .

By Lemma 8 of §2, we have

LT

(
LT(p)

LT( fi )
fi

)
= LT(p)

LT( fi )
LT( fi ) = LT(p),

so that p and (LT(p)/LT( fi )) fi have the same leading term. Hence, their difference
p′ must have strictly smaller multidegree when p′ 	= 0. Next, suppose that during a
Remainder Step, p is redefined to be

p′ = p − LT(p).

Here, it is obvious that multideg(p′) < multideg(p) when p′ 	= 0. Thus, in either case,
the multidegree must decrease. If the algorithm never terminated, then we would get an
infinite decreasing sequence of multidegrees. The well-ordering property of >, as stated
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in Lemma 2 of §2, shows that this cannot occur. Thus p = 0 must happen eventually,
so that the algorithm terminates after finitely many steps.

It remains to study the relation between multideg( f ) and multideg(ai fi ). Every term
in ai is of the form LT(p)/LT( fi ) for some value of the variable p. The algorithm
starts with p = f , and we just finished proving that the multidegree of p decreases.
This shows that LT(p) < LT( f ), and then it follows easily [using condition (ii) of the
definition of a monomial order] that multideg(ai fi ) < multideg( f ) when ai fi 	= 0 (see
Exercise 4). This completes the proof of the theorem. �

The algebra behind the division algorithm is very simple (there is nothing beyond
high school algebra in what we did), which makes it surprising that this form of the
algorithm was first isolated and exploited only within the past 30 years.

We will conclude this section by asking whether the division algorithm has the same
nice properties as the one-variable version. Unfortunately, the answer is not pretty—the
examples given below will show that the division algorithm is far from perfect. In fact,
the algorithm achieves its full potential only when coupled with the Groebner bases
studied in §§5 and 6.

A first important property of the division algorithm in k[x] is that the remainder is
uniquely determined. To see how this can fail when there is more than one variable,
consider the following example.

Example 4. Let us divide f = x2 y + xy2 + y2 by f1 = y2 − 1 and f2 = xy − 1. We
will use lex order with x > y. This is the same as Example 2, except that we have
changed the order of the divisors. For practice, we suggest that the reader should do
the division. You should get the following answer:

This shows that

x2 y + xy2 + y2 = (x + 1) · (y2 − 1) + x · (xy − 1) + 2x + 1.(3)

If you compare this with equation (1), you will see that the remainder is different from
what we got in Example 2.
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This shows that the remainder r is not uniquely characterized by the requirement
that none of its terms be divisible by LT( fi ), . . . , LT( fs). The situation is not completely
chaotic: if we follow the algorithm precisely as stated [most importantly, testing LT(p)
for divisibility by LT( f1), LT( f2), . . . in that order], then a1, . . . , as and r are uniquely
determined. (See Exercise 11 for a more detailed discussion of how to characterize the
output of the algorithm.) However, Examples 2 and 4 show that the ordering of the s-
tuple of polynomials ( f1, . . . , fs) definitely matters, both in the number of steps the
algorithm will take to complete the calculation and in the results. The ai and r can
change if we simply rearrange the fi . (The ai and r may also change if we change the
monomial ordering, but that is another story.)

One nice feature of the division algorithm in k[x] is the way it solves the ideal
membership problem—recall Example 1 from §1. Do we get something similar for
several variables? One implication is an easy corollary of Theorem 3: if after division
of f by F = ( f1, . . . , fs) we obtain a remainder r = 0, then

f = a1 f1 + · · · + as fs,

so that f ∈ 〈 f1, . . . , fs〉. Thus r = 0 is a sufficient condition for ideal membership.
However, as the following example shows, r = 0 is not a necessary condition for being
in the ideal.

Example 5. Let f1 = xy + 1, f2 = y2 − 1 ∈ k[x, y] with the lex order. Dividing f =
xy2 − x by F = ( f1, f2), the result is

xy2 − x = y · (xy + 1) + 0 · (y2 − 1) + (−x − y).

With F = ( f2, f1), however, we have

xy2 − x = x · (y2 − 1) + 0 · (xy + 1) + 0.

The second calculation shows that f ∈ 〈 f1, f2〉. Then the first calculation shows that
even if f ∈ 〈 f1, f2〉, it is still possible to obtain a nonzero remainder on division by
F = ( f1, f2).

Thus, we must conclude that the division algorithm given in Theorem 3 is an imper-
fect generalization of its one-variable counterpart. To remedy this situation, we turn to
one of the lessons learned in Chapter 1. Namely, in dealing with a collection of poly-
nomials f1, . . . , fs ∈ k[x1, . . . , xn], it is frequently desirable to pass to the ideal I they
generate. This allows the possibility of going from f1, . . . , fs to a different generating
set for I . So we can still ask whether there might be a “good” generating set for I .
For such a set, we would want the remainder r on division by the “good” generators
to be uniquely determined and the condition r = 0 should be equivalent to member-
ship in the ideal. In §6, we will see that Groebner bases have exactly these “good”
properties.

In the exercises, you will experiment with a computer algebra system to try to
discover for yourself what properties a “good” generating set should have. We will
give a precise definition of “good” in §5 of this chapter.
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EXERCISES FOR §3

1. Compute the remainder on division of the given polynomial f by the order set F (by hand).

Use the grlex order, then the lex order in each case.

a. f = x7 y2 + x3 y2 − y + 1 F = (xy2 − x, x − y3).

b. Repeat part a with the order of the pair F reversed.

2. Compute the remainder on division:

a. f = xy2z2 + xy − yz F = (x − y2, y − z3, z2 − 1).

b. Repeat part a with the order of the set F permuted cyclically.

3. Using a computer algebra system, check your work from Exercises 1 and 2. (You may need to

consult documentation to learn whether the system you are using has an explicit polynomial

division command or you will need to perform the individual steps of the algorithm yourself.)

4. Let f = a1 f1 + · · · + as fs + r be the output of the division algorithm.

a. Complete the proof begun in the text that multideg( f ) ≥ multideg(ai fi ) when ai fi 	= 0.

b. Prove that multideg( f ) ≥ multideg(r ) when r 	= 0.

The following problems investigate in greater detail the way the remainder computed by the divi-

sion algorithm depends on the ordering and the form of the s-tuple of divisors F = ( f1, . . . , fs).

You may wish to use a computer algebra system to perform these calculations.

5. We will study the division of f = x3 − x2 y − x2z + x by f1 = x2 y − z and f 2 = xy − 1.

a. Compute using grlex order:

r1 = remainder of f on division by ( f1, f2).

r2 = remainder of f on division by ( f2, f1).

Your results should be different. Where in the division algorithm did the difference occur?

(You may need to do a few steps by hand here.)

b. Is r = r1 − r2 in the ideal 〈 f1, f2〉? If so, find an explicit expression r = A f1 + B f2. If

not, say why not.

c. Compute the remainder of r on division by ( f1, f2). Why could you have predicted your

answer before doing the division?

d. Find another polynomial g ∈ 〈 f1, f2〉 such that the remainder on division of g by ( f1, f2)

is nonzero. Hint: (xy + 1) · f2 = x2 y2 − 1, whereas y · f1 = x2 y2 − yz.

e. Does the division algorithm give us a solution for the ideal membership problem for the

ideal 〈 f1, f2〉? Explain your answer.

6. Using the grlex order, find an element g of 〈 f1, f2〉 = 〈2xy2 − x, 3x2 y − y − 1〉 ⊂ [x, y]

whose remainder on division by ( f1, f2) is nonzero. Hint: You can find such a g where the

remainder is g itself.

7. Answer the question of Exercise 6 for 〈 f, f2, f3〉 = 〈x4 y2 − z,x4 y2 − z,x3 y2 − z,x3 y3 −1,

x2 y4 − 2z〉 ⊂ [x, y, z]. Find two different polynomials g (not constant multiples of each

other).

8. Try to formulate a general pattern that fits the examples in Exercises 5(c,d), 6, and 7. What

condition on the leading term of the polynomial g = A1 f1 + · · · + As fs would guarantee

that there was a nonzero remainder on division by ( f1, . . . , fs)? What does your condition

imply about the ideal membership problem?

9. The discussion around equation (2) of Chapter 1, §4 shows that every polynomial f ∈
[x, y, z] can be written as

f = h1(y − x2) + h2(z − x3) + r,
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where r is a polynomial in x alone and V(y − x2, z − x3) is the twisted cubic curve in 3.

a. Give a proof of this fact using the division algorithm. Hint: You need to specify carefully

the monomial ordering to be used.

b. Use the parametrization of the twisted cubic to show that z2 − x4 y vanishes at every

point of the twisted cubic.

c. Find an explicit representation

z2 − x4 y = h1(y − x2) + h2(z − x3)

using the division algorithm.

10. Let V ⊂ 3 be the curve parametrized by (t, tm, tn), n, m ≥ 2.

a. Show that V is an affine variety.

b. Adapt the ideas in Exercise 9 to determine I(V ).

11. In this exercise, we will characterize completely the expression

f = a1 f1 + · · · + as fs + r

that is produced by the division algorithm (among all the possible expressions for f of this

form). Let LM( fi ) = xα(i) and define

�1 = α(1) + n
≥0,

�2 = (α(2) + n
≥0) − �1,

...

�1 = (α(s) + n
≥0) −

(
s−1⋃
i=1

�i

)

� = n
≥0 −

(
s⋃

i=1

�i

)
.

(Note that n
≥0 is the disjoint union of the �i and �.)

a. Show that β ∈ �i , if and only if xα(i) divides xβ , but xα(i) no with j < i divides xβ .

b. Show that γ ∈ � if and only if no xα(i) divides xγ .

c. Show that in the expression f = a1 f1 + · · · + as fs + r computed by the division algo-

rithm, for every i , every monomial xβ in ai satisfies β + α(i) ∈ �i , and every monomial

xγ in r satisfies γ ∈ �.

d. Show that there is exactly one expression f = a1 f1 + · · · + as fs + r satisfying the prop-

erties given in part c.

12. Show that the operation of computing remainders on division by F = ( f1. . . fs) is linear

over k. That is, if the remainder on division of gi by F is ri , i = 1, 2, then, for any c1, c2 ∈ k,

the remainder on division of c1g1 + c2g2 is c1r1 + c2r2. Hint: Use Exercise 11.

§4 Monomial Ideals and Dickson’s Lemma

In this section, we will consider the ideal description problem of §1 for the special case
of monomial ideals. This will require a careful study of the properties of these ideals.
Our results will also have an unexpected application to monomial orderings.

To start, we define monomial ideals in k[x1, . . . , xn].
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Definition 1. An ideal I ⊂ k[x1, . . . , xn] is a monomial ideal if there is a subset A ⊂
n
≥0 (possibly infinite) such that I consists of all polynomials which are finite sums of the

form
∑

α∈A hαxα , where hα ∈ k[x1, . . . , xn]. In this case, we write I = 〈xa : α ∈ A〉.

An example of a monomial ideal is given by I = 〈x4 y2, x3 y4, x2 y5〉 ⊂ k[x, y]. More
interesting examples of monomial ideals will be given in §5.

We first need to characterize all monomials that lie in a given monomial ideal.

Lemma 2. Let I = 〈xa : α ∈ A〉 be a monomial ideal. Then a monomial xβ lies in I
if and only if xβ is divisible by xa for some α ∈ A.

Proof. If xβ is a multiple of xα for some α ∈ A, then xβ ∈ I by the definition of ideal.
Conversely, if xβ ∈ I , then xβ = ∑s

i=1 hi xα(i), where hi ∈ k[x1, . . . , xn] and α(i) ∈ A.
If we expand each hi as a linear combination of monomials, we see that every term on
the right side of the equation is divisible by some xa(i). Hence, the left side xβ must
have the same property. �

Note that xβ is divisible by xa exactly when xβ = xα · xγ for some γ ∈ n
≥0. This

is equivalent to β = α + γ . Thus, the set

α + n
≥0 = {α + γ : γ ∈ n

≥0}

consists of the exponents of all monomials divisible by xα . This observation and Lemma
2 allows us to draw pictures of the monomials in a given monomial ideal. For example,
if I = (x4 y2, x3 y4, x2 y5), then the exponents of the monomials in I form the set

((4, 2) + 2
≥0) ∪ ((3, 4) + 2

≥0) ∪ ((2, 5) + 2
≥0).

We can visualize this set as the union of the integer points in three translated copies of
the first quadrant in the plane:

n

m
(m,n) ←→  xm yn

(2,5)

(3,4)

(4,2)
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Let us next show that whether a given polynomial f lies in a monomial ideal can be
determined by looking at the monomials of f .

Lemma 3. Let I be a monomial ideal, and let f ∈ k[x1, . . . , xn]. Then the following
are equivalent:

(i) f ∈ I .
(ii) Every term of f lies in I .

(iii) f is a k-linear combination of the monomials in I .

Proof. The implications (iii) ⇒ (ii) ⇒ (i) are trivial. The proof of (i) ⇒ (iii) is similar
to what we did in Lemma 2 and is left as an exercise. �

An immediate consequence of part (iii) of the lemma is that a monomial ideal is
uniquely determined by its monomials. Hence, we have the following corollary.

Corollary 4. Two monomial ideals are the same if and only if they contain the same
monomials.

The main result of this section is that all monomial ideals of k[x1, . . . , xn], are finitely
generated.

Theorem 5 (Dickson’s Lemma). Let I = 〈xα : α ∈ A〉 ⊆ k[x1, . . . , xn] be a mono-
mial ideal. Then I can be written in the form I = 〈xα(1), . . . , xα(s)〉, where α(1), . . . ,
α(s) ∈ A. In particular, I has a finite basis.

Proof. (By induction on n, the number of variables.) If n = 1, then I is generated by the
monomials xα

1 , where α ∈ A ⊂ ≥0. Let β ≤ α be the smallest element of A ⊂ ≥0.

Then β ≤ α for all α ∈ A, so that xβ

1 , divides all other generators xα
1 . From here,

I = 〈xβ

1 〉 follows easily.
Now assume that n > 1 and that the theorem is true for n − 1. We will write the

variables as x1, . . . , xn−1, y, so that monomials in k[x1, . . . , xn−1, y] can be written as
xα ym , where α = (α1, . . . , αn−1) ∈ n−1

≥0 and m ∈ ≥0.
Suppose that I ⊂ k[x1, . . . , xn−1, y] is a monomial ideal. To find generators for I , let

J be the ideal in k[x1, . . . , xn−1] generated by the monomials xα for which xα ym ∈ I for
some m ≥ 0. Since J is a monomial ideal in k[x1, . . . , xn−1], our inductive hypothesis
implies that finitely many of the xα’s generate J , say J = 〈xα(1), . . . , xα(s)〉. The ideal
J can be understood as the “projection” of I into k[x1, . . . , xn−1].

For each i between 1 and s, the definition of J tells us that xα(i) ymi ∈ I for some
mi ≥ 0. Let m be the largest of the mi . Then, for each k between 0 and m − 1, consider
the ideal Jk ⊂ k[x1, . . . , xn−1] generated by the monomials xβ such that xβ yk ∈ I .
One can think of Jk as the “slice” of I generated by monomials containing y exactly
to the kth power. Using our inductive hypothesis again, Jk has a finite generating set
of monomials, say Jk = 〈xαk (1), . . . , xαk (sk )〉.
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We claim that I is generated by the monomials in the following list:

from J : xα(1) ym, . . . , xα(s) ym,

from J0 : xα(1), . . . , xα0(s0),

from J1 : xα1(1) y, . . . , xα1(s1) y,
...

from Jm−1 : xαm−1(1) ym−1, . . . , xαm−1(sm−1) ym−1,

First note that every monomial in I is divisible by one on the list. To see why, let
xα y p ∈ I . If p ≥ m, then xα y p is divisible by some xα(i) ym by the construction of
J . On the other hand, if p ≤ m − 1, then xα y p is divisible by some xαp( j) y p by the
construction of Jp. It follows from Lemma 2 that the above monomials generate an
ideal having the same monomials as I . By Corollary 4, this forces the ideals to be the
same, and our claim is proved.

To complete the proof of the theorem, we need to show that the finite set of generators
can be chosen from a given set of generators for the ideal. If we switch back to writing the
variables as x1, . . . , xn , then our monomial ideal is I = 〈xα : α ∈ A〉 ⊂ k[x1, . . . , xn].
We need to show that I is generated by finitely many of the xα’s, where α ∈ A. By
the previous paragraph, we know that I = 〈xβ(1), . . . , xβ(s)〉 for some monomials xβ(i)

in I . Since xβ(i) ∈ I = 〈xα : α ∈ A〉, Lemma 2 tells us that each xβ(i) is divisible by
xα(i) for some α(i) ∈ A. From here, it is easy to show that I = 〈xα(1), . . . , xα(s)〉 (see
Exercise 6 for the details). This completes the proof. �

To better understand how the proof of Theorem 5 works, let us apply it to the
ideal I = 〈x4 y2, x3 y4, x2 y5〉 discussed earlier in the section. From the picture of the
exponents, you can see that the “projection” is J = 〈x2〉 ⊂ k[x]. Since x2 y5 ∈ I , we
have m = 5. Then we get the “slices” Jk, 0 ≤ k ≤ 4 = m − 1, generated by monomials
containing yk :

J0 = J1 = {0}
J2 = J3 = 〈x4〉,

J4 = 〈x3〉.
These “slices” are easy to see using the picture of the exponents. Then the proof of
Theorem 5 gives I = 〈x2 y5, x4 y2, x4 y3, x3 y4〉.

Theorem 5 solves the ideal description for monomial ideals, for it tells that such
an ideal has a finite basis. This, in turn, allows us to solve the ideal membership
problem for monomial ideals. Namely, if I = 〈xα(1), . . . , xα(s)〉, then one can easily
show that a given polynomial f is in I if and only if the remainder of f on division by
xα(1), . . . , xα(s) is zero. See Exercise 9 for the details.

We can also use Dickson’s Lemma to prove the following important fact about
monomial orderings in k[x1, . . . , xn].

Corollary 6. Let > be a relation on n
≥0 satisfying:

(i) > is a total ordering on n
≥0.

(ii) if α > β and γ ∈ n
≥0, then α + γ > β + γ .

Then > is well-ordering if and only if α ≥ 0 for all α ∈ n
≥0.
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Proof. ⇒: Assuming > is a well-ordering, let α0 be the smallest element of n
≥0. It

suffices to show α0 ≥ 0. This is easy: if 0 > α0, then by hypothesis (ii), we can add α0

to both sides to obtain α0 > 2α0, which is impossible since α0 is the smallest element
of n

≥0.
⇐: Assuming that α ≥ 0 for all α ∈ n

≥0, let A ⊂ n
≥0 be nonempty. We need to

show that A has a smallest element. Since I = 〈xα : α ∈ A〉 is a monomial ideal, Dick-
son’s Lemma gives us α(1), . . . , α(s) ∈ A so that I = 〈xα(1), . . . , xα(s)〉. Relabeling if
necessary, we can assume that α(1) < α(2) < · · · < α(s). We claim that α(1) is the
smallest element of A. To prove this, take α ∈ A. Then xα ∈ I = 〈xα(1), . . . , xα(s)〉,
so that by Lemma 2, xα is divisible by some xα(i). This tells us that α = α(i) + γ for
some γ ∈ n

≥0. Then γ ≥ 0 and hypothesis (ii) imply that

α = α(i) + γ ≥ α(i) + 0 = α(i) ≥ α(1).

Thus, α(1) is the least element of A. �

As a result of this corollary, the definition of monomial ordering given in Definition
1 of §2 can be simplified. Conditions (i) and (ii) in the definition would be unchanged,
but we could replace (iii) by the simpler condition that α ≥ 0 for all α ∈ n

≥0. This
makes it much easier to verify that a given ordering is actually a monomial ordering.
See Exercises 10–12 for some examples.

EXERCISES FOR §4

1. Let I ⊂ k[x1, . . . , xn] be an ideal with the property that for every f = ∑
cαxα ∈ I , every

monomial xα appearing in f is also in I . Show that I is a monomial ideal.

2. Complete the proof of Lemma 3 begun in the text.

3. Let I = 〈x6, x2 y3, xy7〉 ⊂ k[x, y].

a. In the (m, n)-plane, plot the set of exponent vectors (m, n) of monomials xm yn appearing

in elements of I .

b. If we apply the division algorithm to an element f ∈ k[x, y], using the generators of I
as divisors, what terms can appear in the remainder?

4. Let I ⊂ k[x, y] be the monomial ideal spanned over k by the monomials xβ corresponding

to β in the shaded region below:

n

m
(m,n) ←→  xm yn

(3,6)

(5,4)

(6,0)
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a. Use the method given in the proof of Theorem 5 to find an ideal basis for I .

b. Is your basis as small as possible, or can some β’s be deleted from your basis, yielding

a smaller set that generates the same ideal?

5. Suppose that I = 〈xα : α ∈ A〉 is a monomial ideal, and let S be the set of all exponents

that occur as monomials of I . For any monomial order >, prove that the smallest element

of S with respect to > must lie in A.

6. Let I = 〈xα : α ∈ A〉 be a monomial ideal, and assume that we have a finite basis I =
〈xβ(1), . . . , xβ(s)〉. In the proof of Dickson’s Lemma, we observed that each xβ(i) is divisible

by xα(i) for some α(i) ∈ A. Prove that I = 〈xα(1), . . .., xα(s)〉.
7. Prove that Dickson’s Lemma (Theorem 5) is equivalent to the following statement: given

a subset A ⊂ n
≥0, there are finitely many elements α(1), . . . , α(s) ∈ A such that for every

α ∈ A, there exists some i and some γ ∈ n
≥0 such that α = α(i) + γ .

8. A basis [xα(1), . . . , xα(s)] for a monomial ideal I is said to be minimal if no xα(i) in the basis

divides another xα( j) for i 	= j .

a. Prove that every monomial ideal has a minimal basis.

b. Show that every monomial ideal has a unique minimal basis.

9. If I = 〈xα(1), . . . , xα(s)〉 is a monomial ideal, prove that a polynomial f is in I if and only

if the remainder of f on division by xα(1), . . . , xα(s) is zero. Hint: Use Lemmas 2 and 3.

10. Suppose we have the polynomial ring k[x1, . . . , xn, . . . , y1, . . . , ym]. Let us define a mono-

mial order >mixed on this ring that mixes lex order for x1, . . . , xn , with grlex order for

y1, . . . , ym . If we write monomials in the n + m variables as xα yβ , where α ∈ n
≥0 and

β ∈ m
≥0, then we define

xα yβ >mixed xγ yδ ⇐⇒ xα >lex xγ or xα = xγ and yβ >grlex yδ.

Use Corollary 6 to prove that >mixed is a monomial order. This is an example of what is

called a product order. It is clear that many other monomial orders can be created by this

method.

11. In this exercise we will investigate a special case of a weight order. Let u = (u1, . . . , un) be

a vector in n such that u1, . . . , un are positive and linearly independent over . We say

that u is an independent weight vector. Then, for α, β ∈ n
≥0, define

α >u β ⇐⇒ u · α > u · β,

where the centered dot is the usual dot product of vectors. We call >u the weight order
determined by u.

a. Use Corollary 6 to prove that >u is a monomial order. Hint: Where does your argument

use the linear independence of u1, . . . , un?

b. Show that u = (1,
√

2) is an independent weight vector, so that >u is a weight order on
3
≥0.

c. Show that u = (1,
√

2,
√

3) is an independent weight vector, so that >u is a weight order

on 3
≥0.

12. Another important weight order is constructed as follows. Let u = (u1, . . . , un) be in n
≥0,

and fix a monomial order >σ (such as >lex or >gervlex ) on n
≥0. Then, for α, β ∈ n

≥0, define

α >u,σ β if and only if

u · α > u · β or u · αβ and α >σ β.

We call >u,σ the weight order determined by u and >σ .

a. Use Corollary 6 to prove that >u,σ is a monomial order.

b. Find u ∈ n
≥0 so that the weight order >u,lex is the grlex order >grlex .
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c. In the definition of >u,σ , the order >σ is used to break ties, and it turns out that ties will

always occur in this case. More precisely, prove that given u ∈ n
≥0, there are α 	= β in

n
≥0 such that u · α = u · β. Hint: Consider the linear equation u1a1 + · · · + unan = 0

over . Show that there is a nonzero integer solution (a1, . . . , an), and then show that

(a1, . . . , an) = α − β for some α, β ∈ n
≥0.

d. A useful example of a weight order is the elimination order introduced by BAYER and

STILLMAN (1987b). Fix an integer 1 ≤ i ≤ n and let u = (1, . . . , 1, 0, . . . , 0), where

there are i 1’s and n − i 0’s. Then the i th elimination order >i is the weight order

>u,grevlex . Prove that >i has the following property: if xα is a monomial in which one

of x1, . . . , xi appears, then xα >i xβ for any monomial involving only xi+1, . . . , xn .

Elimination orders play an important role in elimination theory, which we will study in

the next chapter.

The weight orders described in Exercises 11 and 12 are only special cases of weight orders. In

general, to determine a weight order, one starts with a vector u1 ∈ n , whose entries may not

be linearly independent over . Then α > β if u1 · α > u1 · β. But to break ties, one uses a

second weight vector u2 ∈ n . Thus, α > β also holds if u1 · α = u1 · β and u2 · α > u2 · β.

If there are still ties (when u1 · α = u1 · β and u2 · α = u2 · β), then one uses a third weight

vector u3, and so on. It can be proved that every monomial order on n
≥0 arises in this way. For

a detailed treatment of weight orders and their relation to monomial orders, consult ROBBIANO

(1986).

§5 The Hilbert Basis Theorem and Groebner Bases

In this section, we will give a complete solution of the ideal description problem from
§1. Our treatment will also lead to ideal bases with “good” properties relative to the
division algorithm introduced in §3̇. The key idea we will use is that once we choose
a monomial ordering, each f ∈ k[x1, . . . , xn] has a unique leading term LT( f ). Then,
for any ideal I , we can define its ideal of leading terms as follows.

Definition 1. Let I ⊂ k[x1, . . . , xn] be an ideal other than {0}.
(i) We denote by LT(I ) the set of leading terms of elements of I. Thus,

LT(I ) = {cxα : there exists f ∈ I with LT( f ) = cxα}.
(ii) We denote by 〈LT(I )〉 the ideal generated by the elements of LT(I ).

We have already seen that leading terms play an important role in the division
algorithm. This brings up a subtle but important point concerning 〈LT(I )〉. Namely, if we
are given a finite generating set for I , say I = 〈 f1, . . . , fs〉, then 〈LT( f1), . . . , LT( fs)〉
and 〈LT(I )〉may be different ideals. It is true that LT( fi ) ∈ LT(I ) ⊂ 〈LT(I )〉by definition,
which implies 〈LT( f1), . . . , LT( fs)〉 ⊂ 〈LT(I )〉. However, 〈LT(I )〉 can be strictly larger.
To see this, consider the following example.

Example 2. Let I = 〈 f1, f2〉, where f1 = x3 − 2xy and f2 = x2 y − 2y2 + x , and use
the grlex ordering on monomials in k[x, y]. Then

x · (x2 y − 2y2 + x) − y · (x3 − 2xy) = x2,
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so that x2 ∈ I . Thus x2 = LT(x2) ∈ 〈LT(I )〉. However x2 is not divisible by LT( f1) = x3,
or LT( f2) = x2 y, so that x2 /∈ 〈LT( f1), LT( f2)〉 by Lemma 2 of §4.

In the exercises to §3, you computed other examples of ideals I = 〈 f1, . . . , fs〉,
where 〈LT(I )〉 was strictly bigger than 〈LT( f1), . . . , LT( fs)〉. The exercises at the end
of the section will explore what this implies about the ideal membership problem.

We will now show that 〈LT(I )〉 is a monomial ideal. This will allow us to apply the
results of §4. In particular, it will follow that 〈LT(I )〉 is generated by finitely many
leading terms.

Proposition 3. Let I ⊂ k[x1, . . . , xn] be an ideal.
(i) 〈LT(I )〉 is a monomial ideal.

(ii) There are g1, . . . , gt ∈ I such that 〈LT(I )〉 = 〈LT(g1), . . . , LT(gt )〉.

Proof. (i) The leading monomials LM(g) of elements g ∈ I − {0} generate the mono-
mial ideal 〈LM(g) : g ∈ I − {0}〉. Since LM(g) and LT(g) differ by a nonzero constant,
this ideal equals 〈LT(g) : g ∈ I − {0}〉 = 〈LT(I ) (see Exercise 4). Thus, 〈LT(I )〉 is a
monomial ideal.

(ii) Since 〈LT(I )〉 is generated by the monomials LM(g) for g ∈ I − {0}, Dick-
son’s Lemma from §4 tells us that 〈LT(I )〉 = 〈LM(g1), . . . , LM(gt )〉 for finitely many
g1, . . . , gt ∈ I . Since LM(gi ) differs from LT(gi ) by a nonzero constant, it follows that
〈LT(I )〉 = 〈LT(g1), . . . , LT(gt )〉. This completes the proof. �

We can now use Proposition 3 and the division algorithm to prove the existence of a
finite generating set of every polynomial ideal, thus giving an affirmative answer to the
ideal description problem from §1. Let I ⊂ k[x1, . . . , xn] be any ideal and consider the
associated ideal 〈LT(I )〉 as in Definition 1. As always, we have selected one particular
monomial order to use in the division algorithm and in computing leading terms.

Theorem 4 (Hilbert Basis Theorem). Every ideal I ⊂ k[x1, . . . , xn] has a finite gen-
erating set. That is, I = 〈g1, . . . , gt 〉 for some g1, . . . , gt ∈ I .

Proof. If I = {0}, we take our generating set to be {0}, which is certainly finite. If
I contains some nonzero polynomial, then a generating set g1, . . . , gt for I can be
constructed as follows. By Proposition 3, there are g1, . . . , gt ∈ I such that 〈LT(I )〉 =
〈LT(g1), . . . LT(gt )〉. We claim that I = 〈g1, . . . , gt 〉.

It is clear that 〈g1, . . . , gt 〉 ⊂ I since each gi ∈ I . Conversely, let f ∈ I be any
polynomial. If we apply the division algorithm from §3 to divide f by 〈g1, . . . , gt 〉,
then we get an expression of the form

f = a1g1 + · · · + at gt + r

where no term of r is divisible by any of LT(g1), . . . , LT(gt ). We claim that r = 0. To
see this, note that

r = f − a1g1 − · · · − at gt ∈ I.
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If r 	= 0, then LT(r ) ∈ 〈LT(I )〉 = 〈LT(g1), . . . LT(gt )〉, and by Lemma 2 of §4, it follows
that LT(r ) must be divisible by some LT(gi ). This contradicts what it means to be a
remainder, and, consequently, r must be zero. Thus,

f = a1g1 + · · · + at gt + 0 ∈ 〈g1, . . . , gt 〉,

which shows that I ⊂ 〈g1, . . . , gt 〉. This completes the proof. �

In addition to answering the ideal description question, the basis {g1, . . . , gt } used
in the proof of Theorem 4 has the special property that 〈LT(I )〉 = 〈LT(gi ), . . . , LT(gi )〉.
As we saw in Example 2, not all bases of an ideal behave this way. We will give these
special bases the following name.

Definition 5. Fix a monomial order. A finite subset G = {g1, . . . , gt } of an ideal I is
said to be a Groebner basis (or standard basis) if

〈LT(g1), . . . , LT(gt )〉 = 〈LT(I )〉.

Equivalently, but more informally, a set {g1, . . . , gt } ⊂ I is a Groebner basis of I if
and only if the leading term of any element of I is divisible by one of the LT(gi ) (this
follows from Lemma 2 of §4—see Exercise 5). The proof of Theorem 4 also establishes
the following result.

Corollary 6. Fix a monomial order. Then every ideal I ⊂ k[x1, . . . , xn] other than {0}
has a Groebner basis. Furthermore, any Groebner basis for an ideal I is a basis of I.

Proof. Given a nonzero ideal, the set G = {g1, . . . , gt } constructed in the proof of
Theorem 4 is a Groebner basis by definition. For the second claim, note that if
〈LT(I )〉 = 〈LT(g1), . . . , LT(gt )〉, then the argument given in Theorem 4 shows that
I = 〈g1, . . . , gt 〉, so that G is a basis for I . (A slightly different proof is given in
Exercise 6.) �

In §6 we will study the properties of Groebner bases in more detail, and, in particular,
we will see how they give a solution of the ideal membership problem. Groebner bases
are the “good” generating sets we hoped for at the end of §3.

For some examples of Groebner bases, first consider the ideal I from Example
2, which had the basis { f1, f2} = {x3 − 2xy, x2 y − 2y2 + x}. Then { f1, f2} is not
a Groebner basis for I with respect to grlex order since we saw in Example 2 that
x2 ∈ 〈(LT(I )〉, but x2 /∈ 〈LT( f1), LT( f2)〉. In §7 we will learn how to find a Groebner
basis of I .

Next, consider the ideal J = 〈g1, g2〉 = 〈x + z, y − z〉. We claim that g1 and g2 form
a Groebner basis using lex order in [x, y, z]. Thus, we must show that the leading term
of every nonzero element of J lies in the ideal 〈LT(g1), LT(g2)〉 = 〈x, y〉. By Lemma 2
of §4, this is equivalent to showing that the leading term of any nonzero element of J
is divisible by either x or y.
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To prove this, consider any f = Ag1
+ Bg2

∈ J . Suppose on the contrary that f is
nonzero and LT( f ) is divisible by neither x nor y. Then by the definition of lex order,
f must be a polynomial in z alone. However, f vanishes on the linear subspace L =
V(x + z, y − z) ⊂ 3 since f ∈ J . It is easy to check that (x, y, z) = (−t, t, t) ∈ L
for any real number t . The only polynomial in z alone that vanishes at all of these points
is the zero polynomial, which is a contradiction. It follows that 〈g1, g2〉 is a Groebner
basis for J . In §6, we will learn a more systematic way to detect when a basis is a
Groebner basis.

Note, by the way, that the generators for the ideal J come from a row echelon matrix
of coefficients: (

1 0 1
0 1 −1

)
This is no accident: for ideals generated by linear polynomials, a Groebner basis for lex
order is determined by the row echelon form of the matrix made from the coefficients
of the generators (see Exercise 9).

Groebner bases for ideals in polynomial rings were introduced in 1965 by
B. Buchberger and named by him in honor of W. Gröbner (1899–1980), Buchberger’s
thesis adviser. The closely related concept of “standard bases” for ideals in power series
rings was discovered independently in 1964 by H. Hironaka. As we will see later in
this chapter, Buchberger also developed the fundamental algorithms for working with
Groebner bases. We will use the English form “Groebner bases,” since this is how the
command is spelled in some computer algebra systems.

We conclude this section with two applications of the Hilbert Basis Theorem. The
first is an algebraic statement about the ideals in k[x1, . . . , xn]. An ascending chain of
ideals is a nested increasing sequence:

I1 ⊂ I2 ⊂ I3 ⊂ · · · .
For example, the sequence

〈x1〉 ⊂ 〈x1, x2〉 ⊂ · · · ⊂ 〈x1, . . . , xn〉(1)

forms a (finite) ascending chain of ideals. If we try to extend this chain by including
an ideal with further generator(s), one of two alternatives will occur. Consider the
ideal 〈x1, . . . , xn, f 〉 where f ∈ k[x1, . . . , xn]. If f ∈ 〈x1, . . . , xn〉, then we obtain
〈x1, . . . , xn〉 again and nothing has changed. If, on the other hand, f /∈ 〈x1, . . . , xn〉,
then we claim 〈x1, . . . , xn, f 〉 = k[x1, . . . , xn]. We leave the proof of this claim to the
reader (Exercise 11 of this section). As a result, the ascending chain (1) can be continued
in only two ways, either by repeating the last ideal ad infinitum or by appending
k[x1, . . . , xn] and then repeating it ad infinitum. In either case, the ascending chain
will have “stabilized” after a finite number of steps, in the sense that all the ideals after
that point in the chain will be equal. Our next result shows that the same phenomenon
occurs in every ascending chain of ideals in k[x1, . . . , xn].

Theorem 7 (The Ascending Chain Condition). Let

I1 ⊂ I2 ⊂ I3 ⊂ · · ·
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be an ascending chain of ideals in k[x1, . . . , xn]. Then there exists an N ≥ 1 such that

IN = IN+1 = IN+2 = · · · .

Proof. Given the ascending chain I1 ⊂ I2 ⊂ I3 ⊂ · · ·, consider the set I = ⋃∞
i=1 Ii .

We begin by showing that I is also an ideal in k[x1, . . . , xn]. First, 0 ∈ I since 0 ∈ Ii

for every i . Next, if f, g ∈ I , then, by definition, f ∈ Ii , and g ∈ Ii for some i and j
(possibly different). However, since the ideals Ii form an ascending chain, if we relabel
so that i ≤ j , then both f and g are in I j . Since I j is an ideal, the sum f + g ∈ I j ,
hence, ∈ I . Similarly, if f ∈ I and r ∈ k[x1, . . . , xn], then f ∈ Ii for some i , and
r · f ∈ Ii ⊂ I . Hence, I is an ideal.

By the Hilbert Basis Theorem, the ideal I must have a finite generating set: I =
〈 f1, . . . , fs〉. But each of the generators is contained in some one of the I j , say fi ∈ I ji

for some ji , i = 1, . . . , s. We take N to be the maximum of the ji . Then by the definition
of an ascending chain fi ∈ IN for all i . Hence we have

I = 〈 f1, . . . , fs〉 ⊂ IN ⊂ IN+1 ⊂ · · · ⊂ I.

As a result the ascending chain stabilizes with IN . All the subsequent ideals in the chain
are equal. �

The statement that every ascending chain of ideals in k[x1, . . . , xn] stabilizes is often
called the ascending chain condition, or ACC for short. In Exercise 12 of this section,
you will show that if we assume the ACC as hypothesis, then it follows that every
ideal is finitely generated. Thus, the ACC is actually equivalent to the conclusion of
the Hilbert Basis Theorem. We will use the ACC in a crucial way in §7, when we give
Buchberger’s algorithm for constructing Groebner bases. We will also use the ACC in
Chapter 4 to study the structure of affine varieties.

Our second consequence of the Hilbert Basis Theorem will be geometric. Up to this
point, we have considered affine varieties as the sets of solutions of specific finite sets
of polynomial equations:

V( f1, . . . , fs) = {(a1, . . . , an) ∈ kn : fi (a1, . . . , an) = 0 for all i}.

The Hilbert Basis Theorem shows that, in fact, it also makes sense to speak of the affine
variety defined by an ideal I ⊂ k[x1, . . . , xn].

Definition 8. Let I ⊂ k[x1, . . . , xn] be an ideal. We will denote by V(I ) the set

V(I ) = {(a1, . . . , an) ∈ kn : f (a1, . . . , an) = 0 for all f ∈ I}.

Even though a nonzero ideal I always contains infinitely many different polynomials,
the set V(I ) can still be defined by a finite set of polynomial equations.

Proposition 9. V(I ) is an affine variety. In particular, if I = 〈 f1, . . . , fs〉, then V(I ) =
V( f1, . . . , fs).
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Proof. By the Hilbert Basis Theorem, I = 〈 f1, . . . , fs〉 for some finite generating set.
We claim that V(I ) = V( f1, . . . , fs). First, since the fi ∈ I, if f (a1, . . . , an) = 0 for
all f ∈ I, then fi (a1, . . . , an) = 0, so V(I ) ⊂ V( f1, . . . , fs). On the other hand, let
(a1, . . . , an) ∈ V( f1, . . . , fs) and let f ∈ I . Since I = 〈 f1, . . . , fs〉, we can write

f =
s∑

i=1

hi fi

for some hi ∈ k[x1, . . . , xn]. But then

f (a1, . . . , an) =
s∑

i=1

hi (a1, . . . , an) fi (a1, . . . , an)

=
s∑

i=1

hi (a1, . . . , an) · 0 = 0.

Thus, V( f1, . . . , fs) ⊂ V(I ) and, hence, they are equal. �

The most important consequence of this proposition is that varieties are determined
by ideals. For example, in Chapter 1, we proved that V( f1, . . . , fs) = V(g1, . . . , gt )
whenever 〈 f1, . . . , fs〉 = 〈g1, . . . , gt 〉 (see Proposition 4 of Chapter 1, §4). This propo-
sition is an immediate corollary of Proposition 9. The relation between ideals and
varieties will be explored in more detail in Chapter 4.

In the exercises, we will exploit Proposition 9 by showing that by using the right
generating set for an ideal I , we can gain a better understanding of the variety V(I ).

EXERCISES FOR §5

1. Let I = 〈g1, g2, g3〉 ⊂ [x, y, z], where g1 = xy2 − xz + y, g2 = xy − z2 and g3 = x −
yz4. Using the lex order, give an example of g ∈ I such that LT(g) /∈ 〈LT(g1), LT(g2), LT(g3)〉.

2. For the ideals and generators given in Exercises 5, 6, and 7 of §3, show that LT(I ) is strictly

bigger than 〈LT( f1), . . . , LT( fs)〉. Hint: This should follow directly from what you did in

those exercises.

3. To generalize the situation of Exercises 1 and 2, suppose that I = 〈 f1, . . . , fs〉 is an ideal

such that 〈LT( f1), . . . , LT( fs)〉 is strictly smaller than 〈LT(I )〉.
a. Prove that there is some f ∈ I whose remainder on division by f1, . . . , fs is nonzero.

Hint: First show that LT( f ) /∈ 〈LT( f1), . . . , LT( fs)〉 for some f ∈ I . Then use Lemma 2

of §4.

b. What does part a say about the ideal membership problem?

c. How does part a relate to the conjecture you were asked to make in Exercise 8 of §3?

4. If I ⊂ k[x1, . . . , xn] is an ideal, prove that 〈LT(g) : g ∈ I − {0}〉 = 〈LM(g) : g ∈ I − {0}〉.
5. Let I be an ideal of k[x1, . . . , xn]. Show that G = {g1, . . . , gt } ⊂ I is a Groebner basis of

I if and only if the leading term of any element of I is divisible by one of the LT(gi ).

6. Corollary 6 asserts that a Groebner basis is a basis, i.e., if G = {g1, . . . , gt } ⊂ I satisfies

〈LT(I )〉 = 〈LT(g1), . . . , LT(gt )〉, then I = 〈g1, . . . , gt 〉. We gave one proof of this in the

proof of Theorem 4. Complete the following sketch to give a second proof. If f ∈ I , then

divide f by (g1, . . . , gt ). At each step of the division algorithm, the leading term of the

polynomial under the radical will be in 〈LT(I )〉 and, hence, will be divisible by one of the
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LT(gi ). Hence, terms are never added to the remainder, so that f = ∑t
i=1 ai gi when the

algorithm terminates.

7. If we use grlex order with x > y > z, is {x4 y2 − z5, x3 y3 − 1, x2 y4 − 2z} a Groebner basis

for the ideal generated by these polynomials? Why or why not?

8. Repeat Exercise 7 for I = 〈x − z2, y − z3〉 using the lex order. Hint: The difficult part of

this exercise is to determine exactly which polynomials are in 〈LT(I )〉.
9. Let A = (ai j ) be an m × n matrix with real entries in row echelon form and let J ⊂

[x1, . . . , xn] be an ideal generated by the linear polynomials
∑n

j=1 ai j x j for 1 ≤ i ≤ m.

Show that the given generators form a Groebner basis for J with respect to a suitable lexi-

cographic order. Hint: Order the variables corresponding to the leading 1’s before the other

variables.

10. Let I ⊂ k[x1, . . . , xn] be a principal ideal (that is, I is generated by a single f ∈ I —see §5

of Chapter 1). Show that any finite subset of I containing a generator for I is a Groebner

basis for I .

11. Let f ∈ k[x1, . . . , xn]. If f /∈ 〈x1, . . . , xn〉, then show 〈x1, . . . , xn, f 〉 = k[x1, . . . , xn].

12. Show that if we take as hypothesis that every ascending chain of ideals in k[x1, . . . , xn]

stabilizes, then the conclusion of the Hilbert Basis Theorem is a consequence. Hint: Argue

by contradiction, assuming that some ideal I ⊂ k[x1, . . . , xn] has no finite generating set.

The arguments you gave in Exercise 12 should not make any special use of properties of

polynomials. Indeed, it is true that in any commutative ring R, the following two statements

are equivalent:

i. Every ideal I ⊂ R is finitely generated.

ii. Every ascending chain of ideals of R stabilizes.

13. Let

V1 ⊃ V2 ⊃ V3 ⊃ · · ·
be a descending chain of affine varieties. Show that there is some N ≥ 1 such that VN =
VN+1 = VN+2 = · · ·. Hint: Use Exercise 14 of Chapter 1, §4.

14. Let f1, f2, . . . ∈ k[x1, . . . , xn] be an infinite collection of polynomials and let I =
〈 f1, f2, . . .〉 be the ideal they generate. Prove that there is an integer N such that I =
〈 f1, . . . , fN 〉. Hint: Use f1, f2, . . . to create an ascending chain of ideals.

15. Given polynomials f1, f2, . . . ∈ k[x1, . . . , xn], let V( f1, f2, . . .) ⊂ kn be the solutions of

the infinite system of equations f1 = f2 = · · ·0. Show that there is some N such that

V( f1, f2, . . .) = V( f1, . . . , fN ).

16. In Chapter 1, §4, we defined the ideal I(V ) of a variety V ⊂ kn . In this section, we defined

the variety of any ideal (see Definition 8). In particular, this means that V(I(V )) is a variety.

Prove that V(I(V )) = V . Hint: See the proof of Lemma 7 of Chapter 1, §4.

17. Consider the variety V = V(x2 − y, y + x2 − 4) ⊂ 2. Note that V = V(I ), where I =
〈x2 − y, y + x2 − 4〉.
a. Prove that I = 〈x2 − y, x2 − 2〉.
b. Using the basis from part a, prove that V(I ) = {(±√

2, 2)}.
One reason why the second basis made V easier to understand was that x2 − 2 could be

factored. This implied that V “split” into two pieces. See Exercise 18 for a general statement.

18. When an ideal has a basis where some of the elements can be factored, we can use the

factorization to help understand the variety.

a. Show that if g ∈ k[x1, . . . , xn] factors as g = g1g2, then for any f, V( f, g) = V( f, g1) ∪
V( f, g2).

b. Show that in 3, V(y − x2, xz − y2) = V(y − x2, xz − x4).

c. Use part a to describe and/or sketch the variety from part b.
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§6 Properties of Groebner Bases

As shown in §5, every nonzero ideal I ⊂ k[x1, . . . , xn] has a Groebner basis. In this
section, we will study the properties of Groebner bases and learn how to detect when
a given basis is a Groebner basis. We begin by showing that the undesirable behavior
of the division algorithm in k[x1, . . . , xn] noted in §3 does not occur when we divide
by the elements of a Groebner basis.

Let us first prove that the remainder is uniquely determined when we divide by a
Groebner basis.

Proposition 1. Let G = {g1, . . . , gt } be a Groebner basis for an ideal I ⊂
k[x1, . . . , xn] and let f ∈ k[x1, . . . , xn]. Then there is a unique r ∈ k[x1, . . . , xn] with
the following two properties:
(i) No term of r is divisible by any of LT(g1), . . . , LT(gt ).

(ii) There is g ∈ I such that f = g + r .
In particular, r is the remainder on division of f by G no matter how the elements of G
are listed when using the division algorithm.

Proof. The division algorithm gives f = a1g1 + · · · + at gt + r , where r satisfies (i).
We can also satisfy (ii) by setting g = a1g1 + · · · + at gt ∈ I . This proves the existence
of r .

To prove uniqueness, suppose that f = g + r = g′ + r ′ satisfy (i) and (ii). Then r −
r ′ = g′ − g ∈ I , so that if r 	= r ′, then LT(r − r ′) ∈ 〈LT(I )〉 = 〈LT(g1), . . . , LT(gt )〉. By
Lemma 2 of §4, it follows that LT(r − r ′) is divisible by some LT(gi ). This is impossible
since no term of r, r ′ is divisible by one of LT(g1), . . . , LT(gt ). Thus r − r ′ must be
zero, and uniqueness is proved.

The final part of the proposition follows from the uniqueness of r . �

The remainder r is sometimes called the normal form of f, and its uniqueness proper-
ties will be explored in Exercises 1 and 4. In fact, Groebner bases can be characterized
by the uniqueness of the remainder—see Theorem 5.35 of BECKER and WEISPFENNING

(1993) for this and other conditions equivalent to being a Groebner basis.
Although the remainder r is unique, even for a Groebner basis, the “quotients” ai

produced by the division algorithm f = a1g1 + · · · + at gt + r can change if we list
the generators in a different order. See Exercise 2 for an example.

As a corollary, we get the following criterion for when a polynomial lies in an ideal.

Corollary 2. Let G = {gt , . . . , gt } be a Groebner basis for an ideal I ⊂ k[x1, . . . , xn]
and let f ∈ k[x1, . . . , xn]. Then f ∈ I if and only if the remainder on division of f by
G is zero.

Proof. If the remainder is zero, then we have already observed that f ∈ I . Conversely,
given f ∈ I , then f = f + 0 satisfies the two conditions of Proposition 1. It follows
that 0 is the remainder of f on division by G. �
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The property given in Corollary 2 is sometimes taken as the definition of a Groebner
basis, since one can show that it is true if and only if 〈LT(gt ), . . . , LT(gt )〉 = 〈LT(I )〉
(see Exercise 3). For this and similar conditions equivalent to being a Groebner basis,
see Proposition 5.38 of BECKER and WEISPFENNING (1993).

Using Corollary 2, we get an algorithm for solving the ideal membership problem
from §1 provided that we know a Groebner basis G for the ideal in question—we only
need to compute a remainder with respect to G to determine whether f ∈ I . In §7, we
will learn how to find Groebner bases, and we will give a complete solution of the ideal
membership problem in §8.

We will use the following notation for the remainder.

Definition 3. We will write f
F

for the remainder on division of f by the ordered s-tuple
F = ( f1, . . . , fs). If F is a Groebner basis for ( f1, . . . , fs), then we can regard F as a
set (without any particular order) by Proposition I.

For instance, with F = (x2 y − y2, x4 y2 − y2) ⊂ k[x, y], using the lex order, we
have

x5 y
F = xy3

since the division algorithm yields

x5 y = (x3 + xy)(x2 − y2) + 0 · (x4 y2 − y2) + xy3.

We next will discuss how to tell whether a given generating set of an ideal is a Groeb-
ner basis. As we have indicated, the “obstruction” to { f1, . . . , fs} being a Groebner
basis is the possible occurrence of polynomial combinations of the fi whose leading
terms are not in the ideal generated by the LT( fi ). One way this can occur is if the
leading terms in a suitable combination

axα fi − bxβ f j

cancel, leaving only smaller terms. On the other hand, axα fi − bxβ f j ∈ I , so its
leading term is in 〈LT(I )〉. You should check that this is what happened in Example
2 of §5. To study this cancellation phenomenon, we introduce the following special
combinations.

Definition 4. Let f, g ∈ k[x1, . . . , xn] be nonzero polynomials.
(i) If multideg( f ) = α and multideg(g) = β, then let γ = (γ1, . . . , γn), where γi =

max(α, βi ) for each i. We call xγ the least common multiple of LM( f ) and LM(g),
written xγ = LCM(LM( f ), LM(g)).

(ii) The S-polynomial of f and g is the combination

S( f, g) = xγ

LT( f )
· f − xγ

LT(g)
· g.

(Note that we are inverting the leading coefficients here as well.)
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For example, let f = x3 y2 − x2 y3 + x and g = 3x4 y + y2 in [x, y] with the grlex
order. Then γ = (4, 2) and

S( f, g) = x4 y2

x3 y2
· f − x4 y2

3x4 y
· g

= x · f − (1/3) · y · g

= −x3 y3 + x2 − (1/3)y3.

An S-polynomial S( f, g) is “designed” to produce cancellation of leading terms. In fact,
the following lemma shows that every cancellation of leading terms among polynomials
of the same multidegree results from this sort of cancellation.

Lemma 5. Suppose we have a sum
∑s

i=1 ci fi , where ci ∈ k and multideg( fi ) = δ ∈
n
≥0 for all i. If multideg (

∑s
i=1 ci fi ) < δ , then

∑s
i=1 ci fi is a linear combination, with

coefficients in k, of the S-polynomials S( f j , fk) for 1 ≤ j, k ≤ s. Furthermore, each
S( fi , fk) has multidegree < δ.

Proof. Let di = LC( fi ), so that ci di is the leading coefficient of ci fi . Since the ci fi all
have multidegree δ and their sum has strictly smaller multidegree, it follows easily that∑s

i=1 ci di = 0.
Define pi = fi/di , and note that pi has leading coefficient 1. Consider the telescoping

sum

s∑
i=1

ci fi =
s∑

i=1

ci di pi = c1d1(p1 − p2) + (c1d1 + c2d2)(p2 − p3) + · · · +

(c1d1 + · · · + cs−1ds−1)(ps−1 − ps) + (c1d1 + · · · + csds)ps .

By assumption, LT( fi ) = di xδ , which implies that the least common multiple of LT( f j )
and LM( fk) is xδ . Thus

S( f j , fk) = xδ

LT( f j )
f j − xδ

LT( fk)
fk = xδ

d j xδ
f j − xδ

dk xδ
fk = p j − pk .(1)

Using this equation and
∑s

i=1 ci di = 0, the above telescoping sum becomes

s∑
i=1

ci fi = c1d1S( f1, f2) + (c1d1 + c2d2)S( f2, f3)

+ · · · + (c1d1 + · · · + cs−1ds−1)S( fs−1, fs),

which is a sum of the desired form. Since p j and pk have multidegree δ and leading
coefficient 1, the difference p j − pk has multidegree < δ. By equation (1), the same is
true of S( f j , fk), and the lemma is proved. �

When f1, . . . , fs satisfy the hypothesis of Lemma 5, we get an equation of the form

s∑
i=1

ci fi =
∑

j,k

c jk S( f j , fk).
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Let us consider where the cancellation occurs. In the sum on the left, every summand
ci fi has multidegree δ, so the cancellation occurs only after adding them up. However,
in the sum on the right, each summand c jk S( f j , fk) has multidegree < δ, so that the
cancellation has already occurred. Intuitively, this means that all cancellation can be
accounted for by S-polynomials.

Using S-polynomials and Lemma 5, we can now prove the following criterion of
Buchberger for when a basis of an ideal is a Groebner basis.

Theorem 6 (Buchberger’s Criterion). Let I be a polynomial ideal. Then a basis G =
{g1, . . . , gt } for I is a Groebner basis for I if and only if for all pairs i 	= j , the remainder
on division of S(gi , g j ) by G (listed in some order) is zero.

Proof. ⇒: If G is a Groebner basis, then since S(gi , g j ) ∈ I , the remainder on division
by G is zero by Corollary 2.

⇐: Let f ∈ I be a nonzero polynomial. We must show that if the S-polynomials
all have zero remainders on division by G, then LT( f ) ∈ 〈LT(g1), . . . , LT(gt )〉. Before
giving the details, let us outline the strategy of the proof.

Given f ∈ I = (g1, . . . , gt ), there are polynomials hi ∈ k[x1, . . . , xn] such that

f =
t∑

i=1

hi gi .(2)

From Lemma 8 of §2, it follows that

multideg( f ) ≤ max(multideg(hi gi )).(3)

If equality does not occur, then some cancellation must occur among the leading terms of
(2). Lemma 5 will enable us to rewrite this in terms of S-polynomials. Then our assump-
tion that S-polynomials have zero remainders will allow us to replace the S-polynomials
by expressions that involve less cancellation. Thus, we will get an expression for f that
has less cancellation of leading terms. Continuing in this way, we will eventually find an
expression (2) for f where equality occurs in (3). Then multideg( f ) = multideg(hi gi )
for some i , and it will follow that LT( f ) is divisible by LT(gi ). This will show that
LT( f ) ∈ 〈LT(g1), . . . , LT(gt )〉, which is what we want to prove.

We now give the details of the proof. Given an expression (2) for f , let m(i) =
multideg(hi gi ), and define δ = max(m(1), . . . , m(t)). Then inequality (3) becomes

multideg( f ) ≤ δ.

Now consider all possible ways that f can be written in the form (2). For each such
expression, we get a possibly different δ. Since a monomial order is a well-ordering,
we can select an expression (2) for f such that δ is minimal.

We will show that once this minimal δ is chosen, we have multideg( f ) = δ. Then
equality occurs in (3), and as we observed, it follows that LT( f ) ∈ 〈LT(g1), . . . , LT(gt )〉.
This will prove the theorem.

It remains to show multideg( f ) = δ. We will prove this by contradiction. Equality
can fail only when multideg( f ) < δ. To isolate the terms of multidegree δ, let us write
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f in the following form:

f = ∑
m(i)=δ

hi gi + ∑
m(i)<δ

hi gi

= ∑
m(i)=δ

LT(hi )gi + ∑
m(i)=δ

(hi − LT(hi ))gi + ∑
m(i)<δ

hi gi
(4)

The monomials appearing in the second and third sums on the second line all have
multidegree < δ. Thus, the assumption multideg( f ) < δ means that the first sum also
has multidegree < δ.

Let LT(hi ) = ci xα(i). Then the first sum
∑

m(i)=δ LT(hi )gi = ∑
m(i)=δ ci xα(i)gi has

exactly the form described in Lemma 5 with fi = xα(i)gi . Thus Lemma 5 implies that
this sum is a linear combination of the S-polynomials S(xα( j)g j , xα(k)gk). However,

S(xα( j)g j , xα(k)gk) = xδ

xα( j)LT(g j )
xα( j)g j − xδ

xα(k)LT(gk)
xα(k)gk

= xδ−γ jk S(g j , gk),

where xγ jk = LCM(LM(g j ), LM(gk)). Thus there are constants c jk ∈ k such that∑
m(i)=δ

LT(hi )gi =
∑

j,k

c jk xδ−γ jk S(g j , gk).(5)

The next step is to use our hypothesis that the remainder of S(g j , gk) on division
by g1, . . . , gt is zero. Using the division algorithm, this means that each S-polynomial
can be written in the form

S(g j , gk) =
t∑

i=1

ai jk gi ,(6)

where ai jk ∈ k[x1, . . . , xn]. The division algorithm also tells us that

multideg(ai jk gi ) ≤ multideg(S(g j , gk))(7)

for all i, j, k (see Theorem 3 of §3). Intuitively, this says that when the remainder is
zero, we can find an expression for S(g j , gk) in terms of G where the leading terms do
not all cancel.

To exploit this, multiply the expression for S(g j , gk) by xδ−γ jk to obtain

xδ−γ jk S(g j , gk) =
t∑

i=1

bi jk gi ,

where bi jk = xδ−γ jk ai jk . Then (7) and Lemma 5 imply that

multideg(bi jk gi ) ≤ multideg(xδ−γ jk S(g j , gk)) < δ.(8)

If we substitute the above expression for xδ−γ jk S(g j , gk) into (5), we get an equation

∑
m(i)=δ

LT(hi )gi =
∑

j,k

c jk xδ−γ jk S(g j , gk) =
∑

j,k

c jk

(∑
i

bi jk gi

)
=

∑
i

h̃i gi
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which by (8) has the property that for all i ,

multideg(h̃i gi ) < δ.

For the final step in the proof, substitute
∑

m(i)=δ LT(hi )gi = ∑
i h̃i gi into equation

(4) to obtain an expression for f as a polynomial combination of the gi ’s where all
terms have multidegree < δ. This contradicts the minimality of δ and completes the
proof of the theorem. �

The Buchberger Criterion given in Theorem 6 is one of the key results about Groebner
bases. We have seen that Groebner bases have many nice properties, but, so far, it has
been difficult to determine if a basis of an ideal is a Groebner basis (the examples we
gave in §5 were rather trivial). Using the S-pair criterion, however, it is now easy to
show whether a given basis is a Groebner basis. Furthermore, in §7, we will see that
the S-pair criterion also leads naturally to an algorithm for computing Groebner bases.

As an example of how to use Theorem 6, consider the ideal I = 〈y − x2, z − x3〉 of
the twisted cubic in 3. We claim that G = {y − x2, z − x3} is a Groebner basis for
lex order with y > z > x . To prove this, consider the S-polynomial

S(y − x2, z − x3) = yz

y
(y − x2) − yz

z
(z − x3) = −zx2 + yx3.

Using the division algorithm, one finds

−zx2 + yx3 = x3 · (y − x2) + (−x2) · (z − x3) + 0,

so that S(y − x2, z − x3) = 0. Thus, by Theorem 6, G is a Groebner basis for I . You can
also check that G is not a Groebner basis for lex order with x > y > z (see Exercise 8).

EXERCISES FOR §6

1. Show that Proposition 1 can be strengthened slightly as follows. Fix a monomial ordering

and let I ⊂ k[x1, . . . , xn] be an ideal. Suppose that f ∈ k[x1, . . . , xn].

a. Show that f can be written in the form f = g + r , where g ∈ I and no term of r is

divisible by any element of LT(I ).

b. Given two expressions f = g + r = g′ + r ′ as in part (a), prove that r = r ′. Thus, r is

uniquely determined.

This result shows once a monomial order is fixed, we can define a unique “remainder of f
on division by I .” We will exploit this idea in Chapter 5.

2. In §5, we showed that G = {x + z, y − z} is a Groebner basis for lex order. Let us use this

basis to study the uniqueness of the division algorithm.

a. Divide xy by x + z, y − z.

b. Now reverse the order and divide xy by y − z, x + z.

You should get the same remainder (as predicted by Proposition 1), but the “quotients”

should be different for the two divisions. This shows that the uniqueness of the remainder

is the best one can hope for.

3. In Corollary 2, we showed that if I = 〈g1, . . . , gt 〉 and if G = {g1, . . . , gt } is a Groebner

basis for I , then f
G = 0 for all f ∈ I . Prove the converse of this statement. Namely, show

that if G is a basis for I with the property that f
G = 0 for all f ∈ I , then G is a Groebner

basis for I .
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4. Let G and G ′ be Groebner bases for an ideal I with respect to the same monomial order

in k[x1, . . . , xn]. Show that f
G = f

G′
for all f ∈ k[x1, . . . , xn]. Hence, the remainder on

division by a Groebner basis is even independent of which Groebner basis we use, as long

as we use one particular monomial order. Hint: See Exercise 1.

5. Compute S( f, g) using the lex order.

a. f = 4x2z − 7y2, g = xyz2 + 3xz4.

b. f = x4 y − z2, g = 3xz2 − y.

c. f = x7 y2z + 2i xyz, g = 2x7 y2z + 4.

d. f = xy + z3, g = z2 − 3z.

6. Does S( f, g) depend on which monomial order is used? Illustrate your assertion with ex-

amples.

7. Prove that multideg(S( f, g)) < γ , where xγ = LCM(LM( f ), LM(g)). Explain why this in-

equality is a precise version of the claim that S-polynomials are designed to produce can-

cellation.

8. Show that {y − x2, z − x3} is not a Groebner basis for lex order with x > y > z.

9. Using Theorem 6, determine whether the following sets G are Groebner bases for the ideal

they generate. You may want to use a computer algebra system to compute the S-polynomials

and remainders.

a. G = {x2 − y, x3 − z} grlex order.

b. G = {x2 − y, x3 − z} invlex order (see Exercise 6 of §2).

c. G = {xy2 − xz + y, xy − z2, x − yz4} lex order.

10. Let f, g ∈ k[x1, . . . , xn] be polynomials such that LM( f ) and LM(g) are relatively prime
monomials and LC( f ) = LC(g) = 1.

a. Show that S( f, g) = −(g − LT(g)) f + ( f − LT( f ))g.

b. Deduce that the leading monomial of S( f, g) is a multiple of either LM( f ) or LM(g) in

this case.

11. Let f, g ∈ k[x1, . . . , xn] and xα, xβ be monomials. Verify that

S(xα f, xβ g) = xγ S( f, g)

where

xγ = LCM(xαLM( f ), xαLM(g))

LCM(LM( f ), LM(g))
.

Be sure to prove that xγ is a monomial.

12. Let I ⊂ k[x1, . . . , xn] be an ideal, and let G be a Groebner basis of I .

a. Show that f
G = gG if and only if f − g ∈ I . Hint: See Exercise 1.

b. Deduce that

f + g
G = f

G + gG .

Hint: Use part (a).

c. Deduce that

fg
G = gG · gG

G
.

We will return to an interesting consequence of these facts in Chapter 5.

§7 Buchberger’s Algorithm

In Corollary 6 of §5, we saw that every ideal in k[x1, . . . , xn] other than 0 has a Groebner
basis. Unfortunately, the proof given was nonconstructive in the sense that it did not
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tell us how to produce the Groebner basis. So we now turn to the question: given an
ideal I ⊂ k[x1, . . . , xn], how can we actually construct a Groebner basis for I ? To see
the main ideas behind the method we will use, we return to the ideal of Example 2 from
§5 and proceed as follows.

Example 1. Consider the ring k[x, y] with grlex order, and let I = 〈 f1, f2〉 =
(x3 − 2xy, x2 y − 2y2 + x). Recall that { f1, f2} is not a Groebner basis for I since
LT(S( f1, f2)) = −x2 	∈ 〈LT( f1), LT( f2)〉.

To produce a Groebner basis, one natural idea is to try first to extend the original
generating set to a Groebner basis by adding more polynomials in I . In one sense, this
adds nothing new, and even introduces an element of redundancy. However, the extra
information we get from a Groebner basis more than makes up for this.

What new generators should we add? By what we have said about the S-polynomials
in §6, the following should come as no surprise. We have S( f1, f2) = −x2 ∈ I , and
its remainder on division by F = ( f1, f2) is −x2, which is nonzero. Hence, we should
include that remainder in our generating set, as a new generator f3 = −x2. If we set
F = ( f1, f2, f3), we can use Theorem 6 of §6 to test if this new set is a Groebner basis
for I . We compute

S( f1, f2) = f3, so

S( f1, f2)
F = 0,

S( f1, f3) = (x3 − 2xy) − (−x)(−x2) = −2xy, but

S( f1, f3)
F = −2xy 	= 0.

Hence, we must add f4 = −2xy to our generating set. If we let F = ( f1, f2, f3, f4),
then by Exercise 12 we have

S( f1, f2)
F = S( f1, f3)

F = 0,

S( f1, f4) = y(x3 − 2xy) − (−1/2)x2(−2xy) = −2xy2 = y f4, so

S( f1, f4)
F = 0,

S( f2, f3) = (x2 y − 2y2 + x) − (−y)(−x2) = −2y2 + x, but

S( f2, f3)
F = −2y2 + x 	= 0.

Thus, we must also add f5 = −2y2 + x to our generating set. Setting F =
{ f1, f2, f3, f4, f5}, one can compute that

S( fi , f j )
F = 0 for all 1 ≤ i ≤ j ≤ 5.

By Theorem 6 of §6, it follows that a grlex Groebner basis for I is given by

{ f1, f2, f3, f4, f5} = {x3 − 2xy, x2 y − 2y2 + x, −x2, −2xy, −2y2 + x}.
The above example suggests that in general, one should try to extend a basis F to

a Groebner basis by successively adding nonzero remainders S( fi , f j )
F

to F . This
idea is a natural consequence of the S-pair criterion from §6 and leads to the following
algorithm due to Buchberger for computing a Groebner basis.
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Theorem 2 (Buchberger’s Algorithm). Let I = 〈 f1, . . . , fs〉 	= {0} be a polynomial
ideal. Then a Groebner basis for I can be constructed in a finite number of steps by the
following algorithm:

Input: F = ( f1, . . . , fs)
Output: a Groebner basis G = (g1, . . . , gt ) for I , with F ⊂ G

G := F
REPEAT

G ′ := G
FOR each pair {p, q}, p 	= q in G ′ DO

S := S(p, q)
G ′

IF S 	= 0 THEN G := G ∪ {S}
UNTIL G = G ′

Proof. We begin with some frequently used notation. If G = {g1, . . . , gt }, then 〈G〉
and 〈LT(G)〉 will denote the following ideals:

〈G〉 = 〈g1, . . . , gt 〉
〈LT(G)〉 = 〈LT(g1), . . . , LT(gt )〉.

Turning to the proof of the theorem, we first show that G ⊂ I holds at every stage of
the algorithm. This is true initially, and whenever we enlarge G, we do so by adding the

remainder S = S(p, q)
G ′

for p, q ∈ G. Thus, if G ⊂ I , then p, q and, hence, S(p, q)
are in I , and since we are dividing by G ′ ⊂ I , we get G ∪ {S} ⊂ I . We also note that
G contains the given basis F of I so that G is actually a basis of I .

The algorithm terminates when G = G ′, which means that S = S(p, q)
G ′

= 0 for
all p, q ∈ G. Hence G is a Groebner basis of 〈G〉 = I by Theorem 6 of §6.

It remains to prove that the algorithm terminates. We need to consider what happens
after each pass through the main loop. The set G consists of G ′ (the old G) together
with the nonzero remainders of S-polynomials of elements of G ′. Then

〈LT(G ′)〉 ⊂ 〈LT(G)〉(1)

since G ′ ⊂ G. Furthermore, if G ′ 	= G, we claim that 〈LT(G ′)〉 is strictly smaller than
〈LT(G)〉. To see this, suppose that a nonzero remainder r of an S-polynomial has been
adjoined to G. Since r is a remainder on division by G ′, LT(r ) is not divisible by
the leading terms of elements of G ′, and thus LT(r ) /∈ 〈LT(G ′)〉. Yet LT(r ) ∈ 〈LT(G)〉,
which proves our claim.

By (1), the ideals 〈LT(G ′)〉 from successive iterations of the loop form an ascending
chain of ideals in k[x1, . . . , xn]. Thus, the ACC (Theorem 7 of §5) implies that after
a finite number of iterations the chain will stabilize, so that 〈LT(G ′)〉 = 〈LT(G)〉 must
happen eventually. By the previous paragraph, this implies that G ′ = G, so that the
algorithm must terminate after a finite number of steps. �
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Taken together, the Bucherger criterion (Theorem 6 of §6) and the Buchberger al-
gorithm (Theorem 2 above) provide an algorithmic basis for the theory of Groebner
bases. These contributions of Buchberger are central to the development of the subject.
In §8, we will get our first hints of what can be done with these methods, and a large
part of the rest of the book will be devoted to exploring their ramifications.

We should also point out the algorithm presented in Theorem 2 is only a rudimentary
version of the Buchberger algorithm. It was chosen for what we hope will be its clarity
for the reader, but it is not a very practical way to do the computation. Note (as a

first improvement) that once a remainder S(p, q)
G ′

= 0, that remainder will stay zero
even if we adjoin further elements to the generating set G ′. Thus, there is no reason
to recompute those remainders on subsequent passes through the main loop. Indeed,
if we add our new generators f j one at a time, the only remainders that need to be

checked are S( fi , f j )
G ′

, where i ≤ j − 1. It is a good exercise to revise the algorithm
to take this observation into account. Other improvements of a deeper nature can also
be made, but we will postpone considering them until §9.

Groebner bases computed using the algorithm of Theorem 2 are often bigger than
necessary. We can eliminate some unneeded generators by using the following fact.

Lemma 3. Let G be a Groebner basis for the polynomial ideal I . Let p ∈ G be a poly-
nomial such that LT(p) ∈ 〈LT(G − {p})〉. Then G − {p} is also a Groebner basis for I .

Proof. We know that 〈LT(G)〉 = 〈LT(I )〉. If LT(p) ∈ 〈LT(G − {p})〉, then we have
〈LT(G − {p})〉 = 〈LT(G)〉. By definition, if follows that G − {p} is also a Groebner
basis for I . �

By adjusting constants to make all leading coefficients 1 and removing any p with
LT(p) ∈ 〈LT(G − {p})〉 from G, we arrive at what we will call a minimal Groebner
basis.

Definition 4. A minimal Groebner basis for a polynomial ideal I is a Groebner basis
G for I such that:
(i) LC(p) = 1 for all p ∈ G.

(ii) For all p ∈ G, LT(p) /∈ 〈LT(G − {p})〉.

We can construct a minimal Groebner basis for a given nonzero ideal by applying the
algorithm of Theorem 2 and then using Lemma 3 to eliminate any unneeded generators
that might have been included. To illustrate this procedure, we return once again to the
ideal I studied in Example 1. Using grlex order, we found the Groebner basis

f1 = x3 − 2xy,

f2 = x2 y − 2y2 + x,

f3 = −x2,

f4 = −2xy,

f5 = −2y2 + x .
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Since some of the leading coefficients are different from 1, the first step is to multiply
the generators by suitable constants to make this true. Then note that LT( f1) = x3 =
−x · LT( f3). By Lemma 3, we can dispense with f1 in the minimal Groebner basis.
Similarly, since LT( f2) = x2 y = −(1/2)x · LT( f4), we can also eliminate f2. There are
no further cases where the leading term of a generator divides the leading term of
another generator. Hence,

f̃3 = x2, f̃4 = xy, f̃5 = y2 − (1/2)x

is a minimal Groebner basis for I .
Unfortunately, a given ideal may have many minimal Groebner bases. For example,

in the ideal I considered above, it is easy to check that

f̂3 = x2 + axy, f̃4 = xy, f̃5 = y2 − (1/2)x(2)

is also a minimal Groebner basis, where a ∈ k is any constant. Thus, we can produce
infinitely many minimal Groebner bases (assuming k is infinite). Fortunately, we can
single out one minimal basis that is better than the others. The definition is as follows.

Definition 5. A reduced Groebner basis for a polynomial ideal I is a Groebner basis
G for I such that:
(i) LC(p) = 1 for all p ∈ G.

(ii) For all p ∈ G, no monomial of p lies in 〈LT(G − {p})〉.

Note that for the Groebner bases given in (2), only the one with a = 0 is reduced.
In general, reduced Groebner bases have the following nice property.

Proposition 6. Let I 	= {0} be a polynomial ideal. Then, for a given monomial order-
ing, I has a unique reduced Groebner basis.

Proof. Let G be a minimal Groebner basis for I . We say that g ∈ G is reduced for G
provided that no monomial of g is in 〈LT(G − {g})〉. Our goal is to modify G until all
of its elements are reduced.

A first observation is that if g is reduced for G, then g is also reduced for any other
minimal Groebner basis of I that contains g and has the same set of leading terms.
This follows because the definition of reduced only involves the leading terms.

Next, given g ∈ G, let g′ = gG−{g} and set G ′ = (G − {g}) ∪ {g′}. We claim that
G ′ is a minimal Groebner basis for I . To see this, first note that LT(g′) = LT(g), for
when we divide g by G − {g}, LT(g) goes to the remainder since it is not divisible by
any element of LT(G − {g}). This shows that 〈LT(G ′)〉 = 〈LT(G)〉. Since G ′ is clearly
contained in I , we see that G ′ is a Groebner basis, and minimality follows. Finally,
note that g′ is reduced for G ′ by construction.

Now, take the elements of G and apply the above process until they are all reduced.
The Groebner basis may change each time we do the process, but our earlier observation
shows that once an element is reduced, it stays reduced since we never change the
leading terms. Thus, we end up with a reduced Groebner basis.
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Finally, to prove uniqueness, suppose that G and G̃ are reduced Groebner bases for
I . Then in particular, G and G̃ are minimal Groebner bases, and in Exercise 7, we will
show that this implies they have the same leading terms, i.e.,

LT(G) = LT(G̃).

Thus, given g ∈ G, there is g̃ ∈ G̃ such that LT(g) = LT(g̃). If we can show that g = g̃,
it will follow that G = G̃, and uniqueness will be proved.

To show g = g̃, consider g − g̃. This is in I , and since G is a Groebner basis, it

follows that g − g̃
G = 0. But we also know LT(g) = LT(g̃). Hence, these terms cancel

in g − g̃, and the remaining terms are divisible by none of LT(G) = LT(G̃) since G and

G̃ are reduced. This shows that g − g̃
G = g − g̃, and then g − g̃ = 0 follows. This

completes the proof. �

Many computer algebra systems implement a version of Buchberger’s algorithm for
computing Groebner bases. These systems always compute a Groebner basis whose
elements are constant multiples of the elements in a reduced Groebner basis. This means
that they will give essentially the same answers for a given problem. Thus, answers
can be easily checked from one system to the next.

Another consequence of the uniqueness in Proposition 6 is that we have an
ideal equality algorithm for seeing when two sets of polynomials { f1, . . . , fs} and
{g1, . . . , gt } generate the same ideal: simply fix a monomial order and compute a re-
duced Groebner basis for 〈 f1, . . . , fs〉 and 〈g1, . . . , gt 〉. Then the ideals are equal if
and only if the Groebner bases are the same.

To conclude this section, we will indicate briefly some of the connections between
Buchberger’s algorithm and the row-reduction (Gaussian elimination) algorithm for
systems of linear equations. The interesting fact here is that the row-reduction algo-
rithm is essentially a special case of the general algorithm we have discussed. For
concreteness, we will discuss the special case corresponding to the system of linear
equations

3x − 6y − 2z = 0,

2x − 4y + 4w = 0,

x − 2y − z − w = 0.

If we use row operations on the coefficient matrix to put it in row echelon form (which
means that the leading 1’s have been identified), then we get the matrix⎛⎝ 1 −2 −1 −1

0 0 0 3
0 0 0 0

⎞⎠ .(3)

To get a reduced row echelon matrix, we need to make sure that each leading 1 is the
only nonzero entry in its column. This leads to the matrix⎛⎝ 1 −2 0 2

0 0 1 3
0 0 0 0

⎞⎠ .(4)
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To translate these computations into algebra, let I be the ideal

I = 〈3x − 6y − 2z, 2x − 4y + 4w, x − 2y − z − w〉 ⊂ k[x, y, z, w]

corresponding to the original system of equations. We will use lex order with x > y >

z > w. Then, in the exercises, you will verify that the linear forms determined by the
row echelon matrix (3) give a minimal Groebner basis

I = 〈x − 2y − z − w, z + 3w〉,
and you will also check that the reduced row echelon matrix (4) gives the reduced
Groebner basis

I = 〈x − 2y + 2w, z + 3w〉.
Recall from linear algebra that every matrix can be put in reduced row echelon form
in a unique way. This can be viewed as a special case of the uniqueness of reduced
Groebner bases.

In the exercises, you will also examine the relation between Buchberger’s algorithm
and the Euclidean Algorithm for finding the generator for the ideal 〈 f, g〉 ⊂ k[x].

EXERCISES FOR §7

1. Check that S( fi , f j )
F = 0 for all pairs 1 ≤ i < j ≤ 5 in Example 1.

2. Use the algorithm given in Theorem 2 to find a Groebner basis for each of the following

ideals. You may wish to use a computer algebra system to compute the S-polynomials and

remainders. Use the lex, then the grlex order in each case, and then compare your results.

a. I = 〈x2 y − 1, xy2 − x〉.
b. I = 〈x2 + y, x4 + 2x2 y + y2 + 3〉. [What does your result indicate about the variety

V(I )?]

c. I = 〈x − z4, y − z5〉.
3. Find reduced Groebner bases for the ideals in Exercise 2 with respect to the lex and the

grlex orders.

4. Use the result of Exercise 7 of §4 to give an alternate proof that Buchberger’s algorithm will

always terminate after a finite number of steps.

5. Let G be a Groebner basis of an ideal I with the property that LC(g) = 1 for all g ∈ G.

Prove that G is a minimal Groebner basis if and only if no proper subset of G is a Groebner

basis of I .

6. Recall the notion of a minimal basis for a monomial ideal introduced in Exercise 8 of §4.

Show that a Groebner basis G of I is minimal if and only if LC(g) = 1 for all g ∈ G and

LT(G) is a minimal basis of the monomial ideal 〈LT(I )〉.
7. Fix a monomial order, and let G and G̃ be minimal Groebner bases for the ideal I .

a. Prove that LT(G) = LT(G̃).

b. Conclude that G and G̃ have the same number of elements.

8. Develop an algorithm that produces a reduced Groebner basis (see Definition 5) for an ideal

I , given as input an arbitrary Groebner basis for I . Prove that your algorithm works.

9. Consider the ideal

I = 〈3x − 6y − 2z, 2x − 4y + 4w, x − 2y − z − w〉 ⊂ k[x, y, z, w]

mentioned in the text. We will use lex order with x > y > z > w.

a. Show that the linear polynomials determined by the row echelon matrix (3) give a minimal

Groebner basis I = 〈x − 2y − z − w, z + 3w〉. Hint: Use Theorem 6 of §6.
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b. Show that the linear polynomials from the reduced row echelon matrix (4) give the

reduced Groebner basis I = 〈x − 2y + 2w, z + 3w〉.
10. Let A = (ai j ) be an n × m matrix with entries in k and let fi = ai1x1 + · · · + aim xm be

the linear polynomials in k[x1, . . . , xm] determined by the rows of A. Then we get the

ideal I = 〈 f1, . . . , fn〉. We will use lex order with x1 > · · · > xm . Now let B = (bi j ) be the

reduced row echelon matrix determined by A and let g1, . . . , gt be the linear polynomials

coming from the nonzero rows of B (so that t ≤ n). We want to prove that gi , . . . , gt form

the reduced Groebner basis of I .

a. Show that I = (g1, . . . , gt ). Hint: Show that the result of applying a row operation to A
gives a matrix whose rows generate the same ideal.

b. Use Theorem 6 of §6 to show that gi , . . . , gt form a Groebner basis of I . Hint: If the

leading 1 in the i th row of B is in the kth column, we can write gi = xk + A, where

A is a linear polynomial involving none of the variables corresponding to leading 1’s.

If g j = xl + B is written similarly, then you need to divide S(gi , g j ) = xl A − xk B by

g1, . . . , gt . Note that you will use only gi and g j in the division.

c. Explain why g1, . . . , gt is the reduced Groebner basis.

11. Show that the result of applying the Euclidean Algorithm in k[x] to any pair of polynomials

f, g is a reduced Groebner basis for 〈 f, g〉 (after dividing by a constant to make the leading

coefficient equal to 1). Explain how the steps of the Euclidean Algorithm can be seen as

special cases of the operations used in Buchberger’s algorithm.

12. Fix F = { f1, . . . , fs} and let r = f
F

. Since dividing f by F gives r as remainder, adding

r to the polynomials we divide by should reduce the remainder to zero. In other words, we

should have f
F∪{r} = 0 when r comes last. Prove this as follows.

a. When you divide f by F ∪ {r}, consider the first place in the division algorithm where

the intermediate dividend p is not divisible by any LT( fi ). Explain why LT(p) = LT(r )

and why the next intermediate dividend is p − r .

b. From here on in the division algorithm, explain why the leading term of the intermediate

dividend is always divisible by one of the LT( fi ). Hint: If this were false, consider the

first time it fails. Remember that the terms of r are not divisible by any LT( fi ).

c. Conclude that the remainder is zero, as desired.

d. (For readers who did Exercise 11 of §3.) Give an alternate proof of f
F∪{r} = 0 using

Exercise 11 of §3.

13. In the discussion following the proof of Theorem 2, we commented that if S( f, g)
G′

= 0,

then remainder stays zero when we enlarge G ′. More generally, if f
F = 0 and F ′ is obtained

from F by adding elements at the end, then f
F ′

= 0. Prove this.

§8 First Applications of Groebner Bases

In §1, we posed four problems concerning ideals and varieties. The first was the ideal
description problem, which was solved by the Hilbert Basis Theorem in §5. Let us now
consider the three remaining problems and see to what extent we can solve them using
Groebner bases.

The Ideal Membership Problem
If we combine Groebner bases with the division algorithm, we get the following ideal
membership algorithm: given an ideal I = 〈 f1, . . . , fs〉, we can decide whether a



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX December 18, 2006 7:4

96 2. Groebner Bases

given polynomial f lies in I as follows. First, using an algorithm similar to Theorem
2 of §7, find a Groebner basis G = {g1, . . . , gt } for I . Then Corollary 2 of §6 implies
that

f ∈ I if and only if f
G = 0.

Example 1. Let I = 〈 f1, f2〉 = 〈xz − y2, x3 − z2〉 ∈ [x, y, z], and use the grlex
order. Let f = −4x2 y2z2 + y6 + 3z5. We want to know if f ∈ I .

The generating set given is not a Groebner basis of I because LT(I ) also
contains polynomials such as LT(S( f1, f2)) = LT(−x2 y2 + z3) = −x2 y2 that are
not in the ideal 〈LT( f1), LT( f2)〉 = 〈xz, x3〉. Hence, we begin by computing a
Groebner basis for I . Using a computer algebra system, we find a Groebner
basis

G = ( f1, f2, f3, f4, f5) = (xz − y2, x3 − z2, x2 y2 − z3, xy4 − z4, y6 − z5).

Note that this is a reduced Groebner basis.
We may now test polynomials for membership in I . For example, dividing f above

by G, we find

f = (−4xy2z − 4y4) · f1 + 0 · f2 + 0 · f3 + 0 · f4 + (−3) · f5 + 0·

Since the remainder is zero, we have f ∈ I .
For another example, consider f = xy − 5z2 + x . Even without completely com-

puting the remainder on division by G, we can see from the form of the ele-
ments in G that f /∈ I . The reason is that LT( f ) = xy is clearly not in the ideal

〈LT(G)〉 = 〈xz, x3, x2 y2, xy4, y6〉. Hence, f
G 	= 0, so that f /∈ I .

This last observation illustrates the way the properties of an ideal are revealed by the
form of the elements of a Groebner basis.

The Problem of Solving Polynomial Equations
Next, we will investigate how the Groebner basis technique can be applied to solve
systems of polynomial equations in several variables. Let us begin by looking at some
specific examples.

Example 2. Consider the equations

x2 + y2 + z2 = 1,

x2 + z2 = y,(1)

x = z

in 3. These equations determine I = 〈x2 + y2 + z2 − 1, x2 + z2 − y, x − z〉 ⊂
[x, y, z], and we want to find all points in V(I ). Proposition 9 of §5 implies that

we can compute V(I ) using any basis of I . So let us see what happens when we use a
Groebner basis.
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Though we have no compelling reason as of yet to do so, we will compute a Groebner
basis on I with respect to the lex order. The basis is

g1 = x − z,

g2 = −y + 2z2,

g3 = z4 + (1/2)z2 − 1/4.

If we examine these polynomials closely, we find something remarkable. First, the
polynomial g3 depends on z alone, and its roots can be found by first using the quadratic
formula to solve for z2, then, taking square roots,

z = ±1

2

√
±

√
5 − 1.

This gives us four values of z. Next, when these values of z are substituted into the
equations g2 = 0 and g1 = 0, those two equations can be solved uniquely for y and x ,
respectively. Thus, there are four solutions altogether of g1 = g2 = g3 = 0, two real
and two complex. Since V(I ) = V(g1, g2, g3) by Proposition 9 of §5, we have found
all solutions of the original equations (1).

Example 3. Next, we will consider the system of polynomial equations (2) from Chap-
ter 1, §2, obtained by applying Lagrange multipliers to find the minimum and maximum
values of x3 + 2xyz − z2 subject to the constraint x2 + y2 + z2 = 1:

3x2 + 2yz − 2xλ = 0,

2xz − 2yλ = 0,

2x2 − 2z − 2zλ = 0,

x2 + y2 + z2 − 1 = 0.

Again, we follow our general hunch and begin by computing a Groebner basis for the
ideal in [x, y, z, λ] generated by the left-hand sides of the four equations, using the
lex order with λ > x > y > z. We find a Groebner basis:

λ − 3

2
x − 3

2
yz − 167616

3835
z6 + 36717

590
z4 − 134419

7670
z2,

x2 + y2 + z2 − 1,

xy − 19584

3835
z5 + 1999

295
z3 − 6403

3835
z,

xz + yz2 − 1152

3835
z5 + 108

295
z3 + 2556

3835
z,

(2)

y3 + yz2 − y − 9216

3835
z5 + 906

295
z3 − 2562

3835
z,

y2z − 6912

3835
z5 + 827

295
z3 − 3839

3835
z,

yz3 − yz − 576

59
z6 + 1605

118
z4 − 453

118
z2,

z7 − 1763

1152
z5 + 655

1152
z3 − 11

288
z.
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At first glance, this collection of polynomials looks horrendous. (The coefficients
of the elements of Groebner basis can be significantly messier than the coefficients of
the original generating set.) However, on further observation, we see that once again
the last polynomial depends only on the variable z. We have “eliminated” the other
variables in the process of finding the Groebner basis. (Miraculously) the equation
obtained by setting this polynomial equal to zero has the roots

z = 0, ±1, ±2/3, ±
√

11/8
√

2.

If we set z equal to each of these values in turn, the remaining equations can then be
solved for y, x (and λ, though its values are essentially irrelevant for our purposes).
We obtain the following solutions:

z = 0; y = 0; x = ±1.

z = 0; y = ±1; x = 0.

z = ±1; y = 0; x = 0.

z = 2/3; y = 1/3; x = −2/3.

z = −2/3; y = −1/3; x = −2/3.

z =
√

11/
√

2; y = −3
√

11/8
√

2; x = −3/8.

z = −
√

11/8
√

2; y = 3
√

11/8
√

2; x = −3/8.

From here, it is easy to determine the minimum and maximum values.

Examples 2 and 3 indicate that finding a Groebner basis for an ideal with respect to
the lex order simplifies the form of the equations considerably. In particular, we seem
to get equations where the variables are eliminated successively. Also, note that the
order of elimination seems to correspond to the ordering of the variables. For instance,
in Example 3, we had variables λ > x > y > z, and if you look back at the Groebner
basis (2), you will see that λ is eliminated first, x second, and so on.

A system of equations in this form is easy to solve, especially when the last equation
contains only one variable. We can apply one-variable techniques to try and find its
roots, then substitute back into the other equations in the system and solve for the other
variables, using a procedure similar to the above examples. The reader should note
the analogy between this procedure for solving polynomial systems and the method of
“back-substitution” used to solve a linear system in triangular form.

We will study the process of elimination of variables from systems of polynomial
equations intensively in Chapter 3. In particular, we will see why lex order gives a
Groebner basis that successively eliminates the variables.

The Implicitization Problem
Suppose that the parametric equations

x1 = f1(t1, . . . , tm),

...(3)

xn = fn(t1, . . . , tm),
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define a subset of an algebraic variety V in kn . For instance, this will always be the case
if the fi are rational functions in ti , . . . , tm , as we will show in Chapter 3. How can we
find polynomial equations in the xi that define V ? This problem can be solved using
Groebner bases, though a complete proof that this is the case will come only with the
results of Chapter 3.

For simplicity, we will restrict our attention for now to cases in which the fi are
actually polynomials. We can study the affine variety in km+n defined by equations (3)
or

x1 − f1(t1, . . . , tm) = 0,

...

xn − fn(t1, . . . , tm) = 0.

The basic idea is to eliminate the variables t1, . . . , tm from these equations. This should
give us the equations for V .

Given what we saw in Examples 2 and 3, it makes sense to use a Groebner basis to
eliminate variables. We will take the lex order in k[t1, . . . , tm, x1, . . . , xn] defined by
the variable ordering

t1 > · · · > tm > x1 > · · · > xn.

Now suppose we have a Groebner basis of the ideal Ĩ = 〈x1 − f1, . . . , xn − fn〉. Since
we are using lex order, we expect the Groebner basis to have polynomials that elim-
inate variables, and t1, . . . , tm should be eliminated first since they are biggest in our
monomial order. Thus, the Groebner basis for Ĩ should contain polynomials that only
involve x1, . . . , xn . These are our candidates for the equations of V .

The ideas just described will be explored in detail when we study elimination theory
in Chapter 3. For now, we will content ourselves with some examples to see how this
process works.

Example 4. Consider the parametric curve V :

x = t4,

y = t3,

z = t2

in 3. We compute a Groebner basis G of I = 〈t4 − x, t3 − y, t2 − z〉 with respect to
the lex order in [t, x, y, z], and we find

G = {−t2 + z, t y − z2, t z − y, x − z2, y2 − z3}.
The last two polynomials depend only on x, y, z, so they define an affine variety of 3

containing our curve V . By the intuition on dimensions that we developed in Chapter
1, we would guess that two equations in 3 would define a curve (a 1-dimensional
variety). The remaining question to answer is whether V is the entire intersection of
the two surfaces

x − z2 = 0, y2 − z3 = 0.
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Might there be other curves (or even surfaces) in the intersection? We will be able to
show that the answer is no when we have established the general results in Chapter 3.

Example 5. Now consider the tangent surface of the twisted cubic in 3, which we
studied in Chapter 1. This surface is parametrized by

x = t + u,

y = t2 + 2tu,

z = t3 + 3t2u.

We compute a Groebner basis G for this ideal relative to the lex order defined by
t > u > x > y > z, and we find that G has 6 elements altogether. If you make the
calculation, you will see that only one contains only x, y, z terms:

−(4/3)x3z + x2 y2 + 2xyz − (4/3)y3 − (1/3)z2 = 0.(4)

The variety defined by this equation is a surface containing the tangent surface to the
twisted cubic. However, it is possible that the surface given by (4) is strictly bigger
than the tangent surface: there may be solutions of (4) that do not correspond to points
on the tangent surface. We will return to this example in Chapter 3.

To summarize our findings in this section, we have seen that Groebner bases and the
division algorithm give a complete solution of the ideal membership problem. Further-
more, we have seen ways to produce solutions of systems of polynomial equations and
to produce equations of parametrically given subsets of affine space. Our success in
the examples given earlier depended on the fact that Groebner bases, when computed
using lex order, seem to eliminate variables in a very nice fashion. In Chapter 3, we
will prove that this is always the case, and we will explore other aspects of what is
called elimination theory.

EXERCISES FOR §8

In all of the following exercises, a computer algebra system should be used to perform the

necessary calculations. (Most of the calculations would be very arduous if carried out by hand.)

1. Determine whether f = xy3 − z2 + y5 − z3 is in the ideal I = 〈−x3 + y, x2 y − z〉.
2. Repeat Exercise 1 for f = x3z − 2y2 and I = 〈xz − y, xy + 2z2, y − z〉.
3. By the method of Examples 2 and 3, find the points in 3 on the variety

V(x2 + y2 + z2 − 1, x2 + y2 + z2 − 2x, 2x − 3y − z).

4. Repeat Exercise 3 for V(x2 y − z3, 2xy − 4z − 1, z − y2, x3 − 4zy).

5. Recall from calculus that a critical point of a differentiable function f (x, y) is a point where

the partial derivatives ∂ f
∂x and ∂ f

∂y vanish simultaneously. When f ∈ [x, y], it follows that

the critical points can be found by applying our techniques to the system of polynomial

equations

∂ f

∂x
= ∂ f

∂y
= 0.
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To see how this works, consider the function

f (x, y) = (x2 + y2 − 4)(x2 + y2 − 1) + (x − 3/2)2 + (y − 3/2)2.

a. Find all critical points of f (x, y).

b. Classify your critical points as local maxima, local minima, or saddle points. Hint: Use

the second derivative test.

6. Fill in the details of Example 5. In particular, compute the required Groebner basis, and verify

that this gives us (up to a constant multiple) the polynomial appearing on the left-hand side

of equation (4).

7. Let the surface S in 3 be formed by taking the union of the straight lines joining pairs of

points on the lines ⎧⎨⎩
x = t
y = 0

z = 1

⎫⎬⎭ ,

⎧⎨⎩
x = 0

y = 1

z = t

⎫⎬⎭
with the same parameter (i.e., t) value. (This is a special example of a class of surfaces

called ruled surfaces.)

a. Show that the surface S can be given in the parametric form:

x = ut,

y = 1 − u,

z = u + t − ut.

b. Using the method of Examples 4 and 5, find an (implicit) equation of a variety V con-

taining the surface S.

c. Show V = S (that is, show that every point of the variety V can be obtained by substituting

some values for t, u in the equations of part a). Hint: Try to “solve” the implicit equation

of V for one variable as a function of the other two.

8. Some parametric curves and surfaces are algebraic varieties even when the given

parametrizations involve transcendental functions such as sin and cos. In this problem,

we will see that that the parametric surface T ,

x = (2 + cos(t)) cos(u),

y = (2 + cos(t)) sin(u),

z = sin(t),

lies on an affine variety in 3.

a. Draw a picture of T . Hint: Use cylindrical coordinates.

b. Let a = cos(t), b = sin(t), c = cos(u), d = sin(u), and rewrite the above equations as

polynomial equations in a, b, c, d, x, y, z.

c. The pairs a, b and c, d in part b are not independent since there are additional polynomial

identities

a2 + b2 − 1 = 0, c2 + d2 − 1 = 0

stemming from the basic trigonometric identity. Form a system of five equations by

adjoining the above equations to those from part b and compute a Groebner basis for the

corresponding ideal. Use the lex monomial ordering and the variable order

a > b > c > d > x > y > z.
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There should be exactly one polynomial in your basis that depends only on x, y, z. This

is the equation of a variety containing T .

9. Consider the parametric curve K ⊂ 3 given by

x = (2 + cos(2s)) cos(3s),

y = (2 + cos(2s)) sin(3s),

z = sin(2s).

a. Express the equations of K as polynomial equations in x, y, z, a = cos(s), b = sin(s).

Hint: Trig identities.

b. By computing a Groebner basis for the ideal generated by the equations from part a and

a2 + b2 − 1 as in Exercise 8, show that K is (a subset of) an affine algebraic curve. Find

implicit equations for a curve containing K .

c. Show that the equation of the surface from Exercise 8 is contained in the ideal generated by

the equations from part b. What does this result mean geometrically? (You can actually

reach the same conclusion by comparing the parametrizations of T and K , without

calculations.)

10. Use the method of Lagrange Multipliers to find the point(s) on the surface x4 + y2 +
z2 − 1 = 0 closest to the point (1, 1, 1) in 3. Hint: Proceed as in Example 3. (You may

need to “fall back” on a numerical method to solve the equations you get.)

11. Suppose we have numbers a, b, c which satisfy the equations

a + b + c = 3,

a2 + b2 + c2 = 5,

a3 + b3 + c3 = 7.

a. Prove that a4 + b4 + c4 = 9. Hint: Regard a, b, c as variables and show carefully that

a4 + b4 + c4 − 9 ∈ 〈a + b + c − 3, a2 + b2 + c2 − 5, a3 + b3 + c3 − 7〉.
b. Show that a5 + b5 + c5 	= 11.

c. What are a5 + b5 + c5 and a6 + b6 + c6? Hint: Compute remainders.

§9 (Optional) Improvements on Buchberger’s Algorithm

In designing useful mathematical software, attention must be paid not only to the
correctness of the algorithms employed, but also to their efficiency. In this section,
we will discuss some improvements on the basic Buchberger algorithm for computing
Groebner bases that can greatly speed up the calculations. Some version of these
improvements has been built into most of the computer algebra systems that offer
Groebner basis packages. The section will conclude with a brief discussion of the
complexity of Buchberger’s algorithm. This is still an active area of research though,
and there are as yet no definitive results in this direction.

The first class of modifications we will consider concern Theorem 6 of §6, which

states that an ideal basis G is a Groebner basis provided that S( f, g)
G = 0 for all

f, g ∈ G. If you look back at §7, you will see that this criterion is the driving force
behind Buchberger’s algorithm. Hence, a good way to improve the efficiency of the
algorithm would be to show that fewer S-polynomials S( f, g) need to be considered. As
you learned from doing examples by hand, the polynomial divisions involved are the
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most computationally intensive part of Buchberger’s algorithm. Thus, any reduction of
the number of divisions that need to be performed is all to the good.

To identify S-polynomials that can be ignored in Theorem 6 of §6, we first need to
give a more general view of what it means to have zero remainder. The definition is as
follows.

Definition 1. Fix a monomial order and let G = {g1, . . . , gs} ⊂ k[x1, . . . , xn]. Given
f ∈ k[x1, . . . , xn], we say that f reduces to zero modulo G, written

f →G 0,

if f can be written in the form

f = a1g1 + · · · + at gt ,

such that whenever ai gi 	= 0, we have

multideg( f ) ≥ multideg(ai gi ).

To understand the relation between Definition 1 and the division algorithm, we have
the following lemma.

Lemma 2. Let G = (g1, . . . , gs) be an ordered set of elements of k[x1, . . . , xn] and

fix f ∈ k[x1, . . . , xn]. Then f
G = 0 implies f →G 0, though the converse is false in

general.

Proof. If f
G = 0, then the division algorithm implies

f = a1g1 + · · · + at gt + 0,

and by Theorem 3 of §3, whenever ai gi 	= 0, we have

multideg( f ) ≥ multideg(ai gi ).

This shows that f →G 0. To see that the converse may fail, consider Example 5 from
§3. If we divide f = xy2 − x by G = (xy + 1, y2 − 1), the division algorithm gives

xy2 − x = y · (xy + 1) + 0 · (y2 − 1) + (−x − y),

so that f
G = −x − y 	= 0. Yet we can also write

xy2 − x = 0 · (xy + 1) + x · (y2 − 1),

and since

multideg(xy2 − x) ≥ multideg(x · (y2 − 1))

(in fact, they are equal), it follows that f →G 0. �

As an example of how Definition I can be used, let us state a more general version
of the Groebner basis criterion from §6.
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Theorem 3. A basis G = {g1, . . . , gs} for an ideal I is a Groebner basis if and only if
S(gi , g j ) →G 0 for all i 	= j .

Proof. In Theorem 6 of §6, we proved this result under the hypothesis that S(gi , gi )G =
0 for all i 	= j . But if you examine the proof, you will see that all we used was

S(g j , gk) =
t∑

i=1

ai jk gi ,

where

multideg(ai jk gi ) ≥ multideg(S(g j , gk))

[see (6) and (7) from §6]. This is exactly what S(gi , g j ) →G 0 means, and the theorem
follows. �

By Lemma 2, notice that Theorem 6 of §6 is a special case of Theorem 3. To
exploit the freedom given by Theorem 3, we next show that certain S-polynomials are
guaranteed to reduce to zero.

Proposition 4. Given a finite set G ⊂ k[x1, . . . , xn], suppose that we have f, g ∈ G
such that

LCM(LM( f ), LM(g)) = LM( f ) · LM(g).

This means that the leading monomials of f and g are relatively prime. Then
S( f, g) →G 0.

Proof. For simplicity, we assume that f, g have been multiplied by appropriate
constants to make LC( f ) = LC(g) = 1. Write f = LM( f ) + p, g = LM(g) + q. Then,
since LCM(LM( f ), LM(g)) = LM( f ) · LM(g), we have

S( f, g) = LM(g) · f − LM( f ) · g
= (g − q) · f − ( f − p) · g
= g · f − q · f − f · g + p · g
= p · g − q · f.

(1)

We claim that

multideg(S( f, g)) max(multideg(p · g), multideg(q · f )).(2)

Note that (1) and (2) imply S( f, g) →G 0 since f, g ∈ G. To prove (2), observe that
in the last polynomial of (1), the leading monomials of p · g and q · f are distinct and,
hence, cannot cancel. For if the leading monomials were the same, we would have

LM(p) · LM(g) = LM(q) · LM( f ).

However this is impossible if LM( f ), LM(g) are relatively prime: from the last equation,
LM(g) would have to divide LM(q), which is absurd since LM(g) > LM(q). �
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For an example of how this proposition works, let G = (yz + y, x3 + y, z4) and use
grlex order on k[x, y, z]. Then

S(x3 + y, z4) →G 0

by Proposition 4. However, using the division algorithm, it is easy to check that

S(x3 + y, z4) = yz4 = (z3 − z2 + z − 1)(yz + y) + y.

so that

S(x3 + y, z4)
G = y 	= 0.

This explains why we need Definition 1: Proposition 4 is false if we use the notion of
zero remainder coming from the division algorithm.

Note that Proposition 4 gives a more efficient version of Theorem 3: to test for a
Groebner basis, we need only have S(gi , g j ) →G 0 for those i < j where LM(gi ) and
LM(g j ) are not relatively prime. But before we apply this to improving Buchberger’s
algorithm, let us explore a second way to improve Theorem 3.

The basic idea is to better understand the role played by S-polynomials in the proof
of Theorem 6 of §6. Since S-polynomials were constructed to cancel leading terms, this
means we should study cancellation in greater generality. Hence, we will introduce the
notion of a syzygy on the leading terms of a set F = { f1, . . . , fs}. This word is used
in astronomy to indicate an alignment of three planets or other heavenly bodies. The
root is a Greek word meaning “yoke.” In an astronomical syzygy, planets are “yoked
together”; in a mathematical syzygy, it is polynomials that are “yoked.”

Definition 5. Let F = ( f1, . . . , fs). A syzygy on the leading terms LT( f1), . . . , LT( fs)
of F is an s-tuple of polynomials S = (h1, . . . , hs) ∈ (k[x1, . . . , xn])s such that

s∑
i=1

hi · LT( fi ) = 0.

We let S(F) be the subset of (k[x1, . . . , xn])s consisting of all syzygies on the leading
terms of F.

For an example of a syzygy, consider F = (x, x2 + z, y + z). Then using the lex
order, S = (−x + y, 1, −x) ∈ (k[x, y, z])3 defines a syzygy in S(F) since

(−x + y) · LT(x) + 1 · LT(x2 + z) + (−x) · LT(y + z) = 0.

Let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ (k[x1, . . . , xn])s , where the 1 is in the i th place. Then
a syzygy S ∈ S(F) can be written as S = ∑s

i=1 hi ei . For an example of how to use
this notation, consider the syzygies that come from S-polynomials. Namely, given a
pair { fi , fi } ⊂ F where i < j , let xγ be the least common multiple of the leading
monomials of fi and f j . Then

Si j = xγ

LT( fi )
ei − xγ

LT( f j )
e j(3)
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gives a syzygy on the leading terms of F . In fact, the name S-polynomial is actually
an abbreviation for “syzygy polynomial.”

It is straightforward to check that the set of syzygies is closed under coordinate-wise
sums, and under coordinate-wise multiplication by polynomials (see Exercise 1). An
especially nice fact about S(F) is that it has a finite basis—there is a finite collection
of syzygies such that every other syzygy is a linear combination with polynomial
coefficients of the basis syzygies.

However, before we can prove this, we need to learn a bit more about the structure
of S(F). We first define the notion of a homogeneous syzygy.

Definition 6. An element S ∈ S(F) is homogeneous of multidegree α, where α ∈
n
≥0, provided that

S = (c1xα(1), . . . , cs xα(s)),

where ci ∈ k and α(i) + multideg( fi ) =, α whenever ci 	= 0.

You should check that the syzygy Si j given in (3) is homogeneous of multidegree γ

(see Exercise 4). We can decompose syzygies into homogeneous ones as follows.

Lemma 7. Every element of S(F) can be written uniquely as a sum of homogeneous
elements of S(F).

Proof. Let S = (h1, . . . , hs) ∈ S(F). Fix an exponentα ∈ n
≥0, and let hiα be the term of

hi , (if any) such that hiα fi has multidegree α. Then we must have
∑s

i=1 hiαLT( fi ) = 0
since the hiαLT( fi ) are the terms of multidegree α in the

∑s
i=1 h j LT( fi ) = 0. Then

Sα = (h1α, . . . , hsα) is a homogeneous element of S(F) of degree α and S = ∑
α Sα .

The proof of uniqueness will be left to the reader (see Exercise 5). �

We can now prove that the Si j ’s form a basis of all syzygies on the leading terms.

Proposition 8. Given F = ( f1, . . . , fs), every syzygy S ∈ S(F) can be written as

S =
∑
i< j

ui j Si j ,

where ui j ∈ k[x1, . . . , xn] and the syzygy Si j is defined as in (3).

Proof. By Lemma 7, we can assume that S is homogeneous of multidegree α.
Then S must have at least two nonzero components, say ci xα(i) and c j xα( j), where
i < j . Then α(i) + multideg( fi ) = α( j) + multideg( fi ) = α, which implies that xγ =
LCM(LM(( fi ), LM( fi )) divides xα . Since

Si j = xγ

LM( fi )
ei − xγ

LM( ft )
e j ,

an easy calculation shows that the i th component of

S − ci LC( fi )x
α−γ Si j
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must be zero, and the only other component affected is the j th. It follows that from
S, we have produced a homogeneous syzygy with fewer nonzero components. Since
a nonzero syzygy must have at least two nonzero components, continuing in this way
will eventually enable us to write S as a combination of the Si j ’s, and we are done. �

This proposition explains our observation in §6 that S-polynomials account for all
possible cancellation of leading terms.

An interesting observation is that we do not always need all of the Si j ’s to generate
the syzygies in S(F). For example, let F = (x2 y2 + z, xy2 − y, x2 y + yz) and use
lex order in k[x, y, z]. The three syzygies corresponding to the S-polynomials are

S12 = (1, −x, 0),

S13 = (1, 0, −y),

S23 = (0, x, −y),

However, we see that S23 = S13 − S12. Then, S23 is redundant in the sense that it can
be obtained from S12, S13 by a linear combination. (In this case, the coefficients are
constants; in more general examples, we might find relations between syzygies with
polynomial coefficients.) In this case, {S12, S13} forms a basis for the syzygies. Later
in the section, we will give a systematic method for making smaller bases of S(F).

We are now ready to state a more refined version of our algorithmic criterion for
Groebner bases.

Theorem 9. A basis G = (g1, . . . , gt ) for an ideal I is a Groebner basis if and only if
for every element S = (h1, . . . , ht ) in a homogeneous basis for the syzygies S(G), we
have

S · G =
t∑

i=1

hi gi →G 0.

Proof. We will use the strategy (and notation) of the proof of Theorem 6 of §6. We
start with f = ∑t

i=1 hi gi , where m(i) = multideg(hi gi ) and δ = max(m(i)) is minimal
among all ways of writing f in terms of g1, . . . , gt . As before, we need to show that
multideg( f ) < δ leads to a contradiction.

From (4) in §6, we know that multideg( f ) < δ implies that
∑

m(i)=δ LT(hi )gi has
strictly smaller multidegree. This therefore means that

∑
m(i)=δ LT(hi )LT(gi ) = 0, so

that

S =
∑

m(i)=δ

LT(hi )ei

is a syzygy in S(G). Note also that S is homogeneous of degree δ. Our hypothesis then
gives us a homogeneous basis S1, . . . , Sm of S(G) with the property that Sj · G →G 0
for all j . We can write S in the form

S = u1S1 + · · · + um Sm .(4)
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By writing the u j ’s as sums of terms and expanding, we see that (4) expresses S as a
sum of homogeneous syzygies. Since S is homogeneous of multidegree δ, it follows
from the uniqueness of Lemma 7 that we can discard all syzygies not of multidegree
δ. Thus, in (4), we can assume that, for each j, either

u j = 0 or u j S j is homogeneous of multidegree δ.

Suppose that Sj has multidegree γ j . If u j 	= 0, then it follows that u j can be written in
the form u j = c j xδ−γ j for some c j ∈ k. Thus, (4) can be written

S =
∑

j

c j x
δ−γ j S j ,

where the sum is over those j’s with u j 	= 0. If we take the dot product of each side
with G, we obtain ∑

m(i)=δ

LT(hi )gi = S · G =
∑

i

c j x
δ−γ j S j · G.(5)

By hypothesis, Sj · G →G 0, which means that

Sj · G =
t∑

i=1

ai j gi ,(6)

where

multideg(ai j gi ) ≤ multideg(Sj · G)(7)

for all i, j . Note that (5), (6), and (7) are similar to the corresponding (5), (6), and (7)
from §6. In fact, the remainder of the proof of the theorem is identical to what we did
in §6. The only detail you will need to check is that xδ−γ j S j · G has multidegree < δ

(see Exercise 6). The theorem is now proved. �

Note that Theorem 6 of §6 is a special case of this result. Namely, if we use the basis
{Si j } for the syzygies S(G), then the polynomials Si j · G to be tested are precisely the
S-polynomials S(gi , g j ).

To exploit the power of Theorem 9, we need to learn how to make smaller bases of
S(G). We will show next that starting with the basis {Si j : i < j}, there is a systematic
way to predict when elements can be omitted.

Proposition 10. Given G = (g1, . . . , gt ), suppose that S ⊂ {Si j : 1 ≤ i < j ≤ t} is a
basis of S(G). In addition, suppose we have distinct elements gi , g j , gk ∈ G such that

LT(gk) divides LCM(LT(gi ), LT(gi )).

If Sik, Sjk ∈ S, then S − {Si j } is also a basis of S(G). (Note:If i > j , we set Si j = Sji .)

Proof. For simplicity, we will assume that i < j < k. Set xγi j = LCM(LM(gi ), LM(g j ))
and let xγik and xγ jk be defined similarly. Then our hypothesis implies that xγik and xγ jk
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both divide xγi j . We leave it as an exercise to verify that

Si j = xγi j

xγik
Sik − xγi j

xγ jk
S jk,

and the proposition is proved. �

To incorporate this proposition into an algorithm for creating Groebner bases, we
will use the ordered pairs (i, j) with i < j to keep track of which syzygies we want.
Since we sometimes will have an i 	= j where we do not know which is larger, we will
use the following notation: given i 	= j , define

[i, j] =
{

(i, j) if i < j
( j, i) if i > j.

We can now state an improved version of Buchberger’s algorithm that takes into
account the results proved so far.

Theorem 11. Let I = 〈 f1, . . ., fs〉 be a polynomial ideal. Then a Groebner basis for
I can be constructed in a finite number of steps by the following algorithm:

Input : F = ( f1, . . . , fs)
Output : G, a Groebner basis for I = 〈 f1, . . . , fs〉

{initialization}
B := {(i, j) : 1 ≤ i < j ≤ s}
G := F
t := s

{iteration}
WHILE B 	= ∅ DO

Select (i, j) ∈ B
IF LCM(LT( fi ), LT( fi )) 	= LT( fi )LT( f j ) AND

Criterion ( fi , f j , B) is false THEN

S := S( fi , f j )
G

IF S 	= 0 THEN
t := t + 1; ft := S
G := G ∪ { ft }
B := B ∪ {(i, t) : 1 ≤ i ≤ t − 1}

B := B − {(i, j)},
where Criterion( fi , f j , B) is true provided that there is some k /∈ {i, j} for which the
pairs [i, k] and [ j, k] are not in B and LT( fk) divides LCM(LT( fi ), LT( f j )). (Note that
this criterion is based on Proposition 10.)

Proof. The basic idea of the algorithm is that B records the pairs (i, j) that remain to
be considered. Furthermore, we only compute the remainder of those S-polynomials
S(gi , g j ) for which neither Proposition 4 nor Proposition 10 apply.
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To prove that the algorithm works, we first observe that at every stage of the algorithm,
B has the property that if 1 ≤ i < j ≤ t and (i, j) /∈ B, then

S( fi , f j ) →G 0 or Criterion( fi , f j , B) holds.(8)

Initially, this is true since B starts off as the set of all possible pairs. We must show
that if (8) holds for some intermediate value of B, then it continues to hold when B
changes, say to B ′.

To prove this, assume that (i, j) /∈ B ′. If (i, j) ∈ B, then an examination of the
algorithm shows that B ′ = B − {(i, j)}. Now look at the step before we remove (i, j)
from B. If LCM(LT( fi )), LT( f j )) = LT( fi )LT( f j ), then S( fi , f j ) →G 0 by Proposition
4, and (8) holds. Also if Criterion ( fi , f j , B) is true, then (8) clearly holds. Now
suppose that both of these fail. In this case, the algorithm computes the remainder

S = S( fi , f j )
G

. If S = 0, then S( fi , f j ) →G 0 by Lemma 2, as desired. Finally, if
S 	= 0, then we enlarge G to be G ′ = G ∪ {S}, and we leave it as an exercise to show
that S( fi , f j ) →G ′ 0.

It remains to study the case when (i, j) /∈ B. Here, (8) holds for B, and we leave it
as an exercise to show that this implies that (8) also holds for B ′.

Next, we need to show that G is a Groebner basis when B = ∅. To prove this, let t be
the length of G, and consider the set I consisting of all pairs (i, j) for 1 ≤ i < j ≤ t
where Criterion( fi , f j , B) was false when (i, j) was selected in the algorithm. We
claim that S = {Si j : (i, j) ∈ I} is a basis of S(G) with the property that Si j · G =
S( fi , f j ) →G 0 for all Si j ∈ S. This claim and Theorem 9 will prove that G is a
Groebner basis.

To prove our claim, note that B = ∅ implies that (8) holds for all pairs (i, j) for
1 ≤ i < j ≤ t . It follows that S( fi , f j ) →G 0 for all (i, j) ∈ I. It remains to show that
S is a basis of S(G). To prove this, first notice that we can order the pairs (i, j) according
to when they were removed from B in the algorithm (see Exercise 10 for the details of
this ordering). Now go through the pairs in reverse order, starting with the last removed,
and delete the pairs (i, j) for which Criterion( fi , f j , B) was true at that point in the
algorithm. After going through all pairs, those that remain are precisely the elements
of I. Let us show that at every stage of this process, the syzygies corresponding to
the pairs (i, j) not yet deleted form a basis of S(G). This is true initially because we
started with all of the Si j ’s, which we know to be a basis. Further, if at some point
we delete (i, j), then the definition of Criterion( fi , f j , B) implies that there is some k
where LT( fk) satisfies the LCM condition and [i, k], [ j, k] /∈ B. Thus, [i, k] and [ j, k]
were removed earlier from B, and hence Sik and Sik are still in the set we are creating
because we are going in reverse order. If follows from Proposition 10 that we still have
a basis even after deleting Si j .

Finally, we need to show that the algorithm terminates. As in the proof of the original
algorithm (Theorem 2 of §7), G is always a basis of our ideal, and each time we
enlarge G, the monomial ideal 〈LT(G)〉 gets strictly larger. By the ACC, it follows that
at some point, G must stop growing, and thus, we eventually stop adding elements to
B. Since every pass through the WHILE . . . DO loop removes an element of B, we
must eventually get B = ∅, and the algorithm comes to an end. �
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The algorithm given above is still not optimal, and several strategies have been
found to improve its efficiency further. For example, our discussion of the division
algorithm in k[x1, . . . , xn] (Theorem 3 of §3), we allowed the divisors f1, . . . , fs

to be listed in any order. In practice, some effort could be saved on average if we
arranged the fi so that their leading terms are listed in increasing order with re-
spect to the chosen monomial ordering. Since the smaller LT( fi ) are more likely to
be used during the division algorithm, listing them earlier means that fewer compar-
isons will be required. A second strategy concerns the step where we choose (i, j) ∈ B
in the algorithm of Theorem 11. BUCHBERGER (1985) suggests that there will often
be some savings if we pick (i, j) ∈ B such that LCM(LM( fi ), LM( f j )) is as small as
possible. The corresponding S-polynomials will tend to yield any nonzero remain-
ders (and new elements of the Groebner basis) sooner in the process, so there will
be more of a chance that subsequent remainders S( fi , f j )

G
will be zero. This normal

selection strategy is discussed in more detail in BECKER and WEISPFENNING (1993),
BUCHBERGER (1985) and GEBAUER and MÖLLER (1988). Finally, there is the idea
of sugar, which is a refinement of the normal selection strategy. Sugar and its vari-
ant double sugar can be found in GIOVINI, MORA, NIESI, ROBBIANO and TRAVERSO

(1991).
In another direction, one can also modify the algorithm so that it will automatically

produce a reduced Groebner basis (as defined in §7). The basic idea is to systematically
reduce G each time it is enlarged. Incorporating this idea also generally lessens the
number of S-polynomials that must be divided in the course of the algorithm. For a
further discussion of this idea, consult BUCHBERGER (1985).

We will end this section with a short discussion of the complexity of Buchberger’s
algorithm. Even with the best currently known versions of the algorithm, it is still easy
to generate examples of ideals for which the computation of a Groebner basis takes a
tremendously long time and/or consumes a huge amount of storage space. There are
several reasons for this:
� The total degrees of intermediate polynomials that must be generated as the algorithm

proceeds can be quite large.
� The coefficients of the elements of a Groebner basis can be quite complicated rational

numbers, even when the coefficients of the original ideal generators were small
integers. See Example 3 of §8 or Exercise 13 of this section for some instances of
this phenomenon.

For these reasons, a large amount of theoretical work has been done to try to establish
uniform upper bounds on the degrees of the intermediate polynomials in Groebner basis
calculations when the degrees of the original generators are given. For some specific
results in this area, see DUBÉ (1990) and MÖLLER and MORA (1984). The idea is to
measure to what extent the Groebner basis method will continue to be tractable as
larger and larger problems are attacked.

The bounds on the degrees of the generators in a Groebner basis are quite large, and it
has been shown that large bounds are necessary. For instance, MAYR and MEYER (1982)
give examples where the construction of a Groebner basis for an ideal generated by
polynomials of degree less than or equal to some d can involve polynomials of degree
proportional to 22d

. As d → ∞, 22d
grows very rapidly. Even when grevlex order is
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used (which often gives the smallest Groebner bases—see below), the degrees can be
quite large. For example, consider the polynomials

xn+1 − yzn−1w, xyn−1 − zn, xnz − ynw.

If we use grevlex order with x > y > z > w, then Mora [see LAZARD (1983)] showed
that the reduced Groebner basis contains the polynomial

zn2+1 − yn2

w.

The results led for a time to some pessimism concerning the ultimate practicality of the
Groebner basis method as a whole. Further work has shown, however, that for ideals
in two and three variables, much more reasonable upper degree bounds are available
[see, for example, LAZARD (1983) and WINKLER (1984)]. Furthermore, in any case
the running time and storage space required by the algorithm seem to be much more
manageable “on average” (and this tends to include most cases of geometric interest)
than in the worst cases. There is also a growing realization that computing “algebraic”
information (such as the primary decomposition of an ideal—see Chapter 4) should have
greater complexity than computing “geometric” information (such as the dimension of
a variety—see Chapter 9). A good reference for this is GIUSTI and HEINTZ (1993), and
a discussion of a wide variety of complexity issues related to Groebner bases can be
found in BAYER and MUMFORD (1993).

Finally, experimentation with changes of variables and varying the ordering of the
variables often can reduce the difficulty of the computation drastically. BAYER and
STILLMAN (1987a) have shown that in most cases, the grevlex order should produce a
Groebner basis with polynomials of the smallest total degree. In a different direction,
some versions of the algorithm will change the term ordering as the algorithm progresses
in order to produce a more efficient Groebner basis. This is discussed by GRITZMANN

and STURMFELS (1993).
For more recent developments concerning Bucherger’s algorithm, we refer readers

to the special issue of the Journal of Symbolic Computation devoted to efficient compu-
tation of Groebner bases, scheduled to appear in 2007.

EXERCISES FOR §9

1. Let S = (c1, . . . , cs) and T = (d1, . . . , ds) ∈ (k[x1, . . . , xn])s be syzygies on the leading

terms of F = ( f1, . . . , fs).

a. Show that S + T = (c1 + d1, . . . , cs + ds) is also a syzygy.

b. Show that if g ∈ k[x1, . . . , xn], then g · S = (gc1, . . . , gcs) is also a syzygy.

2. Given any G = (g1, . . . , gs) ∈ (k[x1, . . . , xn])s , we can define a syzygy on G to be an s-

tuple S = (h1, . . . , hs) ∈ (k[x1, . . . , xn])s such that
∑

i hi gi = 0. [Note that the syzygies we

studied in the text are syzygies on LT(G) = (LT(g1), . . . , LT(gs)).]

a. Show that if G = (x2 − y, xy − z, y2 − xz), then (z, −y, x) defines a syzygy on G.

b. Find another syzygy on G from partial

c. Show that if S, T are syzygies on G, and g ∈ k[x1, . . . , xn], then S + T and gS are also

syzygies on G.
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3. Let M be an m × (m + 1) matrix of polynomials in k[x1, . . . , xn]. Let I be the ideal gener-

ated by the determinants of all the m × m submatrices of M (such ideals are examples of

determinantal ideals).

a. Find a 2 × 3 matrix M such that the associated determinantal ideal of 2 × 2 submatrices

is the ideal with generators G as in Exercise 2.

b. Explain the syzygy given in part a of Exercise 2 in terms of your matrix.

c. Give a general way to produce syzygies on the generators of a determinantal ideal. Hint:

Find ways to produce (m + 1) × (m + 1) matrices containing M , whose determinants

are automatically zero.

4. Prove that the syzygy Si j defined in (3) is homogeneous of multidegree γ .

5. Complete the proof of Lemma 7 by showing that the decomposition into homogeneous

components is unique. Hint: First show that if S = ∑
α S′

α , where S′
α has multidegree α,

then, for a fixed i , the i th components of the S′
α are either 0 or have multidegree α −

multideg( fi ) and, hence, give distinct terms as α varies.

6. Suppose that Sj is a homogeneous syzygy of multidegree γ j in S(G). Then show that Sj · G
has multidegree < γ j . This implies that x δ−γi S j · G has multidegree < δ, which is a fact we

need for the proof of Theorem 9.

7. Complete the proof of Proposition 10 by proving the formula expressing Si j in terms of Sik

and Sjk .

8. Let G be a finite subset of k[x1, . . . , xn] and let f ∈ 〈G〉. If f
G = r 	= 0, then show that

F →G′ 0, where G ′ = G ∪ {r}. This fact is used in the proof of Theorem 11.

9. In the proof of Theorem 11, we claimed that for every value of B, if 1 ≤ i < j ≤ t and

(i, j) /∈ B, then condition (8) was true. To prove this, we needed to show that if the claim

held for B, then it held when B changed to some B ′. The case when (i, j) /∈ B ′ but (i, j) ∈ B
was covered in the text. It remains to consider when (i, j) /∈ B ′ ∪ B. In this case, prove that

(8) holds for B ′. Hint: Note that (8) holds for B. There are two cases to consider, depending

on whether B ′ is bigger or smaller than B. In the latter situation, B ′ = B − {(k, l)} for some

(k, l) 	= (i, j).

10. In this exercise, we will study the ordering on the set {(i, j) : 1 ≤ i < j ≤ t} described in

the proof of Theorem 11. Assume that B = ∅, and recall that t is the length of G when the

algorithm stops.

a. Show that any pair (i, j) with 1 ≤ i < j ≤ t was a member of B at some point during

the algorithm.

b. Use part (a) and B = ∅ to explain how we can order the set of all pairs according to

when a pair was removed from B.

11. Consider f1 = x3 − 2xy and f2 = x2 y − 2y2 + x and use grlex order on k[x, y]. These

polynomials are taken from Example 1 of §7, where we followed Buchberger’s algorithm

to show how a Groebner basis was produced. Redo this example using the algorithm of

Theorem 11 and, in particular, keep track of how many times you have to use the division

algorithm.

12. Consider the polynomials

xn+1 − yzn−1w, xyn−1 − zn, xnz − ynw,

and use grevlex order with x > y > z > w. Mora [see LAZARD (1983)] showed that the

reduced Groebner basis contains the polynomial

zn2+1 − yn2
w.

Prove that this is true when n is 3, 4, or 5. How big are the Groebner bases?
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13. In this exercise, we will look at some examples of how the term order can affect the length

of a Groebner basis computation and the complexity of the answer.

a. Compute a Groebner basis for I = 〈x5 + y4 + z3 − 1, x3 + y2 + z2 − 1〉 using lex and

grevlex orders with x > y > z. You may not notice any difference in the computation

time, but you will see that the Groebner basis is much simpler when using grevlex.

b. Compute a Groebner basis for I = 〈x5 + y4 + z3 − 1, x3 + y3 + z2 − 1〉 using lex and

grevlex orders with x > y > z. This differs from the previous example by a single expo-

nent, but the Groebner basis for lex order is significantly nastier (one of its polynomials

has 282 terms, total degree 25, and a largest coefficient of 170255391). Depending on

the computer and how the algorithm was implemented, the computation for lex order

may take dramatically longer.

c. Let I = 〈x4 − yz2w, xy2 − z3, x3z − y3w〉 be the ideal generated by the polynomials

of Exercise 12 with n = 3. Using lex and grevlex orders with x > y > z > w, show that

the resulting Groebner bases are the same. So grevlex is not always better than lex, but

in practice, it is usually a good idea to use grevlex whenever possible.
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3

Elimination Theory

This chapter will study systematic methods for eliminating variables from systems
of polynomial equations. The basic strategy of elimination theory will be given in
two main theorems: the Elimination Theorem and the Extension Theorem. We will
prove these results using Groebner bases and the classic theory of resultants. The
geometric interpretation of elimination will also be explored when we discuss the
Closure Theorem. Of the many applications of elimination theory, we will treat two in
detail: the implicitization problem and the envelope of a family of curves.

§1 The Elimination and Extension Theorems

To get a sense of how elimination works, let us look at an example similar to those
discussed at the end of Chapter 2. We will solve the system of equations

x2 + y + z = 1,

x + y2 + z = 1,(1)

x + y + z2 = 1.

If we let I be the ideal

I = 〈x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1〉,(2)

then a Groebner basis for I with respect to lex order is given by the four polynomials

g1 = x + y + z2 − 1,

g2 = y2 − y − z2 + z,
g3 = 2yz2 + z4 − z2,

g4 = z6 − 4z4 + 4z3 − z2.

(3)

It follows that equations (1) and (3) have the same solutions. However, since

g4 = z6 − 4z4 + 4z3 − z2 = z2(z − 1)2(z2 + 2z − 1)

involves only z, we see that the possible z’s are 0,1 and −1 ± √
2. Substituting these

values into g2 = y2 − y − z2 + z = 0 and g3 = 2yz2 + z4 − z2 = 0, we can determine

115
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the possible y’s, and then finally g1 = x + y + z2 − 1 = 0 gives the corresponding x’s.
In this way, one can check that equations (1) have exactly five solutions:

(1, 0, 0), (0, 1, 0), (0, 0, 1),

(−1 +
√

2, −1 +
√

2, −1 +
√

2),

(−1 −
√

2, −1 −
√

2, −1 −
√

2).

What enabled us to find these solutions? There were two things that made our success
possible:
� (Elimination Step) We could find a consequence g4 = z6 − 4z4 + 4z3 − z2 = 0 of

our original equations which involved only z, i.e., we eliminated x and y from the
system of equations.

� (Extension Step) Once we solved the simpler equation g4 = 0 to determine the values
of z, we could extend these solutions to solutions of the original equations.

The basic idea of elimination theory is that both the Elimination Step and the Extension
Step can be done in great generality.

To see how the Elimination Step works, notice that our observation concerning g4

can be written

g4 ∈ I ∩ [z],

where I is the ideal given in equation (2). In fact, I ∩ [z] consists of all consequences
of our equations which eliminate x and y. Generalizing this idea leads to the following
definition.

Definition 1. Given I = 〈 f1, . . . , fs〉 ⊂ k[x1, . . . , xn] the l-th elimination ideal Il is
the ideal of k[xl+1, . . . , xn] defined by

Il = I ∩ k[xl+1, . . . , xn].

Thus, Il consists of all consequences of f1 = · · · = fs = 0 which eliminate the vari-
ables x1, . . . , xl . In the exercises, you will verify that Il is an ideal of k[xl+1, . . . , xn].
Note that I = I0 is the 0th elimination ideal. Also observe that different orderings of
the variables lead to different elimination ideals.

Using this language, we see that eliminating x1, . . . , xl means finding nonzero poly-
nomials in the l-th elimination ideal Il . Thus a solution of the Elimination Step means
giving a systematic procedure for finding elements of Il . With the proper term ordering,
Groebner bases allow us to do this instantly.

Theorem 2 (The Elimination Theorem). Let I ⊂ k[x1, . . . , xn] be an ideal and let
G be a Groebner basis of I with respect to lex order where x1 > x2 > · · · > xn. Then,
for every 0 ≤ l ≤ n, the set

Gl = G ∩ k[xl+1, . . . , xn]

is a Groebner basis of the l-th elimination ideal Il .
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Proof. Fix l between 0 and n. Since Gl ⊂ Il by construction, it suffices to show that

〈LT(Il)〉 = 〈LT(Gl)〉
by the definition of Groebner basis. One inclusion is obvious, and to prove the other
inclusion 〈LT(Il)〉 ⊂ 〈LT(Gl)〉, we need only show that the leading term LT( f ), for an
arbitrary f ∈ Il , is divisible by LT(g) for some g ∈ Gl .

To prove this, note that f also lies in I , which tells us that LT( f ) is divisible by
LT(g) for some g ∈ G since G is a Groebner basis of I . Since f ∈ Il , this means that
LT(g) involves only the variables xl+1, . . . , xn . Now comes the crucial observation:
since we are using lex order with x1 > · · · > xn , any monomial involving x1, . . . , xl

is greater than all monomials in k[xl+1, . . . , xn], so that LT(g) ∈ [xl+1, . . . , xn] implies
g ∈ k[xl+1, . . . , xn]. This shows that g ∈ Gl , and the theorem is proved. �

For an example of how this theorem works, let us return to example (1) from the be-
ginning of the section. Here, I = 〈x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1〉,
and a Groebner basis with respect to lex order is given in (3). It follows from the
Elimination Theorem that

I1 = I ∩ [y, z] = 〈y2 − y − z2 + z, 2yz2 + z4 − z2, z6 − 4z4 + 4z3 − z2〉,
I2 = I ∩ [z] = 〈z6 − 4z4 + 4z3 − z2〉.

Thus, g4 = z6 − 4z4 + 4z3 − z2 is not just some random way of eliminating x and y
from our equations—it is the best possible way to do so since any other polynomial
that eliminates x and y is a multiple of g4.

The Elimination Theorem shows that a Groebner basis for lex order eliminates not
only the first variable, but also the first two variables, the first three variables, and so
on. In some cases (such as the implicitization problem to be studied in §3), we only
want to eliminate certain variables, and we do not care about the others. In such a
situation, it is a bit of overkill to compute a Groebner basis using lex order. This is
especially true since lex order can lead to some very unpleasant Groebner bases (see
Exercise 13 of Chapter 2, §9 for an example). In the exercises, you will study versions
of the Elimination Theorem that use more efficient monomial orderings than lex.

We next discuss the Extension Step. Suppose that we have an ideal I ⊂ k[x1, . . . , xn].
As in Chapter 2, we have the affine variety

V(I ) = {(a1, . . . , an) ∈ kn : f (a1, . . . , an) = 0 for all f ∈ I }.
To describe points of V(I ), the basic idea is to build up solutions one coordinate at
a time. Fix some l between 1 and n. This gives us the elimination ideal Il , and we
will call a solution (al+1, . . . , an) ∈ V(Il) a partial solution of the original system of
equations. To extend (al+1, . . . , an) to a complete solution in V(I ), we first need to add
one more coordinate to the solution. This means finding al so that (al , al+1, . . . , an)
lies in the variety V(Il−1) of the next elimination ideal. More concretely, suppose that
Il−1 = 〈g1, . . . , gr 〉 in k[xl , xl+1, . . . , xn]. Then we want to find solutions xl = al of
the equations

g1(xl , al+1, . . . , an) = · · · = gr (xl , al+1, . . . , an) = 0.
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Here we are dealing with polynomials of one variable xl , and it follows that the possible
al’s are just the roots of the GCD of the above r polynomials.

The basic problem is that the above polynomials may not have a common root, i.e.,
there may be some partial solutions which do not extend to complete solutions. For a
simple example, consider the equations

xy = 1,
(4)

xz = 1.

Here, I = 〈xy − 1, xz − 1〉, and an easy application of the Elimination Theorem shows
that y − z generates the first elimination ideal I1. Thus, the partial solutions are given
by (a, a), and these all extend to complete solutions (1/a, a, a) except for the partial
solution (0, 0). To see what is going on geometrically, note that y = z defines a plane
in 3-dimensional space. Then the variety (4) is a hyperbola lying in this plane:

x

z

y

← the plane y = z

← the solutions
← the partial

solutions

It is clear that the variety defined by (4) has no points lying over the partial solution
(0,0). Pictures such as the one here will be studied in more detail in §2 when we study
the geometric interpretation of eliminating variables. For now, our goal is to see if we
can determine in advance which partial solutions extend to complete solutions.

Let us restrict our attention to the case where we eliminate just the first variable x1.
Thus, we want to know if a partial solution (a2, . . . , an) ∈ V(I1) can be extended to
a solution (a1, a2, . . . , an) ∈ V(I ). The following theorem tells us when this can be
done.

Theorem 3 (The Extension Theorem). Let I = 〈 f1, . . . , fs〉 ⊂ [x1, . . . , xn] and
let I1 be the first elimination ideal of I . For each 1 ≤ i ≤ s, write fi in the form

fi = gi (x2, . . . , xn)x Ni
1 + terms in which x1 has degree < Ni ,

where Ni ≥ 0 and gi ∈ [x2, . . . , xn] is nonzero. Suppose that we have a partial so-
lution (a2, . . . , an) ∈ V(I1). If (a2, . . . , an) /∈ V(g1, . . . , gs), then there exists a1 ∈
such that (a1, a2, . . . , an) ∈ V(I ).
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The proof of this theorem uses resultants and will be given in §6. For the rest of
the section, we will explain the Extension Theorem and discuss its consequences. A
geometric interpretation will be given in §2.

A first observation is that the theorem is stated only for the field k = . To see why
is important, assume that k = and consider the equations

x2 = y,
(5)

x2 = z.

Eliminating x gives y = z, so that we get the partial solutions (a, a) for all a ∈ .
Since the leading coefficients of x in x2 − y and x2 − z never vanish, the Extension
Theorem guarantees that (a, a) extends, provided we work over . Over , the situation
is different. Here, x2 = a has no real solutions when a is negative, so that only those
partial solutions with a ≥ 0 extend to real solutions of (5). This shows that the Extension
Theorem is false over .

Turning to the hypothesis (a2, . . . , an) /∈ V(g1, . . . , gs), note that the gi ’s are the
leading coefficients with respect to xl of the fi ’s. Thus, (a2, . . . , an) /∈ V(g1, . . . , gs)
says that the leading coefficients do not vanish simultaneously at the partial solu-
tion. To see why this condition is necessary, let us look at example (4). Here, the
equations

xy = 1,

xz = 1

have the partial solutions (y, z) = (a, a). The only one that does not extend is (0,0),
which is the partial solution where the leading coefficients y and z of x vanish. The
Extension Theorem tells us that the Extension Step can fail only when the leading
coefficients vanish simultaneously.

Finally, we should mention that the variety V(g1, . . . , gs) where the leading coeffi-
cients vanish depends on the basis { f1, . . . , fs} of I : changing to a different basis may
cause V(g1, . . . , gs) to change. In Chapter 8, we will learn how to choose ( f1, . . . , fs)
so that V(g1, . . . , gs) is as small as possible. We should also point out that if one works
in projective space (to be defined in Chapter 8), then one can show that all partial
solutions extend.

Although the Extension Theorem is stated only for the case of eliminating the first
variable x1, it can be used when eliminating any number of variables. For example,
consider the equations

x2 + y2 + z2 = 1,
(6)

xyz = 1.

A Groebner basis for I = 〈x2 + y2 + z2 − 1, xyz − 1〉 with respect to lex order is

g1 = y4z2 + y2z4 − y2z2 + 1,

g2 = x + y3z + yz3 − yz.
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By the Elimination Theorem, we obtain

I1 = I ∩ [y, z] = 〈g1〉,
I2 = I ∩ [z] = {0}.

Since I2 = {0}, we have V(I2) = , and, thus, every c ∈ is a partial solution. So we
ask:

Which partial solutions c ∈ = V(I2) extend to (a, b, c) ∈ V(I )?

The idea is to extend c one coordinate at a time: first to (b, c), then to (a, b, c). To control
which solutions extend, we will use the Extension Theorem at each step. The crucial
observation is that I2 is the first elimination ideal of I1. This is easy to see here, and
the general case is covered in the exercises. Thus, we will use the Extension Theorem
once to go from c ∈ V(I2) to (b, c) ∈ V(I1), and a second time to go to (a, b, c) ∈ V(I ).
This will tell us exactly which c’s extend.

To start, we apply the Extension Theorem to go from I2 to I1 = 〈g1〉. The coefficient
of y4 in g1 is z2, so that c ∈ = V(I2) extends to (b, c) whenever c 
= 0. Note also that
g1 = 0 has no solution when c = 0. The next step is to go from I1 to I ; that is, to find a
so that (a, b, c) ∈ V(I ). If we substitute (y, z) = (b, c) into (6), we get two equations
in x , and it is not obvious that there is a common solution x = a. This is where the
Extension Theorem shows its power. The leading coefficients of x in x2 + y2 + z2 − 1
and xyz − 1 are 1 and yz, respectively. Since 1 never vanishes, the Extension Theorem
guarantees that a always exists. We have thus proved that all partial solutions c 
= 0
extend to V(I ).

The Extension Theorem is especially easy to use when one of the leading coeffi-
cients is constant. This case is sufficiently useful that we will state it as a separate
corollary.

Corollary 4. Let I = 〈 f1, . . . , fs〉 ⊂ [x1, . . . , xn], and assume that for some i, fi is
of the form

fi = cx N
1 + terms in which x1 has degree < N ,

where c ∈ is nonzero and N > 0. If I1 is the first elimination ideal of I and
(a2, . . . , an) ∈ V(I1), then there is a1 ∈ so that (a1, a2, . . . , an) ∈ V(I ).

Proof. This follows immediately from the Extension Theorem: since gi = c 
= 0
implies V(g1, . . . , gs) = ∅, we have (a2, . . . , an) /∈ V(g1, . . . , gs) for all partial
solutions. �

We will end this section with an example of a system of equations that does not have
nice solutions. Consider the equations

xy = 4,

y2 = x3 − 1.
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Using lex order, the Groebner basis is given by

g1 = 16x − y2 − y4,

g2 = y5 + y3 − 64,

but if we proceed as usual, we discover that y5 + y3 − 64 has no rational roots (in fact,
it is irreducible over , a concept we will discuss in §5). One option is to compute
the roots numerically. A variety of methods (such as the Newton-Raphson method) are
available, and for y5 + y3 − 64 = 0, one obtains

y = 2.21363, −1.78719 ± 1.3984i, or 0.680372 ± 2.26969i.

These solutions can then be substituted into g1 = 16x − y2 − y4 = 0 to determine the
values of x . Thus, unlike the previous examples, we can only find numerical approxi-
mations to the solutions.

There are many interesting problems that arise when one tries to find numerical
solutions of polynomial equations. For further reading on this topic, we recommend
LAZARD (1993) and MANOCHA (1994). The reader may also wish to consult COX,
LITTLE and O’SHEA (1998), MIGNOTTE (1992) and MISHRA (1993).

EXERCISES FOR §1

1. Let I ⊂ k[x1, . . . , xn] be an ideal.

a. Prove that Il = I ∩ k[xl+1, . . . , xn] is an ideal of k[xl+1, . . . , xn].

b. Prove that the ideal Il+1 ⊂ k[xl+2, . . . , xn] is the first elimination ideal of Il ⊂
k[xl+1, . . . , xn]. This observation allows us to use the Extension Theorem multiple times

when eliminating more than one variable.

2. Consider the system of equations

x2 + 2y2 = 3,

x2 + xy + y2 = 3.

a. If I is the ideal generated by these equations, find bases of I ∩ k[x] and I ∩ k[y].

b. Find all solutions of the equations.

c. Which of the solutions are rational, i.e., lie in 2?

d. What is the smallest field k such that all solutions lie in k2?

3. Determine all solutions (x, y) ∈ 2 of the system of equations

x2 + 2y2 = 2

x2 + xy + y2 = 2.

Also determine all solutions in 2.

4. Find bases for the elimination ideals I1 and I2 for the ideal I determined by the equations:

x2 + y2 + z2 = 4,

x2 + 2y2 = 5,

xz = 1.

How many rational (i.e., in 3) solutions are there?

5. In this exercise, we will prove a more general version of the Elimination Theorem. Fix an

integer 1 ≤ l ≤ n. We say that a monomial order > on k[x1, . . . , xn] is of l-elimination
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type provided that any monomial involving one of x1, . . . , xl is greater than all monomials

in k[xl+1, . . . , xn]. Prove the following generalized Elimination Theorem. If I is an ideal in

k[x1, . . . , xn] and G is a Groebner basis of I with respect to a monomial order of l-elimination

type, then G ∩ k[xl+1, . . . , xn] is a basis of the lth elimination ideal I ∩ k[xl+1, . . . , xn].

6. To exploit the generalized Elimination Theorem of Exercise 5, we need some interesting

examples of monomial orders of l-elimination type. We will consider two such orders.

a. Fix an integer 1 ≤ l ≤ n, and define the order >l as follows: if α, β ∈ n
≥0, then α >l β if

α1 + · · · + al > βi + · · · + βl , or α1 + · · · + αl = β1 + · · · + βl and α >grevles β.

This is the l-th elimination order of BAYER and STILLMAN (1987b). Prove that >l is a

monomial order and is of l-elimination type. Hint: If you did Exercise 12 of Chapter 2,

§4, then you have already done this problem.

b. In Exercise 10 of Chapter 2, §4, we considered an example of a product order that mixed

lex and grlex orders on different sets of variables. Explain how to create a product order

that induces grevlex on both k[x1, . . . , xl ] and k[xl+1, . . . , xn] and show that this order is

of l-elimination type.

c. If G is a Groebner basis for I ⊂ k[x1, . . . , xn] for either of the monomial orders of parts

a or b, explain why G ∩ k[xl+1, . . . , xn] is a Groebner basis with respect to grevlex.

7. Consider the equations

t2 + x2 + y2 + z2 = 0,

t2 + 2x2 − xy − z2 = 0,

t + y3 − z3 = 0.

We want to eliminate t . Let I = 〈t2 + x2 + y2 + z2, t2 + 2x2 − xy − z2, t + y3 − z3〉 be the

corresponding ideal.

a. Using lex order with t > x > y > z, compute a Groebner basis for I , and then find a basis

for I ∩ k[x, y, z]. You should get four generators, one of which has total degree 12.

b. Use grevlex to compute a Groebner basis for I ∩ k[x, y, z]. You will get a simpler set of

two generators.

c. Combine the answer to part b with the polynomial t + y3 − z3 and show that this gives

a Groebner basis for I with respect to the elimination order >1 (this is >l with l = 1) of

Exercise 6. Notice that this Groebner basis is much simpler than the one found in part a. If

you have access to a computer algebra system that knows elimination orders, then check

your answer.

8. In equation (6), we showed that z 
= 0 could be specified arbitrarily. Hence, z can be regarded

as a “parameter.” To emphasize this point, show that there are formulas for x and y in terms of

z. Hint: Use g1 and the quadratic formula to get y in terms of z. Then use xyz = 1 to get x . The

formulas you obtain give a “parametrization” of V(I ) which is different from those studied

in §3 of Chapter 1. Namely, in Chapter 1, we used parametrizations by rational functions,

whereas here, we have what is called a parametrization by algebraic functions. Note that x
and y are not uniquely determined by z.

9. Consider the system of equations given by

x5 + 1

x5
= y,

x + 1

x
= z.

Let I be the ideal in [x, y, z] determined by these equations.
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a. Find a basis of I1 ⊂ [y, z] and show that I2 = {0}.
b. Use the Extension Theorem to prove that each partial solution c ∈ V(I2) = extends to

a solution in V(I ) ⊂ 3.

c. Which partial solutions (y, z) ∈ V(I1) ⊂ 2 extend to solutions in V(I ) ⊂ 3. Explain

why your answer does not contradict the Extension Theorem.

d. If we regard z as a “parameter” (see the previous problem), then solve for x and y as

algebraic functions of z to obtain a “parametrization” of V(I ).

§2 The Geometry of Elimination

In this section, we will give a geometric interpretation of the theorems proved in §1.
The main idea is that elimination corresponds to projecting a variety onto a lower
dimensional subspace. We will also discuss the Closure Theorem, which describes the
relation between partial solutions and elimination ideals. For simplicity, we will work
over the field k = .

Let us start by defining the projection of an affine variety. Suppose that we are given
V = V( f1, . . . , fs) ⊂ n . To eliminate the first l variables x1, . . . , xl , we will consider
the projection map

πi : n → n−l

which sends (a1, . . . , an) to (al+1, . . . , an). If we apply πl to V ⊂ n , then we get
πl(V ) ⊂ n−l . We can relate πl(V ) to the l-th elimination ideal as follows.

Lemma 1. With the above notation, let Il = 〈 f1, . . . , fs〉 ∩ [xl+1, . . . , xn] be the l-th
elimination ideal. Then, in n−1, we have

πl(V ) ⊂ V(Il).

Proof. Fix a polynomial f ∈ Il . If (a1, . . . , an) ∈ V , then f vanishes at (a1, . . . , an)
since f ∈ 〈 f1, . . . , fs〉. But f involves only xl+1, . . . , xn , so that we can write

f (al+1, . . . , an) = f (πl(a1, . . . , an)) = 0.

This shows that f vanishes at all points of πl(V ). �

As in §1, points of V(Il) will be called partial solutions. Using the lemma, we can
write πl(V ) as follows:

πl(V ) = {(al+1, . . . , an) ∈ V(Il) : ∃a1, . . . , al ∈
with (a1, . . . , al , al+1, . . . , an)) ∈ V }.

Thus, πl(V ) consists exactly of the partial solutions that extend to complete solutions.
For an example of this, consider the variety V defined by equations (4) from §1:

xy = 1,

xz = 1.
(1)
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Here, we have the following picture that simultaneously shows the solutions and the
partial solutions:

x

z

y

← the plane y = z

← the solutions
← the partial

solutions

↓

↓
↑

↑

the arrows ↑, ↓
indicate the
projection π1

Note that V(I1) is the line y = z in the yz-plane, and that

π1(V ) = {(a, a) ∈ 2 : a 
= 0}.

In particular, π1(V ) is not an affine variety—it is missing the point (0, 0).
The basic tool to understand the missing points is the Extension Theorem from §1.

It only deals with π1 (i.e., eliminating x1), but gives us a good picture of what happens
in this case. Stated geometrically, here is what the Extension Theorem says.

Theorem 2. Given V = V( f1, . . . , fs) ⊂ n, let gi be as in the Extension Theorem
from §1. If I1 is the first elimination ideal of 〈 fl , . . . fs〉, then we have the equality in

n−1

V(Il) = π1(V ) ∪ (V(g1, . . . , gs) ∩ V(I1)),

where π1 : n → n−1 is projection onto the last n − 1 components.

Proof. The proof follows from Lemma 1 and the Extension Theorem. The details will
be left as an exercise. �

This theorem tells us that π1(V ) fills up the affine variety V(I1), except possibly
for a part that lies in V(g1, . . . , gs). Unfortunately, it is not clear how big this part is,
and sometimes V(g1, . . . , gs) is unnaturally large. For example, one can show that the
equations

(y − z)x2 + xy = 1,

(y − z)x2 + xz = 1
(2)
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generate the same ideal as equations (1). Since g1 = g2 = y − z generate the elimi-
nation ideal I1, the Geometric Extension Theorem tells us nothing about the size of
π1(V ) in this case.

Nevertheless, we can still make the following strong statements about the relation
between πl(V ) and V(Il).

Theorem 3 (The Closure Theorem). Let V = V( f1, . . . , fs) ⊂ n and let Il be the
l-th elimination ideal of 〈 f1, . . . , fs〉. Then:
(i) V(Il) is the smallest affine variety containing πl(V ) ⊂ n−1.

(ii) When V 
= ∅, there is an affine variety W � V (Il) such that V (Il) − W ⊂ πl(V ).

Proof. When we say “smallest variety” in part (i), we mean “smallest with respect to
set-theoretic inclusion.” Thus, V(Il) being smallest means two things:
� πl(V ) ⊂ V(Il)
� If Z is any other affine variety in n−1 containing πl(V ), then V(Il) ⊂ Z .
In Chapter 4, we will express this by saying that V(Il) is the Zariski closure of πl(V ).
This is where the theorem gets its name. We cannot yet prove part (i) of the theorem,
for it requires the Nullstellensatz. The proof will be given in Chapter 4.

The second part of the theorem says that although πl(V ) may not equal V(Il), it fills
up “most” of V(Il) in the sense that what is missing lies in a strictly smaller affine
variety. We will only prove this part of the theorem in the special case when l = 1. The
proof when l > 1 will be given in §6 of Chapter 5.

The main tool we will use is the decomposition

V(I1) = π1(V ) ∪ (V)(g1, . . . , gs) ∩ V(I1))

from the Geometric Extension Theorem. Let W = V(g1, . . . , gs) ∩ V(I1) and note that
W is an affine variety by Lemma 2 of Chapter 1, §2. The above decomposition implies
that V(I1) − W ⊂ π1(V ), and thus we are done if W 
= V(Il). However, as example
(2) indicates, it can happen that W = V(I1).

In this case, we need to change the equations defining V so that W becomes smaller.
The key observation is that

if W = V(I1), then V = V( f1, . . . , fs, g1, . . . , gs).(3)

This is proved as follows. First, since we are adding more equations, it is obvious
that V( f1, . . . , fs, g1, . . . , gs) ⊂ V( f 1, . . . , fs) = V . For the opposite inclusion, let
(a1, . . . , an) ∈ V . Certainly each fi vanishes at this point, and since (a2, . . . , an) ∈
π1(V ) ⊂ V(I1) = W , it follows that the gi ’s vanish here. Thus, (a1, . . . , an) ∈
V( f1, . . . , fs, g1, . . . , gs), which completes the proof of (3).

Let I = 〈 f1, . . . , fs〉 be our original ideal and let Ĩ be the ideal 〈( f1, . . . , fs,

g1, . . . , gs〉. Notice that I and Ĩ may be different, even though they have the same
variety V [proved in (3) above]. Thus, the corresponding elimination ideals I1 and Ĩ1

may differ. However, since V(I1) and V( Ĩ1) are both the smallest variety containing
π1(V ) [by part (i) of the theorem], it follows that V(I1) = V( Ĩ1).
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The next step is to find a better basis of Ĩ . First, recall that the gi ’s are defined by
writing

fi = gi (x2, . . . , xn)x Ni
1 + terms in which x1 has degree < Ni ,

where Ni ≥ 0 and gi ∈ [x2, . . . , xn] is nonzero. New set

f̃i = fi − gi x
Ni
1 .

For each i , note that f̃i is either zero or has strictly smaller degree in x1 than fi . We
leave it as an exercise to show that

Ĩ = 〈 f̃1, . . . , f̃s, g1, . . . , gs〉.
Now apply the Geometric Extension Theorem to V = V( f̃1, . . . , f̃s, g1, . . . , gs).

Note that the leading coefficients of the generators are different, so that we get a
different decomposition

V(I1) = V( Ĩ1) = π1(V ) ∪ W̃ ,

where W̃ consists of those partial solutions where the leading coefficients of
f̃1, . . . , f̃s, g1, . . . , gs vanish.

Before going further with the proof, let us give an example to illustrate how W̃ can be
smaller than W . As in example (2), let I = 〈(y − z)x2 + xy − 1, (y − z)x2 + xz − 1〉.
We know that I1 = 〈y − z〉 and g1 = g2 = y − z, so that W = V(I1) in this case. Then
it is easy to check that the process described earlier yields the ideal

Ĩ = 〈(y − z)x2 + xy − 1, (y − z)x2 + xz − 1, y − z〉 = 〈xy − 1, xz − 1, y − z〉.
Applying the Geometric Extension Theorem to Ĩ , one finds that W̃ consists of the
partial solutions where y and z vanish, i.e., W̃ = {(0, 0)}, which is strictly smaller than
W = V(I1).

Unfortunately, in the general case, there is nothing to guarantee that W̃ will be strictly
smaller. So it still could happen that W̃ = V(I1). If this is the case, we simply repeat
the above process. If at any subsequent stage we get something strictly smaller than
V(I1), then we are done.

It remains to consider what happens when we always get V(I1). Each time we do
the above process, the degrees in x1 of the generators drop (or remain at zero), so
that eventually all of the generators will have degree 0 in x1. This means that V can
be defined by the vanishing of polynomials in [x2, . . . , xn]. Thus, if (a2, . . . , an) is
a partial solution, it follows that (a1, a2, . . . , an) ∈ V for any a1 ∈ since x1 does
not appear in the defining equations. Hence every partial solution extends, which
proves that π1(V ) = V(I1). In this case, we see that part (ii) of the theorem is sat-
isfied when W = ∅ (this is where we use the assumption V 
= ∅). The theorem is now
proved. �

The Closure Theorem gives us a partial description of πl(V ) since it fills up V(Il),
except for some missing points that lie in a variety strictly smaller than V(Il). Unfortu-
nately, the missing points might not fill up all of the smaller variety. The precise structure
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of πl(V ) can be described as follows: there are affine varieties Zi ⊂ Wi ⊂ n−1 for
1 ≤ i ≤ m such that

πl(V ) =
m⋃

i=1

(Wi − Zi ).

In general, a set of this form is called constructible. We will prove this in §6 of Chapter 5.
In §1, we saw that the nicest case of the Extension Theorem was when one of the

leading coefficients gi was a nonzero constant. Then the gi ’s can never simultaneously
vanish at a point (a2, . . . , an), and, consequently, partial solutions always extend in this
case. Thus, we have the following geometric version of Corollary 4 of §1.

Corollary 4. Let V = V( f1, . . . , fs) ⊂ n, and assume that for some i, fi is of the
form

fi = cx N
1 + terms in which x1 has degree < N ,

where c ∈ s nonzero and N > 0. If I1 is the first elimination ideal, then in n−1

π1(V ) = V(I1),

where π1 is the projection on the last n − 1 components.

A final point we need to make concerns fields. The Extension Theorem and the
Closure Theorem (and their corollaries) are stated for the field of complex numbers

. In §6, we will see that the Extension Theorem actually holds for any algebraically
closed field k, and in Chapter 4, we will show that the same is true for the Closure
Theorem.

EXERCISES FOR §2

1. Prove the Geometric Extension Theorem (Theorem 2) using the Extension Theorem and

Lemma 1.

2. In example (2), verify carefully that 〈(y − z)x2 + xy − 1, (y − z)x2 + xz − 1〉 = 〈xy −
1, xz − 1〉. Also check that y − z vanishes at all partial solutions in V(I1).

3. In this problem, we will work through the proof of Theorem 3 in the special case when

I = 〈 f1, f2, f3〉, where

f1 = yx3 + x2,

f2 = y3x2 + y2,

f3 = yx4 + x2 + y2.

a. Find a Groebner basis for I and show that I1 = 〈y2〉.
b. Show that V(I1) = V(I1) ∩ V(g1, g2, g3), where gi is the coefficient of the highest power

of x in fi . In the notation of Theorem 3, this is a case when W = V(I1).

c. Let Ĩ = 〈 f1, f2, f3, g1, g2, g3〉. Show that I 
= Ĩ and that V(I ) = V( Ĩ ). Also check that

V(I1) = V( Ĩ1).

d. Follow the procedure described in the text for producing a new basis for Ĩ . Using this new

basis, show that W̃ 
= V(I1).
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4. Let fi , gi , hi ∈ k[x1, . . . , xn] for 1 ≤ i ≤ s. If we set f̃i = fi + hi gi , then prove that

〈 f1, . . . , fs, g1, . . . ., gs〉 = 〈 f̃1, . . . , f̃s, g1, . . . , gs〉.
Then explain how the proof of Theorem 3 used a special case of this result.

5. To see how the Closure Theorem can fail over , consider the ideal

I = 〈x2 + y2 + z2 + 2, 3x2 + 4y2 + 4z2 + 5〉.
Let V = V(I ), and let π1 be the projection taking (x, y, z) to (y, z).

a. Working over , prove that V (I1) = π1(V ).

b. Working over , prove that V = ∅ and that V(I1) is infinite. Thus, V(I1) may be much

larger than the smallest variety containing π1(V ) when the field is not algebraically closed.

§3 Implicitization

In Chapter 1, we saw that a variety V can sometimes be described using parametric
equations. The basic idea of the implicitization problem is to convert the parametrization
into defining equations for V . The name “implicitization” comes from Chapter 1, where
the equations defining V were called an “implicit representation” of V . However, some
care is required in giving a precise formulation of implicitization. The problem is that
the parametrization need not fill up all of the variety V —an example is given by equation
(4) from Chapter 1, §3. So the implicitization problem really asks for the equations
defining the smallest variety V containing the parametrization. In this section, we will
use the elimination theory developed in §§1 and 2 to give a complete solution of the
implicitization problem.

Furthermore, once the smallest variety V has been found, two other interesting
questions arise. First, does the parametrization fill up all of V ? Second, if there are
missing points, how do we find them? As we will see, Groebner bases and the Extension
Theorem give us powerful tools for studying this situation.

To illustrate these issues in a specific case, let us look at the tangent surface to the
twisted cubic in 3, first studied in Chapter 1, §3. Recall that this surface is given
parametrically by

x = t + u,

y = t2 + 2tu,(1)

z = t3 + 3t2u.

In §8 of Chapter 2, we used these equations to show that the tangent surface lies on the
variety V in 3 defined by

x3z − (3/4)x2 y2 − (3/2)xyz + y3 + (1/4)z2 = 0.

However, we do not know if V is the smallest variety containing the tangent surface
and, thus, we cannot claim to have solved the implicitization problem. Furthermore,
even if V is the smallest variety, we still do not know if the tangent surface fills it up
completely. So there is a lot of work to do.
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We begin our solution of the implicitization problem with the case of a polynomial
parametrization, which is specified by the data

x1 = f1(t1, . . . , tm),

...(2)

xn = fn(t1, . . . , tn).

Here, f1, . . . , fn are polynomials in k[t1, . . . , tm]. We can think of this geometrically
as the function

F : km −→ kn

defined by

F(t1, . . . , tm) = ( f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)).

Then F(km) ⊂ kn is the subset of kn parametrized by equations (2). Since F(km) may
not be an affine variety (examples will be given in the exercises), a solution of the
implicitization problem means finding the smallest affine variety that contains F(km).

We can relate implicitization to elimination as follows. Equations (2) define a variety
V = V(x1 − f1, . . . , xn − fn) ⊂ kn+m . Points of V can be written in the form

(t1, . . . , tm, f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)),

which shows that V can be regarded as the graph of the function F . We also have two
other functions

i : km −→ kn+m,

πm : kn+m −→ kn

defined by

i(t1, . . . , tm) = (t1, . . . , tm, f1(t1, . . . , tm), . . . , fn(t1, . . . , tm))

πm(t1, . . . , tm, x1, . . . , xn) = (x1, . . . , xn).

This gives us the following diagram of sets and maps:

F
i

knkm

kn+m

pm

(3)

Note that F is then the composition F = πm ◦ i . It is also straightforward to show that
i(km) = V . Thus, we obtain

F(km) = πm(i(km)) = πm(V ).(4)

In more concrete terms, this says that the image of the parametrization is the projection
of its graph. We can now use elimination theory to find the smallest variety containing
F(km).
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Theorem 1 (Polynomial Implicitization). If k is an infinite field, let F : km → kn be
the function determined by the polynomial parametrization (2). Let I be the ideal I =
〈x1 − f1, . . . , xn − fn〉 ⊂ k[t1, . . . , tm, x1, . . . , xn] and let Im = I ∩ k[x1, . . . , xn] be
the m-th elimination ideal. Then V(Im) is the smallest variety in kn containing
F(km).

Proof. Let V = V(I ) ⊂ kn+m . The above discussion shows that V is the graph of
F : km → kn . Now assume that k = . By (4), we have F( m) = πm(V ), and by the
Closure Theorem from §2, we know that V(Im) is the smallest variety containing πm(V ).
This proves the theorem when k = .

Next, suppose that k is a subfield of . This means that k ⊂ and that k inherits its
field operations from . Such a field always contains the integers (in fact, it contains

—do you see why?) and, thus, is infinite. Since k may be strictly smaller than , we
cannot use the Closure Theorem directly. Our strategy will be to switch back and forth
between k and , and we will use the subscript k or to keep track of which field
we are working with. Thus, Vk(Im) is the variety we get in kn , whereas V (Im) is the
larger set of solutions in n . (Note that going to the larger field does not change the
elimination ideal Im . This is because the algorithm used to compute the elimination
ideal is unaffected by changing from k to .) We need to prove that Vk(Im) is the
smallest variety in kn containing F(km).

By equation (4) of this section and Lemma 1 of §2, we know that F(km) = πm(Vk) ⊂
Vk(Im). Now let Zk = Vk(g1, . . . , gs) ⊂ kn be any variety of kn such that F(km) ⊂ Zk .
We must show Vk(Im) ⊂ Zk . We begin by noting that gi = 0 on Zk and, hence, gi = 0
on the smaller set F(km). This shows that each gi ◦ F vanishes on all of km . But gi

is a polynomial in k[x1, . . . , xn], and F = ( f1, . . . , fn) is made up of polynomials in
k[t1, . . . , tm]. It follows that gi ◦ F ∈ k[t1, . . . , tm].

Thus, the gi ◦ F’s are polynomials that vanish on km . Since k is infinite, Proposition
5 of Chapter 1, §1 implies that each gi ◦ F is the zero polynomial. In particular, this
means that gi ◦ F also vanishes on m , and thus the gi ’s vanish on F( m). Hence,
Z = V (g1, . . . , gs) is a variety of n containing F( m). Since the theorem is true
for , it follows that V (Im) ⊂ Z in n . If we then look at the solutions that lie in
kn , it follows immediately that Vk(Im) ⊂ Zk . This proves that Vk(Im) is the smallest
variety of kn containing F(km).

Finally, if k is a field not contained in , one can prove that there is an algebraically
closed field K such that k ⊂ K [see Chapter VII, §2 of LANG (1965)]. As we remarked
at the end of §2, the Closure Theorem holds over any algebraically closed field. Then
the theorem follows using the above argument with replaced by K . �

Theorem 1 gives the following implicitization algorithm for polynomial
parametrizations: if we have xi = fi (t1, . . . , tm) for polynomials f1, . . . , fn ∈
k[t1, . . . , tm], consider the ideal I = 〈x1 − f1, . . . , xn − fn〉 and compute a Groeb-
ner basis with respect to a lexicographic ordering where every ti is greater than every
xi . By the Elimination Theorem, the elements of the Groebner basis not involving
t1, . . . , tm form a basis of Im , and by Theorem 1, they define the smallest variety in kn

containing the parametrization.
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For an example of how this algorithm works, let us look at the tangent surface to the
twisted cubic in 3, which is given by the polynomial parametrization (1). Thus, we
need to consider the ideal

I = 〈x − t − u, y − t2 − 2tu, Z − t3 − 3t2u〉 ⊂ [t, u, x, y, z].

Using lex order with t > u > x > y > z, a Groebner basis for I is given by

g1 = t + u − x,

g2 = u2 − x2 + y,

g3 = ux2 − uy − x3 + (3/2)xy − (1/2)z,

g4 = uxy − uz − x2 y − xz + 2y2,

g5 = uxz − uy2 + x2z − (1/2)xy2 − (1/2)yz,

g6 = uy3 − uz2 − 2x2 yz + (1/2)xy3 − xz2 + (5/2)y2z,

g7 = x3z − (3/4)x2 y2 − (3/2)xyz + y3 + (1/4)z2.

The Elimination Theorem tells us that I2 = I ∩ [x, y, z] = 〈g7〉, and thus by Theorem
1, V(g7) solves the implicitization problem for the tangent surface of the twisted cubic.
The equation g7 = 0 is exactly the one given at the start of this section, but now we
know it defines the smallest variety in 3 containing the tangent surface.

But we still do not know if the tangent surface fills up all of V(g7) ⊂ 3. To answer
this question, we must see whether all partial solutions (x, y, z) ∈ V(g7) = V(I2) extend
to (t, u, x, y, z) ∈ V(I ). We will first work over so that we can use the Extension
Theorem. As usual, our strategy will be to add one coordinate at a time.

Let us start with (x, y, z) ∈ V(I2) = V(g7). In §1, we observed that I2 is the first
elimination ideal of I1. Further, the Elimination Theorem tells us that I1 = 〈g2, . . . , g7〉.
Then the Extension Theorem, in the form of Corollary 4 of §1, implies that (x, y, z)
always extends to (u, x, y, z) ∈ V(I1) since I1 has a generator with a constant leading
coefficient of u (we leave it to you to find which of g2, . . . , g7 has this property). Going
from (u, x, y, z) ∈ V(I1) to (t, u, x, y, z) ∈ V(I ) is just as easy: using Corollary 4 of
§1 again, we can always extend since g1 = t + u − x has a constant leading coefficient
of t . We have thus proved that the tangent surface to the twisted cubic equals V(g7)
in 3.

It remains to see what happens over . If we start with a real solution (x, y, z) ∈ 3 of
g7 = 0, we know that it extends to (t, u, x, y, z) ∈ V(I ) ⊂ 5. But are the parameters
t and u real? This is not immediately obvious. However, if you look at the above
Groebner basis, you can check that t and u are real when (x, y, z) ∈ 3 (see Exercise
4). It follows that the tangent surface to the twisted cubic in 3 equals the variety
defined by

x3z − (3/4)x2 y2 − (3/2)xyz + y3 + (1/4)z2 = 0.

In general, the question of whether a parametrization fills up all of its variety can be
difficult to answer. Each case has to be analyzed separately. But as indicated by the
example just completed, the combination of Groebner bases and the Extension Theorem
can shed considerable light on what is going on.
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In our discussion of implicitization, we have thus far only considered polynomial
parametrizations. The next step is to see what happens when we have a parametrization
by rational functions. To illustrate the difficulties that can arise, consider the following
rational parametrization:

x = u2

v
,

y = v2

u
,(5)

z = u.

It is easy to check that the point (x, y, z) always lies on the surface x2 y = z3. Let
us see what happens if we clear denominators in the above equations and apply the
polynomial implicitization algorithm. We get the ideal

I = 〈vx − u2, uy − v2, z − u〉 ⊂ k[u, v, x, y, z],

and we leave it as an exercise to show that I2 = I ∩ k[x, y, z] is given by I2 =
〈z(x2 y − z3)〉. This implies that

V(I2) = V(x2 y − z3) ∪ V(z),

and, in particular, V(I2) is not the smallest variety containing the parametrization. So
the above ideal I is not what we want—simply “clearing denominators” is too naive.
To find an ideal that works better, we will need to be more clever.

In the general situation of a rational parametrization, we have

x1 = f1(t1, . . . , tm)

g1(t1, . . . , tm)
,

...(6)

xn = fn(t1, . . . , tm)

gn(t1, . . . , tm)
,

where f1, g1, . . . , fn, gn are polynomials in k[t1, . . . , tm]. The map F from km to kn

given by (6) may not be defined on all of km because of the denominators. But if we
let W = V(g1g2 · · · gn) ⊂ km , then it is clear that

F(t1, . . . , tm) =
(

f1(t1, . . . , tm)

g1(t1, . . . , tm)
, . . . ,

fn(t1, . . . , tm)

gn(t1, . . . , tm)

)

defines a map

F : km − W −→ kn.

To solve the implicitization problem, we need to find the smallest variety of kn con-
taining F(km − W ).
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We can adapt diagram (3) to this case by writing

F
i

knkm – W

kn+m

pm

(7)

It is easy to check that i(km − W ) ⊂ V(I ), where I = 〈g1x1 − f1, . . . , gn xn − fn〉 is
the ideal obtained by “clearing denominators.” The problem is that V(I ) may not be the
smallest variety containing i(km − W ). In the exercises, you will see that (5) is such
an example.

To avoid this difficulty, we will alter the ideal I slightly by using an extra dimension
to control the denominators. Consider the polynomial ring k[y, t1, . . . , tm, x1, . . . , xn]
which gives us the affine space kn+m+1. Let g be the product g = g1 · g2 · · · gn , so that
W = V(g). Then consider the ideal

J = 〈g1x1 − f1, . . . , gn xn − fn, 1 − gy〉 ⊂ k[y, t1, . . . , tm, x1, . . . , xn].

Note that the equation 1 − gy = 0 means that the denominators g1, . . . , gn never vanish
on V(J ). To adapt diagram (7) to this new situation, consider the maps

J : km − W −→ kn+m+1,

πm+1 : kn+m+1 −→ kn

defined by

j(t1, . . . , tm) =
(

1

g(t1, . . . , tm)
, t1, . . . , tm,

f1(t1, . . . , tm)

g1(t1, . . . , tm)
, . . . ,

fn(t1, . . . , tm)

gn(t1, . . . , tm)

)
,

πm+1(y, t1, . . . , tm, x1, . . . , xn) = (x1, . . . , xn),

respectively. Then we get the diagram

F
j pm+1

knkm – W

kn+m+1

As before, we have F = πm+1 ◦ j . The surprise is that j(km − W ) = V(J ) in
kn+m+1. To see this, note that j(km − W ) ⊂ V(J ) follows easily from the defini-
tions of j and J . Going the other way, if (y, t1, . . . , tm, x1, . . . , xn) ∈ V(J ), then
g(t1, . . . , tm)y = 1 implies that none of the gi ’s vanish at (t1, . . . , tm) and, thus,
gi (ti , . . . , tm)xi = fi (t1, . . . , tm) can be solved for xi = fi (t1, . . . , tm)/gi (t1, . . . , tm).
Since y = 1/g(t1, . . . , tm), it follows that our point lies in j(km − W ). This proves
V(J ) ⊂ j(km − W ).

From F = πm+1 ◦ j and j(km − W ) = V(J ), we obtain

F(km − W ) = πm+1( j(km − W )) = πm+1(V(J )).(8)

Thus, the image of the parametrization is the projection of the variety V(J ). As with
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the polynomial case, we can now use elimination theory to solve the implicitization
problem.

Theorem 2 (Rational Implicitization). If k is an infinite field, let F : km − W →
kn be the function determined by the rational parametrization (6). Let J be the
ideal J = 〈g1x1 − f1, . . . , gn xn − fn, 1 − gy〉 ⊂ k[y, t1, . . . , tm, x1, . . . , xn], where
g = g1 · g2 · · · gn, and let Jm+1 = J ∩ k[x1, . . . , xn] be the (m + 1)-th elimination
ideal. Then V(Jm+1) is the smallest variety in kn containing F(km − W ).

Proof. The proof is similar to the proof of Theorem 1. One uses equation (8) rather
than equation (4). The only tricky point is showing that a polynomial vanishing on
km − W must be the zero polynomial. The exercises at the end of the section will take
you through the details. �

The interpretation of Theorem 2 is very nice: given the rational parametrization (6),
consider the equations

g1x1 = f1

...

gn xn = fn,

g1g2 · · · gn y = 1.

These equations are obtained from (6) by “clearing denominators” and adding a final
equation (in the new variable y) to prevent the denominators from vanishing. Then
eliminating y, t1, . . . , tm gives us the equations we want.

More formally, Theorem 2 implies the following implicitization algorithm for ra-
tional parametrizations: if we have xi = fi/gi for polynomials f1, g1, . . . , fn, gn ∈
k[t1, . . . , tm], consider the new variable y and J = 〈g1x1 − f1, . . . , gn xn − fn,

1 − gy〉, where g = g1 · · · gn . Compute a Groebner basis with respect to a lexico-
graphic ordering where y and every ti are greater than every xi . Then the elements of
the Groebner basis not involving y, t1, . . . , tm define the smallest variety in kn contain-
ing the parametrization.

Let us see how this algorithm works for example (5). Let w be the new variable, so
that

J = 〈vx − u2, uy − v2, z − u, 1 − uvw〉 ⊂ k[w, u, v, x, y, z].

One easily calculates that J3 = J ∩ k[x, y, z] = 〈x2 y − z3〉, so that V(x2 y − z3) is the
variety determined by the parametrization (5). In the exercises, you will study how
much of V(x2 y − z3) is filled up by the parametrization.

We should also mention that in practice, resultants are often used to solve the implic-
itization problem. Implicitization for curves and surfaces is discussed in ANDERSON,
GOLDMAN and SEDERBERG (1984a) and (1984b). Another reference is CANNY and
MANOCHA (1992), which shows how implicitization of parametric surfaces can be
done using multipolynomial resultants.
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EXERCISES FOR §3

1. In diagram (3) in the text, prove carefully that F = πm ◦ i and i(km) = V .

2. When k = , the conclusion of Theorem 1 can be strengthened. Namely, one can show that

there is a variety W � V(Im) such that V(Im) − W ⊂ F( m). Prove this using the Closure

Theorem.

3. Give an example to show that Exercise 2 is false over . Hint: t2 is always positive.

4. In the text, we proved that over , the tangent surface to the twisted cubic is defined by the

equation

g7 = x3z − (3/4)x2 y2 − (3/2)xyz + y3 + (1/4)z2 = 0.

We want to show that the same is true over . If (x, y, z) is a real solution of the above

equation, then we proved (using the Extension Theorem) that there are t, u ∈ such

that

x = t + u,

y = t2 + 2tu,

z = t3 + 3t2u.

Use the Groebner basis given in the text to show that t and u are real. This will prove that

(x, y, z) is on the tangent surface in 3. Hint: First show that u is real.

5. In the parametrization of the tangent surface of the twisted cubic, show that the parameters

t and u are uniquely determined by x, y, and z. Hint: The argument is similar to what you

did in Exercise 4.

6. Let S be the parametric surface defined by

x = uv,

y = u2,

z = v2.

a. Find the equation of the smallest variety V that contains S.

b. Over , use the Extension Theorem to prove that S = V . Hint: The argument is similar

to what we did for the tangent surface of the twisted cubic.

c. Over , show that S only covers the “half” of V . What parametrization would cover the

other “half”?

7. Let S be the parametric surface

x = uv,

y = uv2,

z = u2.

a. Find the equation of the smallest variety V that contains S.

b. Over , show that V contains points which are not on S. Determine exactly which points

of V are not on S. Hint: Use lexicographic order with u > v > x > y > z.

8. The Enneper surface is defined parametrically by

x = 3u + 3uv2 − u3,

y = 3v + 3u2v − v3,

z = 3u2 − 3v2.
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a. Find the equation of the smallest variety V containing the Enneper surface. It will be a

very complicated equation!

b. Over , use the Extension Theorem to prove that the above equations parametrize

the entire surface V . Hint: There are a lot of polynomials in the Groebner basis. Keep

looking—you will find what you need.

9. The Whitney umbrella surface is given parametrically by

x = uv,

y = v,

z = u2.

A picture of this surface is:

a. Find the equation of the smallest variety containing the Whitney umbrella.

b. Show that the parametrization fills up the variety over but not over . Over , exactly

what points are omitted?

c. Show that the parameters u and v are not always uniquely determined by x, y, and

z. Find the points where uniqueness fails and explain how your answer relates to the

picture.

10. Consider the curve in n parametrized by xi = fi (t), where f1, . . . fn are polynomials in

[t]. This gives the ideal

I = 〈x1 − f1(t), . . . , xn − fn(t)〉 ⊂ [t, x1, . . . , xn].

a. Prove that the parametric equations fill up all of the variety V(I1) ⊂ n .

b. Show that the conclusion of part a may fail if we let f1 . . . , fn be rational functions.

Hint: See §3 of Chapter 1.

c. Even if all of the fi ’s are polynomials, show that the conclusion of part a may fail if we

work over .

11. This problem is concerned with the proof of Theorem 2.

a. Let k be an infinite field and let f, g ∈ k[t1, . . . , tm]. Assume that g 
= 0 and that f
vanishes on km − V (g). Prove that f is the zero polynomial. Hint: Consider the product

f g.

b. Prove Theorem 2 using the hints given in the text.

12. Consider the parametrization (5) given in the text. For simplicity, let k = . Also let I =
〈vx − u2, uy − v2, z − u〉 be the ideal obtained by “clearing denominators.”

a. Show that I2 = 〈(x2 y − z3)〉.
b. Show that the smallest variety in 5 containing i( 2 − W ) [see diagram (7)] is

V(vx − u2, uy − v2, z − u, x2 y − z3, vz − xy). Hint: Show that i( 2 − W ) =
π1(V(J )), and then use the Closure Theorem.
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c. Show that {(0, 0, x, y, 0) : x, y arbitrary} ⊂ V(I ) and conclude that V(I ) is not the

smallest variety containing i( 2 − W ).

d. Determine exactly which portion of x2 y = z3 is parametrized by (5).

13. Given a rational parametrization as in (6), there is one case where the naive ideal

I = 〈g1x1 − f1, . . . , gn xn − fn〉 obtained by “clearing denominators” gives the right an-

swer. Suppose that xi = fi (t)/gi (t) where there is only one parameter t . We can as-

sume that for each i, fi (t) and gi (t) are relatively prime in k[t] (so in particular, they

have no common roots). If I ⊂ k[t, x1, . . . , xn] is as above, then prove that V(I1) is

the smallest variety containing F(k − W ), where as usual g = g1 · · · gn ∈ k[t] and W =
V (g) ⊂ k. Hint: In diagram (7), show that i(km − W ) = V(I ), and adapt the proof of

Theorem 1.

14. The folium of Descartes can be parametrized by

x = 3t

1 + t3
,

y = 3t2

1 + t3
.

a. Find the equation of the folium. Hint: Use Exercise 13.

b. Over or , show that the above parametrization covers the entire curve.

15. In Exercise 16 to §3 of Chapter 1, we studied the parametric equations over

x = (1 − t)2x1 + 2t(1 − t)wx2 + t2x3

(1 − t)2 + 2t(1 − t)w + t2
,

y = (1 − t)2 y1 + 2t(1 − t)wy2 + t2 y3

(1 − t)2 + 2t(1 − t)w + t2
,

where w, x1, y1, x2, y2, x3, y3 are constants and w > 0. By eliminating t , show that these

equations describe a portion of a conic section. Recall that a conic section is described by

an equation of the form

ax2 + bxy + cy2 + dx + ey + f = 0.

Hint: In most computer algebra systems, the Groebner basis command allows polynomials

to have coefficients involving symbolic constants like w, x1, y1, x2, y2, x3, y3.

§4 Singular Points and Envelopes

In this section, we will discuss two topics from geometry:
� the singular points on a curve,
� the envelope of a family of curves.
Our goal is to show how geometry provides interesting equations that can be solved by
the techniques studied in §§1 and 2.

We will introduce some of the basic ideas concerning singular points and envelopes,
but our treatment will be far from complete. One could write an entire book on these
topics [see, for example, BRUCE and GIBLIN (1992)]. Also, our discussion of envelopes
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will not be fully rigorous. We will rely on some ideas from calculus to justify what is
going on.

Singular Points
Suppose that we have a curve in the plane k2 defined by f (x, y) = 0, where f ∈
k[x, y]. We expect that V( f ) will have a well-defined tangent line at most points,
although this may fail where the curve crosses itself or has a kink. Here are two
examples:

x

y

y2 = x3

x

y

y2 = x2(1 + x)

If we demand that a tangent line be unique and follow the curve on both sides of
the point, then each of these curves has a point where there is no tangent. Intuitively,
a singular point of V( f ) is a point such as above where the tangent line fails to
exist.

To make this notion more precise, we first must give an algebraic definition of tangent
line. We will use the following approach. Given a point (a, b) ∈ V( f ), a line L through
(a, b) is given parametrically by

x = a + ct,
(1)

y = b + dt.

This line goes through (a, b) when t = 0. Notice also that (c, d) 
= (0, 0) is a vec-
tor parallel to the line. Thus, by varying (c, d), we get all lines through (a, b). But
how do we find the one that is tangent to V( f )? Can we find it without using
calculus?

Let us look at an example. Consider the line L

x = 1 + ct,
(2)

y = 1 + dt,
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through the point (1, 1) on the parabola y = x2:

x

y

(1,1)↓
L

←  tangent line

y = x2

From calculus, we know that the tangent line has slope 2, which corresponds to the line
with d = 2c in the above parametrization. To find this line by algebraic means, we will
study the polynomial that describes how the line meets the parabola. If we substitute
(2) into the left-hand side of y − x2 = 0, we get the polynomial

g(t) = 1 + dt − (1 + ct)2 = −c2t2 + (d − 2c)t = t(−c2t + d − 2c).(3)

The roots of g determine where the line intersects the parabola (be sure you understand
this). If d 
= 2c, then g has two distinct roots when c 
= 0 and one root when c = 0.
But if d = 2c, then g has a root of multiplicity 2. Thus, we can detect when the line
(2) is tangent to the parabola by looking for a multiple root.

Based on this example, let us make the following definition.

Definition 1. Let k be a positive integer. Suppose that we have a point (a, b) ∈ V( f )
and let L be line through (a, b). Then L meets V( f ) with multiplicity k at (a, b) if L
can be parametrized as in (1) so that t = 0 is a root of multiplicity k of the polynomial
g(t) = f (a + ct, b + dt).

In this definition, note that g(0) = f (a, b) = 0, so that t = 0 is a root of g. Also, recall
that t = 0 is a root of multiplicity k when g = t kh, where h(0) 
= 0. One ambiguity
with this definition is that a given line has many different parametrizations. So we need
to check that the notion of multiplicity is independent of the parametrization. This will
be covered in the exercises.

For an example of how this definition works, consider the line given by (2) above.
It should be clear from (3) that the line meets the parabola y = x2 with multiplicity 1
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at (1, 1) when d 
= 2c and with multiplicity 2 when d = 2c. Other examples will be
given in the exercises.

We will use the notion of multiplicity to pick out the tangent line. To make this work,
we will need the gradient vector of f, which is defined to be

∇ f =
(

∂

∂x
f,

∂

∂y
f

)
.

We can now state our result.

Proposition 2. Let f ∈ k[x, y], and let (a, b) ∈ V( f ).
(i) If ∇ f (a, b) 
= (0, 0), then there is a unique line through (a, b) which meets V( f )

with multiplicity ≥ 2.
(ii) If ∇ f (a, b) = (0, 0), then every line through (a, b) meets V( f ) with multiplicity

≥ 2.

Proof. Let a line L through (a, b) be parametrized as in equation (1) and let g(t) =
f (a + ct, b + dt). Since (a, b) ∈ V( f ), it follows that t = 0 is a root of g. The follow-
ing observation will be proved in the exercises:

t = 0 is a root of g of multiplicity ≥ 2 ⇔ g′(0) = 0.(4)

Using the chain rule, one sees that

g′(t) = ∂

∂x
f (a, ct, b + dt) · c + ∂

∂y
f (a + ct, b + dt) · d.

and thus

g′(0) = ∂

∂x
f (a, b) · c + ∂

∂y
f (a, b) · d.

If ∇ f (a, b) = (0, 0), then the above equation shows that g′(0) always equals 0. By
(4), it follows that L always meets V( f ) at (a, b) with multiplicity ≥ 2. This proves the
second part of the proposition. Turning to the first part, suppose that ∇ f (a, b) 
= (0, 0).
We know that g′(0) = 0 if and only if

∂

∂x
f (a, b) · c + ∂

∂y
f (a, b) · d = 0.(5)

This is a linear equation in the unknowns c and d. Since the coefficients ∂
∂x f (a, b)

and ∂
∂y f (a, b) are not both zero, the solution space is 1-dimensional. Thus, there is

(c0, d0) 
= (0, 0) such that (c, d) satisfies the above equation if and only if (c, d) =
λ(c0, d0) for some λ ∈ k. It follows that the (c, d)’s giving g′(0) = 0 all parametrize
the same line L . This shows that there is a unique line which meets V( f ) at (a, b) with
multiplicity ≥ 2. Proposition 2 is proved. �

Using Proposition 2, it is now obvious how to define the tangent line. From the
second part of the proposition, it is also clear what a singular point should be.
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Definition 3. Let f ∈ k[x, y] and let (a, b) ∈ V( f ).
(i) If ∇ f (a, b) 
= (0, 0), then the tangent line of V( f ) at (a, b) is the unique line

through (a, b) which meets V( f ) with multiplicity ≥ 2. We say that (a, b) is a
nonsingular point of V( f ).

(ii) If ∇ f (a, b) = (0, 0), then we say that (a, b) is a singular point of V( f ).

Over , the tangent line and the gradient have the following geometric interpretation.
If the tangent to V( f ) at (a, b) is parametrized by (1), then the vector (c, d) is parallel
to the tangent line. But we also know from equation (5) that the dot product ∇ f (a, b) ·
(c, d) is zero, which means that ∇ f (a, b) is perpendicular to (c, d). Thus, we have an
algebraic proof of the theorem from calculus that the gradient∇ f (a, b) is perpendicular
to the tangent line of V( f ) at (a, b).

For any given curve V( f ), we can compute the singular points as follows. The
gradient ∇ f is zero when ∂

∂x f and ∂
∂y f vanish simultaneously. Since we also have to

be on V( f ), we need f = 0. It follows that the singular points of V( f ) are determined
by the equations

f = ∂

∂x
f = ∂

∂y
f = 0.

As an example, consider the curve y2 = x2(1 + x) shown earlier. To find the singular
points, we must solve

f = y2 − x2 − x3 = 0,

∂

∂x
f = −2x − 3x2 = 0,

∂

∂y
f = 2y = 0.

From these equations, it is easy to see that (0, 0) is the only singular point of V( f ).
This agrees with the earlier picture.

Using the methods learned in §§1 and 2, we can tackle much more complicated
problems. For example, later in this section we will determine the singular points of
the curve defined by the sixth degree equation

0 = −1156 + 688x2 − 191x4 + 16x6 + 544y + 30x2 y − 40x4 y

+ 225y2 − 96x2 y2 + 16x4 y2 − 136y3 − 32x2 y3 + 16y4.

The exercises will explore some other aspects of singular points. In Chapter 9, we will
study singular and nonsingular points on an arbitrary affine variety.

Envelopes
In our discussion of envelopes, we will work over to make the geometry easier to
see. The best way to explain what we mean by envelope is to compute an example. Let
t ∈ , and consider the circle in 2 defined by the equation

(x − t)2 + (y − t2)2 = 4.(6)
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Since (t, t2) parametrizes a parabola, we can think of equation (6) as describing the
family of circles of radius 2 in 2 whose centers lie on the parabola y = x2. The picture
is as follows:

A Family of Circles in the Plane

x

y

Note that the “boundary” curve is simultaneously tangent to all the circles in the family.
This is a special case of the envelope of a family of curves. The basic idea is that the
envelope of a family of curves is a single curve that is tangent to all of the curves in the
family. Our goal is to study envelopes and learn how to compute them. In particular,
we want to find the equation of the envelope in the above example.

Before we can give a more careful definition of envelope, we must first understand
the concept of a family of curves in 2.

Definition 4. Given a polynomial F ∈ [x, y, t], fix a real number t ∈ . Then the
variety in 2 defined by F(x, y, t) = 0 is denoted V(F1), and the family of curves
determined by F consists of the varieties V(Ft ) as t varies over .

In this definition, we think of t as a parameter that tells us which curve in the family
we are looking at. Strictly speaking, we should say “family of varieties” rather than
“family of curves,” but we will use the latter to emphasize the geometry of the situation.

For another example of a family and its envelope, consider the curves defined by

F(x, y, t) = (x − t)2 − y + t = 0.(7)

Writing this as y − t = (x − t)2, we see in the picture at the top of the next page that (7)
describes the family V(Ft ) of parabolas obtained by translating the standard parabola
y = x2 along the straight line y = x . In this case, the envelope is clearly the straight
line that just touches each parabola in the family. This line has slope 1, and from here,
it is easy to check that the envelope is given by y = x − 1/4 (the details are left as an
exercise).
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Not all envelopes are so easy to describe. The remarkable fact is that we can char-
acterize the envelope in the following completely algebraic way.

A Family of Parabolas in the Plane

x

y

Definition 5. Given a family V(Ft ) of curves in 2, its envelope consists of all points
(x, y) ∈ 2 with the property that

F(x, y, t) = 0,

∂

∂t
F(x, y, t) = 0

for some t ∈ .

We need to explain how this definition corresponds to the intuitive idea of envelope.
The argument given below is not rigorous, but it does explain where the condition
on ∂

∂t F comes from. A complete treatment of envelopes requires a fair amount of
theoretical machinery. We refer the reader to Chapter 5 of BRUCE and GIBLIN (1992)
for more details.

Given a family V(Ft ), we think of the envelope as a curve C with the property that at
each point on the curve, C is tangent to one of the curves V(Ft ) in the family. Suppose
that C is parametrized by

x = f (t),
y = g(t).

We will assume that at time t , the point ( f (t), g(t) is on the curve V(Ft ). This ensures
that C meets all the members of the family. Algebraically, this means that

F( f (t), g(t), t) = 0 for all t ∈ .(8)

But when is C tangent to V(Ft ) at ( f (t), g(t))? This is what is needed for C to
be the envelope of the family. We know from calculus that the tangent vector to C is



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX December 16, 2006 18:21

144 3. Elimination Theory

( f ′(t), g′(t)). As for V(Ft ), we have the gradient ∇F =
(

∂
∂x F, ∂

∂y F
)

, and from the

first part of this section, we know that ∇F is perpendicular to the tangent line to V(Ft ).
Thus, for C to be tangent to V(Ft ), the tangent ( f ′(t), g′(t)) must be perpendicular to
the gradient ∇F . In terms of dot products, this means that ∇F · ( f ′(t), g′(t)) = 0 or,
equivalently,

∂

∂x
F( f (t), g(t), t) · f ′(t) + ∂

∂y
F( f (t), g(t), t) · g′(t) = 0.(9)

We have thus shown that the envelope is determined by conditions (8) and (9). To
relate this to Definition 5, differentiate (8) with respect to t. Using the chain rule, we
get

∂

∂x
F( f (t), g(t), t) · f ′(t) + ∂

∂y
F( f (t), g(t), t) · g′(t) + ∂

∂t
F( f (t), g(t), t) = 0.

If we subtract equation (9) from this, we obtain

∂

∂t
F( f (t), g(t), t) = 0.(10)

From (8) and (10), it follows that (x, y) = ( f (t), g(t)) has exactly the property described
in Definition 5.

As we will see later in the section, the above discussion of envelopes is rather naive.
For us, the main consequence of Definition 5 is that the envelope of V(Ft ) is determined
by the equations

F(x, y, t) = 0,

∂

∂t
F(x, y, t) = 0.

Note that x and y tell us where we are on the envelope and t tells us which curve in
the family we are tangent to. Since these equations involve x, y, and t , we need to
eliminate t to find the equation of the envelope. Thus, we can apply the theory from
§§1 and 2 to study the envelope of a family of curves.

Let us see how this works in example (6). Here, F = (x − t)2 + (y − t2)2 − 4, so
that the envelope is described by the equations

F = (x − t)2 + (y − t2)2 − 4 = 0,

∂

∂t
F = −2(x − t) − 4t(y − t2) = 0.(11)

Using lexicographic order with t > x > y, a Groebner basis is given by

g1 = −1156 + 1688x2 − 191x4 + 16x6 + 544y + 30x2 y − 40x4 y

+ 225y2 − 96x2 y2 + 16x4 y2 − 136y3 − 32x2 y3 + 16y4,

g2 = (7327 − 1928y − 768y2 − 896y3 + 256y4)t + 6929x − 2946x3

+ 224x5 + 2922xy − 1480x3 y + 128x5 y − 792xy2 − 224x3 y2

− 544xy3 + 128x3 y3 − 384xy4,
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g3 = (431x − 12xy − 48xy2 − 64xy3)t + 952 − 159x2 − 16x4 + 320y

− 214x2 y + 32x4 y − 366y2 − 32x2 y2 − 80y3 + 32x2 y3 + 32y4,

g4 = (697 − 288x2 + 108y − 336y2 + 64y3)t + 23x − 174x3

+ 32x5 + 322xy − 112x3 y + 32xy2 + 32x3 y2 − 96xy3,

g5 = 135t2 + (26x + 40xy + 32xy2)t − 128 + 111x2

− 16x4 + 64y + 8x2 y + 32y2 − 16x2 y2 − 16y3.

We have written the Groebner basis as polynomials in t with coefficients in [x, y],
The Elimination Theorem tells us that g1 generates the first elimination ideal. Thus, the
envelope lies on the curve g1 = 0. Here is a picture of V(g1) together with the parabola
y = x2:

–6 –4 –2 0 2 4 6
–2

0

2

4

6

8

The surprise is the “triangular” portion of the graph that was somewhat unclear in the
earlier picture of the family. By drawing some circles centered on the parabola, you
can see how the triangle is still part of the envelope.

We have proved that the envelope lies on V(g1), but the two may not be equal. In
fact, there are two interesting questions to ask at this point:
� Is every point of V(g1), on the envelope? This is the same as asking if every partial

solution (x, y) of (11) extends to a complete solution (x, y, t).
� Given a point on the envelope, how many curves in the family are tangent to the

envelope at the point? This asks how many t’s are there for which (x, y) extends to
(x, y, t).

Since the leading coefficient of t in g5 is the constant 135, the Extension Theorem (in
the form of Corollary 4 of §1) guarantees that every partial solution extends, provided
we work over the complex numbers. Thus, t exists, but it might be complex. This
illustrates the power and limitation of the Extension Theorem: it can guarantee that
there is a solution, but it might lie in the wrong field.
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In spite of this difficulty, the equation g5 = 0 does have something useful to tell us:
it is quadratic in t, so that a given (x, y) extends in at most two ways to a complete
solution. Thus, a point on the envelope of (6) is tangent to at most two circles in the
family. Can you see any points where there are two tangent circles?

To get more information on what is happening, let us look at the other polynomials
in the Groebner basis. Note that g2, g3, and g4 involve t only to the first power. Thus,
we can write them in the form

gi = Ai (x, y)t + Bi (x, y), i = 2, 3, 4.

If Ai does not vanish at (x, y) for one of i = 2, 3, 4, then we can solve Ai t + Bi = 0
to obtain

t = − Bi (x, y)

Ai (x, y)
.

Thus, we see that t is real whenever x and y are. More importantly, this formula shows
that t is uniquely determined when Ai (x, y) 
= 0. Thus, a point on the envelope of (6)
not in V(A2, A3, A4) is tangent to exactly one circle in the family.

It remains to understand where A2, A3, and A4 vanish simultaneously. These poly-
nomials might look complicated, but, using the techniques of §1, one can show that the
real solutions of A2 = A3 = A4 = 0 are

(x, y) = (0, 17/4) and (±0.936845, 1.63988).(12)

Looking back at the picture of V(g1), it appears that these are the singular points of
V(g1). Can you see the two circles tangent at these points? From the first part of this
section, we know that the singular points of V(g1) are determined by the equations
g1 = ∂

∂x g1 = ∂
∂y g1 = 0. Thus, to say that the singular points coincide with (12) means

that

V(A2, A3, A4) = V
(

g1,
∂

∂x
g1,

∂

∂y
g1

)
.(13)

To prove this, we will show that

g1,
∂

∂x
g1,

∂

∂y
g1 ∈ 〈A2, A3, A4〉,(14)

A2
2, A2

3, A2
4 ∈

〈
g1,

∂

∂x
g1,

∂

∂y
g1

〉
.

The proof of (14) is a straightforward application of the ideal membership algo-
rithm discussed in Chapter 2. For the first line, one computes a Groebner basis of
〈A2, A3, A4〉 and then applies the algorithm for the ideal membership problem to each
of g1,

∂
∂x g1,

∂
∂y g1. (see §8 of Chapter 2). The second line of(14)is treated similarly—the

details will be left as an exercise.
Since (13) follows immediately from (14), we have proved that a nonsingular point

on V(g1), is in the envelope of (6) and, at such a point, the envelope is tangent to
exactly one circle in the family. Also note that the singular points of V(g1) are the most
interesting points in the envelope, for they are the ones where there are two tangent
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circles. This last observation shows that singular points are not always bad—they can be
a useful indication that something unusual is happening. An important part of algebraic
geometry is devoted to the study of singular points.

In this example, equations (11) for the envelope were easy to write down. But to
understand the equations, we had to use a Groebner basis and the Elimination and
Extension. Theorems. Even though the Groebner basis looked complicated, it told
us exactly which points on the envelope were tangent to more than one circle. This
illustrates nicely the power of the theory we have developed so far.

As we said earlier, our treatment of envelopes has been a bit naive. Evidence of this
comes from the above example, which shows that the envelope can have singularities.
How can the envelope be “tangent” to a curve in the family at a singular point? In the
exercises, we will indicate another reason why our discussion has been too simple. We
have also omitted the fascinating relation between the family of curves V(Ft ) ⊂ 2 and
the surface V(F) ⊂ 3 defined by F(x, y, t) = 0. We refer the reader to Chapter 5 of
BRUCE and GIBLIN (1992) for a more complete treatment of these aspects of envelopes.

EXERCISES FOR §4

1. Let C be the curve in k2 defined by x3 − xy + y2 = 1 and note that (1, 1) ∈ C . Now consider

the straight line parametrized by

x = 1 + ct,

y = 1 + dt.

Compute the multiplicity of this line when it meets C at (1, 1). What does this tell you about

the tangent line? Hint: There will be two cases to consider.

2. In Definition 1, we need to show that the notion of multiplicity is independent of how the

line is parametrized.

a. Show that two parametrizations

x = a + ct, x = a + c′t,
y = b + dt, y = b + d ′t,

correspond to the same line if and only if there is a nonzero real number λ such that

(c, d) = λ(c′, d ′). Hint: In the parametrization x = a + ct, y = b + dt of a line L, recall

that L is parallel to the vector (c, d).

b. Suppose that the two parametrizations of part a correspond to the same line L that

meets V( f ) at (a, b). Prove that the polynomials g(t) = f (a + ct, b + dt) and g′(t) =
f (a + c′t, b + d ′t) have the same multiplicity at t = 0. Hint: Use part a to relate g and

g′. This will prove that the multiplicity of how L meets V( f ) at (a, b) is well defined.

3. Consider the straight lines

x = t,

y = b + t.

These lines have slope 1 and y-intercept b. For which values of b is the line tangent to

the circle x2 + y2 = 2? Draw a picture to illustrate your answer. Hint: Consider g(t) =
t2 + (b + t)2 − 2. The roots of this quadratic determine the values of t where the line meets

the circle.
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4. If (a, b) ∈ V( f ) and ∇ f (a, b) 
= (0, 0), prove that the tangent line of V( f ) at (a, b) is defined

by the equation

∂

∂x
f (a, b) · (x − a) + ∂

∂y
f (a, b) · (y − b) = 0.

5. Let g ∈ k[t] be a polynomial such that g(0) = 0.

a. Prove that t = 0 is a root of multiplicity ≥ 2 of g if and only if g′(0) = 0. Hint: Write

g(t) = th(t), and use the product rule.

b. More generally, prove that t = 0 is a root of multiplicity ≥ k if and only if g′(0) =
g′′(0) = · · · = g(k−1)(0) = 0.

6. As in the Definition 1, let a line L be parametrized by (1), where (a, b) ∈ V( f ).

Also let g(t) = f (a + ct, b + dt). Prove that L meets V( f ) with multiplicity k if

and only if g′(0) = g′′(0) = · · · = g(k−1)(0) = 0 but g(k)(0) 
= 0. Hint: Use the previous

exercise.

7. In this exercise, we will study how a tangent line can meet a curve with multiplicity greater
than 2. Let C be the curve defined by y = f (x), where f ∈ k[x]. Thus, C is just the graph

of f .

a. Give an algebraic proof that the tangent line to C at (a, f (a)) is parametrized by

x = a + t,

y = f (a) + f ′(a)t.

Hint: Consider g(t) = f (a) + f ′(a)t − f (a + t).
b. Show that the tangent line at (a, f (a)) meets the curve with multiplicity ≥ 3 if and only

if f ′′(a) = 0. Hint: Use the previous exercise.

c. Show that the multiplicity is exactly 3 if and only if f ′′(a) = 0 but f ′′′(a) 
= 0.

d. Over , a point of inflection is defined to be a point where f ′′(x) changes sign. Prove

that if the multiplicity is 3, then (a, f (a)) is a point of inflection.

8. In this problem, we will compute some singular points.

a. Show that (0, 0) is the only singular point of y2 = x3.

b. In Exercise 8 of §3 of Chapter 1, we studied the curve y2 = cx2 − x3, where c is some

constant. Find all singular points of this curve and explain how your answer relates to

the picture of the curve given in Chapter 1.

c. Show that the circle x2 + y2 = a2 has no singular points.

9. One use of multiplicities is to show that one singularity is “worse” than another.

a. For the curve y2 = x3, show that most lines through the origin meet the curve with

multiplicity exactly 2.

b. For x4 + 2xy2 + y3 = 0, show that all lines through the origin meet the curve with

multiplicity ≥ 3.

This suggests that the singularity at the origin is “worse” on the second curve. Using

the ideas behind this exercise, one can define the notion of the multiplicity of a singular

point.

10. We proved in the text that (0, 0) is a singular point of the curve C defined by y2 = x2(1 + x).

But in the picture of C , it looks like there are two “tangent” lines through the origin. Can

we use multiplicities to pick these out?

a. Show that with two exceptions, all lines through the origin meet C with multiplicity 2.

What are the lines that have multiplicity 3?

b. Explain how your answer to part (a) relates to the picture of C in the text. Why should

the “tangent” lines have higher multiplicity?
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11. The four-leaved rose is defined in polar coordinates by the equation r = sin(2θ ):

–.75 –.5 –.25 .25 .5 .75

–.75

–.5

–.25

.25

.5

.75

In Cartesian coordinates, this curve is defined by the equation (x2 + y2)3 = 4x2 y2.

a. Show that most lines through the origin meet the rose with multiplicity 4 at the origin.

Can you give a geometric explanation for this number?

b. Find the lines through the origin that meet the rose with multiplicity > 4. Give a geometric

explanation for the numbers you get.

12. Consider a surface V( f ) ⊂ k3 defined by f ∈ k[x, y, z].

a. Define what it means for (a, b, c) ∈ V( f ) to be a singular point.

b. Determine all singular points of the sphere x2 + y2 + z2 = 1. Does your answer make

sense?

c. Determine all singular points on the surface V(x2 − y2z2 + z3). How does your answer

relate to the picture of the surface drawn in §2 of Chapter 1?

13. Consider the family of curves given by F = xy − t ∈ [x, y, t]. Draw various of the curves

V(Ft ) in the family. Be sure to include a picture of V(F0).

14. This problem will study the envelope of the family F = (x − t)2 − y + t considered in

example (7).

a. It is obvious that the envelope is a straight line of slope 1. Use elementary calculus to

show that the line is y = x − 1/4.

b. Use Definition 5 to compute the envelope.

c. Find a parametrization of the envelope so that at time t , the point ( f (t), g(t)) is on the

parabola V(Ft ). Note that this is the kind of parametrization used in our discussion of

Definition 5.

15. This problem is concerned with the envelope of example (6).

a. Copy the picture in the text onto a sheet of paper and draw in the two tangent circles for

each of the points in (12).

b. For the point (0, 4.25) = (0, 17.4), find the exact values of the t’s that give the two tangent

circles.

c. Show that the exact values of the points (12) are given by

(0, 17
4

) and (± 1
2

√
15 + 6

3
√

2 − 12
3
√

4, 1
4
(−1 + 6

3
√

2)).

Hint: Most computer algebra systems have commands to factor polynomials and solve

cubic equations.
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16. Consider the family determined by F = (x − t)2 + y2 − (1/2)t2.

a. Compute the envelope of this family.

b. Draw a picture to illustrate your answer.

17. Consider the family of circles defined by (x − t)2 + (y − t2)2 = t2 in the plane 2.

a. Compute the equation of the envelope of this family and show that the envelope is the

union of two varieties.

b. Use the Extension Theorem and a Groebner basis to determine, for each point in the

envelope, how many curves in the family are tangent to it. Draw a picture to illustrate

your answer. Hint: You will use a different argument for each of the two curves making

up the envelope.

18. Prove (14) using the hints given in the text. Also show that A2 /∈ 〈g1,
∂

∂x g1,
∂

∂y g1〉. This

shows that the ideals 〈g1,
∂

∂x g1,
∂

∂y g1〉 and 〈A2, A3, A4〉 are not equal, even though they

define the same variety.

19. In this exercise, we will show that our definition of envelope is too naive.

a. Given a family of circles of radius 1 with centers lying on the x-axis, draw a picture to

show that the envelope consists of the lines y = ±1.

b. Use Definition 5 to compute the envelope of the family given by F = (x − t)2 + y2 − 1.

Your answer should not be surprising.

c. Use Definition 5 to find the envelope when the family is F = (x − t3)2 + y2 − 1. Note

that one of the curves in the family is part of the answer. This is because using t3 allows

the curves to “bunch up” near t = 0, which forces V(F0) to appear in the envelope.

In our intuitive discussion of envelope, recall that we assumed we could parametrize the

envelope so that ( f (t), g(t)) was in V(Ft ) at time t . This presumes that the envelope is

tangent to different curves in the family. Yet in the example given in part (c), part of the

envelope lies in the same curve in the family. Thus, our treatment of envelope was too simple.

20. Suppose we have a family of curves in 2 determined by F ∈ [x, y, t]. Some of the

curves V(Ft ) may have singular points, whereas others may not. Can we find the ones that

have a singularity?

a. By considering the equations F = ∂

∂x F = ∂

∂y = 0 in 3 and using elimination theory,

describe a procedure for determining those t’s corresponding to curves in the family

which have a singular point.

b. Apply the method of part (a) find the curves in the family of Exercise 13 that have singular

points.

§5 Unique Factorization and Resultants

The main task remaining in Chapter 3 is to prove the Extension Theorem. This will
require that we learn some new algebraic tools concerning unique factorization and
resultants. Both of these will be used in §6 when we prove the Extension Theorem. We
will also make frequent use of unique factorization in later chapters of the book.

Irreducible Polynomials and Unique Factorization
We begin with a basic definition.

Definition 1. Let k be a field. A polynomial f ∈ k[x1, . . . , xn] is irreducible over k if f
is nonconstant and is not the product of two nonconstant polynomials in k[x1, . . . , xn].
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This definition says that if a nonconstant polynomial f is irreducible over k, then up
to a constant multiple, its only nonconstant factor is f itself. Also note that the concept
of irreducibility depends on the field. For example, x2 + 1 is irreducible over and

, but, over , we have x2 + 1 = (x − i)(x + i).
Every polynomial is a product of irreducible polynomials as follows.

Proposition 2. Every nonconstant polynomial f ∈ k[x1, . . . , xn] can be written as a
product of polynomials which are irreducible over k.

Proof. If f is irreducible over k, then we are done. Otherwise, we can write f = gh,
where g, h ∈ k[x1, . . . , xn] are nonconstant. Note that the total degrees of g and h are
less than the total degree of f . Now apply this process to g and h: if either fails to be
irreducible over k, we factor it into nonconstant factors. Since the total degree drops
each time we factor, this process can be repeated at most finitely many times. Thus, f
must be a product of irreducibles. �

In Theorem 5 we will show that the factorization of Proposition 2 is essentially
unique. But first, we have to prove the following crucial property of irreducible poly-
nomials.

Theorem 3. Let f ∈ k[x1, . . . , xn] be irreducible over k and suppose that f divides the
product gh, where g, h ∈ k[x1, . . . , xn]. Then f divides g or h.

Proof. We will use induction on the number of variables. When n = 1, we can use
the GCD theory developed in §5 of Chapter 1. If f divides gh, then consider p =
GCD( f, g). If p is nonconstant, then f must be a constant multiple of p since f is
irreducible, and it follows that f divides g. On the other hand, if p is constant, we
can assume p = 1, and then we can find A, B ∈ k[x1] such that A f + Bg = 1 (see
Proposition 6 of Chapter 1, §5). If we multiply this by h, we get

h = h(A f + Bg) = Ah f + Bgh.

Since f divides gh, f is a factor of Ah f + Bgh, and, thus, f divides h. This proves
the case n = 1.

Now assume that the theorem is true for n − 1. We first discuss the special case
where the irreducible polynomial does not involve x1:

u ∈ k[x2, . . . , xn] irreducible, u divides gh ∈ k[x1, . . . xn] ⇒ u divides g or h.(1)

To prove this, write g = �l
i=0ai xi

1 and h = �m
i=0bi xi

1, where ai , bi ∈ k[x2, . . . , xn]. If
u divides every ai , then u divides g, and similarly for h. Hence, if u divides neither, we
can find i, j ≥ 0 such that u divides neither ai nor b j . We will assume that i and j are
the smallest subscripts with this property. Then consider

ci+ j = (a0bi+ j + a1bi+ j−1 + · · · + ai−1b j+1) + ai b j + (ai+1b j−1 + · · · + ai+ j b0).

By the way we chose i, u divides every term inside the first set of parentheses and, by
the choice of j , the same is true for the second set of parentheses. But u divides neither
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ai nor b j , and since u is irreducible, our inductive assumption implies that u does not
divide ai b j . Since u divides all other terms of ci+ j , it cannot divide ci+ j . We leave it

as an exercise to show that ci+ j is the coefficient of xi+ j
1 in gh, and, hence, u cannot

divide gh. This contradiction completes the proof of (1).
Now, given (1), we can treat the general case. Suppose that f divides gh. If f doesn’t

involve x1, then we are done by (1). So assume that f is nonconstant in x1. We will
use the ring k(x2, . . . , xn)[x1], which is a polynomial ring in one variable over the field
k(x2, . . . , xn). Remember that elements of k(x2, . . . , xn) are quotients of polynomials
in k(x2, . . . , xn). We can regard k(x1, . . . , xn) as lying inside k(x2, . . . , xn)[x1]. The
strategy will be to work in the larger ring, where we know the theorem to be true, and
then pass back to the smaller ring k[x1, . . . , xn].

We claim that f is still irreducible when regarded as an element of k(x2, . . . , xn)[x1].
To see why, suppose we had a factorization of f in the larger ring, say f = AB. Here,
A and B are polynomials in x1 with coefficients in k(x2, . . . , xn). To prove that f is
irreducible here, we must show that A or B has degree 0 in x1. Let d ∈ k[x2, . . . , xn]
be the product of all denominators in A and B. Then Ã = d A and B̃ = d B are in
k[x1, . . . , xn], and

d2 f = Ã B̃(2)

in k[x1, . . . , xn]. By Proposition 2, we can write d2 as a product of irreducible factors
in k[x2, . . . , xn], and, by (1), each of these divides Ã or B̃. We can cancel such a factor
from both sides of (2), and after we have cancelled all of the factors, we are left with

f = Ã1 B̃1

in k[x1, . . . , xn]. Since f is irreducible in k[x1, . . . , xn], this implies that Ã1 or B̃1 is
constant. Now these polynomials were obtained from the original A, B by multiplying
and dividing by various elements of k[x2, . . . , xn]. This shows that either A or B does
not involve x1, and our claim follows.

Now that f is irreducible in k(x2, . . . , xn)[x1], we know by the n = 1 case of
the theorem that f divides g or h in k(x2, . . . , xn)[x1]. Say g = A f for some
A ∈ k(x2, . . . , xn)[x1]. If we clear denominators, we can write

dg = Ã f(3)

in k[x1, . . . , xn], where d ∈ k[x1, . . . , xn]. By (1), every irreducible factor of d divides
Ã or f . The latter is impossible since f is irreducible and has positive degree in x1. But
each time an irreducible factor divides Ã, we can cancel it from both sides of (3). When
all the cancellation is done, we see that f divides g in k[x1, . . . , xn]. This completes
the proof of the theorem. �

In §6, we will need the following consequence of Theorem 3.

Corollary 4. Suppose that f, g ∈ k[x1, . . . , xn] have positive degree in x1. Then f
and g have a common factor in k[x1, . . . , xn] of positive degree in x1 if and only if they
have a common factor in k(x2, . . . , xn)[x1].
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Proof. If f and g have a common factor h in k[x1, . . . , xn] of positive degree in x1,
then they certainly have a common factor in the larger ring k(x2, . . . , xn)[x1]. Going
the other way, suppose that f and g have a common factor h ∈ k(x2, . . . , xn)[x1]. Then

f = h̃ f̃1, f̃1 ∈ k(x2, . . . , xn)[x1].

g = h̃g̃1, g̃1 ∈ k(x2, . . . , xn)[x1].

Now h̃, f̃1 and g̃1 may have denominators that are polynomials in k[x2, . . . , xn].
Letting d ∈ k[x2, . . . , xn] be a common denominator of these polynomials, we get
h = dh̃, f1 = d f̃1 and g1 = dg̃1 in k[x1, . . . , xn]. If we multiply each side of the above
equations by d2, we obtain

d2 f = h f1,

d2g = hg1

in k[x1, . . . , xn]. Now let h1 be an irreducible factor of h of positive degree in x1. Since
h̃ = h/d has positive degree in x1, such an h1 must exist. Then h1 divides d2 f , so that
it divides d2 or f by Theorem 3. The former is impossible because d2 ∈ k[x2, . . . , xn]
and, hence, h1 must divide f in k[x1, . . . , xn]. A similar argument shows that h1

divides g, and thus h1 is the required common factor. This completes the proof of the
corollary. �

Theorem 3 says that irreducible polynomials behave like prime numbers, in that if a
prime divides a product of two integers, it must divide one or the other. This property of
primes is the key to unique factorization of integers, and the same is true for irreducible
polynomials.

Theorem 5. Every nonconstant f ∈ k[x1, . . . , xn] can be written as a product f =
f1 · f2 · · · fr of irreducibles over k. Further, if f = g1 · g2 · · · gs is another factoriza-
tion into irreducibles over k, then r = s and the gi ’s can be permuted so that each fi

is a constant multiple of gi .

Proof. The proof will be covered in the exercises. �

For polynomials in [x1, . . . , xn], there are algorithms for factoring into irreducibles
over , A classical algorithm due to Kronecker is discussed in Theorem 4.8 of
MINES, RICHMAN, and RUITENBERG (1988), and a more efficient method is given
in DAVENPORT, SIRET and TOURNIER (1993) or MIGNOTTE (1992). Most computer al-
gebra systems have a command for factoring polynomials in [x1, . . . , xn]. Factoring
polynomials in [x1, . . . , xn] or [x1, . . . , xn] is much more difficult.

Resultants
Although resultants have a different flavor from what we have done so far, they play an
important role in elimination theory. We will introduce the concept of resultant by asking
when two polynomials in k[x] have a common factor. This might seem far removed from
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elimination, but we will see the connection by the end of the section. In §6, we will study
the resultant of two polynomials in k[x1, . . . , xn], and we will then use resultants to
prove the Extension Theorem. Suppose that we want to know whether two polynomials
f, g ∈ k[x] have a common factor (which means a polynomial h ∈ k[x] of degree
> 0 which divides f and g). One way would be to factor f and g into irreducibles.
Unfortunately, factoring can be a time-consuming process. A more efficient method
would be to compute the GCD of f and g using the Euclidean Algorithm from Chapter
1. A drawback is that the Euclidean Algorithm requires divisions in the field k. As we
will see later, this is something we want to avoid when doing elimination. So is there
a way of determining whether a common factor exists without doing any divisions in
k? Here is a first answer.

Lemma 6. Let f, g ∈ k[x] be polynomials of degrees l > 0 and m > 0, respectively.
Then f and g have a common factor if and only if there are polynomials A, B ∈ k[x]
such that:

(i) A and B are not both zero.
(ii) A has degree at most m − 1 and B has degree at most l − 1.

(iii) A f + Bg = 0.

Proof. First, assume that f and g have a common factor h ∈ k[x]. Then f = h f1 and
g = hg1, where f1, g1 ∈ k[x]. Note that f1 has degree at most l − 1, and similarly
deg(g1) ≤ m − 1. Then

g1 · f + (− f1) · g = g1 · h f1 − f1 · hg1 = 0.

and, thus, A = g1 and B = − f1 have the required properties.
Conversely, suppose that A and B have the above three properties. By (i), we may

assume B 
= 0. If and g have no common factor, then their GCD is 1, so we can find
polynomials Ã, B̃ ∈ k[x] such that Ã f + B̃g = 1 (see Proposition 6 of Chapter 1, §5).
Now multiply by B and use Bg = −A f :

B = ( Ã f + B̃g)B = ÃB f + B̃ Bg = ÃB f − B̃ A f = ( ÃB − B̃ A) f.

Since B is nonzero, this equation shows that B has degree at least l, which contradicts
(ii). Hence, there must be a common factor of positive degree. �

The answer given by Lemma 6 may not seem very satisfactory, for we still need to
decide whether the required A and B exist. Remarkably, we can use linear algebra
to answer this last question. The idea is to turn A f + Bg = 0 into a system of linear
equations. Write:

A = c0xm−1 + · · · + cm−1,

B = d0xl−1 + · · · + dl−1,

where for now we will regard the l + m coefficients c0, . . . , cm−1, d0, . . . , dl−1 as
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unknowns. Our goal is to find ci , di ∈ k, not all zero, so that the equation

A f + Bg = 0(4)

holds. Note that this will automatically give us A and B as required in Lemma 6.
To get a system of linear equations, let us also write out f and g:

f = a0xl + · · · + al , a0 
= 0,

g = b0xm + · · · + bm, b0 
= 0,

where ai , bi ∈ k. If we substitute these formulas for f, g, A, and B into equation (4)
and compare the coefficients of powers of x , then we get the following system of linear
equations with unknowns ci , di and coefficients ai , bi , in k:

a0c0 + b0d0 = 0 coefficient of xl+m−1

a1c0 + a0c1 + b1d0 + b0d1 = 0 coefficient of xl+m−2

. . .
. . .

...
alcm−1 + bmdl−1 = 0 coefficient of x0.

(5)

Since there are l + m linear equations and l + m unknowns, we know from linear
algebra that there is a nonzero solution if and only if the coefficient matrix has zero
determinant. This leads to the following definition.

Definition 7. Given polynomials f, g ∈ k[x] of positive degree, write them in the form

f = a0xl + · · · + al , a0 
= 0,

g = b0xm + · · · + bm, b0 
= 0.

Then the Sylvester matrix of f and g with respect to x, denoted Syl( f, g, x) is the
coefficient matrix of the system of equations given in (5). Thus, Syl( f, g, x) is the
following (l + m) × (l + m) matrix:

Syl( f, g, x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

a1 a0

a2 a1

. . .
...

. . . a0

... a1

a1

al
...

. . .
al︸ ︷︷ ︸

m columns

b0

b1 b0

b2 b1

. . .
...

. . . b0

... b1,

bm

bm
...

. . .
bm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
l columns

,

where the empty spaces are filled by zeros. The resultant of f and g with respect to x,
denoted Res( f, g, x), is the determinant of the Sylvester matrix. Thus,

Res( f, g, x) = det(Syl( f, g, x)).
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From this definition, we get the following properties of the resultant. A polynomial
is called an integer polynomial provided that all of its coefficients are integers.

Proposition 8. Given f, g ∈ k[x] of positive degree, the resultant Res( f, g, x) ∈ k is
an integer polynomial in the coefficients of f and g. Furthermore, f and g have a common
factor in k[x] if and only if Res( f, g, x) = 0.

Proof. The standard formula for the determinant of an s × s matrix A = (ai j )l≤i, j≤s is

det(A) =
∑

σ a permutation
of{1,...,s}

sgn(σ )a1σ (1) · a2σ (2) · · · asσ (s),

where sgn(σ ) is + 1 if σ interchanges an even number of pairs of elements of {1, . . . , s}
and −1 if σ interchanges an odd number of pairs (see Appendix A for more details).
This shows that the determinant is an integer polynomial (in fact, the coefficients are
±1) in its entries, and the first statement of the proposition then follows immediately
from the definition of resultant.

The second statement is just as easy to prove: the resultant is zero ⇔ the coefficient
matrix of equations (5) has zero determinant ⇔ equations (5) have a nonzero solution.
We observed earlier that this is equivalent to the existence of A and B as in Lemma 6,
and then Lemma 6 completes the proof of the proposition. �

As an example, let us see if f = 2x2 + 3x + 1 and g = 7x2 + x + 3 have a common
factor in [x]. One computes that

Res( f, g, x) = det

⎛
⎜⎜⎝

2 0 7 0
3 2 1 7
1 3 3 1
0 1 0 3

⎞
⎟⎟⎠ = 153 
= 0,

so that there is no common factor.
One disadvantage to using resultants is that large determinants are hard to compute.

In the exercises, we will explain an alternate method for computing resultants that is
similar to the Euclidean Algorithm. Most computer algebra systems have a resultant
command that implements this algorithm.

To link resultants to elimination, let us compute the resultant of the polynomials
f = xy − 1 and g = x2 + y2 − 4. Regarding f and g as polynomials in x whose
coefficients are polynomials in y, we get

Res( f, g, x) = det

⎛
⎝ y 0 1

−1 y 0
0 −1 y2 − 4

⎞
⎠ = y4 − 4y2 + 1.

More generally, if f and g are any polynomials in k[x, y] in which x appears to a positive
power, then we can compute Res ( f, g, x) in the same way. Since the coefficients are
polynomials in y, Proposition 8 guarantees that Res( f, g, x) is a polynomial in y. Thus,
given f, g ∈ k[x, y], we can use the resultant to eliminate x . But is this the same kind of
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elimination that we did in §§1 and 2? In particular, is Res( f, g, x) in the first elimination
ideal 〈 f, g〉 ∩ k[y]? To answer these questions, we will need the following result.

Proposition 9. Given f, g ∈ k[x] of positive degree, there are polynomials A, B ∈
k[x] such that

A f + Bg = Res( f, g, x).

Furthermore, the coefficients of A and B are integer polynomials in the coefficients of
f and g.

Proof. The definition of resultant was based on the equation A f + Bg = 0. In this
proof, we will apply the same methods to the equation

Ã f + B̃g = 1.(6)

The reason for using Ã rather than A will soon be apparent.
The proposition is trivially true if Res ( f, g, x) = 0 (simply choose A = B = 0), so

we may assume Res ( f, g, x) 
= 0. Now let

f = a0xl + · · · + al , a0 
= 0,

g = b0xm + · · · + bm, b0 
= 0,

Ã = c0xm−1 + · · · + cm−1,

Ã = d0xl−1 + · · · + dl−1,

where the coefficients c0, . . . , cm−1, d0, . . . , dl−1 are unknowns in k. If we substi-
tute these formulas into (6) and compare coefficients of powers of x , then we get
the following system of linear equations with unknowns ci , di and coefficients ai , bi

in k:

a0c0 + b0d0 = 0 coefficient of xl+m−1

a1c0 + a0c1 + b1d0 + b0d1 = 0 coefficient of xl+m−2

. . .
. . .

...
alcm−1 + bmdl−1 = 1 coefficient of x0.

(7)

These equations are the same as (5) except for the 1 on the right-hand side of the last
equation. Thus, the coefficient matrix is the Sylvester matrix of f and g, and then
Res( f, g, x) 
= 0 guarantees that (7) has a unique solution in k.

In this situation, we can use Cramer’s Rule to give a formula for the unique solution.
Cramer’s Rule states that the i-th unknown is a ratio of two determinants, where the
denominator is the determinant of the coefficient matrix and the numerator is the
determinant of the matrix where the i-th column of the coefficient matrix has been
replaced by the right-hand side of the equation. For a more precise statement of Cramer’s
rule, the reader should consult Appendix A. In our case, Cramer’s rule gives formulas



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX December 16, 2006 18:21

158 3. Elimination Theory

for the ci ’s and di ’s. For example, the first unknown c0 is given by

c0 = 1

Res( f, g, x)
det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b0

0 a0

...
. . .

...
...

. . .
... b0

0 al a0 bm
...

...
. . .

...
. . .

...
1 al bm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since a determinant is an integer polynomial in its entries, it follows that

c0 = an integer polynomial in ai , bi

Res ( f, g, x)
.

There are similar formulas for the other ci ’s and the other di ’s. Since Ã = c0xm−1

+ · · · + cm−1, we can pull out the common denominator Res( f, g, x) and write Ã in
the form

Ã = 1

Res( f, g, x)
A,

where A ∈ k[x] and the coefficients of A are integer polynomials in ai , bi . Similarly,
we can write

B̃ = 1

Res( f, g, x)
B,

where B ∈ k[x] has the same properties as A. Since Ã and B̃ satisfy Ã f + B̃g = 1,
we can multiply through by Res( f, g, x) to obtain

A f + Bg = Res( f, g, x).

Since A and B have the required kind of coefficients, the proposition is proved. �

Most courses in linear algebra place little emphasis on Cramer’s rule, mainly because
Gaussian elimination is much more efficient (from a computational point of view) than
Cramer’s rule. But for theoretical uses, where one needs to worry about the form of the
solution, Cramer’s rule is very important (as shown by the above proposition).

We can now explain the relation between the resultant and the GCD. Given
f, g ∈ k[x], Res( f, g, x) 
= 0 tells us that f and g have no common factor, and hence
their GCD is 1. Then Proposition 6 of Chapter 1, §5 says that there are Ã and B̃ such that
Ã f + B̃g = 1. As the above formulas for Ã and B̃ make clear, the coefficients of Ã and
B̃ have a denominator given by the resultant (though the resultant need not be the small-
est denominator). Then clearing these denominators leads to A f + Bg = Res( f, g, x).

To see this more explicitly, let us return to the case of f = xy − 1 and g = x2 +
y2 − 4. If we regard these as polynomials in x , then we computed that Res( f, g, x) =
y4 − 4y2 + 1 
= 0. Thus, their GCD is 1, and we leave it as an exercise to check
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that

−
(

y

y4 − 4y2 + 1
x + 1

y4 − 4y2 + 1

)
f + y2

y4 − 4y2 + 1
g = 1.

Note that this equation takes place in k(y)[x], i.e., the coefficients are rational functions
in y. This is because the GCD theory from §5 of Chapter 1 requires field coefficients.
If we want to work in k[x, y], we must clear denominators, which leads to

−(yx + 1) f + y2g = y4 − 4y2 + 1.(8)

This, of course, is just a special case of Proposition 9. Hence, we can regard the resultant
as a “denominator-free” version of the GCD.

We have now answered the question posed before Proposition 9, for (8) shows that
the resultant y4 − 4y2 + 1 is in the elimination ideal. More generally, it is clear that
if f, g ∈ k[x, y] are any polynomials of positive degree in x , then Res( f, g, x) always
lies in the first elimination ideal of 〈 f, g〉. In §6, we see how these ideas apply to the
case of f, g ∈ k[x1, . . . , xn].

In addition to the resultant of two polynomials discussed here, the resultant of three
of more polynomials can be defined. One way of doing this will be presented in §6,
though readers interested in multipolynomial resultants should consult MACAULAY

(1902) or VAN DER WAERDEN (1931). Modern introductions to this theory can be
found in BAJAJ, GARRITY and WARREN (1988), CANNY and MANOCHA (1993), or COX,
LITTLE and O’SHEA (1998). A more sophisticated treatment of resultants is presented
in JOUANOLOU (1991), and a vast generalization of the concept of resultant is discussed
in GELFAND, KAPRANOV and ZELEVINSKY (1994).

EXERCISES FOR §5

1. Here are some examples of irreducible polynomials.

a. Show that every f ∈ k[x] of degree l is irreducible over k.

b. Let f ∈ k[x] have degree 2 or 3. Show that f is irreducible over k if and only if f has

no roots in k.

c. Use part (b) to show that x2 − 2 and x3 − 2 are irreducible over but not over .

d. Prove that x4 + 1 is irreducible over but not over . This one is a bit harder.

e. Use part (d) to show that part b can fail for polynomials of degree ≥ 4.

2. Prove that a field k is algebraically closed if and only if every irreducible polynomial in k[x]

has degree 1.

3. This exercise is concerned with the proof of Theorem 3. Suppose that g = �i ai x i
i and

h = �i bi x i
i , where ai , bi ∈ k[x2, . . . , xn].

a. Let u ∈ k[x2, . . . , xn]. Show that u divides g in k[x1, . . . , xn] if and only if, in

k[x2, . . . , xn], u divides every ai .

b. If we write gh = �i ci x i
1, verify that ci+ j is given by the formula that appears in the proof

of Theorem 3.

4. In this exercise, we will prove Theorem 5.

a. If f is irreducible and divides a product h1 · · · hs , then prove that f divides hi for some i .
b. The existence of a factorization follows from Proposition 2. Now prove the unique-

ness part of Theorem 5. Hint: If f = fi · · · fr = g1 · · · gs , where the fi ’s and g j ’s are
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irreducible, apply part a to show that f1 divides some g j . Then argue g j is a constant

multiple of f1, and hence we can cancel f1 from each side. Use induction on the total,

degree of f .

5. Compute the resultant of x5 − 3x4 − 2x3 + 3x2 + 7x + 6 and x4 + x2 + 1. Do these poly-

nomials have a common factor in [x]? Explain your reasoning.

6. In Exercise 14 of Chapter 1, §5, we proved that if f = c(x − a1)r1 · · · (x − al )
r1 ∈ [x],

then

GCD( f, f ′) = (x − a1)r1−1 · · · (x − al )
rl −1.

Over an arbitrary field k, a given polynomial f ∈ k[x] of positive degree may not be a

product of linear factors. But by unique factorization, we know that f can be written in the

form

f = c f r1
1 · · · f rl

l , c ∈ k,

where f1, . . . , f1 ∈ k[x] are irreducible and no fi is a constant multiple of f j for j 
= i .
Prove that if k contains the rational numbers , then

GCD( f, f ′) = f r1−1
1 · · · f rl −1

l .

Hint: Follow the outline of Exercise 14 of Chapter 1, §5. Your proof will use unique factor-

ization. The hypothesis ⊂ k is needed to ensure that f ′ 
= 0.

7. If f, g ∈ [x] are polynomials of positive degree, prove that f and g have a common

root in if and only if Res( f, g, x) = 0. Hint: Use Proposition 8 and the fact that is

algebraically closed.

8. If f = a0xl + · · · + al ∈ k[x], where a0 
= 0 and l > 0, then the discriminant of f is defined

to be

disc( f ) = (−1)l(l−1)/2

a0

Res( f, f ′, x).

Prove that f has a multiple factor (i.e., f is divisible by h2 for some h ∈ k[x] of positive

degree) if and only if disc ( f ) = 0. Hint: Use Exercise 6 (you may assume ⊂ k). Over

the complex numbers, Exercise 7 implies that a polynomial has a multiple root if and only

if its discriminant is zero.

9. Use the previous exercise to determine whether or not 6x4 − 23x3 + 32x2 − 19x + 4 has a

multiple root in . What is the multiple root?

10. Compute the discriminant of the quadratic polynomial f = ax2 + bx + c. Explain how

your answer relates to the quadratic formula, and, without using Exercise 8, prove that f
has a multiple root if and only if its discriminant vanishes.

11. Consider the polynomials f = 2x2 + 3x + 1 and g = 7x2 + x + 3.

a. Use the Euclidean Algorithm (by hand, not computer) to find the GCD of these polyno-

mials.

b. Find polynomials A, B ∈ [x] such that A f + Bg = 1. Hint: Use the calculations you

made in part a.

c. In the equation you found in part b, clear the denominators. How does this answer relate

to the resultant?

12. If f, g ∈ [x], explain why Res (x, g, x) ∈ .

13. Let f = xy − 1 and g = x2 + y2 − 4. We will regard f and g as polynomials in x with

coefficients in k(y).
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a. With f and g as above, set up the system of equations (7) that describes Ã f + B̃g = 1.

Hint: Ã is linear and B̃ is constant. Thus, you should have three equations in three

unknowns.

b. Use Cramer’s rule to solve the system of equations obtained in part a. Hint: The denom-

inator is the resultant.

c. What equation do you get when you clear denominators in part b? Hint: See equation

(8) in the text.

14. In the text, we defined Res ( f, g, x) when f, g ∈ k[x] have positive degree. In this problem,

we will explore what happens when one (or both) of f and g are constant.

a. First, assume that f has degree l > 0 and g = b0 is constant (possibly 0). Show that the

Sylvester matrix of f and g is the l × l matrix with b0 on the main diagonal and 0’s

elsewhere. Conclude that Res ( f, b0, x) = b′
0.

b. When f and g are as in part a, show that Propositions 8 and 9 are still true.

c. What is Res (a0, g, x) when f = a0 is constant (possibly zero) and g has degree m > 0?

Explain your reasoning.

d. The one case not covered so far is when both f = a0 and g = b0 are constants. In this

case, one defines.

Res(a0, b0) =
{

0 if either a0 = 0 or b0 = 0

1 if a0 
= 0 and b0 
= 0.

By considering f = g = 2 in [x], show that Propositions 8 and 9 can fail when f and g are

constant. Hint: Look at the statements requiring that certain things be integer polynomials

in the coefficients of f and g.

15. Prove that if f has degree l and g has degree m, then the resultant has the following symmetry

property:

Res( f, g, x) = (−1)lmRes(g, f, x).

Hint: A determinant changes sign if you switch two columns.

16. Let f = a0xl + · · · + al and g = b0xm + · · · + bm be polynomials in k[x], and assume that

l ≥ m.

a. Let f̃ = f − (a0/b0)xl−m g, so that deg ( f̃ ) ≤ l − 1. If deg ( f̃ ) = l − 1, then prove

Res( f, g, x) = (−1)mb0Res( f̃ , g, x).

Hint: Use column operations on the Sylvester matrix. You will subtract a0/b0 times the

first m columns in the g part from the columns in the f part. Then expand by minors along

the first row. [See Theorem 5.7 of FINKBEINER (1978) for a description of expansion by

minors.]

b. Let f̃ be as in part a, but this time we allow the possibility that the degree of f̃ could be

strictly smaller than l − 1. Prove that

Res( f, g, x) = (−1)m(l−deg( f̃ ))bl−deg( f̃ )
0 Res( f̃ , g, x).

Hint: The exponent l − deg( f̃ ) tells you how many times to expand by minors.

c. Now use the division algorithm to write f = qg + r in k[x], where deg(r ) < deg(g).

Then use part b to prove that

Res( f, g, x) = (−1)m(l−deg(r ))bl−deg(r )
0 Res(r, g, x).

17. In this exercise, we will modify the Euclidean Algorithm to give an algorithm for computing

resultants. The basic idea is the following: to find the GCD of f and g, we used the division
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algorithm to write f = qg + r, g = q ′r + r ′, etc. In equation (5) of Chapter 1, §5, the

equalities

GCD( f, g) = GCD(g, r ) = GCD(r, r ′) = · · ·
enabled us to compute the GCD since the degrees were decreasing. Using Exercises 15 and

16, we get the following “resultant” version of the first two equalities above:

Res( f, g, x) = (−1)deg(g)(deg( f )−deg(r ))bdeg( f )−deg(r )
0 Res(r, g, x)

= (−1)deg( f )deg(g)bdeg( f )−deg(r )
0 Res(g, r, x)

= (−1)deg( f )deg(g)+deg(r )(deg(g)−deg(r ′))bdeg( f )−deg(r )
0 b′ deg(g)−deg(r ′)

0 Res(r ′, r, x)

= (−1)deg( f )deg(g)+deg(g)deg(r )bdeg( f )−deg(r )
0 b′ deg(g)−deg(r ′)

0 Res(r, r ′, x)

where b0 (resp. b′
0) is the leading coefficient of g (resp. r ). Continuing in this way, we can

reduce to the case where the second polynomial is constant, and then we can use Exercise

14 to compute the resultant.

To set this up as pseudocode, we need to introduce two functions: let r = remainder( f, g)

be the remainder on division of f by g and let lead( f ) be the leading coefficient of f . We

can now state the algorithm for finding Res( f, g, x)

Input: f, g
Output: res
h := f
s := g
res := 1

WHILE deg(s) > 0 DO

r := remainder(h, s)

res := (−1)deg(h) deg(s) lead (s)deg(h)−deg(r )res
h := s
s := r

IF h = 0 or s = 0 THEN res := 0 ELSE

IF deg(h) > 0 THEN res := sdeg(h)res

Prove that this algorithm computes the resultant of f and g. Hint: Use Exercises 14, 15, and

16, and follow the proof of Proposition 6 of Chapter 1, §5.

§6 Resultants and the Extension Theorem

In this section we will prove the Extension Theorem using the results of §5. Our first
task will be to adapt the theory of resultants to the case of polynomials in n variables.
Thus, suppose we are given f, g ∈ k[x1, . . . , xn] of positive degree in x1. As in §5, we
write

f = a0x ′
1 + · · · + al , a0 
= 0,

g = b0xm
1 + · · · + bm, b0 
= 0,

(1)

where ai , bi ∈ k[x2, . . . , xn], and we define the resultant of f and g with respect to x1
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to be the determinant

Res( f, g, x1) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

a1 a0

a1

. . .
...

. . . a0

... a1

a1

al
...

. . .

al︸ ︷︷ ︸
m columns

b0

b1 b0

b1

. . .
...

. . . b0

... b1

bm

bm
...

. . .

bm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
l columns

.

where the empty spaces are filled by zeros.
For resultants of polynomials in several variables, the results of §5 can be stated as

follows.

Proposition 1. Let f, g ∈ k[x1, . . . , xn] have positive degree in x1. Then:
(i) Res( f, g, x1) is in the first elimination ideal 〈 f, g〉 ∩ k[x2, . . . , xn].

(ii) Res( f, g, x1) = 0 if and only if f and g have a common factor in k[x1, . . . , xn]
which has positive degree in x1.

Proof. When we write f, g in terms of x1, the coefficients ai , bi , lie in k[x2, . . . , xn].
Since the resultant is an integer polynomial in ai , bi , (Proposition 9 of §5), it follows
that Res ( f, g, x1) ∈ k[x2, . . . , xn]. We also know that

A f + Bg = Res( f, g, x1),

where A and B are polynomials in x1 whose coefficients are again integer polynomials
in ai , bi (Proposition 9 of §5). Thus, A, B ∈ k[x2, . . . , xn][x1] = k[x1, . . . , xn], and
then the above equation implies Res( f, g, x1) ∈ 〈 f, g〉. This proves part (i) of the
proposition.

To prove the second part, we will use Proposition 8 of §5 to interpret the vanishing
of the resultant in terms of common factors. In §5, we worked with polynomials in one
variable with coefficients in a field. Since f and g are polynomials in x1 with coefficients
in k[x2, . . . , xn] the field the coefficients lie in is k(x2, . . . , xn). Then Proposition 8 of
§5, applied to f, g ∈ k(x2, . . . , xn)[x1], tells us that Res ( f, g, x1) = 0 if and only if
f and g have a common factor in k[x2, . . . , xn][x1] which has positive degree in x1.
But then we can apply Corollary 4 of §5, which says that this is equivalent to having a
common factor in k[x1, . . . , xn] of positive degree in x1. The proposition is proved. �

Over the complex numbers, two polynomials in [x] have a common factor if and
only if they have a common root (this is easy to prove). Thus, we get the following
corollary of Proposition 1.
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Corollary 2. if f, g ∈ [x], then Res ( f, g, x) = 0 if and only if f and g have a
common root in .

We will prove the Extension Theorem by studying the interaction between resultants
and partial solutions. Given f, g ∈ [x1, . . . , xn], we get the resultant

h = Res( f, g, x1) ∈ [x2, . . . , xn]

as in Proposition 1. If we substitute c = (c2, . . . , cn) ∈ n−1 into h, we get a special-
ization of the resultant. However, this need not equal the resultant of the specialized
polynomials f (x1, c) and g(x1, c). See Exercises 8 and 9 for some examples. Fortu-
nately, there is one situation where the exact relation between these resultants is easy
to state.

Proposition 3. Let f, g ∈ [x1, . . . , xn] have degree l, m respectively, and let c =
(c2, . . . , cn) ∈ n−1 satisfy the following:
(i) f (x1, c) ∈ [x1] has degree l.

(ii) g(x1, c) ∈ [x1] has degree p ≤ m.
Then the polynomial h = Res( f, g, x1) ∈ [x2, . . . , xn] satisfies

h(c) = a0(c)m−p Res( f (x1, c), g(x1, c), x1),

where a0 is as in (1).

Proof. If we substitute c = (c2, . . . , cn) for x2, . . . , xn in the determinantal formula for
h = Res( f, g, x1), we obtain

h(c) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0(c)
...

. . .
... a0(c)

al(c)
...

. . .
...

al(c)︸ ︷︷ ︸
m columns

b0(c)
...

. . .
... b0(c)

bm(c)
...

. . .
...

bm(c)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
l columns

.

First suppose that g(x1, c) has degree p = m. Then our assumptions imply that

f (x1, c) = a0(c)xl
1 + · · · + al(c), a0(c) 
= 0,

g(x1, c) = b0(c)xm
1 + · · · + bm(c), b0(c) 
= 0.

Hence the above determinant is the resultant of f (x1, c) and g(x1, c), so that

h(c) = Res( f (x1, c), g(x1, c), x1).

This proves the proposition when p = m. When p < m, the above determinant is no
longer the resultant of f (x1, c) and g(x1, c) (it has the wrong size). Here, we get the
desired resultant by repeatedly expanding by minors along the first row. We leave the
details to the reader (see Exercise 10). �
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We can now prove the Extension Theorem. Let us recall the statement of the theorem.

Theorem 4 (The Extension Theorem). Let I = 〈 f1, . . . , fs〉 ⊂ [x1, . . . , xn], and
let I1 be the first elimination ideal of I . For each 1 ≤ i ≤ s, write fi in the form

fi = gi (x2, . . . , xn)x Ni
1 + terms in which x1 has degree < Ni ,

where Ni ≥ 0 and gi ∈ [x2, . . . , xn] is nonzero. Suppose that we have a partial solu-
tion (c2, . . . , cn) ∈ V(I1). If (c2, . . . , cn) /∈ V(g1, . . . , gs), then there exists c1 ∈ such
that (c1, c2, . . . , cn) ∈ V(I ).

Proof. As above, we set c = (c2, . . . , cn). Then consider the ring homomorphism

[x1, . . . , xn] −→ [x1]

defined by f (x1, x2, . . . , xn) �→ f (x1, c). In Exercise 11, you will show that the image
of I under this homomorphism is an ideal of [x1]. Since [x1] is a PID, the image of
I is generated by a single polynomial u(x1). In other words,

{ f (x1, c) : f ∈ I } = 〈u(x1)〉.
If u(x1) is nonconstant, then there is c1 ∈ such that u(c1) = 0 by the Fundamen-
tal Theorem of Algebra. It follows that f (c1, c) = 0 for all f ∈ I , so that (c1, c) =
(c1, c2, . . . , cn) ∈ V(I ). Note that this argument also works if u(x1) is the zero polyno-
mial.

It remains to consider what happens when u(x1) is a nonzero constant u0. By the
above equality, there is f ∈ I such that f (x1, c) = u0. We will show that this case
cannot occur. By hypothesis, our partial solution satisfies c /∈ V(g1, . . . , gs). Hence
gi (c) 
= 0 for some i . Then consider

h = Res( fi , f, x1) ∈ [x2, . . . , xn].

Applying Proposition 3 to fi and f, we obtain

h(c) = g0(c)deg( f )Res( fi (x1, c), u0, x1)

since f (x1, c) = u0. We also have Res( fi (x1, c), u0, x1) = uNi
0 by part (a) of Exercise 14

of §5. Hence

h(c) = g0(c)deg( f )uNi
0 
= 0.

However, fi , f ∈ I and Proposition 1 imply that h ∈ I1, so that h(c) = 0 since c ∈
V(I1). This contradiction completes the proof of the Extension Theorem. �

The proof of the Extension Theorem just given is elegant but nonconstructive, since
it doesnot explain how to construct the polynomial u(x1). Exercise 12 will describe a
constructive method for getting a polynomial whose root gives the desired c1.

A final observation to make is that the Extension Theorem is true over any alge-
braically closed field. For concreteness, we stated the theorem only for the complex
numbers , but if you examine the proof carefully, you will see that the required c1

exists because a nonconstant polynomial in [x1] has a root in . Since this property
is true for any algebraically closed field, it follows that the Extension Theorem holds
over such fields (see Exercise 13 for more details).
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EXERCISES FOR §6

1. In k[x, y], consider the two polynomials

f = x2 y − 3xy2 + x2 − 3xy,

g = x3 y + x3 − 4y2 − 3y + 1.

a. Compute Res( f, g, x).

b. Compute Res( f, g, y).

c. What does the result of part b imply about f and g?

2. Let f, g ∈ [x, y]. In this exercise, you will prove that

V( f, g) is infinite ⇐⇒ f and g have a nonconstant common factor in [x, y].

a. Prove that V( f ) is infinite when f is nonconstant. Hint: Suppose f has positive degree

in x . Then the leading coefficient of x in f can vanish for at most finitely many values

of y. Now use the fact that is algebraically closed.

b. If f and g have a nonconstant common factor h ∈ [x, y], then use part a to show that

V( f, g) is infinite.

c. If f and g have no nonconstant common factor, show that Res( f, g, x) and Res( f, g, y)

are nonzero and conclude that V( f, g) is finite.

3. If f, g ∈ k[x, y], Proposition 1 shows that Res( f, g, x) ∈ I1 = ( f, g) ∩ k[y]. The interesting

fact is that the resultant need not generate I1.

a. Show that Res( f, g, x) generates I1 when f = xy − 1 and g = x2 + y2 − 4.

b. Show that Res( f, g, x) does not generate I1 when f = xy − 1 and g = yx2 + y2 − 4.

Do you see any connection between part b and the Extension Theorem?

4. Suppose that f, g ∈ [x] are polynomials of positive degree. The goal of this problem is

to construct a polynomial whose roots are all sums of a root of f plus a root of g.

a. Show that a complex number γ ∈ can be written γ = α + β, where f (α) = g(β) = 0,

if and only if the equations f (x) = g(y − x) = 0 have a solution with y − γ .

b. Using Theorem 3, show that γ is a root of Res( f (x), g(y − x), x) if and only if γ =
α + β, where f (α) = g(β) = 0.

c. Construct a polynomial with coefficients in which has
√

2 + √
3 as a root. Hint: What

are f and g in this case?

d. Modify your construction to create a polynomial whose roots are all differences of a root

of f minus a root of g.

5. Suppose that f, g ∈ [x] are polynomials of positive degree. If all of the roots of f are

nonzero, adapt the argument of Exercise 4 to construct a polynomial whose roots are all

products of a root of f times a root of g.

6. Suppose that f, g ∈ [x] are polynomials of positive degree.

a. Most computer algebra systems have a command for factoring polynomials over into

irreducibles over . In particular, one can determine if a given polynomial has any integer

roots. Combine this with part (d) of Exercise 4 to describe an algorithm for determining

when f and g have roots α and β, respectively, which differ by an integer.

b. Show that the polynomials f = x5 − 2x3 − 2x2 + 4 and g = x5 + 5x4 + 8x3 + 2x2 −
5x + 1 have roots which differ by an integer. What is the integer?

7. In §3, we mentioned that resultants are sometimes used to solve implicitization problems.

For a simple example of how this works, consider the curve parametrized by

u = t2

1 + t2
, v = t3

1 + t2
.
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To get an implicit equation, form the equations

u(1 + t2) − t2 = 0, v(1 + t2) − t3 = 0

and use an appropriate resultant to eliminate t . Then compare your result to the answer

obtained by the methods of §3. (Note that Exercise 13 of §3 is relevant.)

8. In the discussion leading up to Proposition 3, we claimed that the specialization of a resultant

need not be the resultant of the specialized polynomials. Let us work out some examples.

a. Let f = x2 y + 3x − 1 and g = 6x2 + y2 − 4. Compute h = Res( f, g, x) and show that

h(0) = −180. But if we set y = 0 in f and g, we get the polynomials 3x − 1 and 6x2 − 4.

Check that Res(3x − 1, 6x2 − 4) = −30. Thus, h(0) is not a resultant—it is off by a factor

of 6. Note why equality fails: h(0) is a 4 × 4 determinant, whereas Res(3x − 1, 6x2 − 4)

is a 3 × 3 determinant.

b. Now let f = x2 y + 3xy − 1 and g = 6x2 + y2 − 4. Compute h = Res( f, g, x) and ver-

ify that h(0) = 36. Setting y = 0 in f and g gives polynomials −1 and x2 − 4. Use

Exercise 14 of §5 to show that the resultant of these polynomials is 1. Thus, h(0) is off

by a factor of 36.

When the degree of f drops by 1 (in part a), we get an extra factor of 6, and when it drops

by 2 (in part b), we get an extra factor of 36 = 62. And the leading coefficient of x in g is

6. In Exercise 11, we will see that this is no accident.

9. Let f = x2 y + x − 1 and g = x2 y + x + y2 − 4. If h = Res( f, g, x)[y], show that h(0) =
0. But if we substitute y = 0 into f and g, we get x − 1 and x − 4. Show that these

polynomials have a nonzero resultant. Thus, h(0) is not a resultant.

10. In this problem you will complete the proof of Theorem 4 by determining what happens

to a resultant when specializing causes the degree of one of the polynomials to drop. Let

f, g ∈ [x1, . . . , xn] and set h = Res( f, g, x1). If c = (c2, . . . , cn) ∈ n−1, let f (x1, c) be

the polynomial in k[x1] obtained by substituting in c. As in (1), let a0, b0 ∈ [x2, . . . , xn]

be the leading coefficients of x1 in f, g, respectively. We will assume that a0(c) 
= 0 and

b0(c) = 0, and our goal is to see how h(c) relates to Res( f (x1, c), g(x1, c), x1).

a. First suppose that the degree of g drops by exactly 1, which means that b1(c) 
= 0. In this

case, prove that

h(c) = a0(c) · Res( f (x1, c), g(x1, c, x1).

Hint: h(c) is given by the following determinant:

h(c) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0(c)

a1(c) a0(c)

a1(c)
. . .

...
. . . a0(c)

. . . a1(c)

al (c)

al (c)
...

. . .

al (c)︸ ︷︷ ︸
m coluumns

0

b1(c) 0

b1(c)
. . .

...
. . . 0

... b1(c)

bm(c)

bm(c)
...

. . .

bm(c)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
l columns

.
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The determinant is the wrong size to be the resultant of f (x1, c) and g(x1, c). If you

expand by minors along the first row [see Theorem 5.7 of FINKBEINER (1978)], the

desired result will follow.

b. Now let us do the general case. Suppose that the degree of g(x1, c) is m − p, where

p ≥ 1. Then prove that

h(c) = a0(c)p · Res( f (x1, c), g(xi , c), x1).

Hint: Expand by minors p times. Note how this formula explains the results of Exercise 8.

11. Suppose that k is a field and ϕ : k[x1, . . . , xn] → k[x1] is a ring homomorphism that is the

identity on k and maps x1 to x1. Given an ideal I ⊂ k[x1, . . . , xn], prove that ϕ(I ) ⊂ k[x1]

is an ideal. (In the proof of Theorem 4, we use this result when ϕ is the map that evaluates

xi at ci for 2 ≤ i ≤ n.)

12. Suppose that I = 〈 f1, . . . , fs〉 ⊂ [x1, . . . , xn] and c = (c2, . . . , cs) ∈ V(I1) satisfy the

hypotheses of Theorem 4. To get the desired c1 ∈ , the proof of Theorem 4 given in

the text uses a polynomial u(x1) found by nonconstructive means. But now that we know

the theorem is true, we can give a constructive method for finding c1 by considering the

polynomial

v(x1) = GCD( f1(x1, c), . . . , fs(x1, c)).

a. Show that v(x1) is nonconstant and that every root c1 of v(x1) satisfies the conclusion of

the Theorem 4. Hint: Show that u(x1) divides v(x1).

b. Show that v(x1) and u(x1) have the same roots. Hint: Express u(x1) in terms of the

fi (x, c).

13. Show that the Extension Theorem holds over any algebraically closed field. Hint: You will

need to see exactly where the proof of Theorem 4 uses the complex numbers .
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In this chapter, we will explore the correspondence between ideals and varieties. In §§1
and 2, we will prove the Nullstellensatz, a celebrated theorem which identifies exactly
which ideals correspond to varieties. This will allow us to construct a “dictionary”
between geometry and algebra, whereby any statement about varieties can be translated
into a statement about ideals (and conversely). We will pursue this theme in §§3 and
4, where we will define a number of natural algebraic operations on ideals and study
their geometric analogues. In keeping with the computational emphasis of this course,
we will develop algorithms to carry out the algebraic operations. In §§5 and 6, we will
study the more important algebraic and geometric concepts arising out of the Hilbert
Basis Theorem: notably the possibility of decomposing a variety into a union of simpler
varieties and the corresponding algebraic notion of writing an ideal as an intersection
of simpler ideals.

§1 Hilbert’s Nullstellensatz

In Chapter 1, we saw that a variety V ⊂ kn can be studied by passing to the ideal

I(V ) = { f ∈ k[x1, . . . , xn] : f (x) = 0 for all x ∈ V }

of all polynomials vanishing on V . That is, we have a map

affine varieties ideals−→
V I(V ).

Conversely, given an ideal I ⊂ k[x1, . . . , xn], we can define the set

V(I ) = {x ∈ kn : f (x) = 0 for all f ∈ I }.

The Hilbert Basis Theorem assures us that V(I ) is actually an affine variety, for it tells
us that there exists a finite set of polynomials f1, . . . , fs ∈ I such that I = 〈 f1, . . . , fs〉,
and we proved in Proposition 9 of Chapter 2, §5 that V(I ) is the set of common roots

169
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of these polynomials. Thus, we have a map

ideals affine varieties−→
I V(I ).

These two maps give us a correspondence between ideals and varieties. In this chapter,
we will explore the nature of this correspondence.

The first thing to note is that this correspondence (more precisely, the map V) is not
one-to-one: different ideals can give the same variety. For example, 〈x〉 and 〈x2〉 are
different ideals in k[x] which have the same variety V(x) = V(x2) = {0}. More serious
problems can arise if the field k is not algebraically closed. For example, consider the
three polynomials 1, 1 + x2, and 1 + x2 + x4 in [x]. These generate different ideals

I1 = 〈1〉 = [x], I2 = 〈1 + x2〉, I3 = 〈1 + x2 + x4〉,
but each polynomial has no real roots, so that the corresponding varieties are all empty:

V(I1) = V(I2) = V(I3) = ∅.

Examples of polynomials in two variables without real roots include 1 + x2 + y2 and
1 + x2 + y4. These give different ideals in [x, y] which correspond to the empty
variety.

Does this problem of having different ideals represent the empty variety go away if
the field k is algebraically closed? It does in the one-variable case when the ring is k[x].
To see this, recall from §5 of Chapter 1 that any ideal I in k[x] can be generated by a
single polynomial because k[x] is a principal ideal domain. So we can write I = 〈 f 〉
for some polynomial f ∈ k[x]. Then V(I ) is the set of roots of f ; that is, the set of a ∈ k
such that f (a) = 0. But since k is algebraically closed, every nonconstant polynomial
in k[x] has a root. Hence, the only way that we could have V(I ) = ∅ would be to have
f be a nonzero constant. In this case, 1/ f ∈ k. Thus, 1 = (1/ f ) · f ∈ I , which means
that g = g · 1 ∈ I for all g ∈ k[x]. This shows that I = k[x] is the only ideal of k[x]
that represents the empty variety when k is algebraically closed.

A wonderful thing now happens: the same property holds when there is more than
one variable. In any polynomial ring, algebraic closure is enough to guarantee that the
only ideal which represents the empty variety is the entire polynomial ring itself. This
is the Weak Nullstellensatz, which is the basis of (and is equivalent to) one of the most
celebrated mathematical results of the late nineteenth century, Hilbert’s Nullstellensatz.
Such is its impact that, even today, one customarily uses the original German name
Nullstellensatz: a word formed, in typical German fashion, from three simpler words:
Null (=Zero), Stellen (=Places), Satz (=Theorem).

Theorem 1 (The Weak Nullstellensatz). Let k be an algebraically closed field and
let I ⊂ k[x1, . . . , xn] be an ideal satisfying V(I ) = ∅. Then I = k[x1, . . . , xn].

Proof. To prove that an ideal I equals k[x1, . . . , xn], the standard strategy is to show
that the constant polynomial 1 is in I . This is because if 1 ∈ I , then by the definition
of an ideal, we have f = f · 1 ∈ I for every f ∈ k[x1, . . . , xn]. Thus, knowing that
1 ∈ I is enough to show that I is the whole polynomial ring.
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Our proof is by induction on n, the number of variables. If n = 1 and I ⊂ k[x]
satisfies V(I ) = ∅, then we already showed that I = k[x] in the discussion preceding
the statement of the theorem.

Now assume the result has been proved for the polynomial ring in n − 1 variables,
which we write as k[x2, . . . , xn]. Consider any ideal I = 〈 f1, . . . , fs〉 ⊂ k[x1, . . . , xn]
for which V(I ) = ∅. We may assume that f1 is not a constant since, otherwise, there
is nothing to prove. So, suppose f1 has total degree N ≥ 1. We will next change
coordinates so that f1 has an especially nice form. Namely, consider the linear change
of coordinates

x1 = x̃1,

x2 = x̃2 + a2 x̃1,(1)

...

xn = x̃n + an x̃1.

where the ai are as-yet-to-be-determined constants in k. Substitute for x1, . . . , xn so
that f1 has the form

f1(x1, . . . , xn) = f1(x̃1, x̃2 + a2 x̃1, . . . , x̃n + an x̃1)

= c(a2, . . . , an)x̃ N
1 + terms in which x̃1 has degree < N .

We will leave it as an exercise for the reader to show that c(a2, . . . , an) is a
nonzero polynomial expression in a2, . . . , an . In the exercises, you will also show
that an algebraically closed field is infinite. Thus we can choose a2, . . . , an so that
c(a2, . . . , an) 	= 0 by Proposition 5 of Chapter 1, §1.

With this choice of a2, . . . , an , under the coordinate change (1) every polynomial
f ∈ k[x1, . . . , xn] goes over to a polynomial f̃ ∈ k[x̃1, . . . , x̃n]. In the exercises, we
will ask you to check that the set Ĩ = { f̃ : f ∈ I } is an ideal in k[x̃1, . . . , x̃n]. Note
that we still have V( Ĩ ) = ∅ since if the transformed equations had solutions, so would
the original ones. Furthermore, if we can show that 1 ∈ Ĩ , then 1 ∈ I will follow since
constants are unaffected by the ˜ operation.

Hence, it suffices to prove that 1 ∈ Ĩ . By the previous paragraph, f1 ∈ I transforms
to f̃1 ∈ Ĩ with the property that

f̃1(x̃1, . . . , x̃n) = c(a2, . . . , an)x̃ N
1 + terms in which x̃1 has degree < N ,

where c(a2, . . . , an) 	= 0. This allows us to use a corollary of the Geometric Extension
Theorem (see Corollary 4 of Chapter 3, §2), to relate V( Ĩ ) with its projection into the
subspace of kn with coordinates x̃2, . . . , x̃n . As we noted in Chapter 3, the Extension
Theorem and its corollaries hold over any algebraically closed field. Let

π1 : kn → kn−1

be the projection mapping onto the last n − 1 components. If we set Ĩ1 = Ĩ ∩
k[x̃2, . . . , x̃n] as usual, then the corollary states that partial solutions in kn−1 al-
ways extend, i.e., V( Ĩ1) = π1(V( Ĩ )). This implies that V( Ĩ1) = π1(V( Ĩ )) = π1(∅) = ∅.
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By the induction hypothesis, it follows that Ĩ1 = k[x̃2, . . . , x̃n]. But this implies that
1 ∈ Ĩ1 ⊂ Ĩ , and the proof is complete. �

In the special case when k = , the Weak Nullstellensatz may be thought of as the
“Fundamental Theorem of Algebra for multivariable polynomials”—every system of
polynomials that generates an ideal strictly smaller than [x1, . . . , xn] has a common
zero in n .

The Weak Nullstellensatz also allows us to solve the consistency problem from §2
of Chapter 1. Recall that this problem asks whether a system

f1 = 0,

f2 = 0,

...

fs = 0

of polynomial equations has a common solution in n . The polynomials fail to have
a common solution if and only if V( f1, . . . , fs) = ∅. By the Weak Nullstellensatz, the
latter holds if and only if 1 ∈ 〈 f1, . . . , fs〉. Thus, to solve the consistency problem, we
need to be able to determine whether 1 belongs to an ideal. This is made easy by the
observation that for any monomial ordering, {1} is the only reduced Groebner basis for
the ideal 〈1〉.

To see this, let {g1, . . . , gt } be a Groebner basis of I = 〈1〉. Thus, 1 ∈ 〈LT(I )〉 =
〈LT(g1), . . . , LT(gt )〉, and then Lemma 2 of Chapter 2, §4 implies that 1 is divisible by
some LT(gi ), say LT(g1). This forces LT(g1) to be constant. Then every other LT(gi ) is
a multiple of that constant, so that g2, . . . , gt can be removed from the Groebner basis
by Lemma 3 of Chapter 2, §7. Finally, since LT(g1) is constant, g1 itself is constant
since every nonconstant monomial is >1 (see Corollary 6 of Chapter 2, §4). We can
multiply by an appropriate constant to make g1 = 1. Our reduced Groebner basis is
thus {1}.

To summarize, we have the following consistency algorithm: if we have polyno-
mials f1, . . . , fs ∈ [x1, . . . , xn], we compute a reduced Groebner basis of the ideal
they generate with respect to any ordering. If this basis is {1}, the polynomials have no
common zero in n; if the basis is not {1}, they must have a common zero. Note that
the algorithm works over any algebraically closed field.

If we are working over a field k which is not algebraically closed, then the consistency
algorithm still works in one direction: if {1} is a reduced Groebner basis of 〈 f1, . . . , fs〉,
then the equations f1 = · · · = fs = 0 have no common solution. The converse is not
true, as shown by the examples preceding the statement of the Weak Nullstellensatz.

Inspired by the Weak Nullstellensatz, one might hope that the correspondence be-
tween ideals and varieties is one-to-one provided only that one restricts to algebraically
closed fields. Unfortunately, our earlier example V(x) = V(x2) = {0} works over any
field. Similarly, the ideals 〈x2, y〉 and 〈x, y〉 (and, for that matter, (xn, ym) where n and
m are integers greater than one) are different but define the same variety: namely, the
single point {(0, 0)} ⊂ k2. These examples illustrate a basic reason why different ideals
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can define the same variety (equivalently, that the map V can fail to be one-to-one):
namely, a power of a polynomial vanishes on the same set as the original polynomial.
The Hilbert Nullstellensatz states that over an algebraically closed field, this is the only
reason that different ideals can give the same variety: if a polynomial f vanishes at all
points of some variety V(I ), then some power of f must belong to I .

Theorem 2 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. If
f, f1, . . . , fs ∈ k[x1, . . . , xn] are such that f ∈ I(V( f1, . . . , fs)), then there exists an
integer m ≥ 1 such that

f m ∈ 〈 f1, . . . , fs〉
(and conversely).

Proof. Given a nonzero polynomial f which vanishes at every common zero of the
polynomials f1, . . . , fs , we must show that there exists an integer m ≥ 1 and polyno-
mials A1, . . . , As such that

f m =
s∑

i=1

Ai fi .

The most direct proof is based on an ingenious trick. Consider the ideal

Ĩ = 〈 f1, . . . , fs, 1 − y f 〉 ⊂ k[x1, . . . , xn, y],

where f, f1, . . . , fs are as above. We claim that

V( Ĩ ) = ∅.

To see this, let (a1, . . . , an, an+1) ∈ kn+1. Either
� (a1, . . . , an) is a common zero of f1, . . . , fs , or
� (a1, . . . , an) is not a common zero of f1, . . . , fs .
In the first case f (a1, . . . , an) = 0 since f vanishes at any common zero of f1, . . . , fs .
Thus, the polynomial 1 − y f takes the value 1 − an+1 f (a1, . . . , an) = 1 	= 0 at
the point (a1, . . . , an, an+1). In particular, (a1, . . . , an, an+1) /∈ V( Ĩ ). In the second
case, for some i, 1 ≤ i ≤ s, we must have fi (a1, . . . , an) 	= 0. Thinking of fi as a
function of n + 1 variables which does not depend on the last variable, we have
fi (a1, . . . , an, an+1) 	= 0. In particular, we again conclude that (a1, . . . , an, an+1) /∈
V( Ĩ ). Since (a1, . . . , an, an+1) ∈ kn+1 was arbitrary, we conclude that V( Ĩ ) = ∅ as
claimed.

Now apply the Weak Nullstellensatz to conclude that 1 ∈ Ĩ . That is,

1 =
s∑

i=1

pi (x1, . . . , xn, y) fi + q(x1, . . . , xn, y)(1 − y f )(2)

for some polynomials pi , q ∈ k[x1, . . . , xn, y]. Now set y = 1/ f (x1, . . . , xn). Then
relation (2) above implies that

1 =
s∑

i=1

pi (x1, . . . , xn, 1/ f ) fi .(3)
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Multiply both sides of this equation by a power f m , where m is chosen sufficiently
large to clear all the denominators. This yields

f m =
s∑

i=1

Ai fi ,(4)

for some polynomials Ai ∈ k[x1, . . . , xn], which is what we had to show. �

EXERCISES FOR §1

1. Recall that V(y − x2, z − x3) is the twisted cubic in 3.

a. Show that V((y − x2)2 + (z − x3)2) is also the twisted cubic.

b. Show that any variety V(I ) ⊂ n, I ⊂ [x1, . . . , xn], can be defined by a single equa-

tion (and hence by a principal ideal).

2. Let J = 〈x2 + y2 − 1, y − 1〉. Find f ∈ I(V(J )) such that f /∈ J .

3. Under the change of coordinates (1), a polynomial f (x1, . . . , xn) of total degree N goes

over into a polynomial of the form

f̃ = c(a2, . . . , an)x̃ N
1 + terms in which x̃1 has degree < N .

We want to show that c(a2, . . . , an) is a nonzero polynomial in a2, . . . , an .

a. Write f = hN + hN−1 + · · · + h0 where each hi , 0 ≤ i ≤ N , is homogeneous of degree

i (that is, where each monomial in hi has total degree i). Show that after the coordinate

change (1), the coefficient c(a2, . . . , an) of x̃ N
1 in f̃ is hN (1, a2, . . . , an).

b. Let h(x1, . . . , xn) be a homogeneous polynomial. Show that h is the zero polynomial in

k[x1, . . . , xn] if and only if h(1, x2, . . . , xn) is the zero polynomial in k[x2, . . . , xn].

c. Conclude that c(a2, . . . , an) is not the zero polynomial in a2, . . . , an .

4. Prove that an algebraically closed field k must be infinite. Hint: Given n elements a1, . . . , an

of a field k, can you write down a nonconstant polynomial f ∈ k[x] with the property that

f (ai ) = 1 for all i?
5. Establish that Ĩ as defined in the proof of the Weak Nullstellensatz is an ideal of k[x̃1, . . . , x̃n].

6. In deducing Hilbert’s Nullstellensatz from the Weak Nullstellensatz, we made the substi-

tution y = 1/ f (x1, . . . , xn) to deduce relations (3) and (4) from (2). Justify this rigorously.

Hint: In what set is 1/ f contained?

7. The purpose of this exercise is to show that if k is any field which is not algebraically closed,

then any variety V ⊂ kn can be defined by a single equation.

a. If f = a0xn + a1xn−1 + · · · + an−1x + an is a polynomial of degree n in x , define the

homogenization f h of f with respect to some variable y to be the homogeneous poly-

nomial f h = a0xn + a1xn−1 + · · · + an−1xyn−1 + an yn . Show that f has a root in k if

and only if there is (a, b) ∈ k2 such that (a, b) 	= (0, 0) and f h(a, b) = 0. Hint: Show

that f h(a, b) = bn f h(a/b, 1) when b 	= 0.

b. If k is not algebraically closed, show that there exists f ∈ k[x, y] such that the variety

defined by f = 0 consists of just the origin (0, 0) ∈ k2. Hint: Choose a polynomial in

k[x] with no root in k and consider its homogenization.

c. If k is not algebraically closed, show that for each integer s > 0 there exists f ∈
k[x1, . . . , xs] such that the only solution of f = 0 is the origin (0, . . . , 0) ∈ ks . Hint:

Use induction and part (b) above. See also Exercise 1.

d. If W = V(g1, . . . , gs) is any variety in kn , where k is not algebraically closed, then show

that W can be defined by a single equation. Hint: Consider the polynomial f (g1, . . . , gs)

where f is as above.
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8. Let k be an arbitrary field and let S be the subset of all polynomials in k[x1, . . . , xn] that have

no zeros in kn . If I is any ideal in k[x1, . . . , xn] such that I ∩ S = ∅, show that V(I ) 	= ∅.

Hint: When k is not algebraically closed, use the previous exercise.

9. (A generalization of Exercise 5.) Let A be an n × n matrix with entries in k. Suppose that

x = Ax̃ where we are thinking of x and x̃ as column vectors. Define a map

αA : k[x1, . . . , xn] −→ k[x̃1, . . . , x̃n]

by sending f ∈ k[x1, . . . , xn] to f̃ ∈ k[x̃1, . . . , x̃n], where f̃ is the polynomial defined by

f̃ (x̃) = f (Ax̃).

a. Show that αA is k-linear, i.e., show that αA(r f + sg) = rαA( f ) + sαA(g) for all r, s ∈ k
and all f, g ∈ k[x1, . . . , xn].

b. Show that αA( f · g) = αA( f ) · αA(g) for all f, g ∈ k[x1, . . . , xn]. [As we will see in

Definition 8 of Chapter 5, §2, a map between rings which preserves addition and multi-

plication and also preserves the multiplicative identity is called a ring homomorphism.

Since it is clear that αA(1) = 1, this shows that αA is a ring homomorphism.]

c. Find conditions on the matrix A which guarantee that αA is one-to-one and onto.

d. Is the image {αA( f ) : f ∈ I } of an ideal I ⊂ k[x1, . . . , xn] necessarily an ideal in

k[x̃1, . . . , x̃n]? Give a proof or a counterexample.

e. Is the inverse image { f ∈ k[x1, . . . , xn] : αA( f ) ∈ Ĩ } of an ideal Ĩ in k[x̃1, . . . , x̃n] an

ideal in k[x1, . . . , xn]? Give a proof or a counterexample.

f. Do the conclusions of parts a-e change if we allow the entries in the n × n matrix A to

be elements of k[x̃1, . . . , x̃n]?

10. In Exercise 1, we encountered two ideals in [x, y] which give the same nonempty variety.

Show that one of these ideals is contained in the other. Can you find two ideals in [x, y],

neither contained in the other, which give the same nonempty variety? Can you do the same

for [x]?

§2 Radical Ideals and the Ideal–Variety Correspondence

To further explore the relation between ideals and varieties, it is natural to recast
Hilbert’s Nullstellensatz in terms of ideals. Can we characterize the kinds of ideals that
appear as the ideal of a variety? That is, can we identify those ideals that consist of all
polynomials which vanish on some variety V ? The key observation is contained in the
following simple lemma.

Lemma 1. Let V be a variety. If f m ∈ I(V ), then f ∈ I(V ).

Proof. Let x ∈ V . If f m ∈ I(V ), then ( f (x))m = 0. But this can happen only if
f (x) = 0. Since x ∈ V was arbitrary, we must have f ∈ I(V ). �

Thus, an ideal consisting of all polynomials which vanish on a variety V has the
property that if some power of a polynomial belongs to the ideal, then the polynomial
itself must belong to the ideal. This leads to the following definition.

Definition 2. An ideal I is radical if f m ∈ I for some integer m ≥ 1 implies that f ∈ I .

Rephrasing Lemma 1 in terms of radical ideals gives the following statement.



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX December 18, 2006 7:6

176 4. The Algebra–Geometry Dictionary

Corollary 3. I(V ) is a radical ideal.

On the other hand, Hilbert’s Nullstellensatz tells us that the only way that an arbitrary
ideal I can fail to be the ideal of all polynomials vanishing on V(I ) is for I to contain
powers f m of polynomials f which are not in I —in other words, for I to fail to be a
radical ideal. This suggests that there is a one-to-one correspondence between affine
varieties and radical ideals. To clarify this and get a sharp statement, it is useful to
introduce the operation of taking the radical of an ideal.

Definition 4. Let I ⊂ k[x1, . . . , xn] be an ideal. The radical of I, denoted
√

I , is the
set

{ f : f m ∈ I for some integer m ≥ 1}.

Note that we always have I ⊂ √
I since f ∈ I implies f 1 ∈ I and, hence, f ∈ √

I
by definition. It is an easy exercise to show that an ideal I is radical if and only if I = √

I .
A somewhat more surprising fact is that the radical of an ideal is always an ideal. To
see what is at stake here, consider, for example, the ideal J = 〈x2, y3〉 ⊂ k[x, y].
Although neither x nor y belongs to J , it is clear that x ∈ √

J and y ∈ √
J . Note that

(x · y)2 = x2 y2 ∈ J since x2 ∈ J ; thus, x · y ∈ √
J . It is less obvious that x + y ∈ √

J .
To see this, observe that

(x + y)4 = x4 + 4x3 y + 6x2 y2 + 4xy3 + y4 ∈ J

because x4, 4x3 y, 6x2 y2 ∈ J (they are all multiples of x2) and 4xy3, y4 ∈ J (because
they are multiples of y3). Thus, x + y ∈ √

J . By way of contrast, neither xy nor x + y
belong to J .

Lemma 5. If I is an ideal in k[x1, . . . , xn], then
√

I is an ideal in k[x1, . . . , xn] con-
taining I. Furthermore,

√
I is a radical ideal.

Proof. We have already shown that I ⊂ √
I . To show

√
I is an ideal, suppose f, g ∈√

I . Then there are positive integers m and l such that f m, gl ∈ I . In the binomial
expansion of ( f + g)m+l−1 every term has a factor f i g j with i + j = m + l − 1. Since
either i ≥ m or j ≥ l, either f i or g j is in I , whence f i g j ∈ I and every term in the
binomial expansion is in I . Hence, ( f + g)m+l−1 ∈ I and, therefore, f + g ∈ √

I .
Finally, suppose f ∈ √

I and h ∈ k[x1, . . . , xn]. Then f m ∈ I for some integer m ≥ 1.
Since I is an ideal, we have (h · f )m = hm f m ∈ I . Hence, h f ∈ √

I . This shows that√
I is an ideal. In Exercise 4, you will show that

√
I is a radical ideal. �

We are now ready to state the ideal-theoretic form of the Nullstellensatz.

Theorem 6 (The Strong Nullstellensatz). Let k be an algebraically closed field. If I
is an ideal in k[x1, . . . , xn], then

I(V(I )) =
√

I .
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Proof. We certainly have
√

I ⊂ I(V(I )) because f ∈ √
I implies that f m ∈ I for

some m. Hence, f m vanishes on V(I ), which implies that f vanishes on V(I ). Thus,
f ∈ I(V(I )).

Conversely, suppose that f ∈ I(V(I )). Then, by definition, f vanishes on V(I ). By
Hilbert’s Nullstellensatz, there exists an integer m ≥ 1 such that f m ∈ I . But this means
that f ∈ √

I . Since f was arbitrary, I(V(I )) ⊂ √
I . This completes the proof. �

It has become a custom, to which we shall adhere, to refer to Theorem 6 as the
Nullstellensatz with no further qualification. The most important consequence of the
Nullstellensatz is that it allows us to set up a “dictionary” between geometry and
algebra. The basis of the dictionary is contained in the following theorem.

Theorem 7 (The Ideal–Variety Correspondence). Let k be an arbitrary field.
(i) The maps

affine varieties
I−→ ideals

and

ideals
V−→ affine varieties

are inclusion-reversing, i.e., if I1 ⊂ I2 are ideals, then V(I1) ⊃ V(I2) and, similarly,
if V1 ⊂ V2 are varieties, then I(V1) ⊃ I(V2). Furthermore, for any variety V, we
have

V(I(V )) = V,

so that I is always one-to-one.
(ii) If k is algebraically closed, and if we restrict to radical ideals, then the maps

affine varieties
I−→ radical ideals

and

radical ideals
V−→ affine varieties

are inclusion-reversing bijections which are inverses of each other.

Proof. (i) In the exercises you will show that I and V are inclusion-reversing. It re-
mains to prove that V(I(V )) = V when V = V( f1, . . . , fs) is a subvariety of kn . Since
every f ∈ I(V ) vanishes on V , the inclusion V ⊂ V(I(V )) follows directly from the
definition of V. Going the other way, note that f1, . . . , fs ∈ I(V ) by the definition
of I, and, thus, 〈 f1, . . . , fs〉 ⊂ I(V ). Since V is inclusion-reversing, it follows that
V(I(V )) ⊂ V(〈 f1, . . . , fs〉) = V . This proves the desired equality V(I(V )) = V , and,
consequently, I is one-to-one since it has a left inverse.

(ii) Since I(V ) is radical by Corollary 3, we can think of I as a function which
takes varieties to radical ideals. Furthermore, we already know V(I(V )) = V for any
variety V . It remains to prove I(V(I )) = I whenever I is a radical ideal. This is easy:
the Nullstellensatz tells us I(V(I )) = √

I , and I being radical implies
√

I = I (see
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Exercise 4). This gives the desired equality. Hence, V and I are inverses of each other
and, thus, define bijections between the set of radical ideals and affine varieties. The
theorem is proved. �

As a consequence of this theorem, any question about varieties can be rephrased
as an algebraic question about radical ideals (and conversely), provided that we are
working over an algebraically closed field. This ability to pass between algebra and
geometry will give us considerable power.

In view of the Nullstellensatz and the importance it assigns to radical ideals, it is
natural to ask whether one can compute generators for the radical from generators
of the original ideal. In fact, there are three questions to ask concerning an ideal
I = 〈 f1, . . . , fs〉:
� (Radical Generators) Is there an algorithm which produces a set {g1, . . . , gm} of

polynomials such that
√

I = 〈g1, . . . , gm〉?
� (Radical Ideal) Is there an algorithm which will determine whether I is radical?
� (Radical Membership) Given f ∈ k[x1, . . . , xn], is there an algorithm which will

determine whether f ∈ √
I ?

The existence of these algorithms follows from work of HERMANN (1926) [see also
MINES, RICHMAN, and RUITENBERG (1988) and SEIDENBERG (1974, 1984) for more
modern expositions]. Unfortunately, the algorithms given in these papers for the first
two questions are not very practical and would not be suitable for using on a computer.
However, work by GIANNI, TRAGER and ZACHARIAS (1988) has led to an algorithm
implemented in AXIOM and REDUCE for finding the radical of an ideal. This algo-
rithm is described in detail in Theorem 8.99 of BECKER and WEISPFENNING (1993). A
different algorithm for radicals, due to EISENBUD, HUNEKE and VASCONCELOS (1992),
has been implemented in Macaulay 2.

For now, we will settle for solving the more modest radical membership problem. To
test whether f ∈ √

I , we could use the ideal membership algorithm to check whether
f m ∈ I for all integers m > 0. This is not satisfactory because we might have to go to
very large powers of m, and it will never tell us if f /∈ √

I (at least, not until we work out
a priori bounds on m). Fortunately, we can adapt the proof of Hilbert’s Nullstellensatz
to give an algorithm for determining whether f ∈ √〈 f1, . . . , fs〉.

Proposition 8 (Radical Membership). Let k be an arbitrary field and let I =
〈 f1, . . . , fs〉 ⊂ k[x1, . . . , xn] be an ideal. Then f ∈ √

I if and only if the constant poly-
nomial 1 belongs to the ideal Ĩ = 〈 f1, . . . , fs, 1 − y f 〉 ⊂ k[x1, . . . , xn, y] (in which
case, Ĩ = k[x1, . . . , xn, y]).

Proof. From equations (2), (3), and (4) in the proof of Hilbert’s Nullstellensatz in §1,
we see that 1 ∈ Ĩ implies f m ∈ I for some m, which, in turn, implies f ∈ √

I . Going
the other way, suppose that f ∈ √

I . Then f m ∈ I ⊂ Ĩ for some m. But we also have
1 − y f ∈ Ĩ , and, consequently,

1 = ym f m + (1 − ym f m) = ym · f m + (1 − y f ) · (1 + y f + · · · + ym−1 f m−1) ∈ Ĩ ,

as desired. �
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Proposition 8, together with our earlier remarks on determining whether 1 belongs
to an ideal (see the discussion of the consistency problem in §1), immediately leads to
the radical membership algorithm. That is, to determine if f ∈ √〈 f1, . . . , fs〉 ⊂
k[x1, . . . , xn], we compute a reduced Groebner basis of the ideal 〈 f1, . . . , fs,

1 − y f 〉 ⊂ k[x1, . . . , xn, y] with respect to some ordering. If the result is {1}, then
f ∈ √

I . Otherwise, f 	∈ √
I .

As an example, consider the ideal I = 〈xy2 + 2y2, x4 − 2x2 + 1〉 in k[x, y]. Let us
test if f = y − x2 + 1 lies in

√
I . Using lex order on k[x, y, z], one checks that the

ideal

Ĩ = 〈xy2 + 2y2, x4 − 2x2 + 1, 1 − z(y − x2 + 1)〉 ⊂ k[x, y, z]

has reduced Groebner basis {1}. It follows that y − x2 + 1 ∈ √
I by Proposition 8.

Indeed, using the division algorithm, we can check what power of y − x2 + 1 lies
in I :

y − x2 + 1
G = y − x2 + 1,

(y − x2 + 1)2
G = −2x2 y + 2y,

(y − x2 + 1)3
G = 0,

where G = {x4 − 2x2 + 1, y2} is a Groebner basis for I with respect to lex order and pG

is the remainder of p on division by G. As a consequence, we see that (y − x2 + 1)3 ∈ I ,
but no lower power of y − x2 + 1 is in I (in particular, y − x2 + 1 /∈ I ).

We can also see what is happening in this example geometrically. As a set, V(I ) =
{(±1, 0)}, but (speaking somewhat imprecisely) every polynomial in I vanishes to
order at least 2 at each of the two points in V(I ). This is visible from the form of the
generators of I if we factor them:

xy2 + 2y2 = y2(x + 2) and x4 − 2x2 + 1 = (x2 − 1)2.

Even though f = y − x2 + 1 also vanishes at (±1, 0), f only vanishes to order 1 there.
We must take a higher power of f to obtain an element of I .

We will end this section with a discussion of the one case where we can compute the
radical of an ideal, which is when we are dealing with a principal ideal I = 〈 f 〉. Recall
that a polynomial f is said to be irreducible if it has the property that whenever f = g · h
for some polynomials g and h, then either g or h is a constant. We saw in §5 of Chapter
3 that any polynomial f can always be written as a product of irreducible polynomials.
By collecting the irreducible polynomials which differ by constant multiples of one
another, we can write f in the form

f = c f a1

1 · · · f ar
r , c ∈ k,

where the fi ’s 1 ≤ i ≤ r , are distinct irreducible polynomials. That is, where fi and f j

are not constant multiples of one another whenever i 	= j . Moreover, this expression
for f is unique up to reordering the fi ’s and up to multiplying the fi ’s by constant
multiples. (This is just a restatement of Theorem 5 of Chapter 3, §5.) If we have f
expressed as a product of irreducible polynomials, then it is easy to write down an
explicit expression for the radical of the principal ideal generated by f .
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Proposition 9. Let f ∈ k[x1, . . . , xn] and I = 〈 f 〉 the principal ideal generated by
f . If f = c f a1

1 · · · f ar
r is the factorization of f into a product of distinct irreducible

polynomials, then
√

I =
√

〈 f 〉 = 〈 f1 f2 · · · fr 〉.

Proof. We first show that f1 f2 · · · fr belongs to
√

I . Let N be an integer strictly greater
than the maximum of a1, . . . , ar . Then

( f1 f2 · · · fr )N = f N−a1

1 f N−a2

2 · · · f N−ar
r f

is a polynomial multiple of f . This shows that ( f1 f2 · · · fr )N ∈ I , which implies that
f1 f2 · · · fr ∈ √

I . Thus 〈 f1 f2 · · · fr 〉 ⊂ √
I .

Conversely, suppose that g ∈ √
I . Then there exists a positive integer M such that

gM ∈ I . This means that gM = h · f for some polynomial h. Now suppose that g =
gb1

1 gb2

2 · · · gbs
s is the factorization of g into a product of distinct irreducible polynomials.

Then gM = gb1 M
1 gb2 M

2 · · · gbs M
s is the factorization of gM into a product of distinct

irreducible polynomials. Thus,

gb1 M
1 gb2 M

2 · · · gbs M
s = h · f a1

1 f a2

2 · · · f ar
r .

But, by unique factorization, the irreducible polynomials on both sides of the above
equation must be the same (up to multiplication by constants). Since the f1, . . . , fr are
irreducible; each fi , 1 ≤ i ≤ r must be equal to a constant multiple of some g j . This
implies that g is a polynomial multiple of f1 f2 · · · fr and, therefore g is contained in
the ideal 〈 f1 f2 · · · fr 〉. The proposition is proved. �

In view of Proposition 9, we make the following definition:

Definition 10. If f ∈ k[x1, . . . , xn] is a polynomial, we define the reduction of f,
denoted fred , to be the polynomial such that 〈 fred〉 = √〈 f 〉. A polynomial is said to
be reduced (or square-free) if f = fred .

Thus, fred is the polynomial f with repeated factors “stripped away.” So, for example,
if f = (x + y2)3(x − y), then fred = (x + y2)(x − y). Note that fred is only unique
up to a constant factor in k.

The usefulness of Proposition 9 is mitigated by the requirement that f be factored
into irreducible factors. We might ask if there is an algorithm to compute fred from f
without factoring f first. It turns out that such an algorithm exists.

To state the algorithm, we will need the notion of a greatest common divisor of two
polynomials.

Definition 11. Let f, g ∈ k[x1, . . . , xn]. Then h ∈ k[x1, . . . , xn] is called a greatest
common divisor of f and g, and denoted h = GCD( f, g), if
(i) h divides f and g.

(ii) If p is any polynomial which divides both f and g, then p divides h.
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It is easy to show that GCD( f, g) exists and is unique up to multiplication by a nonzero
constant in k (see Exercise 9). Unfortunately, the one-variable algorithm for finding the
GCD (that is, the Euclidean Algorithm) does not work in the case of several variables. To
see this, consider the polynomials xy and xz in k[x, y, z]. Clearly, GCD(xy, xz) = x .
However, no matter what term ordering we use, dividing xy by xz gives 0 plus remainder
xy and dividing xz by xy gives 0 plus remainder xz. As a result, neither polynomial
“reduces” with respect to the other and there is no next step to which to apply the
analogue of the Euclidean Algorithm.

Nevertheless, there is an algorithm for calculating the GCD of two polynomials
in several variables. We defer a discussion of it until the next section after we have
studied intersections of ideals. For the purposes of our discussion here, let us assume
that we have such an algorithm. We also remark that given polynomials f1, . . . , fs ∈
k[x1, . . . , xn], one can define GCD( f1, f2, . . . , fs) exactly as in the one-variable case.
There is also an algorithm for computing GCD( f1, f2, . . . , fs).

Using this notion of GCD, we can now give a formula for computing the radical of
a principal ideal.

Proposition 12. Suppose that k is a field containing the rational numbers and let
I = 〈 f 〉 be a principal ideal in k[x1, . . . , xn]. Then

√
I = 〈 fred〉, where

fred = f

GCD

(
f,

∂ f

∂x1

,
∂ f

∂x2

, . . . ,
∂ f

∂xn

) .

Proof. Writing f as in Proposition 9, we know that
√

I = 〈 f1 f2 · · · fr 〉. Thus, it suffices
to show that

GCD

(
f,

∂ f

∂x1

, . . . ,
∂ f

∂xn

)
= f a1−1

1 f a2−1
2 . . . f ar −1

r .(1)

We first use the product rule to note that

∂ f

∂x j
= f a1−1

1 f a2−1
2 · · · f ar −1

r

(
a1

∂ f1

∂x j
f2 · · · fr + · · · + ar f1 f2 · · · ∂ fr

∂x j

)
.

This proves that f a1−1
1 f a2−1

2 · · · f ar −1
r divides the GCD. It remains to show that for

each i , there is some ∂ f
∂x j

which is not divisible by f ai
i .

Write f = f ai
i hi , where hi is not divisible by fi . Since fi is nonconstant, some

variable x j must appear in fi . The product rule gives us

∂ f

∂x j
= f ai −1

i

(
a1

∂ f1

∂x j
hi + fi

∂hi

∂x j

)
.

If this expression is divisible by f ai
i , then ∂ fi

∂x j
hi must be divisible by fi . Since fi is

irreducible and does not divide hi , this forces fi to divide ∂ fi

∂x j
. In Exercise 13, you will

show that ∂ fi

∂x j
is nonzero since ⊂ k and x j appears in fi . As ∂ fi

∂x j
also has smaller total
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degree than fi , it follows that fi cannot divide ∂ fi

∂x j
. Consequently, ∂ f

∂x j
is not divisible

by f ai
i , which proves (1), and the proposition follows. �

It is worth remarking that for fields which do not contain , the above formula for
fred may fail (see Exercise 13).

EXERCISES FOR §2

1. Given a field k (not necessarily algebraically closed), show that
√〈x2, y2〉 = 〈x, y〉 and,

more generally, show that
√〈xn, ym〉 = 〈x, y〉 for any positive integers n and m.

2. Let f and g be distinct nonconstant polynomials in k[x, y] and let I = 〈 f 2, g3〉. Is it

necessarily true that
√

I = 〈 f, g〉? Explain.

3. Show that 〈x2 + 1〉 ⊂ [x] is a radical ideal, but that V(x2 + 1) is the empty variety.

4. Let I be an ideal in k[x1, . . . , xn], where k is an arbitrary field.

a. Show that
√

I is a radical ideal.

b. Show that I is radical if and only if I = √
I .

c. Show that
√√

I = √
I .

5. Prove that I and V are inclusion-reversing.

6. Let I be an ideal in k[x1, . . . , xn].

a. In the special case when
√

I = 〈 f1, f2〉, with f mi
i ∈ I , prove that f m1+m2−1 ∈ I for all

f ∈ √
I .

b. Now prove that for any I , there exists m0 such that f m0 ∈ I for all f ∈ √
I . Hint: Write√

I = 〈 f1, . . . , fs〉.
7. Determine whether the following polynomials lie in the following radicals. If the answer is

yes, what is the smallest power of the polynomial that lies in the ideal?

a. Is x + y ∈ √〈x3, y3, xy(x + y)〉?
b. Is x2 + 3xz ∈ √〈x + z, x2 y, x − z2〉?

8. Show that if fm and fm+1 are homogeneous polynomials of degree m and m + 1, respectively,

with no common factors [i.e., GCD( fm, fm+1) = 1], then h = fm + fm+1 is irreducible.

9. Given f, g ∈ k[x1, . . . , xn], use unique factorization to prove that GCD( f, g) exists. Also

prove that GCD( f, g) is unique up to multiplication by a nonzero constant of k.

10. Prove the following ideal-theoretic characterization of GCD( f, g): given f, g, h in

k[x1, . . . , xn], then h = GCD( f, g) if and only if h is a generator of the smallest princi-

pal ideal containing 〈 f, g〉 (that is, if 〈h〉 ⊂ J , whenever J is a principal ideal such that

J ⊃ 〈 f, g〉).
11. Find a basis for the ideal

√
〈x5 − 2x4 + 2x2 − x, x5 − x4 − 2x3 + 2x2 + x − 1〉.

Compare with Exercise 17 of Chapter 1, §5.

12. Let f = x5 + 3x4 y + 3x3 y2 − 2x4 y2 + x2 y3 − 6x3 y3 − 6x2 y4 + x3 y4 − 2xy5 + 3x2 y5 +
3xy6 + y7 ∈ [x, y]. Compute

√〈 f 〉.
13. A field k has characteristic zero if it contains the rational numbers ; otherwise, k has

positive characteristic.

a. Let k be the field 2 from Exercise 1 of Chapter 1, §1. If f = x2
1 + · · · + x2

n ∈
2[x1, . . . , xn], then show that ∂ f

∂xi
= 0 for all i . Conclude that the formula given in

Proposition 12 may fail when the field is 2.
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b. Let k be a field of characteristic zero and let f ∈ k[x1, . . . , xn] be nonconstant. If the

variable x j appears in f , then prove that ∂ f
∂x j

	= 0. Also explain why ∂ f
∂x j

has smaller total

degree than f .

14. Let J = 〈xy, (x − y)x〉. Describe V(J ) and show that
√

J = 〈x〉.
15. Prove that I = 〈xy, xz, yz〉 is a radical ideal. Hint: If you divide f ∈ k[x, y, z] by xy, xz, yz,

what does the remainder look like? What does f m look like?

§3 Sums, Products, and Intersections of Ideals

Ideals are algebraic objects and, as a result, there are natural algebraic operations we can
define on them. In this section, we consider three such operations: sum, intersection, and
product. These are binary operations: to each pair of ideals, they associate a new ideal.
We shall be particularly interested in two general questions which arise in connection
with each of these operations. The first asks how, given generators of a pair of ideals,
one can compute generators of the new ideals which result on applying these operations.
The second asks for the geometric significance of these algebraic operations. Thus, the
first question fits the general computational theme of this book; the second, the general
thrust of this chapter. We consider each of the operations in turn.

Sums of Ideals
Definition 1. If I and J are ideals of the ring k[x1, . . . , xn], then the sum of I and J,
denoted I + J , is the set

I + J = { f + g : f ∈ I and g ∈ J }.

Proposition 2. If I and J are ideals in k[x1, . . . , xn], then I + J is also an ideal in
k[x1, . . . , xn]. In fact, I + J is the smallest ideal containing I and J. Furthermore, if
I = 〈 f1, . . . , fr ) and J = 〈g1, . . . , gs), then I + J = 〈 f1, . . . , fr , g1, . . . , gs〉.

Proof. Note first that 0 = 0 + 0 ∈ I + J . Suppose h1, h2 ∈ I + J . By the definition of
I + J , there exist f1, f2 ∈ I and g1, g2 ∈ J such that h1 = f1 + g1, h2 = f2 + g2.
Then, after rearranging terms slightly, h1 + h2 = ( f1 + f2) + (g1 + g2). But f1 +
f2 ∈ I because I is an ideal and, similarly, g1 + g2 ∈ J , whence h1 + h2 ∈ I + J .
To check closure under multiplication, let h ∈ I + J and l ∈ k[x1, . . . , xn] be any
polynomial. Then, as above, there exist f ∈ I and g ∈ J such that h = f + g.
But then l · h = l · ( f + g) = l · f + l · g. Now l · f ∈ I and l · g ∈ J because
I and J are ideals. Consequently, I · h ∈ I + J . This shows that I + J is an
ideal.

If H is an ideal which contains I and J , then H must contain all elements f ∈ I
and g ∈ J . Since H is an ideal, H must contain all f + g, where f ∈ I, g ∈ J . In
particular, H ⊃ I + J . Therefore, every ideal containing I and J contains I + J
and, thus, I + J must be the smallest such ideal. Finally, if I = 〈 f1, . . . , fr 〉 and
J = 〈g1, . . . , gs〉, then 〈 f1, . . . , fr , g1, . . . , gs〉 is an ideal containing I and J , so that
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I + J ⊂ 〈 f1, . . . , fr , g1, . . . gs〉. The reverse inclusion is obvious, so that I + J =
( f1, . . . , fr , g1, . . . , gs). �

The following corollary is an immediate consequence of Proposition 2.

Corollary 3. If f1, . . . , fr ∈ k[x1, . . . , xn], then

〈 f1, . . . , fr 〉 = 〈 f1〉 + · · · 〈 fr 〉.

To see what happens geometrically, let I = 〈x2 + y〉 and J = 〈z〉 be ideals in 3. We
have sketched V(I ) and V(J ) below. Then I + J = (x2 + y, z) contains both x2 + y
and z. Thus, the variety V(I + J ) must consist of those points where both x2 + y and
z vanish. That is, it must be the intersection of V(I ) and V(J ).

z

y

x

↓
V(z)

←V(x2+y)

← V(x2+y,z)

The same line of reasoning generalizes to show that addition of ideals corresponds
geometrically to taking intersections of varieties.

Theorem 4. If I and J are ideals in k[x1, . . . , xn], then V(I + J ) = V(I ) ∩ V(J ).

Proof. If x ∈ V(I + J ), then x ∈ V(I ) because I ⊂ I + J ; similarly, x ∈ V(J ). Thus,
x ∈ V(I ) ∩ V(J ) and we conclude that V(I + J ) ⊂ V(I ) ∩ V(J ).

To get the opposite inclusion, suppose x ∈ V(I ) ∩ V(J ). Let h be any polynomial
in I + J . Then there exist f ∈ I and g ∈ J such that h = f + g. We have f (x) = 0
because x ∈ V(I ) and g(x) = 0 because x ∈ V(J ). Thus, h(x) = f (x) + g(x) = 0 +
0 = 0. Since h was arbitrary, we conclude that x ∈ V(I + J ). Hence, V(I + J ) ⊃
V(I ) ∩ V(J ). �

An analogue of Theorem 4, stated in terms of generators was given in Lemma 2 of
Chapter 1, §2.
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Products of Ideals
In Lemma 2 of Chapter 1, §2, we encountered the fact that an ideal generated by the
products of the generators of two other ideals corresponds to the union of varieties:

V( f1, . . . , fr ) ∪ V(g1, . . . , gs) = V( fi g j , 1 ≤ i ≤ r, 1 ≤ j ≤ s).

Thus, for example, the variety V(xz, yz) corresponding to an ideal generated by the
product of the generators of the ideals, 〈x, y〉 and 〈z〉 in k[x, y, z] is the union of V(x, y)
(the z-axis) and V(z) (the xy-plane). This suggests the following definition.

Definition 5. If I and J are two ideals in k[x1, . . . , xn], then their product, denoted
I · J , is defined to be the ideal generated by all polynomials f · g where f ∈ I and
g ∈ J .

Thus, the product I · J of I and J is the set

I · J = { f1g1 + · · · + fr gr : f1, . . . , fr ∈ I, g1, . . . , gr ∈ J, r a positive integer}.
To see that this is an ideal, note that 0 = 0 · 0 ∈ I · J . Moreover, it is clear that h1, h2 ∈
I · J implies that h1 + h2 ∈ I · J . Finally, if h = f1g1 + · · · + fr gr ∈ I · J and p is
any polynomial, then

ph = (p f1)g1 + · · · + (p fr )gr ∈ I · J

since p fi ∈ I for all i, 1 ≤ i ≤ r . Note that the set of products would not be an ideal
because it would not be closed under addition. The following easy proposition shows
that computing a set of generators for I · J given sets of generators for I and J is
completely straightforward.

Proposition 6. Let I = 〈 f1, . . . , fr 〉 and J = 〈g1, . . . , fr 〉. Then I · J is generated by
the set of all products of generators of I and J:

I · J = 〈 fi g j : 1 ≤ i ≤ r, 1 ≤ j ≤ s〉.

Proof. It is clear that the ideal generated by products fi g j of the generators is contained
in I · J . To establish the opposite inclusion, note that any polynomial in I · J is a sum
of polynomials of the form f g with f ∈ I and g ∈ J . But we can write f and g in
terms of the generators f1, . . . , fr and g1, . . . , gs , respectively, as

f = a1 f1 + · · · + ar fr , g = b1g1 + · · · + bs gs

for appropriate polynomials a1, . . . , ar , b1, . . . , bs . Thus, f g, and any sum of polyno-
mials of this form, can be written as a sum

∑
ci j fi g j , where ci j ∈ k[x1, . . . , xn]. �

The following proposition guarantees that the product of ideals does indeed corre-
spond geometrically to the operation of taking the union of varieties.

Theorem 7. If I and J are ideals in k[x1, . . . , xn], then V(I · J ) = V(I ) ∪ V(J ).
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Proof. Let x ∈ V(I · J ). Then g(x)h(x) = 0 for all g ∈ I and all h ∈ J . If g(x) = 0
for all g ∈ I , then x ∈ V(I ). If g(x) 	= 0 for some g ∈ I , then we must have h(x) = 0
for all h ∈ J . In either event, x ∈ V(I ) ∪ V(J ).

Conversely, suppose x ∈ V(I ) ∪ V(J ). Either g(x) = 0 for all g ∈ I or h(x) = 0 for
all h ∈ J . Thus, g(x)h(x) = 0 for all g ∈ I and h ∈ J . Thus, f (x) = 0 for all f ∈ I · J
and, hence, x ∈ V(I · J ). �

In what follows, we will often write the product of ideals as I J rather than I · J .

Intersections of Ideals
The operation of forming the intersection of two ideals is, in some ways, even more
primitive than the operations of addition and multiplication.

Definition 8. The intersection I ∩ J of two ideals I and J in k[x1, . . . , xn] is the set
of polynomials which belong to both I and J.

As in the case of sums, the set of ideals is closed under intersections.

Proposition 9. If and J are ideals in k[x1, . . . , xn], then I ∩ J is also an ideal.

Proof. Note that 0 ∈ I ∩ J since 0 ∈ I and 0 ∈ J . If f, g ∈ I ∩ J , then f + g ∈ I
because f, g ∈ I . Similarly, f + g ∈ J and, hence, f + g ∈ I ∩ J . Finally, to check
closure under multiplication, let f ∈ I ∩ J and h by any polynomial in k[x1, . . . , xn].
Since f ∈ I and I is an ideal, we have h · f ∈ I . Similarly, h · f ∈ J and, hence,
h · f ∈ I ∩ J �

Note that we always have I J ⊂ I ∩ J since elements of I J are sums of polynomials
of the form f g with f ∈ I and g ∈ J . But the latter belongs to both I (since f ∈ I )
and J (since g ∈ J ). However, I J can be strictly contained in I ∩ J . For example,
if I = J = 〈x, y〉, then I J = 〈x2, xy, y2〉 is strictly contained in I ∩ J = I = 〈x, y〉
(x ∈ I ∩ J , but x /∈ I J ).

Given two ideals and a set of generators for each, we would like to be able to compute
a set of generators for the intersection. This is much more delicate than the analogous
problems for sums and products of ideals, which were entirely straightforward. To
see what is involved, suppose I is the ideal in [x, y] generated by the polynomial
f = (x + y)4(x2 + y)2(x − 5y) and let J be the ideal generated by the polynomial
g = (x + y)(x2 + y)3(x + 3y). We leave it as an (easy) exercise to check that

I ∩ J = 〈(x + y)4(x2 + y)3(x − 5y)(x + 3y)〉.
This computation is easy precisely because we were given factorizations of f and g
into irreducible polynomials. In general, such factorizations may not be available. So
any algorithm which allows one to compute intersections will have to be powerful
enough to circumvent this difficulty.
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Nevertheless, there is a nice trick which reduces the computation of intersections
to computing the intersection of an ideal with a subring (i.e., eliminating variables), a
problem which we have already solved. To state the theorem, we need a little notation:
if I is an ideal in k[x1, . . . , xn] and f (t) ∈ k[t] a polynomial in the single variable
t , then f I denotes the ideal in k[x1, . . . , xn, t] generated by the set of polynomials
{ f · h : h ∈ I }. This is a little different from our usual notion of product in that the
ideal I and the ideal generated by f (t) in k[t] lie in different rings: in fact, the ideal
I ⊂ k[x1, . . . , xn] is not an ideal in k[x1, . . . , xn, t] because it is not closed under
multiplication by t . When we want to stress that the polynomial f ∈ k[t] is a polynomial
in t alone, we write f = f (t). Similarly, to stress that a polynomial h ∈ k[x1, . . . , xn]
involves only the variables x1, . . . , xn , we write h = h(x). Along the same lines, if we
are considering a polynomial g in k[x1, . . . , xn, t] and we want to emphasize that it can
involve the variables x1, . . . , xn as well as t , we will write g = g(x, t). In terms of this
notation, f I = f (t)I = 〈 f (t)h(x) : h(x) ∈ I 〉. So, for example, if f (t) = t2 − t and
I = 〈x, y〉, then the ideal f (t)I in k[x, y, t] contains (t2 − t)x and (t2 − t)y. In fact,
it is not difficult to see that f (t)I is generated as an ideal by (t2 − t)x and (t2 − t)y.
This is a special case of the following assertion.

Lemma 10.
(i) If I is generated as an ideal in k[x1, . . . , xn] by p1(x), . . . , pr (x), then f (t)I is

generated as an ideal in k[x1, . . . , xn, t] by f (t) · p1(x), . . . , f (t) · pr (x).
(ii) If g(x, t) ∈ f (t)I and a is any element of the field k, then g(x, a) ∈ I .

Proof. To prove the first assertion, note that any polynomial g(x, t) ∈ f (t)I can be
expressed as a sum of terms of the form h(x, t) · f (t) · p(x) for h ∈ k[x1, . . . , xn, t]
and p ∈ I . But because I is generated by p1, . . . , pr the polynomial p(x) can be
expressed as a sum of terms of the form qi (x)pi (x), 1 ≤ i ≤ r . That is,

p(x) =
r∑

i=1

qi (x)pi (x).

Hence,

h(x, t) · f (t) · p(x) =
r∑

i=1

h(x, t)qi (x) f (t)pi (x).

Now, for each i, 1 ≤ i ≤ r, h(x, t) · qi (x) ∈ k[x1, . . . , xn, t]. Thus, h(x, t) · f (t) · p(x)
belongs to the ideal in k[x1, . . . , xn, t] generated by f (t) · p1(x), . . . , f (t) · pr (x).
Since g(x, t) is a sum of such terms,

g(x, t) ∈ 〈 f (t) · p1(x), . . . , f (t) · pr (x)〉,
which establishes (i). The second assertion follows immediately upon substituting a ∈ k
for t . �

Theorem 11. Let I, J be ideals in k[x1, . . . , xn]. Then

I ∩ J = (t I + (1 − t)J ) ∩ k[x1, . . . , xn].
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Proof. Note that t I + (1 − t)J is an ideal in k[x1, . . . , xn, t]. To establish the desired
equality, we use the usual strategy of proving containment in both directions.

Suppose f ∈ I ∩ J . Since f ∈ I , we have t · f ∈ t I . Similarly, f ∈ J implies
(1 − t) · f ∈ (1 − t)J . Thus, f = t · f + (1 − t) · f ∈ t I + (1 − t)J . Since I, J ⊂
k[x1, . . . , xn], we have f ∈ (t I + (1 − t)J ) ∩ k[x1, . . . , xn]. This shows that I ∩ J ⊂
(t I + (1 − t)J ) ∩ k[x1, . . . , xn].

To establish containment in the opposite direction, suppose f ∈ (t I + (1 − t)J ) ∩
k[x1, . . . , xn]. Then f (x) = g(x, t) + h(x, t), where g(x, t) ∈ t I and h(x, t) ∈ (1 −
t)J . First set t = 0. Since every element of t I is a multiple of t , we have g(x, 0) = 0.
Thus, f (x) = h(x, 0) and hence, f (x) ∈ J by Lemma 10. On the other hand, set
t = 1 in the relation f (x) = g(x, t) + h(x, t). Since every element of (1 − t)J is a
multiple of 1 − t , we have h(x, 1) = 0. Thus, f (x) = g(x, 1) and, hence, f (x) ∈ I
by Lemma 10. Since f belongs to both I and J , we have f ∈ I ∩ J . Thus, I ∩ J ⊃
(t I + (1 − t)J ) ∩ k[x1, . . . , xn] and this completes the proof. �

The above result and the Elimination Theorem (Theorem 2 of Chapter 3, §1) lead to
the following algorithm for computing intersections of ideals: if I = 〈 f1, . . . , fr 〉
and J = 〈g1, . . . , gs〉 are ideals in k[x1, . . . , xn], we consider the ideal

〈t f1, . . . , t fr , (1 − t)g1, . . . , (1 − t)gs〉 ⊂ k[x1, . . . , xn, t]

and compute a Groebner basis with respect to lex order in which t is greater than the
xi . The elements of this basis which do not contain the variable t will form a basis
(in fact, a Groebner basis) of I ∩ J . For more efficient calculations, one could also
use one of the orders described in Exercises 5 and 6 of Chapter 3, §1. An algorithm
for intersecting three or more ideals is described in Proposition 6.19 of BECKER and
WEISPFENNING (1993).

As a simple example of the above procedure, suppose we want to compute the
intersection of the ideals I = 〈x2 y〉 and J = 〈xy2〉 in [x, y]. We consider the ideal

t I + (1 − t)J = 〈t x2 y, (1 − t)xy2〉 = 〈t x2 y, t xy2 − xy2〉
in k[t, x, y]. Computing the S-polynomial of the generators, we obtain t x2 y2 −
(t x2 y2 − x2 y2) = x2 y2. It is easily checked that {t x2 y, t xy2 − xy2, x2 y2} is a
(Groebner basis of (t I + (1 − t)J with respect to lex order with t > x > y. By the
Elimination Theorem, {x2 y2} is a (Groebner) basis of (t I + (1 − t)J ) ∩ [x, y]. Thus,

I ∩ J = 〈x2 y2〉.
As another example, we invite the reader to apply the algorithm for computing inter-
sections of ideals to give an alternate proof that the intersection I ∩ J of the ideals

I = 〈(x + y)4(x2 + y)2(x − 5y)〉 and J = 〈(x + y)(x2 + y)3(x + 3y)〉
in [x, y] is

I ∩ J = 〈(x + y)4(x2 + y)3(x − 5y)(x + 3y)〉.
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These examples above are rather simple in that our algorithm applies to ideals which
are not necessarily principal, whereas the examples given here involve intersections of
principal ideals. We shall see a somewhat more complicated example in the exercises.

We can generalize both of the examples above by introducing the following
definition.

Definition 12. A polynomial h ∈ k[x1, . . . , xn] is called a least common multiple of
f, g ∈ k[x1, . . . , xn] and denoted h = LCM( f, g) if
(i) f divides h and g divides h.

(ii) h divides any polynomial which both f and g divide.

For example,

LCM(x2 y, xy2) = x2 y2

and

LCM((x + y)4(x2 + y)2(x − 5y), (x + y)(x2 + y)3(x + 3y))

= (x + y)4(x2 + y)3(x − 5y)(x + 3y).

More generally, suppose f, g ∈ k[x1, . . . , xn] and let f = c f a1

1 . . . f ar
r and g =

c′gb1

1 . . . gbs
s be their factorizations into distinct irreducible polynomials. It may happen

that some of the irreducible factors of f are constant multiples of those of g. In this
case, let us suppose that we have rearranged the order of the irreducible polynomials
in the expressions for f and g so that for some l, 1 ≤ l ≤ min(r, s), fi is a constant
(nonzero) multiple of gi for 1 ≤ i ≤ l and for all i, j > l, fi is not a constant multiple
of g j . Then it follows from unique factorization that

LCM( f, g) = f max(a1,b1)
1 · · · f max(al ,bl )

l · gbl+1

l+1 · gbs
s · f al+1

l+1 · · · f ar
r .(1)

[In the case that f and g share no common factors, we have LCM( f, g) = f · g.] This,
in turn, implies the following result.

Proposition 13.
(i) The intersection I ∩ J of two principal ideals I, J ⊂ k[x1, . . . , xn] is a principal

ideal.
(ii) If I = 〈 f 〉, J = 〈g〉 and I ∩ J = 〈h〉, then

h = LCM( f, g).

Proof. The proof will be left as an exercise. �

This result, together with our algorithm for computing the intersection of two ideals
immediately gives an algorithm for computing the least common multiple of two
polynomials. Namely, to compute the least common multiple of two polynomials f, g ∈
k[x1, . . . , xn], we compute the intersection 〈 f 〉 ∩ 〈g〉using our algorithm for computing
the intersection of ideals. Proposition 13 assures us that this intersection is a principal
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ideal (in the exercises, we ask you to prove that the intersection of principal ideals is
principal) and that any generator of it is a least common multiple of f and g.

This algorithm for computing least common multiples allows us to clear up a point
which we left unfinished in §2: namely, the computation of the greatest common divisor
of two polynomials f and g. The crucial observation is the following.

Proposition 14. Let f, g ∈ k[x1, . . . , xn]. Then

LCM( f, g) · GCD( f, g) = f g.

Proof. The proof is an exercise. You will need to express f and g as a product of distinct
irreducibles and use the remarks preceding Proposition 13, especially equation (1) �

It follows immediately from Proposition 14 that

GCD( f, g) = f · g

LCM( f, g)
.(2)

This gives an algorithm for computing the greatest common divisor of two poly-
nomials f and g. Namely, we compute LCM( f, g) using our algorithm for the
least common multiple and divide it into the product of f and g using the division
algorithm.

We should point out that the GCD algorithm just described is rather cumbersome.
In practice, more efficient algorithms are used [see DAVENPORT, SIRET, and TOURNIER

(1993)].
Having dealt with the computation of intersections, we now ask what operation on

varieties corresponds to the operation of intersection on ideals. The following result
answers this question.

Theorem 15. If I and J are ideals in k[x1, . . . , xn], then V(I ∩ J ) = V(I ) ∪ V(J ).

Proof. Let x ∈ V(I ) ∪ V(J ). Then x ∈ V(I ) or x ∈ V(J ). This means that either
f (x) = 0 for all f ∈ I or f (x) = 0 for all f ∈ J . Thus, certainly, f (x) = 0 for all
f ∈ I ∩ J . Hence, x ∈ V(I ∩ J ). Thus, V(I ) ∪ V(J ) ⊂ V(I ∩ J ).

On the other hand, note that since I J ⊂ I ∩ J , we have V(I ∩ J ) ⊂ V(I J ).
But V(I J ) = V(I ) ∪ V(J ) by Theorem 7 and we immediately obtain the reverse
inequality. �

Thus, the intersection of two ideals corresponds to the same variety as the product.
In view of this and the fact that the intersection is much more difficult to compute
than the product, one might legitimately question the wisdom of bothering with the
intersection at all. The reason is that intersection behaves much better with respect
to the operation of taking radicals: the product of radical ideals need not be a radical
ideal (consider I J where I = J ), but the intersection of radical ideals is always a
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radical ideal. The latter fact follows upon applying the following proposition to radical
ideals.

Proposition 16. If I, J are any ideals, then
√

I ∩ J =
√

I ∩
√

J .

Proof. If f ∈ √
I ∩ J , then f m ∈ I ∩ J for some integer m > 0. Since f m ∈ I , we

have f ∈ √
I . Similarly, f ∈ √

J . Thus,
√

I ∩ J ⊂ √
I ∩ √

J .
To establish the reverse inclusion, suppose f ∈ √

I ∩ √
J . Then, there exist integers

m, p > 0 such that f m ∈ I and f p ∈ J . Thus f m+p = f m f p, so f ∈ √
I ∩ J. �

EXERCISES FOR §3

1. Show that in [x, y], we have

〈(x + y)4(x2 + y)2(x − 5y)〉 ∩ 〈(x + y)(x2 + y)3(x + 3y)〉
= 〈(x + y)4(x2 + y)3(x − 5y)(x + 3y)〉.

2. Prove formula (1) for the least common multiple of two polynomials f and g.

3. Prove assertion (i) of Proposition 13. That is, show that the intersection of two principal

ideals is principal.

4. Prove assertion (ii) of Proposition 13. That is, show that the least common multiple of two

polynomials f and g in k[x1, . . . , xn] is the generator of the ideal 〈 f 〉 ∩ 〈g〉.
5. Prove Proposition 14. That is, show that the least common multiple of two polynomials times

the greatest common divisor of the same two polynomials is the product of the polynomials.

Hint: Use the remarks following the statement of Proposition 14.

6. Let I1, . . . , Ir and J be ideals in k[x1, . . . , xn]. Show the following:

a. (I1 + I2)J = I1 J + I2 J .

b. (I1 . . . Ir )m = I m
1 . . . I m

r .

7. Let I and J be ideals in k[x1, . . . , xn], where k is an arbitrary field. Prove the following:

a. If I � ⊂ J for some integer � > 0, then
√

I ⊂ √
J .

b.
√

I + J =
√√

I + √
J .

8. Let

f = x4 + x3 y + x3z2 − x2 y2 + x2 yz2 − xy3 − xy2z2 − y3z2

and

g = x4 + 2x3z2 − x2 y2 + x2z4 − 2xy2z2 − y2z4.

a. Use a computer algebra program to compute generators for 〈 f 〉 ∩ 〈g〉 and
√〈 f 〉〈g〉.

b. Use a computer algebra program to compute GCD( f, g).

c. Let p = x2 + xy + xz + yz and q = x2 − xy − xz + yz. Use a computer algebra

program to calculate 〈 f, g〉 ∩ 〈p, q〉.
9. For an arbitrary field, show that

√
I J = √

I ∩ J . Give an example to show that the product

of radical ideals need not be radical. Give an example to show that
√

I J can differ from√
I
√

J .
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10. If I is an ideal in k[x1, . . . , xn] and 〈 f (t)〉 is an ideal in k[t], show that the ideal f (t)I defined

in the text is the product of the ideal Ĩ generated by all elements of I in k[x1, . . . , xn, t] and

the ideal 〈 f (t)〉 generated by f (t) in k[x1, . . . , xn, t].
11. Two ideals I and J of k[x1, . . . , xn] are said to be comaximal if and only if I + J =

k[x1, . . . , xn].

a. Show that if k = , then I and J are comaximal if and only if V(I ) ∩ V(J ) = ∅. Give

an example to show that this is false in general.

b. Show that if I and J are comaximal, then I J = I ∩ J .

c. Is the converse to part (b) true? That is, if I J = I ∩ J , does it necessarily follow that I
and J are comaximal? Proof or counterexample?

d. If I and J are comaximal, show that I and J 2 are comaximal. In fact, show that I r and

J s are comaximal for all positive integers r and s.

e. Let I1, . . . , Ir be ideals in k[x1, . . . , xn] and suppose that Ii , and Ji = ∩ j 	=i I j are comax-

imal for all i . Show that

I m
1 ∩ · · · ∩ I m

r = (I1 · · · Ir )m = (I1 ∩ · · · ∩ Ir )m

for all positive integers m.

12. Let I, J be ideals in k[x1, . . . , xn] and suppose that I ⊂ √
J . Show that I m ⊂ J for some

integer m > 0. Hint: You will need to use the Hilbert Basis Theorem.

13. Let A be an m × n constant matrix and suppose that x = Ay, where we are thinking of

x ∈ km and y ∈ K n as column vectors. As in Exercise 9 of §1, define a map

αA : k[x1, . . . , xm] → k[y1, . . . , yn]

by sending f ∈ k[x1, . . . , xm] to αA( f ) ∈ k[y1, . . . , yn], where αA( f ) is the polynomial

defined by αA( f )(y) = f (Ay).

a. Show that the set { f ∈ k[x1, . . . , xm] : αA( f ) = 0} is an ideal in k[x1, . . . , xm]. [This set

is called the kernel of αA and denoted ker(αA).]

b. If I is an ideal k[x1, . . . , xn], show that the set αA(I ) = {αA( f ) : f ∈ I } need not be an

ideal in k[y1, . . . , yn]. [We will often write 〈αA(I )〉 to denote the ideal in k[y1, . . . , yn]

generated by the elements of αA(I )—it is called the extension of I to k[y1, . . . , yn].]

c. Show that if I ′ is an ideal in k[y1, . . . , yn], the set α−1
A (I ′) = { f ∈ k[x1, . . . , xm] :

αA( f ) ∈ I ′} is an ideal in k[x1, . . . , xm] (often called the contraction of I ′).
14. Let A and αA be as above and let K = ker(αA). Let I and J be ideals in k[x1, . . . , xm]. Show

that:

a. I ⊂ J implies 〈αA(I )〉 ⊂ 〈αA(J )〉.
b. 〈αA(I + J )〉 = 〈αA(I )〉 + 〈αA(J )〉.
c. 〈αA(I J )〉 = 〈αA(I )〉〈αA(J )〉.
d. 〈αA(I ∩ J )〉 ⊂ 〈αA(I )〉 ∩ 〈αA(J )〉 with equality if I ⊃ K or J ⊃ K .

e. 〈αA(
√

I )〉 ⊂ √〈αA(I )〉 with equality I ⊃ K .

15. Let A, αA, and K = ker(αA) be as above. Let I ′ and J ′ be ideals in k[y1, . . . , yn]. Show

that:

a. I ′ ⊂ J ′ implies α−1
A (I ′) ⊂ α−1

A (J ′).
b. α−1

A (I ′ + J ′) = α−1
A (I ′) + α−1

A (J ′).
c. α−1

A (I ′ J ′) ⊃ (α−1
A (I ′))(α−1

A (J ′)), with equality if the right-hand side contains K .

d. α−1
A (I ′ ∩ J ′) = α−1

A (I ′) ∩ α−1
A (J ′).

e. α−1
A (

√
I ′) =

√
α−1

A (I ′).
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§4 Zariski Closure and Quotients of Ideals

We have already seen a number of examples of sets which are not varieties. Such sets
arose very naturally in Chapter 3, where we saw that the projection of a variety need
not be a variety, and in the exercises in Chapter 1, where we saw that the (set-theoretic)
difference of varieties can fail to be a variety.

Whether or not a set S ⊂ kn is an affine variety, the set

I(S) = { f ∈ k[x1, . . . , xn] : f (a) = 0 for all a ∈ S}

is an ideal in k[x1, . . . , xn] (check this!). In fact, it is radical. By the ideal–variety
correspondence, V(I(S)) is a variety. The following proposition states that this variety
is the smallest variety that contains the set S.

Proposition 1. If S ⊂ kn, the affine variety V(I(S) is the smallest variety that contains
S [in the sense that if W ⊂ kn is any affine variety containing S, then V(I(S)) ⊂ W ].

Proof. If W ⊃ S, then I(W ) ⊂ I(S) (because I is inclusion-reversing). But then
V(I(W )) ⊃ V(I(S)) (because V is inclusion-reversing). Since W is an affine variety,
V(I(W )) = W by Theorem 7 from §2, and the result follows. �

This proposition leads to the following definition.

Definition 2. The Zariski closure of a subset of affine space is the smallest affine
algebraic variety containing the set. If S ⊂ kn, the Zariski closure of S is denoted S
and is equal to V(I(S)).

We also note that I (S) = I (S). The inclusion I (S) ⊂ I (S) follows from S ⊂ S. Going
the other way, f ∈ I (S) implies S ⊂ V( f ). Then S ⊂ S ⊂ V( f ) by Definition 2, so
that f ∈ I (S).

A natural example of Zariski closure is given by elimination ideals. We can now
prove the first assertion of the Closure Theorem (Theorem 3 of Chapter 3, §2).

Theorem 3. Let k be an algebraically closed field. Suppose V = V( f1, . . . , fs) ⊂ kn,
and let πl : kn −→ kn−l be projection onto the last n − l components. If Il is the lth
elimination ideal Il = 〈 f1, . . . , fs〉 ∩ k[xl+1, . . . , xn], then V(Il) is the Zariski closure
of πl(V ).

Proof. In view of Proposition 1, we must show that V(Il) = V(I(πl(V ))). By Lemma
1 of Chapter 3, §2, we have πl(V ) ⊂ V(Il). Since V(I(πl(V ))) is the smallest variety
containing πl(V ), it follows immediately that V(I(πl(V ))) ⊂ V(Il).

To get the opposite inclusion, suppose f ∈ I(πl(V )), i.e., f (al+1, . . . , an) = 0 for all
(al+1, . . . , an) ∈ πl(V ). Then, considered as an element of k[x1, x2, . . . , xn], we cer-
tainly have f (a1, a2, . . . , an) = 0 for all (a1, . . . , an) ∈ V . By Hilbert’s Nullstellensatz,
f N ∈ 〈 f1, . . . , fs〉 for some integer N . Since f does not depend on x1, . . . , xl , neither
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does f N , and we have f N ∈ 〈 f1, . . . , fs〉 ∩ k[xl+1, . . . , xn] = Il . Thus, f ∈ √
I l ,

which implies I(πl(V )) ⊂ √
I l . It follows that V(Il) = V(

√
I l) ⊂ V(I(πl(V ))), and

the theorem is proved. �

Another context in which we encountered sets which were not varieties was in taking
the difference of varieties. For example, let W = V(K ) where K ⊂ k[x, y, z] is the
ideal (xz, yz) and V = V(I ) where I = 〈z〉. Then we have already seen that W is the
union of the xy-plane and the z-axis. Since V is the xy-plane, W − V is the z-axis with
the origin removed (because the origin also belongs to the xy-plane). We have seen
in Chapter 1 that this is not a variety. The z-axis [= V(x, y)] is the smallest variety
containing W − V .

We could ask if there is a general way to compute the ideal corresponding to the
Zariski closure W − V of the difference of two varieties W and V . The answer is
affirmative, but it involves a new algebraic construction on ideals.

To see what the construction involves let us first note the following.

Proposition 4. If V and W are varieties with V ⊂ W , then W = V ∪ (W − V ).

Proof. Since W contains W − V and W is a variety, it must be the case that the smallest
variety containing W − V is contained in W . Hence, W − V ⊂ W . Since V ⊂ W by
hypothesis, we must have V ∪ (W − V ) ⊂ W .

To get the reverse containment, note that V ⊂ W implies W = V ∪ (W − V ). Since
W − V ⊂ W − V , the desired inclusion W ⊂ V ∪ W − V follows immediately. �

Our next task is to study the ideal-theoretic analogue of W − V . We start with the
following definition.

Definition 5. If I, J are ideals in k[x1, . . . , xn], then I : J is the set

{ f ∈ k[x1, . . . , xn] : f g ∈ I for all g ∈ J }
and is called the ideal quotient (or colon ideal) of I by J.

So, for example, in k[x, y, z] we have

〈xz, yz〉 : 〈z〉 = { f ∈ k[x, y, z] : f · z ∈ 〈xz, yz〉}
= { f ∈ k[x, y, z] : f · z = Axz + Byz}
= { f ∈ k[x, y, z] : f = Ax + By}
= 〈x, y〉.

Proposition 6. If I, J are ideals in k[x1, . . . , xn], then I : J is an ideal in k[x1, . . . , xn]
and I : J contains I .

Proof. To show I : J contains I , note that because I is an ideal, if f ∈ I , then f g ∈ I for
all g ∈ k[x1, . . . , xn] and, hence, certainly f g ∈ I for all g ∈ J . To show that I : J is an
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ideal, first note that 0 ∈ I : J because 0 ∈ I . Let f1, f2 ∈ I : J . Then f1g and f2g are
in I for all g ∈ J . Since I is an ideal ( f1 + f2)g = f1g + f2g ∈ I for all g ∈ J . Thus,
f1 + f2 ∈ I : J . To check closure under multiplication is equally straightforward: if
f ∈ I : J and h ∈ k[x1, . . . , xn], then f g ∈ I and, since I is an ideal, h f g ∈ I for all
g ∈ J , which means that h f ∈ I : J . �

The following theorem shows that the ideal quotient is indeed the algebraic analogue
of the Zariski closure of a difference of varieties.

Theorem 7. Let I and J be ideals in k[x1, . . . , xn]. Then

V(I : J ) ⊃ V(I ) − V(J ).

If, in addition, k is algebraically closed and I is a radical ideal, then

V(I : J ) = V(I ) − V(J ).

Proof. We claim that I : J ⊂ I(V(I ) − V(J )). For suppose that f ∈ I : J and x ∈
V(I ) − V(J ). Then f g ∈ I for all g ∈ J . Since x ∈ V(I ), we have f (x)g(x) = 0 for
all g ∈ J . Since x /∈ V(J ), there is some g ∈ J such that g(x) 	= 0. Hence, f (x) = 0
for any x ∈ V(I ) − V(J ). Hence, f ∈ I(V(I ) − V(J )) which proves the claim. Since
V is inclusion-reversing, we have V(I : J ) ⊃ V(I(V(I ) − V(J ))). This proves the first
part of the theorem.

Now, suppose that k is algebraically closed and that I = √
I . Let x ∈ V(I : J ).

Equivalently,

if hg ∈ I for all g ∈ J, then h(x) = 0.(1)

Now let h ∈ I(V(I ) − V(J )). If g ∈ J , then hg vanishes on V(I ) because h vanishes
on V(I ) − V(J ) and g on V(J ). Thus, by the Nullstellensatz, hg ∈ √

I . By assump-
tion, I = √

I , and hence, hg ∈ I for all g ∈ J . By (1), we have h(x) = 0. Thus,
x ∈ V(I(V(I ) − V(J ))). This establishes that

V(I : J ) ⊂ V(I(V(I ) − V(J ))),

and completes the proof. �

The proof of Theorem 7 yields the following corollary that holds over any field.

Corollary 8. Let V and W be varieties in kn. Then

I(V ) : I(W ) = I(V − W ).

Proof. In Theorem 7, we showed that I : J ⊂ I(V(I ) − V(J )). If we apply this to
I = I(V ) and J = I(W ), we obtain I(V ) : I(W ) ⊂ I(V − W ). The opposite inclusion
follows from the definition of ideal quotient. �
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The following proposition takes care of some of the more obvious properties of ideal
quotients. The reader is urged to translate the statements into terms of varieties (upon
which they become completely obvious).

Proposition 9. Let I, J , and K be ideals in k[x1, . . . , xn]. Then:
(i) I : k[x1, . . . , xn] = I .

(ii) I J ⊂ K if and only if I ⊂ K : J .
(iii) J ⊂ I if and only if I : J = k[x1, . . . , xn].

Proof. The proof is left as an exercise. �

The following useful proposition relates the quotient operation to the other operations
we have defined:

Proposition 10. Let I, Ii , J, Ji , and K be ideals in k[x1, . . . , xn] for 1 ≤ i ≤ r . Then

(
r⋂

i=1

Ii

)
: J =

r⋂
i=1

(Ii : J ),(2)

I :

(
r∑

i=1

Ji

)
=

r⋂
i=1

(I : J i ),(3)

(I : J ) : K = I : J K .(4)

Proof. We again leave the (straightforward) proofs to the reader. �

If f is a polynomial and I an ideal, we often write I : f instead of I : 〈 f 〉. Note that
a special case of (3) is that

I : 〈 f1, f2, . . . , fr 〉 =
r⋂

i=1

(I : fi ).(5)

We now turn to the question of how to compute generators of the ideal quotient I : J
given generators of I and J . The following observation is the key step.

Theorem 11. Let I be an ideal and g an element of k[x1, . . . , xn]. If {h1, . . . , h p} is a
basis of the ideal I ∩ 〈g〉, then {h1/g, . . . , h p/g} is a basis of I : 〈g〉.

Proof. If a ∈ 〈g〉, then a = bg for some polynomial b. Thus, if f ∈ 〈h1/g, . . . , h p/g〉,
then

a f = bg f ∈ 〈h1, . . . , h p〉 = I ∩ 〈g〉 ⊂ I.

Thus, f ∈ I : 〈g〉. Conversely, suppose f ∈ I : 〈g〉. Then f g ∈ I . Since f g ∈ 〈g〉,
we have f g ∈ I ∩ (g). If I ∩ 〈g〉 = 〈h1, . . . , h p〉, this means f g = ∑

ri hi for some
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polynomials ri . Since each hi ∈ 〈g〉, each hi/g is a polynomial, and we conclude that
f = ∑

ri (hi/g), whence f ∈ 〈h1/g, . . . , h p/g〉. �

This theorem, together with our procedure for computing intersections of ideals
and equation (5), immediately leads to an algorithm for computing a basis of an
ideal quotient. Namely, given I = 〈 f1, . . . , fr 〉 and J = 〈g1, . . . , gs〉 = 〈g1〉 + · · · +
〈gs〉, to compute a basis of I : J , we first compute a basis for I : 〈gi 〉 for each i .
In view of Theorem 11, we first compute a basis of 〈 f1, . . . , fr 〉 ∩ 〈gi 〉. Recall that
we do this by finding a Groebner basis of 〈t f1, . . . , t fr , (1 − t)gi 〉 with respect to a
lex order in which t precedes all the xi and retaining all basis elements which do not
depend on t (this is our algorithm for computing ideal intersections). Using the division
algorithm, we divide each of these elements by gi to get a basis for I : 〈gi 〉. Finally, we
compute a basis for I : J by applying the intersection algorithm s − 1 times, computing
first a basis for I : 〈g1, g2〉 = (I : 〈g1〉) ∩ (I : 〈g2〉), then a basis for I : 〈g1, g2, g3〉 =
(I : 〈g1, g2〉) ∩ (I : 〈g3〉), and so on.

EXERCISES FOR §4

1. Find the Zariski closure of the following sets:

a. The projection of the hyperbola V(xy − 1) in 2 onto the x-axis.

b. The boundary of the first quadrant in 2.

c. The set {(x, y) ∈ 2 : x2 + y2 ≤ 4}.
2. Let f = (x + y)2(x − y)(x + z2) and g = (x + z2)3(x − y)(z + y). Compute generators for

〈 f 〉 : 〈g〉.
3. Let I and J be ideals. Show that if I is radical ideal, then I : J is radical and I : J = I :

√
J .

4. Give an example to show that the hypothesis that I is radical is necessary for the conclusion

of Theorem 7 to hold. Hint: Examine the proof to see where we used this hypothesis.

5. Prove Proposition 9 and find geometric interpretations of each of its assertions.

6. Prove Proposition 10 and find geometric interpretations of each of its assertions.

7. Let A be an m × n constant matrix and suppose that x = Ay where we are thinking

of x ∈ km and y ∈ kn as column vectors. As in Exercises 9 of §1 and 13 of §3, define

a map

αA : k[x1, . . . , xm] −→ k[y1, . . . , yn]

by sending f ∈ k[x1, . . . , xm] to αA( f ) ∈ k[y1, . . . , yn], where αA( f ) is the polynomial

defined by αA( f )(y) = f (Ay).

a. Show that αA(I : J ) ⊂ αA(I ) : αA(J ) with equality if I ⊃ K where K = ker(αA).

b. Show that α−1
A (I ′ : J ′) = α−1

A (I ′) : α−1
A (J ′).

8. Let I ⊂ k[x1, . . . , xn] be an ideal, and fix f ∈ k[x1, . . . , xn]. Then the saturation of I with

respect to f is the set

I : f ∞ = {g ∈ k[x1, . . . , xn] : f m g ∈ I for some m > 0}.
a. Prove that I : f ∞ is an ideal.

b. Prove that we have the ascending chain of ideals I : f ⊂ I : f 2 ⊂ I : f 3 ⊂ · · ·.
c. By part b and the Ascending Chain Condition (Theorem 7 of Chapter 2, §5), we have

I : f N = I : f N+1 = · · · for some integer N . Prove that I : f ∞ = I : f N .
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d. Prove that I : f ∞ = I : f m if and only if I : f m = I : f m+1.

e. Use part d to describe an algorithm for computing the saturation I : f ∞.

9. As in Exercise 8, let I = 〈 f1, . . . , fs〉 ⊂ k[x1, . . . , xn] and fix f ∈ k[x1, . . . , xn]. If y is a

new variable, set

Ĩ = 〈 f1, . . . , fs, 1 − f y〉 ⊂ k[x1, . . . , xn, y].

a. Prove that I : f ∞ = Ĩ ∩ k[x1, . . . , xn]. Hint: See the proof of Proposition 8 of §2.

b. Use the result of part a to describe a second algorithm for computing I : f ∞.

10. Using the notation of Exercise 8, prove that I : f ∞ = k[x1, . . . , xn] if and only if f ∈ √
I .

Note that Proposition 8 of §2 is an immediate corollary of Exercises 9 and 10.

§5 Irreducible Varieties and Prime Ideals

We have already seen that the union of two varieties is a variety. For example, in Chap-
ter 1 and in the last section, we considered V(xz, yz), which is the union of a line and a
plane. Intuitively, it is natural to think of the line and the plane as “more fundamental”
than V(xz, yz). Intuition also tells us that a line or a plane are “irreducible” or “inde-
composable” in some sense: they do not obviously seem to be a union of finitely many
simpler varieties. We formalize this notion as follows.

Definition 1. An affine variety V ⊂ kn is irreducible if whenever V is written in
the form V = V1 ∪ V2, where V1 and V2 are affine varieties, then either V1 = V or
V2 = V .

Thus, V(xz, yz) is not an irreducible variety. On the other hand, it is not completely
clear when a variety is irreducible. If this definition is to correspond to our geometric
intuition, it is clear that a point, a line, and a plane ought to be irreducible. For that
matter, the twisted cubic V(y − x2, z − x3) in 3 appears to be irreducible. But how
do we prove this? The key is to capture this notion algebraically: if we can characterize
ideals which correspond to irreducible varieties, then perhaps we stand a chance of
establishing whether a variety is irreducible

The following notion turns out to be the right one.

Definition 2. An ideal I ⊂ k[x1, . . . , xn] is prime if whenever f, g ∈ k[x1, . . . , xn]
and f g ∈ I , then either f ∈ I or g ∈ I .

If we have set things up right, an irreducible variety will correspond to a prime ideal
and conversely. The following theorem assures us that this is indeed the case.

Proposition 3. Let V ⊂ kn be an affine variety. Then V is irreducible if and only if
I(V ) is a prime ideal.

Proof. First, assume that V is irreducible and let f g ∈ I(V ). Set V1 = V ∩ V( f ) and
V2 = V ∩ V(g); these are affine varieties because an intersection of affine varieties is
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a variety. Then f g ∈ I(V ) easily implies that V = V1 ∪ V2. Since V is irreducible, we
have either V = V1 or V = V2. Say the former holds, so that V = V1 = V ∩ V( f ).
This implies that f vanishes on V , so that f ∈ I(V ). Thus, I(V ) is prime.

Next, assume that I(V ) is prime and let V = V1 ∪ V2. Suppose that V 	= V1. We
claim that I(V ) = I(V2). To prove this, note that I(V ) ⊂ I(V2) since V2 ⊂ V . For the
opposite inclusion, first note that I(V ) � I(V1) since V1 � V . Thus, we can pick f ∈
I(V1) − I(V ). Now take any g ∈ I(V2). Since V = V1 ∪ V2, it follows that f g vanishes
on V , and, hence, f g ∈ I(V ). But I(V ) is prime, so that f or g lies in I(V ). We know
that f /∈ I(V ) and, thus, g ∈ I(V ). This proves I(V ) = I(V2), whence V = V2 because
I is one-to-one. Thus, V is an irreducible variety. �

It is an easy exercise to show that every prime ideal is radical. Then, using the
ideal–variety correspondence between radical ideals and varieties, we get the following
corollary of Proposition 3.

Corollary 4. When k is algebraically closed, the functions I and V induce a one-to-one
correspondence between irreducible varieties in kn and prime ideals in k[x1, . . . , xn].

As an example of how to use Proposition 3, let us prove that the ideal I(V ) of the
twisted cubic is prime. Suppose that f g ∈ I(V ). Since the curve is parametrized by
(t, t2, t3), it follows that, for all t ,

f (t, t2, t3)g(t, t2, t3) = 0.

This implies that f (t, t2, t3) or g(t, t2, t3) must be the zero polynomial, so that f or
g vanishes on V . Hence, f or g lies in I(V ), proving that I(V ) is a prime ideal. By
the proposition, the twisted cubic is an irreducible variety in 3. One proves that a
straight line is irreducible in the same way: first parametrize it, then apply the above
argument.

In fact, the above argument holds much more generally.

Proposition 5. If k is an infinite field and V ⊂ kn is a variety defined parametrically

x1 = f1(t1, . . . , tm),

...

xn = fn(t1, . . . , tm),

where f1, . . . , fn are polynomials in k[t1, . . . , tm], then V is irreducible.

Proof. As in §3 of Chapter 3, we let F : km −→ kn be defined by

F(t1, . . . , tm) = ( f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)).

Saying that V is defined parametrically by the above equations means that V is the
Zariski closure of F(km). In particular, I(V ) = I(F(km)).
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For any polynomial g ∈ k[x1, . . . , xn], the function g ◦ F is a polynomial in
k[t1, . . . , tm]. In fact, g ◦ F is the polynomial obtained by “plugging the polynomials
f1, . . . , fn into g”:

g ◦ F = g( f1( f1, . . . , tm), . . . , fn(t1, . . . , tm)).

Because k is infinite, I(V ) = I(F(km)) is the set of polynomials in k[x1, . . . , xn] whose
composition with F is the zero polynomial in k[t1, . . . , tm]:

I(V ) = {g ∈ k[x1, . . . , xn] : g ◦ F = 0}.
Now suppose that gh ∈ I(V ). Then (gh) ◦ F = (g ◦ F)(h ◦ F) = 0. (Make sure you
understand this.) But, if the product of two polynomials in k[t1, . . . , tm] is the zero
polynomial, one of them must be the zero polynomial. Hence, either g ◦ F = 0 or
h ◦ F = 0. This means that either g ∈ I(V ) or h ∈ I(V ). This shows that I(V ) is a
prime ideal and, therefore, that V is irreducible. �

With a little care, the above argument extends still further to show that any variety
defined by a rational parametrization is irreducible.

Proposition 6. If k is an infinite field and V is a variety defined by the rational
parametrization

x1 = f1(t1, . . . , tm)

g1(t1, . . . , tm)
,

...

xn = fn(t1, . . . , tm)

gn(t1, . . . , tm)
,

where f1, . . . , fn, g1, . . . , gn ∈ k[t1, . . . , tm], then V is irreducible.

Proof. Set W = V(g1g2 · · · gn) and let F : km − W → kn defined by

F(t1, . . . , tm) =
(

f1(t1, . . . , tm)

g1(t1, . . . , tm)
, . . . ,

fn(tn, . . . , tm)

gn(t1, . . . , tm)

)
.

Then V is the Zariski closure of F(km − W ), which implies that I(V ) is the set of
h ∈ k[x1, . . . , xn] such that the function h ◦ F is zero for all (t1, . . . , tm) ∈ km − W .
The difficulty is that h ◦ F need not be a polynomial, and we, thus, cannot directly
apply the argument in the latter part of the proof of Proposition 5.

We can get around this difficulty as follows. Let h ∈ k[x1, . . . , xn]. Since

g1(t1, . . . , tm)g2(t1, . . . , tm) · · · gn(t1, . . . , tm) 	= 0

for any (t1, . . . , tm) ∈ km − W , the function (g1g2 · · · gn)N (h ◦ F) is equal to zero at pre-
cisely those values of (t1, . . . , tm) ∈ km − W for which h ◦ F is equal to zero. Moreover,
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if we let N be the total degree of h ∈ k[x1, . . . , xn], then we leave it as an exercise
to show that (g1g2 · · · gn)N (h ◦ F) is a polynomial in k[t1, . . . , tm]. We deduce that
h ∈ I(V ) if and only if (g1g2 · · · gn)N (h ◦ F) is zero for all t ∈ km − W . But, by Exer-
cise 11 of Chapter 3, §3, this happens if and only if (g1g2 · · · gn)N (h ◦ F) is the zero
polynomial in k[t1, . . . , tm]. Thus, we have shown that

h ∈ I(V ) if and only if (g1g2 · · · gn)N (h ◦ F) = 0 ∈ k[t1, . . . , tm].

Now, we can continue with our proof that I(V ) is prime. Suppose p, q ∈
k[x1, . . . , xn] are such that p · q ∈ I(V ). If the total degrees of p and q are M and N ,
respectively, then the total degree of p · q is M + N . Thus, (g1g2 · · · gn)M+N (p ◦ F) ·
(p ◦ F) = 0. But the former is a product of the polynomials (g1g2 · · · gn)M (p ◦ F) and
(g1g2 · · · gn)N (q ◦ F) in k[t1, . . . , tm]. Hence one of them must be the zero polynomial.
In particular, either p ∈ I(V ) or q ∈ I(V ). This shows that I(V ) is a prime ideal and,
therefore, that V is an irreducible variety. �

The simplest variety in kn given by a parametrization is a single point {(a1, . . . , an)}.
In the notation of Proposition 5, it is given by the parametrization in which each
fi is the constant polynomial fi (x1, . . . , xn) = ai , 1 ≤ i ≤ n. It is clearly irreducible
and it is easy to check that I({(a1, . . . , an)}) = 〈x1 − a1, . . . , xn − an〉 (see Exercise
7), which implies that the latter is prime. The ideal 〈x1 − a1, . . . , xn − an〉 has another
distinctive property: it is maximal in the sense that the only ideal which strictly contains
it is the whole ring k[x1, . . . , xn]. Such ideals are important enough to merit special
attention.

Definition 7. An ideal I ⊂ k[x1, . . . , xn] is said to be maximal if I 	= k[x1, . . . , xn]
and any ideal J containing I is such that either J = I or J = k[x1, . . . , xn].

In order to streamline statements, we make the following definition.

Definition 8. An ideal I ⊂ k[x1, . . . , xn] is called proper if I is not equal to
k[x1, . . . , xn].

Thus, an ideal is maximal if it is proper and no other proper ideal strictly contains
it. We now show that any ideal of the form 〈x1 − a1, . . . , xn − an〉 is maximal.

Proposition 9. If k is any field, an ideal I ⊂ k[x1, . . . , xn] of the form

I = 〈x1 − a1, . . . , xn − an〉,
where a1, . . . , an ∈ k, is maximal.

Proof. Suppose that J is some ideal strictly containing I . Then there must exist f ∈ J
such that f /∈ I . We can use the division algorithm to write f as A1(x1 − a1) + · · · +
An(xn − an) + b for some b ∈ k. Since A1(x1 − a1) + · · · + An(xn − an) ∈ I and
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f /∈ I , we must have b 	= 0. However, since f ∈ J and since A1(x1 − a1) + · · · +
An(xn − an) ∈ I ⊂ J , we also have

b = f − (A1(x1 − a1) + · · · + An(xn − an)) ∈ J.

Since b is nonzero, 1 = 1/b · b ∈ J , So J = k[x1, . . . , xn]. �

Since

V(x1 − a1, . . . , xn − an) = {(a1, . . . , an)},
every point (a1, . . . , an) ∈ kn corresponds to a maximal ideal of k[x1, . . . , xn], namely
〈x1 − a1, . . . , xn − an〉. The converse does not hold if k is not algebraically closed. In
the exercises, we ask you to show that 〈x2 + 1〉 is maximal in [x]. The latter does
not correspond to a point of . The following result, however, holds in any polynomial
ring.

Proposition 10. If k is any field, a maximal ideal in k[x1, . . . , xn] is prime.

Proof. Suppose that I is a proper ideal which is not prime and let f g ∈ I , where f /∈ I
and g /∈ I . Consider the ideal 〈 f 〉 + I . This ideal strictly contains I because f /∈ I .
Moreover, if we were to have 〈 f 〉 + I = k[x1, . . . , xn], then 1 = c f + h for some
polynomial c and some h ∈ I . Multiplying through by g would give g = c f g + hg ∈ I
which would contradict our choice of g. Thus, I + 〈 f 〉 is a proper ideal containing I ,
so that I is not maximal. �

Note that Propositions 9 and 10 together imply that 〈x1 − a1, . . . , xn − an〉 is prime
in k[x1, . . . , xn] even if k is not infinite. Over an algebraically closed field, it turns out
that every maximal ideal corresponds to some point of kn .

Theorem 11. If k is an algebraically closed field, then every maximal ideal of
k[x1, . . . , xn] is of the form 〈x1 − a1, . . . , xn − an〉 for some a1, . . . , an ∈ k.

Proof. Let I ⊂ k[x1, . . . , xn] be maximal. Since I 	= k[x1, . . . , xn], we have V(I ) 	=
∅ by the Weak Nullstellensatz (Theorem 1 of §1). Hence, there is some point
(a1, . . . , an) ∈ V(I ). This means that every f ∈ I vanishes at (a1, . . . , an), so that
f ∈ I({(a1, . . . , an)}). Thus, we can write

I ⊂ I({(a1, . . . , an)}).
We have already observed that I({(a1, . . . , an)}) = 〈x1 − a1, . . . , xn − an〉 (see Exer-
cise 7), and, thus, the above inclusion becomes

I ⊂ 〈x1 − a1, . . . , xn − an〉 � k[x1, . . . , xn].

Since I is maximal, it follows that I = 〈x1 − a1, . . . , xn − an〉. �
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Note the proof of Theorem 11 uses the Weak Nullstellensatz. It is not difficult to see
that it is, in fact, equivalent to the Weak Nullstellensatz.

We have the following easy corollary of Theorem 11.

Corollary 12. If k is an algebraically closed field, then there is a one-to-one corre-
spondence between points of kn and maximal ideals of k[x1, . . . , xn].

Thus, we have extended our algebra–geometry dictionary. Over an alge-
braically closed field, every nonempty irreducible variety corresponds to a proper
prime ideal, and conversely. Every point corresponds to a maximal ideal, and
conversely.

EXERCISES FOR §5

1. If h ∈ k[x1, . . . , xn] has total degree N and if F is as in Proposition 6, show that

(g1g2 . . . gn)N (h ◦ F) is a polynomial in k[t1, . . . , tm].

2. Show that a prime ideal is radical.

3. Show that an ideal I is prime if and only if for any ideals J and K such that J K ⊂ I , either

J ⊂ I or K ⊂ I .

4. Let I1, . . . , In be ideals and P a prime ideal containing
⋂n

i=1 Ii . Then prove that P ⊃ Ii for

some i . Further, if P = ⋂n
i=1 Ii , show that P = Ii for some i .

5. Express f = x2z − 6y4 + 2xy3z in the form f = f1(x, y, z)(x + 3) + f2(x, y, z)(y − 1) +
f3(x, y, z)(z − 2) for some f1, f2, f3 ∈ k[x, y, z].

6. Let k be an infinite field.

a. Show that any straight line in kn is irreducible.

b. Prove that any linear subspace of kn is irreducible. Hint: Parametrize and use Proposi-

tion 5.

7. Show that

I({(a1, . . . , an)}) = 〈x1 − a1, . . . , xn − an〉.
8. Show the following:

a. 〈x2 + 1〉 is maximal in [x].

b. If I ⊂ [x1, . . . , xn] is maximal, show that V(I ) is either empty or a point in n . Hint:

Examine the proof of Theorem 11.

c. Give an example of a maximal ideal I in [x1, . . . , xn] for which V(I ) = ∅. Hint:

Consider the ideal 〈x2
1 + 1, x2, . . . , xn〉.

9. Suppose that k is a field which is not algebraically closed.

a. Show that if I ⊂ k[x1, . . . , xn] is maximal, then V(I ) is either empty or a point in kn .

Hint: Examine the proof of Theorem 11.

b. Show that there exists a maximal ideal I in k[x1, . . . , xn] for which V(I ) = ∅. Hint: See

the previous exercise.

c. Conclude that if k is not algebraically closed, there is always a maximal ideal of

k[x1, . . . , xn] which is not of the form 〈x1 − a1, . . . , xn − an〉.
10. Prove that Theorem 11 implies the Weak Nullstellensatz.

11. If f ∈ [x1, . . . , xn] is irreducible, then V( f ) is irreducible.

12. Prove that if I is any proper ideal in [x1, . . . , xn], then
√

I is the intersection of all maximal

ideals containing I . Hint: Use Theorem 11.
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§6 Decomposition of a Variety into Irreducibles

In the last section, we saw that irreducible varieties arise naturally in many contexts. It
is natural to ask whether an arbitrary variety can be built up out of irreducibles. In this
section, we explore this and related questions.

We begin by translating the Ascending Chain Condition (ACC) for ideals (see §5 of
Chapter 2) into the language of varieties.

Proposition 1 (The Descending Chain Condition). Any descending chain of vari-
eties

V1 ⊃ V2 ⊃ V3 ⊃ · · ·
in kn must stabilize. That is, there exists a positive integer N such that VN = VN+1 = · · ·.

Proof. Passing to the corresponding ideals gives an ascending chain of ideals

I(V1) ⊂ I(V2) ⊂ I(V3) ⊂ · · · .
By the ascending chain condition for ideals (see Theorem 7 of Chapter 2, §5), there
exists N such that I(VN ) = I(VN+1) = · · ·. Since V(I(V )) = V for any variety V , we
have VN = VN+1 = · · ·. �

We can use Proposition 1 to prove the following basic result about the structure of
affine varieties.

Theorem 2. Let V ⊂ kn be an affine variety. Then V can be written as a finite union

V = V1 ∪ · · · ∪ Vm,

where each Vi is an irreducible variety.

Proof. Assume that V is an affine variety which cannot be written as a finite union of
irreducibles. Then V is not irreducible, so that V = V1 ∪ V ′

1, where V 	= V1 and V 	=
V ′

1. Further, one of V1 and V ′
1 must not be a finite union of irreducibles, for otherwise V

would be of the same form. Say V1 is not a finite union of irreducibles. Repeating the
argument just given, we can write V1 = V2 ∪ V ′

2, where V1 	= V2, V1 	= V ′
2, and V2 is

not a finite union of irreducibles. Continuing in this way gives us an infinite sequence
of affine varieties

V ⊃ V1 ⊃ V2 ⊃ · · ·
with

V 	= V1 	= V2 	= · · · .
This contradicts Proposition 1. �

As a simple example of Theorem 2, consider the variety V(xz, yz) which is a union
of a line (the z-axis) and a plane (the xy-plane), both of which are irreducible by



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX December 18, 2006 7:6

§6. Decomposition of a Variety into Irreducibles 205

Exercise 6 of §5. For a more complicated example of the decomposition of a variety
into irreducibles, consider the variety

V = V(xz − y2, x3 − yz).

Here is a sketch of this variety.

The picture suggests that this variety is not irreducible. It appears to be a union of two
curves. Indeed, since both xz − y2 and x3 − yz vanish on the z-axis, it is clear that the
z-axis V(x, y) is contained in V . What about the other curve V − V(x, y)?

By Theorem 7 of §4, this suggests looking at the ideal quotient

〈xz − y2, x3 − yz〉 : 〈x, y〉.

(At the end of the section we will see that 〈xz − y2, x3 − yz〉 is a radical ideal.) We can
compute this quotient using our algorithm for computing ideal quotients (make sure
you review this algorithm). By equation (5) of §4, the above is equal to

(I : x) ∩ (I : y),

where I = 〈xz − y2, x3 − yz〉. To compute I : x , we first compute I ∩ 〈x〉 using our
algorithm for computing intersections of ideals. Using lex order with z > y > x , we
obtain

I ∩ 〈x〉 = 〈x2z − xy2, x4 − xyz, x3 y − xz2, x5 − xy3〉.

We can omit x5 − xy3 since it is a combination of the first and second elements in the
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basis. Hence

I : x =
〈

x2z − xy2

x
,

x4 − xyz

x
,

x3 y − xz2

x

〉
= 〈xz − y2, x3 − yz, x2 y − z2〉(1)

= I + 〈x2 y − z2〉.
Similarly, to compute I : 〈y〉, we compute

I ∩ 〈y〉 = 〈xyz − y3, x3 y − y2z, x2 y2 − yz2〉,
which gives

I : y =
〈

xyz − y3

y
,

x3 y − y2z

y
,

x2 y2 − yz2

y

〉
= 〈xz − y2, x3 − yz, x2 y − z2〉
= I + 〈x2 y − z2〉
= I : x

(Do the computations using a computer algebra system.) Since I : x = I : y, we have

I : 〈x, y〉 = 〈xz − y2, x3 − yz, x2 y − z2〉.
The variety W = V(xz − y2, x3 − yz, x2 y − z2) turns out to be an irreducible curve.
To see this, note that it can be parametrized as (t3, t4, t5) [it is clear that (t3, t4, t5) ∈ W
for any t—we leave it as an exercise to show every point of W is of this form], so that
W is irreducible by Proposition 5 of the last section. It then follows easily that

V = V(x, y) ∪ W

(see Theorem 7 of §4), which gives decomposition of V into irreducibles.
Both in the above example and the case of V(xz, yz), it appears that the decom-

position of a variety is unique. It is natural to ask whether this is true in general. It
is clear that, to avoid trivialities, we must rule out decompositions in which the same
irreducible component appears more than once, or in which one irreducible component
contains another. This is the aim of the following definition.

Definition 3. Let V ⊂ kn be an affine variety. A decomposition

V = V1 ∪ · · · ∪ Vm,

where each Vi is an irreducible variety, is called a minimal decomposition (or, some-
times, an irredundant union) if Vi 	⊂ Vj for i 	= j .

With this definition, we can now prove the following uniqueness result.

Theorem 4. Let V ⊂ kn be an affine variety. Then V has a minimal decomposition

V = V1 ∪ · · · ∪ Vm
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(so each Vi is an irreducible variety and Vi 	⊂ Vj for i 	= j ). Furthermore, this minimal
decomposition is unique up to the order in which V1, . . . , Vm are written.

Proof. By Theorem 2, V can be written in the form V = V1 ∪ . . . ∪ Vm , where each Vi

is irreducible. Further, if a Vi lies in some Vj for i 	= j , we can drop Vi , and V will be
the union of the remaining Vj ’s for j 	= i . Repeating this process leads to a minimal
decomposition of V .

To show uniqueness, suppose that V = V ′
1 ∪ · · · ∪ Vm is another minimal decompo-

sition of V . Then, for each Vi in the first decomposition, we have

Vi = Vi ∩ V = Vi ∩ (V ′
1 ∪ · · · ∪ V ′

l ) = (Vi ∩ V ′
1) ∪ · · · ∪ (Vi ∩ V ′

l ).

Since Vi is irreducible, it follows that Vi = Vi ∩ V ′
j for some j , i.e., Vi ⊂ V ′

j . Applying
the same argument to V ′

j (using the Vi ’s to decompose V ) shows that V ′
j ⊂ Vk for some

k, and, thus,

Vi ⊂ V ′
j ⊂ Vk .

By minimality, i = k, and it follows that Vi = V ′
j . Hence, every Vi appears in V =

V ′
1 ∪ · · · ∪ V ′

l , which implies m ≤ l. A similar argument proves l ≤ m, and m = l
follows. Thus, the V ′

i ’s are just a permutation of the V ′
i s, and uniqueness is proved. �

We remark that the uniqueness part of Theorem 4 is false if one does not insist that
the union be finite. (A plane P is the union of all the points on it. It is also the union of
some line in P and all the points not on the line—there are infinitely many lines in P
with which one could start.) This should alert the reader to the fact that although the
proof of Theorem 4 is easy, it is far from vacuous: one makes subtle use of finiteness
(which follows, in turn, from the Hilbert Basis Theorem).

Theorems 2 and 4 can also be expressed purely algebraically using the one-to-one
correspondence between radical ideals and varieties.

Theorem 5. If k is algebraically closed, then every radical ideal in k[x1, . . . , xn] can
be written uniquely as a finite intersection of prime ideals, I = P1 ∩ · · · ∩ Pr , where
Pi 	⊂ Pj for i 	= j . (As in the case of varieties, we often call such a presentation of a
radical ideal a minimal decomposition or an irredundant intersection).

Proof. Theorem 5 follows immediately from Theorems 2 and 4 and the ideal–variety
correspondence. �

We can also use ideal quotients from §4 to describe the prime ideals that appear in
the minimal representation of a radical ideal.

Theorem 6. If k is algebraically closed and I is a proper radical ideal such that

I =
r⋂

i=1

Pi
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is its minimal decomposition as an intersection of prime ideals, then the Pi ’s are
precisely the proper prime ideals that occur in the set {I : f : f ∈ k[x1, . . . ., xn]}.

Proof. First, note that since I is proper, each Pi is also a proper ideal (this follows from
minimality).

For any f ∈ k[x1, . . . ., xn], we have

I : f =
(

r⋂
i=1

Pi

)
: f =

r⋂
i=1

(Pi : f )

by equation (2) of §4. Note also that for any prime ideal P , either f ∈ P , in which
case P : f = 〈1〉, or f /∈ P , in which case P : f = P (see Exercise 3).

Now suppose that I : f is a proper prime ideal. By Exercise 4 of §5, the above
formula for I : f implies that I : f = Pi : f for some i . Since Pi : f = Pi or 〈1〉 by
the above observation, it follows that I : f = Pi .

To see that every Pi can arise in this way, fix i and pick f ∈
(⋂r

j 	=i Pj

)
− Pi ;

such an f exists because
⋂r

i=1 Pi is minimal. Then Pi : f = Pi and Pj : f = 〈1〉 for
j 	= i . If we combine this with the above formula for I : f , then it follows easily that
I : f = Pi . �

We should mention that Theorems 5 and 6 hold for any field k, although the proofs
in the general case are different (see Corollary 10 of §7).

For an example of what these theorems say, consider the ideal I = 〈xz − y2,

x3 − yz〉. Recall that the variety V = V(I ) was discussed earlier in this section. For
the time being, let us assume that I is radical (eventually we will see that this is true).
Can we write I as an intersection of prime ideals?

We start with the geometric decomposition

V = V(x, y) ∪ W

proved earlier, where W = V(xz − y2, x3 − yz, x2 y − z2). This suggests that

I = 〈x, y〉 ∩ 〈xz − y2, x3 − yz, x2 y − z2〉,
which is straightforward to prove by the techniques we have learned so far (see Exercise
4). Also, from equation (I), we know that I : x = 〈xz − y2, x3 − yz, x2 y − z2〉. Thus,

I = 〈x, y〉 ∩ (I : x).

To represent 〈x, y〉 as an ideal quotient of I , let us think geometrically. The idea is to
remove W from V . Of the three equations defining W , the first two give V . So it makes
sense to use the third one, x2 y − z2, and one can check that I : (x2 y − z2) = 〈x, y〉
(see Exercise 4). Thus,

I = (I : (x2 y − z2)) ∩ (I : x).(2)

It remains to show that I : (x2 y − z2) and I : x are prime ideals. The first is easy since
I : (x2 y − z2) = 〈x, y〉 is obviously prime. As for the second, we have already seen
that W : V(xz − y2, x3 − yz, x2 y − z2) is irreducible and, in the exercises, you will
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show that I(W ) = 〈xz − y2, x3 − yz, x2 y − z2〉 = I : x . It follows from Proposition
3 of §5 that I : x is a prime ideal. This completes the proof that (2) is the minimal
representation of I as an intersection of prime ideals. Finally, since I is an intersection
of prime ideals, we see that I is a radical ideal (see Exercise 1).

The arguments used in this example are special to the case I = 〈xz − y2, x3 − yz〉.
It would be nice to have more general methods that could be applied to any ideal.
Theorems 2, 4, 5, and 6 tell us that certain decompositions exist, but the proofs give
no indication of how to find them. The problem is that the proofs rely on the Hilbert
Basis Theorem, which is intrinsically nonconstructive. Based on what we have seen in
§§5 and 6, the following questions arise naturally:
� (Primality) Is there an algorithm for deciding if a given ideal is prime?
� (Irreducibility) Is there an algorithm for deciding if a given affine variety is irre-

ducible?
� (Decomposition) Is there an algorithm for finding the minimal decomposition of a

given variety or radical ideal?
The answer to all three questions is yes, and descriptions of the algorithms can be
found in the works of HERMANN (1926), MINES, RICHMAN, and RUITENBERG (1988),
and SEIDENBERG (1974, 1984). As in §2, the algorithms in these articles are not very
practical. However, the work of GIANNI, TRAGER, and ZACHARIAS (1988) has led to
algorithms implemented in AXIOM and REDUCE that answer the above questions. See
also Chapter 8 of BECKER and WEISPFENNING (1993) and, for the primality algorithm,
§4.4 of ADAMS and LOUSTAUNAU (1994). A different algorithm for studying these
questions, based on ideas of EISENBUD, HUNEKE and VASCONCELOS (1992), has been
implemented in Macaulay 2.

EXERCISES FOR §6

1. Show that the intersection of any collection of prime ideals is radical.

2. Show that an irredundant intersection of at least two prime ideals is never prime.

3. If P ⊂ k[x1, . . . , xn] is a prime ideal, then prove that P : f = P if f /∈ P and P : f = 〈1〉
if f ∈ P .

4. Let I = 〈xz − y2, x3 − yz〉.
a. Show that I : (x2 y − z2) = 〈x, y〉.
b. Show that I : (x2 y − z2) is prime.

c. Show that I = 〈x, y〉 ∩ 〈xz − y2, x3 − yz, z2 − x2 y〉.
5. Let J = 〈xz − y2, x3 − yz, z2 − x2 y〉 ⊂ k[x, y, z], where k is infinite.

a. Show that every point of W = V ( f ) is of the form (t3, t4, t5) for some t ∈ k.

b. Show that J = I(W ). Hint: Compute a Groebner basis for J using lex order with z > y > x
and show that every f ∈ k[x, y, z] can be written in the form

f = g + a + bz + x A(x) + y B(x) + y2C(x),

where g ∈ J, a, b ∈ k and A, B, C ∈ k[x].

6. Translate Theorem 6 and its proof into geometry.

7. Let I = 〈xz − y2, z3 − x5〉 ⊂ [x, y, z].

a. Express V(I ) as a finite union of irreducible varieties. Hint: You will use the parametriza-

tions (t3, t4, t5) and (t3, −t4, t5).
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b. Express I as an intersection of prime ideals which are ideal quotients of I and conclude

that I is radical.

8. Let V, W be varieties in kn with V ⊂ W . Show that each irreducible component of V is

contained in some irreducible component of W .

9. Let f ∈ [x1, . . . , xn] and let f = f a1
1 f a2

2 . . . f ar
r be the decomposition of f into irreducible

factors. Show that V( f ) = V( f1) ∪ · · · ∪ V( fr ) is the decomposition of V( f ) into irreducible

components and I(V( f )) = ( f1 f2 · · · fr ). Hint: See Exercise 11 of §5.

§7 (Optional) Primary Decomposition of Ideals

In view of the decomposition theorem proved in §6 for radical ideals, it is natural
to ask whether an arbitrary ideal I (not necessarily radical) can be represented as
an intersection of simpler ideals. In this section, we will prove the Lasker–Noether
decomposition theorem, which describes the structure of I in detail.

There is no hope of writing an arbitrary ideal I as an intersection of prime ideals
(since an intersection of prime ideals is always radical). The next thing that suggests
itself is to write I as an intersection of powers of prime ideals. This does not quite
work either: consider the ideal I = 〈x, y2〉 in [x, y]. Any prime ideal containing I
must contain x and y and, hence, must equal 〈x, y〉 (since 〈x, y〉 is maximal). Thus, if
I were to be an intersection of powers of prime ideals, it would have to be a power of
〈x, y) (see Exercise 1 for the details).

The concept we need is a bit more subtle.

Definition 1. An ideal I in k[x1, . . . , xn] is primary if f g ∈ I implies either f ∈ I or
some power gm ∈ I (for some m > 0).

It is easy to see that prime ideals are primary. Also, you can check that the ideal
I = 〈x, y2〉 discussed above is primary (see Exercise 1).

Lemma 2. If I is a primary ideal, then
√

I is prime and is the smallest prime ideal
containing I.

Proof. See Exercise 2. �

In view of this lemma, we make the following definition.

Definition 3. If I is primary and
√

I = P, then we say that I is P-primary.

We can now prove that every ideal is an intersection of primary ideals.

Theorem 4. Every ideal I ⊂ k[x1, . . . , xn] can be written as a finite intersection of
primary ideals.

Proof. We first define an ideal I to be irreducible if I = I1 ∩ I2 implies that I = I1 or
I = I2. We claim that every ideal is an intersection of finitely many irreducible ideals.
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The argument is an “ideal” version of the proof of Theorem 2 from §6. One uses the
ACC rather than the DCC—we leave the details as an exercise.

Next we claim that an irreducible ideal is primary. Note that this will prove the
theorem. To see why the claim is true, suppose that I is irreducible and that f g ∈ I
with f /∈ I . We need to prove that some power of g lies in I . Consider the ideals I : gn

for n ≥ 1. In the exercises, you will show that I : gn ⊂ I : gn+1 for all n. Thus, we get
the ascending chain of ideals

I : g ⊂ I : g2 ⊂ · · · .
By the ascending chain condition, there exists an integer N ≥ 1 such that I : gN = I :
gN+1. We will leave it as an exercise to show that (I + 〈gN 〉) ∩ (I + 〈 f 〉) = I . Since
I is irreducible, it follows that I = I + 〈gN 〉 or I = I + 〈 f 〉. The latter cannot occur
since f /∈ I , so that I = I + 〈gN 〉. This proves that gN ∈ I . �

As in the case of varieties, we can define what it means for a decomposition to be
minimal.

Definition 5. A primary decomposition of an ideal I is an expression of I as an
intersection of primary ideals: I = ∩r

i=1 Qi . It is called minimal or irredundant if the√
Qi are all distinct and Qi 	⊃ ∩ j 	=i Q j .

To prove the existence of a minimal decomposition, we will need the following
lemma, the proof of which we leave as an exercise.

Lemma 6. If I, J are primary and
√

I = √
J , then I ∩ J is primary.

We can now prove the first part of the Lasker–Noether decomposition theorem.

Theorem 7 (Lasker–Noether). Every ideal I ⊂ k[x1, . . . , xn] has a minimal primary
decomposition.

Proof. By Theorem 4, we know that there is a primary decomposition I = ∩r
i=1 Qi .

Suppose that Qi and Q j have the same radical for some i 	= j . Then, by Lemma 6,
Q = Qi ∩ Q j is primary, so that in the decomposition of I , we can replace Qi and
Q j by the single ideal Q. Continuing in this way, eventually all of the Qi ’s will have
distinct radicals.

Next, suppose that some Qi contains
⋂

j 	=i Q j . Then we can omit Qi , and I will be
the intersection of the remaining Q j ’s for j 	= i . Continuing in this way, we can reduce
to the case where Qi 	⊃ ∩ j 	=i Q j for all i . �

Unlike the case of varieties (or radical ideals), a minimal primary decomposition
need not be unique. In the exercises, you will verify that the ideal 〈x2, xy〉 ⊂ k[x, y]
has the two distinct minimal decompositions

〈x2, xy〉 = 〈x〉 ∩ 〈x2, xy, y2〉 = 〈x〉 ∩ 〈x2, y〉.
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Although 〈x2, xy, y2〉 and 〈x2, y〉 are distinct, note that they have the same radical. To
prove that this happens in general, we will use ideal quotients from §4. We start by
computing some ideal quotients of a primary ideal.

Lemma 8. If is primary and
√

I = P and if f ∈ k[x1, . . . , xn], then:

if f ∈ I, then I : f = 〈1〉,
if f /∈ I, then I : f is P-primary,

if f /∈ P, then I : f = I.

Proof. See Exercise 7. �

The second part of the Lasker–Noether theorem tells us that the radicals of the ideals
in a minimal decomposition are uniquely determined.

Theorem 9 (Lasker–Noether). Let I = ⋂r
i=1 Qi be a minimal primary decomposi-

tion of a proper ideal I ⊂ k[x1, . . . , xn] and let Pi = √
Qi . Then the Pi are precisely

the proper prime ideals occurring in the set {√I : f : f ∈ k[x1, . . . , xn]}.

Remark. In particular, the Pi are independent of the primary decomposition of I . We
say the Pi belong to I .

Proof. The proof is very similar to the proof of Theorem 6 from §6. The details are
covered in Exercises 8–10. �

In §6, we proved a decomposition theorem for radical ideals over an algebraically
closed field. Using Lasker–Noether theorems, we can now show that these results hold
over an arbitrary field k.

Corollary 10. Let I = ⋂r
i=1 Qi be a minimal primary decomposition of a proper

radical ideal I ⊂ k[x1, . . . , xn]. Then the Qi are prime and are precisely the proper
prime ideals occurring in the set {I : f : f ∈ k[x1, . . . , xn]}.

Proof. See Exercise 12. �

The two Lasker–Noether theorems do not tell the full story of a minimal primary
decomposition I = ⋂r

i=1 Qi . For example, if Pi is minimal in the sense that no Pj is
strictly contained in Pi , then one can show that Qi is uniquely determined. Thus there is
a uniqueness theorem for some of the Qi ’s [see Chapter 4 of ATIYAH and MACDONALD

(1969) for the details]. We should also mention that the conclusion of Theorem 9 can
be strengthened: one can show that the Pi ’s are precisely the proper prime ideals in the
set {I : f : f ∈ k[x1, . . . , xn]} [see Chapter 7 of ATIYAH and MACDONALD (1969)].

Finally, it is natural to ask if a primary decomposition can be done constructively.
More precisely, given I = 〈 f1, . . . , fs〉, we can ask the following:
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� (Primary Decomposition) Is there an algorithm for finding bases for the primary
ideals Qi in a minimal primary decomposition of I ?

� (Associated Primes) Can we find bases for the associated primes Pi = √
Qi ?

If you look in the references given at the end of §6, you will see that the answer to these
questions is yes. Primary decomposition has been implemented in AXIOM, REDUCE,
and MACAULAY 2.

EXERCISES FOR §7

1. Consider the ideal I = 〈x, y2〉 ⊂ [x, y].

a. Prove that 〈x, y〉2 � I � 〈x, y〉, and conclude that I is not a prime power.

b. Prove that I is primary.

2. Prove Lemma 2.

3. This exercise is concerned with the proof of Theorem 4. Let I ⊂ k[x1, . . . , xn] be an

ideal.

a. Using the hints given in the text, prove that I is a finite intersection of irreducible ideals.

b. If g ∈ k[x1, . . . , xn], then prove that I : gm ⊂ I : gm+1 for all m ≥ 1.

c. Suppose that f g ∈ I . If, in addition, I : gN = I : gN+1, then prove that (I +
〈gN 〉) ⋂

(I + 〈 f 〉) = I . Hint: Elements of (I + 〈gN 〉) ⋂
(I + 〈 f 〉) can be written

as a + bgN = c + d f , where a, c ∈ I and b, d ∈ k[x1, . . . , xn]. Now multiply through

by g.

4. In the proof of Theorem 4, we showed that every irreducible ideal is primary. Surprisingly,

the converse is false. Let I be the ideal 〈x2, xy, y2〉 ⊂ k[x, y].

a. Show that I is primary.

b. Show that I = 〈x2, y〉 ∩ 〈x, y2〉 and conclude that I is not irreducible.

5. Prove Lemma 6. Hint: Proposition 16 from §3 will be useful.

6. Let I be the ideal 〈x2, xy〉 ⊂ [x, y].

a. Prove that

I = 〈x〉 ∩ 〈x2, xy, y2〉 = 〈x〉 ∩ 〈x2, y〉
are two distinct minimal primary decompositions of I .

b. Prove that for any a ∈ ,

I = 〈x〉 ∩ 〈x2, y − ax〉
is a minimal primary decomposition of I . Thus I has infinitely many distinct minimal

primary decompositions.

7. Prove Lemma 8.

8. Prove that an ideal is proper if and only if its radical is.

9. Let I be a proper ideal. Prove that the primes belonging to I are also proper ideals. Hint:

Use Exercise 8.

10. Prove Theorem 9. Hint: Adapt the proof of Theorem 6 from §6. The extra ingredient is that

you will need to take radicals. Proposition 16 from §3 will be useful. You will also need to

use Exercise 9 and Lemma 8.

11. Let P1, . . . , Pr be the prime ideals belonging to I .

a. Prove that
√

I = ⋂r
i=1 Pi . Hint: Use Proposition 16 from §3.

b. Use the ideal of Exercise 4 to show that
√

I = ⋂r
i=1 Pi need not be a minimal decom-

position of
√

I .

12. Prove Corollary 10. Hint: Show that I : f is radical whenever I is.
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§8 Summary

The following table summarizes the results of this chapter. In the table, it is supposed
that all ideals are radical and that the field is algebraically closed.

ALGEBRA GEOMETRY

radical ideals varieties

I −→ V(I )

I(V ) ←− V

addition of ideals intersection of varieties

I + J −→ V(I ) ∩ V(J )√
I(V ) + I(W ) ←− V ∩ W

product of ideals union of varieties

I J −→ V(I ) ∪ V(J )√
I(V )I(W ) ←− V ∪ W

intersection of ideals union of varieties

I ∩ J −→ V(I ) ∪ V(J )

I(V ) ∩ I(W ) ←− V ∪ W

quotient of ideals difference of varieties

I : J −→ V(I ) − V(J )

I(V ) : I(W ) ←− V − W

elimination of variables projection of varieties√
I ∩ k[xl+1, . . . , xn] ←→ πi (V(I ))

prime ideal irreducible variety

maximal ideal point of affine space

ascending chain condition descending chain condition
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5

Polynomial and Rational Functions
on a Variety

One of the unifying themes of modern mathematics is that in order to understand any
class of mathematical objects, one should also study mappings between those objects,
and especially the mappings which preserve some property of interest. For instance,
in linear algebra after studying vector spaces, you also studied the properties of linear
mappings between vector spaces (mappings that preserve the vector space operations
of sum and scalar product).

In this chapter, we will consider mappings between varieties, and the results of our
investigation will form another chapter of the “algebra–geometry dictionary” that we
started in Chapter 4. The algebraic properties of polynomial and rational functions on
a variety yield many insights into the geometric properties of the variety itself. This
chapter will also serve as an introduction to (and motivation for) the idea of a quotient
ring.

§1 Polynomial Mappings

We will begin our study of functions between varieties by reconsidering two examples
that we have encountered previously. First, recall the tangent surface of the twisted cubic
curve in 3. As in equation (1) of Chapter 3, §3 we describe this surface parametrically:

x = t + u,

y = t2 + 2tu,

z = t3 + 3t2u.

(1)

In functional language, giving the parametric representation (1) is equivalent to defining
a mapping

φ : 2 −→ 3

by

φ(t, u) = (t + u, t2 + 2tu, t3 + 3t2u).(2)

The domain of φ is an affine variety V = 2 and the image of φ is the tangent surface S.

215
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We saw in §3 of Chapter 3 that S is the same as the affine variety

W = V(x3z − (3/4)x2 y2 − (3/2)xyz + y3 + (1/4)z2).

Hence, our parametrization gives what we might call a polynomial mapping between
V and W . (The adjective “polynomial” refers to the fact that the component functions
of φ are polynomials in t and u.)

Second, in the discussion of the geometry of elimination of variables from systems
of equations in §2 of Chapter 3, we considered the projection mappings

πk : n −→ n−k

defined by

πk(a1, . . . , an) = (ak+1, . . . , an).

If we have a variety V = V(I ) ⊂ n , then we can also restrict πk to V and, as
we know, πk(V ) will be contained in the affine variety W = V(Ik), where Ik = I ∩

[xk+1, . . . , xn], the kth elimination ideal of I . Hence, we can consider πk : V → W
as a mapping of varieties. Here too, by the definition of πk we see that the component
functions of πk are polynomials in the coordinates in the domain.

Definition 1. Let V ⊂ km, W ⊂ kn be varieties. A function φ : V → W is said to be
a polynomial mapping (or regular mapping) if there exist polynomials f1, . . . , fn ∈
k[x1, . . . , xm] such that

φ(a1, . . . , am) = ( f1(a1, . . . , am), . . . , fn(a1, . . . , am))

for all (a1, . . . , am) ∈ V . We say that the n-tuple of polynomials

( f1, . . . , fn) ∈ (k[x1, . . . , xm])n

represents φ.

To say that φ is a polynomial mapping from V ⊂ km to W ⊂ kn represented by
( f1, . . . , fn) means that ( f1(a1, . . . , am), . . . , fn(a1, . . . , am)) must satisfy the defin-
ing equations of W for all (a1, . . . , am) ∈ V . For example, consider V = V(y − x2,

z − x3) ⊂ k3 (the twisted cubic) and W = V(y3 − z2) ⊂ k2. Then the projection π1 :
k3 → k2 represented by (y, z) gives a polynomial mapping π1 : V → W . This is true
because every point in π1(V ) = {(x2, x3) : x ∈ k} satisfies the defining equation of W .

Of particular interest is the case W = k, where φ simply becomes a scalar polynomial
function defined on the variety V . One reason to consider polynomial functions from
V to k is that a general polynomial mapping φ : V → kn is constructed by using any n
polynomial functions φ : V → k as the components. Hence, if we understand functions
φ : V → k, we understand how to construct all mappings φ : V → kn as well.

To begin our study of polynomial functions, note that, for V ⊂ km , Definition 1
says that a mapping φ : V → k is a polynomial function if there exists a polynomial
f ∈ k[x1, . . . , xm] representing φ. In fact, we usually specify a polynomial function
by giving an explicit polynomial representative. Thus, finding a representative is not
actually the key issue. What we will see next, however, is that the cases where a
representative is uniquely determined are very rare. For example, consider the variety
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V = V(y − x2) ⊂ 2. The polynomial f = x3 + y3 represents a polynomial function
from V to . However, g = x3 + y3 + (y − x2), h = x3 + y3 + (x4 y − x6), and F =
x3 + y3 + A(x, y)(y − x2) for any A(x, y) define the same polynomial function on V .
Indeed, since I(V ) is the set of polynomials which are zero at every point of V , adding
any element of I(V ) to f does not change the values of the polynomial at the points of
V . The general pattern is the same.

Proposition 2. Let V ⊂ km be an affine variety. Then
(i) f and g ∈ k[x1, . . . , xm] represent the same polynomial function on V if and only

if f − g ∈ I(V ).
(ii) ( f1, . . . , fn) and (g1, . . . , gn) represent the same polynomial mapping from V to

kn if and only if fi − gi ∈ I(V ) for each i, 1 ≤ i ≤ n.

Proof. (i) If f − g = h ∈ I(V ), then for any p = (a1, . . . , am) ∈ V, f (p) − g(p) =
h(p) = 0. Hence, f and g represent the same function on V . Conversely, if f and g
represent the same function, then, at every p ∈ V, f (p) − g(p) = 0. Thus, f − g ∈
I(V ) by definition. Part (ii) follows directly from (i). �

Thus, the correspondence between polynomials in k[x1, . . . , xm] and polynomial
functions is one-to-one only in the case where I(V ) = {0}. In Exercise 7, you will
show that I(V ) = {0} if and only if k is infinite and V = km .

There are two ways of dealing with this potential ambiguity in describing polynomial
functions on a variety:
� In rough terms, we can “lump together” all the polynomials f ∈ k[x1, . . . , xm] that

represent the same function on V and think of that collection as a “new object” in
its own right. We can then take the collection of polynomials as our description of
the function on V .

� Alternatively, we can systematically look for the simplest possible individual polyno-
mial that represents each function on V and work with those “standard representative”
polynomials exclusively.

Each of these approaches has its own advantages, and we will consider both of them
in detail in later sections of this chapter. We will conclude this section by looking at
two further examples to show the kinds of properties of varieties that can be revealed
by considering polynomial functions.

Definition 3. We denote by k[V ] the collection of polynomial functions φ : V → k.

Since k is a field, we can define a sum and a product function for any pair of functions
φ, ψ : V → k by adding and multiplying images. For each p ∈ V ,

(φ + ψ)(p) = φ(p) + ψ(p),

(φ · ψ)(p) = φ(p) · ψ(p).

Furthermore, if we pick specific representatives f, g ∈ k[x1, . . . , xm] for φ, ψ , re-
spectively, then by definition, the polynomial sum f + g represents φ + ψ and the
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polynomial product f · g represents φ · ψ . It follows that φ + ψ and φ · ψ are poly-
nomial functions on V .

Thus, we see that k[V ] has sum and product operations constructed using the sum and
product operations in k[x1, . . . , xm]. All of the usual properties of sums and products
of polynomials also hold for functions in k[V ]. Thus, k[V ] is another example of a
commutative ring. (See Appendix A for the precise definition.) We will also return to
this point in §2.

Now we are ready to start exploring what k[V ] can tell us about the geometric prop-
erties of a variety V . First, recall from §5 of Chapter 4 that a variety V ⊂ km is said to
be reducible if it can be written as the union of two nonempty proper subvarieties: V =
V1 ∪ V2, where V1 �= V and V2 �= V . For example, the variety V = V(x3 + xy2 − xz,
yx2 + y3 − yz) in k3 is reducible since, from the factorizations of the defining equa-
tions, we can decompose V as V = V(x2 + y2 − z) ∪ V(x, y). We would like to
demonstrate that geometric properties such as reducibility can be “read off” from a
sufficiently good algebraic description of k[V ]. To see this, let

f = x2 + y2 − z, g = 2x2 − 3y4z ∈ k[x, y, z](3)

and let φ, ψ be the corresponding elements of k[V ].
Note that neither φ nor ψ is identically zero on V . For example, at (0, 0, 5) ∈

V, φ(0, 0, 5) = f (0, 0, 5) = −5 �= 0. Similarly, at (1, 1, 2) ∈ V, ψ(1, 1, 2) =
g(1, 1, 2) = −4 �= 0. However, the product function φ · ψ is zero at every point of V .
The reason is that

f · g = (x2 + y2 − z)(2x2 − 3y4z)

= 2x(x3 + xy2 − xz) − 3y3z(x2 y + y3 − yz)

∈ 〈x3 + xy2 − xz, x2 y + y3 − yz〉.
Hence f · g ∈ I(V ), so the corresponding polynomial function φ · ψ on V is identically
zero.

The product of two nonzero elements of a field or of two nonzero polynomials in
k[x1, . . . , xn] is never zero. In general, a commutative ring R is said to be an integral
domain if whenever a · b = 0 in R, either a = 0 or b = 0. Hence, for the variety V
in the above example, we see that k[V ] is not an integral domain. Furthermore, the
existence of φ �= 0 and ψ �= 0 in k[V ] such that φ · ψ = 0 is a direct consequence of the
reducibility of V : f in (3) is zero on V1 = V(x2 + y2 − z), but not on V2 = V(x, y),
and similarly g is zero on V2, but not on V1. This is why f · g = 0 at every point of
V = V1 ∪ V2. Hence, we see a relation between the geometric properties of V and the
algebraic properties of k[V ].

The general case of this relation can be stated as follows.

Proposition 4. Let V ⊂ kn be an affine variety. The following statements are
equivalent:

(i) V is irreducible.
(ii) I(V ) is a prime ideal.

(iii) k[V ] is an integral domain.
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Proof. (i) ⇔ (ii) is Proposition 3 of Chapter 4, §5.
To show (iii) ⇒ (i), suppose that k[V ] is an integral domain but that V is reducible.

By Definition 1 of Chapter 4, §5, this means that we can write V = V1 ∪ V2, where V1

and V2 are proper, nonempty subvarieties of V . Let f1 ∈ k[x1, . . . , xn] be a polynomial
that vanishes on V1 but not identically on V2 and, similarly, let f2 be identically zero
on V2, but not on V1. (Such polynomials must exist since V1 and V2 are varieties and
neither is contained in the other.) Hence, neither f1 nor f2 represents the zero function
in k[V ]. However, the product f1 · f2 vanishes at all points of V1 ∪ V2 = V . Hence,
the product function is zero in k[V ]. This is a contradiction to our hypothesis that k[V ]
was an integral domain. Hence, V is irreducible.

Finally, for (i) ⇒ (iii), suppose that k[V ] is not an integral domain. Then there must
be polynomials f, g ∈ k[x1, . . . , xn] such that neither f nor g vanishes identically on
V but their product does. In Exercise 9, you will check that we get a decomposition of
V as a union of subvarieties:

V = (V ∩ V( f )) ∪ (V ∩ V(g)).

You will also show in Exercise 9 that, under these hypotheses, neither V ∩ V( f ) nor
V ∩ V(g) is all of V . This contradicts our assumption that V is irreducible. �

Next we will consider another example of the kind of information about varieties
revealed by polynomial mappings. The variety V ⊂ 3 defined by

x2 + 2xz + 2y2 + 3y = 0,

xy + 2x + z = 0,

xz + y2 + 2y = 0
(4)

is the intersection of three quadric surfaces.
To study V , we compute a Groebner basis for the ideal generated by the polynomials

in (4), using the lexicographic order and the variable order y > z > x . The result is

g1 = y − x2,
(5)

g2 = z + x3 + 2x .

Geometrically, by the results of Chapter 3, §2, we know that the projection of V on
the x-axis is onto since the two polynomials in (5) have constant leading coefficients.
Furthermore, for each value of x in , there are unique y, z satisfying equations (4).

We can rephrase this observation using the maps

π : V −→ , (x, y, z) → x,

φ : −→ V, x → (x, x2, −x3 − 2x).

Note that (5) guarantees that φ takes values in V . Both φ and π are visibly polynomial
mappings. We claim that these maps establish a one-to-one correspondence between
the points of the variety V and the points of the variety .

Our claim will follow if we can show that π and φ are inverses of each other. To
verify this last claim, we first check that π ◦ φ = id . This is actually quite clear since

(π ◦ φ)(x) = π (x, x2, −x3 − 2x) = x .
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On the other hand, if (x, y, z) ∈ V , then

(φ ◦ π )(x, y, z) = (x, x2, −x3 − 2x).

By (5), we have y − x2, z + x3 + 2x ∈ I(V ) and it follows that φ ◦ π defines the same
mapping on V as idV (x, y, z) = (x, y, z).

The conclusion we draw from this example is that V ∈ 3 and are “isomorphic”
varieties in the sense that there is a one-to-one, onto, polynomial mapping from V to

, with a polynomial inverse. Even though our two varieties are defined by different
equations and are subsets of different ambient spaces, they are “the same” in a certain
sense. In addition, the Groebner basis calculation leading to equation (5) shows that

[V ] = [x], in the sense that every ψ ∈ [V ] can be (uniquely) expressed by sub-
stituting for y and z from (5) to yield a polynomial in x alone. Of course, if we use
x as the coordinate on W = , then [W ] = [x] as well, and we obtain the same
collection of functions on our two isomorphic varieties.

Thus, the collection of polynomial functions on an affine variety can detect geometric
properties such as reducibility or irreducibility. In addition, knowing the structure of
k[V ] can also furnish information leading toward the beginnings of a classification of
varieties, a topic we have not broached before. We will return to these questions later
in the chapter, once we have developed several different tools to analyze the algebraic
properties of k[V ].

EXERCISES FOR §1

1. Let V be the twisted cubic in 3 and let W = V(v − u − u2) in 2. Show that φ(x, y, z) =
(xy, z + x2 y2) defines a polynomial mapping from V to W . Hint: The easiest way is to use

a parametrization of V .

2. Let V = V(y − x) in 2 and let φ : 2 → 3 be the polynomial mapping represented

by φ(x, y) = (x2 − y, y2, x − 3y2). The image of V is a variety in 3. Find a system of

equations defining the image of φ.

3. Given a polynomial function φ : V → k, we define a level set of φ to be

φ−1(c) = {(a1, . . . , am) ∈ V : φ(a1, . . . , am) = c},
where c ∈ k is fixed. In this exercise, we will investigate how level sets can be used to

analyze and reconstruct a variety. We will assume that k = , and we will work with the

surface

V(x2 − y2z2 + z3) ⊂ 3.

a. Let φ be the polynomial function represented by f (x, y, z) = z. The image of φ is all

of in this case. For each c ∈ , explain why the level set φ−1(c) is the affine variety

defined by the equations:

x2 − y2z2 + z3 = 0,

z − c = 0.

b. Eliminate z between these equations to find the equation of the intersection of V with

the plane z = c. Explain why your equation defines a hyperbola in the plane z = c if

c �= 0, and the y-axis if c = 0. (Refer to the sketch of V in §3 of Chapter 1, and see if

you can visualize the way these hyperbolas lie on V .)
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c. Let π : V → be the polynomial mapping π (x, y, z) = x . Describe the level sets

π−1(c) in V geometrically for c = −1, 0, 1.

d. Do the same for the level sets of σ : V → given by σ (x, y, z) = y.

e. Construct a polynomial mapping ψ : → V and identify the image as a subvariety

of V .

4. Let V = V(z2 − (x2 + y2 − 1)(4 − x2 − y2)) in 3 and let π : V → 2 be the vertical

projection π (x, y, z) = (x, y).

a. What is the maximum number of points in π−1(a, b) for (a, b) ∈ 2?

b. For which subsets R ⊂ 2 does (a, b) ∈ R imply φ−1(a, b) consists of two points, one

point, no points?

c. Using part (b) describe and/or sketch V .

5. Show that φ1(x, y, z) = (2x2 + y2, z2 − y3 + 3xz) and φ2(x, y, z) = (2y + xz, 3y2) repre-

sent the same polynomial mapping from the twisted cubic in 3 to 2.

6. Consider the mapping φ : 2 → 5 defined by φ(u, v) = (u, v, u2, uv, v2).

a. The image of φ is a variety S known as an affine Veronese surface. Find implicit equations

for S.

b. Show that the projection π : S → 2 defined by π (x1, x2, x3, x4, x5) = (x1, x2) is the

inverse mapping of φ : 2 → S. What does this imply about S and 2?

7. This problem characterizes the varieties for which I(V ) = {0}.
a. Show that if k is an infinite field and V ⊂ kn is a variety, then I(V ) = {0} if and only if

V = kn .

b. On the other hand, show that if k is finite, then I(V ) is never equal to {0}. Hint: See

Exercise 4 of Chapter 1, §1.

8. Let V = V(xy, xz) ⊂ 3.

a. Show that neither of the polynomial functions f = y2 + z3, g = x2 − x is identically

zero on V , but that their product is identically zero on V .

b. Find V1 = V ∩ V( f ) and V2 = V ∩ V(g) and show that V = V1 ∪ V2.

9. Let V be an irreducible variety and let φ, ψ be functions in k[V ] represented by polynomials

f, g, respectively. Suppose thatφ · ψ = 0 in k[V ], but that neitherφ norψ is the zero function

on V .

a. Show that V = (V ∩ V( f )) ∪ (V ∩ V(g)).

b. Show that neither V ∩ V( f ) nor V ∩ V(g) is all of V and deduce a contradiction.

10. In this problem, we will see that there are no nonconstant polynomial mappings from V =
to W = V(y2 − x3 + x) ⊂ 2. Thus, these varieties are not isomorphic (that is, they are

not “the same” in the sense introduced in this section).

a. Suppose φ : → W is a polynomial mapping represented by φ(t) = (a(t), b(t)) where

a(t), b(t) ∈ [t]. Explain why it must be true that b(t)2 = a(t)(a(t)2 − 1).

b. Explain why the two factors on the right of the equation in part (a) must be relatively

prime in [t].
c. Using the unique factorizations of a and b into products of powers of irreducible poly-

nomials, show that b2 = ac2 for some polynomial c(t) ∈ [t] relatively prime to a.

d. From part (c) it follows that c2 = a2 − 1. Deduce from this equation that c, a, and, hence,

b must be constant polynomials.

§2 Quotients of Polynomial Rings

The construction of k[V ] given in §1 is a special case of what is called the quotient of
k[x1, . . . , xn] modulo an ideal I . From the word quotient, you might guess that the issue
is to define a division operation, but this is not the case. Instead, forming the quotient
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will indicate the sort of “lumping together” of polynomials that we mentioned in §1
when describing the elements φ ∈ k[V ]. The quotient construction is a fundamental
tool in commutative algebra and algebraic geometry, so if you pursue these subjects
further, the acquaintance you make with quotient rings here will be valuable.

To begin, we introduce some new terminology.

Definition 1. Let I ⊂ k[x1, . . . , xn] be an ideal, and let f, g ∈ k[x1, . . . , xn]. We say
f and g are congruent modulo I, written

f ≡ g mod I,

if f − g ∈ I .

For instance, if I = 〈x2 − y2, x + y3 + 1〉 ⊂ k[x, y], then f = x4 − y4 + x and
g = x + x5 + x4 y3 + x4 are congruent modulo I since

f − g = x4 − y4 − x5 − x4 y3 − x4

= (x2 + y2)(x2 − y2) − (x4)(x + y3 + 1) ∈ I.

The most important property of the congruence relation is given by the following
proposition.

Proposition 2. Let I ⊂ k[x1, . . . , xn] be an ideal. Then congruence modulo I is an
equivalence relation on k[x1, . . . , xn].

Proof. Congruence modulo I is reflexive since f − f = 0 ∈ I for every f ∈
k[x1, . . . , xn]. To prove symmetry, suppose that f ≡ g mod I . Then f − g ∈ I , which
implies that g − f = (−1)( f − g) ∈ I as well. Hence, g ≡ f mod I also. Finally, we
need to consider transitivity. If f ≡ g mod I and g ≡ h mod I , then f − g, g − h ∈ I .
Since I is closed under addition, we have f − h = f − g + g − h ∈ I as well. Hence,
f ≡ h mod I . �

An equivalence relation on a set S partitions S into a collection of disjoint subsets
called equivalence classes. For any f ∈ k[x1, . . . , xn], the class of f is the set

[ f ] = {g ∈ k[x1, . . . , xn] : g ≡ f mod I }.
The definition of congruence modulo I and Proposition 2 makes sense for every ideal

I ⊂ k[x1, . . . , xn]. In the special case that I = I(V ) is the ideal of the variety V , then
by Proposition 2 of §1, it follows that f ≡ g mod I(V ) if and only if f and g define
the same function on V . In other words, the “lumping together” of polynomials that
define the same function on a variety V is accomplished by passing to the equivalence
classes for the congruence relation modulo I(V ). More formally, we have the following
proposition.

Proposition 3. The distinct polynomial functions φ : V → k are in one-to-one cor-
respondence with the equivalence classes of polynomials under congruence modulo
I(V ).
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Proof. This is a corollary of Proposition 2 of §1 and the (easy) proof is left to the reader
as an exercise. �

We are now ready to introduce the quotients mentioned in the title of this section.

Definition 4. The quotient of k[x1, . . . , xn] modulo I, written k[x1, . . . , xn]/I , is the
set of equivalence classes for congruence modulo I:

k[x1, . . . , xn]/I = {[ f ] : f ∈ k[x1, . . . , xn]}.

For instance, take k = , n = 1, and I = 〈x2 − 2〉. We may ask whether there is
some way to describe all the equivalence classes for congruence modulo I . By the
division algorithm, every f ∈ [x] can be written as f = q · (x2 − 2) + r , where
r = ax + b for some a, b ∈ . By the definition, f ≡ r mod I since f − r =
q · (x2 − 2) ∈ I . Thus, every element of [x] belongs to one of the equivalence classes
[ax + b], and [x]/I = {[ax + b] : a, b ∈ }. In §3, we will extend the idea used in
this example to a method for dealing with k[x1, . . . , xn]/I in general.

Because k[x1, . . . , xn] is a ring, given any two classes [ f ], [g] ∈ k[x1, . . . , xn]/I , we
can attempt to define sum and product operations on classes by using the corresponding
operations on elements of k[x1, . . . , xn]. That is, we can try to define

[ f ] + [g] = [ f + g] (sum in k[x1, . . . , xn]),
(1)

[ f ] · [g] = [ f · g] (product in k[x1, . . . , xn]).

We must check, however, that these formulas actually make sense. We need to show
that if we choose different f ′ ∈ [ f ] and g′ ∈ [g], then the class [ f ′ + g′] is the same
as the class [ f + g]. Similarly, we need to check that [ f ′ · g′] = [ f · g].

Proposition 5. The operations defined in equations (1) yields the same classes in
k[x1, . . . , xn]/I on the right-hand sides no matter which f ′ ∈ [ f ] and g′ ∈ [g] we use.
(We say that the operations on classes given in (1) are well-defined on classes.)

Proof. If f ′ ∈ [ f ] and g′ ∈ [g], then f ′ = f + a and g′ = g + b, where a, b ∈ I .
Hence,

f ′ + g′ = ( f + a) + (g + b) = ( f + g) + (a + b).

Since we also have a + b ∈ I (I is an ideal), it follows that f ′ + g′ ≡ f + g mod I ,
so [ f ′ + g′] = [ f + g]. Similarly,

f ′ · g′ = ( f + a) · (g + b) = f g + ag + f b + ab.

Since a, b ∈ I , we have ag + f b + ab ∈ I . Thus, f ′ · g′ ≡ f · g mod I , so [ f ′ · g′] =
[ f · g]. �

To illustrate this result, consider the sum and product operations in [x]/〈x2 − 2〉.
As we saw earlier, the classes [ax + b], a, b ∈ form a complete list of the elements of
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[x]/〈x2 − 2〉. The sum operation is defined by [ax + b] + [cx + d] = [(a + c)x +
(b + d)]. Note that this amounts to the usual vector sum on ordered pairs of real
numbers. The product operation is also easily understood. We have

[ax + b] · [cx + d] = [acx2 + (ad + bc)x + bd]

= [(ad + bc)x + (bd + 2ac)],

as we can see by dividing the quadratic polynomial in the first line by x2 − 2 and using
the remainder as our representative of the class of the product.

Once we know that the operations in (1) are well-defined, it follows immediately
that all of the axioms for a commutative ring are satisfied in k[x1, . . . , xn]/I . This
is so because the sum and product in k[x1, . . . , xn]/I are defined in terms of the
corresponding operations in k[x1, . . . , xn], where we know that the axioms do hold.
For example, to check that sums are associative in k[x1, . . . , xn]/I , we argue as follows:
if [ f ], [g], [h] ∈ k[x1, . . . , xn]/I , then

([ f ] + [g]) + [h] = [ f + g] + [h]

= [( f + g) + h] [by(1)]

= [ f + (g + h)] (by associativity in k[x1, . . . , xn])

= [ f ] + [g + h]

= [ f ] + ([g] + [h]).

Similarly, commutativity of addition, associativity, and commutativity of multiplica-
tion, and the distributive law all follow because polynomials satisfy these proper-
ties. The additive identity is [0] ∈ k[x1, . . . , xn]/I , and the multiplicative identity is
[1] ∈ k[x1, . . . , xn]/I . To summarize, we have sketched the proof of the following
theorem.

Theorem 6. Let I be an ideal in k[x1, . . . , xn]. The quotient k[x1, . . . , xn]/I is a com-
mutative ring under the sum and product operations given in (1).

Next, given a variety V , we would like to relate the quotient ring k[x1, . . . , xn]/I(V )
to the ring k[V ] of polynomial functions on V . It turns out that these two rings are “the
same” in the following sense.

Theorem 7. The one-to-one correspondence between the elements of k[V] and the
elements of k[x1, . . . , xn]/I(V ) given in Proposition 3 preserves sums and products.

Proof. Let � : k[x1, . . . , xn]/I(V ) → k[V ] be the mapping defined by �([ f ]) = φ,
where φ is the polynomial function represented by f . Since every element of k[V ] is
represented by some polynomial, we see that � is onto. To see that � is also one-to-
one, suppose that �([ f ]) = �([g]). Then by Proposition 3, f ≡ g mod I(V ). Hence,
[ f ] = [g] in k[x1, . . . , xn]/I(V ).

To study sums and products, let [ f ], [g] ∈ k[x1, . . . , xn]/I(V ). Then �([ f ] + [g]) =
�([ f + g]) by the definition of sum in the quotient ring. If f represents the polynomial
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function φ and g represents ψ , then f + g represents φ + ψ . Hence,

�([ f + g]) = φ + ψ = �([ f ]) + �([g]).

Thus, � preserves sums. Similarly,

�([ f ] · [g]) = �([ f · g]) = φ · ψ = �([ f ]) · �([g]).

Thus, � preserves products as well.
The inverse correspondence � also preserves sums and products by a similar argu-

ment, and the theorem is proved. �

The result of Theorem 7 illustrates a basic notion from abstract algebra. The following
definition tells us what it means for two rings to be essentially the same.

Definition 8. Let R, S be commutative rings.
(i) A mapping φ : R → S is said to be a ring isomorphism if:

a. φ preserves sums: φ(r + r ′) = φ(r ) + φ(r ′) for all r, r ′ ∈ R.
b. φ preserves products: φ(r · r ′) = φ(r ) · φ(r ′) for all r, r ′ ∈ R.
c. φ is one-to-one and onto.

(ii) Two rings R, S are isomorphic if there exists an isomorphism φ : R → S. We
write R ∼= S to denote that R is isomorphic to S.

(iii) A mapping φ : R → S is a ring homomorphism if φ satisfies properties (a)
and (b) of (i), but not necessarily property (c), and if, in addition, φ maps the
multiplicative identity 1 ∈ R to 1 ∈ S.

In general, a “homomorphism” is a mapping that preserves algebraic structure. A ring
homomorphism φ : R → S is a mapping that preserves the addition and multiplication
operations in the ring R.

From Theorem 7, we get a ring isomorphism k[V ] ∼= k[x1, . . . , xn]/I(V ). A natural
question to ask is what happens if we replace I(V ) by some other ideal I which defines
V . [From Chapter 4, we know that there are lots of ideals I such that V = V(I ).]
Could it be true that all the quotient rings k[x1, . . . , xn]/I are isomorphic to k[V ]? The
following example shows that the answer to this question is no. Let V = {(0, 0)}. We
saw in Chapter 1, §4 that I(V ) = I({(0, 0)}) = 〈x, y〉. Thus, by Theorem 7, we have
k[x, y]/I(V ) ∼= k[V ].

Our first claim is that the quotient ring k[x, y]/I(V ) is isomorphic to the field k. The
easiest way to see this is to note that a polynomial function on the one-point set {(0, 0)}
can be represented by a constant since the function will have only one function value.
Alternatively, we can derive the same fact algebraically by constructing a mapping

� : k[x, y]/I(V ) −→ k

by setting �([ f ]) = f (0, 0) (the constant term of the polynomial). We will leave it as
an exercise to show that � is a ring isomorphism.

Now, let I = 〈x3 + y2, 3y4〉 ⊂ k[x, y]. It is easy to check that V(I ) = {(0, 0)} = V .
We ask whether k[x, y]/I is also isomorphic to k. A moment’s thought shows that
this is not so. For instance, consider the class [y] ∈ k[x, y]/I . Note that y /∈ I , a fact
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which can be checked by finding a Groebner basis for I (use any monomial order) and
computing a remainder. In the ring k[x, y]/I , this shows that [y] �= [0]. But we also
have [y]4 = [y]4 = [0] since y4 ∈ I . Thus, there is an element of k[x, y]/I which is not
zero itself, but whose fourth power is zero. In a field, this is impossible. We conclude
that k[x, y]/I is not a field. But this says that k[x, y]/I(V ) and k[x, y]/I cannot be
isomorphic rings since one is a field and the other is not. (See Exercise 8.)

In a commutative ring R, an a ∈ R such that an = 0 for some n ≥ 1 is called a
nilpotent element. The example just given is actually quite representative of the kind of
difference that can appear when we compare k[x1, . . . , xn]/I(V ) with k[x1, . . . , xn]/I
for another ideal I with V(I ) = V . If I is not a radical ideal, there will be elements
f ∈ √

I which are not in I itself. Thus, in k[x1, . . . , xn]/I , we will have [ f ] �= [0],
whereas [ f ]n = [0] for the n > 1 such that f n ∈ I . The ring k[x1, . . . , xn]/I will have
nonzero nilpotent elements, whereas k[x1, . . . , xn]/I(V ) never does. I(V ) is always a
radical ideal, so [ f ]n = 0 if and only if [ f ] = 0.

Since a quotient k[x1, . . . , xn]/I is a commutative ring in its own right, we can
study other facets of its ring structure as well, and, in particular, we can consider
ideals in k[x1, . . . , xn]/I . The definition is the same as the definition of ideals in
k[x1, . . . , xn].

Definition 9. A subset I of a commutative ring R is said to be an ideal in R if it satisfies
(i) 0 ∈ I (where 0 is the zero element of R).

(ii) If a, b ∈ I , then a + b ∈ I .
(iii) If a ∈ I and r ∈ R, then r · a ∈ I .

There is a close relation between ideals in the quotient k[x1, . . . , xn]/I and ideals in
k[x1, . . . , xn].

Proposition 10. Let I be an ideal in k[x1, . . . , xn]. The ideals in the quotient ring
k[x1, . . . , xn]/I are in one-to-one correspondence with the ideals of k[x1, . . . , xn]
containing I (that is, the ideals J satisfying I ⊂ J ⊂ k[x1, . . . , xn]).

Proof. First, we give a way to produce an ideal in k[x1, . . . , xn]/I corresponding to
each J containing I in k[x1, . . . , xn]. Given an ideal J in k[x1, . . . , xn] containing I ,
let J/I denote the set {[J ] ∈ k[x1, . . . , xn]/I : j ∈ J }. We claim that J/I is an ideal in
k[x1, . . . , xn]/I . To prove this, first note that [0] ∈ J/I since 0 ∈ J . Next, let [ j], [k] ∈
J/I . Then [ j] + [k] = [ j + k] by the definition of the sum in k[x1, . . . , xn]/I . Since
j, k ∈ J , we have j + k ∈ J as well. Hence, [ j] + [k] = J/I . Finally, if [J ] ∈ J/I
and [r ] ∈ k[x1, . . . , xn]/I , then [r ] · [ j] = [r · j] by the definition of the product in
k[x1, . . . , xn]/I . But r · j ∈ J since J is an ideal in k[x1, . . . , xn]. Hence, [r ] · [ j] ∈
J/I . As a result, J/I is an ideal in k[x1, . . . , xn]/I .

If J̃ ⊂ k[x1, . . . , xn]/I is an ideal, we next show how to produce an ideal J ⊂
k[x1, . . . , xn] which contains I . Let J = { j ∈ k[x1, . . . , xn] : [ j] ∈ J̃ }. Then we have
I ⊂ J since [i] = [0] ∈ J̃ for any i ∈ I . It remains to show that J is an ideal of
k[x1, . . . , xn]. First note that 0 ∈ I ⊂ J . Furthermore, if j, k ∈ J , then [ j], [k] ∈ J̃
implies that [ j] + [k] = [ j + k] ∈ J̃ . It follows that j + k ∈ J . Finally, if j ∈ J and
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r ∈ k[x1, . . . , xn], then [ j] ∈ J̃ , so [r ][ j] = [r j] ∈ J̃ . But this says r j ∈ J , and, hence,
J is an ideal in k[x1, . . . , xn].

We have thus shown that there are correspondences between the two collections of
ideals:

{J : I ⊂ J ⊂ k[x1, . . . , xn]} { J̃ ⊂ k[x1, . . . , xn]/I }
J −→ J/I = {[ j] : j ∈ J }(2)

J = { j : [ j] ∈ J̃ } ←− J̃ .

We leave it as an exercise to prove that each of these arrows is the inverse of the other.
This gives the desired one-to-one correspondence. �

For example, consider the ideal I = 〈x2 − 4x + 3〉 in R = [x]. We know from
Chapter 1 that R is a principal ideal domain. That is, every ideal in R is generated
by a single polynomial. The ideals containing I are precisely the ideals generated by
polynomials that divide x2 − 4x + 3. Hence, the quotient ring R/I has exactly four
ideals in this case:

ideals in R/I ideals in R containing I

{[0]} I
〈[x − 1]〉 〈x − 1〉
〈[x − 3]〉 〈x − 3〉

R/I R

As in another example earlier in this section, we can compute in R/I by computing
remainders with respect to x2 − 4x + 3.

As a corollary of Proposition 10, we deduce the following result about ideals in
quotient rings, parallel to the Hilbert Basis Theorem from Chapter 2.

Corollary 11. Every ideal in the quotient ring k[x1, . . . , xn]/I is finitely generated.

Proof. Let J̃ be any ideal in k[x1, . . . , xn]/I . By Proposition 10, J̃ = {[ j] : j ∈ J }
for an ideal J in k[x1, . . . , xn] containing I . Then the Hilbert Basis Theorem implies
that J = 〈 f1, . . . , fs〉 for some fi ∈ k[x1, . . . , xn]. But then for any j ∈ J , we have
j = h1 f1 + · · · + hs fs for some hi ∈ k[x1, . . . , xn]. Hence,

[ j] = [h1 f1 + · · · + hs fs]

= [h1][ f1] + · · · + [hs][ fs].

As a result, the classes [ f1], . . . , [ fs] generate J̃ in k[x1, . . . , xn]/I . �

In the next section, we will discuss a more constructive method to study the quotient
rings k[x1, . . . , xn]/I and their algebraic properties.
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EXERCISES FOR §2

1. Let I = 〈 f1, . . . , fs〉 ⊂ k[x1, . . . , xn]. Describe an algorithm for determining whether f ≡
g mod I using techniques from Chapter 2.

2. Prove Proposition 3.

3. Prove Theorem 6. That is, show that the other axioms for a commutative ring are satisfied

by k[x1, . . . , xn]/I .

4. In this problem, we will give an algebraic construction of a field containing in which

2 has a square root. Note that the field of real numbers is one such field. However, our

construction will not make use of the limit process necessary, for example, to make sense

of an infinite decimal expansion such as the usual expansion
√

2 = 1.414 . . .. Instead, we

will work with the polynomial x2 − 2.

a. Show that every f ∈ [x] is congruent modulo the ideal I = 〈x2 − 2〉 ⊂ [x] to a

unique polynomial of the form ax + b, where a, b ∈ .

b. Show that the class of x in [x]/I is a square root of 2 in the sense that [x]2 = [2] in

[x]/I .

c. Show that F = [x]/I is a field. Hint: Using Theorem 6, the only thing left to prove is

that every nonzero element of F has a multiplicative inverse in F .

d. Find a subfield of F isomorphic to .

5. In this problem, we will consider the addition and multiplication operations in the quotient

ring [x]/〈x2 + 1〉.
a. Show that every f ∈ [x] is congruent modulo I = 〈x2 + 1〉 to a unique polynomial

of the form ax + b, where a, b ∈ .

b. Construct formulas for the addition and multiplication rules in [x]/〈x2 + 1〉 using

these polynomials as the standard representatives for classes.

c. Do we know another way to describe the ring [x]/(x2 + 1) (that is, another well-known

ring isomorphic to this one?). Hint: What is [x]2?

6. Show that [x]/〈x2 − 4x + 3〉 is not an integral domain.

7. It is possible to define a quotient ring R/I whenever I is an ideal in a commutative ring R.

The general construction is the same as the one we have given for k[x1, . . . , xn]/I . Here is

one simple example.

a. Let I = 〈p〉 in R = , where p is a prime number. Show that the relation of congruence

modulo p, defined by

m ≡ n mod p ⇐⇒ p divides m − n

is an equivalence relation on , and list the different equivalence classes. We will denote

the set of equivalence classes by /〈p〉.
b. Construct sum and product operations in /〈p〉 by the analogue of equation (1) and then

prove that they are well-defined by adapting the proof of Proposition 5.

c. Explain why /〈p〉 is a commutative ring under the operations you defined in part (b).

d. Show that the finite field p introduced in Chapter 1 is isomorphic as a ring to /〈p〉.
8. In this problem, we study how ring homomorphisms interact with multiplicative inverses in

a ring.

a. Show that every ring isomorphism φ : R → S takes the multiplicative identity in R to

the multiplicative identity in S, that is φ(1) = 1.

b. Show that if r ∈ R has a multiplicative inverse, then for any ring homomorphism

φ : R → S, φ(r−1) is a multiplicative inverse for φ(r ) in the ring S.

c. Show that if R and S are isomorphic as rings and R is a field, then S is also a field.
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9. Prove that the map f → f (0, 0) induces a ring isomorphism k[x, y]/〈x, y〉 ∼= k. Hint: An

efficient proof can be given using Exercise 16.

10. This problem illustrates one important use of nilpotent elements in rings. Let R = k[x] and

let I = (x2).

a. Show that [x] is a nilpotent element in R/I and find the smallest power of [x] which is

equal to zero.

b. Show that every class in R/I has a unique representative of the form b + aε, where

a, b ∈ k and ε is shorthand for [x].

c. Given b + aε ∈ R/I , we can define a mapping R → R/I by substituting x = b + aε

in each element f (x) ∈ R. For instance, with b + aε = 2 + ε and f (x) = x2, we obtain

(2 + ε)2 = 4 + 4ε + ε2 = 4ε + 4. Show that

f (b + aε) = f (b) + a · f ′(b)ε,(3)

where f ′ is the formal derivative of the polynomial f . (Thus, derivatives of polynomials

can be constructed in a purely algebraic way.)

d. Suppose ε = [x] ∈ k[x]/〈x3〉. Derive a formula analogous to (3) for f (b + aε).

11. Let R be a commutative ring. Show that the set of nilpotent elements of R forms an ideal in

R. Hint: To show that the sum of two nilpotent elements is also nilpotent, you can expand

a suitable power (a + b)k using the distributive law. The result is formally the same as the

usual binomial expansion.

12. This exercise will show that the two mappings given in (2) are inverses of each other.

a. If I ⊂ J is an ideal of k[x1, . . . , xn], show that J = { f ∈ k[x1, . . . , xn] : [ f ] ∈ J/I },
where J/I = {[ j] : j ∈ J }. Explain how your proof uses the assumption I ⊂ J .

b. If J̃ is an ideal of k[x1, . . . , xn]/I , show that J̃ = {[ f ] ∈ k[x1, . . . , xn]/I : f ∈ J },
where J = { j : [ j] ∈ J̃ }.

13. Let R and S be commutative rings and let φ : R → S be a ring homomorphism.

a. If J ⊂ S is an ideal, show that φ−1(J ) is an ideal in R.

b. If φ is an isomorphism of rings, show that there is a one-to-one, inclusion-preserving

correspondence between the ideals of R and the ideals of S.

14. This problem studies the ideals in some quotient rings.

a. Let I = 〈x3 − x〉 ⊂ R = [x]. Determine the ideals in the quotient ring R/I using

Proposition 10. Draw a diagram indicating which of these ideals are contained in which

others.

b. How does your answer change if I = 〈x3 + x〉?
15. This problem considers some special quotient rings of [x, y].

a. Let I = 〈x2, y2〉 ⊂ [x, y]. Describe the ideals in [x, y]/I . Hint: Use Proposition 10.

b. Is [x, y]/〈x3, y〉 isomorphic to [x, y]/〈x2, y2〉?
16. Let φ : k[x1, . . . , xn] → S be a ring homomorphism. The set {r ∈ k[x1, . . . , xn] : φ(r ) =

0 ∈ S} is called the kernel of φ, written ker(φ).

a. Show that ker(φ) is an ideal in k[x1, . . . , xn].

b. Show that the mapping v from k[x1, . . . , xn]/ker(φ) to S defined by v([r ]) = φ(r ) is

well-defined in the sense that v([r ]) = v([r ′]) whenever r ≡ r ′ mod ker(φ).

c. Show that v is a ring homomorphism.

d. (The Isomorphism Theorem) Assume that φ is onto. Show that v is a one-to-one

and onto ring homomorphism. As a result, we have S ∼= k[x1, . . . , xn]/ker(φ) when

φ : k[x1, . . . , xn] → S is onto.

17. Use Exercise 16 to give a more concise proof of Theorem 7. Consider the mapping φ :

k[x1, . . . , xn] → k[V ] that takes a polynomial to the element of k[V ] that it represents.

Hint: What is the kernel of φ?
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§3 Algorithmic Computations in k[x1, . . . , xn]/I

In this section, we will use the division algorithm to produce simple representatives
of equivalence classes for congruence modulo I , where I ⊂ k[x1, . . . , xn] is an ideal.
These representatives will enable us to develop an explicit method for computing the
sum and product operations in a quotient ring k[x1, . . . , xn]/I . As an added dividend,
we will derive an easily checked criterion to determine when a system of polynomial
equations over has only finitely many solutions.

The basic idea that we will use is a direct consequence of the fact that the remainder on
division of a polynomial f by a Groebner basis G for an ideal I is uniquely determined
by the polynomial f . (This was Proposition 1 of Chapter 2, §6.) Furthermore, we have
the following basic observations reinterpreting the result of the division and the form
of the remainder.

Proposition 1. Fix a monomial ordering on k[x1, . . . , xn] and let I ⊂ k[x1, . . . , xn]
be an ideal. As in Chapter 2, §5, 〈LT(I )〉 will denote the ideal generated by the leading
terms of elements of I.
(i) Every f ∈ k[x1, . . . , xn] is congruent modulo I to a unique polynomial r which is

a k-linear combination of the monomials in the complement of 〈LT(I )〉.
(ii) The elements of {xα : xα �∈ 〈LT(I )〉} are “linearly independent modulo I.” That is, if

∑
α

cαxα ≡ 0 mod I,

where the xα are all in the complement of 〈LT(I )〉, then cα = 0 for all α.

Proof. (i) Let G be a Groebner basis for I and let f ∈ k[x1, . . . , xn]. By the di-

vision algorithm, the remainder r = f
G

satisfies f = q + r , where q ∈ I . Hence,
f − r = q ∈ I , so f ≡ r mod I . The division algorithm also tells us that r is a k-
linear combination of the monomials xα /∈ 〈LT(I )〉. The uniqueness of r follows from
Proposition 1 of Chapter 2, §6.

(ii) The argument to establish this part of the proposition is essentially the same as
the proof of the uniqueness of the remainder in Proposition 1 of Chapter 2, §6. We
leave it to the reader to carry out the details. �

Historically, this was actually the first application of Groebner bases. Buchberger’s
thesis concerned the question of finding “standard sets of representatives” for the classes
in quotient rings. We also note that if I = I(V ) for a variety V , Proposition 1 gives
standard representatives for the polynomial functions φ ∈ k[V ].

Example 2. Let I = 〈xy3 − x2, x3 y2 − y〉 in [x, y] and use graded lex order. We
find that

G = {x3 y2 − y, x4 − y2, xy3 − x2, y4 − xy}



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX January 5, 2007 7:44

§3. Algorithmic Computations in k[x1, . . . , xn]/I 231

is a Groebner basis for I . Hence, 〈LT(I )〉 = 〈x3 y2, x4, xy3, y4〉. As in Chapter 2, §4,
we can draw a diagram in 2

≥0 to represent the exponent vectors of the monomials in
〈LT(I )〉 and its complement as follows. The vectors

α(1) = (3, 2),
α(2) = (4, 0),
α(3) = (1, 3),
α(4) = (0, 4)

are the exponent vectors of the generators of 〈LT(I )〉. Thus, the elements of

((3, 2) + 2
≥0) ∪ ((4, 0) + 2

≥0) ∪ ((1, 3) + 2
≥0) ∪ ((0, 4) + 2

≥0)

are the exponent vectors of monomials in 〈LT(I )〉. As a result, we can represent
the monomials in 〈LT(I )〉 by the integer points in the shaded region in 2

≥0 given
below:

n

m

(m,n) ←→ xm yn

(0,4)

(1,3)

(3,2)

(4,0)

Given any f ∈ [x, y]. Proposition 1 implies that the remainder f
G

will be a -linear
combination of the 12 monomials 1, x, x2, x3, y, xy, x2 y, x3 y, y2, xy2, x2 y2, y3 not
contained in the shaded region. Note that in this case the remainders all belong to a
finite-dimensional vector subspace of [x, y].

We may also ask what happens if we use a different monomial order in [x, y] with
the same ideal. If we use lex order instead of grlex, with the variables ordered y > x ,
we find that a Groebner basis in this case is

G = {y − x7, x12 − x2}.
Hence, for this monomial order, 〈LT(I )〉 = 〈y, x12〉, and 〈LT(I )〉 contains all the mono-
mials with exponent vectors in the shaded region on the next page. Thus, for every

f ∈ [x, y], we see that f
G ∈ Span(1, x, x2, . . . , x11).
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n

m

(m,n) ←→ xm yn

(0,1)

(12,0)

Note that 〈LT(I )〉 and the remainders can be completely different depending on
which monomial order we use. In both cases, however, the possible remainders form
the elements of a 12-dimensional vector space. The fact that the dimension is the same
in both cases is no accident, as we will soon see. No matter what monomial order we
use, for a given ideal I , we will always find the same number of monomials in the
complement of 〈LT(I )〉 (in the case that this number is finite).

Example 3. For the ideal considered in Example 2, there were only finitely many
monomials in the complement of 〈LT(I )〉. This is actually a very special situation.
For instance, consider I = 〈x − z2, y − z3〉 ⊂ k[x, y, z]. Using lex order, the given
generators for I already form a Groebner basis, so that 〈LT(I )〉 = 〈x, y〉. The set of
possible remainders modulo I is thus the set of all k-linear combinations of the powers
of z. In this case, we recognize I as the ideal of a twisted cubic curve in k3. As a result
of Proposition 1, we see that every polynomial function on the twisted cubic can be
uniquely represented by a polynomial in k[z]. Hence, the space of possible remainders
is not finite-dimensional and V(I ) is a curve. What can you say about V(I ) for the ideal
in Example 2?

In any case, we can use Proposition 1 in the following way to describe a portion of
the algebraic structure of the quotient ring k[x1, . . . , xn]/I .

Proposition 4. Let I ⊂ k[x1, . . . , xn] be an ideal. Then k[x1, . . . , xn]/I is isomorphic
as a k-vector space to S = Span(xα : xα �∈ 〈LT(I )〉).

Proof. By Proposition 1, the mapping � : k[x1, . . . , xn]/I → S defined by �([ f ]) =
f

G
defines a one-to-one correspondence between the classes in k[x1, . . . , xn]/I and the

elements of S. Hence, it remains to check that � preserves the vector space operations.
Consider the sum operation in k[x1, . . . , xn]/I introduced in §2. If [ f ], [g] are elements
of k[x1, . . . , xn]/I , then using Proposition 1, we can “standardize” our polynomial
representatives by computing remainders with respect to a Groebner basis G for I . By

Exercise 12 of Chapter 2, §6, we have f + g
G = f

G + gG , so that if

f
G =

∑
α

cαxα and gG =
∑

α

dαxα
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(where the sum is over those α with xα �∈ 〈LT(I )〉), then

f + g
G =

∑
α

(cα + dα)xα.(1)

We conclude that with the standard representatives, the sum operation in
k[x1, . . . , xn]/I is the same as the vector sum in the k-vector space S = Span(xα : xα �∈
〈LT(I )〉). Further, if c ∈ k, we leave it as an exercise to prove that c · f

G = c · f
G

(this
is an easy consequence of the uniqueness part of Proposition 1). It follows that

c · f
G =

∑
α

ccαxα,

which shows that multiplication by c in k[x1, . . . , xn]/I is the same as scalar mul-
tiplication in S. This shows that the map � is linear and hence is a vector space
isomorphism. �

The product operation in k[x1, . . . , xn]/I is slightly less straightforward. The reason
for this is clear, however, if we consider an example. Let I be the ideal

I = 〈y + x2 − 1, xy − 2y2 + 2y〉 ⊂ [x, y].

If we compute a Groebner basis for I using lex order with x > y, then we get

G = {x2 + y − 1, xy − 2y2 + 2y, y3 − (7/4)y2 + (3/4)y}.(2)

Thus, 〈LT(I )〉 = 〈x2, xy, y3〉, and {1, x, y, y2} forms a basis for the vector space of re-
mainders modulo I . Consider the classes of f = 3y2 + x and g = x − y in [x, y]/I .
The product of [ f ] and [g] is represented by f · g = 3xy2 + x2 − 3y3 − xy. However,
this polynomial cannot be the standard representative of the product function because
it contains monomials that are in 〈LT(I )〉. Hence, we should divide again by G, and the

remainder f · g
G

will be the standard representative of the product. We have

3xy2 + x2 − 3y3 − xy
G = (−11/4)y2 − (5/4)y + 1,

which is in Span(1, x, y, y2) as we expect.
The above discussion gives a completely algorithmic way to handle computations

in k[x1, . . . , xn]/I . To summarize, we have proved the following result.

Proposition 5. Let I be an ideal in k[x1, . . . , xn] and let G be a Groebner basis for
I with respect to any monomial order. For each [ f ] ∈ k[x1, . . . , xn]/I , we get the

standard representative f = f
G

in S = Span(xα : xα �∈ 〈LT(I )〉). Then:
(i) [ f ] + [g] is represented by f + g.

(ii) [ f ] · [g] is represented by f · g
G ∈ S.

We will conclude this section by using the ideas we have developed to give an
algorithmic criterion to determine when a variety in n contains only a finite number
of points or, equivalently, to determine when a system of polynomial equations has only
a finite number of solutions in n . (As in Chapter 3, we must work over an algebraically
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closed field to ensure that we are not “missing” any solutions of the equations with
coordinates in a larger field K ⊃ k.)

Theorem 6. Let V = V(I ) be an affine variety in n and fix a monomial ordering in
[x1, . . . , xn]. Then the following statements are equivalent:
(i) V is a finite set.

(ii) For each i, 1 ≤ i ≤ n, there is some mi ≥ 0 such that xmi
i ∈ 〈LT(I )〉.

(iii) Let G be a Groebner basis for I . Then for each i, 1 ≤ i ≤ n, there is some mi ≥ 0
such that xmi

i = LM(gi ) for some gi ∈ G.
(iv) The -vector space S = span(xα · xα �∈ 〈LT(I )〉) is finite-dimensional.
(v) The -vector space [x1, . . . , xn]/I is finite-dimensional.

Proof. (i) ⇒ (ii) If V = ∅, then 1 ∈ I by the Weak Nullstellensatz. In this case, we
can take mi = 0 for all i . If V is nonempty, then for a fixed i , let a j , j = 1, . . . , k, be
the distinct complex numbers appearing as i-th coordinates of points in V . Form the
one-variable polynomial

f (xi ) =
k∏

j=1

(xi − a j ).

By construction, f vanishes at every point in V , so f ∈ I(V ). By the Nullstellensatz,
there is some m ≥ 1 such that f m ∈ I . But this says that the leading monomial of f m

is in 〈LT(I )〉. Examining our expression for f , we see that xkm
i ∈ 〈LT(I )〉.

(ii) ⇒ (iii) xmi
i ∈ 〈LT(I )〉. Since G is a Groebner basis of I, 〈LT(I )〉 = 〈LT(g)〉 : g ∈

G. By Lemma 2 of Chapter 2, §4, there is some gi ∈ G, such that LT(gi ) divides xmi
i .

But this implies that LT(gi ) is a power of xi , as claimed. The opposite implication
follows directly from the definition of 〈LT(g)〉.

(ii) ⇒ (iv) If some power xmi
i ∈ 〈LT(I )〉 for each i , then the monomials xα1

1 · · · xαn
n

for which some αi ≥ mi are all in 〈LT(I )〉. The monomials in the complement of
〈LT(I )〉 must have αi ≤ mi − 1 for each i . As a result, the number of monomials in the
complement of 〈LT(I )〉 can be at most m1 · m2 · · · mn .

(iv) ⇒ (v) follows from Proposition 4.
(v) ⇒ (i) To show that V is finite, it suffices to show that for each i there can be

only finitely many distinct i-th coordinates for the points of V . Fix i and consider
the classes [x j

i ] in [x1, . . . , xn]/I , where j − 0, 1, 2, . . . . Since [x1, . . . , xn]/I is

finite-dimensional, the [x j
i ] must be linearly dependent in [x1, . . . , xn]/I That is,

there exist constants c j (not all zero) and some m such that

m∑
j=0

c j [x
j

i ] =
[

m∑
j=0

c j x
j

i

]
= [0].

However, this implies that
∑m

j=0 c j x
j

i ∈ I . Since a nonzero polynomial can have only
finitely many roots in , this shows that the points of V have only finitely many different
i-th coordinates.
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We note that the hypothesis k = was used only in showing that (i) ⇒ (ii). The
other implications are true even if k is not algebraically closed. �

A judicious choice of monomial ordering can sometimes lead to a very easy deter-
mination that a variety is finite. For example, consider the ideal

I = 〈x5 + y3 + z2 − 1, x2 + y3 + z − 1, x4 + y5 + z6 − 1〉.
Using grlex, we see that x5, y3, z6 ∈ 〈LT(I )〉 since those are the leading monomials of
the three generators. By part (ii) of the theorem, we know that V(I ) is finite (even without
computing a Groebner basis). If we actually wanted to determine which points were
in V(I ), we would need to do elimination, for instance, by computing a lexicographic
Groebner basis. This can be a time-consuming calculation, even for a computer algebra
system.

A close examination of the proof of the theorem also yields the following quantitative
estimate of the number of solutions of a system of equations when that number is finite.

Corollary 7. Let I ⊂ [x1, . . . , xn] be an ideal such that for each i , some power
xmi

i ∈ 〈LT(I )〉. Then the number of points of V(I ) is at most m1 · m2 · · · mn.

Proof. We leave the proof as an exercise for the reader. �

Here is a pair of examples to illustrate the corollary. First consider the variety V =
V(I ), where I = 〈y − x7, x12 − x〉. For y > x , the lexicographic Groebner basis for
this ideal is G = {y − x7, x12 − x}. Hence, in the notation of the theorem, we have
m1 = 12 and m2 = 1 as the smallest powers of the two variables contained in 〈LT(I )〉.
By solving the equations from G, we see that V actually contains 12 = m1 · m2 points
in this case:

V = {(0, 0)} ∪ {(ζ, ζ 7) : ζ 11 = 1}.
(Recall that there are 11 distinct 11th roots of unity in .)

On the other hand, consider the variety V = V(x2 + y − 1, xy − 2y2 + 2y) in 2.
From the lexicographic Groebner basis computed in (2) for this ideal, we see that
m1 = 2 and m2 = 3 are the smallest powers of x and y, respectively, contained in
〈LT(I )〉. However, V contains only 4 < 2 · 3 points in 2:

V = {(±1, 0), (0, 1), (−1/2, 3/4)}.
Can you explain the reason(s) for the difference between m1 · m2 and the cardinality
of V in this example?

We can improve the bound given in Corollary 7 as follows.

Proposition 8. Let I ⊂ [x1, . . . , xn] be an ideal such that V = V(I ) is a finite set.
(i) The number of points in V is at most dim( [x1, . . . , xn]/I ) (where “dim” means

dimension as a vector space over ).
(ii) If I is a radical ideal, then equality holds, i.e., the number of points in V is exactly

dim( [x1, . . . , xn]/I ).
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Proof. We first show that given distinct points p1, . . . , pm ∈ n , there is a polynomial
f1 ∈ [x1, . . . , xn] with f1(p1) = 1 and f1(p2) = · · · = f1(pm) = 0. To prove this,
note that if a �= b ∈ n , then they must differ at some coordinate, say the j-th, and
it follows that g = (x j − b j )/(a j − b j ) satisfies g(a) = 1, g(b) = 0. If we apply this
observation to each pair p1 �= pi , i ≥ 2, we get polynomials gi such that gi (pi ) = 1
and gi (p1) = 0 for i ≥ 2. Then f1 − g2 · g3 · · · gm has the desired property.

In the argument just given, there is nothing special about p1. If we apply the same ar-
gument with p1 replaced by each of p1, . . . , pm in turn, we get polynomials f1, . . . , fm

such that fi (pi ) = 1 and fi (pi ) = 0 for i �= j .
Now we can prove the proposition. Suppose that V = {p1, . . . , pm}, where the pi

are distinct. Then we get f1, . . . , fm as above. If we can prove that [ f1], . . . , [ fm] ∈
[x1, . . . , xn]/I are linearly independent, then

m ≤ dim( [x1, . . . , xn]/I )(3)

will follow, and the first part of the proposition will be proved.
To prove linear independence, suppose that

∑m
i=1 = ai [ fi ] = [0] in [x1, . . . , xn]/I ,

where ai ∈ . Back in [x1, . . . , xn], this means that g = ∑m
i=1 ai fi ∈ I , so that g

vanishes at all points of V = {p1, . . . , pm}. Then, for 1 ≤ j ≤ m, we have

0 = g(p j ) =
m∑

i=1

ai fi (p j ) = 0 + a j f j (p j ) = a j ,

and linear independence follows.
Finally, suppose that I is radical. To prove that equality holds in (3), it suffices to

show that [ f1], . . . , [ fm] form a basis of [x1, . . . , xn]/I . Since we just proved linear
independence, we only need to show that they span. Thus, let [g] ∈ [x1, . . . , xn]/I be
arbitrary, and set ai = g(pi ). Then consider h = g − ∑m

i=1 ai fi . One easily computes

h(p j ) = 0 for all j , so that h ∈ I(V ). By the Nullstellensatz, I(V ) = I(V(I )) = √
I

since is algebraically closed, and since I is radical, we conclude that h ∈ I . Thus
[h] = [0] in [x1, . . . , xn]/I , which implies [g] = ∑m

i=1 ai [ fi ]. The proposition is now
proved. �

To see why this proposition represents an improvement over Corollary 7, consider
Example 2 from the beginning of this section. Using grlex, we found x4, y4 ∈ 〈LT(I )〉,
so the V(I ) has ≤ 4 · 4 = 16 points by Corollary 7. Yet Example 2 also shows that

[x, y]/I has dimension 12 over . Thus Proposition 8 gives a better bound of 12.
For any ideal I , we have V(I ) = V(

√
I ). Thus, when V(I ) is finite, Proposition 8

shows how to find the exact number of solutions over , provided we know
√

I . Al-
though radicals are hard to compute in general,

√
I is relatively easy to find when I

satisfies the conditions of Theorem 6. For a description of the algorithm, see Theo-
rem 8.20 of BECKER and WEISPFENNING (1993). This subject (and its relation to solving
equations) is also discussed in COX, LITTLE and O’SHEA (1998).

Theorem 6 shows how we can characterize “zero-dimensional” varieties (varieties
containing only finitely many points) using the properties of [x1, . . . , xn]/I . In
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Chapter 9, we will take up the general question of assigning a dimension to a gen-
eral variety, and some of the ideas introduced here will be useful.

EXERCISES FOR §3

1. Complete the proof of part (ii) of Proposition 1.

2. In Proposition 5, we stated a method for computing [ f ] · [g] in k[x1, . . . , xn]/I . Could we

simply compute f · g
G

rather than first computing the remainders of f and g separately?

3. Let I = 〈x4 y − z6, x2 − y3z, x3z2 − y3〉 in k[x, y, z].

a. Using lex order, find a Groebner basis G for I and a collection of monomials that spans

the space of remainders modulo G.

b. Repeat part (a) for grlex order. How do your sets of monomials compare?

4. Use the division algorithm and the uniqueness part of Proposition 1 to prove that c · f
G =

c · f
G

whenever f ∈ [x1, . . . , xn] and c ∈ k.

5. Let I = 〈y + x2 − 1, xy − 2y2 + 2y〉 ⊂ [x, y]. (This is the ideal used in the example

following Proposition 4.)

a. Construct a vector space isomorphism [x, y]/I ∼= 4.

b. Using the lexicographic Groebner basis given in (2), compute a “multiplication table”

for the elements {[1], [x], [y], [y2]} in [x, y]/I . (Express each product as a linear

combination of these four classes.)

c. Is [x, y]/I a field? Why or why not?

6. Let V = V(x3 − x2
1 , x4 − x1x2, x2x4 − x1x5, x2

4 − x3x5) ⊂ 5.

a. Using any convenient monomial order, determine a collection of monomials spanning

the space of remainders modulo a Groebner basis for the ideal generated by the defining

equations of V .

b. For which i is there some mi ≥ 0 such that xmi
i ∈ 〈LT(I )〉?

c. Is V a finite set? Why or why not?

7. Let I be any ideal in k[x1, . . . , xn].

a. Suppose that S = Span(xα : xα /∈ 〈LT(I )〉) is a k-vector space of finite dimension d for

some choice of monomial order. Show that the dimension of k[x1, . . . , xn]/I as a k-vector

space is equal to d.

b. Deduce from part (a) that the number of monomials in the complement of 〈LT(I )〉 is

independent of the choice of the monomial order, when that number is finite.

8. Prove Corollary 7. Hint: Use Proposition 4 and part (iii) of Theorem 6.

9. Suppose that I ⊂ k[x1, . . . , xn] is an ideal such that for each i, xmi
i ∈ 〈LT(I )〉. State and

prove a criterion that can be used to determine when V(I ) contains exactly m1 · m2 · · · mn

points in n . Does your criterion somehow take the multiplicity of the roots into account?

10. Most computer algebra systems contain routines for simplifying radical expressions. For

example, instead of writing

r = 1

x + √
2 + √

3
,

most systems would allow you to rationalize the denominator and rewrite r as a quotient of

polynomials in x , where
√

2 and
√

3 appear in the coefficients only in the numerator. The

idea behind one method used here is as follows.

a. Explain why r can be seen as a rational function in x , whose coefficients are elements of

the quotient ring R = [y1, y2]/〈y2
1 − 2, y2

2 − 3〉. Hint: See Exercise 4 from §2 of this

chapter.
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b. Compute a Groebner basis G for I = 〈y2
1 − 2, y2

2 − 3〉 and construct a multiplication

table for the classes of the monomials spanning the possible remainders modulo G
(which should be {[1], [y1], [y2], [y1 y2]}).

c. Now, to rationalize the denominator of r , we can try to solve the following equation

(x[1] + [y1] + [y2]) · (a0[1] + a1[y1] + a2[y2] + a3[y1 y2]) = [1],(4)

where a0, a1, a2, a3 are rational functions of x with rational number coefficients. Multiply

out (4) using your table from part (b), match coefficients, and solve the resulting linear

equations for a0, a1, a2, a3. Then

a0[1] + a1[y1] + a2[y2] + a3[y1 y2]

gives the rationalized expression for r .

11. In this problem, we will establish a fact about the number of monomials of total degree less

than or equal to d in k[x1, . . . , xn] and relate this to the intuitive notion of the dimension of

the variety V = kn .

a. Explain why every monomial in k[x1, . . . , xn] is in the complement of 〈LT(I(V ))〉 for

V = kn .

b. Show that for all d, n ≥ 0, the number of distinct monomials of degree less than or equal

to d in k[x1, . . . , xn] is the binomial coefficient
(

n + d
n

)
. (This generalizes part (a) of

Exercise 5 in Chapter 2, §1.)

c. When n is fixed, explain why this number of monomials grows like dn as d → ∞. Note

that the exponent n is the same as the intuitive dimension of the variety V = kn , for which

k[V ] = k[x1, . . . , xn].

12. In this problem, we will compare what happens with the monomials not in 〈LT(I )〉 in two

examples where V(I ) is not finite, and one where V(I ) is finite.

a. Consider the variety V(I ) ⊂ 3, where I = 〈x2 + y, x − y2 + z2, xy − z〉. Compute

a Groebner basis for I using lex order, and, for 1 ≤ d ≤ 10, tabulate the number of

monomials of degree ≤ d that are not in 〈LT(I )〉. Note that by Theorem 6, V(I ) is a

finite subset of 3. Hint: It may be helpful to try to visualize or sketch a 3-dimensional

analogue of the diagrams in Example 2 for this ideal.

b. Repeat the calculations of part a for J = 〈x2 + y, x − y2 + z2〉. Here, V(J ) is not finite.

How does the behavior of the number of monomials of degree ≤ d in the complement

of 〈LT(J )〉 (as a function of d) differ from the behavior in part (a)?

c. Let HJ (d) be the number of monomials of degree ≤ d in the complement of 〈LT(J )〉.
Can you guess a power k such that HJ (d) will grow roughly like dk as d grows?

d. Now repeat parts (b) and (c) for the ideal K = 〈x2 + y〉.
e. Using the intuitive notion of the dimension of a variety that we developed in Chapter 1,

can you see a pattern here? We will return to these questions in Chapter 9.

13. Let k be any field, and suppose I ⊂ k[x1, . . . , xn] has the property that k[x1, . . . , xn]/I is a

finite-dimensional vector space over k.

a. Prove that dim(k[x1, . . . , xn]/
√

I ) ≤ dim(k[x1, . . . , xn]/I ). Hint: Show that I ⊂ √
I in-

duces a map of quotient rings k[x1, . . . , xn]/I → k[x1, . . . , xn]/
√

I which is onto.

b. Show that the number of points in V(I ) is at most dim(k[x1, . . . , xn]/
√

I ).

c. Give an example to show that equality need not hold in part (b) when k is not algebraically

closed.



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX January 5, 2007 7:44

§4. The Coordinate Ring of an Affine Variety 239

§4 The Coordinate Ring of an Affine Variety

In this section, we will apply the algebraic tools developed in §§2 and 3 to study the
ring k[V ] of polynomial functions on an affine variety V ⊂ kn . Using the isomorphism
k[V ] ∼= k[x1, . . . , xn]/I(V ) from §2, we will frequently identify k[V ] with the quotient
ring k[x1, . . . , xn]/I(V ). Thus, given a polynomial f ∈ k[x1, . . . , xn], we let [ f ] denote
the polynomial function in k[V ] represented by f .

In particular, each variable xi gives a polynomial function [xi ] : V → k whose value
at a point p ∈ V is the i-th coordinate of p. We call [xi ] ∈ k[V ] the i-th coordinate
function on V . Then the isomorphism k[V ] ∼= k[x1, . . . , xn]/I(V ) shows that the co-
ordinate functions generate k[V ] in the sense that any polynomial function on V is a
k-linear combination of products of the [xi ]. This explains the following terminology.

Definition 1. The coordinate ring of an affine variety V ⊂ kn is the ring k[V ].

Many results from previous sections of this chapter can be rephrased in terms of the
coordinate ring. For example:
� Proposition 4 from §1: A variety is irreducible if and only if its coordinate ring is an

integral domain.
� Theorem 6 from §3: Over k = , a variety is finite if and only if its coordinate ring

is finite-dimensional as a -vector space.
In the “algebra–geometry” dictionary of Chapter 4, we related varieties in kn to ideals in
k[x1, . . . , xn]. One theme of Chapter 5 is that this dictionary still works if we replace kn

and k[x1, . . . , xn] by a general variety V and its coordinate ring k[V ]. For this purpose,
we introduce the following definitions.

Definition 2. Let V ⊂ kn be an affine variety.
(i) For any ideal J = 〈φ1, . . . , φs〉 ⊂ k[V ], we define

VV (J ) = {(a1, . . . , an) ∈ V : φ(a1, . . . , an) = 0 f or all φ ∈ J }
We call VV (J ) a subvariety of V.

(ii) For each subset W ⊂ V , we define

IV (W ) = {φ ∈ k[V ] : φ(a1, . . . , an) = 0 f or all (a1, . . . , an) ∈ W }.

For instance, let V = V(z − x2 − y2) ⊂ 3. If we take J = 〈[x]〉 ∈ [V ], then

W = VV (J ) = {(0, y, y2) : y ∈ } ⊂ V

is a subvariety of V . Note that this is the same as V(z − x2 − y2, x) in 3. Similarly,
if we let W = {(1, 1, 2)} ⊂ V , then we leave it as an exercise to show that

IV (W ) = 〈[x − 1], [y − 1]〉.
Given a fixed affine variety V , we can use IV and VV to relate subvarieties of V to

ideals in k[V ]. The first result we get is the following.
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Proposition 3. Let V ⊂ kn be an affine variety.
(i) For each ideal J ⊂ k[V ], W = VV (J ) is an affine variety in kn contained in V.

(ii) For each subset W ⊂ V, IV (W ) is an ideal of k[V ].
(iii) If J ⊂ k[V ] is an ideal, then J ⊂ √

J ⊂ IV (VV (J )).
(iv) If W ⊂ V is a subvariety, then W = VV (IV (W )).

Proof. To prove (i), we will use the one-to-one correspondence of Proposition 10 of
§2 between the ideals of k[V ] and the ideals in k[x1, . . . , xn] containing I(V ). Let
J̃ = { f ∈ k[x1, . . . , xn] : [ f ] ∈ J } ⊂ k[x1, . . . , xn] be the ideal corresponding to J ⊂
k[V ]. Then V( J̃ ) ⊂ V , since I(V ) ⊂ J̃ . But we also have V( J̃ ) = VV (J ) by definition
since the elements of J̃ represent the functions in J on V . Thus, W (considered as a
subset of kn) is an affine variety in its own right.

The proofs of (ii), (iii), and (iv) are similar to arguments given in earlier chapters
and the details are left as an exercise. Note that the definition of the radical of an ideal
is the same in k[V ] as it is in k[x1, . . . , xn]. �

We can also show that the radical ideals in k[V ] correspond to the radical ideals in
k[x1, . . . , xn] containing I(V ).

Proposition 4. An ideal J ⊂ k[V ] is radical if and only if the corresponding ideal
J̃ = { f ∈ k[x1, . . . , xn] : [ f ] ⊂ J } ⊂ k[x1, . . . , xn] is radical.

Proof. Assume J is radical, and let f ∈ k[x1, . . . , xn] satisfy f m ∈ J̃ for some m ≥ 1.
Then [ f m] = [ f ]m ∈ J . Since J is a radical ideal, this implies that [ f ] ∈ J . Hence,
f ∈ J , so J̃ is also a radical ideal. Conversely, if J̃ is radical and [ f ]m ∈ J , then
[ f m] ∈ J , so f m ∈ J̃ . Since J̃ is radical, this shows that f ∈ J̃ . Hence, [ f ] ∈ J and
J is radical. �

Rather than discuss the complete “ideal–variety” correspondence (as we did in
Chapter 4), we will confine ourselves to the following result which highlights some of
the important properties of the correspondence.

Theorem 5. Let k be an algebraically closed field and let V ⊂ kn be an affine variety.
(i) (The Nullstellensatz in k[V]) If J is any ideal in k[V], then

IV (VV (J )) =
√

J = {[ f ] ∈ k[V ] : [ f ]m ∈ J }.

(ii) The correspondences

{
affine subvarieties

W ⊂ V

} IV−→
VV←−

{
radical ideals

J ⊂ k[V ]

}
are inclusion-reversing bijections and are inverses of each other.

(iii) Under the correspondence given in (ii), points of V correspond to maximal ideals
of k[V].
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Proof. (i) Let J be an ideal of k[V ]. By the correspondence of Proposition 10 of §2,
J corresponds to the ideal J̃ ⊂ k[x1, . . . , xn] as in the proof of Proposition 4, where
V( J̃ ) = VV (J ). As a result, if [ f ] ∈ IV (VV (J )), then f ∈ I(V( J̃ )). By the Nullstellen-

satz in kn, I(V( J̃ )) =
√

J̃ , so f m ∈ J̃ for some m ≥ 1. But then, [ f m] = [ f ]m ∈ J , so
[ f ] ∈ √

J in k[V ]. We have shown that IV (VV (J )) ⊂ √
J . Since the opposite inclusion

holds for any ideal, our Nullstellensatz in k[V ] is proved.
(ii) follows from (i) as in Chapter 4.
(iii) is proved in the same way as Theorem 11 of Chapter 4, §5. �

Next, we return to the general topic of a classification of varieties that we posed in
§1. What should it mean for two affine varieties to be “isomorphic”? One reasonable
answer is given in the following definition.

Definition 6. Let V ⊂ km and W ⊂ kn be affine varieties. We say that V and W are
isomorphic if there exist polynomial mappings α : V → W and β : W → V such that
α ◦ β = idW and β ◦ α = idV . (For any variety V, we write idV for the identity mapping
from V to itself. This is always a polynomial mapping.)

Intuitively, varieties that are isomorphic should share properties such as irreducibil-
ity, dimension, etc. In addition, subvarieties of V should correspond to subvarieties of
W , and so forth. For instance, saying that a variety W ⊂ kn is isomorphic to V = km

implies that there is a one-to-one and onto polynomial mapping α : km → W with
a polynomial inverse. Thus, we have a polynomial parametrization of W with espe-
cially nice properties! Here is an example, inspired by a technique used in geometric
modeling, which illustrates the usefulness of this idea.

Example 7. Let us consider the two surfaces

Q1 = V(x2 − xy − y2 + z2) = V( f1),

Q2 = V(x2 − y2 + z2 − z) = V( f2)

in 3. (These might be boundary surfaces of a solid region in a shape we were designing,
for example.) To study the intersection curve C = V( f1, f2) of the two surfaces, we
could proceed as follows. Neither Q1 nor Q2 is an especially simple surface, so the
intersection curve is fairly difficult to visualize directly. However, as usual, we are
not limited to using the particular equations f1, f2 to define the curve! It is easy to
check that C = V( f1, f1 + c f2), where c ∈ is any nonzero real number. Hence, the
surfaces Fc = V( f1 + c f2) also contain C . These surfaces, together with Q2, are often
called the elements of the pencil of surfaces determined by Q1 and Q2. (A pencil of
varieties is a one-parameter family of varieties, parametrized by the points of k. In the
above case, the parameter is c ∈ .)

If we can find a value of c making the surface Fc particularly simple, then under-
standing the curve C will be correspondingly easier. Here, if we take c = −1, then F−1

is defined by

0 = f1 − f2

= z − xy.
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The surface Q = F−1 = V(z − xy) is much easier to understand because it is isomor-
phic as a variety to 2 [as is the graph of any polynomial function f (x, y)]. To see
this, note that we have polynomial mappings:

α : 2 −→ Q,

(x, y) → (x, y, xy),

π : Q −→ 2,

(x, y, z) → (x, y),

which satisfy α ◦ π = idQ and π ◦ α = id 2.
Hence, curves on Q can be reduced to plane curves in the following way. To study

C , we can project to the curve π (C) ⊂ 2, and we obtain the equation

x2 y2 + x2 − xy − y2 = 0

for π (C) by substituting z = xy in either f1 or f2. Note that π and α restrict to give
isomorphisms between C and π (C), so we have not really lost anything by projecting
in this case.

x

y

In particular, each point (a, b) on π (C) corresponds to exactly one point (a, b, ab) on
C . In the exercises, you will show that π (C) can also be parametrized as

x = −t2 + t + 1

t2 + 1
,

(1)

y = −t2 + t + 1

t(t + 2)
.

From this we can also obtain a parametrization of C via the mapping α.
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Given the above example, it is natural to ask how we can tell whether two varieties
are isomorphic. One way is to consider the relation between their coordinate rings

k[V ] ∼= k[x1, . . . , xm]/I(V ) and k[W ] ∼= k[y1, . . . , yn]/I(W ).

The fundamental observation is that if we have a polynomial mapping α : V → W , then
every polynomial function φ : W → k in k[W ] gives us another polynomial function
φ ◦ α : V → k in k[V ]. This will give us a map from k[W ] to k[V ] with the following
properties.

Proposition 8. Let V and W be varieties (possibly in different affine spaces).
(i) Let α : V → W be a polynomial mapping. Then for every polynomial function

φ : W → k, the composition φ ◦ α : V → k is also a polynomial function. Fur-
thermore, the map α∗ : k[W ] → k[V ] defined by α∗(φ) = φ ◦ α is a ring homo-
morphism which is the identity on the constant functions k ⊂ k[W ]. (Note that α∗

“goes in the opposite direction” from α since α∗ maps functions on W to functions
on V. For this reason we call α∗ the pullback mapping on functions.)

(ii) Conversely, let f : k[W ] → k[V ] be a ring homomorphism which is the identity
on constants. Then there is a unique polynomial mapping α : V → W such that
f = α∗.

Proof. (i) Suppose that V ⊂ km has coordinates x1, . . . , xm and W ⊂ kn has coordinates
y1, . . . , yn . Then φ : W → k can be represented by a polynomial f (y1, . . . , yn), and
α : V → W can be represented by an n-tuple of polynomials:

α(x1, . . . , xm) = (a1(x1, . . . , xm), . . . , an(x1, . . . , xm)).

We compute φ ◦ α by substituting α(x1, . . . , xm) into φ. Thus,

(φ ◦ α)(x1, . . . , xm) = f (a1(x1, . . . , xm), . . . , an(x1, . . . , xm)),

which is a polynomial in x1, . . . , xm . Hence, φ ◦ α is a polynomial function on V .
It follows that we can define α∗ : k[W ] → k[V ] by the formula α∗(φ) = φ ◦ α. To

show that α∗ is a ring homomorphism, let ψ be another element of k[W ], represented
by a polynomial g(y1, . . . , yn). Then

(α∗(φ + ψ))(x1, . . . , xm) = f (a1(x1, . . . , xm), . . . , an(x1, . . . , xm))

+ g(a1(x1, . . . , xm), . . . , an(x1, . . . , xm))

= α∗(φ)(x1, . . . , xm) + α∗(ψ)(x1, . . . , xm).

Hence, α∗(φ + ψ) = α∗(φ) + α∗(ψ), and α∗(φ · ψ) = α∗(φ) · α∗(ψ) is proved simi-
larly. Thus, α∗ is a ring homomorphism.

Finally, consider [a] ∈ k[W ] for some a ∈ k. Then [a] is a constant function on W
with value a, and it follows that α∗([a]) = [a] ◦ α is constant on V , again with value
a. Thus, α∗([a]) = [a], so that α∗ is the identity on constants.

(ii) Now let f : k[W ] → k[V ] be a ring homomorphism which is the identity on the
constants. We need to show that f comes from a polynomial mapping α : V → W .
Since W ⊂ kn has coordinates y1, . . . , yn , we get coordinate functions [yi ] ∈ k[W ].
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Then f ([yi ]) ∈ k[V ], and since V ⊂ km has coordinates x1, . . . , xm , we can write
f ([yi ]) = [ai (x1, . . . , xm)] ∈ k[V ] for some polynomial ai ∈ k[x1, . . . , xm]. Then con-
sider the polynomial mapping

α = (a1(x1, . . . , xm), . . . , an(x1, . . . , xm)).

We need to show that α maps V to W and that f = α∗.
Given any polynomial F ∈ k[y1, . . . , yn], we first claim that

[F ◦ α] = f ([F])(2)

in k[V ]. To prove this, note that

[F ◦ α] = [F(a1, . . . , an)] = F([a1], . . . , [an]) = F( f ([y1]), . . . , f ([yn])),

where the second equality follows from the definition of sum and product in k[V ],
and the third follows from [ai ] = f ([yi ]). But [F] = [F(y1, . . . , yn)] is a k-linear
combination of products of the [yi ], so that

F( f ([y1]), . . . , f ([yn])) = f ([F(y1, . . . , yn)]) = f ([F])

since f is a ring homomorphism which is the identity on k (see Exercise 10). Equation
(2) follows immediately.

We can now prove that α maps V to W . Given a point (c1, . . . , cm) ∈ V , we must
show that α(c1, . . . , cm) ∈ W . If F ∈ I(W ), then [F] = 0 in k[W ], and since f is a
ring homomorphism, we have f ([F]) = 0 in k[V ]. By (2), this implies that [F ◦ α] is
the zero function on V . In particular,

[F ◦ α](c1, . . . , cm) = F(α(c1, . . . , cm)) = 0.

Since F was an arbitrary element of I(W ), this shows α(c1, . . . , cm) ∈ W , as desired.
Once we know α maps V to W , equation (2) implies that [F] ◦ α = f ([F]) for any

[F] ∈ k[W ]. Since α∗([F]) = [F] ◦ α, this proves f = α∗. It remains to show that α

is uniquely determined. So suppose we have β : V → W such that f = β∗. If β is
represented by

β(x1, . . . , xm) = (b1(x1, . . . , xm), . . . , bn(x1, . . . , xm)),

then note that β∗([yi ]) = [yi ] ◦ β = [bi (x1, . . . , xm)]. A similar computation gives
α∗([yi ]) = [ai (x1, . . . , xm)], and since α∗ = f = β∗, we have [ai ] = [bi ] for all i . Then
ai and be give the same polynomial function on V , and, hence, α = (a1, . . . , an) and
β = (b1, . . . , bn) define the same mapping on V . This shows α = β, and uniqueness
is proved. �

Now suppose that α : V → W and β : W → V are inverse polynomial mappings.
Then α ◦ β = idW , where idW : W → W is the identity map. By general properties of
functions, this implies (α ◦ β)∗(φ) = id∗

W (φ) = φ ◦ idW = φ for all φ ∈ k[W ]. How-
ever, we also have

(α ◦ β)∗(φ) = φ ◦ (α ◦ β) = (φ ◦ α) ◦ β
(3) = α∗(φ) ◦ β = β∗(α∗(φ)) = (β∗ ◦ α∗)(φ).
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Hence, (α ◦ β)∗ = β∗ ◦ α∗ = idk[W ] as a mapping from k[W ] to itself. Similarly, one
can show that (β ◦ α)∗ = α∗ ◦ β∗ = idk[V ]. This proves the first half of the following
theorem.

Theorem 9. Two affine varieties V ⊂ km and W ⊂ kn are isomorphic if and only if
there is an isomorphism k[V ] ∼= k[W ] of coordinate rings which is the identity on
constant functions.

Proof. The above discussion shows that if V and W are isomorphic varieties, then
k[V ] → k[W ] as rings. Proposition 8 shows that the isomorphism is the identity on
constants.

For the converse, we must show that if we have a ring isomorphism f : k[W ] →
k[V ] which is the identity on k, then f and f −1 “come from” inverse polynomial
mappings between V and W . By part (ii) of Proposition 8, we know that f = α∗ for
some α : V → W and f −1 = β∗ for β : W → V . We need to show that α and β are
inverse mappings. First consider the composite map α ◦ β : W → W . This is clearly
a polynomial map, and, using the argument from (3), we see that for any φ ∈ k[W ],

(α ◦ β)∗(φ) = β∗(α∗(φ)) = f −1( f (φ)) = φ.(4)

It is also easy to check that the identity map idW : W → W is a polynomial map on
W , and we saw above that id∗

W (φ) = φ for all φ ∈ k[W ]. From (4), we conclude that
(α ◦ β)∗ = id∗

W , and then α ◦ β = idW follows from the uniqueness statement of part
(ii) of Proposition 8. In a similar way, one proves that β ◦ α = idV , and hence α and β

are inverse mappings. This completes the proof of the theorem. �

We conclude with several examples to illustrate isomorphisms of varieties and the
corresponding isomorphisms of their coordinate rings.

Let A be an invertible n × n matrix with entries in k and consider the linear mapping
L A : kn → kn defined by L A(x) = Ax , where Ax is the matrix product. From Exer-
cise 9 of Chapter 4, §1, we know that L∗

A is a ring isomorphism from k[x1, . . . , xn]
to itself. Hence, by the theorem, L A is an isomorphism of varieties taking kn to itself.
(Such isomorphisms are often called automorphisms of a variety.) In Exercise 9, you
will show that if V is any subvariety of kn , then L A(V ) is a subvariety of kn isomorphic
to V since L A restricts to give an isomorphism of V onto L A(V ). For example, the curve
we studied in the final example of §1 of this chapter was obtained from the “standard”
twisted cubic curve in 3 by an invertible linear mapping. Refer to equation (5) of §1
and see if you can identify the mapping L A that was used.

Next, let f (x, y) ∈ k[x, y] and consider the graph of the polynomial function on k2

given by f [that is, the variety V = V(z − f (x, y)) ⊂ k3]. Generalizing what we said
concerning the variety V(z − xy) in analyzing the curve given in Example 7, it will
always be the case that a graph V is isomorphic as a variety to k2. The reason is that the
projection on the (x, y)-plane π : V → k2, and the parametrization of the graph given
by α : k2 → V, α(x, y) = (x, y, f (x, y)) are inverse mappings. The isomorphism of
coordinate rings corresponding to α just consists of substituting z = f (x, y) into every
polynomial function F(x, y, z) on V .
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Finally, consider the curve V = V(y5 − x2) in 2.

x

y

We claim that V is not isomorphic to as a variety, even though there is a one-to-
one polynomial mapping from V to given by projecting V onto the x-axis. The
reason lies in the coordinate ring of V : [V ] = [x, y]/〈y5 − x2〉. If there were an
isomorphism α : → V , then the “pullback” α∗ : [V ] → [u] would be a ring
isomorphism given by

α∗([x]) = c(u),

α∗([y]) = d(u),

where c(u), d(u) ∈ [u] are polynomials. Since y5 − x2 represents the zero function
on V , we must have α∗([y5 − x2]) = (d(u))5 − (c(u))2 = 0 in [u].

We may assume that c(0) = d(0) = 0 since the parametrization α can be “arranged”
so that α(0) = (0, 0) ∈ V . But then let us examine the possible polynomial solutions

c(u) = c1u + c2u2 + · · · , d(u) = d1u + d2u2 + · · ·
of the equation (c(u))2 = (d(u))5. Since (d(u))5 contains no power of u lower than u5,
the same must be true of (c(u))2. However,

(c(u))2 = c2
1u2 + 2c1c2u3 + (c2

2 + 2c1c3)u4 + · · · .
The coefficient of u2 must be zero, which implies c1 = 0. The coefficient of u4 must
also be zero, which implies c2 = 0 as well. Since c1, c2 = 0, the smallest power of u
that can appear in c2 is u6, which implies that d1 = 0 also.

It follows that u cannot be in the image of α∗ since the image of α∗ consists of
polynomials in c(u) and d(u). This is a contradiction since α∗ was supposed to be
a ring isomorphism onto [u]. Thus, our two varieties are not isomorphic. In the
exercises, you will derive more information about [V ] by the method of §3 to yield
another proof that [V ] is not isomorphic to a polynomial ring in one variable.

EXERCISES FOR §4

1. Let C be the twisted cubic curve in k3.

a. Show that C is a subvariety of the surface S = V(xz − y2).

b. Find an ideal J ⊂ k[S] such that C = VS(J ).
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2. Let V ⊂ n be a nonempty affine variety.

a. Let φ ∈ [V ]. Show that VV (φ) = ∅ if and only if φ is invertible in [V ] (which means

that there is some ψ ∈ [V ] such that φψ = [1] in [V ]).

b. Is the statement of part (a) true if we replace by ? If so, prove it; if not, give a

counterexample.

3. Prove parts (ii), (iii), and (iv) of Proposition 3.

4. Let V = V(y − xn, z − xm), where m, n are any integers ≥ 1. Show that V is isomorphic

as a variety to k by constructing explicit inverse polynomial mappings α : k → V and

β : V → k.

5. Show that any surface in k3 with a defining equation of the form x − f (y, z) = 0 or y −
g(x, z) = 0 is isomorphic as a variety to k2.

6. Let V be a variety in kn defined by a single equation of the form xn − f (x1, . . . , xn−1) = 0.

Show that V is isomorphic as a variety to kn−1.

7. In this exercise, we will derive the parametrization (1) for the projected curve φ(C) from

Example 7.

a. Show that every hyperbola in 2 whose asymptotes are horizontal and vertical and

which passes through the points (0, 0) and (1, 1) is defined by an equation of the form

xy + t x − (t + 1)y = 0

for some t ∈ .

b. Using a computer algebra system, compute a Groebner basis for the ideal generated by

the equation of φ(C), and the above equation of the hyperbola. Use lex order with the

variables ordered x > y > t .
c. The Groebner basis will contain one polynomial depending on y, t only. By collecting

powers of y and factoring, show that this polynomial has y = 0 as a double root, y = 1

as a single root, and one root which depends on t : y = −t2+t+1
t(t+2)

.

d. Now consider the other elements of the basis and show that for the “movable” root from

part (c) there is a unique corresponding x value given by the first equation in (1).

The method sketched in Exercise 7 probably seems exceedingly ad hoc, but it is an example

of a general pattern that can be developed with some more machinery concerning algebraic

curves. Using the complex projective plane to be introduced in Chapter 8, it can be shown

that π (C) is contained in a projective algebraic curve with three singular points similar to

the one at (0, 0) in the sketch. Using the family of conics passing through all three singular

points and any one additional point, we can give a rational parametrization for any irreducible

quartic curve with three singular points as in this example. However, nonsingular quartic

curves have no such parametrizations.

8. Let Q1 = V(x2 + y2 + z2 − 1), and Q2 = V((x − 1/2)2 − 3y2 − 2z2) in 3.

a. Using the idea of Example 7 and Exercise 5, find a surface in the pencil defined by Q1

and Q2 that is isomorphic as a variety to 2.

b. Describe and/or sketch the intersection curve Q1 ∩ Q2.

9. Let α : V → W and β : W → V be inverse polynomial mappings between two isomorphic

varieties V and W . Let U = VV (I ) for some ideal I ⊂ k[V ]. Show that α(U ) is a subvariety

of W and explain how to find an ideal J ⊂ k[W ] such that α(U ) = VW (J ).

10. Let f : k[V ] → k[W ] be a ring isomorphism of coordinate rings which is the identity on

constants. Suppose that V ⊂ km with coordinates x1, . . . , xm . If F ∈ k[x1, . . . , xm], then

prove that f ([F]) = F( f ([x1]), . . . , f ([xm])). Hint: Express [F] as a k-linear combination

of products of the [xi ].

11. This exercise will study the example following Definition 2 where V = V(z − x2 − y2) ⊂
3.
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a. Show that the subvariety W = {(1, 1, 2)} ⊂ V is equal to VV ([x − 1], [y − 1]). Explain

why this implies that 〈[x − 1], [y − 1]〉 ⊂ IV (W ).

b. Prove that 〈[x − 1], [y − 1]〉 = IV (W ). Hint: Show that V is isomorphic to 2 and use

Exercise 9.

12. Let V = V(y2 − 3x2z + 2) ⊂ 3 and let L A be the linear mapping on 3 defined by the

matrix

A =
⎛⎝ 2 0 1

1 1 0

0 1 1

⎞⎠ .

a. Verify that L A is an isomorphism from 3 to 3.

b. Find the equation of the image of V under L A.

13. In this exercise, we will rotate the twisted cubic in 3.

a. Find the matrix A of the linear mapping on 3 that rotates every point through an angle

of π/6 counterclockwise about the z-axis.

b. What are the equations of the image of the standard twisted cubic curve under the linear

mapping defined by the rotation matrix A?

14. This exercise will outline another proof that V = V(y5 − x2) ⊂ 2 is not isomorphic to

as a variety. This proof will use the algebraic structure of [V ]. We will show that there is

no ring isomorphism from [V ] to [t]. (Note that [t] is the coordinate ring of .)

a. Using the techniques of §3, explain how each element of [V ] can be uniquely repre-

sented by a polynomial of the form a(y) + b(y)x , where a, b ∈ [y].

b. Express the product (a + bx)(a′ + b′x) in [V ] in the form given in part (a).

c. Aiming for a contradiction, suppose that there were some ring isomorphism α : [t] →
[V ]. Since α is assumed to be onto, x = α( f (t)) and y = α(g(t)) for some polynomials

f, g. Using the unique factorizations of f, g and the product formula from part (b), deduce

a contradiction.

15. Let V ⊂ 3 be the tangent surface of the twisted cubic curve.

a. Show that the usual parametrization of V sets up a one-to-one correspondence between

the points of V and the points of 2. Hint: Recall the discussion of V in Chapter 3, §3.

In light of part (a), it is natural to ask whether V is isomorphic to 2. We will show that

the answer to this question is no.

b. Show that V is singular at each point on the twisted cubic curve by using the method of

Exercise 12 of Chapter 3, §4. (The tangent surface has what is called a “cuspidal edge”

along this curve.)

c. Show that if α : 2 → V is any polynomial parametrization of V , and α(a, b) is con-

tained in the twisted cubic itself, then the derivative matrix of α must have rank strictly

less than 2 at (a, b) (in other words, the columns of the derivative matrix must be lin-

early dependent there). (Note: α need not be the standard parametrization, although the

statement will be true also for that parametrization.)

d. Now suppose that the polynomial parametrization α has a polynomial inverse mapping

β : V → 2. Using the chain rule from multivariable calculus, show that part (c) gives

a contradiction if we consider (a, b) such that α(a, b) is on the twisted cubic.

§5 Rational Functions on a Variety

The ring of integers can be embedded in many fields. The smallest of these is the field of
rational numbers because is formed by constructing fractions m

n , where m, n ∈ .
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Nothing more than integers was used. Similarly, the polynomial ring k[x1, . . . , xn] is
included as a subring in the field of rational functions

k(x1, . . . , xn) =
{

f (x1, . . . , xn)

g(x1, . . . , xn)
: f, g ∈ k[x1, . . . , xn], g �= 0

}
.

Generalizing these examples, if R is any integral domain, then we can form what
is called the quotient field, or field of fractions of R, denoted QF(R). The elements
of Q F(R) are thought of as “fractions” r/s, where r, s ∈ R and s �= 0. We add and
multiply elements of QF(R) as we do rational numbers or rational functions:

r/s + t/u = (ru + ts)/su and r/s · t/u = r t/su.

Note that the assumption that R is an integral domain ensures that the denominators of
the sum and product will be nonzero. In addition, two of these fractions r/s and r ′/s ′

represent the same element in the field of fractions if rs ′ = r ′s. It can be checked easily
that Q F(R) satisfies all the axioms of a field (see Exercise 1). Furthermore, QF(R)
contains the subset {r/1 : r ∈ R} which is a subring isomorphic to R itself. Hence, the
terminology “quotient field, or field of fractions of R” is fully justified.

Now if V ⊂ kn is an irreducible variety, then we have seen in §1 that the coordinate
ring k[V ] is an integral domain. The field of fractions QF(k[V ]) is given the following
name.

Definition 1. Let V be an irreducible affine variety in kn. We call QF(k[V ]) the func-
tion field (or field of rational functions) on V, and we denote this field by k(V ).

Note the consistency of our notation. We use k[x1, . . . , xn] for a polynomial ring
and k[V ] for the coordinate ring of V . Similarly, we use k[x1, . . . , xn] for a rational
function field and k[V ] for the function field of V .

We can write the function field k[V ] of V ⊂ kn explicitly as

k(V ) = {φ/ψ : φ, ψ ∈ k[V ], ψ �= 0}
= {[ f ]/[g] : f, g ∈ k[x1, . . . , xn], g /∈ I(V )}.

As with any rational function, we must be careful to avoid zeros of the denominator if
we want a well-defined function value in k. Thus, an element φ/ψ ∈ k(V ) defines a
function only on the complement of VV (ψ).

The most basic example of the function field of a variety is given by V = kn . In this
case, we have k(V ) = k[x1, . . . , xn] and, hence,

k(V ) = k(x1, . . . , xn).

We next consider some more complicated examples.

Example 2. In §4, we showed that the curve

V = V(y5 − x2) ⊂ 2

is not isomorphic to because the coordinate rings of V and are not isomorphic. Let
us see what we can say about the function field of V . To begin, note that by the method
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of §2, we can represent the elements of [V ] by remainders modulo G = {y5 − x2},
which is a Groebner basis for I(V ) with respect to lex order with x > y in [x, y].
Then [V ] = {a(y) + xb(y) : a, b ∈ [y]} as a real vector space, and multiplication
is defined by

(a + xb) · (c + xd) = (ac + y5 · bd) + x(ad + bc).(1)

In Exercise 2, you will show that V is irreducible, so that [V ] is an integral domain.
Now, using this description of [V ], we can also describe the function field (V )

as follows. If c + xd �= 0 in [V ], then in the function field we can write

a + xb

c + xd
= a + xb

c + xd
· c − xd

c − xd

= (ac − y5bd) + x(bc − ad)

c2 − y5d2

= ac − y5bd

c2 − y5d2
+ x

bc − ad

c2 − y5d2
.

This is an element of (y) + x (y). Conversely, it is clear that every element of
(y) + x (y) defines an element of (V ). Hence, the field (V ) can be identified

with the set of functions (y) + x (y), where the addition and multiplication oper-
ations are defined as before in [V ], only using rational functions of y rather than
polynomials.

Now consider the mappings:

α : V −→ , (x, y) → x/y2,

β : −→ V, u → (u5, u2).

Note that α is defined except at (0, 0) ∈ V , whereas β is a polynomial parametrization
of V . As in §4, we can use α and β to define mappings “going in the opposite direction”
on functions. However, since α itself is defined as a rational function, we will not stay
within [V ] if we compose α with a function in [u]. Hence, we will consider the
maps

α∗ : (u) −→ (V ), f (u) → f (x/y2),

β∗ : (V ) −→ (u), a(y) + xb(y) → a(u2) + u5b(u2).

We claim that α∗ and β∗ are inverse ring isomorphisms. That α∗ and β∗ preserve
sums and products follows by the argument given in the proof of Proposition 8 from §4.
To check that α∗ and β∗ are inverses, first we have that for any f (u) ∈ (u), α∗( f ) =
f (x/y2). Hence, β∗(α∗( f )) = f (u5/(u2)2) = f (u). Therefore, β∗ ◦ α∗ is the identity
on (u). Similarly, if a(y) + xb(y) ∈ (V ), then β∗(a + xb) = a(u2) + u5b(u2), so

α∗(β∗(a + xb)) = a((x/y2)2) + (x/y2)5b((x/y2)2)

= a(x2/y2) + (x5/y10)b(x2/y4).
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However, in (V ), x2 = y5, so x2/y4 − y, and x5/y10 = xy10/y10 = x . Hence,
α∗ ◦ β∗ is the identity on (V ). Thus, α∗, β∗ define ring isomorphisms between the
function fields (V ) and (u).

Example 2 shows that it is possible for two varieties to have the same (i.e., isomorphic)
function fields, even when they are not isomorphic. It also gave us an example of a
rational mapping between two varieties. Before we give a precise definition of a rational
mapping, let us look at another example.

Example 3. Let Q = V(x2 + y2 − z2 − 1), a hyperboloid of one sheet in 3, and let
W = V(x + 1), the plane x = −1. Let p = (1, 0, 0) ∈ Q. For any q ∈ Q − {P}, we
construct the line Lq joining p and q, and we define a mapping φ to W by setting

φ(q) = Lq ∩ W

if the line intersects W . (If the line does not intersect W , then φ(q) is undefined.) We
can find an algebraic formula for φ as follows. If q = (x0, y0, z0) ∈ Q, then Lq is given
in parametric form by

x = 1 + t(x0 − 1),

y = t y0,(2)

z = t z0.

Atφ(q) = Lq ∩ W , we must have 1 + t(x0 − 1) = −1, so t = −2
x0−1

. From (2), it follows
that

φ(q) =
(

−1,
−2y0

x0 − 1
,

−2z0

x0 − 1

)
.(3)

This shows that φ is defined on all of Q except for the points on the two lines

Q ∩ V(x − 1) = {(1, t, t) : t ∈ } ∪ {(1, t, −t) : t ∈ }.
We will call φ : Q − VQ(x − 1) → W a rational mapping on Q since the components
of φ are rational functions. [We can think of them as elements of (Q if we like.]

Going in the other direction, if (−1, a, b) ∈ W , then the line L through p = (1, 0, 0)
and (−1, a, b) can be parametrized by

x = 1 − 2t,

y = ta,

z = tb,

Computing the intersections with Q, we find

L ∩ Q =
{

(1, 0, 0),

(
a2 − b2 − 4

a2 − b2 + 4
,

4a

a2 − b2 + 4
,

4b

a2 − b2 + 4

)}
.

Thus, if we let H denote the hyperbola VW (a2 − b2 + 4), then we can define a second
rational mapping

ψ : W − H −→ Q
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by

ψ(−1, a, b) =
(

a2 − b2 − 4

a2 − b2 + 4
,

4a

a2 − b2 + 4
,

4b

a2 − b2 + 4

)
.(4)

From the geometric descriptions of φ and ψ, φ ◦ ψ is the identity mapping on the
subset W − H ⊂ W . Similarly, we see that ψ ◦ φ is the identity on Q − VQ(x − 1).
Also, using the formulas from equations (3) and (4), it can be checked that φ∗ ◦ ψ∗

and ψ∗ ◦ φ∗ are the identity mappings on the function fields. (We should mention that
as in the second example, Q and W are not isomorphic varieties. However this is not
an easy fact to prove given what we know.)

We now introduce some general terminology that was implicit in the above examples.

Definition 4. Let V ⊂ km and W ⊂ kn be irreducible affine varieties. A rational map-
ping from V to W is a function φ represented by

φ(x1, . . . , xm) =
(

f1(x2, . . . , xm)

g1(x1, . . . , xm)
, . . . ,

fn(x1, . . . , xm)

gn(x1, . . . , xm)

)
,(5)

where fi/gi ∈ k(x1, . . . , xm) satisfy:
(i) φ is defined at some point of V.

(ii) For every (a1, . . . , am) ∈ V where φ is defined, φ(a1, . . . , am) ∈ W .

Note that a rational mapping φ from V to W may fail to be a function from V to
W in the usual sense because, as we have seen in the examples, φ may not be defined
everywhere on V . For this reason, many authors use a special notation to indicate a
rational mapping:

φ : V − − → W.

We will follow this convention as well. By condition (i), the set of points of V
when the rational mapping φ in (5) is defined includes V − VV (g1 · · · gn) = V −
(VV (g1) ∪ · · · ∪ VV (gn)), where VV (g1 · · · gn) is a proper subvariety of V .

Because rational mappings are not defined everywhere on their domains, we must
exercise some care in studying them. In particular, we will need the following precise
definition of when two rational mappings are to be considered equal.

Definition 5. Let φ, ψ : V − − → W be rational mappings represented by

φ =
(

f1

g1

, . . . ,
fn

gn

)
and ψ =

(
h1

k1

, . . . ,
hn

kn

)
.

Then we say that φ = ψ if for each i, 1 ≤ i ≤ n,

fi ki − hi gi ∈ I(V ).

We have the following geometric criterion for the equality of rational mappings.
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Proposition 6. Two rational mappings φ, ψ : V − − → W are equal if and only if
there is a proper subvariety V ′ ⊂ V such that φ and ψ are defined on V − V ′ and
φ(p) = ψ(p) for all p ∈ V − V ′.

Proof. We will assume that φ = ( f1/g1, . . . , fn/gn) and ψ = (h1/k1, . . . , hn/kn).
First, suppose that φ and ψ are equal as in Definition 5 and let V1 = VV (g1 · · · gn)
and V2 = VV (k1 · · · kn). By hypothesis, V1 and V2 are proper subvarieties of V , and
since V is irreducible, it follows that V ′ = V1 ∪ V2 is also a proper subvariety of V .
Then φ and ψ are defined on V − V ′, and since fi ki − hi gi , ∈ I(V ), it follows that
fi/gi and hi/ki give the same function on V − V ′. Hence, the same is true for φ

and ψ .
Conversely, suppose that φ and ψ are defined and equal (as functions) on V − V ′.

This implies that for each i , we have fi/gi = hi/ki on V − V ′. Then fi ki − hi gi

vanishes on V − V ′, which shows that V = V( fi ki − hi gi ) ∪ V ′. Since V is irreducible
and V ′ is a proper subvariety, this forces V = V( fi ki − hi gi ). Thus, fi ki − hi gi , I(V ),
as desired. �

As an example, recall from Example 3 that we had rational maps φ : Q − − → W
and ψ : W − − → Q such that φ ◦ ψ was the identity on W − H ⊂ W . By Proposi-
tion 6, this proves that φ ◦ ψ equals the identity map idW in the sense of Definition 5.

We also need to be careful in dealing with the composition of rational mappings.

Definition 7. Given φ : V − − → W and ψ : W − − → Z, we say that ψ ◦ φ is de-
fined if there is a point p ∈ V such that φ is defined at p and ψ is defined at φ(p).

When a composition ψ ◦ φ is defined, it gives us a rational mapping as follows.

Proposition 8. Let φ : V − − → W and ψ : W − − → Z be rational mappings such
that ψ ◦ φ is defined. Then there is a proper subvariety V ′ ⊂ V such that:
(i) φ is defined on V − V ′ and ψ is defined on φ(V − V ′).

(ii) ψ ◦ φ : V − − → Z is a rational mapping defined on V − V ′.

Proof. Suppose that φ and ψ are represented by

φ(x1, . . . , xm) =
(

f1(x1, . . . , xm)

g1(x1, . . . , xm)
, . . . ,

fn(x1, . . . , xm)

gn(x1, . . . , xm)

)
.

ψ(y1, . . . , yn) =
(

h1(y1, . . . , yn)

k1(y1, . . . , yn)
, . . . ,

hl(y1, . . . , yn)

kl(y1, . . . , yn)

)
.

Then the j-th coordinate of ψ ◦ φ is

h j ( f1/g1, . . . , fn/gn)

k j ( f1/g1, . . . , fn/gn)
,

which is clearly a rational function in x1, . . . , xm . To get a quotient of polynomials, we
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can write this as

Pj

Q j
= (g1 · · · gn)M h j ( f1/g1, . . . , fn/gn)

(g1 . . . gn)M k j ( f1/g1, · · · , fn/gn)
,

when M is sufficiently large.
Now set

V ′ = VV ([Q1 · · · Ql g1 · · · gn]) ⊂ V .

It should be clear that φ is defined on V − V ′ and ψ is defined on φ(V − V ′). It remains
to show that V ′ �= V . But by assumption, there is p ∈ V such that φ(p) and ψ(φ(p))
are defined. This means that gi (p) �= 0 for 1 ≤ i ≤ n and

k j ( f1(p)/g1(p), . . . , fn(p)/gn(p)) �= 0

for 1 ≤ j ≤ l. It follows that Q j (p) �= 0 and consequently, p ∈ V − V ′. �

In the exercises, you will work out an example to show how ψ ◦ φ can fail to be
defined. Basically, this happens when the domain of definition of ψ lies outside the
image of φ.

Examples 2 and 3 illustrate the following alternative to the notion of isomorphism
of varieties.

Definition 9.
(i) Two irreducible varieties V ⊂ km and W ⊂ kn are said to be birationally equiva-

lent if there exist rational mappings φ : V − − → W and ψ : W − − → V such
that φ ◦ ψ is defined (as in Definition 7) and equal to the identity map idW (as in
Definition 5), and similarly for ψ ◦ φ.

(ii) A rational variety is a variety that is birationally equivalent to kn for some n.

Just as isomorphism of varieties can be detected from the coordinate rings, birational
equivalence can be detected from the function fields.

Theorem 10. Two irreducible varieties V and W are birationally equivalent if and only
if there is an isomorphism of function fields k(V ) ∼= k(W ) which is the identity on k.
(By definition, two fields are isomorphic if they are isomorphic as commutative rings.)

Proof. The proof is similar to what we did in Theorem 9 of §4. Suppose first that V
and W are birationally equivalent via φ : V − − → W and ψ : W − − → V . We will
define a pullback mapping φ∗ : k(W ) → k(V ) by the rule φ∗( f ) = f ◦ φ and show that
φ∗ is an isomorphism. Unlike the polynomial case, it is not obvious that φ∗( f ) = f ◦ φ

exists for all f ∈ k(W )—we need to prove that f ◦ φ is defined at some point of W .
We first show that our assumption φ ◦ ψ = idW implies the existence of a proper

subvariety W ′ ⊂ W such that

ψ is defined on W − W ′,
φ is defined on ψ(W − W ′),(6)

φ ◦ ψ is the identity function on W − W ′.
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To prove this, we first use Proposition 8 to find a proper subvariety W1 ⊂ W such that
ψ is defined on W − W1 and φ is defined on ψ(W − W1). Also, from Proposition 6, we
get a proper subvariety W2 ⊂ W such that φ ◦ ψ is the identity function on W − W2.
Since W is irreducible, W ′ = W1 ∪ W2 is a proper subvariety, and it follows easily that
(6) holds for this choice of W ′.

Given f ∈ k(W ), we can now prove that f ◦ φ is defined. If f is defined on W −
W ′′ ⊂ W , then we can pick q ∈ W − (W ′ ∪ W ′′) since W is irreducible. From (6),
we get p = ψ(q) ∈ V such that φ(p) is defined, and since φ(p) = q /∈ W ′′, we also
know that f is defined at φ(p). By Definition 4, φ∗( f ) = f ◦ φ exists as an element
of k(V ).

This proves that we have a map φ∗ : k(W ) → k(V ), and φ∗ is a ring homomor-
phism by the proof of Proposition 8 from §4. Similarly, we get a ring homomor-
phism ψ∗ : k(V ) → k(W ). To show that these maps are inverses of each other, let us
look at

(ψ∗ ◦ φ∗)( f ) = f ◦ φ ◦ ψ

for f ∈ k(W ). Using the above notation, we see that f ◦ φ ◦ ψ equals f as a function
on W − (W ′ ∪ W ′′), so that f ◦ φ ◦ ψ = f in k(W ) by Proposition 6. This shows that
ψ∗ ◦ φ∗ is the identity on k(W ), and a similar argument shows that φ∗ ◦ ψ∗ = idk(V ).
Thus, φ∗ : k(W ) → k(V ) is an isomorphism of fields. We leave it to the reader to show
that φ∗ is the identity on the constant functions k ⊂ k(W ).

The proof of the converse implication is left as an exercise for the reader. Once again
the idea is basically the same as in the proof of Theorem 9 of §4. �

In the exercises, you will prove that two irreducible varieties are birationally
equivalent if there are “big” subsets (complements of proper subvarieties) that can
be put in one-to-one correspondence by rational mappings. For example, the curve
V − V(y5 − x2) from Example 2 is birationally equivalent to W = . You should
check that V − {(0, 0)} and W − {0} are in a one-to-one correspondence via the ra-
tional mappings f and g from equation (1). The birational equivalence between the
hyperboloid and the plane in Example 3 works similarly. This example also shows that
outside of the “big” subsets, birationally equivalent varieties may be quite different
(you will check this in Exercise 14).

As we see from these examples, birational equivalence of irreducible varieties is a
weaker equivalence relation than isomorphism. By this we mean that the set of varieties
birationally equivalent to a given variety will contain many different nonisomorphic
varieties. Nevertheless, in the history of algebraic geometry, the classification of va-
rieties up to birational equivalence has received more attention than classification up
to isomorphism, perhaps because constructing rational functions on a variety is easier
than constructing polynomial functions. There are reasonably complete classifications
of irreducible varieties of dimensions 1 and 2 up to birational equivalence, and, re-
cently, significant progress has been made in dimension 3. However, the classification
of irreducible varieties of dimension ≥ 4 up to birational equivalence is still incomplete
and is an area of current research.
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EXERCISES FOR §5

1. Let R be an integral domain, and let QF(R) be the field of fractions of R as described in

the text.

a. Show that addition is well-defined in QF(R). This means that if r/s = r ′/s ′ and t/u =
t ′/u′, then you must show that (ru + ts)/su = (r ′u′ + t ′s ′)/s ′u′. Hint: Remember what

it means for two elements of QF(R) to be equal.

b. Show that multiplication is well-defined in QF(R).

c. Show that the field axioms are satisfied for QF(R).

2. As in Example 2, let V = V(y5 − x2) ⊂ 2.

a. Show that y5 − x2 is irreducible in [x, y] and prove that I(V ) = 〈y5 − x2〉.
b. Conclude that [V ] is an integral domain.

3. Show that the singular cubic curve V(y2 − x3) is a rational variety (birationally equivalent

to k) by adapting what we did in Example 2.

4. Consider the singular cubic curve Vc = V(y2 − cx2 + x3) studied in Exercise 8 of Chap-

ter 1, §3. Using the parametrization given there, prove that Vc is a rational variety and find

subvarieties V ′
c ⊂ Vc and W ⊂ k such that your rational mappings define a one-to-one cor-

respondence between Vc − V ′
c and k − W . Hint: Recall that t in the parametrization of Vc

is the slope of a line passing through (0, 0).

5. Verify that the curve π (C) from Exercise 7 of §4 is a rational variety. Hint: To define a

rational inverse of the parametrization we derived in that exercise, you need to solve for t
as a function of x and y on the curve. The equation of the hyperbola may be useful.

6. In Example 3, verify directly that (3) and (4) define inverse rational mappings from the

hyperboloid of the one sheet to the plane.

7. Let S = V(x2 + y2 + z2 − 1) in 3 and let W = V(z) be the (x, y)-plane. In this exercise,

we will show that S and W are birationally equivalent varieties, via an explicit mapping

called the stereographic projection. See also Exercise 6 of Chapter 1, §3.

a. Derive parametric equations as in (2) for the line Lq in 3 passing through the north

pole (0, 0, 1) of S and a general point q = (x0, y0, z0) �= (0, 0, 1) in S.

b. Using the line from part (a) show that φ(q) = Lq ∩ W defines a rational mapping

φ : S − − → 2. This is called the stereographic projection mapping.

c. Show that the rational parametrization of S given in Exercise 6 of Chapter 1, §3 is the

inverse mapping of φ.

d. Deduce that S and W are birationally equivalent varieties and find subvarieties S′ ⊂ S
and W ′ ⊂ W such that φ and ψ put S − S′ and W − W ′ into one-to-one correspondence.

8. In Exercise 10 of §1, you showed that there were no nonconstant polynomial mappings from

to V = V(y2 − x3 + x). In this problem, you will show that there are no nonconstant

rational mappings either, so V is not birationally equivalent to . In the process, we will

need to consider polynomials with complex coefficients, so the proof will actually show

that V(y2 − x3 + x) ⊂ 2 is not birationally equivalent to either. The proof will be by

contradiction.

a. Start by assuming that α : − − → V is a nonconstant rational mapping defined by

α(t) = (a(t)/b(t), c(t)/d(t)) with a and b relatively prime, c and d relatively prime,

and b, d monic. By substituting into the equation of V , show that b3 = d2 and c2 =
a3 − ab2.

b. Deduce that a, b, a + b, and a − b are all squares of polynomials in [t]. In other words,

show that a = A2, b = B2, a + b = C2 and a − b = D2 for some A, B, C, D ∈ [t].
c. Show that the polynomials A, B ∈ [t] from part b are nonconstant and relatively prime

and that A4 − B4 is the square of a polynomial in [t].
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d. The key step of the proof is to show that such polynomials cannot exist using infinite
descent. Suppose that A, B ∈ [t] satisfy the conclusions of part (c). Prove that there

are polynomials A1, B1, C1 ∈ [t] such that

A − B = A2
1

A + B = B2
1

A2 + B2 = C2
1 .

e. Prove that the polynomials A1, B1 from part (d) are relatively prime and nonconstant

and that their degrees satisfy

max(deg(A1), deg(B1)) ≤ 1

2
max(deg(A), deg(B)).

Also show that A4
1 − (

√
i B1)4 = A4

1 + B4
1 is the square of a polynomial in [t]. Conclude

that A1,
√

i B1 satisfy the conclusions of part (c).

f. Conclude that if such a pair A, B exists, then one can repeat parts d and e infinitely many

times with decreasing degrees at each step (this is the “infinite descent”). Explain why

this is impossible and conclude that our original polynomials a, b, c, d must be constant.

9. Let V be an irreducible variety and let f ∈ k(V ).If we write f = φ/ψ , where φ, ψ ∈ k[V ],

then we know that f is defined on V − VV (ψ). What is interesting is that f might make

sense on a larger set. In this exercise, we will work out how this can happen on the variety

V = V(xz − yw) ⊂ 4.

a. Prove that xz − yw ∈ [x, y, z, w] is irreducible. Hint: Look at the total degrees of its

factors.

b. Use unique factorization in [x, y, z, w] to prove that 〈xz − yw〉 is a prime ideal.

c. Conclude that V is irreducible and that I(V ) = 〈xz − yw〉.
d. Let f = [x]/[y] ∈ (V ) so that f is defined on V − VV ([y]). Show that VV ([y]) is the

union of planes {(0, 0, z, w) : z, w ∈ } ∪ {(x, 0, 0, w) : x, w ∈ }.
e. Show that f = [w]/[z] and conclude that f is defined everywhere outside of the plane

{(x, 0, 0, w) : x, w ∈ }.
Note that what made this possible was that we had two fundamentally different ways of

representing the rational function f . This is part of why rational functions are subtle to deal

with.

10. Consider the rational mappings φ : − − → 3 and ψ : 3 − − → defined by

φ(t) = (t, 1/t, t2) and ψ(x, y, z) = x + yz

x − yz
.

Show that ψ ◦ φ is not defined.

11. Complete the proof of Theorem 10 by showing that if V and W are irreducible varieties and

k(V ) ∼= k(W ) is an isomorphism of their function fields which is the identity on constants,

then there are inverse rational mappings φ : V − − → W and ψ : W − − → V . Hint:

Follow the proof of Theorem 9 from §4.

12. Suppose that φ : V − − → W is a rational mapping defined on V − V ′. If W ′ ⊂ W is a

subvariety, then prove that

V ′′ = V ′ ∪ {p ∈ V − V ′ : φ(p) ∈ W ′}
is a subvariety of V . Hint: Find equations for V ′′ by substituting the rational functions

representing φ into the equations for W ′ and setting the numerators of the resulting functions

equal to zero.
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13. Suppose that V and W are birationally equivalent varieties via φ : V − − → W and ψ :

W − − → V . As mentioned in the text after the proof of Theorem 10, this means that V
and W have “big” subsets that are the same. More precisely, there are proper subvarieties

V1 ⊂ V and W1 ⊂ W such that φ and ψ induce inverse bijections between subsets V − V1

and W − W1. Note that Exercises 4 and 7 involved special cases of this result.

a. Let V ′ ⊂ V be the subvariety that satisfies the properties given in (6) for φ ◦ ψ . Similarly,

we get W ′ ⊂ W that satisfies the analogous properties for ψ ◦ φ. Let

V = {p ∈ V − V ′ : φ(p) ∈ W − W ′},
W = {q ∈ W − W ′ : ψ(q) ∈ V − V ′}.

Show that we have bijections φ : V → W and ψ : W → V which are inverses of each

other.

b. Use Exercise 12 to prove that V = V − V1 and W = W − W1 for proper subvarieties V1

and W1.

Parts (a) and (b) give the desired one-to-one correspondence between “big” subsets of V
and W .

14. In Example 3, we had rational mappings φ : Q − − → W and ψ : W − − → Q.

a. Show that φ and ψ induce inverse bijections φ : Q − VQ(x − 1) → W − H and ψ :

W − H → Q − VQ(x − 1), where H = VW (a2 − b2 + 4).

b. Show that H and VQ(x − 1) are very different varieties that are neither isomorphic nor

birationally equivalent.

§6 (Optional) Proof of the Closure Theorem

This section will complete the proof of the Closure Theorem begun in §2 of Chapter 3.
We will use many of the concepts introduced in Chapters 4 and 5, including irreducible
varieties and prime ideals from Chapter 4 and quotient rings and fields of fractions
from this chapter.

We begin by recalling the basic situation. Let k be an algebraically closed field, and
be let πl : kn → kn−1 be projection onto the last n − l components. If V = V(I ) is an
affine variety in kn , then we get the l-th elimination ideal Il = I ∩ k[xl+1, . . . , xn], and
§4 of Chapter 4 proved the first part of the Closure Theorem, which asserts that V(Il)
is the smallest variety in kn−1 containing πl(V ). In the language of Chapter 4, this says
that V(Il) is the Zariski closure of πl(V ).

The remaining part of the Closure Theorem tells us that πl(V ) fills up “most” of
V(Il) in the following sense.

Theorem 1 (The Closure Theorem, second part). Let k be algebraically closed, and
let V = V(I ) ⊂ kn. If V �= ∅, then there is an affine variety W � V(Il) such that

V(Il) − W ⊂ πl(V ).

Proof. In Chapter 3, we proved this for l = 1 using resultants. Before tackling the case
l > 1, we note that V(Il) depends only on V since it is the Zariski closure of πl(V ).
This means that any defining ideal I of V gives the same V(Il). In particular, since



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX January 5, 2007 7:44

§6. (Optional) Proof of the Closure Theorem 259

V = V(I(V )), we can replace I with I(V ). Hence, if V is irreducible, we can assume
that I is a prime ideal.

Our strategy for proving the theorem is to start with the irreducible case. The fol-
lowing observations will be useful:

I is prime =⇒ Il is prime
(1)

V is irreducible =⇒ V(Il) is irreducible.

The first implication is straightforward and is left as an exercise. As for the second,
we’ve seen that we can assume that I = I(V ), so that I is prime. Then Il is prime, and
the algebra–geometry dictionary (Corollary 4 of Chapter 4, §5) implies that V(Il) is
irreducible.

Now suppose that V is irreducible. We will show that πl(V ) has the desired property
by using induction on l to prove the following slightly stronger result: given a variety
W0 � V , there is a variety Wl � V(Il) such that

V(Il) − Wl ⊂ πl(V − W0).(2)

We begin with the case l = 1. Since W0 �= V , we can find (a1, . . . , an) ∈ V − W0.
Then there is f ∈ I(W0) such that f (a1, . . . , an, ) �= 0. The polynomial f will play a
crucial role in what follows. At this point, the proof breaks up into two cases:

Case I: Suppose that for all (b2, . . . , bn) ∈ V(I1), we have (b1, b2, . . . , bn) ∈ V for
all b1 ∈ k. In this situation, write f as a polynomial in x1:

f =
m∑

i=0

gi (x2, . . . , xn)xi
1.

Now let W1 = V(I1) ∩ V(g0, . . . , gm). This variety is strictly smaller than V(I1) since
f (a1, . . . , an) �= 0 implies that gi (a2, . . . , an) �= 0 for some i . Thus (a2, . . . , an) ∈
V(I1) − W1, so that W1 �= V(I1).

We next show that (2) is satisfied. If (c2, . . . , cn) ∈ V(I1) − W1, then some gi is
nonvanishing at (c2, . . . , cn), so that f (x1, c2, . . . , cn) is a nonzero polynomial. Since k
is infinite (Exercise 4 of Chapter 4, §1), we can find c1 ∈ k such that f (c1, c2, . . . , cn) �=
0. By the assumption of Case I, the point (c1, . . . , cn) is in V , yet it can’t be in W0 since
f vanishes on W0. This proves that (c2, . . . , cn) ∈ π1(V − W0), which proves (2) in
Case I.

Case II: Suppose that there is some (b2, . . . , bn) ∈ V(I1) and some b1 ∈ k such that
(b1, b2, . . . , bn) /∈ V . In this situation, we can find h ∈ I such that h(b1, . . . , bn) �= 0
(h exists because I = I(V )). Write h as a polynomial in x1:

h =
r∑

i=0

ui (x2, . . . , xn)xi
1.(3)

Then h(b1, . . . , bn) �= 0 implies ui (b2, . . . , bn) �= 0 for some i . Thus, ui �∈ I1 for some
i . Furthermore, if ur ∈ I1, then h − ur xr

1 is also nonvanishing at (b1, . . . , bn), so that
we can replace h with h − ur xr

1. Repeating this as often as necessary, we can assume
ur �∈ I1 in (3).
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The next claim we want to prove is the following:

there exist vi ∈ k[x2, . . . , xn] such that
r∑

i=0

vi f i ∈ I and v0 �∈ I1.(4)

To prove this, we will regard f and h as polynomials in x1 and then divide f by h.
But rather than just use the division algorithm as in §5 of Chapter 1, we will replace
f with uN1

r f , where N1 is some positive integer. We claim that if N1 is sufficiently
large, we can divide uN1

r f without introducing any denominators. This means we get
an equation of the form

uN1
r f = qh + v10 + v11x1 + · · · + v1,r−1xr−1

1 ,

where q ∈ k[x1, . . . , xn] and v1i ∈ k[x2, . . . , xn]. We leave the proof of this as Exercise
2, though the reader may also want to consult §5 of Chapter 6, where this process of
pseudodivision is studied in more detail. Now do the above “division” not just to f but
to all of its powers 1, f, f 2, . . . , f r . This gives equations of the form

u
N j
r f j = q j h + v j0 + v j1x1 + · · · v j,r−1xr−1

1(5)

for 0 ≤ j ≤ r
Now we will use quotient rings and fields of fractions. We have already seen that

I1 = I(V(I1)), so that by §2, the quotient ring k[x2, . . . , xn]/I1 is naturally isomorphic
to the coordinate ring k[V(I1)]. As in §5, this ring is an integral domain since V(I1)
is irreducible, and hence has a field of fractions, which we will denote by K . We will
regard k[x2, . . . , xn]/I1 as a subset of K , so that a polynomial v ∈ k[x2, . . . , xn] gives
an element [v] ∈ k[x2, . . . , xn]/I1 ⊂ K . In particular, the zero element of K is [0],
where 0 ∈ k[x2, . . . , xn] is the zero polynomial.

The polynomials v j i of (5) give a (r + 1) × r matrix⎛⎜⎝ [v00] . . . [v0,r−1]
...

...
[vr0] . . . [vr,r−1]

⎞⎟⎠
with entries in K . The rows are r + 1 vectors in the r -dimensional vector space K r ,
so that the rows are linearly dependent over K . Thus there are φ0, . . . , φr , ∈ K , not all
zero, such that

∑r
j=0 φ j [v j i ] = [0] in K for 0 ≤ i ≤ r − 1. If we write each φ j as a

quotient of elements of k[x2, . . . , xn]/I1 and multiply by a common denominator, we
can assume that φ j = [w j ] for some w j ∈ k[x2, . . . , xn]. Further, the φ j being not all
zero in k[x2, . . . , xn]/I1 ⊂ K means that at least one w j is not in I1. Then w0, . . . , wr

have the property that

r∑
j=0

[w j ][v j i ] = [0],

which means that
r∑

j=0

w jv j i ∈ I1.(6)
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Finally, if we multiply each equation (5) by the corresponding w j and sum for
0 ≤ j ≤ r , we obtain

r∑
j=0

w j u
N j
r f j ∈ I

by (6) and the fact that h ∈ I . Let v j = w j u
N j
r . Since ur /∈ I1 and w j /∈ I1 for some j ,

it follows that v j /∈ I1 for some j since I1 is prime by (1).
It remains to arrange for v0 /∈ I1. So suppose v0, . . . , vt−1 ∈ I1 but vt /∈ I1. It follows

that

f t
r∑

j=t

vt f j−t ∈ I.

Since I is prime and f /∈ I , it follows immediately that
∑r

j=t vt f j−t ∈ I . After rela-
beling so that vi is v0, we get (4) as desired.

The condition (4) has the following crucial consequence:

π1(V ) ∩ (kn−1 − V(v0)) ⊂ π1(V − W0).(7)

This follows because
∑r

i=0 vi f i ∈ I , so that for any (c1, . . . , cn) ∈ V we have

v0(c2, . . . , cn) + f (c1, . . . , cn)
r∑

i=1

vi (c2, . . . , cn) f (c1, . . . , cn)i−1 = 0.

Then v0(c2, . . . , cn) �= 0 forces f (c1, . . . , cn) �= 0, which in turns implies
(c1, . . . , cn) /∈ W0 (since f vanishes on W0). From here, (7) follows easily.

We can finally prove (2) in Case II. Since, ur , v0 /∈ I1 and I1 is prime, we see that g =
urv0 ∈ I1. Thus W1 = V(g) ∩ V(I1) � V(I1). To show that (2) holds, let (c2, . . . , cn) ∈
V(I1) − W1. This means that both ur and v0 are nonvanishing at (c2, . . . , cn).

If I = 〈 f1, . . . , fs〉, then h ∈ I implies that I = (h, f1, . . . , fs). Since
ur (c2, . . . , cn) �= 0, the Extension Theorem proved in Chapter 3 implies that
(c1, . . . , cn) ∈ V for some c1 ∈ . Then by (7) and v0(c2, . . . , cn �= 0, we see that
(c2, . . . , cn) ∈ π1(V − W0), and (2) is proved in Case II.

We have now completed the proof of (2) when l = 1. In the exercises, you will
explore the geometric meaning of the two cases considered above.

Next, suppose that (2) is true for l − 1. To prove that it holds for l, take W0 � V ,
and apply what we proved for l = 1 to find W1 � V(I1) such that

V(I1) − W1 ⊂ π1(V − W0).

Now observe that Il is the (l − 1)st elimination ideal of I1. Furthermore, V(I1) is
irreducible by (1). Thus, our induction hypothesis, applied to W1 � V(I1), implies that
there is Wl � V(I1) such that

V(Il) − Wl ⊂ π̃l−1(V(I1) − W1),
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where π̃l−1 : kn−1 → kn−l is projection onto the last (n − 1) − (l − 1) = n − l com-
ponents. However, since πl = π̃l−l ◦ π1 (see Exercise 4), it follows that

V(Il) − W1 ⊂ π̃l−1(V(I1) − W1) ⊂ π̃l−1(π1(V − W0)) = π1(V − W0).

This completes the proof of (2), so that Theorem 1 is true for all irreducible varieties.
We can now prove the general case of the theorem. Given an arbitrary variety V ⊂ kn ,

we can write V as a union of irreducible components (Theorem 2 of Chapter 4, §6):

V = V1 ∪ · · · ∪ Vm .

Let V ′
i be the Zariski closure of πl(Vi ) ⊂ kn−l . We claim that

V(Il) = V ′
1 ∪ · · · ∪ V ′

m .(8)

To prove this, observe that V ′
1 ∪ · · · ∪ V ′

m is a variety containing πl(V1) ∪ · · · ∪
πl(Vm) = πl(V ). Since V(Il) is the Zariski closure of πl(V ), if follows that V(Il) ⊂
V ′

1 ∪ · · · ∪ V ′
m . For the opposite inclusion, note that for each i , we have πl(Vi ) ⊂

πl(V ) ⊂ V(Il), which implies V ′
i ⊂ V(Il) since V ′

i is the Zariski closure of πl(Vi ).
From here, (8) follows easily.

From (1), we know each V ′
i is irreducible, so that (8) gives a decomposition of V(Il)

into irreducibles. This need not be a minimal decomposition, and in fact V ′
i = V ′

j can
occur when i �= j . But we can find at least one of them not strictly contained in the
others. By relabeling, we can assume V ′

1 = · · · = V ′
r and V ′

1 �⊂ Vi for r + 1 ≤ i ≤ m.
Applying (2) to the irreducible varieties V1, . . . , Vr (with W0 = ∅), there are varieties

Wi
⊂
�= V ′

i such that

V ′
i − Wi ⊂ πl(Vi ), 1 ≤ i ≤ r

since V ′
i is the Zariski closure of πl(Vi ). If we let W = W1 ∪ · · · ∪ Wr ∪

V ′
r+1 ∪ · · · ∪ V ′

m , then W ⊂ V(Il), and one sees easily that

V(Il) − W = V ′
1 ∪ · · · ∪ V ′

m − (W1 ∪ · · · ∪ Wr ∪ V ′
r+1 ∪ · · · ∪ V ′

m)

⊂ (V ′
1 − W1) ∪ · · · ∪ (V ′

r − Wr )

⊂ πl(V1) ∪ · · · ∪ πl(Vr ) ⊂ πl(V ).

It remains to show that W �= V(Il). But if W were equal to V(Il), then we would
have V ′

1 ⊂ W1 ∪ · · · ∪ Wr ∪ V ′
r+1 ∪ · · · ∪ V ′

m . Since V ′
1 is irreducible, Exercise 5 below

shows that V ′
1 would lie in one of W1, . . . , Wr , V ′

r+1, · · · , V ′
m . This is impossible by

the way we chose V ′
1 and W1. Hence, we have a contradiction, and the theorem is

proved. �

We can use the Closure Theorem to give a precise description of πl(V ) as follows.

Corollary 2. Let k be algebraically closed, and let V ⊂ kn be an affine variety. Then
there are affine varieties Zi ⊂ Wi ⊂ kn−1 for 1 ≤ i ≤ p such that

π1(V ) =
p⋃

i=1

(Wi − Zi ).
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Proof. If V = ∅, then we are done. Otherwise let W1 = V(Il) By the Closure Theorem,
there is a variety Z1 � W1 such that W1 − Z1 ⊂ πl(V ). Then, back in kn , consider the
set

V1 = V ∩ {(a1, . . . , an) ∈ K n : (al+1, . . . , an) ∈ Z1}
One easily checks that V1 is an affine variety (see Exercise 7), and furthermore, V1 � V
since otherwise we would have πl(V ) ⊂ Z1, which would imply W1 ⊂ Z1 by Zariski
closure. Moreover, one can check that

πl(V ) = (W1 − Z1) ∪ πl(V1)(9)

(see Exercises 7).
If V1 = ∅, then we are done. If V1 is nonempty, let W2 be the Zariski closure of πl(V1).

Applying the Closure Theorem to V1, we get Z2 � W2 with W2 − Z2 ⊂ πl(V1). Then,
repeating the above construction, we get the variety

V2 = V1 ∩ {(a1, . . . , an) ∈ kn : (al+1, . . . , an) ∈ Z2}
such that V2 � V1 and

π1(V ) = (W1 − Z1) ∪ (W2 − Z2) ∪ πl(V2).

If V2 = ∅, we are done, if not, we repeat this process again to obtain W3, Z3 and
V3 � V2. Continuing in this way, we must eventually have VN = ∅ for some N , since
otherwise we would get an infinite descending chain of varieties

V � V1 � V2 � · · · ,
which would contradict Proposition 1 of Chapter 4, §6. Once we have VN = ∅, the
desired formula for πl(V ) follows easily. �

In general, a set of the form described in Corollary 2 is called constructible.

EXERCISES FOR §6

1. This exercise is concerned with (1) in the proof of Theorem 1.

a. Prove that I prime implies Il prime. Your proof should work for any field k.

b. In the text, we showed V irreducible implies V(Il ) irreducible when the field is alge-

braically closed. Give an argument that works over any field k.

2. Let g, h ∈ k[x1, . . . , xn], and assume that h has positive degree r in x1, so that h =∑r
i=o ui (x2, . . . , xn, xi

1. Use induction on the degree of g in x1 to show that there is some

integer N such that uN
r g = qh + g′ where q, g′ ∈ k[x1, . . . , xn] and g′ has degree < r in x1.

3. In this exercise, we will study the geometric meaning of the two cases encountered in

the proof of Theorem 1. For concreteness, let us assume that k = . Recall that we have

V ⊂ n irreducible and the projection π1 : n → n−1. Given a point y ∈ n−1, let

Vy = {x ∈ V : π1(x) = y}.
We call Vy the fiber over y of the projection π1.

a. Prove that Vy ⊂ × {y}, and that Vy �= ∅ if and only if y ∈ π1(V ).

b. Show that in Case I of the proof of Theorem 1, π1(V ) = V(I1) and Vy = × {y} for

all y ∈ π1(V ). Thus, this case means that all nonempty fibers are as big as possible.
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c. Show that in Case II, there is a variety W̃ ⊂ n−1 such that π1(V ) /∈ W and every

nonempty fiber not over a point of W̃ is finite. Thus, this case means that “most” nonempty

fibers are finite. Hint: If h is as in (3) and ur ∈ I1, then let W̃ = V(ur ).

d. If V = V(x2 − x1x3) ⊂ 3, then show that “most” fibers Vy consist of a single point. Is

there a fiber which is infinite?

4. Given π1 : kn → kn−1, πl : kn → kn−l and π̃l−1 : kn−1 → kn−l as in the proof of Theorem

1, show that πl = π̃l−1 ◦ π1.

5. Let V ⊂ kn be an irreducible variety. Then prove the following assertions.

a. If V1, V2 ⊂ kn are varieties such that V ⊂ V1 ∪ V2, then either V ⊂ V1 or V ⊂ V2.

b. More generally, if V1, . . . , Vm ⊂ kn are varieties such that V ⊂ V1 ∪ · · · ∪ Vm , then V ⊂
Vi for some i .

6. In the proof of Theorem 1, the variety W ⊂ V(Il ) we constructed was rather large—it

contained all but one of the irreducible components of V(Il ). Show that we can do better by

proving that there is a variety W ⊂ V(Vl ) which contains no irreducible component of V(Il )

and satisfies V(Il ) − W ⊂ πl (V ). Hint: First, explain why each irreducible component of

V(Il ) is V ′
j for some j . Then apply the construction we did for V ′

1 to each of these V ′
j ’s.

7. This exercise is concerned with the proof of Corollary 2.

a. Verify that V1 = V ∩ {(a1, . . . , an) ∈ kn : (al+1, . . . , an) ∈ Z1} is an affine variety.

b. Verify that πl (V ) = (W1 − Z1) ⊂ πl (V1).

8. Let V = V(y − xz) ⊂ 3. Corollary 2 tells us that π1(V ) ⊂ 2 is a constructible set. Find

an explicit decomposition of π1(V ) of the form given by Corollary 2. Hint: Your answer

will involve W1, Z1 and W2.

9. When dealing with affine varieties, it is sometimes helpful to use the minimum principle,

which states that among any collection of varieties in kn , there is a variety which is minimal

with respect to inclusion. More precisely, this means that if we are given varieties Vα, α ∈
A, where A is any index set, then there is some β ∈ A with the property that for any

α ∈ A, Vα ⊂ Vβ implies Va = Vβ .

a. Prove the minimum principle. Hint: Use Proposition 1 of Chapter 4, §6.

b. Formulate and prove an analogous maximum principle for ideals in k[x1, . . . , xn].

10. As an example of how to use the minimum principle of Exercise 9, we will give a different

proof of Corollary 2. Namely, consider the collection of all varieties V ⊂ kn for which πl (V )

is not constructible. By the minimum principle, we can find a variety V such that πl (V ) is

not constructible but πl (W ) is constructible for every variety W � V . Show how the proof

of Corollary 2 up to (9) can be used to obtain a contradiction and thereby prove the corollary.

11. In this exercise, we will generalize Corollary 2 to show that if k is algebraically closed, then

πl (C) is constructible whenever C is any constructible subset of kn .

a. Show that it suffices to show that πl (V − W ) is constructible whenever V is an irreducible

variety in kn and W � V .

b. If V is irreducible and W1 is the Zariski closure of πl (V ), then (2) implies we can find a

variety Z1 � W1 such that W1 − Z1 ⊂ πl (V − W ). If we set V1 = {x ∈ V : πl (x) ∈ Z1}
then prove that V1 �= V and πl (V − W ) = (W1 − Z1) ∪ πl (V1 − W ).

c. Now use the minimum principle as in Exercise 10 to complete the proof.
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6

Robotics and Automatic Geometric
Theorem Proving

In this chapter we will consider two recent applications of concepts and techniques from
algebraic geometry in areas of computer science. First, continuing a theme introduced in
several examples in Chapter 1, we will develop a systematic approach that uses algebraic
varieties to describe the space of possible configurations of mechanical linkages such
as robot “arms.” We will use this approach to solve the forward and inverse kinematic
problems of robotics for certain types of robots.

Second, we will apply the algorithms developed in earlier chapters to the study of
automatic geometric theorem proving, an area that has been of interest to researchers in
artificial intelligence. When the hypotheses of a geometric theorem can be expressed as
polynomial equations relating the cartesian coordinates of points in the Euclidean plane,
the geometrical propositions deducible from the hypotheses will include all the state-
ments that can be expressed as polynomials in the ideal generated by the hypotheses.

§1 Geometric Description of Robots

To treat the space of configurations of a robot geometrically, we need to make some
simplifying assumptions about the components of our robots and their mechanical
properties. We will not try to address many important issues in the engineering of
actual robots (such as what types of motors and mechanical linkages would be used
to achieve what motions, and how those motions would be controlled). Thus, we will
restrict ourselves to highly idealized robots. However, within this framework, we will
be able to indicate the types of problems that actually arise in robot motion description
and planning.

We will always consider robots constructed from rigid links or segments, connected
by joints of various types. For simplicity, we will consider only robots in which the
segments are connected in series, as in a human limb. One end of our robot “arm” will
usually be fixed in position. At the other end will be the “hand” or “effector,” which will
sometimes be considered as a final segment of the robot. In actual robots, this “hand”
might be provided with mechanisms for grasping objects or with tools for performing
some task. Thus, one of the major goals is to be able to describe and specify the position
and orientation of the “hand.”

265
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Since the segments of our robots are rigid, the possible motions of the entire robot as-
sembly are determined by the motions of the joints. Many actual robots are constructed
using
� planar revolute joints, and
� prismatic joints.

A planar revolute joint permits a rotation of one segment relative to another. We will
assume that both of the segments in question lie in one plane and all motions of the
joint will leave the two segments in that plane. (This is the same as saying that the axis
of rotation is perpendicular to the plane in question.)

a revolute joint

A prismatic joint permits one segment of a robot to move by sliding or translation
along an axis. The following sketch shows a schematic view of a prismatic joint between
two segments of a robot lying in a plane. Such a joint permits translational motion along
a line in the plane.

←   retracted

a prismatic joint

← partially
extended

If there are several joints in a robot, we will assume for simplicity that the joints all
lie in the same plane, that the axes of rotation of all revolute joints are perpendicular
to that plane, and, in addition, that the translation axes for the prismatic joints all lie
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in the plane of the joints. Thus, all motion will take place in one plane. Of course,
this leads to a very restricted class of robots. Real robots must usually be capable of
3-dimensional motion. To achieve this, other types and combinations of joints are used.
These include “ball” joints allowing rotation about any axis passing through some point
in 3 and helical or “screw” joints combining rotation and translation along the axis
of rotation in 3. It would also be possible to connect several segments of a robot
with planar revolute joints, but with nonparallel axes of rotation. All of these possible
configurations can be treated by methods similar to the ones we will present, but we
will not consider them in detail. Our purpose here is to illustrate how affine varieties
can be used to describe the geometry of robots, not to present a treatise on practical
robotics. The planar robots provide a class of relatively uncomplicated but illustrative
examples for us to consider.

Example 1. Consider the following planar robot “arm” with three revolute joints and
one prismatic joint. All motions of the robot take place in the plane of the paper.

← segment 1

joint 1 →

↓
segment 2

↓
joint 2

segment 3 →

joint 3 →

← segment 4

← joint 4
(fully extended)

← segment 5
(the hand)

For easy reference, we number the segments and joints of a robot in increasing order
out from the fixed end to the hand. Thus, in the above figure, segment 2 connects joints
1 and 2, and so on. Joint 4 is prismatic, and we will regard segment 4 as having variable
length, depending on the setting of the prismatic joint. In this robot, the hand of the
robot comprises segment 5.

In general, the position or setting of a revolute joint between segments i and i + 1 can
be described by measuring the angle θ (counterclockwise) from segment i to segment
i + 1. Thus, the totality of settings of such a joint can be parametrized by a circle S1

or by the interval [0, 2π ] with the endpoints identified. (In some cases, a revolute joint
may not be free to rotate through a full circle, and then we would parametrize the
possible settings by a subset of S1.)

Similarly, the setting of a prismatic joint can be specified by giving the distance
the joint is extended or, as in Example 1, by the total length of the segment (i.e., the
distance between the end of the joint and the previous joint). Either way, the settings
of a prismatic joint can be parametrized by a finite interval of real numbers.
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If the joint settings of our robot can be specified independently, then the possible
settings of the whole collection of joints in a planar robot with r revolute joints and p
prismatic joints can be parametrized by the Cartesian product

J = S1 × · · · × S1 × I1 × · · · × Ip,

where there is one S1 factor for each revolute joint, and I j gives the settings of the j th
prismatic joint. We will call J the joint space of the robot.

We can describe the space of possible configurations of the “hand” of a planar robot
as follows. Fixing a Cartesian coordinate system in the plane, we can represent the
possible positions of the “hand” by the points (a, b) of a region U ⊂ 2. Similarly, we
can represent the orientation of the “hand” by giving a unit vector aligned with some
specific feature of the hand. Thus, the possible hand orientations are parametrized by
vectors u in V = S1. For example, if the “hand” is attached to a revolute joint, then we
have the following picture of the hand configuration:

the point (a,b)

specifies the

hand position 

(a,b) →

the unit vector u

specifies the

hand orientation

u

We will call C = U × V the configuration space or operational space of the robot’s
“hand.”

Since the robot’s segments are assumed to be rigid, each collection of joint settings
will place the “hand” in a uniquely determined location, with a uniquely determined
orientation. Thus, we have a function or mapping

f : J −→ C
which encodes how the different possible joint settings yield different hand configura-
tions.

The two basic problems we will consider can be described succinctly in terms of the
mapping f : J −→ C described above:
� (Forward Kinematic Problem) Can we give an explicit description or formula for

f in terms of the joint settings (our coordinates on J ) and the dimensions of the
segments of the robot “arm”?

� (Inverse Kinematic Problem) Given c ∈ C, can we determine one or all the j ∈ J
such that f (i) = c?
In §2, we will see that the forward problem is relatively easily solved. Determining

the position and orientation of the “hand” from the “arm” joint settings is mainly a
matter of being systematic in describing the relative positions of the segments on either
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side of a joint. Thus, the forward problem is of interest mainly as a preliminary to
the inverse problem. We will show that the mapping f : J −→ C giving the “hand”
configuration as a function of the joint settings may be written as a polynomial mapping
as in Chapter 5, §1.

The inverse problem is somewhat more subtle since our explicit formulas will not
be linear if revolute joints are present. Thus, we will need to use the general results on
systems of polynomial equations to solve the equation

f ( j) = c.(1)

One feature of nonlinear systems of equations is that there can be several different
solutions, even when the entire set of solutions is finite. We will see in §3 that this is
true for a planar robot arm with three (or more) revolute joints. As a practical matter,
the potential nonuniqueness of the solutions of the systems (1) is sometimes very
desirable. For instance, if our real world robot is to work in a space containing physical
obstacles or barriers to movement in certain directions, it may be the case that some
of the solutions of (1) for a given c ∈ C correspond to positions that are not physically
reachable:

←  barrier

To determine whether it is possible to reach a given position, we might need to determine
all solutions of (1), then see which one(s) are feasible given the constraints of the
environment in which our robot is to work.

EXERCISES FOR §1

1. Give descriptions of the joint space J and the configuration space C for the planar robot

picture in Example 1 in the text. For your description of C, determine a bounded subset of

U ⊂ 2 containing all possible hand positions. Hint: The description of U will depend on

the lengths of the segments.

2. Consider the mapping f : J → C for the robot pictured in Example 1 in the text. On geometric

grounds, do you expect f to be a one-to-one mapping? Can you find two different ways to

put the hand in some particular position with a given orientation? Are there more than two

such positions?
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The text discussed the joint space J and the configuration space C for planar robots. In the

following problems, we consider what J and C look like for robots capable of motion in three

dimensions.

3. What would the configuration space C look like for a 3-dimensional robot? In particular, how

can we describe the possible hand orientations?

4. A “ball” joint at point B allows segment 2 in the robot pictured below to rotate by any angle

about any axis in 3 passing through B. (Note: The motions of this joint are similar to those

of the “joystick” found in some computer games.)

a ball joint

← this segment

rotates freely in

three dimensions

a. Describe the set of possible joint settings for this joint mathematically. Hint: The distinct

joint settings correspond to the possible direction vectors of segment 2.

b. Construct a one-to-one correspondence between your set of joint settings in part (a) and

the unit sphere S2 ⊂ 3. Hint: One simple way to do this is to use the spherical angular

coordinates φ, θ on S2.

5. A helical or “screw” joint at point H allows segment 2 of the robot pictured below to extend

out from H along the the line L in the direction of segment 1, while rotating about the

axis L .

a helical or “screw” joint

The rotation angle θ (measured from the original, unextended position of segment 2) is given

by θ = l · α, where l ∈ [0, m] gives the distance from H to the other end of segment 2 and
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α is a constant angle. Give a mathematical description of the space of joint settings for this

joint.

6. Give a mathematical description of the joint space J for a 3-dimensional robot with two

“ball” joints and one helical joint.

§2 The Forward Kinematic Problem

In this section, we will present a standard method for solving the forward kinematic
problem for a given robot “arm.” As in §1, we will only consider robots in 2, which
means that the “hand” will be constrained to lie in the plane. Other cases will be studied
in the exercises.

All of our robots will have a first segment that is anchored, or fixed in position.
In other words, there is no movable joint at the initial endpoint of segment 1. With
this convention, we will use a standard rectangular coordinate system in the plane to
describe the position and orientation of the “hand.” The origin of this coordinate system
is placed at joint 1 of the robot arm, which is also fixed in position since all of segment
1 is. For example:

←
anchor

The Global (x1, y1) Coordinate System

←   segment 1

x1

y1

joint 1
→

In addition to the global (x1, y1) coordinate system, we introduce a local rectangular
coordinate system at each of the revolute joints to describe the relative positions of the
segments meeting at that joint. Naturally, these coordinate systems will change as the
position of the “arm” varies.

At a revolute joint i , we introduce an (xi+1, yi+1) coordinate system in the following
way. The origin is placed at joint i . We take the positive xi+1-axis to lie along the
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direction of segment i + 1 (in the robot’s current position). Then the positive yi+1-axis
is determined to form a normal right-handed rectangular coordinate system. Note that
for each i ≥ 2, the (xi , yi ) coordinates of joint i are (li , 0), where li is the length of
segment i .

joint i −1 →

↑
joint i

θi

y i

x i

segment  i

yi +1

xi +1

segment i +1

Our first goal is to relate the (xi+1, yi+1) coordinates of a point with the (xi , yi )
coordinates of that point. Let θi be the counterclockwise angle from the xi -axis to
the xi+1-axis. This is the same as the joint setting angle θi described in §1. From the
diagram above, we see that if a point q has (xi+1, yi+1) coordinates

q = (ai+1, bi+1),

then to obtain the (xi , yi ) coordinates of q, say

q = (ai , bi ),

we rotate by the angle θi (to align the xi - and xi+1-axes), and then translate by the
vector (li , 0) (to make the origins of the coordinate systems coincide). In the exercises,
you will show that rotation by θi is accomplished by multiplying by the rotation matrix(

cos θi − sin θi

sin θi cos θi

)
.

It is also easy to check that translation is accomplished by adding the vector (li , 0).
Thus, we get the following relation between the (xi , yi ) and (xi+1, yi+1) coordinates
of q: (

ai

bi

)
=

(
cos θi − sin θi

sin θi cos θi

)
·
(

ai+1

bi+1

)
+

(
li

0

)
.

This coordinate transformation is also commonly written in a shorthand form using a
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3 × 3 matrix and 3-component vectors:⎛
⎝ ai

bi

1

⎞
⎠ =

⎛
⎝ cos θi − sin θi li

sin θi cos θi 0
0 0 1

⎞
⎠ ·

⎛
⎝ ai+1

bi+1

1

⎞
⎠ = Ai ·

⎛
⎝ ai+1

bi+1

1

⎞
⎠ .(1)

This allows us to combine the rotation by θi with the translation along segment i into
a single 3 × 3 matrix Ai .

Example 1. With this notation in hand, let us next consider a general plane robot “arm”
with three revolute joints:

length l1

θ 1

length l2
length l3

θ 2

θ 3

We will think of the hand as segment 4, which is attached via the revolute joint 3 to
segment 3. As before, li will denote the length of segment i . We have

A1 =
⎛
⎝ cos θ1 − sin θ1 0

sin θ1 cos θ1 0
0 0 1

⎞
⎠

since the origin of the (x2, y2) coordinate system is also placed at joint 1. We also have
matrices A2 and A3 as in formula (1). The key observation is that the global coordinates
of any point can be obtained by starting in the (x4, y4) coordinate system and working
our way back to the global (x1, y1) system one joint at a time. That is, we multiply the
(x4, y4) coordinate vector of the point A3, A2, A1 in turn:⎛

⎝ x1

y1

1

⎞
⎠ = A1 A2 A3

⎛
⎝ x4

y4

1

⎞
⎠ .

Using the trigonometric addition formulas, this equation can be written as⎛
⎝x1

y1

1

⎞
⎠=

⎛
⎝cos(θ1 + θ2 + θ3) − sin(θ1 + θ2 + θ3) l3 cos(θ1 + θ2) + l2 cos θ1

sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3) l3 sin(θ1 + θ2) + l2 sin θ1

0 0 1

⎞
⎠
⎛
⎝x4

y4

1

⎞
⎠.
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Since the (x4, y4) coordinates of the hand are (0, 0) (because the hand is attached directly
to joint 3), we obtain the (x1, y1) coordinates of the hand by setting x4 = y4 = 0 and
computing the matrix product above. The result is

⎛
⎝ x1

y1

1

⎞
⎠ =

⎛
⎝ l3 cos(θ1 + θ2) + l2 cos θ1

l3 sin(θ1 + θ2) + l2 sin θ1

1

⎞
⎠ .(2)

The hand orientation is determined if we know the angle between the x4-axis and the
direction of any particular feature of interest to us on the hand. For instance, we might
simply want to use the direction of the x4-axis to specify this orientation. From our
computations, we know that the angle between the x1-axis and the x4-axis is simply
θ1 + θ2 + θ3. Knowing the θi allows us to also compute this angle.

If we combine this fact about the hand orientation with the formula (2) for the hand
position, we get an explicit description of the mapping f : J → C introduced in §1.
As a function of the joint angles θi , the configuration of the hand is given by

f (θ1 + θ2 + θ3) =
⎛
⎝ l3 cos(θ1 + θ2) + l2 cos θ1

l3 sin(θ1 + θ2) + l2 sin θ1

θ1 + θ2 + θ3

⎞
⎠ .(3)

The same ideas will apply when any number of planar revolute joints are present. You
will study the explict form of the function f in these cases in Exercise 7.

Example 2. Prismatic joints can also be handled within this framework. For instance,
let us consider a planar robot whose first three segments and joints are the same as
those of the robot in Example 1, but which has an additional prismatic joint between
segment 4 and the hand. Thus, segment 4 will have variable length and segment 5 will
be the hand.

length l1

θ 1

length l2
length l3

θ 2

θ 3 length l4
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The translation axis of the prismatic joint lies along the direction of segment 4.
We can describe such a robot as follows. The three revolute joints allow us exactly
the same freedom in placing joint 3 as in the robot studied in Example 1. However,
the prismatic joint allows us to change the length of segment 4 to any value between
l4 = m1 (when retracted) and l4 = m2 (when fully extended). By the reasoning given in
Example 1, if the setting l4 of the prismatic joint is known, then the position of the hand
will be given by multiplying the product matrix A1 A2 A3 times the (x4, y4) coordinate
vector of the hand, namely (l4, 0). It follows that the configuration of the hand is
given by

g(θ1, θ2, θ3, l4) =
⎛
⎝ l4 cos(θ1 + θ2 + θ3) + l3 cos(θ1 + θ2) + l2 cos θ1

l4 sin(θ1 + θ2 + θ3) + l3 sin(θ1 + θ2) + l2 sin θ1

θ1 + θ2 + θ3

⎞
⎠ .(4)

As before, l2 and l3 are constant, but l4 ∈ [m1, m2] is now another variable. The hand
orientation will be given by θ1 + θ2 + θ3 as before since the setting of the prismatic
joint will not affect the direction of the hand.

We will next discuss how formulas such as (3) and (4) may be converted into rep-
resentations of f and g as polynomial or rational mappings in suitable variables. The
joint variables for revolute and for prismatic joints are handled differently. For the
revolute joints, the most direct way of converting to a polynomial set of equations
is to use an idea we have seen several times before, for example, in Exercise 8 of
Chapter 2, §8. Even though cos θ and sin θ are transcendental functions, they give a
parametrization

x = cos θ,

y = sin θ

of the algebraic variety V(x2 + y2 − 1) in the plane. Thus, we can write the components
of the right-hand side of (3) or, equivalently, the entries of the matrix A1 A2 A3 in (2)
as functions of

ci = cos θi ,

si = sin θi ,

subject to the constraints

c2
i + s2

i − 1 = 0(5)

for i = 1, 2, 3. Note that the variety defined by these three equations in 6 is a concrete
realization of the joint space J for this type of robot. Geometrically, this variety is just
a Cartesian product of three copies of the circle.

Explicitly, we obtain from (3) an expression for the hand position as a function of the
variables c1, s1, c2, s2, c3, s3. Using the trigonometric addition formulas, we can write

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2 = c1c2 − s1s2.

Similarly,

sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ2 cos θ1 = s1c2 + s2c1.
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Thus, the (x1, y1) coordinates of the hand position are:(
l3(c1c2 − s1s2) + l2c1

l3(s1c2 + s2c1) + l2s1

)
.(6)

In the language of Chapter 5, we have defined a polynomial mapping from the variety
J = V(x2

1 + y2
1 − 1, x2

2 + y2
2 − 1, x2

3 + y2
3 − 1) to 2. Note that the hand position does

not depend on θ3. That angle enters only in determining the hand orientation.
Since the hand orientation depends directly on the angles θi themselves, it is not

possible to express the orientation itself as a polynomial in ci = cos θi and si = sin θi .
However, we can handle the orientation in a similar way. See Exercise 3.

Similarly, from the mapping g in Example 2, we obtain the polynomial form(
l4(c1(c2c3 − s2s3) − s1(c2s3 + c3s2)) + l3(c1c2 − s1s2) + l2c1

l4(s1(c2c3 − s2s3) + c1(c2s3 + c3s2)) + l3(s1c2 + s2c1) + l2s1

)
(7)

for the (x1, y1) coordinates of the hand position. Here J is the subset V × [m1, m2] of
the variety V × , where V = V(x2

1 + y2
1 − 1, x2

2 + y2
2 − 1, x2

3 + y2
3 − 1). The length

l4 is treated as another ordinary variable in (7), so our component functions are poly-
nomials in l4, and the ci and si .

A second way to write formulas (3) and (4) is based on the rational parametriza-
tion

x = 1 − t2

1 + t2
,

(8)

y = 2t

1 + t2

of the circle introduced in §3 of Chapter 1. [In terms of the trigonometric parametriza-
tion, t = tan(θ/2).] This allows us to express the mapping (3) in terms of three variables
ti = tan(θi/2). We will leave it as an exercise for the reader to work out this alternate ex-
plicit form of the mapping f : J → C in Example 1. In the language of Chapter 5, the
variety J for the robot in Example 1 is birationally equivalent to 3. We can construct
a rational parametrization ρ : 3 → J using three copies of the parametrization (8).
Hence, we obtain a rational mapping from 3 to 2, expressing the hand coordinates
of the robot arm as functions of t1, t2, t3 by taking the composition of ρ with the hand
coordinate mapping in the form (6).

Both of these forms have certain advantages and disadvantages for practical use. For
the robot of Example 1, one immediately visible advantage of the rational mapping
obtained from (8) is that it involves only three variables rather than the six variables
si , ci , i = 1, 2, 3, needed to describe the full mapping f as in Exercise 3. In addition,
we do not need the three extra constraint equations (5). However, the ti values cor-
responding to joint positions with θi close to π are awkwardly large, and there is no
ti value corresponding to θi = π . We do not obtain every theoretically possible hand
position in the image of the mapping f when it is expressed in this form. Of course,
this might not actually be a problem if our robot is constructed so that segment i + 1
is not free to fold back onto segment i (that is, the joint setting θi = π is not possible).
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The polynomial form (6) is more unwieldy, but since it comes from the trigonometric
(unit-speed) parametrization of the circle, it does not suffer from the potential short-
comings of the rational form. It would be somewhat better suited for revolute joints
that can freely rotate through a full circle.

EXERCISES FOR §2

1. Consider the plane 2 with an orthogonal right-handed coordinate system (x1, y1). Now

introduce a second coordinate system (x2, y2) by rotating the first counterclockwise by an

angle θ . Suppose that a point q has (x1, y1) coordinates (a1, b1) and (x2, y2) coordinates

(a2, b2). We claim that (
a1

b1

)
=

(
cos θ − sin θ

sin θ cos θ

)
·
(

a2

b2

)
.

To prove this, first express the (x1, y1) coordinates of q in polar form as

q = (a1, b1) = (r cos α, r sin α).

a. Show that the (x2, y2) coordinates of q are given by

q = (a2, b2) = (r cos(α + θ ), r sin(α + θ )).

b. Now use trigonometric identities to prove the desired formula.

2. In Examples 1 and 2, we used a 3 × 3 matrix A to represent each of the changes of coordinates

from one local system to another. Those changes of coordinates were rotations, followed by

translations. These are special types of affine transformations.

a. Show that any affine transformation in the plane

x ′ = ax + by + e,
y′ = cx + dy + f

can be represented in a similar way:⎛
⎝ x ′

y′

1

⎞
⎠ =

⎛
⎝ a b e

c d f
0 0 1

⎞
⎠ ·

⎛
⎝ x

y
1

⎞
⎠ .

b. Give a similar representation for affine transformations of 3 using 4 × 4 matrices.

3. In this exercise, we will reconsider the hand orientation for the robots in Examples 1 and 2.

Namely, let α = θ1 + θ2 + θ3 be the angle giving the hand orientation in the (x1, y1) coordinate

system.

a. Using the trignomometric addition formulas, show that

c = cos α, s = sin α

can be expressed as polynomials in ci = cos θi and si = sin θi . Thus, the whole mapping

f can be expressed in polynomial form, at the cost of introducing an extra coordinate

function for C.

b. Express c and s using the rational parametrization (8) of the circle.

4. Consider a planar robot with a revolute joint 1, segment 2 of length l2, a prismatic joint 2 with

settings l3 ∈ [0, m3], and a revolute joint 3, with segment 4 being the hand.

a. What are the joint and configuration spaces J and C for this robot?
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b. Using the method of Examples 1 and 2, construct an explicit formula for the mapping

f : J → C in terms of the trigonometric functions of the joint angles.

c. Convert the function f into a polynomial mapping by introducing suitable new coordinates.

5. Rewrite the mappings f and g in Examples 1 and 2, respectively, using the rational

parametrization (8) of the circle for each revolute joint. Show that in each case the hand

position and orientation are given by rational mappings on n . (The value of n will be

different in the two examples.)

6. Rewrite the mapping f for the robot from Exercise 4, using the rational parametrization (8)

of the circle for each revolute joint.

7. Consider a planar robot with a fixed segment 1 as in our examples in this section and with n
revolute joints linking segments of length l2, . . . , ln . The hand is segment n + 1, attached to

segment n by joint n.

a. What are the joint and configuration spaces for this robot?

b. Show that the mapping f : J → C for this robot has the form

f (θ1, . . . , θn) =

⎛
⎜⎜⎜⎝

∑n−1

i=1
li+1 cos

(∑i

j=1
θ j

)
∑n−1

i=1
li+1 sin

(∑i

j=1
θ j

)
∑n

i=1
θi

⎞
⎟⎟⎟⎠ .

Hint: Argue by induction on n.

8. Another type of 3-dimensional joint is a “spin” or nonplanar revolute joint that allows one

segment to rotate or spin in the plane perpendicular to the other segment. In this exercise, we

will study the forward kinematic problem for a 3-dimensional robot containing two “spin”

joints. As usual, segment 1 of the robot will be fixed, and we will pick a global coordinate

system (x1, y1, z1) with the origin at joint 1 and segment 1 on the z1-axis. Joint 1 is a “spin”

joint with rotation axis along the z1-axis, so that segment 2 rotates in the (x1, y1)-plane.

Then segment 2 has length l2 and joint 2 is a second “spin” joint connecting segment 2 to

segment 3. The axis for joint 2 lies along segment 2, so that segment 3 always rotates in the

plane perpendicular to segment 2.

a. Construct a local right-handed orthogonal coordinate system (x2, y2, z2) with origin at

joint 1, with the x2-axis in the direction of segment 2 and the y2-axis in the (x1, y1)-plane.

Give an explicit formula for the (x1, y1, z1) coordinates of a general point, in terms of its

(x2, y2, z2) coordinates and of the joint angle θ1.

b. Express your formula from part (a) in matrix form, using the 4 × 4 matrix representation

for affine space transformations given in part (b) of Exercise 2.

c. Now, construct a local orthogonal coordinate system (x3, y3, z3) with origin at joint 2, the

x3-axis in the direction of segment 3, and the z3-axis in the direction of segment 2. Give

an explicit formula for the (x2, y2, z2) coordinates of a point in terms of its (x3, y3, z3)

coordinates and the joint angle θ2.

d. Express your formula from part (c) in matrix form.

e. Give the transformation relating the (x3, y3, z3) coordinates of a general point to its

(x1, y1, z1) coordinates in matrix form. Hint: This will involve suitably multiplying the

matrices found in parts (b) and (d).

9. Consider the robot from Exercise 8.

a. Using the result of part c of Exercise 8, give an explicit formula for the mapping f : J → C
for this robot.

b. Express the hand position for this robot as a polynomial function of the variables ci = cos θi

and si = sin θi .
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c. The orientation of the hand (the end of segment 3) of this robot can be expressed by giving

a unit vector in the direction of segment 3, expressed in the global coordinate system. Find

an expression for the hand orientation.

§3 The Inverse Kinematic Problem and Motion Planning

In this section, we will continue the discussion of the robot kinematic problems in-
troduced in §1. To begin, we will consider the inverse kinematic problem for the
planar robot arm with three revolute joints studied in Example 1 of §2. Given a point
(x1, y1) = (a, b) ∈ 2 and an orientation, we wish to determine whether it is possible
to place the hand of the robot at that point with that orientation. If it is possible, we
wish to find all combinations of joint settings that will accomplish this. In other words,
we want to determine the image of the mapping f : J → C for this robot; for each c
in the image of f , we want to determine the inverse image f −1(c).

It is quite easy to see geometrically that if l3 = l2 = l, the hand of our robot can be
placed at any point of the closed disk of radius 2l centered at joint 1—the origin of the
(x1, y1) coordinate system. On the other hand, if l3 �= l2, then the hand positions fill out
a closed annulus centered at joint 1. (See, for example, the ideas used in Exercise 14 of
Chapter 1, §2.) We will also be able to see this using the solution of the forward problem
derived in equation (6) of §2. In addition, our solution will give explicit formulas for
the joint settings necessary to produce a given hand position. Such formulas could be
built into a control program for a robot of this kind.

For this robot, it is also easy to control the hand orientation. Since the setting of
joint 3 is independent of the settings of joints 1 and 2, we see that, given any θ1

and θ2, it is possible to attain any desired orientation α = θ1 + θ2 + θ3 by setting
θ3 = α − (θ1 + θ2) accordingly.

To simplify our solution of the inverse kinematic problem, we will use the above
observation to ignore the hand orientation. Thus, we will concentrate on the position
of the hand, which is a function of θ1 and θ2 alone. From equation (6) of §2, we see
that the possible ways to place the hand at a given point (x1, y1) = (a, b) are described
by the following system of polynomial equations:

a = l3(c1c2 − s1s2) + l2c1,

b = l3(c1s2 + c2s1) + l2s1,

0 = c2
1 + s2

1 − 1,

0 = c2
2 + s2

2 − 1

(1)

for s1, c1, s2, c2. To solve these equations, we compute a Groebner basis using lex order
with the variables ordered

c2 > s2 > c1 > s1.

Our solutions will depend on the values of a, b, l2, l3, which appear as symbolic
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parameters in the coefficients of the Groebner basis:

c2 − a2 + b2 − l2
2 − l2

3

2l2l3

,

s2 + a2 + b2

al3

s1 − a2b + b3 + b(l2
2 − l2

3)

2al2l3

,

c1 + b

a
s1 − a2 + b2 + l2

2 − l2
3

2al2

,

s2
1 − a2b + b3 + b(l2

2 − l2
3)

l2(a2 + b2)
s1

+ (a2 + b2)2 + (l2
2 − l2

3)2 − 2a2(l2
2 + l2

3) + 2b2(l2
2 − l2

3)

4l2
2(a2 + b2)

.

(2)

In algebraic terms, this is the reduced Groebner basis for the ideal I generated by the
polynomials in (1) in the ring (a, b, l2, l3)[s1, c1, s2, c2]. That is, we allow denomi-
nators that depend only on the parameters a, b, l2, l3.

This is the first time we have computed a Groebner basis over a field of rational
functions and one has to be a bit careful about how to interpret (2). Working over

(a, b, l2, l3) means that a, b, l2, l3 are abstract variables over , and, in particular,
they are algebraically independent [i.e., if p is a polynomial with real coefficients
such that p(a, b, l2, l3) = 0, then p must be the zero polynomial]. Yet, in practice, we
want a, b, l2, l3 to be certain specific real numbers. When we make such a substitution,
the polynomials (1) generate an ideal I ⊂ [c1, s1, c2, s2] corresponding to a specific
hand position of a robot with specific segment lengths. The key question is whether (2)
remains a Groebner basis for I under this substitution. In general, the replacement of
variables by specific values in a field is called specialization, and the question is how
a Groebner basis behaves under specialization.

A first observation is that we expect problems when a specialization causes any of
the denominators in (2) to vanish. This is typical of how specialization works: things
usually behave nicely for most (but not all) values of the variables. In the exercises,
you will prove that there is a proper subvariety W ⊂ 4 such that (2) specializes to a
Groebner basis of I whenever a, b, l2, l3 take values in 4 − W . We also will see that
there is an algorithm for finding W. The subtle point is that, in general, the vanishing of
denominators is not the only thing that can go wrong (you will work out some examples
in the exercises). Fortunately, in the example we are considering, it can be shown that W
is, in fact, defined by the vanishing of the denominators. This means that if we choose
values l2 �= 0, l3 �= 0, a �= 0, and a2 + b2 �= 0, then (2) still gives a Groebner basis of
(1). The details of the argument will be given in Exercise 9.

Given such a specialization, two observations follow immediately from the form of
the leading terms of the Groebner basis (2). First, any zero s1 of the last polynomial
can be extended uniquely to a full solution of the system. Second, the set of solutions
of (1) is a finite set for this choice of a, b, l2, l3. Indeed, since the last polynomial in (2)
is quadratic in s1, there can be at most two distinct solutions. It remains to see which
a, b yield real values for s1 (the relevant solutions for the geometry of our robot).
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To simplify the formulas somewhat, we will specialize to the case l2 = l3 = 1. In
Exercise 1, you will show that by either substituting l2 = l3 = 1 directly into (2) or
setting l2 = l3 = 1 in (1) and recomputing a Groebner basis in (a, b)[s1, c1, s2, c2],
we obtain the same result:

c2 − a2 + b2 − 2

2
,

s2 + a2 + b2

a
s1 − a2b + b3

2a
,

(3)

c1 + b

a
s1 − a2 + b2

2a
,

s2
1 − bs1 + (a2 + b2)2 − 4a2

4(a2 + b2)
.

Other choices for l2 and l3 will be studied in Exercise 4. [Although (2) remains a
Groebner basis for any nonzero values of l2 and l3, the geometry of the situation
changes rather dramatically if l2 �= l3.]

It follows from our earlier remarks that (3) is a Groebner basis for (1) for all special-
izations of a and b where a �= 0 and a2 + b2 �= 0. Thus, the hand positions with a = 0
or a = b = 0 appear to have some special properties. We will consider the general case
a �= 0 first. Note that this implies a2 + b2 �= 0 as well since a, b ∈ . Solving the last
equation in (3) by the quadratic formula, we find that

s1 = b

2
± |a|

√
4 − (a2 + b2)

2
√

a2 + b2
.

Note that the solution(s) of this equation are real if and only if 0 < a2 + b2 ≤ 4, and
when a2 + b2 = 4, we have a double root. From the geometry of the system, that is
exactly what we expect. The distance from joint 1 to joint 3 is at most l2 + l3 = 2, and
positions with l2 + l3 = 2 can be reached in only one way—by setting θ2 = 0 so that
segment 3 and segment 2 are pointing in the same direction.

Given s1, we may solve for c1, s2, c2 using the other elements of the Groebner basis
(3). Since a �= 0, we obtain exactly one value for each of these variables for each
possible s1 value. (In fact, the value of c2 does not depend on s1—see Exercise 2.)
Further, since c2

1 + s2
1 − 1 and c2

2 + s2
2 − 1 are in the ideal generated by (3), the values

we get for s1, c1, s2, c1, uniquely determine the joint angles θ1 and θ2. Thus, the cases
where a �= 0 are easily handled.

We now take up the case of the possible values of s1, c1, s2, c2 when a = b = 0.
Geometrically, this means that joint 3 is placed at the origin of the (x1, y1) system—at
the same point as joint 1. Most of the polynomials in our basis (2) are undefined when
we try to substitute a = b = 0 in the coefficients. So this is a case where specialization
fails. With a little thought, the geometric reason for this is visible. There are actually
infinitely many different possible configurations that will place joint 3 at the origin
since segments 2 and 3 have equal lengths. The angle θ1 can be specified arbitrarily,
then setting θ2 = π will fold segment 3 back along segment 2, placing joint 3 at (0, 0).
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These are the only joint settings placing the hand at (a, b) = (0, 0). You will derive the
same results by a different method in Exercise 3.

Finally, we ask what happens if a = 0 but b �= 0. From the geometry of the robot
arm, we would guess that there should be nothing out of the ordinary about these
points. Indeed, we could handle them simply by changing coordinates (rotating the
x1-, y1-axes, for example) to make the first coordinate of the hand position any nonzero
number. Nevertheless, there is an algebraic problem since some denominators in (2)
vanish at a = 0. This is another case where specialization fails. In such a situation,
we must substitute a = 0 (and l2 = l3 = 1) into (1) and then recompute the Groebner
basis. We obtain

c2 − b2 − 2

2
,

s2 − bc1,(4)

c2
1 + b2 − 4

4
,

s1 − b

2
.

Note that the form of the Groebner basis for the ideal is different under this special-
ization. One difference between this basis and the general form (2) is that the equation
for s1 now has degree 1. Also, the equation for c1 (rather than the equation for s1) has
degree 2. Thus, we obtain two distinct real values for c1 if |b| < 2 and one value for
c1 if |b| = 2. As in the case a �= 0 above, there are at most two distinct solutions, and
the solutions coincide when we are at a point on the boundary of the disk of radius 2.
In Exercise 2, you will analyze the geometric meaning of the solutions with a = 0 and
explain why there is only one distinct value for s1 in this special case.

This completes the analysis of our robot arm. To summarize, given any (a, b) in
(x1, y1) coordinates, to place joint 3 at (a, b), there are
� infinitely many distinct settings of joint 1 when a2 + b2 = 0,
� two distinct settings of joint 1 when a2 + b2 < 4,
� one setting of joint 1 when a2 + b2 = 4,
� no possible settings of joint 1 when a2 + b2 > 4.
The cases a2 + b2 = 0, 4 (but not the special cases a = 0, b �= 0) are examples of what
are known as kinematic singularities for this robot. We will give a precise definition of
this concept and discuss some of its meaning below.

In the exercises, you will consider the robot arm with three revolute joints and one
prismatic joint introduced in Example 2 of §2. There are more restrictions here for
the hand orientation. For example, if l4 lies in the interval [0, 1], then the hand can
be placed in any position in the closed disk of radius 3 centered at (x1, y1) = (0, 0).
However, an interesting difference is that points on the boundary circle can only be
reached with one hand orientation.

Before continuing our discussion of robotics, let us make some final comments
about specialization. In the example given above, we assumed that we could compute
Groebner bases over function fields. In practice, not all computer algebra systems
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can do this directly—some systems do not allow the coefficients to lie in a function
field. The standard method for avoiding this difficulty will be explored in Exercise
10. Another question is how to determine which specializations are the bad ones. One
way to attack this problem will be discussed in Exercise 8. Finally, we should mention
that there is a special kind of Groebner basis, called a comprehensive Groebner basis,
which has the property that it remains a Groebner basis under all specializations.
Such Groebner bases are discussed in the appendix to BECKER and WEISPFENNING

(1993).
We will conclude our discussion of the geometry of robots by studying kinematic

singularities and some of the issues they raise in robot motion planning. The following
discussion will use some ideas from advanced multivariable calculus that we have not
encountered before.

Let f : J → C be the function expressing the hand configuration as a function of
the joint settings. In the explicit parametrizations of the space J that we have used,
each component of f is a differentiable function of the variables θi . For example, this
is clearly true for the mapping f for a planar robot with three revolute joints:

f (θ1, θ2, θ3) =
⎛
⎝ l3 cos(θ1 + θ2) + l2 cos θ1

l3 sin(θ1 + θ2) + l2 sin θ1

θ1 + θ2 + θ3

⎞
⎠ .(5)

Hence, we can compute the Jacobian matrix (or matrix of partial derivatives) of f with
respect to the variables θ1, θ2, θ3. We write fi for the i-th component function of f .
Then, by definition, the Jacobian matrix is

J f (θ1, θ2, θ3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ f1

∂θ1

∂ f1

∂θ2

∂ f1

∂θ3

∂ f2

∂θ1

∂ f2

∂θ2

∂ f2

∂θ3

∂ f3

∂θ1

∂ f3

∂θ2

∂ f3

∂θ3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For example, the mapping f in (5) has the Jacobian matrix

J f (θ1, θ2, θ3) =
⎛
⎝−l3 sin(θ1 + θ2) − l2 sin θ1 −l3 sin(θ1 + θ2) 0

l3 cos(θ1 + θ2) + l2 cos θ1 l3 cos(θ1 + θ2) 0
1 1 1

⎞
⎠ .(6)

From the matrix of functions J f , we obtain matrices with constant entries by substi-
tuting particular values j = (θ1, θ2, θ3). We will write J f ( j) for the substituted matrix,
which plays an important role in advanced multivariable calculus. Its key property is
that J f ( j) defines a linear mapping which is the best linear approximation of the func-
tion f at j ∈ J . This means that near j , the function f and the linear function given
by J f ( j) have roughly the same behavior. In this sense, J f ( j) represents the derivative
of the mapping f at j ∈ J .

To define what is meant by a kinematic singularity, we need first to assign dimensions
to the joint spaceJ and the configuration spaceC for our robot, to be denoted by dim(J )
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and dim(C), respectively. We will do this in a very intuitive way. The dimension of J ,
for example, will be simply the number of independent “degrees of freedom” we have
in setting the joints. Each planar joint (revolute or prismatic) contributes 1 dimension
to J . Note that this yields a dimension of 3 for the joint space of the plane robot with
three revolute joints. Similarly, dim(C) will be the number of independent degrees of
freedom we have in the configuration (position and orientation) of the hand. For our
planar robot, this dimension is also 3.

In general, suppose we have a robot with dim(J ) = m and dim(C) = n. Then dif-
ferentiating f as before, we will obtain an n × m Jacobian matrix of functions. If we
substitute in j ∈ J , we get the linear map J f ( j) : m → n that best approximates f
near j . An important invariant of a matrix is its rank, which is the maximal number of
linearly independent columns (or rows). The exercises will review some of the prop-
erties of the rank. Since J f ( j) is an n × m matrix, its rank will always be less than or
equal to min(m, n). For instance, consider our planar robot with three revolute joints
and l2 = l3 = 1. If we let j = (0, π

2
, π

3
), then formula (6) gives us

J f

(
0,

π

2
,
π

3

)
=

⎛
⎝−1 −1 0

1 0 0
1 1 1

⎞
⎠ .

This matrix has rank exactly 3 (the largest possible in this case).
We say that J f ( j) has maximal rank if its rank is min(m, n) (the largest possible

value), and, otherwise, J f ( j) has deficient rank. When a matrix has deficient rank, its
kernel is larger and image smaller than one would expect (see Exercise 14). Since J f ( j)
closely approximates f, J f ( j) having deficient rank should indicate some special or
“singular” behavior of f itself near the point j . Hence, we introduce the following
definition.

Definition 1. A kinematic singularity for a robot is a point j ∈ J such that J f ( j)
has rank strictly less than min(dim(J ), dim(C)).

For example, the kinematic singularities of the 3-revolute joint robot occur exactly
when the matrix (6) has rank ≤2. For square n × n matrices, having deficient rank is
equivalent to the vanishing of the determinant. We have

0 = det(J f ) = sin(θ1 + θ2) cos θ1 − cos(θ1 + θ2) sin θ1

= sin θ2

if and only if θ2 = 0 or θ2 = π . Note that θ2 = 0 corresponds to a position in which
segment 3 extends past segment 2 along the positive x2-axis, whereas θ2 = π corre-
sponds to a position in which segment 3 is folded back along segment 2. These are
exactly the two special configurations we found earlier in which there are not exactly
two joint settings yielding a particular hand configuration.

Kinematic singularities are essentially unavoidable for planar robot arms with three
or more revolute joints.
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Proposition 2. Let f : J → C be the configuration mapping for a planar robot with
n ≥ 3 revolute joints. Then there exist kinematic singularities j ∈ J .

Proof. By Exercise 7 of §2, we know that f has the form

f (θ1, . . . , θn) =

⎛
⎜⎜⎝

∑n−1
i=1 li+1 cos

(∑i
j=1 θ j

)
∑n−1

i=1 li+1 sin
(∑i

j=1 θ j

)
∑n

i=1 θi

⎞
⎟⎟⎠ .

Hence, the Jacobian matrix J f will be the 3 × n matrix⎛
⎜⎜⎝

− ∑n−1
i=1 li+1 sin

(∑i
j=1 θ j

)
− ∑n−1

i=2 li+1 sin
(∑i

j=1 θ j

)
. . . −ln sin(θn−1) 0∑n−1

i=1 li+1 cos
(∑i

j=1 θ j

) ∑n−1
i=2 li+1 cos

(∑i
j=1 θ j

)
. . . ln cos(θn−1) 0

1 1 . . . 1 1

⎞
⎟⎟⎠.

Since we assume n ≥ 3, by the definition, a kinematic singularity is a point where the
rank of J f is ≤ 2. If j ∈ J is a point where all θi ∈ {0, π}, then every entry of the first
row of J f ( j) is zero. Hence, rank J f ( j) ≤ 2 for those j . �

Descriptions of the possible motions of robots such as the ones we have devel-
oped are used in an essential way in planning the motions of the robot needed to
accomplish the tasks that are set for it. The methods we have sketched are suitable
(at least in theory) for implementation in programs to control robot motion automat-
ically. The main goal of such a program would be to instruct the robot what joint
setting changes to make in order to take the hand from one position to another. The
basic problems to be solved here would be first, to find a parametrized path c(t) ∈ C
starting at the initial hand configuration and ending at the new desired configuration,
and second, to find a corresponding path j(t) ∈ J such that f ( j(t)) = c(t) for all t .
In addition, we might want to impose extra constraints on the paths used such as the
following:
1. If the configuration space path c(t) is closed (i.e., if the starting and final configura-

tions are the same), we might also want path j(t) to be a closed path. This would be
especially important for robots performing a repetitive task such as making a certain
weld on an automobile body. Making certain the joint space path is closed means
that the whole cycle of joint setting changes can simply be repeated to perform the
task again.

2. In any real robot, we would want to limit the joint speeds necessary to perform the
prescribed motion. Overly fast (or rough) motions could damage the mechanisms.

3. We would want to do as little total joint movement as possible to perform each
motion.
Kinematic singularities have an important role to play in motion planning. To see the

undesirable behavior that can occur, suppose we have a configuration space path c(t)
such that the corresponding joint space path j(t) passes through or near a kinematic
singularity. Using the multivariable chain rule, we can differentiate c(t) = f ( j(t)) with
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respect to t to obtain

c′(t) = J f ( j(t)) · j ′(t).(7)

We can interpret c′(t) as the velocity of our configuration space path, whereas j ′(t) is
the corresponding joint space velocity. If at some time t0 our joint space path passes
through a kinematic singularity for our robot, then, because J f ( j(t0)) is a matrix of
deficient rank, equation (7) may have no solution for j ′(t0), which means there may be
no smooth joint paths j(t) corresponding to configuration paths that move in certain
directions. As an example, consider the kinematic singularities with θ2 = π for our
planar robot with three revolute joints. If θ1 = 0, then segments 2 and 3 point along the
x1-axis:

segment 1

At a Kinematic Singularity

θ 1 = 0
segment 2

segment 3 θ 2 = π Can the hand move
in the x1-direction?

With segment 3 folded back along segment 2, there is no way to move the hand in
the x1-direction. More precisely, suppose that we have a configuration path such that
c′(t0) is in the direction of the x1-axis. Then, using formula (6) for J f , equation (7)
becomes

c′(t0) = J f (t0) · j ′(t0) =
⎛
⎝ 0 0 0

0 −1 0
1 1 1

⎞
⎠ · j ′(t0).

Because the top row of J f (t0) is identically zero, this equation has no solution for j ′(t0)
since we want the x1 component of c′(t0) to be nonzero. Thus, c(t) is a configuration
path for which there is no corresponding smooth path in joint space. This is typical of
what can go wrong at a kinematic singularity.

For j(t0) near a kinematic singularity, we may still have bad behavior since J f ( j(t0))
may be close to a matrix of deficient rank. Using techniques from numerical linear
algebra, it can be shown that in (7), if J f ( j(t0)) is close to a matrix of deficient rank,
very large joint space velocities may be needed to achieve a small configuration space
velocity. For a simple example of this phenomenon, again consider the kinematic
singularities of our planar robot with 3 revolute joints with θ2 = π (where segment 3
is folded back along segment 2). As the diagram on the next page suggests, in order to
move from position A to position B, both near the origin, a large change in θ1 will be
needed to move the hand a short distance.
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Δθ 1

Δx1

Near a Kinematic Singularity

To avoid undesirable situations such as this, care must be taken in specifying the
desired configuration space path c(t). The study of methods for doing this in a system-
atic way is an active field of current research in robotics, and unfortunately beyond the
scope of this text. For readers who wish to pursue this topic further, a standard basic
reference on robotics is the text by PAUL (1981). The survey by BUCHBERGER (1985)
contains another discussion of Groebner basis methods for the inverse kinematic prob-
lem. A readable introduction to much of the more recent work on the inverse kinematic
problem and motion control, with references to the original researach papers, is given
in BAILLIEUL ET AL. (1990).

EXERCISES FOR §3

1. Consider the specialization of the Groebner basis (2) to the case l2 = l3 = 1.

a. First, substitute l2 = l3 = 1 directly into (2) and simplify.

b. Now, set l2 = l3 = 1 in (1) and compute a Groebner basis for the “specialized” ideal

generated by (1), again using lex order with c2 > s2 > c1 > s1. Compare with your

results from part (a) (Your results should be the same.)

2. This exercise studies the geometry of the planar robot with three revolute joints discussed

in the text with the dimensions specialized to l2 = l3 = 1.

a. Draw a diagram illustrating the two solutions of the inverse kinematic problem for the

robot in the general case a �= 0, a2 + b2 �= 4. Why is c2 independent of s1 here? Hint:

What kind of quadrilateral is formed by the segments of the robot in the two possible

settings to place the hand at (a, b)? How are the two values of θ2 related?

b. By drawing a diagram, or otherwise, explain the meaning of the two solutons of (4) in the

case a = 0. In particular, explain why it is reasonable that s1 has only one value. Hint:

How are the two values of θ1 in your diagram related?

3. Consider the robot arm discussed in the text with l2 = l3 = 1. Set a = b = 0 in (1) and

recompute a Groebner basis for the ideal. How is this basis different from the bases (3) and

(4)? How does this difference explain the properties of the kinematic singularity at (0, 0)?

4. In this exercise, you will study the geometry of the robot discussed in the text when l2 �= l3.

a. Set l2 = 1, l3 = 2 and solve the system (2) for s1, c1, s2, c2. Interpret your results geo-

metrically, identifying and explaining all special cases. How is this case different from

the case l2 = l3 = 1 done in the text?

b. Now, set l2 = 2, l3 = 1 and answer the same questions as in part (a).
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As we know from the examples in the text, the form of a Groebner basis for an ideal
can change if symbolic parameters appearing in the coefficients take certain special
values. In Exercises 5–9, we will study some further examples of this phenomenon and
prove some general results.

5. We begin with another example of how denominators in a Groebner basis can cause problems

under specialization. Consider the ideal I = 〈 f, g〉, where f = x2 − y, g = (y − t x)(y −
t) = −t xy + t2x + y2 − t y, and t is a symbolic parameter. We will use lex order with x > y.

a. Compute a reduced Groebner basis for I in (t)[x, y]. What polynomials in t appear in

the denominators in this basis?

b. Now set t = 0 in f, g and recompute a Groebner basis. How is this basis different from

the one in part (a)? What if we clear denominators in the basis from part a and set t = 0?

c. How do the points in the variety V(I ) ⊂ 2 depend on the choice of t ∈ . Is it

reasonable that t = 0 is a special case?

d. The first step of Buchberger’s algorithm to compute a Groebner basis for I would be to

compute the S-polynomial S( f, g). Compute this S-polynomial by hand in (t)[x, y].

Note that the special case t = 0 is already distinguished at this step.

6. This exercise will explore a more subtle example of what can go wrong during a specializa-

tion. Consider the ideal I = 〈x + t y, x + y〉 ⊂ (t)[x, y], where t is a symbolic parameter.

We will use lex order with x > y.

a. Show that {x, y} is a reduced Groebner basis of I . Note that neither the original basis

nor the Groebner basis have any denominators.

b. Let t = 1 and show that {x + y} is a Groebner basis for the specialized ideal I ⊂ [x, y].

c. To see why t = 1 is special, express the Groebner basis {x, y} in terms of the original

basis {x + t y, x + y}. What denominators do you see? In the next problem, we will

explore the general case of what is happening here.

7. In this exercise, we will derive a condition under which the form of a Groebner basis does
not change under specialization. Consider the ideal

I = 〈 fi (t1, . . . , tm, x1, . . . , xn) : 1 ≤ i ≤ s〉
in k(t1, . . . , tm)[x1, . . . , xn] and fix a monomial order. We think of t1, . . . , tm as symbolic

parameters appearing in the coefficients of f1, . . . , fs . By dividing each fi by its leading

coefficient [which lies in k(t1, . . . , tm)], we may assume that the leading coefficients of the

fi are all equal to 1. Then let {g1, . . . , gt } be a reduced Groebner basis for l. Thus the

leading coefficients of the gi are also 1. Finally, let (t1, . . . , tm) �→ (a1, . . . , am) ∈ km be a

specialization of the parameters such that none of the denominators of the fi or gi vanish at

(a1, . . . , am).

a. If we use the division algorithm to find Ai j ∈ k(t1, . . . , tm)[x1, . . . , xn] such that

fi =
t∑

j=1

Ai j g j ,

then show that none of the denominators of Ai j vanish at (a1, . . . , am).

b. We also know that g j can be written

g j =
s∑

i=1

Bji fi ,

for some Bi j ∈ k(t1, . . . , tm)[x1, . . . , xn]. As Exercise 6 shows, the Bji may introduce

new denominators. So assume, in addition, that none of the denominators of the Bji
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vanish under the specialization (t1, . . . , tm) �→ (a1, . . . , am). Let I denote the ideal in

k[x1, . . . , xn] generated by the specialized fi . Under these assumptions, prove that the

specialized g j form a basis of I .

c. Show that the specialized g j form a Groebner basis for I . Hint: The monomial order used

to compute I only deals with terms in the variables x j . The parameters t j are “constants”

as far as the ordering is concerned.

d. Let d1, . . . , dM ∈ k[t1, . . . , tm] be all denominators that appear among fi , g j , and Bji ,

and let W = V(d1 · d2 · · · dM ) ⊂ km . Conclude that the g j remain a Groebner basis for

the fi under all specializations (t1, . . . , tm) �→ (a1, . . . , am) ∈ km − W .

8. We next describe an algorithm for finding which specializations preserve a Groebner basis.

We will use the notation of Exercise 7. Thus, we want an algorithm for finding the denomi-

nators d1, . . . , dM appearing in the fi , g j , and Bji . This is easy to do for the fi and g j , but the

Bji are more difficult. The problem is that since the fi are not a Groebner basis, we cannot

use the division algorithm to find the Bji . Fortunately, we only need the denominators. The

idea is to work in the ring k[t1, . . . , tm, x1, . . . , xn]. If we multiply the fi and g j by suitable

polynomials in k[t1, . . . , tm], we get

f̃i , g̃ j ∈ k[t1, . . . , tm, x1, . . . , xn].

Let I ⊂ k[t1, . . . , tm, x1, . . . , xn] be the ideal generated by the f̃i .

a. Suppose g j = ∑s
i=1 Bji fi in k(t1, . . . , tm)[x1, . . . , xn] and let d ∈ k[t1, . . . , tm] be a

polynomial that clears all denominators for the g j , the fi , and the Bji . Then prove that

d ∈ ( Ĩ : g̃ j ) ∩ k[t1, . . . , tm],

where I : g̃ j is the ideal quotient as defined in §4 of Chapter 4.

b. Give an algorithm for computing ( Ĩ : g̃ j ) ∩ k[t1, . . . , tm] and use this to describe an

algorithm for finding the subset W ⊂ km described in part (d) of Exercise 7.

9. The algorithm described in Exercise 8 can lead to lengthy calculations which may be too

much for some computer algebra systems. Fortunately, quicker methods are available in

some cases. Let fi , g j ∈ k(t1, . . . , tm)[x1, . . . , xn] be as in Exercises 7 and 8, and suppose

we suspect that the g j will remain a Groebner basis for the fi under all specializations where

the denominators of the fi and g j do not vanish. How can we check this quickly?

a. Let d ∈ k[t1, . . . , tm] be the least common multiple of all denominators in the fi and g j

and let f̃i , g̃ j ∈ k[t1, . . . , tm, x1, . . . , xn] be the polynomials we get by clearing denomi-

nators. Finally, let I be the ideal in k[t1, . . . , tm, x1, . . . , xn] generated by the f̃i . If dg̃ j ∈ Ĩ
for all j , then prove that specialization works for all (t1, . . . , tm) �→ (a1, . . . , am) ∈
km − V(d).

b. Describe an algorithm for checking the criterion given in part a. For efficiency, what

monomial order should be used?

c. Apply the algorithm of part (b) to equations (1) in the text. This will prove that (2)

remains a Groebner basis for (1) under all specializations where l2 �= 0, l3 �= 0, a �= 0,

and a2 + b2 �= 0.

10. In this exercise, we will learn how to compute a Groebner basis for an ideal in

k(t1, . . . , tm)[x1, . . . , xn] by working in the polynomial ring k[t1, . . . , tm, x1, . . . , xn]. This

is useful when computing Groebner bases using computer algebra systems that won’t allow

the coefficients to lie in a function field. The first step is to fix a term order such that any

monomial involving one of the xi ’s is greater than all monomials in t1, . . . , tm alone. For

example, one could use a product order or lex order with x1 > · · · > xn > t1 > · · · > tn .
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a. If I is an ideal in k(t1, . . . , tm)[x1, . . . , xn], show that I can be written in the form

I = 〈 fi (t1, . . . , tm, x1, . . . , xn) : 1 ≤ i ≤ s〉,

where each fi ∈ k[t1, . . . , tm, x1, . . . , xn].

b. Now let Ĩ be the ideal in k[t1, . . . , tm, x1, . . . , xn]. generated by f1, . . . , fs , and let

g1, . . . , gt be a reduced Groebner basis for Ĩ with respect to the above term order. If any

of the gi lie in k[t1, . . . , tn] show that I = k(t1, . . . , tm)[x1, . . . , xn].

c. Let g1, . . . , gt be the Groebner basis of Ĩ from part b, and assume that none of the gi lie

in k[t1, . . . , tm]. Then prove that g1, . . . , gt are a Groebner basis for I (using the term

order induced on monomials in x1, . . . , xn).

11. Consider the planar robot with two revolute joints and one prismatic joint described in

Exercise 4 of §2.

a. Given a desired hand position and orientation, set up a system of equations as in (1) of this

section whose solutions give the possible joint settings to reach that hand configuration.

Take the length of segment 2 to be 1.

b. Using a computer algebra system, solve your equations by computing a Groebner basis

for the ideal generated by the equations from part (a) with respect to a suitable lex order.

Note: Some experimentation may be necessary to find a reasonable variable order.

c. What is the solution of the inverse kinematic problem for this robot. That is, which hand

positions and orientations are possible? How many different joint settings yield a given

hand configuration? (Do not forget that the setting of the prismatic joint is limited to a

finite interval in [0, m3] ⊂ .)

d. Does this robot have any kinematic singularities according to Definition 1? If so, describe

them.

12. Consider the planar robot with three joints and one prismatic joint that we studied in

Example 2 of §2.

a. Given a desired hand position and orientation, set up a system of equations as in (1) of this

section whose solutions give the possible joint settings to reach that hand configuration.

Assume that segments 2 and 3 have length 1, and that segment 4 varies in length between

1 and 2. Note: Your system of equations for this robot should involve the hand orientation.

b. Solve your equations by computing a Groebner basis for the ideal generated by your

equations with respect to a suitable lex order. Note: Some experimentation may be

necessary to find a reasonable variable order. The “wrong” variable order can lead to a

completely intractable problem in this example.

c. What is the solution of the inverse kinematic problem for this robot? That is, which hand

positions and orientations are possible? How does the set of possible hand orientations

vary with the position? (Do not forget that the setting l4 of the prismatic joint is limited

to the finite interval in [1, 2] ⊂ .)

d. How many different joint settings yield a given hand configuration in general? Are these

special cases?

e. Does this robot have any kinematic singularities according to Definition 1? If so, describe

the corresponding robot configurations and relate them to part (d).

13. Consider the 3-dimensional robot with two “spin” joints from Exercise 8 of §2.

a. Given a desired hand position and orientation, set up a system of equations as in (1) of this

section whose solutions give the possible joint settings to reach that hand configuration.

Take the length of segment 2 to be 4, and the length of segment 3 to be 2, if you like.

b. Solve your equations by computing a Groebner basis for the ideal generated by your

equations with respect to a suitable lex order. Note: In this case there will be an element
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of the Groebner basis that depends only on the hand position coordinates. What does this

mean geometrically? Is your answer reasonable in terms of the geometry of this robot?

c. What is the solution of the inverse kinematic problem for this robot? That is, which hand

positions and orientations are possible?

d. How many different joint settings yield a given hand configuration in general? Are these

special cases?

e. Does this robot have any kinematic singularities according to Definition 1?

14. Let A be an m × n matrix with real entries. We will study the rank of A, which is the

maximal number of linearly independent columns (or rows) in A. Multiplication by A gives

a linear map L A : n → m , and from linear algebra, we know that the rank of A is the

dimension of the image of L A. As in the text, A has maximal rank if its rank is min(m, n).

To understand what maximal rank means, there are three cases to consider.

a. If m = n, show that A has maximal rank ⇔ det(A) �= 0 ⇔ L A is an isomorphism of

vector spaces.

b. If m < n, show that A has maximal rank ⇔ the equation A · x = b has a solution for all

b ∈ m ⇔ L A is a surjective (onto) mapping.

c. If m > n, show that A has maximal rank ⇔ the equation A · x = b has at most one

solution for all b ∈ m ⇔ L A is an injective (one-to-one) mapping.

15. A robot is said to be kinematically redundant if the dimension of its joint space J is larger
than the dimension of its configuration space C.

a. Which of the robots considered in this section (in the text and in Exercises 11–13 above)

are kinematically redundant?

b. (This part requires knowledge of the Implicit Function Theorem.) Suppose we have a

kinematically redundant robot and j ∈ J is not a kinematic singularity. What can be

said about the inverse image f −1( f ( j)) in J ? In particular, how many different ways

are there to put the robot in the configuration given by f ( j)?

16. Verify the chain rule formula (7) explicitly for the planar robot with three revolute joints.

Hint: Substitute θi = θi (t) and compute the derivative of the configuration space path

f (θ1(t), θ2(t), θ3(t)) with respect to t .

§4 Automatic Geometric Theorem Proving

The geometric descriptions of robots and robot motion we studied in the first three
sections of this chapter were designed to be used as tools by a control program to help
plan the motions of the robot to accomplish a given task. In the process, the control
program could be said to be “reasoning” about the geometric constraints given by the
robot’s design and its environment and to be “deducing” a feasible solution to the given
motion problem. In this section and in the next, we will examine a second subject
which has some of the same flavor—automated geometric reasoning in general. We
will give two algorithmic methods for determining the validity of general statements
in Euclidean geometry. Such methods are of interest to researchers both in artificial
intelligence (AI) and in geometric modeling because they have been used in the design
of programs that, in effect, can prove or disprove conjectured relationships between,
or theorems about, plane geometric objects.

Few people would claim that such programs embody an understanding of the meaning
of geometric statements comparable to that of a human geometer. Indeed, the whole
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question of whether a computer is capable of intelligent behavior is one that is still
completely unresolved. However, it is interesting to note that a number of new (that
is, apparently previously unknown) theorems have been verified by these methods. In
a limited sense, these “theorem provers” are capable of “reasoning” about geometric
configurations, an area often considered to be solely the domain of human intelligence.

The basic idea underlying the methods we will consider is that once we introduce
Cartesian coordinates in the Euclidean plane, the hypotheses and the conclusions of a
large class of geometric theorems can be expressed as polynomial equations between
the coordinates of collections of points specified in the statements. Here is a simple but
representative example.

Example 1. Let A, B, C, D be the vertices of a parallelogram in the plane, as in the
figure below.

A B

C D

N

It is a standard geometric theorem that the two diagonals AD and BC of any paral-
lelogram intersect at a point (N in the figure) which bisects both diagonals. In other
words, AN = DN and B N = C N , where, as usual, XY denotes the length of the line
segment XY joining the two points X and Y . The usual proof from geometry is based
on showing that the triangles �ANC and �B N D are congruent. See Exercise 1.

To relate this theorem to algebraic geometry, we will show how the configuration of
the parallelogram and its diagonals (the hypotheses of the theorem) and the statement
that the point N bisects the diagonals (the conclusion of the theorem) can be expressed
in polynomial form.

The properties of parallelograms are unchanged under translations and rotations in
the plane. Hence, we may begin by translating and rotating the parallelogram to place it
in any position we like, or equivalently, by choosing our coordinates in any convenient
fashion. The simplest way to proceed is as follows. We place the vertex A at the origin
and align the side AB with the horizontal coordinate axis. In other words, we can take
A = (0, 0) and B = (u1, 0) for some u1 �= 0 ∈ . In what follows we will think of
u1 as an indeterminate or variable whose value can be chosen arbitrarily in − {0}.
The vertex C of the parallelogram can be at any point C = (u2, u3), where u2, u3 are
new indeterminates independent of u1, and u3 �= 0. The remaining vertex D is now
completely determined by the choice of A, B, C .
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It will always be true that when constructing the geometric configuration described
by a theorem, some of the coordinates of some points will be arbitrary, whereas the
remaining coordinates of points will be determined (possibly up to a finite number of
choices) by the arbitrary ones. To indicate arbitrary coordinates, we will consistently
use variables ui , whereas the other coordinates will be denoted x j . It is important to
note that this division of coordinates into two subsets is in no way uniquely specified
by the hypotheses of the theorem. Different constructions of a figure, for example, may
lead to different sets of arbitrary variables and to different translations of the hypotheses
into polynomial equations.

Since D is determined by A, B, and C , we will write D = (x1, x2). One hypothesis
of our theorem is that the quadrilateral ABDC is a parallelogram or, equivalently, that
the opposite pairs of sides are parallel and, hence, have the same slope. Using the slope
formula for a line segment, we see that one translation of these statements is as follows:

AB ‖ C D : 0 = x2 − u3

x1 − u2

,

AC ‖ B D :
u3

u2

= x2

x1 − u1

.

Clearing denominators, we obtain the polynomial equations

h1 = x2 − u3 = 0,
(1)

h2 = (x1 − u1)u3 − x2u2 = 0.

(Below, we will discuss another way to get equations for x1 and x2.)
Next, we construct the intersection point of the diagonals of the parallelogram. Since

the coordinates of the intersection point N are determined by the other data, we write
N = (x3, x4). Saying that N is the intersection of the diagonals is equivalent to saying
that N lies on both of the lines AD and BC , or to saying that the triples A, N , D and
B, N , C are collinear. The latter form of the statement leads to the simplest formulation
of these hypotheses. Using the slope formula again, we have the following relations:

A, N , D collinear :
x4

x3

= u3

x1

,

B, N , C collinear :
x4

x3 − u1

= u3

u2 − u1

.

Clearing denominators again, we have the polynomial equations

h3 = x4x1 − x3u3 = 0,
(2)

h4 = x4(u2 − u1) − (x3 − u1)u3 = 0.

The system of four equations formed from (1) and (2) gives one translation of the
hypotheses of our theorem.

The conclusions can be written in polynomial form by using the distance formula
for two points in the plane (the Pythagorean Theorem) and squaring:

AN = N D : x2
3 + x2

4 = (x3 − x1)2 + (x4 − x2)2,

B N = NC : (x3 − u1)2 + x2
4 = (x3 − u2)2 + (x4 − u3)2.
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Cancelling like terms, the conclusions can be written as

g1 = x2
1 − 2x1x3 − 2x4x2 + x2

2 = 0,
(3)

g2 = 2x3u1 − 2x3u2 − 2x4u3 − u2
1 + u2

2 + u2
3 = 0.

Our translation of the theorem states that the two equations in (3) should hold when
the hypotheses in (1) and (2) hold.

As we noted earlier, different translations of the hypotheses and conclusions of a
theorem are possible. For instance, see Exercise 2 for a different translation of this
theorem based on a different construction of the parallelogram (that is, a different
collection of arbitrary coordinates). There is also a great deal of freedom in the way that
hypotheses can be translated. For example, the way we represented the hypothesis that
ABDC is a parallelogram in (1) is typical of the way a computer program might translate
these statements, based on a general method for handling the hypothesis AB ‖ C D. But
there is an alternate translation based on the observation that, from the parallelogram
law for vector addition, the coordinate vector of the point D should simply be the vector
sum of the coordinate vectors B = (u1, 0) and C = (u2, u3). Writing D = (x1, x2), this
alternate translation would be

h′
1 = x1 − u1 − u2 = 0,

(4)
h′

2 = x2 − u3 = 0.

These equations are much simpler than the ones in (1). If we wanted to design a ge-
ometric theorem-prover that could translate the hypothesis “ABDC is a parallelogram”
directly (without reducing it to the equivalent form “AB ‖ C D and AC ‖ B D”), the
translation (4) would be preferable to (1).

Further, we could also use h′
2 to eliminate the variable x2 from the hypotheses and

conclusions, yielding an even simpler system of equations. In fact, with complicated
geometric constructions, preparatory simplifications of this kind can sometimes be
necessary. They often lead to much more tractable systems of equations.

The following proposition lists some of the most common geometric statements that
can be translated into polynomial equations.

Proposition 2. Let A, B, C, D, E, F be points in the plane. Each of the following
geometric statements can be expressed by one or more polynomial equations:

(i) AB is parallel to C D.
(ii) AB is perpendicular to C D.

(iii) A, B, C are collinear.
(iv) The distance from A to B is equal to the distance from C to D: AB = CD.
(v) C lies on the circle with center A and radius AB.

(vi) C is the midpoint of AB.
(vii) The acute angle � ABC is equal to the acute angle � DEF.

(viii) B D bisects the angle � ABC.
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Proof. General methods for translating statements (i), (iii), and (iv) were illustrated
in Example 1; the general cases are exactly the same. Statement (v) is equivalent
to AC = AB. Hence, it is a special case of (iv) and can be treated in the same way.
Statement (vi) can be reduced to a conjunction of two statements: A, C, B are collinear,
and AC = C B. We, thus, obtain two equations from (iii) and (iv). Finally, (ii), (vii),
and (viii) are left to the reader in Exercise 4. �

Exercise 3 gives several other types of statements that can be translated into polyno-
mial equations. We will say that a geometric theorem is admissible if both its hypothe-
ses and its conclusions admit translations into polynomial equations. There are always
many different equivalent formulations of an admissible theorem; the translation will
never be unique.

Correctly translating the hypotheses of a theorem into a system of polynomial equa-
tions can be accomplished most readily if we think of constructing a figure illustrating
the configuration in question point by point. This is exactly the process used in Example
1 and in the following example.

Example 3. We will use Proposition 2 to translate the following beautiful result into
polynomial equations.

Theorem (The Circle Theorem of Apollonius). Let �ABC be a right triangle in the
plane, with right angle at A. The midpoints of the three sides and the foot of the altitude
drawn from A to BC all lie on one circle.

The theorem is illustrated in the following figure:

A B

C

H

M1

M2

M3

In Exercise 1, you will give a conventional geometric proof of the Circle Theorem. Here
we will make the translation to polynomial form, showing that the Circle Theorem is
admissible. We begin by constructing the triangle. Placing A at (0,0) and B at (u1, 0),
the hypothesis that � C AB is a right angle says C = (0, u2). (Of course, we are taking a
shortcut here; we could also make C a general point and add the hypothesis C A ⊥ AB,
but that would lead to more variables and more equations.)
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Next, we construct the three midpoints of the sides. These points have coordinates
M1 = (x1, 0), M2 = (0, x2), and M3 = (x3, x4). As in Example 1, we use the convention
that u1, u2 are to be arbitrary, where as the x j are determined by the values of u1, u2.
Using part (vi) of Proposition 2, we obtain the equations

h1 = 2x1 − u1 = 0,

h2 = 2x2 − u2 = 0,
(5)

h3 = 2x3 − u1 = 0,

h4 = 2x4 − u2 = 0.

The next step is to construct the point H = (x5, x6), the foot of the altitude drawn from
A. We have two hypotheses here:

AH ⊥ BC : h5 = x5u1 − x6u2 = 0,
(6)

B, H, C collinear : h6 = x5u2 + x6u1 − u1u2 = 0.

Finally, we must consider the statement that M1, M2, M3, H lie on a circle. A gen-
eral collection of four points in the plane lies on no single circle (this is why the
statement of the Circle Theorem is interesting). But three noncollinear points al-
ways do lie on a circle (the circumscribed circle of the triangle they form). Thus,
our conclusion can be restated as follows: if we construct the circle containing the
noncollinear triple M1, M2, M3, then H must lie on this circle also. To apply part (v)
of Proposition 2, we must know the center of the circle, so this is an additional point
that must be constructed. We call the center O = (x7, x8) and derive two additional
hypotheses:

M1 O = M2 O : h7 = (x1 − x7)2 + x2
8 − x2

7 − (x8 − x2)2 = 0,
(7)

M1 O = M3 O : h8 = (x1 − x7)2 + (O − x8)2 − (x3 − x7)2 − (x4 − x8)2 = 0.

Our conclusion is H O = M1 O , which takes the form

g = (x5 − x7)2 + (x6 − x8)2 − (x1 − x7)2 − x2
8 = 0.(8)

We remark that both here and in Example 1, the number of hypotheses and the number
of dependent variables x j are the same. This is typical of properly posed geometric
hypotheses. We expect that given values for the ui , there should be at most finitely
many different combinations of x j satisfying the equations.

We now consider the typical form of an admissible geometric theorem. We will have
some number of arbitrary coordinates, or independent variables in our construction,
denoted by u1, . . . , um . In addition, there will be some collection of dependent vari-
ables x1, . . . , xn . The hypotheses of the theorem will be represented by a collection of
polynomial equations in the ui , x j . As we noted in Example 3, it is typical of a prop-
erly posed theorem that the number of hypotheses is equal to the number of dependent
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variables, so we will write the hypotheses as

h1(u1, . . . , um, x1, . . . , xn) = 0,

...(9)

hn(u1, . . . , um, x1, . . . , xn) = 0.

The conclusions of the theorem will also be expressed as polynomials in the ui , x j . It
suffices to consider the case of one conclusion since if there are more, we can simply
treat them one at a time. Hence, we will write the conclusion as

g(u1, . . . , um, x1, . . . , xn) = 0.

The question to be addressed is: how can the fact that g follows from h1, . . . , hn be
deduced algebraically? The basic idea is that we want g to vanish whenever h1, . . . , hn

do. We observe that the hypotheses (9) are equations that define a variety

V = V(h1, . . . , hn) ⊂ m+n.

This leads to the following definition.

Definition 4. The conclusion g follows strictly from the hypotheses h1, . . . , hn if g ∈
I(V ) ⊂ [u1, . . . , um, x1, . . . , xn], where V = V(h1, . . . , hn).

Although this definition seems reasonable, we will see later that it is too strict. Most
geometric theorems have some “degenerate” cases that Definition 4 does not take into
account. But for the time being, we will use the above notion of “follows strictly.”

One drawback of Definition 4 is that because we are working over , we do not
have an effective method for determining I(V ). But we still have the following useful
criterion.

Proposition 5. If g ∈ √〈h1, . . . , hn〉, then g follows strictly from h1, . . . , hn.

Proof. The hypothesis g ∈ √〈h1, . . . , hn〉 implies that gs ∈ 〈h1, . . . , hn〉 for some s.
Thus, gs = ∑n

i=1 Ai hi , where Ai ∈ [u1, . . . , um, x1, . . . , xn]. Then gs , and, hence,
g itself, must vanish whenever h1, . . . , hn do. �

Note that the converse of this proposition fails whenever
√〈h1, . . . , hn〉 � I(V ),

which can easily happen when working over . Nevertheless, Proposition 5 is
still useful because we can test whether g ∈ √〈h1, . . . , hn〉 using the radical mem-
bership algorithm from Chapter 4, §2. Let Ī = 〈h1, . . . , hn, 1 − yg〉 in the ring

[u1, . . . , um, x1, . . . , xn, y]. Then Proposition 8 of Chapter 4, §2 implies that

g ∈
√

〈h1, . . . , hn〉 ⇐⇒ {1} is the reduced Groebner basis of Ī .

If this condition is satisfied, then g follows strictly from h1, . . . , hn .
If we work over , we can get a better sense of what g ∈ √〈h1, . . . , hn〉 means. By

allowing solutions in , the hypotheses h1, . . . , hn define a variety V ⊂ m+n . Then,
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in Exercise 9, you will use the Strong Nullstellensatz to show that

g ∈
√

〈h1, . . . , hn〉 ⊂ [u1, . . . , um, x1, . . . , xn]

⇐⇒ g ∈ I(V ) ⊂ [u1, . . . , um, x1, . . . , xn].

Thus, g ∈ √〈h1, . . . , hn〉 means that g “follows strictly over ” from h1, . . . , hn .
Let us apply these concepts to an example. This will reveal why Definition 4 is too

strong.

Example 1 (continued). To see what can go wrong if we proceed as above, consider
the theorem on the diagonals of a parallelogram from Example 1, taking as hypotheses
the four polynomials from (1) and (2):

h1 = x2 − u3,

h2 = (x1 − u1)u3 − u2x2,

h3 = x4x1 − x3u3,

h4 = x4(u2 − u1) − (x3 − u1)u3.

We will take as conclusion the first polynomial from (3):

g = x2
1 − 2x1x3 − 2x4x2 + x2

2 .

To apply Proposition 5, we must compute a Groebner basis for

Ī = 〈h1, h2, h3, h4, 1 − yg〉 ⊂ [u1, u2, u3, x1, x2, x3, x4, y].

Surprisingly enough, we do not find {1}. (You will use a computer algebra system in
Exercise 10 to verify this.) Since the statement is a true geometric theorem, we must
try to understand why our proposed method failed in this case.

The reason can be seen by computing a Groebner basis for I = 〈h1, h2, h3, h4〉 in
[u1, u2, u3, x1, x2, x3, x4], using lex order with x1 > x2 > x3 > x4 > u1 > u2 > u3.

The result is

f1 = x1x4 + x4u1 − x4u2 − u1u3,

f2 = x1u3 − u1u3 − u2u3,

f3 = x2 − u3,

f4 = x3u3 + x4u1 − x4u2 − u1u3,

f5 = x4u2
1 − x4u1u2 − 1

2
u2

1u3 + 1

2
u1u2u3,

f6 = x4u1u3 − 1

2
u1u2

3.

The variety V = V(h1, h2, h3, h4) = V( f1, . . . , f6) in 7 defined by the hypotheses is
actually reducible. To see this, note that f2 factors as (x1 − u1 − u2)u3, which implies
that

V = V( f1, x1 − u1 − u2, f3, f4, f5, f6) ∪ V( f1, u3, f3, f4, f5, f6).
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Since f5 and f6 also factor, we can continue this decomposition process. Things simplify
dramatically if we recompute the Groebner basis at each stage, and, in the exercises,
you will show that this leads to the decomposition

V = V ′ ∪ U1 ∪ U2 ∪ U3

into irreducible varieties, where

V ′ = V
(

x1 − u1 − u2, x2 − u3, x3 − u1 + u2

2
, x4 − u3

2

)
,

U1 = V(x2, x4, u3),

U2 = V(x1, x2, u1 − u2, u3),

U3 = V(x1 − u2, x2 − u3, x3u3 − x4u2, u1).

You will also show that none of these varieties are contained in the others, so that
V ′, U1, U2, U3, are the irreducible components of V .

The problem becomes apparent when we interpret the components U1, U2, U3, ⊂ V
in terms of the parallelogram ABDC. On U1 and U2, we have u3 = 0. This is troubling
since u3 was supposed to be arbitrary. Further, when u3 = 0, the vertex C of our
paralleogram lies on AB and, hence we do not have a parallelogram at all. This is a
degenerate case of our configuration, which we intended to rule out by the hypothesis
that ABDC was an honest parallelogram in the plane. Similarly, we have u1 = 0 on U3,
which again is a degenerate configuration.

You can also check that on U1 = V(x2, x4, u3), our conclusion g becomes g =
x2

1 − 2x1x3, which is not zero since x1 and x3 are arbitrary on U1. This explains why
our first attempt failed to prove the theorem. Once we exclude the degenerate cases
U1, U2, U3, the above method easily shows that g vanishes on V ′ . We leave the details
as an exercise.

Our goal is to develop a general method that can be used to decide the validity of a
theorem, taking into account any degenerate special cases that may need to be excluded.
To begin, we use Theorem 2 of Chapter 4, §6 to write V = V(h1, . . . , hn) ⊂ m+n as
a finite union of irreducible varieties,

V = V1 ∪ · · · ∪ Vk .(10)

As we saw in the continuation of Example 1, it may be the case that some polynomial
equation involving only the ui holds on one or more of these irreducible components of
V . Since our intent is that the ui should be essentially independent, we want to exclude
these components from consideration if they are present. We introduce the following
terminology.

Definition 6. Let W be an irreducible variety in the affine space m+n with coordi-
nates u1, . . . , um, x1, . . . , xn. We say that the functions u1, . . . , um are algebraically
independent on W if no nonzero polynomial in the ui alone vanishes identically on W.
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Equivalently, Definition 6 states that u1, . . . , um are algebraically independent on W
if I(W ) ∩ [u1, . . . um] = {0}.

Thus, in the decomposition of the variety V given in (10), we can regroup the
irreducible components in the following way:

V = W1 ∪ · · · ∪ Wp ∪ U1 ∪ · · · ∪ Uq ,(11)

where the ui , are algebraically independent on the components Wi and are not alge-
braically independent on the components U j . Thus, the U j , represent “degenerate”
cases of the hypotheses of our theorem. To ensure that the variables ui are actu-
ally arbitrary in the geometric configurations we study, we should consider only the
subvariety

V ′ = W1 ∪ · · · ∪ Wp ⊂ V .

Given a conclusion g ∈ [u1, . . . , um, x1, . . . , xn] we want to prove, we are not
interested in how g behaves on the degenerate cases. This leads to the following defi-
nition.

Definition 7. The conclusion g follows generically from the hypotheses h1, . . . , hn if
g ∈ I(V ′) ⊂ [u1, . . . , um, x1, . . . , xn], where, as above, V ′ ⊂ m+n is the union of
the components of the variety V = V(h1, . . . , hn) on which the ui are algebraically
independent.

Saying a geometric theorem is “true” in the usual sense means precisely that its
conclusion(s) follow generically from its hypotheses. The question becomes, given a
conclusion g: Can we determine when g ∈ I(V ′)? That is, can we develop a crite-
rion that determines whether g vanishes on every component of V on which the ui

are algebraically independent, ignoring what happens on the possible “degenerate”
components?

Determining the decomposition of a variety into irreducible components is not always
easy, so we would like a method to determine whether a conclusion follows generically
from a set of hypotheses that does not require knowledge of the decomposition (11).
Further, even if we could find V ′, we would still have the problem of computing I(V ′).

Fortunately, it is possible to show that g follows generically from h1, . . . , hn

without knowing the decomposition of V given in (11). We have the following
result.

Proposition 8. In the situation described above, g follows generically from h1, . . . , hn

whenever there is some nonzero polynomial c(u1, . . . , um) ∈ [u1, . . . , um] such that

c · g ∈
√

H ,

where H is the ideal generated by the hypotheses hi in [u1, . . . , um, x1, . . . , xn].

Proof. Let Vj be one of the irreducible components of V ′. Since c · g ∈ √
H , we see

that c · g vanishes on V and, hence, on Vj . Thus, the product c · g is in I(Vj ). But Vj

is irreducible, so that I(Vj ) is a prime ideal by Proposition 3 of Chapter 4, §5. Thus,
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c · g ∈ I(Vj ) implies either c or g is in I(Vj ). We know c /∈ I(Vj ) since no nonzero
polynomial in the ui alone vanishes on this component. Hence, g ∈ I(Vj ), and since
this is true for each component of V ′, it follows that g ∈ I(V ′). �

For Proposition 8 to give a practical way of determining whether a conclusion follows
generically from a set of hypotheses, we need a criterion for deciding when there is
a nonzero polynomial c with c · g ∈ √

H . This is actually quite easy to do. By the
definition of the radical, we know that c · g ∈ √

H if and only if

(c · g)s =
n∑

j=1

A j h j

for some A j ∈ [u1, . . . , um, x1, . . . , xn] and s ≥ 1. If we divide both sides of this
equation by cs , we obtain

gs =
n∑

j=1

A j

cs
h j ,

which shows that g is in the radical of the ideal H̃ generated by h1, . . . , hn over the
ring (u1, . . . , um)[x1, . . . , xn] (in which we allow denominators depending only on

the ui ). Conversely, if g ∈
√

H̃ , then

gs =
n∑

j=1

B j h j ,

where the B j ∈ (u1, . . . , um)[x1, . . . , xn]. If we find a least common denominator c
for all terms in all the B j and multiply both sides by cs (clearing denominators in the
process), we obtain

(c · g)s =
n∑

j=1

B ′
j h j ,

where B ′
j ∈ [u1, . . . , um, x1, . . . , xn] and c depends only on the ui . As a result, c · g ∈√

H . These calculations and the radical membership algorithm from §2 of Chapter 4
establish the following corollary of Proposition 8.

Corollary 9. In the situation of Proposition 8, the following are equivalent:
(i) There is a nonzero polynomial c ∈ [u1, . . . , um] such that c · g ∈ √

H.

(ii) g ∈
√

H̃ , where H̃ is the ideal generated by the h j in (u1, . . . , um)[x1, . . . , xn].
(iii) {1} is the reduced Groebner basis of the ideal

〈h1, . . . , hn, 1 − yg〉 ⊂ (u1, . . . , um)[x1, . . . , xn, y].

If we combine part (iii) of this corollary with Proposition 8, we get an algorithmic
method for proving that a conclusion follows generically from a set of hypotheses. We
will call this the Groebner basis method in geometric theorem proving.
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To illustrate the use of this method, we will consider the theorem on parallelograms
from Example 1 once more. We compute a Groebner basis of 〈h1, h2, h3, h4, 1 − yg〉 in
the ring (u1, u2, u3)[x1, x2, x3, x4, y]. This computation does yield {1} as we expect.
Making u1, u2, u3 invertible by passing to (u1, u2, u3) as our field of coefficients in
effect removes the degenerate cases encountered above, and the conclusion does follow
generically from the hypotheses. Moreover, in Exercise 12, you will see that g itself (and
not some higher power) actually lies in 〈h1, h2, h3, h4〉 ⊂ (u1, u2, u2)[x1, x2, x3, x4].

Note that the Groebner basis method does not tell us what the degenerate cases are.
The information about these cases is contained in the polynomial c ∈ [u1, . . . , um],
for c · g ∈ √

H tells us that g follows from h1, . . . , hn whenever c does not vanish (this
is because c · g vanishes on V ). In Exercise 14, we will give an algorithm for finding c.

Over , we can think of Corollary 9 in terms of the variety V = V(h1, . . . , hn) ⊂
m+n as follows. Decomposing V as in (11), let V ′ ⊂ V be the union of those

components where the ui are algebraically independent. Then Exercise 15 will use the
Nullstellensatz to prove that

∃c �= 0 in [u1, . . . , um] with c · g ∈
√

〈h1, . . . , hn〉 ⊂ [u1, . . . , um, x1, . . . , xu]

⇐⇒ g ∈ I(V ′ ) ⊂ [u1, . . . , um, x1, . . . , xn].

Thus, the conditions of Corollary 9 mean that g “follows generically over ” from the
hypotheses h1, . . . , hn .

This interpretation points out what is perhaps the main limitation of the Groebner
basis method in geometric theorem proving: it can only prove theorems where the
conclusions follow generically over , even though we are only interested in what
happens over . In particular, there are theorems which are true over but not over
[see STURMFELS (1989) for an example]. Our methods will fail for such theorems.

When using Corollary 9, it is often unnecessary to consider the radical of H̃ . In
many cases, the first power of the conclusion is in H̃ already. So most theorem proving
programs in effect use an ideal membership algorithm first to test if g ∈ H̃ , and only
go on to the radical membership test if that initial step fails.

To illustrate this, we continue with the Circle Theorem of Apollonius from Example
3. Our hypotheses are the eight polynomials hi from (5)–(7). We begin by computing
a Groebner basis (using lex order) for the ideal H̃ , which yields

f1 = x1 − u1/2,

f2 = x2 − u2/2,

f3 = x3 − u1/2,

f4 = x4 − u2/2,

f5 = x5 − u1u2
2

u2
1 + u2

2

,(12)

f6 = x6 − u2
1u2

u2
1 + u2

2

,

f7 = x7 − u1/4,

f8 = x8 − u2/4.



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX January 5, 2007 8:15

§4. Automatic Geometric Theorem Proving 303

We leave it as an exercise to show that the conclusion (8) reduces to zero on division
by this Groebner basis. Thus, g itself is in H̃ , which shows that g follows generically
from h1, . . . , h8. Note that we must have either u1 �= 0 or u2 �= 0 in order to solve
for x5 and x6. The equations u1 = 0 and u2 = 0 describe degenerate right “triangles”
in which the three vertices are not distinct, so we certainly wish to rule these cases
out. It is interesting to note, however, that if either u1 or u2 is nonzero, the conclusion
is still true. For instance, if u1 �= 0 but u2 = 0, then the vertices C and A coincide.
From (5) and (6), the midpoints M1 and M3 coincide, M2 coincides with A, and H
coincides with A as well. As a result, there is a circle (infinitely many of them in fact)
containing M1, M2, M3, and H in this degenerate case. In Exercise 16, you will study
what happens when u1 = u2 = 0.

We conclude this section by noting that there is one further subtlety that can occur
when we use this method to prove or verify a theorem. Namely, there are cases where
the given statement of a geometric theorem conceals one or more unstated ”extra”
hypotheses. These may very well not be included when we make a direct translation to
a system of polynomial equations. This often results in a situation where the variety V ′

is reducible or, equivalently, where p ≥ 2 in (11). In this case, it may be true that the
intended conclusion is zero only on some of the reducible components of V ′, so that
any method based on Corollary 9 would fail. We will study an example of this type in
Exercise 17. If this happens, we may need to reformulate our hypotheses to exclude
the extraneous, unwanted components of V ′.

EXERCISES FOR §4

1. This exercise asks you to give geometric proofs of the theorems that we studied in Examples 1

and 3.

a. Give a standard Euclidean proof of the theorem of Example 1. Hint: Show �ANC ∼=
�B N D.

b. Give a standard Euclidean proof of the Circle Theorem of Apollonius from Example 3.

Hint: First show that AB and M2 M3 are parallel.

2. This exercise shows that it is possible to give translations of a theorem based on different

collections of arbitrary coordinates. Consider the parallelogram ABDC from Example 1 and

begin by placing A at the origin.

a. Explain why it is also possible to consider both of the coordinates of D as arbitrary

variables: D = (u1, u2).

b. With this choice, explain why we can specify the coordinates of B as B = (u3, x1). That

is, the x-coordinate of B is arbitrary, but the y-coordinate is determined by the choices

of u1, u2, u3.

c. Complete the translation of the theorem based on this choice of coordinates.

3. Let A, B, C, D, E, F, G, H be points in the plane.

a. Show that the statement AB is tangent to the circle through A, C, D can be expressed

by polynomial equations. Hint: Construct the center of the circle first. Then, what is true

about the tangent and the radius of a circle at a given point?

b. Show that the statement AB · C D = E F · G H can be expressed by one or more poly-

nomial equations.

c. Show that the statement AB
C D = E F

G H can be expressed by one or more polynomial

equations.
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d. The cross ratio of the ordered 4-tuple of distinct collinear points (A, B, C, D) is defined

to be the real number

AC · B D

AD · BC
.

Show that the statement “The cross ratio of (A, B, C, D) is equal to ρ ∈ ” can be

expressed by one or more polynomial equations.

4. In this exercise, you will complete the proof of Proposition 2 in the text.

a. Prove part (ii).

b. Show that if α, β are acute angles, then α = β if and only if tan α = tan β. Use this

fact and part (c) of Exercise 3 to prove part (vii) of Proposition 2. Hint: To compute the

tangent of an angle, you can construct an appropriate right triangle and compute a ratio

of side lengths.

c. Prove part (viii).

5. Let �ABC be a triangle in the plane. Recall that the altitude from A is the line segment

from A meeting the opposite side BC at a right angle. (We may have to extend BC here

to find the intersection point.) A standard geometric theorem asserts that the three altitudes

of a triangle meet at a single point H , often called the orthocenter of the triangle. Give

a translation of the hypotheses and conclusion of this theorem as a system of polynomial

equations.

6. Let �ABC be a triangle in the plane. It is a standard theorem that if we let M1 be the

midpoint of BC, M2 be the midpoint of AC and M3 be the midpoint of AB, then the

segments AM1, B M2 and C M3 meet at a single point M , often called the centroid of the

triangle. Give a translation of the hypotheses and conclusion of this theorem as a system of

polynomial equations.

7. Let �ABC be a triangle in the plane. It is a famous theorem of Euler that the circumcenter
(the center of the circumscribed circle), the orthocenter (from Exercise 5), and the centroid
(from Exercise 6) are always collinear. Translate the hypotheses and conclusion of this

theorem into a system of polynomial equations. (The line containing the three “centers” of

the triangle is called the Euler line of the triangle.)

8. A beautiful theorem ascribed to Pappus concerns two collinear triples of points A, B, C and

A′, B ′, C ′. Let

P = AB ′ ∩ A′ B,

Q = AC ′ ∩ A′C,

R = BC ′ ∩ B ′C

be as in the figure:

A B C

A′
B′

C′

P Q R
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Then it is always the case that P, Q, R are collinear points. Give a translation of the hy-

potheses and conclusion of this theorem as a system of polynomial equations.

9. Given h1, . . . , hn ∈ [u1, . . . , um, x1, . . . , xn], let V = V(h1, . . . , hn) ⊂ m+n . If g ∈
[u1, . . . , um, x1, . . . , xn], the goal of this exercise is to prove that

g ∈
√

〈h1, . . . , hn〉 ⊂ [u1, . . . , um, x1, . . . , xn]

⇐⇒ g ∈ I(V ) ⊂ [u1, . . . , um, x1, . . . , xn].

a. Prove the ⇒ implication.

b. Use the Strong Nullstellensatz to show that if g ∈ I(V ), then there are polynomials

A j ∈ [u1, . . . , um, x1, . . . , xn] such that gs = ∑n
j=1 A j h j for some s ≥ 1.

c. Explain why A j can be written A j = A′
j + i A′′

j , where A′
j , A′′

j are polynomials with real

coefficients. Use this to conclude that gs = ∑n
j=1 a′

j h j , which will complete the proof

of the ⇐ implication. Hint: g and h1, . . . , hn have real coefficients.

10. Verify the claim made in Example 1 that {1} is not the unique reduced Groebner basis for

the ideal I = 〈h1, h2, h3, h4, 1 − yg〉.
11. This exercise will study the decomposition into reducible components of the variety defined

by the hypotheses of the theorem from Example 1.

a. Verify the claim made in the continuation of Example 1 that

V = V( f1, x1 − u1 − u2, f3, . . . , f6) ∪ V( f1, u3, f3, . . . , f6) = V1 ∪ V2.

b. Compute Groebner bases for the defining equations of V1 and V2. Some of the polynomials

should factor and use this to decompose V1 and V2.

c. By continuing this process, show that V is the union of the varieties V ′, U1, U2, U3

defined in the text.

d. Prove that V ′, U1, U2, U3 are irreducible and that none of them are contained in the union

of the others. This shows that V ′, U1, U2, U3 are the reducible components of V .

e. On which irreducible component of V is the conclusion of the theorem valid?

f. Suppose we take as hypotheses the four polynomials in (4) and (2). Is W =
V(h′

1, h′
2, h3, h4) reducible? How many components does it have?

12. Verify the claim made in Example 1 that the conclusion g itself (and not some higher power)

is in the ideal generated by h1, h2, h3, h4 in (u1, u2, u3)[x1, x2, x3, x4].

13. By applying part (iii) of Corollary 9, verify that g follows generically from the h j for each

of the following theorems. What is the lowest power of g which is contained in the ideal H̃
in each case?

a. the theorem on the orthocenter of a triangle (Exercise 5),

b. the theorem on the centroid of a triangle (Exercise 6),

c. the theorem on the Euler line of a triangle (Exercise 7),

d. Pappus’s Theorem (Exercise 8).

14. In this exercise, we will give an algorithm for finding a nonzero c ∈ [u1, . . . , um] such

that c · g ∈ √
H , assuming that such a c exists. We will work with the ideal

H = 〈h1, . . . , hn, 1 − yg〉 ⊂ [u1, . . . , um, x1, . . . , xn, y].

a. Show that the conditions of Corollary 9 are equivalent to H ∩ [u1, . . . , um] �= {0}.
Hint: Use condition (iii) of the corollary.

b. If c ∈ H ∩ [u1, . . . , um], prove that c · g ∈ √
H . Hint: Adapt the argument used in

equations (2)–(4) in the proof of Hilbert’s Nullstellensatz in Chapter 4, §1.

c. Describe an algorithm for computing H ∩ [u1, . . . , um]. For maximum efficiency, what

monomial order should you use?
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Parts (a)–(c) give an algorithm which decides if there is a nonzero c with c · g ∈ √
H and

simultaneously produces the required c. Parts (d) and (e) below give some interesting

properties of the ideal H ∩ [u1, . . . , um].

d. Show that if the conclusion g fails to hold for some choice of u1, . . . , um , then

(u1, . . . , um) ∈ W = V(H ∩ [u1, . . . , um]) ⊂ m . Thus, W records the degenerate

cases where g fails.

e. Show that
√

H ∩ [u1, . . . , um] gives all c’s for which c · g ∈ √
H . Hint: One direction

follows from part (a). If c · g ∈ √
H , note the H contains (c · g)’s and 1 − gy. Now adapt

the argument given in Proposition 8 of Chapter 4, §2 to show that cs ∈ H .

15. As in Exercise 9, suppose that we have h1, . . . , hn ∈ [u1, . . . , um, x1, . . . , xn]. Then

we get V = V(h1, . . . , hn) ⊂ m+n . As we did with V , let V ′ be the union of the

irreducible components of V where u1, . . . , un are algebraically independent. Given

g ∈ [u1, . . . , um, x1, . . . , xn], we want to show that

∃c �= 0 in [u1, . . . , um] with c · g ∈
√

〈h1, . . . , hn〉 ⊂ [u1, . . . , um, x1, . . . , xn]

⇐⇒ g ∈ I(V ′ ) ⊂ [u1, . . . , um, x1, . . . , xn].

a. Prove the ⇒ implication. Hint: See the proof of Proposition 8.

b. Show that if g ∈ I(V ′ ), then there is a nonzero polynomial c ∈ [u1, . . . , um] such that

c · g ∈ I(V ). Hint: Write V = V ′ ∪ U ′
1 ∪ · · · ∪ U ′

q , where u1, . . . , um are algebraically

dependent on each U ′
j . This means there is a nonzero polynomial c j ∈ [u1, . . . , um]

which vanishes on U ′
j .

c. Show that the polynomial c of part b can be chosen to have real coefficients. Hint: If c
is the polynomial obtained from c by taking the complex conjugates of the coefficients,

show that c has real coefficients.

d. Once we have c ∈ [u1, . . . , um] with c · g ∈ I(V ), use Exercise 9 to complete the proof

of the ⇐ implication.

16. This exercise deals with the Circle Theorem of Apollonius from Example 3.

a. Show that the conclusion (8) reduces to 0 on division by the Groebner basis (12) given

in the text.

b. Discuss the case u1 = u2 = 0 in the Circle Theorem. Does the conclusion follow in this

degenerate case?

c. Note that in the diagram in the text illustrating the Circle Theorem, the circle is shown

passing through the vertex A in addition to the three midpoints and the foot of the altitude

drawn from A. Does this conclusion also follow from the hypotheses?

17. In this exercise, we will study a case where a direct translation of the hypotheses of a “true”

theorem leads to extraneous components on which the conclusion is actually false. Let

�ABC be a triangle in the plane. We construct three new points A′, B ′, C’ such that the

triangles �A′ BC, �AB ′C, �ABC ′ are equilateral. The intended construction is illustrated

in the figure on the next page.

Our theorem is that the three line segments AA′, B B ′, CC ′ all meet in a single point

S. (We call S the Steiner point or Fermat point of the triangle. If no angle of the original

triangle was greater than 2π

3
, it can be shown that the three segments AS, BS, C S form the

network of shortest total length connecting the points A, B, C .)

a. Give a conventional geometric proof of the theorem, assuming the construction is done

as in the figure.
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A

C

B′

A′

C′

S

B

b. Now, translate the hypotheses and conclusion of this theorem directly into a set of

polynomial equations.

c. Apply the test based on Corollary 9 to determine whether the conclusion follows gener-

ically from the hypotheses. The test should fail. Note: This computation may require a

great deal of ingenuity to push through on some computer algebra systems. This is a

complicated system of polynomials.

d. (The key point) Show that there are other ways to construct a figure which is consistent

with the hypotheses as stated, but which do not agree with the figure above. Hint: Are

the points A′, B ′, C’ uniquely determined by the hypotheses as stated? Is the statement

of the theorem valid for these alternate constructions of the figure? Use this to explain

why part c did not yield the expected result. (These alternate constructions correspond

to points in different components of the variety defined by the hypotheses.)

e. How can the hypotheses of the theorem be reformulated to exclude the extraneous com-

ponents?

§5 Wu’s Method

In this section, we will study a second commonly used algorithmic method for prov-
ing theorems in Euclidean geometry based on systems of polynomial equations. This
method, introduced by the Chinese mathematician Wu Wen-Tsün, was developed be-
fore the Groebner basis method given in §4. It is also more commonly used than the
Groebner basis method in practice because it is usually more efficient.

Both the elementary version of Wu’s method that we will present, and the more
refined versions, use an interesting variant of the division algorithm for multivariable
polynomials introduced in Chapter 2, §3. The idea here is to follow the one-variable
polynomial division algorithm as closely as possible, and we obtain a result known as
the pseudodivision algorithm. To describe the first step in the process, we consider two
polynomials in the ring k[x1, . . . , xn, y], written in the form

f = cp y p + . . . + c1 y + c0,
(1)

g = dm ym + . . . + d1 y + d0,
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where the coefficients ci , d j are polynomials in x1, . . . , xn . Assume that m ≤ p. Pro-
ceeding as in the one-variable division algorithm for polynomials in y, we can at-
tempt to remove the leading term cp y p in f by subtracting a multiple of g. How-
ever, this is not possible directly unless dm divides cp in k[x1, . . . , xn]. In pseudodi-
vision, we first multiply f by dm to ensure that the leading coefficient is divisible by
dm , then proceed as in one-variable division. We can state the algorithm formally as
follows.

Proposition 1. Let f, g ∈ k[x1, . . . , xn, y] be as in (1) and assume m ≤ p and g �= 0.
(i) There is an equation

ds
m f = qg + r,

where q, r ∈ k[x1, . . . , xn, y], s ≥ 0, and either r = 0 or the degree of r in y is
less than m.

(ii) r ∈ 〈 f, g〉 in the ring k[x1, . . . , xn, y].

Proof. (i) Polynomials q, r satisfying the conditions of the proposition can be con-
structed by the following algorithm, called pseudodivision with respect to y. We use
the notation deg(h, y) for the degree of the polynomial h in the variable y and LC(h, y)
for the leading coefficient of h as a polynomial in y—that is, the coefficient of ydeg(h,y)

in h.

Input: f, g
Output: q, r

r := f ; q := 0
While r �= 0 AND deg (r, y) ≥ m DO

r := dmr − LC(r, y)gydeg(r,y)−m

q := dmq + LC(r, y)ydeg(r,y)−m

Note that if we follow this procedure, the body of the WHILE loop will be executed
at most p − m + 1 times. Thus, the power s in ds

m f = qg + r can be chosen so that
s ≤ p − m + 1. We leave the rest of the proof, and the consideration of whether q, r
are unique, to the reader as Exercise 1.

From ds
m f = qg + r , it follows that r = ds

m f − qg ∈ 〈 f, g〉, which completes the
proof of the proposition. �

The polynomials q, r are known as a pseudoquotient and a pseudoremainder of
f on pseudodivision by g, with respect to the variable y. We will use the notation
Rem( f, g, y) for the pseudoremainder produced by the algorithm given in the proof of
Proposition 1. For example, if we pseudodivide f = x2 y3 − y by g = x3 y − 2 with
respect to y by the algorithm above, we obtain the equation

(x3)3 f = (x8 y2 + 2x5 y + 4x2 − x6)g + 8x2 − 2x6.

In particular, the pseudoremainder is Rem( f, g, y) = 8x2 − 2x6.
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We note that there is a second, “slicker” way to understand what is happening in this
algorithm. The same idea of allowing denominators that we exploited in §4 shows that
pseudodivision is the same as
� ordinary one-variable polynomial division for polynomials in y, with coefficients in

the rational function field K = k(x1, . . . , xn), followed by
� clearing denominators. You will establish this claim in Exercise 2, based on the ob-

servation that the only term that needs to be inverted in division of polynomials in
K [y](K any field) is the leading coefficient dm of the divisor g. Thus, the denomi-
nators introduced in the process of dividing f by g can all be cleared by multiplying
by a suitable power ds

m , and we get an equation of the form ds
m f = qg + r .

In this second form, or directly, pseudodivision can be readily implemented in most
computer algebra systems. Indeed, some systems include pseudodivision as one of the
built-in operations on polynomials.

We recall the situation studied in §4, in which the hypotheses and conclusion of
a theorem in Euclidean plane geometry are translated into a system of polynomials
in variables u1, . . . , um, x1, . . . , xn , with h1, . . . , hn representing the hypotheses and
g giving the conclusion. As in equation (11) of §4, we can group the irreducible
components of the variety V = V(h1, . . . , hn) ⊂ m+n as

V = V ′ ∪ U,

where V ′ is the union of the components on which the ui are algebraically independent.
Our goal is to prove that g vanishes on V ′.

The elementary version of Wu’s method that we will discuss is tailored for the case
where V ′ is irreducible. We note, however, that Wu’s method can be extended to the
more general reducible case also. The main algebraic tool needed (Ritt’s decomposition
algorithm based on characteristic sets for prime ideals) would lead us too far afield,
though, so we will not discuss it. Note that, in practice, we usually do not know in
advance whether V ′ is irreducible or not. Thus, reliable “theorem-provers” based on
Wu’s method should include these more general techniques too.

Our simplified version of Wu’s method uses the pseudodivision algorithm in two
ways in the process of determining whether the equation g = 0 follows from h j = 0.
� Step 1 of Wu’s method uses pseudodivision to reduce the hypotheses to a system of

polynomials f j that are in triangular form in the variables x1, . . . , xn . That is, we
seek

f1 = f1(u1, . . . , um, x1),

f2 = f2(u1, . . . , um, x1, x2),
(2) ...

fn = fn(u1, . . . , um, x1, . . . , xn)

such that V( f1, . . . , fn) again contains the irreducible variety V ′, on which the ui

are algebraically independent.
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� Step 2 of Wu’s method uses successive pseudodivision of the conclusion g with
respect to each of the variables x j to determine whether g ∈ I(V ′). We compute

Rn−1 = Rem(g, fn, xn),

Rn−2 = Rem(Rn−1, fn−1, xn−1),

...(3)

R1 = Rem(R2, f2, x2),

R0 = Rem(R1, f1, x1).

� Then R0 = 0 implies that g follows from the hypotheses h j under an additional
condition, to be made precise in Theorem 4.
To explain how Wu’s method works, we need to explain each of these steps, beginning

with the reduction to triangular form.

Step 1. Reduction to Triangular Form
In practice, this reduction can almost always be accomplished using a procedure very
similar to Gaussian elimination for systems of linear equations. We will not state
any general theorems concerning our procedure, however, because there are some
exceptional cases in which it might fail. (See the comments in 3 and 4 below.) A
completely general procedure for accomplishing this kind of reduction may be found
in CHOU (1988).

The elementary version is performed as follows. We work one variable at a time,
beginning with Xn .
1. Among the h j , find all the polynomials containing the variable xn , Call the set of such

polynomials S. (If there are no such polynomials, the translation of our geometric
theorem is most likely incorrect since it would allow xn to be arbitrary.)

2. If there is only one polynomial in S, then we can rename the polynomials, making
that one polynomial f ′

n , and our system of polynomials will have the form

f ′
1 = f ′

1(u1, . . . , um, x1, . . . , xn−1),

...(4)

f ′
n−1 = f ′

n−1(u1, . . . , um, x1, . . . , xn−1),

f ′
n = f ′

n(u1, . . . , um, x1, . . . , xn).

3. If there is more than one polynomial in S, but some element of S has degree 1 in
xn , then we can take f ′

n as that polynomial and replace all the other hypotheses in
S by their pseudoremainders on division by f ′

n with respect to xn . [One of these
pseudoremainders could conceivably be zero, but this would mean that f ′

n would
divide dsh, where h is one of the other hypothesis polynomials and d = LC( f ′

n, xn).
This is unlikely since V ′ is assumed to be irreducible.] We obtain a system in the
form (4) again. By part (ii) of Proposition 1, all the f ′

j are in the ideal generated by
the h j .



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX January 5, 2007 8:15

§5. Wu’s Method 311

4. If there are several polynomials in S, but none has degree 1, then we repeat the steps:
a. pick a, b ∈ S where 0 < deg(b, xn) ≤ deg(a, xn);
b. compute the pseudoremainder r = Rem(a, b, xn);
c. replace S by (S − {a}) ∪ {r} (leaving the hypotheses not in S unchanged),
until eventually we are reduced to a system of polynomials of the form (4) again.
Since the degree in xn are reduced each time we compute a pseudoremainder, we
will eventually remove the xn terms from all but one of our polynomials. Moreover,
by part (ii) of Proposition 1, each of the resulting polynomials is contained in the
ideal generated by the h j . Again, it is conceivable that we could obtain a zero
pseudoremainder at some stage here. This would usually, but not always, imply
reducibility, so it is unlikely. We then apply the same process to the polynomials
f ′
1, . . . , f ′

n−1 in (4) to remove the xn−1 terms from all but one polynomial. Continuing
in this way, we will eventually arrive at a system of equations in triangular form as
in (2) above.
Once we have the triangular equations, we can relate them to the original hypotheses

as follows.

Proposition 2. Suppose that f1 = · · · = fn = 0 are the triangular equations obtained
from h1 = · · · = hn = 0 by the above reduction algorithm. Then

V ′ ⊂ V ⊂ V( f1, . . . , fn).

Proof. As we noted above, all the f j are contained in the ideal generated by the h j . Thus,
〈 f1, . . . , fn〉 ⊂ 〈h1, . . . , hn〉 and hence, V = V(h1, . . . , hn) ⊂ V( f1, . . . , fn) follows
immediately. Since V ′ ⊂ V , we are done. �

Example 3. To illustrate the operation of this triangulation procedure, we will apply
it to the hypotheses of the Circle Theorem of Apollonius from §4. Referring back to
(5)–(7) of §4, we have

h1 = 2x1 − u1,

h2 = 2x2 − u2,

h3 = 2x3 − u1,

h4 = 2x4 − u2,

h5 = u2x5 + u1x6 − u1u2,

h6 = x1x5 − u2x6,

h7 = x2
1 − x2

2 − 2x1x7 + 2x2x8,

h8 = x2
1 − 2x1x7 − x2

3 + 2x3x7 − x2
4 + 2x4x8.

Note that this system is very nearly in triangular form in the x j . In fact, this is often
true, especially in the cases where each step of constructing the geometric configuration
involves adding one new point.
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At the first step of the triangulation procedure, we see that h7, h8 are the only
polynomials in our set containing x8. Even better, h8 has degree 1 in x8. Hence, we
proceed as in step 3 of the triangulation procedure, making f8 = h8, and replacing
h7 by

f7 = Rem(h7, h8, x8)

= (2x1x2 − 2x2x3 − 2x1x4)x7 − x2
1 x2 + x2x2

3 + x2
1 x4 − x2

2 x4 + x2x2
4 .

As this example indicates, we often ignore numerical constants when computing re-
mainders. Only f7 contains x7, so nothing further needs to be done there. Both h6 and
h5 contain x6, but we are in the situation of step 3 in the procedure again. We make
f6 = h6 and replace h5 by

f5 = Rem(h5, h6, x6) = (u2
1 + u2

2)x5 − u1u2
2.

The remaining four polynomials are in triangular form already, so we take fi = hi for
i = 1, 2, 3, 4.

Step 2. Successive Pseudodivision
The key step in Wu’s method is the successive pseudodivsion operation given in equa-
tion (3) computing the final remainder R0. The usefulness of this operation is indicated
by the following theorem.

Theorem 4. Consider the set of hypotheses and the conclusion for a geometric theo-
rem. Let R0 be the final remainder computed by the successive pseudodivision of g as
in (3), using the system of polynomials f1, . . . , fn in triangular form (2). Let d j be the
leading coefficient of f j as a polynomial in x j (so d j is a polynomial in u1, . . . , um

and xi , . . . , x j−1). Then:
(i) There are nonnegative integers s1, . . . , sn and polynomials A1, . . . , An in the ring

[u1, . . . , um, x1, . . . , xn] such that

ds1

1 · · · dsn
n g = A1 f1 + · · · + An fn + R0.

(ii) If R0 is the zero polynomial, then g is zero at every point of V ′ − V(d1d2 · · · dn) ⊂
m+n.

Proof. Part (i) follows by applying Proposition 1 repeatedly. Pseudodividing g by fn

with respect to xn , we have

Rn−1 = dsn
n g − qn fn.

Hence, when we pseudodivide again with respect to xn−1:

Rn−2 = dsn−1

n−1(dsn
n g − qn fn) − qn−1 fn−1

= dsn−1

n−1dsn
n g − qn−1 fn−1 − dsn−1

n−1qn fn.
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Continuing in the same way, we will eventually obtain an expression of the form

R0 = ds1

1 · · · dsn
n g − (A1 f1 + · · · + An fn),

which is what we wanted to show.
(ii) By the result of part (i), if R0 = 0, then at every point of the variety W =

V( f1, . . . , fn), either g or one of the d
s j

j is zero. By Proposition 2, the variety V ′ is
contained in W , so the same is true on V ′. The assertion follows. �

Even though they are not always polynomial relations in the ui alone, the equations
d j = 0, where d j is the leading coefficient of f j , can often be interpreted as loci defining
degenerate special cases of our geometric configuration.

Example 3 (continued). For instance, let us complete the application of Wu’s method
to the Circle Theorem of Apollonius. Our goal is to show that

g = (x5 − x7)2 + (x6 − x8)2 − (x1 − x7)2 − x2
8 = 0

is a consequence of the hypotheses h1 = · · · = h8 = 0 (see (8) of §4). Using f1, . . . , f8

computed above, we set R8 = g and compute the successive remainders

Ri−1 = Rem(Ri , fi , xi )

as i decreases from 8 to 1. When computing these remainders, we always use the
minimal exponent s in Proposition 1, and in some cases, we ignore constant factors of
the remainder. We obtain the following remainders.

R7 = x4x2
5 − 2x4x5x7 + x4x2

6 − x4x2
1 + 2x4x1x7 + x6x2

1 − 2x6x1x7

− x6x2
3 + 2x6x3x7 − x6x2

4 ,

R6 = x2
4 x1x2

5 − x2
4 x2

1 x5 − x4x1x6x2
3 + x2

4 x1x2
6 − x3

4 x1x6 + x2
4 x2

2 x5

− x2
4 x2

2 x1 − x2x3
4 x5 + x2x3

4 x1 − x2x1x4x2
5 − x2x1x4x2

6

+ x2x3x4x2
5 + x2x3x4x2

6 − x2x3x4x2
1 + x4x2

1 x6x3 + x4x2
2 x6x1

− x4x2
2 x6x3 + x2x2

1 x4x5 − x2x2
3 x4x5 + x2x2

3 x4x1,

R5 = u2
2x2

4 x1x2
5 − u2

2x2
4 x2

1 x5 + u2
2x2

4 x2
2 x5 − u2

2x2
4 x2

2 x1 − u2
2x2x3

4 x5

+ u2
2x2x3

4 x1 − x4u2
2x2x1x2

5 + x4u2
2x2x3x2

5 − x4u2
2x2x3x2

1

+ x4u2
2x2x2

1 x5 − x4u2
2x2x2

3 x5 + x4u2
2x2x2

3 x1 − u1x5u2x3
4 x1

+ x4u1x5u2x2
2 x1 − x4u1x5u2x1x2

3 − x4u1x5u2x2
2 x3

+ x4u1x5u2x2
1 x3 + u2

1x2
5 x2

4 x1 − x4u2
1x2

5 x2x1 + x4u2
1x2

5 x2x3,

R4 = −u4
2x4x2x3x2

1 − u4
2x2

4 x2
2 x1 + u4

2x4x2x2
3 x1 + u4

2x3
4 x2x1

− u2
2x4u2

1x2x3x2
1 − u2

2x2
4 u2

1x2
2 x1 + u2

2x4u2
1x2x2

3 x1

+ u2
2x3

4 u2
1x2x1 − u4

2x3
4 u1x2 − u3

2x3
4 u2

1x1 + u4
2x2

4 u1x2
2

− u4
2x2

4 u1x2
1 + u3

2x4u2
1x2

2 x1 − u3
2x4u2

1x1x2
3 − u4

2x4u1x2x2
3

+ u4
2x4u1x2x2

1 − u3
2x4u2

1x2
2 x3 + u3

2x4u2
1x2

1 x3 + u4
2x2

4 u2
1x1

− u4
2x4u2

1x2x1 + u4
2x4u2

1x2x3,
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R3 = 4u5
2x2x2

3 x1 − 4u5
2u1x2x2

3 + 4u5
2u1x2x2

1 − 4u5
2x2x3x2

1

− 3u5
2u2

1x2x1 + 4u5
2u2

1x2x3 − 4u4
2u2

1x1x2
3 − 4u4

2u2
1x2

2 x3

+ 2u4
2u2

1x2
2 x1 + 4u4

2u2
1x2

1 x3 − 4u3
2u2

1x2x3x2
1 + 4u3

2u2
1x2x2

3 x1

− 2u6
2x2

2 x1 − 2u6
2u1x2

1 + 2u6
2u1x2

2 + u6
2u2

1x1 + u7
2x2x1

− u7
2u1x2,

R2 = 2u5
2u1x2x2

1 − 2u5
2u2

1x2x1 + 2u4
2u2

1x2
2 x1 − 2u6

2x2
2 x1

− 2u6
2u1x2

1 + 2u6
2u1x2

2 + u6
2u2

1x1 + u7
2x2x1 − u7

2u1x2

+ u5
2u3

1x2 − 2u4
2u3

1x2
2 + 2u4

2u3
1x2

1 − 2u3
2u3

1x2x2
1 + u3

2u4
1x2x1

− u4
2u4

1x1,

R1 = −2u6
2u1x2

1 − u4
2u4

1x1 + u6
2u2

1x1 + 2u4
2u3

1x2
1 ,

R0 = 0.

By Theorem 4, Wu’s method confirms that the Circle Theorem is valid when none
of the leading coefficients of the f j is zero. The nontrivial conditions here are

d5 = u2
1 + u2

2 �= 0,

d6 = u2 �= 0,

d7 = 2x1x2 − 2x2x3 − 2x1x4 �= 0,

d8 = −2x4 �= 0.

The second condition in this list is u2 �= 0, which says that the vertices A and C of
the right triangle �ABC are distinct [recall we chose coordinates so that A = (0, 0)
and C = (0, u2) in Example 3 of §4]. This also implies the first condition since u1

and u2 are real. The condition −2x4 �= 0 is equivalent to u2 �= 0 by the hypothesis
h4 = 0. Finally, d7 �= 0 says that the vertices of the triangle are distinct (see Exercise
5). From this analysis, we see that the Circle Theorem actually follows generically
from its hypotheses as in §4.

The elementary version of Wu’s method only gives g = 0 under the side conditions
d j �= 0. In particular, note that in a case where V ′ is reducible, it is entirely conceiv-
able that one of the d j could vanish on an entire component of V ′. If this happened,
there would be no conclusion concerning the validity of the theorem for geometric
configurations corresponding to points in that component.

Indeed, a much stronger version of Theorem 4 is known when the subvariety V ′

for a given set of hypotheses is irreducible. With the extra algebraic tools we have
omitted (Ritt’s decomposition algorithm), it can be proved that there are special tri-
angular form sets of f j (called characteristic sets) with the property that R0 = 0 is a
necessary and sufficient condition for g to lie in I(V ′). In particular, it is never the
case that one of the leading coefficients of the f j is identically zero on V ′ so that
R0 = 0 implies that g must vanish on all of V ′. We refer the interested reader to CHOU

(1988) for the details. Other treatments of characteristic sets and the Wu–Ritt algorithm
can be found in MISHRA (1993) and WANG (1994b). There is also a Maple package
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called “charsets” which implements the method of characteristic sets [see WANG

(1994a)].
Finally, we will briefly compare Wu’s method with the method based on Groebner

bases introduced in §4. These two methods apply to exactly the same class of geometric
theorems and they usually yield equivalent results. Both make essential use of a division
algorithm to determine whether a polynomial is in a given ideal or not. However, as we
can guess from the triangulation procedure described above, the basic version of Wu’s
method at least is likely to be much quicker on a given problem. The reason is that sim-
ply triangulating a set of polynomials usually requires much less effort than computing
a Groebner basis for the ideal they generate, or for the ideal H̃ = 〈h1, . . . , hn, 1 − yg〉.
This pattern is especially pronounced when the original polynomials themselves are
nearly in triangular form, which is often the case for the hypotheses of a geometric the-
orem. In a sense, this superiority of Wu’s method is only natural since Groebner bases
contain much more information than triangular form sets. Note that we have not claimed
anywhere that the triangular form set of polynomials even generates the same ideal as
the hypotheses in either [u1, . . . , um, x1, . . . , xn] or (u1, . . . , um)[x1, . . . , xn]. In
fact, this is not true in general (Exercise 4). Wu’s method is an example of a tech-
nique tailored to solve a particular problem. Such techniques can often outperform
general techniques (such as computing Groebner bases) that do many other things
besides.

For the reader interested in pursuing this topic further, we recommend CHOU (1988),
the second half of which is an annotated collection of 512 geometric theorems proved
by Chou’s program implementing Wu’s method. Wu (1983) is a reprint of the original
paper that introduced these ideas.

EXERCISES FOR §5

1. This problem completes the proof of Proposition 1 begun in the text.

a. Complete the proof of (i) of the proposition.

b. Show that q, r in the equation d ′
m f = qg + r in the proposition are definitely not unique

if no condition is placed on the exponent s.

2. Establish the claim stated after Proposition 1 that pseudodivision is equivalent to ordinary

polynomial division in the ring K [y], where K = k(x1, . . . , xn).

3. Show that there is a unique minimal s ≤ p − m + 1 in Proposition 1 for which the equation

ds
m f = qg + r exists, and that q and r are unique when s is minimal. Hint: Use the uniqueness

of the quotient and remainder for division in k(x1, . . . , xn)[y].

4. Show by example that applying the triangulation procedure described in this section to two

polynomials h1, h2 ∈ k[x1, x2] can yield polynomials f1, f2 that generate an ideal strictly

smaller than 〈h1, h2〉. The same can be true for larger sets of polynomials as well.

5. Show that the nondegeneracy condition d7 �= 0 for the Circle Theorem is automatically sat-

isfied if u1 and u2 are nonzero.

6. Use Wu’s method to verify each of the following theorems. In each case, state the conditions

d j �= 0 under which Theorem 4 implies that the conclusion follows from the hypotheses. If

you also did the corresponding Exercises in §4, try to compare the time and/or effort involved

with each method.

a. The theorem on the diagonals of a parallelogram (Example 1 of §4).

b. The theorem on the orthocenter of a triangle (Exercise 5 of §4).
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c. The theorem on the centroid of a triangle (Exercise 6 of §4).

d. The theorem on the Euler line of a triangle (Exercise 7 of §4).

e. Pappus’s Theorem (Exercise 8 of §4).

7. Consider the theorem from Exercise 17 of §4 (for which V ′ is reducible according to a direct

translation of the hypotheses).

a. Apply Wu’s method to this problem. (Your final remainder should be nonzero here.)

b. Does Wu’s method succeed for the reformulation from part e of Exercise 17 from §4?
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Invariant Theory of Finite Groups

Invariant theory has had a profound effect on the development of algebraic geometry.
For example, the Hilbert Basis Theorem and Hilbert Nullstellensatz, which play a
central role in the earlier chapters in this book, were proved by Hilbert in the course of
his investigations of invariant theory.

In this chapter, we will study the invariants of finite groups. The basic goal is to
describe all polynomials which are unchanged when we change variables according
to a given finite group of matrices. Our treatment will be elementary and by no means
complete. In particular, we do not presume a prior knowledge of group theory.

§1 Symmetric Polynomials

Symmetric polynomials arise naturally when studying the roots of a polynomial. For
example, consider the cubic f = x3 + bx2 + cx + d and let its roots be α1, α2, α3.

Then

x3 + bx2 + cx + d = (x − α1)(x − α2)(x − α3).

If we expand the right-hand side, we obtain

x3 + bx2 + cx + d = x3 − (α1 + α2 + α3)x2 + (α1α2 + α1α3 + α2α3)x − α1α2α3,

and thus,

b = −(α1 + α2 + α3),

c = α1α2 + α1α3 + α2α3,(1)

d = −α1α2α3.

This shows that the coefficients of f are polynomials in its roots. Further, since changing
the order of the roots does not affect f , it follows that the polynomials expressing b, c, d
in terms of α1, α2, α3 are unchanged if we permute α1, α2, α3. Such polynomials are
said to be symmetric. The general concept is defined as follows.

317
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Definition 1. A polynomial f ∈ k[x1, . . . , xn] is symmetric if

f (xi1 , . . . , xin ) = f (x1, . . . , xn)

for every possible permutation xi1 , . . . , xin of the variables x1, . . . , xn.

For example, if the variables are x, y, and z, then x2 + y2 + z2 and xyz are obviously
symmetric. The following symmetric polynomials will play an important role in our
discussion.

Definition 2. Given variables x1, . . . , xn, we define the elementary symmetric func-
tions σ1, . . . , σn ∈ k[x1, . . . , xn] by the formulas

σ1 = x1 + · · · + xn,

...

σr =
∑

i1<i2<···<ir

xi1 xi2 · · · xir ,

...

σn = x1x2 · · · xn.

Thus, σr is the sum of all monomials that are products of r distinct variables. In
particular, every term of σr has total degree r . To see that these polynomials are indeed
symmetric, we will generalize observation (1). Namely, introduce a new variable X
and consider the polynomial

f (X ) = (X − x1)(X − x2) · · · (X − xn)(2)

with roots x1, . . . , xn . If we expand the right-hand side, it is straightforward to show
that

f (X ) = Xn − σ1 Xn−1 + σ2 Xn−2 + · · · + (−1)n−1σn−1 X + (−1)nσn

(we leave the details of the proof as an exercise). Now suppose that we rearrange
x1, . . . , xn . This changes the order of the factors on the right-hand side of (2), but f
itself will be unchanged. Thus, the coefficients (−1)rσr of f are symmetric functions.

One corollary is that for any polynomial with leading coefficient 1, the other coeffi-
cients are the elementary symmetric functions of its roots (up to a factor of ±1). The
exercises will explore some interesting consequences of this fact.

From the elementary symmetric functions, we can construct other symmetric func-
tions by taking polynomials in σ1, . . . , σn . Thus, for example,

σ 2
2 − σ1σ3 = x2 y2 + x2 yz + x2z2 + xy2z + xyz2 + y2z2

is a symmetric polynomial. What is more surprising is that all symmetric polynomials
can be represented in this way.
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Theorem 3 (The Fundamental Theorem of Symmetric Polynomials). Every sym-
metric polynomial in k[x1, . . . , xn] can be written uniquely as a polynomial in the
elementary symmetric functions σ1, . . . , σn.

Proof. We will use lex order with x1 > x2 > · · · > xn . Given a nonzero symmetric
polynomial f ∈ k[x1, . . . , xn], let LT( f ) = axα . If α = (α1, . . . , αn), we first claim
that α1 ≥ α2 ≥ · · · ≥ αn . To prove this, suppose that αi < αi+1 for some i . Let β be
the exponent vector obtained from α by switching αi and αi+1. We will write this
as β = (. . . , αi+1, αi , . . .). Since axα is a term of f , it follows that axβ is a term of
f (. . . , xi+1, xi , . . .). But f is symmetric, so that f (. . . , xi+1, xi , . . .) = f , and thus,
axβ is a term of f . This is impossible since β > α under lex order, and our claim is
proved.

Now let

h = σ
α1−α2
1 σ

α2−α3
2 · · · σαn−1−αn

n−1 σαn
n .

To compute the leading term of h, first note that LT(σr ) = x1x2 · · · xr for 1 ≤ r ≤ n.
Hence,

LT(h) = LT(σα1−α2
1 σ

α2−α3
2 · · · σαn

n )
= LT(σ1)α1−α2 LT(σ2)α2−α3 · · · LT(σn)αn

= xα1−α2
1 (x1x2)α2−α3 · · · (x1 · · · xn)αn

= xα1
1 xα2

2 · · · xαn
n = xα.

(3)

It follows that f and ah have the same leading term, and thus,

multideg( f − ah) < multideg( f )

whenever f − ah �= 0.
Now set f1 = f − ah and note that f1 is symmetric since f and ah are. Hence,

if f1 �= 0, we can repeat the above process to form f2 = f1 − a1h1, where a1 is a
constant and h1 is a product of σ1, . . . , σn to various powers. Further, we know that
LT( f2) < LT( f1) when f2 �= 0. Continuing in this way, we get a sequence of polynomials
f, f1, f2, . . . with

multideg( f ) > multideg( f1) > multideg( f2) > · · · .
Since lex order is a well-ordering, the sequence must be finite. But the only way the
process terminates is when ft+1 = 0 for some t . Then it follows easily that

f = ah + a1h1 + · · · + at ht ,

which shows that f is a polynomial in the elementary symmetric functions. Finally,
we need to prove uniqueness. Suppose that we have a symmetric polynomial f which
can be written

f = g1(σ1, . . . , σn) = g2(σ1, . . . , σn).

Here, g1 and g2 are polynomials in n variables, say y1, . . . , yn. We need to prove that
g1 = g2 in k[y1, . . . , yn].



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX December 18, 2006 7:8

320 7. Invariant Theory of Finite Groups

If we set g = g1 − g2, then g(σ1, . . . , σn) = 0 in k[x1, . . . , xn]. Uniqueness will be
proved if we can show that g = 0 in k[y1, . . . , yn]. So suppose that g �= 0. If we write
g = ∑

β aβ yβ , then g(σ1, . . . , σn) is a sum of the polynomials gβ = aβσ
β1
1 σ

β2
2 · · · σβn

n ,
where β = (β1, . . . , βn). Furthermore, the argument used in (3) above shows that

LT(gβ) = aβ xβ1+···+βn

1 xβ2+···+βn

2 · · · xβn
n .

It is an easy exercise to show that the map

(β1, . . . βn) �→ (β1 + · · · + βn, β2 + · · · + βn, . . . , βn)

is injective. Thus, the gβ’s have distinct leading terms. In particular, if we pick β such
that LT(gβ) > LT(gγ ) for all γ �= β, then LT(gβ) will be greater than all terms of the
gγ ’s. It follows that there is nothing to cancel LT(gβ) and, thus, g(σ1, . . . , σn) cannot
be zero in k[x1, . . . , xn]. This contradiction completes the proof of the theorem. �

The proof just given is due to Gauss, who needed the properties of symmetric poly-
nomials for his second proof (dated 1816) of the fundamental theorem of algebra. Here
is how Gauss states lex order: “Then among the two terms

Maαbβcγ · · · and Maα′
bβ ′

cγ ′ · · ·
superior order is attributed to the first rather than the second, if

either α > α′, or α = α′ and β > β ′, or α = α′, β = β ′ and γ > γ ′, or etc.”

[see p. 36 of GAUSS (1876)]. This is the earliest known explicit statement of lex order.
Note that the proof of Theorem 3 gives an algorithm for writing a symmetric poly-

nomial in terms of σ1, . . . , σn . For an example of how this works, consider

f = x3 y + x3z + xy3 + xz3 + y3z + yz3 ∈ k[x, y, z].

The leading term of f is x3 y = LT(σ 2
1 σ2), which gives

f1 = f − σ 2
1 σ2 = −2x2 y2 − 5x2 yz − 2x2z2 − 5xy2z − 5xyz2 − 2y2z2.

The leading term is now −2x2 y2 = −2LT(σ 2
2 ), and thus,

f2 = f − σ 2
1 σ2 + 2σ 2

2 = −x2 yz − xy2z − xyz2.

Then one easily sees that

f3 = f − σ 2
1 σ2 + 2σ 2

2 + σ1σ3 = 0

and hence,

f = σ 2
1 σ2 − 2σ 2

2 − σ1σ3

is the unique expression of f in terms of the elementary symmetric polynomials.
Surprisingly, we do not need to write a general algorithm for expressing a symmetric

polynomial in σ1, . . . , σn , for we can do this process using the division algorithm from
Chapter 2. We can even use the division algorithm to check for symmetry. The precise
method is as follows.
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Proposition 4. In the ring k[x1, . . . , xn, y1, . . . , yn], fix a monomial order where any
monomial involving one of x1, . . . , xn is greater than all monomials in k[y1, . . . , yn]. Let
G be a Groebner basis of the ideal 〈σ1 − y1, . . . , σn − yn〉 ⊂ k[x1, . . . , xn, y1, . . . , yn].

Given f ∈ k[x1, . . . , xn], let g = f
G

be the remainder of f on division by G. Then:
(i) f is symmetric if and only if g ∈ k[y1, . . . , yn].

(ii) If f is symmetric, then f = g(σ1, . . . , σn) is the unique expression of f as a poly-
nomial in the elementary symmetric polynomials σ1, . . . , σn.

Proof. As above, we have f ∈ k[x1, . . . , xn], and g ∈ k[x1, . . . , xn, y1, . . . , yn] is its
remainder on division by G = {g1, . . . , gt }. This means that

f = A1g1 + · · · + At gt + g,

where A1, . . . , At ∈ k[x1, . . . , xn, y1, . . . , yn]. We can assume that gi �= 0 for all i .
To prove (i), first suppose that g ∈ k[y1, . . . , yn]. Then for each i , substitute σi

for yi in the above formula for f . This will not affect f since it involves only
x1, . . . , xn . The crucial observation is that under this substitution, every polynomial in
〈σ1 − y1, . . . , σn − yn〉 goes to zero. Since g1, . . . , gt lie in this ideal, it follows that

f = g(σ1, . . . , σn).

Hence, f is symmetric.
Conversely, suppose that f ∈ k[x1, . . . , xn] is symmetric. Then f = g(σ1, . . . , σn)

for some g ∈ k[y1, . . . , yn]. We want to show that g is the remainder of f on division by
G. To prove this, first note that in k[x1, . . . , xn, y1, . . . , yn], a monomial in σ1, . . . , σn

can be written as follows:

σ
α1
1 · · · σαn

n = (y1 + (σ1 − y1))α1 · · · (yn + (σn − yn))αn

= yα1
1 · · · yαn

n + B1 · (σ1 − y1) + · · · + Bn · (σn − yn)

for some B1, . . . , Bn ∈ k[x1, . . . , xn, y1, . . . , yn]. Multiplying by an appropriate con-
stant and adding over the exponents appearing in g, it follows that

g(σ1, . . . , σn) = g(y1, . . . , yn) + C1 · (σ1 − y1) + · · · + Cn · (σn − yn),

where C1, . . . , Cn ∈ k[x1, . . . , xn, y1, . . . , yn]. Since f = g(σ1, . . . , σn), we can write
this as

f = C1 · (σ1 − y1) + · · · + Cn · (σn − yn) + g(y1, . . . , yn).(4)

We want to show that g is the remainder of f on division by G.
The first step is to show that no term of g is divisible by an element of LT(G). If this

were false, then there would be gi ∈ G, where LT(gi ) divides some term of g. Hence,
LT(gi ) would involve only y1, . . . , yn since g ∈ k[y1, . . . , yn]. By our hypothesis on
the ordering, it would follow that gi ∈ k[y1, . . . , yn]. Now replace every yi with the
corresponding σi . Since gi ∈ 〈σ1 − y1, . . . , σn − yn〉, we have already observed that
gi goes to zero under the substitution yi �→ σi . Then gi ∈ k[y1, . . . , yn] would mean
gi (σ1, . . . , σn) = 0. By the uniqueness part of Theorem 3, this would imply gi = 0,
which is impossible since gi �= 0. This proves our claim. It follows that in (4), no term
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of g is divisible by an element of LT(G), and since G is a Groebner basis, Proposition 1
of Chapter 2, §6 tells us that g is the remainder of f on division by G. This proves that
the remainder lies in k[y1, . . . , yn] when f is symmetric.

Part (ii) of the proposition follows immediately from the above arguments and we
are done. �

A seeming drawback to the above proposition is the necessity to compute a Groebner
basis for 〈σ1 − y1, . . . , σn − yn〉. However, when we use lex order, it is quite simple to
write down a Groebner basis for this ideal. We first need some notation. Given variables
u1, . . . , us, let

hi (u1, . . . , us) =
∑
|α|=i

uα

be the sum of all monomials of total degree i in u1, . . . , us . Then we get the following
Groebner basis.

Proposition 5. Fix lex order on k[x1, . . . , xn, y1, . . . , yn] with x1 > · · · > xn >

y1 > · · · > yn. Then the polynomials

gk = hk(xk, . . . , xn) +
k∑

i=1

(−1)i hk−i (xk, . . . , xn)yi , k = 1, . . . , n,

form a Groebner basis for the ideal 〈σ1 − y1, . . . , σn − yn〉.

Proof. We will sketch the proof, leaving most of the details for the exercises. The first
step is to note the polynomial identity

0 = hk(xk, . . . , xn) +
k∑

i=1

(−1)i hk−i (xk, . . . , xn)σi .(5)

The proof will be covered in Exercises 10 and 11.
The next step is to show that g1, . . . , gn form a basis of 〈σ1 − y1, . . . , σn − yn〉. If

we subtract the identity (5) from the definition of gk , we obtain

gk =
k∑

i=1

(−1)i hk−i (xk, . . . , xn)(yi − σi ),(6)

which proves that 〈g1, . . . , gn〉 ⊂ 〈σ1 − y1, . . . , σn − yn〉. To prove the opposite inclu-
sion, note that since h0 = 1, we can write (6) as

gk = (−1)k(yk − σk) +
k−1∑
i=1

(−1)i hk−i (xk, . . . , xn)(yi − σi ).(7)

Then induction on k shows that 〈σ1 − y1, . . . , σn − yn〉 ⊂ 〈g1, . . . , gn〉 (see Exer-
cise 12).
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Finally, we need to show that we have a Groebner basis. In Exercise 12, we will ask
you to prove that

LT(gk) = xk
k ·

This is where we use lex order with x1 > · · · > xn > y1 > · · · > yn . Thus the leading
terms of g1, . . . , gk are relatively prime, and using the theory developed in §9 of
Chapter 2, it is easy to show that we have a Groebner basis (see Exercise 12 for the
details). This completes the proof. �

In dealing with symmetric polynomials, it is often convenient to work with ones that
are homogeneous. Here is the definition.

Definition 6. A polynomial f ∈ k[x1, . . . , xn] is homogeneous of total degree k pro-
vided that every term appearing in f has total degree k.

As an example, note that the i-th elementary symmetric function αi is homogeneous
of total degree i . An important fact is that every polynomial can be written uniquely
as a sum of homogeneous polynomials. Namely, given f ∈ k[x1, . . . , xn], let fk be the
sum of all terms of f of total degree k. Then each fk is homogeneous and f = ∑

k fk .
We call fk the k-th homogeneous component of f .

We can understand symmetric polynomials in terms of their homogeneous compo-
nents as follows.

Proposition 7. A polynomial f ∈ k[x1, . . . , xn] is symmetric if and only if all of its
homogeneous components are symmetric.

Proof. Given a symmetric polynomial f, let xi1 , . . . , xin be a permutation of x1, . . . , xn .
This permutation takes a term of f of total degree k to one of the same total degree. Since
f (xi1 , . . . , xin ) = f (x1, . . . , xn), it follows that the k-th homogeneous component must
also be symmetric. The converse is trivial and the proposition is proved. �

Proposition 7 tells us that when working with a symmetric polynomial, we can
assume that it is homogeneous. In the exercises, we will explore what this implies
about how the polynomial is expressed in terms of σ1, . . . , σn.

The final topic we will explore is a different way of writing symmetric polynomials.
Specifically, we will consider the power sums

sk = xk
1 + xk

2 + · · · + xk
n .

Note that sk is symmetric. Then we can write an arbitrary symmetric polynomial in
terms of s1, . . . , sn as follows.

Theorem 8. If k is a field containing the rational numbers , then every symmetric
polynomial in k[x1, . . . , xn] can be written as a polynomial in the power sums s1, . . . , sn.
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Proof. Since every symmetric polynomial is a polynomial in the elementary symmet-
ric functions (by Theorem 3), it suffices to prove that σ1, . . . , σn are polynomials in
s1, . . . , sn . For this purpose, we will use the Newton identities, which state that

sk − σ1sk−1 + · · · + (−1)k−1σk−1s1 + (−1)kkσk = 0, 1 ≤ k ≤ n,

sk − σ1sk−1 + · · · + (−1)n−1σn−1sk−n+1 + (−1)nσnsk−n = 0, k > n.

The proof of these identities will be given in the exercises.
We now prove by induction on k that σk is a polynomial in s1, . . . , sn . This is true for

k = 1 since σ1 = s1. If the claim is true for 1, 2, . . . , k − 1, then the Newton identities
imply that

σk = (−1)k−1 1

k
(sk − σ1sk−1 + · · · + (−1)k−1σk−1s1).

We can divide by the integer k because is contained in the coefficient field (see
Exercise 16 for an example of what can go wrong when �⊂ k). Then our inductive
assumption and the above equation show that σk is a polynomial in s1, . . . , sn. �

As a consequence of Theorems 3 and 8, every elementary symmetric function can
be written in terms of power sums, and vice versa. For example,

s2 = σ 2
1 − 2σ2 ←→ σ2 = 1

2
(s2

1 − s2),

s3 = σ 3
1 − 3σ1σ2 + 3σ3 ←→ σ3 = 1

6
(s3

1 − 3s1s2 + 2s3).

Power sums will be unexpectedly useful in §3 when we give an algorithm for finding
the invariant polynomials for a finite group.

EXERCISES FOR §1

1. Prove that f ∈ k[x, y, z] is symmetric if and only if f (x, y, z) = f (y, x, z) = f (y, z, x).
2. (Requires abstract algebra) Prove that f ∈ k[x1, . . . , xn] is symmetric if and only if

f (x1, x2, x3, . . . , xn) = f (x2, x1, x3, . . . , xn) = f (x2, x3, . . . xn, x1). Hint: Show that the
cyclic permutations (1, 2) and (1, 2, . . . , n) generate the symmetric group Sn . See Exer-
cise 11 in §2.10 of HERSTEIN (1975).

3. Let σ n
i be the i-th elementary symmetric function in variables x1, . . . , xn . The superscript

n denotes the number of variables and is not an exponent. We also set σ n
0 = 1 and σ n

i = 0
if i < 0 or i > n. Prove that σ n

i = σ n−1
i + xnσ

n−1
i−1 for all n > 1 and all i . This identity is

useful in induction arguments involving elementary symmetric functions.
4. As in (2), let f (X ) = (X − x1)(X − x2) · · · (X − xn). Prove that f = Xn − σ1 Xn−1 +

σ2 Xn−2 + · · · + (−1)n−1σn−1 X + (−1)nσn . Hint: You can give an induction proof using
the identities of Exercise 3.

5. Consider the polynomial

f = (x2 + y2)(x2 + z2)(y2 + z2) ∈ k[x, y, z, ].

a. Use the method given in the proof of Theorem 3 to write f as a polynomial in the
elementary symmetric functions σ1, σ2, σ3.

b. Use the method described in Proposition 4 to write f in terms of σ1, σ2, σ3.
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You can use a computer algebra system for both parts of the exercise. Note that by stripping
off the coefficients of powers of X in the polynomial (X − x)(X − y)(X − z), you can get
the computer to generate the elementary symmetric functions.

6. If the variables are x1, . . . , xn , show that
∑

i �= j x2
i x j = σ1σ2 − 3σ3. Hint: If you get stuck,

see Exercise 13. Note that a computer algebra system cannot help here!
7. Let f = xn + a1xn−1 + · · · + an ∈ k[x] have roots α1, . . . , αn , which lie in some bigger

field K containing k.
a. Prove that any symmetric polynomial g(α1, . . . , αn) in the roots of f can be expressed

as a polynomial in the coefficients a1, . . . , an of f .
b. In particular, if the symmetric polynomial g has coefficients in k, conclude that

g(α1, . . . , αn) ∈ k.
8. As in Exercise 7, let f = xn + a1xn−1 + · · · + an ∈ k[x] have roots α1, . . . , αn , which lie

in some bigger field K containing k. The discriminant of f is defined to be

D( f ) =
∏
i �= j

(αi − α j )

a. Use Exercise 7 to show that D( f ) is a polynomial in a1, . . . , an .
b. When n = 2, express D( f ) in terms of a1 and a2. Does your result look familiar?
c. When n = 3, express D( f ) in terms of a1, a2, a3.
d. Explain why a cubic polynomial x3 + a1x2 + a2x + a3 has a multiple root if and only if

−4a3
1a3 + a2

1a2
2 + 18a1a2a3 − 4a3

2 − 27a2
3 = 0.

9. Given a cubic polynomial f = x3 + a1x2 + a2x + a3, what condition must the coefficients
of f satisfy in order for one of its roots to be the average of the other two? Hint: If α1 is
the average of the other two, then 2α1 − α2 − α3 = 0. But it could happen that α2 or α3 is
the average of the other two. Hence, you get a condition stating that the product of three
expressions similar to 2α1 − α2 − α3 is equal to zero. Now use Exercise 7.

10. As in Proposition 5, let hi (x1, . . . , xn) be the sum of all monomials of total degree i in
x1, . . . , xn . Also, let σ0 = 1 and σi = 0 if i > n. The goal of this exercise is to show that

0 =
k∑

i=0

(−1)i hk−i (x1, . . . , xn)σi (x1, . . . , xn).

In Exercise 11, we will use this to prove the closely related identity (5) that appears in the
text. To prove the above identity, we will compute the coefficients of the monomials xα that
appear in hk−iσi . Since every term in hk−iσi has total degree k, we can assume that xα has
total degree k. We will let a denote the number of variables that actually appear in xα .
a. If xα appears in hk−iσi , show that i ≤ a. Hint: How many variables appear in each term

of σi ?
b. If i ≤ a, show that exactly

(a
i

)
terms of σi involve only variables that appear in xα . Note

that all of these terms have total degree i .
c. If i ≤ a, show that xα appears in hk−iσi with coefficient

(a
i

)
. Hint: This follows from

part b because hk−i is the sum of all monomials of total degree k − i , and each monomial
has coefficient 1.

d. Conclude that the coefficient of xα in
∑k

i=0(−1)i hk−iσi is
∑a

i=0(−1)i
(a

i

)
. Then use the

binomial theorem to show that the coefficient of xα is zero. This will complete the proof
of our identity.

11. In this exercise, we will prove the identity

0 = hk(xk, . . . , xn) +
k∑

i=1

(−1)i hk−i (xk, . . . , xn)σi (x1, . . . , xn)
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used in the proof of Proposition 5. As in Exercise 10, let σ0 = 1, so that the identity can be
written more compactly as

0 =
k∑

i=1

(−1)i hk−i (xk, . . . , xn)σi (z1, . . . , xn)

The idea is to separate out the variables x1, . . . , xk−1. To this end, if S ⊂ {1, . . . , k − 1}, let
x S be the product of the corresponding variables and let |S| denote the number of elements
in S.
a. Prove that

σi (x1, . . . , xn) =
∑

S⊂{1,...,k−1}
x Sσi−|S|(xk, . . . , xn),

where we set σ j = 0 if j < 0.
b. Prove that

k∑
i=0

(−1)i hk−i (xk, . . . , xn)σi (x1, . . . , xn)

=
∑

S⊂{1,...,k−1}
x S

(
k∑

1=|S|
(−1)i hk−i (xk, . . . , xn)σi−|S|(xk, . . . , xn)

)
.

c. Use Exercise 10 to conclude that the sum inside the parentheses is zero for every S. This
proves the desired identity. Hint: Let j = i − |S|.

12. This exercise is concerned with the proof of Proposition 5. Let gk be as defined in the
statement of the proposition.
a. Use equation (7) to prove that 〈σ1 − y1, . . . , σn − yn〉 ⊂ 〈g1, . . . , gn〉.
b. Prove that LT(gk) = xk

k .
c. Combine part (b) with the results from §9 of Chapter 2 (especially Theorem 3 and

Proposition 4 of that section) to prove that g1, . . . , gk form a Groebner basis.
13. Let f be a homogeneous symmetric polynomial of total degree k.

a. Show that f can be written as a linear combination (with coefficients in k) of polynomials
of the form σ

i1
1 σ

i2
2 · · · σ in

n where k = i1 + 2i2 + · · · + nin .
b. Let m be the maximum degree of x1 that appears in f . By symmetry, m is the maximum

degree in f of any variable. If σ
i1
1 σ

i2
2 · · · σ in

n appears in the expression of f from part (a),
then prove that i1 + i2 + · · · + in ≤ m.

c. Show that the symmetric polynomial
∑

i �= j x2
i x j can be written as aσ1σ2 + bσ3 for some

constants a and b. Then determine a and b. Compare this to what you did in Exercise 6.
14. In this exercise, you will prove the Newton identities used in the proof of Theorem 8. Let

the variables be x1, . . . , xn .
a. As in Exercise 3, set σ0 = 1 and σi = 0 if either i < 0 or i > n. Then show that the

Newton identities are equivalent to

sk − σ1sk−1 + · · · + (−1)k−1σk−1s1 + (−1)kkσk = 0

for all k ≥ 1.
b. Prove the identity of part (a) by induction on n. Hint: Write σi as σ n

i , where the exponent
denotes the number of variables, and similarly write sk as sn

k . Use Exercise 3, and note
that sn

k = sn−1
k + xk

n .
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15. This exercise will use the identity (5) to prove the following nonsymmetric Newton identities:

xk
i − σ1xk−1

i + · · · + (−1)k−1σk−1xi + (−1)kσk = (−1)k σ̂ i
k , 1 ≤ k < n,

xk
i − σ1xk−1

i + · · · + (−1)n−1σn−1xk−n+1
i + (−1)nσn xk−n

i = 0, k ≥ n,

where σ̂ i
k = σk(xi , . . . , xi−1, xi+1, . . . , xn) is the k-th elementary symmetric function of all

variables except xi . We will then give a second proof of the Newton identities.
a. Show that the nonsymmetric Newton identity for k = n follows from (5). Then prove that

this implies the nonsymmetric Newton identities for k ≥ n. Hint: Treat the case i = n
first.

b. Show that the nonsymmetric Newton identity for k = n − 1 follows from the one for
k = n. Hint: σn = xi σ̂

i
k−1.

c. Prove the nonsymmetric Newton identity for k < n by decreasing induction on k. Hint:
By Exercise 3, σk = σ̂ i

k + xi σ̂
i
k−1.

d. Prove that
∑n

i=1 σ̂ i
k = (n − k)σ̂k . Hint: A term xi1 · · · xik , where 1 ≤ i1 < · · · < ik ≤ n,

appears in how many of the σ̂ i
k ’s?

e. Prove the Newton identities.
16. Consider the field 2 = {0, 1} consisting of two elements. Show that it is impossible to ex-

press the symmetric polynomial xy ∈ 2[x, y] as a polynomial in s1 and s2 with coefficients
2. Hint: Show that s2 = s2

1 !
17. Express s4 as a polynomial in σ1, . . . , σ4 and express σ4 as a polynomial in s1 . . . , s4.
18. We can use the division algorithm to automate the process of writing a polynomial

g(σ1, . . . , σn) in terms of s1, . . . , sn . Namely, regard σ1, . . . , σn, s1, . . . , sn as variables and
consider the polynomials

gk = sk = σ1sk−1 + · · · + (−1)k−1σk−1s1 + (−1)kkσk, 1 ≤ k ≤ n.

Show that if we use the correct lex order, the remainder of g(σ1, . . . , σn) on division
by g1, . . . , gn will be a polynomial (s1, . . . , sn) such that g(σ1, . . . , σn) = h(s1, . . . , sn).
Hint: The lex order you need is not σ1 > σ2 > · · · > σn > s1 > · · · > sn .

§2 Finite Matrix Groups and Rings of Invariants

In this section, we will give some basic definitions for invariants of finite matrix groups
and we will compute some examples to illustrate what questions the general theory
should address. For the rest of this chapter, we will always assume that our field k
contains the rational numbers . Such fields are said to be of characteristic zero.

Definition 1. Let GL(n, k) be the set of all invertible n × n matrices with entries in
the field k.

If A and B are invertible n × n matrices, then linear algebra implies that the product
AB and inverse A−1 are also invertible (see Exercise 1). Also, recall that the n × n
identity matrix In has the properties that A · In = In · A = A and A · A−1 = In for all
A ∈ GL(n, k). In the terminology of Appendix A, we say that GL (n, k) is a group.

Note that A ∈ GL(n, k) gives an invertible linear map A : kn → kn via matrix mul-
tiplication. Since every linear map from kn to itself arises in this way, it is customary
to call GL (n, k) the general linear group.
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We will be most interested in the following subsets of GL(n, k).

Definition 2. A finite subset G ⊂ GL(n, k) is called a finite matrix group provided it
is nonempty and closed under matrix multiplication. The number of elements of G is
called the order of G and is denoted |G|.

Let us look at some examples of finite matrix groups.

Example 3. Suppose that A ∈ GL(n, k) is a matrix such that Am = In for some positive
integer m. If m is the smallest such integer, then it is easy to show that

Cm = {In, A, . . . , Am−1} ⊂ GL(n, k)

is closed under multiplication (see Exercise 2) and, hence, is a finite matrix group. We
call Cm a cyclic group of order m. An example is given by

A =
(

0 −1
1 0

)
∈ GL(2, k).

One can check that A4 = I2, so that C4 = {I2, A, A2, A3} is a cyclic matrix group of
order 4 in GL(2, k).

Example 4. An important example of a finite matrix group comes from the per-
mutations of variables discussed in §1. Let τ denote a permutation xi1 , . . . , xin of
x1, . . . , xn . Since τ is determined by what it does to the subscripts, we will set
i1 = τ (1), i2 = τ (2), . . . , in = τ (n). Then the corresponding permutation of variables
is xτ (1), . . . , xτ (n).

We can create a matrix from τ as follows. Consider the linear map that takes
(x1, . . . , xn) to (xτ (1), . . . , xτ (n)). The matrix representing this linear map is denoted
Mτ and is called a permutation matrix. Thus, Mτ has the property that under matrix
multiplication, it permutes the variables according to τ :

Mτ ·

⎛
⎜⎝

x1
...

xn

⎞
⎟⎠ =

⎛
⎜⎝

xτ (1)
...

xτ (n)

⎞
⎟⎠ .

We leave it as an exercise to show that Mτ is obtained from the identity matrix by
permuting its columns according to τ . More precisely, the τ (i)-th column of Mτ is the
i-th column of In . As an example, consider the permutation τ that takes (x, y, z) to
(y, z, x). Here, τ (1) = 2, τ (2) = 3, and τ (3) = 1, and one can check that

Mτ ·
⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ y

z
x

⎞
⎠ .

Since there are n! ways to permute the variables, we get n! permutation matrices.
Furthermore, this set is closed under matrix multiplication, for it is easy to show that

Mτ · Mν = Mντ ,
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where vτ is the permutation that takes i to v(τ (i)) (see Exercise 4). Thus, the permuta-
tion matrices form a finite matrix group in GL(n, k). We will denote this matrix group
by Sn . (Strictly speaking, the group of permutation matrices is only isomorphic to Sn

in the sense of group theory. We will ignore this distinction.)

Example 5. Another important class of finite matrix groups comes from the symme-
tries of regular polyhedra. For example, consider a cube in 3 centered at the origin.
The set of rotations of 3 that take the cube to itself is clearly finite and closed under
multiplication. Thus, we get a finite matrix group in GL(3, ). In general, all finite
matrix groups in GL(3, ) have been classified, and there is a rich geometry associated
with such groups (see Exercises 5–9 for some examples). To pursue this topic fur-
ther, the reader should consult BENSON and GROVE (1985), KLEIN (1884), or COXETER

(1973).

Finite matrix groups have the following useful properties.

Proposition 6. Let G ⊂ GL(n, k) be a finite matrix group. Then:
(i) In ∈ G.

(ii) If A ∈ G, then Am = In for some positive integer m.
(iii) If A ∈ G, then A−1 ∈ G.

Proof. Take A ∈ G. Then {A, A2, A3, . . .} ∈ G since G is closed under multiplication.
The finiteness of G then implies that Ai = A j for some i > j , and since A is invertible,
we can multiply each side by A− j to conclude that Am = In , where m = i − j > 0.
This proves (ii).

To prove (iii), note that (ii) implies In = Am = A · Am−1 = Am−1 · A. Thus, A−1 =
Am−1 ∈ G since G is closed under multiplication. As for (i), since G �= φ, we can pick
A ∈ G, and then, by (ii), In = Am ∈ G. �

We next observe that elements of GL(n, k) act on polynomials in k[x1, . . . , xn]. To
see how this works, let A = (ai j ) ∈ GL(n, k) and f ∈ k[x1, . . . , xn]. Then

g(x1, . . . , xn) = f (a11x1 + · · · + a1n xn, . . . , an1x1 + · · · + annzn)(1)

is again a polynomial in k[x1, . . . , xn]. To express this more compactly, let x denote
the column vector of the variables x1, . . . , xn . Thus,

x =

⎛
⎜⎝

x1
...

xn

⎞
⎟⎠ .

Then we can use matrix multiplication to express equation (1) as

g(x) = f (A · x).

If we think of A as a change of basis matrix, then g is simply f viewed using the new
coordinates.
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For an example of how this works, let f (x, y) = x2 + xy + y2 ∈ [x, y] and

A = 1√
2

(
1 −1
1 1

)
∈ GL(2, ).

Then

g(x, y) = f (A · x) = f

(
x − y√

2
,

x + y√
2

)

=
(

x − y√
2

)2

+ x − y√
2

· x + y√
2

+
(

x + y√
2

)2

= 3

2
x2 + 1

2
y2.

Geometrically, this says that we can eliminate the xy term of f by rotating the axes 45◦.
A remarkable fact is that sometimes this process gives back the same polynomial

we started with. For example, if we let h(x, y) = x2 + y2 and use the above matrix A,
then one can check that

h(x) = h(A · x).

In this case, we say that h is invariant under A.
This leads to the following fundamental definition.

Definition 7. Let G ⊂ GL(n, k) be a finite matrix group. Then a polynomial f (x) ∈
k[x1, . . . , xn] is invariant under G if

f (x) = f (A · x)

for all A ∈ G. The set of all invariant polynomials is denoted k[x1, . . . , xn]G.

The most basic example of invariants of a finite matrix group is given by the sym-
metric polynomials.

Example 8. If we consider the group Sn ⊂ GL(n, k) of permutation matrices, then it
is obvious that

k[x1, . . . , xn]Sn = {all symmetric polynomials in k[x1, . . . , xn]}.
By Theorem 3 of §1, we know that symmetric polynomials are polynomials in the
elementary symmetric functions with coefficients in k. We can write this as

k[x1, . . . , xn]Sn = k[σ1 . . . , σn].

Thus, every invariant can be written as a polynomial in finitely many invariants (the
elementary symmetric functions). In addition, we know that the representation in terms
of the elementary symmetric functions is unique. Hence, we have a very explicit knowl-
edge of the invariants of Sn .
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One of the goals of invariant theory is to examine whether all invariants
k[x1, . . . , xn]G are as nice as Example 8. To begin our study of this question, we first
show that the set of invariants k[x1, . . . , xn]G has the following algebraic structure.

Proposition 9. Let G ⊂ GL(n, k) be a finite matrix group. Then the set k[x1, . . . , xn]G

is closed under addition and multiplication and contains the constant polynomials.

Proof. We leave the easy proof as an exercise. �

Multiplication and addition in k[x1, . . . , xn]G automatically satisfy the distributive,
associative, etc., properties since these properties are true in k[x1, . . . , xn]. In the ter-
minology of Chapter 5, we say that k[x1, . . . , xn]G is a ring. Furthermore, we say that
k[x1, . . . , xn]G is a subring of k[x1, . . . , xn].

So far in this book, we have learned three ways to create new rings. In Chapter 5,
we saw how to make the quotient ring k[x1, . . . , xn]/I of an ideal I ⊂ k[x1, . . . , xn]
and the coordinate ring k[V ] of an affine variety V ⊂ kn . Now we can make the ring
of invariants k[x1, . . . , xn]G of a finite matrix group G ⊂ GL(n, k). In §4, we will see
how these constructions are related.

In §1, we saw that the homogeneous components of a symmetric polynomial were
also symmetric. We next observe that this holds for the invariants of any finite matrix
group.

Proposition 10. Let G ⊂ GL(n, k) be a finite matrix group. Then a polynomial f ∈
k[x1, . . . , xn] is invariant under G if and only if its homogeneous components are.

Proof. See Exercise 11. �

In many situations, Proposition 10 will allow us to reduce to the case of homogeneous
invariants. This will be especially useful in some of the proofs given in §3.

The following lemma will prove useful in determining whether a given polynomial
is invariant under a finite matrix group.

Lemma 11. Let G ⊂ GL(n, k) be a finite matrix group and suppose that we have
A1, . . . , Am ∈ G such that every A ∈ G can be written in the form

A = B1 B2 · · · Bt ,

where Bi ∈ {A1, . . . , Am} for every i (we say that A1, . . . , Am generate G). Then
f ∈ k[x1, . . . , xn] is in k[x1, . . . , xn]G if and only if

f (x) = f (A1 · x) = · · · = f (Am · x).

Proof. We first show that if f is invariant under matrices B1, . . . , Bt , then it is also
invariant under their product B1 · · · Bt . This is clearly true for t = 1. If we assume it is
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true for t − 1, then

f ((B1 · · · B1) · x) = f ((B1 · · · Bt−1) · Bt x)

= f (B1x) (by our inductive assumption)

= f (x) (by the invariance under Bt ).

Now suppose that f is invariant under A1, . . . , Am . Since elements A ∈ G can be
written A = B1 · · · Bt , where every Bi is one of A1, . . . , Am , it follows immediately
that f ∈ k[x1, . . . , xn]G . The converse is trivial and the lemma is proved. �

We can now compute some interesting examples of rings of invariants.

Example 12. Consider the finite matrix group

V4 =
{(±1 0

0 ±1

)}
⊂ GL(2, k).

This is sometimes called the Klein four-group. We use the letter V4 because “four” in
German is “vier.” You should check that the two matrices(−1 0

0 1

)
,

(
1 0
0 −1

)

generate V4. Then Lemma 11 implies that a polynomial f ∈ k[x, y] is invariant under
V4 if and only if

f (x, y) = f (−x, y) = f (x, −y)

Writing f = ∑
i j ai j x i y j , we can understand the first of these conditions as follows:

f (x, y) = f (−x, y) ⇐⇒
∑

i j

ai j x
i y j =

∑
i j

(−x)i y j

⇐⇒
∑

i j

ai j x
i y j =

∑
i j

(−1)i ai j x
i yi

⇐⇒ ai j = (−1)i ai j for all i, j

⇐⇒ ai j = 0 for i odd

It follows that x always appears to an even power. Similarly, the condition f (x, y) =
f (x, −y) implies that y appears to even powers. Thus, we can write

f (x, y) = g(x2, y2)

for a unique polynomial g(x, y) ∈ k[x, y]. Conversely, every polynomial f of this form
is clearly invariant under V4. This proves that

k[x, y]V4 = k[x2, y2].

Hence, every invariant of V4 can be uniquely written as a polynomial in the two
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homogeneous invariants x2 and y2. In particular, the invariants of the Klein four-group
behave very much like the symmetric polynomials.

Example 13. For a finite matrix group that is less well-behaved, consider the cyclic
group C2 = {±I2} ⊂ GL(2, k) of order 2. In this case, the invariants consist of the
polynomials f ∈ k[x, y] for which f (x, y) = f (−x, −y). We leave it as an exercise
to show that this is equivalent to the condition

f (x, y) =
∑

i j

ai j x
i y j , where ai j = 0 whenever i + j is odd.

This means that f is invariant under C2 if and only if the exponents of x and y always
have the same parity (i.e., both even or both odd). Hence, we can write a monomial
xi y j appearing in f in the form

xi y j =
{

x2k y2l = (x2)k(y2)l if i, j are even
x2k+1 y2l+1 = (x2)k(y2)l xy if i, j are odd.

This means that every monomial in f , and hence f itself, is a polynomial in the
homogeneous invariants x2, y2 and xy. We will write this as

k[x, y]C2 = k[x2, y2, xy].

Note also that we need all three invariants to generate k[x, y]C2 .
The ring k[x2, y2, xy] is fundamentally different from the previous examples because

uniqueness breaks down: a given invariant can be written in terms of x2, y2, xy in more
than one way. For example, x4 y2 is clearly invariant under C2, but

x4 y2 = (x2)2 · y2 = z2 · (xy)2.

In §4, we will see that the crux of the matter is the algebraic relation x2 · y2 = (xy)2

between the basic invariants. In general, a key part of the theory is determining all alge-
braic relations between invariants. Given this information, one can describe precisely
how uniqueness fails.

From these examples, we see that given a finite matrix group G, invariant theory has
two basic questions to answer about the ring of invariants k[x1, . . . , xn]G :
� (Finite Generation) Can we find finitely many homogeneous invariants f1, . . . , fm

such that every invariant is a polynomial in f1, . . . , fm?
� (Uniqueness) In how many ways can an invariant be written in terms of f1, . . . , fm?

In §4, we will see that this asks for the algebraic relations among f1, . . . , fm .
In §§3 and 4, we will give complete answers to both questions. We will also describe
algorithms for finding the invariants and the relations between them.

EXERCISES FOR §2

1. If A, B ∈ GL(n, k) are invertible matrices, show that AB and A−1 are also invertible.
2. Suppose that A ∈ GL(n, k) satisfies Am = In for some positive integer. If m is the smallest

such integer, then prove that the set Cm = [In, A, A2, . . . , Am−1] has exactly m elements
and is closed under matrix multiplication.
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3. Write down the six permutation matrices in GL(3, k).
4. Let Mτ be the matrix of the linear transformation taking x1, . . . , xn to xτ (1), . . . , xτ (n). This

means that if e1, . . . , en is the standard basis of kn , then Mτ · (
∑

j x j e j ) = ∑
j xτ ( j)e j .

a. Show that Mτ · eτ (i) = ei . Hint: Observe that
∑

j x j e j = ∑
j xτ ( j)eτ ( j).

b. Prove that the τ (i)-th column of Mτ is the i-th column of the identity matrix.
c. Prove that Mτ · Mν = Mντ , where ντ is the permutation taking i to ν(τ (i)).

5. Consider a cube in 3 centered at the origin whose edges have length 2 and are parallel to
the coordinate axes.
a. Show that there are finitely many rotations of 3 about the origin which take the cube

to itself and show that these rotations are closed under composition. Taking the matrices
representing these rotations, we get a finite matrix group G ⊂ GL(3, ).

b. Show that G has 24 elements. Hint: Every rotation is a rotation about a line through the
origin. So you first need to identify the “lines of symmetry” of the cube.

c. Write down the matrix of the element of G corresponding to the 120◦ counterclockwise
rotation of the cube about the diagonal connecting the vertices (−1, −1, −1) and (1, 1, 1).

d. Write down the matrix of the element of G corresponding to the 90◦ counterclockwise
rotation about the z-axis.

e. Argue geometrically that G is generated by the two matrices from parts (c) and (d).
6. In this exercise, we will use geometric methods to find some invariants of the rotation group

G of the cube (from Exercise 5).
a. Explain why x2 + y2 + z2 ∈ [x, y, z]G . Hint: Think geometrically in terms of distance

to the origin.
b. Argue geometrically that the union of the three coordinate planes V(xyz) is invariant

under G.
c. Show that I(V(xyz)) = (xyz) and conclude that if f = xyz, then for each A ∈ G, we

have f (A · x) = axyz for some real number a.
d. Show that f = xyz satisfies f (A · x) = ±xyz for all A ∈ G and conclude that x2 y2z2 ∈

k[x, y, z]G . Hint: Use part (c) and the fact that Am = I3 for some positive integer m.
e. Use similar methods to show that the polynomials(

(x + y + z)(x + y − z)(x − y + z)(x − y − z)
)2

,
(
(x2 − y2)(x2 − z2)(y2 − z2)

)2

are in k[x, y, z]G . Hint: The plane x + y + z = 0 is perpendicular to one of the diagonals
of the cube.

7. This exercise will continue our study of the invariants of the rotation group G of the cube
begun in Exercise 6.
a. Show that a polynomial f is in k[x, y, z]G if and only if f (x, y, z) = f (y, z, x) =

f (−y, x, z). Hint: Use parts (c), (d), and (e) of Exercise 5.
b. Let

f = xyz,

g = (x + y + z)(x + y − z)(z − y + z)(x − y − z),

h = (x2 − y2)(x2 − z2)(y2 − z2).

In Exercise 6, we showed that f 2, g2, h2 ∈ k[x, y, z]G . Show that f, h �∈ k[x, y, z]G ,
but g, f h ∈ k[x, y, z]G . Combining this with the previous exercise, we have invariants
x2 + y2 + z2, g, f 2, f h, and h2 of degrees 2, 4, 6, 9, and 12, respectively, in k[x, y, z]G .
ln §3, we will see that h2 can be expressed in terms of the others.

8. In this exercise, we will consider an interesting “duality” that occurs among the regular
polyhedra.



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX December 18, 2006 7:8

§2. Finite Matrix Groups and Rings of Invariants 335

a. Consider a cube and an octahedron in 3, both centered at the origin. Suppose the edges
of the cube are parallel to the coordinate axes and the vertices of the octahedron are on
the axes. Show that they have the same group of rotations. Hint: Put the vertices of the
octahedron at the centers of the faces of the cube.

b. Show that the dodecahedron and the icosahedron behave the same way. Hint: What do
you get if you link up the centers of the 12 faces of the dodecahedron?

c. Parts (a) and (b) show that in a certain sense, the “dual” of the cube is the octahe-
dron and the “dual” of the dodecahedron is the icosahedron. What is the “dual” of the
tetrahedron?

9. (Requires abstract algebra) In this problem, we will consider a tetrahedron centered at the
origin of 3.
a. Show that the rotations of 3 about the origin which take the tetrahedron to itself give

us a finite matrix group G of order 12 in GL(3, ).
b. Since every rotation of the tetrahedron induces a permutation of the four vertices, show

that we get a group homomorphism ρ : G → S4.
c. Show that ρ is injective and that its image is the alternating group A4. This shows that

the rotation group of the tetrahedron is isomorphic in A4.
10. Prove Proposition 9.
11. Prove Proposition 10. Hint: If A = (ai j ) ∈ GL(n, k) and xi1

1 · · · xin
n is a monomial of total

degree k = i1 + · · · + in appearing in f , then show that

(a11x1 + · · · + a1n xn)i1 · · · (an1x1 + · · · + ann xn)in

is homogeneous of total degree k.
12. In Example 13, we studied polynomials f ∈ k[x, y] with the property that f (x, y) =

f (−x, −y). If f = ∑
i j ai j x i y j , show that the above condition is equivalent to ai j = 0

whenever i + j is odd.
13. In Example 13, we discovered the algebraic relation x2 · y2 = (xy)2 between the invariants

x2, y2, and xy. We want to show that this is essentially the only relation. More precisely,
suppose that we have a polynomial g(u, v, w) ∈ k[u, v, w] such that g(x2, y2, xy) = 0.
We want to prove that g(u, v, w) is a multiple (in k[u, v, w]) of uv − w2 (which is the
polynomial corresponding to the above relation).
a. If we divide g by uv − w2 using lex order with u > v > w, show that the remainder can

be written in the form u A(u, w) + vB(v, w) + C(w).
b. Show that a polynomial r = u A(u, w) + vB(v, w) + C(w) satisfies r (x2, y2, xy) = 0 if

and only if r = 0.
14. Consider the finite matrix group C4 ⊂ GL(2, ) generated by

A =
(

i 0
0 −i

)
∈ GL(2, )

a. Prove that C4 is cyclic of order 4.
b. Use the method of Example 13 to determine [x, y]C4 .
c. Is there an algebraic relation between the invariants you found in part (b)? Can you give

an example to show how uniqueness fails?
d. Use the method of Exercise 13 to show that the relation found in part (c) is the only

relation between the invariants.
15. Consider

V4 =
{
±

(
1 0
0 1

)
, ±

(
0 1
1 0

)}
⊂ GL(2, k)
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a. Show that V4 is a finite matrix group of order 4.
b. Determine k[x, y]V4 .
c. Show that any invariant can be written uniquely in terms of the generating invariants you

found in part (b).
16. In Example 3, we introduced the finite matrix group C4 in GL(2, k) generated by

A =
(

0 −1
1 0

)
∈ GL(2, k).

Try to apply the methods of Examples 12 and 13 to determine k[x, y]C4 . Even if you cannot
find all of the invariants, you should be able to find some invariants of low total degree. In
§3, we will determine k[x, y]C4 completely.

§3 Generators for the Ring of Invariants

The goal of this section is to determine, in an algorithmic fashion, the ring of invariants
k[x1, . . . , xn]G of a finite matrix group G ⊂ GL(n, k). As in §2, we assume that our field
k has characteristic zero. We begin by introducing some terminology used implicitly
in §2.

Definition 1. Given f1, . . . , fm ∈ k[x1, . . . , xn], we let k[ f1, . . . , fm] denote the sub-
set of k[x1, . . . , xn] consisting of all polynomial expressions in f1, . . . , fm with coeffi-
cients in k.

This means that the elements f ∈ k[ f1, . . . , fm] are those polynomials which can
be written in the form

f = g( f1, . . . , fm),

where g is a polynomial in m variables with coefficients in k.
Since k[ f1, . . . , fm] is closed under multiplication and addition and contains the

constants, it is a subring of k[x1, . . . , xn]. We say that k[ f1, . . . , fm] is generated by
f1, . . . , fm over k. One has to be slightly careful about the terminology: the subring
k[ f1, . . . , fm] and the ideal 〈 f1, . . . , fm〉 are both “generated” by f1, . . . , fm , but in
each case, we mean something slightly different. In the exercises, we will give some
examples to help explain the distinction.

An important tool we will use in our study of k[x1, . . . , xn]G is the Reynolds operator,
which is defined as follows.

Definition 2. Given a finite matrix group G ⊂ GL(n, k), the Reynolds operator of G
is the map RG : k[x1, . . . , xn] → k[x1, . . . , xn] defined by the formula

RG( f )(x) = 1

|G|
∑
A∈G

f (A · x)

for f (x) ∈ k[x1, . . . , xn].
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One can think of RG( f ) as “averaging” the effect of G on f . Note that division by
|G| is allowed since k has characteristic zero. The Reynolds operator has the following
crucial properties.

Proposition 3. Let RG be the Reynolds operator of the finite matrix group G.
(i) RG is k-linear in f .

(ii) If f ∈ k[x1, . . . , xn], then RG( f ) ∈ k[x1, . . . , xn]G.
(iii) If f ∈ k[x1, . . . , xn]G, then RG( f ) = f .

Proof. We will leave the proof of (i) as an exercise. To prove (ii), let B ∈ G. Then

RG( f )(Bx) = 1

|G|
∑
A∈G

f (A · Bx) = 1

|G|
∑
A∈G

f (AB · x).(1)

Writing G = {A1, . . . , A|G|}, note that Ai B �= A j B when i �= j (otherwise, we
could multiply each side by B−1 to conclude that Ai = A j ). Thus the subset
{A1 B, . . . , A|G| B} ⊂ G consists of |G| distinct elements of G and hence must equal
G. This shows that

G = {AB : A ∈ G}.
Consequently, in the last sum of (1), the polynomials f (AB · x) are just the f (A · x),
possibly in a different order. Hence,

1

|G|
∑
A∈G

f (AB · x) = 1

|G|
∑
A∈G

f (A · x) = RG( f )(x),

and it follows that RG( f )(B · x) = RG( f )(x) for all B ∈ G. This implies RG( f ) ∈
k[x1, . . . , xn]G .

Finally, to prove (iii), note that if f ∈ k[x1, . . . , xn]G , then

RG( f )(x) = 1

|G|
∑
A∈G

f (A · x) = 1

|G|
∑
A∈G

f (x) = f (x)

since f invariant. This completes the proof. �

One nice aspect of this proposition is that it gives us a way of creating invariants.
Let us look at an example.

Example 4. Consider the cyclic matrix group C4 ⊂ GL(2, k) of order 4 generated by

A =
(

0 −1
1 0

)
.

By Lemma 11 of §2, we know that

k[x, y]C4 = { f ∈ k[x, y] : f (x, y) = f (−y, x)}.
One can easily check that the Reynolds operator is given by

RC4 ( f )(x, y) = 1

4
( f (x, y) + f (−y, x) + f (−x, −y) + f (y, −x))
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(see Exercise 3). Using Proposition 3, we can compute some invariants as follows:

RC4 (x2) = 1
4 (x2 + (−y)2 + (−x)2 + y2) = 1

2 (x2 − y2),

RC4 (xy) = 1
4 (xy + (−y)x + (−x)(−y) + y(−x)) = 0,

RC4 (x3 y) = 1
4 (x3 y + (−y)3x + (−x)3(−y) + y3(−x)) = 1

2 (x3 y − xy3),

RC4 (x2 y2) = 1
4 (x2 y2 + (−y)2x2 + (−x)2(−y)2 + y2(−x)2) = x2 y2.

Thus, x2 + y2, x3 y − xy3, x2 y2 ∈ k[x, y]C4 . We will soon see that these three invari-
ants generate k[x, y]C4 .

It is easy to prove that for any monomial xα , the Reynolds operator gives us a
homogeneous invariant RG(xα) of total degree |α|whenever it is nonzero. The following
wonderful theorem of Emmy Noether shows that we can always find finitely many of
these invariants that generate k[x1, . . . , xn]G .

Theorem 5. Given a finite matrix group G ⊂ GL(n, k), we have

k[x1, . . . , xn]G = k[RG(xβ) : |β| ≤ |G|].

In particular, k[x1, . . . , xn]G is generated by finitely many homogeneous invariants.

Proof. If f = ∑
α cαxα ∈ k[x1, . . . , xn]G , then Proposition 3 implies that

f = RG( f ) = RG

( ∑
α

cαxα

)
=

∑
α

cα RG(xα).

Hence every invariant is a linear combination (over k) of the RG(xα). Conse-
quently, it suffices to prove that for all α, RG(xα) is a polynomial in the RG(xβ),
|β| ≤ |G|.

Noether’s clever idea was to fix an integer k and combine all RG(xβ) of total degree k
into a power sum of the type considered in §1. Using the theory of symmetric functions,
this can be expressed in terms of finitely many power sums, and the theorem will
follow.

The first step in implementing this strategy is to expand (x1 + · · · + xn)k into a sum
of monomials xα with |α| = k:

(x1 + · · · + xn)k =
∑
|α|=k

aαxα·(2)

In Exercise 4, you will prove that aα is a positive integer for all |α| = k.
To exploit this identity, we need some notation. Given A = (ai j ) ∈ G, let Ai denote

the i-th row of A. Thus, Ai · x = ai1x1 + · · · + ain xn . Then, if α1 = (α1, . . . , αn) ∈
n
≥0, let

(A · x)α = (A1 · x)α1 · · · (An · x)αn .
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In this notation, we have

RG(xα) = 1

|G|
∑
A∈G

(A · x)α.

Now introduce new variables u1, . . . , un and substitute ui Ai · x for xi in (2). This
gives the identity

(u1 A1 · x + · · · + un An · x)k =
∑
|α|=k

aα(A · x)αuα.

If we sum over all A ∈ G, then we obtain

Sk =
∑
A∈G

(u1 A1 · x + · · · + un An · x)k =
∑
|α|=k

aα

(∑
A∈G

(A · x)α
)

uα

(3)
=

∑
|α|=k

bα RG(xα)uα,

where bα = |G|aα . Note how the sum on the right encodes all RG(xα) with |α| =
k. This is why we use the variables u1, . . . , un: they prevent any cancellation from
occurring.

The left side of (3) is the k-th power sum Sk of the |G| quantities

UA = u1 A1 · x + · · · + un An · x

indexed by A ∈ G. We write this as Sk = Sk(UA : A ∈ G). By Theorem 8 of §1, every
symmetric function in the |G| quantities UA is a polynomial in S1, . . . , S|G|. Since Sk

is symmetric in the UA, it follows that

Sk = F(S1, . . . , S|G|)

for some polynomial F with coefficients in k. Substituting in (3), we obtain

∑
|α|=k

bα RG(xα)uα = F

(∑
|β|=1

bβ RG(Xβ)uβ, . . . ,
∑

|β|=|G|
bβ RG(Xβ)uβ

)
.

Expanding the right side and equating the coefficients of uα , it follows that

bα RG(xα) = a polynomial in the RG(xβ), |β| ≤ |G|.
Since k has characteristic zero, the coefficient bα = |G|aα is nonzero in k, and hence
RG(xα) has the desired form. This completes the proof of the theorem. �

This theorem solves the finite generation problem stated at the end of §2. In
the exercises, you will give a second proof of the theorem using the Hilbert Basis
Theorem.

To see the power of what we have just proved, let us compute some invariants.
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Example 6. We will return to the cyclic group C4 ⊂ GL(2, k) of order 4 from Example
4. To find the ring of invariants, we need to compute RC4 (xi y j ) for all i + j ≤ 4. The
following table records the results:

xi y j RC4 (xi y j ) xi y j RC4 (xi y j )

x 0 xy2 0
y 0 y3 0
x2 1

2 (x2 + y2) x4 1
2 (x4 + y4)

xy 0 x3 y 1
2 (x3 y − xy3)

y2 1
2 (x2 + y2) x2 y2 x2 y2

x3 0 xy3 − 1
2 (x3 y − xy3)

x2 y 0 y4 1
2 (x4 + y4)

By Theorem 5, it follows that k[x, y]C4 is generated by the four invariants x2 + y2, x4 +
y4, x3 y − xy3 and x2 y2. However, we do not need x4 + y4 since

x4 + y4 = (x2 + y2)2 − 2x2 y2.

Thus, we have proved that

k[x, y)C4 = k[x2 + y2, x3 y − xy3, x2 y2].

The main drawback of Theorem 5 is that when |G| is large, we need to compute
the Reynolds operator for lots of monomials. For example, consider the cyclic group
C8 ⊂ GL(2, ) of order 8 generated by the 45◦ rotation

A = 1√
2

(
1 −1
1 1

)
∈ GL(2, ).

In this case, Theorem 5 says that k[x, y]C8 is generated by the 44 invariants
RC8 (xi y j ), i + j ≤ 8. In reality, only 3 are needed. For larger groups, things are
even worse, especially if more variables are involved. See Exercise 10 for an
example.

Fortunately, there are more efficient methods for finding a generating set of invariants.
The main tool is Molien’s Theorem, which enables one to predict in advance the number
of linearly independent homogeneous invariants of given total degree. This theorem
can be found in Chapter 7 of BENSON and GROVE (1985) and Chapter 2 of STURMFELS

(1993). The latter also gives an efficient algorithm, based on Molien’s Theorem, for
finding invariants that generate k[x1, . . . , xn]G .

Once we know k[x1, . . . , xn]G = k[ f1, . . . , fm], we can ask if there is an algorithm
for writing a given invariant f ∈ k[x1, . . . , xn]G in terms of f1, . . . , fm . For example,
it is easy to check that the polynomial

f (x, y) = x8 + 2x6 y2 − x5 y3 + 2x4 y4 + x3 y5 + 2x2 y6 + y8(4)
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satisfies f (x, y) = f (−y, x), and hence is invariant under the group C4 from Example
4. Then Example 6 implies that f ∈ k[x, y]C4 = k[x2 + y2, x3 y − xy3, x2 y2]. But how
do we write f in terms of these three invariants? To answer this question, we will use
a method similar to what we did in Proposition 4 of §1.

We will actually prove a bit more, for we will allow f1, . . . , fm to be arbitrary
elements of k[x1, . . . , xn]. The following proposition shows how to test whether a
polynomial lies in k[ f1, . . . , xm] and, if so, to write it in terms of f1, . . . , fm .

Proposition 7. Suppose that f1, . . . , fm ∈ k[x1, . . . , xn] are given. Fix a monomial
order in k[x1, . . . , xn, y1, . . . , ym] where any monomial involving one of x1, . . . , xn

is greater than all monomials in k[y1, . . . , ym]. Let G be a Groebner basis of the
ideal 〈 f1 − y1, . . . , fm − ym〉 ⊂ k[x1, . . . x,y1, . . . , ym]. Given f ∈ k[x1, . . . , xn], let

g = f
G

be the remainder of f on division by G. Then:
(i) f ∈ k[ f1, . . . , fm] if and only if g ∈ k[y1, . . . , ym].

(ii) If f ∈ k[ f1, . . . , fm], then f = g( f1, . . . , fm) is an expression of f as a polynomial
in f1, . . . , fm.

Proof. The proof will be similar to the argument given in Proposition 4 of §1 (with
one interesting difference). When we divide f ∈ k[x1, . . . , xn] by G = {g1, . . . , g1},
we get an expression of the form

f = A1g1 + · · · + At gt + g.

with A1, . . . , At , g ∈ k[x1, . . . , xn, y1, . . . , ym].
To prove (i), first suppose that g ∈ k[y1, . . . , ym]. Then for each i , substitute fi

for yi in the above formula for f . This substitution will not affect f since it in-
volves only x1, . . . , xn , but it sends every polynomial in 〈 f1 − y1, . . . , fm − ym〉 to
zero. Since g1, . . . , gt lie in this ideal, it follows that f = g( f1, . . . , fm). Hence,
f ∈ k[ f1, . . . , fm].

Conversely, suppose that f = g( f1, . . . , fm) for some g ∈ k[y1, . . . , ym]. Arguing
as in §1, one sees that

f = C1 · ( f1 − y1) + · · · + Cm · ( fm − ym) + g(y1, . . . , ym)(5)

[see equation (4) of §1]. Unlike the case of symmetric polynomials, g need not be the
remainder of f on division by G—we still need to reduce some more.

Let G ′ = G ∩ k[y1, . . . , ym] consist of those elements of G involving only
y1, . . . , ym . Renumbering if necessary, we can assume G ′ = {g1, . . . , gs}, where s ≤ t .
If we divide g by G ′, we get an expression of the form

g = B1g1 + · · · + Bs gs + g′,(6)

where B1, . . . , Bs, g′ ∈ k[y1, . . . , ym]. If we combine equations (5) and (6), we can
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write f in the form

f = C ′
1 · ( f1 − y1) + · · · + C ′

m · ( fm − ym) + g′(y1, . . . ym).

This follows because, in (6), each gi lies in 〈 f1 − y1, . . . , fm − ym〉. We claim that
g′ is the remainder of f on division by G. This will prove that the remainder lies in
k[y1, . . . , ym].

Since G a Groebner basis, Proposition 1 of Chapter 2, §6 tells us that g′ is the
remainder of f on division by G provided that no term of g′ is divisible by an element
of LT(G). To prove that g′ has this property, suppose that there is gi ∈ G where LT(gi )
divides some term of g′. Then LT(gi ) involves only y1, . . . , ym since g′ ∈ k[y1, . . . , ym].
By our hypothesis on the ordering, it follows that gi ∈ k[y1, . . . , ym] and hence, gi ∈ G ′.
Since g′ is a remainder on division by G ′, LT(gi ) cannot divide any term of g′. This
contradiction shows that g′ is the desired remainder.

Part (ii) of the proposition follows immediately from the above arguments, and we
are done. �

In the exercises, you will use this proposition to write the polynomial

f (x, y) = x8 + 2x6 y2 − x5 y3 + 2x4 y4 + x3 y5 + 2x2 y6 + y8

from (4) in terms of the generating invariants x2 + y2, x3 y − xy3, x2 y2 of k[x, y]C4 .
The problem of finding generators for the ring of invariants (and the associated

problem of finding the relations between them—see §4) played an important role in
the development of invariant theory. Originally, the group involved was the group of
all invertible matrices over a field. A classic introduction can be found in HILBERT

(1993), and STURMFELS (1993) also discusses this case. For more on the invariant
theory of finite groups, we recommend BENSON (1993), BENSON and GROVE (1985),
SMITH (1995) and STURMFELS (1993).

EXERCISES FOR §3

1. Given f1, . . . , fm ∈ k[x1, . . . , xn], we can “generate” the following two objects:
� The ideal 〈 f1, . . . , fm〉 ⊂ k[x1, . . . , xn] generated by f1, . . . , fm . This consists of all

expressions
∑m

i=1 hi fi , where h1, . . . , hm ∈ k[x1, . . . , xn].
� The subring k[ f1, . . . , fm] ⊂ k[x1, . . . , xn] generated by f1, . . . , fm over k. This consists

of all expressions g( f1, . . . , fm) where g is a polynomial in m variables with coefficients
in k.

To illustrate the differences between these, we will consider the simple case where f1 =
x2 ∈ k[x].
a. Explain why 1 ∈ k[x2] but 1 /∈ 〈x2〉.
b. Explain why x3 /∈ k[x2] but x3 ∈ 〈x2〉.

2. Let G be a finite matrix group in GL(n, k). Prove that the Reynolds operator RG has the
following properties:
a. If a, b ∈ k and f, g ∈ k[x1, . . . ., xn], then RG(a f + bg) = a RG( f ) + bRG(g).
b. RG maps k[x1, . . . , xn] to k[x1, . . . , xn]G and is onto.
c. RG ◦ RG = RG .
d. If f ∈ k[x1, . . . , xn]G and g ∈ k[x1, . . . , xn], then RG( f g) = f · RG(g).
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3. In this exercise, we will work with the cyclic group C4, ⊂ GL(2, k) from Example 4 in the
text.
a. Prove that the Reynolds operator of C4 is given by

RC4 ( f )(x, y) = 1
4 ( f (x, y) + f (−y, x) + f (−x, −y) + f (y, −x)).

b. Compute RC4(xi y j ) for all i + j ≤ 4. Note that some of the computations are done in
Example 4. You can check your answers against the table in Example 6.

4. In this exercise, we will study the identity (2) used in the proof of Theorem 5. We will use
the multinomial coefficients, which are defined as follows. For α = (α1, . . . , αn) ∈ n

≥0, let
|α| = k and define (

k

α

)
= k!

α1!α2! · · · αn!
.

a. Prove that
(k
α

)
is an integer. Hint: Use induction on n and note that when n = 2,

(k
α

)
is a

binomial coefficient.
b. Prove that

(x1 + · · · + xn)k =
∑
|α|=k

(
k

α

)
xα.

In particular, the coefficient aα in equation (2) is the positive integer
(k
α

)
. Hint: Use

induction on n and note that the case n = 2 is the binomial theorem.
5. Let G ⊂ GL(n, k) be a finite matrix group. In this exercise, we will give Hilbert’s proof

that k[x1, . . . , xn]G is generated by finitely many homogeneous invariants. To begin the
argument, let I ⊂ k[x1, . . . , xn] be the ideal generated by all homogeneous invariants of
positive total degree.
a. Explain why there are finitely many homogeneous invariants f1, . . . , fm such that

I = 〈 f1, . . . , fm〉. The strategy of Hilbert’s proof is to show that k[x1, . . . , xn]G =
k[ f1, . . . , fm]. Since the inclusion k[ f1, . . . , xn] ⊂ k[x1, . . . , xn]G is obvious, we must
show that k[x1, . . . , xn]G �⊂ k[ f1, . . . , fm] leads to a contradiction.

b. Prove that k[x1, . . . , xn]G �⊂ k[ f1, . . . , fm] implies there is a homogeneous invariant f
of positive degree which is not in k[ f1, . . . , fm].

c. For the rest of the proof, pick f as in part (b) with minimal total degree k. By definition,
f ∈ I , so that f = ∑m

i=1 hi fi for h1, . . . , hm, ∈ k[x1, . . . , xn]. Prove that for each i , we
can assume hi fi is 0 or homogeneous of total degree k.

d. Use the Reynolds operator to show that f = ∑m
i=1 RG(hi ). Hint: Use Proposition 3 and

Exercise 2. Also show that for each i, RG(hi ) fi is 0 or homogeneous of total degree k.
e. Since fi has positive total degree, conclude that RG(hi ) is a homogeneous invariant of

total degree < k. By the minimality of k, RG(hi ) ∈ k[ f1, . . . , fm] for all i . Prove that
this contradicts f /∈ k[ f1, . . . , fm].

This proof is a lovely application of the Hilbert Basis Theorem. The one drawback is that it
does not tell us how to find the generators—the proof is purely nonconstructive. Thus, for
our purposes, Noether’s theorem is much more useful.

6. If we have two finite matrix groups G and H such that G ⊂ H ⊂ GL(n, k), prove that
k(x1, . . . , xn)H ⊂ k[x1, . . . , xn]G .

7. Consider the matrix

A =
(

0 −1
1 −1

)
∈ GL(2, k).
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a. Show that A generates a cyclic matrix group C3 of order 3.
b. Use Theorem 5 to find finitely many homogeneous invariants which generate k[x, y]C3 .
c. Can you find fewer invariants that generate k[x, y]C3 ? Hint: If you have invariants

f1, . . . , fm, you can use Proposition 7 to determine whether f1 ∈ k[ f2, . . . , fm].
8. Let A be the matrix of Exercise 7.

a. Show that −A generates a cyclic matrix group C6, of order 6.
b. Show that −I2 ∈ C6. Then use Exercise 6 and §2 to show that k[x, y]C6 ⊂ k[x2, y2, xy].

Conclude that all nonzero homogeneous invariants of C6 have even total degree.
c. Use part (b) and Theorem 5 to find k[x, y]C6 . Hint: There are still a lot of Reynolds

operators to compute. You should use a computer algebra program to design a procedure
that has i, j as input and RC6 (xi y j ) as output.

9. Let A be the matrix

A = 1√
2

(
1 −1
1 1

)
∈ GL(2, k).

a. Show that A generates a cyclic matrix group C8 ⊂ GL(2, k).
b. Give a geometric argument to explain why x2 + y2 ∈ k[x, y]C8 . Hint: A is a rotation

matrix.
c. As in Exercise 8, explain why all homogeneous invariants of C8 have even total degree.
d. Find k[x, y]c8. Hint: Do not do this problem unless you know how to design a pro-

cedure (on some computer algebra program) that has i, j as input and RC8 (xi y j ) as
output.

10. Consider the finite matrix group

G =
⎧⎨
⎩

⎛
⎝ ±1 0 0

0 ±1 0
0 0 ±1

⎞
⎠

⎫⎬
⎭ ⊂ GL(3, k).

Note that G has order 8.
a. If we were to use Theorem 5 to determine k[x, y, z]G, for how many monomials would

we have to compute the Reynolds operator?
b. Use the method of Example 12 in §2 to determine k[x, y, z]G .

11. Let f be the polynomial (4) in the text.
a. Verify that f ∈ k[x, y]C4 = k[x2 + y2, x3 y − xy3, x2 y2].
b. Use Proposition 7 to express f as a polynomial in x2 + y2, x2 y − xy3, x2 y2.

12. In Exercises 5, 6, and 7 of §2, we studied the rotation group G ⊂ GL(3, ) of the cube in
3 and we found that k[x, y, z]G contained the polynomials

f1 = x2 + y2 + z2,

f2 = (x + y + z)(x + y − z)(x − y + z)(x − y − z),

f3 = x2 y2z2,

f4 = xyz(x2 − y2)(x2 − z2)(y2 − z2).

a. Give an elementary argument using degrees to show that f4 /∈ k[ f1, f2, f3].
b. Use Proposition 7 to show that f3 /∈ k[ f1, f2].
c. In Exercise 6 of §2, we showed that

(
(x2 − y2)(x2 − z2)(y2 − z2)

)2 ∈ k[x, y, z]G .
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Prove that this polynomial lies in k[ f1, f2, f3]. Why can we ignore f4?
Using Molien’s Theorem and the methods of STURMFELS (1993), one can prove that k[x, y, z]G =
k[ f1, f2, f3, f4].

§4 Relations Among Generators and
the Geometry of Orbits

Given a finite matrix group G ⊂ GL(n, k), Theorem 5 of §3 guarantees that there are
finitely many homogeneous invariants f1, . . . , fm such that

k[x1, . . . , xn]G = k[ f1, . . . , fm].

In this section, we will learn how to describe the algebraic relations among f1, . . . , fm ,
and we will see that these relations have some fascinating algebraic and geometric
implications.

We begin by recalling the uniqueness problem stated at the end of §2. For a symmetric
polynomial f ∈ k[x1, . . . , xn]Sn = k[σ1, . . . , σn], we proved that f could be written
uniquely as a polynomial in σ1, . . . σn . For a general finite matrix group G ⊂ GL(n, k),
if we know that k[x1, . . . , xn]G = k[ f1, . . . , fm], then one could similarly ask if f ∈
k[x1, . . . , xn]G can be uniquely written in terms of f1, . . . , fm .

To study this question, note that if g1 and g2 are polynomials in k[y1, . . . , ym], then

g1( f1, . . . , fm) = g2( f1, . . . , fm) ⇐⇒ h( f1, . . . , fm) = 0,

where h = g1 − g2. It follows that uniqueness fails if and only if there is a nonzero
polynomial h ∈ k[y1, . . . , ym] such that h( f1, . . . , fm) = 0. Such a polynomial is a
nontrivial algebraic relation among f1, . . . , fm .

If we let F = ( f1, . . . , fm), then the set

IF = {h ∈ k[y1, . . . , ym] : h( f1, . . . , fm) = 0 in k[x1, . . . , xn]}(1)

records all algebraic relations among f1, . . . , fm . This set has the following properties.

Proposition 1. If k[x1, . . . , xn]G = k[ f1, . . . , fm], let IF ⊂ k[y1, . . . , ym] be as in (1).
Then:
(i) IF is a prime ideal of k[y1, . . . , ym].

(ii) Suppose that f ∈ k[x1, . . . , xn]G and that f = g( f1, . . . , fm) is one representation
of f in terms of f1, . . . , fm. Then all such representations are given by

f = g( f1, . . . , fm) + h( f1, . . . , fm),

as h varies over IF .

Proof. For (i), it is an easy exercise to prove that IF is an ideal. To show that it is
prime, we need to show that fg ∈ IF implies that f ∈ IF or g ∈ IF (see Definition 2
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of Chapter 4, §5). But f g ∈ IF means that f ( f1, . . . , fm)g( f1, . . . , fm) = 0. This is a
product of polynomials in k[x1, . . . , xn], and hence, f ( f1, . . . , fm) or g( f1, . . . , fm)
must be zero. Thus f or g is in IF .

We leave the proof of (ii) as an exercise. �

We will call IF the ideal of relations for F = ( f1, . . . , fm). Another name for IF used
in the literature is the syzygy ideal. To see what Proposition 1 tells us about the unique-
ness problem, consider C2 = {±I2} ⊂ GL(2, k). We know from §2 that k[x, y]C2 =
k[x2, y2, xy], and, in Example 4, we will see that IF = (uv − w2) ⊂ k[u, v, w]. Now
consider x6 + x3 y3 ∈ k[x, y]C2 . Then Proposition 1 implies that all possible ways of
writing x6 + x3 y3 in terms of x2, y2, xy are given by

(x2)3 + (xy)3 + (x2 · y2 − (xy)2) · b(x2, y2, xy)

since elements of 〈uv − w2〉 are of the form (uv − w2) · b(u, v, w).
As an example of what the ideal of relations IF can tell us, let us show how it can

be used to reconstruct the ring of invariants.

Proposition 2. if k[x1, . . . , zn]G = k[ f1, . . . , fm], let IF ⊂ k[y1, . . . , ym] be the ideal
of relations. Then there is a ring isomorphism

k[y1, . . . , ym]/IF
∼= k[x1, . . . , xn]G

between the quotient ring of IF (as defined in Chapter 5, §2) and the ring of
invariants.

Proof. Recall from §2 of Chapter 5 that elements of the quotient ring k[y1, . . . , ym]/IF

are written [g] for g ∈ k[y1, . . . , ym], where [g1] = [g2] if and only if g1 − g2 ∈ IF .
Now define φ : k[y1, . . . , ym]/IF → k[x1, . . . , xn]G by

φ([g]) = g( f1, . . . , fm).

We leave it as an exercise to check that φ is well-defined and is a ring homomorphism.
We need to show that φ is one-to-one and onto.

Since k[x1, . . . , xn]G = k[ f1, . . . , fm], it follows immediately that φ is onto. To
prove that φ is one-to-one, suppose that φ([g1]) = φ([g2]). Then g1( f1, . . . , fm) =
g2( f1, . . . , fm), which implies that g1 − g2 ∈ IF . Thus, [g1] = [g2], and hence, φ is
one-to-one.

It is a general fact that if a ring homomorphism is one-to-one and onto, then its inverse
function is a ring homomorphism. This proves that φ is a ring isomorphism. �

A more succinct proof of this proposition can be given using the Isomorphism
Theorem of Exercise 16 in Chapter 5, §2.
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For our purposes, another extremely important property of IF is that we can compute
it explicitly using elimination theory. Namely, consider the system of equations

y1 = f1(x1, . . . , xn),
...

ym = fm(x1, . . . , xn).

Then IF can be obtained by eliminating x1, . . . , xn from these equations.

Proposition 3. If k[x1, . . . , xn]G = k[ f1, . . . , fm], consider the ideal

JF = 〈 f1, . . . , y1, . . . , fm − ym〉 ⊂ k[x1, . . . , xn, y1, . . . , ym].

(i) IF is the n-th elimination ideal of JF . Thus, IF = JF ∩ k[y1, . . . , ym].
(ii) Fix a monomial order in k[x1, . . . , xn, y1, . . . , ym] where any monomial involving

one of x1, . . . , xn is greater than all monomials in k[y1, . . . , ym] and let G be a
Groebner basis of JF . Then G ∩ k[y1, . . . , ym] is a Groebner basis for IF in the
monomial order induced on k[y1, . . . , ym].

Proof. Note that the ideal JF appeared earlier in Proposition 7 of §3. To relate JF

to the ideal of relations IF , we will need the following characterization of JF : if
p ∈ k[x1, . . . , xn, y1, . . . , ym], then we claim that

p ∈ JF ⇐⇒ p(x1, . . . , xn, f1, . . . , fm) = 0 in k[z1, . . . , xn].(2)

One implication is obvious since the substitution yi �→ fi takes all elements of
JF = 〈 f1 − y1, . . . , fm − ym〉 to zero. On the other hand, given p ∈ k[x1, . . . , xn,

y1, . . . , ym], if we replace each yi in p by fi − ( fi − yi ) and expand, we obtain

p(x1, . . . , xn, y1, . . . , ym) = p(x1, . . . , xn, f1, . . . , fm)

+ B1 · ( f1 − y1) + · · · + Bm · ( fm − ym)

for some B1, . . . , Bm ∈ k[x1, . . . , xn, y1, . . . , ym] (see Exercise 4 for the details). In
particular, if p(x1, . . . , xn, f1, . . . , fm) = 0, then

p(x1, . . . , xn, y1, . . . , ym) = B1 · ( f1 − y1) + · · · + Bm · ( fm − ym) ∈ JF .

This completes the proof of (2).
Now intersect each side of (2) with k[y1, . . . , ym]. For p ∈ k[y1, . . . , ym], this proves

p ∈ JF ∩ k[y1, . . . , ym] ⇐⇒ p( f1, . . . , fm) = 0 in k[z1, . . . , zn],

so that JF ∩ k[y1, . . . , ym] = IF by the definition of IF Thus, (i) is proved and (ii) is
then an immediate consequence of the elimination theory of Chapter 3 (see Theorem 2
and Exercise 5 of Chapter 3, §1). �

We can use this proposition to compute the relations between generators.
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Example 4. In §2 we saw that the invariants of C2 = {±I2} ⊂ GL(2, k) are given by
k[x, y]C2 = k[x2, y2, xy]. Let F = (x2, y2, xy) and let the new variables be u, v, w.

Then the ideal of relations is obtained by eliminating x, y from the equations

u = x2,

v = y2,

w = xy.

If we use lex order with x > y > u > v > w, then a Groebner basis for the ideal
JF = 〈u − x2, v − y2, w − xy〉 consists of the polynomials

x2 − u, xy − w, xv − yw, xw − yu, y2 − v, uv − w2.

It follows from Proposition 3 that

IF = 〈uv − w2〉.
This says that all relations between x2, y2, and xy are generated by the obvious relation
x2 · y2 = (xy)2. Then Proposition 2 shows that the ring of invariants can be written as

k[x, y]C2 ∼= k[u, v, w]/〈uv − w2〉.

Example 5. In §3, we studied the cyclic matrix group C4 ⊂ GL(2, k) generated by

A =
(

0 −1
1 0

)

and we saw that

k[x, y]C4 = k[x2 + y2, x3 y − xy3, x2 y2].

Putting F = (x2 + y2, x3 y − xy3, x2 y2), we leave it as an exercise to show that IF ⊂
k[u, v, w] is given by IF = 〈u2w − v2 − 4w2〉. So the one nontrivial relation between
the invariants is

(x2 + y2)2 · x2 y2 = (x3 y − xy3)2 + 4(x2 y2)2.

By Proposition 2, we conclude that the ring of invariants can be written as

k[x, y]C4 ∼= k[u, v, w]/〈u2w − v2 − 4w2〉.

By combining Propositions 1, 2, and 3 with the theory developed in §3 of Chap-
ter 5, we can solve the uniqueness problem stated at the end of §2. Suppose that
k[x1, . . . , xn]G = k[ f1, . . . , fm] and let IF ⊂ k[y1, . . . , ym] be the ideal of relations.
If IF �= {0}, we know that a given element f ∈ k[x1, . . . , xn]G can be written in
more than one way in terms of f1, . . . , fm . Is there a consistent choice for how to
write f ?

To solve this problem, pick a monomial order on k[y1, . . . , ym] and use Proposition
3 to find a Groebner basis G of IF . Given g ∈ k[y1, . . . , ym], let gG be the remainder of
g on division by G. In Chapter 5, we showed that the remainders gG uniquely represent
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elements of the quotient ring k[y1, . . . , ym]/IF (see Proposition 1 of Chapter 5, §3).
Using this together with the isomorphism

k[y1, . . . , ym]/IF
∼= k[z1, . . . , xn]G

of Proposition 2, we get a consistent method for writing elements of k[x1, . . . , xn]G

in terms of f1, . . . , fm . Thus, Groebner basis methods help restore the uniqueness lost
when IF �= {0}.

So far in this section, we have explored the algebra associated with the ideal of
relations IF . It is now time to turn to the geometry. The basic geometric object associated
with an ideal is its variety. Hence, we get the following definition.

Definition 6. If k[x1, . . . , xn]G = k[ f1, . . . , fm], let IF ⊂ k[y1, . . . , ym] be the ideal
of relations for F = ( f1, . . . , fm). Then we have the affine variety

VF = V(IF ) ⊂ km .

The variety VF has the following properties.

Proposition 7. Let IF and VF be as in Definition 6.
(i) VF is the smallest variety in km containing the parametrization

y1 = f1(x1, . . . , xn),
...

ym = fm(x1, . . . , xn).

(ii) IF = I(VF ), so that IF is the ideal of all polynomial functions vanishing on VF .
(iii) VF is an irreducible variety.
(iv) Let k[VF ] be the coordinate ring of VF as defined in §4 of Chapter 5. Then there

is a ring isomorphism

k[VF ] ∼= k[x1, . . . , xn]G .

Proof. Let JF = 〈 f1 − y1, . . . , fm − ym〉. By Proposition 3, IF is the n-th elimination
ideal of JF . Then part (i) follows immediately from the Polynomial Implicitization
Theorem of Chapter 3 (see Theorem 1 of Chapter 3, §3).

Turning to (ii), note that we always have IF ⊂ I(V(IF )) = I(VF ). To prove the op-
posite inclusion, suppose that h ∈ I(VF ). Given any point (a1, . . . , an) ∈ kn, part (i)
implies that

( f1(a1, . . . , an), . . . , fm(a1, . . . , an)) ∈ VF .

Since h vanishes on VF , it follows that

h( f1(a1, . . . , an), . . . , fm(a1, . . . , an)) = 0

for all (a1, . . . , an) ∈ kn. By assumption, k has characteristic zero and, hence, is infinite.
Then Proposition 5 of Chapter 1, §1 implies that h( f1, . . . , fm) = 0 and, hence, h ∈ IF .
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By (ii) and Proposition 1, I(VF ) = IF is a prime ideal, so that VF is irreducible by
Proposition 4 of Chapter 5, §1. (We can also use the parametrization and Proposition 5
of Chapter 4, §5 to give a second proof that VF is irreducible.)

Finally, in Chapter 5, we saw that the coordinate ring k[VF ] could be written as

k[VF ] ∼= k[y1, . . . , ym]/I(VF )

(see Theorem 7 of Chapter 5, §2). Since I(VF ) = IF by part (ii), we can use the
isomorphism of Proposition 2 to obtain

k[VF ] ∼= k(y1, . . . , ym]/IF
∼= [x1, . . . , xn]G .(3)

This completes the proof of the proposition. �

Note how the isomorphisms in (3) link together the three methods (coordinate rings,
quotient rings and rings of invariants) that we have learned for creating new rings.

When we write k[x1, . . . , xn]G = k[ f1, . . . , fm], note that f1, . . . , fm are not
uniquely determined. So one might ask how changing to a different set of genera-
tors affects the variety VF . The answer is as follows.

Corollary 8. Suppose that k[x1, . . . , xn]G = k[ f1, . . . , fm] = k[ f ′
1, . . . , f ′

m ′ ]. If we
set F = ( f1, . . . , fm) and F ′ = ( f ′

1, . . . , f ′
m ′ ), then the varieties VF ⊂ km and VF ′ ⊂

km ′
are isomorphic (as defined in Chapter 5, §4).

Proof. Applying Proposition 7 twice, we then have isomorphisms k[VF ] ∼=
k[x1, . . . , xn]G ∼= k[VF ′ ], and it is easy to see that these isomorphisms are the identity
on constants. But in Theorem 9 of Chapter 5, §4, we learned that two varieties are
isomorphic if and only if there is an isomorphism of their coordinate rings which is the
identity on constants. The corollary follows immediately. �

One of the lessons we learned in Chapter 4 was that the algebra–geometry corre-
spondence works best over an algebraically closed field k. So for the rest of this section
we will assume that k is algebraically closed.

To uncover the geometry of VF , we need to think about the matrix group G ⊂
GL(n, k) more geometrically. So far, we have used G to act on polynomials: if f (x) ∈
k[x1, . . . , xn], then a matrix A ∈ G gives us the new polynomial g(x) = f (A · x).
But we can also let G act on the underlying affine space kn . We will write a point
(a1, . . . , an) ∈ kn as a column vector a. Thus,

a =

⎛
⎜⎝

a1
...

an

⎞
⎟⎠ ·

Then a matrix A ∈ G gives us the new point A · a by matrix multiplication.
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We can then use G to describe an equivalence relation on kn: given a, b ∈ kn , we say
that a ∼G b if b = A · a for some A ∈ G. We leave it as an exercise to verify that ∼G is
indeed an equivalence relation. It is also straightforward to check that the equivalence
class of a ∈ kn is given by

{b ∈ kn : b ∼G a} = {A · a : A ∈ G}·
These equivalence classes have a special name.

Definition 9. Given a finite matrix group G ⊂ GL(n, k) and a ∈ kn, the G-orbit of a
is the set

G · a = {A · a : A ∈ G}.
The set of all G-orbits in kn is denoted kn/G and is called the orbit space.

Note that an orbit G · a has at most |G| elements. In the exercises, you will show
that the number of elements in an orbit is always a divisor of |G|.

Since orbits are equivalence classes, it follows that the orbit space kn/G is the set
of equivalence classes of ∼G . Thus, we have constructed kn/G as a set. But for us, the
objects of greatest interest are affine varieties. So it is natural to ask if kn/G has the
structure of a variety in some affine space. The answer is as follows.

Theorem 10. Let G ⊂ GL(n, k) be a finite matrix group, where k is algebraically
closed. Suppose that k[x1, . . . , xn]G = k[ f1, . . . , fm]. Then:
(i) The polynomial mapping F : kn → VF defined by F(a) = ( f1(a), . . . , fm(a)) is

surjective. Geometrically, this means that the parametrization yi = fi (x1, . . . , xn)
covers all of VF .

(ii) The map sending the G-orbit G · a ⊂ kn to the point F(a) ∈ VF induces a one-to-
one correspondence

kn/G ∼= VF .

Proof. We prove part (i) using elimination theory. Let JF = 〈 f1 − y1, . . . , fm − ym〉
be the ideal defined in Proposition 3. Since IF = JF ∩ k[y1, . . . , ym] is an elimination
ideal of JF , it follows that a point (b1, . . . , bm) ∈ VF = V(IF ) is a partial solution of
the system of equations

y1 = f1(x1, . . . , xn),
...

ym = fm(x1, . . . , xn).

If we can prove that (b1, . . . , bm) ∈ V(IF ) extends to (a1, . . . , an, b1, . . . , bm) ∈ V(JF ),
then F(a1, . . . , an) = (b1, . . . , bm) and the surjectivity of F : kn → VF will follow.
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We claim that for each i , there is an element pi ∈ JF ∩ k[xi , . . . , xn, y1, . . . , ym]
such that

pi = x N
i + terms in which xi has degree < N ,(4)

where N = |G|. For now, we will assume that the claim is true.
Suppose that inductively we have extended (b1, . . . , bm) to a partial solution

(ai+1, . . . , an, b1, . . . , bm) ∈ V(JF ∩ k[xi+1, . . . , xn, y1, . . . , ym]).

Since k is algebraically closed, the Extension Theorem of Chapter 3, §1 asserts that we
can extend to (ai , ai+1, . . . , an, b1, . . . , bm), provided the leading coefficient in xi of
one of the generators of JF ∩ k(xi , . . . , xn, y1, . . . , ym] does not vanish at the partial
solution. Because of our claim, this ideal contains the above polynomial pi and we
can assume that pi is a generator (just add it to the generating set). By (4), the leading
coefficient is 1, which never vanishes, so that the required ai exists (see Corollary 4 of
Chapter 3, §1).

It remains to prove the existence of pi . We will need the following lemma.

Lemma 11. Suppose that G ⊂ GL(n, k) is a finite matrix group and f ∈ k[x1, . . . , xn].
Let N = |G|. Then there are invariants g1, . . . , gN ∈ k[x1, . . . , xn]G such that

f N + g1 f N−1 + · · · + gN + 0.

Proof of Lemma. Consider the polynomial
∏

A∈G(X − f (A · x)). If we multiply it out,
we get ∏

A∈G

(X − f (A · x)) = X N + g1(x)X N−1 + · · · + gN (x),

where the coefficients g1, . . . , gN are in k[x1, . . . , xn]. We claim that g1, . . . , gN are
invariant under G. To prove this, suppose that B ∈ G. In the proof of Proposition 3 of
§3, we saw that the f (AB · x) are just the f (A · x), possibly in a different order. Thus∏

A∈G

(X − f (AB · x)) =
∏
A∈G

(X − f (A · x)),

and then multiplying out each side implies that

X N + g1(B · x)X N−1 + · · · + gN (B · x) = X N + g1(x)X N−1 + · · · + gN (x)

for each B ∈ G. This proves that g1, . . . , gN ∈ k[x1, . . . , xn]G .
Since one of the factors is X − f (In · x) = X − f (x), the polynomial vanishes when

X = f , and the lemma is proved. �

We can now prove our claim about the polynomial pi . If we let f = xi in Lemma
11, then we get

x N
i + g1x N−1

i + · · · + gN = 0,(5)
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where N = |G| and g1, . . . , gN ∈ k[x1, . . . , xn]G . Using k[x1, . . . , xn]G =
k[ f1, . . . , fm], we can write g j = h j ( f1, . . . , fm) for j = 1, . . . , N . Then let

pi (xi , y1, . . . , ym) = x N
i + h1(y1, . . . , ym)x N−1

i + · · · + hN (y1, . . . , ym)

in k[xi , y1, . . . , ym]. From (5), it follows that p(xi , f1, . . . , fm) = 0 and, hence, by
(2), we see that pi ∈ JF . Then pi ∈ JF ∩ k[xi , . . . , xn, y1, . . . , ym], and our claim is
proved.

To prove (ii), first note that the map

F̃ : kn/G → VF

defined by sending G · a to F(a) = ( f1(a), . . . , fm(a)) is well-defined since each fi is
invariant and, hence, takes the same value on all points of a G-orbit G · a. Furthermore,
F is onto by part (i) and it follows that F̃ is also onto.

It remains to show that F̃ is one-to-one. Suppose that G · a and G · b are distinct
orbits. Since ∼G is an equivalence relation, it follows that the orbits are disjoint. We
will construct an invariant g ∈ k[x1, . . . , xn]G such that g(a) �= g(b). To do this, note
that S = G · b ∪ G · a − {a} is a finite set of points in kn and, hence, is an affine variety.
Since a /∈ S, there must be some defining equation f of S which does not vanish at a.

Thus, for A ∈ G, we have

f (A · b) = 0 and f (A · a) =
{

0 ifA · a �= a
f (a) �= 0 ifA · a = a.

Then let g = RG( f ). We leave it as an exercise to check that

g(b) = 0 and g(a) = M

|G| f (a) �= 0,

where M is the number of elements A ∈ G such that A · a = a. We have thus found an
element g ∈ k[x1, . . . , xn]G such that g(a) �= g(b).

Now write g as a polynomial g = h( f1, . . . , fm) in our generators. Then g(a) �= g(b)
implies that fi (a) �= fi (b) for some i , and it follows that F̃ takes different values on
G · a and G · b. The theorem is now proved. �

Theorem 10 shows that there is a bijection between the set kn/G and the variety
VF . This is what we mean by saying that kn/G has the structure of an affine variety.
Further, whereas IF depends on the generators chosen for k[x1, . . . , xn]G , we noted in
Corollary 8 that VF is unique up to isomorphism. This implies that the variety structure
on kn/G is unique up to isomorphism.

One nice consequence of Theorem 10 and Proposition 7 is that the “polynomial
functions” on the orbit space kn/G are given by

k[VF ] ∼= k[x1, . . . , xn]G .

Note how natural this is: an invariant polynomial takes the same value on all points of
the G-orbit and, hence, defines a function on the orbit space. Thus, it is reasonable to
expect that k[x1, . . . , xn]G should be the “coordinate ring” of whatever variety structure
we put on kn/G.
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Still, the bijection kn/G ∼= VF is rather remarkable if we look at it slightly differently.
Suppose that we start with the geometric action of G on kn which sends a to A · a for
A ∈ G. From this, we construct the orbit space kn/G as the set of orbits. To give this
set the structure of an affine variety, look at what we had to do:
� we made the action algebraic by letting G act on polynomials;
� we considered the invariant polynomials and found finitely many generators; and
� we formed the ideal of relations among the generators.
The equations coming from this ideal define the desired variety structure VF on kn/G.

In general, an important problem in algebraic geometry is to take a set of interesting
objects (G-orbits, lines tangent to a curve, etc.) and give it the structure of an affine
(or projective—see Chapter 8) variety. Some simple examples will be given in the
exercises.

EXERCISES FOR §4

1. Given f1, . . . , fm ∈ k[x1, . . . , xn], let I = {g ∈ k[y1, . . . , ym] : g( f1, . . . , fm) = 0}.
a. Prove that I is an ideal of k[y1, . . . , ym].
b. If f ∈ k[ f1, . . . , fm] and f = g( f1, . . . , fm) is one representation of f in terms of

f1, . . . , fm , prove that all such representations are given by f = g( f1, . . . , fm) +
h( f1, . . . , fm) as h varies over I .

2. Let f1, . . . , fm, ∈ k[x1, . . . , xn] and let I ⊂ k[y1, . . . , ym] be the ideal of relations defined
in Exercise 1.
a. Prove that the map sending a coset [g] to g( f1, . . . , fm) defines a well-defined ring

homomorphism

φ : k[y1, . . . , ym]/I −→ k[ f1, . . . , fm].

b. Prove that the map φ of part (a) is one-to-one and onto. Thus φ is a ring isomorphism.
c. Use Exercise 13 in Chapter 5, §2 to give an alternate proof that k[y1, . . . , ym]/I

and k[ f1, . . . , fm] are isomorphic. Hint: Consider the ring homomorphism 
 :
k[y1, . . . , ym] → k[ f1, . . . , fm] which sends yi to fi .

3. Although Propositions 1 and 2 were stated for k[x1, . . . , xn]G , we saw in Exercises 1 and
2 that these results held for any subring of k[x1, . . . , xn] of the form k[ f1, . . . , fm]. Give a
similar generalization of Proposition 3. Does the proof given in the text need any changes?

4. Given p ∈ k[x1, . . . , xn, y1, . . . , ym], prove that

p(x1, . . . , xn, y1, . . . , ym) = p(x1, . . . , xn, f1, . . . , fm)

+ B1 · ( f1 − y1) + · · · + Bm · ( fm − ym)

for some B1, . . . , Bm ∈ k[x1, . . . , xn, y1, . . . , ym]. Hint: In p, replace each occurrence of yi

by fi − ( fi − yi ). The proof is similar to the argument given to prove (4) in §1.
5. Complete Example 5 by showing that IF ⊂ k[u, v, w] is given by IF = 〈u2w − v2 − 4w2〉

when F = (x2 + y2, x3 y − xy3, x2 y2).
6. In Exercise 7 of §3, you were asked to compute the invariants of a certain cyclic group

C3 ⊂ GL(2, k) of order 3. Take the generators you found for k[x, y]C3 and find the relations
between them.

7. Repeat Exercise 6, this time using the cyclic group C6 ⊂ GL(2, k) of order 6 from Exercise
8 of §3.
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8. In Exercise 12 of §3, we listed four invariants f1, f2, f3, f4 of the group of rotations of the
cube in 3.
a. Using ( f4/xyz)2 and part (c) of Exercise 12 of §3, find an algebraic relation between

f1, f2, f3, f4.
b. Show that there are no nontrivial algebraic relations between f1, f2, f3.
c. Show that the relation you found in part (a) generates the ideal of all relations between

f1, f2, f3, f4. Hint: If p( f1, f2, f3, f4) = 0 is a relation, use part (a) to reduce to a relation
of the form p1( f1, f2, f3) + p2( f1, f2, f3) f4 = 0. Then explain how degree arguments
imply p1( f1, f2, f3) = 0.

9. Given a finite matrix group G ⊂ GL(n, k), we defined the relation ∼G on kn by a ∼G b if
b = A · a for some A ∈ G.
a. Verify that ∼G is an equivalence relation.
b. Prove that the equivalence class of a is the set G · a defined in the text.

10. Consider the group of rotations of the cube in 3. We studied this group in Exercise 5 of
§2, and we know that it has 24 elements.
a. Draw a picture of the cube which shows orbits consisting of 1, 6, 8, 12 and 24 elements.
b. Argue geometrically that there is no orbit consisting of four elements.

11. (Requires abstract algebra) Let G ⊂ GL(n, k) be a finite matrix group. In this problem, we
will prove that the number of elements in an orbit G · a divides |G|.
a. Fix a ∈ kn and let H = {A ∈ G : A · a = a}. Prove that H is a subgroup of G. We call

H the isotropy subgroup or stabilizer of a.
b. Given A ∈ G, we get the left coset AH = {AB : B ∈ H} of H in G and we let G/H

denote the set of all left cosets (note that G/H will not be a group unless H is normal).
Prove that the map sending AH to A · a induces a bijective map G/H ∼= G · a. Hint:
You will need to prove that the map is well-defined. Recall that two cosets AH and B H
are equal if and only if B−1 A ∈ H .

c. Use part (b) to prove that the number of elements in G · a divides |G|.
12. As in the proof of Theorem 10, suppose that we have disjoint orbits G · a and G · b. Set

S = G · b ∪ G · a − {a}, and pick f ∈ k[x1, . . . , xn] such that f = 0 on all points of S but
f (a) �= 0. Let g = RG( f ), where RG is the Reynolds operator of G.
a. Explain why g(b) = 0.
b. Explain why g(a) = M

|G| f (a) �= 0, where M is the number of elements A ∈ G such that
A · a = a.

13. In this exercise, we will see how Theorem 10 can fail when we work over a field that is not
algebraically closed. Consider the group of permutation matrices S2 ⊂ GL(2, ).
a. We know that [x, y]S2 = [σ1, σ2]. Show that IF = {0} when F = (σ1, σ2), so that

VF = 2. Thus, Theorem 10 is concerned with the map F̃ : 2/S2 → 2 defined by
sending S2 · (x, y) to (y1, y2) = (x + y, xy).

b. Show that the image of F̃ is the set {(y1, y2) ∈ 2 : y2
1 ≥ 4y2} ⊂ 2. This is the re-

gion lying below the parabola y2
1 = 4y2. Hint: Interpret y1 and y2 as coefficients of the

quadratic X 2 − y1 X + y2. When does the quadratic have real roots?
14. There are many places in mathematics where one takes a set of equivalences classes and puts

an algebraic structure on them. Show that the construction of a quotient ring k[x1, . . . , xn]/I
is an example. Hint: See §2 of Chapter 5.

15. In this exercise, we will give some examples of how something initially defined as a set
can turn out to be a variety in disguise. The key observation is that the set of nonvertical
lines in the plane k2 has a natural geometric structure. Namely, such a line L has a unique
equation of the form y = mx + b, so that L can be identified with the point (m, b) in another
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2-dimensional affine space, denoted k2∨. (If we use projective space—to be studied in the
next chapter—then we can also include vertical lines.)

Now suppose that we have a curve C in the plane. Then consider all lines which are
tangent to C somewhere on the curve. This gives us a subset C∨ ⊂ k2∨. Let us compute this
subset in some simple cases and show that it is an affine variety.
a. Suppose our curve C is the parabola y = x2. Given a point (x0, y0) on the parabola, show

that the tangent line is given by y = 2x0x − x2
0 and conclude that C∨ is the parabola

m2 + 4b = 0 in k2∨.
b. Show that C∨ is an affine variety when C is the cubic curve y = x3.
In general, more work is needed to study C∨. In particular, the method used in the above
examples breaks down when there are vertical tangents or singular points. Nevertheless, one
can develop a satisfactory theory of what is called the dual curve C∨ of a curve C ⊂ k2.
One can also define the dual variety V ∨ of a given irreducible variety V ⊂ kn .
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Projective Algebraic Geometry

So far all of the varieties we have studied have been subsets of affine space kn . In this
chapter, we will enlarge kn by adding certain “points at ∞” to create n-dimensional
projective space n(k). We will then define projective varieties in n(k) and study
the projective version of the algebra-geometry correspondence. The relation between
affine and projective varieties will be considered in §4; in §5, we will study elimination
theory from a projective point of view. By working in projective space, we will get a
much better understanding of the Extension Theorem in Chapter 3. The chapter will
end with a discussion of the geometry of quadric hypersurfaces and an introduction to
Bezout’s Theorem.

§1 The Projective Plane

This section will study the projective plane 2( ) over the real numbers . We will see
that, in a certain sense, the plane 2 is missing some “points at ∞,” and by adding them
to 2, we will get the projective plane 2( ). Then we will introduce homogeneous
coordinates to give a more systematic treatment of 2( ).

Our starting point is the observation that two lines in 2 intersect in a point, except
when they are parallel. We can take care of this exception if we view parallel lines
as meeting at some sort of point at ∞. As indicated by the picture at the top of the
following page, there should be different points at ∞, depending on the direction of the
lines. To approach this more formally, we introduce an equivalence relation on lines in
the plane by setting L1 ∼ L2 if L1 and L2 are parallel. Then an equivalence class [L]
consists of all lines parallel to a given line L . The above discussion suggests that we
should introduce one point at ∞ for each equivalence class [L]. We make the following
provisional definition.

Definition 1. The projective plane over , denoted 2( ), is the set

2( ) = 2 ∪ {one point at ∞ for each equivalence class of parallel lines}.

357
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meet at a point at ∞

meet at a different point at ∞

↓

↑

x

y
↓

↑

We will let [L]∞ denote the common point at ∞ of all lines parallel to L . Then we
call the set L = L ∪ [L]∞ ⊂ 2( ) the projective line corresponding to L . Note that
two projective lines always meet at exactly one point: if they are not parallel, they meet
at a point in 2; if they are parallel, they meet at their common point at ∞.

At first sight, one might expect that a line in the plane should have two points at ∞,
corresponding to the two ways we can travel along the line. However, the reason why
we want only one is contained in the previous paragraph: if there were two points at
∞, then parallel lines would have two points of intersection, not one. So, for example,
if we parametrize the line x = y via (x, y) = (t, t), then we can approach its point at
∞ using either t → ∞ or t → −∞.

A common way to visualize points at ∞ is to make a perspective drawing. Pretend
that the earth is flat and consider a painting that shows two roads extending infinitely
far in different directions:

↓
vanishing point

↓
vanishing point

← horizon

For each road, the two sides (which are parallel, but appear to be converging) meet at
the same point on the horizon, which in the theory of perspective is called a vanishing
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point. Furthermore, any line parallel to one of the roads meets at the same vanishing
point, which shows that the vanishing point represents the point at ∞ of these lines.
The same reasoning applies to any point on the horizon, so that the horizon in the
picture represents points at ∞. (Note that the horizon does not contain all of them—it
is missing the point at ∞ of lines parallel to the horizon.)

The above picture reveals another interesting property of the projective plane: the
points at ∞ form a special projective line, which is called the line at ∞. It follows
that 2( ) has the projective lines L = L ∪ [L]∞, where L is a line in 2, together
with the line at ∞. In the exercises, you will prove that two distinct projective lines in

2( ) determine a unique point and two distinct points in 2( ) determine a unique
projective line. Note the symmetry in these statements: when we interchange “point”
and “projective line” in one, we get the other. This is an instance of the principle of
duality, which is one of the fundamental concepts of projective geometry.

For an example of how points at ∞ can occur in other contexts, consider the
parametrization of the hyperbola x2 − y2 = 1 given by the equations

x = 1 + t2

1 − t2
,

y = 2t

1 − t2
.

When t �= ±1, it is easy to check that this parametrization covers all of the hyperbola
except (−1, 0). But what happens when t = ±1? Here is a picture of the hyperbola:

–2 –1.5 –1 –.5 .5 1 1.5 2

–2

–1.5

–1

–.5

.5

1

1.5

2

If we let t → 1−, then the corresponding point (x, y) travels along the first quadrant
portion of the hyperbola, getting closer and closer to the asymptote x = y. Similarly, if
t → 1+, we approach x = y along the third quadrant portion of the hyperbola. Hence,
it becomes clear that t = 1 should correspond to the point at ∞ of the asymptote x = y.
Similarly, one can check that t = −1 corresponds to the point at ∞ of x = −y. (In the
exercises, we will give a different way to see what happens when t = ±1.)
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Thus far, our discussion of the projective plane has introduced some nice ideas, but
it is not entirely satisfactory. For example, it is not really clear why the line at ∞ should
be called a projective line. A more serious objection is that we have no unified way
of naming points in 2( ). Points in 2 are specified by coordinates, but points at
∞ are specified by lines. To avoid this asymmetry, we will introduce homogeneous
coordinates on 2( ).

To get homogeneous coordinates, we will need a new definition of projective space.
The first step is to define an equivalence relation on nonzero points of 3 by setting

(x1, y1, z1) ∼ (x2, y2, z2)

if there is a nonzero real number λ such that (x1, y1, z1) = λ(x2, y2, z2). One can easily
check that ∼ is an equivalence relation on 3 − {0} (where as usual 0 refers to the
origin (0, 0, 0) in 3). Then we can redefine projective space as follows.

Definition 2. 2( ) is the set of equivalence classes of ∼ on 3 − {0}. Thus, we can
write

2( ) = ( 3 − {0})/ ∼ .

If a triple (x, y, z) ∈ 3 − {0} corresponds to a point p ∈ 2( ), we say that (x, y, z)
are homogeneous coordinates of p.

At this point, it is not clear that Definitions 1 and 2 give the same object, although
we will see shortly that this is the case.

Homogeneous coordinates are different from the usual notion of coordinates in that
they are not unique. For example, (1, 1, 1), (2, 2, 2), (π, π, π) and (

√
2,

√
2,

√
2) are all

homogeneous coordinates of the same point in projective space. But the nonuniqueness
of the coordinates is not so bad since they are all multiples of one another.

As an illustration of how we can use homogeneous coordinates, let us define the
notion of a projective line.

Definition 3. Given real numbers A, B, C, not all zero, the set

{p ∈ 2( ) : p has homogeneous coordinates (x, y, z)

wi th Ax + By + Cz = 0}
is called a projective line of 2( ).

An important observation is that if Ax + By + Cz = 0 holds for one set (x, y, z) of
homogeneous coordinates of p ∈ 2( ), then it holds for all homogeneous coordinates
of p. This is because the others can be written λ(x, y, z) = (λx, λy, λz), so that A · λx +
B · λy + C · λz = λ(Ax + By + Cz) = 0. Later in this chapter, we will use the same
idea to define varieties in projective space.

To relate our two definitions of projective plane, we will use the map

2 → 2( )(1)
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defined by sending (x, y) ∈ 2 to the point p ∈ 2( ) whose homogeneous coordinates
are (x, y, 1). This map has the following properties.

Proposition 4. The map (1) is one-to-one and the complement of its image is the
projective line H∞ defined by z = 0.

Proof. First, suppose that (x, y) and (x ′, y′) map to the same point p in 2( ). Then
(x, y, 1) and (x ′, y′, 1) are homogeneous coordinates of p, so that (x, y, 1) = λ(x ′, y′, 1)
for some λ. Looking at the third coordinate, we see that λ = 1 and it follows that
(x, y) = (x ′, y′).

Next, let (x, y, z) be homogeneous coordinates of a point p ∈ 2( ). If z = 0, then
p is on the projective line H∞. On the other hand, if z �= 0, then we can multiply by
1/z to see that (x/z, y/z, 1) gives homogeneous coordinates for p. This shows that p is
in the image of map (1). We leave it as an exercise to show that the image of the map
is disjoint from H∞, and the proposition is proved. �

We will call H∞ the line at ∞. It is customary (though somewhat sloppy) to identify
2 with its image in 2( ), so that we can write projective space as the disjoint union

2( ) = 2 ∪ H∞.

This is beginning to look familiar. It remains to show that H∞ consists of points at ∞
in our earlier sense. Thus, we need to study how lines in 2 (which we will call affine
lines) relate to projective lines. The following table tells the story:

affine line projective line point at ∞
L : y = mx + b → L : y = mx + bz → (1, m, 0)

L : x = c → L : x = cz → (0, 1, 0)

To understand this table, first consider a nonvertical affine line L defined by y = mx + b.
Under the map (1), a point (x, y) on L maps to a point (x, y, 1) of the projective line
L defined by y = mx + bz. Thus, L can be regarded as subset of L . By Proposition 4,
the remaining points of L come from where it meets z = 0. But the equations z = 0
and y = mx + bz clearly imply y = mx , so that the solutions are (x, mx, 0). We have
x �= 0 since homogeneous coordinates never simultaneously vanish, and dividing by x
shows that (1, m, 0) is the unique point of L ∩ H∞. The case of vertical lines is left as
an exercise.

The table shows that two lines in 2 meet at the same point at ∞ if and only if they are
parallel. For nonvertical lines, the point at ∞ encodes the slope, and for vertical lines,
there is a single (but different) point at ∞. Be sure you understand this. In the exercises,
you will check that the points listed in the table exhaust all of H∞. Consequently, H∞
consists of a unique point at ∞ for every equivalence class of parallel lines. Then

2( ) = 2 ∪ H∞ shows that the projective planes of Definitions 1 and 2 are the
same object.

We next introduce a more geometric way of thinking about points in the projective
plane. Let (x, y, z) be homogeneous coordinates of a point p in 2( ), so that all other
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homogeneous coordinates for p are given by λ(x, y, z) for λ ∈ − {0}. The crucial
observation is that these points all lie on the same line through the origin in 3:

y

z

x

λ(x,y,z)
(x,y,z)

↑
line through the origin

The requirement in Definition 2 that (x, y, z) �= (0, 0, 0) guarantees that we get a line in
3. Conversely, given any line L through the origin in 3, a point (x, y, z) on L − {0}

gives homogeneous coordinates for a uniquely determined point in 2( ) [since any
other point on L − {0} is a nonzero multiple of (x, y, z)]. This shows that we have a
one-to-one correspondence.

2( ) ∼= {lines through the origin in 3}.(2)

Although it may seem hard to think of a point in 2( ) as a line in 3, there is a
strong intuitive basis for this identification. We can see why by studying how to draw a
3-dimensional object on a 2-dimensional canvas. Imagine lines or rays that link our eye
to points on the object. Then we draw according to where the rays intersect the canvas:

←  canvas

← eye

↓
object

↑
rays

Renaissance texts on perspective would speak of the “pyramid of rays” connecting the
artist’s eye with the object being painted. For us, the crucial observation is that each
ray hits the canvas exactly once, giving a one-to-one correspondence between rays and
points on the canvas.

To make this more mathematical, we will let the “eye” be the origin and the “canvas”
be the plane z = 1 in the coordinate system pictured at the top of the next page. Rather
than work with rays (which are half-lines), we will work with lines through the origin.
Then, as the picture indicates, every point in the plane z = 1 determines a unique line
through the origin. This one-to-one correspondence allows us to think of a point in the
plane as a line through the origin in 3 [which by (2) is a point in 2( )]. There are
two interesting things to note about this correspondence:
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←  the plane z = 1

z

y

x

↑
point

↑
line

� A point (x, y) in the plane gives the point (x, y, 1) on our “canvas” z = 1. The corre-
sponding line through the origin is a point p ∈ 2( ) with homogeneous coordinates
(x, y, 1). Hence, the correspondence given above is exactly the map 2 → 2( )
from Proposition 4.

� The correspondence is not onto since this method will never produce a line in the
(x, y)-plane. Do you see how these lines can be thought of as the points at ∞?

In many situations, it is useful to be able to think of 2( ) both algebraically (in terms
of homogeneous coordinates) and geometrically (in terms of lines through the origin).

As the final topic in this section, we will use homogeneous coordinates to examine
the line at ∞ more closely. The basic observation is that although we began with
coordinates x and y, once we have homogeneous coordinates, there is nothing special
about the extra coordinate z—it is no different from x or y. In particular, if we want,
we could regard x and z as the original coordinates and y as the extra one.

To see how this can be useful, consider the parallel lines L1 : y = x + 1/2 and
L2 : y = x − 1/2 in the (x, y)-plane:

L1

↓
L2

↓

x

The (x, y)-Plane

y

.5

.5
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We know that these lines intersect at ∞ since they are parallel. But the picture does not
show their point of intersection. To view these lines at ∞, consider the projective lines

L1 : y = x + (1/2)z,
L2 : y = x − (1/2)z

determined by L1 and L2. Now regard x and z as the original variables. Thus, we map
the (x, z)-plane 2 to 2( ) via (x, z) �→ (x, 1, z). As in Proposition 4, this map is one-
to-one, and we can recover the (x, z)-plane inside 2( ) by setting y = 1. If we do this
with the equations of the projective lines L1 and L2, we get the lines L ′

1 : z = −2x + 2
and L ′

2 : z = 2x − 2. This gives the following picture in the (x, z)-plane:

L′1
↓

L′2
↓

↓
z = 0

x

z

1

The (x, z)-Plane

In this picture, the x-axis is defined by z = 0, which is the line at ∞ as we originally set
things up in Proposition 4. Note that L ′

1 and L ′
2 meet when z = 0, which corresponds

to the fact that L1 and L2 meet at ∞. Thus, the above picture shows how our two lines
behave as they approach the line at ∞. In the exercises, we will study what some other
common curves look like at ∞.

It is interesting to compare the above picture with the perspective drawing of two
roads given earlier in the section. It is no accident that the horizon in the perspective
drawing represents the line at ∞. The exercises will explore this idea in more detail.

Another interesting observation is that the Euclidean notion of distance does not play
a prominent role in the geometry of projective space. For example, the lines L1 and
L2 in the (x, y)-plane are a constant distance apart, whereas L ′

1 and L ′
2 get closer and

closer in the (x, z)-plane. This explains why the geometry of 2( ) is quite different
from Euclidean geometry.
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EXERCISES FOR §1

1. Using 2( ) as given in Definition 1, we saw that the projective lines in 2( ) are L =
L ∪ [L]∞, and the line at ∞.
a. Prove that any two distinct points in 2( ) determine a unique projective line. Hint:

There are three cases to consider, depending on how many of the points are points at ∞.
b. Prove that any two distinct projective lines in 2( ) meet at a unique point. Hint: Do

this case-by-case.
2. There are many theorems that initially look like theorems in the plane, but which are really

theorems in 2( ) in disguise. One classic example is Pappus’s Theorem, which goes as
follows. Suppose we have two collinear triples of points A, B, C and A′, B ′, C ′. Then let

P = AB ′ ∩ A′ B,

Q = AC ′ ∩ A′C,

R = BC ′ ∩ B ′C .

Pappus’s Theorem states that P, Q, R are always collinear points. In Exercise 8 of Chapter
6, §4, we drew the following picture to illustrate the theorem:

A B C

A′
B′

C′

P Q R

a. If we let the points on one of the lines go the other way, then we can get the following
configuration of points and lines:

A B C

C′

B′

A′

Q

R
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Note that P is now a point at ∞. Is Pappus’s Theorem still true [in 2( )] for the picture
on the preceding page?

b. By moving the point C in the picture for part (a) show that you can also make Q a point
at ∞. Is Pappus’s Theorem still true? What line do P, Q, R lie on? Draw a picture to
illustrate what happens.

If you made a purely affine version of Pappus’s Theorem that took cases (a) and (b) into
account, the resulting statement would be rather cumbersome. By working in 2( ), we
cover these cases simultaneously.

3. We will continue the study of the parametrization (x, y) = ((1 + t2)/(1 − t2), 2t/(1 − t2))
of x2 − y2 = 1 begun in the text.
a. Given t , show that (x, y) is the point where the hyperbola intersects the line of slope

t going through the point (−1, 0). Illustrate your answer with a picture. Hint: Use the
parametrization to show that t = y/(x + 1).

b. Use the answer to part (a) to explain why t = ±1 maps to the points at ∞ corresponding
to the asymptotes of the hyperbola. Illustrate your answer with a drawing.

c. Using homogeneous coordinates, show that we can write the parametrization as

((1 + t2)/(1 − t2), 2t/(1 − t2), 1) = (1 + t2, 2t, 1 − t2),

and use this to explain what happens when t = ±1. Does this give the same answer as
part(b)?

d. We can also use the technique of part (c) to understand what happens when t → ∞.
Namely, in the parametrization (x, y, z) = (1 + t2, 2t, 1 − t2), substitute t = 1/u. Then
clear denominators (this is legal since we are using homogeneous coordinates) and let
u → 0. What point do you get on the hyperbola?

4. This exercise will study what the hyperbola x2 − y2 = 1 looks like at ∞.
a. Explain why the equation x2 − y2 = z2 gives a well-defined curve C in 2( ). Hint:

See the discussion following Definition 3.
b. What are the points at ∞ on C? How does your answer relate to Exercise 3?
c. In the (x, z) coordinate system obtained by setting y = 1, show that C is still a hyperbola.
d. In the (y, z) coordinate system obtained by setting x = 1, show that C is a circle.
e. Use the parametrization of Exercise 3 to obtain a parametrization of the circle from part

(d).
5. Consider the parabola y = x2.

a. What equation should we use to make the parabola into a curve in 2( )?
b. How many points at ∞ does the parabola have?
c. By choosing appropriate coordinates (as in Exercise 4), explain why the parabola is

tangent to the line at ∞.
d. Show that the parabola looks like a hyperbola in the (y, z) coordinate system.

6. When we use the (x, y) coordinate system inside 2( ), we only view a piece of the
projective plane. In particular, we miss the line at ∞. As in the text, we can use (x, z)
coordinates to view the line at ∞. Show that there is exactly one point in 2( ) that is
visible in neither (x, y) nor (x, z) coordinates. How can we view what is happening at this
point?

7. In the proof of Proposition 4, show that the image of the map (2) is disjoint from H∞.
8. As in the text, the line H∞ is defined by z = 0. Thus, points on H∞ have homogeneous

coordinates (a, b, 0), where (a, b) �= (0, 0).
a. A vertical affine line x = c gives the projective line x = cz. Show that this meets H∞ at

the point (0, 1, 0).
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b. Show that a point on H∞ different from (0, 1, 0) can be written uniquely as (1, m, 0) for
some real number m.

9. In the text, we viewed parts of 2( ) in the (x, y) and (x, z) coordinate systems. In the
(x, z) picture, it is natural to ask what happened to y. To see this, we will study how (x, y)
coordinates look when viewed in the (x, z)-plane.
a. Show that (a, b) in the (x, y)-plane gives the point (a/b, 1/b) in the (x, z)-plane.
b. Use the formula of part (a) to study what the parabolas (x, y) = (t, t2) and (x, y) = (t2, t)

look like in the (x, z)-plane. Draw pictures of what happens in both (x, y) and (x, z)
coordinates.

10. In this exercise, we will discuss the mathematics behind the perspective drawing given in
the text. Suppose we want to draw a picture of a landscape, which we will assume is a
horizontal plane. We will make our drawing on a canvas, which will be a vertical plane. Our
eye will be a certain distance above the landscape, and to draw, we connect a point on the
landscape to our eye with a line, and we put a dot where the line hits the canvas:

← the canvas y = 1

↑
 the landscape z = 1

the origin →

To give formulas for what happens, we will pick coordinates (x, y, z) so that our eye is
the origin, the canvas is the plane y = 1, and the landscape is the plane z = 1 (thus, the
positive z-axis points down).
a. Starting with the point (a, b, 1) on the landscape, what point do we get in the canvas

y = 1?
b. Explain how the answer to part(a) relates to Exercise 9. Write a brief paragraph discussing

the relation between perspective drawings and the projective plane.
11. As in Definition 3, a projective line in 2( ) is defined by an equation of the form Ax +

By + Cz = 0, where (A, B, C) �= (0, 0, 0).
a. Why do we need to make the restriction (A, B, C) �= (0, 0, 0)?
b. Show that (A, B, C) and (A′, B ′, C ′) define the same projective line if and only if

(A, B, C) = λ(A′, B ′, C ′) for some nonzero real number λ. Hint: One direction is easy.
For the other direction, take two distinct points (a, b, c) and (a′, b′, c′) on the line
Ax + By + Cz = 0. Show that (a, b, c) and (a′, b′, c′) are linearly independent and con-
clude that the equations Xa + Y b + Zc = Xa′ + Y b′ + Zc′ = 0 have a 1-dimensional
solution space for the variables X, Y, Z .

c. Conclude that the set of projective lines in 2( ) can be identified with the set
{(A, B, C) ∈ 3 : (A, B, C) �= (0, 0, 0)}/ ∼. This set is called the dual projective plane
and is denoted 2( )∨.

d. Describe the subset of 2( )∨ corresponding to affine lines.
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e. Given a point p ∈ 2( ), consider the set p̃ of all projective lines L containing p. We
can regard p̃ as a subset of 2( )∨. Show that p̃ is a projective line in 2( )∨. We call
p̃ the pencil of lines through p.

f. The Cartesian product 2( ) × 2( )∨ has the natural subset

I = {(p, L) ∈ 2( ) × 2( )∨ : p ∈ L}.
Show that I is described by the equation Ax + By + Cz = 0, where (x, y, z) are homo-
geneous coordinates on 2( ) and (A, B, C) are homogeneous coordinates on the dual.
We will study varieties of this type in §5.

Parts (d), (e), and (f) of this exercise illustrate how collections of naturally defined geometric
objects can be given an algebraic structure.

§2 Projective Space and Projective Varieties

The construction of the real projective plane given in Definition 2 of §1 can be gen-
eralized to yield projective spaces of any dimension n over any field k. We define an
equivalence relation ∼ on the nonzero points of kn+1 by setting

(x ′
0, . . . , x ′

n) ∼ (x0, . . . , xn)

if there is a nonzero element λ ∈ k such that (x ′
0, . . . , x ′

n) = λ(x0, . . . , xn). If we let 0
denote the origin (0, . . . , 0) in kn+1, then we define projective space as follows.

Definition 1. n-dimensional projective space over the field k, denoted n(k), is the
set of equivalence classes of ∼ on kn+1 − {0}. Thus,

n(k) = (kn+1 − {0})/ ∼ .

Each nonzero (n + 1)-tuple (x0, . . . , xn) ∈ kn+1 defines a point p in n(k), and we say
that (x0, . . . , xn) are homogeneous coordinates of p.

Like 2( ), each point p ∈ n(k) has many sets of homogeneous coordinates. For
example, in 3( ), the homogeneous coordinates (0,

√
2, 0, i) and (0, 2i, 0, −√

2)
describe the same point since (0, 2i, 0, −√

2) = √
2i(0,

√
2, 0, i). In general, we will

write p = (x0, . . . , xn) to denote that (x0, . . . , xn) are homogeneous coordinates of
p ∈ n(k).

As in §1, we can think of n(k) more geometrically as the set of lines through the
origin in kn+1. More precisely, you will show in Exercise 1 that there is a one-to-one
correspondence

n(k) ∼= {lines through the origin in kn+1}.(1)

Just as the real projective plane contains the affine plane 2 as a subset, n(k)
contains the affine space kn .

Proposition 2. Let

U0 = {(x0, . . . , xn) ∈ n(k) : x0 �= 0}.
Then the map φ taking (a1, . . . , an) in kn to the point with homogeneous coordinates
(1, a1, . . . , an) in n(k) is a one-to-one correspondence between kn and U0 ⊂ n(k).
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Proof. Since the first component of φ(a1, . . . , an) = (1, a1, . . . , an) is nonzero, we
get a map φ : kn → U0. We can also define an inverse map ψ : U0 → kn as fol-
lows. Given p = (x0, . . . , xn) ∈ U0 since x0 �= 0 we can multiply the homogeneous
coordinates by the nonzero scalar λ = 1

x0
to obtain p = (1, x1

x0
, . . . , xn

x0
). Then set

ψ(p) = ( x1
x0

, . . . , xn
x0

) ∈ kn . We leave it as an exercise for the reader to show that ψ

is well-defined and that φ and ψ are inverse mappings. This establishes the desired
one-to-one correspondence. �

By the definition of U0, we see that n(k) = U0 ∪ H , where

H = {p ∈ n(k) : p = (0, x1, . . . , xn)}.(2)

If we identify U0 with the affine space kn , then we can think of H as the hyperplane
at infinity. It follows from (2) that the points in H are in one-to-one correspondence
with n-tuples (x1, . . . , x0), where two n-tuples represent the same point of H if one is a
nonzero scalar multiple of the other (just ignore the first component of points in H ). In
other words, H is a “copy” of n−1(k), the projective space of one smaller dimension.
Identifying U0 with kn and H with n−1(k), we can write

n(k) = kn ∪ n−1(k).(3)

To see what H = n−1(k) means geometrically, note that, by (1), a point p ∈ n−1(k)
gives a line L ⊂ kn going through the origin. Consequently, in the decomposition (3),
we should think of p as representing the asymptotic direction of all lines in kn parallel
to L . This allows us to regard p as a point at ∞ in the sense of §1, and we recover the
intuitive definition of the projective space given there. In the exercises, we will give a
more algebraic way of seeing how this works.

A special case worth mentioning is the projective line 1(k). Since 0(k) consists
of a single point (this follows easily from Definition 1), letting n = 1 in (3) gives us

1(k) = k1 ∪ 0(k) = k ∪ {∞},
where we let ∞ represent the single point of 0(k). If we use (1) to think of points in

1(k) as lines through the origin in k2, then the above decomposition reflects the fact
these lines are characterized by their slope (where the vertical line has slope ∞). When
k = , it is customary to call

1( ) = ∪ {∞}
the Riemann sphere. The reason for this name will be explored in the exercises.

For completeness, we mention that there are many other copies of kn in n(k) besides
U0. Indeed the proof of Proposition 2 may be adapted to yield the following results.

Corollary 3. For each i = 0, . . . n, let

Ui = {(x0, . . . , xn) ∈ n(k) : xi �= 0}.

(i) The points of each Ui are in one-to-one correspondence with the points of kn.
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(ii) The complement n(k) − Ui may be identified with n−1(k).
(iii) We have n(k) = ∪n

i=0Ui .

Proof. See Exercise 5. �

Our next goal is to extend the definition of varieties in affine space to projective space.
For instance, we can ask whether it makes sense to consider V( f ) for a polynomial f ∈
k[x0, . . . , xn]. A simple example shows that some care must be taken here. For instance,
in 2( ), we can try to construct V(x1 − x2

2 ). The point p = (x0, x1, x2) = (1, 4, 2)
appears to be in this set since the components of p satisfy the equation x1 − x2

2 = 0.
However, a problem arises when we note that the same point p can be represented by the
homogeneous coordinates p = 2(1, 4, 2) = (2, 8, 4). If we substitute these components
into our polynomial, we obtain 8 − 42 = −8 �= 0. We get different results depending
on which homogeneous coordinates we choose.

To avoid problems of this type, we use homogeneous polynomials when working in
n(k). From Definition 6 of Chapter 7, §1, recall that a polynomial is homogeneous of

total degree d if every term appearing in f has total degree exactly d. The polynomial
f = x1 − x2

2 in the example is not homogeneous, and this is what caused the inconsis-
tency in the values of f on different homogeneous coordinates representing the same
point. For a homogeneous polynomial, this does not happen.

Proposition 4. Let f ∈ k[x0, . . . , x1] be a homogeneous polynomial. If f vanishes on
any one set of homogeneous coordinates for a point p ∈ n(k), then f vanishes for
all homogeneous coordinates of p. In particular V( f ) = {p ∈ n(k) : f (p) = 0} is a
well-defined subset of n(k).

Proof. Let (a0, . . . , an) and (λa0, . . . , λan) be homogeneous coordinates for p ∈ n(k)
and assume that f (a0, . . . , an) = 0. If f is homogeneous of total degree k, then every
term in f has the form

cxα0
0 · · · xαn

n ,

where α0 + · · · + αn = k. When we substitute xi = λai , this term becomes

c(λa0)α0 · · · (λan)αn = λkcaα0
0 · · · aαn

n .

Summing over the terms in f , we find a common factor of λk and, hence,

f (λa0, . . . , λan) = λk f (a0, . . . , an) = 0.

This proves the proposition. �

Notice that even if f is homogeneous, the equation f = a does not make sense in
n(k) when 0 �= a ∈ k. The equation f = 0 is special because it gives a well-defined

subset of n(k). We can also consider subsets of n(k) defined by the vanishing of a
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system of homogeneous polynomials (possibly of different total degrees). The correct
generalization of the affine varieties introduced in Chapter 1, §2 is as follows.

Definition 5. Let k be a field and let f1, . . . , fs ∈ k[x0, . . . , xn] be homogeneous poly-
nomials. We set

V( f1, . . . , fs) = {(a0, . . . , an) ∈ n(k) : fi (a0, . . . , an) = 0 for all 1 ≤ i ≤ s}.

We call V( f1, . . . , fs) the projective variety defined by f1, . . . , fs .

For example, in n(k), any nonzero homogeneous polynomial of degree 1,

�(x0, . . . , xn) = c0x0 + · · · + cn xn,

defines a projective variety V(�) called a hyperplane. One example we have seen is the
hyperplane at infinity, which was defined as H = V (x0). When n = 2, we call V(�)
a projective line, or more simply a line in 2(k). Similarly, when n = 3, we call a
hyperplane a plane in 3(k). Varieties defined by one or more linear polynomials (ho-
mogeneous polynomials of degree 1) are called linear varieties in n(k). For instance,
V(x1, x2) ⊂ 3(k) is a linear variety which is a projective line in 3(k).

The projective varieties V( f ) defined by a single nonzero homogeneous equation
are known collectively as hypersurfaces. However, individual hypersurfaces are usually
classified according to the total degree of the defining equation. Thus, if f has total
degree 2 in k[x0, . . . , xn], we usually call V( f ) a quadric hypersurface, or quadric for
short. For instance, V(−x2

0 + x2
1 + x2

2 ) ⊂ 3( ) is quadric. Similarly, hypersurfaces
defined by equations of total degree 3, 4, and 5 are known as cubics, quartics, and
quintics, respectively.

To get a better understanding of projective varieties, we need to discover what the cor-
responding algebraic objects are. This leads to the notion of homogeneous ideal, which
will be discussed in §3. We will see that the entire algebra-geometry correspondence
of Chapter 4 can be carried over to projective space.

The final topic we will consider in this section is the relation between affine and
projective varieties. As we saw in Corollary 3, the subsets Ui ⊂ n(k) are copies of
kn . Thus, we can ask how affine varieties in Ui

∼= kn relate to projective varieties in
n(k). First, if we take a projective variety V and intersect it with one of the Ui , it

makes sense to ask whether we obtain an affine variety. The answer to this question
is always yes, and the defining equations of the variety V ∩ Ui may be obtained by a
process called dehomogenization. We illustrate this by considering V ∩ U0. From the
proof of Proposition 2, we know that if p ∈ U0, then p has homogeneous coordinates
of the form (1, x1, . . . , xn). If f ∈ k[x0, . . . , xn] is one of the defining equations of
V , then the polynomial g(x1, . . . , xn) = f (1, x1, . . . , xn) ∈ k[x1, . . . , xn] vanishes at
every point of V ∩ U0. Setting x0 = 1 in f produces a “dehomogenized” polynomial g
which is usually nonhomogeneous. We claim that V ∩ U0 is precisely the affine variety
obtained by dehomogenizing the equations of V .
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Proposition 6. Let V = V( f1, . . . , fs) be a projective variety. Then W = V ∩ U0

can be identified with the affine variety V (g1, . . . , gs) ⊂ kn, where gi (y1, . . . , yn) =
fi (1, y1, . . . , yn) for each 1 ≤ i ≤ s.

Proof. The comments before the statement of the proposition show that using the
mapping ψ : U0 → kn from Proposition 2, ψ(W ) ⊂ V(g1, . . . , gs). On the other
hand, if (a1, . . . , an) ∈ V(g1, . . . , gs), then the point with homogeneous coordinates
(1, a1, . . . , an) is in U0 and it satisfies the equations

fi (1, a1, . . . , an) = gi (a1, . . . , an) = 0.

Thus, φ(V(g1, . . . , gs)) ⊂ W . Since the mappings φ and ψ are inverses, the points of
W are in one-to-one correspondence with the points of V(g1, . . . , gs). �

For instance, consider the projective variety

V = V(x2
1 − x2x0, x3

1 − x3x2
0 ) ⊂ 3( ).(4)

To intersect V with U0, we dehomogenize the defining equations, which gives us the
affine variety

V(x2
1 − x2, x3

1 − x3) ⊂ 3.

We recognize this as the familiar twisted cubic in 3.
We can also dehomogenize with respect to other variables. For example, the above

proof shows that, for any projective variety V ⊂ 3( ), V ∩ U1 can be identified with
the affine variety in 3 defined by the equations obtained by setting gi (x0, x2, x3) =
fi (x0, 1, x2, x3). When we do this with the projective variety V defined in (4), we see
that V ∩ U1 is the affine variety V(1 − x2x0, 1 − x3x2

0 ). See Exercise 9 for a general
statement.

Going in the opposite direction, we can ask whether an affine variety in Ui , can be
written as V ∩ Ui in some projective variety V . The answer is again yes, but there is
more than one way to do it, and the results can be somewhat unexpected.

One natural idea is to reverse the dehomogenization process described earlier and
“homogenize” the defining equations of the affine variety. For example, consider the
affine variety W = V(x2 − x3

1 + x2
1 ) in U0 = 2. The defining equation is not homo-

geneous, so we do not get a projective variety in 2( ) directly from this equation.
But we can use the extra variable x0 to make f = x2 − x3

1 + x2
1 homogeneous. Since

f has total degree 3, we modify f so that every term has total degree 3. This leads to
the homogeneous polynomial

f h = x2x2
0 − x3

1 + x2
1 x0.

Moreover, note that dehomogenizing f h gives back the original polynomial f in x1, x2.
The general pattern is the same.
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Proposition 7. Let g(x1, . . . , xn) ∈ k[x1, . . . , xn] be a polynomial of total degree d.
(i) Let g = ∑d

i=0 gi be the expansion of g as the sum of its homogeneous components
where gi has total degree i. Then

gh(x0, . . . , xn) =
d∑

i=0

gi (x1, . . . , xn)xd−i
0

= gd (x1, . . . , xn) + gd−1(x1, . . . xn)x0

+ · · · + g0(x1, . . . xn)xd
0

is a homogeneous polynomial of total degree d in k[x0, . . . , xn]. We will call gh

the homogenization of g.
(ii) The homogenization of g can be computed using the formula

gh = xd
0 · g

(
x1

x0
, . . . ,

xn

x0

)
.

(iii) Dehomogenizing gh yields g. That is, gh(1, x1, . . . , xn) = g(x1, . . . , xn).
(iv) Let F (x0, . . . , xn) be a homogeneous polynomial and let xe

0 be the highest power
of x0 dividing F. If f = F(1, x1, . . . , xn) is a dehomogenization of F, then F =
xe

0 · f h .

Proof. We leave the proof to the reader as Exercise 10. �

As a result of Proposition 7, given any affine variety W = V(g1, . . . , gs) ⊂ kn ,
we can homogenize the defining equations of W to obtain a projective variety
V = V(gh

1 , . . . , gh
s ) ⊂ n(k). Moreover, by part (iii) and Proposition 6, we see that

V ∩ U0 = W . Thus, our original affine variety W is the affine portion of the projective
variety V .

As we mentioned before, though, there are some unexpected possibilities.

Example 8. In this example, we will write the homogeneous coordinates of points
in 2(k) as (x, y, z). Numbering them as 0, 1, 2, we see that U2 is the set of points
with homogeneous coordinates (x, y, 1), and x and y are coordinates on U2

∼= k2. Now
consider the affine variety W = V(g) = V(y − x3 + x) ⊂ U2. We know that W is the
affine portion V ∩ U2 of the projective variety V = V(gh) = V(yz2 − x3 + xz2).

The variety V consists of W together with the points at infinity V ∩ V(z). The affine
portion W is the graph of a cubic polynomial, which is a nonsingular plane curve. The
points at infinity, which form the complement of W in V , are given by the solutions of
the equations

0 = yz2 − x3 + xz2,

0 = z.

It is easy to see that the solutions are z = x = 0 and since we are working in 2(k), we
get the unique point p = (0, 1, 0) in V ∩ V(z). Thus, V = W ∪ {p}. An unexpected
feature of this example is the nature of the extra point p.
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To see what V looks like at p, let us dehomogenize the equation of V with respect
to y and study the intersection V ∩ U1. We find

W ′ = V ∩ U1 = V(gh(x, 1, z)) = V(z2 − x3 + xz2).

From the discussion of singularities in §4 of Chapter 3, one can easily check that p,
which becomes the point (x, z) = (0, 0) ∈ W ′, is a singular point on W ′:

x

z

Thus, even if we start from a nonsingular affine variety (that is, one with no singular
points), homogenizing the equations and taking the corresponding projective variety
may yield a more complicated geometric object. In effect, we are not “seeing the whole
picture” in the original affine portion of the variety. In general, given a projective
variety V ⊂ n(k), since n(k) = ∪n

i=0Ui , we may need to consider V ∩ Ui for each
i = 0, . . . , n to see the whole picture of V .

Our next example shows that simply homogenizing the defining equations can lead
to the “wrong” projective variety.

Example 9. Consider the affine twisted cubic W = V(x2 − x2
1 , x3 − x3

1 ) in 3. By
Proposition 7, W = V ∩ U0 for the projective variety V = V(x2x0 − x2

1 , x3x2
0 − x3

1 ) ⊂
3( ). As in Example 8, we can ask what part of V we are “missing” in the affine

portion W . The complement of W in V is V ∩ H , where H = V(x0) is the plane at
infinity. Thus, V ∩ H = V(x2x0 − x2

1 , x3x2
0 − x3

1 , x0), and one easily sees that these
equations reduce to

x2
1 = 0,

x3
1 = 0,

x0 = 0.

The coordinates x2 and x3 are arbitrary here, so V ∩ H is the projective line V(x0, x1) ⊂
3( ). Thus we have V = W ∪ V(x0, x1).
Since the twisted cubic W is a curve in 3, our intuition suggests that it should

only have a finite number of points at infinity (in the exercises, you will see that this is
indeed the case). This indicates that V is probably too big; there should be a smaller
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projective variety V ′ containing W . One way to create such a V ′ is to homogenize other
polynomials that vanish on W . For example, the parametrization (t, t2, t3) of W shows
that x1x3 − x2

2 ∈ I(W ). Since x1x3 − x2
2 is already homogeneous, we can add it to the

defining equations of V to get

V ′ = V(x2x0 − x2
1 , x3x2

0 − x3
1 , x1x3 − x2

2 ) ⊂ V .

Then V ′ is a projective variety with the property that V ′ ∩ U0 = W , and in the exercises
you will show that V ′ ∩ H consists of the single point p = (0, 0, 0, 1). Thus, V ′ =
W ∪ {p}, so that we have a smaller projective variety that restricts to the twisted cubic.
The difference between V and V ′ is that V has an extra component at infinity. In §4,
we will show that V ′ is the smallest projective variety containing W .

In Example 9, the process by which we obtained V was completely straightforward
(we homogenized the defining equations of W ), yet it gave us a projective variety
that was too big. This indicates that something more subtle is going on. The complete
answer will come in §4, where we will learn an algorithm for finding the smallest
projective variety containing W ⊂ kn ∼= Ui .

EXERCISES FOR §2

1. In this exercise, we will give a more geometric way to describe the construction of n(k).
Let L denote the set of lines through the origin in kn+1.
a. Show that every element of L can be represented as the set of scalar multiples of some

nonzero vector in kn+1.
b. Show that two nonzero vectors v′ and v in kn+1 define the same element of L if and only

if v′ ∼ v as in Definition 1.
c. Show that there is a one-to-one correspondence between n(k) and L.

2. Complete the proof of Proposition 2 by showing that the mappings φ and ψ defined in the
proof are inverses.

3. In this exercise, we will study how lines in n relate to points at infinity in n( ). We will
use the decomposition n( ) = n ∪ n−1( ) given in (3). Given a line L in n , we can
parametrize L by the formula a + bt , where a ∈ L and b is a nonzero vector parallel to L .
In coordinates, we write this parametrization as (a1 + b1t, . . . , an + bnt).
a. We can regard L as lying in n( ) using the homogeneous coordinates

(1, a1 + b1t, . . . , an + bnt).

To find out what happens as t → ±∞, divide by t to obtain(
1

t
,

a1

t
+ b1, . . . ,

an

t
+ bn

)
.

As t → ±∞, what point of H = n−1( ) do you get?
b. The line L will have many parametrizations. Show that the point of n−1( ) given by

part (a) is the same for all parametrizations of L . Hint: Two nonzero vectors are parallel
if and only if one is a scalar multiple of the other.

c. Parts (a) and (b) show that a line L in n has a well-defined point at infinity in H =
n−1( ). Show that two lines in n are parallel if and only if they have the same point

at infinity.
4. When k = or , the projective line 1(k) is easy to visualize.
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a. In the text, we called 1( ) = ∪ {∞} the Riemann sphere. To see why this name
is justified, use the parametrization from Exercise 6 of Chapter 1, §3 to show how the
plane corresponds to the sphere minus the north pole. Then explain why we can regard

∪ {∞} as a sphere.
b. What common geometric object can we use to represent 1( )? Illustrate your reasoning

with a picture.
5. Prove Corollary 3.
6. This problem studies the subsets Ui ⊂ n(k).

a. In 4(k), identify the points that are in the subsets U2, U2 ∩ U3, and U1 ∩ U3 ∩ U4.
b. Give an identification of 4(k) − U2,

4(k) − (U2 ∪ U3), and 4(k) − (U1 ∪ U3 ∪ U4)
as a “copy” of another projective space.

c. In 4(k), which points are ∩4
i=0Ui ?

d. In general, describe the subset Ui1 , ∩ . . . ∩ Uis ⊂ n(k), where

1 ≤ i1 < i2 < · · · < i ≤ n.

7. In this exercise, we will study when a nonhomogeneous polynomial has a well-defined
zero set in n(k). Let k be an infinite field. We will show that if f ∈ k[x0, . . . , xn] is not
homogeneous, but f vanishes on all homogeneous coordinates of some p ∈ n(k), then
each of the homogeneous components fi of f (see Definition 6 of Chapter 7, §1) must
vanish at p.
a. Write f as a sum of its homogeneous components f = ∑

i fi . If p = (a0, . . . , an), then
show that

f (λa0, . . . , λan) =
∑

i

fi (λa0, . . . , λan)

=
∑

i

λi fi (a0, . . . , an).

b. Deduce that if f vanishes for all λ �= 0 ∈ k, then fi (a0, . . . , an) = 0 for all i .
8. By dehomogenizing the defining equations of the projective variety V , find equations for

the indicated affine varieties.
a. Let 2( ) have homogeneous coordinates (x, y, z) and let V = V(x2 + y2 − z2) ⊂

2( ). Find equations for V ∩ U0, V ∩ U2. (Here U0 is where x �= 0 and U2 is where
z �= 0.) Sketch each of these curves and think about what this says about the projective
variety V .

b. V = V(x0x2 − x3x4, x2
0 x3 − x1x2

2 ) ⊂ 4(k) and find equations for the affine variety
V ∩ U0 ⊂ k4. Do the same for V ∩ U3.

9. Let V = V( f1, . . . , fs) be a projective variety defined by homogeneous polynomials fi ∈
k[x0, . . . , xn]. Show that the subset W = V ∩ Ui , can be identified with the affine variety
V(g1, . . . , gs) ⊂ kn defined by the dehomogenized polynomials

g j (x1, . . . xi , xi+1, . . . , xn) = f (x1, . . . , xi , 1, xi+1, . . . , xn).

Hint: Follow the proof of Proposition 6, using Corollary 3.
10. Prove Proposition 7.
11. Using part (iv) of Proposition 7, show that if f ∈ k[x1, . . . , xn] and F ∈ k[x0, . . . , xn] is any

homogeneous polynomial satisfying F(1, x1, . . . , xn) = f (x1, . . . , xn), then F = xe
0 f h for

some e ≥ 0.
12. What happens if we apply the homogenization process of Proposition 7 to a polynomial g

that is itself homogeneous?
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13. In Example 8, we were led to consider the variety W ′ = V(z2 − x3 + xz2) ⊂ k2. Show that
(x, z) = (0, 0) is a singular point of W ′. Hint: Use Definition 3 from Chapter 3, §4.

14. For each of the following affine varieties W , apply the homogenization process given in
Proposition 7 to write W = V ∩ U0, where V is a projective variety. In each case identify
V − W = V ∩ H , where H is the hyperplane at infinity.
a. W = V(y2 − x3 − ax − b) ⊂ 2, a, b ∈ . Is the point V ∩ H singular here? Hint:

Let the homogeneous coordinates on 2( ) be (z, x, y), so that U0 is where z �= 0.
b. W = V(x1x3 − x2

2 , x2
1 − x2) ⊂ 3. Is there an extra component at infinity here?

c. W = V(x2
3 − x2

1 − x2
2 ) ⊂ 3.

15. From Example 9, consider the twisted cubic W = V(x2 − x2
1 , x3 − x3

1 ) ⊂ 3.

a. If we parametrize W by (t, t2, t3) in 3, show that as t → ±∞, the point (1, t, t2, t3) in
3( ) approaches (0, 0, 0, 1). Thus, we expect W to have one point at infinity.

b. Now consider the projective variety

V ′ = V(x2x0 − x2
1 , x3x2

0 − x3
1 , x1x3 − x2

2 ) ⊂ 3( ).

Show that V ′ ∩ U0 = W and that V ′ ∩ H = {(0, 0, 0, 1)}.
c. Let V = V(x2x0 − x2

1 , x3x2
0 − x3

1 ) be as in Example 9. Prove that V = V ′ ∪ V(x0, x1).
This shows that V is a union of two proper projective varieties.

16. A homogeneous polynomial f ∈ k[x0, . . . , xn] can also be used to define the affine variety
C = Va( f ) in kn+1, where the subscript denotes we are working in affine space. We call C
the affine cone over the projective variety V = V( f ) ⊂ n(k). We will see why this is so in
this exercise.
a. Show that if C contains the point P �= (0, . . . , 0), then C contains the whole line through

the origin in kn+1 spanned by P .
b. Now consider the point p in n(k) with homogeneous coordinates P . Show that p is

in the projective variety V if and only if the line through the origin determined by P is
contained in C . Hint: See (1) and Exercise 1.

c. Deduce that C is the union of the collection of lines through the origin in kn+1 corre-
sponding to the points in V via (1). This explains the reason for the “cone” terminology
since an ordinary cone is also a union of lines through the origin. Such a cone is given
by part (c) of Exercise 14.

17. Homogeneous polynomials satisfy an important relation known as Euler’s Formula. Let
f ∈ k[x0, . . . , xn] be homogeneous of total degree d. Then Euler’s Formula states that

n∑
i=0

xi · ∂ f

∂xi
= d · f.

a. Verify Euler’s Formula for the homogeneous polynomial f = x3
0 − x1x2

2 + 2x1x2
3 .

b. Prove Euler’s Formula (in the case k = ) by considering f (λx0, . . . , λxn) as a function
of λ and differentiating with respect to λ using the chain rule.

18. In this exercise, we will consider the set of hyperplanes in n(k) in greater detail.
a. Show that two homogeneous linear polynomials,

0 = a0x0 + · · · + an xn,

0 = b0x0 + · · · + bn xn,

define the same hyperplane in n(k) if and only if there is some λ �= 0 ∈ k such that
bi = λai for all i = 0, . . . , n. Hint: Generalize the argument given for Exercise 11 of §1.
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b. Show that the map sending the hyperplane with equation a0x0 + · · · + an xn = 0 to the
vector (a0, . . . , an) gives a one-to-one correspondence

φ : {hyperplanes in n(k)} → (kn+1 − {0})/ ∼,

where ∼ is the equivalence relation of Definition 1. The set on the left is called the
dual projective space and is denoted n(k)∨. Geometrically, the points of n(k)∨ are
hyperplanes in n(k).

c. Describe the subset of n(k)∨ corresponding to the hyperplanes containing p =
(1, 0, . . . , 0).

19. Let k be an algebraically closed field ( , for example). Show that every homogeneous
polynomial f (x0, x1) in two variables with coefficients in k can be completely factored into
linear homogeneous polynomials in k[x0, x1]:

f (x0, x1) =
d∏

i=1

(ai x0 + bi x1),

where d is the total degree of f . Hint: First dehomogenize f .
20. In §4 of Chapter 5, we introduced the pencil defined by two hypersurfaces V = V( f ), W =

V(g). The elements of the pencil were the hypersurfaces V( f + cg) for c ∈ k. Setting c = 0,
we obtain V as an element of the pencil. However, W is not (usually) an element of the
pencil when it is defined in this way. To include W in the pencil, we can proceed as follows.
a. Let (a, b) be homogeneous coordinates in 1(k). Show that V(a f + bg) is well-defined

in the sense that all homogeneous coordinates (a, b) for a given point in 1(k) yield the
same variety V(a f + bg). Thus, we obtain a family of varieties parametrized by 1(k),
which is also called the pencil of varieties defined by V and W .

b. Show that both V and W are contained in the pencil V(a f + bg).
c. Let k = . Show that every affine curve V( f ) ⊂ 2 defined by a polynomial f of total

degree d is contained in a pencil of curves V(aF + bG) parametrized by 1( ), where
V(F) is a union of lines and G is a polynomial of degree strictly less than d. Hint:
Consider the homogeneous components of f . Exercise 19 will be useful.

21. When we have a curve parametrized by t ∈ k, there are many situations where we want to
let t → ∞. Since 1(k) = k ∪ {∞}, this suggests that we should let our parameter space be

1(k). Here are two examples of how this works.
a. Consider the parametrization (x, y) = ((1 + t2)/(1 − t2), 2t/(1 − t2)) of the hyperbola

x2 − y2 = 1 in 2. To make this projective, we first work in 2( ) and write the
parametrization as

((1 + t2)/(1 − t2), 2t/(1 − t2), 1) = (1 + t2, 2t, 1 − t2)

(see Exercise 3 of §1). The next step is to make t projective. Given (a, b) ∈ 1( ),
we can write it as (1, t) = (1, b/a) provided a �= 0. Now substitute t = b/a into the
right-hand side and clear denominators. Explain why this gives a well-defined map

1( ) → 2( ).
b. The twisted cubic in 3 is parametrized by (t, t2, t3). Apply the method of part (a) to

obtain a projective parametrization 1( ) → 3( ) and show that the image of this
map is precisely the projective variety V ′ from Example 9.
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§3 The Projective Algebra–Geometry Dictionary

In this section, we will study the algebra-geometry dictionary for projective varieties.
Our goal is to generalize the theorems from Chapter 4 concerning the V and I corre-
spondences to the projective case, and, in particular, we will prove a projective version
of the Nullstellensatz.

To begin, we note one difference between the affine and projective cases on the
algebraic side of the dictionary. Namely, in Definition 5 of §2, we introduced projective
varieties as the common zeros of collections of homogeneous polynomials. But being
homogeneous is not preserved under the sum operation in k[x0, . . . , xn]. For example, if
we add two homogeneous polynomials of different total degrees, the sum will never be
homogeneous. Thus, if we form the ideal I = 〈 f1, . . . , fs〉 ⊂ k[x0, . . . , xn] generated
by a collection of homogeneous polynomials, I will contain many nonhomogeneous
polynomials and these would not be candidates for the defining equations of a projective
variety.

Nevertheless, each element of I vanishes on all homogeneous coordinates of every
point of V = V( f1, . . . , fs). This follows because each g ∈ I has the form

g =
s∑

j=1

A j f j(1)

for some A j ∈ k[x0, . . . , xn]. Substituting any homogeneous coordinates of a point in
V into g will yield zero since each fi is zero there.

A more important observation concerns the homogeneous components of g. Suppose
we expand each A j as the sum of its homogeneous components:

A j =
d∑

i=1

A ji .

If we substitute these expressions into (1) and collect terms of the same total degree,
it can be shown that the homogeneous components of g also lie in the ideal I =
〈 f1, . . . , fs〉. You will prove this claim in Exercise 2.

Thus, although I contains nonhomogeneous elements g, we see that I also contains
the homogeneous components of g. This observation motivates the following definition
of a special class of ideals in k[x0, . . . , xn].

Definition 1. An ideal I in k[x0, . . . , xn] is said to be homogeneous if for each f ∈ I,
the homogeneous components fi of f are in I as well.

Most ideals do not have this property. For instance, let I = 〈y − x2〉 ⊂ k[x, y].
The homogeneous components of f = y − x2 are f1 = y and f2 = −x2. Neither of
these polynomials is in I since neither is a multiple of y − x2. Hence, I is not a
homogeneous ideal. However, we have the following useful characterization of when
an ideal is homogeneous.
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Theorem 2. Let I ⊂ k[x0, . . . , xn] be an ideal. Then the following are equivalent:
(i) I is a homogeneous ideal of k[x0, . . . , xn].

(ii) I = 〈 f1, . . . , fs〉, where f1, . . . , fs are homogeneous polynomials.
(iii) A reduced Groebner basis of I (with respect to any monomial ordering) consists

of homogeneous polynomials.

Proof. The proof of (ii) ⇒ (i) was sketched above (see also Exercise 2). To prove
(i) ⇒ (ii), let I be a homogeneous ideal. By the Hilbert Basis Theorem, we have I =
〈F1, . . . , Ft 〉 for some polynomials Fj ∈ k[x0, . . . , xn] (not necessarily homogeneous).
If we write Fj as the sum of its homogeneous components, say Fj = ∑

i Fji , then each
Fji ∈ I since I is homogeneous. Let I ′ be the ideal generated by the homogeneous
polynomials Fji . Then I ⊂ I ′ since each Fj is a sum of generators of I ′. On the other
hand, I ′ ⊂ I since each of the homogeneous components of Fj is in I . This proves
I = I ′ and it follows that I has a basis of homogeneous polynomials. Finally, the
equivalence (ii) ⇔ (iii) will be covered in Exercise 3. �

As a result of Theorem 2, for any homogeneous ideal I ⊂ k[x0, . . . , xn] we may
define

V(I ) = {p ∈ n(k) : f (p) = 0 for all f ∈ I },
as in the affine case. We can prove that V(I ) is a projective variety as follows.

Proposition 3. Let I ⊂ k[x0, . . . , xn] be a homogeneous ideal and suppose that I =
〈 f1, . . . , fs〉, where f1, . . . , fs are homogeneous. Then

V(I ) = V( f1, . . . , fs),

so that V(I ) is a projective variety.

Proof. We leave the easy proof as an exercise. �

One way to create a homogeneous ideal is to consider the ideal generated by the
defining equations of a projective variety. But there is another way that a projective
variety can give us a homogeneous ideal.

Proposition 4. Let V ⊂ n(k) be a projective variety and let

I(V ) = { f ∈ k[x0, . . . , xn] : f (a0, . . . , an) = 0 for all (a0, . . . , an) ∈ V}.
(This means that f must be zero for all homogeneous coordinates of all points in V.) If
k is infinite, then I(V ) is a homogeneous ideal in k[x0, . . . , xn].

Proof. I(V ) is closed under sums and closed under products by elements of
k[x0, . . . , xn] by an argument exactly parallel to the one for the affine case. Thus, I(V )
is an ideal in k[x0, . . . , xn]. Now take f ∈ I(V ) and fix a point p ∈ V . By assump-
tion, f vanishes at all homogeneous coordinates (a0, . . . , an) of p. Since k is infinite,
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Exercise 7 of §2 then implies that each homogeneous component fi of f vanishes at
(a0, . . . , an). This shows that fi ∈ I(V ) and, hence, I(V ) is homogeneous. �

Thus, we have all the ingredients of a dictionary relating projective varieties in n(k)
and homogeneous ideals in k[x0, . . . , xn]. The following theorem is a direct generaliza-
tion of part (i) of Theorem 7 of Chapter 4, §2 (the affine ideal-variety correspondence).

Theorem 5. Let k be an infinite field. Then the maps

projective varieties
I−→ homogeneous ideals

and

homogeneous ideals
V−→ projective varieties

are inclusion-reversing. Furthermore, for any projective variety, we have

V(I(V )) = V .

so that I is always one-to-one.

Proof. The proof is the same as in the affine case. �

To illustrate the use of this theorem, let us show that every projective variety can be
decomposed to irreducible components. As in the affine case, a variety V ⊂ n(k) is
irreducible if it cannot be written as a union of two strictly smaller projective varieties.

Theorem 6. Let k be an infinite field.
(i) Given a descending chain of projective varieties in n(k),

V1 ⊃ V2 ⊃ V3 ⊃ · · · ,
there is an integer N such that VN = VN+1 = . . ..

(ii) Every projective variety V ⊂ n(k) can be written uniquely as a finite union of
irreducible projective varieties

V = V1 ∪ · · · ∪ Vm,

where Vi �⊂ Vj for i �= j .

Proof. Since I is inclusion-reversing, we get the ascending chain of homogeneous
ideals

I(V1) ⊂ I(V2) ⊂ I(V3) ⊂ · · ·
in k[x0, . . . , xn]. Then the Ascending Chain Condition (Theorem 7 of Chapter 2, §5)
implies that I(VN ) = I(VN+1) = · · · for some N . By Theorem 5, I is one-to-one and
(i) follows immediately.

As in the affine case, (ii) is an immediate consequence of (i). See Theorems 2 and 4
of Chapter 4, §6. �
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The relation between operations such as sums, products, and intersections of ho-
mogeneous ideals and the corresponding operations on projective varieties is also the
same as in affine space. We will consider these topics in more detail in the exercises
below.

We define the radical of a homogeneous ideal as usual:
√

I = { f ∈ k[x0, . . . , xn] : f n ∈ I for some n ≥ 1}.
As we might hope, the radical of a homogeneous ideal is always itself homogeneous.

Proposition 7. Let I ⊂ k[x0, . . . , xn] be a homogeneous ideal. Then
√

I is also a
homogeneous ideal.

Proof. If f ∈ √
I , then f m ∈ I for some m ≥ 1. If f �= 0, decompose f into its

homogeneous components

f =
∑

i

fi = fmax +
∑

i<max

fi ,

where fmax is the nonzero homogeneous component of maximal total degree in f .
Expanding the power f m , it is easy to show that

( f m)max = ( fmax )m .

Since I is a homogeneous ideal, ( f m)max ∈ I . Hence, ( fmax )m ∈ I , which shows that
fmax ∈ √

I .
If we let g = f − fmax ∈ √

I and repeat the argument, we get gmax ∈ √
I . But gmax

is also one of the homogeneous components of f . Applying this reasoning repeatedly
shows that all homogeneous components of f are in

√
I . Since this is true for all

f ∈ √
I , Definition 1 implies that

√
I is a homogeneous ideal. �

The final part of the algebra–geometry dictionary concerns what happens over an
algebraically closed field k. Here, we expect an especially close relation between pro-
jective varieties and homogeneous ideals. In the affine case, the link was provided by
two theorems proved in Chapter 4, the Weak Nullstellensatz and the Strong Nullstel-
lensatz. Let us recall what these theorems tell us about an ideal I ⊂ k[x1, . . . , xn]:
� (The Weak Nullstellensatz) Va(I ) = ∅ in kn ⇐⇒ I = k[x1, . . . , xn].
� (The Strong Nullstellensatz)

√
I = Ia(Va(I )) in k[x1, . . . , xn].

(To prevent confusion, we use Ia and Va to denote the affine versions of I and V.) It is
natural to ask if these results extend to projective varieties and homogeneous ideals.

The answer, surprisingly, is no. In particular, the Weak Nullstellensatz fails for certain
homogeneous ideals. To see how this can happen, consider the ideal I = 〈x0, . . . , xn〉 ⊂

[x0, . . . , xn]. Then V(I ) ⊂ n( ) is defined by the equations x0 = · · · = xn = 0. The
only solution is (0, . . . , 0), but this is impossible since we never allow all homogeneous
coordinates to vanish simultaneously. It follows that V(I ) = ∅, yet I �= [x0, . . . , xn].

Fortunately, I = 〈x0, . . . , xn〉 is one of the few ideals for which V(I ) = ∅. The
following projective version of the Weak Nullstellensatz describes all homogeneous
ideals with no projective solutions.
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Theorem 8 (The Projective Weak Nullstellensatz). Let k be algebraically closed
and let I be a homogeneous ideal in k[x0, . . . , xn]. Then the following are equivalent:

(i) V(I ) ⊂ n(k) is empty.
(ii) Let G be a reduced Groebner basis for I (with respect to some monomial ordering).

Then for each 0 ≤ i ≤ n, there is g ∈ G such that LT(g) is a nonnegative power
of xi .

(iii) For each 0 ≤ i ≤ n, there is an integer mi ≥ 0 such that xmi
i ∈ I .

(iv) There is some r ≥ 1 such that 〈x0, . . . , xn〉r ⊂ I .

Proof. The ideal I gives us the projective variety V = V(I ) ⊂ n(k). In this proof, we
will also work with the affine variety CV = Va(I ) ⊂ kn+1. Note that CV uses the same
ideal I , but now we look for solutions in the affine space kn+1. We call CV the affine
cone of V . If we interpret points in n(k) as lines through the origin in kn+1, then CV

is the union of the lines determined by the points of V (see Exercise 16 of §2 for the
details of how this works). In particular, CV contains all homogeneous coordinates of
the points in V .

To prove (ii) ⇒ (i), first suppose that we have a Groebner basis where, for each i ,
there is g ∈ G with LT(g) = xmi

i for some mi ≥ 0. Then Theorem 6 of Chapter 5, §3
implies that CV is a finite set. But suppose there is a point p ∈ V . Then all homogeneous
coordinates of p lie in CV . If we write these in the form λ(a0, . . . , an), we see that there
are infinitely many since k is algebraically closed and hence infinite. This contradiction
shows that V = V(I ) = ∅.

Turning to (iii) ⇒ (ii), let G be a reduced Groebner basis for I . Then xmi
i ∈ I implies

that the leading term of some g ∈ G divides xmi
i , so that LT(g) must be a power of xi .

The proof of (iv) ⇒ (iii) is obvious since 〈x0, . . . , xn〉r ⊂ I implies xr
i ∈ I for all i .

It remains to prove (i) ⇒ (iv). We first observe that V = ∅ implies

CV ⊂ {(0, . . . , 0)} in kn+1.

This follows because a nonzero point (a0, . . . , an) in the affine cone CV would give
homogeneous coordinates of a point in V ⊂ n(k), which would contradict V = ∅.
Then, applying Ia , we obtain

Ia({(0, . . . , 0)}) ⊂ Ia(CV ).

We know Ia({(0, . . . , 0)}) = 〈x0, . . . , xn〉 (see Exercise 7 of Chapter 4, §5) and the
affine version of the Strong Nullstellensatz implies Ia(CV ) = Ia(Va(I )) = √

I since k
is algebraically closed. Combining these facts, we conclude that

〈x0, . . . , xn〉 ⊂
√

I .

However, in Exercise 12 of Chapter 4, §3 we showed that if some ideal is contained in√
I , then a power of the ideal lies in I . This completes the proof of the theorem. �

From part (ii) of the theorem, we get an algorithm for determining if a homogeneous
ideal has projective solutions over an algebraically closed field. In Exercise 10, we will
discuss other conditions which are equivalent to V(I ) = ∅ in n(k).
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Once we exclude the ideals described in Theorem 8, we get the following form of
the Nullstellensatz for projective varieties.

Theorem 9 (The Projective Strong Nullstellensatz). Let k be an algebraically
closed field and let I be a homogeneous ideal in k[x0, . . . , xn]. If V = V(I ) is a nonempty
projective variety in n(k), then we have

I(V(I )) =
√

I .

Proof. As in the proof of Theorem 8, we will work with the projective variety V =
V(I ) ⊂ n(k) and its affine cone CV = Va(I ) ⊂ kn+1. We first claim that

Ia(CV ) = I(V )(2)

when V �= ∅. To see this, suppose that f ∈ Ia(CV ). Given p ∈ V , any homogeneous
coordinates of p lie in CV , so that f vanishes at all homogeneous coordinates of p. By
definition, this implies f ∈ I(V ). Conversely, take f ∈ I(V ). Since any nonzero point of
CV gives homogeneous coordinates for a point in V , it follows that f vanishes on CV −
{0}. It remains to show that f vanishes at the origin. Since I(V ) is a homogeneous ideal,
we know that the homogeneous components fi of f also vanish on V . In particular,
the constant term of f , which is the homogeneous component f0 of total degree 0,
must vanish on V . Since V �= ∅, this forces f0 = 0, which means that f vanishes at
the origin. Hence, f ∈ Ia(CV ) and (2) is proved.

By the affine form of the Strong Nullstellensatz, we know that
√

I = Ia(Va(I )).
Then, using (2), we obtain

√
I = Ia(Va(I )) = Ia(CV ) = I(V ) = I(V(I )).

which completes the proof of the theorem. �

Now that we have the Nullstellensatz, we can complete the projective ideal–variety
correspondence begun in Theorem 5. A radical homogeneous ideal in k[x0, . . . , xn] is
a homogeneous ideal satisfying

√
I = I . As in the affine case, we have a one-to-one

correspondence between projective varieties and radical homogeneous ideals, provided
we exclude the cases

√
I = 〈x0, . . . , xn〉 and

√
I = 〈1〉.

Theorem 10. Let k be an algebraically closed field. If we restrict the correspondences
of Theorem 5 to nonempty projective varieties and radical homogeneous ideals properly
contained in 〈x0, . . . , xn〉, then

{nonempty projective varieties} I−→
{

radical homogeneous ideals
properly contained in〈x0, . . . , xn〉

}
and {

radical homogeneous ideals
properly contained in〈x0, . . . , xn〉

}
V−→ {nonempty projective varieties}

are inclusion-reversing bijections which are inverses of each other.
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Proof. First, it is an easy consequence of Theorem 8 that the only radical homoge-
neous ideals I with V(I ) = ∅ are 〈x0, . . . , xn〉 and k[x0, . . . , xn]. See Exercise 10 for
the details. A second observation is that if I is a homogeneous ideal different from
k[x0, . . . , xn], then I ⊂ 〈x0, . . . , xn〉. This will also be covered in Exercise 9.

These observations show that the radical homogeneous ideals with V(I ) �= ∅ are
precisely those which satisfy I � 〈x0, . . . , xn〉. Then the rest of the theorem follows as
in the affine case, using Theorem 9. �

We also have a correspondence between irreducible projective varieties and homo-
geneous prime ideals, which will be studied in the exercises.

EXERCISES FOR §3

1. In this exercise, you will study the question of determining when a principal ideal I = 〈 f 〉
is homogeneous by elementary methods.
a. Show that I = 〈x2 y − x3〉 is a homogeneous ideal in k[x, y] without appealing to The-

orem 2. Hint: Each element of I has the form g = A · (x2 y − x3). Write A as the sum of
its homogeneous components and use this to determine the homogeneous components
of g.

b. Show that 〈 f 〉 ⊂ k[x0, . . . , xn] is a homogeneous ideal if and only if f is a homogeneous
polynomial without using Theorem 2.

2. This exercise gives some useful properties of the homogeneous components of polynomials.
a. Show that if f = ∑

i fi and g = ∑
i gi are the expansions of two polynomials as the

sums of their homogeneous components, then f = g if and only if fi = gi for all i .
b. Show that if f = ∑

i fi and g = ∑
j g j are the expansions of two polynomials as the

sums of their homogeneous components, then the homogeneous components hk of the
product h = f · g are given by hk = ∑

i+ j=k fi · g j .
c. Use parts (a) and (b) to carry out the proof (sketched in the text) of the implication (ii)

⇒ (i) from Theorem 2.
3. This exercise will study how the algorithms of Chapter 2 interact with homogeneous poly-

nomials.
a. Suppose we use the division algorithm to divide a homogeneous polynomial f by

homogeneous polynomials f1, . . . , fs . This gives an expression of the form f =
a1 f1 + · · · + as fs + r. Prove that the quotients a1, . . . , as and remainder r are homo-
geneous polynomials (possibly zero). What is the total degree of r?

b. If f, g are homogeneous polynomials, prove that the S-polynomial S( f, g) is homoge-
neous.

c. By analyzing the Buchberger algorithm, show that a homogeneous ideal has a homoge-
neous Groebner basis.

d. Prove the implication (ii) ⇔ (iii) of Theorem 2.
4. Suppose that an ideal I ⊂ k[x0, . . . , xn] has a basis G consisting of homogeneous polyno-

mials.
a. Prove that G is a Groebner basis for I with respect to lex order if and only if it is a

Groebner basis for I with respect to grlex (assuming that the variables are ordered the
same way).

b. Conclude that, for a homogeneous ideal, the reduced Groebner basis for lex and grlex
are the same.

5. Prove Proposition 3.
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6. In this exercise we study the algebraic operations on ideals introduced in Chapter 4 for
homogeneous ideals. Let I1, . . . , Il be homogeneous ideals in k[x0, . . . , xn].
a. Show that the ideal sum I1 + · · · + Il is also homogeneous. Hint: Use Theorem 2.
b. Show that the intersection Il ∩ · · · ∩ Il is also a homogeneous ideal.
c. Show that the ideal product I1 · · · Il is a homogeneous ideal.

7. The interaction between the algebraic operations on ideals in Exercise 6 and the corre-
sponding operations on projective varieties is the same as in the affine case. Let I1, . . . , Il

be homogeneous ideals in k[x0, . . . , xn] and let Vi = V(Ii ) be the corresponding projective
variety in n(k).
a. Show that V(I1 + · · · + Il ) = ⋂l

i=1 Vi .
b. Show that V(I1 ∩ · · · ∩ Il ) = V(I1 · · · Il ) = ⋃l

i=1 Vi .
8. Let f1, . . . , fs be homogeneous polynomials of total degrees d1 < d2 ≤ · · · ≤ ds and let

I = 〈 f1, . . . , fs〉 ⊂ k[x0, . . . , xn].
a. Show that if g is another homogeneous polynomial of degree d1 in I , then g must be a

constant multiple of f1. Hint: Use parts (a) and (b) of Exercise 2.
b. More generally, show that if the total degree of g is d, then g must be an element of the

ideal Id = 〈 fi : deg( fi ) ≤ d〉 ⊂ I .
9. This exercise will study some properties of the ideal I0 = 〈x0, . . . , xn〉 ⊂ k[x0, . . . , xn].

a. Show that every proper homogeneous ideal in k[x0, . . . , xn] is contained in I0.
b. Show that the r -th power I r

0 is the ideal generated by the collection of monomials in
k[x0, . . . , xn] of total degree exactly r and deduce that every homogeneous polynomial
of degree ≥ r is in I r

0 .
c. Let V = V(I0) ⊂ n(k) and CV = Va(I0) ⊂ kn+1. Show that Ia(CV ) �= I(V ), and explain

why this does not contradict equation (2) in the text.
10. Given a homogeneous ideal I ⊂ k[x0, . . . , xn] , where k is algebraically closed, prove that

V(I ) = ∅ in n(k) is equivalent to either of the following two conditions:
(i) There is an r ≥ 1 such that every homogeneous polynomial of total degree ≥ r is

contained in I .
(ii) The radical of I is either 〈x0, . . . , xn〉 or k[x0, . . . , xn].
Hint: For (i), use Exercise 9, and for (ii), use the proof of Theorem 8 to show that
〈x0, . . . , x0〉 ⊂ √

I .
11. A homogeneous ideal is said to be prime if it is prime as an ideal in k[x0, . . . , xn].

a. Show that a homogeneous ideal I ⊂ k[x0, . . . , xn] is prime if and only if whenever the
product of two homogeneous polynomials F , G satisfies F · G ∈ I , then F ∈ I or G ∈ I .

b. Let k be algebraically closed. Let I be a homogeneous ideal. Show that the projective
variety V(I ) is irreducible if I is prime. Also, when I is radical, prove that the con-
verse holds, i.e., that I is prime if V(I ) is irreducible. Hint: Consider the proof of the
corresponding statement in the affine case (Proposition 3 of Chapter 4, §5).

c. Let k be algebraically closed. Show that the mappings V and I induce one-to-one cor-
respondence between homogeneous prime ideals in k[x0, . . . , xn] properly contained in
〈x0, . . . , xn〉 and nonempty irreducible projective varieties in n(k).

12. Prove that a homogeneous prime ideal is a radical ideal in k[x0, . . . , xn].

§4 The Projective Closure of an Affine Variety

In §2, we showed that any affine variety could be regarded as the affine portion of a
projective variety. Since this can be done in more than one way (see Example 9 of §2),
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we would like to find the smallest projective variety containing a given affine variety.
As we will see, there is an algorithmic way to do this.

Given homogeneous coordinates x0, . . . , xn on n(k), we have the subset U0 ⊂ n(k)
defined by x0 �= 0. If we identify U0 with kn using Proposition 2 of §2, then we get
coordinates x1, . . . , xn on kn . As in §3, we will use Ia and Va for the affine versions of
I and V.

We first discuss how to homogenize an ideal of k[x1, . . . , xn]. Given I ⊂
k[x1, . . . , xn] , the standard way to produce a homogeneous ideal I h ⊂ k[x0, . . . , xn]
is as follows.

Definition 1. Let I be an ideal in k[x1, . . . , xn]. We define the homogenization of I to
be the ideal

I h = 〈 f h : f ∈ I 〉 ⊂ k[x0, . . . , xn],

where f h is the homogenization of f as in Proposition 7 of §2.

Naturally enough, we have the following result.

Proposition 2. For any ideal I ⊂ k[x1, . . . , xn], the homogenization I h is a homoge-
neous ideal in k[x0, . . . , xn].

Proof. See Exercise 1. �

Definition 1 is not entirely satisfying as it stands because it does not give us a finite
generating set for the ideal I h . There is a subtle point here. Given a particular finite
generating set f1, . . . , fs for I ⊂ k[x1, . . . , xn], it is always true that 〈 f h

1 , . . . , f h
s 〉 is

a homogeneous ideal contained in I h . However, as the following example shows, I h

can be strictly larger than 〈 f h
1 , . . . , f h

s 〉.

Example 3. Consider I = 〈 f1, f2〉 = 〈x2 − x2
1 , x3 − x3

1〉, the ideal of the affine twisted
cubic in 3. If we homogenize f1, f2, then we get the ideal J = 〈x2x0 − x2

1 , x3x2
0 − x3

1〉
in [x0, x1, x2, x3]. We claim that J �= I h . To prove this, consider the polynomial

f3 = f2 − x1 f1 = x3 − x3
1 − x1(x2 − x2

1 ) = x3 − x1x2 ∈ I.

Then f h
3 = x0x3 − x1x2 is a homogeneous polynomial of degree 2 in I h . Since the

generators of J are also homogeneous, of degrees 2 and 3, respectively, if we had an
equation f h

3 = A1 f h
1 + A2 f h

2 , then using the expansions of A1 and A2 into homoge-
neous components, we would see that f h

3 was a constant multiple of f h
1 . (See Exercise

8 of §3 for a general statement along these lines.) Since this is clearly false, we have
f h
3 /∈ J , and thus, J �= I h .

Hence, we may ask whether there is some reasonable method for computing a finite
generating set for the ideal I h . The answer is given in the following theorem. A graded
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monomial order in k[x1, . . . , xn] is one that orders first by total degree:

xα > xβ

whenever |α| > |β| . Note that grlex and grevlex are graded orders, whereas lex is not.

Theorem 4. Let I be an ideal in k[x1, . . . , xn] and let G = {g1, . . . , gt } be a Groebner
basis for I with respect to a graded monomial order in k[x1, . . . , xn]. Then Gh =
{gh

1 , . . . , gh
t } is a basis for I h ⊂ k[x0, . . . , xn].

Proof. We will prove the theorem by showing the stronger statement that Gh is actually
a Groebner basis for I h with respect to an appropriate monomial order in k[x0, . . . , xn].

Every monomial in k[x0, . . . , xn] can be written

xα1
1 · · · xαn

n xd
0 = xαxd

0 ,

where xα contains no x0 factors. Then we can extend the graded order > on monomials
in k[x1, . . . , xn] to a monomial order >h in k[x0, . . . , xn] as follows:

xαxd
0 >h xβ xe

0 ⇐⇒ xα > xβ or xα = xβ and d > e.

In Exercise 2, you will show that this defines a monomial order in k[x0, . . . , xn]. Note
that under this ordering, we have xi >h x0 for all i ≥ 1.

For us, the most important property of the order >h is given in the following lemma.

Lemma 5. If f ∈ k[x1, . . . , xn] and > is a graded order on k[x1, . . . , xn], then

LM>h ( f h) = LM>( f ).

Proof of Lemma. Since > is a graded order, for any f ∈ k[x1, . . . , xn], LM>( f ) is
one of the monomials xα appearing in the homogeneous component of f of maximal
total degree. When we homogenize, this term is unchanged. If xβ xe

0 is any one of the
other monomials appearing in f h , then α > β. By the definition of >h , it follows that
xα >h xβ xe

0. Hence, xα = LM>h ( f h), and the lemma is proved. �

We will now show that Gh forms a Groebner basis for the ideal I h with respect to the
monomial order >h . Each gh

i ∈ I h by definition. Thus, it suffices to show that the ideal
of leading terms 〈LT>h (I h)〉 is generated by LT>h (Gh). To prove this, consider F ∈ I h .
Since I h is a homogeneous ideal, each homogeneous component of F is in I h and,
hence, we may assume that F is homogeneous. Because F ∈ I h , by definition we have

F =
∑

j

A j f h
j ,(1)

where A j ∈ k[x0, . . . , xn] and f j ∈ I , We will let f = F(1, x1, . . . , xn) denote the
dehomogenization of F . Then setting x0 = 1 in (1) yields

f = F(1, x1, . . . , xn) =
∑

j

A j (1, x1, . . . , xn) f h
j (1, x1, . . . , xn)

=
∑

j

A j (1, x1, . . . , xn) f j
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since f h
j (1, x1, . . . , xn) = f j (x1, . . . , xn) by part (iii) of Proposition 7 from §2. This

shows that f ∈ I ⊂ k[x1, . . . , xn]. If we homogenize f , then part (iv) of Proposition
7 in §2 implies that

F = xe
0 · f h

for some e ≥ 0. Thus,

LM>h (F) = xe
0 · LM>h ( f h) = xe

0 · LM>( f ),(2)

where the last equality is by Lemma 5. Since G is a Groebner basis for I , we know
that LM>( f ) is divisible by some LM>(gi ) = LM>h (gh

i ) (using Lemma 5 again). Then
(2) shows that LM>h (F) is divisible by LM>h (gh

i ), as desired. This completes the proof
of the theorem. �

In Exercise 5, you will see that there is a more elegant formulation of Theorem 4 for
the special case of grevlex order.

To illustrate the theorem, consider the ideal I = 〈x2 − x2
1 , x3 − x3

1〉 of the affine
twisted cubic W ⊂ 3 once again. Computing a Groebner basis for I with respect to
grevlex order, we find

G = {
x2

1 − x2, x1x2 − x3, x1x3 − x2
2

}
.

By Theorem 4, the homogenizations of these polynomials generate I h . Thus,

I h = 〈
x2

1 − x0x2, x1x2 − x0x3, x1x3 − x2
2

〉
.(3)

Note that this ideal gives us the projective variety V ′ = V(I h) ⊂ 3( ) which we
discovered in Example 9 of §2.

For the remainder of this section, we will discuss the geometric meaning of the
homogenization of an ideal. We will begin by studying what happens when we homog-
enize the ideal Ia(W ) of all polynomials vanishing on an affine variety W . This leads
to the following definition.

Definition 6. Given an affine variety W ⊂ kn, the projective closure of W is the
projective variety W = V(Ia(W )h) ⊂ n(k), where Ia(W )h ⊂ k[x0, . . . , xn] is the ho-
mogenization of the ideal Ia(W ) ⊂ k[x1, . . . , xn] as in Definition 1.

The projective closure has the following important properties.

Proposition 7. Let W ⊂ kn be an affine variety and let W ⊂ n(k) be its projective
closure. Then:

(i) W ∩ U0 = W ∩ kn = W .
(ii) W is the smallest projective variety in n(k) containing W .

(iii) If W is irreducible, then so is W .
(iv) No irreducible component of W lies in the hyperplane at infinity V(x0) ⊂ n(k).

Proof. (i) Let G be a Groebner basis of Ia(W ) with respect to a graded order on
k[x1, . . . , xn]. Then Theorem 4 implies that Ia(W )h = 〈gh : g ∈ G〉. We know that
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kn ∼= U0 is the subset of n(k), where x0 = 1. Thus, we have

W ∩ U0 = V(gh : g ∈ G) ∩ U0 = Va(gh(1, x1, . . . , xn) : g ∈ G).

Since gh(1, x1, . . . , xn) = g by part (iii) of Proposition 7 from §2, we get W ∩ U0 = W.

(ii) We need to prove that if V is a projective variety containing W , then W ⊂ V .
Suppose that V = V(F1, . . . , Fs). Then Fi vanishes on V , so that its dehomogenization
fi = Fi (1, x1, . . . , xn) vanishes on W . Thus, fi ∈ Ia(W ) and, hence, f h

i ∈ Ia(W )h .
This shows that f h

i vanishes on W = V(Ia(W )h). But part (iv) of Proposition 7 from
§2 implies that Fi = xei

0 f h
i for some integer ei . Thus, Fi vanishes on W , and since this

is true for all i , it follows that W ⊂ V .
The proof of (iii) will be left as an exercise. To prove (iv), let W = V1 ∪ · · · ∪ Vm be

the decomposition of W into irreducible components. Suppose that one of them, V1,
was contained in the hyperplane at infinity V(x0). Then

W = W ∩ U0 = (V1 ∪ · · · ∪ Vm) ∩ U0

= (V1 ∩ U0) ∪ ((V2 ∪ · · · ∪ Vm) ∩ U0)

= (V2 ∪ · · · ∪ Vm) ∩ U0.

This shows that V2 ∪ · · · ∪ Vm is a projective variety containing W . By the minimality
of W , it follows that W = V2 ∪ · · · ∪ Vm and, hence, V1 ⊂ V2 ∪ · · · ∪ Vm . We will leave
it as an exercise to show that this is impossible since V1 is an irreducible component
of W . This contradiction completes the proof. �

For an example of how the projective closure works, consider the affine twisted cubic
W ⊂ 3. In §4 of Chapter 1, we proved that

Ia(W ) = 〈x2 − x2
1 , x3 − x3

1〉.
Using Theorem 4, we proved in (3) that

Ia(W )h = 〈x2
1 − x0x2, x1x2 − x0x3, x1x3 − x2

2〉.
It follows that the variety V ′ = V(x2

1 − x0x2, x1x2 − x0x3, x1x3 − x2
2 ) discussed in Ex-

ample 9 of §2 is the projective closure of the affine twisted cubic.
The main drawback of the definition of projective closure is that it requires that we

know Ia(W ). It would be much more convenient if we could compute the projective
closure directly from any defining ideal of W . When the field k is algebraically closed,
this can always be done.

Theorem 8. Let k be an algebraically closed field, and let I ⊂ k[x1, . . . , xn] be an
ideal. Then V(I h) ⊂ n(k) is the projective closure of Va(I ) ⊂ kn.

Proof. Let W = Va(I ) ⊂ kn and Z = V(I h) ⊂ n(k). The proof of part (i) of Propo-
sition 7 shows that Z is a projective variety containing W .

To prove that Z is the smallest such variety, we proceed as in part (ii) of Proposition
7. Thus, let V = V(F1, . . . , Fs) be any projective variety containing W . As in the
earlier argument, the dehomogenization fi = Fi (1, x1, . . . , xn) is in Ia(W ). Since k is
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algebraically closed, the Nullstellensatz implies that Ia(W ) = √
I , so that f m

i ∈ I for
some integer m. This tells us that

( f m
i )h ∈ I h

and, consequently, ( f m
i )h vanishes on Z . In the exercises, you will show that

( f m
i )h = ( f h

i )m,

and it follows that f h
i vanishes on Z . Then Fi = xei

0 f h
i shows that Fi is also zero on

Z . As in Proposition 7, we conclude that Z ⊂ V .
This shows that Z is the smallest projective variety containing W . Since the projective

closure W has the same property by Proposition 7, we see that Z = W . �

If we combine Theorems 4 and 8, we get an algorithm for computing the projective
closure of an affine variety over an algebraically closed field k: given W ⊂ kn defined
by f1 = · · · = fs = 0, compute a Groebner basis G of 〈 f1, . . . , fs〉 with respect to a
graded order, and then the projective closure in n(k) is defined by gh = 0 for g ∈ G.

Unfortunately, Theorem 8 can fail over fields that are not algebraically closed. Here
is an example that shows what can go wrong.

Example 9. Consider I = 〈x2
1 + x4

2〉 ⊂ [x1, x2]. Then W = Va(I ) consists of the
single point (0, 0) in 2, and hence, the projective closure is the single point W =
{(1, 0, 0)} ⊂ 2( ) (since this is obviously the smallest projective variety containing
W ). On the other hand, I h = 〈x2

1 x2
0 + x4

2〉, and it is easy to check that

V(I h) = {(1, 0, 0), (0, 1, 0)} ⊂ 2( ).

This shows that V(I h) is strictly larger than the projective closure of W = Va(I ).

EXERCISES FOR §4

1. Prove Proposition 2.
2. Show that the order >h defined in the proof of Theorem 4 is a monomial order on

k[x0, . . . , x0]. Hint: This can be done directly or by using the mixed orders defined in
Exercise 10 of Chapter 2, §4.

3. Show by example that the conclusion of Theorem 4 is not true if we use an arbitrary monomial
order in k[x1, . . . , xn] and homogenize a Groebner basis with respect to that order. Hint:
One example can be obtained using the ideal of the affine twisted cubic and computing a
Groebner basis with respect to a nongraded order.

4. Let > be a graded monomial order on k[x1, . . . , xn] and let >h be the order defined in the
proof of Theorem 4. In the proof of the theorem, we showed that if G is a Groebner basis
for I ⊂ k[x1, . . . , xn] with respect to >, then Gh was a Groebner basis for I h with respect
to >h . In this exercise, we will explore other monomial orders on k[x0, . . . , xn] that have
this property.
a. Define a graded version of >h by setting

xαxd
0 >gh xβ xe

0 ⇐⇒ |α| + d > |β| + e or |α| + d = |β| + e

and xαxd
0 >h xβ xe

0 .

Show that Gh is a Groebner basis with respect to >gh .
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b. More generally, let >′ be any monomial order on k[x0, . . . , xn] which extends > and
which has the property that among monomials of the same total degree, any monomial
containing x0 is smaller than all monomials containing only x1, . . . , xn . Show that Gh is
a Groebner basis for >′.

5. Let > denote grevlex order in the ring S = k[x1, . . . , xn, xn+1]. Consider R =
k[x1, . . . , xn] ⊂ S. For f ∈ R, let f h denote the homogenization of f with respect to the
variable xn+1.
a. Show that if f ∈ R ⊂ S (that is, f depends only on x1, . . . , xn), then LT>( f ) = LT>( f h).
b. Use part (a) to show that if G is a Groebner basis for an ideal I ⊂ R with respect to

grevlex, then Gh is a Groebner basis for the ideal I h in S with respect to grevlex.
6. Prove that the homogenization has the following properties for polynomials f, g ∈

k[x1, . . . , xn]:

( f g)h = f h gh,

( f m)h = ( f h)m for any integer m ≥ 0.

Hint: Use the formula for homogenization given by part (ii) of Proposition 7 from §2.
7. Show that I ⊂ k[x1, . . . , xn] is a prime ideal if and only if I h is a prime ideal in k[x0, . . . , x0].

Hint: For the ⇒ implication, use part (a) of Exercise 11 of §3; for the converse implication,
use Exercise 6.

8. Adapt the proof of part (ii) of Proposition 7 to show that I(W ) = Ia(W )h for any affine
variety W ⊂ kn .

9. Prove that an affine variety W is irreducible if and only if its projective closure W is
irreducible.

10. Let W = V1 ∪ · · · ∪ Vm be the decomposition of a projective variety into its irreducible
components such that Vi �⊂ Vj for i �= j . Prove that V1 �⊂ V2 ∪ · · · ∪ Vm .

In Exercises 11–14, we will explore some interesting varieties in projective space. For ease
of notation, we will write n rather than n(k). We will also assume that k is algebraically
closed so that we can apply Theorem 8.

11. The twisted cubic that we have used repeatedly for examples is one member of an infinite
family of curves known as the rational normal curves. The rational normal curve in kn is
the image of the polynomial parametrization φ : k → kn given by

φ(t) = (t, t2, t3, . . . , tn).

By our general results on implicitization from Chapter 3, we know the rational normal curves
are affine varieties. Their projective closures in n are also known as rational normal curves.
a. Find affine equations for the rational normal curves in k4 and k5.
b. Homogenize your equations from part a and consider the projective varieties defined by

these homogeneous polynomials. Do your equations define the projective closure of the
affine curve? Are there any “extra” components at infinity?

c. Using Theorems 4 and 8, find a set of homogeneous equations defining the projective
closures of these rational normal curves in 4 and 5, respectively. Do you see a pattern?

d. Show that the rational normal curve in n is the variety defined by the set of homogeneous
quadrics obtained by taking all possible 2 × 2 subdeterminants of the 2 × n matrix:(

x0 x1 x2 · · · xn−1

x1 x2 x3 · · · xn

)
.
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12. The affine Veronese surface S ⊂ k5 was introduced in Exercise 6 of Chapter 5, §1. It is the
image of the polynomial parametrization φ : k2 → k5 given by

φ(x1, x2) = (x1, x2, x2
1 , x1x2, x2

2 ).

The projective closure of S is a projective variety known as the projective Veronese surface.
a. Find a set of homogeneous equations for the projective Veronese surface in 5.
b. Show that the parametrization of the affine Veronese surface above can be extended to a

mapping from φ̃ : 2 → 5 whose image coincides with the entire projective Veronese
surface. Hint: You must show that φ̃ is well-defined (i.e., that it yields the same point in

5 for any choice of homogeneous coordinates for a point in 2).
13. The Cartesian product of two affine spaces is simply another affine space: kn × km = km+n .

If we use the standard inclusions kn ⊂ n, km ⊂ m , and kn+m ⊂ n+m given by Proposition
2 of §2, how is n+m different from n × m (as a set)?

14. In this exercise, we will see that n × m can be identified with a certain projective variety
in n+m+nm known as a Segre variety. The idea is as follows. Let p = (x0, . . . , xn) be
homogeneous coordinates of p ∈ n and let q = (y0, . . . , ym) be homogeneous coordinates
of q ∈ m . The Segre mapping σ : n × m → n+m+nm is defined by taking the pair
(p, q) ∈ n × m to the point in n+m+nm with homogeneous coordinates

(x0 y0, x0 y1, . . . , x0 ym, x1 y0, . . . , x1 ym, . . . , xn y0, . . . , xn ym).

The components are all the possible products xi y j where 0 ≤ i ≤ n and 0 ≤ j ≤ m. The
image is a projective variety called a Segre variety.
a. Show that σ is a well-defined mapping. (That is, show that we obtain the same point in

n+m+nm no matter what homogeneous coordinates for p, q we use.)
b. Show that σ is a one-to-one mapping and that the “affine part” kn × km maps to an affine

variety in kn+m+nm = U0 ⊂ n+m+nm that is isomorphic to kn+m . (See Chapter 5, §4.)
c. Taking n = m = 1 above, write out σ : 1 × 1 → 3 explicitly and find homogeneous

equation(s) for the image. Hint: You should obtain a single quadratic equation. This Segre
variety is a quadric surface in 3.

d. Now consider the case n = 2, m = 1 and find homogeneous equations for the Segre
variety in 5.

e. What is the intersection of the Segre variety in 5 and the Veronese surface in 5? (See
Exercise 12.)

§5 Projective Elimination Theory

In Chapter 3, we encountered numerous instances of “missing points” when studying
the geometric interpretation of elimination theory. Since our original motivation for
projective space was to account for “missing points,” it makes sense to look back at
elimination theory using what we know about n(k). You may want to review the first
two sections of Chapter 3 before reading further.

We begin with the following example.

Example 1. Consider the variety V ⊂ 2 defined by the equation

xy2 = x − 1.
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To eliminate x , we use the elimination ideal I1 = 〈xy2 − x + 1〉 ∩ [y], and it is easy
to show that I1 = {0} ⊂ [y]. In Chapter 3, we observed that eliminating x corresponds
geometrically to the projection π (V ) ⊂ , where π : 2 → is defined by π (x, y) =
y. We know that π (V ) ⊂ V(I1) = , but as the following picture shows, π (V ) does
not fill up all of V(I1):

y

x

↓ π

↑ π

←  V

↓
π(V)

We can control the missing points using the Geometric Extension Theorem (Theorem 2
of Chapter 3, §2). Recall how this works: if we write the defining equation of V as
(y2 − 1)x + 1 = 0, then the Extension Theorem guarantees that we can solve for x
whenever the leading coefficient of x does not vanish. Thus, y = ±1 are the only
missing points.

To reinterpret the Geometric Extension Theorem in terms of projective space, first
observe that the standard projective plane 2( ) is not quite what we want. We are
really only interested in directions along the projection (i.e., parallel to the x-axis) since
all of our missing points lie in this direction. So we do not need all of 2( ). A more
serious problem is that in 2( ), all lines parallel to the x-axis correspond to a single
point at infinity, yet we are missing two points.

To avoid this difficulty, we will use something besides 2( ). If we write π as
π : × → , the idea is to make the first factor projective rather than the whole
thing. This gives us 1( ) × , and we will again use π to denote the projection
π : 1( ) × → onto the second factor.

We will use coordinates (t, x, y) on 1( ) × , where (t, x) are homogeneous coor-
dinates on 1( ) and y is the usual coordinate on . Thus, (in analogy with Proposition
2 of §2) a point (1, x, y) ∈ 1( ) × corresponds to (x, y) ∈ × . We will regard

× as a subset of 1( ) × and you should check that the complement consists
of the “points at infinity” (0, 1, y).
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We can extend V ⊂ × to V ⊂ 1( ) × by making the equation of V homo-
geneous with respect to t and x . Thus, V is defined by

xy2 = x − t.

In Exercise 1, you will check that this equation is well-defined on 1( ) × . To find
the solutions of this equation, we first set t = 1 to get the affine portion and then we
set t = 0 to find the points at infinity. This leads to

V = V ∪ {(0, 1, ±1)}
(remember that t and x cannot simultaneously vanish since they are homogeneous
coordinates). Under the projection π : 1( ) × → , it follows that π (V ) = =
V(I1) because the two points at infinity map to the “missing points” y = ±1. As we
will soon see, the equality π (V ) = V(I1) is a special case of the projective version of
the Geometric Extension Theorem.

We will use the following general framework for generalizing the issues raised by
Example 1. Suppose we have equations

f1(x1, . . . , xn, y1, . . . , ym) = 0,
...

fs(x1, . . . , xn, y1, . . . , ym) = 0,

where f1, . . . , fs ∈ k[x1, . . . , xn, y1, . . . , ym]. Algebraically, we can eliminate
x1, . . . , xn by computing the ideal In = 〈 f1, . . . , fs〉 ∩ k[y1, . . . , ym] (the Elimina-
tion Theorem from Chapter 3, §1 tells us how to do this). If we think geometrically,
the above equations define a variety V ⊂ kn × km , and eliminating x1, . . . , xn corre-
sponds to considering π (V ), where π : kn × km → km is projection onto the last m
coordinates. Our goal is to describe the relation between π (V ) and V(In).

The basic idea is to make the first factor projective. To simplify notation, we will
write n(k) as n when there is no confusion about what field we are dealing with. A
point in n × km will have coordinates (x0, . . . , xn, y1, . . . , ym), where (x0, . . . , xn) are
homogeneous coordinates in n and (y1, . . . , ym) are usual coordinates in km . Thus,
(1, 1, 1, 1) and (2, 2, 1, 1) are coordinates for the same point in 1 × k2, whereas
(2, 2, 2, 2) gives a different point. As in Proposition 2 of §2, we will use the map

(x1, . . . , xn, y1, . . . , ym) �→ (1, x1, . . . , xn, y1, . . . , ym)

to identify kn × km with the subset of n × km where x0 �= 0.
We can define varieties in n × km using “partially” homogeneous polynomials as

follows.

Definition 2. Let k be a field.
(i) A polynomial F ∈ k[x0, . . . , xn, y1, . . . , ym] is (x0, . . . , xn)-homogeneous pro-

vided there is an integer l ≥ 0 such that

F =
∑
|α|=l

hα(y1, . . . , ym)xα,

where xα is a monomial in x0, . . . , xn of multidegree α and hα ∈ k[y1, . . . , ym].
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(ii) The variety V(F1, . . . , Fs) ⊂ n × km defined by (x0, . . . , xn)-homogeneous poly-
nomials F1, . . . , Fs ∈ k[x0, . . . , xn, y1, . . . , ym] is the set

{(a0, . . . , an, b1, . . . , bm) ∈ n × km : Fi (a0, . . . , an, b1, . . . , bm) = 0

for 1 ≤ i ≤ s}.

In the exercises, you will show that if a (x0, . . . , xn)-homogeneous polynomial van-
ishes at one set of coordinates for a point in n × km , then it vanishes for all coordi-
nates of the point. This shows that the variety V(F1, . . . , Fs) is a well-defined subset
of n × km when F1, . . . , Fs are (x0, . . . , xn)-homogeneous.

We can now discuss what elimination theory means in this context. Suppose we have
(x0, . . . , xn)-homogeneous equations

F1(x0, . . . , xn, y1, . . . , ym) = 0,

...(1)

Fs(x0, . . . , xn, y1, . . . , ym) = 0.

These define the variety V = V(F1, . . . , Fs) ⊂ n × km . We also have the projection
map

π : n × km → km

onto the last m coordinates. Then we can interpret π (V ) ⊂ km as the set of all m-tuples
(y1, . . . , ym) for which the equations (1) have a nontrivial solution in x0, . . . , xn (which
means that at least one xi is nonzero).

To understand what this means algebraically, let us work out an example.

Example 3. In this example, we will use (u, v, y) as coordinates on 1 × k. Then
consider the equations

F1 = u + vy = 0,

(2)
F2 = u + uy = 0.

Since (u, v) are homogeneous coordinates on 1, it is straightforward to show that

V = V(F1, F2) = {(0, 1, 0), (1, 1, −1)}.
Under the projection π : 1 × k → k, we have π (V ) = {0, −1}, so that for a given y,
the equations (2) have a nontrivial solution if and only if y = 0 or −1. Thus, (2) implies
that y(1 + y) = 0.

Ideally, there should be a purely algebraic method of “eliminating” u and v from
(2) to obtain y(1 + y) = 0. Unfortunately, the kind of elimination we did in Chapter 3
does not work. To see why, let I = 〈F1, F2〉 ⊂ k[u, v, y] be the ideal generated by F1

and F2. Since every term of F1 and F2 contains u or v, it follows that

I ∩ k[y] = {0}.
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From the affine point of view, this is the correct answer since the affine variety

Va(F1, F2) ⊂ k2 × k

contains the trivial solutions (0, 0, y) for all y ∈ k. Thus, the affine methods of Chapter 3
will be useful only if we can find an algebraic way of excluding the solutions where
u = v = 0.

We can shed some light on the matter by computing Groebner bases for I = 〈F1, F2〉
using various lex orders:

using u > v > y : I = 〈u + vy, vy2 + vy〉,
using v > u > y : I = 〈vu − u2, vy + u, u + uy〉.

The last entries in each basis show that our desired answer y(1 + y) is almost in I , in
the sense that

u · y(1 + y), v · y(1 + y) ∈ I.(3)

In the language of ideal quotients from §4 of Chapter 4, this implies that

y(1 + y) ∈ I : 〈u, v〉.
Recall from Chapter 4 that for affine varieties, the ideal quotient corresponds (roughly)
to the difference of varieties (see Theorem 7 of Chapter 4, §4 for a precise statement).
Thus, the ideal I : 〈u, v〉 is closely related to the difference

Va(F1, F2) − Va(u, v) ⊂ k2 × k.

This set consists exactly of the nontrivial solutions of (2). Hence, the ideal quotient
enters in a natural way.

Thus, our goal of eliminating u and v projectively from (2) leads to the polynomial

y(1 + y) ∈ Ĩ = (I : 〈u, v〉) ∩ k[y].

Using the techniques of Chapter 4, it can be shown that Ĩ = 〈y(1 + y)〉 in this case.

With this example, we are very close to the definition of projective elimination. The
only difference is that in general, higher powers of the variables may be needed in (3)
(see Exercise 7 for an example). Hence, we get the following definition of the projective
elimination ideal.

Definition 4. Given an ideal I ⊂ k[x0, . . . , xn, y1, . . . , ym] generated by (x0, . . . , xn)-
homogeneous polynomials, the projective elimination ideal of I is the set

Î = { f ∈ k[y1, . . . , ym] : for each 0 ≤ i ≤ n, there is ei ≥ 0 with xei
i f ∈ I }.

It is an easy exercise to show that Î is, in fact, an ideal of k[y1, . . . , ym]. To begin to
see the role played by Î , we have the following result.

Proposition 5. Let V = V(F1, . . . , Fs) ⊂ n × km be a variety defined by
(x0, . . . , xn)-homogeneous polynomials and let π : n × km → km be the projection
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map. Then in km, we have

π (V ) ⊂ V( Î ),

where Î is the projective elimination ideal of I = 〈F1, . . . , Fs〉.

Proof. Suppose that we have (a0, . . . , an, b1, . . . , bm) ∈ V and f ∈ Î . Then
xei

i f (y1, . . . , ym) ∈ I implies that this polynomial vanishes on V, and hence,

aei
i f (b1, . . . , bm) = 0

for all i. Since (a0, . . . , an) are homogeneous coordinates, at least one ai �= 0 and,
thus, f (b1, . . . , bm) = 0. This proves that f vanishes on π (V ) and the proposition
follows. �

When the field is algebraically closed, we also have the following projective version
of the Extension Theorem.

Theorem 6 (The Projective Extension Theorem). Assume that k is algebraically
closed and that V = V(F1, . . . , Fs) ∈ n × km is defined by (x0, . . . , xn)-
homogeneous polynomials in k[x0, . . . , xn, y1, . . . , ym]. Let I = (F1, . . . , Fs) and let
Î ⊂ k[y1, . . . , ym] be the projective elimination ideal of I. If

π : n × km −→ km

is projection onto the last m coordinates, then

π (V ) = V( Î ).

Proof. The inclusion π (V ) ⊂ V( Î ) follows from Proposition 5. For the
opposite inclusion, let c = (c1, . . . , cm) ∈ V( Î ) and set Fi (x0, . . . , xn, c) =
Fi (x0, . . . , xn, c1, . . . , cm). This is a homogeneous polynomial in x0, . . . , xn , say of
total degree = di [equal to the total degree of Fi (x0, . . . , xn, y1, . . . , ym) in x0, . . . , xn].

If c /∈ π (V ), then it follows that the equations

F1(x0, . . . , xn, c) = · · · = Fs(x0, . . . , xn, c) = 0

define the empty variety in n . Since the field k is algebraically closed, the Projective
Weak Nullstellensatz (Theorem 8 of §3) implies that for some r ≥ 1, we have

〈x0, . . . , xn〉r ⊂ 〈F1(x0, . . . , xn, c), . . . , Fs(x0, . . . , xn, c)〉.
This means that the monomials xα, |α| = r , can be written as a polynomial linear
combination of the Fi (x0, . . . , xn, c), say

xα =
s∑

i=1

Hi (x0, . . . , xn)F1(x0, . . . , xn, c).

By taking homogeneous components, we can assume that each Hi is homogeneous
of total degree r − di [since di is the total degree of Fi (x0, . . . , xn, c)]. Then, writing
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each Hi as a linear combination of monomials xβi with |βi | = r − di , we see that the
polynomials

xβi Fi (x0, . . . , xn, c), i = 0, . . . , s, |βi | = r − di

span the vector space of all homogeneous polynomials of total degree r in x0, . . . , xn .
If the dimension of this space is denoted Nr , then by standard results in linear algebra,
we can find Nr of these polynomials which form a basis for this space. We will denote
this basis as

G j (x0, . . . , xn, c), j = 1, . . . , Nr .

To see why this leads to a contradiction, we will use linear algebra and the properties
of determinants to create an interesting element of the elimination ideal Î . The polyno-
mial G j (x0, . . . , xn, c) comes from a polynomial G j = G j (x0, . . . , xn, y1, . . . , ym) ∈
k[x0, . . . , xn, y1, . . . , ym]. Each G j is of the form xβi Fi , for some i and βi , and is
homogeneous in x0, . . . , xn of total degree r . Thus, we can write

G j =
∑
|α|=r

a jα(y1, . . . , ym)xα.(4)

Since the xα with |α| = r form a basis of all homogeneous polynomials of total de-
gree r , there are Nr such monomials. Hence we get a square matrix of polynomials
a jα(y1, . . . , ym). Then let

D(y1, . . . , ym) = det(a jα(y1, . . . , ym) : 1 ≤ j ≤ Nr , |α| = r )

be the corresponding determinant. If we substitute c into (4), we obtain

G j (x0, . . . , xn, c) =
∑
|α|=r

a jα(c)xα,

and since the G j (x0, . . . , xn, c)’s and xα’s are bases of the same vector space, we see
that

D(c) �= 0.

In particular, this shows that D(y1, . . . , ym) �= 0 in k[y1, . . . , ym].
Working over the function field k(y1, . . . , ym) (see Chapter 5, §5), we can regard (4)

as a system of linear equations over k(y1, . . . , ym) with the xα as variables. Applying
Cramer’s Rule (Proposition 3 of Appendix A, §3), we conclude that

xα = det(Mα)

D(y1, . . . , ym)
,

where Mα is the matrix obtained from (a jα) by replacing the α column by G1, . . . , G Nr .
If we multiply each side by D(y1, . . . , ym) and expand det(Mα) along this column, we
get an equation of the form

xα D(y1, . . . , ym) =
Nr∑
j=1

Hjα(y1, . . . , ym)G j (x0, . . . , xn, y1, . . . , ym).
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However, every G j is of the form xβi Fi , and if we make this substitution and write the
sum in terms of the Fi , we obtain

xα D(y1, . . . , ym) ∈ 〈F1, . . . , Fs〉 = I.

This shows that D(y1, . . . , ym) is in the projective elimination ideal Î , and since c ∈
V( Î ), we conclude that D(c) = 0. This contradicts what we found above, which proves
that c ∈ π (V ), as desired. �

Theorem 6 tells us that when we project a variety V ⊂ n × km into km , the result is
again a variety. This has the following nice interpretation: if we think of the variables
y1, . . . , ym as parameters in the system of equations

F1(x0, . . . , xn, y1, . . . , ym) = · · · = Fs(x0, . . . , xn, y1, . . . , ym) = 0,

then the equations defining π (V ) = V( Î ) in km tell us what conditions the parameters
must satisfy in order for the above equations to have a nontrivial solution (i.e., a solution
different from x0 = · · · = xn = 0).

For the elimination theory given in Theorem 6 to be useful, we need to be able to
compute the climination ideal Î . We will explore this question in the following two
propositions. We first show how to represent Î as an ideal quotient.

Proposition 7. If I ⊂ k[x0, . . . , xn, y1, . . . , ym] is an ideal, then, for all sufficiently
large integers e, we have

Î = (I : 〈xe
0, . . . , xe

n〉) ∩ k[y1, . . . , ym].

Proof. The definition of ideal quotient shows that

f ∈ I : 〈xr
0, . . . , xe

n〉 =⇒ xe
i f ∈ I for all 0 ≤ i ≤ n.

It follows immediately that (I : 〈xe
0, . . . , xe

n〉) ∩ k[y1, . . . , ym] ⊂ Î for all e ≥ 0.
We need to show that the opposite inclusion occurs for large e. First, observe that

we have an ascending chain of ideals

I : 〈x0, . . . , xn〉 ⊂ I : 〈x2
0 , . . . , x2

n〉 ⊂ · · · .
Then the ascending chain condition (Theorem 7 of Chapter 2, §5) implies that

I : 〈xe
0, . . . , xe

n〉 = I : 〈xe+1
0 , . . . , xe+1

n 〉 = · · ·
for some integer e. If we fix such an e, it follows that

I : 〈xd
0 , . . . , xd

n 〉 ⊂ I : 〈xe
0, . . . , xe

n〉(5)

for all integers d ≥ 0.
Now suppose f ∈ Î . For each 0 ≤ i ≤ n, this means xei

i f ∈ I for some ei ≥ 0.
Let d = max(e0, . . . , en). Then xd

i f ∈ I for all i , which implies f ∈ I : 〈xd
0 , . . . , xd

n 〉.
By (5), it follows that f ∈ (I : 〈xe

0, . . . , xe
n〉) ∩ k[y1, . . . , ym], and the proposition is

proved. �
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We next relate Î to the kind of elimination we did in Chapter 3. The basic idea is to
reduce to the affine case by dehomogenization. If we fix 0 ≤ i ≤ n, then setting xi = 1
in F ∈ k[x0, . . . , xn, y1, . . . , ym] gives the polynomial

F (i) = F(x0, . . . , 1, . . . , xn, y1, . . . , ym) ∈ k[x0, . . . , x̂i , . . . , xn, y1, . . . , ym],

where x̂i means that xi is omitted from the list of variables. Then, given an ideal
I ⊂ k[x0, . . . , xn, y1, . . . , ym], we get the dehomogenization

I (i) = {F (i) : F ∈ I } ⊂ k[x0, . . . , x̂i , . . . , xn, y1, . . . , ym].

It is easy to show that I (i) is an ideal in k[x0, . . . , x̂i , . . . , xn, y1, . . . , ym]. We also leave
it as an exercise to show that if I = 〈F1, . . . , Fs〉, then

I (i) = 〈F (i)
1 , . . . , F (i)

s 〉.(6)

Let V ⊂ n × km be the variety defined by I . One can think of I (i) as defining the
affine portion V ∩ (Ui × km), where Ui

∼= kn is the subset of n where xi = 1. Since
we are now in a purely affine situation, we can eliminate using the methods of Chapter
3. In particular, we get the n-th elimination ideal

I (i)
n = I (i) ∩ k[y1, . . . , ym],

where the subscript n indicates that the n variables x0, . . . , x̂i , . . . , xn have been elim-
inated. We now compute Î in terms of its dehomogenizations I (i) as follows.

Proposition 8. Let I ⊂ k[x0, . . . , xn, y1, . . . , ym] be an ideal generated by
(x0, . . . , xn)-homogeneous polynomials. Then

Î = I (0)
n ∩ I (1)

n ∩ · · · ∩ I (n)
n .

Proof. It suffices to show that

Î = I (0) ∩ · · · ∩ I (n) ∩ k[y1, . . . , ym].

First, suppose that f ∈ Î . Then xei
i f (y1, . . . , ym) ∈ I , so that when we set xi = 1, we

get f (y1, . . . , ym) ∈ I (i). This proves f ∈ I (0) ∩ · · · ∩ I (n) ∩ k[y1, . . . , ym].
For the other inclusion, we first study the relation between I and I (i). An element

f ∈ I (i) is obtained from some F ∈ I by setting xi = 1. We claim that F can be assumed
to be (x0, . . . , xn)-homogeneous. To prove this, note that F can be written as a sum
F = ∑d

j=0 Fj , where Fj is (x0, . . . , xn)-homogeneous of total degree j in x0, . . . , xn .
Since I is generated by (x0, . . . , xn)-homogeneous polynomials, the proof of Theorem
2 of §3 can be adapted to show that Fj ∈ I for all j (see Exercise 4). This implies that

d∑
j=0

xd− j
i Fj

is a (x0, . . . , xn)-homogeneous polynomial in I which dehomogenizes to f when
xi = 1. Thus, we can assume that F ∈ I is (x0, . . . , xn)-homogeneous.

As in §2, we can define a homogenization operator which takes a polynomial
f ∈ k[x0, . . . , x̂i , . . . , xn, y1, . . . , ym] and uses the extra variable xi to produce a
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(x0, . . . , xn)-homogeneous polynomial f h ∈ k[x0, . . . , xn, y1, . . . , ym]. We leave it as
an exercise to show that if a (x0, . . . , xn)-homogeneous polynomial F dehomogenizes
to f using xi = 1, then

f = xe
i f h(7)

for some integer e ≥ 0.
Now suppose f ∈ I (i) ∩ k[y1, . . . , ym]. As we proved earlier, f comes from F ∈ I

which is (x0, . . . , xn)-homogeneous. Since f does not involve x0, . . . , xn , we have
f = f h , and then (7) implies xe

i f ∈ I . It follows immediately that I (0) ∩ · · · ∩ I (n) ∩
k[y1, . . . , ym] ⊂ Î , and the proposition is proved. �

Proposition 8 has a nice interpretation. Namely, I (i)
n can be thought of as eliminating

x0, . . . , x̂i , . . . , xn on the affine piece of n × km where xi = 1. Then intersecting these
affine elimination ideals (which roughly corresponds to the eliminating on the union
of the affine pieces) gives the projective elimination ideal.

We can also use Proposition 8 to give an algorithm for finding Î . If I = 〈F1, . . . , Fs〉,
we know a basis of I (i) by (6), so that we can compute I (i)

n using the Elimination Theorem
of Chapter 3, §1. Then the algorithm for ideal intersections from Chapter 4, §3 tells us
how to compute Î = I (0)

n ∩ · · · ∩ I (n)
n . A second algorithm for computing Î , based on

Proposition 7, will be discussed in the exercises.
To see how this works in practice, consider the equations

F1 = u + vy = 0,

F2 = u + uy = 0

from Example 3. If we set I = 〈u + vy, u + uy〉 ⊂ k[u, v, y], then we have

when u = 1 : I (u)
1 = 〈1 + vy, 1 + y〉 ∩ k[y] = 〈1 + y〉,

when v = 1 : I (v)
1 = 〈u + y, u + uy〉 ∩ k[y] = 〈y(1 + y)〉,

and it follows that Î = I (u)
1 ∩ I (v)

1 = 〈y(1 + y)〉. Can you explain why I (u)
1 and I (v)

1 are
different?

We next return to a question posed earlier concerning the missing points that can occur
in the affine case. An ideal I ⊂ k[x1, . . . , xn, y1, . . . , ym] gives a variety V = Va(I ) ⊂
kn × km , and under the projection π : kn × km → km , we know that π (V ) ⊂ V(In),
where In is the n-th elimination ideal of I . We want to show that points in V(In) − π (V )
come from points at infinity in n × km .

To decide what variety in n × km to use, we will homogenize with respect to x0.
Recall from the proof of Proposition 8 that f ∈ k[x1, . . . , xn, y1, . . . , ym] gives us
a (x0, . . . , xn)-homogeneous polynomial f h ∈ k[x0, . . . , xn, y1, . . . , ym]. Exercise 12
will study homogenization in more detail. Then the (x0, . . . , xn)-homogenization of I
is defined to be the ideal

I h = 〈 f h : f ∈ I 〉 ⊂ k[x0, . . . , xn, y1, . . . , ym].
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Using the Hilbert Basis Theorem, it follows easily that I h is generated by finitely many
(x0, . . . , xn)-homogeneous polynomials.

The following proposition gives the main properties of I h .

Proposition 9. Given an ideal I ⊂ k[x1, . . . , xn, y1, . . . , ym], let I h be its (x0, . . . , xn)-
homogenization. Then:
(i) The projective elimination ideal of I h equals the n-th elimination ideal of I . Thus,

Î h = In ⊂ k[y1, . . . , ym].
(ii) If k is algebraically closed, then the variety V = V(I h) is the smallest variety

in n × km containing the affine variety V = Va(I) ⊂ kn × km. We call V the
projective closure of V in n × km.

Proof. (i) It is straightforward to show that dehomogenizing I h with respect to x0 gives
(I h)(0) = I . Then the proof of Proposition 8 implies that Î h ⊂ In . Going the other way,
take f ∈ In . Since f ∈ k[y1, . . . , ym], it is already (x0, . . . , xn)-homogeneous. Hence,
f = f h ∈ I h and it follows that x0

i f ∈ I h for all i . This shows that f ∈ Î h , and (i) is
proved.

Part (ii) is similar to Theorem 8 of §4 and is left as an exercise. �

Using Theorem 6 and Proposition 9 together, we get the following nice result.

Corollary 10. Assume that k is algebraically closed and let V = Va(I ) ⊂ kn × km,
where I ⊂ k[x1, . . . , xn, y1, . . . , ym] is an ideal. Then

V(In) = π (V ),

where V ⊂ n × km is the projective closure of V and π : n × km → km is the pro-
jection

Proof. Since Proposition 9 tells us that V = V(I h) and Î h = In , the corollary follows
immediately from Theorem 6. �

In Chapter 3, points of V(In) were called “partial solutions.” The partial solutions
which do not extend to solutions in V give points of V(In) − π (V ), and the corollary
shows that these points come from points at infinity in the projective closure V of V .

To use Corollary 10, we need to be able to compute I h . As in §4, the difficulty is
that I = 〈 f1, . . . , fs〉 need not imply I h = 〈 f h

s , . . . , f h
s 〉. But if we use an appropriate

Groebner basis, we get the desired equality.

Proposition 11. Let > be a monomial order on k[x1, . . . , xn, y1, . . . , ym] such that for
all monomials xα yγ , xβ yδ in x1, . . . , xn, y1, . . . , ym, we have

|α| > |β| =⇒ xα yγ > xβ yδ.

If G = {g1, . . . , gs} is a Groebner basis for I ⊂ k[x1, . . . , xn, y1, . . . , ym] with respect
to >, then Gh = {gh

1 , . . . , gh
s } is a basis for I h ⊂ k[x0, . . . , xn, y1, . . . , ym].
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Proof. This is similar to Theorem 4 of §4 and is left as an exercise. �

In Example 1, we considered I = 〈xy2 − x + 1〉 ⊂ [x, y]. This is a principal ideal
and, hence, xy2 − x + 1 is a Groebner basis for any monomial ordering (see Exercise
10 of Chapter 2, §5). If we homogenize with respect to the new variable t , Proposition
11 tells us that I h is generated by the (t, x)-homogeneous polynomial xy2 − x + t.
Now let V = V(I h) ⊂ 1 × . Then Corollary 10 shows π (V ) = V(I1) = , which
agrees with what we found in Example 1.

Using Corollary 10 and Proposition 11, we can point out a weakness in the Geometric
Extension Theorem given in Chapter 3. This theorem stated that if I = 〈 f1, . . . , fs〉,
then

V(I1) = π (V ) ∪ (V(g1, . . . , gs) ∩ V(I1)),(8)

where V = Va(I ) and gi ∈ k[x2, . . . , xn] is the leading coefficient of fi with respect to
x1. From the projective point of view, {(0, 1)} × V (g1, . . . , gs) are the points at infinity
in Z = V( f h

1 , . . . , f h
s ) (this follows from the proof of Theorem 6). Since f1, . . . , fs

was an arbitrary basis of I, Z may not be the projective closure of V and, hence,
V(g1, . . . , gs) may be too large. To get the smallest possible V(g1, . . . , gs) ∩ V(I1) in
(8), we should use a Groebner basis for I with respect to a monomial ordering of the
type described in Proposition 11.

We will end the section with a study of maps between projective spaces. Suppose
that f0, . . . , fm ∈ k[x0, . . . , xn] are homogeneous polynomials of total degree d such
that V( f0, . . . , fm) = ∅ in n . Then we can define a map F : n → m by the formula

F(x0, . . . , xn) = ( f0(x0, . . . , xn), . . . fm(x0, . . . , xn)).

Since f0, . . . , fm never vanish simultaneously on n, F(x0, . . . , xn) always gives a
point in n . Furthermore, since the fi are all homogeneous of total degree d, it follows
that

F(λx0, . . . , λxn) = λd F(x0, . . . , xn)

for all λ ∈ k − {0}. Thus, F is a well-defined function from n to m .
We have already seen examples of such maps between projective spaces. For instance,

Exercise 21 of §2 studied the map F : 1 → 2 defined by

F(a, b) = (a2 + b2, 2ab, a2 − b2).

This is a projective parametrization of V(x2 − y2 − z2). Also, Exercise 12 of §4
discussed the Veronese map φ : 2 → 5 defined by

φ(x0, x1, x2) = (x2
0 , x0x1, x0x2, x2

1 , x1x2, x2
2 ).

The image of this map is called the Veronese surface in 5.
Over an algebraically closed field, we can describe the image of F : n → m using

elimination theory as follows.

Theorem 12. Let k be algebraically closed and let F : n → m be defined by
homogeneous polynomials f0, . . . , fm ∈ k[x0, . . . , xn] which have the same total
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degree >0 and no common zeros in n. In k[x0, . . . , xn, y0, . . . , ym], let I be the ideal
〈y0 − f0, . . . , ym − fm〉 and let In+1 = I ∩ k[y0, . . . , ym]. Then In+1 is a homogeneous
ideal in k[y0, . . . , ym] and

F( n) = V(In+1).

Proof. We will first show that In+1 is a homogeneous ideal. Suppose that the fi have
total degree d . Since the generators yi − fi of I are not homogeneous (unless d = 1),
we will introduce weights on the variables x0, . . . , xn, y0, . . . , ym . We say that each xi

has weight 1 and each y j has weight d. Then a monomial xα yβ has weight |α| + d|β|,
and a polynomial f ∈ k[x0, . . . , xn, y0, . . . , ym] is weighted homogeneous provided
every monomial in f has the same weight.

The generators yi − fi of I all have weight d, so that I is a weighted homoge-
neous ideal. If we compute a reduced Groebner basis G for I with respect to any
monomial order, an argument similar to the proof of Theorem 2 of §3 shows that G
consists of weighted homogeneous polynomials. For an appropriate lex order, the
Elimination Theorem from Chapter 3 shows that G ∩ k[y0, . . . , ym] is a basis of
In+1 = I ∩ k[y0, . . . , ym]. Thus, In+1 has a weighted homogeneous basis. Since the
yi ’s all have the same weight, a polynomial in k[y0, . . . , ym] is weighted homoge-
neous if and only if it is homogeneous in the usual sense. This proves that In+1 is a
homogeneous ideal.

To study the image of F , we need to consider varieties in the product n × m . A
polynomial h ∈ k[x0, . . . , xn, y0, . . . , ym] is bihomogeneous if it can be written as

h =
∑

|α=k,|β|=l

aαβ xα yβ.

If h1, . . . , hs are bihomogeneous, we get a well-defined set

V(h1, . . . , hs) ⊂ n × m

which is the variety defined by h1, . . . , hs . Similarly, if J ⊂ k[x0, . . . , xn, y0, . . . , ym]
is generated by bihomogeneous polynomials, then we get a variety V(J ) ⊂ n × m .
(See Exercise 16 for the details.)

Elimination theory applies nicely to this situation. The projective elimination ideal
Ĵ ⊂ k[y0, . . . , ym] is a homogeneous ideal (see Exercise 16). Then, using the projection
π : n × m → m , it is an easy corollary of Theorem 6 that

π (V(J )) = V( Ĵ )(9)

in m (see Exercise 16). As in Theorem 6, this requires that k be algebraically closed.
We cannot apply this theory to I because it is not generated by bihomogeneous

polynomials. So we will work with the bihomogeneous ideal J = 〈yi f j − y j fi 〉. Let us
first show that V(J ) ⊂ n × m is the graph of F : n → m . Given p ∈ n , we have
(p, F(p)) ∈ V(J ) since yi = fi (p) for all i . Conversely, suppose that (p, q) ∈ V(J ).
Then qi f j (p) = q j fi (p) for all i, j , where qi is the i-th homogeneous coordinate of
q . We can find j with q j �= 0, and by our assumption on f0, . . . , fm , there is i with
fi (p) �= 0. Then qi f j (p) = q j fi (p) �= 0 shows that qi �= 0. Now let λ = qi/ fi (p),
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which is a nonzero element of k. From the defining equations of V(J ), it follows easily
that q = λF(p), which shows that (p, q) is in the graph of F in n × m .

As we saw in §3 of Chapter 3, the projection of the graph is the image of the function.
Thus, under π : n × m → m , we have π (V(J )) = F( n). If we combine this with
(9), we get F( n) = V( Ĵ ) since k is algebraically closed. This proves that the image
of F is a variety in m .

Since we know an algorithm for computing Ĵ , we could stop here. The problem is
that Ĵ is somewhat complicated to compute. It is much simpler to work with In+1 =
I ∩ k[y0, . . . , ym], which requires nothing more than the methods of Chapter 3. So the
final step in the proof is to show that V( Ĵ ) = V(In+1) in m .

It suffices to work in affine space km+1 and prove that Va( Ĵ ) = Va(In+1). Ob-
serve that the variety Va(I ) ⊂ kn+1 × km+1 is the graph of the map kn+1 → km+1

defined by ( f0, . . . , fm). Under the projection π : kn+1 × km+1 → km+1, we claim that
π (Va(I )) = Va( Ĵ ). We know that V( Ĵ ) is the image of F in m . Once we exclude the
origin, this means that q ∈ Va( Ĵ ) if and only if there is a some p ∈ kn+1 such that q
equals F(p) in m . Hence, q = λF(p) in km+1 for some λ �= 0. If we set λ′ = d

√
λ,

then q = F(λ′ p), which is equivalent to q ∈ π (Va(I )). The claim now follows
easily.

By the Closure Theorem (Theorem 3 of Chapter 3, §2), Va(In+1) is the smallest
variety containing π (Va(I )). Since this projection equals the variety Va( Ĵ ), it follows
immediately that Va(In+1) = Va( Ĵ ). This completes the proof of the theorem. �

EXERCISES FOR §5

1. In Example 1, explain why xy2 − x + t = 0 determines a well-defined subset of 1 × ,
where (t, x) are homogeneous coordinates on 1 and y is a coordinate on . Hint: See
Exercise 2.

2. Suppose F ∈ k[x0, . . . , xn, y1, . . . , ym] is (x0, . . . , xn)-homogeneous. Show that if F van-
ishes at one set of coordinates for a point in n × km , then F vanishes at all coordinates for
the point.

3. In Example 3, show that V(F1, F2) = {(0, 1, 0), (1, 1, −1)}.
4. This exercise will study ideals generated by (x0, . . . , xn)-homogeneous polynomials.

a. Prove that every F ∈ k[x0, . . . , xn, y1, . . . , ym] can be written uniquely as a sum
∑

i Fi

where Fi is a (x0, . . . , xn)-homogeneous polynomial of degree i in x0, . . . , xn . We call
these the (x0, . . . , xn)-homogeneous components of F .

b. Prove that an ideal I ⊂ k[x0, . . . , xn, y1, . . . , ym] is generated by (x0, . . . , xn)-
homogeneous polynomials if and only if I contains the (x0, . . . , xn)-homogeneous com-
ponents of each of its elements.

5. Let I ⊂ k[x0, . . . , xn, y1, . . . , ym] be an ideal generated by (x0, . . . , xn)-homogeneous poly-
nomials. We will discuss a method for computing the ideal (I : xi ) ∩ k[y1, . . . , ym]. For
convenience, we will concentrate on the case i = 0. Let > be lex order with x1 > · · · >

xn > x0 > y1 > · · · > ym and let G be a reduced Groebner basis for I .
a. Suppose that g ∈ G has LT(g) = x0 yα . Prove that g = x0h1(y1, . . . , ym) +

h0(y1, . . . , ym).
b. If g ∈ G has LT(g) = x0 yα . Prove that g = x0h1(y1, . . . , ym). Hint: Use part (b) of Ex-

ercise 4 and the fact that G ∩ k[y1, . . . , ym] is a Groebner basis of I ∩ k[y1, . . . , ym].
Remember that G is reduced.
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c. Let G ′ = {g ∈ k[y1, . . . , ym] : either g or x0g ∈ G}. Show that G ′ ⊂ (I : x0) ∩
k[y1, . . . , ym] and that the leading term of every element of (I : x0) ∩ k[y1, . . . , ym]
is divisible by the leading term of some element of G ′. This shows that G ′ is a Groebner
basis.

d. Explain how to compute (I : xe
0) ∩ k[y1, . . . , ym].

6. In Example 3, we claimed that (I : 〈u, v〉) ∩ k[y] = 〈y(1 + y)〉 when I = 〈u + vy, u +
uy〉 ⊂ k[u, v, y]. Prove this using the method of Exercise 5. Hint: I : 〈u, v〉 = 〈I : u〉 ∩
(I : v). Also, the needed Groebner bases have already been computed in Example 3.

7. As in Example 3, we will use (u, v, y) as coordinates on 1 × k. Let F1 = u − vy and
F2 = u2 − v2 y in k[u, v, y].
a. Compute V(F1, F2) and explain geometrically why eliminating u and v should lead to

the equation y(1 − y) = 0.
b. By computing appropriate Groebner bases, show that u2 y(1 − y) and v2 y2(1 − y) lie in

I = 〈F1, F2〉, whereas uy(1 − y) and vy(1 − y) do not.
c. Show that (I : 〈u, v〉) ∩ k[y] = {0} and that (I : 〈u2, v2〉) ∩ k[y] = 〈y(1 − y)〉. Hint: Use

Exercise 5.
8. Prove that the set Î defined in Definition 4 is an ideal of k[y1, . . . , ym]. Note: Although this

follows from Proposition 7, you should give a direct argument using the definition.
9. Let I ⊂ k[x0, . . . , xn, y1, . . . , ym] be an ideal. Adapt the argument of Proposition 7 to show

that

Î = (I : 〈x0, . . . , xn〉e) ∩ k[y1, . . . , ym]

for all sufficiently large integers e. Hint: By Exercise 8 of §3, 〈x0, . . . , xn〉e is generated by
all monomials xα of total degree e.

10. In this exercise, we will use Proposition 7 to describe an algorithm for computing the
projective elimination ideal Î .
a. Show that if I : 〈xe

0, . . . , xe
n〉 = I : 〈xe+1

0 , . . . , xe+1
n 〉 for e ≥ 0, then I : 〈xe

0, . . . , xe
n〉 =

(I : 〈xd
0 , . . . , xd

n 〉) for all d ≥ e.
b. Use part (a) to describe an algorithm for finding an integer e such that Î is given by

(I : 〈xe
0, . . . , xe

n〉) ∩ k[y1, . . . , ym].
c. Once we know e, use algorithms from Chapters 3 and 4 to explain how we can compute

Î using Proposition 7.
11. In this exercise, we will use dehomogenization operator F �→ F (i) defined in the discussion

preceding Proposition 8.
a. Prove that I (i) = {Fi : F ∈ I } is an ideal in k[x0, . . . x̂i , . . . , xn, y1, . . . , ym].
b. If I = 〈F1, . . . , Fs〉, then show that I (i) = 〈F (i)

1 , . . . , F (i)
s 〉.

12. In the proof of Proposition 8, we needed the homogenization operator, which makes a
polynomial f ∈ k[x1, . . . , xn, y1, . . . , ym] into a (x0, . . . , xn)-homogeneous polynomial f h

using the extra variable x0.
a. Give a careful definition of f h .
b. If we dehomogenize f h by setting x0 = 1, show that we get ( f h)(0) = f .
c. Let f = F (0) be the dehomogenization of a (x0, . . . , xn)-homogeneous polynomial F .

Then prove that F = xe
0 f h for some integer e ≥ 0.

13. Prove part (ii) of Proposition 9.
14. Prove Proposition 11. Also give an example of a monomial order which satisfies the hy-

pothesis of the proposition. Hint: You can use an appropriate weight order from Exercise
12 of Chapter 2, §4.

15. The proof of Theorem 12 used weighted homogeneous polynomials. The general setup is
as follows. Given variables x0, . . . , xn , we assume that each variable has a weight qi , which
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we assume to be a positive integer. Then the weight of a monomial xα is
∑n

i=0 qiαi , where
α = (α0, . . . , αn). A polynomial is weighted homogeneous if all of its monomials have the
same weight.
a. Show that every f ∈ k[x0, . . . , xn] can be written uniquely as a sum of weighted homo-

geneous polynomials
∑

i fi , where fi is weighted homogeneous of weight i . These are
called the weighted homogeneous components of f .

b. Define what it means for an ideal I ⊂ k[x0, . . . , xn] to be a weighted homogeneous ideal.
Then formulate and prove a version of Theorem 2 of §3 for weighted homogeneous ideals.

16. This exercise will study the elimination theory of n × m . We will use the polynomial
ring k[x0, . . . , xn, y0, . . . , ym], where (x0, . . . , xm) are homogeneous coordinates on n and
(y0, . . . , ym) are homogeneous coordinates on m .
a. As in the text, h ∈ k[x0, . . . , xn, y0, . . . , ym] is bihomogeneous if it can be written in the

form

h =
∑

|α|=k,|β|=l

aαβ xα yβ .

We say that h has bidegree (k, l). If h1, . . . ., hs are bihomogeneous, show that we get a
well-defined variety

V(h1, . . . , hs) ⊂ n × m .

Also, if J ⊂ k[x0, . . . , xn, y0, . . . , ym] is an ideal generated by bihomogeneous polyno-
mials, explain how to define V(J ) ⊂ n × m and prove that V(J ) is a variety.

b. If J is generated by bihomogeneous polynomials, we have V = V(J ) ⊂ n × m . Since
J is also (x0, . . . , xn)-homogeneous, we can form its projective elimination ideal Ĵ ⊂
k[y0, . . . , ym]. Prove that Ĵ is a homogeneous ideal.

c. Now assume that k is algebraically closed. Under the projection π : n × m → m ,
prove that

π (V ) = V( Ĵ )

in m . This is the main result in the elimination theory of varieties in n × m . Hint: J
also defines a variety in n × km+1, so that you can apply Theorem 6 to the projection

n × km+1 → km+1.
17. For the two examples of maps between projective spaces given in the discussion preceding

Theorem 12, compute defining equations for the images of the maps.
18. In Exercise 11 of §1, we considered the projective plane 2, with coordinates (x, y, z), and

the dual projective plane 2∨, where (A, B, C) ∈ 2∨ corresponds to the projective line L
defined by Ax + By + Cz = 0 in 2. Show that the subset

{(p, l) ∈ 2 × 2∨ : p ∈ L} ⊂ 2 × 2∨

is the variety defined by a bihomogeneous polynomial in k[x, y, z, A, B, C] of bidegree
(1, 1). Hint: See part (f) of Exercise 11 of §1.

§6 The Geometry of Quadric Hypersurfaces

In this section, we will study quadric hypersurfaces in n(k). These varieties generalize
conic sections in the plane and their geometry is quite interesting. To simplify nota-
tion, we will write n rather than n(k), and we will use x0, . . . , xn as homogeneous
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coordinates. Throughout this section, we will assume that k is a field not of characteristic
2. This means that 2 = 1 + 1 �= 0 in k, so that in particular we can divide by 2.

Before introducing quadric hypersurfaces, we need to understand the notion of pro-
jective equivalence. Let GL(n + 1, k) be the set of invertible (n + 1) × (n + 1) matrices
with entries in k. We can use elements A ∈ GL(n + 1, k) to create transformations of

n as follows. Under matrix multiplication, A induces a linear map A : kn+1 → kn+1

which is an isomorphism since A is invertible. This map takes subspaces of kn+1 to
subspaces of the same dimension, and restricting to 1-dimensional subspaces, it follows
that A takes a line through the origin to a line through the origin. Thus A induces a map
A : n → n [see (1) from §2]. We call such a map a projective linear transformation.

In terms of homogeneous coordinates, we can describe A : n → n as follows.
Suppose that A = (ai j ), where 0 ≤ i, j ≤ n. If (b0, . . . , bn) are homogeneous coordi-
nates of a point p ∈ n , it follows by matrix multiplication that

A(p) = (a00b0 + · · · + a0nbn, . . . , an0b0 + · · · + annbn)(1)

are homogeneous coordinates for A(p). This formula makes it easy to work with
projective linear transformations. Note that A : n → n is a bijection, and its inverse
is given by the matrix A−1 ∈ GL(n + 1, k). In Exercise 1, you will study the set of all
projective linear transformations in more detail.

Given a variety V ⊂ n and an element A ∈ GL(n + 1, k), we can apply A to all
points of V to get the subset A(V ) = {A(p) : p ∈ V } ⊂ n .

Proposition 1. If A ∈ GL(n + 1, k) and V ⊂ n is a variety, then A(V ) ⊂ n is also
a variety. We say that V and A(V ) are projectively equivalent.

Proof. Suppose that V = V( f1, . . . , fs), where each fi is a homogeneous polynomial.
Since A is invertible, it has an inverse matrix B = A−1. Then for each i , let gi = fi ◦ B.
If B = (bi j ), this means

gi (x0, . . . , xn) = fi (b00x0 + · · · + b0n xn, . . . , bn0x0 + · · · + bnn xn).

It is easy to see that gi is homogeneous of the same total degree as fi , and we leave it
as an exercise to show that

A(V( f1, . . . , fs)) = V(g1, . . . , gs).(2)

This equality proves the proposition. �

We can regard A = (ai j ) as transforming x0, . . . , xn into new coordinates X0, . . . , Xn

defined by

Xi =
n∑

j=0

ai j x j .(3)

These give homogeneous coordinates on n because A ∈ GL(n + 1, k). It follows from
(1) that we can think of A(V ) as the original V viewed using the new homogeneous
coordinates X0, . . . , Xn . An example of how this works will be given in Proposition 2.
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In studying n , an important goal is to classify varieties up to projective equivalence.
In the exercises, you will show that projective equivalence is an equivalence relation.
As an example of how this works, let us classify hyperplanes H ⊂ n up to projective
equivalence. Recall from §2 that a hyperplane is defined by a linear equation of the
form

a0x0 + · · · + an xn = 0

where a0, . . . , an are not all zero.

Proposition 2. All hyperplanes H ⊂ n are projectively equivalent.

Proof. We will show that H is projectively equivalent to V(x0). Since projective equiv-
alence is an equivalence relation, this will prove the proposition.

Suppose that H is defined by f = a0x0 + · · · + an xn , and assume in addition that
a0 �= 0. Now consider the new homogeneous coordinates

X0 = a0x0 + a1x1 + · · · + an xn,

X1 = x1

...(4)

Xn = xn.

Then it is easy to see that V( f ) = V(X0).
Thus, in the X0, . . . , Xn coordinate system, V( f ) is defined by the vanishing of the

first coordinate. As explained in (3), this is the same as saying that V( f ) and V(x0) are
projectively equivalent via the coefficient matrix

A =

⎛⎜⎜⎜⎝
a0 a1 · · · an

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞⎟⎟⎟⎠
from (4). This is invertible since a0 �= 0. You should check that A(V( f )) = V(x0), so
that we have the desired projective equivalence.

More generally, if ai �= 0 in f , a similar argument shows that V( f ) is projectively
equivalent to V(xi ). We leave it as an exercise to show that V(xi ) is projectively equiv-
alent to V(x0) for all i , and the proposition is proved. �

In §2, we observed that V(x0) can be regarded as a copy of the projective space n−1.
It follows from Proposition 2 that all hyperplanes in n look like n−1.

Now that we understand hyperplanes, we will study the next simplest case, hyper-
surfaces defined by a homogeneous polynomial of total degree 2.

Definition 3. A variety V = V( f ) ⊂ n, where f is a nonzero homogeneous polyno-
mial of total degree 2, is called a quadric hypersurface, or more simply, a quadric.
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The simplest examples of quadrics come from analytic geometry. Recall that a conic
section in 2 is defined by an equation of the form

ax2 + bxy + cy2 + dx + ey + f = 0.

To get the projective closure in 2( ), we homogenize with respect to z to get

ax2 + bxy + cy2 + dxz + eyz + f z2 = 0,

which is homogeneous of total degree 2. For this reason, quadrics in 2 are called
conics.

We can classify quadrics up to projective equivalence as follows.

Theorem 4 (Normal Form for Quadrics). Let f = ∑n
i, j=0 ai j xi x j ∈ k[x0, . . . , xn]

be a nonzero homogeneous polynomial of total degree 2, and assume that k is a field
not of characteristic 2. Then V( f ) is projectively equivalent to a quadric defined by an
equation of the form

c0x2
0 + c1x2

1 + · · · + cn x2
n = 0,

where c0, . . . , cn are elements of k, not all zero.

Proof. Our strategy will be to find a change of coordinates Xi = ∑n
j=0 bi j x j such that

f has the form

c0 X2
0 + c1 X2

1 + · · · + cn X2
n.

As in Proposition 2, this will give the desired projective equivalence. Our proof will be
an elementary application of completing the square.

We will use induction on the number of variables. For one variable, the theorem is
trivial since a00x2

0 is the only homogeneous polynomial of total degree 2. Now assume
that the theorem is true when there are n variables.

Given f = ∑n
i, j=0 ai j xi x j , we first claim that by a change of coordinates, we can

assume a00 �= 0. To see this, first suppose that a00 = 0 and a j j �= 0 for some 1 ≤ j ≤ n.
In this case, we set

X0 = x j , X j = x0, and Xi = xi for i �= 0, j.(5)

Then the coefficient of X2
2 in the expansion of f in terms of X0, . . . , Xn is nonzero.

On the other hand, if all aii = 0, then since f �= 0, we must have ai j �= −a ji for some
i �= j . Making a change of variables as in (5), we may assume that a01 �= −a10. Now set

X0 = x0, X1 = x1 − x0, and Xi = xi for i ≥ 2.(6)

We leave it as an easy exercise to show that in terms of X0, . . . , Xn , the polynomial f
has the form

∑n
i, j=0 ci j Xi X j where c00 = a01 + a10 �= 0. This establishes the claim.

Now suppose that f = ∑n
i, j=0 ai j x j x j where a00 �= 0. Let bi = ai0 + a0i and note

that

1

a00

(
a00x0 +

n∑
i=1

bi

2
xi

)2

= a00x2
0 +

n∑
i=1

bi x0xi +
n∑

i, j=1

bi b j

4a00
xi x j .
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Since the characteristic of k is not 2, we know that 2 = 1 + 1 �= 0 and, thus, division
by 2 is possible in k. Now we introduce new coordinates X0, . . . , Xn , where

X0 = x0 + 1

a00

n∑
i=1

bi

2
xi and Xi = xi for i ≥ 1.(7)

Writing f in terms of X0, . . . , Xn , all of the terms X0 Xi cancel for 1 ≤ i ≤ n and,
hence, we get a sum of the form

a00 X2
0 +

n∑
i, j=1

di j Xi X j .

The sum
∑n

i, j=1 di j Xi X j involves the n variables X1, . . . , Xn , so that by our in-
ductive assumption, we can find a change of coordinates (only involving X1, . . . , Xn)
which transforms

∑n
i, j=1 di j Xi X j into e1 X2

1 + · · · + en X2
n . We can regard this as a co-

ordinate change for X0, X1, . . . Xn which leaves X0 fixed. Then we have a coordinate
change that transforms a00 X2

0 + ∑n
i, j=1 di j Xi X j into the desired form. This completes

the proof of the theorem. �

In the normal form c0x2
0 + · · · + cn x2

n given by Theorem 4, some of the coefficients
ci may be zero. By relabeling coordinates, we may assume that ci �= 0 if 0 ≤ i ≤ p
and ci = 0 for i > p. Then the quadric is projectively equivalent to one given by the
equation

c0x2
0 + · · · + cpx2

p = 0, c0, . . . , cp nonzero.(8)

There is a special name for the number of nonzero coefficients.

Definition 5. Let V ⊂ n be a quadric hypersurface.
(i) If V is defined by an equation of the form (8), then V has rank p + 1.

(ii) More generally, if V is an arbitrary quadric, then V has rank p + 1 if V is
projectively equivalent to a quadric defined by an equation of the form (8).

For example, suppose we use homogeneous coordinates (x, y, z) in 2( ). Then the
three conics defined by

x2 + y2 − z2 = 0, x2 − z2 = 0, x2 = 0

have ranks 3, 2 and 1, respectively. The first conic is the projective version of the circle,
whereas the second is the union of two projective lines V(x − z) ∩ V(x + z), and the
third is the projective line V(x), which we regard as a degenerate conic of multiplicity
two. (In general, we can regard any rank 1 quadric as a hyperplane of multiplicity two.)

In the second part of Definition 5, we need to show that the rank is well-defined.
Given a quadric V , this means showing that for all projectively equivalent quadrics
defined by an equation of the form (8), the number of nonzero coefficients is always the
same. We will prove this by computing the rank directly from the defining polynomial
f = ∑n

i, j=0 ai j xi x j of V .
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A first observation is that we can assume ai j = a ji for all i, j . This follows by
setting bi j = (ai j + a ji )/2 (remember that k has characteristic different from 2). An
easy computation shows that f = ∑n

i, j=0 bi j xi x j , and our claim follows since bi j = b ji .
A second observation is that we can use matrix multiplication to represent f . The

coefficients of f form an (n + 1) × (n + 1) matrix Q = (ai j ), which we will assume
to be symmetric by our first observation. Let X be the column vector with entries
x0, . . . , xn . We leave it as an exercise to show

f (x) = xt Qx,

where x′ is the transpose of x.

We can compute the rank of V( f ) in terms of Q as follows.

Proposition 6. Let f = xt Qx, where Q is an (n + 1) × (n + 1) symmetric matrix.
(i) Given an element A ∈ GL(n + 1, k), let B = A−1. Then

A(V( f )) = V(g).

where g(x) = xt Bt Q Bx.
(ii) The rank of the quadric hypersurface V( f ) equals the rank of the matrix Q.

Proof. To prove (i), we note from (2) that A(V( f )) = V(g), where g = f ◦ B. We
compute g as follows:

g(x) = f (Bx) = (Bx)t Q(Bx) = xt Bt Q Bx,

where we have used the fact that (U V )t = V tU t for all matrices U, V such that U V
is defined. This completes the proof of (i).

To prove (ii), first note that Q and Bt Q B have the same rank. This follows since
multiplying a matrix on the right or left by an invertible matrix does not change the
rank [see Theorem 4.12 from FINKBEINER (1978)].

Now suppose we have used Theorem 4 to find a matrix A ∈ GL(n + 1, k) such that
g = c0x2

0 + · · · + cpx2
p with c0, . . . , cp nonzero. The matrix of g is a diagonal matrix

with c0, . . . , cp on the main diagonal. If we combine this with part (i), we see that

Bt Q B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

. . .
cp

0
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where B = A−1. The rank of a matrix is the maximum number of linearly independent
columns and it follows that Bt Q B has rank p + 1. The above observation then implies
that Q also has rank p + 1, as desired. �

When k is an algebraically closed field (such as k = ), Theorem 4 and Proposition
6 show that quadrics are completely classified by their rank.
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Proposition 7. If k is algebraically closed (and not of characteristic 2), then a quadric
hypersurface of rank p + 1 is projectively equivalent to the quadric defined by the
equation

p∑
i=0

x2
i = 0.

In particular, two quadrics are projectively equivalent if and only if they have the same
rank.

Proof. By Theorem 4, we can assume that we have a quadric defined by a polynomial
of the form c0x2

0 + · · · + cpx2
p = 0, where p + 1 is the rank. Since k is algebraically

closed, the equation x2 − ci = 0 has a root in k. Pick a root and call it
√

ci . Note that√
ci �= 0 since ci is nonzero. Then set

Xi = √
ci xi , 0 ≤ i ≤ p,

Xi = xi , p < i ≤ n.

This gives the desired form and it follows that quadrics of the same rank are projec-
tively equivalent. To prove the converse, suppose that V( f ) and V(g) are projectively
equivalent. By Proposition 6, we can assume that f and g have matrices Q and Bt Q B,
respectively, where B is invertible. As noted in the proof of Proposition 6, Q and Bt Q B
have the same rank, which implies the same for the quadrics V( f ) and V(g). �

Over the real numbers, the rank is not the only invariant of a quadric hypersurface.
For example, in 2( ), the conics V1 = V(x2 + y2 + z2) and V2 = V(x2 + y2 − z2)
have rank 3 but cannot be projectively equivalent since V1 is empty, yet V2 is not. In
the exercises, you will show given any quadric V( f ) with coefficients in , there are
integers r ≥ −1 and s ≥ 0 with 0 ≤ r + s ≤ n such that V( f ) is projectively equivalent
over to a quadric of the form

x2
0 + · · · + x2

r − x2
r+1 − · · · − x2

r+s = 0.

(The case r = −1 corresponds to when all of the signs are negative.)
We are most interested in quadrics of maximal rank in n .

Definition 8. A quadric hypersurface in n is nonsingular if it has rank n + 1.

A nonsingular quadric is defined by an equation f = xt Qx = 0 where Q has rank
n + 1. Since Q is an (n + 1) × (n + 1) matrix, this is equivalent to Q being invertible.
An immediate consequence of Proposition 7 is the following.

Corollary 9. Let k be an algebraically closed field. Then all nonsingular quadrics in
n are projectively equivalent.
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In the exercises, you will show that a quadric in n of rank p + 1 can be represented as
the join of a nonsingular quadric in p with a copy of n−p−1. Thus, we can understand
all quadrics once we know the nonsingular ones.

For the remainder of the section, we will discuss some interesting properties of
nonsingular quadrics in 2, 3, and 5. For the case of 2, consider the mapping
F : 1 → 2 defined by

F(u, v) = (u2, uv, v2),

where (u, v) are homogeneous coordinates on 1. Using elimination theory, it is easy
to see that the image of F is contained in the nonsingular conic V(x0x2 − x2

1 ). In fact,
the map F : 1 → V(x0x2 − x2

1 ) is a bijection (see Exercise 11), so that this conic
looks like a copy of 1. When k is algebraically closed, it follows that all nonsingular
conics in 2 look like 1.

When we move to quadrics in 3, the situation is more interesting. Consider the
mapping

σ : 1 × 1 → 3

which takes a point (x0, x1, y0, y1) ∈ 1 × 1 to the point (x0 y0, x0 y1, x1 y0, x1 y1) ∈
3. This map is called a Segre map and its properties were studied in Exercise 14 of

§4. For us, the important fact is that the image of F is a nonsingular quadric.

Proposition 10. The Segre map σ : 1 × 1 → 3 is one-to-one and its image is the
nonsingular quadric V(z0z3 − z1z2).

Proof. We will use (z0, z1, z2, z3) as homogeneous coordinates on 3. If we eliminate
x0, x1, y0, y1 from the equations

x0 y0 = z0,

x0 y1 = z1,

x1 y0 = z2,

x1 y1 = z3,

then it follows easily that

σ ( 1 × 1) ⊂ V(z0z3 − z1z2).(9)

To prove equality, suppose that (w0, w1, w2, w3) ∈ V(z0z3 − z1z2). If w0 �= 0, then
(w0, w2, w0, w1) ∈ 1 × 1 and

σ (w0, w2, w0, w1) = (w2
0, w0w1, w0w2, w1w2).

However, since w0w3 − w1w2 = 0, we can write this as

σ (w0, w2, w0, w1) = (w2
0, w0w1, w0w2, w0w3) = (w0, w1, w2, w3).

When a different coordinate is nonzero, the proof is similar and it follows that (9) is an
equality. The above argument can be adapted to show that σ is one-to-one (we leave
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the details as an exercise) and it is also easy to see that V(z0z3 − z1z2) is nonsingular.
This proves the proposition. �

Proposition 10 has some nice consequences concerning lines on the quadric surface
V(z0z3 − z1z2) ⊂ 3. But before we can discuss this, we need to learn how to describe
projective lines in 3.

Two points p �= q in 3 give linearly independent vectors p = (a0, a1, a2, a3) and
q = (b0, b1, b2, b3) in k4. Now consider the map F : 1 → 3 given by

F(u, v) = (a0u − b0v, a1u − b1v, a2u − b2v, a3u − b3v).(10)

Since p and q are linearly independent, a0u − b0v, . . . , a3u − b3v cannot vanish si-
multaneously, so that F is defined on all of 1. In Exercise 13, you will show that the
image of F is a variety L ⊂ 3 defined by linear equations. We call L the projective
line (or more simply, the line) determined by p and q. Note that L contains both p and
q . In the exercises, you will show that all lines in 3 are projectively equivalent and
that they can be regarded as copies of 1 sitting inside 3.

Using the Segre map σ , we can identify the quadric V = V(z0z3 − z1z3) ⊂ 3 with
1 × 1. If we fix b = (b0, b1) ∈ 1, the image in V of 1 × {b} under σ consists of

the points (ub0, ub1, vb0, vb1) as (u, v) ranges over 1. By (10), this is the projective
line through the points (b0, b1, 0, 0, ) and (0, 0, b0, b1). Hence, b ∈ 1 determines a
line Lb lying on the quadric V . If b �= b′, one can easily show that Lb does not intersect
Lb′ and that every point on V lies on a unique such line. Thus, V is swept out by the
family {Lb : b ∈ 1} of nonintersecting lines. Such a surface is called a ruled surface.
In the exercises, you will show that {σ ({a} × 1) : a ∈ 1} is a second family of lines
that sweeps out V . If we look at V in the affine space where z0 = 1, then V is defined
by z3 = z1z2, and we get the following graph:

The two families of lines on V are clearly visible in the above picture. Over an alge-
braically closed field, Corollary 9 implies that all nonsingular quadrics in 3 look like
this (up to projective equivalence). Over the real numbers, however, there are more
possibilities.
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For our final example, we will show that the problem of describing lines in 3 leads
to an interesting quadric in 5. To motivate what follows, let us first recall the situation
of lines in 2. Here, a line L ⊂ 2 is defined by a single equation A0x0 + A1x1 +
A2x2 = 0. In Exercise 11 of §1, we showed that (A0, A1, A2) can be regarded as the
“homogeneous coordinates” of L and that the set of all lines forms the dual projective
space 2∨.

It makes sense to ask the same questions for 3. In particular, can we find “ho-
mogeneous coordinates” for lines in 3? We saw earlier that a line L ⊂ 3 can be
projectively parametrized using two points p, q ∈ L . This is a good start, but there are
infinitely many such pairs on L . How do we get something unique out of this? The idea
is the following. Suppose that p = (a0, a1, a2, a3) and q = (b0, b1, b2, b3) in k4. Then
consider the 2 × 4 matrix whose rows are p and q:

 =
(

a0 a1 a2 a3

b0 b1 b1 b3

)
.

We will create coordinates for L using the determinants of 2 × 2 submatrices of .
If we number the columns of  using 0, 1, 2, 3, then the determinant formed using
columns i and j will be denoted wi j . We can assume 0 ≤ i < j ≤ 3, and we get the
six determinants

w01 = a0b1 − a1b0,

w02 = a0b2 − a2b0,

w03 = a0b3 − a3b0,

w12 = a1b2 − a2b1,

w13 = a1b3 − a3b1,

w23 = a2b3 − a3b2.

(11)

We will encode them in the 6-tuple.

ω(p, q) = (w01, w02, w03, w12, w13, w23) ∈ k6.

The wi j are called the Plücker coordinates of the line L . A first observation is that
any line has at least one nonzero Plücker coordinate. To see why, note that  has row
rank 2 since p and q are linearly independent. Hence the column rank is also 2, so
that there must be two linearly independent columns. These columns give a nonzero
Plücker coordinate.

To see how the Plücker coordinates depend on the chosen points p, q ∈ L , suppose
that we pick a different pair p′, q ′ ∈ L . By (10), we see that in terms of homogeneous
coordinates, L can be described as the set

L = {up − vq : (u, v) ∈ 1}.
In particular, we can write

p′ = up − vq,

q ′ = sq − tq

for distinct points (u, v), (s, t) ∈ 1. We leave it as an exercise to show that

ω(p′, q ′) = ω(up − vq, sp − tq) = (vs − ut)ω(p, q)
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in k6. Further, it is easy to see that vs − ut �= 0 since (u, v) �= (s, t) in 1. This shows
that ω(p, q) gives us a point in 5 which depends only on L . Hence, a line L determines
a well-defined point ω(L) ∈ 5.

As we vary L over all lines in 3, the Plücker coordinates ω(L) will describe a
certain subset of 5. By eliminating the ai ’s and bi ’s, from (11), it is easy to see that
w01w23 − w02w13 + w03w12 = 0 for all sets of Plücker coordinates. If we let zi j , 0 ≤
i < j ≤ 3, be homogeneous coordinates on 5, it follows that the points ω(L) all lie
in the nonsingular quadric V(z01z23 − z02z13 + z03z12) ⊂ 5. Let us prove that this
quadric is exactly the set of lines in 3.

Theorem 11. The map

{lines in 3} → V(z01z23 − z02z13 + z03z12)

which sends a line L ⊂ 3 to its Plücker coordinates ω(L) ∈ V(z01z23 − z02z13 +
z03z12) is a bijection.

Proof. The strategy of the proof is to show that a line L ⊂ 3 can be reconstructed from
its Plücker coordinates. Given two points p = (a0, a1, a2, a3) and q = (b0, b1, b2, b3)
on L , it is easy to check that we get the following four vectors in k4:

b0 p − a0q = (0, −w01, −w02, −w03),
b1 p − a1q = (w01, 0, −w12, −w13),
b2 p − a2q = (w02, w12, 0, −w23),
b3 p − a3q = (w03, w13, w23, 0).

(12)

It may happen that some of these vectors are 0, but whenever they are nonzero, it
follows from (10) that they give points of L .

To prove that ω is one-to-one, suppose that we have lines L and L ′ such that ω(L) =
λω(L ′) for some nonzero λ. In terms of Plücker coordinates, this means that wi j = λw′

i j
for all 0 ≤ i < j ≤ 3. We know that some Plücker coordinate of L is nonzero, and by
permuting the coordinates in 3, we can assume w01 �= 0. Then (12) implies that in

3, the points

P = (0, −w′
01, −w′

02, −w′
03) = (0, −λw01, −λw02, −λw03)

= (0, −w01, −w02, −w03),

Q = (w′
01, 0, −w′

12, −w′
13) = (λw01, 0, −λw12, −λw13)

= (w01, 0, −w12, −w13)

lie on both L and L ′. Since there is a unique line through two points in 3 (see Exercise
14), it follows that L = L ′. This proves that our map is one-to-one.

To see that ω is onto, pick a point

(w01, w02, w03, w12, w13, w23) ∈ V(z01z23 − z02z13 + z03z12).

By changing coordinates in 3, we can assume w01 �= 0. Then the first two vectors in
(12) are nonzero and, hence, determine a line L ⊂ 3. Using the definition of ω(L)
and the relation w01w23 − w02w13 + w03w12 = 0, it is straightforward to show that the
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wi j are the Plücker coordinates of L (see Exercise 16 for the details). This shows that
ω is onto and completes the proof of the theorem. �

A nice consequence of Theorem 11 is that the set of lines in 3 can be given the
structure of a projective variety. As we observed at the end of Chapter 7, an important
idea in algebraic geometry is that any set of geometrically interesting objects should
form a variety in some natural way.

Theorem 11 can be generalized in many ways. One can study lines in n , and it
is even possible to define Plücker coordinates for linear varieties in n of arbitrary
dimension. This leads to the study of what are called Grassmannians. Using Plücker
coordinates, a Grassmannian can be given the structure of a projective variety, although
there is usually more than one defining equation. See Exercise 17 for the case of lines
in 4.

We can also think of Theorem 11 from an affine point of view. We already know that
there is a natural bijection

{lines through the origin in k4} ∼= {points in 3},
and in the exercises, you will describe a bijection

{planes through the origin in k4} ∼= {lines in 3}.
Thus, Theorem 11 shows that planes through the origin in k4 have the structure of a
quadric hypersurface in 5. In the exercises, you will see that this has a surprising
connection with reduced row echelon matrices. More generally, the Grassmannians
mentioned in the previous paragraph can be described in terms of subspaces of a
certain dimension in affine space kn+1.

This completes our discussion of quadric hypersurfaces, but by no means exhausts the
subject. The classic books by ROTH and SEMPLE (1949) and HODGE and PEDOE (1968)
contain a wealth of material on quadric hypersurfaces (and many other interesting
projective varieties as well).

EXERCISES FOR §6

1. The set GL(n + 1, k) is closed under inverses and matrix multiplication and is a group in the
terminology of Appendix A. In the text, we observed that A ∈ GL(n + 1, k) induces a pro-
jective linear transformation A : n → n . To describe the set of all such transformations,
we define a relation on GL(n + 1, k) by

A′ ∼ A ←→ A′ = λA for some λ �= 0.

a. Prove that ∼ is an equivalence relation. The set of equivalence classes for ∼ is denoted
PGL(n + 1, k).

b. Show that if A ∼ A′ and B ∼ B ′, then AB ∼ A′ B ′. Hence, the matrix product operation
is well-defined on the equivalence classes for ∼ and, thus, PGL(n + 1, k) has the structure
of a group. We call PGL(n + 1, k) the projective linear group.

c. Show that two matrices A, A′ ∈ GL(n + 1, k) define the same mapping n → n if
and only if A′ ∼ A. It follows that we can regard PGL(n + 1, k) as a set of invertible
transformations on n .
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2. Prove equation (2) in the proof of Proposition 1.
3. Prove that projective equivalence is an equivalence relation on the set of projective varieties

in n .
4. Prove that the hyperplanes V(xi ) and V(x0) are projectively equivalent. Hint: See (5).
5. This exercise is concerned with the proof of Theorem 4.

a. If f = ∑n
i, j=0 ai j xi xi has a01 �= −a10 and aii = 0 for all i , prove that the change of

coordinates (6) transforms f into
∑n

i, j=0 ci j Xi X j where c00 = a01 + a10.
b. If f = ∑n

i, j=0 ai j xi x j has a00 �= 0, verify that the change of coordinates (7) transforms
f into a00 X 2

0 + ∑n
i, j=1 di j Xi X j .

6. If f = ∑n
i, j=0 ai j xi x j , let Q be the (n + 1) × (n + 1) matrix (ai j ).

a. Show that f (x) = xt Q(x).
b. Suppose that k has characteristic 2 (e.g., k = 2), and let f = x0x1. Show that there is

no symmetric 2 × 2 matrix Q with entries in k such that f (x) = xt Qx.
7. Use the proofs of Theorem 4 and Proposition 7 to write each of the following as a sum of

squares. Assume that k = .
a. x0x1 + x0x2 + x2

2 .
b. x2

0 + 4x1x3 + 2x2x3 + x2
4 .

c. x0x1 + x2x3 − x4x5.
8. Given a nonzero polynomial f = ∑n

i, j=0 ai j xi x j with coefficients in , show that there are
integers r ≥ −1 and s ≥ 0 with 0 ≤ r + s ≤ n such that f can be brought to the form

x2
0 + · · · + x2

r − x2
r+1 − · · · − x2

r+s

by a suitable coordinate change with real coefficients. One can prove that the integers r and
s are uniquely determined by f .

9. Let f = ∑n
i, j=0 ai j xi x j ∈ k[x0, . . . , xn] be nonzero. In the text, we observed that V( f ) is

a nonsingular quadric if and only if det(ai j ) �= 0. We say that V( f ) is singular if it is not
nonsingular. In this exercise, we will explore a nice way to characterize singular quadrics.
a. Show that f is singular if and only if there exists a point a ∈ n with homogeneous

coordinates (a0, . . . , an) such that

∂ f

∂x0
(a) = · · · = ∂ f

∂xn
(a) = 0.

b. If a ∈ n has the property described in part a, prove that a ∈ V( f ). In general, a point a
of a hypersurface V( f ) (quadric or of higher degree) is called a singular point of V( f )
provided that all of the partial derivatives of f vanish at a. Hint: Use Exercise 17 of §2.

10. Let V( f ) ⊂ n be a quadric of rank p + 1, where 0 < p < n. Prove that there are X, Y ⊂ n

such that (1) X � V(g) ⊂ p for some nonsingular quadric g, (2) Y � n−p−1, (3) X ∩ Y =
∅, and (4) V( f ) is the join X ∗ Y , which is defined to be the set of all lines in n connecting
a point of X to a point of Y (and if X = ∅, we set X ∗ Y = Y ). Hint: Use Theorem 4.

11. We will study the map F : 1 → 2 defined by F(u, v) = (u2, uv, v2).
a. Use elimination theory to prove that the image of F lies in V(x0x2 − x2

1 ).
b. Prove that F : 1 → V(x0x2 − x2

1 ) is a bijection. Hint: Adapt the methods used in the
proof of Proposition 10.

12. This exercise will study the Segre map σ : 1 × 1 → 3 defined in the text.
a. Use elimination theory to prove that the image of σ lies in the quadric V(z0z3 − z1z2).
b. Use the hint given in the text to prove that σ is one-to-one.

13. In this exercise and the next, we will work out some basic facts about lines in n . We start
with two distinct points p, q ∈ n , which we will think of as linearly independent vectors
in kn+1.
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a. We can define a map F : 1 → n by F(u, v) = up − vq. Show that this map is defined
on all of 1 and is one-to-one.

b. Let � = a0x0 + · · · + an xn be a linear homogeneous polynomial. Show that � vanishes
on the image of F if and only if p, q ∈ V(�).

c. Our goal is to show that the image of F is a variety defined by linear equations. Let  be
the 2 × (n + 1) matrix whose rows are p and q. Note that  has rank 2. If we multiply
column vectors in kn+1 by , we get a linear map  : kn+1 → k2. Use results from linear
algebra to show that the kernel (or nullspace) of this linear map has dimension n − 1. Pick
a basis v1, . . . , vn−1 of the kernel, and let �i be the linear polynomial whose coefficients
are the entries of v1. Then prove that the image of F is V(�1 . . . , �n−1). Hint: Study the
subspace of kn+1 defined by the equations �1 = · · · = �n−1 = 0.

14. The exercise will discuss some elementary properties of lines in n .
a. Given points p �= q in n , prove that there is a unique line through p and q.
b. If L is a line in n and Ui

∼= kn is the affine space where xi = 1, then show that L ∩ Ui ,
is a line in kn in the usual sense.

c. Show that all lines in n are projectively equivalent. Hint: In part (c) of Exercise 13, you
showed that a line L can be written L = V(�1, . . . , �n−1). Show that you can find �n and
�n+1 so that X0 = �1, . . . , Xn = �n+1 is a change of coordinates. What does L look like
in the new coordinate system?

15. Let σ : 1 × 1 → 3 be the Segre map.
a. Show that L ′

a = σ ({a} × 1) is a line in 3.
b. Show that every point of V(z0z3 − z1z2) lies on a unique line L ′

a . This proves that the
family of lines {L ′

a : a ∈ 1} sweeps out the quadric.
16. This exercise will deal with the proof of Theorem 11.

a. Prove that ω(up − vq, sp − tq) = (vs − ut)ω(p, q). Hint: if
(p

q

)
is the 2 × 4 matrix with

rows p and q , show that

(
up − vq
sp − tq

)
=

(
u −v

s −t

) (
p
q

)
.

b. Apply elimination theory to (11) to show that Plücker coordinates satisfy the relation
w01w23 − w02w13 + w03w12 = 0.

c. Complete the proof of Theorem 11 by showing that the map ω is onto.
17. In this exercise, we will study Plücker coordinates for lines in 4

a. Let L ⊂ 4 be a line. Using the homogeneous coordinates of two points p, q ∈ L ,

define Plücker coordinates and show that we get a point ω(L) ∈ 9 that depends only
on L .

b. Find the relations between the Plücker coordinates and use these to find a variety V ⊂ 4

such that ω(L) ∈ V for all lines L .
c. Show that the map sending a line L ⊂ 4 to ω(L) ∈ V is a bijection.

18. Show that there is a one-to-one correspondence between lines in 3 and planes through the
origin in k4. This explains why a line in 3 is different from a line in k3 or k4.

19. There is a nice connection between lines in 3 and 2 × 4 reduced row echelon matrices of
rank 2. Let V = V(z0z23 − z02z13 + z03z12) be the quadric of Theorem 11.
a. Show that there is a one-to-one correspondence between reduced row echelon matrices

of the form (
1 0 a b
0 1 c d

)
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and points in the affine portion V ∩ U01, where U01 is the affine space in 5 defined by
z01 = 1. Hint: The rows of the above matrix determine a line in 3. What are its Plücker
coordinates?

b. The matrices given in part (a) do not exhaust all possible 2 × 4 reduced row echelon
matrices of rank 2. For example, we also have the matrices(

1 a 0 b
0 0 1 c

)
.

Show that there is a one-to-one correspondence between these matrices and points of
V ∩ V(z01) ∩ U02.

c. Show that there are four remaining types of 2 × 4 reduced row echelon matrices of rank
2 and prove that each of these is in a one-to-one correspondence with a certain portion
of V . Hint: The columns containing the leading 1’s will correspond to a certain Plücker
coordinate being 1.

d. Explain directly (without using V or Plücker coordinates) why 2 × 4 reduced row echelon
matrices of rank 2 should correspond uniquely to lines in 3. Hint: See Exercise 18.

§7 Bezout’s Theorem

This section will explore what happens when two curves intersect in the plane. We are
particularly interested in the number of points of intersection. The following examples
illustrate why the answer is especially nice when we work with curves in 2( ), the
projective plane over the complex numbers. We will also see that we need to define the
multiplicity of a point of intersection. Fortunately, the resultants we learned about in
Chapter 3 will make this relatively easy to do.

Example 1. First consider the intersection of a parabola and an ellipse. To allow for
explicit calculations, suppose the parabola is y = x2 and the ellipse is x2 + 4(y − λ)2 =
4, where λ is a parameter we can vary. For example, when λ = 2 or 0, we get the pictures:

x

y

λ = 2

x

y

λ = 0
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Over , we get different numbers of intersections, and it is clear that there are values
of λ for which there are no points of intersection (see Exercise 1). What is more
interesting is that over , we have four points of intersection in both of the above cases.
For example, when λ = 0, we can eliminate x from y = x2 and x2 + 4y2 = 4 to obtain
y + 4y2 = 4, which has roots

y = −1 ± √
65

8
,

and the corresponding values of x are

x = ±
√

−1 ± √
65

8
.

This gives four points of intersection, two real and two complex (since −1 − √
65 < 0).

You can also check that when λ = 2, working over gives no new solutions beyond
the four we see in the above picture (see Exercise 1).

Hence, the number of intersections seems to be more predictable when we work over
the complex numbers. As confirmation, you can check that in the cases where there are
no points of intersection over , we still get four points over (see Exercise 1).

However, even over , some unexpected things can happen. For example, suppose
we intersect the parabola with the ellipse where λ = 1:

x

y

λ = 1

Here, we see only three points of intersection, and this remains true over . But the
origin is clearly a “special” type of intersection since the two curves are tangent at
this point. As we will see later, this intersection has multiplicity two, while the other
two intersections have multiplicity one. If we add up the multiplicities of the points of
intersection, we still get four.

Example 2. Now consider the intersection of our parabola y = x2 with a line L . It is
easy to see that in most cases, this leads to two points of intersection over , provided
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multiplicities are counted properly (see Exercise 2). However, if we intersect with a
vertical line, then we get the following picture:

There is just one point of intersection, and since multiplicities seem to involve tangency,
it should be an intersection of multiplicity one. Yet we want the answer to be two, since
this is what we get in the other cases. Where is the other point of intersection?

If we change our point of view and work in the projective plane 2( ), the above
question is easy to answer: the missing point is “at infinity.” To see why, let z be the
third variable. Then we homogenize y = x2 to get the projective equation yz = x2, and
a vertical line x = c gives the projective line x = cz. Eliminating x , we get yz = c2z2,
which is easily solved to obtain (x, y, z) = (c, c2, 1) or (0, 1, 0) (remember that these
are homogeneous coordinates). The first lies in the affine part (where z = 1) and is the
point we see in the above picture, while the second is on the line at infinity (where z = 0).

Example 3. In 2( ), consider the two curves given by C = V(x2 − z2) and D =
V(x2 y − xz2 − xyz + z3). It is easy to check that (1, b, 1) ∈ C ∩ D for any b ∈ , so
that the intersection C ∩ D is infinite! To see how this could have happened, consider
the factorizations

x2 − z2 = (x − z)(x + z), x2 y − xz2 − xyz + z3 = (x − z)(xy − z2).

Thus, C is a union of two projective lines and D is the union of a line and a conic. In fact,
these are the irreducible components of C and D in the sense of §3 (see Proposition 4
below). We now see where the problem occurred: C and D have a common irreducible
component V(x − z), so of course their intersection is infinite.

These examples explain why we want to work in 2( ). Hence, for the rest of
the section, we will use and write 2 instead of 2( ). In this context, a curve is a
projective variety V( f ) defined by a nonzero homogeneous polynomial f ∈ [x, y, z].
Our examples also indicate that we should pay attention to multiplicities of intersections
and irreducible components of curves. We begin by studying irreducible components.



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX December 16, 2006 18:26

§7. Bezout’s Theorem 425

Proposition 4. Let f ∈ [x, y, z] be a nonzero homogeneous polynomial. Then the
irreducible factors of f are also homogeneous, and if we factor f into irreducibles:

f = f a1
1 · · · f as

s ,

where fi , is not a constant multiple of f j for i �= j , then

V( f ) = V( f1) ∪ · · · ∪ V( fs)

is the minimal decomposition of V( f ) into irreducible components in 2. Furthermore,

I(V( f )) =
√

〈 f 〉 = 〈 f1 · · · fs〉.

Proof. First, suppose that f factors as f = gh for some polynomials g, h ∈ [x, y, z].
We claim that g and h must be homogeneous since f is. To prove this, write g =
gm + · · · + g0, where gi is homogeneous of total degree i and gm �= 0. Similarly let
h = hn + · · · + h0. Then

f = gh = (gm + · · · + g0)(hn + · · · + h0)

= gmhn + terms of lower total degree.

Since f is homogeneous, we must have f = gmhn , and with a little more argument, one
can conclude that g = gm and h = hn (see Exercise 3). Thus g and h are homogeneous.
From here, it follows easily that the irreducible factors f are also homogeneous.

Now suppose f factors as above. Then V( f ) = V( f1) ∪ · · · ∪ V( fs) follows im-
mediately, and this is the minimal decomposition into irreducible components by the
projective version of Exercise 9 from Chapter 4, §6. Since V( f ) is nonempty (see Ex-
ercise 6), the assertion about I(V( f )) follows from the Projective Nullstellensatz and
Proposition 9 of Chapter 4, §2. �

A consequence of Proposition 4 is that every curve C ⊂ 2 has a “best” defining
equation. If C = V( f ) for some homogeneous polynomial f , then the proposition
implies that I(C) = 〈 f1 · · · fs〉, where f1, . . . , fs are distinct irreducible factors of f .
Thus, any other polynomial defining C is a multiple of f1 · · · fs , so that f1 · · · fs = 0
is the defining equation of smallest total degree. In the language of Chapter 4, §2,
f1 · · · fs is a reduced (or square-free) polynomial. Hence, we call f1 · · · fs = 0 the
reduced equation of C . This equation is unique up to multiplication by a nonzero
constant.

When we consider the intersection of two curves C and D in 2, we will assume
that C and D have no common irreducible components. This means that their defining
polynomials have no common factors. Our goal is to relate the number of points in
C ∩ D to the degrees of their reduced equations. The following property of resultants
will play an important role in our study of this problem.

Lemma 5. Let f, g ∈ [x, y, z] be homogeneous of total degree m, n respectively. If
f (0, 0, 1) and g(0, 0, 1) are nonzero, then the resultant Res( f, g, z) is homogeneous
in x and y of total degree mn.
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Proof. First, write f and g as polynomials in z:

f = a0zm + · · · + am,

g = b0zn + · · · + bn,

and observe that since f is homogeneous of total degree m, each ai ∈ [x, y] must
be homogeneous of degree i . Furthermore, f (0, 0, 1) �= 0 implies that a0 is a nonzero
constant. Similarly, bi , is homogeneous of degree i and b0 �= 0.

By Chapter 3, §5, the resultant is given by the (m + n) × (m + n)-determinant

Res( f, g, z) = det

⎛⎜⎜⎜⎜⎜⎜⎝

a0
...

. . .
am a0

. . .
...

am︸ ︷︷ ︸
n columns

b0
...

. . .
bn b0

. . .
...

bn

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

m columns

where the empty spaces are filled by zeros. To show that Res( f, g, z) is homogeneous
of degree mn, let ci j denote the i j-th entry of the matrix. From the pattern of the above
matrix, you can check that the nonzero entries are

ci j =
{

ai− j if j ≤ n
bn+i− j if j > n.

Thus, a nonzero ci j is homogeneous of total degree i − j (if j ≤ n) or n + i − j (if
j > n).

By Proposition 2 of Appendix A, §3, the determinant giving Res( f, g, z) is a sum of
products

±
m+n∏
i=1

ciσ (i),

where σ is a permutation of {1, . . . , m + n}. We can assume that each ciσ (i) in the
product is nonzero. If we write the product as

±
∏

σ (i)≤n

ciσ (i)

∏
σ (i)>n

ciσ (i),

then, by the above paragraph, this product is a homogeneous polynomial of degree∑
σ (i)≤n

(i − σ (i)) +
∑

σ (i)>n

(n + i − σ (i)).

Since σ is a permutation of {1, . . . , m + n}, the first sum has n terms and the second
has m, and all i’s between 1 and m + n appear exactly once. Thus, we can rearrange
the sum to obtain

mn +
m+n∑
i=1

i −
m+n∑
i=1

σ (i) = mn,

which proves that Res( f, g, z) is a sum of homogeneous polynomials of degree mn. �
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This lemma shows that the resultant Res( f, g, z) is homogeneous in x and y. In
general, homogeneous polynomials in two variables have an especially simple structure.

Lemma 6. Let h ∈ [x, y] be a nonzero homogeneous polynomial. Then h can be
written in the form

h = c(s1x − r1 y)m1 · · · (st x − rt y)mt ,

where c �= 0 in and (r1, s1), . . . , (rt , st ) are distinct points of 1. Furthermore,

V(h) = {(r1, s1), . . . , (rt , st )} ⊂ 1.

Proof. This follows by observing that the polynomial h(x, 1) ∈ [x] is a product of
linear factors since is algebraically closed. We leave the details as an exercise. �

As a first application of these lemmas, we show how to bound the number of points
in the intersection of two curves using the degrees of their reduced equations.

Theorem 7. Let C and D be projective curves in 2 with no common irreducible com-
ponents. If the degrees of the reduced equations for C and D are m and n respectively,
then C ∩ D is finite and has at most mn points.

Proof. Suppose that C ∩ D has more than mn points. Choose mn + 1 of them, which
we label p1, . . . , pmn+1, and for 1 ≤ i < j ≤ mn + 1, let Li j be the line through pi

and p j . Then pick a point q ∈ 2 such that

q /∈ C ∪ D ∪
⋃
i< j

Li j(1)

(in Exercise 6 you will prove carefully that such points exist).
As in §6, a matrix A ∈ GL(3, ) gives a map A : 2 → 2. It is easy to find an A

such that A(q) = (0, 0, 1) (see Exercise 6). If we regard A as giving new coordinates
for 2 (see (3) in §6), then the point q has coordinates (0, 0, 1) in the new system. We
can thus assume that q = (0, 0, 1) in (1).

Now suppose that C = V( f ) and D = V(g), where f and g are reduced of degrees m
and n respectively. Then (1) implies f (0, 0, 1) �= 0 since (0, 0, 1) /∈ C , and g(0, 0, 1) �=
0 follows similarly. Thus, by Lemma 5, the resultant Res( f, g, z) is a homogeneous
polynomial of degree mn in x, y. Since f and g have positive degree in z and have no
common factors in [x, y, z], Proposition 1 of Chapter 3, §6, shows that Res( f, g, z)
is nonzero.

If we let pi = (ui , vi , wi ), then since the resultant is in the ideal generated by f and
g (Proposition 1 of Chapter 3, §6), we have

Res( f, g, z)(ui , vi ) = 0.(2)

Note that the line connecting q = (0, 0, 1) to pi = (ui , vi , wi ) intersects z = 0 in the
point (ui , vi , 0) (see Exercise 6). The picture is as follows:
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z = 0

C

D

(0,0,1)

(ui,vi,0)

pi

The map taking a point (u, v, w) ∈ 2 − {(0, 0, 1)} to (u, v, 0) is an example of a
projection from a point to a line. Hence, (2) tells us that Res( f, g, z) vanishes at the
points obtained by projecting the pi ∈ C ∩ D from (0, 0, 1) to the line z = 0.

By (1), (0, 0, 1) lies on none of the lines connecting pi and p j , which implies that
the points (ui , vi , 0) are distinct for i = 1, . . . , mn + 1. If we regard z = 0 as a copy of

1 with homogeneous coordinates x, y, then we get distinct points (ui , vi ) ∈ 1, and
the homogeneous polynomial Res( f, g, z) vanishes at all mn + 1 of them. By Lemma
6, this is impossible since Res( f, g, z) is nonzero of degree mn, and the theorem
follows. �

Now that we have a criterion for C ∩ D to be finite, the next step is to define an
intersection multiplicity for each point p ∈ C ∩ D. There are a variety of ways this can
be done, but the simplest involves the resultant.

Thus, we define the intersection multiplicity as follows. Let C and D be curves in
2 with no common components and reduced equations f = 0 and g = 0. For each

pair of points p �= q in C ∩ D, let L pq be the projective line connecting p and q. Pick
a matrix A ∈ GL(3, ) such that in the new coordinate system given by A, we have

(0, 0, 1) /∈ C ∪ D ∪
⋃

p �=q in C∩D

Lpq .(3)

(Example 9 below shows how such coordinate changes are done.) As in the proof of
Theorem 7, if p = (u, v, w) ∈ C ∩ D, then the resultant Res( f, g, z) vanishes at (u, v),
so that by Lemma 6, vx − uy is a factor of Res( f, g, z).
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Definition 8. Let C and D be curves in 2 with no common components and reduced
defining equations f = 0 and g = 0. Choose coordinates for 2 so that (3) is satisfied.
Then, given p = (u, v, w) ∈ C ∩ D, the intersection multiplicity Ip(C, D) is defined
to be the exponent of vx − uy in the factorization of Res( f, g, z).

In order for Ip(C, D) to be well-defined, we need to make sure that we get the same
answer no matter what coordinate system satisfying (3) we use in Definition 8. For
the moment, we will assume this is true and compute some examples of intersection
multiplicities.

Example 9. Consider the following polynomials in [x, y, z]:

f = x3 + y3 − 2xyz,

g = 2x3 − 4x2 y + 3xy2 + y3 − 2y2z.

These polynomials [adapted from WALKER (1950)] define cubic curves C = V( f ) and
D = V(g) in 2. To study their intersection, we first compute the resultant with respect
to z:

Res( f, g, z) = −2y(x − y)3(2x + y).

Since the resultant is in the elimination ideal, points in C ∩ D satisfy either y = 0,

x − y = 0 or 2x + y = 0, and from here, it is easy to show that C ∩ D consists of the
three points

p = (0, 0, 1), q = (1, 1, 1), r = (4/7, −8/7, 1)

(see Exercise 7). In particular, this shows that C and D have no common components.
However, the above resultant does not give the correct intersection multiplicities since

(0, 0, 1) ∈ C (in fact, it is a point of intersection). Hence, we must change coordinates.
Start with a point such as

(0, 1, 0) /∈ C ∪ D ∪ L pq ∪ L pr ∪ Lqr ,

and find a coordinate change with A(0, 1, 0) = (0, 0, 1), say A(x, y, z) = (z, x, y).
Then

(0, 0, 1) /∈ A(C) ∪ A(D) ∪ L A(p)A(q) ∪ L A(p)A(r ) ∪ L A(q)A(r ).

To find the defining equation of A(C), note that

(u, v, w) ∈ A(C) ⇐⇒ A−1(u, v, w) ∈ C ⇐⇒ f (A−1(u, v, w)) = 0.

Thus, A(C) is defined by the equation f ◦ A−1(x, y, z) = f (y, z, x) = 0, and sim-
ilarly, A(D) is given by g(y, z, x) = 0. Then, by Definition 8, the resultant
Res( f (y, z, x), g(y, z, x), z) gives the multiplicities for A(p) = (1, 0, 0), A(q) =
(1, 1, 1) and A(r ) = (1, 4/7, −8/7). The resultant is

Res( f (y, z, x), g(y, z, x), z) = 8y5(x − y)3(4x − 7y).
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so that in terms of p, q and r , the intersection multiplicities are

Ip(C, D) = 5, Iq (C, D) = 3, Ir (C, D) = 1.

Example 1 (continued). If we let λ = 1 in Example 1, we get the curves

x

y

In this picture, the point (0, 0, 1) is the origin, so we again must change coordinates
before (3) can hold. In the exercises, you will use an appropriate coordinate change to
show that the intersection multiplicity at the origin is in fact equal to 2.

Still assuming that the intersection multiplicities in Definition 8 are well-defined,
we can now prove Bezout’s Theorem.

Theorem 10 (Bezout’s Theorem). Let C and D be curves in 2 with no common
components, and let m and n be the degrees of their reduced defining equations. Then∑

p∈C∩D

Ip(C, D) = mn,

where Ip(C, D) is the intersection multiplicity at p, as defined in Definition 8.

Proof. Let f = 0 and g = 0 be the reduced equations of C and D, and assume that
coordinates have been chosen so that (3) holds. Write p ∈ C ∩ D as p = (u p, vp, wp).
Then we claim that

Res( f, g, z) = c
∏

p∈C∩D

(vpx − u p y)Ip(C,D),

where c is a nonzero constant. For each p, it is clear that (vpx − u p y)Ip(C,D) is the exact
power of vpx − u p y dividing the resultant—this follows by the definition of Ip(C, D).
We still need to check that this accounts for all roots of the resultant. But if (u, v) ∈ 1

satisfies Res( f, g, z)(u, v) = 0, then Proposition 3 of Chapter 3, §6, implies that there
is some w ∈ such that f and g vanish at (u, v, w). This is because if we write
f and g as in the proof of Lemma 5, a0 and b0 are nonzero constants by (3). Thus
(u, v, w) ∈ C ∩ D, and our claim is proved.
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By Lemma 5, Res( f, g, z) is a nonzero homogeneous polynomial of degree mn.
Then Bezout’s Theorem follows by comparing the degree of each side in the above
equation. �

Example 9 (continued). In Example 9, we had two cubic curves which intersected in
the points (0, 0, 1), (1, 1, 1) and (4/7, −8/7, 1) of multiplicity 5, 3 and 1 respectively.
These add up to 9 = 3 · 3, as desired. If you look back at Example 9, you’ll see why
we needed to change coordinates in order to compute intersection multiplicities. In the
original coordinates, Res( f, g, z) = −2y(x − y)3(2x + y), which would give multi-
plicities 1, 3 and 1. Even without computing the correct multiplicities, we know these
can’t be right since they don’t add up to 9!

Finally, we show that the intersection multiplicities in Definition 8 are well-defined.

Lemma 11. In Definition 8, all coordinate change matrices satisfying (3) give the
same intersection multiplicities Ip(C, D) for p ∈ C ∩ D.

Proof. Although this result holds over any algebraically closed field, our proof will use
continuity arguments and hence is special to . We begin by describing carefully the
coordinate changes we will use. As in Example 9, pick a point

r /∈ C ∪ D ∪
⋃

p �=q in C∩D

L pq

and a matrix A ∈ GL(3, ) such that A(r ) = (0, 0, 1). This means A−1(0, 0, 1) = r ,
so that the condition on A is

A−1(0, 0, 1) /∈ C ∪ D ∪
⋃

p �=q in c∩D

L pq .

Let l pq = 0 be the equation of the line L pq , and set

h = f · g ·
∏

p �=q in C∩D

�pq .

The condition on A is thus A−1(0, 0, 1) /∈ V(h), i.e., h(A−1(0, 0, 1)) �= 0.
We can formulate this problem without using matrix inverses as follows. Consider

matrices B ∈ M3×3( ), where M3×3( ) is the set of all 3 × 3 matrices with entries in
, and define the function H : M3×3( ) → by

H (B) = det(B) · h(B(0, 0, 1)).

If B = (bi j ), note that H (B) is a polynomial in the bi j . Since a matrix is invertible if
and only if its determinant is nonzero, we have

H (B) �= 0 ⇐⇒ B is invertible and h(B(0, 0, 1)) �= 0.

Hence the coordinate changes we want are given by A= B−1 for B ∈ M3×3( )−V(H ).
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Let C ∩ D = {p1, . . . , ps}, and for each B ∈ M3×3( ) − V(H ), let B−1(pi ) =
(ui,B, vi,B, wi,B). Then, by the argument given in Theorem 10, we can write

Res( f ◦ B, g ◦ B, z) = cB(v1,B x − u1,B y)mi ,B · · · (vs,B x − us,B y)ms ,B,(4)

where CB �= 0. This means Ipi (C, D) = mi,B in the coordinate change given by A =
B−1. Thus, to prove the lemma, we need to show that mi,B takes the same value for all
B ∈ M3×3( ) − V(H ).

To study the exponents mi,B , we consider what happens in general when we have a
factorization

G(x, y) = (vx − uy)m H (x, y)

where G and H are homogeneous and (u, v) �= (0, 0). Here, one calculates that

∂ i+ j G

∂xi∂y j
(u, v) =

{
0 if 0 ≤ i + j < m
m!vi (−u) j H (u, v) if i + j = m,

(5)

(see Exercise 9). In particular, if H (u, v) �= 0, then (u, v) �= (0, 0) implies that some
mth partial of G doesn’t vanish at (u, v).

We also need a method for measuring the distance between matrices B, C ∈
M3×3( ). If B = (bi j ) and C = (ci j ), then the distance between B and C is defined
to be

d(B, C) =
√∑3

i, j=1
|bi j − ci j |2,

where for a complex number z = a + ib, |z| = √
a2 + b2 . A crucial fact is that any

polynomial function F : M3×3( ) → is continuous. This means that given B0 ∈
M3×3( ), we can get F(B) arbitrarily close to F(B0) by taking B sufficiently close to
B0 (as measured by the above distance function). In particular, if F(B0) �= 0, it follows
that F(B) �= 0 for B sufficiently close to B0.

Now consider the exponent m = mi,B0 for fixed B0 and i . We claim that mi,B ≤ m if
B is sufficiently close to B0. To see this, first note that (4) and (5) imply that some mth
partial of Res( f ◦ B0, g ◦ B0, z) is nonzero at (ui,B0, vi,B0). If we write out (ui,B, vi,B)
and this partial derivative of Res( f ◦ B, g ◦ B, z) explicitly, we get formulas which
are rational functions with numerators that are polynomials in the entries of B and
denominators that are powers of det(B). Thus this m-th partial of Res( f ◦ B, g ◦ B, z),
when evaluated at (ui,B, vi,B), is a rational function of the same form. Since it is nonzero
at B0, the continuity argument from the previous paragraph shows that this m-th partial
of Res( f ◦ B, g ◦ B, z) is nonzero at (ui,B, vi,B), once B is sufficiently close to B0. But
then, applying (4) and (5) to Res( f ◦ B, g ◦ B, z), we conclude that mi,B ≤ m [since
mi,B > m would imply that all m-th partials would vanish at (ui,B, vi,B)].

However, if we sum the inequalities mi,B ≤ m = mi,B0 for i = 1, . . . , s, we obtain

mn =
s∑

i=1

mi,B ≤
s∑

i=1

mi,B0 = mn.

This implies that we must have term-by-term equalities, so that mi,B = mi,B0 when B
is sufficiently close to B0.
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This proves that the function sending B to mi,B is locally constant, i.e., its value at
a given point is the same as the values at nearby points. In order for us to conclude
that the function is actually constant on all of M3×3( ) − V(H ), we need to prove that
M3×3( ) − V(H ) is path connected. This will be done in Exercise 10, which also gives
a precise definition of path connectedness. Since the Intermediate Value Theorem from
calculus implies that a locally constant function on a path connected set is constant (see
Exercise 10), we conclude that mi,B takes the same value for all B ∈ M3×3( ) − V(H ).
Thus the intersection multiplicities of Definition 8 are well-defined. �

The intersection multiplicities Ip(C, D) have many properties which make them
easier to compute. For example, one can show that Ip(C, D) = 1 if and only if p is a
nonsingular point of C and D and the curves have distinct tangent lines at p. A discus-
sion of the properties of multiplicities can be found in Chapter 3 of KIRWAN (1992).
We should also point out that using resultants to define multiplicities is unsatisfactory
in the following sense. Namely, an intersection multiplicity Ip(C, D) is clearly a local
object—it depends only on the part of the curves C and D near p—while the resultant
is a global object, since it uses the equations for all of C and D. Local methods for
computing multiplicities are available, though they require slightly more sophisticated
mathematics. The local point of view is discussed in Chapter 3 of FULTON (1969) and
Chapter IV of WALKER(1950).

As an application of what we’ve done so far in this section, we will prove the following
result of Pascal. Suppose we have six distinct points p1, . . . , p6 on an irreducible conic
in 2. By Bezout’s Theorem, a line meets the conic in at most 2 points (see Exercise
11). Hence, we get six distinct lines by connecting p1 to p2, p2 to p3, . . . , and p6 to
p1. If we label these lines L1, . . . , L6, then we get the following picture:

p1

p2

p3

p4

p5

p6

L1L6

L4L3

L2L5

We say that lines L1, L4 are opposite, and similarly the pairs L2, L5 and L3, L6 are
opposite. The portions of the lines lying inside the conic form a hexagon, and opposite
lines correspond to opposite sides of the hexagon.
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In the above picture, the intersections of the opposite pairs of lines appear to lie on
the same line. The following theorem reveals that this is no accident.

Theorem 12 (Pascal’s Mystic Hexagon). Given six points on an irreducible conic,
connected by six lines as above, the points of intersection of the three pairs of opposite
lines are collinear.

Proof. Let the conic be C . As above, we have six points p1, . . . , p6 and three pairs
of opposite lines {L1, L4}, {L2, L5}, and {L3, L6}. Now consider the curves C1 =
L1 ∪ L3 ∪ L5 and C2 = L2 ∪ L4 ∪ L6. These curves are defined by cubic equations, so
that by Bezout’s Theorem, the number of points in C1 ∩ C2 is 9 (counting multiplicities).
However, note that C1 ∩ C2 contains the six original points p1, . . . , p6 and the three
points of intersection of opposite pairs of lines (you should check this carefully). Thus,
these are all of the points of intersection, and all of the multiplicities are one.

Suppose that C = V( f ), C1 = V(g1) and C2 = V(g2), where f has total degree 2
and g1 and g2 have total degree 3. Now pick a point p ∈ C distinct from p1, . . . , p6.
Thus, g1(p) and g2(p) are nonzero (do you see why?), so that g = g2(p)g1 − g1(p)g2

is a cubic polynomial which vanishes at p, p1, . . . , p6. Furthermore, g is nonzero since
otherwise g1 would be a multiple of g2 (or vice versa). Hence, the cubic V(g) meets
the conic C in at least seven points, so that the hypotheses for Bezout’s Theorem are
not satisfied. Thus, either g is not reduced or V(g) and C have a common irreducible
component. The first of these can’t occur, since if g weren’t reduced, the curve V(g)
would be defined by an equation of degree at most 2 and V(g) ∩ C would have at most
4 points by Bezout’s Theorem. Hence, V(g) and C must have a common irreducible
component. But C is irreducible, which implies that C = V( f ) is a component of V(g).
By Proposition 4, it follows that f must divide g.

Hence, we get a factorization g = f · l, where l has total degree 1. Since g vanishes
where the opposite lines meet and f doesn’t, it follows that l vanishes at these points.
Since V(l) is a projective line, the theorem is proved. �

Bezout’s Theorem serves as a nice introduction to the study of curves in 2. This
part of algebraic geometry is traditionally called algebraic curves and includes many
interesting topics we have omitted (inflection points, dual curves, elliptic curves, etc.).
Fortunately, there are several excellent texts on this subject. In addition to FULTON

(1969), KIRWAN (1992) and WALKER (1950) already mentioned, we also warmly rec-
ommend CLEMENS (1980) and BRIESKORN and KNÖRRER (1986). For students with a
background in complex analysis and topology, we also suggest GRIFFITHS (1989).

EXERCISES FOR §7

1. This exercise is concerned with the parabola y = x2 and the ellipse x2 + 4(y − λ)2 = 4
from Example 1.
a. Show that these curves have empty intersection over when λ < −1. Illustrate the

cases λ < −1 and λ = −1 with a picture.
b. Find the smallest positive real number λ0 such that the intersection over is empty

when λ > λ0. Illustrate the cases λ > λ0 and λ = λ0 with a picture.
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c. When −1 < λ < λ0, describe the possible types of intersections that can occur over
and illustrate each case with a picture.

d. In the pictures for parts (a), (b), and (c) use the intuitive idea of multiplicity from Example
1 to determine which ones represent intersections with multiplicity > 1.

e. Without using Bezout’s Theorem, explain why over , the number of intersections
(counted with multiplicity) adds up to 4 when λ is real. Hint: Use the formulas for x and
y given in Example 1.

2. In Example 2, we intersected the parabola y = x2 with a line L in affine space. Assume that
L is not vertical.
a. Over , show that the number of points of intersection can be 0, 1, or 2. Further, show

that you get one point of intersection exactly when L is tangent to y = x2 in the sense
of Chapter 3, §4.

b. Over , show (without using Bezout’s Theorem) that the number of intersections
(counted with multiplicity) is exactly 2.

3. In proving Proposition 4, we showed that if f = gh is homogeneous and g = gm + · · · + g0,
where gi is homogeneous of total degree i and gm �= 0, and similarly h = hn + · · · + h0,
then f = gmhn . Complete the proof by showing that g = gm and h = hn . Hint: Let m0 be
the smallest index m0 such that gm0 �= 0, and define hn0 �= 0 similarly.

4. In this exercise, we sketch an alternate proof of Lemma 5. Given f and g as in the
statement of the lemma, let R(x, y) = Res( f, g, z). It suffices to prove that R(t x, t y) =
tmn R(x, y).
a. Use ai (t x, t y) = t i ai (x, y) and bi (t x, t y) = t i bi (x, y) to show that R(t x, t y) is given by

a determinant whose entries are either 0 or t i ai (x, y) or t i bi (x, y).
b. In the determinant from part (a), multiply column 2 by t , column 3 by t2, . . . , column n

by tn−1, column n + 2 by t , column n + 3 by t2, . . . , and column n + m by tm−1. Use this
to prove that tq R(t x, t y), where q = n(n − 1)/2 + m(m − 1)/2, equals a determinant
where in each row, t appears to the same power.

c. By pulling out the powers of t from the rows of the determinant from part (b) prove that
tq R(t x, t y) = tr R(x, y), where r = (m + n)(m + n − 1)/2.

d. Use part (c) to prove that R(t x, t y) = tmn R(x, y), as desired.
5. Complete the proof of Lemma 6 using the hints given in the text. Hint: Use Proposition 7

and Exercise 11 from §2.
6. This exercise is concerned with the proof of Theorem 7.

a. Let f ∈ [x1, . . . , xn] be a nonzero polynomial. Prove that V( f ) and n − V( f ) are
nonempty. Hint: Use the Nullstellensatz and Proposition 5 of Chapter 1, §1.

b. Use part (a) to prove that you can find q /∈ C ∪ D ∪ ⋃
i< j Li j as claimed in the proof of

Theorem 7.
c. Given q ∈ 2( ), find A ∈ GL(3, ) such that A(q) = (0, 0, 1). Hint: Regard q and

(0, 0, 1) as nonzero column vectors in 3 and use linear algebra to find an invertible
matrix A such that A(q) = (0, 0, 1).

d. Prove that the projective line connecting (0, 0, 1) to (u, v, w) intersects the line z = 0 in
the point (u, v, 0). Hint: Use equation (10) of §6.

7. In Example 9, we considered the curves C = V( f ) and D = V(g), where f and g are given
in the text.
a. Verify carefully that p = (0, 0, 1), q = (1, 1, 1) and r = (4/7, −8/7, 1) are the only

points of intersection of the curves C and D. Hint: Once you have Res( f, g, z), you can
do the rest by hand.

b. Show that f and g are reduced. Hint: Use a computer.
c. Show that (0, 1, 0) /∈ C ∪ D ∪ L pq ∪ L pr ∪ Lqr .
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8. For each of the following pairs of curves, find the points of intersection and compute the
intersection multiplicities.
a. C = V(yz − x2) and D = V(x2 + 4(y − z)2 − 4z2). This is the projective version of

Example 1 when λ = 1. Hint: Show that the coordinate change given by A(x, y, z) =
(x, y + z, z) has the desired properties.

b. C = V(x2 y3 − 2xy2z2 + yz4 + z5) and D = V(x2 y2 − xz3 − z4). Hint: There are four
solutions, two real and two complex. When finding the complex solutions, computing
the GCD of two complex polynomials may help.

9. Prove (5). Hint: Use induction on m, and apply the inductive hypothesis to ∂G/∂x and
∂G/∂y.

10. (Requires advanced calculus.) An open set U ⊂ n is path connected if for every two points
a, b ∈ U , there is a continuous function γ : [0, 1] → U such that γ (0) = a and γ (1) = b.
a. Suppose that F : U → is locally constant (as in the text, this means that the value

of F at a point of U equals its value at all nearby points). Use the Intermediate Value
Theorem from calculus to show that F is constant when U is path connected. Hint: If
we regard F as a function F : U → , explain why F is continuous. Then note that
F ◦ γ : [0, 1] → is also continuous.

b. Let f ∈ [x] be a nonzero polynomial. Prove that − V( f ) is path connected.
c. If f ∈ [x1, . . . , xn] is nonzero, prove that − V( f ) is path connected. Hint: Given

a, b ∈ n − V( f ), consider the complex line {ta + (1 − t)b : t ∈ } determined by a
and b. Explain why f (ta + (1 − t)b) is a nonzero polynomial in t and use part (b).

d. Give an example of f ∈ [x, y] such that 2 − V( f ) is not path connected. Further,
find a locally constant function F : 2 − V( f ) → which is not constant. Thus, it is
essential that we work over .

11. Let C be an irreducible conic in 2( ). Use Bezout’s Theorem to explain why a line L
meets C in at most two points. What happens when C is reducible? What about when C is
a curve defined by an irreducible polynomial of total degree n?

12. In the picture drawn in the text for Pascal’s Mystic Hexagon, the six points went clockwise
around the conic. If we change the order of the points, we can still form a “hexagon,”
though opposite lines might intersect inside the conic. For example, the picture could be as
follows:

p1

p5

p2

p4

p6

p3

L1L6

L4L3

L2

L5

Explain why the theorem remains true in this case.
13. In Pascal’s Mystic Hexagon, suppose that the conic is a circle and the six lines come from a

regular hexagon inscribed inside the circle. Where do the opposite lines meet and on what
line do their intersections lie?
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14. Pappus’s Theorem from Exercise 8 of Chapter 6, §4, states that if p3, p1, p5 and p6, p4, p2

are two collinear triples of points and we set

p = p3 p4 ∩ p6 p1

q = p2 p3 ∩ p5 p6

r = p4 p5 ∩ p1 p2.

then p, q, r are also collinear. The picture is as follows:

p6 p4 p2

p3

p1

p5

p q r

The union of the lines p3 p1 and p6 p4 is a reducible conic C ′. Explain why Pappus’s Theorem
can be regarded as a “degenerate” case of Pascal’s Mystic Hexagon. Hint: See Exercise 12.
Note that unlike the irreducible case, we can’t choose any six points on C ′: we must avoid
the singular point of C ′, and each component of C ′ must contain three of the points.

15. The argument used to prove Theorem 12 applies in much more general situations. Suppose
that we have curves C and D defined by reduced equations of total degree n such that C ∩ D
consists of exactly n2 points. Furthermore, suppose there is an irreducible curve E with a
reduced equation of total degree m < n which contains exactly mn of these n2 points. Then
adapt the argument of Theorem 12 to show that there is a curve F with a reduced equation
of total degree n − m which contains the remaining n(n − m) points of C ∩ D.

16. Let C and D be curves in 2( ).
a. Prove that C ∩ D must be nonempty.
b. Suppose that C is nonsingular in the sense of part (a) of Exercise 9 of §6 [if C = V( f ),

this means the partial derivatives ∂ f/∂x, ∂ f/∂y and ∂ f/∂z don’t vanish simultaneously
on 2( )]. Prove that C is irreducible. Hint: Suppose that C = C1 ∪ C2, which implies
f = f1 f2. How do the partials of f behave at a point of C1 ∩ C2?

17. This exercise will explore an informal proof of Bezout’s Theorem. The argument is not
rigorous but does give an intuitive explanation of why the number of intersection points is
mn.
a. In 2( ), show that a line L meets a curve C of degree n in n points, counting multiplicity.

Hint: Choose coordinates so that all of the intersections take place in 2, and write L
parametrically as x = a + ct, y = b + dt .

b. If a curve C of degree n meets a union of m lines, use part (a) to predict how many points
of intersection there are.

c. When two curves C and D meet, give an intuitive argument (based on pictures) that
the number of intersections (counting multiplicity) doesn’t change if one of the curves
moves a bit. Your pictures should include instances of tangency and the example of the
intersection of the x-axis with the cubic y = x3.
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d. Use the constancy principle from part (c) to argue that if the m lines in part (b) all coincide
(giving what is called a line of multiplicity m), the number of intersections (counted with
multiplicity) is still as predicted.

e. Using the constancy principle from part (c) argue that Bezout’s Theorem holds for general
curves C and D by moving D to a line of multiplicity m [as in part (d)]. Hint: If D is
defined by f = 0, you can “move” D letting all but one coefficient of f go to zero.

In technical terms, this is a degeneration proof of Bezout’s Theorem. A rigorous version of
this argument can be found in BRIESKORN and KNÖRRER (1986). Degeneration arguments
play an important role in algebraic geometry.
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The Dimension of a Variety

The most important invariant of a linear subspace of affine space is its dimension.
For affine varieties, we have seen numerous examples which have a clearly defined
dimension, at least from a naive point of view. In this chapter, we will carefully define
the dimension of any affine or projective variety and show how to compute it. We
will also show that this notion accords well with what we would expect intuitively. In
keeping with our general philosophy, we consider the computational side of dimension
theory right from the outset.

§1 The Variety of a Monomial Ideal

We begin our study of dimension by considering monomial ideals. In particular, we
want to compute the dimension of the variety defined by such an ideal. Suppose, for
example, we have the ideal I = 〈x2 y, x3〉 in k[x, y]. Letting Hx denote the line in k2

defined by x = 0 (so Hx = V(x)) and Hy the line y = 0, we have

V(I ) = V(x2 y) ∩ V(x3)
= (Hx ∪ Hy) ∩ Hx

= (Hx ∩ Hx ) ∪ (Hy ∩ Hx )
= Hx .

(1)

Thus, V(I ) is the y-axis Hx . Since Hx has dimension 1 as a vector subspace of k2, it is
reasonable to say that it also has dimension 1 as a variety.

As a second example, consider the ideal

I = 〈y2z3, x5z4, x2 yz2〉 ⊂ k[x, y, z].

Let Hx be the plane defined by x = 0 and define Hy and Hz similarly. Also, let Hxy be
the line x = y = 0. Then we have

V(I ) = V(y2z3) ∩ V(x5z4) ∩ V(x2 yz2)

= (Hy ∪ Hz) ∩ (Hx ∪ Hz) ∩ (Hx ∪ Hy ∪ Hz)

= Hz ∪ Hxy .

439



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX January 5, 2007 9:41

440 9. The Dimension of a Variety

To verify this, note that the plane Hz belongs to each of the three terms in the second
line and, hence, to their intersection. Thus, V(I ) will consist of the plane Hz together,
perhaps, with some other subset not contained in Hz . Collecting terms not contained
in Hz , we have Hy ∩ Hx ∩ (Hx ∪ Hy), which equals Hxy . Thus, V(I ) is the union of
the (x, y)-plane Hz and the z-axis Hxy . We will say that the dimension of a union of
finitely many vector subspaces of kn is the biggest of the dimensions of the subspaces,
and so the dimension of V(I ) is 2 in this example.

The variety of any monomial ideal may be assigned a dimension in much the same
fashion. But first we need to describe what a variety of a general monomial ideal looks
like. In kn , a vector subspace defined by setting some subset of the variables x1, . . . xn

equal to zero is called a coordinate subspace.

Proposition 1. The variety of a monomial ideal in k[x1, . . . , xn] is a finite union of
coordinate subspaces of kn.

Proof. First, note that if xα1

i1
. . . xαr

ir
is a monomial in k[x1, . . . , xn] with α j ≥ 1 for

1 ≤ j ≤ r , then

V(xα1

i1
. . . xαr

ir
) = Hxi1

∪ · · · ∪ Hxir
,

where Hxk = V(xk). Thus, the variety defined by a monomial is a union of coordinate
hyperplanes. Note also that there are only n such hyperplanes.

Since a monomial ideal is generated by a finite collection of monomials, the variety
corresponding to a monomial ideal is a finite intersection of unions of coordinate hyper-
planes. By the distributive property of intersections over unions, any finite intersection
of unions of coordinate hyperplanes can be rewritten as a finite union of intersections
of coordinate hyperplanes [see (1) for an example of this]. But the intersection of any
collection of coordinate hyperplanes is a coordinate subspace. �

When we write the variety of a monomial ideal I as a union of finitely many coordi-
nate subspaces, we can omit a subspace if it is contained in another in the union. Thus,
we can write V(I ) as a union of coordinate subspaces.

V(I ) = V1 ∪ · · · ∪ Vp,

where Vi 	⊂ Vj for i 	= j . In fact, such a decomposition is unique, as you will show in
Exercise 8.

Let us make the following provisional definition. We will always assume that k is
infinite.

Definition 2. Let V be a variety which is the union of a finite number of linear subspaces
of kn. Then the dimension of V , denoted dim V , is the largest of the dimensions of the
subspaces.

Thus, the dimension of the union of two planes and a line is 2, and the dimension of
a union of three lines is 1. To compute the dimension of the variety corresponding to
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a monomial ideal, we merely find the maximum of the dimensions of the coordinate
subspaces contained in V(I ).

Although this is easy to do for any given example, it is worth systematizing the
computation. Let I = 〈m1, . . . , mt 〉 be a proper ideal generated by the monomials m j .
In trying to compute dim V(I ), we need to pick out the component of

V(I ) =
t⋂

j=1

V(m j )

of largest dimension. If we can find a collection of variables xi1
, . . . , xir such that at

least one of these variables appears in each m j , then the coordinate subspace defined
by the equations xi1

= · · · = xir = 0 is contained in V(I ). This means we should look
for variables which occur in as many of the different m j as possible. More precisely,
for 1 ≤ j ≤ t , let

M j = {k ∈ {1, . . . , n} : xk divides the monomial m j }
be the set of subscripts of variables occurring with positive exponent in m j . (Note that
M j is nonempty by our assumption that I 	= k[x1, . . . , xn].) Then let

M = {J ⊂ {1, . . . , n} : J ∩ M j 	= ∅ for all 1 ≤ j ≤ t}
consist of all subsets of {1, . . . , n} which have nonempty intersection with every set M j .
(Note that M is not empty because {1, . . . , n} ∈ M.) If we let |J |denote the number
of elements in a set J , then we have the following.

Proposition 3. With the notation above,

dim V(I ) = n − min(|J | : J ∈ M).

Proof. Let J = {i1, . . . , ir } be an element of M such that |J | = r is minimal in M.
Since each monomial m j contains some power of some xik , 1 ≤ k ≤ r , the coordinate
subspace W = V(xi1

, . . . , xir ) is contained in V(I ). The dimension of W is n − r =
n − |J |, and hence, by Definition 2, the dimension of V(I ) is at least n − |J |.

If V(I ) had dimension larger than n − r , then for some s < r there would be a co-
ordinate subspace W ′ = V (xk1

, . . . , xks ) contained in V(I ). Each monomial m j would
vanish on W ′ and, in particular, it would vanish at the point p ∈ W ′ whose ki -th coordi-
nate is 0 for 1 ≤ i ≤ s and whose other coordinates are 1. Hence, at least one of the xki

must divide m j , and it would follow that J ′ = {k1, . . . , ks} ∈ M. Since |J ′| = s < r ,
this would contradict the minimality of r . Thus, the dimension of V(I ) must be as
claimed. �

Let us check this on the second example given above. To match the notation of the
proposition, we relabel the variables x, y, z as x1, x2, x3, respectively. Then

I = 〈x2
2 x3

3 , x5
1 x4

3 , x2
1 x2x2

3〉 = 〈m1, m2, m3〉,
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where

m1 = x2
2 x3

3 , m2 = x5
1 x4

3 , m3 = x2
1 x2x2

3 .

Using the notation of the discussion preceding Proposition 3,

M1 = {2, 3}, M2 = {1, 3}, M3 = {1, 2, 3},
so that

M = {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {3}}.
Then min(|J | : J ∈ M) = 1, which implies that

dim V(I ) = 3 − min
J∈M

|J | = 3 − 1 = 2.

Generalizing this example, note that if some variable, say xi , appears in every monomial
in a set of generators for a proper monomial ideal I , then it will be true that dim V(I ) =
n − 1 since J = {i} ∈ M. For a converse, see Exercise 4.

It is also interesting to compare a monomial ideal I to its radical
√

1. In the exercises,
you will show that

√
I is a monomial ideal when I is. We also know from Chapter 4

that V(I ) = V(
√

I ) for any ideal I . It follows from Definition 2 that V(I ) and V(
√

I )
have the same dimension (since we defined dimension in terms of the underlying
variety). In Exercise 10 you will check that this is consistent with the formula given in
Proposition 3.

EXERCISES FOR §1

1. For each of the following monomial ideals I , write V(I ) as a union of coordinate subspaces.

a. I = 〈x5, x4 yz, x3z〉 ⊂ k[x, y, z].

b. I = 〈wx2 y, xyz3, wz5〉 ⊂ k[w, x, y, z].

c. I = 〈x1x2, x3 · · · xn〉 ⊂ k[x1, . . . , xn].

2. Find dim V(I ) for each of the following monomial ideals.

a. I = 〈xy, yz, xz〉 ⊂ k[x, y, z].

b. I = 〈wx2z, w3 y, wxyz, x5z6〉 ⊂ k[w, x, y, z].

c. I = 〈u2vwyz, wx3 y3, uxy7z, y3z, uwx3 y3z2〉 ⊂ k[u, v, w, x, y, z].

3. Show that W ⊂ kn is a coordinate subspace if and only if W can be spanned by a subset of

the basis vectors {ei : 1 ≤ i ≤ n}, where ei is the vector consisting of all zeros except for a

1 in the i-th place.

4. Suppose that I ⊂ k[x1, . . . , xn] is a monomial ideal such that dim V(I ) = n − 1.

a. Show that the monomials in any generating set for I have a nonconstant common factor.

b. Write V(I ) = V1 ∪ · · · ∪ Vp , where Vi is a coordinate subspace and Vi 	⊂ Vj for i 	=
j . Suppose, in addition, that exactly one of the Vi has dimension n − 1. What is the

maximum that p (the number of components) can be? Give an example in which this

maximum is achieved.

5. Let I be a monomial ideal in k[x1, . . . , xn] such that dim V(I ) = 0.

a. What is V(I ) in this case?

b. Show that dim V(I ) = 0 if and only if for each 1 ≤ i ≤ n, x�i
i ∈ I for some �i ≥ 1. Hint:

In Proposition 3, when will it be true that M contains only J = {1, . . . , n}?
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6. Let 〈m1, . . . , mr 〉 ⊂ k[x1, . . . , xn] be a monomial ideal generated by r ≤ n monomials.

Show that dim V(m1, . . . , mr ) ≥ n − r .

7. Show that a coordinate subspace is an irreducible variety when the field k is infinite.

8. In this exercise, we will relate the decomposition of the variety of a monomial ideal I as a

union of coordinate subspaces given in Proposition 1 with the decomposition of V(I ) into

irreducible components. We will assume that the field k is infinite.

a. If V(I ) = V1 ∪ · · · ∪ Vk, where the Vj are coordinate subspaces such that Vi 	⊂ Vj if

i 	= j , then show that this union is the minimal decomposition of V(I ) into irreducible

varieties given in Theorem 4 of Chapter 4, §6.

b. Deduce that the Vi in part (a) are unique up to the order in which they are written.

9. Let I = 〈mi , . . . , ms〉 be a monomial ideal in k[x1, . . . , xn]. For each 1 ≤ j ≤ s, let M j =
{k : xk divides m j } as in the text, and consider the monomial

m ′
j =

∏
k∈M j

xk .

Note that m ′
j contains exactly the same variables as m j , but all to the first power.

a. Show that m ′
j ∈ √

I for each 1 ≤ j ≤ s.

b. Show that
√

I = 〈m ′
1, . . . , m ′

s〉. Hint: Use Lemmas 2 and 3 of Chapter 2, §4.

10. Let I be a monomial ideal. Using Exercise 9, show the equality dim V(I ) = dim V(
√

I )

follows from the dimension formula given in Proposition 3.

§2 The Complement of a Monomial Ideal

One of Hilbert’s key insights in his famous paper Über die Theorie der algebraischen
Formen [see HILBERT (1890)] was that the dimension of the variety associated to a
monomial ideal could be characterized by the growth of the number of monomials not
in the ideal as the total degree increases. We have alluded to this phenomenon in several
places in Chapter 5 (notably in Exercise 12 of §3).

In this section, we will make a careful study of the monomials not contained in a
monomial ideal I ⊂ k[x1, . . . , xn]. Since there may be infinitely many such monomials,
our goal will be to find a formula for the number of monomials xα /∈ I which have
total degree less than some bound. The results proved here will play a crucial role in
§3 when we define the dimension of an arbitrary variety.

Example 1. Consider a proper monomial ideal I in k[x, y]. Since I is proper (that is,
I 	= k[x, y]), V(I ) is either
a. The origin {(0, 0)},
b. the x-axis,
c. the y-axis, or
d. the union of the x-axis and the y-axis.

In case (a), by Exercise 5 of §1, we must have xa ∈ I and yb ∈ I for some integers
a, b > 0. Here, the number of monomials not in I will be finite, equal to some constant
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C0 ≤ a · b. If we assume that a and b are as small as possible, we get the following
picture when we look at exponents:

n

m

(m,n) ←→ xm yn

b

a

The monomials in I are indicated by solid dots, while those not in I are open circles.
In case (b), since V(I ) is the x-axis, no power xk of x can belong to I . On the other

hand, since the y-axis does not belong to V(I ), we must have yb ∈ I for some minimal
integer b > 0. The picture would be as follows:

n

m

(m,n) ←→ xm yn

b

l

a

As the picture indicates, we let l denote the minimum exponent of y that occurs
among all monomials in I . Note that l ≤ b, and we also have l > 0 since no positive
power of x lies in I . Then the monomials in the complement of I are precisely the
monomials

{xi y j : i ∈ ≥0, 0 ≤ j ≤ l − 1},
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corresponding to the exponents on l copies of the horizontal axis in 2
≥0, together with

a finite number of other monomials. These additional monomials can be characterized
as those monomials m /∈ I with the property that xr m ∈ I for some r > 0. In the above
picture, they correspond to the open circles on or above the dotted line.

Thus, the monomials in the complement of I consist of l “lines” of monomials
together with a finite set of monomials. This description allows us to “count” the
number of monomials not in I . More precisely, in Exercise 1, you will show that if
s > l, the l “lines” contain precisely l(s + 1) − (1 + 2 + · · · + l − 1) monomials of
total degree ≤ s. In particular, if s is large enough (more precisely, we must have
s > a + b, where a is indicated in the above picture), the number of monomials not in
I of total degree ≤ s equals ls + C0, where C0 is some constant depending only on I .

In case (c), the situation is similar to (b), except that the “lines” of monomials are
parallel to the vertical axis in the plane 2

≥0 of exponents. In particular, we get a similar
formula for the number of monomials not in I of total degree ≤ s once s is sufficiently
large.

In case (d), let k be the minimum exponent of x that occurs among all monomials
of I , and similarly let l be the minimum exponent of y. Note that k and l are positive
since xy must divide every monomial in I . Then we have the following picture when
we look at exponents:

n

m

(m,n) ←→ xm yn

b

l

ak

The monomials in the complement of I consist of the k “lines” of monomials

{xi y j : 0 ≤ i ≤ k − 1, j ∈ ≥0}
parallel to the vertical axis, the l “lines” of monomials

{xi y j : i ∈ ≥0, 0 ≤ j ≤ l − 1}
parallel to the horizontal axis, together with a finite number of other monomials (indi-
cated by open circles inside or on the boundary of the region indicated by the dotted
lines).
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Thus, the monomials not in I consist of l + k “lines” of monomials together with a
finite set of monomials. For s large enough (in fact, for s > a + b, where a and b are
as in the above picture) the number of monomials not in I of total degree ≤ s will be
(l + k)s + C0, where C0 is a constant. See Exercise 1 for the details of this claim.

The pattern that appears in Example 1, namely, that the monomials in the complement
of a monomial ideal I ⊂ k[x, y] consist of a number of infinite families parallel to
the “coordinate subspaces” in 2

≥0, together with a finite collection of monomials,
generalizes to arbitrary monomial ideals. In §3, this will be the key to understanding
how to define and compute the dimension of an arbitrary variety.

To discuss the general situation, we will introduce some new notation. For each
monomial ideal I , we let

C(I ) = {α ∈ n
≥0 : xα /∈ I }

be the set of exponents of monomials not in I . This will be our principal object of
study. We also set

e1 = (1, 0, . . . , 0),

e2 = (0, 1, . . . , 0),

...

en = (0, 0, . . . , 1).

Further, we define the coordinate subspace of n
≥0 determined by ei1

, . . . , eir , where
i1 < · · · < ir , to be the set

[ei1
, . . . , eir ] = {a1ei1

+ · · · + ar eir : a j ∈ ≥0 for 1 ≤ j ≤ r}.
We say that [ei1

, . . . , eir ] is an r -dimensional coordinate subspace. Finally, a subset of
n
≥0 is a translate of a coordinate subspace [ei1

, . . . , eir ] if it is of the form

α + [ei1
, . . . , eir ] = {α + β : β ∈ [ei1

, . . . , eir ]},
where α = ∑

i /∈{i1,...,ir } ai ei for ai ≥ 0. This restriction on α means that we are translat-
ing by a vector perpendicular to [ei1

, . . . , eir ]. For example, the set {(1, l) : l ∈ ≥0} =
e1 + [e2] is a translate of the subspace [e2] in the plane 2

≥0 of exponents.
With these definitions in hand, our discussion of monomial ideals in k[x, y] from

Example 1 can be summarized as follows.
a. If V(I ) is the origin, then C(I ) consists of a finite number of points.
b. If V(I ) is the x-axis, then C(I ) consists of a finite number of translates of [e1] and,

possibly, a finite number of points not on these translates.
c. If V(I ) is the y-axis, then C(I ) consists of a finite number of translates of [e2] and,

possibly, a finite number of points not on these translates.
d. If V(I ) is the union of the x-axis and the y-axis, then C(I ) consists of a finite

number of translates of [e1], a finite number of translates of [e2], and, possibly, a
finite number of points not on either set of translates.

In the exercises, you will carry out a similar analysis for monomial ideals in the poly-
nomial ring in three variables.
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Now let us turn to the general case. We first observe that there is a direct correspon-
dence between the coordinate subspaces in V(I ) and the coordinate subspaces of n

≥0

contained in C(I ).

Proposition 2. Let I ⊂ k[x1, . . . , xn] be a proper monomial ideal.
(i) The coordinate subspace V(xi : i /∈ {i1, . . . , ir }) is contained in V(I ) if and only if

[ei1
, . . . , eir ] ⊂ C(I ).

(ii) The dimension of V(I ) is the dimension of the largest coordinate subspace in C(I ).

Proof. (i)⇒: First note that W = V(xi : i /∈ {i1, . . . , ir }) contains the point p whose
i j -th coordinate is 1 for 1 ≤ j ≤ r and whose other coordinates are 0. For any α ∈
[ei1

, . . . , eir ], the monomial xα can be written in the form xα = x
αi1
i1

· · · xαir
ir

. Then xα =
1 at p, so that xα /∈ I since p ∈ W ⊂ V(I ) by hypothesis. This shows that α ∈ C(I ).

⇐: Suppose that [ei1
, . . . eir ] ⊂ C(I ). Then, since I is proper, every monomial in I

contains at least one variable other than xi1
, . . . , xir .This means that every monomial

in I vanishes on any point (a1, . . . , an) ∈ kn for which ai = 0 when i /∈ {i1, . . . , ir ).
So every monomial in I vanishes on the coordinate subspace V(xi : i /∈ {i1, . . . , ir }),
and, hence, the latter is contained in V(I ).

(ii) Note that the coordinate subspace V(xi : i /∈ {i1, . . . , ir }) has dimension r . It
follows from part (i) that the dimensions of the coordinate subspaces of kn contained in
V(I ) and the coordinate subspaces of n

≥0 contained in C(I ) are the same. By Definition
2 of §1, dim V(I ) is the maximum of the dimensions of the coordinate subspaces of kn

contained in V(I ), so the statement follows. �

We can now characterize the complement of a monomial ideal.

Theorem 3. If I ⊂ k[x1, . . . , xn] is a proper monomial ideal, then the set C(I ) ⊂ n
≥0

of exponents of monomials not lying in I can be written as a finite (but not necessarily
disjoint) union of translates of coordinate subspaces of n

≥0.

Before proving the theorem, consider, for example, the ideal I = 〈x4 y3, x2 y5〉.

n

m

(m,n) ←→ xm yn

(2,5)

(4,3)
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Here, it is easy to see that C(I ) is the finite union

C(I ) = [e1] ∪ (e2 + [e1]) ∪ (2e2 + [e1]) ∪ [e2] ∪ (e1 + [e2])

∪{(3, 4)} ∪ {(3, 3)} ∪ {(2, 4)} ∪ {(2, 3)}.

We regard the last four sets in this union as being translates of the 0-dimensional
coordinate subspace, which is the origin in 2

≥0.

Proof of Theorem 3. If I is the zero ideal, the theorem is trivially true, so we can
assume that I 	= 0. The proof is by induction on the number of variables n. If n = 1,
then I = 〈xk〉 for some integer k > 0. The only monomials not in I are 1, x, . . . , xk−1,
and hence C(I ) = {0, 1, . . . , k − 1} ⊂ ≥0. Thus, the complement consists of k points,
all of which are translates of the origin.

So assume that the result holds for n − 1 variables and that we have a monomial ideal
I ⊂ k[x1, . . . , xn]. For each integer j ≥0, let I j be the ideal in k[x1, . . . , xn−1] generated

by monomials m with the property that m · x j
n ∈ I . Then C(I j ) consists of exponents

α ∈ n−1
≥0 such that xαx j

n ∈ I . Geometrically, this says that C(I j ) ⊂ n−1
≥0 corresponds

to the intersection of C(I ) and the hyperplane (0, . . . , 0, j) + [e1, . . . , en−1] in n
≥0.

Because I is an ideal, we have I j ⊂ I j ′ when j < j ′. By the ascending chain condi-
tion for ideals, there is an integer j0 such that I j = I j0 for all j ≥ j0. For any integer j ,
we let C(I j ) × { j} denote the set {(α, j) ∈ n

≥0 : α ∈ C(I j ) ⊂ n−1
≥0 }. Then we claim

the monomials C(I ) not lying in I can be written as

C(I ) = (C(I j0 ) × ≥0) ∪
j0−1⋃
j=0

(C(I j ) × { j}).(1)

To prove this claim, first note that C(I j ) × { j} ⊂ C(I ) by the definition of C(I j ).
To show that C(I j0 ) × ≥0 ⊂ C(I ), observe that I j = I jo when j ≥ j0, so that

C(I j0 ) × { j} ⊂ C(I ) for these j’s. When j < jo, we have xαx j
n /∈ I whenever

xαx j0
n /∈ I since I is an ideal, which shows that C(I j0 ) × { j} ⊂ C(I ) for j < jo. We

conclude that C(I ) contains the right-hand side of (1).
To prove the opposite inclusion, take α = (α1, . . . , αn) ∈ C(I ). Then we have α ∈

C(Iαn ) × {αn} by definition. If αn < j0, then α obviously lies in the right-hand side of
(1). On the other hand, if αn ≥ j0, then Iαn = I j0 shows that α ∈ C(I j0 ) × ≥0, and our
claim is proved.

If we apply our inductive assumption, we can write C(I0), . . . , C(I j0 ) as finite unions
of translates of coordinate subspaces of n−1

≥0 . Substituting these finite unions into the
right-hand side of (1), we immediately see that C(I ) is also a finite union of translates
of coordinate subspaces of n

≥0. �

Our next goal is to find a formula for the number of monomials of total degree ≤ s
in the complement of a monomial ideal I ⊂ k[x1, . . . , xn]. Here is one of the key facts
we will need.
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Lemma 4. The number of monomials of total degree ≤ s in k[x1, . . . , xm] is the bino-
mial coefficient

(m+s
s

)
.

Proof. See Exercise 11 of Chapter 5, §3. �

In what follows, we will refer to |α| = α1 + · · · + αn as the total degree of α ∈ n
≥0.

This is also the total degree of the monomial xα . Using this terminology, Lemma 4 easily
implies that the number of points of total degree ≤ s in an m-dimensional coordinate
subspace of n

≥0 is
(m+s

s

)
(see Exercise 5). Observe that when m is fixed, the expression(

m + s

s

)
=

(
m + s

m

)
= 1

m!
(s + m)(s + m − 1) · · · (s + 1)

is a polynomial of degree m in s. Note that the coefficient of sm is 1/m!.
What about the number of monomials of total degree ≤ s in a translate of

an m-dimensional coordinate subspace in n
≥0? Consider, for instance, the trans-

late am+1em+1 + · · · + anen + [e1, . . . , em] of the coordinate subspace [e1, . . . , em].
Then, since am+1, . . . , an are fixed, the number of points in the translate with to-
tal degree ≤ s is just equal to the number of points in [e1, . . . , em] of total degree
≤ s − (am+1 + · · · + an) provided, of course, that s > am+1 + · · · + an . More gener-
ally, we have the following.

Lemma 5. Let α + [ei1
, . . . , eim ] be a translate of the coordinate subspace

[ei1
, . . . , eim ] ⊂ n

≥0, where as usual α = ∑
i 	∈{i1,...,im } ai ei .

(i) The number of points in α + [ei1
, . . . , eim ] of total degree ≤ s is equal to(

m + s − |α|
s − |α|

)
,

provided that s > |α|.
(ii) For s > |α|, this number of points is a polynomial function of s of degree m, and

the coefficient of sm is 1/m!.

Proof. (i) If s > |α|, then each point β in α + [ei1
, . . . , eim ] of total degree ≤ s has the

form β = α + γ , where γ ∈ [ei1
, . . . , eim ] and |γ | ≤ s − |α|. The formula given in (i)

follows using Lemma 4 to count the number of possible γ .
(ii) See Exercise 6. �

We are now ready to prove a connection between the dimension of V(I ) for a
monomial ideal and the degree of the polynomial function which counts the number of
points of total degree ≤ s in C(I ).

Theorem 6. If I ⊂ k[x1, . . . , xn] is a monomial ideal with dimV(I ) = d, then for all s
sufficiently large, the number of monomials not in I of total degree ≤ s is a polynomial
of degree d in s. Further, the coefficient of sd in this polynomial is positive.
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Proof. We need to determine the number of points in C(I ) of total degree ≤ s. By
Theorem 3, we know that C(I ) can be written as a finite union

C(I ) = T1 ∪ T2 ∪ . . . ∪ Tt ,

where each Ti is a translate of a coordinate subspace in n
≥0. We can assume that

Ti 	= Tj for i 	= j .
The dimension of Ti is the dimension of the associated coordinate subspace. Since

I is an ideal, it follows easily that a coordinate subspace [ei1
, . . . , eir ] lies in C(I )

if and only if some translate does. By hypothesis, V(I ) has dimension d, so that
by Proposition 2, each Ti has dimension ≤ d , with equality occurring for at least
one Ti .

We will sketch the remaining steps in the proof, leaving the verification of several
details to the reader as exercises. To count the number of points of total degree ≤ s in
C(I ), we must be careful, since C(I ) is a union of coordinate subspaces of n

≥0 that
may not be disjoint [for instance, see part (d) of Example 1]. If we use the superscript
s to denote the subset consisting of elements of total degree ≤ s, then it follows that

C(I )s = T s
1 ∪ T s

2 ∪ · · · ∪ T s
t .

The number of elements in C(I )s will be denoted |C(I )s |.
In Exercise 7, you will develop a general counting principle (called the Inclusion-

Exclusion Principle) that allows us to count the elements in a finite union of finite
sets. If the sets in the union have common elements, we cannot simply add to find the
total number of elements because that would count some elements in the union more
than once. The Inclusion-Exclusion Principle gives “correction terms” that eliminate
this multiple counting. Those correction terms are the numbers of elements in double
intersections, triple intersections, etc., of the sets in question.

If we apply the Inclusion-Exclusion Principle to the above union for C(I )s , we easily
obtain

|C(I )s | =
∑

i

|T s
i | −

∑
i< j

|T s
i ∩ T s

j | +
∑

i< j<k

|T s
i ∩ T s

j ∩ T s
k | − · · · .(2)

By Lemma 5, we know that for s sufficiently large, the number of points in T s
i is a

polynomial of degree mi = dim(Ti ) ≤ d in s, and the coefficient of smi is 1/mi !. From
this it follows that |C(I )s | is a polynomial of degree at most d in s when s is sufficiently
large.

We also see that the first sum in (2) is a polynomial of degree d in s when s is
sufficiently large. The degree is exactly d because some of the Ti have dimension d
and the coefficients of the leading terms are positive and hence can’t cancel. If we can
show that the remaining sums in (2) correspond to polynomials of smaller degree, it
will follow that |C(I )s | is given by a polynomial of degree d in s. This will also show
that the coefficient of sd is positive.

You will prove in Exercise 8 that the intersection of two distinct translates of co-
ordinate subspaces of dimensions m and r in n

≥0 is either empty or a translate of
a coordinate subspace of dimension < max(m, r ). Let us see how this applies to a
nonzero term |T s

i ∩ T s
j | in the second sum of (2). Since Ti 	= Tj , Exercise 8 implies
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that T = Ti ∩ Tj is the translate of a coordinate subspace of n
≥0 of dimension < d, so

that by Lemma 5, the number of points in T s = T s
j ∩ T s

j is a polynomial in s of degree
< d . Adding these up for all i < j , we see that the second sum in (2) is a polynomial
of degree < d in s for s sufficiently large. The other sums in (2) are handled similarly,
and it follows that |C(I )s | is a polynomial of the desired form when s is sufficiently
large. �

Let us see how this theorem works in the example I = 〈x4 y3, x2 y5〉 discussed fol-
lowing Theorem 3. Here, we have already seen that C(I ) = C0 ∪ C1, where

CI = [e1] ∪ (e2 + [e1]) ∪ (2e2 + [e1]) ∪ [e2] ∪ (e1 + [e2]),

C0 = {(3, 4), (3, 3), (2, 4), (2, 3)}.

To count the number of points of total degree ≤ s in C1, we count the number in
each translate and subtract the number which are counted more than once. (In this
case, there are no triple intersections to worry about. Do you see why?) The num-
ber of points of total degree ≤ s in [e2] is

(
1+s

s

) = (
1+s

1

) = s + 1 and the number

in e1 + [e2] is
(

1+s−1
s−1

) = s. Similarly, the numbers in [e1], e2 + [e1], and 2e2 + [e1]
are s + 1, s, and s − 1, respectively. Of the possible intersections of pairs of these,
only six are nonempty and each consists of a single point. You can check that
(1, 2), (1, 1), (1, 0), (0, 2), (0, 1), (0, 0) are the six points belonging to more than one
translate. Thus, for large s, the number of points of total degree less ≤ s in C1 is

|Cs
1| = (s + 1) + s + (s + 1) + s + (s − 1) − 6 = 5s − 5.

Since there are four points in C0, the number of points of total degree ≤ s in C(I ) is

|Cs
1| + |Cs

0| = (5S − 5) + 4 = 5s − 1,

provided that s is sufficiently large. (In Exercise 9 you will show that in this case, s is
“sufficiently large” as soon as s ≥ 7.)

Theorem 6 shows that the dimension of the affine variety defined by a monomial ideal
is equal to the degree of the polynomial in s which counts the number of points in C(I )
of total degree ≤ s for s large. This gives a purely algebraic definition of dimension.
In §3, we will extend these ideas to general ideals.

The polynomials that occur in Theorem 6 have the property that they take integer
values when the variable s is a sufficiently large integer. For later purposes, it will be
useful to characterize this class of polynomials. The first thing to note is that polynomials
with this property need not have integer coefficients. For example, the polynomial
1
2
s(s − 1) takes integer values whenever s is an integer, but does not have integer

coefficients. The reason is that either s or s − 1 must be even, hence, divisible by 2.
Similarly, the polynomial 1

3·2 s(s − 1)(s − 2) takes integer values for any integer s: no
matter what s is, one of the three consecutive integers s − 2, s − 1, s must be divisible
by 3 and at least one of them divisible by 2. It is easy to generalize this argument and
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show that (
s

d

)
= s(s − 1) · · · (s − (d − 1))

d!

= 1

d · (d − 1) · · · 2 · 1
s(s − 1) · · · (s − (d − 1))

takes integer values for any integer s (see Exercise 10). Further, in Exercises 11 and
12, you will show that any polynomial of degree d which takes integer values for
sufficiently large integers s can be written uniquely as an integer linear combination of
the polynomials (

s

0

)
= 1,

(
s

1

)
= s,

(
s

2

)
= s(s − 1)

2
, · · · ,(

s

d

)
= s(s − 1) · · · (s − (d − 1))

d!
.

Using this fact, we obtain the following sharpening of Theorem 6.

Proposition 7. If I ⊂ k[x1, . . . , xn] is a monomial ideal with dim V(I ) = d, then for
all s sufficiently large, the number of points in C(I ) of total degree ≤ s is a polynomial
of degree d in s which can be written in the form

d∑
i=0

ai

(
s

d − i

)
,

where ai ∈ for 0 ≤ i ≤ d and a0 > 0.

In the final part of this section, we will study the projective variety associated with
a monomial ideal. This makes sense because every monomial ideal is homogeneous
(see Exercise 13). Thus, a monomial ideal I ⊂ k[x1, . . . , xn] determines a projective
variety Vp(I ) ⊂ n−1(k), where we use the subscript p to remind us that we are in
projective space. In Exercise 14, you will show that Vp(I ) is a finite union of projective
linear subspaces which have dimension one less than the dimension of their affine
counterparts. As in the affine case, we define the dimension of a finite union of projective
linear subspaces to be the maximum of the dimensions of the subspaces. Then Theorem
6 shows that the dimension of the projective variety Vp(I ) of a monomial ideal I is
one less than the degree of the polynomial in s counting the number of monomials not
in I of total degree ≤ s .

In this case it turns out to be more convenient to consider the polynomial in s counting
the number of monomials whose total degree is equal to s. The reason resides in the
following proposition.

Proposition 8. Let I ⊂ k[x1, . . . , xn] be a monomial ideal and let Vp(I ) be the pro-
jective variety in n−1(k) defined by I . If dim Vp(I ) = d − 1, then for all s sufficiently
large, the number of monomials not in I of total degree s is given by a polynomial of
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the form

d−1∑
i=0

bi

(
s

d − 1 − i

)
of degree d − 1 in s, where bi ⊂ for 0 ≤ i ≤ d − 1 and b0 > 0.

Proof. As an affine variety, V(I ) ⊂ kn has dimension d, so that by Theorem 6, the
number of monomials not in I of total degree ≤ s is a polynomial p(s) of degree d for
s sufficiently large. We also know that the coefficient of sd is positive. It follows that
the number of monomials of total degree equal to s is given by

p(s) − p(s − 1)

for s large enough. In Exercise 15, you will show that this polynomial has degree d − 1
and that the coefficient of sd−1 is positive. Since it also takes integer values when s is
a sufficiently large integer, it follows from the remarks preceding Proposition 7 that
p(s) − p(s − 1) has the desired form. �

In particular, this proposition says that for the projective variety defined by a mono-
mial ideal, the dimension and the degree of the polynomial in the statement are
equal. In §3, we will extend these results to the case of arbitrary homogeneous ideals
I ⊂ k[x1, . . . , xn].

EXERCISES FOR §2

1. In this exercise, we will verify some of the claims made in Example 1. Remember that

I ⊂ k[x, y] is a proper monomial ideal.

a. In case (b) of Example 1, show that if s > l, then the l “lines” of monomials contain

l(s + 1) − (1 + 2 + · · · + l − 1) monomials of total degree ≤ s .

b. In case (b), conclude that the number of monomials not in I of total degree ≤ s is given

by ls + C0 for s sufficiently large. Explain how to compute C0 and show that s > a + b
guarantees that s is sufficiently large. Illustrate your answer with a picture that shows

what can go wrong if s is too small.

c. In case (d) of Example 1, show that the constant C0 in the polynomial function giving the

number of points in C(I ) of total degree ≤ s is equal to the finite number of monomials

not contained in the “lines” of monomials, minus l · k for the monomials belonging to

both families of lines, minus 1 + 2 + · · · + (l − 1), minus 1 + · · · + (k − 1).

2. Let I ⊂ k[x1, . . . , xn] be a monomial ideal. Suppose that in n
≥0, the translate α +

[ei1 , . . . , eir ] is contained in C(I ). If α = ∑
i /∈{i1,...,ir } ai ei , show that C(I ) contains all trans-

lates β + [ei1 , . . . , eir ] for all β of the form β = ∑
i /∈{i1,...,ir } bi ei , where 0 ≤ bi ≤ ai for all

i . In particular, [ei1 , . . . , eir ] ⊂ C(I ) . Hint: I is an ideal.

3. In this exercise, you will find monomial ideals I ⊂ k[x, y, z] with a given C(I ) ⊂ 3
≥0.

a. Suppose that C(I ) consists of one translate of [e1, e2] and two translates of [e2, e3]. Use

Exercise 2 to show that C(I ) = [e1, e2] ∪ [e2, e3] ∪ (e1 + [e2, e3]).

b. Find a monomial ideal I so that C(I ) is as described in part a. Hint: Study all monomials

of small degree to see whether or not they lie in I .
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c. Suppose now that C(I ) consists of one translate of [e1, e2], two translates of [e2, e3], and

one additional translate (not contained in the others) of the line [e2]. Use Exercise 2 to

give a precise description of C(I ).

d. Find a monomial ideal I so that C(I ) is as in part (c).

4. Let I be a monomial ideal in k[x, y, z]. In this exercise, we will study C(I ) ⊂ 3
≥0.

a. Show that V(I ) must be one of the following possibilities: the origin; one, two, or three

coordinate lines; one, two, or three coordinate planes; or the union of a coordinate plane

and a perpendicular coordinate axis.

b. Show that if V(I ) contains only the origin, then C(I ) has a finite number of points.

c. Show that if V(I ) is a union of one, two, or three coordinate lines, then C(I ) consists

of a finite number of translates of [e1], [e2], and/or [e3], together with a finite number of

points not on these translates.

d. Show that if V(I ) is a union of one, two or three coordinate planes, then C(I ) consists

of a finite number of translates of [e1, e2], [e1, e3], and/or [e2, e3] plus, possibly, a finite

number of translates of [e1], [e2], and/or [e3] (where a translate of [ei ] cannot occur

unless [ei , e j ] ⊂ C(I ) for some j 	= i) plus, possibly, a finite number of points not on

these translates.

e. Finally, show that if V(I ) is the union of a coordinate plane and the perpendicular

coordinate axis, then C(I ) consists of a finite nonzero number of translates of a single

coordinate plane [ei , e j ], plus a finite nonzero number of translates of [ek], k 	= i , j , plus,

possibly, a finite number of translates of [ei ] and/or [e j ], plus a finite number of points

not on any of these translates.

5. Show that the number of points in any m-dimensional coordinate subspace of n
≥0 of total

degree ≤ s is given by
(m+s

s

)
.

6. Prove part (ii) of Lemma 5.

7. In this exercise, you will develop a counting principle, called the Inclusion-Exclusion Prin-

ciple. The idea is to give a general method for counting the number of elements in a union

of finite sets. We will use the notation |A| for the number of elements in the finite set A.

a. Show that for any two finite sets A and B.

|A ∪ B| = |A| + |B| − |A ∩ B|.
b. Show that for any three finite sets A, B, C ,

|A ∪ B ∪ C | = |A| + |B| + |C | − |A ∩ B| − |A ∩ C | − |B ∩ C | + |A ∩ B ∩ C |.
c. Using induction on the number of sets, show that the number of elements in a union

of n finite sets A1 ∪ · · · ∪ An is equal to the sum of the |Ai |, minus the sum of all

double intersections |Ai ∩ A j |, i < j , plus the sum of all the threefold intersections

|Ai ∩ A j ∩ Ak |, i < j < k, minus the sum of the fourfold intersections, etc. This can be

written as the following formula:

|A1 ∪ · · · ∪ An| =
n∑

r=1

(−1)r−1

( ∑
1≤i1<···<ir ≤n

|Ai1 ∩ · · · ∩ Air |
)

.

8. In this exercise, you will show that the intersection of two translates of different coordinate

subspaces of n
≥0 is a translate of a lower dimensional coordinate subspace.

a. Let A = α + [ei1 . . . , eim ], where α = ∑
i /∈{i1,...,im } ai ei , and let B = β + [e j1 , . . . , eJr ],

where β = ∑
i /∈{ ji ,..., jr } bi ei If A 	= B and A ∩ B 	= ∅, then show that

[ei1 , . . . , eim ] 	= [e j1 , . . . , e jr ]
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and that A ∩ B is a translate of

[ei1 , . . . , eim ] ∩ [e j1 , . . . , e jr ].

b. Deduce that dim A ∩ B < max(m, r ).

9. Show that if s ≥ 7, then the number of elements in C(I ) of total degree ≤ s for the monomial

ideal I in the example following Theorem 6 is given by the polynomial 5s − 1.

10. Show that the polynomial

p(s) =
(

s

d

)
= s(s − 1) · · · (s − (d − 1))

d!

takes integer values for all integers s. Note that p is a polynomial of degree d in s.

11. In this exercise, we will show that every polynomial p(s) of degree ≤ d which takes in-

teger values for every s ∈ ≥0 can be written as a unique linear combination with integer

coefficients of the polynomials
(s

0

)
,
(s

1

)
,
(s

2

)
, . . . ,

(s
d

)
.

a. Show that the polynomials (
s

0

)
,

(
s

1

)
,

(
s

2

)
, · · · ,

(
s

d

)
are linearly independent in the sense that

a0

(
s

0

)
+ a1

(
s

1

)
+ · · · + ad

(
s

d

)
= 0

for all s implies that a0 = a1 = · · · = ad = 0.

b. Show that any two polynomials p(s) and q(s) of degree ≤ d which take the same values

at the d + 1 points s = 0, 1, . . . , d must be identical. Hint: How many roots does the

polynomial p(s) − q(s) have?

c. Suppose we want to construct a polynomial p(s) that satisfies

p(0) = c0,

p(1) = c1,

...

p(d) = cd ,

(3)

where the ci are given values in . Show that if we set

�0 = c0,

�1 = c1 − c0,

�2 = c2 − 2c1 + c0,

...

�d =
d∑

n=0

(−1)n

(
d

n

)
cd−n,

then the polynomial

p(s) = �0

(
s

0

)
+ �1

(
s

1

)
+ · · · + �d

(
s

d

)
(4)

satisfies the equations in (3). Hint: Argue by induction on d. [The polynomial in (4) is

called a Newton–Gregory interpolating polynomial.]
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d. Explain why the polynomial in (4) takes integer values for all integer s. Hint: Recall that

the ci in (3) are integers. See also Exercise 10.

e. Deduce from parts (a)–(d) that every polynomial of degree d which takes integer values

for all integer s ≥ 0 can be written as a unique integer linear combination of
(s

0

)
, . . . ,

(s
d

)
.

12. Suppose that p(s) is a polynomial of degree d which takes integer values when s is a suffi-

ciently large integer, say s ≥ a. We want to prove that p(s) is an integer linear combination

of the polynomials
(s

0

)
, . . . ,

(s
d

)
studied in Exercises 10 and 11. We can assume that a is a

positive integer.

a. Show that the polynomial p(s + a) can be expressed in terms of
(s

0

)
, . . . ,

(s
d

)
and conclude

that p(s) is an integer linear combination of
(s−a

0

)
, . . . ,

(s−a
d

)
.

b. Use Exercise 10 to show that p(s) takes integer values for all s ∈ and conclude that

p(s) is an integer linear combination of
(s

0

)
, . . . ,

(s
d

)
.

13. Show that every monomial ideal is a homogeneous ideal.

14. Let I ⊂ k[x1, . . . , xn] be a monomial ideal.

a. In kn , let V(xi1 , . . . , xir ) be a coordinate subspace of dimension n − r contained in V(I ).

Prove that Vp(xi1 , . . . , xir ) ⊂ Vp(I ) in n−1(k). Also show that Vp(xi1 , . . . , xir ) looks like

a copy of n−r−1 sitting inside n−1. Thus, we say that Vp(xi1 , . . . , xir ) is a projective

linear subspace of dimension n − r − 1.

b. Prove the claim made in the text that Vp(I ) is a finite union of projective linear subspaces

of dimension one less than their affine counterparts.

15. Verify the statement in the proof of Proposition 8 that if p(s) is a polynomial of degree d
in s with a positive coefficient of sd , then p(s) − p(s − 1) is a polynomial of degree d − 1

with a positive coefficient of sd−1.

§3 The Hilbert Function and the Dimension of a Variety

In this section, we will define the Hilbert function of an ideal I and use it to define
the dimension of a variety V . We will give the basic definitions in both the affine and
projective cases. The basic idea will be to use the experience gained in the last section
and define dimension in terms of the number of monomials not contained in the ideal
I . In the affine case, we will use the number of monomials not in I of total degree ≤ s,
whereas in the projective case, we consider those of total degree equal to s.

However, we need to note from the outset that the results from §2 do not apply
directly because when I is not a monomial ideal, different monomials not in I can be
dependent on one another. For instance, if I = 〈x2 − y2〉, neither the monomial x2 nor
y2 belongs to I , but their difference does. So we should not regard x2 and y2 as two
monomials not in I . Rather, to generalize §2, we will need to consider the number of
monomials of total degree ≤ s which are “linearly independent modulo” I .

In Chapter 5, we defined the quotient of a ring modulo an ideal. There is an analogous
operation on vector spaces which we will use to make the above ideas precise. Given
a vector space V and a subspace W ⊂ V , it is not difficult to show that the relation on
V defined by v ∼ v′ if v − v′ ∈ W is an equivalence relation (see Exercise 1). The set
of equivalence classes of ∼ is denoted V/W , so that

V/W = {[v] : v ∈ V }.
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In the exercises, you will check that the operations [v] + [v′] = [v + v′] and a[v] =
[av], where a ∈ k and v, v′ ∈ V are well-defined and make V/W into a k-vector space,
called the quotient space of V modulo W .

When V is finite-dimensional, we can compute the dimension of V/W as follows.

Proposition 1. Let W be a subspace of a finite-dimensional vector space V . Then W
and V/W are also finite-dimensional vector spaces, and

dim V = dim W + dim V/W.

Proof. If V is finite-dimensional, it is a standard fact from linear algebra that W
is also finite-dimensional. Let v1, . . . , vm be a basis of W , so that dim W = m.
In V , the vectors v1, . . . , vm are linearly independent and, hence, can be extended
to a basis v1, . . . , vm, vm+1, . . . vm+n of V . Thus, dim V = m + n. We claim that
[vm+1], . . . , [vm+n] form a basis of V/W .

To see that they span, take [v] ∈ V/W . If we write v = ∑m+n
i=1 aivi , then v ∼

am+1vm+1 + · · · + am+nvm+n since their difference is a1v1 + · · · + amvm ∈ W . It fol-
lows that in V/W , we have

[v] = [am+1vm+1 + · · · + am+nvm+n] = am+1[vm+1] + · · · + am+n[vm+n].

The proof that [vm+1], . . . , [vm+n] are linearly independent is left to the reader (see
Exercise 2). This proves the claim, and the proposition follows immediately. �

The Dimension of an Affine Variety
Considered as a vector space over k, the polynomial ring k[x1, . . . , xn] has infinite
dimension, and the same is true for any nonzero ideal (see Exercise 3). To get something
finite-dimensional, we will restrict ourselves to polynomials of total degree ≤ s. Hence,
we let

k[x1, . . . , xn]≤s

denote the set of polynomials of total degree ≤ s in k[x1, . . . , xn]. By Lemma 4 of §2,
it follows that k[x1, . . . , xn]≤s is a vector space of dimension

(n+s
s

)
. Then, given an

ideal I ⊂ k[x1, . . . , xn], we let

I≤s = I ∩ k[x1, . . . , xn]≤s

denote the set of polynomials in I of total degree ≤ s. Note that I≤s is a vector subpace
of k[x1, . . . , xn]≤s . We are now ready to define the affine Hilbert function of I .

Definition 2. Let I be an ideal in k[x1, . . . , xn].The affine Hilbert function of I is the
function on the nonnegative integers s defined by

aHFI (s) = dim k[x1, . . . , xn]≤s/I≤s

= dim k[x1, . . . , xn]≤s − dim I≤s

(where the second equality is by Proposition 1).
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With this terminology, the results of §2 for monomial ideals can be restated as follows.

Proposition 3. Let I be a proper monomial ideal in k[x1, . . . , xn].
(i) For all s ≥ 0, aHFI (s) is the number of monomials not in I of total degree ≤ s .

(ii) For all s sufficiently large, the affine Hilbert function of I is given by a polynomial
function

aHFI (s) =
d∑

i=0

bi

(
s

d − i

)
,

where bi ∈ and b0 is positive.
(iii) The degree of the polynomial in part (ii) is the maximum of the dimensions of the

coordinate subspaces contained in V(I ).

Proof. To prove (i), first note that {xα : |α| ≤ s} is a basis of k[x1, . . . , xn]≤s as a vector
space over k. Further, Lemma 3 of Chapter 2, §4 shows that {xα : |α| ≤ s, xα ∈ I }
is a basis of I≤s . Consequently, the monomials in {xα : |α| ≤ s, xα /∈ I } are exactly
what we add to a basis of I≤s to get a basis of k[x1, . . . , xn]≤s . It follows from the
proof of Proposition 1 that {[xα] : |α| ≤ s, xα /∈ I } is a basis of the quotient space
k[x1, . . . , xn]≤s/I≤s , which completes the proof of (i).

Parts (ii) and (iii) follow easily from (i) and Proposition 7 of §2. �

We are now ready to link the ideals of §2 to arbitrary ideals in k[x1, . . . , xn]. The
key ingredient is the following observation due to Macaulay. As in Chapter 8, §4, we
say that a monomial order > on k[x1, . . . , xn] is a graded order if xα > xβ whenever
|α| > |β|.

Proposition 4. Let I ⊂ k[x1, . . . , xn] be an ideal and let > be a graded order on
k[x1, . . . , xn].Then the monomial ideal 〈LT(I )〉 has the same affine Hilbert function
as I .

Proof. Fix s and consider the leading monomials LM(f) of all elements f ∈ I≤s . There
are only finitely many such monomials, so that

{LM( f ) : f ∈ I≤s} = {LM( f1), . . . , LM( fm)}(1)

for some polynomials f1, . . . , fm ∈ I≤s . By rearranging and deleting duplicates, we
can assume that LM( f1) > LM( f2) > · · · > LM( fm). We claim that f1, . . . , fm are a
basis of I≤s as a vector space over k.

To prove this, consider a nontrivial linear combination a1 f1 + · · · + am fm and
choose the smallest i such that ai 	= 0. Given how we ordered the leading mono-
mials, there is nothing to cancel ai LT( fi ), so the linear combination is nonzero. Hence,
f1, . . . , fm are linearly independent. Next, let W = [ f1, . . . , fm] ⊂ I≤s be the sub-
space spanned by f1, . . . , fm If W 	= I≤s, pick f ∈ I≤s − W with LM( f ) minimal.
By (1), LM( f ) = LM( fi ) for some i , and hence, LT( f ) = λLT( fi ) for some λ ∈ k.
Then f − λ fi ∈ I≤s has a smaller leading monomial, so that f − λ fi ∈ W by the
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minimality of LM( f ). This implies f ∈ W , which is a contradiction. It follows that
W = [ f1, . . . , fm] = I≤s , and we conclude that f1, . . . , fm are a basis.

The monomial ideal 〈LT(I )〉 is generated by the leading terms (or leading mono-
mials) of elements of I . Thus, LM( fi ) ∈ 〈LT(I )〉≤s since fi ∈ I≤s . We claim that
LM( f1), . . . , LM( fm) are a vector space basis of 〈LT(I )〉≤s Arguing as above, it is easy
to see that they are linearly independent. It remains to show that they span, i.e., that
[LM( f1, . . . , LM( fm)] = 〈LT(I )〉≤s . By Lemma 3 of Chapter 2, §4, it suffices to show
that

{LM( f1), . . . , LM( fm)} = {LM( f ) : f ∈ I, LM( f ) has total degree ≤ s}.(2)

To relate this to (1), note that > is a graded order, which implies that for any nonzero
polynomial f ∈ k[x1, . . . , xn], LM( f ) has the same total degree as f . In particular, if
LM( f ) has total degree ≤ s , then so does f , which means that (2) follows immediately
from (1).

Thus, I≤s and 〈LT(I )〉≤s have the same dimension (since they both have bases con-
sisting of m elements), and then the dimension formula of Proposition 1 implies that

aHFI (s) = dim k[x1, . . . , xn]≤s/I≤s

= dim k[x1, . . . , xn]≤s/〈LT(I )〉≤s = aHF〈LT(I )〉(s).

This proves the proposition. �

If we combine Propositions 3 and 4, it follows immediately that if I is any ideal in
k[x1, . . . , xn] and s is sufficiently large, the affine Hilbert function of I can be written

aHFI (s) =
d∑

i=0

bi

(
s

d − i

)
,

where the bi are integers and b0 is positive. This leads to the following definition.

Definition 5. The polynomial which equals aHFI (s) for sufficiently large s is called
the affine Hilbert polynomial of I and is denoted aHPI (s).

As an example, consider the ideal I = 〈x3 y2 + 3x2 y2 + y3 + 1〉 ⊂ k[x, y]. If we
use grlex order, then 〈LT(I )〉 = 〈x3 y2〉, and using the methods of §2, one can show that
the number of monomials not in 〈LT(I )〉 of total degree ≤ s equals 5s − 5 when s ≥ 3.
From Propositions 3 and 4, we obtain

aHFI (s) = aHF〈LT(I )〉(s) = 5s − 5

when s ≥ 3. It follows that the affine Hilbert polynomial of I is

aHPI (s) = 5s − 5.

By definition, the affine Hilbert function of an ideal I coincides with the affine Hilbert
polynomial of I when s is sufficiently large. The smallest integer s0 such that aHPI (s) =
aHFI (s) for all s ≥ s0 is called the index of regularity of I . Determining the index of
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regularity is of considerable interest and importance in many computations with ideals,
but we will not pursue this topic in detail here.

We next compare the degrees of the affine Hilbert polynomials for I and
√

I .

Proposition 6. If I ⊂ k[x1, . . . , xn] is an ideal, then the affine Hilbert polynomials of
I and

√
I have the same degree.

Proof. For a monomial ideal I , we know that the degree of the affine Hilbert polyno-
mial is the dimension of the largest coordinate subspace of kn contained in V(I ). Since√

I is monomial by Exercise 9 of §1 and V(I ) = V(
√

I ), it follows immediately that
aHPI and aHP√

I have the same degree.
Now let I be an arbitrary ideal in k[x1, . . . , xn] and pick any graded order > in

k[x1, . . . , xn]. We claim that

〈LT(I )〉 ⊂ 〈LT(
√

I )〉 ⊂
√

〈LT(I )〉.(3)

The first containment is immediate from I ⊂ √
I . To establish the second, let xα be a

monomial in LT(
√

I ). This means that there is a polynomial f ∈ √
I such that LT( f ) =

xα . We know f r ∈ I for some r ≥ 0, and it follows that xrα = LT( f r ) ∈ 〈LT(I )〉. Thus,
xα ∈ √〈LT(I )〉.

In Exercise 8, we will prove that if I1 ⊂ I2 are any ideals of k[x1, . . . , xn], then
deg aHPI2

≤ deg aHPI1
. If we apply this fact to (3), we obtain the inequalities

deg aHP√〈LT(I )〉 ≤ deg aHP〈LT(
√

I )〉 ≤ deg aHP〈LT(I )〉.

By the result for monomial ideals, the two outer terms here are equal and we conclude
that aHP〈LT(I )〉 and aHP〈LT(

√
I )〉 have the same degree. By Proposition 4, the same is true

for aHPI and aHP√
I , and the proposition is proved. �

This proposition is evidence of something that is not at all obvious, namely, that the
degree of the affine Hilbert polynomial has geometric meaning in addition to its alge-
braic significance in indicating how far I≤s is from being all of k[x1, . . . , xn]≤s . Recall
that V(I ) = V(

√
I ) for all ideals. Thus, the degree of the affine Hilbert polynomial is

the same for a large collection of ideals defining the same variety. Moreover, we know
from §2 that the degree of the affine Hilbert polynomial is the same as our intuitive
notion of the dimension of the variety of a monomial ideal. So it should be no surprise
that in the general case, we define dimension in terms of the degree of the affine Hilbert
function. We will always assume that the field k is infinite.

Definition 7. The dimension of an affine variety V ⊂ kn, denoted dim V, is the degree
of the affine Hilbert polynomial of the corresponding ideal I = I(V ) ⊂ k[x1, . . . , xn].

As an example, consider the twisted cubic V = V(y − x2, z − x3) ⊂ 3. In Chap-
ter 1, we showed that I = I(V ) = 〈y − x2, z − x3〉 ⊂ [x, y, z]. Using grlex or-
der, a Groebner basis for I is {y3 − z2, x2 − y, xy − z, xz − y2}, so that 〈LT(I )〉 =
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〈y3, x2, xy, xz〉. Then

dim V = deg aHPI

= deg aHP〈LT(I )〉
= maximum dimension of a coordinate subspace in V(〈LT(I )〉)

by Propositions 3 and 4. Since

V(〈LT(I )〉) = V(y3, x2, xy, xz) = V(x, y) ⊂ 3,

we conclude that dim V = 1. This agrees with our intuition that the twisted cubic should
be 1-dimensional since it is a curve in 3.

For another example, let us compute the dimension of the variety of a monomial
ideal. In Exercise 10, you will show that I(V(I )) = √

I when I is a monomial ideal
and k is infinite. Then Proposition 6 implies that

dim V(I ) = deg aHPI(V(I )) = deg aHP√
I = deg aHPI ,

and it follows from part (iii) of Proposition 3 that dim V(I ) is the maximum dimension
of a coordinate subspace contained in V(I ). This agrees with the provisional definition
of dimension given in §2. In Exercise 10, you will see that this can fail when k is a
finite field.

An interesting exceptional case is the empty variety. Note that 1 ∈ I(V ) if and only
if k[x1, . . . , xn]≤s = I(V )≤s for all s. Hence,

V = ∅ ⇐⇒ aHPI(V ) = 0.

Since the zero polynomial does not have a degree, we do not assign a dimension to the
empty variety.

One drawback of Definition 7 is that to find the dimension of a variety V , we need to
know I(V ), which, in general, is difficult to compute. It would be much nicer if dim V
were the degree of aHPI , where I is an arbitrary ideal defining V . Unfortunately, this
is not true in general. For example, if I = 〈x2 + y2〉 ⊂ [x, y], it is easy to check that
aHPI (s) has degree 1. Yet V = V(I ) = {(0, 0)} ⊂ 2 is easily seen to have dimension
0. Thus, dim V(I ) 	= deg aHPI in this case (see Exercise 11 for the details).

When the field k is algebraically closed, these difficulties go away. More precisely,
we have the following theorem that tells us how to compute the dimension in terms of
any defining ideal.

Theorem 8 (The Dimension Theorem). Let V = V(I ) be an affine variety, where
I ⊂ k[x1, . . . , xn] is an ideal. If k is algebraically closed, then

dim V = deg aHPI .

Furthermore, if > is a graded order on k[x1, . . . , xn], then

dim V = deg aHP〈LT(I )〉
= maximum dimension of a coordinate subspace in V(〈LT(I )〉).

Finally, the last two equalities hold over any field k when I = I(V).
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Proof. Since k is algebraically closed, the Nullstellensatz implies that I(V ) = I(V(I )) =√
I . Then

dim V = deg aHPI(V ) = deg aHP√
I = deg aHPI ,

where the last equality is by Proposition 6. The second part of the theorem now follows
immediately using Propositions 3 and 4.

�

In other words, over an algebraically closed field, to compute the dimension of a
variety V = V(I ), one can proceed as follows:
� Compute a Groebner basis for I using a graded order such as grlex or grevlex.
� Compute the maximal dimension d of a coordinate subspace contained in V(〈LT(I )〉).

Note that Proposition 3 of §1 gives an algorithm for doing this.
Then dim V = d follows from Theorem 8.

The Dimension of a Projective Variety
Our discussion of the dimension of a projective variety V ⊂ n(k) will parallel what we
did in the affine case and, in particular, many of the arguments are the same. We start by
defining the Hilbert function and the Hilbert polynomial for an arbitrary homogeneous
ideal I ⊂ k[x0, . . . , xn]. As above, we assume that k is infinite.

As we saw in §2, the projective case uses total degree equal to s rather than ≤ s.
Since polynomials of total degree s do not form a vector space (see Exercise 13), we
will work with homogeneous polynomials of total degree s. Let

k[x0, . . . , xn]s

denote the set of homogeneous polynomials of total degree s in k[x0, . . . , xn], together
with the zero polynomial. In Exercise 13, you will show that k[x0, . . . , xn]s is a vector
space of dimension

(n+s
s

)
. If I ⊂ k[x0, . . . , xn] is a homogeneous ideal, we let

Is = I ∩ k[x0, . . . , xn]s

denote the set of homogeneous polynomials in I of total degree s (and the zero poly-
nomial). Note that Is is a vector subspace of k[x0, . . . , xn]s . Then the Hilbert function
of I is defined by

HFI (s) = dim k[x0, . . . , xn]s/Is .

Strictly speaking, we should call this the projective Hilbert function, but the above
terminology is customary in algebraic geometry.

When I is a monomial ideal, the argument of Proposition 3 adapts easily to show
that HFI (s) is the number of monomials not in I of total degree s. It follows from
Proposition 8 of §2 that for s sufficiently large, we can express the Hilbert function of
a monomial ideal in the form

HFI (S) =
d∑

i=0

bi

(
s

d − i

)
,(4)
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where bi ∈ and b0 is positive. We also know that d is the largest dimension of a
projective coordinate subspace contained in V(I ) ⊂ n(k).

As in the affine case, we can use a monomial order to link the Hilbert function of a
homogeneous ideal to the Hilbert function of a monomial ideal.

Proposition 9. Let I ⊂ k[x0, . . . , xn] be a homogeneous ideal and let > be a monomial
order on k[x0, . . . , xn]. Then the monomial ideal 〈LT(I )〉 has the same Hilbert function
as I .

Proof. The argument is similar to the proof of Proposition 4. However, since we do not
require that > be a graded order, some changes are needed.

For a fixed s, we can find f1, . . . , fm ∈ Is such that

{LM( f ) : f ∈ Is} = {LM( f1), . . . , LM( fm)}(5)

and we can assume that LM( f1) > LM( f2) > · · · > LM( fm). As in the proof of Propo-
sition 4, f1, . . . , fm form a basis of Is as a vector space over k.

Now consider 〈LT(I )〉s . We know LM( fi ) ∈ 〈LT(I )〉s since fi ∈ Is and we need to
show that LM( f1), . . . , LM( fm) form a vector space basis of 〈LT(I )〉s . The leading terms
are distinct, so as above, they are linearly independent. It remains to prove that they
span. By Lemma 3 of Chapter 2, §4, it suffices to show that

{LM( f1), . . . , LM( fm)} = {LM( f ) : f ∈ I, LM( f )has total degree s}.(6)

To relate this to (5), suppose that LM( f ) has total degree s for some f ∈ I . If we write
f as a sum of homogeneous polynomials f = ∑

i hi , where hi has total degree i , it
follows that LM( f ) = LM(hs). Since I is a homogeneous ideal, we have hs ∈ I . Thus,
LM( f ) = LM(hs) where hs ∈ Is , and, consequently, (6) follows from (5). From here,
the argument is identical to what we did in Proposition 4, and we are done. �

If we combine Proposition 9 with the description of the Hilbert function for a mono-
mial ideal given by (4), we see that for any homogeneous ideal I ⊂ k[x0, . . . , xn], the
Hilbert function can be written

HFI (S) =
d∑

i=0

bi

(
s

d − i

)
for s sufficiently large. The polynomial on the right of this equation is called the Hilbert
polynomial of I and is denoted HPI (s).

We then define the dimension of a projective variety in terms of the Hilbert polyno-
mial as follows.

Definition 10. The dimension of a projective variety V ⊂ n(k), denoted dim V , is
the degree of the Hilbert polynomial of the corresponding homogeneous ideal I =
I(V ) ⊂ k[x0, . . . , xn]. (Note that I is homogeneous by Proposition 4 of Chapter 8, §3.)

Over an algebraically closed field, we can compute the dimension as follows.
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Theorem 11 (The Dimension Theorem). Let V = V(I ) ⊂ n(k) be a projective va-
riety, where I ⊂ k[x0, . . . , xn] is a homogeneous ideal. If V is nonempty and k is
algebraically closed, then

dim V = deg HPI .

Furthermore, for any monomial order on k[x0, . . . , xn], we have

dim V = deg HP〈LT(I )〉
= maximum dimension of a projective coordinate subspace in V(〈LT(I )〉).

Finally, the last two equalities hold over any field k when I = I(V ).

Proof. The first step is to show that I and
√

I have Hilbert polynomials of the same
degree. The proof is similar to what we did in Proposition 6 and is left as an exercise.

By the projective Nullstellensatz, we know that I(V ) = I(V(I )) = √
I , and, from

here, the proof is identical to what we did in the affine case (see Theorem 8). �

For our final result, we compare the dimension of affine and projective varieties.

Theorem 12.
(i) Let I ⊂ k[x0, . . . , xn] be a homogeneous ideal. Then, for s ≥ 1,we have

HFI (s) = aHFI (s) − aHFI (s − 1).

There is a similar relation between Hilbert polynomials. Consequently, if V ⊂
n(k) is a nonempty projective variety and CV ⊂ kn+1 is its affine cone (see

Chapter 8, §3), then

dim CV = dim V + 1.

(ii) Let I ⊂ k[x1, . . . , xn] be an ideal and let I h ⊂ k[x0, . . . , xn] be its homogenization
with respect to x0 (see §4 of Chapter 8). Then for s ≥ 0, we have

aHFI (s) = HFI h (s).

There is a similar relation between Hilbert polynomials. Consequently, if V ⊂ kn is
an affine variety and V ⊂ n(k) is its projective closure (see Chapter 8, §4), then

dim V = dim V .

Proof. We will use the subscripts a and p to indicate the affine and projective cases
respectively. The first part of (i) follows easily by reducing to the case of a monomial
ideal and using the results of §2. We leave the details as an exercise. For the second
part of (i), note that the affine cone CV is simply the affine variety in kn+1 defined
by Ip(V ). Further, it is easy to see that Ia(CV ) = Ip(V ) (see Exercise 19). Thus, the
dimensions of V and CV are the degrees of HPIp(V ) and aHPIp(V ), respectively. Then
dim CV = dim V + 1 follows from Exercise 15 of §2 and the relation just proved
between the Hilbert polynomials.
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To prove the first part of (ii), consider the maps

φ : k[x1, . . . , xn]≤s −→ k[x0, . . . , xn]s,

ψ : k[x0, . . . , xn]s −→ k[x1, . . . , xn]≤s

defined by the formulas

φ( f ) = xs
0 f

(
x1

x0

, · · · , xn

x0

)
for f ∈ k[x1, . . . , xn]≤s,

ψ(F) = F(1, x1, . . . , xn) for F ∈ k[x0, . . . , xn]s .(7)

We leave it as an exercise to check that these are linear maps that are inverses of each
other, and hence, k[x1, . . . , xn]≤s and k[x0, . . . , xn]s are isomorphic vector spaces. You
should also check that if f ∈ k[x1, . . . , xn]≤s has total degree d ≤ s, then

φ( f ) = xs−d
0 f h,

where f h is the homogenization of f as defined in Proposition 7 of Chapter 8, §2.
Under these linear maps, you will check in the exercises that

φ(I≤s) ⊂ I h
s ,

ψ(I h
s ) ⊂ I≤s,(8)

and it follows easily that the above inclusions are equalities. Thus, I≤s and I h
s are also

isomorphic vector spaces.
This shows that k[x1, . . . , xn]≤s and k[x0, . . . , xn]s have the same dimension, and

the same holds for I≤s and I h
s . By the dimension formula of Proposition 1, we conclude

that

aHPI (s) = dim k[x1, . . . , xn]≤s/I≤s

= dim k[x0, . . . , xn]s/I h
s = HPI h (s),(9)

which is what we wanted to prove.
For the second part of (ii), suppose V ⊂ kn . Let I = Ia(V ) ⊂ k[x1, . . . , xn] and let

I h ⊂ k[x0, . . . , xn] be the homogenization of I with respect to x0. Then V is defined
to be Vp(I h) ⊂ n(k). Furthermore, we know from Exercise 8 of Chapter 8, §4 that
I h = Ip(V ). Then

dim V = deg aHPI = deg HPI h = dim V

follows immediately from the first part of (ii), and the theorem is proved. �

Some computer algebra systems can compute Hilbert polynomials. REDUCE has a
command to find the affine Hilbert polynomial of an ideal, whereas Macaulay 2 and
CoCoA will compute the projective Hilbert polynomial of a homogeneous ideal.

EXERCISES FOR §3

1. In this exercise, you will verify that if V is a vector space and W is a subspace of V , then

V/W is a vector space.
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a. Show that the relation on V defined by v ∼ v′ if v − v′ ∈ W is an equivalence relation.

b. Show that the addition and scalar multiplication operations on the equivalence classes

defined in the text are well-defined. That is, if v, v′, w, w′ ∈ V are such that [v] = [v′]
and [w] = [w′], then show that [v + w] = [v′ + w′] and [av] = [av′] for all a ∈ k.

c. Verify that V/W is a vector space under the operations given in part b.

2. Let V be a finite-dimensional vector space and let W be a vector subspace of V . If

{v1, . . . , vm, vm+1, . . . , vm+n} is a basis of V such that {v1, . . . , vm} is a basis for W , then

show that [vm+n], . . . , [vm+1] are linearly independent in V/W .

3. Show that a nonzero ideal I ⊂ k[x1, . . . , xn] is infinite-dimensional as a vector space over

k. Hint: Pick f 	= 0 in I and consider xα f .

4. The proofs of Propositions 4 and 9 involve finding vector space bases of k[x1, . . . , xn]≤s

and k[x1, . . . , xn]s where the elements in the bases have distinct leading terms. We showed

that such bases exist, but our proof was nonconstructive. In this exercise, we will illustrate

a method for actually finding such a basis. We will only discuss the homogeneous case, but

the method applies equally well to the affine case.

The basic idea is to start with any basis of I , and order the elements according to their

leading terms. If two of the basis elements have the same leading monomial, we can replace

one of them with a k-linear combination that has a smaller leading monomial. Continuing

in this way, we will get the desired basis.

To see how this works in practice, let I be a homogeneous ideal in k[x, y, z], and suppose

that {x3 − xy2, x3 + x2 y − z3, x2 y − y3} is a basis for I3. We will use grlex order with

x > y > z.

a. Show that if we subtract the first polynomial from the second, leaving the third polynomial

unchanged, then we get a new basis for I3.

b. The second and third polynomials in this new basis now have the same leading monomial.

Show that if we change the third polynomial by subtracting the second polynomial from

it and multiplying the result by − 1, we end up with a basis {x3 − xy2, x2 y + xy2 − z3,

xy2 + y3 − z3} for I3 in which all three leading monomials are distinct.

5. Let I = 〈x3 − xyz, y4 − xyz2, xy − z2〉. Using grlex order with x > y > z find bases of

I3 and I4 where the elements in the bases have distinct leading monomials. Hint: Use the

method of Exercise 4.

6. Use the methods of §2 to compute the affine Hilbert polynomials for each of the following

ideals.

a. I = 〈x3 y, xy2〉 ⊂ k[x, y].

b. I = 〈x3 y2 + 3x2 y2 + y3 + 1〉 ⊂ k[x, y].

c. I = 〈x3 yz5, xy3z2〉 ⊂ k[x, y, z].

d. I = 〈x3 − yz2, y4 − x2 yz〉 ⊂ k[x, y, z].

7. Find the index of regularity [that is, the smallest s0 such that aHFI (s) = aHPI (s) for all

s ≥ s0] for each of the ideals in Exercise 6.

8. In this exercise, we will show that if I1 ⊂ I2 are ideals in k[x1, . . . , xn], then

deg aHPI2
≤ deg aHPI1

.

a. Show that I1 ⊂ I2 implies C(〈LT(I2)〉) ⊂ C(〈LT(I1)〉) in n
≥0.

b. Show that for s ≥ 0, the affine Hilbert functions satisfy the inequality

aHFI2
(s) ≤ aHFI1

(s)

c. From part (b), deduce the desired statement about the degrees of the affine Hilbert

polynomials. Hint: Argue by contradiction and consider the values of the polynomials as

s → ∞.
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d. If I1 ⊂ I2 are homogeneous ideals in k[x0, . . . , xn], prove an analogous inequality for

the degrees of the Hilbert polynomials of I1 and I2.

9. Use Definition 7 to show that a point p = (a1, . . . , an) ∈ kn gives a variety of dimension

zero. Hint: Use Exercise 7 of Chapter 4, §5 to describe I({p}).
10. Let I ⊂ k[x1, . . . , xn] be a monomial ideal, and assume that k is an infinite field. In this

exercise, we will study I(V(I )).

a. Show that I(V(xi1 , . . . , xir )) = 〈xi1 , . . . , xir 〉. Hint: Use Proposition 5 of Chapter 1, §1.

b. Show that an intersection of monomial ideals is a monomial ideal. Hint: Use Lemma 3

of Chapter 2, §4.

c. Show that I(V(I )) is a monomial ideal. Hint: Use parts(a) and (b) together with Theorem

15 of Chapter 4, §3.

d. The final step is to show that I(V(I )) = √
I . We know that

√
I ⊂ I(V(I )), and since

I(V(I )) is a monomial ideal, you need only prove that xα ∈ I(V(I )) implies that xrα ∈ I
for some r > 0. Hint: If I = 〈m1, . . . , mt 〉 and xrα /∈ I for r > 0, show that for every j ,

there is xi j such that xi j divides m j but not xα . Use xi1 , . . . , xit to obtain a contradiction.

e. Let 2 be a field with of two elements and let I = 〈x〉 ⊂ 2[x, y]. Show that I(V(I )) =
〈x, y2 − y〉. This is bigger than

√
I and is not a monomial ideal.

11. Let I = 〈x2 + y2〉 ⊂ [x, y].

a. Show carefully that deg aHPI = 1.

b. Use Exercise 9 to show that dim V(I ) = 0.

12. Compute the dimension of the affine varieties defined by the following ideals. You may

assume that k is algebraically closed.

a. I = 〈xz, xy − 1〉 ⊂ k[x, y, z].

b. I = 〈zw − y2, xy − z3〉 ⊂ k[x, y, z, w].

13. Consider the polynomial ring k[x0, . . . , xn].

a. Given an example to show that the set of polynomials of total degree s is not closed under

addition and, hence, does not form a vector space.

b. Show that the set of homogeneous polynomials of total degree s (together with the zero

polynomial) is a vector space over k.

c. Use Lemma 5 of §2 to show that this vector space has dimension
(n+s

s

)
. Hint: Consider

the number of polynomials of total degree ≤ s and ≤ s − 1.

d. Give a second proof of the dimension formula of part (c) using the isomorphism of

Exercise 20 below.

14. If I is a homogeneous ideal, show that the Hilbert polynomials HPI and HP√
I have the

same degree. Hint: The quickest way is to use Theorem 12.

15. We will study when the Hilbert polynomial is zero.

a. If I ⊂ k[x0, . . . , xn] is a homogeneous ideal, prove that 〈x0, . . . xn〉r ⊂ I for some r ≥ 0

if and only if the Hilbert polynomial of I is the zero polynomial.

b. Conclude that if V ⊂ n(k) is a variety, then V = ∅ if and only if its Hilbert polynomial

is the zero polynomial. Thus, the empty variety in n(k) does not have a dimension.

16. Compute the dimension of the following projective varieties. Assume that k is algebraically

closed.

a. I = 〈x2 − y2, x3 − x2 y + y3〉 ⊂ k[x, y, z].

b. I = 〈y2 − xz, x2 y − z2w, x3 − yzw〉 ⊂ k[x, y, z, w].

17. In this exercise, we will see that in general, there is no relation between the number of

variables n, the number r of polynomials in a basis of I , and the dimension of V = V(I ).

Let V ⊂ 3(k) be the curve given by the projective parametrization x = t3u2, y = t4u, z =
t5, w = u5. Since this is a curve in 3-dimensional space, our intuition would lead us to

believe that V should be defined by two equations. Assume that k is algebraically closed.
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a. Use Theorem 12 of Chapter 8, §5 to find an ideal I ⊂ k[x, y, z, w] such that V = V(I )

in 3(k). If you use grevlex for a certain ordering of the variables, you will get a basis of

I containing three elements.

b. Show that I2 is 1-dimensional and I3 is 6-dimensional.

c. Show that I cannot be generated by two elements. Hint: Suppose that I = 〈A, B〉, where

A and B are homogeneous. By considering I2, show that A or B must be a multiple of

y2 − xz, and then derive a contradiction by looking at I3.

A much more difficult question would be to prove that there are no two homogeneous

polynomials A, B such that V = V(A, B).

18. This exercise is concerned with the proof of part (i) of Theorem 12.

a. Use the methods of §2 to show that HFI (s) = aHFI (s) − aHFI (s − 1) whenever I is a

monomial ideal.

b. Prove that HFI (s) = aHFI (s) − aHFI (s − 1) for an arbitrary homogeneous ideal I .

19. If V ⊂ n(k) is a nonempty projective variety and CV ⊂ kn+1 is its affine cone, then prove

that Ip(V ) = Ia(CV ) in k[x0, . . . , xn].

20. This exercise is concerned with the proof of part (ii) of Theorem 12.

a. Show that the maps φ and ψ defined in (7) are linear maps and verify that they are

inverses of each other.

b. Prove (8) and conclude that φ : I≤s → I h
s is an isomorphism whose inverse is ψ .

§4 Elementary Properties of Dimension

Using the definition of the dimension of a variety from §3, we can now state several
basic properties of dimension. As in §3, we assume that the field k is infinite.

Proposition 1. Let V1 and V2 be projective or affine varieties. If V1 ⊂ V2, then
dim V1 ≤ dim V2.

Proof. We leave the proof to the reader as Exercise 1. �

We next will study the relation between the dimension of a variety and the number
of defining equations. We begin with the case where V is defined by a single equation.

Proposition 2. Let k be an algebraically closed field and let f ∈ k[x0, . . . , xn] be a
nonconstant homogeneous polynomial. Then the dimension of the projective variety in

n(k) defined by f is

dim V( f ) = n − 1.

Proof. Fix a monomial order > on k[x0, . . . , xn]. Since k is algebraically closed,
Theorem 11 of §3 says the dimension of V( f ) is the maximum dimension of a pro-
jective coordinate subspace contained in V(〈LT(I )〉), where I = 〈 f 〉. One can check
that 〈LT(I )〉 = 〈LT( f )〉, and since LT( f ) is a nonconstant monomial, the projective va-
riety V(LT( f )) is a union of subspaces of n(k) of dimension n − 1. It follows that
dim V(I ) = n − 1. �
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Thus, when k is algebraically closed, a hypersurface V( f ) in n always has dimen-
sion n − 1. We leave it as an exercise for the reader to prove the analogous statement
for affine hypersurfaces.

It is important to note that these results are not valid if k is not algebraically closed.
For instance, let I = 〈x2 + y2〉 in [x, y]. In §3, we saw that V( f ) = {(0, 0)} ⊂ 2

has dimension 0, yet Proposition 2 would predict that the dimension was 1. In fact, over
a nonalgebraically closed field, the variety in kn or n defined by a single polynomial
can have any dimension between 0 and n − 1.

The following theorem establishes the analogue of Proposition 2 when the ambient
space n(k) is replaced by an arbitrary variety V . Note that if I is an ideal and f is a
polynomial, then V(I + 〈 f 〉) = V(I ) ∩ V( f ).

Theorem 3. Let k be an algebraically closed field and let I be a homogeneous ideal in
k[x0, . . . , xn]. If dim V(I ) > 0 and f is any nonconstant homogeneous polynomial, then

dim V(I ) ≥ dim V(I + 〈 f 〉) ≥ dim V(I ) − 1

Proof. To compute the dimension of V(I + 〈 f 〉), we will need to compare the Hilbert
polynomials HPI and HPI+〈 f 〉. We first note that since I ⊂ I + 〈 f 〉, Exercise 8 of §3
implies that

deg HPI ≥ deg HPI+〈 f 〉,

from which we conclude that dim V(I ) ≥ dim V(I + 〈 f 〉) by Theorem 11 of §3.
To obtain the other inequality, suppose that f has total degree r > 0. Fix a total

degree s ≥ r and consider the map

π : k[x0, . . . , xn]s/Is −→ k[x0, . . . , xn]s/(I + 〈 f 〉)s

which sends [g] ∈ k[x0, . . . , xn]s/Is to π ([g]) = [g] ∈ k[x0, . . . , xn]s/(I + 〈 f 〉)s . In
Exercise 4, you will check that π is a well-defined linear map. It is easy to see that π

is onto, and to investigate its kernel, we will use the map

α f : k[x0, . . . , xn]s−r/Is−r −→ k[x0, . . . , xn]s/Is

defined by sending [h] ∈ k[x0, . . . , xn]s−r/Is−r to α f ([h]) = [ f h] ∈ k[x0, . . . , xn]s/Is .
In Exercise 5, you will show that α f is also a well-defined linear map.

We claim that the kernel of π is exactly the image of α f , i.e., that

α f (k[x0, . . . , xn]s−r/Is−r ) = {[g] : π ([g]) = [0] in k[x0, . . . , xn]s/(I + 〈 f 〉)s}.(1)

To prove this, note that if h ∈ k[x0, . . . , xn]s−r , then f h ∈ (I + 〈 f 〉)s and, hence,
π ([ f h]) = [0] in k[x0, . . . , xn]s/(I + 〈 f 〉)s . Conversely, if g ∈ k[x0, . . . , xn]s and
π [g]) = [0], then g ∈ (I + 〈 f 〉)s . This means g = g′ + f h for some g′ ∈ I . If we write
g′ = ∑

i g′
i and h = ∑

i hi as sums of homogeneous polynomials, where g′
i and hi have

total degree i , it follows that g = g′
s + f hs−r since g and f are homogeneous. Since I is

a homogeneous ideal, we have g′
s ∈ Is , and it follows that [g] = [ f hs−r ] = α f ([hs−r ])

in k[x0, . . . , xn]s/Is . This shows that [g] is in the image of α f and completes the proof
of (1).
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Since π is onto and we know its kernel by (1), the dimension theorem for linear
mappings shows that

dim k[x0, . . . , xn]s/Is =dim α f (k[x0, . . . , xn]s−r/Is−r )+dim(k[x0, . . . , xn]s/I+〈 f 〉)s .

Now certainly,

dim α f (k[x0, . . . , xn]s−r/Is−r ) ≤ dim k[x0, . . . , xn]s−r/Is−r ,(2)

with equality if and only if α f is one-to-one. Hence,

dim k[x0, . . . , xn]s/(I + 〈 f 〉)s ≤ dim k[x0, . . . , xn]s/Is − dim k[x0, . . . , xn]s−r/Is−r .

In terms of Hilbert functions, this tells us that

HFI+〈 f 〉(s) ≥ HFI (s) − HFI (s − r )

whenever s ≥ r . Thus, if s is sufficiently large, we obtain the inequality

HPI+〈 f 〉(s) ≤ HPI (s) − HPI (s − r )(3)

for the Hilbert polynomials.
Suppose that HPI has degree d. Then it is easy to see that the polynomial on the

right-hand side of (3) had degree d − 1 (the argument is the same as used in Exercise
15 of §2). Thus, (3) shows that HPI+〈 f 〉(s) is ≥ a polynomial of degree d − 1 for s
sufficiently large, which implies deg HPI+〈 f 〉(s) ≥ d − 1 [see, for example, part (c) of
Exercise 8 of §3]. Since k is algebraically closed, we conclude that dim V(I + 〈 f 〉) ≥
dim V(I ) − 1by Theorem 8 of §3. �

By carefully analyzing the proof of Theorem 3, we can give a condition that ensures
that dim V(I + 〈 f 〉) = dim V(I ) − 1.

Corollary 4. Let k be an algebraically closed field and let I ⊂ k[x0, . . . , xn] be a
homogeneous ideal. Let f be a nonconstant homogeneous polynomial whose class in
the quotient ring k[x0, . . . , xn]/I is not a zero divisor. Then

dim V(I + 〈 f 〉) = dim V(I ) − 1

when dim V(I ) > 0, and V(I + 〈 f 〉) = ∅ when dim V(I ) = 0.

Proof. As we observed in the proof of Theorem 3, the inequality (2) is an
equality if the multiplication map α f is one-to-one. We claim that the latter is
true if [ f ] ∈ k[x0, . . . , xn]/I is not a zero divisor. Namely, suppose that [h] ∈
k[x0, . . . , xn]s−r/Is−r is nonzero. This implies that h /∈ Is−r and, hence, h /∈ I since
Is−r = I ∩ k[x0, . . . , xn]s−r . Thus, [h] ∈ k[x0, . . . , xn]/I is nonzero, so that [ f ][h] =
[ f h] is nonzero in k[x0, . . . , xn]/I by our assumption on f . Thus, f h /∈ I and, hence,
α f ([h]) = [ f h] is nonzero in k[x0, . . . , xn]s/Is . This shows that α f is one-to-one.

Since (2) is an equality, the proof of Theorem 3 shows that we also get the equality

dim(k[x0, . . . , xn]s/(I + 〈 f 〉)s = dim k[x0, . . . , xn]s/Is − dim k[x0, . . . , xn]s−r/Is−r

when s ≥ r . In terms of Hilbert polynomials, this says HPI+〈 f 〉(s) = HPI (s) −
HPI (s − r ), and it follows immediately that dim V(I + 〈 f 〉) = dim V(I ) − 1. �
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We remark that Theorem 3 can fail for affine varieties, even when k is algebraically
closed. For example, consider the ideal I = 〈xz, yz〉 ⊂ [x, y, z]. One easily sees that
in 3, we have V(I ) = V(z) ∪ V (x, y), so that V(I ) is the union of the (x, y)-plane and
the z-axis. In particular, V(I ) has dimension 2 (do you see why?). Now, let f = z − 1 ∈

[x, y, z]. Then V( f ) is the plane z = 1 and it follows that V(I + 〈 f 〉) = V(I ) ∩ V( f )
consists of the single point (0, 0, 1) (you will check this carefully in Exercise 7). By
Exercise 9 of §3, we know that a point has dimension 0. Yet Theorem 3 would predict
that V(I + 〈 f 〉) had dimension at least 1.

What goes “wrong” here is that the planes z = 0 and z = 1 are parallel and, hence,
do not meet in affine space. We are missing a component of dimension 1 at infinity. This
is an example of the way dimension theory works more satisfactorily for homogeneous
ideals and projective varieties. It is possible to formulate a version of Theorem 3 that
is valid for affine varieties, but we will not pursue that question here.

Our next result extends Theorem 3 to the case of several polynomials f1, . . . , fr .

Proposition 5. Let k be an algebraically closed field and let I be a homogeneous
ideal in k[x0, . . . , xn]. Let f1, . . . , fr be nonconstant homogeneous polynomials in
k[x0, . . . , xn] such that r ≤ dim V(I ). Then

dim V(I + 〈 f1, . . . , fr 〉) ≥ dim V(I ) − r.

Proof. The result follows immediately from Theorem 3 by induction on r . �

In the exercises, we will ask you to derive a condition on the polynomials f1, . . . , fr

which guarantees that the dimension of V( f1, . . . , fr ) is exactly equal to n − r .
Our next result concerns varieties of dimension 0.

Proposition 6. Let V be a nonempty affine or projective variety. Then V consists of
finitely many points if and only if dim V = 0.

Proof. We will give the proof only in the affine case. Let > be a graded order on
k[x1, . . . , xn]. If V is finite, then let a j , for j = 1, . . . , mi , be the distinct elements of
k appearing as i-th coordinates of points of V . Then

f =
mi∏
j=1

(xi − a j ) ∈ I(V )

and we conclude that LT( f ) = xmi
i ∈ 〈LT(I(V ))〉. This implies that V(〈LT(I(V ))〉) = {0}

and then Theorem 8 of §3 implies that dim V = 0.
Now suppose that dim V = 0. Then the affine Hilbert polynomial of I(V ) is a constant

C , so that

dim k[x1, . . . , xn]≤s/I(V )≤s = C

for s sufficiently large. If we also have s ≥ C , then the classes [1], [xi ], [x2
i ], . . . , [xs

i ] ∈
k[x1, . . . , xn]≤s/I(V )≤s are s + 1 vectors in a vector space of dimension C ≤ s and,
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hence, they must be linearly dependent. But a nontrivial linear relation

[0] =
s∑

j=0

a j
[
x j

i

] =
[

s∑
j=0

a j x
j

i

]

means that �s
j=0a j x

j
i is a nonzero polynomial in I(V )≤s . This polynomial vanishes on

V , which implies that there are only finitely many distinct i-th coordinates among the
points of V . Since this is true for all 1 ≤ i ≤ n, it follows that V must be finite. �

If, in addition, k is algebraically closed, then we see that the six conditions of Theorem
6 of Chapter 5, §3 are equivalent to dim V = 0. In particular, given any defining ideal
I of V , we get a simple criterion for detecting when a variety has dimension 0.

Now that we understand varieties of dimension 0, let us record some interesting
properties of positive dimensional varieties.

Proposition 7. Let k be algebraically closed.
(i) Let V ⊂ n(k) be a projective variety of dimension > 0. Then V ∩ V( f ) 	= ∅ for

every nonconstant homogeneous polynomial f ∈ k[x0, . . . , xn]. Thus, a positive
dimensional projective variety meets every hypersurface in n(k).

(ii) Let W ⊂ kn be an affine variety of dimension > 0. If W is the projective closure of
W in n(k), then W 	= W . Thus, a positive dimensional affine variety always has
points at infinity.

Proof. (i) Let V = V(I ). Since dim V > 0, Theorem 3 shows that dim V ∩ V( f ) ≥
dim V − 1 ≥ 0. Let us check carefully that this guarantees V ∩ V( f ) 	= ∅.

If V ∩ V( f ) = ∅, then the projective Nullstellensatz implies that 〈x0, . . . , xn〉r ⊂
I + 〈 f 〉 for some r ≥ 0. By Exercise 15 of §3, it follows that HPI+〈 f 〉 is the zero
polynomial. Yet if you examine the proof of Theorem 3, the inequality given for
HPI+〈 f 〉 shows that this polynomial cannot be zero when dim V > 0. We leave the
details as an exercise.

(ii) The points at infinity of W are W ∩ V(x0), where V(x0) is the hyperplane at
infinity. By Theorem 12 of §3, we have dim W = dim W > 0, and then (i) implies that
W ∩ V(x0) 	= ∅. �

We next study the dimension of the union of two varieties.

Proposition 8. If V and W are varieties either both in kn or both in n(k), then

dim(V ∪ W ) = max(dim V, dim W ).

Proof. The proofs for the affine and projective cases are nearly identical, so we will
give only the affine proof.

Let I = I(V ) and J = I(W ), so that dim V = deg aHPI and dim W = deg aHPJ . By
Theorem 15 of Chapter 4, §3, I(V ∪ W ) = I(V ) ∩ I(W ) = I ∩ J . It is more convenient
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to work with the product ideal I J and we note that

I J ⊂ I ∩ J ⊂
√

I J

(see Exercise 15). By Exercise 8 of §3, we conclude that

deg aHP√
I J ≤ deg aHPI∩J ≤ deg aHPI J .

Proposition 6 of §3 says that the outer terms are equal. We conclude that dim (V ∪ W ) =
deg aHPI J .

Now fix a graded order > on k[x1, . . . , xn]. By Propositions 3 and 4 of §3, it follows
that dim V , dim W , and dim(V ∪ W ) are given by the maximal dimension of a coor-
dinate subspace contained in V(〈LT(I )〉),V(〈LT(J )〉) and V(〈LT(I J )〉) respectively. In
Exercise 16, you will prove that

〈LT(I J )〉 ⊃ 〈LT(I )〉 · 〈LT(J )〉.
This implies

V(〈LT(I J )〉) ⊂ V(〈LT(I )〉) ∪ V(〈LT(J )〉).
Since k is infinite, every coordinate subspace is irreducible (see Exercise 7 of §1), and as
a result, a coordinate subspace is contained in V(〈LT(I J )〉) lies in either V(〈LT(I )〉) or
V(〈LT(J )〉). This implies dim(V ∪ W ) ≤ max (dim V, dim W ). The opposite inequality
follows from Proposition 1, and the proposition is proved. �

This proposition has the following useful corollary.

Corollary 9. The dimension of a variety is the largest of the dimensions of its irre-
ducible components.

Proof. If V = V1 ∪ · · · ∪ Vr is the decomposition of V into irreducible components,
then Proposition 8 and an induction on r shows that

dim V = max{dim V1, . . . , dim Vr },
as claimed. �

This corollary allows us to reduce to the case of an irreducible variety when com-
puting dimensions. The following result shows that for irreducible varieties, the notion
of dimension is especially well-behaved.

Proposition 10. Let k be an algebraically closed field and let V ⊂ n(k) be an irre-
ducible variety.
(i) If f ∈ k[x0, . . . , xn] is a homogeneous polynomial which does not vanish identi-

cally on V , then dim(V ∩ V( f )) = dim V −1 when dim V >0, and V ∩ V( f ) = ∅
when dim V = 0.

(ii) If W ⊂ V is a variety such that W 	= V , then dim W < dim V .

Proof. (i) By Proposition 4 of Chapter 5, §1, we know that I(V ) is a prime ideal and
k[V ] ∼= k[x0, . . . , xn]/I(V ) is an integral domain. Since f /∈ I(V ), the class of f is
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nonzero in k[x0, . . . , xn]/I(V ) and, hence, is not a zero divisor. The desired conclusion
then follows from Corollary 4.

(ii) If W is a proper subvariety of V , then we can find f ∈ I(W ) − I(V ). Thus,
W ⊂ V ∩ V( f ), and it follows from (i) and Proposition 1 that

dim W ≤ dim(V ∩ V( f )) = dim V − 1 < dim V .

This completes the proof of the proposition. �

Part (i) of Proposition 10 asserts that when V is irreducible and f does not vanish
on V , then some component of V ∩ V( f ) has dimension dim V − 1. With some more
work, it can be shown that every component of V ∩ V( f ) has dimension dim V − 1.
See, for example, Theorem 3.8 in Chapter IV of KENDIG (1977) or Theorem 5 of
Chapter 1, §6 of SHAFAREVICH (1974).

In the next section, we will see that there is a way to understand the meaning of the
dimension of an irreducible variety V in terms of the coordinate ring k[V ] and the field
of rational functions k(V ) of V that we introduced in Chapter 5.

EXERCISES FOR §4

1. Prove Proposition 1. Hint: Use Exercise 8 of the previous section.

2. Let k be an algebraically closed field. If f ∈ k[x1, . . . , xn] is a nonconstant polynomial,

show that the affine hypersurface V( f ) ⊂ kn has dimension n − 1.

3. In 4, give examples of four different affine varieties, each defined by a single equation,

that have dimensions 0, 1, 2, 3, respectively.

4. In this exercise, we study the mapping

π : k[x0, . . . , xn]s/Is −→ k[x0, . . . , xn]s/(I + 〈 f 〉)s

defined by π ([g]) = [g] for all g ∈ k[x0, . . . , xn]s .

a. Show that π is well-defined. That is, show that the image of the class [g] does not depend

on which representative g in the class that we choose. We call π the natural projection
from k[x0, . . . , xn]s/Is to k[x0, . . . , xn]s/(I + 〈 f 〉)s .

b. Show that π is a linear mapping of vector spaces.

c. Show that the natural projection π is onto.

5. Show that if f is a homogeneous polynomial of degree r and I is a homogeneous ideal,

then the map

α f : k[x0, . . . , xn]s−r/Is−r −→ k[x0, . . . , xn]s/Is

defined by α f ([h]) = [ f · h] is a well-defined linear mapping. That is, show that α f ([h])

does not depend on the representative h for the class and that α preserves the vector space

operations.

6. Let f ∈ k[x0, . . . , xn] be a homogeneous polynomial of total degree r > 0.

a. Find a formula for the Hilbert polynomial of 〈 f 〉. Your formula should depend only on

n and r (and, of course, s). In particular, all such polynomials f have the same Hilbert

polynomial. Hint: Examine the proofs of Theorem 3 and Corollary 4 in the case when

I = {0}.
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b. More generally, suppose that V = V(I ) and that the class of f is not a zero divisor in

k[x0, . . . , xn]/I . Then show that the Hilbert polynomial of I + 〈 f 〉 depends only on I
and r.

If we vary f , we can regard the varieties V( f ) ⊂ n(k) as an algebraic family of hyper-

surfaces. Similarly, varying f gives the family of varieties V ∩ V( f ). By parts (a) and (b),

the Hilbert polynomials are constant as we vary f . In general, once a technical condition

called “flatness” is satisfied, Hilbert polynomials are constant on any algebraic families of

varieties.

7. Let I = 〈xz, yz〉. Show that V(I + 〈z − 1〉) = {(0, 0, 1)}.
8. Let R = k[x0, . . . , xn]. A sequence f1, . . . , fr of r ≤ n + 1 nonconstant homogeneous

polynomials is called an R-sequence if the class [ f j+1] is not a zero divisor in R/〈 f1, . . . , f j 〉
for each 1 ≤ j < r .

a. Show for example that for r ≤ n, x0, . . . , xr is an R-sequence.

b. Show that if k is algebraically closed and f1, ..., fr is an R-sequence, then

dim V( f1, . . . , fr ) = n − r.

Hint: Use Corollary 4 and induction on r . Work with the ideals I j = 〈 f1, . . . , f j 〉 for

1 ≤ j ≤ r .

9. Let R = k[x0, . . . , xn] be the polynomial ring. A homogeneous ideal I is said to be a

complete intersection if it can be generated by an R-sequence. A projective variety V is

called a complete intersection if I(V ) is a complete intersection.

a. Show that every irreducible linear subspace of n(k) is a complete intersection.

b. Show that hypersurfaces are complete intersections when k is algebraically closed.

c. Show that projective closure of the union of the (x, y)- and (z, w)-planes in k4 is not a

complete intersection.

d. Let V be the affine twisted cubic V(y − x2, z − x3) in k3. Is the projective closure of V
a complete intersection?

Hint for parts (c) and (d): Use the technique of Exercise 17 of §3.

10. Suppose that I ⊂ k[x1, . . . , xn] is an ideal. In this exercise, we will prove that the affine

Hilbert polynomial is constant if and only if the quotient ring k[x1, . . . , xn]/I is finite-

dimensional as a vector space over k. Furthermore, when this happens, we will show that

the constant is the dimension of k[x1, . . . , xn]/I as a vector space over k.

a. Let αs : k[x1, . . . , xn]≤s/I≤s → k[x1, . . . , xn]/I be the map defined by αs([ f ]) = [ f ].

Show that αs is well-defined and one-to-one.

b. If k[x1, . . . , xn]/I is finite-dimensional, show that αs is an isomorphism for s sufficiently

large and conclude that the affine Hilbert polynomial is constant (and equals the dimen-

sion of k[x1, . . . , xn]/I ). Hint: Pick a basis [ f1], . . . , [ fm] of k[x1, . . . , xn]/I and let s
be bigger than the total degrees of f1, . . . , fm .

c. Now suppose the affine Hilbert polynomial is constant. Show that if s ≤ t , the image of

αt contains the image of αs . If s and t are large enough, conclude that the images are

equal. Use this to show that αs is an isomorphism for s sufficiently large and conclude

that k[x1, . . . , xn]/I is finite-dimensional.

11. Let V ⊂ kn be finite. In this exercise, we will prove that k[x1, . . . , xn]/I(V ) is finite-

dimensional and that its dimension is |V |, the number of points in V . If we combine this

with the previous exercise, we see that the affine Hilbert polynomial of I(V ) is the constant

|V |. Suppose that V = {p1, . . . , pm}, where m = |V |.
a. Define a map φ : k[x1, . . . , xn]/I(V ) → km by φ([ f ]) = ( f (p1), . . . , f (pm)). Show that

φ is a well-defined linear map and show that it is one-to-one.

b. Fix i and let Wi = {p j : j 	= i}. Show that 1 ∈ I(Wi ) + I({pi }). Hint: Show that I({pi })
is a maximal ideal.
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c. By part (b), we can find fi ∈ I(Wi ) and gi ∈ I({pi }) such that fi + gi = 1. Show that

φ( fi ) is the vector in km which has a 1 in the i-th coordinate and 0’s elsewhere.

d. Conclude that φ is an isomorphism and that dim k[x1, . . . , xn]/I(V ) = |V |.
12. Let I ⊂ k[x0, . . . , xn] be a homogeneous ideal. In this exercise we will study the geometric

significance of the coefficient b0 of the Hilbert polynomial

HPI (s) =
d∑

i=0

bi

(
s

d − i

)
.

We will call b0 the degree of I . The degree of a projective variety is then defined to be the

degree of I(V ) and, as we will see, the degree is in a sense a generalization of the total degree

of the defining equation for a hypersurface. Note also that we can regard Exercises 10 and

11 as studying the degrees of ideals and varieties with constant affine Hilbert polynomial.

a. Show that the degree of the ideal 〈 f 〉 is the same as the total degree of f . Also, if k is

algebraically closed, show that the degree of the hypersurface V( f ) is the same as the

total degree of fred , the reduction of f defined in Chapter 4, §2. Hint: Use Exercise 6.

b. Show that if I is a complete intersection (Exercise 9) generated by the elements of an

R-sequence f1, ..., fr , then the degree of I is the product

deg f1 · deg f2 · · · deg fr ,

of the total degrees of the fi . Hint: Look carefully at the proof of Theorem 3. The hint

for Exercise 8 may be useful.

c. Determine the degree of the projective closure of the standard twisted cubic.

13. Verify carefully the claim made in the proof of Proposition 7 that HPI+〈 f 〉 cannot be the zero

polynomial when dim V > 0. Hint: Look at the inequality (3) from the proof of Theorem 3.

14. This exercise will explore what happens if we weaken the hypotheses of Proposition 7.

a. Let V = V(x) ⊂ k2. Show that V ∩ V(x − 1) = ∅ and explain why this does not contra-

dict part (a) of the proposition.

b. Let W = V(x2 + y2 − 1) ⊂ 2. Show that W = W in 2( ) and explain why this does

not contradict part (b) of the proposition.

15. If I, J ⊂ k[x1, . . . , xn] are ideals, prove that I J ⊂ I ∩ J ⊂ √
I J .

16. Show that if I and J are any ideals and > is any monomial ordering, then

〈LT(I )〉 · 〈LT(J )〉 ⊂ 〈LT(I J )〉.

17. Using Proposition 10, we can get an alternative definition of the dimension of an irre-

ducible variety. We will assume that the field k is algebraically closed and that V ⊂ n(k)

is irreducible.

a. If dim V > 0, prove that there is an irreducible variety W ⊂ V such that dim W =
dim V − 1. Hint: Use Proposition 10 and look at the irreducible components of V ∩ V( f ).

b. If dim V = m, prove that one can find a chain of m + 1 irreducible varieties

V0 ⊂ V1 ⊂ · · · ⊂ Vm = V

such that Vi 	= Vi+1 for 0 ≤ i ≤ m − 1.

c. Show that it is impossible to find a similar chain of length greater than m + 1 and

conclude that the dimension of an irreducible variety is one less than the length of the

longest strictly increasing chain of irreducible varieties contained in V .

18. Prove an affine version of part (ii) of Proposition 10.
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§5 Dimension and Algebraic Independence

In §3, we defined the dimension of an affine variety as the degree of the affine Hilbert
polynomial. This was useful for proving the properties of dimension in §4, but Hilbert
polynomials do not give the full story. In algebraic geometry, there are many ways to
formulate the concept of dimension and we will explore two of the more interesting
approaches in this section and the next.

If V ⊂ kn is an affine variety, recall from Chapter 5 that the coordinate ring k[V ]
consists of all polynomial functions on V . This is related to the ideal I(V ) by the natural
ring isomorphism k[V ] ∼= k[x1, . . . , xn]/I(V ) (which is the identity on k) discussed in
Theorem 7 of Chapter 5, §2. To see what k[V ] has to do with dimension, note that for
any s ≥ 0, there is a well-defined linear map

k[x1, . . . , xn]≤s/I(V )≤s −→ k[x1, . . . , xn]/I(V ) ∼= k[V ](1)

which is one-to-one (see Exercise 10 of §4). Thus, we can regard k[x1,. . . , xn]≤s/I(V )≤s

as a finite-dimensional “piece” of k[V ] that approximates k[V ] more and more closely
as s gets larger. Since the degree of aHPI(V ) measures how fast these finite-dimensional
approximations are growing, we see that dim V tells us something about the “size” of
k[V ].

This discussion suggests that we should be able to formulate the dimension of V
directly in terms of the ring k[V ]. To do this, we will use the notion of algebraically
independent elements.

Definition 1. We say that elements φ1, . . . , φr ∈ k[V ] are algebraically independent
over k if there is no nonzero polynomial p of r variables with coefficients in k such that
p(φ1, . . . , φr ) = 0 in k[V ].

Note that if φ1, . . . , φr ∈ k[V ] are algebraically independent over k, then the φi ’s
are distinct and nonzero. It is also easy to see that any subset of {φ1, . . . , φr } is also
algebraically independent over k (see Exercise 1 for the details).

The simplest example of algebraically independent elements occurs when V = kn .
If k is an infinite field, we have I(V ) = {0} and, hence, k[V ] = k[x1, . . . , xn]. Here,
the elements x1, . . . , xn are algebraically independent over k since p(x1, . . . , xn) = 0
means that p is the zero polynomial.

For another example, let V be the twisted cubic in 3, so that I(V )=〈y−x2, z−x3〉.
Let us show that [x] ∈ [V ] is algebraically independent over . Suppose p is a
polynomial with coefficients in such that p([x]) = [0] in [V ]. By the way we
defined the ring operations in [V ], this means [p(x)] = [0], so that p(x) ∈ I(V ). But
it is easy to show that [x] ∩ 〈y − x2, z − x3〉 = {0}, which proves that p is the zero
polynomial. On the other hand, we leave it to the reader to verify that [x], [y] ∈ [V ]
are not algebraically independent over since [y] − [x]2 = [0] in [V ].

We can relate the dimension of V to the number of algebraically independent ele-
ments in the coordinate ring k[V ] as follows.



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX January 5, 2007 9:41

478 9. The Dimension of a Variety

Theorem 2. Let V ⊂ kn be an affine variety. Then the dimension of V equals the
maximal number of elements of k[V ] which are algebraically independent over k.

Proof. We will first show that if d = dim V , then we can find d elements of k[V ] which
are algebraically independent over k. To do this, let I = I(V ) and consider the ideal
of leading terms 〈LT(I )〉 for some graded order on k[x1, . . . , xn]. By Theorem 8 of
§3, we know that d is the maximum dimension of a coordinate subspace contained
in V(〈LT(I )〉). A coordinate subspace W ⊂ V(〈LT(I )〉) of dimension d is defined by
the vanishing of n − d coordinates, so that we can write W = V(x j : j /∈ {i1, . . . , id})
for some 1 ≤ i1 < · · · < id ≤ n. We will show that [xi1

], . . . , [xid ] ∈ k[V ] are alge-
braically independent over k.

If we let p ∈ kn be the point whose i j -th coordinate is 1 for 1 ≤ j ≤ d and whose
other coordinates are 0, then p ∈ W ⊂ V(〈LT(I )〉). Then every monomial in 〈LT(I )〉
vanishes at p and, hence, no monomial in 〈LT(I )〉 can involve only xi1

, . . . , xid (this is
closely related to the proof of Proposition 2 of §2). Since 〈LT(I )〉 is a monomial ideal,
this implies that 〈LT(I )〉 ∩ k[xi1

, . . . , xid ] = {0}. Then

I ∩ k[xi1
, . . . , xid ] = {0}(2)

since a nonzero element f ∈ I ∩ k[xi1
, . . . , xid ] would give the nonzero element

LT( f ) ∈ 〈LT(I )〉 ∩ k[xi1
, . . . , xid ].

We can now prove that [xi1
], . . . , [xid ] ∈ k[V ] are algebraically independent over

k. Let p be a polynomial with coefficients in k such that p([xi1
], . . . , [xid ]) = [0].

Then [p(xi1
, . . . , xid )] = [0] in k[V ], which shows that p(xi1

, . . . , xid ) ∈ I . By (2), it
follows that p(xi1

, . . . , xid ) = 0, and since xi1
, . . . , xid are variables, we see that p is the

zero polynomial. Since d = dim V , we have found the desired number of algebraically
independent elements.

The final step in the proof is to show that if r elements of k[V ] are algebraically
independent over k, then r ≤ dim V . So assume that [ f1], . . . , [ fr ] ∈ k[V ] are alge-
braically independent. Let N be the largest of the total degrees of f1, . . . , fr and let
y1, . . . , yr be new variables. If p ∈ k[y1, . . . , yr ] is a polynomial of total degree ≤ s,
then it is easy to check that the polynomial p( f1, . . . , fr ) ∈ k[x1, . . . , xn] has total
degree ≤ Ns (see Exercise 2). Then consider the map

α : k[y1, . . . , yr ]≤s −→ k[x1, . . . , xn]≤Ns/I≤Ns(3)

which sends p(y1, . . . , yr ) ∈ k[y1, . . . , yr ]≤s to the coset [p( f1, . . . , fr )] ∈
k[x1, . . . , xn]≤Ns/I≤Ns . We leave it as an exercise to show that α is a well-defined
linear map.

We claim that α is one-to-one. To see why, suppose that p ∈ k[y1, . . . , yr ]≤s and
[p( f1, . . . , fr )] = [0] in k[x1, . . . , xn]≤Ns/I≤Ns . Using the map (1), it follows that

[p( f1, . . . , fr )] = p([ f1], . . . , [ fr ]) = [0] in k[x1, . . . , xn]/I ∼= k[V ].

Since [ f1], . . . , [ fr ] are algebraically independent and p has coefficients in k, it follows
that p must be the zero polynomial. Hence, α is one-to-one.



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX January 5, 2007 9:41

§5. Dimension and Algebraic Independence 479

Comparing dimensions in (3), we see that

aHFI (Ns) = dim k[x1, . . . , xn]≤Ns/(I≤Ns) ≥ dim k[y1, . . . , yr ]≤s .(4)

Since y1, . . . , yr are variables, Lemma 4 of §2 shows that the dimension of
k[y1, . . . , yr ]≤s is

(r+s
s

)
, which is a polynomial of degree r in s. In terms of the affine

Hilbert polynomial, this implies

a HP1(Ns) ≥
(

r + s

s

)
= a polynomial of degree r in s

for s sufficiently large. It follows that aHPI (Ns) and, hence, aHPI (s) must have degree
at least r . Thus, r ≤ dim V , which completes the proof of the theorem. �

As an application, we can show that isomorphic varieties have the same dimension.

Corollary 3. Let V and V ′ be affine varieties which are isomorphic (as defined in
Chapter 5, §4). Then dim V = dim V ′.

Proof. By Theorem 9 of Chapter 5, §4 we know V and V ′ are isomorphic if and
only if there is a ring isomorphism α : k[V ] → k[V ′] which is the identity on k.
Then elements φ1, . . . , φr ∈ k[V ] are algebraically independent over k if and only if
α(φ1), . . . , α(φr ) ∈ k[V ′] are. We leave the easy proof of this assertion as an exercise.
From here, the corollary follows immediately from Theorem 2. �

In the proof of Theorem 2, note that the d = dim V algebraically independent ele-
ments we found in k[V ] came from the coordinates. We can use this to give another
formulation of dimension.

Corollary 4. Let V ⊂ kn be an affine variety. Then the dimension of V is equal to
the largest integer r for which there exist r variables xi1

, . . . , xir such that I(V ) ∩
k[xi1

, . . . , xir ] = {0} [that is, such that I(V ) does not contain any polynomial in these
variables which is not identically zero].

Proof. First, from (2), it follows that we can find d = dim V such variables. Suppose
that we could find d + 1 variables, x j1 , . . . , x jd+1

such that I ∩ k[x j1 , . . . , x jd+1
] = {0}.

Then the argument following (2) would imply that [x j1 ], . . . , [x jd+1
] ∈ k[V ] were alge-

braically independent over k. Since d = dim V , this is impossible by Theorem 2. �

In the exercises, you will show that if k is algebraically closed, then Corollary 4
remains true if we replace I(V ) with any defining ideal I of V . Since we know how to
compute I ∩ k[xi1

, . . . , xir ] by elimination theory, Corollary 4 then gives us an alter-
native method (though not an efficient one) for computing the dimension of a variety.

We can also interpret Corollary 4 in terms of projections. If we choose r variables
xi1

, . . . , xir , then we get the projection map π : kn → kr defined by π (a1, . . . , an) =
(ai1

, . . . , air ). Also, let Ĩ = I(V ) ∩ k[xi1
, . . . , xir ] be the appropriate elimination ideal.

If k is algebraically closed, then the Closure Theorem from §2 of Chapter 3 shows that
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V( Ĩ ) ∩ kr is the smallest variety containing the projection π (V ). It follows that

Ĩ = {0} ⇐⇒ V( Ĩ ) = kr

⇐⇒ the smallest variety containing π (V ) is kr .

In general, a subset of kr is said to be Zariski dense if the smallest variety containing
it is kr . Thus, Corollary 4 shows that the dimension of V is the largest dimension of a
coordinate subspace for which the projection of V is Zariski dense in the subspace.

We can regard the above map π as a linear map from kn to itself which leaves the
i j -th coordinate unchanged for 1 ≤ j ≤ r and sends the other coordinates to 0. It is
then easy to show that π ◦ π = π and that the image of π is kr ⊂ kn (see Exercise 8).
More generally, a linear map π : kn → kn is called a projection if π ◦ π = π . If π has
rank r , then the image of π is an r -dimensional subspace H of kn , and we say that π is a
projection onto H .

Now let π be a projection onto a subspace H ⊂ kn . Under π , any variety V ⊂ kn

gives a subset π (V ) ⊂ H . Then we can interpret the dimension of V in terms of its
projections π (V ) as follows.

Proposition 5. Let k be an algebraically closed field and let V ⊂ kn be an affine
variety. Then the dimension of V is the largest dimension of a subspace H ⊂ kn for
which a projection of V onto H is Zariski dense.

Proof. If V has dimension d , then by the above remarks, we can find a projection of V
onto a d-dimensional coordinate subspace which has Zariski dense image.

Now let π : kn → kn be an arbitrary projection onto an r -dimensional subspace
H of kn . We need to show that r ≤ dim V whenever π (V ) is Zariski dense in H .
From linear algebra, we can find a basis of kn so that in the new coordinate system,
π (a1, . . . , an) = (a1, . . . , ar ) [see, for example, section 3.4 of FINKBEINER (1978)].
Since changing coordinates does not affect the dimension (this follows from Corollary
3 since a coordinate change gives isomorphic varieties), we are reduced to the case of a
projection onto a coordinate subspace, and then the proposition follows from the above
remarks. �

Let π be a projection of kn onto a subspace H of dimension r . By the Closure
Theorem from Chapter 3, §2 we know that if π (V ) is Zariski dense in H , then we can
find a proper variety W ⊂ H such that H − W ⊂ (V ). Thus, π (V ) “fills up” most of
the r -dimensional subspace H , and hence, it makes sense that this should force V to
have dimension at least r . So Proposition 5 gives a very geometric way of thinking
about the dimension of a variety.

For the final part of the section, we will assume that V is an irreducible variety. By
Proposition 4 of Chapter 5, §1, we know that I(V ) is a prime ideal and that k[V ] is an
integral domain. As in §5 of Chapter 5, we can then form the field of fractions of k[V ],
which is the field of rational functions on V and is denoted k(V ). For elements of k(V ),
the definition of algebraic independence over k is the same as that given for elements of
k[V ] in Definition 1. We can relate the dimension of V to k(V ) as follows.
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Theorem 6. Let V ⊂ kn be an irreducible affine variety. Then the dimension of V
equals the maximal number of elements of k(V ) which are algebraically independent
over k.

Proof. Let d = dim V . Since k[V ] ⊂ k(V ), any d elements of k[V ] which are alge-
braically independent over k will have the same property when regarded as elements
of k(V ). So it remains to show that if φ1, . . . , φr ∈ k(V ) are algebraically independent,
then r ≤ dim V . Each φi is a quotient of elements of k[V ], and if we pick a common
denominator f , then we can write φi = [ fi ]/[ f ] for 1 ≤ i ≤ r . Note also that [ f ] 	= [0]
in k[V ]. We need to modify the proof of Theorem 2 to take the denominator f into
account.

Let N be the largest of the total degrees of f, f1, . . . , fr , and let y1, . . . , yr be new
variables. If p ∈ k[y1, . . . , yr ] is a polynomial of total degree ≤ s, then we leave it as
an exercise to show that

f s p( f1/ f, . . . , fr/ f )

is a polynomial in k[x1, . . . , xn] of total degree ≤ Ns (see Exercise 10). Then consider
the map

β : k[y1, . . . , yr ]≤s −→ k[x1, . . . , xn]≤Ns/I≤Ns(5)

sending a polynomial p(y1, . . . , yr ) ∈ k[y1, . . . , yr ]≤s to [ f s p( f1/ f, . . . , fr/ f )] ∈
k[x1, . . . , xn]≤Ns/I≤Ns . We leave it as an exercise to show that β is a well-defined
linear map.

To show that β is one-to-one, suppose that p ∈ k[y1, . . . , yr ]≤s and that
[ f s p( f1/ f, . . . , fr/ f )] = [0] in k[x1, . . . , xn]≤Ns/I≤Ns . Using the map (1), it follows
that

[ f s p( f1/ f, . . . , fr/ f )] = [0] in k[x1, . . . , xn]/I ∼= k[V ].

However, if we work in k(V ), then we can write this as

[ f ]s p([ f1]/[ f ], . . . , [ fr ]/[ f ]) = [ f ]s p(φ1, . . . , φr ) = [0] in k(V ).

Since k(V ) is a field and [ f ] 	= [0], it follows that p(φ1, . . . , φr ) = [0]. Then p must
be the zero polynomial since φ1, . . . , φr are algebraically independent and p has coef-
ficients in k. Thus, β is one-to-one.

Once we know that β is one-to-one in (5), we get the the inequality (4), and from
here, the proof of Theorem 2 shows that dim V ≥ r . This proves the theorem. �

As a corollary of this theorem, we can prove that birationally equivalent varieties
have the same dimension.

Corollary 7. Let V and V ′ be irreducible affine varieties which are birationally equiv-
alent (as defined in Chapter 5, §5). Then dim V = dim V ′.

Proof. In Theorem 10 of Chapter 5, §5, we showed that two irreducible affine varieties
V and V ′ are birationally equivalent if and only if there is an isomorphism k(V ) ∼= k(V ′)
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of their function fields which is the identity on k. The remainder of the proof is identical
to what we did in Corollary 3. �

In field theory, there is a concept of transcendence degree which is closely related
to what we have been studying. In general, when we have a field K containing k, we
have the following definition.

Definition 8. Let K be a field containing k. Then we say that K has transcendence
degree d over k provided that d is the largest number of elements of K which are
algebraically independent over k.

If we combine this definition with Theorem 6, then for any irreducible affine variety
V , we have

dim V = the transcendence degree of k(V ) over k.

Many books on algebraic geometry use this as the definition of the dimension of an
irreducible variety. The dimension of an arbitrary variety is then defined to be the
maximum of the dimensions of its irreducible components.

For an example of transcendence degree, suppose that k is infinite, so that k(V ) =
k(x1, . . . , xn) when V = kn . Since kn has dimension n, we conclude that the field
k(x1, . . . , xn) has transcendence degree n over k. It is clear that the transcendence
degree is at least n, but it is less obvious that no n + 1 elements of k(x1, . . . , xn) can
be algebraically independent over k. So our study of dimension yields some insights
into the structure of fields.

To fully understand transcendence degree, one needs to study more about algebraic
and transcendental field extensions. A good reference is Chapters VII and X of LANG

(1965).

EXERCISES FOR §5

1. Let φ1, . . . , φr ∈ k[V ] be algebraically independent over k.

a. Prove that the φi are distinct and nonzero.

b. Prove that any nonempty subset of {φ1, . . . , φr } consists of algebraically independent

elements over k.

c. Let y1, . . . , yr be variables and consider the map α : k[y1, . . . ., yr ] → k[V ] defined by

α(p) = p(φ1, . . . , φr ). Show that α is a one-to-one ring homomorphism.

2. This exercise is concerned with the proof of Theorem 2.

a. If f1, . . . , fr ∈ k[x1, . . . , xn] have total degree ≤ N and p ∈ k[x1, . . . , xn] has total de-

gree ≤ s, show that p( f1, . . . , fr ) has total degree ≤ Ns.

b. Show that the map α defined in the proof of Theorem 2 is a well-defined linear map.

3. Complete the proof of Corollary 3.

4. Let k be an algebraically closed field and let I ⊂ k[x1, . . . , xn] be an ideal. Show that the

dimension of V(I ) is equal to the largest integer r for which there exist r variables xi1 , . . . , xir

such that I ∩ k[xi1 , . . . , xir ] = {0}. Hint: Use I rather than I(V ) in the proof of Theorem 2.

Be sure to explain why dim V = deg aHPI .
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5. Let I = 〈xy − 1〉 ⊂ k[x, y]. What is the projection of V(I ) to the x-axis and to the y-axis?

Note that V(I ) projects densely to both axes, but in neither case is the projection the whole

axis.

6. Let k be infinite and let I = 〈xy, xz〉 ⊂ k[x, y, z].

a. Show that I ∩ k[x] = 0, but that I ∩ k[x, y] and I ∩ k[x, z] are not equal to 0.

b. Show that I ∩ k[y, z] = 0, but that I ∩ k[x, y, z] 	= 0.

c. What do you conclude about the dimension of V(I )?

7. Here is a more complicated example of the phenomenon exhibited in Exercise 6. Again,

assume that k is infinite and let I = 〈zx − x2, zy − xy〉 ⊂ k[x, y, z].

a. Show that I ∩ k[z] = 0. Is either I ∩ k[x, z] or I ∩ k[y, z] equal to 0?

b. Show that I ∩ k[x, y] = 0, but that I ∩ k[x, y, z] 	= 0.

c. What does part (b) say about dim V(I )?

8. Given 1 ≤ i1 < · · · < ir ≤ n, define a linear map π : kn → kn by letting π (a1, . . . , an) be

the vector whose i j th coordinate is ai j for 1 ≤ j ≤ r and whose other coordinates are 0.

Show that π ◦ π = π and determine the image of π .

9. In this exercise, we will show that there can be more than one projection onto a given

subspace H ⊂ kn .

a. Show that the matrices (
1 0

0 0

)
,

(
1 1

0 0

)
both define projections from 2 onto the x-axis. Draw a picture that illustrates what

happens to a typical point of 2 under each projection.

b. Show that there is a one-to-one correspondence between projections of 2 onto the

x-axis and nonhorizontal lines in 2 through the origin.

c. More generally, fix an r -dimensional subspace H ⊂ kn . Show that there is a one-to-one

correspondence between projections of kn onto H and (n − r )-dimensional subspaces

H ′ ⊂ kn which satisfy H ∩ H ′ = {0}. Hint: Consider the kernel of the projection.

10. This exercise is concerned with the proof of Theorem 6.

a. If f, f1, . . . , fr ∈ k[x1, . . . , xn] have total degree ≤ N and p ∈ k[x1, . . . , xn] has total

degree ≤ s, show that f s p( f1/ f, . . . , fr/ f ) is a polynomial in k[x1, . . . , xn].

b. Show that the polynomial of part (a) has total degree ≤ Ns.

c. Show that the map β defined in the proof of Theorem 6 is a well-defined linear map.

11. Complete the proof of Corollary 7.

12. Suppose that φ : V → W is a polynomial map between affine varieties (see Chapters 5,

§1). We proved in §4 of Chapter 5 that φ induces a ring homomorphism φ∗ : k[W ] → k[V ]

which is the identity on k. From φ, we get the subset φ(V ) ⊂ W . We say that φ is dominating
if the smallest variety of W containing φ(V ) is W itself. Thus, φ is dominating if its image

is Zariski dense in W .

a. Show that φ is dominating if and only if the homomorphism φ∗ : k[W ] → k[V ] is one-

to-one. Hint: Show that W ′ ⊂ W is a proper subvariety if and only if there is nonzero

element [ f ] ∈ k[W ] such that W ′ ⊂ W ∩ V( f ).

b. If φ is dominating, show that dim V ≥ dim W . Hint: Use Theorem 2 and part (a).

13. This exercise will study the relation between parametrizations and dimension. Assume that

k is an infinite field.

a. Suppose that F : km → V is a polynomial parametrization of a variety V (as defined

in Chapter 3, §3). Thus, m is the number of parameters and V is the smallest variety

containing F(km). Prove that m ≥ dim V .

b. Give an example of a polynomial parametrization F : km → V where m > dim V .
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c. Now suppose that F : km − W → V is a rational parametrization of V (as defined in

Chapter 3, §3). We know that V is irreducible by Proposition 6 of Chapter 4, §5. Show

that we can define a field homomorphism F∗ : k(V ) → k(t1, . . . , tm) which is one-to-one.

Hint: See the proof of Theorem 10 of Chapter 5, §5.

d. If F : km − W → V is a rational parametrization, show that m ≥ dim V .

14. In this exercise, we will show how to define the field of rational functions on an irreducible

projective variety V ⊂ n(k). If we take a homogeneous polynomial f ∈ k[x0, . . . , xn], then

f does not give a well-defined function on V . To see why, let p ∈ V have homogeneous

coordinates (a0, . . . , an). Then (λa0, . . . , λan) are also homogeneous coordinates for p, and

f (λa0, . . . , λan) = λd f (a0, . . . , an),

where d is the total degree of f .

a. Explain why the above equation makes it impossible for us to define f (p) as a single-

valued function on V .

b. If g ∈ k[x0, . . . , xn] also has total degree d and g /∈ I(V ), then show that φ = f/g is a

well-defined function on the nonempty set V − V ∩ V(g) ⊂ V .

c. We say that φ = f/g and φ′ = f ′/g′ are equivalent on V , written φ ∼ φ′, provided

that there is a proper variety W ⊂ V such that φ = φ′ on V − W . Prove that ∼ is an

equivalence relation. An equivalence class for ∼ is called a rational function on V , and

the set of all equivalence classes is denoted k(V ). Hint: Your proof will use the fact that

V is irreducible.

d. Show that addition and multiplication of equivalence classes is well-defined and makes

k(V ) into a field. We call k(V ) the field of rational functions of the projective variety V .

e. If Ui is the affine part of n(k) where xi = 1, then we get an irreducible affine variety

V ∩ Ui ⊂ Ui
∼= kn . If V ∩ Ui 	= ∅, show that k(V ) is isomorphic to the field k(V ∩ Ui )

of rational functions on the affine variety V ∩ Ui . Hint: You can assume i = 0. What do

you get when you set x0 = 1 in the quotient f/g considered in part (b)?

15. Suppose that V ⊂ n(k) is irreducible and let k(V ) be its rational function field as defined

in Exercise 14.

a. Prove that dim V is the transcendence degree of k(V ) over k. Hint: Reduce to the affine

case.

b. We say that two irreducible projective varieties V and V ′ (lying possibly in different

projective spaces) are birationally equivalent if any of their affine portions V ∩ Ui and

V ′ ∩ U j are birationally equivalent in the sense of Chapter 5, §5. Prove that V and V ′ are

birationally equivalent if and only if there is a field isomorphism k(V ) ∼= k(V ′) which is

the identity on k. Hint: Use the previous exercise and Theorem 10 of Chapter 5, §5.

c. Prove that birationally equivalent projective varieties have the same dimension.

§6 Dimension and Nonsingularity

This section will explore how dimension is related to the geometric properties of a va-
riety V . The discussion will be rather different from §5, where the algebraic properties
of k[V ] and k(V ) played a dominant role. We will introduce some rather sophisti-
cated concepts, and some of the theorems will be proved only in special cases. For
convenience, we will assume that V is always an affine variety.

When we look at a surface V ⊂ 3, one intuitive reason for saying that it is 2-
dimensional is that at a point p on V , a small portion of the surface looks like a small
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portion of the plane. This is reflected by the way the tangent plane approximates V at
p:

←

←

the surface V

the tangent plane to V at p

Of course, we have to be careful because the surface may have points where there
does not seem to be a tangent plane. For example, consider the cone V(x2 + y2 − z2).
There seems to be a nice tangent plane everywhere except at the origin:

y
x

z

In this section, we will introduce the concept of a nonsingular point p of a variety
V , and we will give a careful definition of the tangent space Tp(V ) of V at p. Our
discussion will generalize what we did for curves in §4 of Chapter 3. The tangent space
gives useful information about how the variety V behaves near the point p. This is the
so-called “local viewpoint.” Although we have not discussed this topic previously, it
plays an important role in algebraic geometry. In general, properties which reflect the
behavior of a variety near a given point are called local properties.

We begin with a discussion of the tangent space. For a curve V defined by an equation
f (x, y) = 0 in 2, we saw in Chapter 3 that the line tangent to the curve at a point
(a, b) ∈ V is defined by the equation

∂ f

∂x
(a, b) · (x − a) + ∂ f

∂y
(a, b) · (y − b) = 0,

provided that the two partial derivatives do not vanish (see Exercise 4 of Chapter 3,
§4). We can generalize this to an arbitrary variety as follows.
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Definition 1. Let V ⊂ kn be an affine variety and let p = (p1, . . . , pn) ∈ V be a point.
(i) If f ∈ k[x1, . . . , xn] is a polynomial, the linear part of f at p, denoted dp( f ), is

defined to be the polynomial

dp( f ) = ∂ f

∂x1

(p)(x1 − p1) + · · · + ∂ f

∂xn
(p)(xn − pn).

Note that dp( f ) has total degree ≤ 1.
(ii) The tangent space of V at p, denoted Tp(V ), is the variety

Tp(V ) = V(dp( f ) : f ∈ I(V )).

If we are working over , then the partial derivative ∂ f
∂xi

has the usual meaning. For
other fields, we use the formal partial derivative, which is defined by

∂

∂xi

( ∑
α1,...,αn

cα1...αn xα1

1 . . . xαi
i . . . xαn

n

)
=

∑
α1,...,αn

cα1...αn αi x
α1

1 . . . xαi −1
i . . . xαn

n .

In Exercise 1, you will show that the usual rules of differentiation apply to ∂
∂xi

. We first
prove some simple properties of Tp(V ).

Proposition 2. Let p ∈ V ⊂ kn.
(i) If I(V ) = 〈 f1, . . . , fs〉 then Tp(V ) = V(dp( f1), . . . , dp( fs)).

(ii) Tp(V ) is the translate of a linear subspace of kn.

Proof. (i) By the product rule, it is easy to show that

dp(h f ) = h(p) · dp( f ) + dp(h) · f (p)

(see Exercise 2). This implies dp(h f ) = h(p) · dp( f ) when f (p) = 0, and it follows
that if g = �s

i=1hi fi ∈ I(V ) = 〈 f1, . . . , fs〉, then

dp(g) =
s∑

i=1

dp(hi fi ) =
s∑

i=1

hi (p) · dp( fi ) ∈ 〈dp( f1), . . . , dp( fs)〉.

This shows that Tp(V ) is defined by the vanishing of the dp( fi ).
(ii) Introduce new coordinates on kn by setting Xi = xi − pi for 1 ≤ i ≤ n. This

coordinate system is obtained by translating p to the origin. By part (i), we know that
Tp(V ) is given by dp( f1) = · · · = dp( fs) = 0. Since each dp( fi ) is linear in X1, . . . , Xn ,
it follows that Tp(V ) is a linear subspace with respect to the Xi . In terms of the original
coordinates, this means that Tp(V ) is the translate of a subspace of kn . �

We can get an intuitive idea of what the tangent space means by thinking about
Taylor’s formula for a polynomial of several variables. For a polynomial of one variable,
one has the standard formula

f (x) = f (a) + f ′(a)(x − a) + terms involving higher powers of x − a.
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For f ∈ k[x1, . . . , xn], you will show in Exercise 3 that if p = (p1, . . . , pn), then

f = f (p) + ∂ f

∂x1

(p)(x1 − p1) + · · · + ∂ f

∂xn
(p)(xn − pn)

+ terms of total degree ≥ 2 in x1 − p1, . . . , xn − pn.

This is part of Taylor’s formula for f at p. When p ∈ V and f ∈ I(V ), we have
f (p) = 0, so that

f = dp( f ) + terms of total degree ≥ 2 in x1 − p1, . . . , xn − pn.

Thus dp( f ) is the best linear approximation of f near p. Now suppose that I(V ) =
〈 f1, . . . , fs〉. Then V is defined by the vanishing of the fi , so that the best linear
approximation to V near p should be defined by the vanishing of the dp( fi ). By
Proposition 2, this is exactly the tangent space Tp(V ).

We can also think about Tp(V ) in terms of lines that meet V with “higher multiplicity”
at p. In Chapter 3, this was how we defined the tangent line for curves in the plane. In
the higher dimensional case, suppose that we have p ∈ V and let L be a line through
p. We can parametrize L by F(t) = p + tv, where v ∈ kn is a vector parallel to L .
If f ∈ k[x1, . . . , xn], then f ◦ F(t) is a polynomial in the variable t , and note that
f ◦ F(0) = f (p). Thus, 0 is a root of this polynomial whenever f ∈ I(V ). We can use
the multiplicity of this root to decide when L is contained in Tp(V ).

Proposition 3. If L is a line through p parametrized by F(t) = p + tv, then L ⊂
Tp(V ) if and only if 0 is a root of multiplicity ≥ 2 of f ◦ F(t) for all f ∈ I(V ).

Proof. If we write the parametrization of L as xi = pi + tvi for 1 ≤ i ≤ n, where
p = (p1, . . . , pn) and v = (v1, . . . , vn), then, for any f ∈ I(V ), we have

g(t) = f ◦ F(t) = f (p1 + v1t, . . . , pn + tvn).

As we noted above, g(0) = 0 because p ∈ V , so that t = 0 is a root of g(t). In Exercise 5
of Chapter 3, §4, we showed that t = 0 is a root of multiplicity ≥ 2 if and only if we
also have g′(0) = 0. Using the chain rule for functions of several variables, we obtain

dg

dt
= ∂ f

∂x1

dx1

dt
+ · · · + ∂ f

∂xn

dxn

dt
= ∂ f

∂x1

v1 + · · · + ∂ f

∂xn
vn.

If follows that that g′(0) = 0 if and only if

0 =
n∑

i=1

∂ f

∂xi
(p)vi =

n∑
i=1

∂ f

∂xi
(p)((pi + vi ) − pi ).

The expression on the right in this equation is dp( f ) evaluated at the point p + v ∈ L ,
and it follows that p + v ∈ Tp(V ) if and only if g′(0) = 0 for all f ∈ I(V ). Since
p ∈ L , we know that L ⊂ Tp(V ) is equivalent to p + v ∈ Tp(V ), and the proposition
is proved. �

It is time to look at some examples.
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Example 4. Let V ⊂ n be the hypersurface defined by f = 0, where f ∈
k[x1, . . . , xn] is a nonconstant polynomial. By Proposition 9 of Chapter 4, §2, we
have

I(V ) = I(V( f )) =
√

〈 f 〉 = 〈 fred〉,
where fred = f1 · · · fr is the product of the distinct irreducible factors of f . We will
assume that f = fred . This implies that

V = V( f ) = ( f1 · · · fr ) = V( f1) ∪ · · · ∪ V( fr )

is the decomposition of V into irreducible components (see Exercise 9 of Chapter 4,
§6). In particular, every component of V has dimension n − 1 by the affine version of
Proposition 2 of §4.

Since I(V ) = 〈 f 〉, it follows from Proposition 2 that for any p ∈ V , Tp(V ) is the
linear space defined by the single equation

∂ f

∂x1

(p)(x1 − p1) + · · · + ∂ f

∂xn
(p)(xn − pn) = 0.

This implies that

dim Tp(V ) =
{

n − 1 at least one ∂ f
∂xi

(p) 	= 0

n all ∂ f
∂xi

(p) = 0.
(1)

You should check how this generalizes Proposition 2 of Chapter 3, §4.
For a specific example, consider V = V(x2 − y2z2 + z3). In Exercise 4, you will

show that f = x2 − y2z2 + z3 ∈ [x, y, z] is irreducible, so that I(V ) = 〈 f 〉. The
partial derivatives of f are

∂ f

∂x
= 2x,

∂ f

∂y
= −2yz2,

∂ f

∂z
= 2y2z + 3z2.

We leave it as an exercise to show that on V , the partials vanish simultaneously only
on the y-axis, which lies in V . Thus, the tangent spaces Tp(V ) are all 2-dimensional,
except along the y-axis, where they are all of 3. Over , we get the following picture
of V (which appeared earlier in §2 of Chapter 1):

x y

z
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When we give the definition of nonsingular point later in this section, we will see that
the points of V on the y-axis are the singular points, whereas other points of V are
nonsingular.

Example 5. Now consider the curve C ⊂ 3 obtained by intersecting the surface V of
Example 4 with the plane x + y + z = 0. Thus, C = V (x + y + z, x2 − y2z2 + z3).
Using the techniques of §3, you can verify that dim C = 1.

In the exercises, you will also show that ( f1, f2) = (x + y + z, x2 − y2z2 + z3) is
a prime ideal, so that C is an irreducible curve. Since a prime ideal is radical, the
Nullstellensatz implies that I (C) = ( f1, f2). Thus, for p = (a, b, c) ∈ C , it follows
that Tp(C) is defined by the linear equations

dp( f1) = 1 · (x − a) + 1 · (y − b) + 1 · (z − c) = 0,

dp( f2) = 2a · (x − a) + (−2bc2) · (y − b) + (−2b2c + 3c2) · (z − c) = 0.

This is a system of linear equations in x − a, y − b, z − c, and the matrix of coefficients
is

Jp( f1, f2) =
(

1 1 1
2a −2bc2 −2b2c + 3c2

)
.

Let rank (Jp( f1, f2)) denote the rank of this matrix. Since Tp(C) is a translate of the
kernel of Jp( f1, f2), it follows that

dim Tp(C) = 3 − rank(Jp( f1, f2)).

In the exercises, you will show that Tp(C) is 1-dimensional at all points of C except
for the origin, where T0(C) is the 2-dimensional plane x + y + z = 0.

In these examples, we were careful to always compute I(V ). It would be much
nicer if we could use any set of defining equations of V . Unfortunately, this does not
always work: if V = V( f1, . . . , fs), then Tp(V ) need not be defined by dp( f1) = · · · =
dp( fs) = 0. For example, let V be the y-axis in k2. Then V is defined by x2 = 0, but
you can easily check that Tp(V ) 	= V(dp(x2)) for all p ∈ V . However, in Theorem 9,
we will find a nice condition on f1, . . . , fs which, when satisfied, will allow us to
compute Tp(V ) using the dp( fi )’s.

Examples 4 and 5 indicate that the nicest points on V are the ones where Tp(V ) has
the same dimension as V . But this principle does not apply when V has irreducible
components of different dimensions. For example, let V = V (xz, yz) ⊂ 3. This is
the union of the (x, y)-plane and the z-axis, and it is easy to check that

dim Tp(V ) =
⎧⎨⎩

2 p is on the (x, y)-plane minus the origin
1 p is on the z-axis minus the origin
3 p is the origin.

Excluding the origin, points on the z-axis have a 1-dimensional tangent space, which
seems intuitively correct. Yet at such a point, we have dim Tp(V ) < dim V . The prob-
lem, of course, is that we are on a component of the wrong dimension.

To avoid this difficulty, we need to define the dimension of a variety at a point.
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Definition 6. Let V be an affine variety. For p ∈ V , the dimension of V at p, denoted
dimp V , is the maximum dimension of an irreducible component of V containing p.

By Corollary 9 of §4, we know that dim V is the maximum of dimp V as p varies
over all points of V . If V is a hypersurface in n , it is easy to compute dimp V , for in
Example 4, we showed that every irreducible component of V has dimension n − 1. It
follows that dimp V = n − 1 for all p ∈ V . On the other hand, if V ⊂ kn is an arbitrary
variety, the theory developed in §§3 and 4 enables us to compute dim V , but unless we
know how to decompose V into irreducible components, more subtle tools are needed
to compute dimp V . This will be discussed in §7 when we study the properties of the
tangent cone.

We can now define what it means for a point p ∈ V to be nonsingular.

Definition 7. Let p be a point on an affine variety V . Then p is nonsingular (or
smooth) provided dim Tp(V ) = dimp V . Otherwise, p is a singular point of V .

If we look back at our previous examples, it is easy to identify which points are
nonsingular and which are singular. In Example 5, the curve C is irreducible, so that
dimp C = 1 for all p ∈ C and, hence, the singular points are where dim Tp(C) 	= 1
(only one in this case). For the hypersurfaces V = V( f ) considered in Example 4, we
know that dimp V = n − 1 for all p ∈ V , and it follows from (1) so that p is singular
if and only if all of the partial derivatives of f vanish at p. This means that the singular
points of V form the variety

� = V
(

f,
∂ f

∂x1

, . . . ,
∂ f

∂xn

)
.(2)

In general, the singular points of a variety V have the following properties.

Theorem 8. Let V ⊂ kn be an affine variety and let

� = {p ∈ V : p is a singular point of V }.
We call � the singular locus of V . Then:

(i) � is an affine variety contained in V .
(ii) If p ∈ �,then dim Tp(V ) > dimp V .

(iii) � contains no irreducible component of V .
(iv) If Vi and Vj are distinct irreducible components of V , then Vi ∩ Vj ⊂ �.

Proof. A complete proof of this theorem is beyond the scope of the book. Instead, we
will assume that V is a hypersurface in n and show that the theorem holds in this
case. As we discuss each part of the theorem, we will give references for the general
case.

Let V = V( f ) ⊂ n be a hypersurface such that I(V ) = 〈 f 〉. We noted earlier that
dimp V = n − 1 and that � consists of those points of V where all of the partial
derivatives of f vanish simultaneously. Then (2) shows that � is an affine variety,
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which proves (i) for hypersurfaces. A proof in the general case is given in the Corollary
to Theorem 6 in Chapter II, §2 of SHAFAREVICH (1974).

Part (ii) of the theorem says that at a singular point of V , the tangent space is too
big. When V is a hypersurface in n , we know from (1) that if p is a singular point,
then dim Tp = n > n − 1 = dimp V . This proves (ii) for hypersurfaces, and the general
case follows from Theorem 3 in Chapter II, §1 of SHAFAREVICH (1974).

Part (iii) says that on each irreducible component of V , the singular locus consists of
a proper subvariety. Hence, most points of a variety are nonsingular. To prove this for
a hypersurface, let V = V( f ) = V( f1) ∪ · · · ∪ V( fr ) be the decomposition of V into
irreducible components, as discussed in Example 4. Suppose that � contains one of
the components, say V( f1). Then every ∂ f

∂xi
vanishes on V( f1). If we write f = f1g,

where g = f2 · · · fr , then

∂ f

∂xi
= f1

∂g

∂xi
+ ∂ f1

∂xi
g

by the product rule. Since f1 certainly vanishes on V( f1), it follows that ∂ f1

∂xi
g also

vanishes on V( f1). By assumption, f1 is irreducible, so that

∂ f1

∂xi
g ∈ I(V( f1)) = 〈 f1〉.

This says that f1 divides ∂ f1

∂xi
g and, hence, f1 divides ∂ f1

∂xi
or g. The latter is impossible

since g is a product of irreducible polynomials distinct from f1 (meaning that none
of them is a constant multiple of f1). Thus, f1 must divide ∂ f1

∂xi
for all i . Since ∂ f1

∂xi
has

smaller total degree than f1, we must have ∂ f1

∂xi
= 0 for all i , and it follows that f1

is constant (see Exercise 9). This contradiction proves that � contains no component
of V .

When V is an arbitrary irreducible variety, a proof that � is a proper subvariety can
be found in the corollary to Theorems 4.1 and 4.3 in Chapter IV of KENDIG (1977).
See also the discussion preceding the definition of singular point in Chapter II, §1 of
SHAFAREVICH (1974). If V has two or more irreducible components, the claim follows
from the irreducible case and part (iv) below. See Exercise 11 for the details.

Finally, part (iv) of the theorem says that a nonsingular point of a variety lies on
a unique irreducible component. In the hypersurface case, suppose that V = V( f ) =
V( f1) ∪ · · · ∪ V( fr ) and that p ∈ V( fi ) ∩ V( fi ) for i 	= j . Then we can write f =
gh, where fi divides g and f j divides h. Hence, g(p) = h(p) = 0, and then an easy

argument using the product rule shows that ∂ f
∂xi

(p) = 0 for all i . This proves that
V( fi ) ∩ V( f j ) ⊂ �, so that (iv) is true for hypersurfaces. When V is an arbitrary
variety, see Theorem 6 in Chapter II, §2 of SHAFAREVICH (1974). �

In some cases, it is also possible to show that a point of a variety V is nonsingular
without having to compute I(V ). To formulate a precise result, we will need some
notation. Given f1, . . . , fr ∈ k[x1, . . . , xn], let J ( f1, . . . , fr ) be the r × n matrix of
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partial derivatives

J ( f1, . . . , fr ) =

⎛⎜⎜⎜⎜⎝
∂ f1

∂x1

· · · ∂ f1

∂xn
...

...
∂ fr

∂x1

· · · ∂ fr

∂xn

⎞⎟⎟⎟⎟⎠ .

Given p ∈ kn , evaluating this matrix at p gives an r × n matrix of numbers denoted
Jp( f1, . . . , fr ). Then we have the following result.

Theorem 9. Let V = V( f1, . . . , fr ) ⊂ n be an arbitrary variety and suppose that
p ∈ V is a point where Jp( f1, . . . , fr ) has rank r. Then p is a nonsingular point of V
and lies on a unique irreducible component of V of dimension n − r .

Proof. As with Theorem 8, we will only prove this for a hypersurface V = V( f ) ⊂ n ,
which is the case r = 1 of the theorem. Here, note that f is now any defining equation
of V , and, in particular, it could happen that I(V ) 	= 〈 f 〉. But we still know that f
vanishes on V , and it follows from the definition of tangent space that

Tp(V ) ⊂ V(dp( f )).(3)

Since r = 1, Jp( f ) is the row vector whose entries are ∂ f
∂xi

(p), and our assumption that
Jp( f ) has rank 1 implies that at least one of the partials is nonzero at p. Thus, dp( f ) is
a nonzero linear function of xi − pi , and it follows from (3) that dim Tp(V ) ≤ n − 1.
If we compare this to (1), we see that p is a nonsingular point of V , and by part (iv)
of Theorem 8, it lies on a unique irreducible component of V . Since the component
has the predicted dimension n − r = n − 1, we are done. For the general case, see
Theorem (1.16) of MUMFORD (1976). �

Theorem 9 is important for several reasons. First of all, it is very useful for determin-
ing the nonsingular points and dimension of a variety. For instance, it is now possible
to redo Examples 4 and 5 without having to compute I(V ) and I(C). Another aspect of
Theorem 9 is that it relates nicely to our intuition that the dimension should drop by one
for each equation defining V . This is what happens in the theorem, and in fact we can
sharpen our intuition as follows. Namely, the dimension should drop by one for each
defining equation, provided the defining equations are sufficiently independent [which
means that rank(Jp( f1, . . . , fr )) = r ]. In Exercise 16, we see a more precise way to
state this. Furthermore, note that our intuition applies to the nonsingular part of V .

Theorem 9 is also related to some important ideas from advanced courses in the
calculus of several variables. In particular, the Implicit Function Theorem has the same
hypothesis concerning Jp( f1, . . . , fr ) as Theorem 9. When V = V( f1, . . . , fr ) satisfies
this hypothesis, the complex variable version of the Implicit Function Theorem asserts
that near p, the variety V looks like the graph of a nice function, and we get a vivid
picture of why V has dimension n − r at p. To understand the full meaning of Theorem
9, one needs to study the notion of a manifold. A nice discussion of this topic and its
relation to nonsingularity and dimension can be found in KENDIG (1977).



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX January 5, 2007 9:41

§6. Dimension and Nonsingularity 493

EXERCISES FOR §6

1. We will discuss the properties of the formal derivative defined in the text.

a. Show that ∂

∂xi
is k-linear and satisfies the product rule.

b. Show that ∂

∂xi

(
∂

∂x j
f
)

= ∂

∂x j

(
∂

∂xi
f
)

for all i and j .

c. If f1, . . . , fr ∈ k[x1, . . . , xn], compute ∂

∂xi
( f α1

1 · · · f αr
r ).

d. Formulate and prove a version of the chain rule for computing the partial derivatives of

a polynomial of the form F( f1, . . . , fr ). Hint: Use part (c).

2. Prove that dp(h f ) = h(p) · dp( f ) + dp(h) · f (p).

3. Let p = (p1, . . . , pn) ∈ kn and let f ∈ k[x1, . . . , xn].

a. Show that f can be written as a polynomial in xi − pi . Hint: xm
i = ((xi − pi ) + pi )

m .

b. Suppose that when we write f as a polynomial in xi − pi , every term has total degree at

least 2. Show that ∂ f
∂xi

(p) = 0 for all i .
c. If we write f as a polynomial in xi − pi , show that the constant term is f (p) and the

linear term is dp( f ). Hint: Use part (b).

4. As in Example 4, let f = x2 − y2z2 + z3 ∈ [x, y, z] and let V = V( f ) ⊂ 3.

a. Show carefully that f is irreducible in [x, y, z].

b. Show that V contains the y-axis.

c. Let p ∈ V . Show that the partial derivatives of f all vanish at p if and only if p lies on

the y-axis.

5. Let A be an m × n matrix, where n ≥ m. If r ≤ m, we say that a matrix B is an r × r
submatrix of A provided that B is the matrix obtained by first selecting r columns of A, and

then selecting r rows from those columns.

a. Pick a 3 × 4 matrix of numbers and write down all of its 3 × 3 and 2 × 2 submatrices.

b. Show that A has rank < r if and only if all t × t submatrices of A have determinant

zero for all r ≤ t ≤ m. Hint: The rank of a matrix is the maximum number of linearly

independent columns. If A has rank s, it follows that you can find an m × s submatrix of

rank s. Now use the fact that the rank is also the maximum number of linearly independent

rows. What is the criterion for an r × r matrix to have rank < r?

6. As in Example 5, let C = V(x + y + z, x2 − y2z2 + z3) ⊂ 3 and let I be the ideal I =
(x + y + z, x2 − y2z2 + z3) ⊂ [x, y, z].

a. Show that I is a prime ideal. Hint: Introduce new coordinates X = x + y + z, Y =
y, and Z = z. Show that I = 〈X, F(Y, Z )〉 for some polynomial in Y , Z . Prove that

[X, Y, Z ]/I ∼= [Y, Z ]/〈F〉 and show that F ∈ [Y, Z ] is irreducible.

b. Conclude that C is an irreducible variety and that I(C) = I .

c. Compute the dimension of C .

d. Determine all points (a, b, c) ∈ C such that the 2 × 3 matrix

Jp( f1, f2) =
(

1 1 1

2a −2bc2 −2b2c + 3c2

)
has rank < 2. Hint: Use Exercise 5.

7. Let f = x2 ∈ k[x, y]. In k2, show that Tp(V( f )) 	= V(dp( f )) for all p ∈ V .

8. Let V = V(xy, xz) ⊂ k3 and assume that k is an infinite field.

a. Compute I(V ).

b. Verify the formula for dim Tp(V ) given in the text.

9. Suppose that f ∈ k[x1, . . . , xn] is a polynomial such that ∂

∂xi
f = 0 for all i . If k has char-

acteristic 0 (which means that k contains a field isomorphic to ), then show that f must

be the constant.



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX January 5, 2007 9:41

494 9. The Dimension of a Variety

10. The result of Exercise 9 may be false if k does not have characteristic 0.

a. Let f = x2 + y2 ∈ 2[x, y], where 2 is a field with two elements. What are the partial

derivatives of f ?

b. To analyze the case when k does not have characteristic 0, we need to define the char-
acteristic of k. Given any field k, show that there is a ring homomorphism φ : → k
which sends n > 0 in to 1 ∈ k added to itself n times. If φ is one-to-one, argue that k
contains a copy of and hence has characteristic 0.

c. If k does not have characteristic 0, it follows that the map φ of part (b) cannot be one-

to-one. Show that the kernel must be the ideal 〈p〉 ⊂ for some prime number p. We

say that k has characteristic p in this case. Hint: Use the Isomorphism Theorem from

Exercise 16 of Chapter 5, §2 and remember that k is an integral domain.

d. If k has characteristic p, show that (a + b)p = a p + bp for every a, b ∈ k.

e. Suppose that k has characteristic p and let f ∈ k[x1, . . . , xn]. Show that all partial deriva-

tives of f vanish identically if and only if every exponent of every monomial appearing

in f is divisible by p.

f. Suppose that k is algebraically closed and has characteristic p. If f ∈ k[x1, . . . , xn] is

irreducible, then show that some partial derivative of f must be nonzero. This shows

that Theorem 8 is true for hypersurfaces over any algebraically closed field. Hint: If all

partial derivatives vanish, use parts (d) and (e) to write f as a p-th power. Why do you

need k to be algebraically closed?

11. Let V = V1 ∪ · · · ∪ Vr be a decomposition of a variety into its irreducible components.

a. Suppose that p ∈ V lies in a unique irreducible component Vi . Show that Tp(V ) = Tp(Vi ).

This reflects the local nature of the tangent space. Hint: One inclusion follows easily from

Vi ⊂ V . For the other inclusion, pick a function f ∈ I(W ) − I(Vi ), where W is the union

of the other irreducible components. Then g ∈ I(Vi ) implies f g ∈ I(V ).

b. With the same hypothesis as part (a), show that p is nonsingular in V if and only if it is

nonsingular in Vi .

c. Let � be the singular locus of V and let �i be the singular locus of Vi . Prove that

� =
⋂
i 	= j

(Vi ∩ Vj ) ∪
⋃

i

�i .

Hint: Use part (b) and part (iv) of Theorem 8.

d. If each �i is a proper subset of Vi , then show that � contains no irreducible components

of V . This shows that part (iii) of Theorem 8 follows from the irreducible case.

12. Find all singular points of the following curves in k2. Assume that k is algebraically closed.

a. y2 = x3 − 3.

b. y2 = x3 − 6x2 + 9x .

c. x2 y2 + x2 + y2 + 2xy(x + y + 1) = 0.

d. x2 = x4 + y4.

e. xy = x6 + y6.

f. x2 y + xy2 = x4 + y4.

g. x3 = y2 + x4 + y4.

13. Find all singular points of the following surfaces in k3. Assume that k is algebraically closed.

a. xy2 = z2.

b. x2 + y2 = z2.

c. x2 y + x3 + y3 = 0.

d. x3 − zxy + y3 = 0.

14. Show that V(y − x2 + z2, 4x − y2 + w3) ⊂ 4 is a nonempty smooth surface.
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15. Let V ⊂ kn be a hypersurface with I(V ) = 〈 f 〉. Show that if V is not a hyperplane and

p ∈ V is nonsingular, then either the variety V ∩ Tp(V ) has a singular point at p or the

restriction of f to Tp(V ) has an irreducible factor of multiplicity ≥ 2. Hint: Pick coordinates

so that p = 0 and Tp(V ) is defined by x1 = 0. Thus, we can regard Tp(V ) as a copy of

kn−1, then V ∩ Tp(V ) is a hypersurface in kn−1. Then the restriction of f to Tp(V ) is the

polynomial f (0, x2, . . . , xn). See also Example 4.

16. Let V ⊂ n be irreducible and let p ∈ V be a nonsingular point. Suppose that V has

dimension d .

a. Show that we can find polynomials f1, . . . , fn−d ∈ I(V ) such that Tp(V ) =
V (dp( f1), . . . , dp( fn−d )).

b. If f1, . . . , fn−d are as in part (a) show that Jp( f1, . . . , fn−d ) has rank n − d and conclude

that V is an irreducible component of V ( f1, . . . , fn−d ). This shows that although V itself

may not be defined by n − d equations, it is a component of a variety that is. Hint: Use

Theorem 9.

17. Suppose that V ⊂ n is irreducible of dimension d and suppose that I(V ) = 〈 f1, . . . , fs〉.
a. Show that p ∈ V is nonsingular if and only if Jp( f1, . . . , fs) has rank n − d. Hint: Use

Proposition 2.

b. By Theorem 8, we know that V has nonsingular points. Use this and part (a) to prove

that d ≥ n − s. How does this relate to Proposition 5 of §4?

c. Let D be the set of determinants of all (n − d) × (n − d) submatrices of J ( f1, . . . , fs).

Prove that the singular locus of V is � = V ∩ V(g : g ∈ D). Hint: Use part (a) and Exer-

cise 5. Also, what does part (ii) of Theorem 8 tell you about the rank of Jp( f1, . . . , fs)?

§7 The Tangent Cone

In this final section of the book, we will study the tangent cone of a variety V at a
point p. When p is nonsingular, we know that, near p, V is nicely approximated by its
tangent space Tp(V ). This clearly fails when p is singular, for as we saw in Theorem
8 of §6, the tangent space has the wrong dimension (it is too big). To approximate V
near a singular point, we need something different.

We begin with an example.

Example 1. Consider the curve y2 = x2(x + 1), which has the following picture in
the plane 2:

x

y
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We see that the origin is a singular point. Near this point, the curve is approximated
by the lines x = ±y. These lines are defined by x2 − y2 = 0, and if we write the
defining equation of the curve as f (x, y) = x2 − y2 + x3 = 0, we see that x2 − y2 is
the nonzero homogeneous component of f of smallest total degree.

Similarly, consider the curve y2 − x3 = 0:

x

y

The origin is again a singular point, and the nonzero homogeneous component of
y2 − x3 of smallest total degree is y2. Here, V(y2) is the x-axis and gives a nice
approximation of the curve near (0, 0).

In both of the above curves, we approximated the curve near the singular point using
the smallest nonzero homogeneous component of the defining equation. To generalize
this idea, suppose that p = (p1, . . . , pn) ∈ kn . If α = (α1, . . . , αn) ∈ n

≥0 let

(x − p)α = (x1 − p1)α1 · · · (xn − pn)αn

and note that (x − p)α has total degree |α| = α1 + · · · + αn . Now, given any polynomial
f ∈ k[x1, . . . , xn] of total degree d, we can write f as a polynomial in xi − pi , so that
f is a k-linear combination of (x − p)α for |α| ≤ d. If we group according to total
degree, we can write

f = f p,0 + f p,1 + · · · + f p,d ,(1)

where f p. j is a k-linear combination of (x − p)α for |α| = j . Note that f p,0 = f (p)
and f p,1 = dp( f ) (as defined in Definition 1 of the previous section). In the exercises,
you will discuss Taylor’s formula, which shows how to express f p, j in terms of the
partial derivatives of f at p. In many situations, it is convenient to translate p to the
origin so that we can use homogeneous components. We can now define the tangent
cone.

Definition 2. Let V ⊂ kn be an affine variety and let p = (p1, . . . , pn) ∈ V .
(i) If f ∈ k[x1, . . . , xn] is a nonzero polynomial, then f p.min is defined to be f p, j ,

where j is the smallest integer such that f p, j 	= 0 in (1).
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(ii) The tangent cone of V at p, denoted C p(V ), is the variety

C p(V ) = V( f p,min : f ∈ I(V )).

The tangent cone gets its name from the following proposition.

Proposition 3. Let p ∈ V ⊂ kn. Then C p(V ) is the translate of the affine cone of a
variety in n−1(k).

Proof. Introduce new coordinates on kn by letting Xi = xi − pi . Relative to this co-
ordinate system, we can assume that p is the origin 0. Then f0,min is a homogeneous
polynomial in X1, . . . , Xn , and as f varies over I(V ), the f0,min generate a homoge-
neous ideal J ⊂ k[X1, . . . , Xn]. Then C p(V ) = Va(J ) ⊂ kn by definition. Since J is
homogeneous, we also get a projective variety W = Vp(J ) ⊂ n−1(k), and as we saw
in Chapter 8, this means that C p(V ) is an affine cone CW ⊂ kn of W . This proves the
proposition. �

The tangent cone of a hypersurface V ⊂ kn is especially easy to compute. In
Exercise 2 you will show that if I(V ) = 〈 f 〉, then C p(V ) is defined by the sin-
gle equation f p,min = 0. This is exactly what we did in Example 1. However,
when I(V ) = 〈 f1, . . . , fs〉 has more generators, it need not follow that C p(V ) =
V(( f1)p,min, . . . , ( fs)p,min). For example, suppose that V is defined by xy = xz +
z(y2 − z2) = 0. In Exercise 3, you will show that I(V ) = 〈xy, xz + z(y2 − z2)〉. To see
that C0(V ) 	= V(xy, xz), note that f = yz(y2 − z2) = y(xz + z(y2 − z2)) − z(xy) ∈
I(V ). Then f0,min = yz(y2 − z2) vanishes on C0(V ), yet does not vanish on all of
V(xy, xz).

We can overcome this difficulty by using an appropriate Groebner basis. The result
is stated most efficiently when the point p is the origin.

Proposition 4. Assume that the origin 0 is a point of V ⊂ kn. Let x0 be a new variable
and pick a monomial order on k[x0, x1, . . . , xn] such that among monomials of the
same total degree, any monomial involving x0 is greater than any monomial involving
only x1, . . . , xn (lex and grlex with x0 > · · · > xn satisfy this condition).
(i) Let I(V )h ⊂ k[x0, x1, . . . , xn] be the homogenization of I(V ) and let G1, . . . , Gs

be a Groebner basis of I(V )h with respect to the above monomial order. Then

C0(V ) = V((g1)0,min, . . . , (gs)0,min),

where gi = Gi (1, x1, . . . , xn) is the dehomogenization of Gi .
(ii) Suppose that k is algebraically closed, and let I be any ideal such that V = V(I ).

If G1, . . . , Gs are a Groebner basis of I h, then

C0(V ) = V((g1)0,min, . . . , (gs)0,min),

where gi = Gi (1, x1, . . . , xn) is the dehomogenization of Gi .

Proof. In this proof, we will write f j and fmin rather than f0, j and f0,min .
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(i) Let I = I(V ). It suffices to show that fmin ∈ 〈(g1)min, . . . , (gs)min〉 for all f ∈ I .
If this fails to hold, then we can find f ∈ I with fmin /∈ 〈(g1), . . . , (gs)min〉
such that LT( fmin) is minimal [note that we can regard fmin as a polynomial in
k[x0, x1, . . . , xn], so that LT( fmin) is defined]. If we write f as a sum of homoge-
neous components

f = fmin + · · · + fd ,

where d is the total degree of f , then

f h = fmin xa
0 + · · · + fd ∈ I h

for some a. By the way we chose the monomial order on k[x0, x1, . . . , xn], it
follows that LT( f h) = LT( fmin)xa

0 . Since G1, . . . , Gs form a Groebner basis, we
know that some LT(Gi ) divides LT( fmin)xa

0 .
If gi is the dehomogenization of Gi , it is easy to see that gi ∈ I . We leave it as

an exercise to show that

LT(Gi ) = LT((gi )min)xb
0

for some b. This implies that LT( fmin) = cxαLT((gi )min) for some nonzero c ∈ k
and some monomial xα in x1, . . . , xn . Now consider f̃ = f − cxαgi ∈ I . Since
fmin /∈ 〈(g1)min, . . . , (gs)min〉, we know that fmin − cxα(gi )min 	= 0, and it follows
easily that

f̃min = fmin − cxα(gi )min.

Then LT( f̃min) < LT( fmin) since the leading terms of fmin and cxα(gi )min are equal.
This contradicts the minimality of LT( fmin), and (i) is proved. In the exercises, you
will show that g1, . . . , gn are a basis of I , though not necessarily a Groebner basis.

(ii) Let W denote the variety V( fmin : f ∈ I ). If we apply the argument of part (i) to
the ideal I , we see immediately that

W = V((g1)min, . . . , (gs)min).

It remains to show that W is the tangent cone at the origin. Since I ⊂ I(V ), the
inclusion C0(V ) ⊂ W is obvious by the definition of tangent cone. Going the other
way, suppose that g ∈ I(V ). We need to show that gmin vanishes on W . By the
Nullstellensatz, we know that gm ∈ I for some m and, hence, (gm)min = 0 on W .
In the exercises, you will check that (gm)min = (gmin)m and it follows that gmin

vanishes on W . This completes the proof of the proposition.
�

In practice, this proposition is usually used over an algebraically closed field, for
here, part (ii) says that we can compute the tangent cone using any set of defining
equations of the variety.

For an example of how to use Proposition 4, suppose V = V(xy, xz + z(y2 − z2)).
If we set I = 〈xy, xz + z(y2 − z2)〉, the first step is to determine I h ⊂ k[w, x, y, z],
where w is the homogenizing variable. Using grlex order on k[x, y, z], a Groebner basis
for I is {xy, xz + z(y2 − z2), x2z − xz3}. By the theory developed in §4 of Chapter 8,
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{xy, xzw + z(y2 − z2), x2zw − xz3} is a basis of I h . In fact, it is a Groebner basis for
grlex order, with the variables ordered x > y > z > w (see Exercise 5). However, this
monomial order does not satisfy the hypothesis of Proposition 4, but if we use grlex
with w > x > y > z, then a Groebner basis is

{xy, xzw + z(y2 − z2), yz(y2 − z2)}.
Proposition 4 shows that if we dehomogenize and take minimal homogeneous compo-
nents, then the tangent cone at the origin is given by

C0(V ) = V(xy, xz, yz(y2 − z2)).

In the exercises, you will show that this is a union of five lines through the origin in k3.
We will next study how the tangent cone approximates the variety V near the point

p. Recall from Proposition 3 that C p(V ) is the translate of an affine cone, which means
that C p(V ) is made up of lines through p. So to understand the tangent cone, we need
to describe which lines through p lie in C p(V ). We will do this using secant lines. More
precisely, let L be a line in kn through p. Then L is a secant line of V if it meets V in
a point distinct from p. Here is the crucial idea: if we take secant lines determined by
points of V getting closer and closer to p, then the “limit” of the secant lines should
lie on the tangent cone. You can see this in the following picture.

y

z

x

← the variety V

← the tangent cone
at the origin

To make this idea precise, we will work over the complex numbers . Here, it is
possible to define what it means for a sequence of points qk ∈ n to converge to q ∈ n .
For instance, if we think of n as 2n , this means that the coordinates of qk converge
to the coordinates of q . We will assume that the reader has had some experience with
sequences of this sort.

We will treat lines through their parametrizations. So suppose we have parametrized
L via p + tv, where v ∈ n is a nonzero vector parallel to L and t ∈ . Then we define
a limit of lines as follows.

Definition 5. We say that a line L ⊂ n through a point p ∈ n is a limit of lines
{Lk}∞k=1 through p if given a parametrization p + tv of L, there exist parametrizations
p + tvk of Lk such that limk→∞ vk = v in n.
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This notion of convergence corresponds to the following picture:

↓
↓

↑ v Lp

vk

Lk

vk+1

Lk+1

Now we can state a precise version of how the tangent cone approximates a complex
variety near a point.

Theorem 6. Let V ⊂ n be an affine variety. Then a line L through p ∈ V lies in the
tangent cone C p(V ) if and only if there exists a sequence {qk}∞k=1 of points in V − {p}
converging to p such that if Lk is the secant line containing p and qk, then the lines Lk

converge to the given line L.

Proof. By translating p to the origin, we may assume that p = 0. Let {qk} be a sequence
of points on V converging to the origin and suppose the lines Lk through 0 and qk

converge (in the sense of Definition 5) to some line L through the origin. We want to
show that L ⊂ C0(V ).

By the definition of Lk converging to L , we can find parametrizations tvk of Lk

(remember that p = 0) such that the vk converge to v as k → ∞. Since qk ∈ Lk , we
can write qk = tkvk for some complex number tk . Note that tk 	= 0 since qk 	= p. We
claim that the tk converge to 0. This follows because as k → ∞, we have vk → v 	= 0
and tkvk = qk → 0. (A more detailed argument will be given in Exercise 8.)

Now suppose that f is any polynomial that vanishes on V . As in the proof of
Proposition 4, we write fmin and f j rather than f0,min and f0, j . If f has total degree d,
then we can write f = fl + fl+1 + · · · + fd , where fl = fmin . Since qk = tkuk ∈ V ,
we have

0 = f (tkvk) = fl(tkvk) + · · · + fd (tkvk).(2)

Each fi is homogeneous of degree i , so that fi (tkvk) = t i
k f (vk). Thus,

0 = t l
k fl(vk) + · · · + td

k fd (vk).(3)

Since tk 	= 0, we can divide through by t l
k to obtain

0 = fl(vk) + tk fl+1(vk) + · · · + td−l
k fd (vk).(4)



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX January 5, 2007 9:41

§7. The Tangent Cone 501

Letting k → ∞, the right-hand side in (4) tends to fl(v) since vk → v and tk → 0.
We conclude that fl(v) = 0, and since fl(tv) = t l fl(v) = 0 for all t , it follows that
L ⊂ C0(V ). This shows that C0(V ) contains all limits of secant lines determined by
sequences of points in V converging to 0.

To prove the converse, we will first study the set

V = {(v, t) ∈ n × : tv ∈ V, t 	= 0} ⊂ n+1.(5)

If (v, t) ∈ V , note that the L determined by 0 and tv ∈ V is a secant line. Thus, we
want to know what happens to V as t → 0. For this purpose, we will study the Zariski
closure V of V , which is the smallest variety in n+1 containing V . We claim that

V = V ∪ (C0(V ) × {0}).(6)

From §4 of Chapter 4, we know thatV = V(I(V)). So we need to calculate the functions
that vanish on V . If f ∈ I(V ), write f = fl + · · · + fd where fl = fmin , and set

f̃ = fl + t fl+1 + · · · + td−l fd ∈ [t, x1, . . . , xn]

We will show that

I(V) = 〈 f̃ : f ∈ I(V )〉.(7)

One direction of the proof is easy, for f ∈ I(V ) and (v, t) ∈ V imply f (tv) = 0, and
then equations (2), (3), and (4) show that f̃ (v, t) = 0. Conversely, suppose that g ∈

[t, x1, . . . , xn] vanishes on V . Write g = �i gi t i , where gi ∈ [x1, . . . , xn], and let
gi = � j gi j be the decomposition of gi into the sum of its homogeneous components.
If (v, t) ∈ V , then for every λ ∈ − {0}, we have (λv, λ−1t) ∈ V since (λ−1t) · (λv) =
tv ∈ V . Thus,

0 = g(λv, λ−1t) =
∑
i. j

gi j (λv)(λ−1t)i =
∑
i · j

λ j gi j (v)λ−1t i =
∑

i j

λ j−i gi j (v)t i

for all λ 	= 0. Letting m = j − i , we can organize this sum according to powers of λ:

0 =
∑

m

(∑
i

gi,m+i (v)t i

)
λm .

Since this holds for all λ 	= 0, it follows that �i gi,m+i (v)t i = 0 for all m and, hence,
�i gi,m+i t i ∈ I(V). Let fm = �i gi,m+i ∈ [x1, . . . , xn]. Since (v, 1) ∈ V for all v ∈ V ,
it follows that fm ∈ I(V ). If we let i0 be the smallest i such that gi,m+i 	= 0, then

f̃m = gi0,m+i0
+ gi0+1,m+i0+1t + · · · ,

so that �i gi,m+i t i = t i0 f̃m . From this, it follows immediately that g ∈ 〈 f̃ : f ∈ I(V )〉,
and (7) is proved.

From (7), we have V = V( f̃ : f ∈ I(V )). To compute this variety, let (v, t) ∈ n+1,
and first suppose that t 	= 0. Using (2), (3), and (4), it follows easily that f (v, t) = 0 if
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and only if f (tv) = 0. Thus,

V ∩ {(v, t) : t 	= 0} = V.

Now suppose t = 0. If f = fmin + · · · + fd , it follows from the definition of f̃ that
f̃ (v, 0) = 0 if and only if fmin(v) = 0. Hence,

V ∩ {(v, t) : t = 0} = C0(V ) × {0},
and (6) is proved.

To complete the proof of Theorem 6, we will need the following fact about Zariski
closure.

Proposition 7. Let Z ⊂ W ⊂ n be affine varieties and assume that W is the Zariski
closure of W − Z. If z ∈ Z is any point, then there is a sequence of points {wk ∈
W − Z}∞k=1 which converges to z.

Proof. The proof of this is beyond the scope of the book. In Theorem (2.33) of
MUMFORD (1976), this result is proved for irreducible varieties in n( ). Exercise
9 will show how to deduce Proposition 7 from Mumford’s theorem. �

To apply this proposition to our situation, let Z = C0(V ) × {0} ⊂ W = V . By (6),
we see that W − Z = V − C0(V ) × {0} = V and, hence, W = V is the Zariski closure
of W − Z . Then the proposition implies that any point in Z = C0(V ) × {0} is a limit
of points in W − Z = V .

We can now finish the proof of Theorem 6. Suppose a line L parametrized by tv is
contained in C0(V ). Then v ∈ C0(V ), which implies that (v, 0) ∈ C0(V ) × {0}. By the
above paragraph, we can find points (vk, tk) ∈ V which converge to (v, 0). If we let Lk

be the line parametrized by tvk , then vk → v shows that Lk → L . Furthermore, since
qk = tkvk ∈ V and tk 	= 0, we see that Lk is the secant line determined by qk 	= V .
Finally, as k → ∞, we have qk = tk · vk → 0 · v = 0, which shows that L is a limit
of secant lines of points qk ∈ V converging to 0. This completes the proof of the
theorem. �

If we are working over an infinite field k, we may not be able to define what it
means for secant lines to converge to a line in the tangent cone. So it is not clear what
the analogue of Theorem 6 should be. But if p = 0 is in V over k, we can still form
the set V as in (5), and every secant line still gives a point (v, t) ∈ V with t 	= 0. A
purely algebraic way to discuss limits of secant lines as t → 0 would be to take the
smallest variety containing V and see what happens when t = 0. This means looking at
V ∩ (kn × {0}), which by (6) is exactly C0(V ) × {0}. You should check that the proof
of (6) is valid over k, so that the decomposition

V = V ∪ (C0(V ) × {0})
can be regarded as the extension of Theorem 6 to the infinite field k. In Exercise 10,
we will explore some other interesting aspects of the variety V .
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Another way in which the tangent cone approximates the variety is in terms of
dimension. Recall from §6 that dimp V is the maximum dimension of an irreducible
component of V containing p.

Theorem 8. Let p be a point on an affine variety V ⊂ kn. Then dimp V = dim C p(V ).

Proof. This is a standard result in advanced courses in commutative algebra [see, for
example, Theorem 13.9 in MATSUMURA (1986)]. As in §6, we will only prove this for
the case of a hypersurface in n . If V = V( f ), we know that C p(V ) = V( f p.min) by
Exercise 2. Thus, both V and C p(V ) are hypersurfaces, and, hence, both have dimension
n − 1 at all points. This shows that dimp V = dim C p(V ). �

This is a nice result because it enables us to compute dimp V without having to
decompose V into its irreducible components.

The final topic of this section will be the relation between the tangent cone and the
tangent space. In the exercises, you will show that for any point p of a variety V , we
have

C p(V ) ⊂ Tp(V ).

In terms of dimensions, this implies that

dim C p(V ) ≤ dim Tp(V ).

Then the following corollary of Theorem 8 tells us when these coincide.

Corollary 9. Assume that k is algebraically closed and let p be a point of a variety
V ⊂ kn. Then the following are equivalent:

(i) p is a nonsingular point of V .
(ii) dim C p(V ) = dim Tp(V ).

(iii) C p(V ) = Tp(V ).

Proof. Since dim C p(V ) = dimp V by Theorem 8, the equivalence of (i) and (ii) is
immediate from the definition of a nonsingular point. The implication (iii) ⇒ (ii) is
trivial, so that it remains to prove (ii) ⇒ (iii).

Since k is algebraically closed, we know that k is infinite, which implies that
the linear space Tp(V ) is an irreducible variety in kn . [When Tp(V ) is a coordinate
subspace, this follows from Exercise 7 of §1. See Exercise 12 below for the gen-
eral case.] Thus, if C p(V ) has the same dimension Tp(V ), the equality C p(V ) =
Tp(V ) follows immediately from the affine version of Proposition 10 of §4 (see
Exercise 18 of §4) �

If we combine Theorem 6 and Corollary 9, it follows that at a nonsingular point
p of a variety V ⊂ n , the tangent space at p is the union of all limits of secant
lines determined by sequences of points in V converging to p. This is a powerful
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generalization of the idea from elementary calculus that the tangent line to a curve is
a limit of secant lines.

EXERCISES FOR §7

1. Suppose that k is a field of characteristic 0. Given p ∈ kn and f ∈ k[x1, . . . , xn], we know

that f can be written in the form f = �αcα(x − p)α , where cα ∈ k and (x − p)α is as in

the text. Given α, define

∂α

∂αx
= ∂α1

∂α1 x1

· · · ∂αn

∂αn xn
,

where ∂αi

∂αi xi
means differentiation αi times with respect to xi . Finally, set

α! = α1! · α2! · αn!.

a. Show that

∂α(x − p)β

∂αx
(p) =

{
α! if α = β

0 otherwise.

Hint: There are two cases to consider: when βi < αi , for some i and when βi ≥ αi for

all i .
b. If f = �αcα(x − p)α , then show that

cα = 1

α!

∂α f

∂αx
(p),

and conclude that

f =
∑

α

1

α!

∂α f

∂αx
(p)(x − p)α.

This is Taylor’s formula for f at p. Hint: Be sure to explain where you use the charac-

teristic 0 assumption.

c. Write out the formula of part (b) explicitly when f ∈ k[x, y] has total degree 3.

d. What formula do we get for f p, j in terms of the partial derivatives of f ?

e. Give an example to show that over a finite field, it may be impossible to express f in

terms of its partial derivatives. Hint: See Exercise 10 of §6.

2. Let V ⊂ kn be a hypersurface.

a. If I(V ) = 〈 f 〉, prove that CP (V ) = V( f p,min).

b. If k is algebraically closed and V = V( f ), prove that the conclusion of part (a) is still

true. Hint: See the proof of part (ii) of Proposition 4.

3. In this exercise, we will show that the ideal I = 〈xy, xz + z(y2 − z2)〉 ⊂ k[x, y, z] is a

radical ideal when k has characteristic 0.

a. Show that

〈x, z(y2 − z2)〉 = 〈x, z〉 ∩ 〈x, y − z〉 ∩ 〈x, y + z〉.
Furthermore, show that the three ideals on the right-hand side of the equation are prime.

Hint: Work in k[x, y, z]/〈x〉 ∼= k[y, z] and use the fact that k[y, z] has unique factoriza-

tion. Also explain why this result fails if k is the field 2 consisting of two elements.

b. Show that

〈y, xz − z3〉 = 〈y, z〉 ∩ 〈y, x − z2〉,
and show that the two ideals on the right-hand side of the equation are prime.
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c. Prove that I = 〈x, z(y2 − z2)〉 ∩ 〈y, xz − z3〉. Hint: One way is to use the ideal intersec-

tion algorithm from Chapter 4, §3. There is also an elementary argument.

d. By parts (a), (b) and (c) we see that I is an intersection of five prime ideals. Show that I
is a radical ideal. Also, use this decomposition of I to describe V = V(I ) ⊂ k3.

e. If k is algebraically closed, what is I(V )?

4. This exercise is concerned with the proof of Proposition 4. Fix a monomial order > on

k[x0, . . . , xn] with the properties described in the statement of the proposition.

a. If g ∈ k[x1, . . . , xn] is the dehomogenization of G ∈ k[x0, . . . , xn], prove that LT(G) =
LT(gmin)xb

0 for some b.

b. If G1, . . . , Gs is a basis of I h , prove that the dehomogenizations g1, . . . , gs form a basis

of I . In Exercise 5, you will show that if the Gi ’s are a Groebner basis for >, the gi ’s

may fail to be a Groebner basis for I with respect to the monomial induced order on

k[x1, . . . , xn].

c. If f, g ∈ k[x1, . . . , xn], show that ( f · g)min = fmin · gmin . Conclude that ( f m)min =
( fmin)m .

5. We will continue our study of the variety V = V(xy, xz + z(y2 − z2)) begun in the text.

a. If we use grlex with w > x > y > z, show that a Groebner basis for I h ⊂ k[w, x, y, z]

is {xy, xzw + z(y2 − z2), yz(y2 − z2)}.
b. If we dehomogenize the Groebner basis of part (a), we get a basis of I . Show that this

basis is not a Groebner basis of I for grlex with x > y > z.

c. Use Proposition 4 to show that the tangent cone C0(V ) is a union of five lines through

the origin in k3 and compare your answer to part (e) of Exercise 3.

6. Compute the dimensions of the tangent cone and the tangent space at the origin of the

varieties defined by the following ideals:

a. 〈xz, xy〉 ⊂ k[x, y, z].

b. 〈x − y2, x − z3〉 ⊂ k[x, y, z].

7. In §3 of Chapter 3, we used elimination theory to show that the tangent surface of the twisted

cubic V(y − x2, z − x3) ⊂ 3 is defined by the equation

x3z − (3/4)x2 y2 − (3/2)xyz + y3 + (1/4)z2 = 0.

a. Show that the singular locus of the tangent surface S is exactly the twisted cubic. Hint:

Two different ideals may define the same variety. For an example of how to deal with

this, see equation (14) in Chapter 3, §4.

b. Compute the tangent space and tangent cone of the surface S at the origin.

8. Suppose that in n we have two sequences of vectors vk and tkvk , where tk ∈ , such

that vk → v 	= 0 and tkvk → 0. We claim that tk → 0 in . To prove this, define the

length of a complex number t = x + iy to be |t | = √
x2 + y2 and define the length of

v = (z1, . . . , zn) ∈ n to be |v| =
√

|z1|2 + · · · + |zn|2. Recall that vk → v means that for

every ε > 0, there is N such that |vk − v| < ε for k ≥ N .

a. If we write v = (z1, . . . , zn) and vk = (zk1, . . . , zkn), then show that vk → v implies

zk j → z j for all j . Hint: Observe that |z j | ≤ |v|.
b. Pick a nonzero component z j of v. Show that zk j → z j 	= 0 and tk zk j → 0. Then divide

by z j and conclude that tk → 0.

9. Theorem (2.33) of MUMFORD (1976) states that if W ⊂ n( ) is an irreducible projective

variety and Z ⊂ W is a projective variety not equal to W , then any point in Z is a limit of

points in W − Z . Our goal is to apply this to prove Proposition 7.

a. Let Z ⊂ W ⊂ n be affine varieties such that W is the Zariski closure of W − Z . Show

that Z contains no irreducible component of W .



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX January 5, 2007 9:41

506 9. The Dimension of a Variety

b. Show that it suffices to prove Proposition 7 in the case when W is irreducible. Hint: If

p lies in Z , then it lies in some component W1 of W . What does part (a) tell you about

W1 ∩ Z ⊂ W1?

c. Let Z ⊂ W ⊂ n , where W is irreducible and Z 	= W , and let Z and W be their pro-

jective closures in n( ). Show that the irreducible case of Proposition 7 follows from

Mumford’s Theorem (2.33). Hint: Use Z ∪ (W − W ) ⊂ W .

d. Show that the converse of the proposition is true in the following sense. Let p ∈ n . If

p /∈ V − W and p is a limit of points in V − W , then show that p ∈ W . Hint: Show that

p ∈ V and recall that polynomials are continuous.

10. Let V ⊂ kn be a variety containing the origin and let V ⊂ kn+1 be the set described in (5).

Given λ ∈ k, consider the “slice” (kn × {λ}) ∩ V . Assume that k is infinite.

a. When λ 	= 0, show that this slice equals Vλ × {λ}, where Vλ = {v ∈ kn : λv ∈ V }. Also

show that Vλ is an affine variety.

b. Show that V1 = V , and, more generally, for λ 	= 0, show that Vλ is isomorphic to V .

Hint: Consider the polynomial map defined by sending (x1, . . . , xn) to (λx1, . . . , λxn).

c. Suppose that k = or and that λ 	= 0 is close to the origin. Explain why Vλ gives

a picture of V where we have expanded the scale by a factor of 1/λ. Conclude that as

λ → 0, Vλ shows what V looks like as we “zoom in” at the origin.

d. Use (6) to show that V0 = C0(V ). Explain what this means in terms of the “zooming in”

described in part (c).

11. If p ∈ V ⊂ kn , show that Cp(V ) ⊂ Tp(V ).

12. If k is an infinite field and V ⊂ kn is a subspace (in the sense of linear algebra), then prove

that V is irreducible. Hint: In Exercise 7 of §1, you showed that this was true when V was

a coordinate subspace. Now pick an appropriate basis of kn .

13. Let W ⊂ n−1( ) be a nonempty projective variety and let CW ⊂ n be its affine cone.

a. Prove that the tangent cone of CW at the origin is CW .

b. Prove that the origin is a smooth point of CW if and only if W is a projective linear

subspace of n−1( ). Hint: Use Corollary 9.

In Exercises 14-17, we will study the “blow-up” of a variety V at a point p ∈ V . The

blowing-up process gives us a map of varieties π : Ṽ → V such that away from p, the two

varieties look the same, but at p, Ṽ can be much larger than V , depending on what the

tangent cone Cp(V ) looks like.

14. Let k be an arbitrary field. In §5 of Chapter 8, we studied varieties in n−1 × kn , where
n−1 = n−1(k). Let y1, . . . , yn be homogeneous coordinates in n−1 and let x1, . . . , xn

be coordinates in kn . Then the (y1, . . . , yn)-homogeneous polynomials xi y j − x j yi (this is

the terminology of Chapter 8, §5) define a variety � ⊂ n−1 × kn . This variety has some

interesting properties.

a. If(p, q) ∈ n−1 × kn , then interpreting p as homogeneous coordinates and q as ordinary

coordinates, show that (p, q) ∈ � if and only if q = tp for some t ∈ k (which might be

zero).

b. If q 	= 0 is in kn , show that ( n−1 × {q}) ∩ � consists of a single point [which can be

thought of as (q, q), where the first q is the point of n−1 with homogeneous coordinates

given by q ∈ kn − {0}]. On the other hand, when q = 0, show that ( n−1 × {q}) ∩ � =
n−1 × {0}.

c. If π : � → kn is the projection map, conclude that π−1(q) consists of a single point,

except when q = 0, in which case π−1(0) is a copy of n−1. Hence, we can regard �
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as the variety obtained by removing the origin from kn and replacing it by a copy of
n−1.

d. To see what the n−1 × {0} ⊂ � means, consider a line L through the origin parametrized

by tv. Show that the points (v, tv) ∈ n−1 × kn lie in � and, hence, describe a curve

L ⊂ �. Investigate where this curve meets n−1 × {0} and conclude that distinct lines

through the origin in kn give distinct points in π−1(0). Thus, the difference between � and

kn is that � separates tangent directions at the origin. We call π : � → kn the blow-up
of kn at the origin.

15. This exercise is a continuation of Exercise 14. Let V ⊂ kn be a variety containing the origin

and assume that the origin is not an irreducible component of V . Our goal here is to define the

blow-up of V at the origin. Let � ⊂ n−1 × kn be as in the previous exercise. Then Ṽ ⊂ �

is defined to be the smallest variety in n−1 × kn containing ( n−1 × (V − {0})) ∩ �. If

π : � → kn is as in Exercise 14, then prove that π (Ṽ ) ⊂ V . Hint: First show that Ṽ ⊂
n−1 × V .

This exercise shows we have a map π : Ṽ → V , which is called the blow-up of V at the

origin. By Exercise 14, we know that π−1(q) consists of a single point for q 	= 0 in V . In

Exercise 16, you will describe π−1(0) in terms of the tangent cone of V at the origin.

16. Let V ⊂ kn be a variety containing the origin and assume that the origin is not an irreducible

component of V . We know that tangent cone C0(V ) is the affine cone CW over some projective

variety W ⊂ n−1. We call W the projectivized tangent cone of V at 0. The goal of this

exercise is to show that if π : Ṽ → V is the blow-up of V at 0 as defined in Exercise 15,

then π−1(0) = W × {0}.
a. Show that our assumption that {0} is not an irreducible component of V implies that k is

infinite and that V is the Zariski closure of V − {0}.
b. Let g ∈ k[y1, . . . , yn, x1, . . . , xn]. Then show that g ∈ I(Ṽ ) if and only if g(q, tq) = 0

for all q ∈ V − {0} and all t ∈ k − {0}. Hint: Use part (a) of Exercise 14.

c. Then show that g ∈ I(Ṽ ) if and only if g(q, tq) = 0 for all q ∈ V and all t ∈ k. Hint:

Use parts (a) and (b).

d. Explain why I(Ṽ ) is generated by (y1, . . . , yn)-homogeneous polynomials.

e. Assume that g = �αgα(y1, . . . , yn)xα ∈ I(Ṽ ). By part (d), we may assume that the gα

are all homogeneous of the same total degree d. Let

f (x1, . . . , xn) =
∑

α

gα(x1, . . . , xn)xα.

Then show that f ∈ I(V ). Hint: First show that g(x1, . . . , xn, t x1, . . . , t xn) =
f (x1, . . . , xn)td , and then use part (c).

f. Prove that W × {0} ⊂ Ṽ ∩ ( n−1 × {0}). Hint: It suffices to show that g(v, 0) = 0 for

g ∈ I(Ṽ ) and v ∈ C0(V ). In the notation of part (e) note that g(v, 0) = g0(v). If g0 	= 0,

show that g0 = fmin , where f is the polynomial defined in part (e).

g. Prove that V ∩ ( n−1 × {0}) ⊂ W × {0}. Hint: If f = fl + · · · + fd ∈ I(V ), where fl =
fmin , let g be the remainder of t l f on division by t x1 − y1, . . . , t xn − yn . Show that t
does not appear in g and that g ∈ I(Ṽ ). Then compute g(v, 0) using the techniques of

parts (e) and (f).

A line in the tangent cone can be regarded as a way of approaching the origin through

points of V . So we can think of the projectivized tangent cone W as describing all possible

ways of approaching the origin within V . Then π−1(0) = W × {0} means that each of

these different ways gives a distinct point in the blow-up. Note how this generalizes

Exercise 14.
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17. Assume that k is an algebraically closed field and suppose that V = V( f1, . . . , fs) ⊂ kn

contains the origin.

a. By analyzing what you did in part (g) of Exercise 16, explain how to find defining

equations for the blow-up Ṽ .

b. Compute the blow-up at the origin of V(y2 − x2 − x3) and describe how your answer

relates to the first picture in Example 1.

c. Compute the blow-up at the origin of V(y2 − x3).

Note that in parts (b) and (c), the blow-up is a smooth curve. In general, blowing-up is an

important tool in what is called desingularizing a variety with singular points.
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Appendix A

Some Concepts from Algebra

This appendix contains precise statements of various algebraic facts and definitions
used in the text. For students who have had a course in abstract algebra, much of this
material will be familiar. For students seeing these terms for the first time, keep in mind
that the abstract concepts defined here are used in the text in very concrete situations.

§1 Fields and Rings

We first give a precise definition of a field.

Definition 1. A field consists of a set k and two binary operations “·” and “+” defined
on k for which the following conditions are satisfied:

(i) (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c) for all a, b, c ∈ k (associa-
tive).

(ii) a + b = b + a and a · b = b · a for all a, b ∈ k (commutative).
(iii) a · (b + c) = a · b + a · c for all a, b, c ∈ k (distributive).
(iv) There are 0, 1 ∈ k such that a + 0 = a · 1 = a for all a ∈ k (identities).
(v) Given a ∈ k, there is b ∈ k such that a + b = 0 (additive inverses).

(vi) Given a ∈ k, a �= 0, there is c ∈ k such that a · c = 1 (multiplicative inverses).

The fields most commonly used in the text are , , and . In the exercises to §1
of Chapter 1, we mention the field 2 which consists of the two elements 0 and 1.
Some more complicated fields are discussed in the text. For example, in §3 of Chapter
1, we define the field k(t1, . . . , tm) of rational functions in t1, . . . , tm with coefficients
in k. Also, in §5 of Chapter 5, we introduce the field k(V ) of rational functions on an
irreducible variety V .

If we do not require multiplicative inverses, then we get a commutative ring.

Definition 2. A commutative ring consists of a set R and two binary operations “·”
and “+” defined on R for which the following conditions are satisfied:

(i) (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c) for all a, b, c, ∈ R (asso-
ciative).

509
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(ii) a + b = b + a and a · b = b · a for all a, b ∈ R (commutative).
(iii) a · (b + c) = a · b + a · c for all a, b, c ∈ R (distributive).
(iv) There are 0, 1 ∈ R such that a + 0 = a · 1 = a for all a ∈ R (identities).
(v) Given a ∈ R, there is b ∈ R such that a + b = 0 (additive inverses).

Note that any field is obviously a commutative ring. Other examples of commutative
rings are the integers and the polynomial ring k[x1, . . . , xn]. The latter is the most
commonly used ring in the book. In Chapter 5, we construct two other commutative
rings: the coordinate ring k[V ] of polynomial functions on an affine variety V and the
quotient ring k[x1, . . . , xn]/I, where I is an ideal of k[x1, . . . , xn].

A special case of commutative rings are the integral domains.

Definition 3. A commutative ring R is an integral domain if whenever a, b ∈ R and
a · b = 0, then either a = 0 or b = 0.

Any field is an integral domain, and the polynomial ring k[x1, . . . , xn] is an integral
domain. In Chapter 5, we prove that the coordinate ring k[V ] of a variety V is an
integral domain if and only if V is irreducible.

Finally, we note that the concept of ideal can be defined for any ring.

Definition 4. Let R be a commutative ring. A subset I ⊂ R is an ideal if it satisfies:
(i) 0 ∈ I .

(ii) If a, b ∈ I , then a + b ∈ I .
(iii) If a ∈ I and b ∈ R, then b · a ∈ I .

Note how this generalizes the definition of ideal given in §4 of Chapter 1.

§2 Groups

A group can be defined as follows.

Definition 1. A group consists of a set G and a binary operation “·” defined on G for
which the following conditions are satisfied:

(i) (a · b) · c = a · (b · c) for all a, b, c ∈ G (associative).
(ii) There is 1 ∈ G such that 1 · a = a · 1 = a for all a ∈ G (identity).

(iii) Given a ∈ G, there is b ∈ G such that a · b = b · a = 1 (inverses).

A simple example of a group is given by the integers under addition. Note is not
a group under multiplication. A more interesting example comes from linear algebra.
Let k be a field and define

GL(n, k) = {A : A is an invertible n × n matrix with entries in k}.
From linear algebra, we know that the product AB of two invertible matrices A and B
is again invertible. Thus, matrix multiplication defines a binary operation on GL(n, k),
and it is easy to verify that all of the group axioms are satisfied.
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For a final example of a group, let n be a positive integer and consider the set

Sn = {σ : {1, . . . , n} → {1, . . . , n} : σ is one-to-one and onto}.
Then composition of functions turns Sn into a group. Since elements σ ∈ Sn can be
regarded as permutations of the numbers 1 through n, we call Sn the permutation group.
Note that Sn has n! elements.

Finally, we need the notion of a subgroup.

Definition 2. Let G be a group. A subset H ⊂ G is called a subgroup if it satisfies:
(i) 1 ∈ H.

(ii) If a, b ∈ H, then a · b ∈ H.
(iii) If a ∈ H, then a−1 ∈ H.

In Chapter 7, we study finite subgroups of the group GL(n, k).

§3 Determinants

Our first goal is to give a formula for the determinant of an n × n matrix. We begin by
defining the sign of a permutation. Recall that the group Sn was defined in §2 of this
appendix.

Definition 1. If σ ∈ Sn, let Pσ be the matrix obtained by permuting the columns of the
n × n identity according to σ. Then the sign of σ , denoted sgn(σ ), is defined by

sgn(σ ) = det(Pσ ).

Note that we can transform Pσ back to the identity matrix by successively switching
columns two at a time. Since switching two columns of a determinant changes its sign,
it follows that sgn(σ ) equals ±1. Then one can prove that the determinant is given by
the following formula.

Proposition 2. If A = (ai j ) is an n × n matrix, then

det(A) =
∑

σ∈Sn

sgn(σ )a1σ (1) · · · anσ (n).

Proof. A proof is given in Chapter 5, §3 of FINKBEINER (1978). �

This formula is used in a crucial way in our treatment of resultants (see Proposition
8 from Chapter 3, §5).

A second fact we need concerns the solution of a linear system of n equations in n
unknowns. In matrix form, the system is written

AX = B,
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where A = (ai j ) is the n × n coefficient matrix, B is a column vector, and X is the
column vector whose entries are the unknowns x1, . . . , xn . When A is invertible, the
system has the unique solution given by X = A−1 B. One can show that this leads to
the following explicit formula for the solution.

Proposition 3 (Cramer’s Rule). Suppose we have a system of equations AX = B. If
A is invertible, then the unique solution is given by

xi = det(Mi )

det(A)
,

where Mi is the matrix obtained from A by replacing its i-th column with B.

Proof. A proof can be found in Chapter 5, §3 of FINKBEINER (1978). �

This proposition is used to prove some basic properties of resultants (see Proposition
9 from Chapter 3, §5).
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Appendix B

Pseudocode

Pseudocode is commonly used in mathematics and computer science to present algo-
rithms. In this appendix, we will describe the pseudocode used in the text. If you have
studied a programming language, you may see a similarity between our pseudocode
and the language you studied. This is no accident, since programming languages are
also designed to express algorithms. The syntax, or “grammatical rules,” of our pseu-
docode will not be as rigid as that of a programming language since we do not require
that it run on a computer. However, pseudocode serves much the same purpose as a
programming language.

As indicated in the text, an algorithm is a specific set of instructions for performing
a particular calculation with numerical or symbolic information. Algorithms have in-
puts (the information the algorithm will work with) and outputs (the information that
the algorithm produces). At each step of an algorithm, the next operation to be per-
formed must be completely determined by the current state of the algorithm. Finally,
an algorithm must always terminate after a finite number of steps.

Whereas a simple algorithm may consist of a sequence of instructions to be performed
one after the other, most algorithms also use the following special structures:
� Repetition structures, which allow a sequence of instructions to be repeated. These

structures are also known as loops. The decision whether to repeat a group of in-
structions can be made in several ways, and our pseudocode includes different types
of repetition structures adapted to different circumstances.

� Branching structures, which allow the possibility of performing different sequences
of instructions under different circumstances that may arise as the algorithm is exe-
cuted.
These structures, as well as the rest of the pseudocode, will be described in more

detail in the following sections.

§1 Inputs, Outputs, Variables, and Constants

We always specify the inputs and outputs of our algorithms on two lines before the
start of the algorithm proper. The inputs and outputs are given by symbolic names in

513
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usual mathematical notation. Sometimes, we do not identify what type of information is
represented by the inputs and outputs. In this case, their meaning should be clear from
the context of the discussion preceding the algorithm. Variables (information stored for
use during execution of the algorithm) are also identified by symbolic names. We freely
introduce new variables in the course of an algorithm. Their types are determined by
the context. For example, if a new variable called a appears in an instruction, and we
set a equal to a polynomial, then a should be treated as a polynomial from that point
on. Numerical constants are specified in usual mathematical notation. The two words
true and false are used to represent the two possible truth values of an assertion.

§2 Assignment Statements

Since our algorithms are designed to describe mathematical operations, by far the most
common type of instruction is the assignment instruction. The syntax is

<variable> := <expression>.

The symbol := is the same as the assignment operator in Pascal. The meaning of this
instruction is as follows. First, we evaluate the expression of the right of the assignment
operator, using the currently stored values for any variables that appear. Then the result
is stored in the variable on the left-hand side. If there was a previously stored value
in the variable on the left-hand side, the assignment erases it and replaces it with the
computed value from the right-hand side. For example, if a variable called i has the
numerical value 3, and we execute the instruction

i := i + 1,

the value 3 + 1 = 4 is computed and stored in i . After the instruction is executed, i
will contain the value 4.

§3 Looping Structures

Three different types of repetition structures are used in the algorithms given in the
text. They are similar to the ones used in many languages. The most general and most
frequently used repetition structure in our algorithms is the WHILE structure. The
syntax is

WHILE <condition> DO <action>.

Here, <action> is a sequence of instructions. In a WHILE structure, the action is the
group of statements to be repeated. We always indent this sequence of instructions.
The end of the action is signalled by a return to the level of indentation used for the
WHILE statement itself.
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The <condition> after the WHILE is an assertion about the values of variables, etc.,
that is either true or false at each step of the algorithm. For instance, the condition

i ≤ s AND divisionoccurred = false

appears in a WHILE loop in the division algorithm from Chapter 2, §3.
When we reach a WHILE structure in the execution of an algorithm, we determine

whether the condition is true or false. If it is true, then the action is performed once,
and we go back and test the condition again. If it is still true, we repeat the action
once again. Continuing in the same way, the action will be repeated as long as the
condition remains true. When the condition becomes false (at some point during the
execution of the action), that iteration of the action will be completed, and then the
loop will terminate. To summarize, in a WHILE loop, the condition is tested before
each repetition, and that condition must be true for the repetition to go on.

A second repetition structure that we use on occasion is the REPEAT structure. A
REPEAT loop has the syntax

REPEAT <action> UNTIL <condition>.

Reading this as an English sentence indicates its meaning. Unlike the condition in a
WHILE, the condition in a REPEAT loop tells us when to stop. In other words, the
action will be repeated as long as the condition is false. In addition, the action of a
REPEAT loop is always performed at least once since we only test the condition after
doing the sequence of instructions representing the action. As with a WHILE structure,
the instructions in the action are indented.

The final repetition structure that we use is the FOR structure. We use the syntax

FOR each s in S DO <action>

to represent the instruction: “perform the indicated action for each element s ∈ S.”
Here S is a finite set of objects and the action to be performed will usually depend on
which s we are considering. The order in which the elements of S are considered is not
important. Unlike the previous repetition structures, the FOR structure will necessarily
cause the action to be performed a fixed number of times (namely, the number of
elements in S).

§4 Branching Structures

We use only one type of branching structure, which is general enough for our purposes.
The syntax is

IF <condition> THEN <action1> ELSE <action2>.

The meaning is as follows. If the condition is true at the time the IF is reached, action
1 is performed (once only). Otherwise (that is, if the condition was false), action2 is
performed (again, once only). The instructions in action 1 and action2 are indented, and
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the ELSE separates the two sequences of instructions. The end of action2 is signalled
by a return to the level of indentation used for the IF and ELSE statements.

In this branching structure, the truth or falsity of the condition selects which action
to perform. In some cases, we omit the ELSE and action2. This form is equivalent to

IF <condition> THEN <action1> ELSE do nothing.
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Appendix C

Computer Algebra Systems

This appendix will discuss several computer algebra systems that can be used in con-
junction with the text. We will describe AXIOM, Maple, Mathematica and REDUCE
in some detail, and then mention some other systems. These are all amazingly powerful
programs, and our brief discussion will not do justice to their true capability.

It is important to note that we will not give a general introduction to any of the
computer algebra systems we will discuss. This is the responsibility of your course
instructor. In particular, we will assume that you already know the following:
� How to enter and exit the program, and how to enter commands and polynomials.

Some systems require semicolons at the end of commands (such as Maple and
REDUCE), while others do not. Also, some systems (such as Mathematica) are case
sensitive, while others are not. Some systems require an asterisk for multiplication
(such as AXIOM), while others do not.

� How to refer to previous commands, and how to save results in a file. The latter can
be important, especially when an answer fills more than one computer screen. You
should be able to save the answer in a file and print it out for further study.

� How to work with lists. For example, in the Groebner basis command, the input
contains a list of polynomials, and the output is another list which is a Groebner
basis for the ideal generated by the polynomials in the input list. You should be able
to find the length of a list and extract polynomials from a list.

� How to assign symbolic names to objects. In many computations, the best way to deal
with complicated data is to use symbolic names for polynomials, lists of polynomials,
lists of variables, etc.

If a course being taught from this book has a laboratory component, we would suggest
that the instructor use the first lab meeting to cover the above aspects of the particular
computer algebra system being used.

§1 AXIOM

AXIOM is a version of SCRATCHPAD, which was developed by IBM over a period of
many years. AXIOM is now freely available from http://www.nongnu.org/axiom.
Our discussion applies to version 2.0. For us, the most important AXIOM commands

517



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX December 21, 2006 17:27

518 Appendix C. Computer Algebra Systems

are normalForm, for doing the division algorithm, and groebner, for computing a
Groebner basis.

A distinctive feature of AXIOM is that every object has a specific type. In particular,
this affects the way AXIOM works with monomial orders: an order is encoded in a
special kind of type. For example, suppose we want to use lex order on [x, y, z]
with x > y > z. This is done by using the type DMP([x,y,z],FRAC INT) (remem-
ber that AXIOM encloses a list inside brackets [. . .]). Here, DMP stands for “Dis-
tributed Multivariate Polynomial,” and FRAC INT means fractions of integers, i.e.,
rational numbers. Similarly, grevlex for [x, y, z] with x > y > z means using the
type HDMP([x,y,z],FRAC INT), where HDMP stands for “Homogeneous Distributed
Multivariate Polynomial.” At the end of the section, we will explain how to get AXIOM
to work with grlex order.

To see how this works in practice, we will divide x3 + 3y2 by x2 + y and x + 2xy
using grevlex order with x > y. We first give the three polynomials names and declare
their types:
-> f : HDMP([x,y],FRAC INT) := x ˆ 3+3*y ˆ 2
-> g : HDMP([x,y],FRAC INT) := x ˆ 2+y
-> h : HDMP([x,y],FRAC INT) := x+2*x*y
(Here, -> is the AXIOM prompt, and the colon : indicates a type declaration. You can
save typing by giving HDMP([x,y],FRAC INT) a symbolic name.) Then the remainder
is computed by the command:
-> normalForm(f,[g,h])
The output is the remainder of f on division by g,h. In general, the syntax for this
command is:
-> normalForm(poly,polylist)
where poly is the polynomial to be divided by the polynomials in the list polylist
(assuming that everything has been declared to be of the appropriate type).

To do the same computation using lex order with x > y, first issue the command:
-> Lex := DMP([x,y],FRAC INT)
to give DMP([x,y],FRAC INT) the symbolic name Lex, and then type:
-> normalForm(f::Lex,[g::Lex,h::Lex])
Here, we are using AXIOM’s type conversion facility : : to convert from one type to
another.

The syntax for the groebner command is:
-> groebner(polylist)
This computes a Groebner basis for the ideal generated by the polynomials inpolylist
(of the appropriate type). The answer is reduced in the sense of Chapter 2, §7. For
example, if g,h are as above, then the command:
-> gb := groebner([g,h])
computes a list (and gives it the symbolic name gb) which is a Groebner basis for
the ideal 〈x2 + y, x + 2xy〉 ⊂ [x, y] with respect to grevlex for x > y. Also, if
you want information about the intermediate stages of the calculation, you can in-
clude the options "redcrit" or "info" in the groebner command. For example, the
command:
-> groebner([g,h], "redcrit")
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will print out the remainders of S-polynomials (only one in this case) generated during
the course of the computation. Adding the"info" option yields even more information.

AXIOM can also work with coefficients in a variety of fields besides . This is easily
done by replacing FRAC INT in the type declaration. For instance, to compute Groebner
bases over the field of rational functions in polynomials with integer coefficients, one
uses FRAC POLY INT. To see how this works, let us compute a Groebner basis for
the ideal 〈vx2 + y, uxy + y2〉 ⊂ (u, v)[x, y] using lex order with x > y. This is
accomplished by the following AXIOM commands:
-> m : List DMP([x,y],FRAC POLY INT)
-> m := [v*xˆ2+y,u*x*y+yˆ2]
-> groebner(m)
Notice that this illustrates another method for declaring the type of the polynomials
used in a Groebner basis computation.

Other fields are just as easy: one uses FRAC COMPLEX INT for the field of Gaussian
rational numbers (i) = {a + bi : a, b ∈ } (note that AXIOM writes i = √−1 as
%i) and PrimeField(p) for a finite field with p elements (where p is a prime). It is
also possible to compute Groebner bases over arbitrary finite fields. AXIOM’s method
of working with finite fields is explained in Section 8.11 of JENKS and SUTOR (1992).
The ability to simply “insert” the field you want to compute Groebner bases over is a
good illustration of the power of AXIOM.

Besides working with lists of polynomials, AXIOM also allows the user to declare
a list of polynomials to be an ideal. The syntax of the ideal command is:
-> ideal polylist
where polylist is a list of polynomials of the appropriate type. This is useful because
AXIOM has a number of commands which apply to ideals, including:
� intersect, which computes the intersection of a list of ideals.
� zeroDim?, which determines (using the methods of Chapter 5, §3) if the equations

have finitely many solutions over an algebraically closed field.
� dimension, which computes the dimension of the variety defined by an ideal.
� prime?, which determines whether an ideal is prime.
� radical, which computes the radical of an ideal.
� primaryDecomp, which computes the primary decomposition of an ideal.
Examples of how to use these and other related AXIOM commands can be found in
Section 8.12 of JENKS and SUTOR (1992). We should also mention that there are the
commands leadingMonomial and leadingCoefficient for extracting the leading
term and coefficient of a polynomial.

All of the commands described so far require that you declare in advance the type
of polynomial you’ll be using. However, if you only need Groebner bases in lex or
grevlex order with rational coefficients, then a simpler approach is to use the AXIOM
commands lexGroebner and totalGroebner. For example, the command:
-> lexGroebner([2*x ˆ 2+y,2*y ˆ 2+x], [x,y])
computes a Groebner basis (reduced up to constants) for the ideal 〈2x2 + y, 2y2 + x〉 ⊂

[x, y] using lex order with x > y. Notice that we didn’t have to declare the type of the
polynomials in advance—lexGroebner takes care of this. To do the same computation
using grevlex, simply replace lexGroebner with totalGroebner.
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We will end this section by explaining how to get AXIOM to work with grlex order.
All of the raw material needed is present in AXIOM, though it takes a little work to
put it together. For concreteness, suppose we want grlex order on [x, y] with x > y.
Then issue the commands:
-> )set expose add constructor GDMP
-> )set expose add constructor ODP
-> Grlex := GDMP([x,y],FRAC INT,ODP(2,NNI,totalLex$ORDFUNS
(2,NNI)))

The basic idea here is that GDMP stands for “General Distributed Multivariate Poly-
nomial,” which can be used to create an AXIOM type for any monomial order, and
totalLex is the function which orders exponent vectors using grlex. By declaring
polynomials to be of type Grlex, you can now compute Groebner bases using grlex
with x > y. We should caution that type conversion doesn’t work between Grlex and
the monomial orders created by DMP and HDMP, though it is possible to write type con-
version routines. Using the AXIOM concept of a package, one could write a package
which knows all of the monomial orders mentioned in the exercises to Chapter 2, §4,
along with commands to convert from one type to the other.

§2 Maple

Our discussion applies to Maple 9.5. For us, the most important part of Maple is the
Groebner package. To have access to the commands in this package, type:
> with(Groebner);
(here > is the Maple prompt, and as usual, all Maple commands end with a semicolon).
Once theGroebnerpackage is loaded, you can perform the division algorithm, compute
Groebner bases, and carry out a variety of other commands described below.

In Maple, a monomial ordering is called a termorder. Of the monomial orderings
considered in Chapter 2, the easiest to use are lex and grevlex. Lex order is called plex
(for “pure lexicographic”), and grevlex order is called tdeg (for “total degree”). Be
careful not to confuse tdeg with grlex. Since a monomial order depends also on how
the variables are ordered. Maple needs to know both the termorder you want (plex or
tdeg) and a list of variables. For example, to tell Maple to use lex order with variables
x > y > z, you would need to input plex (x,y,z).

This package also knows an elimination order, as defined in Exercise 5 of Chap-
ter 3, §1. To eliminate the first k variables from x1, . . . , xn , one can use lexdeg
([x 1, . . . ., x k], [x {k + 1}, . . . , x n]) (remember that Maple encloses a list inside
brackets [. . . ]). This order is similar (but not identical to) to the elimination order of
Bayer and Stillman described in Exercise 6 of Chapter 3, §1.

The Maple documentation for the Groebner package also describes how to use
certain weighted orders, and we will explain below how matrix orders give us many
more monomial orderings.

The most commonly used commands in Maple’s Groebner package are normalf,
for doing the division algorithm, and gbasis, for computing a Groebner basis. The
name normalf stands for “normal form”, and the command has the following syntax:
> normalf(f,polylist,term order);
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The output is the remainder of f on division by the polynomials in the list polylist
using the monomial ordering specified byterm order. For example, to divide x3 + 3y2

by x2 + y and x + 2xy using grevlex order with x > y, one would enter:
> normalf(xˆ3+3*yˆ2,[xˆ2+y,x+2*x*y], tdeg(x,y));
The base field here is the rational numbers . Note that normalf does not give the
quotients in the division algorithm.

As you might expect, gbasis stands for “Groebner basis”, and the syntax is as
follows:
> gbasis(polylist, term order);
This computes a Groebner basis for the ideal generated by the polynomials inpolylist
with respect to the monomial ordering specified by term order. The answer is a re-
duced Groebner basis (in the sense of Chapter 2, §7), except for clearing denominators.
As an example of how gbasis works, consider the command:
> gb := gbasis([xˆ2+y,2*x*y+yˆ2],plex(x,y));
This computes a list (and gives it the symbolic name gb) which is a Groebner basis for
the ideal 〈x2 + y, 2xy + y2〉 ⊂ [x, y] using lex order with x > y.

If you use polynomials with integer or rational coefficients in normalf or gbasis,
Maple will assume that you are working over the field . Note that there is no lim-
itation on the size of the coefficients. Maple can also work with coefficients that
lie in rational function fields. To tell Maple that a certain variable is in the base
field (a “parameter”), you simply omit it from the variable list in the term order.
Thus,
> gbasis([v*xˆ2+y,u*x*y+yˆ2],plex(x,y));
will compute a Groebner basis for 〈vx2 + y, uxy + y2〉 ⊂ (u, v)[x, y] for lex or-
der with x > y. The answer is reduced up to clearing denominators (so the leading
coefficients of the Groebner basis are polynomials in u and v).

The Groebner package can also work with matrix orders by using the Ore algebra
package, which is loaded via the command:
> with(Ore algebra);
Using Maple notation for matrices, suppose that [u 1, . . . , u n] is invertible matrix,
where each u i = [u i1, . . . , u in] is a vector in n

≥0
Then define xα > xβ if

u 1 · α > u 1 · β, or u 1 · α = u 1 · β and u 2 · α > u 2 · β, or . . . .

Order of this type are discussed (from a slightly more general point of view) in the
remarks following Exercise 12 of Chapter 2, §4.

To see how such an order can be entered into Maple, suppose that we want to use
grlex with x > y > z. This is done via the commands:
> B:= poly algebra(x,y,z);
> M:= [[1,1,1],[1,0,0],[0,1,0]];
> GL:= termorder(B,’matrix’(M,[x,y,z]));
(It is a good exercise to show that the monomial ordering given by GL is grlex with
x > y > z.) Using GL as the term order in the normalf or gbasis commands, one
can now compute remainders or Groebner bases in [x, y, z]. Using matrix orders,
one can create all of the monomial orderings described in the book.
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When combined, the Groebner and Ore algebra packages of Maple 9.5 allow
one to do Groebner basis computations for a wide variety of monomials orderings over
algebraic number fields, finite fields, or even certain noncommutative rings such as rings
of differential operators. Further information can be found in the Maple documentation.

Some other useful Maple commands in the Groebner package are:
� leadmon, which computes LM( f ) and LC( f ) for a polynomial f with respect

to term order. Related commands are leadterm, which finds LM( f ), and
leadcoeff, which finds LC( f ).

� spoly, which computes the S-polynomial S( f, g) of two polynomials.
� is solvable, which uses the consistency algorithm from Chapter 4, §1 to determine

if a system of polynomial equations has a solution over an algebraically closed
field.

� is finite, which uses the finiteness algorithm from Chapter 5, §3 to determine if
a system of polynomial equations has finitely many solutions over an algebraically
closed field.

� univpoly, which given a variable and a Groebner basis, computes the polynomial of
lowest degree in the given variable which lies in the ideal generated by the Groebner
basis.

� hilbertpoly, which given a Groebner basis of an ideal I , computes aHPI (s) −
−aHPI (s − 1) in the notation of Chapter 9, §3. When I is a homogenous ideal,
Theorem 12 of Chapter 9, §3 shows that hilbertpoly computes the Hilbert poly-
nomial HPI (s). A related command is hilbertseries, which for a homogeneous
ideal computes the Hilbert series as defined in Exercise 24 of Chapter 6, §4 of COX,
LITTLE, AND O’ SHEA (1998).
There is also a solve command which attempts to find all solutions of a system

of equations. Maple has an excellent on-line help system that should make it easy to
master these (and other) Maple commands.

Finally, we should mention the existence of a Maple package written by Albert Lin
and Philippe Loustaunau of George Mason University (with subsequent modifications
by David Cox and Will Gryc of Amherst College and Chris Wensley of the University
of Bangor, Wales) which extends the Groebner package. In this package, the program
div alg gives the quotients in the division algorithm, and the program mxgb computes
a Groebner basis together with a matrix telling how to express the Groebner basis
in terms of the given polynomials. This package is slow compared to the Groebner
package, but can be used for many of the simpler examples in the book. There is also
a Maple worksheet which explains how to use the package. Copies of the package and
worksheet can be obtained from http://www.cs.amherst.edu/∼dac/iva.html.

§3 Mathematica

Our discussion applies to Mathematica 5.1. There is no special package to load in order
to compute Groebner bases: the basic commands are part of the Mathematica kernel.

Mathematica knows all of the monomial orderings considered in Chapter 2.
In typical Mathematica fashion, lex order is called Lexicographic, grlex is
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DegreeLexicographic and grevlex isDegreeReverseLexicographic. The mono-
mial order is determined by using the MonomialOrder option within the Mathematica
commands described below. If you omit the MonomialOrder option, Mathematica
will use the default order, which is lex. Mathematica can also use the weight orders
mentioned in the comments at the end of the exercises to Chapter 2, §4.

Since a monomial order also depends on how the variables are ordered, Mathematica
also needs to know a list of variables in order to specify the monomial order order you
want. For example, to tell Mathematica to use lex order with variables x > y > z, you
would input {x,y,z} (remember that Mathematica encloses a list inside braces{. . . })
into the Mathematica command you want to use.

For our purposes, the most important commands in Mathematica are
PolynomialReduce and GroebnerBasis. One nice feature of PolynomialReduce
is that it does the division algorithm from Chapter 2 with quotients. The syntax is as
follows:
In[1] := PolynomialReduce[f,polylist,varlist,options]
(where In[1] := is the Mathematica prompt). This computes the quotients and re-
mainder of f on division by the polynomials in polylist using the monomial or-
der specified by varlist and the MonomialOrder option. For example, to divide
x3 + 3y2 by x2 + y and x + 2xy using grlex order with x > y, one would enter:
In[2] := PolynomialReduce[x ˆ 3 + 3 y ˆ 2,{x ˆ 2 + y,x + 2 xy},

{x,y}, MonomialOrder -> DegreeLexicographic]
The output is a list with two entries: the first is a list of the quotients and the second is
the remainder.

Of course, the Mathematica command GroebnerBasis is used for computing
Groebner bases. It has the following syntax:
In[3] := GroebnerBasis[polylist,varlist,options]
This computes a Groebner basis for the ideal generated by the polynomials inpolylist
with respect to the monomial order given by the MonomialOrder option with the
variables ordered according to varlist. The answer is a reduced Groebner basis (in
the sense of Chapter 2, §7), except for clearing denominators. As an example of how
GroebnerBasis works, consider:
In[4] := gb = GroebnerBasis[{x ˆ 2+y,2xy+y ˆ 2},{x,y}]
The output is a list (with the symbolic name gb) which is a Groebner basis for
the ideal 〈x2 + y, 2xy + y2〉 ⊂ [x, y] using lex order with x > y. We omitted the
MonomialOrder option since lex is the default.

If you use polynomials with integer or rational coefficients in GroebnerBasis or
PolynomialReduce, Mathematica will assume that you are working over the field .
There is no limitation on the size of the coefficients. Another possible coefficient field is
the Gaussian rational numbers (i) = {a + bi : a, b ∈ }, where i = √−1 (note that
Mathematica uses I to denote

√−1. To compute a Groebner basis over a finite field with
p elements (where p is a prime number), you need to include the option Modulus ->
p in the GroebnerBasis command. (This option also works in PolynomialReduce.)

Mathematica can also work with coefficients that lie in a rational function field. The
strategy is that the variables in the base field (the “parameters”) should be omitted
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from the variable list in the input, and then one sets the CoefficientDomain option
to RationalFunctions. For example, the command:
In[5] := GroebnerBasis[{vx ˆ 2+y,uxy+y ˆ 2},{x,y},

CoefficientDomain -> RationalFunctions]
will compute a Groebner basis for 〈vx2 + y, uxy + y2〉 ⊂ (u, v)[x, y] for lex order
with x > y. The answer also clears denominators, so the leading coefficients of the
Groebner basis are polynomials in u and v. (The CoefficientDomain option is also
available in PolynomialReduce.)

Here are some other useful Mathematica commands:
� MonomialList, which lists the terms of a polynomial according to the monomial

order.
� Eliminate, which uses the Elimination Theorem of Chapter 3, §1 to eliminate

variables from a system of polynomial equations.
� Solve, which attempts to find all solutions of a system of equations.
For further descriptions and examples, consult The Mathematica Book by WOLFRAM

(1996).
Finally, there is a Mathematica package written by Susan Goldstine of Amherst

College (with an update by Will Gryc, also of Amherst) which includes many com-
mands relevant to the book. Using this package, students can compute Groebner bases,
together with information about the number of nonzero remainders that occur. Other al-
gorithms from the book are included, such as ideal membership, radical membership,
and finiteness of solutions. This package is slow compared to the GroebnerBasis
command, but it can be used for most of the simpler examples in the text. Copies of the
package can be obtained from http://www.cs.amherst.edu/˜dac/iva.html.

§4 REDUCE

Our discussion applies to version 3.5 of REDUCE. To do a Groebner basis calculation
with REDUCE, you need to use either the Groebner package or the Cali package.

Groebner
We will describe the version of the Groebner package dated November 18, 1994. To
have access to the commands in this package, type:
1: load package groebner;
(here, 1: is the REDUCE prompt, and as usual, all REDUCE commands end with a semi-
colon). Once the Groebner package is loaded, you can perform the division algorithm,
compute Groebner bases, and carry out a variety of other commands described below.

In the Groebner package, a monomial ordering is called a term order. Of the monomial
orderings considered in Chapter 2, Groebner knows most of them, including lex, grlex
and grevlex. Lex order is called lex, grlex is called gradlex, and grevlex is called
revgradlex. Groebner also works with product orders (see Exercise 10 of Chapter
2, §4), weight orders (see Exercise 12 of Chapter 2, §4—note that weight orders in
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the Groebner package always use lex order to break ties), and more general orders
specified by a matrix (see the comments at the end of the Exercises to Chapter 2, §4).
These other term orders are described in detail in Section 4.10 of MELENK, MÖLLER

and NEUN (1994).
In Groebner, a term order is specified by means of the torder command. Since

a monomial order depends also on how the variables are ordered, Groebner needs to
know both the term order and a list of variables. Thus, torder commands takes two
arguments: a list of variables and the term order. For example, to use grevlex with
x > y > z, you would type:
2: torder ({x,y,z},revgradlex);
(remember that REDUCE encloses a list inside braces {. . . }). In response, REDUCE
will print out the previous term order.

The most commonly used commands in the Groebner package are preduce, for
doing the division algorithm, and groebner, for computing a Groebner basis. The
name preduce stands for “polynomial reduce,” and the command has the following
syntax:
3: preduce(f,polylist);
The output is the remainder of f on division by the polynomials in the list polylist
using the monomial ordering specified by torder. For example, to divide x3 + 3y2 by
x2 + y and x + 2xy using grlex order with x > y, one would enter:
4: torder({x,y},gradlex);
5: preduce(x ˆ 3+3*y ˆ 2,{x̂ 2+y,x+2*x*y},{x,y});
In this example, the base field is the rational numbers . Note that preduce does not
give the quotients in the division algorithm.

As you might expect, groebner stands for “Groebner basis,” and the syntax is:
6: groebner(polylist);
This computes a Groebner basis for the ideal generated by the polynomials inpolylist
with respect to the monomial ordering specified by torder. The answer is a reduced
Groebner basis (in the sense of Chapter 2, §7), except for clearing denominators. As
an example of how groebner works, consider the command:
7: gb := groebner({x ˆ 2+y,2*x*y+y ˆ 2});
This computes a list (and gives it the symbolic name gb) which is a Groebner basis for
the ideal 〈x2 + y, 2xy + y2〉 ⊂ [x, y], using the term order specified by torder.

If you use polynomials with integer or rational coefficients in preduce or
groebner, Groebner will assume that you are working over the field . There is
no limitation on the size of the coefficients. Another possible coefficient field is the
Gaussian rational numbers (i) = {a + bi : a, b ∈ }, where i = √−1. To work over

(i), you need to issue the command:
8: on complex;
before computing the Groebner basis (note that REDUCE uses I to denote

√−1).
Similarly, to compute a Groebner basis over a finite field with p elements (where p is
a prime number), you first need to issue the command:
9: on modular; setmod p;
To return to working over , you would type off modular.
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Groebner can also work with coefficients that lie in a rational function field. To tell
Groebner that a certain variable is in the base field (a “parameter”), you simply omit it
from the variable list in the torder command. Thus, the command:
10: groebner({v*x ˆ 2+y, u*x*y+y ˆ 2});
will compute a Groebner basis for 〈vx2 + y, uxy + y2〉 ⊂ (u, v)[x, y] for the term
order given by torder. The answer is reduced up to clearing denominators (so the
leading coefficients of the Groebner basis are polynomials in u and v).

The Groebner package has two switches which control how Groebner basis compu-
tations are done. (In REDUCE, a switch is a variable that can be set to on or off.
Examples of switches you’ve already seen are complex and modular.) When com-
puting a Groebner basis, there are a number of choices which can be made during the
course of the algorithm, and different choices can have a dramatic effect on the length
of the computation. We will describe two switches, groebopt and gsugar, which can
affect how the groebner command carries out a computation.

In some cases, it is possible to improve efficiency by changing the order of the
variables, though keeping the same term order (e.g., using lex with y > x rather than
x > y). An algorithm for doing this is described in BOEGE, GEBAUER and KREDEL

(1986), and to enable this feature in REDUCE, you give the command:
11: on groebopt;
Once the calculation is done, you can determine how the variables were ordered by
typing:
12: gvarslast;
This will print out the variables in the order used in the computation. There are some
cases (especially when doing elimination) when you don’t want an arbitrary reordering
of the variables. In this situation, you can use the depend command. For example, if
you have variables s, t, x, y, z and you want to eliminate s, t , then after giving the on
groebopt command, you would also type:
13: depend s,x,y,z; depend t,x,y,z;
With this preparation, the groebner command would reorder the variables, but always
keeping s, t before x, y, z.

The algorithm used by the groebner command uses the concept of sugar, which
was mentioned briefly in Chapter 2, §9. To experiment with the effect of sugar, you
can turn it on or off by means of the switch gsugar. The default is on gsugar, so
that to turn off sugar for a particular computation, you would issue the command off
gsugar before giving the groebner command.

We should also mention the switches groebstat, trgroeb and trgroebs
for the groebner command which print out statistics about the Groebner basis
calculation. These switches are described in Section 4.2 of MELENK, MÖLLER and NEUN

(1994).
Some other useful commands in the Groebner package are:

� gsplit, which computes LT( f ) and f − LT( f ).
� gsort, which prints out the terms of a polynomial according to the term order.
� gspoly, which computes an S-polynomial S( f, g).
� greduce, which computes the remainder on division by the Groebner basis of the

ideal generated by the input polynomials.
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� preducet, which can be used to find the quotients in the division algorithm.
� gzerodim?, which tests a Groebner basis (using the methods of Chapter 5, §3) to

see if the equations have finitely many solutions over an algebraically closed field.
� glexconvert, which, for a Groebner basis for an arbitrary monomial order with

finitely many solutions over , converts it to a lex Groebner basis. This implements
the algorithm discussed in Project 5 of Appendix D.

� groesolve, which attempts to find all solutions of a system of polynomial equations.
� idealquotient, which computes an ideal quotient I : f (using an algorithm more

efficient than the one described in Chapter 4, §4).
� hilbertpolynomial, which computes the affine Hilbert polynomial of an ideal (as

defined in Chapter 9, §3).
These (and many other) commands are described in detail in Groebner: A package for
calculating groebner bases by MELENK, MÖLLER and NEUN (1994). This document
comes with all copies of REDUCE.

Cali
We will discuss Version 2.2.1 of the Cali package. Cali is more mathematically sophis-
ticated than the Groebner package and is a little harder to use for the beginner. On the
other hand, it can also do some computations (such as radicals and primary decompo-
sition) which aren’t part of the Groebner package. To load Cali, use the command:
1: load package cali;
Don’t load Groebner and Cali in the same REDUCE session since there are conflicts
between them.

In Cali, you first have to declare the variables and monomial order before typing in
any polynomials. This is done by the setring command, which has the syntax:
2: setring(vars,weight,order);
Here, vars is the list of variables you will use, weight is a list of weight vectors
(possibly empty), and order is one of lex or revlex. For example:
3: setring({x,y,z},{},lex);
will give lex order on [x, y, z], while:
4: setring({x,y,z},{{1,1,1}},lex);
gives grlex on the same ring, and you can get grevlex simply by changing lex to
revlex in the last command. One can also get weight orders, elimination orders and
matrix orders as described in Exercise 12 of Chapter 2, §4. See Section 2.1 of GRÄBE

(1995) for the details of how monomial orders work in Cali.
Once the ring is established, you can define ideals using lists of polynomials. One

difference is that you must explicitly name the ideal. For example, suppose we let j
denote the ideal generated by x2 + y and x + 2xy. In Cali, this is done by the command:
5: setideal(j,{x ˆ 2+y,x+2*x*y});
Once we know the ideal, we can do various things with it. For example, to divide
x3 + 3y2 by x2 + y and x + 2xy, we use the command:
6: xˆ3+3*yˆ2 mod j;
Also, to compute a Groebner basis of this ideal, the command to use is:
7: gbasis j;
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The output is a Groebner basis for 〈x2 + y, x + 2xy〉 ⊂ [x, y] for the monomial
order set by the setring command. The answer is reduced (in the sense of Chapter 2,
§7), except for clearing denominators.

If you use polynomials with integer or rational coefficients, Cali will assume that you
are working over the field . To compute Groebner bases over a finite field, you use the
same commands as for the Groebner package described earlier in this section. Finally,
for coefficients that lie in rational function fields, one proceeds as with the Groebner
package and simply omits the variables in the base field when giving the setring
command. For example, if we use the ring set in 4: above, then the commands:
8: setideal(m,{v*x̂ 2+y,u*x*y+ŷ 2});
9: gbasis m;
will compute a Groebner basis for 〈vx2 + y, uxy + y2〉 ⊂ (u, v)[x, y] for grlex with
x > y. The answer is reduced up to clearing denominators (so the leading coefficients
of the Groebner basis are polynomials in u and v).

Some other useful commands in Cali are:
� dimzerop, which tests a Groebner basis (using the methods of Chapter 5, §3)

to see if the equations have finitely many solutions over an algebraically closed
field.

� dim, which for a Groebner basis for an ideal computes the dimension of the associated
variety.

� idealquotient, which computes an ideal quotient I : f .
� isprime, which tests a Groebner basis to see if it generates a prime ideal.
� radical, which computes the radical of an ideal.
� primarydecomposition, which computes the primary decomposition (as in Chap-

ter 4, §7) of an ideal.
In addition, Cali has commands for dealing with more sophisticated mathematical
objects such as modules, blowups, free resolutions and tangent cones. Details of these
commands are described in CALI: A REDUCE package for commutative algebra by
GRÄBE (1995).

§5 Other Systems

Besides the general computer algebra systems discussed so far, there are three more
specialized programs, Macaulay 2, CoCoA, and SINGULAR which should be men-
tioned. These programs were designed primarily for researchers in algebraic geometry
and commutative algebra, but less sophisticated users can make effective use of either
program. One of their most attractive features is that they are free.

It is a bit more complicated to get started with Macaulay 2, CoCoA or SINGULAR.
For example, you have to tell the program in advance what the variables are and what
field you are working over. This makes it more difficult for a novice to use Macaulay.
Nevertheless, with proper guidance, beginning users should be able to work quite
successfully with these programs.

Macaulay 2, CoCoA and SINGULAR give you a choice of working over or a
finite field. Over a finite field, some computations go considerably faster. As long as the
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coefficient size doesn’t exceed the characteristic of the field (which is usually the case
in simple examples), there is no problem. However, one must exercise some care in
dealing with more complicated problems. This drawback must be weighed against the
fact that such problems are often difficult to carry out on other systems because of the
extremely large amount of memory that may be required.

For more advanced users, Macaulay 2, CoCoA and SINGULAR offer a wonder-
ful assortment of sophisticated mathematical objects to work with. Many researchers
make frequent use of these programs to compute syzygies and free resolutions of mod-
ules. Macaulay 2 also includes scripts for computing blowups, cohomology, cotangent
sheaves, dual varieties, normal cones, radicals and many other useful objects in alge-
braic geometry. These programs are available electronically:
� http://www.math.uiuc.edu/Macaulay2/ for Macaulay 2.
� http://cocoa.dima.unige.it/ for CoCoA.
� http://www.singular.uni-kl.de/ for SINGULAR.

In addition to the computer algebra systems described above, there are other systems
worth mentioning:
� The system MAS is another computer algebra system available electronically. Be-

sides computing Groebner bases as usual, it can also compute comprehensive Groeb-
ner bases and Groebner bases over principal ideal domains (as described in Project
16 of Appendix D). Instructions for obtaining MAS can be found on page xiii of
BECKER and WEISPFENNING (1993).

� The computer algebra system Magma can do computations in group theory, number
theory, combinatorics and commutative algebra. More information about Magma
can be found at the web site:
http://magma.maths.usyd.edu.au/magma/

This list of computer algebra systems for working with Groebner bases is far from
complete. As computers get faster and computer algebra software gets more powerful
and easier to use, we can expect an ever-increasing range of applications for Groebner
bases and algebraic geometry in general.
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Independent Projects

Unlike the rest of the book, this appendix is addressed to the instructor. We will discuss
several ideas for computer projects or research papers based on topics introduced in
the text.

§1 General Comments

Independent projects can be valuable for a variety of reasons:
� The projects get the students to actively understand and apply the ideas presented in

the text.
� The projects expose students to the next steps in subjects discussed in the text.
� The projects give students more experience and sophistication as users of computer

algebra systems.
Projects of this type are also excellent opportunities for small groups of two or three
students to work together and learn collaboratively.

Some of the projects given below have a large computer component, whereas others
are more theoretical. The list is in no way definitive or exhaustive, and users of the text
are encouraged to contact the authors with comments or suggestions concerning these
or other projects they have used.

The description we give for each project is rather brief. Although references are
provided, some of the descriptions would need to be expanded a bit before being given
to the student.

§2 Suggested Projects

1. Implementing the Division Algorithm in k[x1, . . . , xn]. Many computer algebra
systems (including REDUCE and Maple) have some sort of “normal form” or
“reduce” command that performs a form of the division algorithm from Chapter
2. However, those commands usually display only the remainder. Furthermore,
in some cases, only certain monomial orders are allowed. The assignment here
would be for the students to implement the general division algorithm, with input
a polynomial f , a list of divisors F , a list of variables X , and a monomial ordering.

530
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The output would be the quotients and the remainder. This project would probably
be done within a computer algebra system such as Maple or Mathematica.

2. Implementing Buchberger’s Algorithm. Many computer algebra systems have
commands that compute a reduced Groebner basis of an ideal 〈 f1, . . . , fs〉. This
project would involve implementing the algorithm in a way that produces more
information and (possibly) allows more monomial orderings to be used. Namely,
given the input of a list of polynomials F , a list of variables X , and a monomial
order in k[x1, . . . , xn], the program should produce a reduced Groebner basis G for
the ideal generated by F , together with a matrix of polynomials A expressing the
elements of the Groebner basis in terms of the original generators G = AF . As with
the previous project, this would be done within a computer algebra system. The
program could also give additional information, such as the number of remainders
computed at each stage of the algorithm.

3. The Complexity of the Ideal Membership Problem. In §9 of Chapter 2, we briefly
discussed some of the worst-case complexity results concerning the computation
of Groebner bases and solving the ideal membership problem. The purpose of this
project would be to have the students learn about the Mayr and Meyer examples,
and understand the double exponential growth of degree bounds for the ideal
membership problem. A suggested reference here is BAYER and STILLMAN (1988)
which gives a nice exposition of these results. With some guidance, this paper is
accessible reading for strong undergraduate students.

4. Solving Polynomial Equations. For students with some exposure to numerical
techniques for solving polynomial equations, an excellent project would be to
implement the criterion given in Theorem 6 of Chapter 5, §3 to determine whether
a system of polynomial equations has only finitely many solutions over . If so,
the program should determine all the solutions to some specified precision. This
would be done by using numerical techniques to solve for one variable at a time
from a lexicographic Groebner basis. A comparison between this method and more
standard methods such as the multivariable Newton’s Method could also be made.
As of this writing, very little theoretical work comparing the complexity of these
approaches has been done.

5. Groebner Basis Conversion for Zero-Dimensional Ideals. As in the previous
project, to solve systems of equations, lexicographic Groebner bases are often the
most useful bases because of their desirable elimination properties. However, lexi-
cographic Groebner bases are often more difficult to compute than Groebner bases
for other monomial orderings. For zero-dimensional ideals (i.e., I ⊂ [x1, · · · , xn]
such that V(I ) is a finite set), there are methods known for converting a Groeb-
ner basis with respect to some other order into a lexicographic Groebner basis.
For this project, students would learn about these methods, and possibly imple-
ment them. There is a good introductory dicussion of these ideas in HOFFMANN

(1989). The original reference is FAUGÈRE, GIANNI, LAZARD, and MORA

(1993). See also Chapter 2 of COX, LITTLE and O’SHEA (1998).
6. Curve Singularities. A multitude of project topics can be derived from the general

topic of curve singularities, which we mentioned briefly in the text. Implementing
an algorithm for finding the singular points of a curve V( f (x, y)) ⊂ 2 or 2 could
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be a first part of such a project. The focus of the project would be for students to learn
some of the theoretical tools needed for a more complete understanding of curve
singularities: the Newton polygon, Puiseux expansions, resolutions by quadratic
transformations, etc. A good general reference for this would be BRIESKORN and
KNÖRRER (1986). There are numerous other treatments in texts on algebraic curves
as well. Some of this material is also discussed from the practical point of view of
“curve tracing” in HOFFMANN (1989).

7. Surface Intersections. The focus of this project would be algorithms for ob-
taining equations for plane projections of the intersection curve of two surfaces
V( f1(x, y, z)), V( f2(x, y, z)) in 3. This is a very important topic in geometric
modeling. One method, based on finding a “simple” surface in the pencil defined by
the two given surfaces and which uses the projective closures of the two surfaces,
is sketched in HOFFMANN (1989). Another method is discussed in GARRITY and
WARREN (1989).

8. Bézier Splines. The Bézier cubics introduced in Chapter 1, §3 are typically used
to describe shapes in geometric modeling as follows. To model a curved shape,
we divide it into some number of smaller segments, then use a Bézier cubic to
match each smaller segment as closely as possible. The result is a piecewise Bézier
curve, or Bézier spline. For this project, the goal would be to implement a sys-
tem that would allow a user to input some number of control points describing
the shape of the curve desired and to see the corresponding Bézier spline curve
displayed. Another interesting portion of this assignment would be to implement
an algorithm to determine the intersection points of two Bézier splines. Some ref-
erences can be found on p. xvi of FARIN (1990). We note that there has also been
some recent theoretical work by BILLERA and ROSE (1989) that applies Groeb-
ner basis methods to the problem of determining the vector space dimension
of multivariate polynomial splines of a given degree on a given polyhedral de-
composition of a region in n . See also Chapter 8 of COX, LITTLE and O’SHEA

(1998).
9. The General Version of Wu’s Method. In our discussion of Wu’s method in

geometric theorem proving in Chapter 6, we did not introduce the general algebraic
techniques (characteristic sets, Ritt’s decomposition algorithm) that are needed for
a general theorem-prover. This project would involve researching and presenting
these methods. Implementing them in a computer algebra system would also be a
possibility. See CHOU (1988), MISHRA (1993), WANG (1994a) and (1994b), and
WU (1983).

10. Molien’s Theorem. An interesting project could be built around Molien’s The-
orem in invariant theory, which is mentioned in §3 of Chapter 7. The algorithm
given in STURMFELS (1991) could be implemented to find a set of generators for
k[x1, . . . , xn]G . This could be applied to find the invariants of some larger groups,
such as the rotation group of the cube in 3. Molien’s theorem is also discussed
in Chapter 7 of BENSON and GROVE (1985).

11. Groebner Bases over More General Fields. For students who know some field
theory, a good project would be to compute Groebner bases over fields other than

. For example, one can compute Groebner bases for polynomials with coefficients
in (i) using the variable i and the equation i2 + 1 = 0. More generally, if (α) is
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any finite extension of , the same method works provided one knows the minimal
polynomial of α over . The needed field theory may be found in Sections 5.1,
5.3, and 5.5 of HERSTEIN (1975). The more advanced version of this project would
discuss Groebner bases over finite extensions of (u1, . . . , um). In this way, one
could compute Groebner bases over any finitely generated extension of .

12. Computer Graphics. In §1 of Chapter 8, we used certain kinds of projections when
we discussed how to draw a picture of a 3-dimensional object. These ideas are very
important in computer graphics. The student could describe various projections
that are commonly used in computer graphics and explain what they have to do
with projective space. If you look at the formulas in Chapter 6 of FOLEY, VAN DAM,
FEINER and HUGHES (1990), you will see certain 4 × 4 matrices. This is because
points in 3 have four homogeneous coordinates!

13. Implicitization via Resultants. As mentioned in Chapter 3, §3, implicitization can
be done using resultants rather than Groebner bases. A nice project would be to
report on the papers ANDERSON, GOLDMAN and SEDERBERG (1984a) and (1984b),
and MANOCHA (1992). The resultants used in these papers differ from the resultants
discussed in Chapter 3, where we defined the resultant of two polynomials. For
implicitization, one needs the resultant of three or more polynomials, often called
multipolynomial resultants. These resultants are discussed in BAJAJ, GARRITY and
WARREN (1988) and Cox, LITTLE and O’SHEA (1998).

14. Optimal Variable Orderings. There are situations where reordering the variables
(but keeping the same type of term order) can have a strong effect on the Groebner
basis produced. For example, in part (a) of Exercise 13 from Chapter 2, §9, you
computed a rather complicated Groebner basis using lex order with x > y > z.
However, switching the variables to z > y > x (still with lex order) leads to a much
simpler Groebner basis. A heuristic algorithm for picking an optimal ordering of the
variables is described in BOEGE, GEBAUER and KREDEL (1986). A good project
would be to implement a straightforward version of the Buchberger algorithm
which incorporates variable optimization. This algorithm is implemented in the
REDUCE Groebner basis package—see Appendix C, §4.

15. Selection Strategies in the Buchberger’s Algorithm. In the discussion following
the improved Buchberger algorithm (Theorem 11 in Chapter 2, §9), we men-
tioned the selection strategy of choosing a pair (i, j) ∈ B in Theorem 11 such that
LCMLT( fi ), LT( f j )) is as small as possible. This is sometimes called the normal
selection strategy. However, there are other selection strategies which are used
in practice, and a nice project would be to describe (or implement) one of these
strategies. Here are two that are of interest:
a. The concept of sugar was introduced in GIOVINI, MORA, NIESI, ROBBIANO and

TRAVERSO (1991). This paper explains why the normal selection strategy can
cause problems with non-graded monomial orders (such as lex) and defines the
concept of sugar to get around this problem. Sugar is implemented in the Groeb-
ner basis commands used by most of the computer algebra systems described
in Appendix C.

b. In the special case of lex order, some other heuristics for selecting pairs are
discussed in CZAPOR (1991). Here, the basic idea is to pick a pair (i, j) such
that the multidegree of the S-polynomial S( fi , f j ) is as small as possible.
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534 Appendix D. Independent Projects

16. Other Types of Groebner Bases. In Chapter 2, we defined Groebner bases for
an ideal in a polynomial ring, assuming we knew the monomial order and the
coefficient field. But there are other notions of what it means to be a Groebner
basis, and a good project would be for a student to explore one of these. Here are
some of the more interesting types of Groebner bases:

a. We have seen that different monomial orderings can lead to different Groebner bases.
As you vary over all monomial orderings, it turns out that there are only finitely
many distinct Groebner bases for a given ideal. These can be put together to form
what is called a universal Groebner basis, which is a Groebner basis for all possible
monomial orders. A good reference (including references to the literature) is pages
514–515 of BECKER and WEISPFENNING (1993).

b. Another phenomenon (mentioned in Chapter 6, §3) is that if the base field con-
tains parameters, then a Groebner basis over this field may fail to be a Groebner
basis when we specialize the parameters to specific values. However, it is possible
to construct a Groebner basis which remains a Groebner basis under all possible
specializations. This is called a comprehensive Groebner basis. For a description
and references to the literature, see pages 515–518 of BECKER and WEISPFENNING

(1993).
c. Besides doing Groebner bases over fields, it is sometimes possible to define and

compute Groebner bases for ideals in a polynomial ring R[x1, . . . , xn], where R
is a ring. The nicest case is where R is a principal ideal domain (PID), as defined
in Chapter 1, §5. The basic theory of how to do this is described in Chapter 4 of
ADAMS and LOUSTAUNAU (1994) and Section 10.1 of BECKER and WEISPFENNING

(1993).
d. Finally, the notion of an ideal I ⊂ k[x1, . . . , xn] can be generalized to a module

M ⊂ k[x1, . . . , xn]r , and there is a natural way to define term orders and Groebner
bases for modules. Basic definitions and interesting applications can be found in
ADAMS and LOUSTAUNAU (1994), BECKER and WEISPFENNING (1993), COX, LITTLE

and O’SHEA (1998), and EISENBUD (1995).
Besides the projects listed above, there are other places where instructors can look

for potential projects for students, including the following:
� COX, LITTLE and O’SHEA (1998) includes chapters on local rings, algebraic cod-

ing theory and integer programming which could serve as the basis for projects.
Other chapters in the book may also be suitable, depending on the interests of the
students.

� ADAMS and LOUSTAUNAU (1994) contains sections on minimal polynomials of field
extensions, the 3-color problem and integer programming. These could form the
basis for some interesting projects.

� EISENBUD (1995) has a list of seven projects in Section 15.12. These projects are
more sophisticated and require more background in commutative algebra, but they
also introduce the student to some topics of current interest in algebraic geometry.

If you find student projects different from the ones listed above, we would be interested
in hearing about them. There are a lot of wonderful things one can do with Groebner
bases and algebraic geometry, and the projects described in this appendix barely scratch
the surface.
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problem of robotics, forward

Fulton, W., 433–34, 536

function

algebraic, 122

coordinate, 239

polynomial, 216–18, 220–21, 224, 239,

243, 449

rational, 15, 122, 249

function field, see field, of rational

functions (k(V ))

Fundamental Theorem of Algebra, see
Theorem, Fundamental, of Algebra

Fundamental, of Symmetric Functions, see
Theorem, Fundamental, of

Symmetric Function

Garrity, T., 159, 532–33, 535–36

Gauss, C. F., 320, 536

Gaussian elimination, see algorithm,

Gaussian elimination
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Gebauer, R., 111, 526, 533, 536

Gelfand, I., 159, 537

Geometric Extension Theorem, see
Theorem, Geometric Extension

Gianni, P., 178, 209, 531, 536

Giblin, P. J., 137, 143, 147, 536

Giovini, A., 111, 533, 537

Giusti, M., 112, 537

GL(n, k), see group, general linear

Goldman, R., 134, 533, 535

Goldstine, S., 524

Gräbe, H.-G., 527, 537

graded lexicographic order, see monomial

ordering

graded monomial order, see monomial

ordering

graded reverse lexicographic order, see
monomial ordering

gradient, 10, 140, 144

graph, 6, 129

Grassmannian, 419

greatest common divisor (GCD), 41,

180–82, 190

Griffiths, P., 434, 537

Gritzmann, P., 112, 537

Gröbner, W., 78

Groebner basis, 77–122, 130, 134–36, 172,

179, 188, 230–38, 280–83, 287–91,

302, 322–23, 346–49, 383, 385,

388, 391, 403–07, 497–99, 505,

517–28, 531–34

comprehensive, 283, 534

conversion, 520

criterion for, 82, 107

minimal, 91–94

reduced, 92–96, 111–13, 172, 179, 288,

383, 531
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specialization of, 280, 283, 287

universal, 534

group, 510

cyclic, 328

finite matrix, 327

general linear (GL(n, k)), 327, 329, 345

generators for, 336

Klein four-, 332

of symmetries of a cube, 329, 334

of symmetries of a tetrahedron, 335

orbit of a point under, 351

permutation, 426, 511

projective general linear (PGL(n, k)),

327, 329

subgroup of, 355

Grove, L. C., 329, 340, 342, 532, 535

Gryc, W., 522, 524

Heintz, J., 112, 537

Hermann, G., 178, 209, 537

Herstein, I. N., 324, 533, 537

Hilbert Basis Theorem, see Theorem,

Hilbert Basis

Hilbert function, 456–70

affine, 457–60, 466

Hilbert polynomial, see polynomial,

Hilbert

Hilbert, D., 74, 76, 169–70, 175, 342, 443,

537

Hironaka, H., 78

Hodge, W. V. D., 419, 537

Hoffmann, C., 531–32, 537

homogeneous

coordinates, see coordinates,

homogeneous

ideal, see ideal, homogeneous

polynomial, see polynomial,

homogeneous

homogenization

of a polynomial, 175, 373

of an ideal, 389, 497

Hughes, J., 533, 536

Huneke, C., 178, 209, 536

hyperboloid, 251

hyperplane, 369, 371, 410

at infinity, 371, 390

hypersurface, 371, 474, 476

cubic, 371

nonsingular quadric, 414–20

quadric, 371, 408–14

quartic, 371

quintic, 371

Icosahedron, 335

ideal, 29

P-primary, 210

basis of, 31, 42

colon, 194

complete intersection, 475

determinantal, 113

elimination, 116–27, 397–408

generated by a set of polynomials, 30

Groebner basis of, see Groebner basis

homogeneous, 380–88, 405, 408

in a ring, 228

intersection of, 189, 214

irreducible, 210

maximal, 202

maximum principle, 264

monomial, 69–76, 439–443, 446–64,

467

of a variety (I(V )), 33, 50, 440

of leading terms (〈LT(I )〉), 75

of relations, 346

primary, 210

prime, 198–203, 207–214, 257–59,

489

principal, 41, 46, 81, 179–82,

189–91

product, 473

projective elimination, 397–408

proper, 201–03

quotient, 194, 397

radical, 37, 175–78, 182–83, 190–91,

207, 209–12, 226, 240

radical of, 174, 382

saturation, 198

standard basis of, see basis, standard

sum of, 185, 386

syzygy, 346

weighted homogeneous, 405

ideal description question, 35, 49, 77
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ideal membership question, 35, 45, 61,

67–68, 83, 146, 531

ideal-variety correspondence

affine, 193, 381

projective, 384

Implicit Function Theorem, see Theorem,

Implicit Function

implicit representation, 16

implicitization, 17, 128–34, 533

Inclusion-Exclusion Principle, 450, 454

index of regularity, 459, 466

inflection point, see point, inflection

integer polynomial, see polynomial, integer

integral domain, see ring, integral domain

invariance under a group, 332

invariant polynomial, see polynomial,

invariant

inverse kinematic problem, see kinematics

problem of robotics, inverse

inverse lexicographic order, see monomial

ordering

irreducibility question, 209

irreducible

ideal, see ideal, irreducible

polynomial, see polynomial, irreducible

variety, see variety, irreducible

irredundant

intersection of ideals, 207

union of varieties, 206

isomorphic

rings, 226

varieties, 220, 245, 247, 252, 479–80

Isomorphism Theorem, see Theorem,

Isomorphism

isotropy subgroup, 355

Jacobian matrix, see matrix, Jacobian

Jenks, R., 519, 537

joint space, see space, joint (of a robot)

joints (of robots)

ball, 267, 271

helical, 267, 270–71

prismatic, 266, 268, 274–75

revolute, 266–91

spin, 278, 290

Jouanolou, J., 159, 537

k(V ), 474, 480

k(t1, . . . , tm), 15

k[V ], 217–221, 224, 239

k[ f1, . . . , fm], 336

k[x1, . . . , xn], 1–2

Kapranov, M., 159, 537

Kendig, K., 474, 491, 492, 537

kinematics problem of robotics

forward, 268–279

inverse, 279–91

kinematic redundancy, 291

kinematic singularities, 282–86, 290, 291

Kirwan, F., ix, 433–34, 537

Klein four-group, see group, Klein four-

Klein, F., 329, 332–33, 537

Knörrer, H., 434, 438, 532, 536

Kredel, H., 526, 533, 536

Lagrange multipliers, 10, 13, 97, 102

Lang, S., 130, 482, 537

Lasker–Noether Theorem, see Theorem,

Lasker–Noether

Lazard, D., 112–13, 121, 531, 537

leading coefficient, 59

leading monomial, 59

leading term, 38, 57

leading terms, ideal of, see ideal, of leading

terms (〈LT(I )〉)
least common multiple (LCM), 83, 189

Lejeune-Jalabert, M., ix, 537

level set, 220

lexicographic order, see monomial

ordering

Lin, A., 522

line

affine, 3, 361

at infinity, 424

limit of, 499

projective, 358–61, 364–69, 371, 412

secant, 499

tangent, 138, 144

Little, J., 121, 159, 236, 522, 531–34,

536

local property, 433, 485

locally constant, 433

Loustaunau, P., 209, 522, 534–35



P1: OTE/SPH P2: OTE/SPH QC: OTE/SPH T1: OTE

SVNY310-COX January 5, 2007 8:30

Index 547

Macaulay 2 (program), see computer

algebra systems

Macaulay, F. S., 159, 458, 538

MacDonald, I. G., 212, 535

Magma, see computer algebra systems

manifold, 492

Manocha, D., 121, 134, 159, 533, 536,

538

Maple, see computer algebra systems

mapping, 415

dominating, 483

polynomial, 215

projection, 171, 216

pullback, 243, 254

rational, 251

regular, 216

Segre, 393

stereographic projection, 256

MAS, see computer algebra systems

Mathematica, see computer algebra

systems

matrix

echelon, see echelon matrix

group, 327

Jacobian, 283–85

permutation, 328

row-reduced echelon, see echelon matrix

Sylvester, 155

Matsumura, H., 503, 538

Mayr, E., 111, 538

Melenk, H., 525, 527, 538

Meyer, A., 111, 538

Mignotte, M., 121, 153, 538

Mines, R., 153, 178, 209, 538

minimal basis, see basis, minimal

Mishra, B., 121, 314, 532, 538

mixed order, see monomial ordering

module, 528

Molien’s Theorem, see Theorem, Molien’s

Möller, H. M., 111, 525–26, 536

monomial, 1

monomial ordering, 55, 72, 380, 404, 520

elimination, 75, 122

graded, 388, 391

graded lexicographic (grlex), 56–57, 60,

76, 81, 134, 219, 520

graded reverse lexicographic (grevlex),

58–60

inverse lexicographic (invlex), 60

lexicographic (lex), 56–57, 94, 97, 107,

115, 117, 302, 322, 497

mixed, 74

product, 74

weight, 74

Mora, F., 111, 538

Mora, T., 111–13, 533, 536–37

multidegree (multideg), 59

multinomial coefficient, 343

multiplicity, 38

intersection, 139, 428–30, 433

of root, 47, 139–40, 148

Mumford, D., 112, 492, 502, 505, 506,

535, 538

Neun, W., 525, 527, 538

Newton identities, 324, 326–327

Newton polygon, 532

Newton’s Method, 531

Niesi, G., 111, 533, 537

nilpotent, 226, 229

Noether’s Theorem, see Theorem,

Noether’s

Noether, E., 338

nonsingular, 414–16

point, see point, nonsingular

quadric, see quadric, nonsingular

Normal Form for Quadrics Theorem, see
Theorem, Normal Form for

Quadrics

normal form, 82

Nullstellensatz, 35, 37, 47, 125, 169,

170, 177–78, 195, 234, 236,

240–41, 302, 379, 384, 391, 435,

489, 498

Hilbert’s, 4, 169–175

in k[V ], 240–41

Projective Strong, 385

Projective Weak, 383–84, 398–400

Strong, 176–77, 298, 305, 382–84

Weak, 170–73, 202–03, 234, 382,

398

numerical solutions, 121
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O’Shea, D., 121, 159, 236, 522, 531–34,

536

octahedron, 335

operational space, see space, configuration

(of a robot)

orbit

G, 351, 353

of a point, 353

space, 351, 353

order (of a group), 328

ordering, see monomial ordering

orthocenter, 304

Pappus’s Theorem, see Theorem, Pappus’s

parametric representation, 15–17, 215

polynomial, 16, 196, 239

rational, 15, 17, 132

parametrization, 15

partial solution, 117, 123

path connected, 433, 436

Paul, R., 287, 538

Pedoe, D., 419, 537

pencil

of hypersurfaces, 378

of lines, 368

of surfaces, 241

of varieties, 241, 378

permutation, 511

sign of, 511

perspective, 358, 362, 364, 367

PGL(n, k), see group, projective general

linear

plane

affine, 3

Euclidean, 292

projective, 357

Plücker coordinates, see coordinates,

Plücker

point

critical, 100–01

nonsingular, 141, 146, 433, 485, 489,

491–92, 495, 503

of inflection, 148

singular, 137–41, 146–50, 247, 356, 374,

489–92, 495–96, 531

smooth, 506

Steiner, 306

vanishing, 358–59

polyhedron

duality, 334

regular, 329

polynomial, 2

affine Hilbert, 457, 459–60, 466–67,

471, 475–77, 479, 527

bihomogeneous, 405

elementary symmetric, 320–21

Hilbert, 459–60, 462–63, 465, 467,

475–77

homogeneous, 174, 323, 370

homogeneous component of, 323

integer, 156

invariant, 324

irreducible, 150

linear part, 486

Newton-Gregory interpolating, 455

partially homogeneous, 395

reduced, 47, 92–93, 180

S-, 84–90, 102–109, 111, 188, 288, 519,

522, 526, 533

square-free, 47, 180

symmetric, 317

weighted homogeneous, 405, 407

Polynomial Implicitization Theorem, see
Theorem, Polynomial

Implicitization

polynomial mapping, see mapping,

polynomial

polynomial ring (k[x1, . . . , xn]), see ring,

polynomial

PostScript, 22

power sums, 323

primality question, 209

primary decomposition question, 213

principal ideal domain (PID), 41, 165, 534

product order, see monomial ordering

projective

closure, see closure, projective

elimination ideal, see ideal, projective

elimination

equivalence, see equivalence, projective

Extension Theorem, see Theorem,

Projective Extension
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line, see line, projective

plane, see plane, projective

space, see space, projective

variety, see variety, projective

pseudocode, 38, 513

pseudodivision, 260, 307

successive, 310

pseudoquotient, 308

pseudoremainder, 308

Puiseux expansions, 532

pullback mapping, see mapping, pullback

pyramid of rays, 362

Quadric hypersurface, 357, 371, 408

nonsingular, 414

over , 414

rank of, 413

quotient

field, see field, of fractions

ring, see ring, quotient

vector space, 457

quotients on division, 46

R-sequence, 475

radical

generators of, 178

ideal, see ideal, radical

membership, see algorithm, radical

membership

of an ideal, see ideal, radical of

rank

deficient, 284

maximal, 284

of a matrix, 284, 413

of a quadric, 413

rational

function, see function, rational

mapping, see mapping, rational

variety, see variety, rational

Rational Implicitization Theorem, see
Theorem, Rational Implicitization

real projective plane, 368

REDUCE, see computer algebra systems

reduction of a polynomial,

regular mapping, see mapping, regular

regularity, index of, see index of regularity

remainder on division, 67–69, 82–83, 85,

89–90, 96, 162, 230, 321, 342, 526

resultant, 134, 153–54, 158–59, 416

multipolynomial, 134, 154, 533

reverse lexicographic order, see monomial

ordering

Reynolds operator, 336–37, 340

Richman, F., 153, 178, 209, 538

Riemann sphere, 369, 376

ring,

commutative, 2, 218, 509

coordinate, of a variety (k[V]), 239, 260,

349, 474, 477, 510

homomorphism, 165, 225, 243

integral domain, 218–19, 249, 260, 510

isomorphism, 250–51

of invariants, 331, 333

polynomial (k[x1, . . . , xn]), 2

quotient (k[x1, . . . , xn]/I ), 221, 223,

260, 331, 510

Robbiano, L., 75, 111, 533, 535–38

robotics, 10–11, 265

Rose, L., 532, 535

Roth, L., 419, 538

row-reduced echelon matrix, see echelon

matrix

Ruitenberg, W., 153, 178, 209, 538

ruled surface, see surface, ruled

S-polynomial, see polynomial, S-

secant line, see line, secant

Sederberg, T., 134, 533, 535

Segre, 393, 415–16

map, see mapping, Segre

variety, see variety, Segre

Seidenberg, A., 178, 209, 538

Semple, J. G., 419, 538

Shafarevich, I. R., 474, 491, 538

sign, of permutation, see permutation,

sign of

singular

point, see point, singular

quadric, see quadric, singular

SINGULAR (program), see computer

algebra systems

singular locus, 490–91
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Siret, Y., 40, 43, 46, 153, 190, 536

Smith, L., 342, 538

solving equations, 49, 96, 236, 531

space

affine, 3

configuration (of a robot), 268

joint (of a robot), 269

orbit, 351, 353

projective, 360–61

quotient vector, 457

tangent, 485–89, 491, 492, 494–95

specialization of Groebner bases, see
Groebner basis, specialization of

stabilizer, 355

Stillman, M., 75, 112, 122, 520, 531, 535

strophoid, 25

Sturmfels, B., ix, 112, 302, 340, 342, 345,

532, 537, 538

subgroup, 511

subring, 331

subvariety, 239

sugar, 111, 526

surface

Enneper, 135

hyperboloid of one sheet, 251

intersection, 532

ruled, 101, 416

tangent, to the twisted cubic, 20, 100,

128, 131, 135, 375

Veronese, 393, 404

Whitney umbrella, 136

Sutor, R., 519, 537

symmetric polynomial, see polynomial,

symmetric

syzygy, 36, 105–07, 112–13, 346

homogeneous, 106–07, 113

ideal, 346

Tangent, 507

cone, see cone, tangent

line to a curve, see line, tangent

space to a variety, see space, tangent

Taylor’s formula, 486, 487, 496

term, 2

tetrahedron, 335

Theorem

Affine Dimension, 461

Bezout’s, 357, 422–37

Circle, of Apollonius, 295, 302, 306,

311, 313

Classification, for Quadrics, 411

Closure, 123, 125–28, 130, 193, 258

Dimension, 461

Elimination, 116–18, 120–22, 130–31,

145, 188, 395, 402

Extension, 115, 162–66, 394

Fermat’s Last, 13

Fundamental, of Algebra, 4, 165, 172,

320

Fundamental, of Symmetric

Polynomials, 319–24

Geometric Extension, 125–27, 171,

394–95, 404

Hilbert Basis, 14, 31, 75–81, 95, 169,

207, 209, 227, 339, 343, 380,

403

Implicit Function, 291, 492

Intermediate Value, 433, 436

Isomorphism, 346, 494

Lasker-Noether, 212

Molien’s, 340, 345, 532

Noether’s, 338, 343

Normal Form for Quadrics, 411–18

Pappus’s, 304–06, 365–66, 437

Pascal’s Mystic Hexagon, 434

Polynomial Implicitization, 349

Projective Extension, 398

Pythagorean, 293

Rational Implicitization, 134

Tournier, E., 40, 43, 153, 190, 536

Trager, B., 178, 209, 537

transcendence degree, 482, 484

transformation

affine, 277

projective linear, 409

Traverso, C., 111, 533

triangular form, 309

twisted cubic

curve, see curve, twisted cubic

tangent surface of, see surface, tangent

Unique factorization of polynomials, 150

uniqueness question in invariant theory,

333, 335, 345–46
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Van Dam, A., 533, 536

van der Waerden, B., 159, 538

vanishing point, see point, vanishing

variety

affine, 5

dual, 356

irreducible, 198–99, 201, 204, 206–07,

214, 221, 249, 257, 264, 299, 309,

356, 443, 473–74

irreducible component of, 305, 490–92,

495, 503, 507

linear, 9, 371

minimum principle, 264

of an ideal (V(I )), 79, 380

projective, 371

rational, 254, 256

reducible, 218

Segre, 393

subvariety of, 245

unirational, 17

zero-dimensional, 236

Vasconcelos, W., 178, 209, 536

Veronese surface, see surface,

Veronese

Walker, R., 429, 433–34, 538

Wang, D., 314–15, 532, 538

Warren, J., 159, 532–33, 535–36

weight order, see monomial ordering

weighted homogeneous polynomial, see
polynomial, weighted homogeneous

weights, 405

Weispfenning, V., 83, 111, 178, 188, 283,

529, 534–35

Wensley, C., 522

well-ordering, 55–57, 65, 72

Whitney umbrella, see surface, Whitney

umbrella

Wiles, A., 13

Winkler, F., 112, 539

Wolfram, S., 524, 539

Wu’s Method, 307–15

Wu, W.-T., 307, 315, 532, 539

Zacharias, G., 178, 209, 537

Zariski

closure, see closure, Zariski

dense set, 502

Zelevinsky, A., 159, 537
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