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Preface

We wrote this book to introduce undergraduates to some interesting ideas in
algebraic geometry and commutative algebra. For a long time, these topics involved
a lot of abstract mathematics and were only taught at the graduate level. Their com-
putational aspects, dormant since the nineteenth century, re-emerged in the 1960s
with Buchberger’s work on algorithms for manipulating systems of polynomial
equations. The development of computers fast enough to run these algorithms has
made it possible to investigate complicated examples that would be impossible to do
by hand, and has changed the practice of much research in algebraic geometry and
commutative algebra. This has also enhanced the importance of the subject for com-
puter scientists and engineers, who now regularly use these techniques in a whole
range of problems.

It is our belief that the growing importance of these computational techniques
warrants their introduction into the undergraduate (and graduate) mathematics cur-
riculum. Many undergraduates enjoy the concrete, almost nineteenth century, flavor
that a computational emphasis brings to the subject. At the same time, one can do
some substantial mathematics, including the Hilbert Basis Theorem, Elimination
Theory, and the Nullstellensatz.

Prerequisites

The mathematical prerequisites of the book are modest: students should have had a
course in linear algebra and a course where they learned how to do proofs. Examples
of the latter sort of course include discrete math and abstract algebra. It is important
to note that abstract algebra is not a prerequisite. On the other hand, if all of the
students have had abstract algebra, then certain parts of the course will go much
more quickly.

The book assumes that the students will have access to a computer algebra sys-
tem. Appendix C describes the features of Maple™, Mathematica®, Sage, and other
computer algebra systems that are most relevant to the text. We do not assume any
prior experience with computer science. However, many of the algorithms in the
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viii Preface

book are described in pseudocode, which may be unfamiliar to students with no
background in programming. Appendix B contains a careful description of the pseu-
docode that we use in the text.

How to Use the Book

In writing the book, we tried to structure the material so that the book could be used
in a variety of courses, and at a variety of different levels. For instance, the book
could serve as a basis of a second course in undergraduate abstract algebra, but we
think that it just as easily could provide a credible alternative to the first course.
Although the book is aimed primarily at undergraduates, it could also be used in
various graduate courses, with some supplements. In particular, beginning graduate
courses in algebraic geometry or computational algebra may find the text useful. We
hope, of course, that mathematicians and colleagues in other disciplines will enjoy
reading the book as much as we enjoyed writing it.

The first four chapters form the core of the book. It should be possible to cover
them in a 14-week semester, and there may be some time left over at the end to
explore other parts of the text. The following chart explains the logical dependence
of the chapters:

10
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The table of contents describes what is covered in each chapter. As the chart in-
dicates, there are a variety of ways to proceed after covering the first four chapters.
The three solid arcs and one dashed arc in the chart correspond to special dependen-
cies that will be explained below. Also, a two-semester course could be designed
that covers the entire book. For instructors interested in having their students do an
independent project, we have included a list of possible topics in Appendix D.

Features of the New Edition

This fourth edition incorporates several substantial changes. In some cases, topics
have been reorganized and/or augmented using results of recent work. Here is a
summary of the major changes to the original nine chapters of the book:

e Chapter 2: We now define standard representations (implicit in earlier editions)
and lcm representations (new to this edition). Theorem 6 from §9 plays an im-
portant role in the book, as indicated by the solid arcs in the dependence chart on
the previous page.

e Chapter 3: We now give two proofs of the Extension Theorem (Theorem 3 in §1).
The resultant proof from earlier editions now appears in §6, and a new Grobner
basis proof inspired by SCHAUENBURG (2007) is presented in §5. This makes it
possible for instructors to omit resultants entirely if they choose. However, resul-
tants are used in the proof of Bezout’s Theorem in Chapter 8, §7, as indicated by
the dashed arc in the dependence chart.

e Chapter 4: There are several important changes:

— In §1 we present a Grobner basis proof of the Weak Nullstellensatz using ideas
from GLEBSKY (2012).

— In §4 we now cover saturations / : J°° in addition to ideal quotients I : J.

— In §7 we use Grobner bases to prove the Closure Theorem (Theorem 3 in
Chapter 3, §2) following SCHAUENBURG (2007).

e Chapter 5: We have added a new §6 on Noether normalization and relative finite-
ness. Unlike the previous topics, the proofs involved in this case are quite classi-
cal. But having this material to draw on provides another illuminating viewpoint
in the study of the dimension of a variety in Chapter 9.

o Chapter 6: The discussion of the behavior of Grobner bases under specialization
in §3 has been supplemented by a brief presentation of the recently developed
concept of a Grobner cover from MONTES and WIBMER (2010). We would like
to thank Antonio Montes for the Grobner cover calculation reported in §3.

In the biggest single change, we have added a new Chapter 10 presenting some
of the progress of the past 25 years in methods for computing Grobner bases (i.e.,
since the improved Buchberger algorithm discussed in Chapter 2, §10). We present
Traverso’s Hilbert driven Buchberger algorithm for homogeneous ideals, Faugere’s
F, algorithm, and a brief introduction to the signature-based family of algorithms
including Faugere’s Fs. These new algorithmic approaches make use of several in-
teresting ideas from previous chapters and lead the reader toward some of the next
steps in commutative algebra (modules, syzygies, etc.). We chose to include this
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topic in part because it illustrates so clearly the close marriage between theory and
practice in this part of mathematics.

Since software for the computations discussed in our text has also undergone ma-
jor changes since 1992, Appendix C has been completely rewritten. We now discuss
Maple, Mathematica, Sage, CoCoA, Macaulay2, and Singular in some detail and
list several other systems that can be used in courses based on our text. Appendix D
has also been substantially updated with new ideas for student projects. Some of the
wide range of applications developed since our first edition can be seen from the
new topics there. Finally, the bibliography has been updated and expanded to reflect
some of the continuous and rapid development of our subjects.
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Notation for Sets and Functions

In this book, a set is a collection of mathematical objects. We say that x is an element
of A, written x € A, when x is one of objects in A. Then x ¢ A means that x is not an
element of A. Commonly used sets are:

Z={...,-2,—1,0,1,2,...}, the set of integers,
Z>o=1{0,1,2,...}, the set of nonnegative integers,
@ = the set of rational numbers (fractions),

R = the set of real numbers,

C = the set of complex numbers.

Sets will often be specified by listing the elements in the set, such as A = {0, 1,2},
or by set-builder notation, such as

0,I]={xeR|0<x<1}.
The empty set is the set with no elements, denoted (). We write
ACB

when every element of A is also an element of B; we say that A is contained in B
and A is a subset of B. When in addition A # B, we write

ACB
and say that A is a proper subset of B. Basic operations on sets are

AUB = {x|x € A orx € B}, the union of A and B,

ANB = {x|x € Aandx € B},the intersection of A and B,

A\ B={x]|x€Aandx ¢ B}, the difference of A and B,

A x B={(x,y) | x € Aandy € B}, the cartesian product of A and B.

XV



Xvi Notation for Sets and Functions
We say that f is a function from A to B, written
f:A— B,

when for every x € A, there is a unique f(x) € B. We sometimes write the function
f as
x— f(x).

Given any set A, an important function is the identity function
idy:A— A

defined by x — x for all x € A. Given functionsf : A — Band g : B — C, their
composition
gof:A—C

is defined by x — g(f(x)) for x € A.

A functionf : A — B is one-to-one if f(x) = f(y) implies x = y whenever x, y € A.
A functionf : A — Bis onto if for all y € B, there is x € A with f(x) = y. If f is
one-to-one and onto, then f has an inverse function

f1:B—A
defined by f~!(y) = x when f(x) = y. The inverse function satisfies

flof=idy and fof ! =ids.



Chapter 1
Geometry, Algebra, and Algorithms

This chapter will introduce some of the basic themes of the book. The geometry
we are interested in concerns affine varieties, which are curves and surfaces (and
higher dimensional objects) defined by polynomial equations. To understand affine
varieties, we will need some algebra, and in particular, we will need to study ideals
in the polynomial ring k[xi,...,x,]. Finally, we will discuss polynomials in one
variable to illustrate the role played by algorithms.

§1 Polynomials and Affine Space

To link algebra and geometry, we will study polynomials over a field. We all know
what polynomials are, but the term field may be unfamiliar. The basic intuition is
that a field is a set where one can define addition, subtraction, multiplication, and
division with the usual properties. Standard examples are the real numbers R and
the complex numbers C, whereas the integers Z are not a field since division fails
(3 and 2 are integers, but their quotient 3/2 is not). A formal definition of field may
be found in Appendix A.

One reason that fields are important is that linear algebra works over any field.
Thus, even if your linear algebra course restricted the scalars to lie in R or C, most
of the theorems and techniques you learned apply to an arbitrary field k. In this
book, we will employ different fields for different purposes. The most commonly
used fields will be:

e The rational numbers Q: the field for most of our computer examples.

e The real numbers R: the field for drawing pictures of curves and surfaces.

e The complex numbers C: the field for proving many of our theorems.

On occasion, we will encounter other fields, such as fields of rational functions
(which will be defined later). There is also a very interesting theory of finite fields—
see the exercises for one of the simpler examples.

© Springer International Publishing Switzerland 2015 1
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2 Chapter 1 Geometry, Algebra, and Algorithms

We can now define polynomials. The reader certainly is familiar with polynomi-
als in one and two variables, but we will need to discuss polynomials in n variables
X1, ...,Xx, with coefficients in an arbitrary field k. We start by defining monomials.

Definition 1. A monomial in xy, ..., x, is a product of the form

xtlll -x;‘z . .xzi/x7
where all of the exponents a1, . . . , ,, are nonnegative integers. The total degree of
this monomial is the sum oy + - - - + .

We can simplify the notation for monomials as follows: let &« = («y, ..., a;) be
an n-tuple of nonnegative integers. Then we set

xoz :.X?” _xgcz .. .xztu'
When o = (0, ... ,0), note that x* = 1. We also let |&| = oy + - - - + v, denote the
total degree of the monomial x®.

Definition 2. A polynomial f in x, ..., x, with coefficients in a field k is a finite
linear combination (with coefficients in k) of monomials. We will write a polynomial
f in the form

f= Zaaxo‘, aq €k,
«@

where the sum is over a finite number of n-tuples & = (o, ..., a;). The set of all
polynomials in x, . . ., x, with coefficients in & is denoted k[xi, . . ., x,].

When dealing with polynomials in a small number of variables, we will usually
dispense with subscripts. Thus, polynomials in one, two, and three variables lie in
k[x], k[x, y], and k[x, y, z], respectively. For example,

3
f =22+ §y313 — 3xyz + y*

is a polynomial in Q[x, y, z]. We will usually use the letters f, g, h, p, g, r to refer to
polynomials.
We will use the following terminology in dealing with polynomials.

Definition 3. Let f = >~ _ a,x® be a polynomial in k[xy, ..., x,].
(i) We call a,, the coefficient of the monomial x®.
(i) If a,, # 0, then we call a,x® a term of f.
(iii) The total degree of f # 0, denoted deg(f ), is the maximum || such that the
coefficient a,, is nonzero. The total degree of the zero polynomial is undefined.

As an example, the polynomial f = 2x’y’z + %y3z3 — 3xyz + y? given above

has four terms and total degree six. Note that there are two terms of maximal total
degree, which is something that cannot happen for polynomials of one variable.
In Chapter 2, we will study how to order the terms of a polynomial.
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The sum and product of two polynomials is again a polynomial. We say that a
polynomial f divides a polynomial g provided that g = fh for some polynomial
h€klxi,...,x.

One can show that, under addition and multiplication, k[xi, . .., x,| satisfies all
of the field axioms except for the existence of multiplicative inverses (because, for
example, 1/x; is not a polynomial). Such a mathematical structure is called a com-
mutative ring (see Appendix A for the full definition), and for this reason we will
refer to k[xy, . .., x| as a polynomial ring.

The next topic to consider is affine space.

Definition 4. Given a field k and a positive integer n, we define the n-dimensional
affine space over k to be the set

K'={(ai,...,a,) | ai,...,a, € k}.

For an example of affine space, consider the case k = R. Here we get the familiar
space R" from calculus and linear algebra. In general, we call k! = k the affine line
and k? the affine plane.

Let us next see how polynomials relate to affine space. The key idea is that a
polynomial f = > anx® € k[xi,...,x,] gives a function

[k —k

defined as follows: given (ay,...,a,) € k", replace every x; by a; in the expres-
sion for f. Since all of the coefficients also lie in k, this operation gives an element
flai,...,a,) € k. The ability to regard a polynomial as a function is what makes it
possible to link algebra and geometry.

This dual nature of polynomials has some unexpected consequences. For exam-
ple, the question “is f = 0?”” now has two potential meanings: is f the zero polyno-
mial?, which means that all of its coefficients a,, are zero, or is f the zero function?,
which means that f(ay, . ..,a,) = 0 forall (ay,...,a,) € k". The surprising fact is
that these two statements are not equivalent in general. For an example of how they
can differ, consider the set consisting of the two elements 0 and 1. In the exercises,
we will see that this can be made into a field where 1 + 1 = 0. This field is usually
called F,. Now consider the polynomial x> — x = x(x — 1) € F,[x]. Since this
polynomial vanishes at 0 and 1, we have found a nonzero polynomial which gives
the zero function on the affine space F.. Other examples will be discussed in the
exercises.

However, as long as k is infinite, there is no problem.

Proposition 5. Ler k be an infinite field and let f € k[xi,...,x,). Then f = 0 in
k[x1,...,x,] ifand only if f : K" — k is the zero function.

Proof. One direction of the proof is obvious since the zero polynomial clearly gives
the zero function. To prove the converse, we need to show that if f(ay, . ..,a,) =0
forall (a1, ...,a,) € k", thenf is the zero polynomial. We will use induction on the
number of variables 7.



4 Chapter 1 Geometry, Algebra, and Algorithms

When n = 1, it is well known that a nonzero polynomial in k[x] of degree m
has at most m distinct roots (we will prove this fact in Corollary 3 of §5). For our
particular f € k[x], we are assuming f(a) = O for all @ € k. Since k is infinite, this
means that f has infinitely many roots, and, hence, f must be the zero polynomial.

Now assume that the converse is true for n — 1, and let f € k[x;,...,x,] be a
polynomial that vanishes at all points of k". By collecting the various powers of x,,
we can write f in the form

N

f= Zg,-(xl, . ,x,,_l)xil,

i=0

where g; € k[xi, ..., x,—1]. We will show that each g; is the zero polynomialin n— 1
variables, which will force f to be the zero polynomial in k[xi, . . ., x,].

If we fix (ay,...,a,_1) € k"', we get the polynomial f(ay,...,a,_1,x,) €
k[x,,]. By our hypothesis on f, this vanishes for every a, € k. It follows from the case
n = 1thatf(ai,...,a,—1,x,) is the zero polynomial in k[x,]. Using the above for-
mula for f, we see that the coefficients of f(ay, ..., a,—1,x,) are gi(ai, ..., a,—1),
and thus, g;(a1,...,a,—1) = 0 for all i. Since (ai,...,a,—1) was arbitrarily cho-
sen in k"', it follows that each g € klxi,...,x,-1] gives the zero function on
k"', Our inductive assumption then implies that each g; is the zero polynomial in
k[xi,...,x,—1]. This forces f to be the zero polynomial in k[xy,...,x,] and com-
pletes the proof of the proposition. (]

Note that in the statement of Proposition 3, the assertion “f = 0 in kfxy, ..., x,]”
means that f is the zero polynomial, i.e., that every coefficient of f is zero. Thus, we
use the same symbol “0” to stand for the zero element of k and the zero polynomial
in k[xp, ..., x,]. The context will make clear which one we mean.

As a corollary, we see that two polynomials over an infinite field are equal pre-
cisely when they give the same function on affine space.

Corollary 6. Let k be an infinite field, and let f, g € k[xi,...,x,). Thenf = g in
k[xi,...,x,] ifand only iff : k" — k and g : k" — k are the same function.

Proof. To prove the nontrivial direction, suppose that f, g € k[xy,...,x,] give the
same function on k”. By hypothesis, the polynomial f — g vanishes at all points of k".
Proposition 5 then implies that f — g is the zero polynomial. This proves that f = g
inkfxy,...,x,). O

Finally, we need to record a special property of polynomials over the field of
complex numbers C.

Theorem 7. Every nonconstant polynomial f € Clx] has a root in C.

Proof. This is the Fundamental Theorem of Algebra, and proofs can be found
in most introductory texts on complex analysis (although many other proofs are
known). [l
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We say that a field & is algebraically closed if every nonconstant polynomial in
k[x] has a root in k. Thus R is not algebraically closed (what are the roots of x* +17?),
whereas the above theorem asserts that C is algebraically closed. In Chapter 4 we
will prove a powerful generalization of Theorem 7 called the Hilbert Nullstellensatz.

EXERCISES FOR §1

1. Let F> = {0, 1}, and define addition and multiplicationby 0 +0=1+1=0,0+1 =
140=1,0-0=0-1=1-0=0and 1 -1 =1.Explain why F is a field. (You need
not check the associative and distributive properties, but you should verify the existence
of identities and inverses, both additive and multiplicative.)

2. Let [, be the field from Exercise 1.

a. Consider the polynomial g(x,y) = x*y + y’x € Fa[x,y]. Show that g(x,y) = 0 for
every (x,y) € 3, and explain why this does not contradict Proposition 5.

b. Find a nonzero polynomial in I, [x, y, z] which vanishes at every point of F3. Try to
find one involving all three variables.

c. Find a nonzero polynomial in F2[xi, . . ., x,] which vanishes at every point of F5. Can
you find one in which all of x, ..., x, appear?

3. (Requires abstract algebra). Let p be a prime number. The ring of integers modulo p is a
field with p elements, which we will denote F),.

a. Explain why F,, \ {0} is a group under multiplication.

b. Use Lagrange’s Theorem to show that a”~' = 1 for all a € T, \ {0}.

c. Prove that a” = a for all a € F,. Hint: Treat the cases @ = 0 and a # 0 separately.

d. Find a nonzero polynomial in F,,[x] that vanishes at all points of F,. Hint: Use part (c).

4. (Requires abstract algebra.) Let F be a finite field with ¢ elements. Adapt the argument of
Exercise 3 to prove that x? — x is a nonzero polynomial in F[x] which vanishes at every
point of F. This shows that Proposition 5 fails for all finite fields.

5. In the proof of Proposition 5, we took f* € k[xi, . .., x,] and wrote it as a polynomial in x,
with coefficients in k[xi, . . ., x,—1]. To see what this looks like in a specific case, consider
the polynomial

fy,20) =y -2 +y + ¥z — Y+ ay+ 20— 52+ 3.

a. Write f as a polynomial in x with coefficients in [y, z].
b. Write f as a polynomial in y with coefficients in k[x, z].
c. Write f as a polynomial in z with coefficients in k[x, y|.
6. Inside of C", we have the subset Z", which consists of all points with integer coordinates.
a. Prove thatif f € C|xi,...,x,| vanishes at every point of Z", then f is the zero polyno-
mial. Hint: Adapt the proof of Proposition 5.
b. Letf € Clxi,...,x), and let M be the largest power of any variable that appears in f.
Let Zjy; be the set of points of Z", all coordinates of which lie between 1 and M + 1,
inclusive. Prove that if f vanishes at all points of Zj,, |, then f is the zero polynomial.

§2 Affine Varieties

We can now define the basic geometric objects studied in this book.

Definition 1. Let & be a field, and let fi, . . . , f; be polynomials in k[x1, . . ., x,]. Then
we set
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V(fi,..-.fs) ={(ar,...,a,) €K" | filar,...,a,) =0forall | <i<s}.
We call V(fi, . ..,f;) the affine variety defined by fi, . . ., f;.

Thus, an affine variety V(fi,...,f;) C k" is the set of all solutions of the system
of equations fi(x1, ..., x,) = - -+ = fy(x1, ..., x,) = 0. We will use the letters V, W,
etc. to denote affine varieties. The main purpose of this section is to introduce the
reader to lots of examples, some new and some familiar. We will use k = R so that
we can draw pictures.

We begin in the plane R? with the variety V(x> + y*> — 1), which is the circle of
radius 1 centered at the origin:

The conic sections studied in school (circles, ellipses, parabolas, and hyperbolas)
are affine varieties. Likewise, graphs of polynomial functions are affine varieties
[the graph of y = f(x) is V(y — f(x))]. Although not as obvious, graphs of rational

©-1.
= -

functions are also affine varieties. For example, consider the graph of y =

30 pY

It is easy to check that this is the affine variety V(xy — x> + 1).
Next, let us look in the 3-dimensional space R?. A nice affine variety is given by
paraboloid of revolution V(z — x> — y?), which is obtained by rotating the parabola
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z = x> about the z-axis (you can check this using polar coordinates). This gives us
the picture:

You may also be familiar with the cone V(z> — x> — y?):

z

In these last two examples, the surfaces are not smooth everywhere: the cone has
a sharp point at the origin, and the last example intersects itself along the whole



8 Chapter 1 Geometry, Algebra, and Algorithms

y-axis. These are examples of singular points, which will be studied later in the
book.

An interesting example of a curve in R? is the twisted cubic, which is the variety
V(y —x%,z—x%). For simplicity, we will confine ourselves to the portion that lies in
the first octant. To begin, we draw the surfaces y = x* and z = x> separately:

% %

Then their intersection gives the twisted cubic:

0

Notice that when we had one equation in R?, we got a curve, which is a
1-dimensional object. A similar situation happens in R3: one equation in R? usu-
ally gives a surface, which has dimension 2. Again, dimension drops by one. But
now consider the twisted cubic: here, two equations in R3 give a curve, so that di-
mension drops by two. Since each equation imposes an extra constraint, intuition
suggests that each equation drops the dimension by one. Thus, if we started in R*,
one would hope that an affine variety defined by two equations would be a surface.
Unfortunately, the notion of dimension is more subtle than indicated by the above
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examples. To illustrate this, consider the variety V(xz, yz). One can easily check that
the equations xz = yz = 0 define the union of the (x, y)-plane and the z-axis:

Hence, this variety consists of two pieces which have different dimensions, and one
of the pieces (the plane) has the “wrong” dimension according to the above intuition.

We next give some examples of varieties in higher dimensions. A familiar case
comes from linear algebra. Namely, fix a field k, and consider a system of m linear
equations in n unknowns xp, . . . , x, with coefficients in &:

anxi + -+ apx, = by,
(D :

amiX1 + - -+ ApnXn = bm

The solutions of these equations form an affine variety in k", which we will call a
linear variety. Thus, lines and planes are linear varieties, and there are examples
of arbitrarily large dimension. In linear algebra, you learned the method of row re-
duction (also called Gaussian elimination), which gives an algorithm for finding all
solutions of such a system of equations. In Chapter 2, we will study a generalization
of this algorithm which applies to systems of polynomial equations.

Linear varieties relate nicely to our discussion of dimension. Namely, if V C k" is
the linear variety defined by (1), then V need not have dimension n — m even though
V is defined by m equations. In fact, when V is nonempty, linear algebra tells us that
V has dimension n — r, where r is the rank of the matrix (a,-j). So for linear varieties,
the dimension is determined by the number of independent equations. This intuition
applies to more general affine varieties, except that the notion of “independent” is
more subtle.

Some complicated examples in higher dimensions come from calculus. Sup-
pose, for example, that we wanted to find the minimum and maximum values of
f(x,y,2) = x> + 2xyz — z* subject to the constraint g(x,y,z) = x> +y* + 22 = 1.
The method of Lagrange multipliers states that Vf = AVg at a local mini-
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mum or maximum [recall that the gradient of f is the vector of partial derivatives
Vf = (fw fy, f-)]. This gives us the following system of four equations in four
unknowns, x, y, z, A, to solve:

3x% 4 2yz = 2x)\,

2xz = 2y,
@ e
Xy — 2z = 2z,
Py 4+ =1

These equations define an affine variety in R*, and our intuition concerning dimen-
sion leads us to hope it consists of finitely many points (which have dimension 0)
since it is defined by four equations. Students often find Lagrange multipliers dif-
ficult because the equations are so hard to solve. The algorithms of Chapter 2 will
provide a powerful tool for attacking such problems. In particular, we will find all
solutions of the above equations.

We should also mention that affine varieties can be the empty set. For example,
when k = R, it is obvious that V(x> + y* + 1) = 0 since x* + y*> = —1 has
no real solutions (although there are solutions when k = C). Another example is
V(xy,xy — 1), which is empty no matter what the field is, for a given x and y cannot
satisfy both xy = 0 and xy = 1. In Chapter 4 we will study a method for determining
when an affine variety over C is nonempty.

To give an idea of some of the applications of affine varieties, let us consider a
simple example from robotics. Suppose we have a robot arm in the plane consisting
of two linked rods of lengths 1 and 2, with the longer rod anchored at the origin:

(€AY

(zw)

The “state” of the arm is completely described by the coordinates (x,y) and (z,w)
indicated in the figure. Thus the state can be regarded as a 4-tuple (x,y,z,w) € R%.
However, not all 4-tuples can occur as states of the arm. In fact, it is easy to see that
the subset of possible states is the affine variety in R* defined by the equations
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Py —4
(x—2+ @ -—w?=1.

Notice how even larger dimensions enter quite easily: if we were to consider the
same arm in 3-dimensional space, then the variety of states would be defined by two
equations in R®. The techniques to be developed in this book have some important
applications to the theory of robotics.

So far, all of our drawings have been over R. Later in the book, we will consider
varieties over C. Here, it is more difficult (but not impossible) to get a geometric
idea of what such a variety looks like.

Finally, let us record some basic properties of affine varieties.

Lemma 2. [fV, W C k" are affine varieties, then so are VU W and VN W.

Proof. Suppose thatV = V(fi,...,f;) and W = V(gi,...,g;). Then we claim that

VﬁW:V(fl,...,fy,gl,...,gt),
VUW =V(figi|1<i<s, 1<j<1).

The first equality is trivial to prove: being in V N W means that both fi, . . ., f; and
g1, ..,8 vanish, which is the same as f, . . ., f;, g1, - - . , g vanishing.

The second equality takes a little more work. If (aj,...,a,) € V, then all
of the f;’s vanish at this point, which implies that all of the f;g;’s also vanish at
(ar,...,ay). Thus, V. .C V(figj), and W C V(fig;) follows similarly. This proves
that V.U W C V(fig;). Going the other way, choose (ai, ...,a,) € V(fig;). If this

lies in V, then we are done, and if not, then f;, (a1, . ..,a,) # 0 for some iy. Since
fi,gj vanishes at (ay, . .., a,) for all j, the g;’s must vanish at this point, proving that
(ai,...,a,) € W.This shows that V(fig;)) C VU W. O

This lemma implies that finite intersections and unions of affine varieties are
again affine varieties. It turns out that we have already seen examples of unions
and intersections. Concerning unions, consider the union of the (x, y)-plane and the
z-axis in affine 3-space. By the above formula, we have

V(z) UV(x,y) = V(zx,2y).

This, of course, is one of the examples discussed earlier in the section. As for inter-
sections, notice that the twisted cubic was given as the intersection of two surfaces.

The examples given in this section lead to some interesting questions concerning
affine varieties. Suppose that we have fi, ..., f; € k[xy, ..., x,]. Then:

e (Consistency) Can we determine if V(fi,...,f;) # 0, i.e., do the equations f; =
-+ = f; = 0 have a common solution?

e (Finiteness) Can we determine if V(f,...,f;) is finite, and if so, can we find all
of the solutions explicitly?

e (Dimension) Can we determine the “dimension” of V(fi,...,f;)?
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The answer to these questions is yes, although care must be taken in choosing

the field k that we work over. The hardest is the one concerning dimension, for it
involves some sophisticated concepts. Nevertheless, we will give complete solutions
to all three problems.

EXERCISES FOR §2

1.

Sketch the following affine varieties in R*:

a. V2 +4y* +2x — 16y + 1).

b. V(x* —y%).

c. V(2x+y—1,3x—y+2).

In each case, does the variety have the dimension you would intuitively expect it to have?
In R?, sketch V(y* — x(x — 1)(x — 2)). Hint: For which x’s is it possible to solve for y?
How many y’s correspond to each x? What symmetry does the curve have?

In the plane R, draw a picture to illustrate

VO +y —4)NVay—1) =V +y —4,xy - 1),

and determine the points of intersection. Note that this is a special case of Lemma 2.
Sketch the following affine varieties in R?:

Ve +y + 2 1)

4y —1).

x+2,y—15,2).

xz* — xy). Hint: Factor xz*> — xy.

X — X — ).

£V +y +2 1L, +y +(z— 1) —1).

In each case, does the variety have the dimension you would intuitively expect it to have?
Use the proof of Lemma 2 to sketch V((x — 2)(x* —y),y(x> —y), (z+ 1) (x> —y)) in R*.
Hint: This is the union of which two varieties?

Let us show that all finite subsets of k" are affine varieties.

a. Prove that a single point (a1, ..., a,) € k" is an affine variety.

b. Prove that every finite subset of k" is an affine variety. Hint: Lemma 2 will be useful.
One of the prettiest examples from polar coordinates is the four-leaved rose

LS

V(
V(
V(
V(

This curve is defined by the polar equation r = sin(260). We will show that this curve is
an affine variety.
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10.

11.

12.

13.

14.
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a. Using r* = x> +y%,x = rcos(9) and y = rsin(), show that the four-leaved rose is
contained in the affine variety V((x*+y*)* —4x*y?). Hint: Use an identity for sin(26).

b. Now argue carefully that V((x* +y*)* — 4x?y?) is contained in the four-leaved rose.
This is trickier than it seems since r can be negative in r = sin(26).

Combining parts (a) and (b), we have proved that the four-leaved rose is the affine variety
V(& +y°)° —4y*).

. It can take some work to show that something is not an affine variety. For example,

consider the set
X={(xx)|xeR x#1} CR,

which is the straight line x = y with the point (1, 1) removed. To show that X is not
an affine variety, suppose that X = V(fi,...,f;). Then each f; vanishes on X, and if
we can show that f; also vanishes at (1, 1), we will get the desired contradiction. Thus,
here is what you are to prove: if f € R[x, y] vanishes on X, then f(1,1) = 0. Hint: Let
g(t) = f(¢,1), which is a polynomial R[f]. Now apply the proof of Proposition 5 of §1.

. Let R = {(x,y) € R* | y > 0} be the upper half plane. Prove that R is not an affine

variety.

Let Z" C C" consist of those points with integer coordinates. Prove that Z" is not an
affine variety. Hint: See Exercise 6 from §1.

So far, we have discussed varieties over R or C. It is also possible to consider varieties
over the field Q, although the questions here tend to be much harder. For example, let n
be a positive integer, and consider the variety F,, C Q? defined by

X4y =1

Notice that there are some obvious solutions when x or y is zero. We call these rrivial

solutions. An interesting question is whether or not there are any nontrivial solutions.

a. Show that F, has two trivial solutions if n is odd and four trivial solutions if 7 is even.

b. Show that F, has a nontrivial solution for some » > 3 if and only if Fermat’s Last
Theorem were false.

Fermat’s Last Theorem states that, for n > 3, the equation

xn+yn :Zn

has no solutions where x, y, and z are nonzero integers. The general case of this conjecture

was proved by Andrew Wiles in 1994 using some very sophisticated number theory. The

proof is extremely difficult.

Find a Lagrange multipliers problem in a calculus book and write down the correspond-

ing system of equations. Be sure to use an example where one wants to find the minimum

or maximum of a polynomial function subject to a polynomial constraint. This way the

equations define an affine variety, and try to find a problem that leads to complicated

equations. Later we will use Grobner basis methods to solve these equations.

Consider a robot arm in R? that consists of three arms of lengths 3, 2, and 1, respectively.

The arm of length 3 is anchored at the origin, the arm of length 2 is attached to the free

end of the arm of length 3, and the arm of length 1 is attached to the free end of the arm

of length 2. The “hand” of the robot arm is attached to the end of the arm of length 1.

a. Draw a picture of the robot arm.

b. How many variables does it take to determine the “state” of the robot arm?

c. Give the equations for the variety of possible states.

d. Using the intuitive notion of dimension discussed in this section, guess what the
dimension of the variety of states should be.

This exercise will study the possible “hand” positions of the robot arm described in

Exercise 13.

a. If (u,v) is the position of the hand, explain why u* + v* < 36.
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Suppose we “lock” the joint between the length 3 and length 2 arms to form a straight
angle, but allow the other joint to move freely. Draw a picture to show that in these
configurations, (u, v) can be any point of the annulus 16 < u* 41 < 36.

Draw a picture to show that (u,v) can be any point in the disk u* + v* < 36. Hint:
Consider 16 < 1> +v* < 36,4 < > +1v* < 16, and u* +1* < 4 separately.

15. In Lemma 2, we showed that if V and W are affine varieties, then so are their union VUW
and intersection V N W. In this exercise we will study how other set-theoretic operations
affect affine varieties.

a.

b.

Prove that finite unions and intersections of affine varieties are again affine varieties.
Hint: Induction.

Give an example to show that an infinite union of affine varieties need not be an
affine variety. Hint: By Exercises 8-10, we know some subsets of k" that are not
affine varieties. Surprisingly, an infinite intersection of affine varieties is still an affine
variety. This is a consequence of the Hilbert Basis Theorem, which will be discussed
in Chapters 2 and 4.

Give an example to show that the set-theoretic difference V'\ W of two affine varieties
need not be an affine variety.

Let V C k" and W C k™ be two affine varieties, and let

VW= {(X],. s Xny Yy e ,ym) € kn+m | (xlv e 7x’l) € V7 (y17 e 7ym) € W}
be their Cartesian product. Prove that V x W is an affine variety in k™. Hint: If V is
defined by fi, ..., fs € k[xi,...,x,], then we can regard f1, . .., f; as polynomials in
klxi, ... Xa, )1, - ., Ym, and similarly for W. Show that this gives defining equations

for the Cartesian product.

§3 Parametrizations of Affine Varieties

In this section, we will discuss the problem of describing the points of an affine
variety V(fi, . ..,f;). This reduces to asking whether there is a way to “write down”
the solutions of the system of polynomial equations f; = --- = f; = 0. When there
are finitely many solutions, the goal is simply to list them all. But what do we do
when there are infinitely many? As we will see, this question leads to the notion of
parametrizing an affine variety.

To get started, let us look at an example from linear algebra. Let the field be R,

and consider the system of equations

(1)

x+y+z=1,
x+2y—z=23.

Geometrically, this represents the line in R? which is the intersection of the planes
x+y-+z=1and x+ 2y — z = 3. It follows that there are infinitely many solutions.
To describe the solutions, we use row operations on equations (1) to obtain the
equivalent equations

x+3z=—-1,
y—2z=2.
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Letting z = ¢, where ¢ is arbitrary, this implies that all solutions of (1) are given by

x=—1-— 3¢
2) y=2+472t,
=1

as t varies over R. We call ¢ a parameter, and (2) is, thus, a parametrization of the
solutions of (1).

To see if the idea of parametrizing solutions can be applied to other affine vari-
eties, let us look at the example of the unit circle

3) Py =1
A common way to parametrize the circle is using trigonometric functions:

x = cos(1),
y = sin(r).

There is also a more algebraic way to parametrize this circle:

1-7
X=—"
1+
4
4) o
Y1

You should check that the points defined by these equations lie on the circle (3). It is
also interesting to note that this parametrization does not describe the whole circle:
since x = :é can never equal —1, the point (—1,0) is not covered. At the end of
the section, we will explain how this parametrization was obtained.

Notice that equations (4) involve quotients of polynomials. These are examples
of rational functions, and before we can say what it means to parametrize a variety,

we need to define the general notion of rational function.

Definition 1. Let & be a field. A rational function in 71, . . ., 7,, with coefficients in
k is a quotient f /g of two polynomials f, g € k[r1, ..., 1,], where g is not the zero
polynomial. Furthermore, two rational functions f/g and f’ /g’ are equal provided
that g'f = gf’ in k[t1,. .., t,]. Finally, the set of all rational functions in 71, ..., #,
with coefficients in & is denoted k(ty, . . ., ).

It is not difficult to show that addition and multiplication of rational functions
are well defined and that k(¢4 . . ., ,,) is a field. We will assume these facts without
proof.

Now suppose that we are given a variety V = V(fi,...,f;) C k". Then a ra-
tional parametric representation of V consists of rational functions r,...,r, €
k(t1,...,t,) such that the points given by
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X = Vl(ll,...,tm),
Xy = rz(tl,...,l‘m),
Xn = rn(tlv"'vtm)

lie in V. We also require that V be the “smallest” variety containing these points. As
the example of the circle shows, a parametrization may not cover all points of V. In
Chapter 3, we will give a more precise definition of what we mean by “smallest.”

In many situations, we have a parametrization of a variety V, where ry,...,r,
are polynomials rather than rational functions. This is what we call a polynomial
parametric representation of V.

By contrast, the original defining equations fj = --- = f; = 0 of V are called
an implicit representation of V. In our previous examples, note that equations (1)
and (3) are implicit representations of varieties, whereas (2) and (4) are parametric.

One of the main virtues of a parametric representation of a curve or surface is
that it is easy to draw on a computer. Given the formulas for the parametrization,
the computer evaluates them for various values of the parameters and then plots the
resulting points. For example, in §2 we viewed the surface V(x> — y?z2 + z%):

V4

This picture was not plotted using the implicit representation x> — y?z> + z> = 0.
Rather, we used the parametric representation given by

x = t(u® — 1),

5) y=u,
z=u— 1.

There are two parameters ¢ and u since we are describing a surface, and the above
picture was drawn using the range —1 < #,u < 1. In the exercises, we will derive
this parametrization and check that it covers the entire surface V(x*> — y*z> + z°).

At the same time, it is often useful to have an implicit representation of a variety.
For example, suppose we want to know whether or not the point (1,2, —1) is on
the above surface. If all we had was the parametrization (5), then, to decide this
question, we would need to solve the equations
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1 = t(u® — ),
©) 2w,
—1l=u* -7

for ¢ and u. On the other hand, if we have the implicit representation x*> — y*z> +7° =
0, then it is simply a matter of plugging into this equation. Since

12-22(—1)2+ (=1 =1-4—1=—-4+40,

it follows that (1,2, —1) is not on the surface [and, consequently, equations (6) have
no solution].
The desirability of having both types of representations leads to the following
two questions:
e (Parametrization) Does every affine variety have a rational parametric represen-
tation?
e (Implicitization) Given a parametric representation of an affine variety, can we
find the defining equations (i.e., can we find an implicit representation)?

The answer to the first question is no. In fact, most affine varieties cannot be
parametrized in the sense described here. Those that can are called unirational. In
general, it is difficult to tell whether a given variety is unirational or not. The situa-
tion for the second question is much nicer. In Chapter 3, we will see that the answer
is always yes: given a parametric representation, we can always find the defining
equations.

Let us look at an example of how implicitization works. Consider the parametric
representation

x=1+¢

™) T
y=1+1r.

This describes a curve in the plane, but at this point, we cannot be sure that it lies on

an affine variety. To find the equation we are looking for, notice that we can solve

the first equation for ¢ to obtain

t=x—1.

Substituting this into the second equation yields
y=14+@x—-172=x"—-2x+2.

Hence the parametric equations (7) describe the affine variety V(y — x*> + 2x — 2).

In the above example, notice that the basic strategy was to eliminate the variable
t so that we were left with an equation involving only x and y. This illustrates the
role played by elimination theory, which will be studied in much greater detail in
Chapter 3.

We will next discuss two examples of how geometry can be used to parametrize
varieties. Let us start with the unit circle x2 + y2 = 1, which was parametrized in (4)
via
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1-7
X—m,
2t
YTy e

To see where this parametrization comes from, notice that each nonvertical line
through (—1,0) will intersect the circle in a unique point (x, y):

y

1

(xy)

0.0

(=1,0) 1 x

Each nonvertical line also meets the y-axis, and this is the point (0, 7) in the above
picture.

This gives us a geometric parametrization of the circle: given ¢, draw the line con-
necting (—1,0) to (0,¢), and let (x, y) be the point where the line meets x> + y* = 1.
Notice that the previous sentence really gives a parametrization: as ¢ runs from —oo
to oo on the vertical axis, the corresponding point (x,y) traverses all of the circle
except for the point (—1, 0).

It remains to find explicit formulas for x and y in terms of 7. To do this, consider
the slope of the line in the above picture. We can compute the slope in two ways,
using either the points (—1,0) and (0, 7), or the points (—1,0) and (x,y). This gives
us the equation

t—0 y—20

0—(=1)  x—(=1)]

which simplifies to become
Y

= .
x+1

Thus, y = #(x + 1). If we substitute this into x> + y> = 1, we get
P+ =1,
which gives the quadratic equation

(8) (1422 +22x 4+ —1=0.
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This equation gives the x-coordinates of where the line meets the circle, and it is
quadratic since there are two points of intersection. One of the points is —1, so that
x+11is afactor of (8). It is now easy to find the other factor, and we can rewrite (8) as

(x+ D ((1+A)x—(1-7£))=0.
Since the x-coordinate we want is given by the second factor, we obtain

17

x 1+

Furthermore, y = #(x + 1) easily leads to

2t

y:1+ﬂ

(you should check this), and we have now derived the parametrization given earlier.
Note how the geometry tells us exactly what portion of the circle is covered.

For our second example, let us consider the twisted cubic V(y — x?,z — x*) from
§2. This is a curve in 3-dimensional space, and by looking at the tangent lines to the
curve, we will get an interesting surface. The idea is as follows. Given one point on
the curve, we can draw the tangent line at that point:

Now imagine taking the tangent lines for all points on the twisted cubic. This gives
us the following surface:

This picture shows several of the tangent lines. The above surface is called the rfan-
gent surface of the twisted cubic.
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To convert this geometric description into something more algebraic, notice that
setting x = riny — x*> = z — x> = 0 gives us a parametrization

of the twisted cubic. We will write this as r(¢) = (¢, %, £*). Now fix a particular value
of ¢, which gives us a point on the curve. From calculus, we know that the tangent
vector to the curve at the point given by r(z) is r'(f) = (1,2t,3¢?). It follows that the
tangent line is parametrized by

r(t) +ur'(t) = (1,2, 2) + u(1,2t,36) = (t 4 u, £ + 2tu, £ + 3¢°u),

where u is a parameter that moves along the tangent line. If we now allow ¢ to vary,
then we can parametrize the entire tangent surface by

xX=t+u,
y =1 + 2,
=1 +3fu

The parameters ¢ and u have the following interpretations: ¢ tells where we are on
the curve, and u tells where we are on the tangent line. This parametrization was
used to draw the picture of the tangent surface presented earlier.

A final question concerns the implicit representation of the tangent surface: how
do we find its defining equation? This is a special case of the implicitization problem
mentioned earlier and is equivalent to eliminating ¢ and u from the above parametric
equations. In Chapters 2 and 3, we will see that there is an algorithm for doing
this, and, in particular, we will prove that the tangent surface to the twisted cubic is
defined by the equation

¥z = (3/4)3% — (3/2)0z+y’ + (1/4) = 0.

We will end this section with an example from Computer Aided Geometric De-
sign (CAGD). When creating complex shapes like automobile hoods or airplane
wings, design engineers need curves and surfaces that are varied in shape, easy to
describe, and quick to draw. Parametric equations involving polynomial and rational
functions satisfy these requirements; there is a large body of literature on this topic.

For simplicity, let us suppose that a design engineer wants to describe a curve
in the plane. Complicated curves are usually created by joining together simpler
pieces, and for the pieces to join smoothly, the tangent directions must match up
at the endpoints. Thus, for each piece, the designer needs to control the following
geometric data:

e the starting and ending points of the curve;
o the tangent directions at the starting and ending points.
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The Bézier cubic, introduced by Renault auto designer P. Bézier, is especially well
suited for this purpose. A Bézier cubic is given parametrically by the equations

=(1- l)3X0 + 3l(1 — l‘)le + 3[2(1 -+ IS)C3,

©) (1= 1Py0 + 31(1 — 02y + 32(1 — 1)ys + L3

X
y
for 0 <t < 1, where xo, yo, X1, Y1, X2, Y2, X3, y3 are constants specified by the design

engineer. Let us see how these constants correspond to the above geometric data.
If we evaluate the above formulas at # = 0 and ¢t = 1, then we obtain

(x(0),%(0)) = (x0,¥0),
(x(1),¥(1)) = (x3,3)-

As t varies from 0 to 1, equations (9) describe a curve starting at (xo, yp) and ending
at (x3,y3). This gives us half of the needed data. We will next use calculus to find
the tangent directions when + = 0 and 1. We know that the tangent vector to (9)
when r = 0 is (x'(0),y'(0)). To calculate x'(0), we differentiate the first line of (9)
to obtain

¥ = =31 —=1)%x0 +3((1 — 1) = 26(1 — 1))x; + 3(2t(1 — 1) — *)xz + 3Fx3.
Then substituting ¢t = 0 yields
X' (0) = —=3x0 + 3x1 = 3(x; — x0),
and from here, it is straightforward to show that

@(0)./(0)) = 351 — 30,31 — 30).
10 @()y(1) = 32 — 52,33 — ya).

Since (x; — x0,¥1 — yo) = (x1,y1) — (%0, ¥0), it follows that (x'(0),y’(0)) is three
times the vector from (xo, yo) to (x1,y1). Hence, by placing (x1,y1), the designer
can control the tangent direction at the beginning of the curve. In a similar way, the
placement of (x;,y,) controls the tangent direction at the end of the curve.

The points (xq,¥0), (x1,1), (x2,¥2) and (x3,y3) are called the control points of
the Bézier cubic. They are usually labeled Py, P;, P>, and P53, and the convex quadri-
lateral they determine is called the control polygon. Here is a picture of a Bézier
curve together with its control polygon:
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In the exercises, we will show that a Bézier cubic always lies inside its control
polygon.

The data determining a Bézier cubic is thus easy to specify and has a strong
geometric meaning. One issue not resolved so far is the length of the tangent vectors
(x'(0),»'(0)) and (x'(1),y'(1)). According to (10), it is possible to change the points
(x1,y1) and (x2, y») without changing the tangent directions. For example, if we keep
the same directions as in the previous picture, but lengthen the tangent vectors, then

we get the following curve:

Thus, increasing the velocity at an endpoint makes the curve stay close to the
tangent line for a longer distance. With practice and experience, a designer can
become proficient in using Bézier cubics to create a wide variety of curves. It is
interesting to note that the designer may never be aware of equations (9) that are

used to describe the curve.
Besides CAGD, we should mention that Bézier cubics are also used in the page

description language PostScript. The curveto command in PostScript has the coor-
dinates of the control points as input and the Bézier cubic as output. This is how the
above Bézier cubics were drawn—each curve was specified by a single curveto

instruction in a PostScript file.
EXERCISES FOR §3

1. Parametrize all solutions of the linear equations
X+2y—274+w=—1,
x+y+z—w=2.
2. Use a trigonometric identity to show that
x = cos (1),
y = cos (2r)

parametrizes a portion of a parabola. Indicate exactly what portion of the parabola is

covered.
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3. Given f € k[x], find a parametrization of V(y — f(x)).
4. Consider the parametric representation

1+t
1

a. Find the equation of the affine variety determined by the above parametric equations.
b. Show that the above equations parametrize all points of the variety found in part
(a) except for the point (1, 1).
5. This problem will be concerned with the hyperbola x* — y* = 1.

a. Just as trigonometric functions are used to parametrize the circle, hyperbolic func-
tions are used to parametrize the hyperbola. Show that the point

x = cosh(r),
y = sinh(z)

always lies on x* — y* = 1. What portion of the hyperbola is covered?

b. Show that a straight line meets a hyperbola in 0, 1, or 2 points, and illustrate your
answer with a picture. Hint: Consider the cases x = a and y = mx + b separately.

c. Adapt the argument given at the end of the section to derive a parametrization of the
hyperbola. Hint: Consider nonvertical lines through the point (—1,0) on the hyper-
bola.

d. The parametrization you found in part (c) is undefined for two values of ¢. Explain
how this relates to the asymptotes of the hyperbola.

6. The goal of this problem is to show that the sphere x* + y* + z> = 1 in 3-dimensional
space can be parametrized by

_ 2u
Sl g
_ 2v
il o g

w v —1
7=

T w441
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The idea is to adapt the argument given at the end of the section to 3-dimensional space.

a.

b.

C.

Given a point (u, v, 0) in the (x,y)-plane, draw the line from this point to the “north
pole” (0,0, 1) of the sphere, and let (x,y, z) be the other point where the line meets
the sphere. Draw a picture to illustrate this, and argue geometrically that mapping
(u,v) to (x,y,z) gives a parametrization of the sphere minus the north pole.

Show that the line connecting (0,0, 1) to (u,v,0) is parametrized by (ru,tv, 1 — ¢),
where ¢ is a parameter that moves along the line.

Substitute x = fu, y = tvand z = 1—1 into the equation for the sphere x*+y*+7> = 1.
Use this to derive the formulas given at the beginning of the problem.

7. Adapt the argument of the previous exercise to parametrize the “sphere” x3 +- - -4x2 = 1
in n-dimensional affine space. Hint: There will be n — 1 parameters.

8. Consider the curve defined by y* = cx® — x°, where c is some constant. Here is a picture
of the curve when ¢ > 0:

Our goal is to parametrize this curve.

a.

b.

Show that a line will meet this curve at either 0, 1, 2, or 3 points. Illustrate your answer
with a picture. Hint: Let the equation of the line be either x = a or y = mx + b.
Show that a nonvertical line through the origin meets the curve at exactly one other
point when m? # c. Draw a picture to illustrate this, and see if you can come up with
an intuitive explanation as to why this happens.

Now draw the vertical line x = 1. Given a point (1,7) on this line, draw the line
connecting (1, ) to the origin. This will intersect the curve in a point (x,y). Draw a
picture to illustrate this, and argue geometrically that this gives a parametrization of
the entire curve.

Show that the geometric description from part (c) leads to the parametrization

2
x=c—t,

y = t(c — ).

9. The strophoid is a curve that was studied by various mathematicians, including Isaac
Barrow (1630-1677), Jean Bernoulli (1667-1748), and Maria Agnesi (1718-1799).
A trigonometric parametrization is given by
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x = asin(r),
y = atan(z)(1 + sin(r))

where a is a constant. If we let ¢ vary in the range —4.5 < ¢ < 1.5, we get the picture
shown here.

a. Find the equation in x and y that describes the strophoid. Hint: If you are sloppy, you
will get the equation (a* — x*)y* = x*(a + x)*. To see why this is not quite correct,
see what happens when x = —a.

b. Find an algebraic parametrization of the strophoid.

10. Around 180 B.C.E., Diocles wrote the book On Burning-Glasses. One of the curves he
considered was the cissoid and he used it to solve the problem of the duplication of the
cube [see part (c) below]. The cissoid has the equation y*(a + x) = (a — x)*, where a is
a constant. This gives the following curve in the plane:
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11.

12.

a.
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Find an algebraic parametrization of the cissoid.

b. Diocles described the cissoid using the following geometric construction. Given a

circle of radius a (which we will take as centered at the origin), pick x between a and
—a, and draw the line L connecting (a, 0) to the point P = (—x, va*> — x?) on the

circle. This determines a point O = (x,y) on L:
|

wh---
N

—a

Prove that the cissoid is the locus of all such points Q.

The duplication of the cube is the classical Greek problem of trying to construct v/2
using ruler and compass. It is known that this is impossible given just a ruler and
compass. Diocles showed that if in addition, you allow the use of the cissoid, then

one can construct v/2. Here is how it works. Draw the line connecting (—a, 0) to
(0,a/2). This line will meet the cissoid at a point (x, y). Then prove that

a—x\"
= (7).
y

which shows how to construct +/2 using ruler, compass, and cissoid.

In this problem, we will derive the parametrization

x =t — 1),
y=4u,
i=ut - P

of the surface x> — y?z* + z> = 0 considered in the text.

a.

b.

C.

Adapt the formulas in part (d) of Exercise 8 to show that the curve x*> = cz* — 2° is
parametrized by

z=c—*1,

x=t(c—1).

Now replace the ¢ in part (a) by y*, and explain how this leads to the above paramet-
rization of x> — y*2* + 22 = 0.

Explain why this parametrization covers the entire surface V(x* — y?z* 4 z*). Hint:
See part (c) of Exercise 8.

Consider the variety V = V(y — x>,z — x*) C R*.

a.

Draw a picture of V.
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13.

14.

15.

16.

Parametrizations of Affine Varieties 27

b. Parametrize V in a way similar to what we did with the twisted cubic.

c. Parametrize the tangent surface of V.

The general problem of finding the equation of a parametrized surface will be studied in
Chapters 2 and 3. However, when the surface is a plane, methods from calculus or linear
algebra can be used. For example, consider the plane in R? parametrized by

x=14+u—v,
y=u-+2v,
z=—1—u+v.

Find the equation of the plane determined this way. Hint: Let the equation of the plane
be ax + by + cz = d. Then substitute in the above parametrization to obtain a sys-
tem of equations for a, b, ¢, d. Another way to solve the problem would be to write the
parametrization in vector form as (1,0, —1) 4+ u(1, 1, —1) + v(—1, 2, 1). Then one can
get a quick solution using the cross product.

This problem deals with convex sets and will be used in the next exercise to show that
a Bézier cubic lies within its control polygon. A subset C C R? is convex if for all
P, Q € C, the line segment joining P to Q also lies in C.

a. IfP= (;C) and Q = ( vzv) lie in a convex set C, then show that

t<§>+(l—t)<§}> ecC

) lies in a convex set C for 1 < i < n, then show that

when 0 < < 1.
b IfP; = (x"
¥i

- t; Xi> eC

wherever ¢, . . ., , are nonnegative numbers such that Z:f:l t; = 1. Hint: Use induc-
tion on n.
Let a Bézier cubic be given by

(1 — 1)’ x0 4+ 31(1 — 1)2x1 4+ 365 (1 — )2 + £'x3,
y= (1 =1 yo+3t(1 — 1)’y + 32 (1 — t)y2 + £ys.

X

a. Show that the above equations can be written in vector form

(;) =(1-1> (;g) +31(1—1)? (;C:) +32(1—1) (;f) +7 (;;) .

b. Use the previous exercise to show that a Bézier cubic always lies inside its control
polygon. Hint: In the above equations, what is the sum of the coefficients?
One disadvantage of Bézier cubics is that curves like circles and hyperbolas cannot be
described exactly by cubics. In this exercise, we will discuss a method similar to exam-
ple (4) for parametrizing conic sections. Our treatment is based on BALL (1987) [see also
GOLDMAN (2003), Section 5.7].
A conic section is a curve in the plane defined by a second degree equation of the
form ax® + bxy + ¢y* + dx + ey +f = 0. Conic sections include the familiar examples
of circles, ellipses, parabolas, and hyperbolas. Now consider the curve parametrized by
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e (1 —1)%x1 +2t(1 — )wxa + x3
T (=242l =t wH2
_ (1— t)2y1 +2t(1 — t)wy, + £y3

Y (I=0242t(1 —t)w+ ¢

for 0 < ¢ < 1. The constants w,x1, y1,X2,y2,%3,y3 are specified by the design engi-
neer, and we will assume that w > 0. In Chapter 3, we will show that these equations
parametrize a conic section. The goal of this exercise is to give a geometric interpretation
for the quantities w, x1, y1, X2, ¥2, X3, y3.

a.

b.

C.

Show that our assumption w > 0 implies that the denominator in the above formulas
never vanishes.

Evaluate the above formulas at t = 0 and ¢ = 1. This should tell you what x;, y1, x3, y3
mean.

Now compute (x'(0),y’(0)) and (x'(1),y’(1)). Use this to show that (x,y>) is the
intersection of the tangent lines at the start and end of the curve. Explain why
(x1,1), (x2,¥2), and (x3,y3) are called the control points of the curve.

Define the control polygon (it is actually a triangle in this case), and prove that the
curve defined by the above equations always lies in its control polygon. Hint: Adapt
the argument of the previous exercise. This gives the following picture:

(221) /’\

(1) (x3.3)

It remains to explain the constant w, which is called the shape factor. A hint should
come from the answer to part (c), for note that w appears in the formulas for the
tangent vectors when t = 0 and 1. So w somehow controls the “velocity,” and a larger
w should force the curve closer to (x2,y>). In the last two parts of the problem, we
will determine exactly what w does.

Prove that
() =rw GE) 2 () s ()

Use this formula to show that (x(3), y(3)) lies on the line segment connecting (x2, y2)

to the midpoint of the line between (x1,y1) and (x3,y3).

(X3203)
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f. Notice that (x(}),y(3)) divides this line segment into two pieces, say of lengths a
and b as indicated in the above picture. Then prove that

W:b’

so that w tells us exactly where the curve crosses this line segment. Hint: Use the
distance formula.
17. Use the formulas of the previous exercise to parametrize the arc of the circle x> +y* = 1
from (1, 0) to (0, 1). Hint: Use part (f) of Exercise 16 to show that w = 1/+/2.

8§84 Ideals

We next define the basic algebraic objects studied in this book.

Definition 1. A subset I C k[xy,...,x,] is an ideal if it satisfies:
@H0el

(ii) If f,g € I, thenf + g € I.

(iii) If f € I and h € K[xq, ..., x,), then hf € 1.

The goal of this section is to introduce the reader to some naturally occurring
ideals and to see how ideals relate to affine varieties. The real importance of ideals
is that they will give us a language for computing with affine varieties.

The first natural example of an ideal is the ideal generated by a finite number of
polynomials.

Definition 2. Let fi, . . ., f; be polynomials in k[xi, .. .,x,]. Then we set

(fir oo fi) = { > hif;
i=1

The crucial fact is that (fi, ...,f;) is an ideal.

hy, ..., h Ek[xl,...,xn]}.

Lemma 3. If fi,...,f; € k|x1,...,x,], then {fi,....fs) is an ideal of k|x1, . .., x,].
We will call {fi,...,f;) the ideal generated by fi, ..., f.

Proof. First, 0 € (fi,...,f;) since 0 = >°_, 0 - fi. Next, suppose that f =
S pifiandg =Y. qifi,andlet h € k[xi, ..., x,]. Then the equations

ft+e= Z(Pt + qi)fi

i=1

hf =Y (hpi)fi
i=1

complete the proof that (fi, ..., f;) is an ideal. O
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The ideal (f1,...,f;) has a nice interpretation in terms of polynomial equations.
Givenfi,...,f; € k[x1, ..., x,], we get the system of equations
fl = 07
fs=0.

From these equations, one can derive others using algebra. For example, if we mul-
tiply the first equation by h; € k[xy, ..., x,], the second by h, € k[xi,...,x,], etc.,
and then add the resulting equations, we obtain

hfi +hafo+ -+ hfs =0,

which is a consequence of our original system. Notice that the left-hand side of

this equation is exactly an element of the ideal (fi,...,f;). Thus, we can think of
(f1,-..,fs) as consisting of all “polynomial consequences” of the equations f; =
f=-=f=0.
To see what this means in practice, consider the example from §3 where we took
x=1+41
y=1+ P
and eliminated ¢ to obtain
y=x}—2x+2

[see the discussion following equation (7) in §3]. Let us redo this example using the
above ideas. We start by writing the equations as

x—1—1=0,

1
W y—1—-1=0.

To cancel the terms involving ¢, we multiply the first equation by x — 1 4 ¢ and the
second by —1:

(x—1)*=F#=0,
—y+1+£ =0,

and then add to obtain
x—1?—y+1=x*-2x+2-y=0.
In terms of the ideal generated by equations (1), we can write this as

P22 —y=(x—14+0x—-1-0)+(-Dy—-1-7)
€lx—1—t,y—1-1).
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Similarly, any other “polynomial consequence” of (1) leads to an element of this
ideal.

We say that an ideal I is finitely generated if there exist fi, . . ., f; € k[xi, ..., x,]
such that I = (fi,...,f;), and we say that fi, ..., f;, are a basis of I. In Chapter 2,
we will prove the amazing fact that every ideal of k[xy, ..., x,] is finitely generated
(this is known as the Hilbert Basis Theorem). Note that a given ideal may have many
different bases. In Chapter 2, we will show that one can choose an especially useful
type of basis, called a Grobner basis.

There is a nice analogy with linear algebra that can be made here. The definition
of an ideal is similar to the definition of a subspace: both have to be closed un-
der addition and multiplication, except that, for a subspace, we multiply by scalars,
whereas for an ideal, we multiply by polynomials. Further, notice that the ideal gen-
erated by polynomials fi, . . ., f; is similar to the span of a finite number of vectors
vi,...,Vs. In each case, one takes linear combinations, using field coefficients for
the span and polynomial coefficients for the ideal. Relations with linear algebra are
explored further in Exercise 6.

Another indication of the role played by ideals is the following proposition,
which shows that a variety depends only on the ideal generated by its defining
equations.

Proposition 4. Iff,...,f;and gy, ..., g: are bases of the same ideal in k[xy, . . . , x,],
sothat (fi,....fs) ={g1,...,8:) thenwe have V(fi,....f;) = V(g1,...,8)-
Proof. The proof is very straightforward and is left as an exercise. (]

As an example, consider the variety V(2x? 4 3y? — 11,x> — y*> — 3). It is easy to
show that (2x* + 3y* — 11,x* — y? — 3) = (x> —4,y* — 1) (see Exercise 3), so that

V(x> +3y* — 11,82 —y* = 3) = V(x* —4,y? — 1) = {(£2, £1)}

by the above proposition. Thus, by changing the basis of the ideal, we made it easier
to determine the variety.

The ability to change the basis without affecting the variety is very important.
Later in the book, this will lead to the observation that affine varieties are determined
by ideals, not equations. (In fact, the correspondence between ideals and varieties
is the main topic of Chapter 4.) From a more practical point of view, we will also
see that Proposition 4, when combined with the Grobner bases mentioned above,
provides a powerful tool for understanding affine varieties.

We will next discuss how affine varieties give rise to an interesting class of ideals.
Suppose we have an affine variety V. = V(fi,...,f;) C k" defined by fi,...,f; €
kfxi, ..., x,]. We know that fi, . .., f; vanish on V, but are these the only ones? Are
there other polynomials that vanish on V? For example, consider the twisted cubic
studied in §2. This curve is defined by the vanishing of y — x*> and z — x*. From the
parametrization (1, 2, £*) discussed in §3, we see that z—xy and y> — xz are two more
polynomials that vanish on the twisted cubic. Are there other such polynomials?
How do we find them all?
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To study this question, we will consider the set of all polynomials that vanish on
a given variety.

Definition 5. Let V C k" be an affine variety. Then we set
LV)={f€klxi,...,x] | fla1,...,a,) =O0forall (a1,...,a,) € V}.
The crucial observation is that I(V) is an ideal.

Lemma 6. If V C k" is an affine variety, then (V) C k[xi,...,x,] is an ideal. We
will call I(V) the ideal of V.

Proof. It is obvious that 0 € I(V) since the zero polynomial vanishes on all of
k", and so, in particular it vanishes on V. Next, suppose that f,g € I(V) and h €
kfxr, ..o, %)

Let (ay,...,ay) be an arbitrary point of V. Then

flay,...,a,) +glay,...,a,) =0+0=0,
hlay,...,a,)f(ar,...,a,) = hlay,...,a,)-0=0,

and it follows that I(V') is an ideal. O

For an example of the ideal of a variety, consider the variety {(0,0)} consisting
of the origin in k2. Then its ideal I({(0,0)}) consists of all polynomials that vanish
at the origin, and we claim that

I({(0,0)}) = (x,).

One direction of proof is trivial, for any polynomial of the form A(x,y)x + B(x, y)y
obviously vanishes at the origin. Going the other way, suppose that f = Z Lagx'y
vanishes at the origin. Then agy = (0, 0) = 0 and, consequently,

f:a()()—|— Z aijxiyj

10,0
=0+ (Za,]x’ ! )x—i— (Zao,y’ )ye (x, ).
O >0
i>

Our claim is now proved.
For another example, consider the case when V is all of k”. Then I(k") consists
of polynomials that vanish everywhere, and, hence, by Proposition 5 of §1, we have

I(K") = {0} when £ is infinite.

(Here, “0” denotes the zero polynomial in k[xj,...,x,].) Note that Proposition 5
of §1 is equivalent to the above statement. In the exercises, we will discuss what
happens when £ is a finite field.
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A more interesting example is given by the twisted cubic V = V(y — x?,z — x%)
in R3. We claim that
(V) = {y - 2%z x).

To prove this, we will first show that given a polynomial f € R[x, y, z], we can write
f in the form

2) f=hy—x)+hz—x)+r,

where hy, 1, € R[x,,z] and r is a polynomial in the variable x alone. First, consider
the case when f is a monomial x*y?z7. Then the binomial theorem tells us that

2 =20+ (v =)+ (2 x)T

= x*(x*” 4 terms involving y — x*) (x> + terms involving z — x°),
and multiplying this out shows that
XY = hy(y — x%) + ha(z — x°) + x0T+

for some polynomials &,k € R[x,y,z]. Thus, (2) is true in this case. Since an
arbitrary f € R|x, y, 7] is an R-linear combination of monomials, it follows that (2)
holds in general.

We can now prove I(V) = (y — x?, z — x*). First, by the definition of the twisted
cubic V, we have y — x?,z — x> € I(V), and since I(V) is an ideal, it follows that
hi(y — x*) + ha(z — x*) € I(V). This proves that (y — x*,z — x*) C I(V). To prove
the opposite inclusion, let f € I(V) and let

f:hl(y—xz)—i-hz(z—xS) +r

be the expression given by (2). To prove that r is zero, we will use the parametriza-
tion (1,2, 1) of the twisted cubic. Since f vanishes on V, we obtain

0=7(t,7,7) = 0+0+r(r)

(recall that r is a polynomial in x alone). Since ¢ can be any real number, r € R[x]
must be the zero polynomial by Proposition 5 of §1. But r = 0 shows that f has the
desired form, and I(V) = (y — x?,z — x°) is proved.

What we did in (2) is reminiscent of the division of polynomials, except that we
are dividing by two polynomials instead of one. In fact, (2) is a special case of the
generalized division algorithm to be studied in Chapter 2.

A nice corollary of the above example is that given a polynomial f € R[x,y, z],
we have f € (y — x?,z — x*) if and only if f(¢, £?, %) is identically zero. This gives
us an algorithm for deciding whether a polynomial lies in the ideal. However, this
method is dependent on the parametrization (z,>,1%). Is there a way of deciding
whether f € (y—x?, z—x*) without using the parametrization? In Chapter 2, we will
answer this question positively using Grobner bases and the generalized division
algorithm.
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The example of the twisted cubic is very suggestive. We started with the poly-
nomials y — x% and z — x3, used them to define an affine variety, took all functions
vanishing on the variety, and got back the ideal generated by the two polynomials.
It is natural to wonder if this happens in general. So take fi, ..., f; € k[x1,...,x,].
This gives us

polynomials variety ideal

fla"'va — V(flvva) — I(V(flaafv))a

and the natural question to ask is whether I(V(f1,...,f;)) = (fi,...,f;)? The an-
swer, unfortunately, is not always yes. Here is the best answer we can give at this
point.

Lemma 7. Let fi,....f; € klxi,...,x,]. Then (fi,....fs) € I(V(f1,....fs)), al-

though equality need not occur.

Proof. Let f € (fi,...,f;), which means that f = >, h;f; for some polyno-

mials hy, ..., Ay € k[x1,...,x,]. Since fi,...,fs vanish on V(fi,...,f;), so must
>-i_, hifi. Thus, f vanishes on V(fi, . ... f;), which proves f € I(V(fi,...,f;)).
For the second part of the lemma, we need an example where I(V(fi, ..., f)) is

strictly larger than (fi, ..., f;). We will show that the inclusion
(%) CV(2,y%)

is not an equality. We first compute I(V(x?,y?)). The equations x> = y*> = 0 imply
that V(x?,y%) = {(0,0)}. But an earlier example showed that the ideal of {(0,0)}
is (x,y), so that I(V(x?,y%)) = (x,y). To see that this is strictly larger than (x?,y?),
note that x ¢ (x?,y?) since for polynomials of the form A (x, y)x* + ha(x, y)y?, every
monomial has total degree at least two. (]

For arbitrary fields, the relationship between (fi,...,f;) and I(V(fi,...,fs))
can be rather subtle (see the exercises for some examples). However, over an alge-
braically closed field like C, there is a straightforward relation between these ideals.
This will be explained when we prove the Nullstellensatz in Chapter 4.

Although for a general field, I(V(fi, . ..,f;)) may notequal {fi,...,f;), the ideal
of a variety always contains enough information to determine the variety uniquely.

Proposition 8. Let V and W be affine varieties in k". Then:
(i) V C Wifand only if (V) 2 I(W).
(il) V = W ifand only if I(V) = I(W).

Proof. We leave it as an exercise to show that (ii) is an immediate consequence of
(i). To prove (i), first suppose that V. C W. Then any polynomial vanishing on W
must vanish on V, which proves I(W) C I(V). Next, assume that (W) C I(V). We
know that W is the variety defined by some polynomials gy, ..., g € k[x1,..., %]
Then gi,...,8 € I(W) C I(V), and hence the g;’s vanish on V. Since W consists
of all common zeros of the g;’s, it follows that V C W. [l
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There is a rich relationship between ideals and affine varieties; the material pre-

sented so far is just the tip of the iceberg. We will explore this relation further in
Chapter 4. In particular, we will see that theorems proved about ideals have strong
geometric implications. For now, let us list three questions we can pose concerning
ideals in k[xy, . . ., x,]:

(Ideal Description) Can every ideal I C k[xy,. .., x,] be written as (fi, ..., f;) for
some fi,...,fy € k[x1,...,x,]?

(Ideal Membership) If f1,...,fs € k[x1,...,x,], is there an algorithm to decide
whether a given f € k[xi,...,x,| liesin (fi,...,f)?

(Nullstellensatz) Given fi,...,f; € k[xi,...,x,], what is the exact relation be-

tween (fi,....fs) and L(V(f1,...,f;))?

In the chapters that follow, we will solve these problems completely (and we will
explain where the name Nullstellensatz comes from), although we will need to be
careful about which field we are working over.

EXERCISES FOR §4

1. Consider the equations

xz—&—yz—l:O7
xy—1=0

which describe the intersection of a circle and a hyperbola.

a. Use algebra to eliminate y from the above equations.

b. Show how the polynomial found in part (a) lies in (x* +y* — 1,xy — 1). Your answer
should be similar to what we did in (1). Hint: Multiply the second equation by xy + 1.

2. Let! C k[xi,...,x,) be anideal, and letfi, . ..,f; € k[x1, ..., x,]. Prove that the follow-

ing statements are equivalent:
G fi,...,fs el
i) (fi,...,fi) CL

This fact is useful when you want to show that one ideal is contained in another.

3. Use the previous exercise to prove the following equalities of ideals in Q[x, y]:

a. (x+y,x—y) = (xy).

b (x v,y +ay, 27, y) = (x, ).

. (2 +3y — 11,87 —y* =3) = (x> —4,y" = 1).

This illustrates that the same ideal can have many different bases and that different bases
may have different numbers of elements.

4. Prove Proposition 4.

b

Show that V(x + xy, y + xy, x*,¥*) = V(x,y). Hint: See Exercise 3.

6. The word “basis” is used in various ways in mathematics. In this exercise, we will see

that “a basis of an ideal,” as defined in this section, is quite different from “a basis of a

subspace,” which is studied in linear algebra.

a. First, consider the ideal I = (x) C k[x]. As an ideal, I has a basis consisting of the
one element x. But / can also be regarded as a subspace of k[x], which is a vector
space over k. Prove that any vector space basis of / over k is infinite. Hint: It suffices
to find one basis that is infinite. Thus, allowing x to be multiplied by elements of k[x]
instead of just k is what enables (x) to have a finite basis.
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10.

11.

12.

13.
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b. In linear algebra, a basis must span and be linearly independent over k, whereas for
an ideal, a basis is concerned only with spanning—there is no mention of any sort of
independence. The reason is that once we allow polynomial coefficients, no indepen-
dence is possible. To see this, consider the ideal (x,y) C k[x, y]. Show that zero can
be written as a linear combination of y and x with nonzero polynomial coefficients.

c. More generally, suppose that fi, ..., f; is the basis of an ideal I C k[xi, ..., x,]. If
s > 2 andf; # 0 for all i, then show that for any i and j, zero can be written as a linear
combination of f; and f; with nonzero polynomial coefficients.

d. A consequence of the lack of independence is that when we write an element f €
(fi,....fs) as f = >_i_, hifi, the coefficients h; are not unique. As an example,
consider f = x* + xy +y* € (x,y). Express f as a linear combination of x and y in
two different ways. (Even though the 4;’s are not unique, one can measure their lack
of uniqueness. This leads to the interesting topic of syzygies.)

e. Abasisfi,...,fs of anideal / is said to be minimal if no proper subset of fi, . . ., f; is
a basis of /. For example, x, X% is a basis of an ideal, but not a minimal basis since x
generates the same ideal. Unfortunately, an ideal can have minimal bases consisting
of different numbers of elements. To see this, show that x and x + x>, x* are minimal
bases of the same ideal of k[x]. Explain how this contrasts with the situation in linear
algebra.

. Show that I(V(x",y™)) = (x, y) for any positive integers n and m.
. The ideal I(V) of a variety has a special property not shared by all ideals. Specifically,

we define an ideal I to be radical if whenever a power f™ of a polynomial f is in /, then

f itself is in 1. More succinctly, 7 is radical when f € I if and only if /" € I for some

positive integer m.

a. Prove that I(V) is always a radical ideal.

b. Prove that (x*,)?) is not a radical ideal. This implies that (x*,y*) # I(V) for any
variety V C k°.

Radical ideals will play an important role in Chapter 4. In particular, the Nullstellensatz

will imply that there is a one-to-one correspondence between varieties in C" and radical

ideals in C[xi, . . . , x,].

. Let V. = V(y — x*,z — x°) be the twisted cubic. In the text, we showed that I(V) =

(y—x*z7—x°).

a. Use the parametrization of the twisted cubic to show that y* — xz € I(V).

b. Use tglﬁ argument given in the text to express y* — xz as a combination of y — x* and
z—x.

Use the argument given in the discussion of the twisted cubic to show that I(V(x—y)) =

(x — y). Your argument should be valid for any infinite field k.

Let V C R? be the curve parametrized by (1, £, 1*).

a. Prove that V is an affine variety.

b. Adapt the method used in the case of the twisted cubic to determine I(V).

Let V C R be the curve parametrized by (%, £, *).

a. Prove that V is an affine variety.

b. Determine I(V).

This problem is quite a bit more challenging than the previous one—figuring out the

proper analogue of equation (2) is not easy. Once we study the division algorithm in

Chapter 2, this exercise will become much easier.

In Exercise 2 of §1, we showed that x*y+y*x vanishes at all points of F3. More generally,

let I C F2[x, y] be the ideal of all polynomials that vanish at all points of F3. The goal of

this exercise is to show that I = (x> — x,y* — y).

a. Show that (x> — x,y* —y) C I.
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18.
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b. Show that every f € Fa[x,y] can be written as f = A(x> — x) + B(y* — y) + axy
+ bx + ¢y + d, where A,B € Fx,y] and a, b, c,d € F,. Hint: Write f in the form
>, pi(x)y’ and use the division algorithm (Proposition 2 of §5) to divide each p; by
x> — x. From this, you can write f = A(x* — x) + q1(y)x + ¢2(y). Now divide ¢
and ¢, by y* — y. Again, this argument will become vastly simpler once we know the
division algorithm from Chapter 2.

c. Show thataxy + bx+cy+d e lifandonlyifa=b=c=d =0.

d. Using parts (b) and (c), complete the proof that I = (x* — x,y* — ).

e. Express x*y + y’x as a combination of x> — x and y* — y. Hint: Remember that
2=14+1=0inTF,.

This exercise is concerned with Proposition 8.

a. Prove that part (ii) of the proposition follows from part (i).

b. Prove the following corollary of the proposition: if V and W are affine varieties in k",
then V C W if and only if I(V) D I(W).

In the text, we defined I(V) for a variety V C k". We can generalize this as follows: if

S C k" is any subset, then we set

I(S) ={f €kprr,...,x] | flar,...,a,) =O0forall(ai,...,a,) € S}.

a. Prove that I(S) is an ideal.

b. LetX = {(a,a) € R* | a # 1}. By Exercise 8 of §2, we know that X is not an affine
variety. Determine I(X). Hint: What you proved in Exercise 8 of §2 will be useful.
See also Exercise 10 of this section.

c. Let Z" be the points of C" with integer coordinates. Determine I(Z"). Hint: See Ex-
ercise 6 of §1.

Here is more practice with ideals. Let / be an ideal in kfxi, . . ., x4].
a. Provethat 1 € I'if and only if I = kfx1,. .., x].
b. More generally, prove that I contains a nonzero constant if and only if I = k[x1, . .., x].

c. Supposef,g € k[xi, . ..,x, satisfy f*, g € I. Prove that (f + g)* € I. Hint: Expand
(f + g)* using the Binomial Theorem.

d. Now suppose f, g € k[x1, ..., x,] satisfy f", g* € I. Prove that (f + g)" ™' € L

In the proof of Lemma 7, we showed that x ¢ (x?,y*) in k[x, y].

a. Prove that xy ¢ (x*,y%).

b. Prove that 1, x, y, xy are the only monomials not contained in (xz7 yz).

In the text, we showed that I({(0,0)}) = (x,y) in k|x, y].

a. Generalize this by proving that the origin 0 = (0,...,0) € k" has the property that
I({0}) = (x1,...,xx) ink[x1,. .., x].

b. What does part (a) say about polynomials in k[xi, . . . , x,] with zero constant term?

One of the key ideas of this section is that a system of equations f; = - - - = f; = 0 gives

the ideal I = (fi,...,fs) of polynomial consequences. Now suppose that the system

has a consequence of the form f = g and we take the mth power of each side to obtain

S™ = g". In terms of the ideal /, this means that f — g € I should imply /" — g" € I.

Prove this by factoring ™" — g".

Polynomials of One Variable

In this section, we will discuss polynomials of one variable and study the division
algorithm from high school algebra. This simple algorithm has some surprisingly
deep consequences—for example, we will use it to determine the structure of ideals
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of k[x] and to explore the idea of a greatest common divisor. The theory developed
will allow us to solve, in the special case of polynomials in k[x], most of the prob-
lems raised in earlier sections. We will also begin to understand the important role
played by algorithms.

By this point in their mathematics careers, most students have already seen a
variety of algorithms, although the term “algorithm” may not have been used. In-
formally, an algorithm is a specific set of instructions for manipulating symbolic
or numerical data. Examples are the differentiation formulas from calculus and the
method of row reduction from linear algebra. An algorithm will have inputs, which
are objects used by the algorithm, and outputs, which are the results of the algo-
rithm. At each stage of execution, the algorithm must specify exactly what the next
step will be.

When we are studying an algorithm, we will usually present it in “pseudocode,”
which will make the formal structure easier to understand. Pseudocode is similar to
many common computer languages, and a brief discussion is given in Appendix B.
Another reason for using pseudocode is that it indicates how the algorithm could
be programmed on a computer. We should also mention that most of the algorithms
in this book are implemented in Maple, Mathematica, and many other computer
algebra systems. Appendix C has more details concerning these programs.

We begin by discussing the division algorithm for polynomials in k[x]. A crucial
component of this algorithm is the notion of the “leading term” of a polynomial in
one variable. The precise definition is as follows.

Definition 1. Given a nonzero polynomial f € k[x], let
f=coxX" + X 4+,

where ¢; € k and ¢y # 0 [thus, m = deg(f)]. Then we say that cox™ is the leading
term of f, written LT(f) = cox™.

For example, if f = 2x® — 4x + 3, then LT(f) = 2x°. Notice also that if f and g
are nonzero polynomials, then

(1) deg(f) < deg(g) <= LT(f) divides LT(g).
We can now describe the division algorithm.

Proposition 2 (The Division Algorithm). Ler k be a field and let g be a nonzero
polynomial in k[x]. Then every f € k[x] can be written as

f=aqg+r,

where q,r € klx], and either r = 0 or deg(r) < deg(g). Furthermore, q and r are
unique, and there is an algorithm for finding q and r.
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Proof. Here is the algorithm for finding ¢ and r, presented in pseudocode:

Input : g, f
Output : g, r

q:=0r:=f

WHILE r # 0 AND L1(g) divides LT(r) DO
q:=q+L1(r)/LT(g)
ri=r—(L1(r)/LT(g)) 8

RETURN ¢, r

The WHILE. . . DO statement means doing the indented operations until the expres-
sion between the WHILE and DO becomes false. The statements ¢ := ... and
r := ... indicate that we are defining or redefining the values of g and r. Both ¢ and
r are variables in this algorithm—they change value at each step. We need to show
that the algorithm terminates and that the final values of ¢ and r have the required
properties. (For a fuller discussion of pseudocode, see Appendix B.)

To see why this algorithm works, first note that f = gg + r holds for the initial
values of ¢ and r, and that whenever we redefine ¢ and r, the equality f = qg + r
remains true. This is because of the identity

f=ag+r=(q+11(r)/L1(g)) g + (r — (LT(r)/LT(g)) 8)-

Next, note that the WHILE. .. DO statement terminates when “r # 0 and LT(g) di-
vides LT(r)” is false, i.e., when either r = 0 or LT(g) does not divide LT(r). By (5),
this last statement is equivalent to deg(r) < deg(g). Thus, when the algorithm ter-
minates, it produces ¢ and r with the required properties.

We are not quite done; we still need to show that the algorithm terminates,
i.e., that the expression between the WHILE and DO eventually becomes false
(otherwise, we would be stuck in an infinite loop). The key observation is that
r — (LT(r)/LT(g)) g is either O or has smaller degree than r. To see why, suppose
that

r=cox" 4+ +cm, LI(r)=cox",
g=dox' +---+dy LT(g) =dox",

and suppose that m > ¢. Then
r— (L1(r)/LT(g)) g = (cox™ + - -+ ) — (co/do)x™ *(dox" + -+ -),

and it follows that the degree of » must drop (or the whole expression may vanish).
Since the degree is finite, it can drop at most finitely many times, which proves that
the algorithm terminates.

To see how this algorithm corresponds to the process learned in high school,
consider the following partially completed division:
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1.2
2x

2x+ 1 )x3+2x2+x+1
x3+%x2

%xz—l—x—i—l

Here, f and g are givenby f = x> +2x?>+x+1 and g = 2x+1, and more importantly,
the current (but not final) values of g and r are ¢ = $x* and r = 3x*> + x + 1. Now
notice that the statements

q:=q+rr(r)/L1(e),
ri=r—(L1(r)/L1(g))g

in the WHILE. .. DO loop correspond exactly to the next step in the above division.

The final step in proving the proposition is to show that ¢ and r are unique. So
suppose that f = gg + r = ¢'g + ' where both r and ' have degree less than g
(unless one or both are 0). If r # ', then deg(#’ — r) < deg(g). On the other hand,
since

) (g—q)g="r —r,

we would have ¢ — ¢’ # 0, and consequently,

deg(r' —r) = deg((q — ¢')g) = deg(q — ¢') + deg(g) > deg(g).

This contradiction forces r = r/, and then (2) shows that ¢ = ¢’. This completes the
proof of the proposition. ]

Most computer algebra systems implement the above algorithm [with some
modifications—see VON ZUR GATHEN and GERHARD (2013)] for dividing poly-
nomials.

A useful corollary of the division algorithm concerns the number of roots of a
polynomial in one variable.

Corollary 3. If k is a field and f € k[x] is a nonzero polynomial, then f has at most
deg(f) roots in k.

Proof. We will use induction on m = deg(f). When m = 0, f is a nonzero constant,
and the corollary is obviously true. Now assume that the corollary holds for all
polynomials of degree m — 1, and let f have degree m. If f has no roots in k, then
we are done. So suppose a is a root in k. If we divide f by x — a, then Proposition 2
tells us that f = g(x — a) + r, where r € k since x — a has degree one. To determine
r, evaluate both sides at x = a, which gives 0 = f(a) = g(a)(a —a) +r = r. It
follows that f = g(x — a). Note also that ¢ has degree m — 1.

We claim that any root of f other than a is also a root of g. To see this, let b £ a
be aroot of f. Then 0 = f(b) = q(b)(b — a) implies that g(b) = 0 since k is a field.
Since g has at most m — 1 roots by our inductive assumption, f has at most m roots
in k. This completes the proof. (]
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Corollary 3 was used to prove Proposition 5 in §1, which states that I(k") =
{0} whenever £ is infinite. This is an example of how a geometric fact can be the
consequence of an algorithm.

We can also use Proposition 2 to determine the structure of all ideals of k[x].

Corollary 4. If k is a field, then every ideal of k|x| can be written as (f) for some
f € k[x]. Furthermore, f is unique up to multiplication by a nonzero constant in k.

Proof. Take an ideal I C k[x]. If I = {0}, then we are done since I = (0). Other-
wise, let f be a nonzero polynomial of minimum degree contained in /. We claim that
(f) = I. The inclusion (f) C I is obvious since I is an ideal. Going the other way,
take g € I. By division algorithm (Proposition 2), we have g = ¢ f + r, where either
r = 0 ordeg(r) < deg(f). Since [ is an ideal, ¢f € I and, thus,r = g — gf € I.
If r were not zero, then deg(r) < deg(f), which would contradict our choice of f.
Thus, r = 0, so that g = gf € (f). This proves that I = (f).

To study uniqueness, suppose that () = (g). Then f € (g) implies that f = hg
for some polynomial /. Thus,

3) deg(f) = deg(h) + deg(g),

so that deg(f) > deg(g). The same argument with f and g interchanged shows
deg(f) < deg(g), and it follows that deg(f) = deg(g). Then (3) implies deg(h) =
0, so that & is a nonzero constant. O

In general, an ideal generated by one element is called a principal ideal. In view
of Corollary 4, we say that k[x] is a principal ideal domain, abbreviated PID.

The proof of Corollary 4 tells us that the generator of an ideal in k[x] is the
nonzero polynomial of minimum degree contained in the ideal. This description is
not useful in practice, for it requires that we check the degrees of all polynomials
(there are infinitely many) in the ideal. Is there a better way to find the generator?
For example, how do we find a generator of the ideal

(x* = 1,x° — 1) C kfx]?
The tool needed to solve this problem is the greatest common divisor.
Definition 5. A greatest common divisor of polynomials f, g € k[x] is a polyno-

mial £ such that:

(i) h divides f and g.
(i) If p is another polynomial which divides f and g, then p divides #. When & has
these properties, we write 2 = gcd(f, g).

Here are the main properties of gcd’s.

Proposition 6. Let f, g € k[x]. Then:

(1) ged(f, g) exists and is unique up to multiplication by a nonzero constant in k.
(ii) ged(f, g) is a generator of the ideal (f, g).
(iii) There is an algorithm for finding gcd(f, g).



42 Chapter 1 Geometry, Algebra, and Algorithms

Proof. Consider the ideal (f, g). Since every ideal of k[x| is principal (Corollary 4),
there exists 4 € k[x] such that (f, g) = (h). We claim that & is the gcd of f, g. To
see this, first note that /& divides f and g since f,g € (h). Thus, the first part of
Definition 5 is satisfied. Next, suppose that p € k[x] dividesf and g. This means that
f = Cpand g = Dp for some C, D € k[x]. Since h € (f, g), there are A, B such that
Af + Bg = h. Substituting, we obtain

h = Af + Bg = ACp + BDp = (AC + BD)p,

which shows that p divides /. Thus, h = ged(f, g).

This proves the existence of the gcd. To prove uniqueness, suppose that &’ was
another gcd of f and g. Then, by the second part of Definition 5, & and 4’ would
each divide the other. This easily implies that / is a nonzero constant multiple of /’.
Thus, part (i) of the corollary is proved, and part (ii) follows by the way we found /
in the above paragraph.

The existence proof just given is not useful in practice. It depends on our ability
to find a generator of (f, g). As we noted in the discussion following Corollary 4,
this involves checking the degrees of infinitely many polynomials. Fortunately, there
is a classic algorithm, known as the Euclidean Algorithm, which computes the gcd
of two polynomials in k[x]. This is what part (iii) of the proposition is all about.

We will need the following notation. Let f, g € k[x], where g # 0, and write
f = qg + r, where g and r are as in Proposition 2. Then we set r = remainder(f, g).
We can now state the Euclidean Algorithm for finding ged(f, g):

Input:f, g

Output : h = ged(f, g)
h:=f

si=g

WHILE s # 0 DO

rem := remainder(h, s)

h:=s
s :=rem
RETURN £/

To see why this algorithm computes the gcd, write f = gg + r as in Proposition 2.
We claim that

“) ged(f, g) = ged(f — qg,g) = ged(r, g).

To prove this, by part (ii) of the proposition, it suffices to show that the ideals (f, g
and (f — gg, g) are equal. We will leave this easy argument as an exercise.
We can write (4) in the form

ged(f;¢) = ged(g, r).
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Notice that deg(g) > deg(r) or r = 0. If r # 0, we can make things yet smaller by
repeating this process. Thus, we write g = ¢'r + r' as in Proposition 2, and arguing
as above, we obtain

ged(g, r) = ged(r, '),

where deg(r) > deg(r’) or ' = 0. Continuing in this way, we get
) ged(f, g) = ged(g, r) = ged(r,r') = ged(r',r") = -+,
where either the degrees drop

deg(g) > deg(r) > deg(r') > deg(r’’) > -+,

or the process terminates when one of r, 7/, r”, ... becomes 0.

We can now explain how the Euclidean Algorithm works. The algorithm has
variables /& and s, and we can see these variables in equation (5): the values of
h are the first polynomial in each gcd, and the values of s are the second. You
should check that in (5), going from one gcd to the next is exactly what is done
in the WHILE. .. DO loop of the algorithm. Thus, at every stage of the algorithm,
ged(h, s) = ged(f, g)-

The algorithm must terminate because the degree of s keeps dropping, so that
at some stage, s = 0. When this happens, we have gcd(h,0) = gecd(f,g), and
since (h, 0) obviously equals (%), we have gcd(h,0) = h. Combining these last two
equations, it follows that 7 = ged(f, g) when s = 0. This proves that A is the gcd
of f and g when the algorithm terminates, and the proof of Proposition 6 is now
complete. (|

We should mention that there is also a version of the Euclidean Algorithm for
finding the gcd of two integers. Most computer algebra systems have a command
for finding the gcd of two polynomials (or integers) that uses a modified form of
the Euclidean Algorithm [see VON ZUR GATHEN and GERHARD (2013) for more
details].

For an example of how the Euclidean Algorithm works, let us compute the gcd
of x* — 1 and x® — 1. First, we use the division algorithm:

A —1=0 —1) 4" —1,
1= 1)+ -1,
1=+ 1) —1)+0.
Then, by equation (5), we have
ged(x* — 1,x° — 1) = ged(x® — 1,x* — 1)
=ged(x* — 1,6* — 1) = ged(x* — 1,0) = x* — 1.
Note that this gcd computation answers our earlier question of finding a generator

for the ideal (x* — 1, x% — 1). Namely, Proposition 6 and ged(x* — 1,20 — 1) = x> — 1
imply that
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=1, —1) = —1).

At this point, it is natural to ask what happens for an ideal generated by three or
more polynomials. How do we find a generator in this case? The idea is to extend
the definition of gcd to more than two polynomials.

Definition 7. A greatest common divisor of polynomialsf, . ..,f; € k[x] is a poly-
nomial 4 such that:
(i) hdivides f1, . . ., fs.
(i1) If p is another polynomial which divides fi, . . ., f;, then p divides A.
When £ has these properties, we write & = ged(f1, . . . ,f;)-

Here are the main properties of these ged’s.

Proposition 8. Let f1, . . ., f; € k[x|,where s > 2. Then:
(i) ged(fi, - . . ,fs) exists and is unique up to multiplication by a nonzero constant
in k.
(ii) ged(f1, - - -, fs) is a generator of the ideal (fi, ... f;).

(iii) If s > 3, then ged(fi, - . .. fy) = ged(f1, ged(fa, - -, f5)).
(iv) There is an algorithm for finding ged(f1, . . . ,f)-

Proof. The proofs of parts (i) and (ii) are similar to the proofs given in Proposition 6
and will be omitted. To prove part (iii), let & = ged(f3,...,f;). We leave it as an
exercise to show that

<f17 h) = <f17f27"'7f;‘>'

By part (ii) of this proposition, we see that

(ged(fi,h)) = (ged(fis - - f5))-

Then ged(fi, h) = ged(fi, .. ., f;) follows from the uniqueness part of Corollary 4,
which proves what we want.

Finally, we need to show that there is an algorithm for finding gcd(fi, .. .,f)-
The basic idea is to combine part (iii) with the Euclidean Algorithm. For example,
suppose that we wanted to compute the gcd of four polynomials fi, f>, f3, fa. Using
part (iii) of the proposition twice, we obtain

ng(fl7f27f37ﬁ) = ng(flang(f27f3uﬁ))
= ged(fi, ged(f2, ged(f3, )

Then if we use the Euclidean Algorithm three times [once for each ged in the second
line of (6)], we get the gcd of f1, f2, f3, fa. In the exercises, you will be asked to write
pseudocode for an algorithm that implements this idea for an arbitrary number of
polynomials. Proposition 8 is proved. O

(6)

The gcd command in most computer algebra systems only handles two polyno-
mials at a time. Thus, to work with more than two polynomials, you will need to
use the method described in the proof of Proposition 8. For an example, consider
the ideal
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(o —=3x+ 2,2 — 1,25 — 1) Ckfx].

We know that ged(x® — 3x + 2,x* — 1,x% — 1) is a generator. Furthermore, you can
check that

ged(x® = 3x+2,x* —1,x° — 1) = ged(x® — 3x + 2, ged(x* — 1,x° — 1))
=ged(x® —3x+2,x* — 1) =x— 1.

It follows that
(B =3x+2,x 1,30 —1) = (x—1).

More generally, given fi, . .., f; € k[x], it is clear that we now have an algorithm for
finding a generator of (fi,...,f;).

For another application of the algorithms developed here, consider the ideal
membership problem from §4: Given fi,...,f; € k[x], is there an algorithm for
deciding whether a given polynomial f € k[x] lies in the ideal (fi,...,f;)? The an-
swer is yes, and the algorithm is easy to describe. The first step is to use ged’s to find
a generator h of (fi,...,f;). Then,sincef € (fi,...,f;) is equivalentto f € (h), we
need only use the division algorithm to write f = gh + r, where deg(r) < deg(h). It
follows that f is in the ideal if and only if » = 0. For example, suppose we wanted
to know whether

Al 43 -7 (P —3x+2,x" — 1,20 1),

We saw above that x — 1 is a generator of this ideal so that our question can be
rephrased as the question whether

a3 —-7€ (x—1).
Dividing, we find that
a3 —T=(+5x+8)(x— 1)+ 1.

Hence x* +4x? + 3x — 7 is not in the ideal (x> —3x+2,x* — 1,x% — 1). In Chapter 2,
we will solve the ideal membership problem for polynomials in k[x, . .. ,x,] using
a similar strategy. We will first find a nice basis of the ideal (called a Grobner basis)
and then we will use a generalized division algorithm to determine whether or not a
polynomial is in the ideal.

In the exercises, we will see that in the one-variable case, other problems posed
in earlier sections can be solved algorithmically using the methods discussed here.

EXERCISES FOR §5

1. Over the complex numbers C, Corollary 3 can be stated in a stronger form. Namely,
prove that if f € C[x] is a polynomial of degree n > 0, then f can be written in the form
f=clx—ai) - (x—an), where c,ai,...,a, € Candc # 0. Hint: Use Theorem 7 of
§1. Note that this result holds for any algebraically closed field.
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10.

11.

12.

. Givenfi,...
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. Although Corollary 3 is simple to prove, it has some nice consequences. For example,

consider the n X n Vandermonde determinant determined by ai, ..., a, in a field k:

1 ai a% =l

a;
1 a a% a;*1
det
1 aw @& - a7t

Prove that this determinant is nonzero when the a;’s are distinct. Hint: If the determi-
nant is zero, then the columns are linearly dependent. Show that the coefficients of the
linear relation determine a polynomial of degree < n — 1 which has n roots. Then use
Corollary 3.

. The fact that every ideal of k[x] is principal (generated by one element) is special to the

case of polynomials in one variable. In this exercise we will see why. Namely, consider
the ideal I = (x,y) C k[x, y]. Prove that / is not a principal ideal. Hint: If x = fg, where
f,& € k|x,y], then prove that f or g is a constant. It follows that the treatment of ged’s
given in this section applies only to polynomials in one variable. One can compute gcd’s
for polynomials of > 2 variables, but the theory involved is more complicated [see VON
ZUR GATHEN and GERHARD (2013), Chapter 6].

. If his the ged of f, g € k[x], then prove that there are A, B € k[x] such that Af + Bg = h.
. If f,g € k[x], then prove that (f — qg,g) = (f,g) for any ¢ in k[x]. This will prove

equation (4) in the text.
Js € k[x], let h = ged(f2, - -
to show that (fi,h) = (fi,f2,...
Proposition 8.

,f5). Then use the equality (k) = (f2,...,fs)
,fs). This equality is used in the proof of part (iii) of

. If you are allowed to compute the gcd of only two polynomials at a time (which is true

for some computer algebra systems), give pseudocode for an algorithm that computes
the ged of polynomials fi, . . . , fy € k[x], where s > 2. Prove that your algorithm works.
Hint: See (6). This will complete the proof of part (iv) of Proposition 8.

. Use a computer algebra system to compute the following gcd’s:

a ged(x* + 2 F 1L = — 22— 1,X —1).
b, ged(x® + 26 —x =2, =26 —x+ 2, — X% —dx +4).

. Use the method described in the text to decide whether x> — 4 is an element of the ideal

(P4 —dx -4 - — A4 -2 — x4 2).

Give pseudocode for an algorithm that has input f, g € k[x] and output h,A, B € k[x]

where h = ged(f, g) and Af + Bg = h. Hint: The idea is to add variables A, B, C, D to

the algorithm so that Af + Bg = h and Cf 4+ Dg = s remain true at every step of the

algorithm. Note that the initial values of A, B, C, D are 1, 0, 0, 1, respectively. You may

find it useful to let quotient(f, g) denote the quotient of f on division by g, i.e., if the

division algorithm yields f = gg + r, then ¢ = quotient(f, g).

In this exercise we will study the one-variable case of the consistency problem from §2.

Given fi,...,f; € k[x], this asks if there is an algorithm to decide whether V(fi,...,f;)

is nonempty. We will see that the answer is yes when k = C.

a. Let f € Cx] be a nonzero polynomial. Then use Theorem 7 of §1 to show that
V(f) = 0 if and only if f is constant.

b. Iffi,...,fs € C[x], prove V(fi,...,f;) = 0 if and only if gcd(f1,...,f;) = 1.

c. Describe (in words, not pseudocode) an algorithm for determining whether or not
V(fi,...,fs)is nonempty.

When k& = R, the consistency problem is much more difficult. It requires giving an

algorithm that tells whether a polynomial f € R[x] has a real root.

This exercise will study the one-variable case of the Nullstellensatz problem from §4,

which asks for the relation between I(V(fi,...,fs)) and (fi,...,fs) when fi,...,
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13.

14.

15.

16.

17.

fs € C[x]. By using gcd’s, we can reduce to the case of a single generator. So, in this
problem, we will explicitly determine I(V(f)) when f € Clx] is a nonconstant polyno-
mial. Since we are working over the complex numbers, we know by Exercise 1 that f
factors completely, i.e.,

f=cle—a)t (- a),
where ai, ..., a; € C are distinct and ¢ € C \ {0}. Define the polynomial

fra=clx—ai) - (x—a).

The polynomials f and fr.q have the same roots, but their multiplicities may differ. In
particular, all roots of f.q have multiplicity one. We call fi.q the reduced or square-free
part of f. The latter name recognizes that fi.q is the square-free factor of f of largest
degree.

a. Show that V(fg ={ai,...,ai}.

b. Show that I(V(f)) = (fred)-

Whereas part (b) describes I(V(f)), the answer is not completely satisfactory because
we need to factor f completely to find fi.q. In Exercises 13, 14, and 15 we will show how
to determine fr.q without any factoring.

We will study the formal derivative of f = cox” +cix" ' 4+ -+ co—1x+¢u € C[x]. The
formal derivative is defined by the usual formulas from calculus:

= neox™ ' 4+ (n— l)clx'“2 4+ 4 cpm1 + 0.
Prove that the following rules of differentiation apply:

(af) = af' whena € C,
(f+8) =f+¢,
(f8) =f'g+15"
In this exercise we will use the differentiation properties of Exercise 13 to compute
gcd(f,f") whenf € C[x].

a. Suppose f = (x —a)” h in C[x], where h(a) # 0. Then prove that f' = (x —a) "' hi,
where h; € C[x] does not vanish at a. Hint: Use the product rule.

b. Letf = c(x—a1)" - - - (x—a;)" be the factorization of f, where ai, . . ., a; are distinct.
Prove that f” is a product /' = (x al)"*1 oo (x —a)" " H, where H € C[x] is a
polynomial Vamshmg at none of ah Lo, a.

c. Prove that ged(f,f) = (x —a))" ™" - (x — )"

Consider the square-free part fieq of a polynomlal fe (C[x] defined in Exercise 12.
a. Use Exercise 14 to prove that fi.q is given by the formula

_S
ged(f.f)”

The virtue of this formula is that it allows us to find the square-free part without
factoring f. This allows for much quicker computations.
b. Use a computer algebra system to find the square-free part of the polynomial

fred =

A= — a3 -t 3 —x— L

Use Exercises 12 and 15 to describe (in words, not pseudocode) an algorithm whose
input consists of polynomials fi, ..., f; € C[x] and whose output consists of a basis of
I(V(fi,...,fs)). It is more difficult to construct such an algorithm when dealing with
polynomials of more than one variable.

Find a basis for the ideal I(V(x* — 2x* 4+ 2x* — x,x° —x* — 2% + 2% +x — 1)).



Chapter 2
Grobner Bases

§1 Introduction

In Chapter 1, we have seen how the algebra of the polynomial rings k[xi, . . ., x,] and
the geometry of affine algebraic varieties are linked. In this chapter, we will study the
method of Grobner bases, which will allow us to solve problems about polynomial
ideals in an algorithmic or computational fashion. The method of Grobner bases is
also used in several powerful computer algebra systems to study specific polynomial
ideals that arise in applications. In Chapter 1, we posed many problems concerning
the algebra of polynomial ideals and the geometry of affine varieties. In this chapter
and the next, we will focus on four of these problems.

Problems

a. The IDEAL DESCRIPTION PROBLEM: Does every ideal I C k[xi, .. .,x,] have a
finite basis? In other words, can we write I = (fi,...,f;) forf; € klx1,...,x,]?

b. The IDEAL MEMBERSHIP PROBLEM: Given f € k[xi,...,x,] and an ideal
I = (fi,....fs), determine if f € I. Geometrically, this is closely related to
the problem of determining whether V(fi, .. .,f;) lies on the variety V(f).

c. The PROBLEM OF SOLVING POLYNOMIAL EQUATIONS: Find all common solu-
tions in k" of a system of polynomial equations

filxy, oo x) = =filxr, ..., %) = 0.

This is the same as asking for the points in the affine variety V(fi,...,f;).
d. The IMPLICITIZATION PROBLEM: Let V C k" be given parametrically as

X1 = gl(tl, R ,tm),
Xo = gn(t1, .o tm).
© Springer International Publishing Switzerland 2015 49
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If the g; are polynomials (or rational functions) in the variables #;, then V will be
an affine variety or part of one. Find a system of polynomial equations (in the x;)
that defines the variety.

Some comments are in order. Problem (a) asks whether every polynomial ideal
has a finite description via generators. Many of the ideals we have seen so far do
have such descriptions—indeed, the way we have specified most of the ideals we
have studied has been to give a finite generating set. However, there are other ways
of constructing ideals that do not lead directly to this sort of description. The main
example we have seen is the ideal of a variety, I(V). It will be useful to know that
these ideals also have finite descriptions. On the other hand, in the exercises, we will
see that if we allow infinitely many variables to appear in our polynomials, then the
answer to Problem (a) is no.

Note that Problems (c¢) and (d) are, so to speak, inverse problems. In Problem (c),
we ask for the set of solutions of a given system of polynomial equations. In Prob-
lem (d), on the other hand, we are given the solutions, and the problem is to find a
system of equations with those solutions.

To begin our study of Grobner bases, let us consider some special cases in which
you have seen algorithmic techniques to solve the problems given above.

Example 1. When n = 1, we solved the ideal description problem in §5 of
Chapter 1. Namely, given an ideal I C k[x], we showed that I = (g) for some
g € k[x] (see Corollary 4 of Chapter 1, §5). So ideals have an especially simple
description in this case.

We also saw in §5 of Chapter 1 that the solution of the ideal membership problem
follows easily from the division algorithm: givenf € k[x], to check whether f € I =
(g), we divide g into 1"

f=q g+,
where g, r € k[x] and r = 0 or deg(r) < deg(g). Then we proved that f € I if and
only if » = 0. Thus, we have an algorithmic test for ideal membership in the case
n=1.

Example 2. Next, let n (the number of variables) be arbitrary, and consider the prob-
lem of solving a system of polynomial equations:
anxy + -+ ax, + b1 =0,
1 :
am1X1 + -+ - + AunXn + bm = 07
where each polynomial is linear (total degree 1).
For example, consider the system
2x1 4+ 3x —x3 =0,
(2) x1+x—-1=0,
x1+x3—3=0.
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We row-reduce the matrix of the system to reduced row echelon form:

1 0 1 3

0O 1 -1-=2

0O 0 0 O
The form of this matrix shows that x3 is a free variable, and setting x3 = ¢
(any element of k), we have

x| = —t+ 3,

Xy =1t—2,

X3 = 1.

These are parametric equations for a line L in k*. The original system of equa-
tions (2) presents L as an affine variety.
In the general case, one performs row operations on the matrix of (1)

aml * - Amn _bm

until it is in reduced row echelon form (where the first nonzero entry on each row
is 1, and all other entries in the column containing a leading 1 are zero). Then we
can find all solutions of the original system (1) by substituting values for the free
variables in the reduced row echelon form system. In some examples there may
be only one solution, or no solutions. This last case will occur, for instance, if the
reduced row echelon matrix contains a row (0...0 1), corresponding to the incon-
sistent equation 0 = 1.

Example 3. Again, take n arbitrary, and consider the subset V of k" parametrized by
Xy =ant + -+ dimtm + by,

3)
Xy = Gnity + -+ + Qunlin + by

We see that V is an affine linear subspace of k" since V is the image of the
mapping F : k" — k" defined by

F(tlv'- '7tm) = (alltl + -+ aimtn —|—b1,. sy Apily o Al +bn)

This is a linear mapping, followed by a translation. Let us consider the impliciti-
zation problem in this case. In other words, we seek a system of linear equations
[as in (1)] whose solutions are the points of V.

For example, consider the affine linear subspace V C k* defined by
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x1=t+tH+1,
Xy =1 —t+3,
x3 =2t — 2,

Xy =t + 2 —3.

We rewrite the equations by subtracting the x; terms and constants from both sides
and apply the row reduction algorithm to the corresponding matrix:

1 1 -1 0 0 0 -1
1 -1 0-1 0 0 -3
2 0 0 0-1 0 2
1 2 0 0 0 -1 3

(where the coefficients of the x; have been placed after the coefficients of the #; in
each row). We obtain the reduced row echelon form:

1 0 0 0 —1)2 0 1
0 1 0 0 1/4 —1/2 1
0 0 1 0 —1/4 —1/2 3
0 0 0 1 —3/4 1/2 3

Because the entries in the first two columns of rows 3 and 4 are zero, the last two
rows of this matrix correspond to the following two equations with no f; terms:

X1 — (1/4))63 — (1/2))64 -3 = 0,
Xy — (3/4))63 + (1/2))64 —-3=0.

(Note that this system is also in echelon form.) These two equations define V in k*.

The same method can be applied to find implicit equations for any affine linear
subspace V given parametrically as in (3): one computes the reduced row echelon
form of (3), and the rows involving only xy, . . ., x, give the equations for V. We thus
have an algorithmic solution to the implicitization problem in this case.

Our goal in this chapter will be to develop extensions of the methods used in
these examples to systems of polynomial equations of any degrees in any number
of variables. What we will see is that a sort of “combination” of row-reduction and
division of polynomials—the method of Grobner bases mentioned at the outset—
allows us to handle all these problems.

EXERCISES FOR §1

1. Determine whether the given polynomial is in the given ideal I C R[x] using the method
of Example 1.
a f(x)=x"—3x+2, I=(x—2).
b f(x) =x —dx+1, I=(x—x* +x).
c. f(x) =2 —dx+4, I={"—6x7+12x — 8,2 — 10x% + 16x — 8).
d f)=x -1, 1= -1, +x° —x* - 1).
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2. Find parametrizations of the affine varieties defined by the following sets of equations.
a. InR*or C*:

2x+3y—2z=9,
x—y=1,
3x+7y—2z=17.
b. InR* or C*:
X1+x—x3—x4 =0,
x1—x2+x3 =0.
c. nRorC3:
y—X3:07
5
z—x =0

3. Find implicit equations for the affine varieties parametrized as follows.
a. InR* or C*:

Xy =1— 5,
X2 = 2t + 1,
x3 = —t+6.
b. InR* or C*:
x1 = 2t — Su,
X2 =t 4 2u,
X3 = —t+u,
x4 = t+ 3u.
c. InR?or C3:
x=t, y=1r, z=1.
4. Let x1,x2,x3, ... be an infinite collection of independent variables indexed by the natural
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numbers. A polynomial with coefficients in a field k in the x; is a finite linear combination

of (finite) monomials x;' . . . x{"

In

k[x1, x2,...] in infinitely many variables.

. Let R denote the set of all polynomials in the x;. Note that
we can add and multipfy elements of R in the usual way. Thus, R is the polynomial ring

a. LetI = (x1,x2,x3,...) be the set of polynomials of the form x;, fi +- - - + x1,, fin, Where

f; € R. Show that / is an ideal in the ring R.

b. Show, arguing by contradiction, that / has no finite generating set. Hint: It is not enough

only to consider subsets of {x; | i > 1}.

5. In this problem you will show that all polynomial parametric curves in k* are contained in

affine algebraic varieties.

a. Show that the number of distinct monomials xy” of total degree < m in k[x, y] is equal

to (m + 1)(m + 2) /2. [Note: This is the binomial coefficient (m«zﬁ»Z) B

b. Show that if f(¢) and g(7) are polynomials of degree < n in ¢, then for m large enough,

the “monomials”
[F(0)] [e(n)]

with a + b < m are linearly dependent.
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c. Deduce from part (b) that if C is a curve in &> given parametrically by x = f(), y =
g(t) for f(t), g(r) € k[t], then C is contained in V(F) for some nonzero F € k[x, y].
d. Generalize parts (a), (b), and (c) to show that any polynomial parametric surface

x:f(t,u), y:g(tvu)v Z:h(t7u)

is contained in an algebraic surface V(F), where F € k[x, y, z] is nonzero.

§2 Orderings on the Monomials in k[x, . . . , x,,]

If we examine the division algorithm in k[x] and the row-reduction (Gaussian elimi-

nation) algorithm for systems of linear equations (or matrices) in detail, we see thata

notion of ordering of terms in polynomials is a key ingredient of both (though this is
not often stressed). For example, in dividing f (x) = x> —3x?>+1 by g(x) = x> —4x+7
by the standard method, we would:

e Write the terms in the polynomials in decreasing order by degree in x.

o At the first step, the leading term (the term of highest degree) in fis x* = x* - x* =
x* - (leading term in g). Thus, we would subtract x* - g(x) from f to cancel the
leading term, leaving 4x* — 7x* — 3x% + 1.

e Then, we would repeat the same process on f(x) — x* - g(x), etc., until we obtain
a polynomial of degree less than 2.

For the division algorithm on polynomials in one variable, we are dealing with the
degree ordering on the one-variable monomials:

(D) ...>x1"+1>x’">--->x2>x>1.

The success of the algorithm depends on working systematically with the leading
terms in f and g, and not removing terms “at random” from f using arbitrary terms
from g.

Similarly, in the row-reduction algorithm on matrices, in any given row, we sys-
tematically work with entries to the left first—Ileading entries are those nonzero en-
tries farthest to the left on the row. On the level of linear equations, this is expressed
by ordering the variables xi, . . ., x,, as follows:

2) X] > X > 0 > Xy

We write the terms in our equations in decreasing order. Furthermore, in an echelon
form system, the equations are listed with their leading terms in decreasing order.
(In fact, the precise definition of an echelon form system could be given in terms of
this ordering—see Exercise 8.)

From the above evidence, we might guess that a major component of any exten-
sion of division and row-reduction to arbitrary polynomials in several variables will
be an ordering on the terms in polynomials in k[xi, . . ., x,]. In this section, we will
discuss the desirable properties such an ordering should have, and we will construct
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several different examples that satisfy our requirements. Each of these orderings
will be useful in different contexts.

First, we note that we can reconstruct the monomial x* = xf“ <o+ xpr from
the n-tuple of exponents & = («,...,ay,) € Z%,. This observation establishes a
one-to-one correspondence between the monomials in k[xi, ..., x,] and Z% . Fur-

thermore, any ordering > we establish on the space Z% , will give us an ordering on
monomials: if & > (3 according to this ordering, we will also say that x* > x%.

There are many different ways to define orderings on Z% . For our purposes,
most of these orderings will not be useful, however, since we will want our orderings
to be compatible with the algebraic structure of polynomial rings.

To begin, since a polynomial is a sum of monomials, we would like to be able
to arrange the terms in a polynomial unambiguously in descending (or ascending)
order. To do this, we must be able to compare every pair of monomials to establish
their proper relative positions. Thus, we will require that our orderings be /inear or
total orderings. This means that for every pair of monomials x* and x #, exactly one
of the three statements

x* > xP, X =x7, x> xe

should be true. A total order is also required to be transitive, so that x* > x? and
x? > x7 always imply x* > x7.

Next, we must take into account the effect of the sum and product operations
on polynomials. When we add polynomials, after combining like terms, we may
simply rearrange the terms present into the appropriate order, so sums present no
difficulties. Products are more subtle, however. Since multiplication in a polynomial
ring distributes over addition, it suffices to consider what happens when we multiply
amonomial times a polynomial. If doing this changed the relative ordering of terms,
significant problems could result in any process similar to the division algorithm in
k[x], in which we must identify the leading terms in polynomials. The reason is that
the leading term in the product could be different from the product of the monomial
and the leading term of the original polynomial.

Hence, we will require that all monomial orderings have the following additional
property. If x* > x? and x7 is any monomial, then we require that x*x” > x%x7. In
terms of the exponent vectors, this property means that if v > /3 in our ordering on
7%, then, forall v € Z% j, o +v > B + .

“With these considerations in mind, we make the following definition.

Definition 1. A monomial ordering > on k[xj, ..., x,] is a relation > on Z%, or
equivalently, a relation on the set of monomials x*, o € Z%,, satisfying: a
(i) > is a total (or linear) ordering on Z2 .
(i) If« > Bandy € Z% , then e + v > B + 7.
(iii) > is a well-ordering on Z~ . This means that every nonempty subset of Z2
has a smallest element under >. In other words, if A C 7=, is nonempty, then
there is a € A such that 5 > « for every 5 # a in A. -

Given a monomial ordering >, we say that & > 3 when either « >  or o = .
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The following lemma will help us understand what the well-ordering condition
of part (iii) of the definition means.

Lemma 2. An order relation > on Z, is a well-ordering if and only if every strictly
decreasing sequence in 7%

a(l) > a2) > a(3) > ---

eventually terminates.

Proof. We will prove this in contrapositive form: > is not a well-ordering if and
only if there is an infinite strictly decreasing sequence in Z< .

If > is not a well-ordering, then some nonempty subset S C Z, has no least
element. Now pick a(1) € S. Since a(1) is not the least element, we can find
a(1) > a(2) in S. Then «(2) is also not the least element, so that there is «(2) >
«(3) in S. Continuing this way, we get an infinite strictly decreasing sequence

a(l) > a2) > a3) >---.

Conversely, given such an infinite sequence, then {«(1), a(2), «(3),...} is a non-
empty subset of Z%, with no least element, and thus, > is not a well-ordering. U

The importance of this lemma will become evident in what follows. It will be
used to show that various algorithms must terminate because some term strictly
decreases (with respect to a fixed monomial order) at each step of the algorithm.

In §4, we will see that given parts (i) and (ii) in Definition 1, the well-ordering
condition of part (iii) is equivalent to o > O for all o € Z2,,.

For a simple example of a monomial order, note that the usual numerical order

e>m+1>m>--->3>2>1>0

on the elements of Z>¢ satisfies the three conditions of Definition 1. Hence, the
degree ordering (1) on the monomials in k[x] is a monomial ordering, unique by
Exercise 13.

Our first example of an ordering on n-tuples will be lexicographic order (or lex
order, for short).

Definition 3 (Lexicographic Order). Let o« = (ay,...,a,) and 8 = (B1,...,5)
be in Z"zo- We say o >, [ if the leftmost nonzero entry of the vector difference

a — B € 7" is positive. We will write x* >, x5 if a >, B.

Here are some examples:
a. (1,2,0) > (0,3,4) since « — 8 = (1, —1,—4).
b. (3,2,4) > (3,2,1) since « — 8 = (0,0, 3).
c. The variables xy, . .., x, are ordered in the usual way [see (2)] by the lex ordering:

(1,0,...,0) >4 (0,1,0,...,0) >pp -+ >pex (0,...,0,1).

SO X1 >lex X2 Zlex " " * lex Xn-
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In practice, when we work with polynomials in two or three variables, we will
call the variables x, y, z rather than x|, x5, x3. We will also assume that the alphabet-
ical order x > y > z on the variables is used to define the lexicographic ordering
unless we explicitly say otherwise.

Lex order is analogous to the ordering of words used in dictionaries (hence the
name). We can view the entries of an n-tuple o € Z2 , as analogues of the letters in
a word. The letters are ordered alphabetically: B

a>b>--->y>z

Then, for instance,
arrow >, arson

since the third letter of “arson” comes after the third letter of “arrow” in alphabetical
order, whereas the first two letters are the same in both. Since all elements o € Z%
have length 7, this analogy only applies to words with a fixed number of letters.

For completeness, we must check that the lexicographic order satisfies the three
conditions of Definition 1.

Proposition 4. The lex ordering on Z2 , is a monomial ordering.

Proof. (i) That >, is a total ordering follows directly from the definition and the
fact that the usual numerical order on Zx>y is a total ordering.

(ii) If & >, B, then we have that the leftmost nonzero entry in o — 3, say «; — 3;,
is positive. But x* - x¥ = x**7 and ¥’ - x¥ = x®7. Thenin (a +v) — (B +7) =
« — (3, the leftmost nonzero entry is again o; — 3; > 0.

(iii) Suppose that >, were not a well-ordering. Then by Lemma 2, there would
be an infinite strictly descending sequence

Oé(l) >l€X O[(Z) >lex OL(?)) >lex e

of elements of Z% ;. We will show that this leads to a contradiction.

Consider the first entries of the vectors a(i) € Z“,. By the definition of the
lex order, these first entries form a nonincreasing sequence of nonnegative integers.
Since Zx¢ is well-ordered, the first entries of the a(i) must “stabilize” eventually.
In other words, there exists an £ such that all the first entries of the «(i) with i > ¢
are equal.

Beginning at «(¢), the second and subsequent entries come into play in deter-
mining the lex order. The second entries of (), (¢ + 1), ... form a nonincreasing
sequence. By the same reasoning as before, the second entries “stabilize” eventually
as well. Continuing in the same way, we see that for some m, the a(m), a(m+1), . ..
all are equal. This contradicts the fact that a(m) >, a(m + 1). O

It is important to realize that there are many lex orders, corresponding to how the
variables are ordered. So far, we have used lex order with x; > x, > --- > x,,. But
given any ordering of the variables xi, ..., x,, there is a corresponding lex order.
For example, if the variables are x and y, then we get one lex order with x > y and
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a second with y > x. In the general case of n variables, there are n! lex orders. In
what follows, the phrase “lex order” will refer to the one with x; > - -- > x, unless
otherwise stated.

In lex order, notice that a variable dominates any monomial involving only
smaller variables, regardless of its total degree. Thus, for the lex order with x >
y > z, we have x >, y°z°. For some purposes, we may also want to take the total
degrees of the monomials into account and order monomials of bigger degree first.
One way to do this is the graded lexicographic order (or grlex order).

Definition 5 (Graded Lex Order). Let o, 5 € 2%, . We say o > griex B if

n n
laf = Zai >8] = Zﬁi, or |al =8 and & > 5.
i=1 i=1

We see that grlex orders by total degree first, then “break ties” using lex order.

Here are some examples:

a. (1,2,3) >guex (3,2,0) since [(1,2,3)] =6 > [(3,2,0)| = 5.

b. (1,2,4) >gner (1,1,5) since [(1,2,4)| = |(1,1,5)] and (1,2,4) >4, (1,1,5).
c. The variables are ordered according to the lex order, i.e., X; >grex =+ > griex Xn-

We will leave it as an exercise to show that the grlex ordering satisfies the three

conditions of Definition 1. As in the case of lex order, there are n! grlex orders

on n variables, depending on how the variables are ordered.

Another (somewhat less intuitive) order on monomials is the graded reverse lexi-
cographical order (or grevlex order). Even though this ordering “takes some getting
used to,” it has been shown that for some operations, the grevlex ordering is the most
efficient for computations.

Definition 6 (Graded Reverse Lex Order). Let o, 5 € ano- We say a > greviex B if

n n
la| = Za,- >8] = ZB,-, or |a| = |B| and the rightmost nonzero entry
i i of « — B € Z" is negative.

Like grlex, grevlex orders by total degree, but it “breaks ties” in a different way.

For example:

a. (4,7,1) >greviex (4,2,3) since |(4,7,1)| =12 > |(4,2,3)| =9.

b. (1,5,2) >greviex (4,1,3) since (1,5,2)] = |(4,1,3)| and (1, 5,2) —(4,1,3) =
(=3,4,—-1).

You will show in the exercises that the grevlex ordering gives a monomial ordering.
Note also that lex and grevlex give the same ordering on the variables. That is,

(1,0, - ,0) > greviex (0, 1, - ,0) >greviex ' ** > greviex (0, - 70, 1)

or
X1 >grevlex X2 >grevlex te >grevlex Xn



§2 Orderings on the Monomials in k[x1, . . ., X,] 59

Thus, grevlex is really different from the grlex order with the variables rearranged
(as one might be tempted to believe from the name).

To explain the relation between grlex and grevlex, note that both use total degree
in the same way. To break a tie, grlex uses lex order, so that it looks at the leftmost
(or largest) variable and favors the larger power. In contrast, when grevlex finds
the same total degree, it looks at the rightmost (or smallest) variable and favors
the smaller power. In the exercises, you will check that this amounts to a “double-
reversal” of lex order. For example,

5 4.2
X"y >grlexx yz,

since both monomials have total degree 7 and X VZ >lex x4yzz. In this case, we also
have

5 4.2
X yZ >grevlex Xy,

but for a different reason: x°yz is larger because the smaller variable z appears to a
smaller power.

As with lex and grlex, there are n! grevlex orderings corresponding to how the n
variables are ordered.

There are many other monomial orders besides the ones considered here. Some
of these will be explored in the exercises for §4. Most computer algebra systems
implement lex order, and most also allow other orders, such as grlex and grevlex.
Once such an order is chosen, these systems allow the user to specify any of the !
orderings of the variables. As we will see in §8 of this chapter and in later chapters,
this facility becomes very useful when studying a variety of questions.

We will end this section with a discussion of how a monomial ordering can be
applied to polynomials. If f = )"  a,x® is a nonzero polynomial in k[xy, ..., x,]
and we have selected a monomial ordering >, then we can order the monomials of
f in an unambiguous way with respect to >. For example, consider the polynomial
f=4xy* 2+ 4722 — 553 + 7x*2% € k|x,y, z]. Then:

e With respect to lex order, we would reorder the terms of f in decreasing order as

=5+ 7% + 4xy’z + 425
e With respect to grlex order, we would have
f =102 +4xy’z — 5x° + 42,
e With respect to grevlex order, we would have
f =dxy’z + x> — 5x5° + 47%.
We will use the following terminology.

Definition 7. Let f = > a,x® be a nonzero polynomial in k[xy, ..., x,] and let >
be a monomial order.
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(i) The multidegree of f is
multideg(f) = max(a € Z% | aq # 0)

(the maximum is taken with respect to >).
(ii) The leading coefficient of f is

LC(f) = amullideg(f) € k.
(iii) The leading monomial of f is
LM(f) _ xmullideg(f)

(with coefficient 1).
(iv) The leading term of f is

LT(f) = Lc(f) - tm(f).

To illustrate, let f = 4xy’z + 47> — 5x> 4 7x*z* as before and let > denote lex
order. Then

multideg(f) = (3,0,0),
Le(f) = -5,
LM(f) =,
LT(f) = —5x°.

In the exercises, you will show that the multidegree has the following useful
properties.

Lemma 8. Let f, g € k[xi, ..., x,] be nonzero polynomials. Then:

(i) multideg( fg) = multideg(f) + multideg(g).

(i) If f + g # O, then multideg(f + g) < max(multideg(f), multideg(g)). If, in
addition, multideg( f) # multideg(g), then equality occurs.

Some books use different terminology. In EISENBUD (1999), the leading term
LT(f) becomes the initial term ins (f). A more substantial difference appears in
BECKER and WEISPFENNING (1993), where the meanings of “monomial” and
“term” are interchanged. For them, the leading term LT(f) is the head monomial
HM(f), while the leading monomial LM(f) is the head term HT(f). Page 10 of
KREUZER and ROBBIANO (2000) has a summary of the terminology used in differ-
ent books. Our advice when reading other texts is to check the definitions carefully.

EXERCISES FOR §2

1. Rewrite each of the following polynomials, ordering the terms using the lex order, the
grlex order, and the grevlex order, giving LM(f), LT(f), and multideg(f) in each case.
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a. f(x,y,2) =243y +z+xX -2 +x.
b. f(x,y,2) = 2¢y* = 3yz' + xy2’ — 0.

2. Each of the following polynomials is written with its monomials ordered according to

oSNk w

10.

11.

12.

13.

(exactly) one of lex, grlex, or grevlex order. Determine which monomial order was used

in each case.

a f(xy,2) =Ty — 200 + )%

b f(x,y,2) = 'z + 077 + 277

. flx,y,2) = x4+ 20z — 4y’

Repeat Exercise 1 when the variables are ordered z > y > x.

Show that grlex is a monomial order according to Definition 1.

Show that grevlex is a monomial order according to Definition 1.

Another monomial order is the inverse lexicographic or invlex order defined by the

following: for o, 8 € Z%y, & >imiex [ if and only if the rightmost nonzero entry of

a — B is positive. Show that invlex is equivalent to the lex order with the variables

permuted in a certain way. (Which permutation?)

Let > be any monomial order.

a. Show that o > 0 for all & € Z%. Hint: Proof by contradiction.

b. Show that if x* divides x°, then o < . Is the converse true?

c. Show that if @ € Z%, then « is the smallest element of « + Z%, = {a+ 5| B €
Lot - -

Write a precise definition of what it means for a system of linear equations to be in

echelon form, using the ordering given in equation (2).

In this exercise, we will study grevlex in more detail. Let > .., be the order given in

Exercise 6, and define > inex to be the reversal of this ordering, i.e., for a, 8 € Z%,,.

O > ripvlex /B — /B > inviex .

Notice that rinvlex is a “double reversal” of lex, in the sense that we first reverse the

order of the variables and then we reverse the ordering itself.

a. Show that & > greviex ( if and only if || > |8], or || = |B] and & > rimiex B-

b. Is rinvlex a monomial ordering according to Definition 1? If so, prove it; if not, say
which properties fail.

In Z>( with the usual ordering, between any two integers, there are only a finite number

of other integers. Is this necessarily true in Z%, for a monomial order? Is it true for the

grlex order? a

Let > be a monomial order on k[xi, . . ., X,).
a. Letf € k[xi,...,x,] and let m be a monomial. Show that LT(m - ) = m - LT(f).
b. Letf,g € klxi1,...,x]. Is LT(f - g) necessarily the same as LT(f) - LT(g)?

c. Iffi,gi € kixi,...,x
LM(g;) for some i?

Lemma 8 gives two properties of the multidegree.

a. Prove Lemma 8. Hint: The arguments used in Exercise 11 may be relevant.

b. Suppose that multideg(f) = multideg(g) and f + g # 0. Give examples to show that
multideg(f + g) may or may not equal max(multideg( /), multideg(g)).

Prove that 1 < x < x* < x’ < --- is the unique monomial order on k[x].

1 <0 <'s,isLM(DC,_, figi) necessarily equal to LM(f;) -

§3 A Division Algorithm in k[x,, ... ,x,]

In §1, we saw how the division algorithm could be used to solve the ideal mem-
bership problem for polynomials of one variable. To study this problem when
there are more variables, we will formulate a division algorithm for polynomials
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in k[x1,...,x,] that extends the algorithm for k[x]. In the general case, the goal is
to divide f € kfxy,...,x,] by fi,....fs € k[x1,...,x,]. As we will see, this means
expressing f in the form

f:q1f1+"'+qva+r,

where the “quotients” g1, . . ., g, and remainder r lie in k[xy, . . . , x,|. Some care will
be needed in deciding how to characterize the remainder. This is where we will
use the monomial orderings introduced in §2. We will then see how the division
algorithm applies to the ideal membership problem.

The basic idea of the algorithm is the same as in the one-variable case: we want to
cancel the leading term of f (with respect to a fixed monomial order) by multiplying
some f; by an appropriate monomial and subtracting. Then this monomial becomes
a term in the corresponding ¢;. Rather than state the algorithm in general, let us first
work through some examples to see what is involved.

Example 1. We will first divide f = xy?> + 1 by fi =xy + 1 and p = y + 1, using
lex order with x > y. We want to employ the same scheme as for division of one-
variable polynomials, the difference being that there are now several divisors and
quotients. Listing the divisors fi, f> and the quotients g, g, vertically, we have the
following setup:

q1 :
q2

xyyi—} ixyz—i-l

The leading terms LT(f;) = xy and LT(f2) = y both divide the leading term LT(f) =
xy?. Since f; is listed first, we will use it. Thus, we divide xy into xy?, leaving y, and
then subtract y - f from f:

q Y
q2 :
1
xyyil ixyz—i—l
X' +y

—-y+1

Now we repeat the same process on —y+ 1. This time we must use f> since LT(f;) =
xy does not divide LT(—y + 1) = —y. We obtain:

qi -y

g —1

xyi} ixyz—l—l

Y X 4y
—-y+1
—y—1

2



§3 A Division Algorithm in k[xi, . . ., X,] 63

Since LT(fi) and LT(f>) do not divide 2, the remainder is » = 2 and we are done.
Thus, we have written f = xy*> + 1 in the form

W Hl=y - (xy+1)+(=1)-(y+1)+2.

Example 2. In this example, we will encounter an unexpected subtlety that can
occur when dealing with polynomials of more than one variable. Let us divide
f=xy+x*+y'byfi =xy—landf, = y> — 1. As in the previous exam-
ple, we will use lex order with x > y. The first two steps of the algorithm go as
usual, giving us the following partially completed division (remember that when
both leading terms divide, we use f):

qr : x+y
Q@
1
x¥_1 ) 2y + 07 + 2
Xy —x
0?2 4+ x+y?
Xyt —y

x+y +y

Note that neither LT(f;) = xy nor LT(f») = y? divides LT(x +y* +y) = x. However,
x + y* + y is not the remainder since LT(f,) divides y. Thus, if we move x to the
remainder, we can continue dividing. (This is something that never happens in the
one-variable case: once the leading term of the divisor no longer divides the leading
term of what is at the bottom of the division, the algorithm terminates.)

To implement this idea, we create a remainder column r, to the right of the divi-
sion, where we put the terms belonging to the remainder. Also, we call the polyno-
mial at the bottom of division the intermediate dividend. Then we continue dividing
until the intermediate dividend is zero. Here is the next step, where we move x to
the remainder column (as indicated by the arrow):

q: x+y
q2 : r
—1
);)2’_1 )xzy—i—xyz—i—yz
xy? —x
x4+ x+y?
Xy —y
x+y*+y
y2+y — X

Now we continue dividing. If we can divide by LT(f;) or LT(f2), we proceed as
usual, and if neither divides, we move the leading term of the intermediate dividend
to the remainder column.
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Here is the rest of the division:

q: x+y
g 1 r
W) eyt 4y
y—1 2y —
y X
xy2+x+y2
Xy —y
x+y2+y
y2—|—y — X
-1
y+

1
1 — x+y
0 — x+y+1

Thus, the remainder is x + y + 1, and we obtain
1) y+x+ Y =4y y—1D)+1-0P =D +x+y+1.

Note that the remainder is a sum of monomials, none of which is divisible by the
leading terms LT(f;) or LT(f>).

The above example is a fairly complete illustration of how the division algorithm
works. It also shows us what property we want the remainder to have: none of its
terms should be divisible by the leading terms of the polynomials by which we are
dividing. We can now state the general form of the division algorithm.

Theorem 3 (Division Algorithm in k[x,, . .., x,]). Let > be a monomial order on
7%, and let F = (fi,....fs) be an ordered s-tuple of polynomials in k[xi, . . . , X,].
Then every f € k[xi, . ..,x,] can be written as

f=afi+ - +aqfs+r,

where q;,r € klx1, ..., x|, and either r = 0 or r is a linear combination, with coef-
ficients in k, of monomials, none of which is divisible by any of LT(f1), ..., LT(f;).
We call r a remainder of f on division by F. Furthermore, if q; f; # 0, then

multideg(f) > multideg(q; f;)-

Proof. We prove the existence of q1, .. ., g, and r by giving an algorithm for their
construction and showing that it operates correctly on any given input. We recom-
mend that the reader review the division algorithm in k[x] given in Proposition 2 of
Chapter 1, §5 before studying the following generalization:
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IHPUt:fla' "7fY7f
Output: qq,...,qs,r

q1:=0;...;9,:=0;7r:=0
p=f
WHILE p # 0 DO
i:=1
divisionoccurred := false
WHILE i < s AND divisionoccurred = false DO
IF LT(£,) divides LT(p) THEN
qi == qi + LT(p) /LT(f})
p:=p— (LT(p)/LT(f)))fi

divisionoccurred := true

ELSE
ir=i+1
IF divisionoccurred = false THEN
r:=r+LT(p)
p:=p—LT(p)

RETURN ¢y, ...,qs,r

65

We can relate this algorithm to the previous example by noting that the variable
p represents the intermediate dividend at each stage, the variable r represents the
column on the right-hand side, and the variables ¢y, . .., g, are the quotients listed
above the division. Finally, the boolean variable “divisionoccurred” tells us when
some LT( f;) divides the leading term of the intermediate dividend. You should check
that each time we go through the main WHILE ... DO loop, precisely one of two

things happens:

e (Division Step) If some LT(f;) divides LT(p), then the algorithm proceeds as in

the one-variable case.

e (Remainder Step) If no LT(f;) divides LT(p), then the algorithm adds LT(p) to

the remainder.

These steps correspond exactly to what we did in Example 2.
To prove that the algorithm works, we will first show that

(2) f=qfi+ - +aqfitp+r

holds at every stage. This is clearly true for the initial values of ¢y, . .

.»qs,p,and r.

Now suppose that (2) holds at one step of the algorithm. If the next step is a Division

Step, then some LT(f;) divides LT(p), and the equality

qifi +p = (g + L1(p)/LT(f))) fi + (p — (LT(p)/L1(£i)f))
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shows that g; f;+p is unchanged. Since all other variables are unaffected, (2) remains
true in this case. On the other hand, if the next step is a Remainder Step, then p and
r will be changed, but the sum p + r is unchanged since

p+r=(p—11(p)) + (r+17(p)).

As before, equality (2) is still preserved.
Next, notice that the algorithm comes to a halt when p = 0. In this situation, (2)
becomes

f=qfi+ - +aqfs+r

Since terms are added to r only when they are divisible by none of the LT(f;), it fol-
lows that gy, . . . , gs and r have the desired properties when the algorithm terminates.

Finally, we need to show that the algorithm does eventually terminate. The key
observation is that each time we redefine the variable p, either its multidegree drops
(relative to our term ordering) or it becomes 0. To see this, first suppose that during
a Division Step, p is redefined to be

LT(p)
LT(f;)

p=p-— fi-

By Lemma 8 of §2, we have

LT(p) LT(p)
(T f) =

so that p and (LT(p)/LT(f;))f; have the same leading term. Hence, their difference
p’ must have strictly smaller multidegree when p” # 0. Next, suppose that during a
Remainder Step, p is redefined to be

p' =p—1L1(p).

Here, it is obvious that multideg(p’) < multideg(p) when p’ # 0. Thus, in ei-
ther case, the multidegree must decrease. If the algorithm never terminated, then we
would get an infinite decreasing sequence of multidegrees. The well-ordering prop-
erty of >, as stated in Lemma 2 of §2, shows that this cannot occur. Thus p = 0
must happen eventually, so that the algorithm terminates after finitely many steps.
It remains to study the relation between multideg(f) and multideg(q; f;). Every
term in g; is of the form LT(p) /LT(f;) for some value of the variable p. The algorithm
starts with p = f, and we just finished proving that the multidegree of p decreases.
This shows that LT(p) < LT(f), and then it follows easily [using condition (ii) of the
definition of a monomial order] that multideg(q; f;) < multideg(f) when ¢, f; # 0
(see Exercise 4). This completes the proof of the theorem. (]

The algebra behind the division algorithm is very simple (there is nothing beyond
high school algebra in what we did), which makes it surprising that this form of the
algorithm was first isolated and exploited only within the past 50 years.
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We will conclude this section by asking whether the division algorithm has the
same nice properties as the one-variable version. Unfortunately, the answer is not
pretty—the examples given below will show that the division algorithm is far from
perfect. In fact, the algorithm achieves its full potential only when coupled with the
Grobner bases studied in §§5 and 6.

A first important property of the division algorithm in k[x] is that the remainder is
uniquely determined. To see how this can fail when there is more than one variable,
consider the following example.

Example 4. Let us divide f = x>y + x> +y? by f; = y* — land f = xy—1. We
will use lex order with x > y. This is the same as Example 2, except that we have
changed the order of the divisors. For practice, we suggest that the reader should do
the division. You should get the following answer:

qr : x+1
@ X r
yz—lj
i 2y + 0 +y?
4 X’y —x
xy2+x+y2
xy? —x
2x +y?
y? — 2x
¥ -1
1
0 — 2x+1
This shows that
3) y4+x 4+ =41 -0 —1) 4x-(xy—1)+2x+ 1.

If you compare this with equation (1), you will see that the remainder is different
from what we got in Example 2.

This shows that the remainder r is not uniquely characterized by the require-
ment that none of its terms be divisible by LT(f}), ..., LT(f;). The situation is not
completely chaotic: if we follow the algorithm precisely as stated [most importantly,
testing LT(p) for divisibility by LT(f;), LT(f2), . . . in that order], then ¢y, . . ., g, and
r are uniquely determined. (See Exercise 11 for a more detailed discussion of how
to characterize the output of the algorithm.) However, Examples 2 and 4 show that
the ordering of the s-tuple of polynomials (fi, .. .,f;) definitely matters, both in the
number of steps the algorithm will take to complete the calculation and in the re-
sults. The ¢; and r can change if we simply rearrange the f;. (The ¢; and r may also
change if we change the monomial ordering, but that is another story.)

One nice feature of the division algorithm in k[x] is the way it solves the ideal
membership problem—recall Example 1 from §1. Do we get something similar
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for several variables? One implication is an easy corollary of Theorem 3: if after
division of f by F = (fi, .. .,f;) we obtain a remainder r = 0, then

f:q1f1+"'+qsfva

sothatf € (fi,..., f;). Thus r = 0 is a sufficient condition for ideal membership.
However, as the following example shows, r = 0 is not a necessary condition for
being in the ideal.

Example 5. Let fj = xy — 1, o = y*> — 1 € k[x,y] with the lex order. Dividing
f=xy>—xby F = (fi, f»), the result is

Xy —x=y (y = 1) +0- (2 = 1)+ (=x+).
With F = (f5, f1), however, we have
W —x=x-(*—=1)+0-(xy—1)+0.

The second calculation shows that f € (fi, f2). Then the first calculation shows that
even if f € (fi, f2), it is still possible to obtain a nonzero remainder on division by

F= (flva)‘

Thus, we must conclude that the division algorithm given in Theorem 3 is an
imperfect generalization of its one-variable counterpart. To remedy this situation,
we turn to one of the lessons learned in Chapter 1. Namely, in dealing with a col-
lection of polynomials fi,. .., fy € k[xi,...,x,)], it is frequently desirable to pass
to the ideal 7 they generate. This allows the possibility of going from fi,..., fytoa
different generating set for /. So we can still ask whether there might be a “good”
generating set for /. For such a set, we would want the remainder  on division by
the “good” generators to be uniquely determined and the condition r = 0 should be
equivalent to membership in the ideal. In §6, we will see that Grobner bases have
exactly these “good” properties.

In the exercises, you will experiment with a computer algebra system to try to
discover for yourself what properties a “good” generating set should have. We will
give a precise definition of “good” in §5 of this chapter.

EXERCISES FOR §3

1. Compute the remainder on division of the given polynomial f by the ordered set F (by
hand). Use the grlex order, then the lex order in each case.
a f=xyY 4+ —y+1, F= (" —xx—y).
b. Repeat part (a) with the order of the pair F reversed.
2. Compute the remainder on division:
a f=xt+xy—y; F=(x—y,y—2,22—1).
b. Repeat part (a) with the order of the set F' permuted cyclically.

3. Using a computer algebra system, check your work from Exercises 1 and 2. (You may
need to consult documentation to learn whether the system you are using has an explicit
polynomial division command or you will need to perform the individual steps of the
algorithm yourself.)
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4. Letf = qifi + - - + qsfs + r be the output of the division algorithm.
a. Complete the proof begun in the text that multideg(f) > multideg(g; f;) provided that
qifi # 0.
b. Prove that multideg(f) > multideg(r) when r # 0.

The following problems investigate in greater detail the way the remainder computed by
the division algorithm depends on the ordering and the form of the s-tuple of divisors F =
(fi,-..,fs). Youmay wish to use a computer algebra system to perform these calculations.

5. We will study the division of f = x* — x*y — X’z +xbyfi = x’y —zand f» = xy — 1.
a. Compute using grlex order:

r1 = remainder of f on division by (fi, f2).
r» = remainder of f on division by (f2, fi).

Your results should be different. Where in the division algorithm did the difference
occur? (You may need to do a few steps by hand here.)

b. Isr =ri — ryinthe ideal (fi, f2)? If so, find an explicit expression r = Afi + Bf2. If
not, say why not.

c. Compute the remainder of r on division by (fi, f2). Why could you have predicted
your answer before doing the division?

d. Find another polynomial g € (fi, f») such that the remainder on division of g by
(fi, f2) is nonzero. Hint: (xy + 1) - o = x>y> — 1, whereas y - fi = x*y* — yz.

e. Does the division algorithm give us a solution for the ideal membership problem for
the ideal (fi, f2) ? Explain your answer.

6. Using the grlex order, find an element g of (fi, o) = (2xy* —x, 38’y —y— 1) C R[x,y]
whose remainder on division by (fi, f) is nonzero. Hint: You can find such a g where
the remainder is g itself.

7. Answer the question of Exercise 6 for (fi, o, ) = (&** — z,x°y* — 1,x%* — 22)
C R[x,y, z]. Find two different polynomials g (not constant multiples of each other).

8. Try to formulate a general pattern that fits the examples in Exercises 5(c)(d), 6, and 7.
What condition on the leading term of the polynomial g = A fi + --- + A, f; would
guarantee that there was a nonzero remainder on division by (fi, ..., fs)? What does
your condition imply about the ideal membership problem?

9. The discussion around equation (2) of Chapter 1, §4 shows that every polynomial f €
R[x, y, z] can be written as

f=my—x)+hE—x)+r

where r is a polynomial in x alone and V(y — x*, z — x°) is the twisted cubic curve in R®.

a. Give a proof of this fact using the division algorithm. Hint: You need to specify
carefully the monomial ordering to be used.

b. Use the parametrization of the twisted cubic to show that z> — x*y vanishes at every
point of the twisted cubic.

c. Find an explicit representation

Z-xy=mny-—x)+hz-x)

using the division algorithm.
10. Let V C R? be the curve parametrized by (z,7",¢"),n,m > 2.
a. Show that V is an affine variety.
b. Adapt the ideas in Exercise 9 to determine I(V).
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11. In this exercise, we will characterize completely the expression

f:qlﬁ++qva+r

that is produced by the division algorithm (among all the possible expressions for f of
this form). Let LM(f;) = x*) and define

A Oé(l) +Z”207
Ay = (a(2) + Z5p) \ Ay,

A, = (als) + Zho) \ (UA,)7
:Z”ZO\(UA,-).

(Note that 7", is the disjoint union of the A; and A.)

a. Show that 8 € A; if and only if x* divides x® and no x*%) with j < i divides x°.

b. Show that v € A if and only if no x> divides x”.

c. Show that in the expression f = qifi + -+ + gsfs + r computed by the division
algorithm, for every i, every monomial x* in ¢; satisfies 8 + a(i) € A, and every
monomial x” in r satisfies y € A.

d. Show that there is exactly one expression f = qi fi + --- + gsfs + r satisfying the
properties given in part (c).

12. Show that the operation of computing remainders on division by F = (fi,...,f) is
linear over k. That is, if the remainder on division of g; by F is r;, i = 1,2, then, for any

c1,¢2 € k, the remainder on division of ¢1g1 4 ¢242 is c171 + c2r2. Hint: Use Exercise 11.

§4 Monomial Ideals and Dickson’s Lemma

In this section, we will consider the ideal description problem of §1 for the special

case of monomial ideals. This will require a careful study of the properties of these

ideals. Our results will also have an unexpected application to monomial orderings.
To start, we define monomial ideals in k[x1, . . ., x,].

Definition 1. An ideal I C k[xi,...,x,] is a monomial ideal if there is a subset
A C 7%, (possibly infinite) such that I consists of all polynomials which are finite
sums of the form Y aca hax®, where hy € klxi,...,x,]. In this case, we write
I={x"|acA).

An example of a monomial ideal is given by I = (x*y?, x*y* x*y%) C klx,y].
More interesting examples of monomial ideals will be given in §5.
We first need to characterize all monomials that lie in a given monomial ideal.

Lemma 2. Let [ = (x® | a € A) be a monomial ideal. Then a monomial x° lies in I
if and only if xP is divisible by x* for some o € A.
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Proof. If x” is a multiple of x® for some o € A, then x® € I by the definition of
ideal. Conversely, if x* € I, then x® = >77_ hx*(®), where h; € k[xy,...,x,] and
a(i) € A. If we expand each /; as a sum of terms, we obtain

W= Z o) — Z (3 eua@)x = 3, o)
i=1 1 j isJ

i=

After collecting terms of the same multidegree, every term on the right side of the
equation is divisible by some x*(). Hence, the left side x® must have the same
property. O

Note that x? is divisible by x* exactly when x” = x® - x” for some v € 7~ . This
is equivalent to 8 = « + ~. Thus, the set a

a+Z% ={a+y|v€Z5%}

consists of the exponents of all monomials divisible by x*. This observation and
Lemma 2 allows us to draw pictures of the monomials in a given monomial ideal.
For example, if I = (x*y?,x’y* x?y°), then the exponents of the monomials in 7
form the set

((4,2) + Z3) U ((3,4) + Z%0) U ((2,5) + Z3,).

We can visualize this set as the union of the integer points in three translated copies
of the first quadrant in the plane:

nj ° . . . .
(2’5)0 . ° . .
(3,4)0 . ) .
(4’2)0 . .
:m

(m,n) <— x™my"

Let us next show that whether a given polynomial f lies in a monomial ideal can
be determined by looking at the monomials of f.

Lemma 3. Let I be a monomial ideal, and let f € k[xy,. .., x,]. Then the following
are equivalent:
i fel
(i) Every term of f lies in I.
(iii) f is a k-linear combination of the monomials in I.
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Proof. The implications (iii) = (ii) = (i) and (ii) = (iii) are trivial. The proof of
(i) = (ii) is similar to what we did in Lemma 2 and is left as an exercise. ([l

An immediate consequence of part (iii) of the lemma is that a monomial ideal is
uniquely determined by its monomials. Hence, we have the following corollary.

Corollary 4. Two monomial ideals are the same if and only if they contain the same
monomials.

The main result of this section is that all monomial ideals of k[x,...,x,] are
finitely generated.

Theorem 5 (Dickson’s Lemma). Let I = (x* | o € A) C klxi,...,xy) be a
monomial ideal. Then I can be written in the form I = (x*() ... x*®)) where
a(l),...,a(s) € A. In particular, I has a finite basis.

Proof. (By induction on n, the number of variables.) If n = 1, then / is generated by
the monomials x{*, where o € A C Z>¢. Let 3 be the smallest element of A C Z>.
Then 8 < « for all € A, so that x? divides all other generators x{'. From here,
I= (xf ) follows easily.

Now assume that n > 1 and that the theorem is true for n — 1. We will write the
variables as x1, . .., X,—1,y, so that monomials in k[xy, . . ., x,_1, y] can be written as
x*y™, where o = (a,...,q,_1) € Z”;OI andm € Z>o.

Suppose that I C k[xj,...,Xx,—1,Y] is a monomial ideal. To find generators for
I, let J be the ideal in k[xj,...,x,_;] generated by the monomials x* for which
x*y™ € [ for some m > 0. Since J is a monomial ideal in k[xj,...,x,—1],
our inductive hypothesis implies that finitely many of the x“’s generate J, say
J = &M x*0)), The ideal J can be understood as the “projection” of I into
k[xl, . ,xn,l].

For each i between 1 and s, the definition of J tells us that xo‘(i)y’”' € I for some
m; > 0. Let m be the largest of the m;. Then, for each ¢ between 0 and m — 1,
consider the ideal J, C k[xy,...,x,—;] generated by the monomials xP such that
xPy’ € I. One can think of J, as the “slice” of I generated by monomials containing
y exactly to the /th power. Using our inductive hypothesis again, J, has a finite
generating set of monomials, say J, = (x*¢(1) . x@e(e)),

We claim that / is generated by the monomials in the following list:

from J : x*My L x Gy,
from Jo : x20() . x@000),
from Jy : x*1 My, . x1(y,
from J,,_; : xamfl(l)ymflj o ,xam’l(‘?’”’l)ymil.

First note that every monomial in / is divisible by one on the list. To see why, let
x*yP € I.If p > m, then x*y” is divisible by some x*()y" by the construction of J.
On the other hand, if p < m — 1, then x*y” is divisible by some x*()y? by the
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construction of J,,. It follows from Lemma 2 that the above monomials generate an
ideal having the same monomials as /. By Corollary 4, this forces the ideals to be
the same, and our claim is proved.

To complete the proof, we need to show that the finite set of generators can be
chosen from a given set of generators for the ideal. If we switch back to writing the
variables as xp, . . ., X, then our monomial idealis I = (x* | « € A) C k[xy, ..., x,].
We need to show that [ is generated by finitely many of the x*’s, where o € A. By
the previous paragraph, we know that I = (x*() ... x%®)) for some monomials
K@ in 1. Since x*) € I = (x* : o € A), Lemma 2 tells us that each x®() is divisible
by x*() for some a(i) € A. From here, it is easy to show that = (x®(1) . x*())
(see Exercise 6 for the details). This completes the proof. O

To better understand how the proof of Theorem 5 works, let us apply it to the
ideal I = (x*y?, x*y* x2y°) discussed earlier in the section. From the picture of the
exponents, you can see that the “projection” is J = (x?) C k[x]. Since x*y> € I,
we have m = 5. Then we get the “slices” J;,, 0 < ¢ < 4 = m — 1, generated by
monomials containing y’:

Jo =J1 = {0},
D=1Js = (x*),
Jy = (%)

These “slices” are easy to see using the picture of the exponents. Then the proof of
Theorem 5 gives I = (x*y3, x*y? x*y* x3y*).

Theorem 5 solves the ideal description problem for monomial ideals, for it tells
that such an ideal has a finite basis. This, in turn, allows us to solve the ideal mem-

bership problem for monomial ideals. Namely, if 7 = (x*(), ... x*®)), then one
can easily show that a given polynomial f is in / if and only if the remainder of f on
division by xM 0 x*0) is zero. See Exercise 8 for the details.

We can also use Dickson’s Lemma to prove the following important fact about
monomial orderings in k[xi, . . ., x,].

Corollary 6. Let > be a relation on Z~,, satisfying:

() > is a total ordering on Z%,,.
(i) If o« > Band vy € 7%, thena + v > B+ 7.
Then > is well-ordering if and only if « > 0 for all o € Z%,,.

Proof. =-: Assuming > is a well-ordering, let cg be the smallest element of Z2 ;. It
suffices to show iy > 0. This is easy: if 0 > ayp, then by hypothesis (ii), we can add
v to both sides to obtain oy > 2ay, which is impossible since «y is the smallest
element of Z< .

<: Assuming that « > 0 for all @ € Z%,, let A C Z~ , be nonempty. We need
to show that A has a smallest element. Since / = (x® | a € A) is a monomial
ideal, Dickson’s Lemma gives us a(1), ..., a(s) € A so that I = (x> ... x*()),
Relabeling if necessary, we can assume that a(1) < «(2) < ... < a(s). We claim
that (1) is the smallest element of A. To prove this, take « € A. Thenx® € I =
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x0 o  x*8)), so that emma 2, x“ is divisible by some x®("), This tells us
a(l) als) hat by L 2, x is divisible by @) This tell
that o« = «(i) + ~ for some y € Z~,. Then y > 0 and hypothesis (ii) imply that

a=a(i)+v>a(i)+0=a() > a(l).
Thus, (1) is the least element of A. O

As a result of this corollary, the definition of monomial ordering given in Defi-
nition 1 of §2 can be simplified. Conditions (i) and (ii) in the definition would be
unchanged, but we could replace (iii) by the simpler condition that o > 0 for all
o € Z%. This makes it much easier to verify that a given ordering is actually a
monomial ordering. See Exercises 9-11 for some examples.

Among all bases of a monomial ideal, there is one that is better than the others.

Proposition 7. A monomial ideal I C klxy, . .., x,] has a basis x®(1 ... x*®) with
the property that x*9) does not divide x*V) for i # j. Furthermore, this basis is
unique and is called the minimal basis of I.

Proof. By Theorem 5, I has a finite basis consisting of monomials. If one monomial
in this basis divides another, then we can discard the other and still have a basis.
Doing this repeatedly proves the existence of a minimal basis x*(1) ... x*(),

For uniqueness, assume that x (M. .., xP® is a second minimal basis of 1. Then
x*) ¢ I and Lemma 2 imply that x®® | x*() for some i. Switching to the other
basis, x*) ¢ I implies that x*¥) | x#) for some j. Thus x*¥) | x*(1), which
by minimality implies j = 1, and x*(") = x#( follows easily. Continuing in this
way, we see that the first basis is contained in the second. Then equality follows by

interchanging the two bases. O
EXERCISES FOR §4
1. Let! C k[x1, ..., x,) be an ideal with the property that for every f = > cax® € I, every

monomial x* appearing in f is also in /. Show that / is a monomial ideal.
2. Complete the proof of Lemma 3 begun in the text.
3. Letl = (x° %y, xy") C kl[x,y].
a. In the (m, n)-plane, plot the set of exponent vectors (m,n) of monomials x"'y" ap-
pearing in elements of /.
b. If we apply the division algorithm to an element f € k[x, y], using the generators of /
as divisors, what terms can appear in the remainder?
4. LetI C k[x, y] be the monomial ideal spanned over k by the monomials x° corresponding
to [ in the shaded region shown at the top of the next page.
a. Use the method given in the proof of Theorem 5 to find an ideal basis for /.
b. Find a minimal basis for / in the sense of Proposition 7.
5. Suppose that ] = (x* | a € A) is a monomial ideal, and let S be the set of all exponents
that occur as monomials of /. For any monomial order >, prove that the smallest element
of S with respect to > must lie in A.
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10.

11.

n ) 0 . O .
(3,6)- . . .
(5,4)0 .
(6,0)
m

(m,n) <—> x™My"

. LetI = (x* | a € A) be a monomial ideal, and assume that we have a finite basis

I={P WX (5)>. In the proof of Dickson’s Lemma, we observed that each x*) is
divisible by x> for some a(i) € A. Prove that [ = (x> ... x*()),

. Prove that Dickson’s Lemma (Theorem 5) is equivalent to the following statement: given

a nonempty subset A C 7%, there are finitely many elements a(1), ..., a(s) € A such
that for every a € A, there exists some i and some v € Z%, such that o = a(i) + 7.

I = (W0 x*®)) is a monomial ideal, prove that a polynomial f is in / if and

only if the remainder of f on division by x*"_ ... x*® is zero. Hint: Use Lemmas 2
and 3.

. Suppose we have the polynomial ring k[xi, ..., %, y1,...,ym]. Let us define a mono-

mial order >ixqs On this ring that mixes lex order for xi, ... x,, with grlex order for
Y1y, Vm. If we write monomials in the n + m variables as x* y”, where o € 7% and
B € 7%, then we define

xa y’B > mixed X’Y y(s <~ xa > ex X’Y or xa = XW and yﬁ >grlex y(s-

Use Corollary 6 to prove that >, is @ monomial order. This is an example of what
is called a product order. 1t is clear that many other monomial orders can be created by
this method.

In this exercise we will investigate a special case of a weight order. Letu = (u1, ..., u,)
be a vector in R" such that u, . .., u, are positive and linearly independent over Q. We
say that u is an independent weight vector. Then, for «, § € 7%, define

a>y << u-a>u-pf,

where the centered dot is the usual dot product of vectors. We call >, the weight order

determined by u.

a. Use Corollary 6 to prove that >, is a monomial order. Hint: Where does your argu-
ment use the linear independence of u, ..., u,?

b. Show thatu = (1, \/5) is an independent weight vector, so that >, is a weight order
on Z%,.

c. Show thatu = (1, \/E, \/§) is an independent weight vector, so that >, is a weight
order on Z3,,,.

Another impoftant weight order is constructed as follows. Let u = (ui,...,u,) be in

7%, and fix a monomial order >4 (such as > OF >greriex) On Z%. Then, for o, 8 €

7%, define ov >y o B if and only if
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u-a>u-f or ura=u-f and o>, p.

We call >, the weight order determined by u and >.

a. Use Corollary 6 to prove that >y, is a monomial order.

b. Find u € Z% so that the weight order >y s is the grlex order > gyex.

c. In the definition of >y, ., the order >, is used to break ties, and it turns out that ties
will always occur when n > 2. More precisely, prove that given u € Z<,, there are
a # Bin Z%, such that u - o = u - 8. Hint: Consider the linear equation uja; +
-+« 4 upa, = 0 over Q. Show that there is a nonzero integer solution (ai, ..., ds),
and then show that (ai,...,a,) = a — 8 for some o, 8 € Z%,,.

d. A useful example of a weight order is the elimination order introduced by BAYER
and STILLMAN (1987b). Fix aninteger | </ < nandletu = (1,...,1,0,...,0),
where there are / 1’s and n — [ 0’s. Then the [-th elimination order >, is the weight
order >y greviex. Prove that >; has the following property: if x* is a monomial in
which one of xi,...,x appears, then x* >; x® for any monomial involving only
Xi41, - . ., X,. Elimination orders play an important role in elimination theory, which
we will study in the next chapter.

The weight orders described in Exercises 10 and 11 are only special cases of weight orders.
In general, to determine a weight order, one starts with a vector u; € R", whose entries may
not be linearly independent over Q. Then o > S if u; -« > u; - 8. But to break ties, one uses
a second weight vector u, € R". Thus, > S alsoholds ifu;-a =u;-fanduy - > u, - 5.
If there are still ties (when u; - = u; - f and w2 - @ = wy - ), then one uses a third
weight vector u3, and so on. It can be proved that every monomial order on Z%, arises in this
way. For a detailed treatment of weight orders and their relation to monomial orders, consult
ROBBIANO (1986). See also Tutorial 10 of KREUZER and ROBBIANO (2000) or Section 1.2
of GREUEL and PFISTER (2008).

§5 The Hilbert Basis Theorem and Grobner Bases

In this section, we will give a complete solution of the ideal description problem
from §1. Our treatment will also lead to ideal bases with “good” properties relative
to the division algorithm introduced in §3. The key idea we will use is that once we
choose a monomial ordering, each nonzero f € k[xy,...,x,| has a unique leading
term LT(f). Then, for any ideal I, we can define its ideal of leading terms as follows.

Definition 1. Let I C k[xy,...,x,] be an ideal other than {0}, and fix a monomial
ordering on k[xy, . .., x,]. Then:

(i) We denote by LT(I) the set of leading terms of nonzero elements of /. Thus,
LT(I) = {cx® | there exists f € I\ {0} with LT(f) = cx*}.
(ii) We denote by (LT(I)) the ideal generated by the elements of LT([).

We have already seen that leading terms play an important role in the divi-
sion algorithm. This brings up a subtle but important point concerning (LT([)).
Namely, if we are given a finite generating set for I, say I = (fi,...,f;), then
(LT(f1),-..,LT(f;)) and (LT(I)) may be different ideals. It is true that LT(f;) €
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LT(I) C (LT(I)) by definition, which implies (LT(f1),...,LT(f;)) C (L1(I)). How-
ever, (LT(I)) can be strictly larger. To see this, consider the following example.

Example 2. Let I = (fi,f,), where fi = x> — 2xy and > = x*y — 2y? + x, and use
the grlex ordering on monomials in k[x, y]. Then

X (@Py =27 +x) -y (F = 2up) = 27,
so that x> € I. Thus x> = LT(x?) € (LT(I)). However x is not divisible by LT(f;) =
x> or LT(f2) = x%y, so that x> ¢ (LT(f;),LT(f2)) by Lemma 2 of §4.

In the exercises for §3, you computed other examples of ideals I = (f1,...,f),
where (LT(I)) was strictly bigger than (LT(f}), ..., LT(f;)). The exercises at the end
of the section will explore what this implies about the ideal membership problem.

We will now show that (LT(I)) is a monomial ideal. This will allow us to apply
the results of §4. In particular, it will follow that (LT(I)) is generated by finitely
many leading terms.

Proposition 3. Ler I C k[x, . .. ,x,] be an ideal different from {0}.

(i) (LT(I)) is a monomial ideal.
(ii) There are gy, . .., g € I such that (LT(I)) = (LT(g1),...,LT(g:)).

Proof. (i) The leading monomials LM(g) of elements g € I\ {0} generate the
monomial ideal (LM(g) | g € I\ {0}). Since LM(g) and LT(g) differ by a nonzero
constant, this ideal equals (LT(g) | g € I\ {0}) = (LT(1)) (see Exercise 4). Thus,
(LT(I)) is a monomial ideal.

(ii) Since (LT(I)) is generated by the monomials LM(g) for g € I\ {0}, Dickson’s
Lemma from §4 tells us that (LT(/)) = (LM(g1),...,LM(g,)) for finitely many
g1,---,& € I. Since LM(g;) differs from LT(g;) by a nonzero constant, it follows
that (LT(7)) = (LT(g1),...,LT(g;)). This completes the proof. O

We can now use Proposition 3 and the division algorithm to prove the existence
of a finite generating set of every polynomial ideal, thus giving an affirmative answer
to the ideal description problem from §1.

Theorem 4 (Hilbert Basis Theorem). Every ideal I C klx,...,x,] has a finite
generating set. In other words, I = {(gy,...,g) for some gi,...,8 € L.

Proof. If I = {0}, we take our generating set to be {0}, which is certainly finite.
If I contains some nonzero polynomial, then a generating set g1, . . ., g; for I can be
constructed as follows.

We first select one particular monomial order to use in the division algorithm
and in computing leading terms. Then [ has an ideal of leading terms (LT(/)). By
Proposition 3, there are gy, . .., g; € I such that (LT(/)) = (LT(g1),...,LT(g)). We
claim that 7 = (g1,...,8)-

It is clear that (gy,...,g;) C I since each g; € I. Conversely, let f € I be any
polynomial. If we apply the division algorithm from §3 to divide f by (g1, ..., &),
then we get an expression of the form
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f=qgi+ - +aqgtr

where no term of r is divisible by any of LT(g), ..., LT(g;). We claim that r = 0.
To see this, note that

r=f—qig — - —qg €l

If r # 0, then LT(r) € (LT(I)) = (LT(g1),...,LT(g:)), and by Lemma 2 of §4,
it follows that LT(r) must be divisible by some LT(g;). This contradicts what it
means to be a remainder, and, consequently, » must be zero. Thus,

f=aqgi+ - +qg+0€(g....8),
which shows that I C (g1, ..., g). This completes the proof. O

Besides answering the ideal description question, the basis {g, ..., g} used in
the proof of Theorem 4 has the special property that (LT(I)) = (LT(g1),...,LT(g)).
As we saw in Example 2, not all bases of an ideal behave this way. We will give these
special bases the following name.

Definition 5. Fix a monomial order on the polynomial ring k[xi, ..., x,]. A finite
subset G = {g1,...,8;} of anideal I C k[xy,...,x,| different from {0} is said to
be a Grobner basis (or standard basis) if

(L1(g1), -+ LT(gr)) = (LT(D)).

Using the convention that ()} = {0}, we define the empty set ) to be the Grobner
basis of the zero ideal {0}.

Equivalently, but more informally, a set {g1, ..., g} C I is a Grobner basis of I
if and only if the leading term of any element of I is divisible by one of the LT(g;)
(this follows from Lemma 2 of §4—see Exercise 5). The proof of Theorem 4 also
establishes the following result.

Corollary 6. Fix a monomial order. Then every ideal I C k[x, . ..,x,| has a Grib-
ner basis. Furthermore, any Grobner basis for an ideal I is a basis of I.

Proof. Given a nonzero ideal, the set G = {g,..., g} constructed in the proof
of Theorem 4 is a Grobner basis by definition. For the second claim, note that if
(Lr(I)) = (L1(g1),...,LT(g)), then the argument given in Theorem 4 shows that
I = {g1,...,8), so that G is a basis for I. (A slightly different proof is given in
Exercise 6.) ([

In §6 we will study the properties of Grobner bases in more detail, and, in partic-
ular, we will see how they give a solution of the ideal membership problem. Grébner
bases are the “good” generating sets we hoped for at the end of §3.

For some examples of Grobner bases, first consider the ideal / from Example 2,
which had the basis {fi, i} = {x* — 2xy, x>y — 2y? + x}. Then {fi, o} is not
a Grobner basis for I with respect to grlex order since we saw in Example 2 that



§5 The Hilbert Basis Theorem and Grobner Bases 79

x? € (Lr(I)), but x> ¢ (LT(f1),LT()). In §7 we will learn how to find a Grébner
basis of 1.

Next, consider the ideal J = (g;, g2) = (x+z,y—z). We claim that g, and g, form
a Grobner basis using lex order in Rlx, y, z]. Thus, we must show that the leading
term of every nonzero element of J lies in the ideal (LT(g;),LT(g2)) = (x,y). By
Lemma 2 of §4, this is equivalent to showing that the leading term of any nonzero
element of J is divisible by either x or y.

To prove this, consider any f = Ag; + Bg> € J. Suppose on the contrary that f
is nonzero and LT(f) is divisible by neither x nor y. Then by the definition of lex
order, f must be a polynomial in z alone. However, f vanishes on the linear subspace
L=V(x+z,y—z) C R3sincef € J.Itis easy to check that (x,y,z) = (—t,,1) € L
for any real number ¢. The only polynomial in z alone that vanishes at all of these
points is the zero polynomial, which is a contradiction. It follows that (g, g») is a
Grobner basis for J. In §6, we will learn a more systematic way to detect when a
basis is a Grobner basis.

Note, by the way, that the generators for the ideal J come from a row echelon

matrix of coefficients:
1 0 1
0o 1-1)/)"

This is no accident: for ideals generated by linear polynomials, a Grobner basis
for lex order is determined by the row echelon form of the matrix made from the
coefficients of the generators (see Exercise 9).

Grobner bases for ideals in polynomial rings were introduced by B. Buchberger
in his PhD thesis BUCHBERGER (1965) and named by him in honor of W. Grobner
(1899-1980), Buchberger’s thesis adviser. The closely related concept of “standard
bases” for ideals in power series rings was discovered independently by H. Hiron-
aka in HIRONAKA (1964). As we will see later in this chapter, Buchberger also
developed the fundamental algorithms for working with Grobner bases. Sometimes
one sees the alternate spelling “Groebner bases,” since this is how the command is
spelled in some computer algebra systems.

We conclude this section with two applications of the Hilbert Basis Theorem.
The first is an algebraic statement about the ideals in k[xy, ..., x,]. An ascending
chain of ideals is a nested increasing sequence:

LCLCLC: .
For example, the sequence
(H (x1) C (x1,x2) © oo S (xg, ., 2)

forms a (finite) ascending chain of ideals. If we try to extend this chain by including
an ideal with further generator(s), one of two alternatives will occur. Consider the
ideal (xy,...,x,, f) where f € klx{,...,x,]. If f € (x1,...,x,), then we obtain
{x1,...,x,) again and nothing has changed. If, on the other hand, f ¢ (xi,...,x,),
then we claim (xi,...,x,, /) = k[xi,...,x,]. We leave the proof of this claim to
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the reader (Exercise 11 of this section). As a result, the ascending chain (1) can
be continued in only two ways, either by repeating the last ideal ad infinitum or
by appending k[xi,...,x,] and then repeating it ad infinitum. In either case, the
ascending chain will have “stabilized” after a finite number of steps, in the sense
that all the ideals after that point in the chain will be equal. Our next result shows
that the same phenomenon occurs in every ascending chain of ideals in k[xy, . . ., x,].

Theorem 7 (The Ascending Chain Condition). Let
LChLCLC: -

be an ascending chain of ideals in k|xi, .. .,x,]. Then there exists an N > 1 such
that

In=INy1 =Int2=""-.

Proof. Given the ascending chain/; C I, C I3 C -- -, consider the set ] = U?:OI I;.
We begin by showing that / is also an ideal in k[xy, . . ., x,]. First, 0 € I since 0 € [;
for every i. Next, if f, g € I, then, by definition, f € [;, and g € I; for some i
and j (possibly different). However, since the ideals I; form an ascending chain, if
we relabel so that i < j, then both f and g are in ;. Since /; is an ideal, the sum
f+g €l hence, € I. Similarly, if f € I and r € k[xi,...,x,], then f € I; for some
i,andr-f € I; C I. Hence, I is an ideal.

By the Hilbert Basis Theorem, the ideal / must have a finite generating set: I =
(fi,- .., fs). Buteach of the generators is contained in some one of the [;, say f; € I,
for some j;,i = 1,...,s. We take N to be the maximum of the j;. Then by the
definition of an ascending chain f; € Iy for all i. Hence we have

I={fi,....f) CIyCIy;y1 C---C1I.

As a result the ascending chain stabilizes with Iy. All the subsequent ideals in the
chain are equal. (|

The statement that every ascending chain of ideals in k[xj, ..., x,] stabilizes is
often called the ascending chain condition, or ACC for short. In Exercise 12 of
this section, you will show that if we assume the ACC as hypothesis, then it follows
that every ideal is finitely generated. Thus, the ACC is actually equivalent to the
conclusion of the Hilbert Basis Theorem. We will use the ACC in a crucial way in
§7, when we give Buchberger’s algorithm for constructing Grobner bases. We will
also use the ACC in Chapter 4 to study the structure of affine varieties.

Our second consequence of the Hilbert Basis Theorem will be geometric. Up to
this point, we have considered affine varieties as the sets of solutions of specific
finite sets of polynomial equations:

V(fi,.... fs) ={(a1,...,a,) € k" | filar,...,a,) = 0 forall i}.

The Hilbert Basis Theorem shows that, in fact, it also makes sense to speak of the
affine variety defined by an ideal I C k[xy, ..., X,).
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Definition 8. Let / C k[xy, ..., x,] be an ideal. We will denote by V(1) the set
V() ={(ai,...,a,) €k | flai,...,a,) =0forallf € I}.

Even though a nonzero ideal / always contains infinitely many different polyno-
mials, the set V() can still be defined by a finite set of polynomial equations.

Proposition 9. V(I) is an affine variety. In particular, if I = (fi,..., f;), then
V) =V(fi,.-, fy)

Proof. By the Hilbert Basis Theorem, I = (fi, ..., f;) for some finite generating
set. We claim that V(I) = V(fi, ..., f;). First, since the f; € I, if f(a1,...,a,) =0
for all f € I, then fi(ay,...,a,) = 0,50 V(I) C V(fi,...,f;). On the other hand,
let (ai,...,a,) € V(fi,..., fs)and letf € I. Since I = (fi, ..., f;), we can write

f=3 i
i=1

for some h; € k[x,...,x,]. But then

flar,...,a,) = Zh,-(al,...,an)fi(al,...,an)
i=1

:Zhi(al,...,an)ﬁ:o.
i=1

Thus, V(f1,...,fs) C V(I) and, hence, they are equal. O

The most important consequence of this proposition is that varieties are de-
termined by ideals. For example, in Chapter 1, we proved that V(fi,..., f;) =
V(gi,...,8&) whenever (fi,..., f;) = (g1, .., &) (see Proposition 4 of Chapter 1,
§4). This proposition is an immediate corollary of Proposition 9. The relation be-
tween ideals and varieties will be explored in more detail in Chapter 4.

In the exercises, we will exploit Proposition 9 by showing that by using the right
generating set for an ideal 1, we can gain a better understanding of the variety V().

EXERCISES FOR §5

L LetI = (g1,8,83) C Rlx,y,7, where g = x* —xz + y,82 = xy — 2 and
g3 = x — yz'. Using the lex order, give an example of g € I such that LT(g) ¢
<LT(gl)7LT(g2)7LT(g3)>'

2. For the ideals and generators given in Exercises 5, 6, and 7 of §3, show that LT(/) is
strictly bigger than (LT(f1),...,LT(f;)). Hint: This should follow directly from what
you did in those exercises.

3. To generalize the situation of Exercises 1 and 2, suppose that I = (fi, ..., f;) is an ideal
such that (LT(f1),...,LT(f;)) is strictly smaller than (LT(/)).
a. Prove that there is some f € [ whose remainder on division by fi, .. ., f; is nonzero.

Hint: First show that LT(f) ¢ (LT(f1),...,LT(f;)) for some f € 1. Then use
Lemma 2 of §4.
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10.

11.
12.

13.

14.

15.

16.

17.

Chapter 2 Grobner Bases

b. What does part (a) say about the ideal membership problem?
c. How does part (a) relate to the conjecture you were asked to make in Exercise 8 of
§37

. IfI Ckfxy, ..., x,] is anideal, prove that (LT(g) | ¢ € I\{0}) = (LM(g) | g € I\ {0}).
. Let I be an ideal of k[xi, .. .,x,]. Show that G = {g1,..., g} C I is a Grobner basis of

I if and only if the leading term of any element of / is divisible by one of the LT(g;).

. Corollary 6 asserts that a Grobner basis is a basis, i.e., if G = {g1,..., g} C I satisfies

(Lr(l)) = (L1(81),...,LT(8)), then I = {gi, ..., g:). We gave one proof of this in the
proof of Theorem 4. Complete the following sketch to give a second proof. If f € I, then
divide f by (g1, ..., &:). At each step of the division algorithm, the leading term of the
polynomial under the division will be in (LT(7)) and, hence, will be divisible by one of
the LT(g;). Hence, terms are never added to the remainder, so that f = >;_, a; g when
the algorithm terminates.

. If we use grlex order with x >y > z, is {x*y* — 2°, x’y® — 1, x*y* — 2z} a Grobner basis

for the ideal generated by these polynomials? Why or why not?

. Repeat Exercise 7 for I = (x — 7%,y — z°) using the lex order. Hint: The difficult part of

this exercise is to determine exactly which polynomials are in (LT(/)).

. Let A = (a;) be an m x n matrix with real entries in row echelon form and let J/ C

R[x1, ..., xa] be an ideal generated by the linear polynomials » 37, ajx; for I <i < m.
Show that the given generators form a Grobner basis for J with respect to a suitable
lexicographic order. Hint: Order the variables corresponding to the leading 1’s before
the other variables.
Let I C k[xi,...,x,] be a principal ideal (that is, I is generated by a single f € I—
see §5 of Chapter 1). Show that any finite subset of / containing a generator for / is a
Grobner basis for /.
Letf € k[xi,...,xa). Iff & (x1,...,x,), then show (x1,...,%a,f) = k[x1,..., %]
Show that if we take as hypothesis that every ascending chain of ideals in k[xi, . .., x,]
stabilizes, then the conclusion of the Hilbert Basis Theorem is a consequence. Hint: Ar-
gue by contradiction, assuming that some ideal I C k[xi, . .. ,x,] has no finite generating
set. The arguments you gave in Exercise 12 should not make any special use of proper-
ties of polynomials. Indeed, it is true that in any commutative ring R, the following two
statements are equivalent:

(1) Every ideal I C R is finitely generated.

(i1) Every ascending chain of ideals of R stabilizes.
Let

Vi2Va2o Vi

be a descending chain of affine varieties. Show that there is some N > 1 such that
Vv = Vn41 = Vn42 = - - -. Hint: Use the ACC and Exercise 14 of Chapter 1, §4.
Letfi,f2,... € k[x1, ..., x,] be an infinite collection of polynomials. Prove that there is
an integer N such that f; € (fi,...,fy) foralli > N + 1. Hint: Use fi, f, . . . to create
an ascending chain of ideals.
Given polynomials fi, />, ... € k[x1,...,x), let V(fi,/2,...) C k" be the solutions of
the infinite system of equations fi = f> = --- = 0. Show that there is some N such that
V(fi.fo,-o) = V(fi,o o ).
In Chapter 1, §4, we defined the ideal I(V) of a variety V C k”. In this section, we
defined the variety of any ideal (see Definition 8). In particular, this means that V(I(V))
is a variety. Prove that V(I(V)) = V. Hint: See the proof of Lemma 7 of Chapter 1, §4.
Consider the variety V = V(x* — y,y + x> — 4) C C2 Note that V = V(I), where
I={(*—y,y+2—4).

a. Prove that/ = (x* —y,x* —2).

b. Using the basis from part (a), prove that V(I) = {(£+/2,2)}.
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One reason why the second basis made V easier to understand was that x> — 2 could
be factored. This implied that V “split” into two pieces. See Exercise 18 for a general
statement.

18. When an ideal has a basis where some of the elements can be factored, we can use the
factorization to help understand the variety.
a. Show thatif g € k[xi,...,x,] factors as g = g1 g2, then for any f, we have V(f,g) =

V(f.81) UV(f,8).
b. Show that in R*, V(y — x*,xz — ¥*) = V(y — x%, xz — x*).
c. Use part (a) to describe and/or sketch the variety from part (b).

§6 Properties of Grobner Bases

As shown in §5, every nonzero ideal I C k[xy, ..., x,] has a Grobner basis. In this
section, we will study the properties of Grobner bases and learn how to detect when
a given basis is a Grobner basis. We begin by showing that the undesirable behavior
of the division algorithm in k[xy, . . ., x,] noted in §3 does not occur when we divide
by the elements of a Grébner basis.

Let us first prove that the remainder is uniquely determined when we divide by a
Grobner basis.

Proposition 1. Let I C k[x,...,x,] be an ideal and let G = {g1,...,8} be a
Grobner basis for I. Then givenf € klxy, ..., x,|, there is a unique r € k[xi, ..., x,]
with the following two properties:

(i) No term of r is divisible by any of LT(g1), ..., LT(g;).

(ii) There is g € I such thatf = g+ r.
In particular, r is the remainder on division of f by G no matter how the elements of
G are listed when using the division algorithm.

Proof. The division algorithm gives f = q1g1 + - - - + q:8: + r, where r satisfies
(i). We can also satisfy (ii) by setting g = ¢q181 + - - - + ¢:8 € 1. This proves the
existence of r.

To prove uniqueness, suppose f = g-+r = g’ +r’ satisfy (i) and (ii). Then r—r' =
g —g € I sothatif r # 7/, then LT(r — #') € (LT()) = (LT(g1),...,LT(g/))-
By Lemma 2 of §4, it follows that LT(r — ') is divisible by some LT(g;). This is

impossible since no term of r, ¥’ is divisible by one of LT(g;), . . ., LT(g;). Thus r—r/
must be zero, and uniqueness is proved.
The final part of the proposition follows from the uniqueness of r. ]

The remainder r is sometimes called the normal form of f, and its uniqueness
properties will be explored in Exercises 1 and 4. In fact, Grobner bases can be char-
acterized by the uniqueness of the remainder—see Theorem 5.35 of BECKER and
WEISPFENNING (1993).

Although the remainder r is unique, even for a Grobner basis, the “quotients” g;
produced by the division algorithm f = g8, + - - - + q:8; + r can change if we list
the generators in a different order. See Exercise 2 for an example.

As a corollary of Proposition 1, we get the following criterion for when a given
polynomial lies in an ideal.
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Corollary 2. Let G = {g1, . .., g} be a Grobner basis for anideal I C k|xy, . .., x,]
andletf € klxy,...,x,]. Thenf € I if and only if the remainder on division of f by
G is zero.

Proof. If the remainder is zero, then we have already observed that f € 1. Con-
versely, given f € I, then f = f + 0 satisfies the two conditions of Proposition 1. It
follows that 0 is the remainder of f on division by G. ]

The property given in Corollary 2 is sometimes taken as the definition of a Grob-
ner basis, since one can show that it is true if and only if (LT(g;),...,LT(g;)) =
(LT(I)) (see Exercise 3). For this and similar conditions equivalent to being a Gréb-
ner basis, see Proposition 5.38 of BECKER and WEISPFENNING (1993).

Using Corollary 2, we get an algorithm for solving the ideal membership problem
from §1, provided that we know a Grobner basis G for the ideal in question—we
only need to compute a remainder with respect to G to determine whether f € 1. In
§7, we will learn how to find Grobner bases, and we will give a complete solution
of the ideal membership problem in §8.

We will use the following notation for the remainder.

Definition 3. We will write J_‘F for the remainder on division of f by the ordered
s-tuple F = (f1,...,f;). If F is a Grobner basis for (fi, .. .,f;), then we can regard
F as a set (without any particular order) by Proposition 1.

For instance, with F = (x*y — y?,x*y?> — y?) C k[x, ], using the lex order, we
have "
Xy =x’

since the division algorithm yields
Py = (@ +ay) Py —»*) +0- (0 =)+’

We will next discuss how to tell whether a given generating set of an ideal is
a Grobner basis. As we have indicated, the “obstruction” to {fi,...,f;} being a
Grobner basis is the possible occurrence of polynomial combinations of the f; whose
leading terms are not in the ideal generated by the LT(f;). One way this can occur is
if the leading terms in a suitable combination

ax™f; — bx"f;

cancel, leaving only smaller terms. On the other hand, ax® f; — befj € I, so its
leading term is in (LT()). You should check that this is what happened in Example 2
of §5. To study this cancellation phenomenon, we introduce the following special
combinations.

Definition 4. Let f, g € k[x|, . .., x,] be nonzero polynomials.

(i) If multideg(f) = « and multideg(g) = f, then let v = (vy1,...,7.), where
~vi = max(ay, B;) for each i. We call x” the least common multiple of LM(f)
and LM(g), written x7 = lem(LM(f), LM(g)).
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(ii) The S-polynomial of f and g is the combination

() )

(Note that we are inverting the leading coefficients here as well.)

S(f:8) =

.g'

For example, let f = x*y? — x?y? + x and g = 3x*y + y* in Rlx, y] with the grlex
order. Then v = (4,2) and

S(f,8) = zz f - 3ny g

—xf=(1/3)y
Senie

An S-polynomial S(f,g) is “designed” to produce cancellation of leading terms.
See Exercise 7 for a precise description of the cancellation that occurs.

The following lemma shows that every cancellation of leading terms among
polynomials of the same multidegree comes from the cancellation that occurs for
S-polynomials.

Lemma 5. Suppose we have a sum Y ;_, pi, where multideg(p;) = & € Z%, for
all i. If multideg(>";_, pi) < 6, then >_;_, p; is a linear combination, with coef-
ficients in k, of the S-polynomials S(p;,pi) for 1 < j,1 < s. Furthermore, each
S(pj,pi) has multidegree < 6.

Proof. Letd; = LC(p;), so that dix? is the leading term of p;. Since the sum Yo Di
has strictly smaller multidegree, it follows easily that  ;_, d; = 0.

Next observe that since p; and p; have the same leading monomial, their
S-polynomial reduces to

1 1
1 oP) = —Pi— Dy
(1) S(pispj) a? djp/

It follows that

- 1 1 1 1
ZdiS(Pi,Px) =d (d_pl - d—Ps) + dz(d—Pz - d—Ps) +oee
(2) i—1 1 s 2 s
1
=p1+p2+--+ps_1— Z(dl + -+ di_1)ps.

However, Zle d; = 0implies d; + - - - + d;—1 = —d, so that (2) reduces to

ZdiS(Pi,Px) =pi+-+p1+ps
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Thus, Zf: | Piis a sum of S-polynomials of the desired form, and equation (1) makes

it easy to see that S(p;, pj) has multidegree < ¢. The lemma is proved. (]
When py, ..., p, satisfy the hypothesis of Lemma 5, we get an equation of the
form ,
> o= ciS(pp)-
i=1 jil

Let us consider where the cancellation occurs. In the sum on the left, every summand
p; has multidegree d, so the cancellation occurs only after adding them up. However,
in the sum on the right, each summand ¢;S(p;, p;) has multidegree < 4, so that the
cancellation has already occurred. Intuitively, this means that all cancellation can be
accounted for by S-polynomials.

Using S-polynomials and Lemma 5, we can now prove the following criterion of
Buchberger for when a basis of an ideal is a Grobner basis.

Theorem 6 (Buchberger’s Criterion). Let I be a polynomial ideal. Then a basis
G = {g1,...,8} of I is a Grébner basis of I if and only if for all pairs i # j, the
remainder on division of S(g;, g;) by G (listed in some order) is zero.

Proof. =:If G is a Grobner basis, then since S(g;, g;) € 1, the remainder on division
by G is zero by Corollary 2.

<: Letf € I be nonzero. We will show that LT(f) € (LT(g1),...,LT(g)) as
follows. Write

t
f=> higi, hi€kxi,... x)].

i=1

From Lemma 8 of §2, it follows that
3) multideg(f) < max(multideg(h;g;) | higi # 0).

The strategy of the proof is to pick the most efficient representation of f, meaning
that among all expressions f = Z:: | higi, we pick one for which

d = max(multideg(h;g;) | higi # 0)

is minimal. The minimal § exists by the well-ordering property of our monomial
ordering. By (3), it follows that multideg(f) < ¢.

If equality occurs, then multideg(f) = multideg(h;g;) for some i. This easily
implies that LT(f) is divisible by LT(g;). Then LT(f) € (LT(g1),.-.,LT(g)), which
is what we want to prove.

It remains to consider the case when the minimal § satisfies multideg(f) < 4.
We will use S(g;, gj)G = 0 for i # j to find a new expression for f that decreases .
This will contradict the minimality of § and complete the proof.

Given an expression f = Zf: | higi with minimal J, we begin by isolating the
part of the sum where multidegree ¢ occurs:
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f= Z higi + Z higi

(4) multideg (higi) =4 multideg (h;gi) <o
= Z LT(hi)gi + Z (l’li — LT(hi))gi + Z higi-
multideg (h;gi)=4 multideg (h;gi) =4 multideg (higi) <d

The monomials appearing in the second and third sums on the second line all have
multidegree < ¢. Then multideg(f) < ¢ means that the first sum on the second line
also has multidegree < 4.

The key to decreasing ¢ is to rewrite the first sum in two stages: use Lemma 5

to rewrite the first sum in terms of S-polynomials, and then use S(g;, gj)G =0to
rewrite the S-polynomials without cancellation.
To express the first sum on the second line of (4) using S-polynomials, note that

(5) Z LT(h,')g,'

multideg (h;g;)=4

satisfies the hypothesis of Lemma 5 since each p; = LT(h;)g; has multidegree ¢
and the sum has multidegree < §. Hence, the first sum is a linear combination with
coefficients in k of the S-polynomials S(p;, p;). In Exercise 8, you will verify that

S(p”p]) = -xéi%fS(giugj%

where x? = lem(LM(g;), LM(g;)). It follows that the first sum (5) is a linear com-
bination of x° =715 (g;, g;) for certain pairs (i, ).

Consider one of these S-polynomials S(g;, g;). Since S(g;, gj)G = 0, the division
algorithm (Theorem 3 of §3) gives an expression

(6) S(gi, &) ZAzgz,
where A; € k[xy,...,x,] and
@) multideg(A;g;) < multideg(S(g;, g))

when A;g; # 0. Now multiply each side of (6) by x>~ to obtain
®) PN ) Z Bigi,

where B; = x®~7A,. Then (7) implies that when B, g; # 0, we have
©) multideg(B;g;) < multideg(x’~"S(g;, g;)) < &

since LT(S(g;,8;)) < lem(LM(g;), LM(g;j)) = x7 by Exercise 7.
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It follows that the first sum (5) is a linear combination of certain x°~7§(g;, &)
each of which satisfies (8) and (9). Hence we can write the first sum as

(10) Y. ugi=) B
=1

multideg (h;gi)=4
with the property that when B, g # 0, we have
(11) multideg(B;g;) < 4.

Substituting (10) into the second line of (4) gives an expression for f as a polynomial
combination of the g;’s where all terms have multidegree < 4. This contradicts the
minimality of 4 and completes the proof of the theorem. (]

The Buchberger criterion given in Theorem 6 is one of the key results about
Grobner bases. We have seen that Grobner bases have many nice properties, but, so
far, it has been difficult to determine if a basis of an ideal is a Grobner basis (the
examples we gave in §5 were rather trivial). Using the Buchberger criterion, also
called the S-pair criterion, it is easy to show whether a given basis is a Grobner
basis. Furthermore, in §7, we will see that the S-pair criterion also leads naturally to
an algorithm for computing Groébner bases.

As an example of how to use Theorem 6, consider the ideal I = (y — x?,z — x%)
of the twisted cubic in R?. We claim that G = {y — x>,z — x*} is a Grobner basis
for lex order with y > z > x. To prove this, consider the S-polynomial

Z Z
S(y— 2%z ) = y;(y—x% ~ () = ol

Using the division algorithm, one finds that
—? oyt =2 (y = a%) + (=) (2= 20) 40,

so that S(y — x2,z — x3)G = 0. Thus, by Theorem 6, G is a Grébner basis for 1.
You can also check that G is not a Grobner basis for lex order with x > y > z (see
Exercise 9).

EXERCISES FOR §6

1. Show that Proposition 1 can be strengthened slightly as follows. Fix a monomial order-
ing and let I C k[xi, ..., x,] be an ideal. Suppose that f € k[x, ..., x].
a. Show that f can be written in the form f = g + r, where g € I and no term of r is
divisible by any element of LT({).
b. Given two expressions f = g + r = g’ + 7 as in part (a), prove that r = r'. Thus, r
and g are uniquely determined.
This result shows once a monomial order is fixed, we can define a unique “remainder of
f on division by /.” We will exploit this idea in Chapter 5.
2. In §5, we showed that G = {x + z,y — z} is a Grobner basis for lex order. Let us use
this basis to study the uniqueness of the division algorithm.
a. Dividexyby x4+ z,y — z.
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11.

12.

13.

b. Now interchange the two polynomials and divide xy by y — z, x + z.

You should get the same remainder (as predicted by Proposition 1), but the “quotients”
should be different for the two divisions. This shows that the uniqueness of the remainder
is the best one can hope for.

. In Corollary 2, we showed that if I = (g1, ...,g) andif G = {gi, ..., g} is a Grbner

basis for 7, then]_‘G = Ofor allf € I. Prove the converse of this statement. Namely, show

that if G is a basis for I with the property that]_‘G = Oforallf € I, then G is a Grobner
basis for 1.

. Let G and G’ be Grosbner bases for an ideal I with respect to the same monomial order

- —_
in k[xi, . ..,x,]. Show that £ = 7% forall f € k[x1, . .., xs]. Hence, the remainder on
division by a Grobner basis is even independent of which Grobner basis we use, as long
as we use one particular monomial order. Hint: See Exercise 1.

. Compute S(f, g) using the lex order.

a. f=4xz— Ty, g=xyZ + 3x*.
b. f=x'y -7, g=23x — Y

c. f=x"yz+2ixyz, g =2x"yz+4.
d. f=xy+2, g=2 -3~

. Does S(f,g) depend on which monomial order is used? Illustrate your assertion with

examples.

. Prove that multideg(S(f,g)) < -, where x” = lem(LM(f), LM(g)). Explain why this

inequality is a precise version of the claim that S-polynomials are designed to produce
cancellation.

. As in the proof of Theorem 6, suppose that ¢;x*()g; and ija(j) g have multidegree 0.

Prove that ) _
S Vg, x*Vgj) = x"78 (g1, gy),
where x77 = lem(LM(g;), LM(g)))-
Show that {y — x?,z — x*} is not a Grobner basis for lex order with x >y > z.

. Using Theorem 6, determine whether the following sets G are Grobner bases for the

ideal they generate. You may want to use a computer algebra system to compute the

S-polynomials and remainders.

a. G={x* —y,x’ — z} for grlex order.

b. G = {x* —y,x’ — z} for invlex order (see Exercise 6 of §2).

c. G={xy®> —xz+y,xy— 7>, x — yz*} for lex order.

Letf, g € k|xi, . ..,x,] be polynomials such that LM(f) and LM(g) are relatively prime

monomials and LC(f) = LC(g) = 1. Assume that f or g has at least two terms.

a. Show that S(f, 8) = —(g — LT(8))f + (f — LT(f))s.

b. Deduce that S(f,g) # 0 and that the leading monomial of S(f, g) is a multiple of
either LM(f) or LM(g) in this case.

Let f, g € k[x1, ..., x,] be nonzero and x*, x® be monomials. Verify that

S(f,x7g) = 27S(f,8)
where
L lem(x*LM(/), ¥’LM(g))
lem(LM(f),LM(g))
Be sure to prove that x” is a monomial. Also explain how this relates to Exercise 8.
Let I C k[xi,...,x,] be an ideal, and let G be a Grobner basis of 1.

a. Show that]_‘G = g% if and only if f — g € I. Hint: See Exercise 1.
b. Use Exercise 1 to show that

T =70 43
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c. Deduce that G
—G _7G _
8 =f"8%.
We will return to an interesting consequence of these facts in Chapter 5.

§7 Buchberger’s Algorithm

In Corollary 6 of §5, we saw that every ideal in k[x1, ..., x,] has a Grobner basis.
Unfortunately, the proof given was nonconstructive in the sense that it did not tell
us how to produce the Grobner basis. So we now turn to the question: given an ideal
I C k[xy,...,x,], how can we actually construct a Grobner basis for I? To see the
main ideas behind the method we will use, we return to the ideal of Example 2 from
§5 and proceed as follows.

Example 1. Consider the ring Q[x,y] with grlex order, and let I = (fi,f2) =
(x* — 2xy,x’y — 2y + x). Recall that {fi,f>} is not a Grobner basis for I since
LT(S(fi,f2) = =2 & (LT(fi), LT(f2)).

To produce a Grobner basis, one natural idea is to try first to extend the original
generating set to a Grobner basis by adding more polynomials in /. In one sense,
this adds nothing new, and even introduces an element of redundancy. However, the
extra information we get from a Grobner basis more than makes up for this.

What new generators should we add? By what we have said about the
S-polynomials in §6, the following should come as no surprise. We have S(f1,/2) =
—x* € I, and its remainder on division by F = (f;, f2) is —x?, which is nonzero.
Hence, we should include that remainder in our generating set, as a new generator
fs = —x*. If we set F = (fi, f», f3), we can use Theorem 6 of §6 to test if this new
set is a Grobner basis for I. We compute

S(fi, f2) = f3, s0
S(fL )" =0,

S(fi, f3) = (¢ = 2xy) = (=x)(=**) = —2xy, but
S ) = —2xy £0.

Thus, we must add f4 = —2xy to our generating set. If we let F = (f1, f, f3, f1),
then by Exercise 12 we have

St 1) =5 ) =0,

S(fis fa) = y(¥ = 2xy) — (—1/2)x*(=2xy) = —2x" = ¥fa, 50
S(hofa) =0,

S(fo, ) = (Fy =297 +x) — (—y)(—x") = =2" + x, but
mF = -2y* +x#0.
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Hence, we must also add fs = —2y> + x to our generating set. Setting F =
(f1, f2, f3, fa, f5), one can compute that

S(fn f) =O0forall 1 <i<j<S5.
By Theorem 6 of §6, it follows that a grlex Grobner basis for / is given by

(o fonfafst = {5 — 2xp, 6%y — 2y + x, —x%, —2xy, =2y + x}.

The above example suggests that in general, one should try to extend a basis F to

a Grobner basis by successively adding nonzero remainders S( f;, ﬁ)F to F. This idea
is a natural consequence of the S-pair criterion from §6 and leads to the following
algorithm due to Buchberger for computing a Grobner basis.

Theorem 2 (Buchberger’s Algorithm). Ler I = (fi,...,f;) # {0} be a polyno-
mial ideal. Then a Grobner basis for I can be constructed in a finite number of steps
by the following algorithm:

Input: F = (fi,....f;)
Output : a Grobner basis G = (g1,...,8;) forl, with F C G

G:=F
REPEAT
G :=G
FOR each pair {p, ¢}, p # q in G’ DO
ri=Sp.q)"
IFr#0THEN G := GU {r}
UNTILG =G’
RETURN G

Proof. We begin with some frequently used notation. If G = {g1, ..., &}, then (G)
and (LT(G)) will denote the following ideals:

(G) = (g1,--,81)
(L1(G)) = (LT(g1), - - -, LT(80))-

Turning to the proof of the theorem, we first show that G C [ holds at every stage of
the algorithm. This is true initially, and whenever we enlarge G, we do so by adding
the remainder r = S(p, q)G forp,q € G' C G. Thus, if G C I, then p, ¢ and, hence,
S(p, q) are in I, and since we are dividing by G’ C I, we get GU {r} C I. We also
note that G contains the given basis F of I, so that G is actually a basis of /.

The algorithm terminates when G = G’, which means that r = S(p, q)G = 0 for
all p, g € G. Hence G is a Grobner basis of (G) = I by Theorem 6 of §6.
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It remains to prove that the algorithm terminates.We need to consider what hap-
pens after each pass through the main loop. The set G consists of G’ (the old G)
together with the nonzero remainders of S-polynomials of elements of G’. Then

6)) (Lr(G)) € (L1(G))

since G’ C G. Furthermore, if G’ # G, we claim that (LT(G')) is strictly smaller
than (LT(G)). To see this, suppose that a nonzero remainder r of an S-polynomial has
been adjoined to G. Since r is a remainder on division by G’, LT(r) is not divisible
by the leading terms of elements of G’, and thus LT(r) ¢ (LT(G’)) by Lemma 2
of §4. Yet LT(r) € (LT(G)), which proves our claim.

By (1), the ideals (LT(G’)) from successive iterations of the loop form an ascend-
ing chain of ideals in k[x1, . . . , x,,]. Thus, the ACC (Theorem 7 of §5) implies that af-
ter a finite number of iterations the chain will stabilize, so that (LT(G’)) = (LT(G))
must happen eventually. By the previous paragraph, this implies that G’ = G, so
that the algorithm must terminate after a finite number of steps. (]

Taken together, the Buchberger criterion (Theorem 6 of §6) and the Buchberger
algorithm (Theorem 2 above) provide an algorithmic basis for the theory of Grobner
bases. These contributions of Buchberger are central to the development of the sub-
ject. In §8, we will get our first hints of what can be done with these methods, and a
large part of the rest of the book will be devoted to exploring their ramifications.

We should also point out the algorithm presented in Theorem 2 is only a rudi-
mentary version of the Buchberger algorithm. It was chosen for what we hope will
be its clarity for the reader, but it is not a very practical way to do the computation.

Note (as a first improvement) that once a remainder S (p q) = 0, that remainder
will stay zero even if we adjoin further elements to the generating set G'. Thus, there
is no reason to recompute those remainders on subsequent passes through the main
loop. Indeed, if we add our new generators f; one at a time, the only remainders that

need to be checked are S(f;, Jj)G , where i < j— 1. Itis a good exercise to revise
the algorithm to take this observation into account. Other improvements of a deeper
nature can also be made, but we will postpone considering them until §10.

Grobner bases computed using the algorithm of Theorem 2 are often bigger than
necessary. We can eliminate some unneeded generators by using the following fact.

Lemma 3. Let G be a Grobner basis of I C k[xi, ... ,x,). Let p € G be a polynomial
such that LT(p) € (LT(G \ {p})). Then G \ {p} is also a Grobner basis for I.

Proof. We know that (LT(G)) = (LT(I)). If LT(p) € (LT(G \ {p})), then we have
(LT(G\ {p})) = (LT(G)). By definition, it follows that G \ {p} is also a Gribner
basis for /. 0

By adjusting constants to make all leading coefficients equal to 1 and removing
any p with LT(p) € (LT(G \ {p})) from G, we arrive at what we will call a minimal
Grobner basis. We can construct a minimal Grobner basis for a given nonzero ideal
by applying the algorithm of Theorem 2 and then using Lemma 3 to eliminate any
unneeded generators that might have been included.
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To illustrate this procedure, we return to the ideal I studied in Example 1. Using
grlex order, we found the Grobner basis

f = X - 2xy,
h=xy—2y"+x,
fr=—2

Ja = —2xy,

fs = =2y +x.

Since some of the leading coefficients are different from 1, the first step is to
multiply the generators by suitable constants to make this true. Then note that
LT(fi) = x> = —x - LT(f3). By Lemma 3, we can dispense with f; in the mini-
mal Grobner basis. Similarly, since LT(f>) = x%y = —(1/2)x - LT(f3), we can also
eliminate f,. There are no further cases where the leading term of a generator divides
the leading term of another generator. Hence,

f=4 fa =2y, fs=y —(1/2)x

is a minimal Grobner basis for 7.

When G is a minimal Grobner basis, the leading terms LT(p), p € G, form the
unique minimal basis of (LT(7)) by Proposition 7 of §4 (see Exercise 6). Unfortu-
nately, the original ideal / may have many minimal Grobner bases. For example, in
the ideal I considered above, it is easy to check that

2) =3 4axy, fa=xy, fs=y—(1/2)x

is also a minimal Grobner basis, where a € Q is any constant. Thus, we can produce
infinitely many minimal Grobner bases. Fortunately, we can single out one minimal
basis that is better than the others. The definition is as follows.

Definition 4. A reduced Grobner basis for a polynomial ideal / is a Grobner basis
G for [ such that:

(i) Lc(p) =1 forallp € G.
(ii) For all p € G, no monomial of p lies in (LT(G \ {p})).

Note that for the Grobner bases given in (2), only the one with a = 0 is reduced.
In general, reduced Grobner bases have the following nice property.

Theorem 5. Ler I # {0} be a polynomial ideal. Then, for a given monomial order-
ing, I has a reduced Grobner basis, and the reduced Grobner basis is unique.

Proof. As noted above, all minimal Grobner bases for / have the same leading
terms. Now let G be a minimal Grobner basis for /. We say that g € G is fully
reduced for G provided that no monomial of g is in (LT(G\ {p})). Observe that g is
fully reduced for any other minimal Grbner basis G’ of I that contains g since G’
and G have the same leading terms.
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Next, given g € G, let g’ = g@\M¢} and set G’ = (G \ {g}) U {g'}. We claim that
G' is a minimal Grobner basis for I. To see this, first note that LT(g") = LT(g), for
when we divide g by G \ {g},LT(g) goes to the remainder since it is not divisible
by any element of LT(G \ {g}). This shows that (LT(G’)) = (LT(G)). Since G’ is
clearly contained in I, we see that G’ is a Grobner basis, and minimality follows.
Finally, note that g’ is fully reduced for G’ by construction.

Now, take the elements of G and apply the above process until they are all fully
reduced. The Grobner basis may change each time we do the process, but our earlier
observation shows that once an element is fully reduced, it stays fully reduced since
we never change the leading terms. Thus, we end up with a reduced Grobner basis.

Finally, to prove uniqueness, suppose that G and G are reduced Grobner bases
for I. Then in particular, G and G are rllinimal Grobner bases, and hence haD/e the
same leading terms, i.e., LT(G) = LT(G). Thus, given g € G, there is § € G such
that LT(g) = LT(g). If we can show that g = g, it will follow that G = G, and
uniqueness will be proved.

To show g = g, consider g — g. This is in /, and since G is a Grobner basis,
it follows that g — g° = 0. But we also know LT(g) = LT(g). Hence, these terms

cancel in g — g, and the remaining terms are divisible by none of LT(G) = LT(G)

since G and G are reduced. This shows that g— gG =g—g,andtheng—g =0
follows. This completes the proof. (|

Many computer algebra systems implement a version of Buchberger’s algo-
rithm for computing Grobner bases. These systems always compute a Grobner basis
whose elements are constant multiples of the elements in a reduced Grébner basis.
This means that they will give essentially the same answers for a given problem.
Thus, answers can be easily checked from one system to the next.

Another consequence of the uniqueness in Proposition 5 is that we have an
ideal equality algorithm for seeing when two sets of polynomials {fi, ..., f;} and
{g1,-..,8&} generate the same ideal: simply fix a monomial order and compute a
reduced Grobner basis for (fi, ..., f;) and (g1, ..., g:). Then the ideals are equal if
and only if the Grobner bases are the same.

To conclude this section, we will indicate briefly some of the connections be-
tween Buchberger’s algorithm and the row-reduction (Gaussian elimination) al-
gorithm for systems of linear equations. The interesting fact here is that the row-
reduction algorithm is essentially a special case of the general algorithm we have
described. For concreteness, we will discuss the special case corresponding to the
system of linear equations

3x — 6y — 2z 0,
2x — 4y + 4w = 0,
x =2y — z—- w=0.

If we use row operations on the coefficient matrix to put it in row echelon form
(which means that the leading 1’s have been identified), then we get the matrix
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1 -2 -1 -1
3) 0 0 1 3
0 0 0 0

To get a reduced row echelon matrix, we need to make sure that each leading 1 is
the only nonzero entry in its column. This leads to the matrix

1 -2 0 2
“) 0 0 1 3
0 0 0 O

To translate these computations into algebra, let I be the ideal
I=38x—6y—2z,2x—4y+4w,x — 2y —z — w) C k[x,y,z, W]

corresponding to the original system of equations.We will use lex order with x >
y > z > w. Then, in the exercises, you will verify that the linear forms determined
by the row echelon matrix (3) give a minimal Grobner basis

I=(x—2y—z—w,z+3w),

and you will also check that the reduced row echelon matrix (4) gives the reduced
Grobner basis
I=(x—2y+2w,z+ 3w).

Recall from linear algebra that every matrix can be put in reduced row echelon form
in a unique way. This can be viewed as a special case of the uniqueness of reduced
Grobner bases.

In the exercises, you will examine the relation between Buchberger’s algorithm
and the Euclidean Algorithm for finding the generator for the ideal (f, g) C k[x].

EXERCISES FOR §7

1. Check that S(ﬁ,ﬁ)F = O for all pairs 1 <i < j <5 in Example 1.

2. Use the algorithm given in Theorem 2 to find a Grobner basis for each of the following
ideals. You may wish to use a computer algebra system to compute the S-polynomials
and remainders. Use the lex, then the grlex order in each case, and then compare your
results.

a. I = (xy — 1,xy* — x).

b. I = (x> 4 y,x* + 2x%y +y* + 3). [What does your result indicate about the variety
vV(I)7?]

c. I=@x—2y-2).

3. Find reduced Grobner bases for the ideals in Exercise 2 with respect to lex and grlex.

4. Use the result of Exercise 7 of §4 to give an alternate proof that Buchberger’s algorithm
will always terminate after a finite number of steps.

5. Let G be a Grobner basis of an ideal I with the property that LC(g) = 1 forall g € G.
Prove that G is a minimal Grobner basis if and only if no proper subset of G is a Grobner
basis of 1.
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10.

11.

12.

13.
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. The minimal basis of a monomial ideal was introduced in Proposition 7 of §4. Show that

a Grobner basis G of I is minimal if and only if LC(g) = 1 for all g € G and LT(G) is
the minimal basis of the monomial ideal (LT(7)).

. Fix a monomial order, and let G and G be minimal Grobner bases for the ideal 1.

a. Prove that LT(G) = LT(G).
b. Conclude that G and G have the same number of elements.

. Develop an algorithm that produces a reduced Grobner basis (see Definition 4) for an

ideal /, given as input an arbitrary Grobner basis for /. Prove that your algorithm works.

. Consider the ideal

I={3x—6y—2z,2x — 4y +4w,x — 2y — z — w) C k[x,y,z, W]

mentioned in the text. We will use lex order withx >y > z > w.

a. Show that the linear polynomials determined by the row echelon matrix (3) give a
minimal Grébner basis I = (x — 2y — z — w, z + 3w). Hint: Use Theorem 6 of §6.

b. Show that the linear polynomials from the reduced row echelon matrix (4) give the
reduced Grobner basis I = (x — 2y + 2w, z + 3w).

Let A = (a;) be an n X m matrix with entries in k and let f; = aiix1 + - - - + dimXm be the

linear polynomials in k[xi, ..., x,] determined by the rows of A. Then we get the ideal

I = {fi,....fn). We will use lex order with x; > --- > x,. Now let B = (b;) be the

reduced row echelon matrix determined by A and let g1, . . . , g/ be the linear polynomials

coming from the nonzero rows of B (so that t < n). We want to prove that gi,..., g

form the reduced Grobner basis of 1.

a. Show that/ = (gi, ..., g:). Hint: Show that the result of applying a row operation to
A gives a matrix whose rows generate the same ideal.

b. Use Theorem 6 of §6 to show that g, ..., g, form a Grébner basis of 1. Hint: If the
leading 1 in the ith row of B is in the sth column, we can write g; = x; + C, where C
is a linear polynomial involving none of the variables corresponding to leading 1’s.
If g; = x; + D is written similarly, then you need to divide S(gi, g;)) = x:C — x;D by
81, ..., & Note that you will use only g; and g; in the division.

c. Explain why g1, ..., g form the reduced Grobner basis of 1.

Show that the result of applying the Euclidean Algorithm in k[x] to any pair of polyno-

mials f, g is a reduced Grobner basis for (f, g) (after dividing by a constant to make the

leading coefficient equal to 1). Explain how the steps of the Euclidean Algorithm can be

seen as special cases of the operations used in Buchberger’s algorithm.

Fix F = {fi,...,f;} and let r = f". Since dividing f by F gives r as remainder, adding
r to the polynomials we divide by should reduce the remainder to zero. In other words,
we should have f 7Y = 0 when r comes last. Prove this as follows.

a. When you divide f by FU{r}, consider the first place in the division algorithm where
the intermediate dividend p is not divisible by any LT(f;). Explain why LT(p) =
LT(r) and why the next intermediate dividend is p — r.

b. From here on in the division algorithm, explain why the leading term of the inter-
mediate dividend is always divisible by one of the LT(f;). Hint: If this were false,
consider the first time it fails. Remember that the terms of r are not divisible by any
Lr(f).

c. Conclude that the remainder is zero, as desired.

d. (For readers who did Exercise 11 of §3.) Give an alternate proof of f
Exercise 11 of §3.

In the discussion following the proof of Theorem 2, we commented that if S(f,8) ¢ = 0,

7FOUY = 0 using

then remainder stays zero when we enlarge G'. More generally, if f = 0 and F’ is
obtained from F by adding elements at the end, then f = 0. Prove this.
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14. Suppose we have n points V = {(ai1,b1),..., (an,bn)} C k* where aj, ..., a, are
distinct. This exercise will study the Lagrange interpolation polynomial defined by

Zb Ha, — € k[x].

We will also explain how A(x) relates to the reduced Grébner basis of I(V) C k[x, y].

a. Show that h(a;) = b; fori = 1,...,n and explain why & has degree < n — 1.

b. Prove that h(x) is the unique polynomial of degree < n — 1 satisfying h(a;) = b; for
i=1,....n

c. Prove that I( ) = (f(x),y — h(x)), where f(x) = [[_,(x — a;). Hint: Divide
g € I(V) by f(x),y — h(x) using lex order with y > x.

d. Prove that {f(x),y — h(x)} is the reduced Grébner basis for I(V) C k[x, y] for lex
order with y > x.

§8 First Applications of Grobner Bases

In §1, we posed four problems concerning ideals and varieties. The first was the
ideal description problem, which was solved by the Hilbert Basis Theorem in §5.
Let us now consider the three remaining problems and see to what extent we can
solve them using Grobner bases.

The Ideal Membership Problem

If we combine Grobner bases with the division algorithm, we get the following ideal
membership algorithm: given an ideal I = (f1,...,f;), we can decide whether a
given polynomial f lies in I as follows. First, using a Grobner basis algorithm (for
instance, the one in Theorem 2 of §7), find a Grébner basis G = {g1, ..., g} for I.
Then Corollary 2 of §6 implies that

f el ifandonlyif f¢ =

Example 1. Let/ = (fi,5) = (xz—y*,x° —z*) € C[x,y, 7], and use the grlex order.
Let f = —4x?y?z> + % + 32°. We want to know if f € I.

The generating set given is not a Grobner basis of I because LT(I) also contains
polynomials such as LT(S(fi,/)) = LT(—x?y? + z°) = —x%y? that are not in the
ideal (LT(f1),LT(f2)) = (xz,x*). Hence, we begin by computing a Grébner basis
for 1. Using a computer algebra system, we find a Grobner basis

G={fi.fo. o fa s} = {xz = y*,x° = 2. = 2.0 =y - 2%

Note that this is a reduced Grobner basis.
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We may now test polynomials for membership in /. For example, dividing f
above by G, we find

f=(40" 4" fi+ 0+ 0-f5+0 fit (=3)f5 +0

Since the remainder is zero, we have f € I.

For another example, consider f = xy — 57> + x. Even without completely
computing the remainder on division by G, we can see from the form of the ele-
ments in G that f ¢ I. The reason is that LT(f) = xy is clearly not in the ideal

(LT(G)) = (xz,x%, 2y, xy*,y®). Hence, F¢ # 0, so that f ¢ I.

This last observation illustrates the way the properties of an ideal are revealed by
the form of the elements of a Grobner basis.

The Problem of Solving Polynomial Equations

Next, we will investigate how the Grobner basis technique can be applied to solve
systems of polynomial equations in several variables. Let us begin by looking at
some specific examples.

Example 2. Consider the equations

x2+y2—|—12=1,
(1) =y,
X =27

in C3. These equations determine / = (x> +y?+z>— 1, x>+ 72 —y,x—z) C Clx,y, 2],
and we want to find all points in V(I). Proposition 9 of §5 implies that we can
compute V(I) using any basis of 1. So let us see what happens when we use a
Grobner basis.

Though we have no compelling reason as of yet to do so, we will compute a
reduced Grobner basis on / with respect to the lex order. The basis is

81 =X—2%,
g2 =y - 22,
@G =24(1/2)7 - 1/4.
If we examine these polynomials closely, we find something remarkable. First, the

polynomial g3 depends on z alone. To find its roots, we solve for z> by the quadratic
formula and take square roots. This gives four values of z:

z= i%\/i\/g— 1.

Next, when these values of z are substituted into the equations g, = 0 and g; = 0,
those two equations can be solved uniquely for y and x, respectively. Thus, there are
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four solutions altogether of g; = g» = g3 = 0, two real and two complex. Since
V(I) = V(gi1,g2,83) by Proposition 9 of §5, we have found all solutions of the
original equations (1).

Example 3. Next, we will consider the system of polynomial equations (2) from
Chapter 1, §2, obtained by applying Lagrange multipliers to find the minimum and
maximum values of x* + 2xyz — z> subject to the constraint x*> + y* + 7> = 1:

3x% 4 2yz — 2xA = 0,

2xz —2yA =0,
2xy — 2z —2z2A =0,
Py 4+ -1=0.

Again, we follow our general hunch and begin by computing a Grébner basis for
the ideal in R[x, y, z, A] generated by the left-hand sides of the four equations, using
the lex order with A > x >y > z. We find a Grébner basis:

5\ éx_ Eyz _ 167616 54 36717Z4 134419 2,
2 2 3835 590 7670
Y+ -1,
19584 5 1999 ; 6403

YT 3g35 Y T 05 ¢ T 3835

ey 11525108 7 2556
S+~ 335¢ T 395° T 3835

) e, 92165 906 5 2562
¥y =y 3835° T 295° 3835
,, 69125, 827 3839

“73835° T 295° T 38357
576 5, 1605, 453
¥ =z 59° T8 T 118°
1763 655 11
- =P+ =0 — 2.

1152° " 1152° 288

At first glance, this collection of polynomials looks horrendous. (The coefficients
of the elements of Grobner basis can be significantly messier than the coefficients of
the original generating set.) However, on further observation, we see that once again
the last polynomial depends only on the variable z. We have “eliminated” the other
variables in the process of finding the Grobner basis. (Miraculously) the equation
obtained by setting this polynomial equal to zero has the roots

2=0, +1, +2/3, +V11/8V2.

If we set z equal to each of these values in turn, the remaining equations can then be
solved for y, x (and A, though its values are essentially irrelevant for our purposes).
We obtain the following solutions:
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z=0; y=0; x==1
z=0; y==£l;
z==%1; y=0;
z2=2/3; y=1/3; x=-2/3,

z==-2/3; y=-1/3; x=-2/3,
2=V11/8V2; y=-3V11/8V2; x=-3/8,
1= —V11/8V2; y=3V11/8V2; x=-3/8.

From here, it is easy to determine the minimum and maximum values.

Examples 2 and 3 indicate that finding a Grobner basis for an ideal with respect
to the lex order simplifies the form of the equations considerably. In particular, we
seem to get equations where the variables are eliminated successively. Also, note
that the order of elimination seems to correspond to the ordering of the variables.
For instance, in Example 3, we had variables A > x > y > z, and if you look back
at the Grobner basis (2), you will see that A is eliminated first, x second, and so on.

A system of equations in this form is easy to solve, especially when the last
equation contains only one variable. We can apply one-variable techniques to try and
find its roots, then substitute back into the other equations in the system and solve
for the other variables, using a procedure similar to the above examples. The reader
should note the analogy between this procedure for solving polynomial systems and
the method of “back-substitution” used to solve a linear system in triangular form.

We will study the process of elimination of variables from systems of polynomial
equations intensively in Chapter 3. In particular, we will see why lex order gives a
Grobner basis that successively eliminates the variables.

The Implicitization Problem

Suppose that the parametric equations

X1 :fl(tla .. .,tm),
3) :
X =fut1, o tm),

define a subset of an algebraic variety V in k. For instance, this will always be
the case if the f; are rational functions in #1, ..., ,, as we will show in Chapter 3.
How can we find polynomial equations in the x; that define V? This problem can be
solved using Grobner bases, though a complete proof that this is the case will come
only with the results of Chapter 3.

For simplicity, we will restrict our attention to the case where the f; are actually
polynomials. We begin with the affine variety in X" defined by (3), namely

X1 _fl(tlu"'7tm) = 07

Xn _f;l(tla' "7tm) =0.
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The basic idea is to eliminate the variables fq,...,t, from these equations. This
should give us the equations for V.

Given what we saw in Examples 2 and 3, it makes sense to use a Grobner basis
to eliminate variables. We will take the lex order in k[ty, . .., ty, X1, . . . , X,] defined
by the variable ordering

1> >y > X > > X

Now suppose we have a Grobner basis of the ideal = (1 = fiye oo xn — fu)-
Since we are using lex order, we expect the Grobner basis to have polynomials that
eliminate variables, and 1, . .., f,, should be eliminated first since they are biggest
in our monomial order. Thus, the Grébner basis for I should contain polynomials
that only involve xi, . . ., x,,. These are our candidates for the equations of V.

The ideas just described will be explored in detail when we study elimination
theory in Chapter 3. For now, we will content ourselves with some examples to see
how this process works.

Example 4. Consider the parametric curve V:

in C3. We compute a Grobner basis G of [ = (x — t*,y — £}, z — {*) with respect to
the lex order in C[t, x, y, z|, and we find

G={r —zty—2, 12—y, x— 2,y —2}.

The last two polynomials depend only on x,y,z, so they define an affine variety
of C? containing our curve V. By the intuition on dimensions that we developed
in Chapter 1, we would guess that two equations in C*> would define a curve (a 1-
dimensional variety). The remaining question to answer is whether V is the entire
intersection of the two surfaces

x—72=0, y¥»-722=0.

Might there be other curves (or even surfaces) in the intersection? We will be able to
show that the answer is no when we have established the general results in Chapter 3.

Example 5. Now consider the tangent surface of the twisted cubic in R?, which we
studied in Chapter 1. This surface is parametrized by

xX=t+u,
y =1 + 2,
z=1 +37u.
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We compute a Grobner basis G for this ideal relative to the lex order defined by
t > u > x>y >z and we find that G has 6 elements altogether. If you make the
calculation, you will see that only one contains only x, y, z terms:

4) Xz — (3/4)x°y = (3/2)xyz+ Y + (1/4)2 = 0.

The variety defined by this equation is a surface containing the tangent surface to
the twisted cubic. However, it is possible that the surface given by (4) is strictly
bigger than the tangent surface: there may be solutions of (4) that do not correspond
to points on the tangent surface. We will return to this example in Chapter 3.

To summarize our findings in this section, we have seen that Grobner bases and
the division algorithm give a complete solution of the ideal membership problem.
Furthermore, we have seen ways to produce solutions of systems of polynomial
equations and to produce equations of parametrically given subsets of affine space.
Our success in the examples given earlier depended on the fact that Grobner bases,
when computed using lex order, seem to eliminate variables in a very nice fashion.
In Chapter 3, we will prove that this is always the case, and we will explore other
aspects of what is called elimination theory.

EXERCISES FOR §8

In the following exercises, a computer algebra system should be used to perform the necessary
calculations. (Most of the calculations would be very arduous if carried out by hand.)

1. Determine whether f = xy° — 22 +y° — 2’ is in the ideal I = (—x* 4+ y, X’y — z).
2. Repeat Exercise 1 forf = x’z — 2y* and I = (xz — y,xy + 27%,y — 2).
3. By the method of Examples 2 and 3, find the points in C* on the variety

Ve +yY +2— 1L, +y + 2 —2x, 20— 3y —2).

4. Repeat Exercise 3 for V(x’y — 2°, 2xy — 4z — 1,z — y*, x° — 4zy).
5. Recall from calculus that a critical point of a differentiable function f(x,y) is a point
of

where the partial derivatives 3. and % vanish simultaneously. When f € Rlx,y], it

follows that the critical points can be found by applying our techniques to the system of
polynomial equations
o _or

ox Oy
To see how this works, consider the function
foy) = +y =4+ = 1)+ (x—3/2)° + (y - 3/2)".

a. Find all critical points of f(x, y).
b. Classify your critical points as local maxima, local minima, or saddle points. Hint:
Use the second derivative test.
6. Fill in the details of Example 5. In particular, compute the required Grobner basis, and
verify that this gives us (up to a constant multiple) the polynomial appearing on the
left-hand side of equation (4).



§8 First Applications of Grobner Bases 103

7. Let the surface S in R? be formed by taking the union of the straight lines joining pairs
of points on the lines

xX=t X =
y=0,, ¢y=1
z=1 7=t

with the same parameter value (i.e., the same t). (This is a special example of a class of
surfaces called ruled surfaces.)
a. Show that the surface S can be given parametrically as

X = ut,
=1—u,
z=1t+u(l —1).

b. Using the method of Examples 4 and 5, find an (implicit) equation of a variety V
containing the surface S.

c. Show V = § (that is, show that every point of the variety V can be obtained by
substituting some values for ¢, u in the equations of part (a). Hint: Try to “solve” the
implicit equation of V for one variable as a function of the other two.

8. Some parametric curves and surfaces are algebraic varieties even when the given
parametrizations involve transcendental functions such as sin and cos. In this problem,

we will see that the parametric surface 7,

x = (2 + cos(t)) cos(u),
y = (2 + cos(t)) sin(u),
z = sin(z),

lies on an affine variety in R>.

a. Draw a picture of 7. Hint: Use cylindrical coordinates.

b. Leta = cos(t),b = sin(t),c = cos(u),d = sin(u), and rewrite the above equations
as polynomial equations in a, b, ¢, d, x,y, z.

c. The pairs a, b and ¢, d in part (b) are not independent since there are additional poly-
nomial identities

a@+b-1=0, +d—1=0

stemming from the basic trigonometric identity. Form a system of five equations by
adjoining the above equations to those from part (b) and compute a Grobner basis for
the corresponding ideal. Use the lex monomial ordering and the variable order

a>b>c>d>x>y>z

There should be exactly one polynomial in your basis that depends only on x,y, z.
This is the equation of a variety containing 7.
9. Consider the parametric curve K C R* given by

x = (2 4 cos(2s))cos(3s),
y = (2 4 cos(2s))sin(3s),
z = sin(2s).

a. Express the equations of K as polynomial equations in x, y, z,a = cos(s), b = sin(s).
Hint: Trig identities.

b. By computing a Grobner basis for the ideal generated by the equations from part (a)
and a®> +b* — 1 as in Exercise 8, show that K is (a subset of) an affine algebraic curve.
Find implicit equations for a curve containing K.
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c. Show that the equation of the surface from Exercise 8 is contained in the ideal gener-
ated by the equations from part (b). What does this result mean geometrically? (You
can actually reach the same conclusion by comparing the parametrizations of 7' and
K, without calculations.)

10. Use the method of Lagrange multipliers to find the point(s) on the surface defined by
x* +y> + 22 — 1 = 0 that are closest to the point (1,1,1) in R3. Hint: Proceed as in
Example 3. (You may need to “fall back” on a numerical method to solve the equations
you get.)

11. Suppose we have numbers a, b, c which satisfy the equations

a+b+c=3,
@+ =5
S+ =7
a. Prove that a* 4+ b* + ¢* = 9. Hint: Regard a, b, ¢ as variables and show carefully that
aAd+bt+ct—9clatbtce—3,a 2+ +F -5+ + 7).
b. Show thata® + b + ¢° # 11.
c. What are @® 4 b° + ¢° and a® + b® + ¢®? Hint: Compute remainders.

§9 Refinements of the Buchberger Criterion

The Buchberger criterion (Theorem 6 of §6) states that a basis G = {g1,...,g:} of

a polynomial ideal is a Grobner basis provided that S(g;, gj)G =0forall g;, g; € G.
In other words, if each of these S-polynomials has a representation

t
S(gn8) =Y aigi+0
=1

produced by the division algorithm, then G is a Grobner basis of the ideal it gener-
ates. The goal of this section is to give two versions of the Buchberger criterion that
allow more flexibility in how the S-polynomials are represented.

Standard Representations

We first give a more general view of what it means to have zero remainder. The
definition is as follows.

Definition 1. Fix a monomial order and let G = {g1,...,g:} C k|x1, ..., x,]. Given
f € klxi,...,x,], we say that f reduces to zero modulo G, written
f —G Oa

if f has a standard representation

f:Algl + - +A1‘gt7 Ai S k[-xl7" 'axn]u
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which means that whenever A;g; # 0, we have
multideg(f) > multideg(A;g;).

To understand the relation between Definition 1 and the division algorithm, we
have the following lemma.

Lemma 2. Let G = (g1, ..., &:) be an ordered set of elements of k|xy, . .. ,x,] and
fixf € k[x1,...,x,]. Then fG = 0 implies f — 0, though the converse is false in
general.

Proof. IffG = 0, then the division algorithm implies

f=aqag1+- -+ a8 +0,
and by Theorem 3 of §3, whenever ¢;g; # 0, we have
multideg( f) > multideg(q;g;)-

This shows that f —¢ 0. To see that the converse may fail, consider Example 5 from
§3. If we divide f = xy> — xby G = (xy + 1,y? — 1), the division algorithm gives

Xy —x=y (1) +0- (7 = 1)+ (—x —y),
SO thath = —x — y # (. Yet we can also write
X —x=0-(y+ 1) +x- (F = 1),

and since
multideg(xy® — x) > multideg(x - (y* — 1))
(in fact, they are equal), it follows that f —¢ 0. O

As an example of how Definition 1 can be used, let us state a more general version
of the Grobner basis criterion from §6.

Theorem 3. A basis G = {g1,...,8} for an ideal I is a Grébner basis if and only
ifS(gi,g)) —c O foralli # j.

Proof. If G is a Grobner basis, then S(g;, g;) € I has zero remainder on division by
G, hence S(gi, g;) —¢ 0 by Lemma 2. For the converse, Theorem 6 of §6 implies

that G is a Grobner basis when S(g;, gj)G = 0 for all i # j. But if you examine the
proof, you will see that all we used was

t
S(gi g) = ZAlglu
=1
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where
multideg(A;g;) < multideg(S(g:, g;j))

when A;g; # 0 (see (6) and (7) from §6). This is exactly what S(g;, gj) —¢ 0 means,
and the theorem follows. O

By Lemma 2, notice that Theorem 6 of §6 is a special case of Theorem 3. Using
the notion of “standard representation” from Definition 1, Theorem 3 says that a
basis for an ideal I is a Grobner basis if and only if all of its S-polynomials have
standard representations.

There are some situations where an S-polynomial is guaranteed to have a standard
representation.

Proposition 4. Given a finite set G C k[xy, ..., x|, suppose that we have f,g € G
such that the leading monomials of f and g are relatively prime. Then S(f,g) —¢ 0.

Proof. For simplicity, we assume that f, g have been multiplied by appropriate con-
stants to make LC(f) = LC(g) = 1. Write f = LM(f) + p,g = LM(g) + ¢.
Since LM(f) and LM(g) are relatively prime, we know that lem(LM(f), LM(g)) =
LM(f) - LM(g). Hence, the S-polynomial S(f, g) can be written

S(f,g) =1M(g) -f —LM(f) - g
=@Eg-qf-(f-pr -z

ey
=g f—qf-f-g+tp-g
=p-8—9q-f.

We claim that

2) multideg(S(f, g)) = max(multideg(p - g), multideg(q - f)).

Note that (1) and (2) imply S(f,g) —¢ 0 since f, g € G. To prove (2), observe that
in the last polynomial of (1), the leading monomials of p - g and ¢ - f are distinct and,
hence, cannot cancel. For if the leading monomials were the same, we would have

LM(p) - LM(g) = LM(q) - LM(f).

However this is impossible if LM(f), LM(g) are relatively prime: from the last equa-
tion, LM(g) would have to divide LM(q), which is absurd since LM(g) > LM(q). O

For an example of how this proposition works, let G = (yz + y,x* + y,7z*) and
use grlex order on k[x, y, z]. Since x* and z* are relatively prime, we have

S('x3 +y7Z4) —G O
by Proposition 4. However, using the division algorithm, it is easy to check that

S +y, =yt =EF -2 +z-Dlz+y) +0- (P +y)+0-z* +y.
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so that G
S +y,24)" =y #0.

This explains why we need Definition 1: Proposition 4 is false if we use the notion
of zero remainder coming from the division algorithm.

Another example of Proposition 4 is given by the ideal I = (y — x>,z — x%). It
is easy to check that the given generators f = y — x> and g = z — x° do not form a
Grobner basis for lex order with x > y > z. But if we switch to lex with z > y > x,
then the leading monomials are LM(f) = y and LM(g) = z. Setting G = {f, g},
Proposition 4 implies S(f, g) —¢ 0, so that G is a Grobner basis of I by Theorem 3.
In §10, we see that Proposition 4 is part of a more efficient version of the Buchberger
algorithm.

LCM Representations

Our second version of the Buchberger criterion allows a yet more general way of
presenting S-polynomials. Recall from Exercise 7 of §6 that an S-polynomial S(f, g)
has leading term that is guaranteed to be strictly less than lem(LM(f), LM(g)).

Definition 5. Given nonzero polynomials F = (fi,...,f;), we say that
S(fif) = DAl
I=1

is an lem representation provided that
lem(LM(f;), LM(f;j)) > LT(A;f;) whenever A, f; # 0.

To understand how lcm representations relate to standard representations, write
S(firf;) = >_)—, Aufi and take [ with A;f; # 0. Then consider the inequalities

©) lem(LM(fi), LM(f)) > LT(S(firfj)),
@ lem(LMm(fi), LM(f)) > LT(Aufi)-

Note that (3) is true by the definition of S-polynomial. In a standard representation,
we have (3) = (4) since LT(S(f;,f;)) > LT(A;f;). In an lcm representation, on the
other hand, we have (4), but we make no assumption about how LT(S(f;,f;)) and
LT(A,f}) relate to each other.

The above discussion shows that every standard representation is also an lcm
representation. For an example of how the converse may fail, let fj = xz+ 1, fo =
vz+ 1, f3 = xz+y — z+ 1. Using lex order with x > y > z, one can write

S(fisf) = (=1)-fi+0-fot+ 1-fs

In Exercise 1, you will check that this is an lcm representation but not a standard
representation.
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Here is a version of the Buchberger criterion that uses lcm representations.

Theorem 6. A basis G = (g1, ...,8) for an ideal I is a Gribner basis if and only
if for every i # j, the S-polynomial S(g;, g;) has an lcm representation.

Proof. If G is a Grobner basis, then every S-polynomial has a standard representa-
tion, hence an lcm representation. For the converse, we will look closely at the proof
of Theorem 6 of §6, just as we did for Theorem 3.

We are assuming that S(g;, g;) has an Icm representation

S(gi ) ZAzgz

with X7 > LT(A;g;) when A;g; # 0. Here, x?" = lem(LM(g;), LM(g;)). If we set
B = X(s_’y"/Az, then

XS (gi, 85) ZBlgla
where
multideg(B;g;) = multideg(x®~77) + multideg(A;g;) < (6 — ;) + 7j = 0.

This gives the same inequality as (9) in the proof of Theorem 6 of §6. From here,
the rest of the proof is identical to what we did in §6, and the theorem follows. [

We noted above any standard representation of S(g;, g;) is an lcm representation.
Thus Theorem 6 of §6 and Theorem 3 of this section follow from Theorem 6, since
S(gi, ;) has an lcm representation whenever it satisfies either S(g;, gj)G = 0Oor
S(gi, &) —¢ 0. We will consider a further generalization of the Buchberger criterion
in §10.

The ideas of this section are useful in elimination theory, which we will study
in Chapter 3. Two of the central results are the Extension Theorem and the Closure
Theorem. Standard representations appear in the proof of the Extension Theorem
given in Chapter 3, §5, and lcm representations are used in the proof of the Closure
Theorem given in Chapter 4, §7. We will also use Theorem 6 in the proof of the
Nullstellensatz given in Chapter 4, §1.

EXERCISES FOR §9

1. Letfi =xz+ 1,2 =yz+ l,and f5 = xz+y — z+ 1. For lex order with x > y > z, show

that
S(ff) =0 i+ 0+ 1-f
Also show that this is an lem representation but not a standard representation.
2. Consider theideal I = (* +y+z— L,x+y +z— 1L, x+y+7* —1) C Qx, v,z
a. Show that the generators of [ fail to be Grobner basis for any lex order.
b. Find a monomial order for which the leading terms of the generators are relatively
prime.
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c. Explain why the generators automatically form a Grébner basis for the monomial order

you found in part (b).
3. The result of the previous exercise can be generalized as follows. Suppose that I =
(fi,-..,fs) where LM(f;) and LM(f;) are relatively prime for all indices i # j. Prove

that {fi,...,fs} is a Grobner basis of I.

§10 Improvements on Buchberger’s Algorithm

In designing useful mathematical software, attention must be paid not only to the
correctness of the algorithms employed, but also to their efficiency. In this section,
we will discuss two improvements on the basic Buchberger algorithm for com-
puting Grobner bases that can greatly speed up the calculations. Some version of
these improvements has been built into most of the computer algebra systems that
use Grobner basis methods. The section will conclude with a brief discussion of
the complexity of computing Grobner bases. This is still an active area of research
though, and there are as yet no definitive results in this direction.

The Buchberger algorithm presented in §7 computes remainders S(f, g)G and
adds them to G when they are nonzero. As you learned from doing examples by
hand, these polynomial divisions are the most computationally intensive part of
Buchberger’s algorithm. Hence, one way to improve the efficiency of the algorithm
would be to show that fewer S-polynomials S(f, g) need to be considered. Any re-
duction of the number of divisions that need to be performed is all to the good.

Theorem 3 of §9 tells us that when checking for a Grobner basis, we can replace
S(f, g)G = 0 with S(f,g) —¢ 0. Thus, if we can predict in advance that certain
S-polynomials are guaranteed to reduce to zero, then we can ignore them in the
Buchberger algorithm.

We have already seen one example where reduction to zero is guaranteed, namely
Proposition 4 of §9. This proposition is sufficiently important that we restate it here.

Proposition 1. Given a finite set G C k[xy, ..., x|, suppose that we have f,g € G
such that

lem(LM(f), LM(g)) = LM(f) - LM(g).

This means that the leading monomials of f and g are relatively prime. Then
S(f7 g) —G 0.

Note that Proposition 1 gives a more efficient version of Theorem 3 of §9: to
test for a Grobner basis, we need only have S(g;, g;) —¢ 0 for those i < j where
LM(g;) and LM(g;) are not relatively prime. But before we apply this to improving
Buchberger’s algorithm, let us explore a second way to improve Theorem 3 of §9.

The basic idea is to better understand the role played by S-polynomials in the
proof of Theorem 6 of §6. Since S-polynomials were constructed to cancel leading
terms, this means we should study cancellation in greater generality. Hence, we will
introduce the notion of a syzygy on the leading terms of F = (fi, . .., f;). This word
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is used in astronomy to indicate an alignment of three planets or other heavenly bod-
ies. The root is a Greek word meaning “yoke.” In an astronomical syzygy, planets
are “yoked together”; in a mathematical syzygy, it is polynomials that are “yoked.”

Definition 2. Let F = (fi, ..., f;). A syzygy on the leading terms LT(f}), ..., LT(f;)
of F is an s-tuple of polynomials S = (hy, ..., hs) € (k[xi,...,x,])* such that

ihi -LT(f;) = 0.
i=1

We let S(F) be the subset of (k[xy, ..., x,])* consisting of all syzygies on the leading
terms of F.

For an example of a syzygy, consider F = (x,x> + z,y + z). Then using the lex
order, S = (—x +y, 1, —x) € (k[x,y,z])? defines a syzygy in S(F) since

(—x+y)-LT(x) + 1 - LT(x> + 2) + (—x) - LT(y + z) = 0.

Lete; = (0,...,0,1,0,...,0) € (k[x1,...,x,]), where the 1 is in the ith place.
Then a syzygy S € S(F) can be written as S = Y _;_, h;e;. For an example of how
to use this notation, consider the syzygies that come from S-polynomials. Namely,
given a pair {f;, f;} C F wherei < j, letx? = lem(LM(f;), LM(f;)). Then

x7 x7
. SR RENTIIAN
gives a syzygy on the leading terms of F. In fact, the name S-polynomial is actually
an abbreviation for “syzygy polynomial.”

It is straightforward to check that the set of syzygies is closed under coordinate-
wise sums, and under coordinate-wise multiplication by polynomials (see Exer-
cise 1). An especially nice fact about S(F) is that it has a finite basis—there is a
finite collection of syzygies such that every other syzygy is a linear combination
with polynomial coefficients of the basis syzygies.

However, before we can prove this, we need to learn a bit more about the structure
of S(F). We first define the notion of a homogeneous syzygy.

Definition 3. An element S € S(F) is homogeneous of multidegree «, where o €
Z%, ), provided that

S = (clxo‘(l), ... 7csxo‘(s))7

where ¢; € k and «(i) + multideg(f;) = o whenever ¢; # 0.

You should check that the syzygy S;; given in (1) is homogeneous of multidegree
v (see Exercise 4). We can decompose syzygies into homogeneous ones as follows.

Lemma 4. Every element of S(F) can be written uniquely as a sum of homogeneous
elements of S(F).
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Proof. Let S = (hy,...,hy) € S(F). Fix an exponent a € Z%,, and let h;,
be the term of 4; (if any) such that &;, f; has multidegree «w. Then we must have
> hiaLT(f;) = 0 since the h;o LT(f;) are the terms of multidegree « in the sum
o hLT(f;) = 0. Then Sy = (hiqs, ..., hs) is a homogeneous element of S(F)
of degree avand S = )" S,.

The proof of uniqueness will be left to the reader (see Exercise 5). ]

We can now prove that the S;;’s form a basis of all syzygies on the leading terms.
Proposition 5. Given F = (fi,....f;), every syzygy S € S(F) can be written as
S= uySy,
i<j
where w;; € klxy, ..., x,) and the syzygy S;j is defined as in (1).

Proof. By Lemma 4, we can assume that S is homogeneous of multidegree «.. Then
S must have at least two nonzero components, say ¢;x*() and cjxo‘(/), where i < j.
Then a(i) + multideg(f;) = «(j) + multideg(f;) = «, which implies that x¥ =
lem(LM(f;), LM(f;)) divides x*. Since

x7 x7

[/ €; €,

To(f) ()
an easy calculation shows that the ith component of
S — C,'LC(f,')xa_’YS,'j

must be zero, and the only other component affected is the jth. Hence we have
produced a homogeneous syzygy with fewer nonzero components. Since a nonzero
syzygy must have at least two nonzero components, continuing in this way will
eventually enable us to write S as a combination of the S;;’s, and we are done. O

This proposition explains our observation in §6 that S-polynomials account for
all possible cancellation of leading terms.

We are now ready to state a more refined version of our algorithmic criterion for
Grobner bases.

Theorem 6. A basis G = (g, ..., &) for anideal I is a Grobner basis if and only if
for every element S = (H\, ..., H,) in a homogeneous basis for the syzygies S(G),
S-G= 2;21 H;g; can be written

t
) §-G= ZAigia
i=1

where the multidegree o of S satisfies

3) a > multideg(A;g;) whenever A;g; # 0.



112 Chapter2 Grobner Bases

Proof. First assume that G is a Grobner basis. Since S is a syzygy, it satisfies
« > multideg(S - G), and then any standard representation S - G = > |_, A;g;
has the desired property. For the converse, we will use the strategy (and nota-
tion) of the proof of Theorem 6 of §6. We start with f = ZEZI higi, where
0 = max(multideg(h;g;)) is minimal among all ways of writing f in terms of G.
As before, we need to show that multideg(f) < d leads to a contradiction.

By (4) in §6, multideg(f) < ¢ implies that Zmullideg(h;g;):6 LT(h;)g; has strictly
smaller multidegree. This therefore means that > s LT(hi)LT(gi) = 0,

multideg (h;gi)=
so that

S = Z LT(h,-)e,-

multideg (h;g;) =4

is a syzygy in S(G). Note also that S is homogeneous of multidegree §. Our hypoth-
esis then gives us a homogeneous basis Sy, .. .,S,, of S(G) with the nice property
that §; - G satisfies (2) and (3) for all j. We can write S in the form

4) S=u1S; + -+ unSp.

By writing the u;’s as sums of terms and expanding, we see that (4) expresses S as a
sum of homogeneous syzygies. Since S is homogeneous of multidegree 9, it follows
from the uniqueness of Lemma 4 that we can discard all syzygies not of multidegree
6. Thus, in (4), we can assume that, for each j, either

u; = 0, or u;S; is homogeneous of multidegree 6.

Suppose that S; has multidegree ;. If u; # 0, then it follows that u; can be written
in the form u; = cjx‘;_w for some ¢; € k. Thus, (4) can be written

S—n:
S = ZC/X 'Y’Sj,
J

where the sum is over those j’s with u; # 0. If we take the dot product of each side
with G, we obtain

) > Lr(h)gi=S-G=)Y x5 G.

multideg (higi) =06 J
Since §; has multidegree «;, our hypothesis implies that §; - G = Zf: 1 Aijgi, where
multideg(A;g;) < 7; when Ajig; # 0.
It follows that if we set B; = x°~%A;;, then we have

t
X078 G = ZBijgi
i=1
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where multideg(B;;g;) < § when B;jg; # 0. Using this and (5), we can write the sum
Zmullideg(h,gi)zé LT(hi)gi as

t
> e =) B,
=1

multideg (h;g;)=46

where multideg(B;g;) < & when B;g; # 0. This is exactly what we proved in (10)
and (11) from §6. From here, the remainder of the proof is identical to what we did
in §6. The theorem is proved. ]

Note that Theorem 3 of §9 is a special case of this result. Namely, if we use
the basis {S;;} for the syzygies S(G), then the polynomials S;; - G to be tested are
precisely the S-polynomials S(g;, g;)-

A homogeneous syzygy S with the property that S - G —¢ 0 is easily seen to
satisfy (2) and (3) (Exercise 6). This gives the following corollary of Theorem 6.

Corollary 7. A basis G = (g1, .., &) for an ideal I is a Grobner basis if and only
if for every element S = (H\, . . ., H,) in a homogeneous basis for the syzygies S(G),
S-G —¢0.

To exploit the power of Theorem 6 and Corollary 7, we need to learn how to make
small bases of S(G). For an example of how a basis can be smaller than expected,
consider G = (x*y* + z,xy* — y,x°y + yz) and use lex order in k[x, y, z]. The basis
formed by the three syzygies corresponding to the S-polynomials consists of

SlZ = (17 —X, 0)7
S13 = (1707 _y)a
S = (0,x, —y).

However, we see that Sp3 = S;3 — Si2. Thus S»3 is redundant in the sense that
it can be obtained from S, 13 by a linear combination. (Here, the coefficients are
constants; in general, relations between syzygies may have polynomial coefficients.)
It follows that {S2, 513} is a smaller basis of S(G).

We will show next that starting with the basis {S;; | i < j}, there is a systematic
way to predict when elements can be omitted.

Proposition 8. Given G = (g1,...,8:), suppose that S C {S;; | 1 <i <j<t}is
a basis of S(G). In addition, suppose we have distinct elements g;, g;, 81 € G such
that

LT(g;) divides lem(LT(g;),LT(g;)).

IfSu, Sy € S, then S\ {8y} is also a basis of S(G). (Note: If i > j, we set S;; = Sj;.)
Proof. For simplicity, assume that i < j < [. Setx” = lem(LM(g;), LM(g;)) and let

x7 and x" be defined similarly. Then our hypothesis implies that x”* and x"* both
divide x7¥ . In Exercise 7, you will verify that
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X xYi

Sij = il

o Xl o xit il
and the proposition is proved. ]

To incorporate this proposition into an algorithm for creating Grobner bases, we
will use the ordered pairs (i,;) with i < j to keep track of which syzygies we want.
Since we sometimes will have an i # j where we do not know which is larger, we
will use the following notation: given i # j, define

o [ i<y
i, {(j,i) ifi>].

We can now state an improved version of Buchberger’s algorithm that takes into
account the results proved so far.

Theorem 9. Let I = (fi,...,f;) be a polynomial ideal. Then a Grobner basis of 1
can be constructed in a finite number of steps by the following algorithm:

Input: F = (fi,....fs)
Output : a Grobner basis G for I = (fi,...,f;)

B:={(i,j)|1<i<j<s}
G:=F
t:=s
WHILE B # () DO
Select (i,j) € B
IF lem(LT(f;), LT(fj)) # LT(fi)LT(f;) AND
Criterion(f;, f;, B) = false THEN

ri=S(f)’

IF r # 0 THEN
t:=t+1;fii=r
G:=GU{f}

B:=BU{@i,n)|1<i<t—1}

B:=B\{(i.j)}
RETURN G

Here, Criterion(f;, f;, B) is true provided that there is some | ¢ {i,j} for which the
pairs [i, 1] and [j,1] are not in B and LT(f;) divides lem(LT(f;),LT(f;)). (Note that
this criterion is based on Proposition 8.)

Proof. The basic idea of the algorithm is that B records the pairs (i, j) that remain to
be considered. Furthermore, we only compute the remainder of those S-polynomials
S(gi, gj) for which neither Proposition 1 nor Proposition 8 applies.
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To prove that the algorithm works, we first observe that at every stage of the
algorithm, B has the property thatif 1 <i <j < rand (i,j) ¢ B, then

(6) S(fi, fi) 7¢ 0 or Criterion(f;, f;, B) holds.

Initially, this is true since B starts off as the set of all possible pairs. We must show
that if (6) holds for some intermediate value of B, then it continues to hold when B
changes, say to B'.

To prove this, assume that (i,j) ¢ B’. If (i,j) € B, then an examination of the
algorithm shows that B* = B\ {(i,/)}. Now look at the step before we remove (i, f)
from B. If lem(LT(f;)),LT(f;)) = LT(f;)LT(f;), then S(f;, f;) —¢ O by Proposi-
tion 1, and (6) holds. Also if Criterion(f;, f;, B) is true, then (6) clearly holds. Now
suppose that both of these fail. In this case, the algorithm computes the remainder
r = S(f,-,ﬁ)G. If r = 0, then S(f;,fj)) —¢ 0 by Lemma 2, as desired. Finally, if
r # 0, then we enlarge G to be G’ = GU{r}, and we leave it as an exercise to show
that S(f;,f;) —¢ 0.

It remains to study the case when (i,j) ¢ B. Here, (6) holds for B, and in Exer-
cise 9, you will show that this implies that (6) also holds for B'.

Next, we need to show that G is a Grobner basis when B = (). To prove this, let
t be the length of G, and consider the set Z consisting of all pairs (i,j) for 1 <i <
J < t where Criterion(f;, f;, B) was false when (i, ) was selected in the algorithm.
We claim that S = {S;; | (i,j) € Z} is a basis of S(G) with the property that
Si-G=S(f, f;) =c 0forall S; € S. This claim and Corollary 7 will prove that G
is a Grobner basis.

To prove our claim, note that B = () implies that (6) holds for all pairs (i, ) for
1 <i < j <t It follows that S(f;,f;) —¢ O for all (i,j) € Z. It remains to show
that S is a basis of S(G). To prove this, first notice that we can order the pairs (i, /)
according to when they were removed from B in the algorithm (see Exercise 10
for the details of this ordering). Now go through the pairs in reverse order, starting
with the last removed, and delete the pairs (i, /) for which Criterion(f;, f;, B) was
true at that point in the algorithm. After going through all pairs, those that remain
are precisely the elements of Z. Let us show that at every stage of this process, the
syzygies corresponding to the pairs (i, j) not yet deleted form a basis of S(G). This is
true initially because we started with all of the S;;’s, which we know to be a basis.
Further, if at some point we delete (i,/), then the definition of Criterion(f;, f;, B)
implies that there is some [ where LT(f}) satisfies the lcm condition and [i, ], [}, 1] ¢
B. Thus, [i,] and [}, l] were removed earlier from B, and hence S; and Sj are still
in the set we are creating because we are going in reverse order. If follows from
Proposition 8 that we still have a basis even after deleting S;;.

Finally, we need to show that the algorithm terminates. As in the proof of the
original algorithm (Theorem 2 of §7), G is always a basis of our ideal, and each
time we enlarge G, the monomial ideal (LT(G)) gets strictly larger. By the ACC,
it follows that at some point, G must stop growing, and thus, we eventually stop
adding elements to B. Since every pass through the WHILE. .. DO loop removes an
element of B, we must eventually get B = (J, and the algorithm comes to an end. [
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The algorithm given above is still not optimal, and several strategies have been
found to improve its efficiency further. For example, in the division algorithm (Theo-
rem 3 of §3), we allowed the divisors fi, . . ., f; to be listed in any order. In practice,
some effort could be saved on average if we arranged the f; so that their leading
terms are listed in increasing order with respect to the chosen monomial ordering.
Since the smaller LT(f;) are more likely to be used during the division algorithm,
listing them earlier means that fewer comparisons will be required. A second strat-
egy concerns the step where we choose (i,j) € B in the algorithm of Theorem 9.
BUCHBERGER (1985) suggests that there will often be some savings if we pick
(i,j) € B such that lem(LM(f;), LM(f;)) is as small as possible. The corresponding
S-polynomials will tend to yield any nonzero remainders (and new elements of the
Grobner basis) sooner in the process, so there will be more of a chance that subse-
quent remainders S(f;, f;) “ will be zero. This normal selection strategy is discussed
in more detail in BECKER and WEISPFENNING (1993), BUCHBERGER (1985) and
GEBAUER and MOLLER (1988). Finally, there is the idea of sugar, which is a re-
finement of the normal selection strategy. Sugar and its variant double sugar can be
found in GIOVINI, MORA, NIESI, ROBBIANO and TRAVERSO (1991).

In another direction, one can also modify the algorithm so that it will automati-
cally produce a reduced Grobner basis (as defined in §7). The basic idea is to sys-
tematically reduce G each time it is enlarged. Incorporating this idea also generally
lessens the number of S-polynomials that must be divided in the course of the algo-
rithm. For a further discussion of this idea, consult BUCHBERGER (1985).

We will discuss further ideas for computing Grobner bases in Chapter 10.

Complexity Issues

We will end this section with a short discussion of the complexity of computing
Grobner bases. Even with the best currently known versions of the algorithm, it is
still easy to generate examples of ideals for which the computation of a Grobner
basis takes a tremendously long time and/or consumes a huge amount of storage
space. There are several reasons for this:

e The total degrees of intermediate polynomials that must be generated as the al-
gorithm proceeds can be quite large.

o The coefficients of the elements of a Grobner basis can be quite complicated
rational numbers, even when the coefficients of the original ideal generators were
small integers. See Example 3 of §8 or Exercise 13 of this section for some
instances of this phenomenon.

For these reasons, a large amount of theoretical work has been done to try to es-
tablish uniform upper bounds on the degrees of the intermediate polynomials in
Grobner basis calculations when the degrees of the original generators are given. For
some specific results in this area, see DUBE (1990) and MOLLER and MORA (1984).
The idea is to measure to what extent the Grobner basis method will continue to be
tractable as larger and larger problems are attacked.
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The bounds on the degrees of the generators in a Grobner basis are quite large,
and it has been shown that large bounds are necessary. For instance, MAYR and
MEYER (1982) give examples where the construction of a Grobner basis for an
ideal generated by polynomials of degree less than or equal to some d can involve
polynomials of degree proportional to 22 Asd — 00, 2% grows very rapidly. Even
when grevlex order is used (which often gives the smallest Grobner bases—see
below), the degrees can be quite large. For example, consider the polynomials

xn-l—l _ yz"_lw, xyn—l _ va X'z — an.

If we use grevlex order with x > y > z > w, then Mora [see LAZARD (1983)]
showed that the reduced Grobner basis contains the polynomial

an-i—l _ ynZW.

The results led for a time to some pessimism concerning the ultimate practicality
of the Grobner basis method as a whole. Further work has shown, however, that
for ideals in two and three variables, much more reasonable upper degree bounds
are available [see, for example, LAZARD (1983) and WINKLER (1984)]. Further-
more, in any case the running time and storage space required by the algorithm
seem to be much more manageable “on average” (and this tends to include most
cases of geometric interest) than in the worst cases. There is also a growing real-
ization that computing “algebraic” information (such as the primary decomposition
of an ideal—see Chapter 4) should have greater complexity than computing “geo-
metric” information (such as the dimension of a variety—see Chapter 9). A good
reference for this is GTUSTI and HEINTZ (1993), and a discussion of a wide variety
of complexity issues related to Grobner bases can be found in BAYER and MUM-
FORD (1993). See also pages 616—619 of VON ZUR GATHEN and GERHARD (2013)
for further discussion and references.

Finally, experimentation with changes of variables and varying the ordering of
the variables often can reduce the difficulty of the computation drastically. BAYER
and STILLMAN (1987a) have shown that in most cases, the grevlex order should
produce a Grobner basis with polynomials of the smallest total degree. In a different
direction, it is tempting to consider changing the monomial ordering as the algo-
rithm progresses in order to produce a Grébner basis more efficiently. This idea was
introduced in GRITZMANN and STURMFELS (1993) and has been taken up again in
CABOARA and PERRY (2014).

EXERCISES FOR §10

1. LetS = (c1,...,¢) and T = (di, . ..,ds) € (k[xi,...,xa]) be syzygies on the leading
terms of F = (fi,...,fs)-
a. Showthat S+ T = (¢1 + di, ..., cs + ds) is also a syzygy.

b. Show thatif g € k[xi,...,x,], theng-S = (gci, ..., gcs) is also a syzygy.
2. Givenany G = (g1,...,8s) € (k[x1,...,x:])", we can define a syzygy on G to be an s-
tuple S = (hi1, ..., hs) € (k[x1,...,x,])" such that >, higi = 0. [Note that the syzygies

we studied in the text are syzygies on LT(G) = (LT(g1), ..., LT(gs)).]



118

TS

10.

11.

12.
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a. Show that if G = (x* — y,xy — z,¥* — xz), then (z, —y, x) defines a syzygy on G.

b. Find another syzygy on G from part (a).

c. Show thatif S, T are syzygies on G, and g € k[x1, . .., x|, then S+ T and gS are also
syzygies on G.

. Let M be an m x (m + 1) matrix of polynomials in k[xi, . .., x,]. Let I be the ideal gen-

erated by the determinants of all the m X m submatrices of M (such ideals are examples

of determinantal ideals).

a. Find a 2x 3 matrix M such that the associated determinantal ideal of 2 x 2 submatrices
is the ideal with generators G as in part (a) of Exercise 2.

b. Explain the syzygy given in part (a) of Exercise 2 in terms of your matrix.

c. Give a general way to produce syzygies on the generators of a determinantal ideal.
Hint: Find ways to produce (m + 1) x (m + 1) matrices containing M, whose deter-
minants are automatically zero.

. Prove that the syzygy Sj; defined in (1) is homogeneous of multidegree ~.
. Complete the proof of Lemma 4 by showing that the decomposition into homogeneous

components is unique. Hint: First show that if § = > _ S, where S;, has multidegree
a, then, for a fixed i, the ith components of the S, are either 0 or have multidegree equal
to a — multideg(f;) and, hence, give distinct terms as « varies.

. Suppose that S is a homogeneous syzygy of multidegree « in S(G).

a. Prove that S - G has multidegree < a.
b. Use part (a) to show that Corollary 7 follows from Theorem 6.

. Complete the proof of Proposition 8 by proving the formula expressing Sj in terms of

S,‘] and Sj].

. Let G be a finite subset of k[xi, ..., x,] and letf € (G). If f¢ = r # 0, then show that

f —¢ 0, where G’ = G U {r}. This fact is used in the proof of Theorem 9.

. In the proof of Theorem 9, we claimed that for every value of B, if 1 <i < j < tand

(i,j) ¢ B, then condition (6) was true. To prove this, we needed to show that if the
claim held for B, then it held when B changed to some B’. The case when (i,j) ¢ B’ but
(i,j) € B was covered in the text. It remains to consider when (i,j) ¢ B’ U B. In this
case, prove that (6) holds for B’. Hint: Note that (6) holds for B. There are two cases
to consider, depending on whether B’ is bigger or smaller than B. In the latter situation,
B’ = B\ {(I,m)} for some (I,m) # (i, j).
In this exercise, we will study the ordering on the set {(i, j) | 1 < i < j < r} described
in the proof of Theorem 9. Assume that B = (), and recall that  is the length of G when
the algorithm stops.
a. Show that any pair (i, j) with 1 < i < j < was a member of B at some point during
the algorithm.
b. Use part (a) and B = () to explain how we can order the set of all pairs according to
when a pair was removed from B.
Consider fi = x* —2xy and f» = x>y —2y* +x and use grlex order on k[, y]. These poly-
nomials are taken from Example 1 of §7, where we followed Buchberger’s algorithm
to show how a Grobner basis was produced. Redo this example using the algorithm of
Theorem 9 and, in particular, keep track of how many times you have to use the division
algorithm.
Consider the polynomials
n+1 n—1 n—1 n n n
X - w, Xy —Z, XZ—=Yyw,
and use grevlex order with x > y > z > w. Mora [see LAZARD (1983)] showed that the
reduced Grobner basis contains the polynomial

Prove that this is true when 7 is 3, 4, or 5. How big are the Grobner bases?
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13. In this exercise, we will look at some examples of how the term order can affect the
length of a Grobner basis computation and the complexity of the answer.

a. Compute a Grobner basis for I = (x* +y* +z° — 1,x* +y* + 2% — 1) using lex and
grevlex orders with x > y > z. You will see that the Grobner basis is much simpler
when using grevlex.

b. Compute a Grobner basis for I = (x> +y* + 2> — 1,x* +y* + 22 — 1) using lex
and grevlex orders with x > y > z. This differs from the previous example by a
single exponent, but the Grobner basis for lex order is significantly nastier (one of its
polynomials has 282 terms, total degree 25, and a largest coefficient of 170255391).

c. Letl = (x* — yz?w,xy* — 2°,x*2 — y’w) be the ideal generated by the polynomials
of Exercise 12 with n = 3. Using lex and grevlex orders with x > y > z > w, show
that the resulting Grobner bases are the same. So grevlex is not always better than
lex, but in practice, it is usually a good idea to use grevlex whenever possible.



Chapter 3
Elimination Theory

This chapter will study systematic methods for eliminating variables from systems
of polynomial equations. The basic strategy of elimination theory will be given in
two main theorems: the Elimination Theorem and the Extension Theorem. We will
prove these results using Grobner bases and the classic theory of resultants. The
geometric interpretation of elimination will also be explored when we discuss the
Closure Theorem. Of the many applications of elimination theory, we will treat two
in detail: the implicitization problem and the envelope of a family of curves.

§1 The Elimination and Extension Theorems

To get a sense of how elimination works, let us look at an example similar to those
discussed at the end of Chapter 2. We will solve the system of equations

Cty+z=1,
(1) x+y +z=1,
x+y+7 =1
If we let I be the ideal
) I=(+y+z—Lx+y +z—1x+y+22—1),

then a Grobner basis for 7 with respect to lex order is given by the four polynomials

gr=x+y+z -1,
g=y-y-7+z

3)
g3 = 2yz2 +4 - zz,
g =20 -4t +42 - 2.
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It follows that equations (1) and (3) have the same solutions. However, since
=204 4+42 -2 =2z 1P +2z-1)

involves only z, we see that the possible z’s are 0, 1, and —1 & V2. Substituting these
valuesinto g» = y?> —y—z>+z = 0and g3 = 2yz> + z* — 22 = 0, we can determine
the possible y’s, and then finally g; = x + y + z2 — 1 = 0 gives the corresponding
x’s. In this way, one can check that equations (1) have exactly five solutions:

(1, 0, 0), (0, 1, 0), (0, O, 1),
(=142, -1+ V2,—-14+V2),
(=1 =v2,-1—-v2,—-1-V2).

What enabled us to find these solutions? There were two things that made our
success possible:

e (Elimination Step) We could find a consequence g4 = 2% —4z* +42> — 22 =0
of our original equations which involved only z, i.e., we eliminated x and y from
the system of equations.

e (Extension Step) Once we solved the simpler equation g4 = 0 to determine the
values of z, we could extend these solutions to solutions of the original equations.

The basic idea of elimination theory is that both the Elimination Step and the
Extension Step can be done in great generality.
To see how the Elimination Step works, notice that our observation concerning
g4 can be written as
g4 € INClZ,

where [ is the ideal given in equation (2). In fact, I N C|[z] consists of all conse-
quences of our equations which eliminate x and y. Generalizing this idea leads to
the following definition.

Definition 1. Given I = (fi,...,f;) C k[x1,...,x,], the /-th elimination ideal ; is
the ideal of k[x;41, . . ., x,] defined by

I :Iﬁk[xl+1,...,xn].

Thus, I; consists of all consequences of fj = --- = f; = 0 which elimi-
nate the variables xj, ..., x;. In the exercises, you will verify that /; is an ideal of
k[xi+1, ..., x,]. Note that I = I is the O-th elimination ideal. Also observe that
different orderings of the variables lead to different elimination ideals.

Using this language, we see that eliminating xi, . ..,x; means finding nonzero
polynomials in the /-th elimination ideal /;. Thus a solution of the Elimination Step
means giving a systematic procedure for finding elements of I;. With the proper term
ordering, Grobner bases allow us to do this instantly.

Theorem 2 (The Elimination Theorem). Let I C k[xy, ..., x,] be an ideal and let
G be a Grobner basis of I with respect to lex order where x; > x, > - - - > x,,. Then,
forevery 0 <1 < n, the set
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G =GNkxit1, -, Xn)
is a Grobner basis of the I-th elimination ideal I;.

Proof. Fix [between 0 and n. Since G; C I; by construction, it suffices to show that
(Lr(1)) = (L1(GY))

by the definition of Grobner basis. One inclusion is obvious, and to prove the other
inclusion (LT(f;)) C (LT(Gy)), we need only to show that the leading term LT(f),
for an arbitrary f € I, is divisible by LT(g) for some g € G;.

To prove this, note that f also lies in I, which tells us that LT(f) is divisible by

LT(g) for some g € G since G is a Grobner basis of 1. Since f € I, this means that

LT(g) involves only the variables x;41, . . ., x,. Now comes the crucial observation:
since we are using lex order with x; > - -- > x,, any monomial involving xi, ..., X;
is greater than all monomials in k[x;y1, ..., X,], so that LT(g) € k[x;t1,...,x,] im-
plies g € k[x;41, . .., X,]. This shows that g € Gy, and the theorem is proved. O

For an example of how this theorem works, let us return to example (1) from the
beginning of the section. Here, I = (x> +y+z— 1, x+y*+z—Lx+y+22— 1),
and a Grobner basis with respect to lex order is given in (3). It follows from the
Elimination Theorem that

L=INCly,zl=0*—y—2+2,297 +7* - 2,5 — 4zt + 42 - ),
L=INC[7 = (* —4z* + 472 — 7).

Thus, g4 = 2% — 47* + 47> — 72 is not just some random way of eliminating x and y
from our equations—it is the best possible way to do so since any other polynomial
that eliminates x and y is a multiple of g4.

The Elimination Theorem shows that a Grébner basis for lex order eliminates not
only the first variable, but also the first two variables, the first three variables, and
so on. In some cases (such as the implicitization problem to be studied in §3), we
only want to eliminate certain variables, and we do not care about the others. In such
a situation, it is a bit of overkill to compute a Grobner basis using lex order. This
is especially true since lex order can lead to some very unpleasant Grobner bases
(see Exercise 13 of Chapter 2, §10 for an example). In the exercises, you will study
versions of the Elimination Theorem that use more efficient monomial orderings
than lex.

We next discuss the Extension Step. Suppose we have an ideal I C k[xy, ..., x,].
As in Chapter 2, we have the affine variety

V() ={(a1,...,a,) €K' | f(ar,...,a,) =0forall f € I}.

To describe points of V(I), the basic idea is to build up solutions one coordinate
at a time. Fix some / between 1 and n. This gives us the elimination ideal /;, and
we will call a solution (aj11,...,a,) € V(I;) a partial solution of the original
system of equations. To extend (aj41,...,a,) to a complete solution in V(I), we
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first need to add one more coordinate to the solution. This means finding a; so that
(a1, ai41, - . ., ay) lies in the variety V(I;_) of the next elimination ideal. More con-
cretely, suppose that I,y = (g1, ..., g-) in k[x;, Xj41, . . ., x,]. Then we want to find
solutions x; = a; of the equations

gl(-xlual-‘rh" '7an) == gr(-xlual-‘rh" '7an) = 0

Here we are dealing with polynomials of one variable x;, and it follows that the
possible a;’s are just the roots of the gcd of the above r polynomials.

The basic problem is that the above polynomials may not have a common root,
i.e., there may be some partial solutions which do not extend to complete solutions.
For a simple example, consider the equations

@) w=t

xz = 1.

Here, I = (xy — 1,xz — 1), and an easy application of the Elimination Theorem
shows that y — z generates the first elimination ideal /;. Thus, the partial solutions
are given by (a, a), and these all extend to complete solutions (1/a, a, a) except for
the partial solution (0,0). To see what is going on geometrically, note that y = z
defines a plane in 3-dimensional space. Then the variety (4) is a hyperbola lying in
this plane:

'/

\ " «theplaney=z

< the solutions
< the partial
y solutions

It is clear that the variety defined by (4) has no points lying over the partial
solution (0, 0). Pictures such as the one here will be studied in more detail in §2
when we study the geometric interpretation of eliminating variables. For now, our
goal is to see if we can determine in advance which partial solutions extend to
complete solutions.

Let us restrict our attention to the case where we eliminate just the first variable
x1. Thus, we want to know if a partial solution (az, . .., a,) € V(I;) can be extended
to a solution (ay,ay, . ..,a,) € V(I). The following theorem tells us when this can
be done.
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Theorem 3 (The Extension Theorem). Let I = (fi,....f;) C Clxi,...,x,| and
let I} be the first elimination ideal of I. For each 1 <i < s, write f; in the form

fi=cilxa, ... x) x{v‘ + terms in which x| has degree < Nj,

where N; > 0 and ¢; € Clxa, ..., x,] is nonzero. Suppose that we have a partial
solution (ay,...,a,) € V(). If (az,...,an) ¢ V(ci,...,cs), then there exists
a) € C suchthat (ay,az, . ..,a,) € V(I).

We will give two proofs of this theorem, one using Grobner bases in §5 and
the other using resultants in §6. For the rest of the section, we will explain the
Extension Theorem and discuss its consequences. A geometric interpretation will
be given in §2.

A first observation is that the theorem is stated only for the field k = C. To see
why C is important, assume that k = R and consider the equations

) .

Eliminating x gives y = z, so that we get the partial solutions (a, a) for all a € R.
Since the leading coefficients of x in X2 — y and x? — z never vanish, the Extension
Theorem guarantees that (a,a) extends, provided we work over C. Over R, the
situation is different. Here, x> = a has no real solutions when « is negative, so that
only those partial solutions with a > 0 extend to real solutions of (5). This shows
that the Extension Theorem is false over R.

Turning to the hypothesis (ay, . ..,a,) & V(ci, ..., cs), note that the ¢;’s are the
leading coefficients with respect to x; of the f;’s. Thus, (az, .. .,a,) ¢ V(ci,...,cs)
says that the leading coefficients do not vanish simultaneously at the partial solution.
To see why this condition is necessary, let us look at example (4). Here, the equations

xy =1,
xz=1

have the partial solutions (y, z) = (a, a). The only one that does not extend is (0, 0),
which is the partial solution where the leading coefficients y and z of x vanish. The
Extension Theorem tells us that the Extension Step can fail only when the leading
coefficients vanish simultaneously.

Finally, we should mention that the variety V(ci,...,c;) where the leading
coefficients vanish depends on the basis {fi,...,f;} of I: changing to a different
basis may cause V(cy, ..., ¢) to change. In Chapter 8, we will learn how to choose
(fi,-..,fs) sothat V(cy,...,cy) is as small as possible. We should also point out
that if one works in projective space (to be defined in Chapter 8), then one can show
that all partial solutions extend.

Although the Extension Theorem is stated only for the case of eliminating the
first variable xj, it can be used when eliminating any number of variables. For
example, consider the equations
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ey =1,

6
© xyz = 1.

A Grobner basis for I = (x> + y*> 4+ z2 — 1,xyz — 1) with respect to lex order is

g1 :y4zz+yzz4_yzzz+17
g2:x+y3z+yz3—yz.

By the Elimination Theorem, we obtain

L =1NCly,z] = (g1),
L =1IN (C[Z] = {0}

Since I = {0}, we have V(I;) = C, and, thus, every ¢ € C is a partial solution. So
we ask:

Which partial solutions ¢ € C = V(1) extend to (a,b,c) € V(I)?

The idea is to extend ¢ one coordinate at a time: first to (b, ¢), then to (a, b, ¢). To
control which solutions extend, we will use the Extension Theorem at each step.
The crucial observation is that I, is the first elimination ideal of 7;. This is easy
to see here, and the general case is covered in the exercises. Thus, we will use the
Extension Theorem once to go from ¢ € V(1) to (b,c) € V(I;), and a second time
to go to (a, b, c) € V(I). This will tell us exactly which ¢’s extend.

To start, we apply the Extension Theorem to go from I, to I; = (g;). The coeffi-
cient of y* in g; is 72, so that ¢ € C = V(I,) extends to (b, c) whenever ¢ # 0. Note
also that g; = 0 has no solution when ¢ = 0. The next step is to go from /; to I;
that is, to find a so that (a,b,c) € V(I). If we substitute (y,z) = (b, ¢) into (6), we
get two equations in x, and it is not obvious that there is a common solution x = a.
This is where the Extension Theorem shows its power. The leading coefficients of x
inx? +y> 4z — 1 and xyz — 1 are 1 and yz, respectively. Since 1 never vanishes,
the Extension Theorem guarantees that a always exists. We have thus proved that
all partial solutions ¢ # 0 extend to V(I).

The Extension Theorem is especially easy to use when one of the leading coef-
ficients is constant. This case is sufficiently useful that we will state it as a separate
corollary.

Corollary 4. Let I = (fi,....,fs) C Clxy,...,x,], and assume that for some i, f; is
of the form
fi = c,-xivi + terms in which x| has degree < Nj,

where ¢; € C is nonzero and N; > 0. If I, is the first elimination ideal of I and
(az,...,ay,) € V(I), then there is a; € C such that (a1, ay, . .. ,a,) € V(I).

Proof. This follows immediately from the Extension Theorem: since ¢; # 0 in
C implies V(cy,...,c;) = 0, we have (ay,...,a,) & V(ci,...,c;) for all partial
solutions (ay, . .., ay,). O
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We will end this section with an example of a system of equations that does not
have nice solutions. Consider the equations

xy =4,
y2=x3—1.

Using lex order with x > y, the Grobner basis is given by

g1 = l6x—y* —y*
g2=y +) — 64,

but if we proceed as usual, we discover that y5 + y3 — 64 has no rational roots (in fact,
itis irreducible over Q, a concept we will discuss in Chapter 4, §2). One option is to
compute the roots numerically. A variety of methods (such as the Newton-Raphson
method) are available, and for y> + y* — 64 = 0, one obtains

y =2.21363, —1.78719 £ 1.3984i, or 0.680372 £ 2.26969i.

These solutions can then be substituted into g; = 16x — y*> — y* = 0 to determine
the values of x. Thus, unlike the previous examples, we can only find numerical
approximations to the solutions. See VON ZUR GATHEN and GERHARD (2013) for
an introduction to finding the roots of a polynomial of one variable.

There are many interesting problems that arise when one tries to find numerical
solutions of systems of polynomial equations. For further reading on this topic, we
recommend LAZARD (1993) and MANOCHA (1994). The reader may also wish to
consult CoxX, LITTLE and O’SHEA (2005) and DICKENSTEIN and EMIRIS (2005).

EXERCISES FOR §1

1. Let] C kfxi,...,x,] be an ideal.

a. Prove that I; = I N k[xiq1, ..., X, is an ideal of k[x/41, . . ., x4].

b. Prove that the ideal I;+1 C k[x42,...,x,] is the first elimination ideal of I; C
k[xi41, ... ,x,). This observation allows us to use the Extension Theorem multiple
times when eliminating more than one variable.

2. Consider the system of equations

4+ 2y2 =3,

2+ xy + y2 = 3.
a. If I is the ideal generated by these equations, find bases of I N k[x] and I N k[y].
b. Find all solutions of the equations.
c
d

. Which of the solutions are rational, i.e., lie in Qz?
. What is the smallest field k containing Q such that all solutions lie in *?

3. Determine all solutions (x,y) € Q of the system of equations
2+ 2y2 =2,
2+ xy + y2 =2.

Also determine all solutions in C2.
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4. Find bases for the elimination ideals /; and I, for the ideal / determined by the equations:

Xy 7 =4,
xz—&—2y2:57
xz = 1.

How many rational (i.e., in Q%) solutions are there?

5. In this exercise, we will prove a more general version of the Elimination Theorem. Fix an
integer 1 < I < n. We say that a monomial order > on k[xi, . .., x,] is of l-elimination
type provided that any monomial involving one of xi, . . ., x; is greater than all monomials
in k[Xi41, . ..,%]. Prove the following generalized Elimination Theorem. If / is an ideal
in k[xi,...,x,] and G is a Grobner basis of I with respect to a monomial order of /-
elimination type, then G N k[xi41, . .., X,] is a Grobner basis of the /-th elimination ideal
LI =1IN k[le, . ,xn].

6. To exploit the generalized Elimination Theorem of Exercise 5, we need some interesting
examples of monomial orders of /-elimination type. We will consider two such orders.

a. Fix an integer 1 < I < n, and define the order >; as follows: if a, 8 € Z%,, then
a > pif

ar+- o>+ + BLorar+ -+ =01+ -+ Frand @ > e -

This is the [-th elimination order of BAYER and STILLMAN (1987b). Prove that >;is a
monomial order and is of /-elimination type. Hint: If you did Exercise 11 of Chapter 2,
§4, then you have already done this problem.

b. In Exercise 9 of Chapter 2, §4, we considered an example of a product order that mixed
lex and grlex orders on different sets of variables. Explain how to create a product order

that induces grevlex on both k[xi, . ..,x] and k[x/41, ..., x,] and show that this order
is of [-elimination type.

c. If G is a Grobner basis for I C k|xi, . .., x,] for either of the monomial orders of parts
(a) or (b), explain why G N k[x41, ..., Xs] is a Grobner basis with respect to grevlex.

7. Consider the equations

P+ +y +7 =0,
1,‘2—1—2)62—xy—z2207
t—l—y’z—z3 =0.

We want to eliminate . Let I = (# +x* +y* + 25, +2x* —xy — 22,1 +y* — 2°) be the
corresponding ideal.

a. Using lex order with # > x >y > z, compute a Grobner basis for /, and then find a ba-
sis for I N Q|x, y, z]. You should get four generators, one of which has total degree 12.

b. Compute a grevlex Grobner basis for I N QJx, y, z]. You will get a simpler set of two
generators.

¢. Combine the answer to part (b) with the polynomial r + y* — z* and show that this
gives a Grobner basis for / with respect to the elimination order > (this is >; with
[ = 1) of Exercise 6. Note that this Grébner basis is much simpler than the one found
in part (a). If you have access to a computer algebra system that knows elimination
orders, then check your answer.

8. In equation (6), we showed that z # 0 could be specified arbitrarily. Hence, z can be
regarded as a “parameter.” To emphasize this point, show that there are formulas for x and
yin terms of z. Hint: Use g; and the quadratic formula to get y in terms of z. Then use xyz =
1 to get x. The formulas you obtain give a “parametrization” of V(I) which is different
from those studied in §3 of Chapter 1. Namely, in Chapter 1, we used parametrizations by



§2 The Geometry of Elimination 129

rational functions, whereas here, we have what is called a parametrization by algebraic
functions. Note that x and y are not uniquely determined by z.
9. Consider the system of equations given by

s, 1
X +;7y7
1
X+-—- =2z
X

Let I be the ideal in C[x, y, z] determined by these equations.

a. Find a basis of I; C Cly, z] and show that I, = {0}.

b. Use the Extension Theorem to prove that each partial solution ¢ € V(I;) = C extends
to a solution in V(I) C C°.

c. Which partial solutions (b,c¢) € V(I;) C R? extend to solutions in V(I) C R*?
Explain why your answer does not contradict the Extension Theorem.

d. If we regard z as a “parameter” (see the previous problem), then solve for x and y as
algebraic functions of z to obtain a “parametrization” of V([).

§2 The Geometry of Elimination

In this section, we will give a geometric interpretation of the theorems from §1.
The main idea is that elimination corresponds to projecting a variety onto a lower
dimensional subspace. We will also discuss the Closure Theorem, which describes
the relation between partial solutions and elimination ideals. For simplicity, we will
work over the field k = C.

Let us start by defining the projection of an affine variety. Suppose that we are
given V.= V(fi,...,f;) € C". To eliminate the first / variables xy, . .., x;, we will
consider the projection map

. C— C !

which sends (ay, ..., a,) to (ai1,...,a,). If we apply 7 to V. C C", then we get
(V) € C"~!. We can relate 7;(V) to the I-th elimination ideal as follows.

Lemma 1. With the above notation, let I; = (fi,...,f;) N Clxi41,...,x,] be the
I-th elimination ideal. Then, in C"~!, we have

m(V) C V().

Proof. Fix a polynomial f € I,. If (ay, .. .,a,) € V, thenf vanishes at (ay, . .., a,)

since f € (f1,...,fs). Butf involves only x;y1, . . ., X,, so that we can write
flasr, .. an) =f(mlar, ... a,)) =0.
This shows that f vanishes at all points of 7;(V). (]

As in §1, points of V(I;) will be called partial solutions. Using the lemma, we
can write m;(V) as follows:
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m(V) = {(ait1,...,a,) € V(I;) | there exist ay, ..., a; € C such
that (ay,...,a5,di41,...,a,) € V}.

Thus, (V) consists exactly of the partial solutions that extend to complete solu-
tions. For an example, consider the variety V defined by equations (4) from §1:

0 xy =1,

xz=1.

Here, we have the following picture that simultaneously shows the solutions and the
partial solutions:

«theplaney =z

< the solutions
< the partial
Y solutions

the arrows 1, {
indicate the
projection 7,

Note that V(I;) is the line y = z in the (y, z)-plane, and that
(V) = {(a,a) € C* | a #0}.

In particular, 7 (V) is not an affine variety—it is missing the point (0, 0).

The basic tool to understand the missing points is the Extension Theorem from
§1. It only deals with m; (i.e., eliminating x;), but gives us a good picture of what
happens in this case. Stated geometrically, here is what the Extension Theorem says.

Theorem 2 (The Geometric Extension Theorem). Given V = V(fi,....f;) C
C, let ¢; € Clxa, ..., x,] be as in the Extension Theorem from §1. If I, is the first
elimination ideal of (fi, . .. f;), then we have the equality in C"~!

V() =m((V)U (V(cty-..,c) NV()),
where m : C" — C"~! is projection onto the last n — 1 coordinates.

Proof. The proof follows from Lemma 1 and the Extension Theorem. The details
will be left as an exercise. (|
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This theorem tells us that 7; (V) fills up the affine variety V(I ), except possibly
for a part that lies in V(cy, . .., ¢;). Unfortunately, it is not clear how big this part is,
and sometimes V(cy, ..., c,) is unnaturally large. For example, one can show that
the equations

(y—2)x" +xy =1,

2
@ (y—z2)x* +xz=1

generate the same ideal as equations (1). Since ¢; = ¢, = y — z generate the elimi-
nation ideal /1, the Geometric Extension Theorem tells us nothing about the size of
m1(V) in this case.

Nevertheless, we can still make the following strong statements about the relation
between m;(V) and V(I;).

Theorem 3 (The Closure Theorem). Let V = V(fi,...,f;) C C" and let I, be the
I-th elimination ideal of {f, .. .,f). Then:

() V(I)) is the smallest affine variety containing (V) C C"~..

(ii) When V # 0, there is an affine variety W C V(1)) such that V(I;) \ W C m(V).

When we say “smallest variety” in part (i), we mean “smallest with respect to

set-theoretic inclusion.” Thus, V(I;) being smallest means two things:

e (V) C V()

e If Z is any other affine variety in C"~! containing 7;(V), then V(I,) C Z.

In Chapter 4, we will express this by saying that V(I;) is the Zariski closure of
m(V). This is where the theorem gets its name. Part (ii) of the theorem says that
although m;(V') may not equal V(;), it fills up “most” of V(/;) in the sense that what
is missing lies in a strictly smaller affine variety.

We cannot yet prove the Closure Theorem, for it requires the Nullstellensatz and
other tools from Chapter 4. The proof will be deferred until then. We will also say
more about the variety W C V(I;) of part (ii) in Chapter 4.

The Closure Theorem gives us a partial description of m;(V) since it fills up
V(I;), except for some missing points that lie in a variety strictly smaller than V(1;).
Unfortunately, the missing points might not fill up all of the smaller variety. The
precise structure of m;(V) can be described as follows: there are affine varieties
Z; CW; C C"!for 1 < i < m such that

m

m(V) = JWi\2).

i=1

In general, a set of this form is called constructible. We will prove this in Chapter 4.

In §1, we saw that the nicest case of the Extension Theorem was when one of
the leading coefficients ¢; was a nonzero constant. Then the ¢;’s can never simulta-
neously vanish at a point (ay, . .., a,), and, consequently, partial solutions always
extend in this case. Thus, we have the following geometric version of Corollary 4
of §1.
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Corollary 4. Let V = V(fi,....f;) C C", and assume that for some i, f; is of the
form

fi = c,-xllv’ + terms in which x| has degree < Nj,

where c¢; € C is nonzero and N; > 0. If 1, is the first elimination ideal, then in C"~!,

7T1(V) = V(Il)u

where T is the projection on the last n — 1 coordinates.

A final point to make concerns fields. The Extension Theorem and the Closure

Theorem (and their corollaries) are stated for the field of complex numbers C. In §§5
and 6, we will see that the Extension Theorem actually holds for any algebraically
closed field k, and in Chapter 4, we will show that the same is true for the Closure
Theorem.

EXERCISES FOR §2

1.

2.

Prove the Geometric Extension Theorem (Theorem 2) using the Extension Theorem and
Lemma 1.

In example (2), verify carefully that ((y—z)x* +xy—1, (y—z)x*+xz—1) = (xy—1,xz—1).
Also check that y — z vanishes at all partial solutions in V(I}).

In this problem, we will prove part (ii) of Theorem 3 in the special case when I =

<f17f27f3>, where

fi =y + 24,
h=yx+y,
f3:y.x4+.x2+y2.

a. Find a Grobner basis for I and show that I; = (y?).

b. Let ¢; be the coefficient of the highest power of x in f;. Then explain why W
V(c1,c2,¢3) N V(11) does not satisfy part (ii) of Theorem 3.

c. Letl = (fi,fo,fs,c1,¢2,¢3). Show that V(I) = V(I) and V(I1) = V(I,).

d. Let xl\f be the highest power of x appearing in f; and set f; = fi — cix™i. Show that
I:<f17f27f376176‘2763>. _

e. Repeat part (b) for I using the generators from part (d) to find W C V(I)) that satisfies
part (ii) of Theorem 3.

To see how the Closure Theorem can fail over R, consider the ideal

I= "+ +7 42,3 +4y° +427+5).

Let V = V(I), and let 7r; be the projection taking (x, y, z) to (y, z).

a. Working over C, prove that V(1) = mi(V).

b. Working over R, prove that V = () and that V(I,) is infinite. Thus, V(/;) may be much
larger than the smallest variety containing 71 (V) when the field is not algebraically
closed.

Suppose that I C Clx,y] is an ideal such that /; # {0}. Prove that V(I,) = m(V),

where V = V(I) and 7, is the projection onto the y-axis. Hint: Use part (i) of the Closure

Theorem. Also, the only varieties contained in C are either C or finite subsets of C.
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§3 Implicitization

In Chapter 1, we saw that a variety V can sometimes be described using para-
metric equations. The basic idea of the implicitization problem is to convert the
parametrization into defining equations for V. The name “implicitization” comes
from Chapter 1, where the equations defining V were called an “implicit representa-
tion” of V. However, some care is required in giving a precise formulation of implic-
itization. The problem is that the parametrization need not fill up all of the variety
V—an example is given by equation (4) from Chapter 1, §3. So the implicitization
problem really asks for the equations defining the smallest variety V containing the
parametrization. In this section, we will use the elimination theory developed in §§1
and 2 to give a complete solution of the implicitization problem.

Furthermore, once the smallest variety V has been found, two other interesting
questions arise. First, does the parametrization fill up all of V? Second, if there
are missing points, how do we find them? As we will see, Grobner bases and the
Extension Theorem give us powerful tools for studying this situation.

To illustrate these issues in a specific case, let us look at the tangent surface to the
twisted cubic in R3, first studied in Chapter 1, §3. Recall that this surface is given
parametrically by

xX=1t+u,
(1) y =1+ 21u,
z=17 +3"u.

In §8 of Chapter 2, we used these equations to show that the tangent surface lies on
the variety V in R? defined by

Oz — (3/4)x°y — (3/2)xyz+ ¥ + (1/4)2 = 0.

However, we do not know if V is the smallest variety containing the tangent surface
and, thus, we cannot claim to have solved the implicitization problem. Furthermore,
even if V is the smallest variety, we still do not know if the tangent surface fills it up
completely. So there is a lot of work to do.

We begin our solution of the implicitization problem with the case of a polyno-
mial parametrization, which is specified by the data

x1 = filti, .o twm),
©) :
Xn = fultty ooy tm).

Here, f1, . . .,f, are polynomials in k[fy, . . . , f,,]. We can think of this geometrically
as the function
F: k" — k"

defined by
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F(ll,...,tm) = (fl(tl,...,l‘m),...,f;l(tl,...,tm)).

Then F(k™) C k" is the subset of k" parametrized by equations (2). Since F(k™)
may not be an affine variety (examples will be given in the exercises), a solution of
the implicitization problem means finding the smallest affine variety that contains

We can relate implicitization to elimination as follows. Equations (2) define a
variety V.= V(x; — f1,...,x, — f,) C kK"*". Points of V can be written in the form

(tlv" '7tm7fl(tla' o atm)a' o af;l(tla' "7tm))7

which shows that V can be regarded as the graph of the function F. We also have
two other functions

i k" —
T o KT — k"

defined by

ity ytm) = (B sty J1(E o tn)y oo S (FLy e )

and
Tm(Fy ey by X1y e ey Xn) = (X150, Xn),

respectively. This gives us the following diagram of sets and maps:

km+n
3 /‘ Y
e £ k"

Note that F is then the composition F = 1, o i. It is also straightforward to show
that i(k") = V. Thus, we obtain

4) FK") = mn(i(k")) = mu (V).

In more concrete terms, this says that the image of the parametrization is the pro-
jection of its graph. We can now use elimination theory to find the smallest variety
containing F(k™).

Theorem 1 (Polynomial Implicitization). If k is an infinite field, let F : K" — k"
be the function determined by the polynomial parametrization (2). Let I be the ideal
I={xi—fi,..,xn—fu) Ckltr,.. tm,x1,...,x,) and let I, = 10 k[xy, ... X,
be the m-th elimination ideal. Then V(1) is the smallest variety in k" containing

F(k™).

Proof. By equation (4) above and Lemma 1 of §2, F(k") = 7, (V) C V(Iy).
Thus V(I,,) is a variety containing F (k™). To show it is the smallest, suppose that
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h € klx1, ..., x,] vanishes on F (k™). We show that i € I, as follows. If we regard h
as apolynomialin k[, ..., fy, X1, . . ., X, then we can divide A by x1 —f1, . . . , X, —fn
using lex order with x; > --- > x,, > #; > --- > t,. This gives an equation

Gy ke x) =g = fi) e (=) F (0 )

since LT(x; — f;) = x;. Given any a = (a, ...,a,) € k", we substitute #; = g; and
x; = fi(a) into the above equation to obtain

0=n(fi(a),...,fu(a))=0+---+ 0+ r(a).

It follows that #(a) = O for all a € k™. Since k is infinite, Proposition 5 of Chapter 1,
§1 implies that r(¢, . . ., t,) is the zero polynomial. Thus we obtain

h(xt,..ox0)=q1-(x1—fi)+ -+ qn- e —fo) EINk[x1,..., %] =1L

since I = (x1 —fi,. -, %0 — fu)-
Now suppose that Z = V(hy, ..., hs) C k" is variety of k" such that F(k") C Z.
Then each h; vanishes on F(k™) and hence lies in I,, by the previous paragraph. Thus

V(Im) C V(hla s ahx) =Z.
This proves that V(I,,) is the smallest variety of k" containing F (k™). O

Theorem 1 gives the following implicitization algorithm for polynomial
parametrizations: if we are given x; = f;(t1,...,1,) for polynomials f1, ... .f, €
k[t1,. .., tn], consider the ideal I = (x; — fi,...,x, — f,) and compute a Grébner
basis with respect to a lexicographic ordering where every ¢; is greater than every
x;. By the Elimination Theorem, the elements of the Grobner basis not involving
t,...,t, form a basis of I,,, and by Theorem 1, they define the smallest variety in
k" containing the parametrization.

For an example of how this algorithm works, let us look at the tangent surface to
the twisted cubic in R?, which is given by the polynomial parametrization (1). Thus,
we need to consider the ideal

I=(x—t—uy—1—2muz—r —3u) CR[t,uxy,z.
Using lex order with # > u > x >y > z, a Grobner basis for / is given by

g1 =1t+tu—x,

g = w -+ y,

g3 =ux’ —uy —x + (3/2)xy — (1/2)z,

84 = Uxy — uz — Xy — xz + 2y°,

g5 = uxz — uy* + ¥’z — (1/2)xy* — (1/2)yz,

g6 = uy’ —uz® — 2%z + (1/2)xy* — x2 + (5/2)y%z,
g1 =22~ (3/4)x%y* — (3/2)xyz+y* + (1/4)2.
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The Elimination Theorem tells us that I, = I N R[x, y, z] = (g7), and thus by Theo-
rem 1, V(g7) solves the implicitization problem for the tangent surface of the twisted
cubic. The equation g7 = 0 is exactly the one given at the start of this section, but
now we know it defines the smallest variety in R? containing the tangent surface.

But we still do not know if the tangent surface fills up all of V(g7) C R3. To
answer this question, we must see whether all partial solutions (x,y,z) € V(g7) =
V(I) extend to (t,u,x,y,z) € V(I). We will first work over C so that we can use
the Extension Theorem. As usual, our strategy will be to add one coordinate at a
time.

Let us start with (x,y,z) € V() = V(g7). In §1, we observed that I, is the
first elimination ideal of I;. Further, the Elimination Theorem tells us that I; =
(g2, - - -,&7)- Then the Extension Theorem, in the form of Corollary 4 of § 1, implies
that (x,y, z) always extends to (u,x,y,z) € V(I;) since /| has a generator with a
constant leading coefficient of u# (we leave it to you to find which of g,, ..., g7 has
this property). Going from (u, x,y,z) € V(1) to (t,u,x,y,z) € V(I) is just as easy:
using Corollary 4 of §1 again, we can always extend since g = t+ u — x has a
constant leading coe