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Foreword

Most fundamental problems in combinatorial optimization field have been proven to be computation-
ally hard to solve to optimality and are known as NP-hard problems in the literature. Knowing that a 
problem of interest is NP-hard implies, on the one hand, that the problem is unlikely to be solved 
within a reasonable amount of computation time and, on the other, that one has to be satisfied with solv-
ing the problem approximately or near-optimally.

An important class of algorithms that have shown their usefulness in solving many computationally 
hard optimization problems is that of meta-heuristics. This is by no chance –meta-heuristics methods 
possess many good features, among which we could distinguish: they are able to find high quality solu-
tions in a reasonable amount of computation time, are robust, generic, flexible and easy to implement on 
sequential, parallel and networked computer systems. This, together with the fact that for most practical 
applications in industry and businesses high quality solution would suffice, have converted meta-heuristics 
into de facto approaches to cope in practice with the computationally hard optimization problems. In 
fact, even when a polynomial time algorithm is known for a certain problem, solving large-size/real-life 
instances (e.g. instances at enterprise scale) calls again for the application of meta-heuristics methods. 
Not less importantly, meta-heuristic approaches can tackle with efficacy both single and multi-objective 
optimization problems.

Meta-heuristics methods have been applied for decades now. Besides using them as stand alone ap-
proaches, during the last years, the attention of researchers has shifted to consider another type of high 
level algorithms, namely hybrid algorithms. These algorithms do not follow any concrete meta-heuristic, 
but rather combine meta-heuristics with meta-heuristics and/or other methods (e.g. divide-and-conquer, 
linear programming, dynamic programming, constraint programming or other AI techniques) yielding 
thus hybrid meta-heuristics. One fundamental question here is how can be achieved for hybrid approaches 
to outperform stand alone approaches? The hybridization aims at exploring the synergies among stand 
alone methods in order to achieve better results for the optimization problem under study. For instance, 
using hybrid approaches one can explore the synergies between exploration of solution space (through 
population based meta-heuristics, such as Genetic Algorithms—GAs) with the exploitation of the solu-
tion space (through local search methods, such as Tabu Search –TS); the GA could them be used as a 
main search method while TS can improve locally the individuals of the population.

The rationale behind the hybridization resides in the ``no free lunch theorem” stating that ``... all 
algorithms that search for an extremum of a cost function perform exactly the same, when averaged over 
all possible cost functions. In particular, if algorithm A outperforms algorithm B on some cost functions, 
then loosely speaking there must exist exactly as many other functions where B outperforms A.” Based 
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on this theorem, existing algorithms can be used as components for designing new efficient search 
algorithms and expect improved performance of the newly obtained algorithm for some cost functions.

Naturally, there are major issues in designing hybrid meta-heuristics for a given optimization problem, 
such as: (a) how to choose heuristic and/or meta-heuristic methods to be combined (within the same 
family or from different families of existing algorithms), and, (b) how to combine the chosen methods 
into new hybrid approaches. Unfortunately, there are no theoretical foundations for these issues, yet there 
are interesting evidences, experiences and reports on the literature. For the former, different classes of 
search algorithms can be considered for the purposes of hybridization, such as exact methods, simple 
deterministic or random heuristic methods and meta-heuristics. Moreover, meta-heuristics themselves 
are classified into local search based methods, population based methods and other classes of nature 
inspired meta-heuristics. Therefore, in principle, one could combine any methods from the same class 
or methods from different classes. Regarding the later, there are some attempts for taxonomies of hybrid 
meta-heuristics; in fact, the common approach is to try out in smart ways, based on domain knowledge 
of problem at hand and characteristics of heuristics methods, different hybrid approaches and shed light 
on the performance of the resulting hybrid approach. The level of hybridization here plays an important 
role, namely the degree of coupling between the meta-heuristics (e.g. coercive vs. cooperative). It should 
as well be noted that frameworks that facilitate fast prototyping have been also provided in the hybrid 
meta-heuristics literature.

This book brings excellent contributions to the field of hybrid algorithms, their design, implemen-
tation and experimental evaluation. The proposed hybrid approaches tackle fundamental problems in 
the domain of logistics, industry services, commercial distribution and manufacturing systems. The 
studied problems include routing, different forms of scheduling, such as permutation scheduling and 
shop scheduling problems, service allocation problems, etc. The proposed approaches include hybrid-
ization of meta-heuristic methods with other meta-heuristic methods such as Genetic Algorithms (GA) 
and Simulated Annealing (SA) or the hybridization of meta-heuristics with the exact solution of one or 
several mathematical programming models.

Besides advancing in the design of more sophisticated hybrid solution strategies for routing and 
scheduling problems, the contributions of the book have a practical focus for solving real life problems. 
The aim is to support decision processes in companies and thus to enable achieving better business ob-
jectives by solving the problems at company scale. Also, the use of benchmarks and software packages 
are good examples of best practices in the field.

The editors of this volume bring together experts and researchers from the field whose contributions 
explore new research findings, developments and future directions in the hybrid approaches for routing 
and scheduling problems arising in service, computing and manufacturing systems. Finally, although 
focused on the concrete field of the routing and scheduling for service, computing and manufacturing 
systems, most of the conclusions provided in the volume could be extended to routing and scheduling 
in other research fields.

Fatos Xhafa 
Technical University of Catalonia, Spain
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Preface

PURPOSE OF THE BOOK

In a global and highly-competitive world, organizations face an increasingly difficult environment, with 
increasing economic pressure and customer demands for more complex products and services that are 
inexpensive and that can be provided at short notice. In relation to this, hybrid algorithms could play 
an important role in helping organizations achieve current imperative costs reduction and fast product 
development.

This book deals with the study of Hybrid Algorithms for Service, Computing and Manufacturing 
Systems. Solutions to current real-life problems, such as supply chain management require more than an 
individual algorithm. Hybrid algorithms take advantage of each individual algorithm and help find solu-
tions which are stronger/faster or more efficient than those provided by individual algorithms. Recently, 
the use of hybrid algorithms has increased in popularity in different research areas and industries. One 
of the indicators of this situation is the number of sessions, workshops, and conferences dealing with the 
design and application of hybrid algorithms. In practice, hybrid algorithms have proved to be efficient 
in solving a wide range of complex real-life application problems in different domains, including: Lo-
gistics, Bioinformatics and Computational Biology, Engineering Design, Networking, Environmental 
Management, Transportation, Finance and Business.

This book aims at exploring state-of-the-art research developments and applications in these research 
areas from an interdisciplinary perspective that combines approaches from Operations Research, Com-
puter Science, Artificial Intelligence and Applied Computational Mathematics.

The interest in hybrid algorithms has risen considerably among academics in order to improve both 
the behavior and the performance of meta-heuristics. Meta-heuristics are a branch of optimization in 
Computer Science, Operations Research and Applied Computational Mathematics that are related to 
algorithms and computational complexity theory. The past few years have witnessed the development of 
numerous meta-heuristics in various communities that sit at the intersection of several fields, including 
Artificial Intelligence, Computational Intelligence, Soft Computing, and Mathematical Programming. 
Most of the meta-heuristics mimic natural metaphors to solve complex optimization problems (e.g. 
evolution of species, annealing process, behavior of ant colonies, particle swarm, immune system, bee 
colony, wasp swarm, or bacterial behavior).

Some results of many real-life application problems are presented in this book. As reported in the 
literature, hybrid algorithms could result from one of the following, by:
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• Combining meta-heuristics with complementary meta-heuristics,
• Combining meta-heuristics with exact methods from mathematical programming,
• Combining meta-heuristics with constraint programming approaches developed in the artificial 

intelligence community,
• Combining meta-heuristics with machine learning and data mining techniques,
• Combining meta-heuristics or exact methods with simulation techniques (optimization through 

simulation).

TARGET AUDIENCE

This book is a valuable tool for Researchers, Practitioners and Managers, Master and PhD students, 
Consultants, Government officials and Policy makers, as explained below:

1.  Researchers: Since this book presents cutting-edge research on hybrid algorithms for routing, 
scheduling and other real-life application of hybrid algorithms. As shown by the chapters included 
in this book, researchers in Operations Research, Management Science, and Computer Science are 
developing new hybrid algorithms to solve problems in Logistics (to a large extend), Supply Chain 
Management and Design, Production and Operations Management, Applied Operations Research 
and Applied Combinatorial Optimization.

2.  Practitioners and Managers: Logistics and Operations Managers, Supply Chain Managers, Production 
Managers and Control Engineers are dealing with real-life problems on a daily basis. The hybrid 
algorithms presented in this book provide a valuable resource to draw upon to inform their daily 
practice.

3.  Master and PhD students: The book can be of interest for lecturers and students in Operations 
Research, Computer Science, Applied Computational Mathematics, Discrete Mathematics, Logistics 
and Operations Management, Industrial Engineering and Systems Engineering. Especially use-
ful for the teaching and learning of the following topics: vehicle routing, scheduling, applied and 
discrete mathematics and artificial intelligence.

4.  Consultants: this book provides off-the-shelf hybrid algorithms that have been tried and tested 
which can be used by consultants and further applied to their clients.

5.  Government officials and Policy makers: In general, decision-makers in both private and public 
sectors could benefit from this book by tailoring and assessing the hybrid algorithms according to 
their decision-making criteria.

OVERVIEW OF THE BOOK

The chapters published in this book are authored by a total of 38 researchers affiliated to Higher Education 
Institutions based in 13 countries, as follows (in alphabetical order): Brazil, Canada, Chile, Colombia, 
France, Germany, Italy, Mexico, Portugal, Spain, Turkey, United Kingdom and United States of America. 
These manuscripts cover a range of hybrid algorithms theory and practice in three main areas: Routing, 
Scheduling, and Other real-life application problems. These areas correspond to the three sections of 
the book, as explained in detail below.
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The first section contains six chapters and it is devoted to the application of hybrid algorithms for 
solving complex realistic Routing problems.

Chapter 1 is written by Bertazzi and Speranza. This invited chapter reviews the main heuristic ap-
proaches for the solution of Inventory Routing Problems (IRP) by presenting the most recent and novel 
ideas for the design of a new class of heuristics called matheuristics. This class of heuristic algorithms 
embeds, in a heuristic or meta-heuristic scheme, the exact solution of one or several mathematical pro-
gramming models.

Chapter 2 is authored by Perrier, Campbell, Gendreau, and Langevin. It provides a survey of recent 
optimization models and solution methodologies for the vehicle routing problem for spreading opera-
tions. The chapter presents a detailed classification scheme of models developed over the past 40 years. 
It highlights some factors that may be limiting the application of Operations Research models in practice 
and discuss promising future research trends.

The Vehicle Routing Problem with Time Windows (VRPTW) is dealt with in chapters 3 and 4, respec-
tively. VRPTW consists on finding routes for the vehicles to serve all the customers at a minimal cost 
without violating the capacity and travel time constraints of the vehicles and the time window constraints 
set by the customers. Chapter 3 is written by Bozkaya, Cao and Aktolug. It provides the reader with 
the background, mathematical models and various solution approaches for the Vehicle Routing Problem 
with Time Windows (VRPTW). Three case studies are presented as “success stories” of implementation 
of decision-aid tools for solving the VRPTW at an enterprise scale. Chapter 4 is authored by Tuzkaya, 
Gülsün, Bildik, and Çağlar. The chapter considers a multiple objective Vehicle Routing Problem subject 
to Time Windows deliveries. A hybrid meta-heuristic algorithm based on Genetic Algorithm (GA) and 
Simulated Annealing (SA) is proposed.

Chapter 5 is written by Lourenço and Ribeiro. It studies the problem of designing market-efficient 
and cost-effective product distribution routes. This chapter explores three different distribution routing 
strategies: (i) the classical vehicle routing problem where total distance or cost is minimized, responding 
to the classical objective functions of a Logistics Department in a company, (ii) a master route strategy 
with daily adaptations with maximization of customer’s loyalty, as intended by Marketing Departments, 
and (iii) a strategy that takes into account the cross-functional planning between the logistics (cost-based 
objective) and the marketing (customer-oriented objective) objectives through a multi-objective model. 
All strategies are analyzed in a multi-period scenario through a meta-heuristic algorithm based on the 
iterated local search scheme.

Chapter 6 is authored by Juan, Faulin, Bektaş and Grasman, discusses how simulation can be ef-
ficiently integrated with a classical heuristic in order to solve Vehicle Routing Problems with route 
length constraints and customer service costs. The strategy behind the hybrid solution procedure is to 
combine Monte Carlo Simulation with the classical Clarke & Wright Savings (CWS) algorithm and a 
divide-and-conquer technique. Authors also discuss the advantages and disadvantages of the procedures 
in relation to other existing approaches from literature.

The second section of the book is composed of four chapters and it is devoted to the presentation of 
hybrid algorithms for the solution of various Scheduling problems.

Chapter 7 is authored by Czogalla and Fink, and proposes a Particle Swarm Optimization (PSO) ap-
proach for the Resource-Constrained Project Scheduling Problem (RCPSP). It incorporates well-known 
procedures such as the serial Schedule Generation Scheme (SGS) and is hybridized with forward-backward 
improvement. The proposed procedure is compared against state-of-the-art methods from the literature 
through an extensive computational experiment using a benchmark instances.
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Chapter 8 is written by Palominos, Parada, Gatica, and Vejar. It provides an exploratory analysis of 
the marriage of honey-bees optimization (MBO) algorithm to solve scheduling problems. The chapter 
also evaluates the potential utility and adaptability of this method. Two scheduling problems are consid-
ered: minimization of earliness-tardiness penalties under single machine scheduling environment with 
a common due date constraint and the permutation flow shop problem.

Chapter 9 is written by Solano-Charris, Gómez-Vizcaíno, Montoya-Torres and Paternina-Arboleda. 
It proposes the use of a novel bio-inspired algorithm to solve hard combinatorial optimization problems. 
The procedure is called Global Bacteria Optimization (GBO) algorithm and emulates the movement 
of microscopic organisms (bacteria) in response to stimulus from light. Applications are considered 
to solve hard mono-objective and bi-objective jobshop scheduling problems, with makespan and due 
date-based objective functions.

Chapter 10 is authored by Huaccho Huatuco and Calinescu. In this chapter, manufacturing resched-
uling of customized production versus commodity production is investigated. Five hybrid rescheduling 
algorithms are presented. These are obtained by combining two key rescheduling-related elements found 
in the literature: rescheduling criteria and level of disruption transmitted to the shop-floor due to resched-
uling. The main advantage of the proposed hybrid rescheduling algorithm over individual rescheduling 
algorithms consists of their ability to combine the main features of two different algorithms in order to 
achieve enhanced performance, depending on the objective of the organization. The practical impact of 
the hybrid algorithms is analyzed in the context of three manufacturing companies.

The third section is composed of three chapters and it is devoted to the presentation of hybrid algo-
rithms for solving Other real-life application problems.

The Territory Design and Alignment Problems are considered in chapters 11 and 12, respectively. The 
Territory Design Problem (TDP) consists on grouping small geographic Basic Units (BU) into larger 
geographic territories. Chapter 11 is written by Lopez. It considers a real-life case study from a large 
soft drinks distribution company that operates in the city of Monterrey, Mexico. The chapter proposes a 
new strategy based on a hybrid-mixed integer programming method (HMIP). By taking advantage from 
territory centers obtained through a relaxation of the p-median model, the procedure requires a small 
number of iterations to find connected solutions. The chapter highlights that the model is currently being 
used by the large beverage bottler in Latin America.

Chapter 12 is authored by Freire de Sousa, Barros-Basto and Lima Júnior. It briefly updates the review 
of the existing literature on the territory alignment problem, its applications and solution approaches. 
The chapter also illustrates the most recent tendencies by proposing a hybrid resolution approach based 
on the Greedy Randomized Adaptive Search Procedure (GRASP) and Tabu Search meta-heuristics that 
is integrated to an interactive and user-friendly Geographic Information System (GIS) application.

Chapter 13 is authored by Xie, Turnquist and Waller. It presents a hybrid Lagrangean relaxation and 
Tabu Search procedure for a class of discrete network design problems with complex interdependent-
choice constraints. The algorithm is implemented on the solution of a network design problem with lane 
reversal and crossing elimination strategies, arising from urban evacuation planning.
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In such a context, the reader will gain full exposure to some of the latest research models and frame-
works with hybrid algorithms to solve practical real-life application problems. In addition, the literature 
is enriched by the discovery of current and future trends due to evolution of the research in the field.

Jairo R. Montoya-Torres
Universidad de La Sabana, Colombia

Angel A. Juan
Open University of Catalonia, Spain

Luisa Huaccho Huatuco
University of Leeds, UK

Javier Faulin
Public University of Navarre, Spain

Gloria L. Rodriguez-Verjan
Ecole Nationale Supérieure des Mines de Saint-Étienne, France
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INTRODUCTION

The class of Inventory Routing Problems (IRPs) 
includes a variety of different optimization prob-
lems that may have very different characteristics 
but all simultaneously consider a routing and an 
inventory management component of an optimiza-
tion problem. Time may be discrete or continu-
ous, demand may be deterministic or stochastic, 
specific application-dependent characteristics may 
be considered, inventory holding costs may be ac-
counted for in the objective function or not. When 
in an IRP the holding costs are not included in the 

objective function, a limited inventory capacity at 
the customers is available and cannot be exceeded. 
IRPs have received little attention, if compared to 
plain vehicle routing problems (VRPs). However, 
the interest in this class of problems has been 
increasing from the beginning of the eighties. We 
refer for an overview of the available literature 
to the surveys Bertazzi et al (2008), Campbell et 
al (1998), Cordeau et al (2007), Federgruen and 
Simchi-Levi (1995), Moin and Salhi (2007). In 
this chapter we will focus on deterministic inven-
tory routing problems.

IRPs model the simultaneous optimization of 
inventory management and routing that are tradi-
tionally optimized separately and independently. 

Luca Bertazzi
University of Brescia, Italy

M. Grazia Speranza
University of Brescia, Italy

Matheuristics for Inventory 
Routing Problems

ABSTRACT

In this chapter the authors review the main heuristic approaches for the solution of inventory routing 
problems and present the most recent and interesting ideas for the design of a new class of heuristics, that 
they call matheuristics. A matheuristic embeds, in a heuristic or metaheuristic scheme, the exact solution 
of one or several mathematical programming models and rely on the power of commercial software.
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Clearly, the traditional separate optimization 
may lead to a global sub-optimum. The efforts 
invested in the optimization of the routing side 
of the problem may be vanished because the 
optimization ignores the relations between the 
routing and the inventory management sides of 
the problem. In VRPs usually the quantities to be 
delivered to the customers in a specific day by a 
fleet of capacitated vehicles are given. In a IRP, 
whereas the demands of the customers are known, 
the quantities to be delivered have to be decided. 
An optimal solution of a IRP may suggest that 
customers located close to each other should be 
served the same days, that customers close to the 
factory should be served more frequently, while 
customers far from the factory should be served 
more rarely.

Obviously, IRPs are more complex to solve 
than VRPs. A time dimension is present in the IRPs 
that is rarely considered in the VRPs. Whereas 
the value of IRPs in supply chain optimization is 
widely accepted, the class of the studied IRPs is 
still quite limited and relatively little is known in 
terms of solution techniques. The plain VRPs are 
known to be computationally very hard to solve. 
The IRPs are even harder. Few attempts to find 
the optimal solution to IRPs have been proposed 
in the literature. In most cases heuristic algorithms 
have been presented.

In this chapter we will illustrate traditional and 
new ideas for the design of effective heuristics 
by making use of a simple instance of a basic 
IRP. We will also review the use of heuristics 
for IRPs in the literature in a separate section. A 
set of customers have to be served by a factory 
(or a warehouse) over a discrete time horizon, 
measured for example in days, by using a fleet of 
capacitated vehicles. The factory and the custom-
ers have an initial inventory and limited inventory 
capacity. The production rate of the factory and 
the consumption rate of the customers are known 
and are time-dependent. The problem consists in 
deciding which customers to serve each day of 
the time horizon and which routes the vehicles 

travel to serve the customers of each day in such 
a way that a cost function is minimized. The cost 
function includes the routing costs and possibly 
the inventory costs at the factory and/or at the 
customers. We call this problem the basic IRP.

The scope of this chapter is to present and 
motivate the study of a new class of heuristics, the 
so-called matheuristics, that make use of math-
ematical programming models, typically Mixed 
Integer Linear Programming Problems (MILPs), 
inside a heuristic scheme. The computational ef-
fectiveness of commercial optimization software 
makes it interesting and promising the design of 
heuristic solution approaches that make use of 
the optimal solution of MILPs. We will present 
different ways to embed MILPs in a heuristic 
scheme. Some of these are straightforward evo-
lutions of traditional heuristics, others are based 
on more recent ideas that have recently appeared 
in the literature. An optimal solution approach 
has been proposed for the basic IRP in Archetti 
et al (2007) for the case of one vehicle and the 
optimal solution of benchmark instances with 
up to 3 days and 50 customers and 6 days and 30 
customers is known. This will allow us to test the 
different heuristic solutions against the optimum 
and calculate the exact errors. Recent ideas for 
a matheuristic have been proposed for the basic 
IRP in Archetti et al (2010), where a tabu search 
heuristic includes, as an improvement step, the 
solution of two different mixed integer linear 
programming (MILP) models. The MILP models 
are run whenever a new best solution is obtained 
in the tabu search. The computational results show 
that this hybrid approach is more effective than 
the plain tabu search. Although the MILP models 
are shown to be NP-hard, CPLEX can solve the 
models to optimality in a short computational time 
for instances with up to 200 customers.

We will complete the chapter with a review 
of the literature on heuristic approaches for IRPs.

The chapter is organized as follows. In Section 
1 we describe and formally define the basic IRP 
we consider. In Section 2 we discuss the evolu-
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tion of heuristics used to solve VRPs and IRPs. 
In Section 3 we discuss several matheuristics 
for the IRP, most of them inspired by traditional 
heuristics, and show how they behave on a simple 
instance of the basic IRP. Finally, in Section 4 we 
review the literature.

1. PROBLEM DESCRIPTION

We define here the basic IRP we consider in this 
chapter. A graph G=(V,E) is considered, where V 
is the set of vertices and E is the set of edges. The 
set of vertices V includes a depot, denoted by 0, 
and a set of customers M={1,2,…,n}. An edge 
(i,j), where i,j∈V, represents the possibility to 
travel directly between vertices i and j. A length 
or traveling cost cij is associated to each edge 
i,j∈E. We assume cij=cji, i,j∈V. A time horizon of 
length H is considered. At each discrete time 
t∈T={1,…,H} a quantity r0t is made available in 
0 and a quantity rit is consumed at customer i∈M. 
A starting inventory level B0 in 0 is given. Each 
customer i has a maximum capacity Ui and a 
given starting inventory Ii0. Obviously, Ii0≤Ui. We 
denote by h0 the unit inventory cost of the depot 
0 and by hi the unit inventory cost of customer 
i∈M. Shipments from the depot to the customers 
can be performed at each time t∈T by a vehicle 
of capacity C. We denote by ′T  the set 
T H∪ +{ 1} .

We will make use of the following variables:

• xit is the quantity shipped from 0 to i, i∈M, 
at time t∈T;

• Bt is the inventory level at the depot 0 at 
time t T∈ ′ ;

• Iit is the inventory level at the customer 
i∈M at time t T∈ ′ ;

• zit is a binary variable equal to 1 if i∈V is 
visited at time t and 0 otherwise. Note that 
z0t=1 means that the depot is “visited” at 
time t, that is a route is traveled at time t;

• y
ij
t  is a binary variable equal to 1 if j∈M 

immediately follows i∈M, j<i, in the route 
traveled at time t∈T and 0 otherwise;

• y
i
t
0

 is an integer variable not greater than 2 
for each customer i∈M at time t∈T. It is 
equal to 0 if the customer i is not the last 
customer visited in the route traveled at 
time t, equal to 1 if it is the last one and 
equal to 2 if it is the only customer visited 
in this route.

The objective of the problem is to find a fea-
sible solution that minimizes the overall cost. A 
feasible solution is a solution that does not cause 
stock-out at the depot (i.e. B

t
≥ 0 ∀t ) and at the 

customers (i.e. I
it
≥ 0 , ∀i t, ), such that the 

level of the inventory of any customer i is never 
greater than Ui and the total quantity delivered at 
any given time does not exceed the vehicle capac-
ity C. The overall cost is the sum of the routing 
cost and of the inventory cost, at the depot and at 
the customers, over the time horizon. The time 
H+1 is included in the computation of the inven-
tory cost in order to take into account the conse-
quences of the operations performed at time H.

We now recall the mixed-integer linear pro-
gramming formulation of this problem introduced 
in Archetti et al (2007). The objective function 
expresses the minimization of the inventory cost 
at the depot, the inventory cost at the customers 
and the routing cost:

min
t T

t
i M t T

i it
i V j V j i t T

ij ij
th B h I c y

∈ ′ ∈ ∈ ′ ∈ ∈ ∈
∑ ∑∑ ∑ ∑ ∑+ +

0
, <

.  

(1)

The constraints of the problem are the fol-
lowing:

1.  Inventory definition at the depot: The 
inventory level of the depot at time t is 
given by the level at time t−1, plus the 
product quantity r0t-1 made available at time 
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t−1, minus the total quantity shipped to the 
customers at time t−1, that is

B B r x t T
t t t

i M
it

= ,
1 0 1 1− −

∈
−+ − ∈ ′∑  

(2)

where r00=0 and xi0=0, i∈M.

2. Stock-out constraints at the depot: These 
constraints guarantee that for each time t∈T 
the inventory level at the depot is sufficient 
to ship the total quantity delivered to the 
customers:

B x t T
t

i M
it

≥ ∈
∈
∑ .  (3)

3. Inventory definition at the customers: 
The inventory level at time t is given by 
the level at time t−1, plus the quantity xit-1 
shipped from the depot to the customer i at 
time t−1, minus the quantity rit-1 consumed 
at time t−1, that is

I I x r i M t T
it it it it

= ,
1 1 1− − −+ − ∈ ∈ ′  

(4)

where xi0=ri0=0, i∈M.

4. Stock-out constraints at the customers: 
These constraints guarantee that for each 
customer i∈M the inventory level Iit at each 
time t T∈ '  is non-negative:

I i M t T
it
≥ ∈ ∈0 '.  (5)

5. Capacity constraints at the customers: These 
constraints guarantee that for each customer 

i∈M the maximum quantity Ui is never 
exceeded:

x U I i M t T
it i it
≤ − ∈ ∈ .  (6)

6.  Routing constraints: These constraints 
guarantee that, for each time t∈T, a feasible 
route is determined to visit all customers 
served at time t. They can be formulated as 
follows:
a. The total quantity loaded on the vehicle 

at each time t∈T does not exceed the 
transportation capacity:

i M
it t
x Cz t T

∈
∑ ≤ ∈

0
.  (7)

b. If a positive quantity is delivered to 
customer i at time t, the customer i has 
to be visited:

x Cz i M t T
it it
≤ ∈ ∈ .  (8)

c. If deliveries are made at time t (i.e. zit 
is equal to 1 for some i∈V), then the 
route traveled at time t has to contain 
one arc entering every vertex i of the 
route and one arc leaving every i:

j V j i
ij
t

j V j i
ji
t

it
y y z i V t T

∈ ∈
∑ ∑+ ∈ ∈

, < , >

= 2 .  

(9)

d. Subtours elimination constraints (see 
Fischetti et al, 1998, and Gendreau et 
al, 1998):

i S j S j i
ij
t

i S
it kt

y z z S M t T
∈ ∈ ∈
∑ ∑ ∑≤ − ⊆ ∈

, <

 

(10)
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for some k∈S.

7. Non-negativity and integrality constraints:

x t T i M
it
≥ ∈ ∈0  (11)

B t T
t
≥ ∈ ′0  (12)

z i V t T
it
∈ ∈ ∈{0,1}  (13)

y i M j M j i t T
ij
t ∈ ∈ ∈ ∈{0,1} , <  

(14)

y i M t T
i
t
0

{0,1,2} .∈ ∈ ∈  (15)

We refer to this problem as Problem P.

2. EVOLUTION OF HEURISTICS

Over the last decades the increasing computa-
tional power of computers and the advancement 
in algorithms design has made it possible to solve 
exactly instances of hard problems of increasing 
size. Commercial software for linear and mixed 
integer linear mathematical programming models 
has become extremely powerful, incorporating the 
most recent algorithmic advancement. At the same 
time, more and more research efforts have been 
devoted to the design of heuristics for problems 
of increasing complexity.

Although it is out of the scope of this chapter to 
overview the evolution of heuristics, if we restrict 
the attention to the area of routing problems, we 
may summarize such evolution as follows:

• greedy heuristics;
• local search heuristics;
• metaheuristics;
• hybrid heuristics and matheuristics.

The nearest neighbor is a classical example 
of greedy heuristic for the Traveling Salesman 
Problem (TSP). The tour is built starting from 
the origin. The next visited vertex is the vertex 
closest to an extreme of the partial tour. The 
cheapest insertion heuristic for the TSP is another 
classical example of greedy heuristic. At each 
iteration, given a partial tour (at the beginning 
the tour contains the depot only), for any vertex 
not yet included in the partial tour the cheapest 
way to insert it into the partial tour is identified. 
The vertex with the minimum cheapest insertion 
cost is chosen and inserted.

The 2-opt heuristic is a well known example 
of a local search heuristic for the Vehicle Routing 
Problem (VRP). Given any solution, however 
built for the VRP, a local search is performed by 
evaluating all the solutions where two vertices, 
belonging to two different tours, are exchanged. 
If the best of the evaluated solutions improves the 
previous solution, a new solution is obtained and 
a new local search is performed. A sequence of 
better and better solutions is built until no more 
improvement is achieved.

Local search heuristics can be very effective 
but in many cases they end up in a local minimum 
where they remain trapped. Different so called 
metaheuristics have been designed to escape from 
local minima. Simulated annealing, tabu search, 
genetic and evolutionary are the most successful 
metaheuristics proposed.

The most recent heuristics for routing prob-
lems explore new directions and take new names, 
hybrid heuristics, optimization-based heuristics, 
matheuristics. We believe that an extremely in-
teresting direction for the design of new classes 
of heuristics is related to the use of the power of 
commercial software. As a commercial software 
can be used to solve instances of complex problems 
up to a certain size, a commercial software can 
be used to solve sub-problems, but also to solve 
different problems that are embedded in a heu-
ristic scheme and are used to effectively explore 
promising parts of the solution space.
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At present, the word hybrid is used to indi-
cate a solution approach that combines ideas or 
techniques that are typically used separately. A 
matheuristic is a heuristic that embeds a math-
ematical programming model. An optimization-
based heuristic is a heuristic that is based on the 
solution of an optimization problem. In this chapter 
we will use the term matheuristic to identify any 
heuristic that embeds a step where a mathematical 
programming model is solved. A hybrid heuristic 
may be seen as more general than a matheuristic.

There exist several ways to embed a mathemati-
cal programming model in a heuristic scheme:

1.  To solve sub-problems: The IRP jointly 
considers a routing problem and an inventory 
management problem. A natural decom-
position approach consists in treating the 
two problems separately. In the inventory 
management sub-problem we will determine 
the days of service and the quantities to be 
delivered to the customers, whereas in the 
routing sub-problem we will determine the 
routes of the vehicles, given the days of 
service and the quantities. We will solve the 
two sub-problems of the basic IRP optimally 
to evaluate the impact of the decomposition 
on the quality of the solution.

2.  To solve parts of an instance: A direct way 
to reduce the complexity of an instance to 
be solved is to decompose the instance and 
solve the same problem on sub-instances of 
smaller size. In the case of the IRP, when the 
customers are geographically distributed in 
clusters, it may be possible to decompose 
the instance and solve the IRP on different 
sub-instances of smaller size, one for each 
cluster.

3.  To restrict the search space: Restricting 
the search space is another way to reduce 
the complexity. While what discussed in the 
previous two points may be seen as special 
case of restricting the solution space, there 
are also different ways to do it. In IRPs the 

space can be restricted by focusing the search 
of specific policies that are, for different 
reasons, attractive.

4.  To explore neighborhoods: Some of the 
most innovative and recently proposed 
heuristics belong to this class. Promising 
neighborhoods are explored in depth by 
means of a mathematical programming 
model. The challenge consists in identifying 
the neighborhoods that contain a high den-
sity of high quality solutions and to design 
an appropriate mathematical programming 
model that finds the best solution of each 
neighborhood.

3. OLD AND NEW IDEAS 
FOR MATHEURISTICS TO 
SOLVE THE BASIC IRP

In this section we discuss several matheuristics. 
Most of them are inspired by traditional heuris-
tics. The difference here is that some operations, 
usually executed heuristically, are now executed 
more accurately by means of MILPs that are solved 
with a commercial software. Some new ideas for 
matheuristics are also discussed.

The matheuristics for IRPs that we will illus-
trate through an example for the basic IRP are:

• minimizing the routing cost (Routing-
based matheuristic);

• first solving the inventory part of the 
problem without routing and then find-
ing the best routes to serve the custom-
ers (Inventory-first Routing-second 
matheuristic);

• first cluster the customers into sets and then 
solve the inventory routing problem for 
each set separately (Cluster-first Inventory 
Routing-second matheuristic);

• by iteratively inserting in the partial solu-
tion the optimal solution of the subprob-
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lem of a single customer (Customer-based 
matheuristic);

• restricting the search space to simplifying 
policies (Policy-based matheuristic);

• MILPs in a tabu search scheme (Intensified 
tabu search matheuristic).

The Routing-based and the Inventory-first 
Routing-second matheuristics belong to the class 
1 of the previous section, whereas the Cluster-first 
Inventory Routing-second and the Customer-
based matheuristics belong to the class 2. The 
Policy-based matheuristic belongs to class 3 and 
the last one to the class 4.

We now describe an instance of the basic IRP 
that we will use as an example to illustrate the 
matheuristics and also to show that the design 
of a good matheuristic is not trivial, as the most 
natural or traditional ideas may generate poor or 
infeasible solutions.

A set M={1,2,3,4} of customers is served by 
the depot 0 over a time horizon H=3. The depot 
is located at (50,50), while the customers are 
located at (0,0), (0,100), (100,100) and (100,0), 
respectively. The traveling costs cij, i,j∈V, are:

c
ij

0 1 2 3 4

0 0 71 71 71 71

1 71 0 100 141 100

2 71 100 0 100 141

3 71 141 100 0 100

4 771 100 141 100 0

 

and correspond to the rounded off Euclidean 
distances. The quantity r0t made available at the 
depot 0 at each time t∈T is equal to 100, while 
the quantity rit consumed at each customer i∈M at 
each time t∈T is 25. The starting inventory level 
B0 at the depot is 100, while the starting inven-
tory level Ii0 at each customer i∈M is 25. The 
unit inventory cost h0 at the depot is 0.01, while 
the inventory cost at the customers are h1=h2=1 

and h3=h4=10. The maximum capacity Ui of each 
customer i∈M is 50 and the transportation capacity 
C is 70. Note that, since for each customer i∈M 
the initial inventory level Ii0 is equal to 25 and 
the total demand is 75, then in any feasible solu-
tion at least 50 units have to be delivered to each 
customer during the time horizon. Moreover, due 
to the initial inventory and the maximum capacity 
Ui=50, at most 25 units can be delivered to each 
customer i at time 1.

Let us first show the optimal solution obtained 
by solving exactly Problem P in which the total 
cost is minimized. The optimal solution has been 
obtained with CPLEX. The following table shows 
the quantity xit sent to each customer i∈M at each 
time t∈T and the route traveled by the vehicle at 
each time t∈T:

t x x x x Route Routing Cost
t t t t1 2 3 4

1 25 25 10 0 0 1 2 3 0 342

2 25 0 15 30 0

→ → → →
→→ → → →
→ → → →

1 4 3 0 342

3 0 25 25 20 0 2 3 4 0 342

50 50 50 50Total Quantity Total RRouting Cost 1026

A total quantity of exactly 50 units is delivered 
to each customer. The vehicles used at times 2 and 
3 have a full load. On the basis of the values of 
these decision variables, the corresponding values 
of the inventory levels Bt and Iit and the inventory 
cost can be easily computed as follows:

t B I I I I

Tot

t t t t t1 2 3 4

1 100 25 25 25 25

2 140 25 25 10 0

3 170 25 0 0 5

4 200 0 0 0 0

aal Inventory

Inventory Cost

610 75 50 35 30

6.1 75 50 350 300

Therefore, the total cost is 1807.1, given by 
the sum of the routing cost (1026), the inventory 
cost at the depot (6.1) and the inventory cost at 
the customers (75+50+350+300=775).
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Routing-Based Matheuristic

We first consider a matheuristic based on the 
minimization of the routing cost. The rationale of 
this type of matheuristics is two-fold. The first is 
based on the fact that, since the inventory costs 
are not explicitly paid, it is common from the 
operational point of view to solve the problem by 
simply focusing on the routing cost. The second is 
that several heuristics are known for the solution 
of routing problems. We show that, if the rout-
ing cost only is taken into account, bad solutions 
may be obtained, even if the routing part of the 
problem is optimally solved.

Consider our instance. We solve with CPLEX 
the model (1)-(15) where in (1) we only consider 
the third term, that is the routing cost only.

The following table shows the quantity xit sent 
to each customer i∈M at each time t∈T and the 
route traveled by the vehicle at each time t∈T, when 
the objective function of Problem P is replaced 
by the routing cost only:

t x x x x Route Routing Cost
t t t t1 2 3 4

1 25 25 0 20 0 2 1 4 0 342

2 0 0 50 10 0

→ → → →
→ 33 4 0 242

3 25 25 0 20 0 2 1 4 0 342

50 50 50 50

→ →
→ → → →

Total Quantity Total Routting Cost 926

A total quantity of 50 is delivered to each 
customer. The vehicles used at times 1 and 3 have 
a full load. On the basis of the values of these 
decision variables, the corresponding values of 
the inventory levels Bt and Iit and the inventory 
cost can be easily computed as follows:

t B I I I I

Tot

t t t t t1 2 3 4

1 100 25 25 25 25

2 130 25 25 0 20

3 170 0 0 25 5

4 200 0 0 0 0

aal Inventory

Inventory Cost

600 50 50 50 50

6 50 50 500 500

 

Therefore, the total cost is 2032, given by 
the sum of the routing cost (926), the inventory 
cost at the depot (6) and the inventory cost at the 
customers (50+50+500+500=1100). Although the 
routing cost has been significantly reduced, the 
percent increase of the total cost is about 12.5% 
with respect to the total cost of the optimal solu-
tion of Problem P.

Inventory-First Route-
Second Matheuristic

The Inventory-first Route-second matheuristic is a 
two phase algorithm. In the first phase the inven-
tory cost is minimized, while in the second phase 
the optimal routes are found, given the quantities 
to be delivered at each time.

In the first phase the following Problem Inv 
is solved.

Problem Inv:

min
t T

t
i M t T

i it
h B h I

∈ ′ ∈ ∈ ′
∑ ∑∑+

0
 (16)

B B r x t T
t t t

i M
it

=
1 0 1 1− −

∈
−+ − ∈ ′∑  

(17)

B x t T
t

i M
it

≥ ∈
∈
∑  (18)

I I x r i M t T
it it it it

=
1 1 1− − −+ − ∈ ∈ ′  

(19)

I i M t T
it
≥ ∈ ∈0 '  (20)

x U I i M t T
it i it
≤ − ∈ ∈  (21)

i M
it
x C t T

∈
∑ ≤ ∈  (22)

x t T i M
it
≥ ∈ ∈0  (23)

B t T
t
≥ ∈ ′0 .  (24)
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The optimal solution of Problem Inv is obtained 
with CPLEX, that provides the following values 
of the variables xit:

t x x x x

Total Quantity

t t t t1 2 3 4

1 25 25 10 0

2 25 5 15 25

3 0 20 25 25

50 50 50 50

 

On the basis of the values of these decision 
variables, the corresponding values of the inven-
tory levels Bt and Iit and the inventory cost can be 
easily computed as follows:

t B I I I I

Tot

t t t t t1 2 3 4

1 100 25 25 25 25

2 140 25 25 10 0

3 170 25 5 0 0

4 200 0 0 0 0

aal Inventory

Inventory Cost

610 75 55 35 25

6.1 75 55 350 250

Then, in the second phase a minimum cost 
tour is found for each time t∈T. This means that 
a Traveling Salesman Problem has to be solved 
for each t. The optimal routes are again obtained 
through the use of CPLEX.

t Route Routing Cost

1 0 1 2 3 0 342

2 0 1 2 3 4 0 442

3 0 2 3 4 0 342

→ → → →
→ → → → →
→ → → →
TTotal Routing Cost 1126

Therefore, the total cost is 1862.1, given by 
the sum of the routing cost (1126), the inventory 
cost at the depot (6.1) and the inventory cost at 
the customers (75+55+350+250=730). Although 
the total inventory cost has been significantly 

reduced, the percent increase of the total cost 
is about 3% with respect to the total cost of the 
optimal solution of Problem P.

Cluster-First Inventory Routing-
Second Matheuristic

In the Cluster-first Inventory Routing-second 
matheuristic we first group the customers into sets 
in such a way that customers that belong to the 
same set are geographically close and then each 
set is optimized separately. The rationale of this 
type of heuristics is two-fold. First, this approach 
is often used by practitioners. Second, it allows us 
to reduce the complexity of the problem as several 
smaller instances have to be solved instead of a 
single large instance. We show that clustering the 
customers may even cause infeasibility.

Consider our instance. Let j be the index of the 
clusters and Sj the j-th cluster. We first note that 
if the cardinality of each cluster is 1, a feasible 
solution does not exist. The reason is very simple. 
Since we have 4 clusters, we need four routes to 
serve them. However, since the time horizon H 
is equal to 3 and at most one route can be used at 
each time instant, there is no way to find a feasible 
solution of the problem.

Consider now clusters with cardinality 2, say 
S1={c1,c2} and S2={c3,c4}, where ci is a customer 
in the set M. Since at least 50 units have to be 
delivered to each customer, even if exactly 50 
units are delivered, four routes are needed, as the 
transportation capacity is 70 and at most 3 routes 
can be traveled during the time horizon.

Finally, consider the case with one cluster of 
cardinality 3 and one cluster of cardinality 1, say 
S1={c1,c2,c3} and S2={c4}. One route is needed 
to serve S2. Since the transportation capacity is 
70 and the total demand of three customers in S1 
is at least 150, the remaining two routes do not 
have enough transportation capacity to serve the 
demand of three customers. Therefore, a feasible 
solution does not exist.
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In general, a Cluster-first Inventory Routing-
second matheuristic can be implemented by 
clustering customers according to some logic 
and then using CPLEX to solve the basic IRP on 
each cluster. As an alternative, the optimal method 
presented in Archetti et al (2007) can be used on 
each cluster. Obviously, to make the problem solv-
able exactly on each cluster the clusters should 
be created accordingly, that is they should be of 
relatively small size.

Customer-Based Matheuristic

We now consider a matheuristic in which the solu-
tion is obtained by iteratively solving a subproblem 
where a single customer is considered at a time. 
The rationale is to decompose the problem into 
subproblems that are in principle simpler to be 
solved. We show that this type of heuristics may 
generate infeasibility, even if the subproblem each 
customer is optimally solved through CPLEX.

Consider our instance. Since one customer is 
inserted at each iteration, the first step is to order 
the customers according to a criterion. Since 
all customers have the same distance from the 
depot, we order the customers according to the 
non-increasing unit inventory cost hi. Consider 
the first iteration. Since customers 3 and 4 have 
the same unit inventory cost, we insert customer 
3. Therefore, we set rit=0 for i=1,2,4 and t∈T and 
solve Problem P. We compute the corresponding 
optimal solution with CPLEX and capture the 
value of the variables x.

t x x x x

Total Quantity

t t t t1 2 3 4

1 0 0 0 0

2 0 0 25 0

3 0 0 25 0

0 0 50 0

 

At the second iteration, we try to insert cus-
tomer 4. To do that, we first set x31=0, x32=x33=25 
and r3t=r4t=25 for t∈T and then solve Problem P. 

Note that the routes selected in the first iteration 
can be completely modified. We compute the 
corresponding optimal solution and capture the 
values of the variables x.

t x x x x

Total Quantity

t t t t1 2 3 4

1 0 0 0 0

2 0 0 25 25

3 0 0 25 25

0 0 50 50

 

At the third iteration, since customers 1 and 
2 have the same unit inventory cost, we try to 
insert customer 1. To do that, we first set x31=0, 
x32=x33=25, x41=0, x42=x43=25 and r1t=r3t=r4t=25 
for t∈T and then solve Problem P. We compute 
the corresponding optimal solution and capture 
the values of the variables x.

t x x x x

Total Quantity

t t t t1 2 3 4

1 10 0 0 0

2 20 0 25 25

3 20 0 25 25

50 0 50 50

 

Finally, at the fourth iteration, we try to in-
sert customer 2. To do that, we first set x11=10, 
x12=x13=20, x31=0, x32=x33=25, x41=0, x42=x43=25 and 
rit=25 for i∈M and t∈T and then solve Problem 
P. Unfortunately, Problem P is infeasible. This 
is due to the fact that the routes at times 2 and 
3 have already a full load. Therefore, customer 
2 could be served only at time 1 by delivering 
to it a quantity of 50 units. However, this is not 
feasible due to the maximum capacity U2=50 and 
the initial inventory level I20=25.

Policy-Based Matheuristic

We now consider a matheuristic in which only 
particular types of solutions are admitted. In other 
words, a simplified structure of the possible solu-
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tions is defined (policy) and the matheuristic has 
to determine a solution that satisfies this policy.

A typical example for the IRP is the so called 
Order-up-to Level policy, in which the quantity 
xit shipped to each customer i∈M at each time 
t∈T is either Ui-Iitif i is served at time t, and 0 
otherwise. Let zit be a binary variable equal to 1 
if the customer i is served at time t and 0 other-
wise. Then, this policy is defined by adding the 
following constraints to Problem P:

x U z I i M t T
it i it it
≥ − ∈ ∈  (25)

x U z i M t T
it i it
≤ ∈ ∈ .  (26)

In fact, if the customer i is served at time t, 
that is zit=1, then constraints (6) and (25) imply 
that xit=Ui-Iit, while if zit=0 then constraints (26) 
imply that xit=0.

Consider our instance. We use CPLEX to find 
the optimal solution for this policy. Unfortunately, 
Problem P with the addition of these constraints 
is infeasible.

Intensified Tabu Search Matheuristic

In Archetti et al (2010) a new matheuristic for 
the solution of the basic IRP has been presented. 
Although the heuristic is presented in the paper 
as a hybrid heuristic, it should be more specifi-
cally called a matheuristic, according to the logic 
presented in this chapter, as it makes use of MILP 
models embedded in a metaheuristic scheme.

The algorithm combines a tabu search scheme 
with ad hoc designed MILP models whose scope 
is to intensify the search in some promising parts 
of the solution space. We provide here the main 
ideas of this matheuristic, called HAIR (Hybrid 
Approach to Inventory Routing), and refer to 
Archetti et al (2010) for more details. The general 
structure of this algorithm is shown in Algorithm 1.

In HAIR an initial solution s is generated by 
means of a procedure Initialization. The solution 
′s  is the best solution found in the neighborhood 

N(s) of s, identified by means of the procedure 
Move. The solution sbest is the currently best found 
solution. HAIR starts from the initial solution s, 
explores the neighborhood N(s), identifies the 

Algorithm 1. HAIR

Apply the Initialization procedure to generate an initial solution s . Set 
s s
best
← . 

While the number of iterations without improvement of s
best
≤MaxIter do

   Apply the Move procedure to find the best solution ′s  in the neighborhood 

N s( ) of s .  
          If ′s  is better than s

best
then 

                Apply the Improvement procedure to possibly improve ′s  and set 

s s
best
← ′ .

           end if
    Set s s← ′ .  
    If the number of iterations without improvement of s

best
 is a multiple of 

JumpIter then
        Apply the Jump procedure to modify the current solution s . 
    end if     

end while
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best solution of N(s), ′s , replaces s with ′s . HAIR 
repeats this cycle of operations until a maximum 
number of iterations without improvement, Max-
Iter, is reached. Moreover, to diversify the search, 
if the number of iterations without improvement 
of the current sbest is a multiple of a parameter 
JumpIter, the procedure Jump is run to modify 
the current solution s.

The innovative feature of HAIR consists in 
the intensification phase carried out through the 
procedure Improvement. Whenever a new best 
solution is identified, that is sbest is updated, Im-
provement is run. This procedure intensifies the 
search by means of two MILP models. In the first 
MILP, called the Route-Assignment problem, a 
solution ′s , characterized by a route for each time 
and the associated quantities delivered to the 
customers, is considered. The first MILP attempts 
to improve ′s  by assuming that the structure of 
the routes, independent of the time each route is 
used in ′s , is good and that by assigning the routes 
of ′s  to different times a better solution may be 
identified. No customer can be inserted in the 
routes and the sequence of the customers in a 
route cannot be modified. However, customers 
may be removed from a route because, by chang-
ing the time where the routes are used, it may 
become unnecessary to serve some customers. 
For the same reason, we let the quantities delivered 
to the customers be modified by the Route-As-
signment problem. As a matter of fact, the Route-
Assignment problem explores in an systematic 
way a neighborhood of ′s  and generates a new 
solution ′′s . If ′′s  is better than s

best
, it will 

become the new best found solution.
The second MILP run in the procedure Im-

provement is called Customer-Assignment prob-
lem. The underlying idea in this case is that, 
given a solution ′s , the routes of ′s  have been 
assigned to the right times but their structure re-
quires to be adjusted in order to hopefully improve 
′s . Thus, the Customer-Assignment problem al-

lows the removal or insertion of customers into 

routes and obviously a change of the delivered 
quantities.

In Archetti et al (2010) it is shown that the 
matheuristic HAIR is extremely effective with 
errors that are systematically below 1% with 
respect to the optimum, whenever the optimum 
can be found, and with a much smaller average 
error. HAIR also finds a high percentage of optimal 
solutions. Moreover, the use of the intensification 
phase based on the MILP models, is shown to be 
computational effective. This is shown by means 
of the comparison between the algorithm run with 
and without the intensification phase for the same 
amount of time.

On the instance that we used as an example 
HAIR finds the optimal solution. Finally, one can 
note that the structure of the algorithm is very 
general and can be seen as a basis for the design 
of matheuristics for the solution of other inventory 
routing, or other NP-hard, problems.

4. REVIEW OF HEURISTICS 
FOR IRPS

In this section we review the literature on heuris-
tics for inventory routing problems. While most 
of the heuristics have a traditional nature and 
cannot be classified as matheuristics, we believe 
that several of them could be improved by means 
of appropriate MILP models and result in more 
effective solution approaches.

Whereas it is out of the scope of this paper to 
review in detail the state of the art, we intend to 
provide here references that may be interesting to 
develop new matheuristics for inventory routing 
problems. The inventory routing problems stud-
ied in these papers are often very different from 
each other. We organize this concise review by 
characteristics of the heuristics proposed.

Constructive and improvement heuristics have 
been proposed by Bertazzi et al. (1997, 2002) and 
by Abdelmaguid et al. (2009). Incremental cost 
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approximations to be used in a rolling horizon 
framework are proposed by Jaillet et al (2002).

Heuristics based on the decomposition of the 
problem in sub-problems are presented by Chris-
tiansen (1999) and by Campbell and Savelsbergh 
(2004).

Policy-based heuristics have been proposed by 
Herer and Roundy (1997), where power-of-two 
policies are investigated. A different policy-based 
heuristic is proposed by Viswanathan and Mathur 
(1997). A fixed partition policy and a tabu search 
algorithm to find the partition regions are presented 
by Qiu-Hong Zhao et al (2007). Abdelmaguid 
and Dessouky (2006) have presented a genetic 
algorithm.

Combining exact and heuristic search tech-
niques in a matheuristic has received some atten-
tion recently. Besides the already cited Archetti et 
al (2010), this kind of approach has been adopted 
Savelsbergh and Song (2008). A Lagrangian 
relaxation method in which the relaxed problem 
is decomposed into an inventory problem and a 
routing problem that are solved by a linear pro-
gramming algorithm and a minimum cost flow 
algorithm, respectively, is proposed by Yu et al. 
(2008).

CONCLUSION

In this chapter we have reviewed the main heu-
ristic approaches for the solution of inventory 
routing problems and emphasized the advantages 
of combining exact and heuristic techniques in 
a new kind of hybrid approaches that we called 
matheuristics.

We believe that the design of matheuristics 
for inventory routing and other classes of hard 
problems, relying on the availability of powerful 
commercial software for the solution of MILP 
problems, will attract much interest in the near 
future.
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ABSTRACT

Winter road maintenance operations involve challenging vehicle routing problems that can be addressed 
using operations research (OR) techniques. Three key problems involve routing trucks and specialized 
vehicles for spreading chemicals and abrasives on roadways, snow plowing, and snow disposal, all of 
which are undertaken in a very difficult and dynamic operating environment with stringent level of service 
constraints. This chapter provides a survey of recent optimization models and solution methodologies for 
the routing of vehicles for spreading operations. The authors also present a detailed classification scheme 
for spreader routing models developed over the past 40 years. Key trends in recent model developments 
include the inclusion of more details of the practical operating constraints, the use of more sophisticated 
hybrid solution strategies and consideration of more comprehensive models that integrate vehicle routing 
with models for other related strategic winter maintenance problems. They highlight some factors that 
may be limiting the application of OR models in practice and discuss promising future research trends.
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1. INTRODUCTION

There are many challenging and expensive winter 
road maintenance decision problems that can be 
addressed using operations research techniques. 
A key operation is spreading of chemicals and 
abrasives on the road network, which is conducted 
on a regular basis in almost all rural and urban 
regions that experience significant snowfall or 
roadway icing. The importance of winter road 
maintenance operations is obvious from the mag-
nitude of the expenditures required to conduct 
winter road maintenance operations, as well as 
the indirect costs from both the lost productivity 
due to decreased mobility and from the effects 
of chemicals (especially salt) and abrasives on 
infrastructure, vehicles and the environment. In 
the US alone, 70% of the population and 74% of 
the roads are in snowy regions and state and local 
government agencies spend over US $2.3 billion 
(US) per year for snow and ice control activities 
(Federal Highway Administration [FHWA], 2010; 
Pisano, Goodwin, & Stern, 2002). Indirect costs 
(e.g., for environmental degradation, economic 
losses and mobility reductions) are thought to be 
several times larger; for example, the costs for 
weather-related freight delays in the US have 
been estimated at US $3.4 billion (US) per year 
(Nixon, 2009).

Recent developments in winter road main-
tenance technologies and operations improve 
efficiency, reduce resource (materials, equipment 
and personnel) usage, and minimize environ-
mental impacts (Shi et al., 2006; Transportation 
Research Board [TRB], 2005, 2008; Venner 
Consulting and Parsons Brinkerhoff, 2004). These 
developments include use of alternative deicing 
materials, anti-icing methods, improved snow 
removal equipment, more accurate spreaders, 
better weather forecasting models and services, 
road weather information systems, vehicle-based 
environmental and pavement sensors, etc. These 
new technologies, and their growing use by state 
and local government agencies, have improved the 

effectiveness and efficiency of winter maintenance 
operations, benefiting government agencies, users, 
and the general public.

While new winter road maintenance technolo-
gies are being developed and deployed on a broad 
basis, implementations of optimization models for 
winter road maintenance vehicle routing remain 
very limited. Most agencies continue to design 
vehicle routes based on manual approaches derived 
from field experiences and most agencies rely on 
static weather forecasts (Fu, Trudel, & Kim, 2009; 
Perrier, Langevin, & Campbell, 2007a, 2007b). 
As Handa, Chapman, and Yao (2005) note, “In 
practice [route] optimization has traditionally 
been a manual task and is heavily reliant on local 
knowledge and experience” (p. 158). The limited 
deployment of optimization models for winter 
road maintenance vehicle routing is especially 
surprising given the documented successes in 
other areas of arc routing, perhaps most notably 
for waste management (Sahoo, Kim, Kim, Kraas, 
& Popov, 2005). Thus, winter road maintenance 
vehicle routing optimization would appear to of-
fer the promise of significant cost savings, along 
with a reduction in negative environmental and 
societal impacts.

There are probably many reasons for the limited 
field use of vehicle routing optimization. In large 
part, this has been due to the complexity of the 
problems studied, which in turn is derived from 
the difficult operating environment. However, 
it also results from the unique organizational 
characteristics of the winter road maintenance 
agencies. Winter road maintenance decisions 
problem, including vehicle routing for spread-
ing (and plowing), are more complex than most 
other arc routing problems because of unique 
characteristics of each site and agency, and the 
tremendous diversity in operating conditions such 
as geographical location, climatic and weather 
conditions, demographics, economics, techno-
logical innovations (for materials application, 
mechanical removal, and weather monitoring), 
legislative requirements, interagency agreements, 
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variations of traffic rate, and information on the 
status of personnel, equipment and materials. Also, 
real-life vehicle routing problems facing winter 
road maintenance planners should be studied in a 
dynamic context, where the arrival of new infor-
mation, such as meteorological forecasts received 
in real time, can lead to dynamic modifications to 
the current vehicle routes. Furthermore, political 
and operational constraints and policies depend 
on the specific level of service policies and ex-
pectations, the characteristics of the transporta-
tion network, the strategic and tactical decisions 
related to design of the operational sectors, choice 
of chemicals and abrasives, depot and material 
stockpile locations, vehicle fleet compositions, 
and driver rules. Differences in these conditions 
and constraints necessitate differences in the plan-
ning and operation of winter road maintenance 
across agencies.

One important theme in recent winter road 
maintenance modeling efforts is the inclusion of 
more real-world characteristics of the problems 
arising in applications. These models offer greater 
potential for implementation as they better capture 
more of the complexities from the field. These im-
proved models, together with the increasing budget 
pressures on state and local agencies, continuing 
expectations for high levels of service, and desires 
for reduced environmental impacts, all motivate 
a greater role for vehicle routing optimization in 
winter road maintenance.

The aim of this chapter is to provide a review 
of recent contributions dealing with the routing 
of vehicles for winter road spreading operations. 
The authors will cover models and solution 
algorithms developed over the last decade or 
so. Earlier models will not be treated here but 
the interested reader is referred to recent work 
by Perrier, Langevin, and Campbell (2007a). In 
this chapter, the authors describe the important 
characteristics, model structure and algorithmic 
aspects for vehicle routing models in spreading 
operations. In addition to extending the earlier 
review, the contributions of this chapter include a 

detailed classification scheme for spreader routing 
models developed over the past 40 years, discus-
sion of application issues, and identification of 
key opportunities and needs in future research.

The chapter is organized as follows. The 
operations of spreading chemicals and abrasives 
and the vehicle routing problems related to those 
operations are presented in Section 2. Recent 
models dealing with the routing of vehicles for 
spreading operations are reviewed in Section 3. 
An analysis of existing research on vehicle routing 
problems for spreading operations is presented in 
Section 4. Conclusions along with some promis-
ing future research opportunities are presented in 
the last section.

2. OPERATIONS CONTEXT 
AND DECISION PROBLEMS

This section contains a brief description of 
spreading operations for winter maintenance and 
a discussion of associated problems of vehicle 
routing. More detailed information on the state of 
the practice in managing winter road maintenance 
operations is presented in the Transportation Re-
search Board reports (TRB, 2005, 2008).

2.1 Spreading Operations

Spreading operations for winter maintenance 
are directed at achieving three specific goals: 
anti-icing, deicing, and traction enhancement. 
Anti-icing is the timely application of a chemical 
freezing-point depressant before or during the 
initial stages of a precipitation event, to attempt 
to prevent the bonding of snow and ice to the 
pavement. Deicing is a similar process used to 
remove snow and ice from the pavement, often 
requiring destruction of bond between pavement 
and snow/ice to eliminate the frozen layer. Trac-
tion enhancement is the spreading of abrasive 
materials, such as sand, cinders, ash, tailings, or 
crushed stone and rock, to improve traction on 
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thick snow-packed and ice-covered roadways. The 
selection of the appropriate spreading operation is 
based on economics, environmental constraints, 
climate, desired level of service, material avail-
ability, and application equipment availability. 
The level of service policies determine the extent 
of the resource investment. The environmental 
constraints (e.g., current and forecast weather 
conditions) influence the choice of a chemical or 
nonchemical material to spread.

2.2 Vehicle Routing 
Problems for Spreading

The routing of vehicles for spreading operations 
is the problem of designing a set of routes such 
that all required road segments of a transporta-
tion network are serviced by a fleet of spreaders, 
which may be heterogeneous vehicles (e.g., trucks 
of different capacities) based at multiple depots. 
The transportation network is generally described 
through a graph, whose arcs and edges represent 
the one-way streets and two-way streets to be ser-
viced, respectively, and whose nodes correspond 
to the road junctions and to vehicle and materials 
depot locations. Not every road segment may need 
to be serviced, and road segments with positive 
demands (amounts of chemicals and abrasives) 
are called required road segments.

This section presents a comprehensive clas-
sification scheme for vehicle routing models in 
winter road spreading operations (see Table 1). 
The first level of the classification is composed 
of six categories: (1) Problem type, (2) Planning 
level, (3) Problem characteristics, (4) Model 
structure, (5) Solution method, and (6) Instance 
data. The first category, Problem type, identifies 
whether the model is limited to vehicle routing 
only, or includes vehicle routing along with an-
other problem such as facility location or sector 
design. The second category, Planning level, taken 
from the work of Perrier et al. (2007a), classifies 
vehicle routing models for spreading operations 
according to the planning horizon considered. 

Decisions concerning the location of vehicle or 
materials depots may be viewed as strategic or 
tactical, while decisions relating to the routing of 
vehicles for spreading operations usually belong 
to the operational planning level. In “static” mod-
els, all inputs required to solve the problem are 
known in advance for the duration of the period 
covered by the routing process, such as a winter 
(although the input may vary over time, as in the 
time-dependent variant of the spreader routing 
problem). In “dynamic” models, the input (that 
is, which road segments actually require service) 
varies over time in a fashion that is revealed to 
the router very shortly before the routes are con-
structed. This may occur when new routes are 
created for each storm or precipitation event based 
on each unique forecast and weather conditions. 
The authors distinguish “real-time” routing from 
dynamic routing, by using real-time routing to 
refer to cases where the routes are (re)computed 
during the vehicle’s traversal of the route, because 
of new inputs received in real-time.

The third category, Problem characteristics, 
includes numerous factors that are part of the 
problem environment or constraints embedded 
into the solution. This category is an extended 
version of the work of Perrier et al. (2007a). 
Typical characteristics of this category include:

• road network characteristics;
• service hierarchy constraints, including 

linear precedence relations between class-
es of road segments in a route that require 
higher level roadways (e.g., based on level 
of traffic) to be served prior to lower level 
roadways, and class upgrading, which al-
low servicing of lower-class roads in a 
route servicing higher-class roads (in order 
to reduce the service completion time of 
this class and/or the total completion time);

• service costs associated with each road 
segment, possibly dependent on the time 
of beginning of service;
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• limits on the maximum time or distance of 
routes and of service completion;

• time windows for servicing road segments, 
possibly by road class or road segment;

• minimum road service frequencies, possi-
bly by road class or road segment;

• basic units of analysis used to design sec-
tors (for example, small geographic zones);

Table 1. Characteristics of vehicle routing problems for spreading 

1. Problem type 
   1.1. Spreader routing only 
   1.2. Combined spreader routing + other problem(s) 
        1.2.1. Combined routing and sector design 
        1.2.2. Combined routing and depot location 
2. Planning level 
   2.1. Strategic 
   2.2. Tactical 
   2.3. Operational 
        2.3.1. Static routing 
        2.3.2. Dynamic routing 
        2.3.3. Real-time routing 
3. Problem characteristics 
   3.1. Transportation network 
        3.1.1. Undirected network 
        3.1.2. Directed network 
        3.1.3. Mixed network 
        3.1.4. Rural network 
   3.2. Service hierarchy 
        3.2.1. Linear precedence relation imposed 
        3.2.2. Class upgrading allowed 
   3.3. Time (or distance) limit for service completion 
        3.3.1. Restriction on routes 
        3.3.2. Restriction on road classes 
        3.3.3. Restriction on road segments 
   3.4. Road segment service costs 
        3.4.1. Independent of service start time 
        3.4.2. Dependent on service start time 
   3.5. Service time window type 
        3.5.1. Restriction on road classes 
        3.5.2. Restriction on road segments 
   3.6. Service frequency type 
        3.6.1. Restriction on road classes 
        3.6.2. Restriction on road segments 
   3.7. Number of passes per road segment 
        3.7.1. One pass 
        3.7.2. Multiple passes 
   3.8. Number of lanes in a single pass 
        3.8.1. One lane 
        3.8.2. Two lanes 
   3.9. Sectors 
        3.9.1. Compactness or shape 
        3.9.2. Balance in sector size or workload imposed 
        3.9.3. Basic units defined 
   3.10. Vehicle and materials depots 
        3.10.1. Single depot 
        3.10.2. Multiple depots 
        3.10.3. Centrally located depots relative to sectors 
   3.11. Vehicle (capacities) 
        3.11.1. Similar vehicles 
        3.11.2. Road segment-specific vehicles 
        3.11.3. Heterogeneous vehicles

    3.12. Number of routes per spreader 
           3.12.1. One route 
           3.12.2. Multiple routes 
    3.13. Route configuration 
           3.13.1. Load balancing imposed 
           3.13.2. Class continuity imposed 
           3.13.3. Both-sides service imposed 
           3.13.4. Turn restrictions imposed 
           3.13.5. Service connectivity or route continuity imposed 
           3.13.6. Sector boundaries imposed 
    3.14. Objectives 
           3.14.1. Min variable or routing costs 
           3.14.2. Min sum of fixed and variable costs 
           3.14.3. Min time-dependent service costs 
           3.14.4. Min fleet size 
           3.14.5. Min alternations between deadheading and servicing 
           3.14.6. Min operational constraints violations 
4. Model structure 
    4.1. Integer programming models 
         4.1.1. Linear 0-1 IP model 
         4.1.2. Linear MIP model 
         4.1.3. Nonlinear MIP model 
    4.2. Arc routing problems 
         4.2.1. Directed Chinese postman problem 
         4.2.2. Capacitated arc routing problem 
         4.2.3. Location-arc routing problem 
    4.3. Capacitated vehicle routing problem 
    4.4. Spanning tree problems 
         4.4.1. Capacitated minimum spanning tree problem 
5. Solution method 
    5.1. Exact methods 
         5.1.1. Column generation 
    5.2. Constructive methods 
         5.2.1. Sequential constructive methods 
         5.2.2. Parallel constructive methods 
         5.2.3. Cluster first, route second methods 
         5.2.4. Optimization-based methods 
    5.3. Composite methods 
    5.4. Adaptation of metaheuristics 
         5.4.1. Simulated annealing 
         5.4.2. Tabu search 
         5.4.3. Elite route pool 
         5.4.4. Genetic algorithms 
         5.4.5. Memetic algorithms 
         5.4.6. Variable neighborhood descent 
    5.5. Simulation used 
    5.6. Solution method implemented 
6. Instance data 
    6.1. Real world instances 
    6.2. Randomly generated instances 
    6.3. No instance used
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• operational constraints regarding the num-
ber of lanes covered in a single pass and 
the number of passes per road segment;

• road segment-specific vehicles, which re-
quire that a road segment be serviced by a 
specific type of vehicle (for instance, be-
cause of possible access limitations);

• route constraints to ensure load balancing 
(approximately equal workloads, lengths 
or durations across routes), class continu-
ity (each route services road segments with 
the same priority class), turn restrictions, 
etc.;

• vehicle and materials depot characteristics;
• service connectivity or route continuity, 

which requires that the subgraph induced 
by the set of road segments serviced by a 
spreader be connected; and

• the objective (e.g., minimize route costs, 
fleet size, constraint violations, etc.

The fourth category describes the basic math-
ematical model structure and the fifth category 
provides the solution method. The last category, 
Instance data, classifies the type of instances 
solved. In Section 4, the categories presented in 
Table 1 are applied to classify the spreader routing 
models developed during the last four decades.

3. VEHICLE ROUTING 
MODELS FOR SPREADING

Vehicle routing problems related to spreading 
operations are generally formulated as arc routing 
problems. Corberán and Prins (2010) presented 
an annotated bibliography on recent results on arc 
routing problems. In this section, our purpose is 
to survey the more recent solution approaches for 
the routing of vehicles for spreading operations. 
The authors first discuss the exact algorithm 
proposed by Tagmouti, Gendreau, and Potvin 
(2007), followed by metaheuristics applied to 

the routing of vehicles for spreading operations 
during the last decade. Earlier models for the 
routing of vehicles for spreading operations will 
not be treated in this section; the authors instead 
refer the interested reader to the recent survey by 
Perrier et al. (2007a).

3.1 Exact Algorithms

In the classical version of the problem, the cost 
associated with servicing each road segment is 
fixed. However, in the time-dependent variant 
of the vehicle routing problem for spreading 
operations, the timing of each service pass is of 
prime importance. That is, the cost to service a 
road segment depends on the time of beginning 
service. Recently, Tagmouti et al. (2007) pro-
posed a nonlinear, mixed integer program and a 
column generation algorithm for a salt spreader 
routing problem with capacity constraints and 
time-dependent service costs. In this problem, 
the service cost on each required road segment 
is a piecewise linear function of the time of be-
ginning of service. The authors clarify here that 
all of the problem inputs are known in advance. 
Hence, the problem studied is a static problem, 
even though the term “time-dependent” might 
be interpreted as synonymous to “dynamic”. 
To present the formulation, let G = (V, A) be a 
directed graph where V is the vertex set and A is 
the arc set. First, the arc routing problem in graph 
G = (V, A) is transformed into an equivalent node 
routing problem in a transformed graph G’ = (V’, 
A’). The depot is duplicated into an origin depot o 
and a destination depot d in V’. Let also N’ be the 
set of nodes that must be serviced (N’ = V’ \ {o, 
d}). Each required arc in graph G corresponds to 
a node i in graph G’ with demand di, service time 
sti and time-dependent service cost sci(Ti), where 
Ti is time of beginning of service on node i. Each 
pair of distinct nodes i and j in G’ is connected 
by an arc (i, j) ∈ A’ with travel time ttij and travel 
cost tcij. Let K be the set of identical spreader 
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trucks with capacity Q. For each arc (i, j) ∈ A’ and 
for each spreader truck k ∈ K, let xij

k be a binary 
variable equal to 1 if and only if spreader k travels 
on arc (i, j) to service node j. For every node i ∈ 
V’ and for every spreader truck k ∈ K, let Qi

k be 
a nonnegative real variable representing the load 
of spreader k just after servicing node i and let 
also Ti

k be a nonnegative real variable specifying 
the time of beginning of service of spreader k at 
node i. The formulation is given next.
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The objective function (1) minimizes the sum 
of travel costs and time-dependent service costs. 
Constraint set (2) requires that each node (except 
the depot node) be serviced exactly once. Con-
straint set (3) imposes an upper bound m on the 
number of spreader trucks. Flow conservation is 
guaranteed by constraint sets (4)-(6). Constraint 
sets (7) and (8) ensure the feasibility of the time 
schedule and loads, respectively. Constraint set 
(9) ensures that the time that service begins at 
every node is a nonnegative value that does not 
exceed the deadline T. Similarly, constraint set 
(10) requires nonnegative load values that do not 
exceed the spreader salting capacity Q. Tagmouti 
et al. (2007) proposed to decompose the model 
into a master problem and a set of |K| different 
independent subproblems. The master problem 
corresponds to constraints (2) and (3) in the 
original formulation (1)-(12). Let Ω be the set 
of all feasible paths from the origin depot o to 
the destination depot d. For each path p ∈ Ω, let 
up be a binary variable equal to 1 if and only if 
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path p is selected and define Cp as the total cost 
of path p (sum of travel costs and service costs 
on all arcs and nodes along the path). The model 
for the master problem can be stated as follows:

Minimize
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where the binary constant aip is equal to 1 if and 
only if node i is in path p. Moreover, for every 
spreader truck k ∈ K, the subproblem is of the 
following form:

Minimize

tc x sc T xij ij
k

i i
k

ji
k

j N oi Ni j A

+ ( )
∈ ∪{ }∈∈
∑∑∑

''( , ) '

 (17)

subject to

( ) ( )4 12−  

where tcij  is the reduced travel cost on arc (i, j) 
∈ A’. The master problem, solved with CPLEX, 
is a linear relaxation of a set covering problem 
with an additional constraint on the total number 
of spreader trucks. Columns (paths) of the master 
problem are generated by solving, for each 
spreader truck k ∈ K, the corresponding subprob-

lem with an objective that is iteratively updated 
to reflect the new values of the dual variables. 
The subproblem for each spreader truck is an 
elementary shortest path problem with resource 
constraints that is solved using an extension of 
the algorithm of Feillet, Dejax, Gendreau, and 
Gueguen (2004) to take into account the time-
dependent service costs. The resource constraints 
are the capacity constraint and the time deadline 
for the return of the spreader to the depot. To 
obtain an integer solution, the column generation 
approach is embedded in a previously reported 
branch-and-bound algorithm (Feillet, Dejax, 
Gendreau, & Gueguen, 2004). Computational 
results were presented on problems derived from 
a set of instances of the vehicle routing problem 
with time windows (Solomon, 1987). The largest 
instances solved contained 40 customers.

3.2 Metaheuristics

In a previous survey, Perrier et al. (2007a) de-
scribed a linear, mixed integer programming 
model developed by Qiao (2002) for routing salt 
spreader trucks. The model, which is an extension 
of a previous formulation proposed by Haghani and 
Qiao (2002), incorporates service connectivity and 
vehicle capacity. The model will not be presented 
here but the authors instead refer the reader to 
the work by Perrier et al. (2007a). The model is 
solved with a classical tabu search algorithm and 
an elite route pool procedure. The elite route pool 
procedure is similar to the technique of genetic 
algorithms. The population is formed by a pool 
of good routes found in the best solutions, called 
the elite route pool. Associated with every route 
in the elite route pool is a weight corresponding to 
the frequency with which the route appears in the 
best solutions. New offspring routes are produced 
by selecting the routes with the highest weights 
in the elite route pool while avoiding duplications 
of serviced required arcs. Mutations are then ob-
tained by applying the multiroute improvement 
methods developed by Haghani and Qiao (2002). 
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Qiao (2002) provided an interesting comparison 
of the various multiroute improvement methods, 
the tabu search algorithm, the elite route pool 
procedure and four popular constructive methods 
for the capacitated arc routing problem from Pearn 
(1984), Golden, DeArmon, and Baker (1983) and 
Christofides (1973). Computational tests on 23 
networks derived from the test problems used 
by Pearn (1984) showed that the elite route pool 
procedure obtained the largest number of best 
solutions on sparse networks with 7 ≤ |V| ≤ 27 and 
arc densities between 13% and 40%. On dense 
networks, the algorithm in Pearn (1984) produced 
the best solutions in most cases.

Toobaie and Haghani (2004) studied the prob-
lem of designing spreader routes in a multi-depot 
network so as to minimize the number of vehicles 
and the deadhead distance, while satisfying vehicle 
capacities (all the same), route continuity and 
workload balance. Also, some two-lane highways 
require servicing in both directions (one lane in a 
single pass), whereas others can be serviced in a 
single pass. The problem is solved using a three-
stage procedure. The first stage decomposes the 
road network into subnetworks, one for each vehi-
cle, by solving a minimal arc partitioning problem 
with vehicle capacities and service connectivity 
constraints. The objective of the first stage is to 
minimize the number of subnetworks (vehicles). 
Given a connected network in which costs are 
associated with links, the minimal arc partitioning 
problem consists of partitioning the network into 
a minimum number of connected subnetworks 
so that the overall cost of each subnetwork does 
not exceed the budget limit for the subnetwork. 
In the salt spreader routing problem, the link 
cost corresponds to the link salt requirement and 
budget corresponds to the spreader’s salt capacity. 
The minimal arc partitioning problem is similar 
to the arc partitioning problem studied by Bodin 
and Levy (1991) in the context of postal delivery. 
To solve the minimal arc partitioning problem, 
Toobaie and Haghani (2004) developed a genetic 
algorithm in which each solution, or collection of 

subnetworks, is represented as a string of n real 
numbers (a chromosome with n genes), where n 
is the number of links in the network. The genetic 
algorithm can be described as follows.

1.  Initialization. Generate the initial population 
by assigning a random real number to each 
gene from a uniform distribution between 
0 and 1.

2.  Generate initial routes using the first-fit 
heuristic.

3.  Evaluation. Evaluate the population and 
update the best solution on the basis of the 
maximization of the fitness function F = k 
× eα×N+β, where α and β are coefficients, α is 
negative, N is the number of subnetworks, 
and k is a positive number.

4.  Selection. Apply the roulette wheel selection 
method to generate a new population.

5.  Elitism. Randomly replace a chromosome 
with the best solution.

6.  Crossover. Apply two-point crossover on 
the basis of crossover probability.

7.  Mutation. Select and replace genes with 
random numbers between 0 and 1 on the 
basis of the mutation probability.

8.  Repeat Steps 2 to 7 until the convergence 
criteria are met (elitism guarantees the con-
vergence of the algorithm).

In Step 1, if each chromosome consists of n 
genes and each population consists of P chromo-
somes, then n × P random real numbers are gener-
ated. In Step 2, the first-fit heuristic is a greedy 
procedure that starts by sorting the links in a given 
order, and then constructs subnetworks one at a 
time by repeatedly adding the next unassigned 
link that preserves the route continuity and vehicle 
capacity constraints to the current subnetwork. In 
Step 4, the roulette wheel mechanism is adopted 
for the selection procedure. In this method, the 
cumulative fitness ratio fj for chromosome j is 
computed as
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where Fi is the fitness value of chromosome i. To 
select P chromosomes for the new generation, P 
random numbers between 0 and 1 are chosen from 
a uniform distribution. For each random number 
r, chromosome j is selected such that fj-1 < r < fj. 
After the selection process, elitism is applied in 
Step 5 to migrate the best individual to the new 
generation. Elitism consists of randomly select-
ing and replacing one chromosome with the best 
chromosome. In Steps 6 and 7, the two classical 
genetic algorithm operators, crossover and muta-
tion are adapted for the reproduction phase. The 
two-point crossover is adapted for the crossover 
step, while the mutation operation is achieved by 
randomly selecting a gene and changing its value 
to another random real number. Once the network 
is partitioned into connected subnetworks, the 
second stage of the procedure tries to balance the 
subnetwork workloads (salt demands) by swap-
ping links between neighboring subnetworks so 
as to reduce the imbalance between the two sub-
networks, while satisfying the route continuity 
and vehicle capacity constraints. The following 
conditions must be satisfied to move a link li from 
subnetwork S1 to subnetwork S2:

1.  Link li has common nodes with at least a 
link in subnetwork S2.

2.  Link li can be removed from subnetwork 
S1 without violating the route continuity 
constraint.

3.  The salt demand criteria, D(S1) − D(li) < 
D(S2), is satisfied, where D(S1), D(li) and 
D(S2) are the salt demands for subnetwork 
S1, link li and subnetwork S2, respectively.

Finally, in the last stage, spreader routes are 
obtained by solving a Chinese postman problem 

for each subnetwork using Edmonds and Johnson’s 
algorithm (Edmonds & Johnson, 1973). The three-
stage procedure was tested on data from Calvert 
County, Maryland. The instance contained 42 
nodes, including 2 depots, and 52 edges grouped 
into four subnetworks. The procedure reduced 
the number of vehicles, the distance covered by 
deadheading trips and the workload imbalance by 
14%, 27% and 67%, respectively, over the solu-
tion in use by the County with short computing 
times (in the order of seconds).

Spreader routing problems are often studied in 
a static context, where all data input are assumed 
to be given in advance. However, in real-life ap-
plications, some information might not be readily 
available when the vehicles start their routes. 
In an attempt to address the dynamic nature of 
the problem in which road surface temperature 
data and condition across the road network are 
revealed over a 24 hour period, Handa et al. 
(2005) developed a prototype system that com-
bines a memetic algorithm with Road Weather 
Information Systems (RWIS) to solve a dynamic 
salt spreader routing problem. The problem is 
modeled as a dynamic capacitated arc routing 
problem where the set of required road segments 
and their demands (amount of salt) are defined 
based on the predicted temperature provided by 
the RWIS. Typically, a road segment is defined as 
required if there is at least one RWIS point with 
a predicted temperature less than a predefined 
threshold. Thus, the amount of required salt on the 
same required road segment for two days can be 
different. Moreover, the amount of salt required 
can vary with road width (type), e.g. motorway, 
high-class road segments, medium-class road 
segments, etc. The memetic algorithm is based 
on a hybrid algorithm of evolutionary algorithms 
and local search methods. The main steps of the 
memetic algorithm include: selecting parents, 
reproducing offspring, applying local search to 
offspring, and replacing the resultant offspring if 
the offspring is better than the worst individual in 
the population. The permutation representation of 
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a chromosome details the order of required edges 
in which a vehicle must spread salt. Symbols 
are also used in the chromosome to indicate the 
beginning of the route for each vehicle. The au-
thors used the edge assembly crossover operator 
proposed by Nagata and Kobayashi (1997) and 
Nagata (2004). However, since this operator is 
designed for solving traveling salesman prob-
lems, it can yield infeasible solutions where the 
vehicle capacity is exceeded. In order to fix these 
infeasible solutions, a repair operator for offspring 
individuals is incorporated in the memetic algo-
rithm. As with the memetic algorithms presented 
by Lacomme, Prins, and Ramdane-Cherif (2004), 
some initial individuals are generated using the 
path-scanning algorithm developed by Golden et 
al. (1983) for the capacitated arc routing problem. 
Also, three local search methods are used in the 
memetic algorithm: move one or two edges from 
one route to another and swap two edges among 
two routes. Finally, the following fitness function 
is used to evaluate a set of routes:
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where Ci denotes the total distance traveled by 
vehicle i, Ei is the amount of salt by which vehicle 
i is above its capacity and p is the corresponding 
penalty parameter. Results on two instances (two 
nights) of the South Gloucestershire network, 
UK, with 385 and 97 required road segments, 
respectively, showed that the proposed system is 
effective at finding dynamic salting routes. In a 
follow-up paper, Handa, Lin, Chapman, and Yao 
(2006) discussed extensions to the case where a 
robust solution is required. This is an important 
practical consideration since it may confuse the 
highway agency and truck drivers if every differ-
ent road temperature gave rise to a different set 
of salting routes. Therefore, a robust solution is 
desirable. The memetic algorithm is adapted to 
address this version of the problem by placing 

emphasis on “thermally ranking” salting routes so 
that the “warmer” routes could be left untreated 
on marginal nights. Comparisons on real data 
from the South Gloucestershire Council, UK, 
for various values of environmental parameters 
showed that the memetic algorithm reduced the 
total distance traveled by the vehicles by more 
than 10% over the routes in use by the Council.

Omer (2007) proposed a model for a salt 
spreader truck routing problem in which maxi-
mum route length and duration, fleet size, vehicle 
capacity, and service frequency constraints are 
considered, with an objective of minimizing the 
total distance traveled. The model is based on the 
formulation proposed by Golden and Wong (1981) 
for the undirected capacitated arc routing problem 
(later modified by Haghani & Qiao, 2001). Let G 
= (V, A) be a directed graph where V = {v1, …, vn} 
is the vertex set and A = {(vi, vj): vi, vj ∈ V and i ≠ 
j} is the arc set. The depot is represented by the 
node v1. With every arc (vi, vj) ∈ A are associated 
a nonnegative length cij and a deadheading time 
tij. Define R ⊆ A as the set of required arcs. With 
each arc (vi, vj) ∈ R are associated a demand qij, 
expressed as the total amount of chemicals required 
for servicing the arc, and a time gij corresponding 
to the difference between the time for servicing 
arc (vi, vj) and the time for deadheading arc (vi, 
vj). Define also A1 ⊆ R as the set of counterpart 
arcs in opposite directions between intersection 
nodes that can be serviced only once from one 
direction. Associated with every arc (vi, vj) ∈ R 
\ A1 is a positive number of times nij arc (vi, vj) 
should be spread. Let K be the set of vehicles. 
For every arc (vi, vj) ∈ A and for every vehicle k 
∈ K, let xijk be a binary variable equal to 1 if and 
only if arc (vi, vj) is either serviced or traversed 
while deadheading by vehicle k and let fijk be a 
nonnegative real variable representing the flow 
on arc (vi, vj) in the route associated with vehicle 
k. For every arc (vi, vj) ∈ R and for every vehicle 
k ∈ K, let yijk be a binary variable equal to 1 if and 
only if arc (vi, vj) is serviced by vehicle k. Finally, 
let D, T and W be the maximum distance a vehicle 
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can cover in a route, the maximum time a vehicle 
can take to cover a route, and the vehicle capacity, 
respectively. The formulation is then as follows.

Minimize

c x
ij ijk

v v Ak K i j( , )∈∈
∑∑  (18)

subject to

x x

v V k K

jik ijk
v V v vv V v v

i

j j ij j i

− =

∈ ∈
∈ ≠∈ ≠
∑∑ 0

,,

( , )
 (19)

y y

v v A

ijk jik
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∈
∈
∑ 1

1
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∈
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∑
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1

 (21)
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ijk ijk

i j

≥
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f V x

v v A k K
ijk ijk

i j

≤ ⋅
∈ ∈

2

(( , ) , )
 (27)

f
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i j

≥
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 (28)

x

v v A k K
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0 1,

(( , ) , )
 (29)

y

v v R k K
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∈ { }
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 (30)

The objective function (18) minimizes total 
distance traveled. Constraints (19) ensure route 
continuity. Constraints (20) and (21) state that each 
arc is serviced as required. Maximum route length, 
maximum route duration and vehicle capacity are 
not violated on account of constraints (22), (23) 
and (24), respectively. Constraints (25) guarantee 
that an arc can be serviced by a vehicle only if 
the vehicle covers that arc. Constraints (26)-(28) 
prohibit the formation of illegal subtours. The flow 
variable fijk can take on positive values only if xijk = 
1. For details, see Golden and Wong (1981). The 
problem is solved using a Greedy Randomized 
Adaptive Search Procedure (GRASP) heuristic. 
In each iteration of the GRASP, an initial solution 
is built using a constructive method, and local 
search is performed on the solution obtained us-
ing simulated annealing. The best overall solution 
obtained from several iterations of the GRASP is 
considered as the final solution. The constructive 
method builds a route starting at the depot node and 
incrementally inserts an arc until a feasible route 
is completed. At each iteration of the construc-
tive method, a list of candidate arcs is created by 
considering all possible arcs that satisfy a greedy 
evaluation function and that can be added to the 
current partial solution without violating opera-
tional constraints. The greedy evaluation function 
calculates the incremental increase in total cost 
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due to addition of the candidate arc to the partial 
solution and considers only the candidate arcs 
whose incremental cost lies below a threshold 
value. A candidate arc is randomly selected from 
the list and inserted into the current partial solution. 
The simulated annealing algorithm starts with the 
solution obtained from the constructive method 
and searches for better solutions by moving arcs 
between pairs of routes. Two types of moves can 
be performed: one-arc move and m-n exchange. 
The one-arc move involves moving a single arc 
from one route to another. The m-n exchange 
consists in moving m arcs from one route A to 
another route B and moving n arcs from route B 
to route A, without exceeding the vehicle capacity. 
Arcs that are removed or inserted in a route may 
separate the route into disconnected components. 
The author proposed an improvement algorithm 
to combine these disconnected components into 
a new feasible low cost route. The algorithm first 
builds a route starting and ending at the depot and 
connecting all the disconnected components in the 
route. The route is then again divided into multiple 
disconnected components and the sequence of 
disconnected components in the route is modi-
fied by interchanging the disconnected compo-
nents within the route. This results in multiple 
sequences or routes. Finally, the route (sequence 
of disconnected components) with the lowest cost 
among the evaluated sequences of disconnected 
components is chosen. Comparisons with both 
the CARPET heuristic (Hertz, Laporte, & Mit-
taz, 2000), and memetic algorithm (Lacomme, 
Prins, & Ramdane-Cherif, 2004) on four sets of 
problem instances (total of 115 instances) obtained 
from the literature (DeArmon, 1981; Belenguer 
& Benavent, 2003; Prins, Belenguer, Benavent, 
& Lacomme, 2006) showed that the proposed 
GRASP heuristic improved the best-known solu-
tion on 18 of the 115 instances, and matched the 
results on 89 of those instances.

The location of depots related to spreading 
operations is usually given as an input in spreader 
routing models (Haghani & Qiao, 2002). Since the 

quality of the vehicle routes is highly dependent 
on the location of the depots, this sequential ap-
proach obviously leads to suboptimal decisions, 
at both the strategic and operational levels. A 
better approach consists in treating simultane-
ously the vehicle routing problem and the depot 
location problem. Cai, Liu, and Cao (2009) used 
this approach for designing routes for spreading 
operations. The author proposed a tabu search al-
gorithm to help planners in constructing combined 
depot location and spreader routing plans. The 
algorithm takes into account the materials depot 
capacities, spreader capacities (all the same) and 
the maximum number of routes. The tabu search 
algorithm first finds an initial solution to the depot 
location problem and then tries to improve this 
solution by applying two types of moves. The 
first move involves opening a depot and closing 
another depot, while the second move consists 
in increasing the number of depots. After every 
move, the current vehicle routes are optimized. 
The author did not, however, provide a detailed 
description of the tabu search algorithm. Compu-
tational experiments carried out on real-data from 
the central part of the Changchun city, China, 
involving 321 road sections, 20 candidate depots 
and 13 spreaders allowed an improvement of 6% 
over the solution obtained from the traditional 
sequential approach.

Tagmouti, Gendreau, and Potvin (2010) stud-
ied a salt spreader truck routing problem with 
capacity constraints and time-dependent service 
costs. The problem is modeled as a variant of 
the capacitated arc routing problem, where a 
time-dependent piecewise linear service cost is 
associated with each required arc in a directed 
graph. The authors proposed a variable neighbor-
hood descent heuristic for solving the problem. 
An initial solution is first obtained by means of 
either the parallel version of the Clarke and Wright 
(1964) savings procedure for the capacitated ve-
hicle routing problem, or a sequential insertion 
heuristic, where the routes are constructed one 
by one. Then, a variable neighborhood descent is 
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applied to the initial solution to improve it. During 
a local descent, three different neighborhoods are 
explored: arc move, cross exchange and block 
exchange. Each neighborhood is explored using 
a first-improvement local descent. The arc move 
neighborhood structure removes a required arc 
from one route and inserts it between two other 
required arcs in the same route or in another route. 
Given a pair of routes in the current solution, the 
cross exchange neighborhood structure exchanges 
two sequences of arcs. Each sequence must contain 
the same number of required arcs, with up to five 
required arcs, plus the arcs on the shortest path 
between them in the route. Similarly, the block 
exchange neighborhood structure identifies se-
quences made of consecutive required arcs with 
no deadhead arcs in-between, called blocks, and 
exchanges them between two routes. However, the 
number of required arcs in a block is not limited 
and two blocks can be exchanged even if they do 
not contain the same number of required arcs. An 
improvement procedure, called shorten (Hertz et 
al., 2000), is also used for attempting to reduce 
the total travel cost of the routes by inverting the 
service and travel on a given arc, when this arc is 
crossed twice. The variable neighborhood descent 
heuristic proposed by Tagmouti et al. (2010) can 
be summarized as follows:

1.  Initialization. Let M be the maximum num-
ber of required arcs in a sequence of arcs 
in a route. Define N1, N2 to NM+1 and NM+2 
as the arc move neighborhood, the M cross 
exchange neighborhoods, and the block ex-
change neighborhood, respectively. Define 
also s(Nj) as a local optimum solution based 
on neighborhood Nj, j = 1,…, M + 2. Find 
an initial solution s(N0).

2.  Set j = 1. Until j = M + 2, repeat the follow-
ing steps:
a.  Exploration of neighborhood. Perform 

a local descent based on neighborhood 
Nj with s(Nj-1) as initial solution. Denote 
with s(Nj) the local optimum obtained.

b.  Move or not. If the solution thus ob-
tained s(Nj) is different from s(Nj-1), set 
s(N0):= s(Nj) and go to Step 2.

3.  Apply the shorten procedure to s(NM+ 2) to 
obtain s(short). If s(short) is better than 
s(NM+ 2), then set s(N0):= s(short) and go 
to Step 2. Otherwise, the best solution is 
s(NM+ 2).

In this procedure, Step 3 is reached and the 
shorten procedure is applied only when the M 
+ 2 neighborhoods are explored without any 
improvement to the starting solution. If the 
shorten procedure improves the solution, Step 2 
is restarted with the improved solution. Otherwise 
the best solution found is returned. The variable 
neighborhood descent algorithm is executed twice, 
using the savings and the insertion heuristics to 
generate an initial solution, and the best solution 
is returned at the end. Tested on problems derived 
from classical capacitated arc routing problem 
instances (Golden et al., 1983; Li, 1992; Li & 
Eglese, 1996), the algorithm appeared to be fast 
and competitive when compared with the recent 
adaptive multi-start local search algorithm of 
Ibaraki et al. (2005) for solving vehicle routing 
problems with soft time window constraints.

In a follow-up paper, Tagmouti, Gendreau, and 
Potvin (2011) adapted the variable neighborhood 
descent heuristic to address the dynamic version 
of the problem where weather report updates lead 
to real-time modifications to the current routes. 
In this dynamic variant, a starting solution is first 
computed with the variable neighborhood descent 
heuristic using service time cost functions based on 
some initial forecast. As spreader trucks execute 
their routes, regular weather report updates lead to 
modifications to the optimal service time interval 
associated with each required arc. Basically, each 
time a weather report is received, the variable 
neighborhood descent heuristic is applied on a 
new problem, called the static problem, defined 
with updated service time functions for unserved 
required arcs based on the new storm location 
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and speed. Since the computation times with the 
heuristic are not negligible, when a new report is 
received, the current solution is followed for an 
additional Δt time units using the updated service 
time functions. During that time, the solution is 
optimized with the heuristic based on the projected 
state of the system at time t + Δt. The new solution 
obtained can then be implemented as soon as it is 
available. Computational results were presented 
for three types of generated instances with 25, 49 
and 100 vertices and with 36, 76, and 162 required 
arcs, respectively. Comparisons with both the a 
priori solutions obtained with the initial service 
cost functions (based on some initial storm speed 
forecast), but evaluated in the dynamic setting, and 
the a posteriori solutions computed with the true 
service cost functions (namely those obtained at 
the end of the dynamic process when everything 
is known), showed that the dynamic solutions 
lie within 10% of the a posteriori solutions on 
the instances with 25 vertices. However, on the 
49-vertex instances, the gap jumps to 50%. This 
gap stabilizes on the largest 100-vertex instances, 
due to a smaller time step between two updates 
on these instances, which leads to more frequent 
calls to the reoptimization procedure.

4. ANALYSIS OF EXISTING 
RESEARCH ON VEHICLE 
ROUTING PROBLEMS FOR 
SPREADING OPERATIONS

In this section, the authors provide a classification 
of important optimization models developed over 
the past 40 years for the routing of vehicles for 
spreading operations. They utilize the categories 
and characteristics presented in Table 1 as a basis 
to classify the research works in Tables 2 and 3 at 
the end of the section. These tables are arranged 
chronologically with the oldest works near the 
top. The categories from Table 1 are listed across 
the top of Tables 2 and 3 and are included in 
parentheses where appropriate throughout this 

section. The remainder of this section follows the 
classification categories in Tables 1-3 to highlight 
key research contributions and gaps.

The vast majority of the operations research 
literature on vehicle routing for spreading consid-
ers the routing problems alone (1.1). Only a few 
works combine vehicle routing and other tactical 
or strategic problems in winter road maintenance, 
such as sector design or the location of depots 
for vehicles or materials (1.2). Typically, these 
different problems are treated sequentially in a 
hierarchy with the lower level more operational 
problems subject to the conditions resulting from 
solving the higher level more strategic problems. 
The integrated models that combine routing and 
other problems generally adopt a longer-term 
perspective at the strategic or tactical level (2.1 
and 2.2), although some pure routing models also 
incorporate a more strategic view (Evans, 1990; 
Evans & Weant, 1990).The dominance of static 
routing models (2.3.1) is clear in Table 2, with 
dynamic or real-time routing models being quite 
rare. An example of dynamic spreader routing 
(2.3.2) is Handa et al. (2005), which allows new 
routes to be developed each day as conditions 
change. This is in contrast to the real-time routing 
(2.3.3) in Tagmouti et al. (2011), where vehicle 
routes may change during the traversal of the 
route as new information (e.g., weather condi-
tions) becomes available. Recent technological 
developments, such as road weather information 
systems, weather forecasting services, geographic 
information systems, global positioning sys-
tems, electronic data interchange, and intelligent 
vehicle-highway systems, enhance the possibili-
ties for efficient dynamic and real-time vehicle 
routing for spreading operations by providing 
new instructions directly to vehicle operators in 
response to sudden changes in weather and road 
surface conditions.

Tables 2 and 3 link the many and varied 
problem characteristics (category 3 of Table 1) 
to the key research. Some very rarely observed 
attributes are: service hierarchy (3.2), service time 
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windows (3.5), number of passes per road segment 
(3.7), load balancing (3.13.1), class continuity 
(3.13.2), both-sides service (3.13.3), turn restric-
tions (3.13.4), service connectivity (3.13.5), and 
sector boundaries (3.13.6). These problem char-
acteristics appear less than six times in Tables 2 
and 3. Also, one empty column related to problem 
characteristics denotes “road segment-specific 
vehicles” (3.11.2), which was not addressed by any 
contribution. Not surprisingly, the earlier works 
considered relatively few, more straightforward 
characteristics, and it was only after introduction 
of faster heuristics that more complex and real-
istic arc routing problems with a larger variety 
of constraints and possibilities were considered. 
Examples include modeling of service hierarchy 
constraints (Dror, Stern, & Trudeau, 1987), time 
windows (Labadi, Prins, & Reghioui, 2008), and 
turn penalties (Corberán, Martí, Martínez, & Soler, 
2002). Note that routing with both-sides service 
constraints and multiple passes per road segment 
usually arises in plowing operations, which are 
limited to one lane at a time. In spreading opera-
tions, chemicals and abrasives are often spread 
onto the road segment through a spinner which 
can be adjusted so that two lanes are treated on a 
single pass. Also, the impact of undesirable turns, 
such as U-turns and turns across traffic lanes, is 
generally lower in routing spreaders as compared 
to plowing operations.

The model structures in Tables 2 and 3 (cat-
egory 4 of Table 1) show that vehicle routing 
problems for spreading operations are generally 
formulated as capacitated arc routing problems, 
where the capacity of the spreader is expressed as 
the maximum quantity of chemicals or abrasives 
the spreader can discharge. Vehicle capacities can 
also be taken into consideration during the sector 
design process (Liebling, 1973; England, 1982a, 
1982b), where the service region (e.g., city) is 
first divided into a number of geographically 
disjoint sectors, so that a route satisfying the ve-
hicle capacity can be constructed for each sector. 
The capacities of the vehicles can also be given 

as time limits (Soyster, 1974; Gabor, 2010) or as 
maximum distances which can be spread in one 
route (Soyster, 1974; Eglese, 1994; Li & Eglese, 
1996). Very little work has been reported concern-
ing the possibility for spreader vehicles to refill 
with materials at intermediate facilities (materials 
depots) without returning to the original starting 
point. Hayman and Howard (1972) proposed a 
model to determine the spreader truck fleet size 
based at each depot with this condition. Li and 
Eglese (1996) proposed a three-stage heuristic with 
decision rules to determine if the spreader should 
head back towards the vehicle depot or the near-
est materials depot to refill with salt. Qiao (2002) 
showed how multiple salt depots can be taken into 
account. One interesting line of research would be 
the further development of more realistic models 
where vehicles may refill at materials depots by 
exploiting the research on arc routing problems 
with intermediate facilities (Ghiani, Improta, & 
Laporte, 2001; Zhu, Li, Xia, Deng, & Liu, 2009; 
Ghiani, Laganà, Laporte, & Mari, 2010).

Because of the inherent difficulties of vehicle 
routing problems for spreading operations, most 
solution methods that have been developed are 
heuristics. Much early work (1970-1990) adapted 
or extended simple capacitated arc routing models 
with little consideration of operational constraints. 
These simplified models were generally solved 
with simple constructive heuristics (5.2), such as 
sequential constructive methods (5.2.1), parallel 
constructive methods (5.2.2), cluster first, route 
second methods (5.2.3), or optimization-based 
methods (5.2.4), for undirected networks (3.1.1). 
These constructive heuristics gradually build a 
feasible solution while giving attention to solu-
tion cost, but they do not contain an improvement 
phase. Some of these heuristics were embedded 
into discrete event simulation models (5.5) to 
evaluate benefits and to model spreader move-
ments and interactions (Soyster, 1974; Cook & 
Alprin, 1976; England, 1982a, 1982b). Recently 
proposed models are solved with more sophisti-
cated local search techniques, such as composite 
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methods (5.3), which blend route construction 
and improvement algorithms, and metaheuristics 
(5.4), which have proven to be very effective for 
several classes of discrete optimization problems. 
However, even though recent models tend to incor-
porate a larger variety of practical characteristics, 
very few implemented solution methods can be 
found in the literature (Evans, 1990; Evans & 
Weant, 1990; Li & Eglese, 1996; Benson, Bander, 
& White, 1998). In fact, implementation details 
are rarely considered. This contrasts with the 
frequency of papers with real world data (6.1), 
which seems relatively high (see Table 3).

5. CONCLUSION AND FUTURE 
RESEARCH DIRECTIONS

The research described in this chapter for opti-
mizing the routing of spreader vehicles builds 
on earlier, more idealized, operations research 
models by better addressing a variety of practical 
considerations. While the new models demonstrate 
impressive capabilities to include more issues 
important to the operating agencies, there is still 
a large gap between state-of-the-art models and 
actual implementations. Some reasons for this 
gap include the difficulty of the problems, the 
unfamiliarity in the practitioner community with 
the advantages and benefits of OR models, and 
problems of technology transfer to a decentralized 
area such as winter maintenance.

Arc routing research remains a rich area within 
OR, and winter road maintenance vehicle routing 
problems will likely remain an important subarea 
of arc routing. However, vehicle routing for winter 
road maintenance is different than other arc rout-
ing applications for a variety of reasons. First, the 
demand for service (i.e., the current and forecast 
road conditions) can vary dramatically over small 
geographic regions and change quickly over 
time. Second, the timing of operations is crucial 
to achieve the desired level of service: spreading 
a roadway too early is ineffective, and spreading 

a roadway too late increases costs and reduces 
the level of service achieved. Third, winter road 
spreading operations are often conducted in a very 
difficult and dynamic operational environment 
characterized by limited visibility, poor traction, 
and unexpected obstacles (e.g., parked, stalled 
or abandoned vehicles), all of which can change 
very rapidly.

In spite of the wealth of theoretical research 
in winter road maintenance, and the prominent 
contributions from OR to practice in seemingly 
similar areas such as emergency services and 
waste removal (Green & Kolesar, 2004; Sahoo 
et al., 2005), OR has not yet reached its potential 
in winter road maintenance operations. A recent 
“synthesis report on winter highway operations” 
(Transportation Research Board [TRB], 2005) 
surveyed 22 prominent winter road maintenance 
agencies in North America including 19 US states 
or Canadian provinces and three municipalities. 
They found a widespread and increasing level 
of technology being deployed, with all but two 
agencies using pavement temperature sensors 
and all but a single agency using computerized 
spreader controls on vehicles. However, the report 
includes only a short paragraph on “route opti-
mization” with one mention of using sensor data 
and automatic vehicle location (AVL) to “optimize 
plowing and spreading activities”. There is no 
mention of route optimization as commonly used 
in OR (e.g,. arc routing models), and it seems that 
a somewhat different language is being spoken 
regarding route optimization in the practitioner 
and OR communities.

Another reason for the limited linkages be-
tween OR and public works agencies may be the 
decentralized nature of winter maintenance opera-
tions, where individual regional and local agencies 
have responsibility for snow and ice control over 
small regions (cities or towns). This differs from 
some other public works and emergency service 
systems (e.g., waste removal or fire protection) 
that have become more centralized on regional 
or national levels across political jurisdictions, in 
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part to exploit efficiencies of scale and standard-
ization. It may be that winter road maintenance 
operations are less amenable to standardization 
and consolidation of neighboring regions with 
the potential benefits from improved routings.

There remain a number of important areas 
for future research on vehicle routing for winter 
maintenance operations, including: (1) the de-
velopment of new models, especially dynamic 
routing models, that exploit the availability of 
more accurate and timely information from new 
technologies, (2) the development of better models 
that integrate vehicle route optimization with other 
winter maintenance decision problems, (3) studies 
that use optimized routing to quantify the tradeoffs 
between cost and level of service, especially in 
light of rising environmental concerns, and (4) 
implementations of OR models in the field. Each 
of these areas is briefly described below.

1.  Models that exploit the availability of more 
accurate and timely information from new 
technologies.

An impressive array of technologies are in use 
and in development to provide better information 
for winter maintenance operations. Two major cat-
egories of technologies involve improved weather 
forecasting tools, such as RWIS and now-casting, 
and fixed or vehicle-based sensors. The availability 
of better weather data that is more accurate, more 
timely, and at a finer geographic scale is important 
for improved winter maintenance operations and 
in case studies has been show to generate a very 
favourable benefit-cost ratio (Ye, Shi, & Strong, 
2009b). A recent scan for the “best practices” in 
winter road maintenance describes the range of 
technologies to sense road and environmental 
conditions, improve safety and effectiveness of 
spreading operations, and reduce environmental 
impacts (Pletan, 2009).

Sensor technologies for winter maintenance 
may be mobile (on vehicles) or fixed, and in-
clude automatic vehicle location (AVL), roadway 

surface sensors (for temperature, freezing, and 
ice-presence), salinity measuring devices, radar, 
other visual and multi-spectral sensors, etc. (See 
Shi et al., 2006 and Transportation Research Board 
[TRB], 2008, for details.) Some agencies also 
deploy a variety of fixed assets for roadway snow 
and ice control, such as FAST (fixed automated 
spray technology), road warming, snow fences, 
etc. While such technologies are expensive, they 
can be used at selected critical locations on road-
ways. Naturally, this affects vehicle routing plans 
and research is needed to assess the integration 
of such fixed technologies into optimal vehicle 
routes.

One challenging opportunity for vehicle rout-
ing research is to develop real-time routing models 
that can exploit real-time winter maintenance 
information. Real-time routing may be needed 
to respond dynamically not just to changing ice 
and snow conditions and forecasts, but also to 
equipment breakdowns, traffic congestion and 
accidents, all of which are more common in win-
ter driving. Real-time route changes can also be 
used to respond to citizen complaints (e.g., streets 
not cleared) in a more timely manner, thereby 
increasing customer service. The survey from the 
“synthesis report” mentioned above (Transporta-
tion Research Board [TRB], 2005) highlighted the 
use of dynamic routes in practice as 72% of the 
agencies responding indicated that they dynami-
cally change routes. A few researchers have begun 
to address some dynamic and real-time issues in 
winter road maintenance as noted earlier in the 
chapter, but more research is needed on dynamic, 
real-time, and stochastic winter maintenance arc 
routing problems. One avenue for this research 
may be to exploit the growing research on chal-
lenging dynamic node routing problems (Ghiani, 
Guerriero, Laporte, & Musmanno, 2003; Ichoua, 
Gendreau, & Potvin, 2000; Psaraftis, 1995).

2.  Models that integrate vehicle route optimiza-
tion with other winter maintenance decision 
problems.
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There are a range of winter maintenance prob-
lems beyond vehicle routing that are amenable to 
operations research approaches, such as depot and 
materials stockpile locations, fleet sizing, sector 
design, personnel and vehicle scheduling, etc. 
(Perrier, Langevin, & Campbell, 2006a, 2006b). 
The traditional approach has been to solve these 
problems separately and sequentially, which is 
likely to be suboptimal. Noble, Jang, Klein, and 
Nemmers (2006) adopt a broad perspective and 
consider sector design, depot location and route 
design in an iterative sequential approach – along 
with fleet assignment. This more integrative 
perspective is promising and it may provide new 
opportunities for implementing route optimization 
in conjunction with strategic or tactical planning 
activities. However, coupling a very difficult arc 
routing (operational) problem with other difficult 
more strategic OR problems creates a host of 
challenges for researchers. The recent effort by 
Cai et al. (2009) is also a step in this direction, 
though a truly integrated model that optimizes 
several decision areas simultaneously remains a 
promising area for future research.

3.  Studies that use optimized vehicle routing 
to quantify the tradeoffs between cost and 
level of service.

Vehicle routes play an important role in deter-
mining the cost and the level of service provided 
by winter road maintenance and it is essential to 
have a good routing model to assess accurately 
the tradeoff between cost and level of service. 
Improved vehicle routes could lead to higher 
levels of service at the same cost, or lower costs 
to achieve the same level of service. Tradeoff 
analysis can be at a strategic level to determine 
the level of service for a whole season – or more 
dynamic, as to assess different levels of service 
that may be deployed in response to individual 
storms. Furthermore, because improved vehicle 
routing provides environmental benefits from re-
duced materials (especially chemicals) usage and 

broader social benefits from improved mobility, 
along with the direct cost benefits from reduced 
use of vehicles and drivers, winter maintenance 
routing models that incorporate environmental 
and social costs and benefits are an important 
area of future research. Tradeoff analyses are 
also needed to assess the benefits from different 
weather and sensor technologies, many of which 
have proven difficult and expensive to implement 
and to integrate into the winter maintenance 
decision-making process (Shi et al., 2006; Ye, 
Shi, & Strong, 2009a).

4.  Implementation of OR tools to optimize 
vehicle routing.

While engineers from several disciplines have 
long played a prominent role in working with pub-
lic works agencies to develop, test and deploy new 
technologies for winter road maintenance, opera-
tions researchers have been much less successful 
and reported implementations of sophisticated 
OR models for winter road maintenance remain 
rare. Campbell and Langevin (2000) describe in 
detail three implementations of sophisticated OR 
models (in the US, Canada and the UK). There is 
certainly interest from many operating agencies in 
optimizing the vehicle routes, and the authors are 
aware of a variety of projects funded by state, pro-
vincial or municipal agencies that include vehicle 
routing. These projects generally develop models 
for “optimizing” vehicle routing and then test the 
models with real-world data from the associated 
agency. However, subsequent actual implementa-
tions of the new optimized routing approach seem 
very rare, in spite of the generally positive results 
from testing with “real” data.

There are likely a variety of reasons for the 
lack of implementation success stories, including 
those noted earlier, but it does not seem that the 
slow pace of adoption of vehicle routing optimi-
zation is due to ineffective models or an inability 
to generate timely results. Nor is a “fear” of tech-
nology a likely reason, as agencies are becoming 
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increasingly reliant of sophisticated technologies 
and computerized controls for operations (and 
communications). One approach to increase imple-
mentation successes might be to integrate vehicle 
routing optimization with other technologies being 
implemented, such as the ongoing development 
and deployment of the winter MDSS (mainte-
nance decision support system) in the US (Pisano, 
Hoffman, & Stern, 2009; Ye et al., 2009a). This 
is a multistate effort to develop a system that can 
“provide weather and road condition forecasts 
and real-time treatment recommendations (e.g., 
treatment locations, types, times, and rates) for 
specific road segments, tailored for winter road 
maintenance decision makers.” (Ye et al., 2009a). 
Although the MDSS includes real-time treatment 
recommendations, it does not include real-time 
routing optimization at this point.

In summary, there remain many challenging 
research opportunities (theoretical and applied) 
in winter road maintenance vehicle routing. 
One strong trend in practice has been to exploit 
technological advances and move away from 
traditional reactive static snow and ice control 
such as de-icing, to more proactive approaches, 
such as anti-icing and dynamic operations based 
on localized, accurate and timely forecasts. As the 
technology and operations continue to evolve, rich 
opportunities for applied arc routing research will 
continue to emerge – and the authors hope that 
optimized vehicle routing will become a “best 
practice” for winter road maintenance.
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KEY TERMS AND DEFINITIONS

Arc Routing: Arc routing problems determine 
a set of tours that covers a predefined subset of 
edges or arcs of a transportation network at mini-
mum cost, while satisfying some side constraints. 
Arc routing problems arise in contexts where road 
segments require treatments. Practical examples 
include the routing of street sweepers, snow plow-
ing, salt spreading, postal delivery, meter reading, 
school bus routing, garbage collection and road 
maintenance.

Capacitated Arc Routing Problem: The ca-
pacitated arc routing problem consists of designing 
a set of routes performed by vehicles of restricted 
capacity such that a set customers represented by 
the edges or arcs of a network are serviced and 
the total cost is minimized.

Chinese Postman Problem: The Chinese 
postman problem consists of determining a mini-
mum cost tour that traverses every edge or arc of 
a network at least once.

Snow Disposal: Physical removal of snow 
and ice to designated disposal sites following 
plowing operations. This is usually accomplished 
by loading the snow in-to trucks and hauling it to 
disposal sites that may be vacant land, waterways, 
or openings into a sewer system.

Snow Plowing: Mechanical removal of snow 
and ice from pavement, generally using a truck 
or other maintenance vehicle equipped with a 
metal blade.

Snow Removal: Clearing of a roadway of 
snow and ice by chemical (e.g., spreading salt to 
melt snow and ice), mechanical (e.g., plowing), 
or thermal (e.g., roadway warming) means.
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Spreading Operations: Dispersal of chemical 
or abrasive materials onto a roadway (or sidewalk) 
usually by means of spreader equipment on trucks 
for winter maintenance operations. The materials 
may be in dry form, liquids or brines. Chemicals, 
commonly salt (sodium chloride) or calcium mag-
nesium acetate, are used to lower freezing-points 
and change the chemical properties of snow and 
ice, while abrasives, such as sand, crushed stone, or 
cinders, are used to improve traction on roadways.

Winter Road Maintenance: Operations con-
ducted to create safe roadways (and sometimes 
sidewalks) for winter travel. The primary opera-
tions include: spreading of chemicals and abrasives 
to melt snow and ice or to prevent snow and ice 
from bonding to the pavement, snow plowing to 
mechanically remove snow and ice from roadways, 
and snow disposal to load snow into trucks and 
haul it to disposal sites.
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Chapter  3

INTRODUCTION

Vehicle routing problems (VRP) are difficult-to-
solve combinatorial optimization problems. At the 
same time, a VRP addresses an important fact that 
the distribution costs of many firms in the service 

industry may account for a major portion of the 
total logistics costs of the firm. Ever since the 
problem was introduced by Dantzig and Ramser 
(1959) over 50 years ago, it has drawn the attention 
of academic researchers and practitioners due to 
its attractiveness in theoretical research as well 
as the potential to apply it in real-world settings.
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The goal of the VRP is to determine how to 
deploy a fleet of vehicles to distribute products or 
provide services to customers in the most economic 
way. The cost of such an operation can be a func-
tion of different criteria such as time, distance, or 
service quality. The VRP is a generalization of the 
well-known traveling salesman problem (TSP), 
but is more difficult to solve than the same. The 
VRP is also one of the most widely encountered 
types of problems in practice; various problems 
can be modeled as one form of VRP though some 
problems might not involve transportation of 
physical goods at all.

The VRP can be extended to a vehicle rout-
ing problem with time windows (VRPTW) as 
time window commitments may be required 
by customers. Given a fleet of homogeneous 
vehicles each with a certain capacity, a common 
depot location where these vehicles start and 
end their daily operation, and a set of customers 
with demands for certain products and imposed 
delivery time windows, the VRPTW attempts to 
find the most economic way to deliver products 
to these customers within their required time 
windows. Each customer is serviced by one and 
only one vehicle, and each vehicle may have its 
own working hours defined by a start time and an 
end time. The total amount of the product loaded 
on a vehicle cannot exceed the vehicle’s capacity. 
Finally, at each customer location, the assigned 
vehicle spends a predefined amount of time to 
complete the delivery or service.

The VRP has many variants; we, however, 
focus on VRPTW in this chapter because we find 
that this version of VRP represents a majority of 
routing problems found in practice. VRPTW-type 
problems have many different and interesting 
versions and they are unarguably one of the most 
widely studied types of routing problems in the 
academic literature. Many different models along 
with exact and heuristic solution techniques have 
been proposed by scholars, leading to a rich lit-
erature on VRPTW.

In public and private service industry, where 
efficient product pickup/delivery or service person 
dispatching is sought in order to provide the best 
service at the lowest possible cost, it is not surpris-
ing that the VRPTW is the most suitable model 
to employ. Note that some industrial applications 
of VRPTW are indeed another specific version of 
VRP, which is known as VRP with simultaneous 
pickup and delivery (VRPPD). In this version, 
vehicles can have a mixture of pickup and deliv-
ery visits to customer sites, such as the case for 
picking up or delivering cash to ATMs and bank 
branches. This problem, however, is structurally 
a different type of problem requiring somewhat 
different problem solving techniques and hence 
is considered outside the scope of this chapter.

The service industry nowadays is faced with 
increased challenges such as offering better ser-
vices while keeping the overall costs at bay. Higher 
gasoline and personnel costs put more pressure 
on providing services efficiently. This economic 
issues have motivated researchers and practitio-
ners to actively seek the use of state-of-the-art 
optimization and information technologies. As 
is the trend in the service industry, it is typically 
necessary to solve real problems with thousands of 
customers instead of hundreds, using hundreds of 
vehicles instead of tens. Furthermore, companies 
request that VRPTW solutions be more realistic 
and feasible rather than optimal. In order to provide 
certain real-time services (e.g. processing a service 
order over the web), it is required that the solution 
for a VRPTW be obtained in a matter of seconds, 
and be as realistic and implementable as it can be. 
To this end, modern information technologies such 
as GIS (Geographic Information Systems), GPS 
(Global Positioning Systems), and/or RFID (radio 
frequency identification) have been incorporated 
to solve real-world VRPTW problems.

This chapter has a practice-oriented focus. 
Instead of an extensive coverage on the theory 
behind various VRPTW models and their associ-
ated solvers, which has been done in numerous 
papers, we have chosen to focus on existing 
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VRPTW solution reviews and real applications 
of VRPTW based upon our practical experiences.

We state the objectives of this chapter as two-
fold: first, to provide a review of the mainstream 
models and solution techniques along with a 
comprehensive set of examples from the service 
industry in such contexts as:

• products distribution routing,
• maintenance operations routing,
• e-delivery operations routing with and 

without dynamic service requests,
• student and personnel bus scheduling,
• service personnel dispatching and routing.

The second goal of this chapter is to present 
the reader with interesting real applications of the 
VRPTW: one from service personnel dispatch-
ing and scheduling, one from the energy sector, 
and the third one from the food services sector. 
These applications are presented as case studies 
in the chapter. For each case study, we describe 
the special solver development considerations in 
accordance with the particular business needs. 
In order to achieve results that are acceptable to 
practitioners, certain real-world features also need 
to be incorporated in a VRPTW solution proce-
dure. In all three cases, we consider such features 
as the speed limits on roads, different road types, 
different kinds of restrictions (one-ways, turns, 
etc.), and geographic obstacles such as rivers, 
mountains, and coastal lines. We further discuss 
how to combine GIS and optimization techniques 
to solve large-scale VRPTW problem instances 
with thousands of nodes (customers) in the service 
industry. This, we believe, provides the reader with 
a more realistic and operationally acceptable view 
of the available solution alternatives. In all three 
case studies, we also present the economic benefits 
of applying GIS integrated with optimization, to 
demonstrate excellent ROI (return on investment) 
realizations for such deployed systems.

The rest of this chapter is organized as follows. 
In the next section, we provide a background on 

VRPTW and present a literature review. Next, we 
present the basic VRPTW model in mathematical 
terms and the mainstream solution approaches. The 
next section contains three case studies in which 
the authors of this chapter were directly involved. 
The chapter ends with concluding remarks and 
ideas for future studies.

BACKGROUND

There are many documented applications of 
VRPTW in the service industry. For instance, 
Weigel and Cao (1999) describe a VRPTW solu-
tion approach to address the problem of delivering 
products including furniture, appliances, and re-
lated services to customer homes. Kim et al. (2006) 
present a methodology to solve the VRPTW prob-
lem found in a waste collection operation. Spada 
et al. (2005) discuss the problem of scheduling bus 
service pick-up/drop-off for students or company 
personnel. In order to maintain the best condition 
of elevators in use, service personnel must check 
elevators and conduct necessary repairs on them 
periodically. Therefore, an elevator company has 
the challenge to plan efficient service routes over 
a planning period. Blakeley et al. (2003) present 
a system that is able to generate periodical routes 
for service technicians.

In addition to a common set of rules found 
in the studies mentioned above, real VRPTW 
instances in the service industry usually contain 
other business rules or constraints such as:

• Multiple objectives: it is quite often the 
case that a VRPTW objective function 
may consider more than one factor. For 
instance, one goal might be to minimize 
the number of vehicles used, while another 
might be to minimize the total travel time 
or total travel distance measured by the 
fleet of vehicles. At times, a firm may seek 
to build routes that minimize the total time 
window violation (in case time window 



49

Routing Solutions for the Service Industry

violations are allowed) in addition to those 
mentioned above.

• Non-homogeneous vehicles: vehicles in a 
fleet can have different characteristics in 
terms of capacities, cost parameters, main-
tenance fees, skill(s) required to operate 
each vehicle, road traversal restrictions 
due to size, weight or height of vehicle, etc.

• Customer-vehicle/personnel compatibility: 
also known as the specialty-matching re-
quirement, a vehicle may be restricted on 
the type of customers it can feasibly serve. 
This situation is quite common in the ser-
vice industry. For instance, a service per-
son may have the skill to fix a computer 
but not a refrigerator, in which case this 
person cannot be dispatched to a customer 
requiring a refrigerator repair service.

• Multiple depots: there may be more than 
one depot in a service territory where ve-
hicles start and end their day. In the service 
industry, a depot can be a service office. 
Service personnel can report to one office 
in the morning but sign off his working day 
at another one. In some VRPTW cases, a 
vehicle may start the day at a customer lo-
cation but end at the depot.

• Return and reload: in urban delivery ser-
vices, a vehicle may have to run more than 
one trip in a day within its working hours, 
due to the limitation on fleet size. For each 
trip, a vehicle is loaded up to capacity to 
deliver products to customers on that trip. 
More trips may be required, for which the 
vehicle returns to the depot and re-loads 
products for the next trip as long as there 
are available working hours left.

• Special time window considerations: al-
though the basic VRPTW model includes 
time windows as constraints, it treats the 
time window concept as black-and-white. 
This means if the time window of a cus-
tomer cannot be met, this customer is not 
served in the final solution. In practice, 

customers may accept some degree of time 
window violation; a concept which is cap-
tured in a “soft” time window constraint. 
As a result, many application systems let 
their users enter a penalty for time window 
violations (Blakeley et al., 2003; Muller, 
2010, Weigel and Cao, 1999). A user is 
able to adjust the penalty for the time win-
dow violation upon his/her business needs.

• Multiple time windows: service compa-
nies might have to deal with multiple time 
windows such as the case for restaurants, 
where a delivery can only be accepted be-
tween 9 AM and 11 AM and between 2 
PM and 4 PM (excluding the busy lunch 
hour). If these time windows are also soft 
constraints, further complexity is added to 
the VRPTW as a new type of decision is 
now under consideration: violating a time 
window versus waiting at the customer 
doorstep.

• Customer visiting precedence: a partial 
ordering may be imposed on the customer 
service or delivery sequence. A common 
example is for home delivery service, when 
a vehicle has to go to a particular store to 
pick up a merchandise before delivering 
it to the customer who purchased it. In a 
backhaul-type problem, all pickup stops 
must be visited before the delivery stops.

• Service priority: at times, a fleet of vehi-
cles may be unable to meet all customer 
required services due to capacity or time 
limits of the vehicles. In such cases, com-
panies often require that services for “high-
priority” customers be completed first.

• Periodic visit requirement: periodic 
VRPTW problems arise in the distribution 
of products such as soft drinks, snacks, 
etc. Certain equipments such as elevators 
request periodic maintenance services as 
well. In such cases, a service-providing 
company is interested in building a series 
of day-routes over a planning period (such 
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as a week or month) so that each customer 
receives the required service at a desirable 
frequency.

• Customer preference: a customer might re-
quire a specific service person or type of 
vehicle to service his/her request.

• Curb approach requirement: a customer 
might ask the driver to drop off or pick 
up products on the pre-defined side of his/
her street only, or on either side of a street 
segment.

• Service person or vehicle service area 
preference: quite often companies want to 
generate service routes that are relatively 
stable, where each route is committed 
to a certain part of the service region. In 
this case, the service efficiency may be in-
creased as each service person gets more 
knowledgeable about his/her service area 
and customers. The company may also 
designate a “seed point” for each vehicle 
in order to confine the route to the area 
around the seed point.

• Grouping of visit points: service compa-
nies may have a requirement that no more 
than one vehicle be dispatched to multiple 
customer orders located in the same facil-
ity or nearby facilities. This typically re-
sults in the grouping of the corresponding 
locations and routing them as if they were 
a single visit point.

To solve VRPTW more efficiently and to create 
more realistic solutions, it is necessary to collect 
and use accurate data. Thanks to the progress in 
information technologies, we are now able to 
access all kinds of data from corporate databases 
and/or enterprise application systems such as ERP, 
CRM, TMS, etc. The data required for a routing 
application may include vehicle properties such 
as the number of available vehicles and their 
characteristics (e.g. capacities, costs, specialties, 
working hours). Customer related data typically 
include quantities to be delivered or pickup, spe-

cialty or skill requirements, time windows, and 
service priorities, if any. A VRPTW problem solu-
tion cannot be obtained without geographic data 
on travel times and costs between any possible 
pair of stops. Due to the deployment of GIS ap-
plications in many companies, the data on travel 
times and costs are readily used. Furthermore, 
with the development of intelligent transportation 
systems, other useful data such as real time traffic 
information can be obtained and utilized to solve 
a VRPTW. The deployment of such systems in 
route planning activities helps greatly in offering 
more realistic and implementable solutions for 
the VRPTW.

Another issue in solving VRPTW efficiently is 
related to the concept known as territory planning 
or districting. When a VRPTW instance involves 
an extensive number of customer visit locations 
in a large geography, one had better implement 
a “divide-and-conquer” approach. This means 
clustering visit locations into smaller subsets us-
ing a territory optimization algorithm, and solving 
the VRPTW on each subset. There is extensive 
literature on territory optimization, however this 
topic is also outside the scope of this chapter, and 
hence the reader is referred to the recent studies 
by Kalcsics et al. (2005) and Rios-Mercado and 
Fernandez (2009) for further details.

As mentioned above, VRPTW is a difficult 
problem and large instances of VRPTW cannot 
be solved in reasonable time unless one uses a 
heuristic approach. In what follows, we discuss 
some general guidelines in solving a classical 
VRPTW based on heuristic and metaheuristic 
approaches.

Review of Solution Techniques

Since first introduction of the problem, the re-
search on VRP or VRPTW has been closely tied 
to practice. The paper by Dantzig and Ramser 
(1959) describes a practical problem of deliver-
ing gasoline to gas stations and presents the first 
mathematical formulation of the vehicle routing 
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problem. Motivated by another practical problem, 
the delivery of consumer nondurable products, 
Clarke and Wright (1964) thereafter published a 
paper outlining a greedy heuristic that improved 
the Dantzig-Ramser solver; their algorithm based 
on a “savings” criterion is still being the basis for 
numerous solution methods due to its efficiency 
and ease of implementation. In another paper, 
Kallenhauge (2008) presents a review of the 
mathematical formulations and exact algorithms 
developed for the VRPTW in the past several 
decades. An even more recent study is by Azi et 
al. (2010) who also provide an exact algorithmic 
approach. On the 50th anniversary of VRP, Laporte 
(2009) published a paper providing a brief account 
of the historical development of VRP. His paper 
describes the basic model of a VRP, and presents 
a survey on exact algorithms, classical heuristics 
and metaheuristics that have been widely applied 
and that are still attracting significant attention.

It is well known that a VRP is an NP-hard 
problem (Lenstra and Kan, 1981); that is, large 
instances of the problem, say those with thousands 
of nodes and one hundred vehicles or more, gener-
ally cannot be solved to optimality in reasonable 
computational times. For this reason and because 
of the problem’s relevance in real-world applica-
tions, the VRPTW has gained a lot of attention 
from researchers who seek practical solutions to 
the problem. More than two decades ago, Bodin 
et al. (1983) published a survey paper on heuristic 
and exact algorithms for the VRPTW. Braysy and 
Gendreau (2005) gave a comprehensive survey 
on algorithms for solving the VRPTW. The first 
part of their paper presents route construction 
and local search algorithms. Several route con-
struction methods such as the Clarke and Wright 
(1964) savings heuristic and the Solomon (1987) 
insertion heuristic, and their performances are 
reviewed in this paper.

Although some scholars attempted to develop 
exact algorithms most of which are branch-and-
bound based (e.g., Ropke and Cordeau, 2009), 
heuristics are usually the best choice for solving 

real VRPTW instances. In order to obtain better 
solutions for the VRPTW, one needs to figure 
out effective steps to improve the initial solu-
tions yielded by a route construction procedure. 
The classical local search is a strategy employed 
by most scholars for obtaining reasonable solu-
tions to VRPTW in short computational times. A 
classical local search method is greedy heuristic 
that iteratively improves an initial solution to the 
problem by exploring neighborhood solutions. 
The neighborhood of a solution can be created 
by obtaining new solutions after changing one 
or more of its attributes. For instance, a VRPTW 
neighborhood can be generated by changing some 
arcs linking stop pairs. During local search, a 
member solution of the neighborhood is compared 
against the incumbent best solution. If it is better 
than the current best solution, the neighborhood 
solution is accepted as the incumbent solution and 
the search continues with new neighborhoods. The 
search stops when no neighborhood solution can 
be found to be better than the incumbent solution.

The local search heuristic has three main ad-
vantages: ease of implementation, being able to 
deal with various business constraints that may be 
hard to model mathematically, and being capable 
of generating a solution in short computational 
time. However, it has a major weakness in that the 
search process can be trapped at a local optimum. 
This can be overcome through the use of meta-
heuristics in solving the VRPTW, which results 
in more satisfactory solution outcomes. In the 
second part of their paper, Braysy and Gendreau 
(2005) provide a survey on metaheuristics for 
the VRPTW. Unlike classical heuristics, meta-
heuristics allow deteriorating and/or infeasible 
solutions in order to explore more of the solution 
space. Metaheuristics act as general guidelines 
for search procedures that explore the solution 
space seeking better solutions. Many algorithms 
for the VRPTW are developed based upon three 
well known metaheuristics – Tabu Search (Glover, 
1986), Genetic Algorithm (Holland, 1975), and 
Simulated Annealing (Kirkpatrick et al., 1983). 
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Recently, algorithms using other metaheuristics 
such as ant colony optimization, particle swarm 
optimization, hybrid-search, and scatter search 
also offer high quality solutions to the VRPTW 
(see Ahmmed et al., 2008; Yu et al, 2009; Bent and 
van Hentenryck, 2004; Zheng and Zhang, 2009; 
Russell and Chiang, 2006). The current technol-
ogy in computer hardware allows researchers to 
utilize higher capacity and computational power 
to solve larger and more complicated optimiza-
tion problems in acceptable computational times.

Among the common metaheuristics, Tabu 
Search (TS) selects the best solution contained 
in the solution space that does not violate certain 
restrictions to prevent the solution process from 
cycling. Usually, for a VRPTW these restrictions 
prevent for the next t (also called tabu length or 
tabu tenure) iterations a movement of stops that 
might cause an “undo” of a previous movement 
(i.e. re-visiting a previous solution). During this 
process, TS allows deteriorating and/or infeasible 
solutions. Intensification and diversification strat-
egies are employed to guide the search process, 
and oscillation strategy is employed to accept 
infeasible solutions. TS stops when one of the 
stopping criteria is met. We describe how the TS 
technique is applied to solve real instances of the 
VRPTW in the next section..

Simulated Annealing (SA) is a metaheuristic 
that attempts to achieve global or near global 
optimum for an optimization problem. Analogous 
to the annealing process in metallurgy, each step 
of a SA algorithm replaces the current solution by 
a randomly selected solution from its neighbor-
hood, chosen with a probability that depends on 
the difference between the corresponding function 
values and on a global parameter T (called the 
temperature), that is gradually decreased during 
the process. The principle is that the current solu-
tion changes almost randomly when T is large, but 
goes increasingly “downhill” as T goes to zero. 
SA allows “uphill” (i.e. non-improving) moves 
in a minimization problem to prevent the process 
from getting stuck at local optima.

Genetic Algorithm (GA) is a metaheuristic 
inspired by population genetics, and is a special 
case of evolutionary algorithms (EA) that use 
techniques to simulate biological processes such 
as inheritance, mutation, natural selection and 
crossover. GA evolves a population of individuals 
(i.e. solution pool) encoded as chromosomes by 
iteratively generating new offspring until a stop-
ping criterion is met. The best solution is decoded 
to represent the solution for the corresponding 
problem. Based upon a genetic representation of 
the solution space and a fitness function to evalu-
ate each solution, GA continuously produces new 
solutions to the pool. A new member of the solution 
pool is created by mating two parent solutions 
selected upon probabilities that are proportional 
to each parent’s respective fitness value. The 
mutation operator is then applied to finalize the 
two new child solutions for the pool. The child 
solutions replace their parents according to a 
replacement rule. All parameters of this process 
depend on the problem under consideration and 
are highly customizable.

Based on the published papers and the survey 
conducted by Braysy and Gendreau, we find that 
the solutions for the VRPTW obtained through 
metaheuristics are much better than those yielded 
by classical heuristics. Furthermore, although 
metaheuristics may require longer computational 
times, researchers have invented many imple-
mentation strategies such as parallel processing 
or utilization of multi-core hardware to speed up 
the solution procedures significantly. Because of 
that, solving a complicated real-instance VRPTW 
more effectively has become a reality.

In a recent paper, Mendoza et al. (2009) present 
an evolutionary-based decision support system 
for vehicle routing problems. Their application 
background is the customer-related processes in 
a public utility such as meter replacement. The 
purpose of the decision support system is to assist 
operation managers to plan site visits in a most ef-
ficient way. The system integrates the commercial 
SAP/R3TM and ArcGISTM software in addition to 
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the custom routing component. To solve the vehicle 
routing problems, they introduce an evolutionary-
based algorithm similar to the genetic algorithm. 
The system built on this algorithm was tested on 
real world applications with problem sizes ranging 
from 323 to 601 nodes.

In another example of a real life service appli-
cation, Kim et al. (2006) present a paper dealing 
with a VRPTW in a waste collection operation. 
The main goal of this VRPTW is to minimize the 
number of vehicles used and the total travel time 
of the fleet. The time windows are introduced 
due to the commercial nature of the problem. 
When a vehicle is full, it travels to a disposal 
site to unload and come back to re-join the waste 
collection operation if permitted. The authors use 
Solomon (1987) insertion algorithms to generate 
initial routes and further employ a Simulated 
Annealing based local search algorithm called 
CROSS (Taillard et al., 1997) to improve routes. 
The system employing the algorithms combined 
with GIS technology was implemented at Waste 
Management. The estimate savings are reported 
as $44 million.

While most of the literature deals with the 
single-depot VRPTW, Zheng and Zhang (2009) 
present a paper on solving the multi-depot 
VRPTW, where the number and locations of depots 
are predetermined and the vehicles have limited 
capacities. The authors solve the problem in three 
phases: grouping, assignment and sequencing. In 
the grouping phase, customers are clustered with 
each cluster being serviced from a single depot. 
In assignment and sequencing phases, a standard 
VRPTW is solved for each depot independently. 
To obtain better solutions, the authors introduce 
a hybrid Ant Colony-based metaheuristic. The 
computational experiments, however, are per-
formed on small instances (up to 100 customers, 
10 depots, and 8 vehicles), and no real world 
implementation is presented.

In their paper, Goel and Gruhn (2010) study 
the so called general vehicle routing problems that 
generalize the vehicle routing with pickup and de-

livery operations. The business considerations for 
this kind of problems may include time windows, 
heterogeneous fleet with different vehicle travel-
ing speeds, different capacities and dimensions, 
and order/vehicle compatibilities. In this problem 
setting, it is also decided whether self-operating 
vehicles are to be deployed or not. The authors 
propose a heuristic based on two neighborhood 
search schemes due to computational time limits. 
The impact of combining these two schemes is 
focusing on good solutions while exploring a larger 
solution space to avoid local optima.

Ibaraki et al (2005) discuss a VRPTW where 
the service start time for each customer is a 
non-negative, piecewise linear penalty function. 
They treat time windows and vehicle capacities 
as soft constraints, and use a weighted objective 
function that includes total travel distance, start 
time penalty, and capacity violation. The authors 
propose a “cyclic-exchange” neighborhood search 
procedure in addition to the standard 2-opt and 
Or-opt procedures for VRP problems. Computa-
tional results suggest that the proposed algorithm 
is effective in getting satisfactory results for the 
VRPTW as well as parallel machine scheduling 
problems.

Gutierrez et al (2010) present an interesting 
VRP that may be found in the service industry, 
particularly in reverse logistics, where vehicles 
may selectively satisfy pickup requests in addi-
tion to meeting delivery requests. Furthermore, 
there is revenue associated with each pickup. Both 
pickup and delivery customers have imposed time 
windows. The goal of this type of problem is to 
find a solution with minimal net cost (travel cost 
minus revenue). An exact branch-and-price algo-
rithm is proposed to solve this kind of problem, 
and it is applied to problems up to 50 customers.

Many vehicle routing problems take into ac-
count a single criterion such as travel time. In 
certain contexts, road segments may have other 
attributes for consideration such as road class and 
road restrictions. Very often the transportation ac-
tivity takes place on a multi-modal transportation 
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network. To deal with these extensions, Garaix 
et al (2010) propose a dynamic programming 
based algorithm that is able to solve the VRP on 
a multigraph. This algorithm can yield alternative 
paths for the VRP, which makes a compromise 
between different attributes of road segments.

In service industry, customers may also require 
periodic services. For instance, restaurants may 
request periodic delivery of beverages; high-rise 
buildings need periodic maintenance of their eleva-
tors. Unlike the standard VRPTW where single 
day-routes are built, periodic VRPTW involves 
building routes for multiple days of a predefined 
planning period. A service request in a periodic 
VRPTW generally has multiple visit requirements 
during this period, such as once a week, twice a 
week, once a month, twice a month, etc. A solution 
to the problem assigns service orders to individual 
vehicles or service persons on multiple days over 
the planning period with a route built for each 
vehicle on each day. While the day-routes are 
built, standard VRP routing constraints apply. It 
is conceivable that the introduction of time hori-
zon increases the complexity and computational 
time. Because of this, solution approaches for 
the periodic VRPTW differ from those for the 
standard VRPTW. Typically, the periodic route 
planning calculations are not performed daily, 
which provides computational time flexibility for 
solving larger instances of the problem.

Francis et al. (2006) present an algorithm to 
solve such a periodic vehicle routing problem 
(PVRP). In their model, a full visit schedule must 
be determined by the solver. A service request 
may ask for visits twice a week, for instance on 
either Mon-Tue, Mon-Wed or Wed-Fri days. The 
solver must honor one of these options taking into 
account the cost aspect. Furthermore, a customer 
may be willing to accept higher visit frequency at 
a premium service fee. In this case, the algorithm 
needs to determine the frequency as well as the 
visit day combination. The goal is to build routes 
for the entire planning period with the lowest ob-
jective value that consists of total travel time and 

service benefits while meeting other constraints 
such as vehicle capacity and visit requirements. 
The authors propose Lagrangian relaxation and 
branch-and-bound approaches to solve the cor-
responding model. They apply their algorithms 
to solve a number of problem sets (ranging from 
12 to 44 libraries) derived from real applications.

Blakeley et al. (2003) present an application 
where the optimization problem can be modeled 
as a periodic VRPTW. The business background 
is related to the Schindler technician operations 
that involve thousands of employees that visit 
elevator and escalator installations every day for 
maintenance, repair and sometimes emergency 
services. Each visit location has a preferred ser-
vice frequency and the service routes are built 
while considering geographic proximity, techni-
cian workload, required skill sets, and customer 
relationship/preference. The authors describe an 
interactive GIS-based route planning and optimi-
zation system named PASS, where they propose a 
set of heuristics to address the underlying periodic 
VRPTW problem. The solution procedure is car-
ried out in two phases: assignment and sequencing. 
The assignment phase assigns service requests to 
individual technicians considering factors such 
as workload balance, expected travel time and 
distance, and expected overtime. The sequencing 
procedure schedules visits for all service requests 
over the entire planning period and builds indi-
vidual day-routes. A tabu search metaheuristic is 
implemented to guide the local search in order to 
obtain good quality solutions. The authors report 
that PASS has been deployed at many Schindler 
service centers, and the system is able to create, in 
a matter of minutes, 65 day-routes of 700 service 
requests with 15 to 20 service technicians. The 
system brings economic benefits of over $1 mil-
lion savings annually and an investment payback 
period of less than a year.
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MATHEMATICAL MODEL 
AND ALGORITHM

The Vehicle Routing Problem with Time Windows 
is widely studied in the literature and various 
models have been proposed and used. What we 
provide below as the mathematical model that 
forms the basis of our case studies we describe 
later is known as the 3-index model and appears in 
many past studies such as Kohl and Madsen (1997). 
While we have introduced additional features to 
this model in our case studies (to account for vari-
ous additional business rules discussed above), 
we nevertheless provide the basic model and our 
corresponding solution methodology below.

Mathematical Model

Before we formally present our VRPTW math-
ematical model, let us introduce first our decision 
variables and related notation. Let i j I, ∈  rep-
resent indices of customers from a customer index 
set I and k K∈  be indices of vehicles from set 
K. The customer index set I, with I n= , is 

further extended to I I n+ = +∪{ , }0 1  to include 
the single depot location index that marks the start 
and end point of each route. Furthermore, let:

x
ijk

: 1, if vehicle k drives from customer i to 
customer j, 0 otherwise

s
ik

: the time vehicle k starts service at customer 
i

r
k

: total route time (in minutes) of vehicle k
o
k

: total overtime (in minutes) of vehicle k

where x
ijk

 is defined only for i j I, ∈ + ; s
ik

 is 
defined for i I∈ + ; and y z u

ik i i
, ,  are defined for 

i I∈ . The rest of the notation is as follows:

c
k
d : travel cost per unit distance for vehicle k
c
k
r : regular labor cost per minute for vehicle k

c
k
o : overtime labor cost per minute for vehicle k, 

assuming c c
k
o

k
r>

w
i
: amount of capacity use by customer i on any 

vehicle it is assigned to
p
i
: duration of service at customer i location

d
ij

: travel distance between customer i and cus-
tomer j

t
ij

: travel time in minutes between customer i and 
customer j

a b
i i
, : time window limits for customer i
R
k
: allowable total route time, including any 

possible overtime, for vehicle k
O
k
: allowable overtime for vehicle k

l
k
: regular work time for vehicle k beyond which 

overtime will accumulate
Q
k
: maximum capacity of vehicle k

The objective function of our basic model is 
the sum of the following cost items: travel cost, 
route labor cost and route overtime cost. This 
objective function, however, may be revised to 
accommodate other specific business rules and 
logic in service industry applications, which we 
do in the following sections.

Formally, we state our mathematical model as 
shown in Table 1.

In this model, constraints (1) indicate that each 
customer must be assigned to a vehicle, constraints 
(2) ensure that vehicle capacities are not ex-
ceeded, constraints (3)-(5) maintain flow balance 
at each node of the transportation network, con-
straints (6) correctly calculate the arrival time of 
a vehicle at each customer location it visits, con-
straints (7) and (8) calculate the total route time 
(including overtime, if any) and total route over-
time, respectively, constraints (9) and (10) set the 
corresponding time limits on route time and route 
overtime, constraints (11) make sure the hard time 
window limitations are not violated, and finally 
constraints (12)-(14) enforce the integrality and 
non-negativity requirements.
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Note that, the model presented above is a 
capacitated VRPTW model where time windows 
are hard, and there are limits on the route time, 
overtime and capacity. Furthermore, all vehicles 

start at and return to the same common depot 
location. We discuss extensions to this model as 
necessary while we present our case studies.

Table 1.

min [ ]
,

F x c d c r c c o
k K i j I

ijk k
d
ij

k K
k
r
k k

o
k
r

k
= + + −( )

∈ ∈ ∈
∑∑ ∑

+

subject to

k K j I

ijk
x

∈ ∈
∑∑

+

= 1 ∀ ∈i I
(1)

i I
i

j I

ijk k
w x Q

∈ ∈
∑ ∑

+

≤ ∀ ∈k K
(2)

j I

jk
x

∈ +
∑ =

0
1 ∀ ∈k K

(3)

i I

ihk

j I

hjk
x x

∈ ∈+ +
∑ ∑= ∀ ∈ ∀ ∈h I k K,

(4)

i I

i n k
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∈

+
+
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1 ∀ ∈k K

(5)

s p t s M x
ik i ij jk ijk
+ + ≤ + −( )1 ∀ ∈ ∀ ∈+i j I k K, , (6)

r s p s
k n k n k
= + −+ +1 1 0,

∀ ∈k K (7)

o r l
k k k
≥ − ∀ ∈k K (8)

r R
k k
≤ ∀ ∈k K (9)

o O
k k
≤ ∀ ∈k K (10)

a s b
i ik i
≤ ≤ ∀ ∈ ∀ ∈i I k K, (11)

x
ijk
∈ { , }0 1 ∀ ∈ ∀ ∈+i j I k K, , (12)

s
ik
≥ 0 ∀ ∈ ∀ ∈+i I k K, (13)

r o
k k
, ≥ 0 ∀ ∈k K (14)
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Algorithm

The VRPTW is known to be NP-Hard (Lenstra and 
Kan, 1981), which suggests that polynomial-time 
algorithms for finding solutions to large problem 
instances with thousands of nodes or customers 
are only possible through heuristic approaches. 
This is also our experience with the real-world 
instances of the VRPTW including the three case 
studies we present later in this chapter. The solu-
tion methodology we present here is essentially a 
heuristic neighborhood search algorithm tailored 
according to the business rules dictated by the 
problem at hand.

To solve the capacitated VRPTW, we take a 
two-phase approach where in the first phase we 
“assign” customers to vehicles to come up with 
a complete feasible initial solution, and in the 
second phase, we “improve” the routing solution 
iteratively until no more improvements can be 
found or another stopping condition is met. We 
discuss these two phases in detail below:

Assignment

In the assignment phase, our primary goal is to 
produce a complete initial solution that satisfies 
all constraints of the VRPTW including vehicle 
capacities, hard time windows, limits on total route 
time and total route overtime. While doing so, the 
assignment procedure attempts to minimize the 
total operational costs (i.e. travel costs and labor 
costs) when it assigns stops to routes. We further 
take the liberty to attach weights to different cost 
components of the objective function, essentially 
making it a weighted objective function. Although 
we do not include this weight concept in our basic 
model, we use it to provide additional flexibility 
to the end user for generating alternative routing 
solutions that favor different preferences on the 
cost terms. This structure also allows us to account 
for additional cost terms that will be introduced 
in various extensions of the problem (e.g. time 
window violations, waiting or idle time) that are 

discussed in the case studies. The typical form of 
the weighted objective function becomes

F f f f= + + +…α α α
1 1 1 1 1 1

 

where a user may adjust these weights upon the 
specific business needs and/or geographic char-
acteristics.

The assignment procedure consists of three 
parts: (1) building initial routes, (2) inserting 
stops, and (3) improving assignment. Let us now 
describe these in more detail.

When an initial route is built, a “dummy” route 
is in fact created containing only three stops: start-
ing location, seed point, and ending location. These 
stops provide the basis for assigning all unassigned 
customers. When an unassigned customer is in-
serted into a route as a stop, the weighted objective 
value changes and an incremental insertion cost 
is calculated as follows:

∆ ∆ ∆ ∆F f f f
ikt ikt ikt ikt
= + + +…α α α

1 1 2 2 3 3, , ,

Where ∆f
n ikt,

 is the change in the correspond-
ing cost term f

n
as a result of the insertion of stop 

i at position t of route k, and ∆F
ikt

 is the total 
incremental insertion cost. The algorithm proceeds 
by evaluating the ∆F

ikt
 value for each unassigned 

stop on each possible route and position. In some 
cases to be discussed later, this set of insertion 
possibilities is reduced in size due to some as-
signments not being feasible. Nevertheless, at 
each iteration, the stop with the minimal objective 
function increase (i.e. insertion cost) is picked for 
assignment to the corresponding route and posi-
tion. This procedure is repeated until there are no 
unassigned stops left or no route can further accept 
any new unassigned stop.

During the stop insertion phase described 
above, the algorithm considers the insertion cost 
with a local (i.e. greedy) perspective without look-
ing much further for global cost minimization. 
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Moreover, the insertion phase may result in routes 
unbalanced in terms of total route time. To address 
these issues and improve the assignment result, 
the algorithm can optionally be asked to execute 
an improvement procedure. In this improvement 
step, stops may be transferred from their original 
routes to different (destination) routes and/or two 
stops may be exchanged between their respective 
routes. The main goal of this improvement step 
is to create more balanced routes while keeping 
the increase in the weighted objective function 
at minimum.

We should note here that many extensions of the 
VRPTW that are not included in the basic model 
may require the Assignment procedure to handle 
the insertion of stops differently. For instance, 
if a customer requires a particular specialty or 
capability on the part of the vehicle, driver or tech-
nician, only eligible routes will be considered by 
the Assignment procedure for insertion purposes. 
Similarly, if certain customers have priority of 
service over the others, these customers may be 
inserted before the others. Whenever applicable, 
the Assignment procedure adjusts the insertion cost 
so that different rules can effectively be addressed. 
We leave the discussion of such variations to the 
next section where different operational rules are 
justified according to the needs of the business.

Improvement

After initial routes are built, that is all unassigned 
stops get assigned or no route can accept any more 
unassigned stops, the assignment result can be 
improved further. This is done via intra-route and 
inter-route improvement moves. An intra-route 
move means modifying the position of a single 
stop within its route to find a better position and 
hence improve the objective function. An inter-
route move means moving a stop to a different route 
or exchanging two stops between their respective 
routes, again to find a better solution in terms of 
total cost. Figure 1 shows an illustration of these 
two concepts. Please note that even though in 
Figure 1 a location is represented by a node, it 
may as well be a group of sequential nodes in a 
route; that is one or two groups of nodes can be 
involved in the improvement procedure.

Similar to the improvement steps in the stop 
insertion procedure, inter-route improvement 
consists of two major components: stop transfer 
and stop exchange. While the algorithm seeks for 
possibilities to implement these, all feasibility 
rules must be enforced at all times. In other words, 
such improvement operations may not produce 
infeasible routes. In our basic model, feasibility 
means respecting capacity, time windows and 
route time limits, but additional rules like special-
ty-matching, preferred vehicle assignment among 

Figure 1. Improvement swaps and exchanges
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others may have to be additionally considered in 
other extensions of the model.

The intra-route and inter-route improvement 
moves described above are executed in a heuristic 
fashion, and the execution continues as long as 
there is room for improvement. Here improvement 
means that the corresponding weighted objective 
function value can be reduced. It is known that 
this technique of local search may occasionally 
get the algorithm trapped in local optimum solu-
tions. To avoid this, the Improvement procedure 
also executes a tabu search (TS) logic. Our TS 
implementation utilizes short-term based memory 
to declare some candidate moves tabu for a number 
of iterations, which hopefully causes the algorithm 
to escape local optima and explore new parts of 
the solution space. According to our computational 
experiments, the tabu search add-on can bring us 
on average an additional 10% improvement on 
final solution quality compared to those yielded 
merely by traditional heuristics.

As mentioned above, TS is a metaheuristic 
that guides local search procedures to overcome 
local optima and reach more satisfactory solutions. 
Based upon the TS principles, a solution can be 
accepted even if its objective value is worse than 
the current one as long as it does not violate the 
tabu criteria. For the VRPTW discussed here, a 
solution space consists of routes and stops in each 
route. The attributes of a solution space that need 
particular attention are the route servicing stops 
and the visit sequence of a stop on a route, and these 
attributes are defined as solution space attributes. 
Whenever an inter- or intra-route improvement 
procedure (move) mentioned above is applied to 
the current solution space, the solution space is 
changed due to the solution space attribute change 
caused by the move. A new (neighboring) solution 
space and its attributes are formed.

It is clear that a cycle of repeating solutions 
can be avoided if the solution space attributes of 
each solution at each improvement iteration are 
different. Keeping track these solution space at-
tributes, however, can be costly and inefficient. 

To overcome this difficulty, in our implementa-
tion we adapt a more coarse evaluation strategy. 
At each improvement move, we keep track of the 
changes in the solution space attributes of a stop 
involved in the move. A move is called tabu, i.e., 
it might not be accepted for execution, if the solu-
tion space attributes of the involved stops yield 
the same solution space attribute values found in 
one of last t iterations, where t is called tabu list 
size or tabu tenure. Particularly for:

• Inter-route improvement moves: stop re-
turns to the previous assigned route and 
visit sequence;

• Intra-route improvement moves: stop re-
turns to the previous visit sequence.

Nevertheless, a tabu move can be overridden 
if one or more certain aspiration criteria are met, 
which adds more flexibility to the search process; 
here we accept a tabu move if the value of the ob-
jective function is better than the current best one. 
Furthermore, we incorporate some hard constraints 
such as route capacities into the objective function 
with penalty. If the value of this penalty is very 
high, then this constraint cannot be violated at all. 
This allows exploring more of the solution space 
by relaxing some constraints. Oscillation strategy 
(changing the penalty periodically according to a 
predefined logic) is employed to accept infeasible 
solutions. The outcome of applying this strategy 
is highly satisfactory.

TS stops when a stopping criterion is met: 
that is, when either the predefined total number 
of improvement iterations or the number of non-
improvement iterations is executed.

Algorithm 1 summarizes the two-phase algo-
rithm described above:

TS implementation may include Intensification 
and Diversification strategies to guide the search 
process for exploring the solution space more 
thoroughly. Intensification strategy records the 
best n solutions, where n is a solver parameter 
and can be adjusted by the user. The solution 
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procedure will record stop solution space attri-
butes. The intensification procedure will restart 
the search process from the current best solution 
and fix the stop solution space attributes (i.e., 
routes servicing them and visit sequences) that 
look more promising. A stop solution space at-
tribute is considered promising if this attribute 
appears in the collected good solutions most of 
the time.

The second strategy, known as diversification, 
attempts to explore some unexplored part of the 
solution space. Under this strategy, the algorithm 
restarts the search process from a solution in which 
the stop solution space attributes rarely appear 
based on the records. That is, a route rarely ser-
vices a certain set of stops and/or rarely contains 
certain stop visit sequences.

Although it is shown that intensification and 
diversification strategies in a TS implementa-
tion are able to obtain better solutions than those 
obtained by simple implementations of TS, our 

experience in various VRPTW cases in the service 
industry suggests that a TS implementation us-
ing only short-term memory is able to yield very 
high-quality solutions. Therefore, we exclude 
intensification and diversification strategies from 
our TS implementation in order to speed up the 
solution procedure as the computational time is 
a critical factor for the end user to accept the ap-
plication systems deployed.

CASE STUDIES

In this section, we present case studies for three 
real implementations of the VRPTW in the service 
sector. These include home appliance/furniture de-
livery and maintenance, gas service maintenance, 
and finally packaged bread distribution sectors. 
While the nature of the VRPTW is somewhat dif-
ferent in each case study, the general characteristics 
of the problems are very similar, and each problem 

Algorithm 1.

  Step 0. Read input data, initialize data structures and initialize all 

routes to dummy. 

  Step 1. (Assignment) – Repeat until no more stops can be inserted: 

     1.1 Evaluate each possible feasible insertion of a stop into an avail-

able route. 

Pick the insertion that has the lowest value of ∆Fikt.
     1.2 Execute the insertion found in Step 1.2 

  Step 2. (Sequencing) 

     2.1 Initialize tabu lists and tabu tenures. 

     2.2 Repeat until total number of iterations are executed: 

        2.2.1 Evaluate all feasible intra-route improvement possibilities 

        2.2.2 Evaluate all feasible inter-route improvement possibilities 

        2.2.3 Select the best improving tabu or non-tabu move. If there 

is no such move, select the best non-improving non-tabu move. 

        2.2.4 Execute the move found in Step 2.2.3 

        2.2.5 Update the tabu lists. 

        2.2.6 If new solution is better than the best known solution, re-

cord it as the new best solution. 

     2.3 Report the best known solution.
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is solved using a heuristic optimization approach 
coupled with GIS data processing techniques.

Case Study 1: Sears Home 
Delivery and Home Services

Sears is the one of largest retailers in the U.S., 
and its stores offer variety of products from appli-
ances to garden furniture. When a customer buys 
a merchandise from Sears, he/she can enjoy the 
friendly home delivery service offered by Sears. 
Sears also offers additional services for fixing 
various products such as refrigerators and TVs as 
well as for improving homes. These two kinds of 
services are carried by Sears Logistics Services 
(SLS) and Sears Product Services (SPS). When 
delivery routes are built in a SLS office, one tries to:

• Provide customers with accurate and most 
convenient time windows for deliveries;

• Provide truck drivers with consistent 
routes, and

• Minimize total delivery costs

A dispatcher at a SPS service center attempts 
to achieve the following while he/she builds home 
service routes:

• To maximize the completion of the service 
calls on the first attempt;

• To enhance the customer services, and
• To minimize overall service costs.

Although the problems to be solved here can 
be modeled as VRPTW, the size of the problems 
and their practical complexity make them of both 
theoretical and practical interest. SLS manages a 
national fleet of more than 1,000 delivery vehicles 
that includes contracted carriers and Sears-owned 
vehicles. Sears provides the largest home delivery 
service of furniture and appliances in the U.S., with 
over 4 million deliveries a year of 21,000 unique 
items. SLS home delivery serves 70 percent of 
the U.S. population. Sears product services (SPS) 
operates another national fleet of more than 12,500 
service vehicles and associated technicians who 
repair and install appliances, and provide home 
improvement and homeowner services. SPS call 
center receives 15 million calls for on-site service 
annually. Table 2 summarizes the businesses for 
SLS and SPS:

In order to solve these problems more effec-
tively and provide more realistic solutions to the 
users, we have developed a system that combines 
a geographic information system (GIS) with 
optimization techniques. The system possesses a 

Table 2. SLS and SPS business 

Sears Logistics Services Sears Product Services

Vehicles or Personnel 1,000+ consisting of contracted carriers and Sears-
owned trucks

12,500 service technicians

Annual Stops 4+ million 15 million

Service Area Regional delivery center based Regional service center based

Business Objective Deliver furniture and appliances Provide repair, installation, home improvement and hom-
eowner services

System Objectives Improve customer satisfaction 
Reduce operational costs 
Consolidate delivery operations 
Plan consistent routes

Increase completed service calls on first attempt 
Improve customer service 
Provide same day service 
Reduce operational costs 
Consolidate dispatch operations

Algorithm Objectives Automatically build routes that reduce travel time 
while honoring side constraints.

Automatically build routes that reduce travel time while 
honoring side constraints.
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user friendly graphic interface that allows users 
to:

• Display all underlying streets and their 
attributes

• Display all delivery/service areas or 
territories

• Zoom in to a route extent
• List driving directions for routes
• View all routes and their desired delivery/

service area (seed points)
• Manually adjust a route, for instance, select 

a route and change the stop sequences or 
reassign stop(s) from one route to another

• Manually assign a delivery/service area 
(seed point) to a driver or service technician

While solving the corresponding VRPTW, 
besides the factors mentioned above, we take 
into account other business logic or constraints, 
which may include:

• The skill of service technician matching 
the one required by the service order

• The start and end locations of a route being 
different (a service route can start at a job 
location and end at another job location)

• For some service routes, parts store being 
included so that proper parts for the service 
job can be picked up

• For some delivery routes, considering the 
stop precedence; for instance, a delivery 
truck may have to go to a store to pick up 
a product before delivering it to the cus-
tomer location

• Taking into account customer route 
preference

• Honoring the maximum number of ser-
vice/delivery stops based on a contract

• Visiting certain areas only within certain 
periods of time during the day; for in-
stance, a mountain area may not be visited 
after 5:00 PM or before 7:00 AM due to 
limited road conditions

These additional considerations increase the 
complexity of the problem to be solved. In order 
to cope with the complexity of the problem and 
still complete the solution process in a reasonable 
computational time, we have developed a series 
of algorithms based upon heuristic/metaheuris-
tic strategies, as described in more detail in the 
previous section. With the combination of GIS 
and optimization techniques, where the GIS is 
employed to provide necessary information for 
modeling VRPTW properly and implementing 
the solvers more efficiently, the problems were 
solved quite effectively in practice.

Our solution procedure can be viewed as a 
cluster-first, route-second approach with three 
major phases: (1) building an OD matrix, (2) as-
signing orders to routes, and (3) performing im-
provement steps. The solving techniques involved 
in these phases have been previously discussed in 
detail. Here we outline some special considerations 
related to the VRPTW found in SLS and SPS.

Building an Origin: 
Destination Matrix

An Origin-Destination (OD) matrix contains the 
travel times and distances between each pair of 
stops in the VRPTW, and is a basis to solve the 
problem. For providing more realistic solutions 
in a real application, we need to consider various 
geographic conditions or barriers while building 
an OD matrix, such as mountains, water bodies, 
coastal areas, areas with no road access. GIS is 
the most suitable system to extract this type of 
information to assist building an OD matrix. 
Hereby we employ ESRI ArcGIS to build the 
network data structure that supports OD matrix 
building. While the number of stops we deal with 
for SLS’s VRPTTW problem is relatively small 
(less than a thousand), we build an OD matrix 
with several thousands of stops for SPS’s problem, 
which may not be completed in a timely fashion. 
Although it is possible to find a shortest path be-
tween any pair of stops quickly, building an OD 
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matrix for thousands of stops, particularly when 
the underlying geographic area is large and/or the 
stops are spread out to several states, takes a long 
time (at times longer than 20 minutes). The main 
reason is the fact that the road network includes 
millions of features (arcs and nodes). One must 
find a better and faster way to construct an OD 
matrix. Based on the business characteristics of 
SPS, we incorporate the following factors into 
the OD matrix building procedure:

• Technician skills: this parameter forces 
stops to be included in the OD matrix for a 
technician to match the technician skill set.

• Maximum travel time/distance (between 
any pair of stops): also known as the cutoff 
distance, the OD matrix for a technician 
will not include any travel time/distance 
entries larger than this value.

• Minimum candidates: the OD matrix for 
a technician cannot contain fewer stops 
specified by this value whenever possible.

• Maximum candidates: the number of stops 
in the OD matrix for a technician cannot be 
larger than this value.

By incorporating these into the OD matrix 
building process, we are able to provide sufficient 
travel times/distances for assignment and route 
improvement procedures while avoiding some 
unnecessary OD calculations. If a stop does not 
have a travel time/distance included in the OD 
matrix for a route, then this stop will not be put 
on that route. This strategy adopted for OD ma-
trix creation proves to be very effective, which 
significantly cuts down the computational time 
needed to build an OD matrix.

Assigning Orders to Routes

This is the step to assign delivery or service orders 
to drivers or service technicians. In the previ-
ous section, we have described this assignment 
algorithm in detail. Here we illustrate how we 

apply the assignment algorithm to the problems 
encountered in SLS and SPS. Here we use the term 
stop to represent a customer location requesting 
delivery or service.

During the assignment procedure, some 
constraints such as technician skills, vehicle 
capacities (weights and/or volumes), and stop 
visiting precedence are treated as “hard” rules, 
i.e., they cannot be violated at any time. Other 
constraints such as time windows and overtime 
are treated as “soft” rules, and their violations are 
penalized. As discussed above, the assignment 
procedure attempts to minimize such violation 
penalties plus the operational costs (mainly the 
travel costs) when assigning stops to routes. Our 
objective function for the VRPTW is a weighted 
one containing several cost factors (operational 
and penalty costs). For a route r, we can compute 
the travel time (or distance) tr, the amount of time 
window violation vr, and waiting (or idle) time wr. 
The value of the weighted objective function for 
the entire problem is then calculated as:

α1Σ tr + α2Σ vr + α3Σ wr 

where α1, α2, and α3 are adjustable weights for travel 
time (or distance), total time-window violation 
and total waiting (or idle) time, respectively. After 
we build the initial routes, this function provides 
the basis for assigning all unassigned stops. We 
apply the stop assignment (insertion) procedure 
described above.

Clearly if a route does not have the specialty 
required by a stop, it will not be a candidate for 
insertion. A stop with the minimal objective func-
tion change is selected for assignment to the cor-
responding route and position, and the procedure 
is repeated until all stops are assigned or no route 
can accept any new stop.

Optionally, the inter-route improvement pro-
cedure can be executed to improve the solution 
after the stop insertion process is completed.

When unassigned stops are inserted into vari-
ous routes, further business logic specific to SPS 
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must be taken into account. A technician may have 
primary and secondary specialties. The insertion 
cost of an unassigned stop is therefore adjusted 
based on the technician’s primary or secondary 
specialty. The adjustment favors a technician in 
getting stops that require his/her primary specialty. 
Technicians may be also categorized as full-time, 
part-time, or flexible-time. The insertion step 
adjusts the insertion cost so that the routes cor-
responding to full-time technicians get as many 
stops as possible (considering the maximum dura-
tion of the route and the technician’s schedule).

Improvement

The improvement phase consists of intra-route 
and inter-route improvements embedded in the 
tabu search metaheuristic procedure. During the 
improvement process, the feasibility of performing 
an improvement step is validated. Except those 
considered in the oscillation strategy, no hard 
rules can be violated during improvement. These 
include specialty, stop visit precedence constraint, 
and pre-assignment of stops to routes.

Economic Benefits

The systems we built for SLS and SPS have been 
out in use for several years and have yielded im-

pressive economic outcomes. Table 3 summarizes 
the major achievements obtained for SLS and SPS:

Because of the reduction in travel mileage, 
SLS is able to deliver more stops per truck and 
hence increase the utilization of its resources. 
Both systems eliminate the need for dispatchers 
to have local knowledge since the underlying GIS 
provides all necessary geographic data, together 
with embedded optimization techniques for the 
VRPTW which helps dispatchers make good 
decisions in response to regular as well as emer-
gency orders. In the SPS case, the on-time per-
formance was increased from 84% to 95%, and 
the overtime was reduced by 15%. Due to the 
arrival time accuracy, customer service level and 
satisfaction are increased. The total savings 
achieved through the implementation is more than 
$15 million annually.

Case Study 2: On-Site Gas 
Maintenance Services by a Large 
Energy Distributor Company

Our second case study is from the energy sec-
tor where a leading energy services provider 
company in California, U.S.A. provides natural 
gas to millions of residential customers. Gas 
utility companies such as this one face an ev-
eryday challenge of bringing and maintaining 

Table 3. Economic benefits for SLS and SPS 

SLS SPS

Before After Before After

Geocoding accuracy 55% 95% 55% 95%

Arrival time window 4 Hour 2 Hour 2 Hour 2 Hour

On-time performance 78% 95% 84% 95%

Time spent routing 5 Hours 20 Minutes 8 Hours 1-2 Hours

Miles per stop 1.6 1.2

Stops per vehicle 16 20

Dispatch facilities 46 22 92 6

Completed calls N/A N/A --- +3%

Overtime -15%

Drive time -6%
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gas service to the residents of their service area. 
These services range from routine ones such as 
connecting or disconnecting gas service, install-
ing or maintaining gas appliances and collecting 
unpaid accounts, to emergency services such as 
responding to gas leaks. This company for which 
we have developed a GIS-based VRPTW solu-
tion implementation serves most of central and 
southern California, with a geographical cover-
age of over 23,000 square miles. The company 
is the largest natural gas distribution utility in the 
U.S., providing gas service to approximately 19 
million people through more than five million 
gas meters. Field technicians complete roughly 
four million service orders every year. The size 
and scope of this business clearly suggests that 
higher operational efficiency may be achieved 
by using optimization techniques in the context 
of the VRPTW.

The main problem faced by the company is 
how to deploy its fleet of hundreds of vehicles 
and service technicians most efficiently to serve 
approximately 10,000 daily calls received at its 
call center. The goal is to build routes on a daily 
basis to visit each and every one of the customers 
requesting service, while:

a.  minimizing total operational costs
b.  maximizing customer satisfaction by 

completing the service within the quoted 
time-window

c.  respecting all operational rules of the 
company

The business problem of interest in this study 
requires, based on pre-defined company rules, 
assignment of each service request to an eligible 
technician and scheduling an on-site visit for the 
actual work. Since requests arrive over time and 
they are collected in the company database for 
“next-day routing” purposes, a cut-off time is used 
to select the set of requests that will be subject to 
routing optimization. Emergency service requests, 
such as those due to gas leaks, are excluded from 

this implementation as they must be attended as 
soon as they are received and hence clearly cannot 
be made subject to next-day-routing. The company 
has a policy of offering a 4-hour time window to 
any customer for the on-site visit, in an attempt 
to provide flexibility and convenience as the cus-
tomers will be expected to stay at home before 
and during the service encounter. Furthermore, 
the following additional rules apply:

a.  each vehicle is operated by a single technician
b.  all technicians in a particular district start 

and end their day at their district office
c.  on-site service time depends on the type 

of service call but is fixed once the type of 
service is known

d.  each technician has a “specialty” meaning 
he/she has the capability of one or more 
pre-defined types of service operation

e.  a customer may request a specific techni-
cian to visit on-site (e.g. a Spanish speaking 
technician)

f.  it is extremely undesirable to not visit a 
customer on the promised day

g.  it is possible but undesirable to visit a cus-
tomer outside the quoted time window.

With these characteristics, the problem we deal 
with is a variant of the VRPTW. One complicating 
factor, though, is the size of the problem. Clearly, 
no VRP optimization algorithm (exact or heuristic) 
known to date can handle, in reasonable time, 
10,000 visit points with hundreds of (service) 
routes, so one must take actions to reduce the 
size of the problem instance. We have taken a 
divide-and-conquer approach, effectively using 
the district structure the company itself employs 
in organizing its operations. We describe this in 
more detail below along with other details on the 
solution methodology we have adopted. But first, 
let us describe the modifications that are needed 
on the basic VRPTW model.
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Modifications to the Basic Model

The first three business rules a), b) and c) listed 
above require no modification in our basic 
model. This is due to the fact that in our model, 
vehicles and technicians are used interchangeably 
and each route starts and ends its day at a single 
“depot” location (similar to the district office). 
Furthermore, our basic model assumes a constant 
service time p

i
 for each customer i.

Business rule d) requires that each technician/
vehicle is associated with zero, one or more spe-
cialty and each customer request requires zero or 
more specialty. We model this by introducing a 
binary decision variable y

ik
 that indicates the 

assignment of customer i to vehicle/technician k, 
and a binary compatibility index q

ik
 as follows:

y
ik

: 1, if customer i is assigned to vehicle k, 0 
otherwise

q
ik

: 1, if customer i can be assigned to vehicle k 
(i.e. the specialty requirements of customer 
i do match the capabilities of technician k), 
0 otherwise

Then we add the following constraints to our 
model to handle business rule d):
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Note that as a result of this business rule, there 
may not exist, generally speaking, a vehicle with 

the required specialty/capability to serve a cus-
tomer, so we must relax constraint (1) as follows:

k K j I

ijk
x

i I
∈ ∈
∑∑

+

≤

∀ ∈

1
 (1B)

which allows leaving some customers unassigned. 
This might be necessary to avoid an infeasible 
model.

To handle business rule e), it is sufficient to 
add a new constraint to the model:

y
i k* * = 1  (18)

for each customer i*  requiring a particular ve-
hicle k *

The two remaining business rules are slightly 
more complicated to model. Rule f) suggests that 
some customers may be left unassigned even 
though this is very undesirable. Although the 
original goal of the model is to assign all custom-
ers to a route, this may not be possible due to 
several reasons: a) total capacity of all vehicles 
may not be sufficient, b) total route time and 
overtime available may not be sufficient to serve 
all customers, and c) there may not be enough 
specialty/capability within the vehicle/technician 
set to serve all customers. Therefore, we introduce 
a penalty-based approach to handle the case of 
unassigned customers. Let

c
i
p : “priority” cost of customer i

meaning that for each different priority level 
p, there is a fixed cost of leaving customer i unas-
signed. Then the following cost term is added to 
the objective function for penalizing instances of 
unassigned customers.

i I
i
p

k K
ik

c y
∈ ∈
∑ ∑−( )1
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In our implementation, we have assumed a 
total of 10 priority levels, where p = 1 is the high-
est priority level that has the highest c

i
p  cost 

value, where p = 10 is the lowest.
Finally, rule g) suggests that the hard time 

windows imposed by the constraint (11) in our 
basic model must be relaxed and converted into 
soft time windows. But since this is undesirable 
from a customer satisfaction point of view, we 
introduce another set of penalty costs for violating 
the hard time window. The penalty costs we imple-
ment come in two flavors: one, a fixed cost c f  
for each violation of a hard time window; and 
second, a variable penalty cost cv  for each viola-
tion proportional to the total number of minutes 
violated. To accomplish these, we introduce the 
following three additional decision variables:

z
i
: 1, if customer i has its (single) time window 

violated, 0 otherwise
v
i
: total time window violation amount (in min-

utes) of customer i
u
i
: dummy variable for keeping track of time 

window violations

Then, we add the following cost term to the 
objective function to keep track of the total fixed 
and variable costs of time window violations:

i I

f
i

v
i

c z c v
∈
∑ +( )  

and the following, to replace constraint (11) in 
the basic model:

v a s

i I k K
i i ik
≥ −

∀ ∈ ∀ ∈,
 (19)

v s b

i I k K
i ik i
≥ −

∀ ∈ ∀ ∈,
 (20)

z Mu

i I
i i
≥ −

∀ ∈
1

 (21)

v M u

i I
i i
≤ −

∀ ∈
( )1

 (22)

z u

i I
i i
, { , }∈

∀ ∈
0 1

 (23)

v

i I
i
≥

∀ ∈
0

 (24)

The user can set the fixed or variable cost pa-
rameters (or both) to zero to adjust the behavior 
of time window violations as they appear in the 
optimal solution.

Although the above model can handle all the 
business rules of the company, the size of the 
problem still dictates us to solve it using a heuris-
tic solution approach, which we describe below:

Solution Approach

The company’s problem requires solving VRPTW 
instance(s) in a very large region with hundreds 
of vehicles. As mentioned above, we have cho-
sen to use the district structure of the company 
in reducing the one large VRPTW instance to a 
number of manageable instances. The company 
is organized into 32 geographical districts, which 
means on average there are about 312 service 
calls per district received daily. This approach 
works well for the company because it requires 
no additional restructuring or data manipulation, 
and more importantly reduces the problem size to 
within the limits of our implementation.

Since cost minimization is the main objective 
of our implementation, the heuristic algorithm we 
have implemented continuously seeks to minimize 
the sum of the following cost terms:
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a.  Travel cost (dollars per mile × total miles 
driven)

b.  Technician cost (dollars per hour × total 
route time)

c.  Cost of customers left unassigned (dollars 
per customer as a function of service prior-
ity), if any

d.  Time window violation penalties, if any

The solution methodology we have imple-
mented to solve the extended VRPTW problem 
detailed above is along the same lines with the 
heuristic approach we have discussed previously. 
The heuristic algorithm consists of two main 
phases: Assignment and Improvement. In the 
Assignment phase, the algorithm strives to as-
sign each customer to an eligible technician in a 
sequential manner, while satisfying the business 
rules of specialties, capacities, route time and 
overtime limits, and specific technician requests of 
customers. In each iteration, all possible customer-
vehicle assignments are evaluated for the resulting 
increase in the objective function and the one with 
the minimum cost increase is selected. The itera-
tions continue as long as there is room in any one 
of the routes to assign a new customer. This ap-
proach treats the time windows as soft constraints 
(meaning time windows can be violated) with the 
proper inclusion of time window violation penalty 
terms in the incremental cost of each assignment. 
The assignment algorithm, hence, starts out as a 
constructive heuristic and ends when it creates a 
partial initial solution, where some customers may 
be left unassigned. Because of the order priority 
mentioned above, the assignment algorithm will 
attempt to service those “VIP” service orders first 
whenever it is possible.

The Improvement phase takes the initial solu-
tion created in the previous phase and executes 
steps to reduce the total cost of the incumbent solu-
tion. These steps are the same as those described 
in our Algorithm section, namely the intra-route 
and inter-route improvement moves. Tabu Search 
memory structures are again employed to avoid 

local optima. The result of the Improvement 
phase is one route per technician with a full visit 
schedule for each.

One of the important features of the GIS 
implementation we developed for the company 
was to provide a visit schedule to the end-user 
and allow him/her to make the following type of 
edits on the visit schedule:

a.  move customers between routes
b.  delete customers who had a last-minute 

cancellation
c.  distribute the entire work of a technician to 

fellow technician(s) if the technician calls 
in sick

In such cases, the end-user typically requests 
a re-calculation of the visit sequence of one (or 
few) technicians. When such a computation is 
requested, the system independently calls the 
Improvement module as a standalone execution 
for each technician and improves, if possible, 
the visit sequence of customers assigned to that 
technician.

Implementation and Benefits

The system we have built for the company can 
be characterized as a GIS-based decision support 
system that has tightly integrated vehicle routing 
and scheduling optimization routines. This is es-
sentially a 3-tier system with a client-server type 
architecture: end-users employ the client mapping 
application and its graphical interface in the top tier 
to view routing results and send route optimiza-
tion requests over the intranet to the main server 
(middle tier) where routing optimization solver 
resides. The bottom tier is the corporate database 
level where all data required for optimization as 
well as map-making are stored and maintained. 
The requests are sent either in batch optimiza-
tion mode for routing all districts sequentially 
at a designated time of the day before the actual 
customer visits, or in manual optimization mode, 
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where individual routes are re-optimized for better 
visit sequence.

The graphical user interface (GUI) for the 
system not only shows the basemap, district hi-
erarchy and customers with daily visit requests 
(see Figure 2), but also presents the user with a 
series of screens to set up the parameters of routing 
optimization (Figure 3). Once the user completes 
the input settings for optimization, the informa-
tion is stored in a configuration file accessed by 
a Scheduler service.

The Scheduler essentially runs as a continuous 
process or service at the Operating System level 
and it constantly monitors input changes and 

launches different modules of the optimization 
engine as necessary at designated times in a 
daily routine. For instance, at noon, the Sched-
uler downloads all service request and fleet avail-
ability data and starts building an OD matrix. 
Next, it runs the Assignment followed by the 
Improvement module to assign all requests re-
ceived up to that point in time to a technician 
route. Later during the day, the same modules are 
launched again to insert any additional requests 
that may have been received in the meantime. 
Later in the evening, the routes are reviewed and 
manually revised (if necessary, using the interface 
shown in Figure 2) by a route planning personnel 

Figure 2. GIS implementation interface for gas maintenance technician routing optimization
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and the final routes are downloaded to field tech-
nicians’ handheld devices. This routine is re-
peated every day of the year and customer service 
requests are efficiently routed.

Using this system on a daily basis, the company 
has realized the following savings:

• Route planning time: before the system 
was put into place, the company had used 
a semi-manual system for building routes. 
A route planning personnel would manu-
ally assign service requests for a specific 
district to different technician routes as he 
or she finds suitable. A sequence optimiza-
tion module (written by one of the authors) 
would then be executed to find a near-op-
timal point visit sequence for each route. 
After the DSS implementation, all route-
building became automatic, with manual 
intervention only required to handle excep-
tions (e.g. last minute changes in the ser-
vice request or technician data). This has 
significantly reduced the amount of time of 
the personnel needed to complete the rout-
ing task. Furthermore, the user-friendly in-
terface has also made it much easier for the 
users to effectively complete the task.

• Route planning personnel: before the sys-
tem was put into the place, a route planning 
personnel would typically be dedicated to 
3 or 4 districts, meaning a total of approxi-

mately15-16 personnel responsible for the 
entire operation. After the implementation, 
3 personnel were sufficient to handle any 
last minute manual changes on the routes 
that may be necessary before the routes are 
sent to the field.

• Mileage reduction: One of the main advan-
tages of routing optimization is to pool all 
available resources and service requests, 
and visit customer locations using routes 
that are shorter, more compact and better 
allocated (in terms of total cost) to service 
technicians. It is estimated that the compa-
ny saves about 2 million dollars annually 
that results from this increased efficiency. 
Considering the investment put into imple-
menting such a large real system, one can 
safely say that the payback period is less 
than one year.

It is also possible, of course, to restructure the 
district hierarchy and the service technician fleets 
to perhaps reduce the fleet sizes instead of or in 
addition to mileage. At the time of implementation, 
the company chose to leave its district structure 
unchanged due to organizational reasons. The 
top management thought it would be too much 
and beyond the scope of the project to change the 
districts as well, since they already expected some 
amount of resistance from the route planners as 
well as field technicians. This is clearly an im-

Figure 3. Routing parameter configuration screens
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portant issue in any optimization-based solution 
implementation, since optimization may drasti-
cally change the normal way of performing tasks 
for most people in an organization (especially the 
service technicians in the field who execute the 
routes). Therefore it is of utmost importance to 
set the expectations early and get all stakeholders 
of the project outputs involved to eliminate such 
resistance and have full cooperation of the entire 
organization.

Case Study 3: Packaged Bread 
Distribution in Turkey

Our third case study is on distributing packaged 
bread in Turkey, a country that spans a large 
geographical region in part of Europe and Asia, 
with approximately 780,000 sq. kilometers of 
area, 1600 kilometers from east to west and 700 
kilometers from north to south. The company 
that produces and distributes packaged bread, 
which we have worked with, was established in 
the early1990s in Istanbul. Within a decade, it 
became the biggest packaged bread producer and 
distributor company and achieved an approximate 
70% market share in Turkey with $100 million of 
sales turnover. During this period, the company 
has moved its production plant three times from 
the European side of Istanbul to the Asian side 
for growth purposes. During this expansion, the 
organization also started to get more complex. 
At the very beginning, there were only sales and 
production departments which were managed by 
the shareholders. After several years, the Com-
pany’s sales boomed due to a shift in consumer 
behavior towards industrial bread. This situation 
forced the top management to change the layers 
and create a modern organization for a controlled 
process management.

The first improvement was made in production 
planning. A separate department was established. 
The main purpose of this was to have the sales 
force take next day orders in a systematic way 
and pass them to the production department. The 

second improvement was made in the accounting 
department. The department was divided into two 
as sales accounting and accounting. The daily 
transaction paperwork of the sales force started 
to be recorded in sales accounting along with the 
responsibility to create new customer accounts.

Within ten years, the visited points of sales of 
the company have increased from 1,000 per day to 
4,000 per day. The new millennium brought pros-
perity to Turkey’s population and the consump-
tion of packaged bread increased exponentially. 
This situation forced the company to increase its 
distribution fleet size to execute more efficient 
delivery to the increased number of sales points. 
In the beginning of year 2003, the company had 
only 109 trucks. This number tripled only in six 
years and reached 306 by the end of year 2009 
(Figure 4), with a total of 14,000 sales points on 
average visited daily by 300+ truck drivers. The 
increased capacity of the distribution system 
demanded new abilities from the sales force. 
Handheld terminals entered the sales systems with 
the ERP modules in accounting departments. At 
that time, such technology was only capable of 
invoicing and recording the sales details such as 
time, sales point address and the sales amount in 
terms of units and currency.

In its first years of operation, the company 
sales were mostly to the national key accounts 
who were the country’s biggest retailers such as 
Migros, Carrefour, Gima (merged with Carrefour 
in 2005) and Tansaş (acquired by Migros in 2005). 
On the other hand, the company was also selling 
to the local markets and the groceries. In 2009, 
the distribution of sales according to the channels 
consisted of 48% to the national key accounts, 
8% to the groceries, 20% to the local markets and 
24% as B2B.

Operational Rules

Industrial bread production needs great efforts 
for several reasons. First of all, the average shelf 
life of the product is approximately 5 days. This 



72

Routing Solutions for the Service Industry

means that there is no possibility to work with 
stocks especially since the company is working 
with more than 100 SKUs. The production plan-
ning department has to be very systematic to make 
the correct calculations for the next day’s market 
demand. For this reason, the company sales force 
collects every day each sales point’s next day order 
with the help of handheld terminals. The system 
then delivers this information in the afternoon to 
the production planning department to organize 
the next day’s production.

The complexity of the system results from the 
number of combinations between the warehouses 
and the order amounts of more than 100 SKUs. 
The company has five warehouses, in addition 
to Istanbul, in five different territories: Ankara, 
Bursa, Izmir, Antalya, Bodrum. Every warehouse 
has to inform the order collection department in 
the headquarters before 5pm. After receiving the 
orders, the orders collection department forwards 
this information to the production planning de-
partment.

The logistics department has to organize the 
produced SKUs according to the customer order 
lists and loads the trucks with the current day’s 
distribution. To organize this complex workflow, 
the company has created a vertical hierarchy within 
its sales force organization. A sales director, who 
controls the nationwide actions, gives instructions 

to his three sales channel managers who control 
the local markets, groceries and the key accounts, 
respectively. Assistant managers and the supervi-
sors are all organized to control the truck drivers 
under their channel managers.

The distribution system is built on the perfor-
mance of the truck drivers and their supervisors. 
Every driver has a route plan which is programmed 
by the managers and their assistants. The supervi-
sors who are managed by the channel managers 
inform the truck drivers about the daily plans. 
Every driver has to load his truck approximately 
at 5am and visit an average of 40 sales points per 
day. The driver has to carry the bread cases, keep 
the truck clean and visit every point on the route 
plan. Besides these obligations, the driver has to 
make invoicing during the route and collect the 
receivables if any. At the end of the day he has 
to come to the warehouse and give a daily report 
to the sales accounting department.

Constraints of the 
Distribution System

The company’s complex distribution system 
started to face problems with the increasing 
number of sales points during the twelve month 
period spanning second half of 2008 and first half 
of 2009. The differences of the product acceptance 

Figure 4. The increase in distribution fleet size of the company
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time between the sales points forced the company 
to divide the organization according to the sales 
channels. This way the trucks could be organized 
according to the sales points’ product acceptance 
time intervals, but it also resulted in less efficient 
and optimal distribution plans.

Besides the market rules, managing 300+ driv-
ers was not an easy task for management. To meet 
the legal working hours for drivers and trying to 
keep the cost of gasoline consumed by trucks as 
low as possible were some other challenges for 
the company. The driver behavior in the market 
was getting more important than ever with the 
increased sales of the company.

The focus of the Finance department was 
on the increased cost of the distribution system. 
Top management meeting agendas were always 
prioritized by the actions needed to decrease the 
distribution costs and keeping the sales turnover 
stable.

The Need for Optimization

In March 2009, the authors and their project 
team met with the Company officials to solve 
its distribution problems via optimization of the 
route plans of truck drivers. The top manage-
ment believed that if the sales managers could 
provide the drivers with route plans containing 
the best way to visit delivery points, the cost of 
the logistics system would be in a better shape. 
During the meetings, we have realized that the 
management would not be satisfied only with the 
optimization of route planning. In fact, this was the 
very first step of a long journey for the company; 
to optimize every single route with the help of 
a software program which has the capability of 
modeling the constraints of the delivery system, 
such as meeting the legal working hours, sales 
points product acceptance time, driving distance, 
the cost of the gasoline consumption etc. which 
were all calculated manually beforehand.

After the initial considerations, the company 
decided to give it a try with the ArcLogisticsTM 

routing optimization software. This software, the 
development of which two authors of this chapter 
have contributed, is a commercial off-the-shelf 
product offered by a leading GIS software com-
pany based in the U.S.A. The two authors’ main 
contribution was to help this GIS company’s 
software development team incorporate the 
VRPTW algorithm discussed in this chapter into 
the product. With such kind of a software system, 
the aim of the company was not only to figure out 
the best options for route plans of the company, 
but also to manage the drivers’ daily schedule 
online through a web application. Mapping and 
optimizing the routes, and monitoring them online 
were quite new concepts for the company.

ArcLogistics Implementation 
and Expected Benefits

The company decided to implement the ArcLogis-
tics routing optimization solution in a three-step 
approach. At the very beginning, top management 
requested to see real numbers to test the capabili-
ties of the optimization system. As a result, we 
have worked with the company officials on two 
actual routes. These routes were chosen from the 
Anatolian side of the local market channels. This 
selection was based on the number of visited points 
and the cost structure of the channel. Compared 
to the national key accounts channel, the local 
markets channel was more costly in terms of the 
distribution sales amount and the times spent for 
sales activity in the route.

To create an optimized version of these two 
routes, first we have gathered the detailed address 
of each sales point from the sales manager. Af-
terwards, we have geocoded the addresses by the 
help of handheld terminals the drivers use on their 
routes. This was made possible by the coordination 
of three departments. IT management, risk man-
agement and the sales management teams worked 
together to supply the necessary data to upload to 
ArcLogistics, whose core solvers are similar to 
the one described in the algorithm section of this 
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chapter. The content of the data that were loaded 
in ArcLogistics included the addresses of the 
visiting points, the constraints of the sales points 
such as the delivery time to the points, minimum 
sales amounts related to the customer, drivers’ 
legal driving time (i.e. limits on route time), and 
the gasoline consumption amount per truck. With 
these settings, the problem we were faced with 
was clearly another instance of the VRPTW.

After we have worked on the delivery points 
and a number of optimization scenarios, we have 
presented the results to top management. The 
overall savings of 32% on total route time and 24% 
on total route length was found quite impressive 
by the management, considering the potential 
savings on gasoline costs that can be achieved by 
the company through the use of a route optimiza-
tion system. But this was only the first phase of 
our study. The management team, especially the 
risk department, was impressed with the results 
and wanted to have a better understanding of the 
capabilities of the system. A second benchmark 
study was carried out for an additional set of 15 
routes, this time on a different part of the city of 
Istanbul. Six of these routes were selected from the 
national key accounts channel, another six routes 
were selected from the local markets channel 
and the last three were chosen from the grocery 
channel. The same process was applied to these 
fifteen routes and the results were presented to 
top management. Table 4 shows the savings that 
were projected at various levels of optimization.

This table shows the potential savings of route 
optimization according to three performance 
measures: total distance traveled by 15 routes, 

total duration and total cost, including fixed and 
variable costs of the vehicles as well as the labor 
costs of drivers. The scenarios listed above indi-
cate the increasing level of optimization going 
from no optimization at all (i.e. current routes) 
with Scenario 1 to global optimization (all visit 
points for all channels shuffled) with Scenario 4. 
The intermediate scenarios correspond to the case 
where only route visit sequences are optimized 
within each existing route (Scenario 2) and visit 
points are optimized within each channel (Sce-
nario 3). These performance measures and sce-
narios were formed in advance by the risk man-
agement department at the company. The outputs 
of the analysis display that the total saving in the 
route management was closed to 40% in terms of 
hard currency (with mileage costs). After these 
results, top management decided to buy the soft-
ware and implement the system.

The kick-off meeting for the implementation of 
the route optimization system was conveyed as a 
strong message to the sales force of the company. 
The field people were informed that this program 
was not only capable of optimizing the routes but 
was also able to track online the real movements 
of the truck drivers on the road. Teams from both 
sides were formed and the responsibilities were 
distributed among the team members so that 
the system is well-perceived at all levels of the 
organization.

Going Online with ArcLogistics

When the company decided to lunch the entire 
system, the main concern was to make it widely 

Table 4. Benchmark results with 15 routes at different levels of optimization 

Scenario Distance (km) % Savings Duration (hr.) % Savings Cost ($) % Savings

1 11077 923 15527

2 8364 24.5% 849 8.0% 14098 9.2%

3 7798 29.6% 837 9.4% 13825 11.0%

4 7103 35.9% 815 11.7% 13437 13.5%
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acceptable across the organization. Top manage-
ment thought this could be achieved by first 
implementing it in a region where employees 
and field people were more open to such changes 
and also the reasonable size of the region allows 
tractability. Therefore the management team has 
chosen Antalya region warehouse for the pilot 
implementation. Another reason for choosing 
Antalya was because it was a small enough op-
eration (only 5 routes) so that the company can 
understand and solve potential problems during the 
live implementation. To organize the whole team 
for data collection in Antalya routes was much 
easier than applying the same process in Istanbul.

When the pilot implementation started, the 
addresses of the sales points were requested 
from local sales management. After the data 
were gathered, the IT department completed the 
geocoding and transferred all the information 
directly to the ArcLogistics team and the system 
itself. After testing various different optimization 
scenarios and configuration parameters, the man-
agement determined the best routing solution for 
the Antalya region. The results revealed that the 
operation was possible with one route less which 
meant an improvement of approximately 20% in 
the cost structure.

To summarize, cost-effective distribution sys-
tems constitute the main competitive advantage for 
the contemporary companies who are acting both 
in the B2C and B2B markets, as demonstrated in 
this route optimization project. Without efficient 
executions in the processes, the differentiation 
strategies do not always bring the expected returns 
to a company.

In today’s complex market competition, 
companies make higher profits not only by sell-
ing more but also by efficient and cost effective 
operations. As it can be observed from this case, 
the company achieved more than 20% cost reduc-
tion in its distribution operations by optimizing 
its route plans. In order to achieve such a success, 
the management of the company clearly has to be 
aware of the improvement areas, and moreover has 

to have qualifications and knowledge on how the 
problems can be solved. Without an open-minded 
approach to similar operational problems and the 
contributions of a highly-motivated project team, 
achieving significant improvements is almost 
impossible, even if there is a good sponsor to 
back up the project.

Each of the three case studies described in 
detail in this section provides a significant prac-
tical perspective on the vehicle routing problem 
with time windows. They not only show that 
these types of routing problems are diversely 
encountered in the service industry, but also 
show that they are indeed solvable using certain 
optimization techniques from the literature. In 
each case, we as the authors of this chapter were 
together or individually involved, and acted as 
system analysts, architects, algorithm designers 
and developers. We take pride in the fact that 
these successful implementations of GIS-based 
optimization systems have provided their respec-
tive companies significant cost and time savings, 
and transformed them in many different ways. We 
believe these solution techniques and approaches 
can be applied in yet a larger number of contexts 
in the service industry.

CONCLUSION

Many logistics problems found in the service 
industry can be modeled as VRPTW instances, 
a type of vehicle routing problem which have 
been studied widely in the operations research 
literature. To solve real instances of VRPTW, 
however, poses a significant challenge for both 
researchers and practitioners. A real VRPTW 
includes many business rules and logic that are 
beyond those addressed in mathematical models 
in the literature, and some business logic cannot 
even be modeled mathematically. Because of the 
characteristics of a VRPTW, it is also challeng-
ing to solve it within a reasonable computational 
time or even real-time based various business 
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requirements. Furthermore, the field people who 
are going to deploy a VRPTW solution in the 
service industry may have to pay more attention 
to the feasibility of the solution in practice than 
the pure mathematical “mileage savings”. Without 
a significant support from the user who is going 
to deploy the solution of a VRPTW, a project that 
attempts to apply VRPTW solutions to increase 
operational efficiency and customer satisfaction 
usually fails.

In this chapter, with real applications from the 
service industry, we present the basic VRPTW 
model and its extensions to some of the problems 
encountered in the industry. The algorithms that 
combine GIS and optimization techniques (heu-
ristics and metaheuristics) to solve these real 
problems more effectively are discussed in detail.

Three case studies are presented based on 
real applications from the service industry. The 
VRPTW problems in these studies possess certain 
special needs and challenges. We discussed in 
detail how to adapt the basic VRPTW model to 
these problems and revise the algorithms to ac-
commodate the particular business requirements. 
The outcomes demonstrate the effectiveness and 
economic benefits of the proposed enhanced mod-
els and algorithms. These algorithms are capable 
of solving large-scale VRPTW instances from 
the real world, and the results are closer to real 
practice and accepted by the user or field people. 
The proposed algorithms not only address the 
difficulties embedded in these VRPTW instances 
but also the concerns of those users about the 
feasibility of the solutions produced.
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KEY TERMS AND DEFINITIONS

Geographic Information System: Computer-
based system for collecting, storing, editing, map-
ping and visualizing, and analyzing spatial data.

Local Search: A heuristic search technique 
where the algorithm attempt to improve an in-
cumbent solution by searching the neighborhood

Metaheuristics: Advanced heuristic optimiza-
tion techniques that serve as guidelines for various 
search procedures and attempt to perform a more 
effective search over the solution space of the 
problem of interest.

Vehicle Routing Problem: A generic math-
ematical problem that seeks the most cost-effective 
routing of a fleet of vehicles, under various settings 
such as single vs. multiple depot, capacitated vs. 
uncapacitated, single delivery vs. split delivery, 
to serve a number of customer pickup or delivery 
locations within allowable time limits.

Vehicle Routing Problem with Time Win-
dows: The version of the problem where customers 
can accept a delivery or pickup visit only within 
certain time limits due to operational reasons.
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ABSTRACT

In this study, the vehicle routing problem with time windows (VRPTW) is investigated and formulated 
as a multi-objective model. As a solution approach, a hybrid meta-heuristic algorithm is proposed. 
Proposed algorithm consists of two meta-heuristics: Genetic Algorithm (GA) and Simulated Annealing 
(SA). In this algorithm, SA is used as an improvement operator in GA. Besides, a hypothetical applica-
tion is presented to foster the better understanding of the proposed model and algorithm. The validity 
of the algorithm is tested via some well-known benchmark problems from the literature.
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INTRODUCTION

Vehicle routing problems (VRP) are concerned 
with the delivery of some commodities from one 
or more depots to a number of customer locations 
with known demand. Such problems arise in many 
physical systems dealing with distribution, for 
example, delivery of commodities such as mail, 
food, newspapers, etc. The specific problem which 
arises is dependent upon the type of constraints 
and management objectives. The constraints of the 
problem may arise from particular factors such 
as the vehicle capacity, distance/time restriction, 
number of customers to be serviced by a vehicle, 
and other practical requirements. The management 
objectives usually relate to the minimization of 
cost/distance or fleet size (Achuthan et al., 1997). 
Among variants of VRP, the VRP with capacity 
and time window constraints is called vehicle 
routing problem with time windows (VRPTW) 
(Hashimoto et al., 2006). VRPTW is a non 
polynomial-hard (NP-hard) problem, which is 
encountered very frequently in making decisions 
about the distribution of goods and services. The 
problem involves a fleet of vehicles set off from a 
depot to serve a number of customers, at different 
geographic locations, with various demands and 
within specific time windows before returning to 
the depot. The objective of the problem is to find 
routes for the vehicles to serve all the customers 
at a minimal cost (in terms of travel, distance, 
etc.) without violating the capacity and travel time 
constraints of the vehicles and the time window 
constraints set by the customers (Tan et al., 2001). 
Although cost minimization function is the mostly 
used function in the VRPTW literature, there may 
be a need to consider more than one objective in 
some cases. When the related literature is investi-
gated, Garcia-Najera and Bullinaria (2009), Tang 
et al. (2009), Müller (2010), Jeon et al. (2007) are 
some of the papers in which multiple objectives 
are considered for VRPTW. For a comprehensive 
literature review for multi-objective VRPTW 
concept, Jozefowiez et al. (2008) can be reviewed.

The methodologies for solving VRPTW can 
be classified as given below. This classification 
is referenced from Badeu et al. (1997) and the 
literature review is updated:

• Exact algorithms (Az, et al., 2007; 
Kallehauge, 2008; Desrochers et al., 1992),

• Route construction heuristics (Thangiah 
et al., 1996; Potvin and Robillard, 1995; 
Russell, 1995; Potvin and Rousseau, 1995; 
Solomon, 1987),

• Route improvement heuristics (Dror and 
Levy, 1986; Solomon et al., 1998),

• Composite heuristics that include both 
route construction and route improvement 
procedures (Chen et al., 2006; Du et al., 
2005; Du et al., 2007; Kontroravdis and 
Bard, 1995),

• Metaheuristics (Scatter Search (Russell 
and Chiang, 2006); Tabu Search (Ho and 
Haugland 2004; Rochat and Taillard, 1995; 
Taillard et al., 1995; Potvin and Rousseau, 
1995); Simulated Annealing (Tavakkoli 
et al., 2006; Breedam, 1995); Ant Colony 
(Cheng and Mao, 2007; Mazzeo and 
Loiseau, 2004; Bell and McMullen, 2004); 
Genetic Algorithms (Osman et al., 2005; 
Prins, 2004; Baker and Ayechew, 2003; 
Hwang, 2002)).

Since the VRPTW belongs to NP-hard com-
binatorial optimization problems, some heuristic 
procedures are suggested for the VRPTW as can 
be seen from literature survey above. Also, quite 
good results have been achieved for the VRPTW 
with meta-heuristics (Homberger and Gehring, 
2005). Additionally, hybridization of certain 
meta-heuristics with the other meta-heuristics can 
be considered for more effective algorithms. For 
example, as one of the evolutionary algorithms, 
genetic algorithms (GA) can be combined with a 
local search technique, for example, with simu-
lated annealing (SA). GA and SA are both popular 
techniques for combinatorial optimization prob-
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lems, however, they have some weaknesses and 
strengths independently. GA can find the region 
of the optimal values quickly, but, the probability 
of accurate search in this region is not satisfactory 
for complex systems. On the other hand, SA can 
search accurately in certain region, but, it is dif-
ficult to explore the whole solution space (Yao et 
al., 2003). In the literature, there is a large body 
of study that combines GA and SA to increase 
their pure performances. One of these studies was 
prepared by Jwo et al (1999). In this study, the 
authors proposed a hybrid GA/SA algorithm for 
optimal planning of large-scale reactive power 
sources. They used SA to create a quasi-population 
to a randomly generated population, and the quasi 
population is genetically evolved to the population 
of next generation by the genetic operators. This 
methodology decreases the solution time compar-
ing to the pure SA methodology. Another study 
is prepared by Yao et al. (2003) in the chemical 
research area. In this study, the normal GA was 
modified with adaptive multi-annealing crossover 
and mutation strategies instead of simple strate-
gies. In the scheduling literature, Yoo and Gen 
(2007) tried to improve the convergence of GA by 
introducing the probability of SA as a criterion for 
acceptance of new trial solutions. He and Hwang 
(2006) presented a hybrid GA/SA methodology to 
detect damage occurrence in beam-type structures. 
In that study, they used SA after GA’s mutation 
phase. M’Hallah (2007) proposed a hybrid GA/
SA methodology to minimize total earliness and 
tardiness on a single machine. Yu et al. (2000) 
utilized a hybrid GA/SA algorithm for large scale 
system energy integration to avoid the common 
defect of early convergence.

As previously mentioned, GA and SA were 
combined in different ways for various problems. 
However, considering the hybrid GA/SA literature, 
there is no evidence of existence of a hybrid GA/SA 
algorithm for VRPTW. In this study, we proposed 
a hybrid GA and SA (HGASA) methodology for 
multi-objective vehicle routing problem with time 
windows. Also, the proposed methodology is com-

pared with the pure SA and pure GA algorithms. 
Additionally, proposed HGASA methodology is 
tested by means of some well known benchmark 
problems from the literature. Remaining part of 
the paper is organized as follows. In the second 
section, problem formulation for multi-objective 
VRPTW is given. In the third section, a brief 
overview of GA and SA is presented. In the fourth 
section, solution approach is presented. The fifth 
section is the computational analyses section and 
the final section is the conclusions section.

THE MULTI-OBJECTIVE VEHICLE 
ROUTING PROBLEM WITH 
TIME WINDOWS (VRPTW): 
PROBLEM FORMULATION

In this study, a modified version of Tan et al.’s 
VRPTW model is used (Tan et al., 2001). In Tan 
et al.’s model, only one objective was considered, 
in this study, additional three objectives, which are 
explained below, are considered. The components 
of VRPTW model are a number of vehicles, a 
central depot, a number of customer nodes and 
a network that connects the customers and the 
depot. There exist N+1 nodes and K vehicles. 
The depot node is defined as the 0. node. Each 
travel inside the network represents the junction 
of two nodes and the travel directions. Each route 
starts from the depot and visits the customer nodes 
and returns the depot. The number of the routes 
is equal to the number of vehicles utilized. Each 
vehicle is allocated only one route. Each travel 
in the network generates a cost, cij, and a travel-
ing time, tij. The distances between customers 
are calculated as Euclidean distances; and the 
distance and the cost generated from the travel 
from ith node to jth node is equal to the distance 
and cost generated from the travel from jth node 
to ith node (Tan et al., 2001).

Each customer is served by only one vehicle, 
each vehicle has equal capacity and the customers 
have various demand levels. The total amount of 
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the demands of the customers on the one route 
cannot exceed the vehicle capacity that is assigned 
to this route. The time constraint is defined as a 
time window. According to this time window, if 
a vehicle arrives to the customer before the cus-
tomer’s early time, this situation contributes to a 
waiting time. Besides, the vehicle cannot go to 
the customer after the customer’s late time. Also, 
there exist a service time for each customer’s load/
unload activities. Depending on above mentioned 
conditions, using Tan et al. (2001)’s model, the 
problem can be formulated as follows.

The Notation

The Decision Variables

ti arrival time to ith node
wi waiting time on the ith node
x
ijk
∈ { , }0 1 if there exist a travel from ith node to 
j t h  n o d e ,  1 ,  o t h e r w i s e ,  0 . 
i j i j N≠ ∈; , { , , , ..., }.0 1 2

Parameters

K  total number of vehicles
N  total number of customers
dij  the Euclidean distance between ith node to 

jth node
cij  the cost generated from the travel between 

ith node to jth node
tij  the traveling time between ith node to jth node
mi  the demand of ith node
qk  the capacity of kth vehicle
ei  the early arrival time of the ith node
li  the late arrival time of the ith node
fi  the service time of the ith node
rk  the maximum route time allowable for kth 

route

The Model

The Objective Functions

First objective function (OF1- Total cost minimi-
zation incurred on arc from node i to j):

min
,

c x
ij ijk

k

K

j j i

N

i

N

== ≠=
∑∑∑

100

 (1)

Second objective function (OF2- Minimization 
of number of routes):

min x i
ijk

j

N

k

K

==
∑∑ =

11

0  (2)

Fourth objective function (OF4- Minimization 
of empty capacities):

min ( ) { ,..., }
,

q m x k K
k i ijk

j j i

N

i

N

− ∈
= ≠=
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01

1  

(3)

Fifth objective function (OF5- Minimization 
of waiting times):

min w
i

i

N

=
∑

0

 (4)

The Constraints

The first constraint tries to ensure that the vehicles 
in the depot that can serve to the customers not to 
exceed the maximum number available.

x K i
ijk

j

N

k

K

≤ =
==
∑∑

11

0  (5)

The second constraint tries to ensure that 
each vehicle’s starting node and returning node 
be the depot.
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x x i ve k K
ijk jik

j

N

j

N

= ≤ = ∈
==
∑∑ 1 0 1

11

{ ,..., }  

(6)

The third and the fourth constraints try to ensure 
that each customer is served by only one vehicle.

x i N
ijk

j j i

N

k

K

= ∈
= ≠=
∑∑ 1 1
01 ,

{ ,..., }  (7)

x j N
ijk

i i j

N

k

K

= ∈
= ≠=
∑∑ 1 1
01 ,

{ ,..., }  (8)

The fifth constraint tries to ensure that the 
capacity constraint of the vehicles is not exceeded.

m x q k K
i ijk k
j j i

N

i

N

≤ ∈
= ≠=
∑∑
01

1
,

{ ,..., }  

(9)

The sixth constraint tries to ensure that the 
maximum traveling time available is not exceeded.

x t f w r k K
ijk ij i i k

j j i

N

i

N

( ) { ,..., }
,

+ + ≤ ∈
= ≠=
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00

1  

(10)

The ninth, tenth, eleventh constraints define 
the time windows.

t w f
0 0 0

0= = =  (11)

x t t f w t j N
ijk i ij i i j

i i j

N

k

K

( ) { ,..., }
,

+ + + ≤ ∈
= ≠=
∑∑
01

1  

(12)

e t w l i N
i i i i
≤ + ≤ ∈( ) { ,..., }1  (13)

Since, VRPTW is a non polynomial-hard (NP-
hard) problem, the usage of classical optimization 
algorithms is not convenient as a solution tool. 

So, meta-heuristics are preferred as solution 
approaches and the model is solved through a 
HGASA methodology.

GENETIC ALGORTIHMS (GA) 
AND SIMULATED ANNEALING 
(SA): AN OVERVIEW

GAs are stochastic search techniques based on 
the mechanism of natural selection and natural 
genetics. GAs, differing from conventional search 
techniques, start with an initial set of random so-
lutions called population. Each individual in the 
population is called a chromosome, representing a 
solution to the problem at hand. A chromosome is a 
string of symbols; it is usually, but not necessarily, a 
binary bit string. The chromosome evolves through 
successive iterations, called generations. During 
each generation, the chromosomes are evaluated, 
using some measures of fitness. To create the next 
generation, new chromosomes, called offspring, 
are formed by either, (a) merging two chromo-
somes from current generation using a crossover 
operator or (b) modifying a chromosome using 
a mutation operator. A new generation is formed 
by (a) selecting, according to fitness values, some 
of parents and offspring and (b) rejecting others 
so as to keep the population size constant. Fitter 
chromosomes have higher probabilities of being 
selected. After several generations, the algorithms 
converge to the best chromosome, which hopefully 
represents the optimum or sub optimal solution 
to the problem (Gen and Cheng, 1997; Tuzkaya 
et al., 2011; Tuzkaya et al., in press). As a type 
of evolutionary algorithms, GAs’ general scheme 
in pseudo code can be given as in Table 1 (Eiben 
and Smith, 2003).

SA was firstly proposed by Kirkpatrick et al. 
(1983) to solve combinatorial problems in early 
1980s. It has the capability of jumping out of the 
local optima for global optimization. The capabil-
ity is achieved by accepting with probability 
neighboring solutions worse than the current 
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solution. The acceptance probability is determined 
by a control parameter (temperature) which de-
creases during the SA procedure (Seckiner and 
Kurt, 2007; Tuzkaya et al., 2011; Tuzkaya et al., 
in press). SA’s general scheme in pseudo code 
can be given as in Table 2 (Dowsland, 1993).

HYBRID GENETIC ALGORITHM-
SIMULATED ANNEALING 
APPROACH (HGASA) FOR THE 
MULTI-OBJECTIVE VEHICLE 
ROUTING PROBLEM WITH TIME 
WINDOWS (VRPTW)

The proposed approach, HGASA, is basically 
represented in Figure 1. In this approach, SA is 

Table 1. General scheme of GAs in pseudo code (Eiben and Smith, 2003)

Start 

Initialize population with random candidate solutions 

Evaluate each candidate 

Repeat until (Termination conditions is satisfied) 

     Select parents 

     Recombine pair of parents 

     Mutate the resulting offspring 

     Evaluate new candidates 

     Select individuals for the next generations 

Stop

Table 2. General scheme of SA in pseudo code (Dowsland, 1993)

SA for a minimization problem with solution space S, objective function f and 
neighbourhood structure N 
Select an initial solution s0

;

Select an intial temperature t0
 > 0;

Select a temperature reduction function f(t); 

Repeat

   Repeat

      Randomly select s ∈ N(s
0
);

      ? = f(s)-f(s
0
);

      If ? < 0

      then s
0
 = s

      else

      generate random x uniformly in the range (0,1);

         If x < e
k
T

−
∆

         then s
0
 = s;

   Until iteration_count = n
rep

   t = f(t);

Until stopping condition = true 

s0
 is the approximation to the optimal solution



85

A Hybrid Genetic Algorithm-Simulated Annealing Approach

used as an operator of the GA. Firstly, a population 
is searched by GA and then the best individual of 
this process is improved by SA.

Details of the HGASA methodology can be 
given as follows:

Step 1- Initialization: First of all, chromosome 
representation of the solution is determined. A 
chromosome consists of a number of genes repre-
senting the customers. The customer numbers are 
assigned to the genes randomly. Here, permutation 
decoding is used.

Each chromosome has some embedded infor-
mation which is related with the fitness values of 
alternative solutions (chromosomes): customers 
of each route, waiting times of vehicles, transpor-
tation times of each route and remaining vehicle 
capacity at the end of each route. Also considering 
the time and capacity constraints, each chromo-
some is divided into parts which represent the 
routes (or the vehicles). Route determination 
phase can be explained as in Figure 2.

Fitness value of a chromosome is the weight-
ed sum of the objective values for this solution 
alternative. As mentioned in the model develop-
ment section, objective functions are the minimi-
zation of the cost (OF1), number of routes (OF2), 
empty capacities of the vehicles (OF3) and wait-
ing times of the vehicles (OF4). To obtain the best 
values of the objective functions, the model solved 

via HGASA for each objective function sepa-
rately, for example, for the first time, the model 
is solved for OF1 and the best value of OF1 (BOF1) 
is obtained. Same procedure is applied for the 
other objective functions and the best values of 
them are obtained (BOF2, BOF3, and BOF4). 
Here, it should be noted that, meta-heuristics don’t 
guarantee obtaining the global optimal solutions 
and best values are the best found values after the 
implementation of HGASA. After determination 
of best values, expert opinions are used to find 
the objective function weights: WOF1 (weight of 
OF1), WOF2 (weight of OF2), WOF3 (weight of 
OF3), and WOF4 (weight of OF4). Then an inte-
grated objective function (IOF) is obtained as in 
Eq. (14). Here all the objective functions are the 
minimization functions.

IOF = WOF1*OF1/BOF1+WOF2*OF2/BOF2+ 
WOF3*OF3/BOF3+WOF4*OF4/BOF4  (14)

Step 2- Population generation: Generation 
of a population is replication of the new member 
generation procedure which is explained in the 
first step until the determined population size is 
reached.

Step 3- Parent selection: For the parent selec-
tion, tournament parent selection methodology is 
used. In tournament selection, first of all, a num-
ber of members are selected from the population 
randomly. Then, the best one is selected among 
these members. The procedure is repeated until 
the needed number of parents reached. Details of 
tournament selection can be found in Eiben and 
Smith (2003).

Step 4- Crossover: In the crossover process, 
since permutation decoding was used, order cross-
over operator is selected as a convenient crossover 
methodology. Details of the order crossover op-
erator can be found in Eiben and Smith (2003).

Step 5- Mutation: For the effectiveness of the 
proposed methodology, a novel mutation opera-
tor which is proposed for this study is used. This 

Figure 1. The general structure of HGASA ap-
proach
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Figure 2. The general structure of the routes constructing process
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study specific operator can be summarized as in 
the Table 3.

Step 6- Elitism: A certain part of the current 
generation is transferred to the next generation. 
Elitism does not provide a variation to the next 
generation, but it prevents deceiving the better 
fitness valued members (Tuzkaya et al., in press).

Step 7- Solution improvement via SA: For a 
certain number of iterations, GA is applied to the 
initial population. After obtaining a potential solu-
tion via GA, this solution is tried to be improved 
via the SA algorithm as given in Table 2. In SA, 
for the neighborhood generation procedure, same 
steps, which are given in Table 3, of the GA’s 
mutation operator is used.

Step 8- End.

COMPUTATIONAL STUDY

An Illustrative Example

To foster the better understanding of the problem, 
the HGASA approach is solved for a hypothetical 
example. In this example, the problem is solved 
for 50 customers. The coordinates of the cus-
tomers and depot are presented in the Figure 3. 
The vehicle speed is 50 km/hour and the vehicle 
capacity is 100 units.

A part of the coordinates of the customers and 
the depot, demands, early time, service time and 
late time data can be seen from the Table 4.

The parameter values of the HGASA approach 
are presented in the Table 5. These parameter 
values are obtained via a number of experiments.

Using the obtained data to integrate the objec-
tive functions, the model is solved by considering 
only one objective function for each run as ex-
plained in the previous section to find the best 
possible value for each objective. According to 
the results, minimum number of routes, minimum 
distance, minimum waiting time, minimum total 
empty vehicle capacity are obtained as 14; 1812; 
411; and 505 units respectively. These values are 
used for the normalization and integration of the 

Table 3. Mutation operator of GA and neighborhood searching mechanism of SA

Start 

Select a route from the solution (chromosome) 

For all customers of the route 

     Try to change the customer location in the chromosome starting from 

the beginning node to the end (With the consideration of time and capacity 

constraints) 

     If a change can be possible in a route, stop trying and add this cus-

tomer to this route. 

Stop

Figure 3. Coordinates of the customers and the 
depot
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objective functions (Equation 14). Also objective 
function weights are determined by the experts 
as being equal, i.e. 0.25 each.

Following the objective functions integration 
phase, the problem is solved via HGASA ap-
proach. The graphical representation of the solu-
tion process of HGASA approach is represented 
in the Figure 4. In this solution, the chromosome 
representation is found as (30, 35, 49, 43, 42, 12, 
36, 34, 6, 2, 9, 18, 20, 32, 3, 13, 40, 0, 48, 23, 22, 
8, 4, 28, 25, 37, 21, 29, 15, 7, 26, 1, 47, 19, 10, 
27, 24, 14, 46, 33, 17, 41, 5, 38, 31, 16, 11, 45, 
39, 44). For this chromosome, the fitness value is 
calculated as 1564.72 units. Total route distance 

is calculated as 2129.49 units and the number of 
routes is obtained as 14 vehicles.

The routes, the customers of the routes, the 
total vehicle freight of the routes and the total 
time consumed in each route is presented in Table 
6 and the routes are graphically represented in 
Figure 4.

In this study, multiple objectives which con-
flicts with each others are considered. As a result, 
different solutions are found, like as a solution 
with less route numbers and more waiting times 
which cannot be acceptable with our weight 
combination. However, it can be changed with 
weight changes of the criteria of the fitness value. 
In this case study, the weights of the criteria – the 
route numbers, traveling distances, empty ca-
pacities and waiting time’s minimization- are 
assumed to be equal.

Analyzing the Results

For comparison purposes, the model is solved via 
pure SA and pure GA methodologies. The opera-
tors and the related values of these methodologies 
are presented in the Table 7.

The three algorithms are run for a hundred 
times each. The solutions obtained with GA, SA, 
HGASA are compared via paired t-tests. Accord-

Table 4. Input data for the hypothetical VRPTW 

Location X(km) Y(km) Demand Early Time Service Time Late Time

Depot 50 50 - - - -

Customer 0 17,9 66,27 14 136 12,6 175

Customer 1 30,35 85,93 46 55 41,4 79

Customer 2 76,94 45,64 11 108 9,9 132

Customer 3 42,29 21,53 17 150 15,3 186

... ... ... ... ... ... ...

Customer 45 41,4 60,5 26 32 23,4 63

Customer 46 77,7 34 28 153 25,2 199

Customer 47 25,4 93,5 47 134 42,3 153

Customer 48 5,94 83,7 39 147 35,1 196

Customer 49 85,7 82,4 23 116 20,7 157

Table 5. The operators of the HGASA approach 

Value of the parameter

Population size 200/1

Elitism percentage %5

Crossover probability 0.2

Mutation probability 0.08

Process length 100 generations + 50 iterations

İnitial temperature 2000 °C

Cooling factor 0.95

K Adjustment Coefficient 1
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ingly, the null hypothesis, “the mean difference 
between GAs’ solution population’s fitness values 
and SA’s solution population’s fitness values is 
not zero” and “the mean difference between GAs’ 
solution population’s fitness values and HGASA’s 
solution population’s fitness values is not zero” 
can be rejected with a probability less than one 
in a ten hundred. However, the null hypothesis 

about “the mean difference between HGASA’s 
solution population’s fitness values and SA’s 
population’s fitness values is not zero” can be 
rejected according to the tests. Also, standard 
deviations, mean values and confidence intervals 
are calculated (Table 8). These results support the 
superiority of HGASA in terms of time require-
ments and fitness values.

Figure 4. Routes and the customers allocated to the routes
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Table 6. The solution of the hypothetical VRPTW 

Routes Customers Total waiting time Total route time Total route 
distance

Empty vehicle 
capacity

0 30,35,49 0,0,8,0 192.86 119.16 49

1 43,42,12 0,0,0 226.47 153.57 49

2 36,34,6,2,9 0,1,54,0,0,0 201.29 116.95 38

3 18,20,32,3,13 0,8,05,0,0,0 266.08 177.93 41

4 40,0,48 0,3,69,0 270.91 178.12 31

5 23,22,8 0,2,63,0 237.95 160.62 47

6 4,28,25,37 0,0,0,0 255.79 146.89 9

7 21,29,15,7 0,0,0,0 295.35 214.35 40

8 26,1,47,19 0,0,4,43,0 238.69 125.36 9

9 10,27,24,14,46 0,0,11,72,0,0 252.96 135.94 13

10 33,17 0,0 214.95 144.75 52

11 41,5,38 0,0,0 284.73 196.53 32

12 31,16,11 0,0,0 211.19 133.79 44

13 45,39,44 0,0,0 196.63 125.53 51

Table 7. The operators of the GA and SA approaches 

Genetic Algorithms Simulated Annealing

Population size 200 -

Elitism percentage %5 -

Crossover probability 0.2 -

Mutation probability 0.8 -

Process length 200 generations 100 iterations

İnitial temperature - 2000 °C

Cooling factor - 0.95

K Adjustment Coefficient - 1

Table 8. GA, SA and HGASA results’ mean values, standard deviation and confidence interval values in 
terms of time requirements and fitness values 

Time requirements Fitness values

GA SA HGASA GA SA HGASA

Mean value 14.3234 16.4505 12.5374 0.8752 0.8202 0.8181

Standard devia-
tion

2.2032 0.2745 0.2716 0.054 0.026 0.0247

Confidence inter-
val (α=0.5)

14.1748-14.4720 16.4320-16.4690 12.5190-12.5557 0.8715-0.8788 0.8184-0.8219 0.8165-0.8198
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Analyzing the Validation of the 
Proposed Methodology

The proposed HGASA methodology is adapted 
to solve the well-known benchmark problems 
of Solomon (http://w.cba.neu.edu/~msolomon/
problems.htm). For these test problems, two 
objectives are considered: minimization of num-
ber of vehicles (routes) and minimization of the 
distances. Solomon proposed six groups of test 
problems (R1, R2, C1, C2, RC1, and RC2) with 
different features. The customers of the classes 
R1 and R2 are uniformly distributed, whereas the 
customers of classes C1 and C2 are arranged in 
clusters. The problem sets RC1 and RC2 consti-
tute a mixture of the classes R and C. The classes 
contain 8–12 different problem instances. The 
instances within each problem class differ only 
with respect to the customers’ time windows. 
The customers’ coordinates within one class are 
the same. R1, C1 and RC1 problems have short 
scheduling horizons and the vehicles have only 
small capacities. Therefore, each vehicle serves 
only a few customers. In contrast, R2, C2 and 
RC2 instances have longer scheduling horizons 
and the vehicles have higher capacities. Each 
vehicle supplies more customers and therefore, 
compared to the type 1 problems, fewer vehicles 
are needed (Muller, 2010).

For the validation of the proposed HGASA 
algorithm, Solomon’s 56 benchmark problems 
are solved via the model’s adapted version. For 
the adaptation, the number of objective functions 
is decreased as it contains only the number of 
routes and the total route distances minimization 
objective. General features of the algorithm re-
main same, i.e. the operators and parameter values 
are valid for the test process. Number of routes 
minimization objective is the primary goal of the 
model and weighted more than the total distance 
minimization objective. When the tests are real-
ized, for the 26 of the problems, best value for the 
number of routes can be obtained. For the 6 of the 
problems, deviations less than 10% are obtained. 
For the remaining problems there are deviations 
from the best values between 10%-50% (Figure 5).

As can be expected, for the less weighted 
objective, total route distance minimization objec-
tive, the observed deviations are more than the 
first objective’s deviations from the best known 
values. As can be seen from Figure 6, deviations 
from the best known values are observed between 
0% and 242.36%.

In general, it can be concluded that proposed 
HGASA algorithm is more successful for the R1, 
C1 and RC1 problem classes from the point of 
route numbers and R1, RC1 problem classes from 
the point of route distances. In conclusion, it can 
be said that, proposed algorithm is more success-

Figure 5. % Deviations from the best known route (vehicle) numbers for the Solomon’s benchmark problems
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ful for the problems which have short scheduling 
horizons and the vehicles with relatively small 
capacities.

FUTURE RESEARCH DIRECTIONS

As a future research direction, utilized techniques 
can be compared with the other meta-heuristics, 
such as Tabu Search, Scatter Search, Lagrangean 
Heuristics etc. Also, more effective hybrid ap-
proaches can be investigated. The hybridization 
of GA with other meta-heuristics, especially 
with the memory based techniques -Tabu Search, 
Scatter Search, etc. - may be considered. These 
techniques’ memory advantages may increase the 
achievement level to get better solutions.

CONCLUSION

In this paper, a HGASA approach for the VRPTW 
is presented in order to decrease the level of pos-
sible weaknesses of the pure GA and pure SA 
strategies. Some small improvements may be 
overlooked with GA approach. On the other hand, 
SA’s solution is highly dependent on the initial 
solution and if the initial solution is not good 

enough, the convergence to the optimum solution 
may be a time consuming process. For this reason, 
in this study, the HGASA approach is proposed 
and firstly, an initial solution for SA is found via 
GA with the random searches in the solution space, 
then, this initial solution is improved via SA with 
little but effective improvements. According to the 
statistical analysis, the HGASA approach proves 
its effectiveness in terms of time consumption 
and fitness values. Also proposed methodology is 
tested with Solomon’s benchmark problems and 
proves its effectiveness for the problems which 
have short scheduling horizons and the vehicles 
with small capacities.
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KEY TERMS AND DEFINITIONS

Genetic Algorithms: GA is an evolutionary 
algorithm technique which uses a number of 
technique specific operators such as mutation, 
crossover, elitism, etc. (Tuzkaya et al., 2011).

Hybrid Meta-Heuristics: Hybrid meta-
heuristics are the integration of two or more meta-
heuristics for the utilization from their advantages 
which are coming from different features of each 
(Tuzkaya et al., 2011).

Meta-Heuristics: Meta-heuristics are solution 
methods that orchestrate an interaction between 
local improvement procedures and higher level 
strategies to create a process capable of escaping 
from local optima and performing a robust search 
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of a solution space (Glover and Kochenberger, 
2003).

Simulated Annealing: SA is a search tech-
nique for the combinatorial optimization problems 
with the capability of jumping out of the local 
optima (Tuzkaya et al., 2011).

Vehicle Routing Problem (VRP): VRPs are 
concerned with the delivery of some commodities 

from one or more depots to a number of customer 
locations with known demand (Achuthan et al., 
1997).

Vehicle Routing Problem with Time Win-
dows (VRPTW): VRPTW is a kind of VRP in 
which the customers must be served within time 
windows considering the capacity constraints of 
the vehicles.
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ABSTRACT

Problems arising in the logistics of commercial distribution are complex and involve several players and 
decision levels. One of the most important decisions is the design of the routes to distribute the products 
in an efficient and inexpensive way but also satisfying marketing objectives such as customer loyalty. 
This chapter explores three different distribution routing strategies. The first strategy corresponds to 
the classical vehicle routing problem where total distance or cost is minimized. This one is usually an 
objective of the Logistics department. The second strategy is a master route strategy with daily adapta-
tions where customer loyalty is maximized, which is one of the objectives of the Marketing department. 
The authors propose a third strategy which takes into account the cross-functional planning between 
the Logistics and the Marketing department through a multi-objective model. All strategies are analyzed 
in a multi-period scenario. A metaheuristic algorithm based on the Iterated Local Search is proposed 
and applied to optimize each strategy. An analysis and comparison of the three strategies is presented 
through a computational experiment. The cross-functional planning strategy leads to solutions that put 
in practice the coordination between the two functional areas of Marketing and Logistics and better 
meet business objectives in general.
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INTRODUCTION

The growing number of problems that firms are 
facing nowadays in relation to the distribution 
of their products and services has lead Logistics 
and Marketing to be of primary concern to many 
industries. An important aspect of the logistics 
management task is to coordinate the activities 
of the traditional distribution functions together 
with purchasing, materials planning, manufactur-
ing, marketing and often R&D. One important 
aspect of the integration process is cross-functional 
planning, which consists of coordinating different 
areas inside the firm, allowing for cost reductions 
and service improvement (Christopher, 1998).

The motivation of our work arises in the context 
of integration of logistics functions with other 
functions of the firm. In our case, we will focus our 
study on two key areas: Distribution and Logistics 
management and Marketing management. One 
source of competitive advantage for many firms 
is the development of an integrated relationship 
between the firm’s marketing and logistics func-
tions, as this integration has the ability to further 
enhance the firm’s customer focus. This integra-
tion can be obtained by doing an integrated and 
coordinated planning of the logistics operations. 
In our case we focus on the distribution strategies. 
On one hand, the importance of good distribution 
strategies in today’s competitive markets cannot 
be overstressed. In many industries, an important 
component of distribution systems is the design 
of the routes of vehicles to serve their customers’ 
demand. On the other hand, as pointed out by 
some industry leaders, new trends in supply-chain 
management include, “…better customer service...
greater customer sophistication” (Partyka & Hall, 
2000). Customer service is becoming more im-
portant. Customers demand more than a product. 
They demand a product arriving on time via an 
easy ordering system or just-in-time distribution.

In this work, we will study integrated distribu-
tion management from a strategic point of view. 
The logistics distribution problem consists of 

deciding how to assign customers to vehicles and 
how to design the routes made by each vehicle 
minimizing a transportation cost function. This is 
the well-known Vehicle Routing Problem (VRP) 
(Toth & Vigo, 2002b). The transportation cost 
represents a large percentage of the total logistics 
costs, so it makes sense to try to reduce this cost. 
Having the products arrive on time is also an 
important objective of the logistics department 
when planning distribution.

However, after interviews with several retail-
ing companies, we realized that many of them 
do not consider minimizing transportation cost 
as the prime objective, but rather place greater 
importance on the customer relationship and 
customer service in the designing of distribution 
routes (Ribeiro, 2004). Marketing and Sales de-
partments argue that drivers also perform sales 
activities and have responsibilities for promotion 
and the introduction of new products. So, if a 
driver is assigned always to the same customers 
this creates a good relationship and it leads to a 
sales increase.

We thus identified the two different primary 
strategies in the design of distribution routes: the 
Logistics department wants to minimize transpor-
tation costs and the Marketing and Sales depart-
ment wants to maximize customer relationships, 
i.e. assign the same driver to each customer every 
day or most days.

This led us to the following question: What is 
the best strategy for an efficient distribution? On 
the one hand we have the classical VRP minimizing 
a transportation cost function. On the other hand, 
we have the strategy to always assign the same 
driver to the same customer to maximize customer 
loyalty. Beyond evaluating these two strategies, 
we propose a third one based on a bi-objective ap-
proach that tries to balance the two previous ones. 
This last strategy involves the implementation of 
integrated distribution processes.

The motivation for the present work arose 
from distribution problems faced by the food and 
beverage industry. In these industries, the tendency 
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is to have lower inventories and higher delivery 
frequencies. Please note that the objective of this 
work is not to provide a system to optimize a 
particular distribution problem, but to study and 
analyze what is the best planning strategy for the 
distribution of a product among a set of customers.

In the next section, we present in detail the 
different distribution strategies proposed:

1.  the classical VRP strategy, where the objec-
tive is to minimize the transportation costs;

2.  the master routes strategy, where the main 
objective is maximizing the number of cus-
tomers assigned to the same driver for a set 
period of time;

3.  the new bi-objective strategy we propose 
that considers the integration between the 
marketing and logistics departments.

In third section, we present a brief literature 
review, followed by a section where we present 
the mathematical models for the three strategies 
proposed. Next section presents the tool designed 
to optimize the routes. This tool is based on Iter-
ated Local Search Heuristics, and we use the same 
tool to optimize the routes in order to be able to 
make a fair comparison. In the results section, we 
analyze the results and, in particular, the impact on 
integrated decision-making between the logistics 
and marketing departments. Finally, in the last 
section, we present the conclusions of the work.

THE DISTRIBUTION STRATEGIES

Distribution strategy has a great impact on the 
firm’s performance, in particular in the retailing 
area. Frequently, this strategy is defined by the 
Logistics department, but sometimes the deci-
sion is made by the Marketing department. The 
objectives when defining this distribution strategy 
can be very different depending on the depart-
ment involved. In this work, we will define and 
analyze three different distribution strategies that 

reflect different potential distribution policies in 
an organization.

The first strategy (Strategy 1) has a distribu-
tion policy that minimizes distance or transport 
costs. The objective consists in minimizing total 
routing cost, measured in distance units as in the 
classical VRP. This is a well-known problem and 
there exist a very large number of articles published 
on this subject. However, the objective function 
of this problem is often an object of criticism by 
users and planners, since it does not take into 
consideration other concerns of the company, 
for example, customer service and customer 
loyalty. The second strategy (Strategy 2) tries to 
implement a marketing policy based on customer 
service and loyalty. In an increasingly competi-
tive environment, many firms adopt strategies 
of tight relationships with their customers where 
loyalty and friendship play a key role, through 
the delivering agents (Baker, Cronin, & Hopkins, 
2009). By this strategy, routes are predefined so 
that each delivering agent or driver is associated 
with a specific set of customers. The third strategy 
(Strategy 3) is the one that considers marketing 
and distribution objectives at the same time, in 
an integrated manner.

The distribution strategies correspond to dif-
ferent situations and concerns inside the firm. By 
comparing them, we can analyze the effect that 
integrating two areas can have on the distribution 
policies. The objective of this analysis is to pro-
vide a set of possible alternative solutions to the 
decision maker, who, with the use of additional 
information on each particular distribution prob-
lem, can then make a good choice.

The strategies are evaluated for a planning 
horizon of a week, five working days. The choice 
of this period is based on the need for a strategic 
perspective; we want to study the impact of a 
sequence of decisions on different objectives. 
As a consequence, we need several periods to 
analyze the marketing effect and a week seems to 
be a reasonable choice since in many industries, 
the behavior of the orders for a customer follows 
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a weekly pattern (examples are the Beverage & 
Food industry). In any case, this assumption could 
be relaxed and the problem could be extended to 
a larger number of periods.

Strategy 1: Distance Minimization

In this strategy, the distribution policy is con-
structed based on routing cost or distance. Cost 
reduction is one of the biggest concerns in trans-
portation and distribution management, but not 
the only one as we will see later. We want to find 
the route for each of the vehicles that will pass 
through the demand points in such a way as to 
satisfy all the demand with the smallest transport 
cost or distance. The classical VRP considers 
only one period at a time and chooses the optimal 
routes for that period. Strategy 1 corresponds to 
the classical Vehicle Routing Problem (VRP) 
repeated for each day of the planning horizon.

Strategy 2: Master Routes

The second strategy is based on marketing prin-
ciples, and the distribution strategy is based on 
service measures. An important source of value to 
the firm can be obtained from a close relationship 
between the firm and its customers. Drivers see 
customers regularly, and perform sales activities 
and have responsibilities for promotions and 
the introduction of new products. Therefore, it 
is believed by the Marketing department that if 
the same driver is assigned always to the same 
customer this can create a good relationship and 
leads to increased sales.

This marketing policy is giving emphasis to 
the personal relationship between drivers and 
customers as a way to improve customer service. 
One of the identified advantages of this customer 
relationship management policy is that it makes it 
more difficult for a customer to switch to another 
provider. It is known that relationships require a 
time investment from both the customer and the 
provider (Simchi-Levi, Kaminsky, & Simchi-

Levi, 2003). These marketing strategies allow 
the firm to obtain more information on customer 
needs. And, at the same time, it becomes easier 
to introduce new products, define promotions 
and even speeds up the delivery process due to 
experience effects on both sides. In the marketing 
literature, we can find several studies of relation-
ships between firm employees and customers that 
lead to an improvement in customer satisfaction 
and loyalty, see for example (Baker et al., 2009), 
(Guenzi & Pelloni, 2004), (Chao, Fu, & Lu, 2007) 
and (Barroso-Castro, Armario, & Marin-Ruiz, 
2004). These authors mention that maintaining 
a long term relationship between employees (in 
our case drivers) and customers may improve 
customer perceptions of the quality of services 
received, and consequent company performance.

In this strategy, each driver will serve always 
the same customers. So, master routes are designed 
considering all customers and an average daily 
demand, and then these routes are adapted daily 
so the driver always visits the same customers 
and he or she only visits customers with demand. 
Capacity constraints are also taken into account.

Strategy 3: Multi-Objective

The third strategy is the integrated distribution 
management model, which consists of taking into 
account in the decision process the concerns of the 
Logistics department and Marketing department 
i.e. the reduction of transportation costs and the 
emphasis on the personal relationship between 
driver and customer. We propose a multi-objective 
model with two objectives, each objective cor-
responds to a different function. The first is the 
transportation cost and the second a marketing 
function. This strategy tries to include in the 
same model the objectives of the two previous 
strategies. The best solution for the transportation 
problem might not always be the best solution 
for the marketing objective. In some cases, these 
two objectives may conflict and that is the main 
justification for a trade-off analysis between these 
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two objectives. We need to find a solution (or 
several solutions) that integrate marketing and 
logistics objectives.

In the next section, we will present a brief 
literature review. In following section, we will 
present the well-known mathematical model for 
the VRP that serves as the basis for the models 
of the different strategies, and also present the 
mathematical model for each strategy.

LITERATURE REVIEW ON VRP

The classical VRP model is behind the models for 
the three distribution strategies. This problem is an 
NP-hard problem, which implies a non-polynomial 
increase in the size of the solutions space when the 
number of nodes is increased. A significant amount 
of research effort has been dedicated to VRP. See 
the survey articles on VRP by (Laporte & Osman, 
1995), (Laporte, 1992), (Bodin, Golden, Assad, 
& Ball, 1983), (Christofides, Mingozzi, & Toth, 
1981), (Fisher, 1995), (Crainic & Laporte, 1998), 
(Cordeau, Gendreau, Laporte, Potvin, & Semet, 
2002), (Laporte, 2007), (Golden, Raghavan, & 
Wasil, 2008) and (Juan, Faulin, Ruiz, Barrios, & 
Caballé, 2010). An extensive list of VRP research 
papers can be found on http://www.imm.dtu.
dk/~orgroup/VRP_ref/. Although this problem 
has been studied for decades, (Laporte, 2009), it 
still gets the attention of many researchers.

Although the VRP is an important problem, 
the main contribution of this chapter is not re-
garding the VRP but rather Strategic Distribution 
Decisions. After several interviews with different 
Food & Beverages Companies we realized that in 
decision making about distribution routes, it was 
not only cost that was important, but also customer 
service and customer loyalty. We found that the 
Operations Research literature focuses mainly 
on minimizing transportation cost or distance, 
whereas Marketing literature has continuously 
emphasized the importance of human interactions 
and relationships in the process of delivery goods.

Several studies indicate that good relationships 
between firm employees and customers lead to 
greater customer satisfaction and loyalty. Baker, 
Cronin & Hopkins (2009) conclude that higher 
levels of involvement lead to greater levels of con-
sumer loyalty. Guenzi & Pelloni (2004) mention 
that building customer loyalty is increasingly a 
major goal for a large number of companies and, 
also that a strong relationship between front-line 
employees and customers positively affects cus-
tomer satisfaction and loyalty to the company. 
Chao, Fu & Lu (2007) say that customer orientation 
and interpersonal relationships may reinforce the 
quality-loyalty linkage. Barroso-Castro, Armario 
& Marin-Ruiz (2004) analyzes the effect that ser-
vice company employee behavior has on customer 
perceptions of the quality of service received, and 
consequent company performance.

Therefore the proposed distribution strategies 
are based not only on the classical VRP, but also on 
a multi-period and multi-objective vehicle-routing 
problem. As far as we know there are no studies 
on routing problems with multiple periods and 
this type of marketing oriented objective function. 
There are some multi-objective VRP that consider 
other types of objectives. Hong & Park (1999) 
consider the minimization of customer waiting 
time as the second objective function, in a VRP 
with time windows constraints. Lee & Ueng (1999) 
developed an integer linear model that searches 
for the shortest travel path and balances driver’s 
load simultaneously. The objectives are related 
to travel and loading time. Pasia, Doerner, Hartl, 
& Reimann (2007) present a population-based 
local search for solving a bi-objective vehicle 
routing problem. The objectives of the problem 
are minimization of the tour length and balancing 
the routes. Muller (2010) presents an approximate 
method to the bi-criterion Vehicle Routing Prob-
lem with soft time-windows. Jozefowiez, Semet, 
& Talbi (2008) surveys the existing research 
related to multi-objective optimization in routing 
problems. It examines routing problems in terms 
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of their definitions, their objectives, and the multi-
objective algorithms proposed for solving them.

Also, some work on periodic VRP has been 
done. Baptista, Oliveira, & Zúquete (2002) pres-
ent a period vehicle routing problem based on the 
assignment problem and the vehicle routing prob-
lem. Collection days have to be assigned to each 
customer and vehicle routes have to be designed 
for each day of the period (time horizon) so that 
the total distribution cost is minimized. Francis, 
Smilowitz, & Tzur (2006) present a variation of 
the periodic VRP in which service frequency is a 
decision of the model. Mourgaya & Vanderbeck 
(2007) propose a column generation-based heuris-
tic for the periodic VRP. Hemmelmayr, Doerner, 
& Hartl (2009) propose a new heuristic for the 
Periodic Vehicle Routing Problem (PVRP) based 
on variable neighborhood search.

The main contribution of this work is to 
present a new model and new method to solve a 
multi-period and multi-objective vehicle-routing 
problem, but the most important contribution is 
to analyze three different alternative distribution 
strategies that can be adopted in a firm when plan-
ning their routing and evaluate the consequences 
of adopting each one of them.

THE MODELS FOR THE 
DISTRIBUTION STRATEGIES

The most well known model for routing is a 
basic VRP. This model considers a set of nodes, 
representing retailers or customers, at a known 
location, that must be served by one depot. Each 
node has a known demand. A set of vehicles, with 
equal capacity is available to serve the customers. 
The routes must start and finish at the depot. The 
objective is to define the set of routes to serve all 
customers with minimal cost.

For each pair of nodes, a fixed known cost is 
associated. We assume this cost matrix is sym-
metric and can represent a real cost, distance or 
time. The main constraints of the problem are that 

all the demand must be satisfied and the vehicles’ 
capacity cannot be exceeded.

The basic VRP is a generalization of the 
Traveling Salesman Problem, where more than 
one vehicle is available, for TSP references see 
for example (Lawler, Lenstra, Rinnooy Kan, & 
Shmoys, 1985). There are several formulations 
of the classical VRP in the literature, for some of 
these formulations see (Fisher & Jaikumar, 1978), 
(Fisher & Jaikumar, 1981), (Kulkarni & Bhave, 
1985), (Gouveia, 1995)and (Toth & Vigo, 2002a).

The classical model of the VRP can be for-
mulated as an integer linear programming and 
this is the formulation we will use throughout 
later chapters.

Consider the following data:

I = 1,…, n, set of nodes, that correspond to the 
different locations of the customers, node 1 
corresponds to the depot.

K = 1,..., m, set of vehicles;
Q, capacity of each vehicle;
qi, demand of customer i, i =1,...,n;
cij cost of going from i to j, i =1,...,n ; j = 1,...,n.

This formulation considers two types of 
variables:
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Constraint (2) ensures that each customer is 
visited by one vehicle only. Constraint (3) guar-
antees that all vehicles visit the depot. Constraint 
(4) represents the vehicle capacity constraint. For 
each vehicle k, we guarantee that the sum of the 
demand of the nodes that the vehicle covers is 
less than or equal to its maximum capacity. Here 
we assume that none of the customers has a daily 
demand that exceeds Q. The constraint (5) ensures 
that if a vehicle visits a customer it also has to 
leave that customer. Constraint (6) is the sub-tour 
elimination constraint. This constraint implies that 
the arcs selected contain no sub-cycles. It states 
that for every vehicle, the following holds: for 
every non-empty subset S of {2,..,n}, the number 
of arcs that are in the route of this vehicle, with 
both nodes belonging to S, has to be less than or 
equal to the number of elements of S minus 1. The 
last constraint (7) defines the variables x and y as 
binary. The objective function is minimizing the 
total cost of the routes.

The TSP is a sub-problem of the VRP, the TSP 
belongs to the class of NP-hard (non-deterministic 
polynomial time) problems, and so do the basic 
VRP and extensions. This means that the compu-

tational complexity of the problem grows expo-
nentially with its size, i.e., it grows exponentially 
with the number of customers.

In this section we will present the mathematical 
models associated with the three strategies. First 
of all, we describe the assumptions of the model.

We assume that the firm is responsible for the 
distribution of its own products. Therefore, there 
are no questions of outsourcing to be handled. 
These firms face the pressures of a competitive 
market making them concerned about both con-
sumer satisfaction and internal efficiency.

The classical VRP considers only one period 
and chooses the optimal routes for that period. 
Here we will introduce more periods by consid-
ering a week-long analysis. Each day we have a 
different set of customers to serve and different 
corresponding quantities to deliver. Reduction 
of inventory levels and increasing frequency of 
orders are tendencies in many businesses to lower 
stock handling costs.

Other assumptions of the model are:

• All the demand is satisfied on the same day 
that it is required and not on any other day 
of the week.

• Only unloading is done at each customer.
• The number of vehicles is fixed and there 

are no fixed costs associated with the use 
of the vehicles. They all have the same 
capacity. Moreover, the number of vehi-
cles available is enough to satisfy all the 
demand.

• Each vehicle is assigned to a driver. We 
consider that each driver works every day 
of the period in question.

• One vehicle can only be used once a day 
and the time it takes to deliver the full ca-
pacity is less than a working day.

Next, we will present the model in detail. The 
following data is considered in the mathematical 
formulation:
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i, I,  index and set of nodes, I=1,...,n where 1 is 
the depot and 2 to n are the customers loca-
tions;

k, K,  index and set of vehicles, K=1,...,m;
t, T,  index and set of days which represent the 

period, T=1,...,p;
Ti,  set of days where customer i has a demand 

that is greater than zero, i = 2,...,n;
qi

t,  demand of customer i on day t, i = 1,...,n 
and t = 1,...,p;

cij,  the cost of going from i to j, this is a fixed 
matrix , i=1,...,n and j=1,...,n;

Q,  capacity of a vehicle.

The variables of the model are:
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Strategy 1: Distance Minimization

The objective function minimizes routing costs, 
for all customers during the week period. This 
strategy corresponds to repeating a classical VRP 
for each day of the week.

The formulation of this objective will be the 
same as the one used for the classical model but 
with a new parameter, t, representing the day of 
the week.

Objective function:

Min c x
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Strategy 2: Master Routes

This strategy and the associated model are very 
close to common practice in many companies. 
It consists of: first defining “master routes” and, 

afterwards performing daily adjustments depend-
ing on the demand of the customer and on the 
capacity of the vehicle. To obtain the “master 
routes” we consider a VRP model, where all 
customers are in the input data and the demand 
of each customer depends on the average daily 
demand. To adjust the daily routes we consider 
other constraints such as capacity and number of 
vehicles. The requirement that a customer will 
always be served by the same driver may have 
to be sacrificed but we will try to enforce this at 
least for the best customers. Therefore, the idea 
is: the better the customer, the more interest we 
have in maintaining the same driver.

The mathematical formulation for this strat-
egy is identical to the one for the classical VRP 
for one period, but in this case all customers are 
considered for the “master routes”.

Strategy 3: Multi-Objective

In this strategy, we propose a multi-objective 
model with two objectives: minimization of 
routing costs and maximization of service levels 
that reflect an integration of the strategies of the 
Logistics and Marketing departments.

In most cases of multiple objectives it is 
unlikely that the problem is optimized by the 
same alternative parameter choices. Hence, some 
trade-off between the criteria is needed to ensure 
a satisfactory design.

In the multi-objective optimization an impor-
tant relation is the dominance relation. Let (z1) 
and (z2) be two solutions of a multi-objective 
minimization problem with R objectives. We say 
that: Solution (z1) dominates (z2) if z1r ≤ z2r for all 
objectives r in {1,...,R} and z1r < z2r for at least one 
r and (z1r) ≠ (z2r). A feasible solution is efficient 
if it is non-dominated. Based on this concept we 
will optimize the two objective functions to find 
non-dominated solutions.

Ideally, we would like to find the solution 
that would be optimal for both objectives at the 
same time. In multi-objective programming, this 
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solution point rarely exists. So, we would like to 
find solutions that are close to this ideal point.

Mathematically, all non-dominated solutions 
are equally acceptable. It is the decision maker 
who is responsible for choosing the final solu-
tion. The decision maker is someone who has a 
deep knowledge of the problems, the relation-
ships and the implications of each solution. The 
choice among these non-dominated solutions is 
determined by the decision maker’s preferences 
among the multiple objectives.

The two objective functions considered within 
the integrated strategy are:

Objective A: Minimizing Cost

The formulation of this objective will be the same 
as in equation (8), the one used for the model of 
strategy 1.

 Min c x
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Objective B: Marketing Objective

In terms of mathematical formulation, the second 
objective works as follows: For each customer 
we have a set of pairs of days with positive de-
mand, Ti, for each pair of days (g, h) in Ti (with g 
≠ h) we want to minimize the difference in the 
assignment to a vehicle k. The objective is to 
minimize y y

ik
g

ik
h− .

The importance is given by the total demand 
for the period, therefore a weight is introduced: 
the total amount ordered by each customer. The 
objective function becomes:
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The importance of a customer is measured in 
terms of sales. In some cases other measures could 
be used to classify the goodness of a customer, 
for example, frequency of orders, credit history, 
etc. This function is non linear.

Considering a multi-period model is an es-
sential aspect of our study. Since objective B is 
not static but measures decisions across more 
than one period, it only makes sense to consider 
a multi-period base.

In the integrated strategy the objective is to 
find a set of non-dominated solutions and give the 
decision maker the possibility to choose not only 
between strategies but also between solutions.

The constraints of the model for strategy 1 
and 3 are:

y i n t T
ik
t

k

m

i
=
∑ = ∀ = ∈

1

1 2, ,..., ;    (9)

y m t T i
ik
t

k

m

i
=
∑ = ∀ ∈ =

1

1, ;    (10)

q y Q k m t p
i
t
ik
t

i

n

=
∑ ≤ ∀ = =

2

1 1, ,..., ; , ...,    

(11)

x x y i n k m t
ijk
t

j

n

jik
t

j

n

ik
t

= =
∑ ∑= = ∀ = = =

1 1

2 1 1, ,..., ; , .., ; , ...,   pp  

(12)

y i n t T
ik
t

k

m

i
=
∑ = ∀ = ∉

1

0 2, ,..., ;    (13)

x S n k
ijk
t

j i S,

, , ..., ; , ..,
∈
∑ ≤ − ∀ { } =1 2 1   S nonempty subset of mm t p; , ...,= 1

 

(14)

x y i n k m t p
ijk
t

ik
t∈ { } ∈ { } ∀ = = =0 1 0 1 1 1 1, ; , , , ..., ; , .., ; , ...,    

(15)

Constraints (9) to (15) are similar to the ones 
in the basic model, but for each day of the period 
in question. Constraint (9) ensures that on the 
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days where a customer has a positive demand, 
that customer is visited by only one vehicle. Con-
straint (10) imposes that each day all vehicles go 
to the depot. Constraint (11) ensures that, the daily 
loading of a vehicle does not exceed its capac-
ity. Constraint (12) guarantees that if the vehicle 
enters a node, on day t, it also has to leave that 
node, on the same day. Constraint (13) prohibits 
a vehicle from visiting a customer on a day where 
that customer has zero demand. Finally constraint 
(14) avoids sub-tours, but now not only for each 
vehicle but also for each day. The sub-tour elimina-
tion constraint represents an exponential number 
of constraints. The last constraint (15) defines all 
variables as binary.

SOLUTION APPROACH

The main objective of this work is to make a fair 
comparison of the three distribution strategies 
therefore we will use the same solution technique 
to optimize each strategy. As mentioned, the pro-
posed problems are NP-hard, so they require an 
heuristic methodology in order to solve large in-
stances. A heuristic algorithm is a solution method 
that does not guarantee an optimal solution, but in 
general has a good level of performance in terms of 
solution quality and convergence. Heuristics may 
be constructive (producing a single solution), local 
search (starting from one given random solution 
and moving iteratively to other nearby solutions) 
or a combination of the two. Heuristics for VRP 
have been extensively studied. Cordeau et al. 
(2002) summarize the most important classical 
and modern heuristics for the VRP.

Local search is the most powerful general ap-
proach for finding high quality solutions to hard 
combinatorial optimization problem in reason-
able time. It is based on the iterative exploration 
of neighborhoods of solutions trying to improve 
the current solution by local changes. The type 
of local search that may be applied to a solution 
is defined by a neighborhood structure.

Our proposal is to use a metaheuristic algorithm 
that has proven to give quite good results for other 
problems and that is easy to implement, modify 
and adapt to different strategies: the Iterated Lo-
cal Search (ILS).

The Iterated Local 
Search for the VRP

ILS is a simple and generally applicable meta-
heuristic which iteratively applies local search 
to modifications of the current search point. For 
more detailed information on ILS see (Lourenço, 
Martin, & Stützle, 2003), (Lourenço, Martin, & 
Stützle, 2010) and (Stützle, 1998). At the start of 
the algorithm a local search is applied to some 
initial solution. Then, a main loop is repeated 
until a stopping criterion is satisfied. This main 
loop consists of a modification step (“perturba-
tion”), which returns an intermediate solution 
corresponding to a modification of a previously 
found locally optimal solution.

Next, local search is applied to yielding a lo-
cally optimal solution. An “acceptance criterion” 
then decides from which solution the search is 
continued by applying the next “perturbation”. 
Both, the perturbation step and the acceptance 
test may be influenced by the search history. 
ILS is expected to perform better than if we just 
restart local search from a new randomly gener-
ated solution.

The architecture of the ILS is shown in Ex-
ample 1.

The proposed ILS heuristics is based on the 
ILS metaheuristic developed by (Stützle, 1998)
and (Kunz, 2000) to solve the classical VRP. The 
ILS used for the VRP is shown in Example 2.

We will now present the implementation of 
each step of the above algorithm in more detail.

Savings Heuristic

This is a greedy heuristic to construct an initial 
solution, (Clarke & Wright, 1964). It has been 
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proved that starting from a random solution gives 
worse results (Stützle, 1998)). This savings heu-
ristic obtains the initial solution.

ILS for the TSP

On each of the tours obtained in the savings 
heuristic, we apply an ILS. At this step of the 
algorithm, we ignore any relation between routes.

LS for TSP: The LS used was a 2-opt local 
search. The 2-opt move can be defined as fol-
lows: on one tour, 2 connections are removed and 
two others are included, since there is only one 
possibility for reconstructing the tour. We tested 
for all combinations. Only when a complete run 
without improvements finishes has one reached 
a 2-opt solution.

Searching in a complete 2-opt would not be 
efficient. So, to reduce the search space, some 

techniques are introduced that quicken the process 
whilst still generating good quality solutions: a 
list of candidates and “don’t look bits”. One “don’t 
look bit” is associated with each node. Initially, 
all “don’t look bits” =0, if for a node no improv-
ing move can be found, then “don’t look bit” is 
turned on (set to 1) and is not considered as a 
starting node in the next iteration. If an edge in-
cident to a node is changed by a move, the node’s 
“don’t look bit” is turned off again - reduces to 
O(n).

Perturbation (Kick-move) for TSP: On the lo-
cal minimum that has been reached, we apply the 
kick-move and arrive at a new start solution. The 
goal here is to escape from local optima by apply-
ing perturbations to the current local minimum.

For the LS on the TSP we use a “double 
bridge” move. This perturbation cuts four edges 
and introduces 4 new ones.

Example 1. Architecture of the ILS Algorithm 

Procedure ILS:

   s0 = GenerateInitialSolution

   s* = LocalSearch(s0)

   Repeat

         s′ = Perturbation(s*, history)

         s*′ = Local search(s′)

         s* = Acceptance Criterion(s*, s*′, history)

   Until termination condition met

   End

Example 2. ILS for the VRP 

Step 1. Savings Heuristic - Initial Solution

Step 2. ILS for TSP on each tour:

   Step 2.1. Local Search for TSP

   Step 2.2. Perturbation for TSP

   Step 2.3. Acceptance criterion

Step 3. ILS for the VRP

   Step 3.1. LS for the Assignment Problem

   Step 3.2. Perturbation for VRP

   Step 3.3 Acceptance Criterion

Step 4. ILS for the TSP on the new routes

Figure 1. Example of a 2-opt move for the TSP

Figure 2. Example of a Double Bridge move
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Acceptance criterion: The acceptance crite-
rion used at this step is ‘better’; this means that 
the new tour is accepted if it has a lower cost.

ILS for the VRP

The ILS for the VRP is implemented considering 
the initial solution for the routes obtained from 
the ILS of the TSP.

LS for the assignment problem: The local 
search for the VRP is a 2-opt and again a list of 
candidates and “don’t look bits” techniques are 
applied to restrict the search.

We have two possibilities for a 2-opt: A cus-
tomer of a tour is postponed until a later tour or 
a customer trades with another customer from 
another tour. First, if capacity restrictions allow 
and it reduces costs, a city is inserted in the tour. 
Only if it cannot be inserted do we check if an 
exchange with another tour improves the solution.

The same techniques as those used in LS for 
the TSP are used: “don’t look bit” and list of 
candidates.

Kick-moves: “Numb-crosser”: This perturba-
tion consists of exchanging a group of customers 
from 2 tours. In this case, 1/3 of the customers of 
the tour are exchanged.

Acceptance criterion: ‘Best’, the same as the 
acceptance criterion for the TSP.

ILS for the TSP on the New Routes

Repeats the ILS procedure for the TSP.

The ILS for Each Strategy

The ILS for the VRP is now adapted to solve the 
3 models for the different strategies. Next we will 
describe in detail the ILS for each of them.

Strategy 1: Since in this strategy we have a 
classical VRP model, for each day we apply the 
ILS to find the best daily routes, according to the 
capacity of the vehicle and the daily demand (see 
Example 3). The algorithm is repeated for several 
runs and chooses the best solution for each day.

Let L be the total number of loops
Strategy 2: In this strategy, we have consid-

ered a classical VRP model to obtain the “master 
routes”, where all customers are taken into ac-
count based on average demand (see Example 4). 
Therefore, to obtain the master routes we apply 
an ILS. Afterwards, the routes for each day of the 
week are obtained in the following way: consider 
the master routes for each day and eliminate from 
these the customers that have no demand on that 
day. If on any of the routes the capacity constraint 
is violated, we identify the least important cus-
tomer, and we delete it from this tour and insert 
it on another tour. This tour is chosen in such a 

Figure 3. Example of a 2-opt move for the VRP Example 3. Structure of the algorithm for Strat-
egy 1 

Step 1: Set loop = 0

Step 2: Set day = 1

Step 3. Savings Heuristic - Initial Solution

Step 4. ILS for TSP on each tour

Step 5. ILS for the VRP

Step 6. ILS for the TSP on the new routes

Step 7. Set day = day + 1; Repeat Step 3 to 6 until day = 5;

Step 8. Set loop = loop + 1

Step 9. Repeat Step 2 to 8 until loop = L
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way as to minimize routing costs within capacity 
constraints.

Strategy 3: In this strategy we face a multi-
objective combinatorial optimization problem 
(MOCOP). Ehrgott & Gandibleux (2002) provide 
an annotated bibliography on MOCOP (see Ex-
ample 5).

Two main approaches can be found in the 
metaheuristics for the MOCOP: methods of local 
search (LS) in object space and population based 
methods. In the LS methods, we start from an 
initial solution and the procedure approximates a 
part of the non-dominated frontier corresponding 
to the given search direction. A local aggrega-
tion mechanism of the objectives, based on the 
weighted sum, produces the effect to focus the 
search on a part of the non-dominated frontier. 
The principle is repeated for several search di-
rections. In the population-based methods, the 
whole population contributes to the evolution 
process toward the non-dominated frontier. Here 
we will use the first approach, i.e. methods based 
on local search.

In this case, after having decided the routes for 
the first day, the program takes into consideration 
objective B, through a weighted function of both 
objectives. To do this, we calculate the effect of a 
move in the weighted function of the objectives. 
Then, the acceptance criterion determines that a 

new solution is accepted if the weighted func-
tion has improved. The algorithm is repeated 
for several different sets of weights. All the non-
dominated solutions are retained during the run 
of the algorithm.

An objective function Z is used as the weighted 
function. Z is the weighted sum of the single 
objectives A and B.

Let fr be the single objective function of ob-
jective r,

Z w f w
r r

r
r

r

= =
= =
∑ ∑ and 

1

2

1

2

1  

The solution is very sensitive to the weights 
that have been defined. The problem lies also in 
having objectives with different variables and 
scales. In our case, for example, we are adding 
costs and quantities. Notation:

wa = weight for Objective A, with 0 ≤ wa ≤1;
wb = weight for Objective B, with 0≤ wb ≤1;

and
wa + wb = 1

Z w ObjectiveA w ObjectiveB
a b

= +( ) ( )  

Example 4. Structure of the algorithm for Strategy 2 

Step 1: For all customers do

   Step 1.1. Savings Heuristic - Initial Solution

   Step 1.2. ILS for TSP on each tour

   Step 1.3. ILS for the VRP

   Step 1.4. ILS for the TSP on the new routes

Step 2: Set day = 1

Step 3: For each tour eliminate customers with zero demand

Step 4: For each tour, if capacity constraints are violated remove customer with lowest total demand

Step 5: ILS for the TSP on the new routes

Step 6: Set day = day + 1

Step 7: Repeat Step 3 to 6 until day = 5;
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ANALYSIS OF THE RESULTS

The main objective of this experiment is to evalu-
ate the three strategies and analyze the effect of 
each objective on the solutions. With this purpose, 
we applied the above algorithms to several sets 
of randomly generated examples. The results are 
expressed in terms of the values of the objectives 
and total number of vehicles needed. For each 
strategy two values were calculated: the Routing 
Cost and the Marketing (or service) Value. The 
first is measured in distance and the second can 
be interpreted as the unit cost for the distributor 
for not serving a customer with the same driver, 
working in a similar way as a penalty cost. Next 
we will explain the data used and analyze some 
important results of this experiment.

The Data

For the computational experiment, we have gener-
ated several sets of examples concerning the total 
number of customers (50,100,200,400). Also, we 

have examples with two types of demand (low 
variation and high variation) and two types of 
vehicles capacity, high and low.

To obtain the demand, we have used a normal 
distribution with mean 50 and standard deviation 
20 for the case where demand has a high variation 
and a standard deviation of 5 for the examples 
with low variation. The probability to obtain a 
negative value is very small, and we have never 
found one. On each day, on average, 25% of the 
customers have zero demand. This implies that for 
a problem with 100 customers, there will be about 
375 deliveries to make during the 5 day week. 
The customer locations are uniformly generated 
in a 100×100 square with the depot located in the 
centre with the coordinates (50, 50).

Truck capacity is 300 for problems with 50, 
100 and 200 customers and 700 for problems 
with 400 customers. We also run cases with 200 
customers and a truck capacity of 500. In total, 
we have studied 30 examples for each strategy; 
therefore we will consider 90 problems per run.

All data is available at the first author’s web 
page: http://www.econ.upf.edu/~ramalhin/. A 
standard personal computer, Intel ® Core™ 2 
Duo CPU T9300 @ 2.50 GHz and 3 GB RAM, 
was used to solve all instances.

Analysis of the Results

In this section, we will present the results ob-
tained for each example in terms of the objective 
function values, the number of vehicles used, the 
non-dominated solutions and the run times.

We can illustrate the aim of the different 
strategies by looking at a small example with 2 
days and a few customers: in Figure 4 we have 
the routes for two days, for strategies 1, 2 and 3. 
Strategy 1 has fewer and more efficient routes 
in terms of distance, Strategy 2 has more routes, 
but the routes are the same for each day. And, 
Strategy 3 has solutions that are not completely 
efficient in terms of distance, but allowing for a 
better service level.

Example 5. Structure of the algorithm for Strat-
egy 3 

Step 1: Set wa = 1 and wb = 0

Step 2: Set day = 1

Step 3. Savings Heuristic - Initial Solution

Step 4. ILS for TSP on each tour

Step 5. ILS for the VRP

   Step 5.1. LS for the Assignment Problem

      Step 5.1.1. For each move calculate the effect on objective 
A and B

         Step 5.1.1.1. Accept only if the new z is smaller

   Step 5.2. Perturbation for VRP

   Step 5.3. Repeat Step 3.1

   Step 5.4 Acceptance Criterion

Step 6. ILS for the TSP on the new routes

Step 7. Set day = day + 1; Repeat Step 3 to 6 until day = 5;

Step 8. Set wa = wa - 0.1 and wb = wb + 0.1

Step 9. Repeat Step 2 to 8 until wa =1 and wb=0
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Table 1 shows the results for each example 
and for each strategy. Strategy 1 tries to find low-
est cost, strategy 2 the best service level and 
strategy 3 the set of non-dominated solutions with 
respect to the integrated strategy. Note that objec-
tive (a) can be decimal due to the calculation of 
the distance based on the coordinates, however 
objective (b) is always an integer value. We can 
observe that, as expected, strategy 1 will always 
give us the solution with the lowest objective A 
and the highest objective B when compared with 
strategy 2. For strategy 2, we have much lower 
marketing values but the cost of routes increases 
significantly.

Concerning Strategy 3, we can say that, in 
almost every example, we can find more than one 

non-dominated solution. In case 4, for example, 
we have 4 non-dominated solutions and it would 
be the responsibility of the decision maker to 
decide between the alternatives.

In Figures 5 and 6 we can see the set of all 
solutions obtained after 22 iterations of the 
strategy 3 heuristic for examples 4 and 30 with 
50 customers. The diamonds correspond to the 
dominated solutions and the squares correspond 
to non-dominated solutions.

The number of vehicles needed for each solu-
tion strategy also varies and this is reflected in 
the total distance cost. In Table 2, we can observe 
these differences. The master routes approach 
always requires a much higher number of vehicles 
each week. This is due to the route design proce-

Figure 4. Routes for Strategies 1, 2 and 3
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Table 1. Routing Cost (a) and Marketing Level (b) for Strategies 1, 2 and 3 

Strategy 1 Strategy 2 Strategy 3

N Example a b a b a b

50 1 14,344.15 36,840 17,018.93 3,306 14,510.34 32,327

14,344.15 36,840

2 13,589.47 38,538 16,304.18 4,590 13,755.11 35,826

13,697.92 38,148

13,589.47 38,538

13,680.72 38,278

3 13,225.97 40,284 15,744.37 4,997 13,289.63 36,178

13,228.96 40,284

13,278.06 40,140

4 11,710.86 32,341 15,597.20 5,950 11,850.30 25,753

11,811.55 31,776

11,710.86 32,341

11,788.70 32,289

5 13,452.19 38,084 16,832.34 3,012 13,541.62 30,733

13,462.15 38,426

13,473.14 38,198

13,485.40 37,925

13,534.13 37,952

100 6 22,970.35 75,096 28,356.94 8,368 23,240.29 64,967

23,033.35 75,012

22,971.54 75,096

23,162.88 74,404

23,153.66 74,601

7 21,999.94 73,497 27,755.47 7,209 22,045.08 61,244

22,041.77 73,416

21,999.94 73,497

8 21,839.25 74,834 26,873.79 10,264 21,907.99 63,623

21,839.25 74,834

9 20,638.13 70,492 24,874.82 5,045 20,836.26 59,365

20,820.51 69,385

20,612.55 69,987

10 22,383.01 76,252 27,892.60 5,987 22,632.56 63,871

22,467.32 76,110

22,493.46 75,632

22,462.16 76,252

200 11 40,438.90 152,536 52,738.09 19,418 40,682.92 132,320

continued on following page
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continued on following page

Strategy 1 Strategy 2 Strategy 3

N Example a b a b a b

40,438.90 152,536

40,484.58 152,292

12 40,420.19 152,564 52,089.76 9,967 40,757.39 134,118

40,420.19 152,564

13 38,484.12 151,187 49,881.28 19,803 38,498.67 131,916

38,423.14 150,677

14 38,481.27 148,056 47,837.33 9,999 38,681.92 129,944

38,601.73 148,056

38,502.60 148,186

38,581.57 148,113

38,624.36 147,863

38,457.64 148,254

38,649.81 147,718

15 40,047.94 130,399 50,744.95 15,778 40,047.94 130,399

40,028.26 151,554

200* 16 28,589.23 152,040 35,849.68 8,375 28,883.37 132,744

28,782.42 151,361

28,780.13 151,569

28,686.55 151,883

28,551.03 152,164

28,630.92 152,040

17 28,675.59 150,844 34,171.20 2,096 28,814.46 130,891

28,711.49 150,542

28,704.59 150,844

18 27,350.06 149,576 33,919.54 9,715 27,511.87 130,867

27,474.54 149,315

27,255.56 150,108

27,503.72 149,261

27,397.52 149,435

27,371.86 149,576

19 27,674.99 147,608 33,632.54 9,637 27,676.81 128579

27,613.74 147754

20 27,836.23 152,388 34,002.28 9,320 28,035.45 130,763

27,896.09 151,456

27,824.33 151,509

27,990.09 151,355

400 21 40,013.36 304,388 49,637.55 9,607 40,120.90 260,814

40,101.29 304,184

Table 1. Continued



115

Strategies for an Integrated Distribution Problem

dure. The routes are constructed considering all 
customers, and then for each day eliminating the 
ones with no demand. When constructing the 
“master routes” we have used the daily average 
demand of each customer. The higher the values 
used for the demand associated with each cus-
tomer, the higher the number of vehicles used in 
the “master routes” and the lower the marketing 
values.

Comparing the number of vehicles for Strat-
egy 1 and Strategy 3 we observe that, on average, 
Strategy 3 has the same or a higher number of 
vehicles. This is due to the existence of the second 
objective, which introduces a preference for ser-
vice rather than just distance. To achieve better 
service we need to sacrifice the routing effi-
ciency and this can require the use of an addi-
tional vehicle.

Strategy 1 Strategy 2 Strategy 3

N Example a b a b a b

40,023.38 304,388

22 39,758.16 308,956 47,691.43 9,401 39,961.71 270,449

39,845.07 308,604

39,842.23 308,956

23 39,576.78 300,057 47,635.00 6,954 39,658.17 255,775

39,584.53 299,568

39,579.08 300,084

24 39,949.22 302,980 47,978.58 9,525 40,022.79 266,906

39,956.93 303,057

39,970.21 302,980

25 39,552.16 299,976 46,682.14 9,538 39,593.30 264,664

39,583.25 299,976

50 26 12,606.09 37,756 15,118.07 2,396 12,870.39 33,258

(low stdev) 12,716.23 37,124

12,606.09 37756

12,867.78 36802

27 13,752.04 37,759 16,724.64 3,329 13,861.01 34,403

13,715.64 37,757

13,855.72 37,428

28 12,723.78 39,888 14,507.04 777 12,820.79 33,940

12,781.62 39,888

29 12,468.30 32,983 14,737.70 1,335 12,571.04 25,854

12,489.20 32,330

30 12,687.26 36,396 15,024.22 1,894 12,765.22 31,287

12,657.08 36,504

12,685.23 36,352

12,747.45 36,043

* Truck capacity =500

Table 1. Continued
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The running time should not be overempha-
sized. The first and third strategies are the ones 
that take more time to compute. But, since we 
are referring to strategic planning, it does not 
seem impractical for a firm with a network of 400 
customers to spend one hour run prior to strategic 
decision making each week. Table 3 summarizes 
running times. For Strategies 1 and 3 we have done 
the same number of iterations. The magnitude of 
the difference in running time for strategy 2 is 

Figure 5. Example 4 - set of dominated and non-dominated solutions for Strategy 3

Table 2. Average number of vehicles needed per 
week, for Strategies 1, 2 and 3 

N Strategy 1 Strategy 2 Strategy 3

50 36 44 36

100 68 84 68

200 135 167 135

200(cap=500) 81 99 81

400 114 141 114

50 (low stdev) 36 43 36

Figure 6. Example 30 - set of dominated and non-dominated solutions for Strategy 3
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due to the fact that we only run the VRP once for 
the master case. For the other two strategies we 
have to run the VRP for each day of the planning 
period several times.

Finally, in Table 4 we show the results of the 
other versions of the algorithm for strategy 3. In 
version 2 we have introduced more iterations for 
each weight. And, in version 3 we have done more 
iterations for the ILS for each day, and kept the 
same number of iterations per weight. From the 
results we can conclude that by allowing more 
running time, the algorithm of version 2, on aver-
age, gives more non-dominated solutions in 3 of 
the 5 problems. In version 3, on average the 
number of non-dominated solutions is smaller 
than in the other versions but we are able to im-
prove the solutions, when comparing with version 
1 and 2.

SUMMARY AND CONCLUSION

In this chapter, we have explored different distribu-
tion strategies to analyze an integrated distribution 
problem. The strategies cover a week-long plan-
ning horizon and reflect different ways of looking 
at the distribution problem. The first strategy is 
the classical VRP approach, which reflects only 
transportation cost: For each day of the planning 
horizon the routes are designed minimizing rout-
ing costs. The second strategy is a more customer 
oriented strategy based on customer relationship 

management principles, where master routes are 
constructed to ensure a marketing policy where 
each customer is always served by the same driver. 
The third strategy is a multi-objective combina-
torial optimization problem with two objectives: 
minimizing cost and improving customer service. 
This third strategy results from the integration of 
the two other strategies and brings together two 
areas of great importance in many industries: Dis-
tribution and Marketing. The idea was to compare 
this new approach with the other two strategies.

For each of the above strategies we have 
presented a mathematical model and a heuristic 
procedure, based on the ILS, to solve the problems. 
Then, the three algorithms were applied to a set 
of randomly generated instances.

The main conclusion is that the multi-objective 
model gives several non-dominated solutions that 
can be seen as a good balance between optimizing 
the transportation cost or customer service and 
loyalty. The decision maker has to choose the 
solution that best meets business needs, since cost 
minimization is not the only concern in distribu-
tion management.

There are several possible extensions of this 
work, one is in the area of the metaheuristics and 
here it would be interesting to develop multi-
objective population based metaheuristic to solve 
the multi-objective model and to perform a com-
parison with the current approach. The second 
extension would be to include other objectives 
that would reflect different business needs, as for 
example, the one of balancing the routes. This is 
particularly interesting if we assume that driver’s 
remuneration can be related to truck loading. In 
this case, we would be studying the integration 
of decisions of the Human Resources department.
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Table 3. Average run time in seconds, per problem 
size, for Strategies 1, 2 and 3 

N Strategy 1 Strategy 2 Strategy 3

50 39.62 0.69 39.68

100 106.98 1.97 104.16

200 294.63 4.53 290.01

200(cap=500) 394.25 5.60 388.28

400 899.01 7.70 746.59

50 (low stdev) 42.42 0.67 0.67
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KEY TERMS AND DEFINITIONS

Cross-Functional Planning at Distribution: 
consists of coordinating different areas inside 
the firm, as marketing and logistics for example, 
allowing for cost reductions and service improve-
ment.

Iterated Local Search (ILS): ILS is a simple 
and generally applicable meta-heuristic which 
iteratively applies local search to modifications 
of the current search point. At the start of the 
algorithm a local search is applied to some initial 
solution. Then, a main loop is repeated until a stop-
ping criterion is satisfied. This main loop consists 
of a modification step (“perturbation”), which 
returns an intermediate solution corresponding 
to a modification of a previously found locally 
optimal solution.

Local Search Methods (LS): Local search 
is the most powerful general approach for find-
ing high quality solutions to hard combinatorial 
optimization problem in reasonable time. It is 
based on the iterative exploration of neighbor-
hoods of solutions trying to improve the current 
solution by local changes. The type of local search 
that may be applied to a solution is defined by a 
neighborhood structure.

Multi-Objective Combinatorial Optimi-
zation Problem (MOCOP): Combinatorial 
problems are characterized by the consideration 
of a selection or permutation of a discrete set of 
“items” or by an assignment among these. The 
MOCOP are combinatorial optimization problems 
with several objective functions.

Savings Heuristic: This is a greedy heuristic 
to construct an initial solution based on the saving 
calculations and tour construction. This savings 
heuristic (Clarke & Wright, 1964), obtains the 
initial tour for the VRP problem.

Traveling Salesman Problem (TSP): Given 
a collection of cities (or points) and the cost (or 
distance) of travel between each pair of them, the 
traveling salesman problem is to find the cheapest 
way of visiting all of the cities and returning to 
your starting point.

Vehicle Routing Problem (VRP): This prob-
lem considers a set of nodes, representing retail-
ers or customers, at a known location, that must 
be served by one depot. Each node has a known 
demand. A set of vehicles K, with equal capacity 
is available to serve the customers. The routes 
must start and finish at the depot. The objective 
is to define the set of routes to serve all customers 
with minimal cost.
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INTRODUCTION

The Capacitated Vehicle Routing Problem (CVRP) 
is probably one of the most popular routing prob-
lems in Combinatorial Optimization. The objective 
is to find an ‘optimal’ set of routes for a fleet of 
homogeneous vehicles so that demands of a set 
of customers are satisfied. All routes begin and 
end at one or several depots, where all resources 
are initially located. Typically each vehicle has 
a maximum loading capacity, each customer is 
supplied by a single vehicle, and a vehicle can-
not visit the same customer twice. Therefore, 
the objective function consists in minimizing 
total delivery costs, which are typically related 
to distances traveled by vehicles.

Known to be an NP-hard problem (Laporte and 
Semet 2001, Prins 2004), the CVRP has been stud-
ied for decades. Even so, it is still attracting a great 
amount of attention from researchers worldwide 
due to its potential applications, both in real-life 
scenarios situations as well as for the develop-
ment of new algorithms, optimization methods 
and meta-heuristics for solving other combina-
torial problems (Toth and Vigo 2002, Golden et 
al. 2008). Various approaches to the CVRP have 
been proposed during the past decades, ranging 
from the use of pure optimization methods such 
as linear programming –mainly used for solving 
small- to medium-size problems with relatively 
simple constraints–, to the use of heuristics and 
meta-heuristics that provide near-optimal solu-
tions for medium and large-size problems with 
more complex constraints (Laporte 2007).

This chapter considers the CVRP with ad-
ditional restrictions, in particular: (a) there is a 
route length restriction per vehicle, i.e., no route 
can exceed a given cost (assuming that cost is 
related to length), and (b) a service time restric-
tion, which forms a part of a given tour’s duration, 
needs to be considered for each customer being 
served. This service time is usually transformed 
into a penalty cost per service that must also be 

added to the distance-based costs associated with 
each route.

All in all, the main goal of this chapter is 
threefold. First, it aims to illustrate the use of 
simulation-based heuristic approaches to deal 
with the CVRP with additional constraints such as 
those defined above. Second, it aims to show that 
simulation-based approaches can be competitive 
with existing heuristic approaches, in terms of 
the quality of the solutions obtained, in solving a 
combinatorial problem. Finally, it aims to highlight 
some interesting benefits that simulation-based 
approaches might offer.

PREVIOUS RELATED WORK

The CVRP has been studied extensively in the 
literature. The problem can be solved by exact 
methods (mathematical models and branch and 
bound algorithms) or heuristic approaches. Ex-
act methods are able to prove optimal solutions, 
but their computational time requirements grow 
exponentially when the problem size increases. 
Heuristic approaches, on the other hand, include 
classical heuristics and metaheuristics. Among 
the former, Clarke and Wright’s Savings (CWS) 
constructive algorithm (Clarke and Wright 1964) 
is probably the most cited heuristic to solve the 
CVRP. The CWS first generates an initial feasible 
solution by assigning one vehicle to each node. 
Every pair of nodes defines an edge, so a list of 
possible edges can be constructed and then sorted 
according to the ‘savings’ associated with each 
edge –that is, the reduction in costs that would be 
attained if the respective routes containing both 
edge extremes were merged into a single route. 
The initial solution is then improved by an itera-
tive route-merging process in which edges are 
sequentially selected from the sorted list and the 
corresponding routes merged if possible –i.e., if 
the resulting route does not violate any constraint 
and if the nodes are both directly connected 
to the depot so that the merge is feasible. The 
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CWS algorithm usually provides relatively good 
solutions, especially for small and medium-size 
problems. Many variants and improvements of 
the CWS have been proposed in the literature. For 
instance, Mole and Jameson (1976) generalized the 
definition of the savings function, introducing two 
parameters for controlling the savings behavior. 
Similarly, Holmes and Parker (1976) developed 
a procedure based upon the CWS algorithm, us-
ing the same savings function but introducing a 
solution perturbation scheme in order to avoid 
poor quality routes. Beasley (1981) adapted the 
CWS method in order to use it to optimize inter-
customer travel times. Dror and Trudeau (1986) 
developed a version of the CWS method for the 
Stochastic VRP. Paessens (1988) analyzed the 
main characteristics of the CWS method and its 
performance in generic VRP. Recently, the CWS 
heuristic has been finely tuned by means of ge-
netic algorithms experimentation by Battarra et 
al. (2008) and Doyuran and Çatay (2010).

Using constructive heuristics as a basis, meta-
heuristics became popular for the solution of the 
CVRP during the nineties. These procedures are 
able to find (but unable to prove) near-optimal 
and even global optimum solutions for combi-
natorial problems. Some early examples applied 
to solve the CVRP are the Tabu Route method by 
Gendreau et al. (1994) or the BoneRoute method 
of Tarantilis and Kiranoudis (2002). Tabu search 
(TS) algorithms, like those proposed by Taillard 
(1993) or Toth and Vigo (2003) are among the 
most popular metaheuristics. Genetic algorithms 
(GA) have also played a major role in the develop-
ment of effective approaches for the VRP. Some 
examples are the studies of Berger and Barkaoui 
(2003) and Mester and Bräysy (2007). Other 
important meta-heuristic approaches to the VRP 
are Simulated Annealing (SA) (Alfa et al. 1991), 
Greedy Randomized Adaptive Search Procedure 
(GRASP) (Resende 2008, Festa and Resende 
2009), Ant Colony Optimization (AC) (Bell and 
McMullen 2004) and Evolutionary Algorithms 
(EA) (Prins 2004).

While the CVRP has been extensively studied 
in the literature, we believe this is not the case for 
the CVRP with route length restrictions and service 
time requirements, and that more flexible and 
simpler methods should be proposed to deal with 
these realistic constraints. Following these ideas, 
the approach presented in this chapter combines 
Monte Carlo Simulation (MCS) with the CWS 
heuristic and some divide-and-conquer techniques 
to reduce the problem complexity. MCS can be 
defined as a set of techniques that makes use of 
random numbers and statistical distributions to 
solve certain stochastic and deterministic opti-
mization problems (Law 2007). MCS has proved 
to be extremely useful for obtaining numerical 
solutions to complex problems which cannot be 
efficiently solved by using analytical approaches. 
To the best of our knowledge, Buxey (1979) was 
the first author to combine MCS with the CWS 
algorithm to develop a procedure for solving the 
CVRP. This method was revisited by Faulin and 
Juan (2008), who introduced an entropy function 
to guide the random selection of nodes. MCS has 
also been used by Fernandez et al. (2000) and 
Juan et al. (2009) to solve the basic CVRP. This 
chapter goes one step beyond and discusses how 
to combine MCS and the CWS heuristic to solve 
the CVRP with restrictions on route length and 
service time considerations. Thus, one of the main 
contributions of this chapter is to discuss to which 
degree simulation-based approaches can be a vi-
able alternative to the previously cited approaches 
for the CVRP variants with the aforementioned 
additional constraints.

The next section presents a formal description 
of the problem studied in this chapter and an inte-
ger linear programming formulation of the same.

FORMAL PROBLEM DESCRIPTION 
AND MATHEMATICAL MODELING

The problem studied in this chapter can be for-
mally described as follows. Given a graph G = 
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(V, A) where V = {1,2, …, n} is the set of nodes 
(vertices), 0 is the depot (origin, home city) and 
the remaining nodes are customer nodes denoted 
by the set V0, i.e., V0 = V \ {0}. The set A = {(i, 
j): i, j ∈ V, i ≠ j} is an arc (or edge) set. Traversal 
of each arc (i, j) induces a travel cost cij that is 
equal to the length of the shortest path between 
nodes i and j (which may be symmetric, asym-
metric, Euclidean, deterministic, random, etc.). 
Here, “length” may be defined in terms of physi-
cal travel distance, travel time, fuel cost or any 
other measure. In this chapter, we will consider 
the case where “length” corresponds to the fixed 
travel time between two nodes. The matrix C = 
[cij]nxn is said to be symmetric if cij = cji for all (i, 
j) ∈ A, and asymmetric otherwise. If cij + cjk ≥ cik 
for all i, j, k ∈ V, C is said to satisfy the triangle 
inequality. There are at most m homogeneous 
vehicles that are available for use, each able to 
carry commodities of up to Q units. Each customer 
i ∈ V0 has a predefined service time denoted by si 
and a demand of qi units. We assume the problem 
is that of a collection, i.e., each customer has qi 
units of demand to be picked-up by the serving 
vehicle. The problem consists of finding a set of at 
most m vehicle routes where (i) each route starts 
and ends at the depot node, (ii) each customer is 
visited (thus its demand is served) exactly once by 
any vehicle, (iii) the distance of each route does 
not exceed a route length denoted T, and (iv) the 
total demand served in each route does not exceed 
Q. The objective is to minimize the total length 
traversed by all the vehicles.

In this section, we describe a mathematical 
formulation of the problem. We note that Lin et 
al. (2009) also present a mixed integer program-
ming formulation for the same problem using 
three-index variables. The one proposed below 
makes use of two-index variables, hence is 
smaller in size in terms of the number of binary 
variables involved. The model described uses 
a binary variable xij that takes the value 1 if arc 
(i, j) is traversed in the solution, and the value 0 
otherwise. The model also uses two continuous 

variables, ui denoting the cumulative amount of 
goods the vehicle has collected as soon as it leaves 
node i ∈ V0, and vi showing the cumulative time 
the vehicle has spent in traveling from the depot 
until it arrives to node i ∈ V0. Based on these 
definitions, the formulation is presented below.
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The formulation (1)–(12) presented above 
minimizes the total length of all tours through 
the objective function (1). Constraints (2) and (3) 
are used to ensure each customer i ∈ V0 is visited 
exactly once, whereas constraints (4) and (5) are 
used to limit the total number of vehicles used in 
the solution by m. Capacity limitations on each 
tour are modeled through (6)–(8), which also serve 
as prohibiting possible formation of subtours, 
which are tours forming amongst customer nodes 
only and are not connected to the depot. These 
constraints are due to Desrochers and Laporte 
(1991) and Kara et al. (2004). Similarly, con-
straints (9)–(11) model route length restrictions. 
More specifically, these constraints ensure that 
a tour’s length which is composed of the total 
travel time between nodes and the service times 
at each node cannot exceed T. These constraints 
are initially due to Kulkarni and Bhave (1985), 
with corrections, liftings and refinements being 
suggested by Achutan and Caccetta (1991), Des-
rochers and Laporte (1991), Naddef (1994) and 
Kara and Bektaş (2005).

SOME FUNDAMENTAL IDEAS 
OF OUR APPROACH

Recent advances in the development of high-
quality pseudo-random number generators 
(RNGs) (L’Ecuyer 2006) may have opened new 
perspectives in the use of Monte Carlo simulation 
in combinatorial problems. To test how state-of-
the-art random number generators can be used to 

improve existing heuristics and even push them 
to new efficiency levels, we combine MCS tech-
niques with one of the best-known classical heu-
ristics for the CVRP, namely the CWS heuristic. 
In particular, we selected the parallel version of 
this heuristic since it usually offers better results 
than the sequential version.

One of the main ideas of our approach is 
to introduce some random behavior within the 
CWS heuristic so that a random feasible solu-
tion is obtained each time the randomized CWS 
is executed. Then, just by iterating this random 
construction process, a set of different feasible 
solutions are generated and the best ones are saved 
into a solutions database. Each of these feasible 
solutions will consist of a set of roundtrip routes 
from the depot that, altogether, satisfy all prob-
lem constraints and node demands. Sometimes, 
though, the lowest-costs solution is not the best 
choice in practice due to factors such as exis-
tence of intersecting or unbalanced routes –i.e., 
some routes cover large distances while others 
cover short distances (Figure 1). Of course, the 
key question here is how to randomize the CWS 
so that the resulting solutions will also be com-
petitive in terms of associated costs. As stated in 
the literature review section, at each step of the 
solution-construction process the CWS algorithm 
always chooses the edge with the highest savings 
value. Our approach, instead, assigns a selection 
probability to each edge in the savings list. This 
probability will reflect the savings value associated 
with each edge, i.e., edges with higher savings are 
more likely to be selected from the list than those 
with lower savings. Finally, this selection process 
should be done without introducing too many 
parameters in the algorithm –otherwise, it would 
be necessary to perform fine-tuning, which usu-
ally is a non-trivial and time-consuming process.

To reach all these goals, we employ a single-
parameter geometric distribution during the 
randomized CWS solution-construction process. 
That way, edges with higher savings values are 
always more likely to be selected from the list, 
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but the exact probabilities assigned will depend 
on the specific value assigned to the distribution 
parameter, α, being 0 < α < 1. Figure 2 shows a 
comparison of two probability functions (PD) and 
cumulative distribution functions (CDF) related 
to geometric distributions with different values 
of α. Notice that using relatively low values of 
this parameter (e.g.: α = 0.10) implies that more 
edges in the savings list are potentially eligible 
–i.e., the corresponding cumulative distribution 
function shows a relatively low increasing rate. 
On the contrary, using relatively high values for 
this parameter (e.g.: α = 0.40) implies that only 
a few edges from the sorted saving list are poten-
tially eligible in practice –i.e., the corresponding 
cumulative distribution function shows a rela-
tively high increasing rate.

Another fundamental idea behind our approach 
is the use of splitting or divide-and-conquer tech-
niques to reduce the original problem size. The 
goal here is to divide the original set of nodes into 
two disjoint subsets and then solve each of these 

subsets by applying the same randomized CWS 
approach described before. Different splitting 
policies can be used, but the basic principle should 
always be the same: once a randomized CWS 
solution has been found, use a proximity criterion 
to select a subset of routes and their correspond-
ing nodes; then, in order to look for a better way 
to travel those nodes around, apply the iterative 
randomized CWS construction process to them. 
The proximity criterion employed in this work is 
based on the position of the geometric center of 
each route with respect to the position of the 
global solution geometric centre –i.e., with respect 
to all nodes geometric center. The geometric 
center of a given set of nodes is the average of 
the x and y coordinates of these nodes. Note that 
the geometric center is considered as the reference 
point instead of the depot. This allows obtaining 
balanced splitting even for those VRP instances 
where the depot is located in an extreme position 
with respect to the rest of the nodes.

Figure 1. Examples of solutions showing typical problems
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Figure 3 illustrates how the divide-and-conquer 
technique works for a given solution: (1) a sub-
set of routes from the given solution is selected 
according to a geometric criterion (in this case, 
routes located below the line x = y are selected, 
but many other criteria can be used instead); (2) 
then, the selected routes are dissolved and the 
corresponding nodes are considered to be a new 
vehicle routing problem to which the iterative 
randomized CWS process is applied; (3) finally, 
the best solution obtained for the sub-problem 

is used together with the non-selected routes to 
build a new improved solution for the initial VRP 
instance.

A HIGH-LEVEL DESCRIPTION OF 
OUR ALGORITHM

The approach described in this chapter can be 
summarized in the following six-step algorithm, 
which is also represented in Figure 4:

Figure 2. Probabilities associated with two different geometric distributions

Figure 3. Divide-and-conquer process
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1.  Initially, a CVRP instance is given.
2.  The corresponding CWS solution is obtained.
3.  A random solution is obtained by executing 

the randomized CWS procedure.
4.  The resulting random solution is compared 

against the CWS one, which is used as a 
permanent reference to classify each new 
solution as a promising one or as a non-
promising one. If the randomized solution 
does not outperform the current one, then 
the randomized solution is not a promising 
one and the process starts again from step 3.

5.  Otherwise, the randomized CWS solution 
is divided into two sets of routes, the front 
set and the back set. Each of these sets is 
then considered as a new CVRP problem 
with the same initial constraints but with 
fewer nodes –which significantly reduces 
the dimension of the solution space with 
respect to the original problem.

6.  Now, an inner loop starts. At each iteration 
of this loop, a new sub-problem is solved by 

using the randomized CWS algorithm. Once 
this inner loop has finished, the resulting so-
lution is sorted and saved in a database, and 
the process restarts from step 3 (outer loop). 
Notice that this restarting factor is decisive 
in order to avoid that the methodology gets 
trapped into a local minimum.

VERIFICATION AND VALIDATION

The methodology described in this chapter has 
been implemented as a Java application. Being 
an interpreted language, Java-based programs do 
not execute as fast as other compiled programs 
such as those developed in C, but Java allows for 
rapid development of object-oriented prototypes 
that can be used to test the potential of an algo-
rithm. At the core of our Java application, some 
state-of-the-art pseudo-random number generators 
are employed. In particular, we have used some 
classes from the SSJ library (L’Ecuyer 2002), 

Figure 4. Scheme of our simulation-based methodology
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among them, the subclass GenF2W32, which 
implements a generator with a period value equal 
to 2800–1. Preliminary research indicates that using 
a high-quality pseudo-random number generator 
may be especially useful when performing an 
in-depth random search of the solutions space. 
Moreover, the use of such a long-period RNG has 
other important advantages: the algorithm can be 
easily parallelized by splitting the RNG sequence 
in different streams and using each stream in dif-
ferent processors.

As explained in the Introduction, our main goal 
was to develop a simulation-based approach that 
was able to efficiently deal with the CVRP with 
a restriction on the route length and considering 
customer service times. In order to test the ef-
fectiveness of our approach and its efficiency as 
compared with other existing approaches, we used 
the classical CVRP benchmark instances from 
Christofides, Mingozzi and Toth (1979) which 
feature the special constraints of the problem 
considered here, namely vrpnc6, vrpnc7, vrpnc8, 
vrpnc9, vrpnc10, vrpnc13 and vrpnc14.

A standard personal computer, with an Intel® 
Core™2 Duo CPU processor at 2.4 GHz and a 2 
GB RAM, was used to perform all tests. Results 
of these tests are summarized in Table 1, which 
contains the following information for each in-
stance: (a) name of instance, (b) number of nodes, 

(c) vehicle capacity, (d) maximum route length, (e) 
cost per service, (f) best-known solution (BKS) as 
published in Lin et al. (2009), (g) solution obtained 
with the CWS heuristic, (h) the percentage gap 
between the CWS and BKS solutions, (i) best 
solution obtained with our approach (OBS), and 
(j) gap between the OBS and BKS solutions. In 
the table, the percentage gap between solution 
value vΔ produced by a given heuristic Δ and the 
known best solution value v* of the instance is 
calculated as 100(vΔ–v*)/v*.

Table 2 shows the best solutions obtained with 
different well-known meta-heuristics, as well as 
their corresponding gaps with respect to the best-
known solution. This data has also been obtained 
from Lin et al. (2009). In particular, the meta-
heuristics considered are: Simulated Annealing 
(SA), Granular Tabu Search (GTS), Genetic Al-
gorithms (GA), Ant Colony (AC) and Evolution-
ary Algorithms (EA).

Tables 1 and 2 indicated that our simulation-
based approach seems to be competitive, in terms 
of quality of the solutions, with the other meta-
heuristic approaches shown in Table 2, with the 
exception of EA. In effect, EAs seem to perform 
significantly better than the rest of the meta-
heuristics for the analyzed instances. The promis-
ing performance of our algorithm is particularly 
interesting if we consider its relative simplicity 

Table 1. Comparison between our simulation-based approach and the best-known solution 

Instance Nodes Capacity Max. 
Route 
Length

Service 
Cost

BKS CWS gap 
CWS-
BKS

OBS gap 
OBS-
BKS

vrpnc6 51 160 200 10 555.43 584.87 5.30% 555.43 0.00%

vrpnc7 76 140 160 10 909.68 975.46 7.23% 912.91 0.36%

vrpnc8 101 200 230 10 865.94 973.94 12.47% 867.50 0.18%

vrpnc9 151 200 200 10 1,162.55 1,287.64 10.76% 1,178.65 1.38%

vrpnc10 200 200 200 10 1,395.85 1,538.66 10.23% 1,428.29 2.32%

vrpnc13 121 200 720 50 1,541.14 1,592.26 3.32% 1,547.45 0.41%

vrpnc14 101 200 1040 90 866.37 868.50 0.25% 866.37 0.00%

Averages 114 7.08% 0.66%
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and the fact that it does not require complex fine-
tuning processes, a process which most EA algo-
rithms require

BENEFITS AND LIMITATIONS 
OF OUR APPROACH

As previously described, our approach makes use 
of an iterative process to generate a set of random 
feasible solutions based on the CWS heuristic. 
According to the experimental tests carried out, 
each iteration only requires a few milliseconds 
on a standard computer. Since we are introducing 
a ‘tiny’ biased randomness in the edge-selection 
process, odds are than the generated solution 
outperforms the one given by the CWS heuristics. 
This means that our approach is able to provide, 
in real-time, a feasible solution that outperforms 
the CWS heuristics. Moreover, as verified by 
testing, several alternative solutions outperform-
ing the CWS can be obtained after a few seconds 
of computation, each of them having different 
attributes regarding intangible costs, workload 
balance, visual attractiveness, etc. By doing so, 
a list of alternative solutions can be constructed, 
thus allowing the decision-maker to filter this 
solutions list according to his/her utility function, 
which might be difficult or impossible to model 

in the initial objective function. Furthermore, as 
it has been already discussed, by adding a local 
search process based on a divide-and-conquer 
technique, our algorithm is capable to provide –
with more computational time– feasible solutions 
that maintain a low average gap with respect to 
the best-known solution for every tested instance.

Another important point to consider here is the 
relative simplicity of the presented methodology. 
In effect, our approach is relatively simple to 
implement in code and it needs little fine-tuning 
–there is just one parameter, α, which usually 
can be considered to be between 0.15 and 0.25. 
This is quite interesting in our opinion, since ac-
cording to (Kant et al. 2008) some of the most 
efficient heuristics and meta-heuristics are not 
used in practice because of the difficulties they 
present when dealing with real-life problems and 
restrictions. On the contrary, simple approaches 
like the one introduced here tend to be more flex-
ible and, therefore, they seem more appropriate 
to deal with real restrictions and dynamic work 
conditions. From Tables 1 and 2, notice also that 
our approach seems to be quite competitive with 
regards other existing approaches, particularly in 
the small- and medium-size instances.

Moreover, our methodology is designed to be 
easily implemented/executed in parallel, that is: by 
simply changing the values of α or even the seed 

Table 2. Comparison with other well-known meta-heuristics 

Instance SA
gap 
SA-
BKS

GTS
gap 

GTS-
BKS

GA
gap 
GA-
BKS

AC
gap 
AC-
BKS

EA
gap 
EA-
BKS

vrpnc6 555.43 0.00% 555.43 0.00% 559.04 0.65% 560.24 0.87% 555.43 0.00%

vrpnc7 909.68 0.00% 920.72 1.21% 909.94 0.03% 916.21 0.72% 909.68 0.00%

vrpnc8 866.75 0.09% 868.48 0.29% 872.82 0.79% 866.74 0.09% 865.94 0.00%

vrpnc9 1,164.12 0.14% 1,173.12 0.91% 1,188.22 2.21% 1,195.99 2.88% 1,162.55 0.00%

vrpnc10 1,417.85 1.58% 1,435.74 2.86% 1,451.63 4.00% 1,451.65 4.00% 1,402.75 0.49%

vrpnc13 1,545.98 0.31% 1,545.51 0.28% 1,560.79 1.28% 1,559.92 1.22% 1,542.86 0.11%

vrpnc14 890.00 2.73% 866.37 0.00% 872.34 0.69% 867.07 0.08% 866.37 0.00%

Averages 0.69% 0.79% 1.38% 1.41% 0.09%
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of the random number generator, several instances 
of the algorithm can be run in parallel. This can 
be an interesting field to explore in future work, 
given the current trend in multi-core CPUs and 
distributed computing.

At this point, it is also import to discuss some 
potential limitations of our approach. First of 
all, even when we have been able to reach low-
gap solutions in all tested instances, we are not 
completely sure that by employing more compu-
tational time –or, alternatively, more processing 
power– we are able to match all best-known 
solutions. Secondly, convergence times are vari-
able –from seconds to hours– and might depend 
upon the right choice of the parameter α –so the 
algorithm is not completely free of fine-tuning if 
performance is a requirement. Notice, however, 
that both drawbacks of our approach are also 
common drawbacks in most other approaches 
such as SA, GA, TS, GRASP, etc., since they all 
are eventually based on some kind of random 
behavior. Hopefully, as discussed before, the 
combined use of long-period RNGs, processing 
power, and parallel programming can speed-up 
convergence rates to a matter of a few seconds 
for most medium-size CVRP problems.

Finally, it is convenient to highlight that our 
simulation-based approach can be used beyond 
the CVRP scenario: with little effort, similar 
methodologies based on the combination of Monte 
Carlo simulation with already existing heuristics 
can be developed for other routing problems and, 
in general, for other combinatorial optimization 
problems. In our opinion, this opens a new range 
of potential applications that could be explored 
in future works.

CONCLUSION

In this chapter we have shown that it is possible to 
develop simulation-based approaches to solve the 

Capacitated Vehicle Routing Problem with route 
length restrictions and service time requirements. 
Our approach uses Monte Carlo Simulation to 
introduce randomness in a classical constructive 
heuristic. Then, an iterative process generates a set 
of feasible solutions from which the best ones are 
saved. The approach also benefits from divide-and-
conquer techniques, which contribute to reduce 
the difficulty of the original instance. Some initial 
tests show that our approach is competitive, in 
terms of quality of the generated solution, with 
other well-known approaches. Some potential 
advantages and limitations of our approach are 
also discussed. Finally, the chapter proposes 
several future research lines, including the use of 
parallel programming and also the development of 
similar simulation-based methodologies to solve 
other combinatorial problems.
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1 INTRODUCTION

The problem considered in this chapter is the 
non-preemptive single mode resource-constrained 
project scheduling problem (RCPSP). It consists 
in scheduling a set of activities with deterministic 

processing times, resource requirements, and pre-
cedence relations between activities. The aim is 
to find a schedule with minimum makespan (total 
project duration) respecting both precedence rela-
tions and resource limits. The RCPSP is a classical 
problem in project scheduling. It is related to and 
subsumes many other scheduling problems (e.g., 
the job shop scheduling problem as a special case 

Jens Czogalla
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Algorithm for Resource-
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ABSTRACT

The authors present and analyze a particle swarm optimization (PSO) approach for the resource-
constrained project scheduling problem (RCPSP). It incorporates well-known procedures such as the 
serial schedule generation scheme and it is hybridized with forward-backward improvement. The authors 
investigate the application of PSO in comparison to state-of-the-art methods from the literature. They 
conduct extensive computational experiments using a benchmark set of problem instances. The reported 
results demonstrate that the proposed hybrid particle swarm optimization approach is competitive. They 
significantly improve previous results of PSO for the RCPSP and provide new overall best average results 
for the medium size data set. Furthermore, the authors provide insights into the importance of crucial 
components for achieving high-quality results.
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(Brucker et al., 1999)). The RCPSP is encountered 
in diverse application areas, including production, 
service industry, software development, and civil 
engineering. For a recent survey of variants and 
extensions of the RCPSP we refer to Hartmann 
and Briskorn (2010).

Various exact methods for the RCPSP have 
been proposed – e.g., implicit enumeration with 
branch and bound, zero-one programming, and 
dynamic programming (for a survey see Kolisch & 
Padman (2001)). The currently best known exact 
method is described by Schutt et al. (2009); it is 
based on the constrained programming approach.

Since the RCPSP is NP-hard (Blazewicz et 
al., 1983), exact methods may be time consum-
ing and inefficient for solving large problems 
and real-world applications. Hence, the majority 
of state-of-the-art algorithms are based on meta-
heuristics. Kolisch & Hartmann (2006) present a 
comprehensive experimental evaluation of heu-
ristic approaches for the RCPSP. In their tests the 
best performing heuristics are population-based 
metaheuristics that use the activity-list representa-
tion and the serial schedule generation scheme. 
In addition, the forward-backward improvement 
method is noted as an effective component of 
most state-of-the-art algorithms.

Evolutionary computation (EC) algorithms 
manipulate a population of solutions rather than 
a single solution. A prominent subclass of these 
algorithms is based on ideas recently derived from 
swarm intelligence. To the best of our knowledge 
almost no research has been devoted on using and 
investigating the paradigm of swarm intelligence, 
in particular particle swarm optimization (PSO), 
for the RCPSP with comprehensive computational 
experiments following the test design used by 
Kolisch & Hartmann (2006). Zhang et al. (2005) 
propose a PSO approach for the RCPSP and 
compare the effectiveness of different solution 
representations; computational results are pro-
vided only for small problem instances.

The aim of this chapter is to develop and 
investigate a robust evolutionary computation 

algorithm which combines concepts from swarm 
intelligence and well-known procedures for the 
RCPSP that is competitive to state-of-the-art 
algorithms. Via computational experiments we 
analyze the importance of algorithm components 
that are crucial for achieving high-quality results. 
The remainder of this chapter is organized as 
follows: We provide a formal description of the 
RCPSP and a review of related literature in Section 
2. In Section 3 we present a general framework 
for EC algorithms and describe the incorporation 
of swarm intelligence features and procedures for 
the RCPSP. The computational experiments will 
be subject of Section 4. Finally we draw conclu-
sions in Section 5.

2 BACKGROUND

In this section we formally introduce the RCPSP 
and briefly review the related literature.

2.1 Formal Problem Description

A project consists of a set J of N activities, J = {1, 
…, N} and a set R of K renewable resources, R = 
{1, …, K}. In general the dummy start activity 1 
and the dummy termination activity N are added 
to the project and act as source and sink of the 
project, respectively. The duration or processing 
time of activity j∈J is dj with d1 = dN = 0. Each 
activity has to be processed without interruption. 
Precedence constraints force activity j not to be 
started before all its immediate predecessors in the 
set Pj ⊂ J have been finished. The structure of a 
project can be represented by an activity-on-node 
network G = (V, A), where V is the set of activi-
ties J and A is the set of precedence relationships 
(Valls & Ballestin, 2004). While being processed, 
activity j requires rj,k units of resource k∈R in every 
time unit of its duration (with r1,k = rN,k = 0, k = 
1, …, K). For each renewable resource k there is 
a limited capacity of Rk at any point in time. The 
values dj, Rk, and rj,k (duration of activities, avail-
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ability of resources, and resource requirements 
of activities) are assumed to be nonnegative and 
deterministic.

A schedule can be presented as S = (s1, …, 
sN), where sj denotes the start time of activity j 
with s1 = 0. The objective is to determine the start 
time of each activity, so that the project makespan 
(total project duration, sN) is minimized, and both 
the precedence and the resource constraints are 
satisfied.

As a generalization of the classical job shop 
scheduling problem the RCPSP belongs to the class 
of NP-hard optimization problems (Blazewicz et 
al., 1983) and it is noted as PS | prec | Cmax ac-
cording to the common classification and notation 
described by Brucker et al. (1999).

2.2 Literature Review

For the RCPSP comprehensive surveys are 
available in the literature. Ozdamar & Ulusoy 
(1995) classify research on the RCPSP accord-
ing to the considered objectives and constraints. 
Herroelen et al. (1998) discuss the research on 
exact solution procedures for the RCPSP and 
related problems. Brucker et al. (1999) provide 
a classification scheme which is compatible with 
machine scheduling, propose a unifying notation, 
and review exact and heuristic algorithms for the 
RCPSP. Kolisch & Hartmann (1999) give a survey 
of heuristic approaches for the RCPSP, including 
priority rules and metaheuristics; based on exten-
sive computational experiments they evaluate the 
performance of the reviewed approaches. Kolisch 
& Padman (2001) survey the literature with a 
perspective towards integrating models, data, and 
optimal and heuristic algorithms; a comparison 
of commercial project scheduling systems is 
presented as well as an overview of web-based 
decision support systems. Hartmann & Kolisch 
(2000) and Kolisch & Hartmann (2006) present 
basic components of heuristic approaches and 
evaluate the state-of-the-art of the design and 

application of metaheuristics for the RCPSP on 
a benchmark set of test instances.

Heuristic methods for the RCPSP are mainly 
based on the application of schedule generation 
schemes (SGS). Activity lists (permutations of 
the activities) represent the activities’ priorities 
within a SGS, which determines the start times 
of the activities. Thus, the solution space of the 
RCPSP is indirectly represented by the set of all 
permutations of the activities. The application of 
metaheuristics for the RCPSP provides guidance 
for search processes within such a solution space 
– with the aim of balancing intensification (ex-
ploitation of solutions within promising regions of 
the search space) and diversification (exploration 
within the global search space). Metaheuristics can 
be broadly classified into local search methods and 
population-based approaches. These approaches 
may be hybridized; often local search is used as 
an intensification mechanism within a population-
based procedure.

Boctor (1996) presents a simulated annealing 
algorithm using the serial SGS and one neighbor-
hood operator. Bouffard & Ferland (2007) improve 
the simulated annealing algorithm presented by 
Jeffcoat & Bulfin (1993); the algorithm works 
directly on schedules and is enhanced with a vari-
able neighborhood search using four neighborhood 
operators. Nonobe & Ibaraki (2002) describe a 
tabu search approach based on the activity list 
representation and the serial SGS; a random 
neighborhood reduction mechanism is introduced 
in order to reduce the size of the neighborhoods. 
Thomas & Salhi (1998) propose a tabu search that 
operates directly on schedules; they define three 
neighborhoods and present a repair method since 
schedules obtained by applying a neighborhood 
move may be infeasible.

Hartmann (1998) proposes a genetic algorithm 
using a permutation-based genetic encoding con-
taining problem-specific knowledge. In Hartmann 
(2002) a self-adapting genetic algorithm is de-
scribed, which employs a genetic encoding where 
a gene decides if a serial or a parallel SGS is used. 
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Hindi et al. (2002) propose a genetic algorithm 
based on the activity list representation and the 
serial SGS. Alcaraz & Maroto (2001) propose 
a genetic algorithm using novel crossover tech-
niques and a new solution representation, which 
is based on the standard activity list representation 
where an additional gene decides if forward or 
backward scheduling is used. Alcaraz et al. (2004) 
and Alcaraz & Maroto (2006) further develop the 
solution representation proposed in Alcaraz & 
Maroto (2001) and employ an additional gene to 
encode if a serial or a parallel SGS is used (as in 
Hartmann, 2002).

Debels et al. (2006) propose a scatter search 
algorithm employing a recombination operator 
based on ideas from electromagnetism theory; 
forward-backward improvement is integrated in 
order to enhance single solutions. Kochetov & 
Stolyar (2003) describe an evolutionary algorithm 
which is based on a path relinking strategy and 
tabu search combined with a variable neighbor-
hood local search. Merkle et al. (2002) propose an 
ant colony optimization algorithm where the ants 
use a combination of two pheromone evaluation 
methods to find new solutions. During the search 
process the relative influence of the heuristic on 
the decisions of the ants is changed. Additional 
features are the decreasing influence of elitist 
solutions by forgetting them at regular intervals 
as well as a 2-opt-based local search phase.

Valls & Ballestin (2004) propose a population-
based approach with two phases; in the first phase 
elements of scatter search and path relinking and 
an alternative application of an improving pro-
cedure create promising solutions; in the second 
phase the search space around those high-quality 
solutions is explored. Valls et al. (2005) propose 
the so-called double justification technique and 
show its efficiency by incorporating it in several 
heuristic algorithms. Valls et al. (2008) present 
a hybrid genetic algorithm employing a novel 
crossover operator (peak crossover) and a new 
selection operator; a local improvement operator 

(double justification) is applied to all generated 
schedules.

The recent literature includes only very few 
descriptions of the use of PSO for the RCPSP and 
related problems. Zhang et al. (2005) propose a 
PSO for the RCPSP and compare the effectiveness 
of priority-based representation and permutation-
based representation. The serial schedule genera-
tion scheme is employed. Computational results 
for the standard set of small instances indicate 
the superiority of the permutation-based solu-
tion representation. Zhang et al. (2006) employ 
the random key representation to transform 
real valued particle positions in permutations 
of activities and modes to solve the multimode 
resource-constrained project scheduling problem 
(MRCPSP). The serial SGS is used to generate a 
schedule. A repair mechanism is introduced which 
handles constraint violations of nonrenewable 
resources. Linyi & Yan (2007) propose a PSO for 
the resource-constrained multi-project scheduling 
problem (RCMPSP). The serial SGS is used to 
transform an activity list into a schedule. As genetic 
operators a one-point crossover and a mutation 
called activity search are employed. Jarboui et al. 
(2008) propose an approach to solve the MRCPSP 
where a PSO is employed to select the mode for 
each activity. The activities are then ordered by 
a local search procedure.

3 ALGORITHM

In this section we first present a framework for 
EC algorithms and give a brief description of the 
main features of the general algorithm. Then we 
review the particle swarm optimization (PSO) 
approach and present our approach of adapting it 
to the RCPSP. That is, we describe the design of 
swarm intelligence features and heuristic methods 
for the RCPSP within the general framework for 
EC algorithms.



141

A Hybrid Particle Swarm Algorithm for Resource-Constrained Project Scheduling

3.1 Evolutionary Computation 
Algorithms

The basic idea of EC algorithms is that individu-
als of a population, which represent solutions, 
interact with one another in order to create new 
individuals (solutions) containing information 
inherited from the parents. Probabilistic operators 
such as selection, recombination, and mutation 
are employed to guide the evolution process with 
the aim to transform the population towards bet-
ter fitness values (i.e., better objective function 
values). Algorithm 1 shows a general framework 
for EC algorithms, which defines the template 
for our design of a specific PSO approach for the 
RCPSP. That is, in Section 3.3 we describe the 
solution representation and the definition of the 
procedures employed in Algorithm 1.

First, the CreatePopulation() method initial-
izes the population. Randomly created individu-
als may be inserted into the population until a 
predefined population size is reached. More so-
phisticated techniques (e.g., special construction 
heuristics) may be employed to generate improved 
individuals for the initial population. Addition-
ally, acceptance criteria (e.g., with respect to the 
diversity within the population) may be defined 
for the inclusion of individuals (e.g., a lower bound 

for the minimum distance to all other individuals 
that are already included in the population).

The population evolves iteratively until some 
termination criterion is met (e.g., with respect to 
the elapsed computation time or the number of gen-
erated (evaluated) schedules). In each iteration a 
number of individuals are created (e.g., depending 
on the population size). In the Selection() method 
a number of individuals are selected as parents. 
Since some of the individuals may be selected more 
than once parents constitutes a multiset. In the 
Recombination() method new individuals, called 
offspring, are created by combining two or more 
solutions from parents. The Mutation() method 
applies unary operators to offspring individuals 
with the aim to introduce variability. In the Im-
provement() method individuals may be enhanced 
by means of problem-specific operators. Finally 
the offspring solutions may be included into the 
population according to the Include() method, 
which may implement different strategies, e.g., 
replacement of all individuals contained in par-
ents, replacement of some of the worst solutions 
of the population, or simply adding new solutions 
(thus increasing the population size). Again ad-
ditional acceptance criteria may be defined, e.g., 
the included solutions may have to improve the 
average fitness of the population or they must not 
already be contained in the population.

Algorithm 1. The used general framework for EC algorithms

1:  initialize parameters 

2:  P:= CreatePopulation ()

3:  repeat
4:      repeat
5:          parents:= Selection (P)

6:          offspring:= Recombination (parents)

7:          offspring:= Mutation (offspring)

8:          offspring:= Improvement (offspring)

9:          P:= Include (P, offspring)

10:       until iteration completed
11:  until stop criterion met
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Most of the state-of-the-art algorithms reported 
in Kolisch & Hartmann (2006) fit within the gen-
eral framework presented in Algorithm 1. Classical 
genetic algorithms (GA), which are inspired by 
the mechanism of natural evolution combining 
survival of the fittest and randomized information 
exchange (Holland, 1975), are the most prominent 
example of EC algorithms. Genetic algorithms for 
the RCPSP are proposed by Alcaraz & Maroto 
(2001), Alcaraz et al. (2004), Hartmann (1998, 
2002), Kochetov & Stolyar (2003), and Valls et 
al. (2005, 2008). Scatter search (Glover et al., 
2003) generally operates on a relatively small 
number of solutions, called reference set. Some 
combination of two or more candidates from the 
reference set creates new solutions, which may 
be improved by means of local search. Some of 
the obtained solutions may be inserted into the 
population according to some rule with the aim 
to guarantee both high solution quality and high 
diversity among the solutions in the reference 
set. Debels et al. (2006) propose a scatter search 
algorithm for the RCPSP.

3.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a meta-
heuristic based on swarm intelligence ideas, origi-
nally introduced and applied for the optimization 
of continuous nonlinear functions by Kennedy 
& Eberhart in 1995 (Kennedy & Eberhart, 1995; 
Eberhart & Kennedy, 1995). Merkle & Midden-
dorf (2005) provide an introduction to PSO and 
the related literature. Kennedy & Eberhart (2001) 
present a more detailed introduction to PSO within 
the scope of swarm intelligence.

The basic idea of PSO is that a swarm of par-
ticles (i.e., individuals), which represent search 
(solution) space locations (positions), moves 
through the search space, thus exploring it and 
finding new solutions. The position xi ∈ Rn of 
each particle i is updated depending on the current 
location and locations where good solutions have 

already been found by the particle itself (individual 
memory) or other particles in the swarm (social 
memory). The velocity vi of a particle i is canoni-
cally updated as follows:

vi:= w * vi + c1 * U(0,1) * (pi – xi) + c2 * U(0,1) 
* (g – xi)

where pi is the best previous position of the 
particle and g is the best found position within 
the swarm so far. The parameter w is called the 
inertia weight and represents the influence of the 
previous velocity. The parameters c1 and c2 are 
acceleration coefficients which determine the 
impact of pi and g, i.e., the individual and social 
memory, respectively. Randomness is introduced 
by weighting the influence of the individual and 
social memory by random values uniformly drawn 
from [0,1]. After updating the velocity, the new 
position of the particle is calculated as

xi:= xi + vi.

There are different approaches for applying 
PSO to combinatorial optimization problems. On 
the one hand one may use, e.g., a random key rep-
resentation (Bean, 1994) and convert real-valued 
position values into an activity permutation by 
ordering them according to ascending position 
values (see the priority-based representation in 
Zhang et al. (2005)). On the other hand the solu-
tion representation and the position update may 
be adapted for the considered combinatorial op-
timization problem. Allahverdi & Al-Anzi (2006) 
present an approach where particles are associated 
with permutations of elements and two veloci-
ties that correspond to probabilities of changing 
elements. Hu et al. (2003) introduce a modified 
PSO were the velocity update is redefined based 
on the similarity of two particles. Particles change 
their permutations with a random rate defined by 
their velocity. Moraglio et al. (2007) introduce 
geometric particle swarm optimization (GPSO) as 
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a generalization of the original PSO for combinato-
rial optimization problems. This approach is based 
on the definition of geometric crossover operators 
depending on a distance function (metric) for the 
search space and a related neighborhood structure. 
While GPSO provides a general framework to 
be applied for any combinatorial optimization 
problem on the basis of some solution space and 
neighborhood structure, discrete particle swarm 
optimization (DPSO) as described by Pan et al. 
(2006) is based on problem-specific solution 
spaces and operators (see also Czogalla & Fink, 
2008). Using a binary operator ⊕ with the meaning 
that the first operand defines the probability that 
the operator given as second operand is applied, 
the update of a particle position is defined as

Xi:= c2 ⊕ F3 (c1 ⊕ F2 (w ⊕ F1 (Xi), Pi), G).

The first term of this equation is λi = w ⊕ F1 
(Xi) which represents the “velocity” of the particle. 
F1 is a swap operator which swaps two randomly 
chosen activities within the permutation Xi of the 
i-th particle. The second part δi = c1 ⊕ F2 (λi, Pi) 
represents the individual memory of the particle 
and F2 is a crossover operator applying a one-cut 
crossover on λi and the best position of the particle 
so far. The social part is represented by Xi = c2 ⊕ 
F3 (δi, G) with F3 as a crossover operator using a 
two-cut crossover on δi and the best position of the 
swarm G. The parameters w, c1, and c2 determine 
the probabilities of the application of swap and 
crossover operators, respectively.

3.3 Discrete PSO for the RCPSP

In this section we incorporate swarm intelligence 
concepts from PSO, as described earlier in this sec-
tion, into the general framework for EC algorithms 
(Algorithm 1) and we design the problem-specific 
features for the RCPSP.

SOLUTION REPRESENTATION AND 
SCHEDULE GENERATION SCHEME

A solution (particle) is represented as an activity 
list which is assumed to be a precedence feasible 
permutation of the set of activities J. The position 
in the activity list defines the activities’ priorities 
(highest priority for the first position). In order to 
derive a schedule (i.e., to determine start times 
of the activities) from the activity list a schedule 
generation scheme (SGS) is used as decoding 
procedure. For a detailed description of the se-
rial and parallel generation scheme see Kolisch 
(1996). In this chapter we use the serial SGS, 
which proceeds in N stages. At each stage one 
activity, with every predecessor activity sched-
uled, is selected according to the priorities and is 
scheduled at its earliest precedence and resource 
feasible start time. The algorithm terminates when 
all activities are scheduled.

In addition to this forward scheduling technique 
backward scheduling can be applied. Starting with 
the last activity in the activity list, an activity can 
be scheduled at its latest feasible start time such 
that all precedence constraints are observed. Ap-
plying different scheduling modes to the same 
activity list may result in different schedules with 
different makespans (Alcaraz & Maroto, 2001).

The result of the serial SSG is an active sched-
ule, i.e., no activity can be started earlier without 
delaying some other activity (Hartmann and 
Kolisch, 2000). For a formal definition of active 
schedules see Sprecher et al. (1995). The set of 
active schedules will always contain an optimal 
solution, i.e., the serial SGS does not exclude 
optimal schedules a priori (Hartmann and Kolisch, 
2000). There is some redundancy in the search 
space since different activity lists (individuals or 
solutions within the search space) may be related 
to the same schedule.

Since the solution representation is assumed to 
be a precedence feasible permutation, list schedul-
ing, a more efficient variant of the serial SGS, can 
be used. Given a precedence feasible activity list, 
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the activities can be scheduled in the order of the 
list at the earliest precedence and resource feasible 
start time. As a special case of the serial SGS, list 
scheduling has the same properties as the serial 
SGS. That is, it generates active schedules and 
hence there is always an activity list for which 
list scheduling will generate an optimal schedule 
(Hartmann & Kolisch, 2000).

As in Alcaraz & Maroto (2001) we add an 
additional gene (forward-backward gene) to the 
solution to indicate which scheduling mode is 
used to generate the schedule.

Creation of the Initial Population

We make use of two ways to create the initial 
swarm population: random and biased sampling. 
In the random approach the list of activities is 
constructed such that each activity appears in the 
list in a random position after all its predecessors. 
In addition to this random approach, we employ 
a method which determines the initial population 
using the regret-based biased random sampling 
procedure as described in Kolisch (1996). As 
priority rule we use the latest finish time rule 
(LFT) in order to derive probabilities which are 
used to select the next activity for the activity list.

In order to determine the value of the forward-
backward gene two schedules are generated for 
each individual using both scheduling modes. If 
the better schedule is obtained with the forward 
scheduling the forward-backward gene is set to 
“forward”. Otherwise it is set to “backward” (as 
in Alcaraz & Maroto, 2001).

Selection and Include

The selection mechanism employed by the DPSO 
algorithm selects the current solution (position) of 
the particle, the best solution found by the particle, 
and the best solution found by the swarm so far 
(i.e., the Selection() method is deterministic). The 
Include() method replaces the current position of 
the particle with the generated offspring.

Recombination

In the Recombination() method a crossover opera-
tor is applied to parents with the probability prec 
in order to create a new solution.

In Hartmann (1998) the two-point crossover 
was proposed along with the proof that it produces 
only precedence feasible offspring when applied 
to two precedence feasible parents. Since in our 
PSO approach parents consists of three elements, 
we extend the design of the crossover operator to 
create one offspring individual from three parent 
solutions. First, two integers q1 and q2 with 1 ≤ q1 
< q2 ≤ N are chosen as cut points. The offspring O 
is determined by first taking the list of activities at 
the positions i = 1, …, q1 from the first parent P1:

ji
O:= ji

P1.

Then the activities at positions i = q1 + 1, …, 
q2 are taken from the second parent P2:

ji
O:= jk

P2

where k is the lowest index such that

jk
P2 ∉ { j1

O, …, ji-1
O }.

The remaining activities i = q2 + 1, …, N are 
taken from the third parent P3:

ji
O:= jk

P3

where k is the lowest index such that

jk
P3 ∉ { j1

O, …, ji-1
O }.

As an example we consider the (precedence 
feasible) individuals

P1 = { 1, 2, 5, 6, 3, 7, 4, 8, 10, 9, 11 },

P2 = { 1, 3, 4, 2, 8, 7, 6, 5, 9, 10, 11 },
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and

P3 = { 1, 4, 8, 2, 6, 5, 9, 3, 7, 10, 11 }.

With the cut points chosen as q1 = 2 and q2 = 
7 the offspring results in

O = { 1, 2 | 3, 4, 8, 7, 6 | 5, 9, 10, 11 }.

The acceleration coefficients c1 and c2 deter-
mine the impact of the parents on the offspring and 
thus influence the balance between exploration and 
exploitation. In our design the cut points q1 and q2 
reflect the influence of the parent solutions on the 
offspring. In order to design a robust algorithm and 
to reduce the number of parameters we randomly 
chose values for q1 and q2 prior to each application 
of the crossover operator. Furthermore we decide 
randomly how the actual particle solution, the best 
particle solution, and the best solution found by 
the swarm are assigned as parents P1, P2, and P3.

The decision which scheduling mode is used 
to interpret the generated activity list is also part 
of the evolutionary process. The probability of 
choosing forward or backward scheduling is pro-
portional to the frequency of the scheduling modes 
in the three parents. In order to enable diversity 
with respect to the scheduling mode the inverse 
scheduling mode is selected with a probability 
of 0.10 if all three parents are interpreted by the 
same scheduling mode.

Mutation

The mutation operator applied in the Mutation() 
method is a restricted shift or insertion operator, 
which is well-known for permutation-based rep-
resentations (see, e.g., Alcaraz & Maroto, 2001; 
Boctor, 1996). A neighbor is generated by choosing 
an activity and randomly changing its position in 
the list. In order to generate a precedence feasible 
solution, the selected activity must be moved to a 
position that neither precedes any of its predeces-
sors nor succeeds any of its successors. Formally, 

let ri denote the position of the i-th activity in the 
current list, Pi the set of its immediate predeces-
sors, Si the set of its immediate successors, Li = 
max { rj, ∀ j ∈ Pi }, and Hi = min { rj, ∀ j∈ Si }. 
If i is to be moved to a new position it has to be 
placed in a position between (and including) the 
position Li + 1 and the position Hi − 1. Scanning 
the activity list each activity will be subject to 
the described mutation operator with probability 
pmut. Note that the mutation probability is usually 
quite small (see Section 4).

Improvement

Current research generally shows the usefulness of 
the hybridization of evolutionary algorithms with 
problem-specific improvement operators in order 
to obtain high-quality results. Consequently, most 
effective evolutionary methods use some kind of 
hybridization to improve individual solutions; see, 
e.g., Ruiz et al. (2006). Resulting algorithms are 
also called memetic algorithms (Krasnogor & 
Smith, 2005; Moscato, 1989), termed in relation 
to the concept of a meme (coined by Richard 
Dawkins), which describes the acquisition and 
propagation of learned features (beyond genes). 
Scatter search (Glover, 1997; Glover et al., 2003) 
is an example for an EC algorithm which em-
phasizes local search as a crucial element of the 
search process.

As shown by Kolisch & Hartmann (2006) most 
state-of-the-art algorithms for the RCPSP use a lo-
cal improvement method called forward-backward 
improvement (FBI). This multi-pass heuristic 
scheduling procedure was proposed by Li & Willis 
(1992) and used by Ozdamar & Ulusoy (1996). 
We employ FBI in the Improvement() method to 
the solutions generated in the evolutionary process 
with probability pimp. The FBI method employs 
a SGS, in our case the serial variant, in order to 
iteratively schedule the project by alternating 
between forward and backward scheduling. The 
backward and forward passes are based on free 
slack of activities. The forward free slack and 
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backward free slack of an activity in a feasible 
schedule is the amount of time that the activity 
can be shifted right or left, respectively, allowing 
the remaining activities to start on their scheduled 
dates (Tormos & Lova, 2001). A feasible schedule 
is improved by a backward-forward pass. In the 
backward pass, the activities are considered from 
right to left and scheduled at the latest feasible time 
(i.e., they are shifted to the right). Subsequently, 
in the forward pass, they are considered form left 
to right and scheduled at the earliest feasible time 
(i.e., they are shifted back to the left) (Kolisch & 
Hartmann, 2006). In every pass two schedules are 
generated. This method is repeated until no further 
improvement can be achieved. Depending on the 
scheduling mode the procedure’s sequence may 
be reversed. A similar procedure (called double 
justification) is proposed and generalized by Valls 
et al. (2005, 2006).

4 COMPUTATIONAL RESULTS

We implemented the DPSO for the RCPSP in 
C#, pursuing an object-oriented approach, thus 
allowing easy combination of different heuristic 
components. The DPSO was run on an Intel Core 
2 Duo processor with 3.0 GHz and 2 GB RAM.

We employ the test sets J30, J60, J90, and 
J120 which have been constructed by the problem 
instance generator ProGen (Kolisch et al., 1995; 
Kolisch & Sprecher, 1996). The projects consist 
of 30, 60, 90, and 120 activities, respectively. In 
total there are 480 instances with 30, 60, and 90 
activities and 600 instances with 120 activities. 
The instances, as well as the best known solutions, 
are available from the project scheduling library 
PSPLIB (available at http://129.187.106.231/
psplib/).

The design of the experiments is in line with 
Kolisch and Hartmann (2006) in order to compare 
our approach with state-of-the-art methods for the 
RCPSP. We use a specified number of generated 

schedules as termination criterion. Each configu-
ration is evaluated by 5 runs for each problem 
instance. The quality of the results is reported as 
the percentage relative deviation

Δavg = (FA – Fref) / Fref * 100 

where FA is the makespan generated by the exam-
ined algorithm A and Fref is the optimal makespan 
for the test set J30 and the critical path lower bound 
(obtained by computing the length of a critical 
path in the resource relaxation of the problem) 
for the instances with 60, 90, and 120 activities.

4.1 Parameter Selection

In order to determine accurate values for the 
parameters popsize (number of particles), prec 
(recombination/crossover probability), pmut 
(mutation probability), and pimp (probability for 
application of FBI) a full factorial design might 
be desirable, which would test all combinations 
of parameters from specific sets of reasonable 
values. However, such a strategy is impractical 
because of the large number of experiments to 
be carried out. Therefore, we utilize ParamILS, a 
local search approach for algorithm configuration 
proposed by Hutter et al. (2007) (see also Hutter, 
2007). Based on some preliminary experiments 
the parameters were discretized as shown in Table 
1. (A full factorial design would consist of 10 * 
11 * 14 * 11 = 16940 parameter configurations.) 
ParamILS was run using FocusedILS with the ob-
jective of maximizing the average approximation 
quality relative to the best known solutions with 
1000 generated schedules as termination criterion. 
The obtained parameter values are presented in 
Table 2. Note that we use the same parameter 
configuration for the runs with 1000, 5000, and 
50000 schedules as termination criterion (unlike 
some other papers).
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4.2 Basic Results

Computational results of our approach are pre-
sented in Table 3. In addition to the average 
deviation (∆avg) we report the standard deviation 
(S.D.), the minimum (Min.) and the maximum 
(Max.) of the average deviation, and the average 
CPU time (CPU) in seconds.

Tables 4, 5, and 6 compare the DPSO approach 
to state-of-the-art methods for the instance sets 
J30, J60, and J120, respectively. The tables extend 
tables taken from Kolisch & Hartmann (2006): 
We add our results (DPSO, in bold) as well as 

results reported by Alcaraz & Maroto (2006) and 
Jedrzejowicz & Ratajczak (2006) (in italics). The 
results for Alcaraz & Maroto (2001) are supple-
mented with the average deviations for 50,000 
schedules and reordered accordingly. The used 
procedures are described by keywords, the used 
SGS, and the reference to the literature. The 
methods are ordered with respect to the results 
for 50,000 evaluated schedules.

The results show that our algorithm is com-
petitive compared to state-of-the-art methods and 
even performs best on the instance set J60. The 
small standard deviations reported in Table 3 
indicate the robustness of the algorithm.

We note that the results are by far better than 
those of Zhang et al. (2005). This may be explained 
through the absence of a mutation operator that 
limits the effectiveness of the PMX crossover 
operator. Additionally no improvement method 
is used to enhance single solutions.

Table 1. Considered parameter values 

Parameter Values considered for tuning

popsize 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

prec 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

pmut 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.3

pimp 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Table 2. Determined parameter values 

Parameter J30 J60 J90 J120

popsize 70 30 20 20

prec 0.80 1.00 1.00 1.00

pmut 0.20 0.05 0.05 0.03

pimp 0.60 1.00 1.00 1.00

Table 3. Results for DPSO 

Instance set Schedules ∆avg S.D. Min. Max. CPU

J30 1,000 
5,000 
50,000

0.358
0.143
0.049

0.013 
0.019 
0.011

0.343 
0.141 
0.032

0.371 
0.184 
0.060

0.05 
0.22 
2.07

J60 1,000 
5,000 
50,000

11.558
11.008
10.681

0.034 
0.022 
0.023

11.513 
10.982 
10.657

11.605 
11.042 
10.712

0.09 
0.45 
4.40

J90 1,000 
5,000 
50,000

11.319
10.768
10.345

0.035 
0.019 
0.017

11.269 
10.734 
10.326

11.362 
10.779 
10.369

0.15 
0.70 
6.88

J120 1,000 
5,000 
50,000

34.945
33.335
32.192

0.068 
0.047 
0.059

34.853 
33.260 
32.108

35.022 
33.382 
32.250

0.25 
1.11 

10.60
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4.3 Analysis

In order to examine the importance of the dif-
ferent heuristic components incorporated in the 
proposed DPSO approach we perform a number 
of experiments with different configurations 
and analyze the results by means of analysis of 
variance (ANOVA, see, e.g., Howell, 2002). In 
the experiments we consider four factors: swarm 
intelligence ideas (interaction by means of multi-
parent recombination, i.e. crossover operator), 

mutation, forward/backward improvement, and 
the creation of the initial population (IP). In the 
design of the experiments we consider two levels 
for each factor. In case a component is used in a 
certain configuration the corresponding parameter 
is set to the value presented in Table 2. The facto-
rial design, which includes all combinations of 
levels of the factors, consists of 16 experiments. 
The experiments are in line with the description 
earlier in this section.

Table 4. Average deviations (%) from optimal makespan (J30) (extension of Kolisch and Hartmann (2006)) 

Schedules

Algorithm SGS Reference 1,000 5,000 50,000

GA,TS – path relinking 
GA – hybrid, FBI
Scatter Search – FBI 
GA – hybrid, FBI 
GA – FBI 
GA – forw.-backw., FBI 
sampling – LFT, FBI 
DPSO – FBI
TS – activity list 
sampling LFT, FBI 
PLA
GA – self-adapting 
GA – activity list 
sampling – LFT, FBI 
GA – forw.-backward 
PSO – activity list

both 
both
serial 
serial 
serial 
both 
both 

serial
serial 
both 
serial
both 
serial 
both 
serial 
serial

Kochetov and Stolyar (2003)
Alcaraz and Maroto (2006)
Debels et al. (2006)
Valls et al.(2008)
Valls et al. (2005)
Alcaraz et al. (2004)
Tormos and Lova (2003b)
Czogalla and Fink
Nonobe and Ibaraki (2002)
Tormos and Lova (2001)
Jedrzejowicz and Ratajczak (2006)
Hartmann (2002)
Hartmann (1998)
Tormos and Lova (2003a)
Alcaraz and Maroto (2001)
Zhang et al. (2005)

0.10 
0.15
0.27 
0.27 
0.34 
0.25 
0.25 
0.36
0.46 
0.30 
0.45
0.38 
0.54 
0.30 
0.33 
0.69

0.04 
0.06
0.11 
0.06 
0.20 
0.06 
0.13 
0.14
0.16 
0.16 
0.13
0.22 
0.25 
0.17 
0.12 
0.61

0.00 
0.01
0.01 
0.02 
0.02 
0.03 
0.05 
0.05
0.05 
0.07 
0.08
0.08 
0.08 
0.09 
0.10

-

Table 5. Average deviations (%) from critical path lower bound (J60) (extension of Kolisch and Hart-
mann (2006)) 

Schedules

Algorithm SGS Reference 1,000 5,000 50,000

DPSO – FBI
Scatter Search – FBI 
GA – hybrid, FBI 
GA,TS – path relinking 
GA – FBI 
GA – hybrid, FBI
GA – forw.-backw., FBI 
GA – self-adapting 
GA – activity list 
sampling – LFT, FBI 
sampling LFT, FBI 
PLA
sampling – LFT, FBI 
GA – forw.-backward

serial
serial 
serial 
both 
serial 
both
both 
both 
serial 
both 
both 
serial
both 
serial

Czogalla and Fink
Debels et al. (2006)
Valls et al.(2008)
Kochetov and Stolyar (2003)
Valls et al. (2005)
Alcaraz and Maroto (2006)
Alcaraz et al. (2004)
Hartmann (2002)
Hartmann (1998)
Tormos and Lova (2003b)
Tormos and Lova (2003a)
Jedrzejowicz and Ratajczak (2006)
Tormos and Lova (2001)
Alcaraz and Maroto (2001)

11.56
11.73 
11.56 
11.71 
12.21 
11.67
11.89 
12.21 
12.68 
11.88 
12.14 
13.33
12.18 
12.57

11.00
11.10 
11.10 
11.17 
11.27 
11.05
11.19 
11.70 
11.89 
11.62 
11.82 
12.86
11.87 
11.86

10.68
10.71 
10.73 
10.74 
10.74 
10.80
10.84 
11.21 
11.23 
11.36 
11.47 
11.52
11.54 
11.70
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Tables 7–10 show the average deviations for the 
four test sets. An “x” indicates that the parameter 
value is set according to Table 2 (0.00 otherwise). 
The configurations are ordered with respect to the 
results for 50,000 evaluated schedules. We use the 
Ryan procedure in combination with the studen-
tized range distribution (REQWQ, see Howell 
(2002) for details) with a significance level of α = 

0.05 to classify the average deviations into groups 
that are homogeneous in the sense that there is 
no significant difference among group members. 
The groups are indicated by the small numbers. 
The results show that there are differences among 
the configurations that cannot be attributed to 
error. Therefore we calculate eta-squared (η2) to 
measure the magnitude of effect associated witch 

Table 6. Average deviations (%) from critical path lower bound (J120) (extension of Kolisch and Hart-
mann (2006)) 

Schedules

Algorithm SGS Reference 1,000 5,000 50,000

GA – hybrid, FBI 
GA – hybrid, FBI
GA – forw.-backw., FBI 
Scatter Search – FBI 
GA – FBI 
GA,TS – path relinking 
DPSO – FBI
population-based - FBI 
GA – self-adapting 
sampling – LFT, FBI 
PLA
ant system 
GA – activity list 
GA – forw.-backward 
sampling LFT, FBI 
sampling LFT, FBI 
TS – activity list

serial 
both
both 
serial 
serial 
both 

serial
serial 
both 
both 
serial
serial 
serial 
serial 
both 
both 
serial

Valls et al.(2008)
Alcaraz and Maroto (2006)
Alcaraz et al. (2004)
Debels et al. (2006)
Valls et al. (2005)
Kochetov and Stolyar (2003)
Czogalla and Fink
Valls et al. (2005)
Hartmann (2002)
Tormos and Lova (2003b)
Jedrzejowicz and Ratajczak (2006)
Merkle et al. (2002)
Hartmann (1998)
Alcaraz and Maroto (2001)
Tormos and Lova (2003a)
Tormos and Lova (2001)
Nonobe and Ibaraki (2002)

34.07 
34.97
36.53 
35.22 
35.39 
34.74 
34.95
35.18 
37.19 
35.01 
35.83

- 
39.37 
39.36 
36.24 
36.49 
40.86

32.54 
33.51
33.91 
33.10 
33.24 
33.36 
33.34
34.02 
35.39 
34.41 
35.12
35.43 
36.74 
36.57 
35.56 
35.81 
37.88

31.24 
31.38
31.49 
31.57 
31.58 
32.06 
32.19
32.81 
33.21 
33.71 
33.88

- 
34.03 
34.40
34.77 
35.01 
35.85

Table 7. Average deviations (%) from optimal makespan (J30) for different parameter configurations 

Schedules

prec pmut pimp IP 1,000 5,000 50.000

x 
x 
x 
x 
x 
x 
x 
- 
- 
x 
- 
- 
- 
- 
- 
-

x 
x 
x 
x 
- 
- 
- 
- 
x 
- 
x 
- 
x 
- 
x 
-

x 
x 
- 
- 
x 
x 
- 
x 
x 
- 
x 
x 
- 
- 
- 
-

LFT 
random 

LFT 
random 
random 

LFT 
LFT 
LFT 
LFT 

random 
random 
random 

LFT 
LFT 

random 
random

0.358 
0.386 
0.616 
0.629 
0.510 
0.486 
0.918 
0.930 
0.978 
1.018 
1.019 
1.026 
1.822 
1.771 
1.985 
2.050

1 
1 
3 
3 
2 
2 
4 
4 

4/5 
5 
5 
5 
6 
6 
7 
7

0.143 
0.163 
0.293 
0.333 
0.391 
0.369 
0.867 
0.871 
0.918 
0.923 
0.989 
0.958 
1.656 
1.771 
1.837 
2.050

1 
1 
2 

2/3 
3 
3 
4 
4 

4/5 
4/5 
5 
5 
6 
7 
7 
8

0.049 
0.049 
0.157 
0.166 
0.329 
0.343 
0.834 
0.894 
0.897 
0.904 
0.928 
0.985 
1.597 
1.771 
1.802 
2.050

1 
1 
2 
2 
3 
3 
4 

4/5 
4/5 
5 

5/6 
6 
7 
8 
8 
9



150

A Hybrid Particle Swarm Algorithm for Resource-Constrained Project Scheduling

each factor (see Levine and Hullett (2002) for a 
discussion on eta-squared vs. partial eta-squared). 
The results are reported in Tables 11–14. Effects 
that are not significant at a significance level of 
α = 0.05 are marked with an asterisk.

The largest effect can be attributed to swarm 
intelligence ideas and to forward/backward im-
provement. With increasing instance size the 
balance between these two factors shifts from 
swarm intelligence towards forward/backward 

improvement. The reverse effect can be observed 
with an increasing number of generated schedules.

The factor mutation has a much smaller effect 
which increases with the number of generated 
schedules. Mutation helps to add diversity to the 
population when the crossover operator alone 
might not be able to create new permutations due 
to the similarity of the particles.

The way the initial population is created has 
the smallest effect even for small numbers of 

Table 8. Average deviations (%) from critical path lower bound (J60) for different parameter configurations 

Schedules

prec pmut pimp IP 1,000 5,000 50.000

x 
x 
x 
x 
x 
x 
- 
- 
- 
- 
x 
x 
- 
- 
- 
-

x 
x 
- 
- 
x 
x 
- 
x 
x 
- 
- 
- 
x 
- 
x 
-

x 
x 
x 
x 
- 
- 
x 
x 
x 
x 
- 
- 
- 
- 
- 
-

LFT 
random 

LFT 
random 

LFT 
random 

LFT 
random 

LFT 
random 

LFT 
random 

LFT 
LFT 

random 
random

11.559 
11.614 
11.673 
11.842 
12.516 
13.609 
12.665 
12.714 
12.587 
12.932 
13.261 
13.450 
15.523 
14.998 
15.681 
15.592

1 
1/2 
2 
3 
4 

4/5/6 
5/6 
6 

4/5 
7 
8 
9 
11 
10 
12 

11/12

11.008 
11.082 
11.312 
11.477 
11.982 
12.092 
12.417 
12.473 
12.415 
12.652 
13.127 
13.372 
15.008 
14.998 
15.371 
15.592

1 
1 
2 
3 
4 
4 
5 
5 
5 
6 
7 
8 
9 
9 
10 
11

10.682 
10.748 
11.212 
11.353 
11.557 
11.670 
12.319 
12.395 
12.406 
12.625 
13.107 
13.359 
14.880 
14.998 
15.328 
15.592

1 
1 
2 
3 
4 
5 
6 
6 
6 
7 
8 
9 
10 
11 
12 
13

Table 9. Average deviations (%) from critical path lower bound (J90) for different parameter configurations 

Schedules

prec pmut pimp IP 1,000 5,000 50.000

x 
x 
x 
x 
x 
x 
- 
- 
- 
- 
x 
x 
- 
- 
- 
-

x 
x 
- 
- 
x 
x 
- 
- 
x 
x 
- 
- 
- 
x 
x 
-

x 
x 
x 
x 
- 
- 
x 
x 
x 
x 
- 
- 
- 
- 
- 
-

LFT 
random 

LFT 
random 

LFT 
random 

LFT 
random 

LFT 
random 

LFT 
random 

LFT 
LFT 

random 
random

11.319 
11.482 
11.330 
11.591 
12.666 
12.867 
12.324 
12.630 
12.331 
12.529 
13.553 
13.800 
15.404 
16.053 
16.059 
15.982

1 
2 
1 
3 
6 
7 
4 
6 
4 
5 
8 
9 
10 
11 
11 
11

10.768 
10.853 
11.014 
11.196 
12.060 
12.256 
11.996 
12.285 
12.195 
12.223 
13.482 
13.757 
15.404 
15.637 
15.952 
15.982

1 
1 
2 
3 
4 

5/6 
4 
6 
5 

5/6 
7 
8 
9 
10 
11 
11

10.345 
10.422 
10.857 
11.064 
11.541 
11.768 
11.786 
12.042 
12.160 
12.184 
13.372 
13.696 
15.404 
15.428 
15.853 
15.982

1 
1 
2 
3 
4 
5 
5 
6 
7 
7 
8 
9 
10 
10 
11 
12
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created schedules. This may be caused by the 
small sample size used for the construction of the 
initial population or it may be an indicator of the 
effectiveness of the other factors.

In general, in order to achieve best results all 
components have to be included in the algorithm.

5 CONCLUSION AND FUTURE 
RESEARCH DIRECTIONS

In this chapter we present a robust evolutionary 
computation algorithm which uses ideas derived 
from swarm intelligence in combination with well-
known procedures for the RCPSP. The computa-

Table 10. Average deviations (%) from critical path lower bound (J120) for different parameter con-
figurations 

Schedules

prec pmut pimp IP 1,000 5,000 50.000

x 
x 
x 
x 
- 
x 
- 
- 
- 
- 
x 
x 
- 
- 
- 
-

x 
x 
- 
- 
- 
x 
- 
x 
x 
x 
- 
- 
- 
x 
x 
-

x 
x 
x 
x 
x 
- 
x 
x 
x 
- 
- 
- 
- 
- 
- 
-

LFT 
random 

LFT 
random 

LFT 
random 

LFT 
random 

LFT 
random 

LFT 
random 

LFT 
LFT 

random 
random

34.945 
35.470 
35.050 
35.706 
37.430 
39.229 
38.352 
38.002 
37.368 
39.639 
41.336 
41.792 
45.795 
47.117 
47.225 
46.988

1 
2 
1 
3 
4 
7 
6 
5 
4 
8 
9 
10 
11 
13 
13 
12

33.335 
33.694 
33.888 
34.481 
36.500 
37.616 
37.285 
37.027 
36.840 
38.136 
41.049 
41.633 
45.795 
46.383 
46.886 
46.988

1 
2 
3 
4 
5 
9 
8 
7 
6 
10 
11 
12 
13 
14 
15 
15

32.192 
32.447 
33.450 
34.035 
38.809 
36.305 
34.411 
36.682 
36.726 
36.873 
41.001 
41.570 
45.795 
45.904 
46.947 
46.988

1 
2 
3 
4 
5 
6 
6 
7 
7 
8 
9 
10 
11 
11 
12 
12

Table 11. Eta-squared (η2) for test set J30 

Schedules

Source 1,000 5,000 50,000

Main effects

Swarm intelligence (SI) 
Mutation (M) 
Forward-backward improvement 
Intial population

0.564 
0.011 
0.332 
0.007

0.608 
0.037 
0.258 
0.006

0.626 
0.058 
0.221 
0.004

Interaction effects

SI, M 
SI, FBI 
SI, IP 
M, FBI 
M, IP 
FBI, IP

0.012 
0.063 
0.002 
0.003 
0.001 
0.002

0.020 
0.053 
0.002 
0.013 

0.000 * 
0.001

0.022 
0.047 
0.003 
0.014 
0.000 
0.002

SI, M, FBI 
SI, M, IP 
SI, FBI, IP 
M, FBI, IP

0.002 
0.000 * 
0.001 

0.000 *

0.001 
0.000 * 
0.001 

0.000 *

0.002 
0.000 * 
0.001 

0.000 *

SI, M, FBI IP 0.000 * 0.000 * 0.000 *



152

A Hybrid Particle Swarm Algorithm for Resource-Constrained Project Scheduling

Table 12. Eta-squared (η2) for test set J60 

Schedules

Source 1,000 5,000 50,000

Main effects

Swarm intelligence (SI) 
Mutation (M) 
Forward-backward improvement 
Intial population

0.395 
0.005 
0.507 
0.005

0.414 
0.021 
0.483 
0.006

0.439 
0.037 
0.434 
0.006

Interaction effects

SI, M 
SI, FBI 
SI, IP 
M, FBI 
M, IP 
FBI, IP

0.010 
0.065 
0.001 
0.000 
0.001 
0.000

0.013 
0.049 
0.001 
0.005 
0.001 
0.001

0.023 
0.044 
0.001 
0.008 
0.001 
0.001

SI, M, FBI 
SI, M, IP 
SI, FBI, IP 
M, FBI, IP

0.009 
0.000 
0.000 
0.000

0.005 
0.000 * 
0.001 

0.000 *

0.005 
0.000 
0.001 

0.000 *

SI, M, FBI IP 0.000 0.000 * 0.000

Table 13. Eta-squared (η2) for test set J90 

Schedules

Source 1,000 5,000 50,000

Main effects

Swarm intelligence (SI) 
Mutation (M) 
Forward-backward improvement 
Intial population

0.303 
0.002 
0.608 
0.005

0.318 
0.012 
0.581 
0.005

0.342 
0.022 
0.533 
0.005

Interaction effects

SI, M 
SI, FBI 
SI, IP 
M, FBI 
M, IP 
FBI, IP

0.009 
0.060 
0.000 
0.001 
0.001 

0.000 *

0.018 
0.051 
0.000 
0.006 
0.001 
0.001

0.031 
0.050 
0.000 
0.011 
0.000 
0.001

SI, M, FBI 
SI, M, IP 
SI, FBI, IP 
M, FBI, IP

0.009 
0.000 

0.000 * 
0.000

0.007 
0.000 
0.000 

0.000 *

0.004 
0.000 * 
0.000 

0.000 *

SI, M, FBI IP 0.000 0.000 * 0.000 *



153

A Hybrid Particle Swarm Algorithm for Resource-Constrained Project Scheduling

tional experiments serve to analyze the importance 
of crucial algorithm components for achieving 
high-quality results. The proposed algorithm is 
competitive with state-of-the-art methods for 
the RCPSP. We provide new overall best average 
results for the medium size data set. Moreover, 
we significantly improve previous results of PSO 
for the RCPSP. The good performance can mainly 
be attributed to swarm intelligence ideas and the 
forward/backward improvement heuristic. Those 
findings are in line with Kolisch & Hartmann 
(2006) who noted, based on a literature survey, the 
effectiveness of population-based metaheuristics 
and the FBI procedure.

In subsequent work we will investigate if pre-
mature convergence, a well-known problem for 
evolutionary computation algorithms, may have 
prevented better results. The balance between 
exploration and exploitation may be improved 
by controlling the influence of the actual particle 
solution, the best particle solution, and the best 
solution found by the swarm. The use of different 
neighborhood relations between particles (swarm 
topologies) can be beneficial as well; see Czogalla 

& Fink (2009). Furthermore it might be interesting 
to investigate different strategies for the applica-
tion of FBI with respect to which particle will be 
subject to FBI.
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ABSTRACT

The biological inspired optimization techniques have proven to be powerful tools for solving scheduling 
problems. Marriage in Honeybee Optimization is a recent biological technique that attempts to emulate 
the social behavior in a bee colony and although has been applied to only a limited number of problems, 
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available upper bound for 141 instances. In the second case, they achieved an average error of 3.5% 
for the set of 120 test instances.
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INTRODUCTION

Methods for solving optimization problems 
related to productive, administrative, or logistic 
processes have become particularly important in 
the globalized world, where intensified compe-
tition has made optimization necessary for the 
survival of all types of organizations. Modeling 
the scheduling problems that arise in production 
and logistics management can be quite complex. 
For example, a manufacturing company may 
need to determine the order in which machines 
should process jobs. Assuming that the Master 
Production Schedule already exits, the start and 
end times for the production operations must be 
set based on the available capacity. These kinds 
of problems belong to the NP-hard class (Garey & 
Johnson, 1979) and have been studied extensively 
by Pinedo(2008).

Swarm Intelligence (SI) is an area of artificial 
intelligence that focuses on modeling the behaviors 
of social insects like ants and bees (Bonabeau, 
Dorigo, & Theraulaz, 1999). Ant Colony Optimi-
zation (ACO) is a well-known SI Metaheuristic 
(MH) in which optimization algorithms are in-
spired by the decentralized, collective behavior 
of ant colonies (Dorigo & Gambardella, 1997; 
Dorigo & Caro, 1999). Another SI MH is Marriage 
in Honeybee Optimization (MBO), which analyzes 
the mating flight of honey-making bees; MBO 
was originally proposed by H. Abbass (Abbass, 
2001a, 2001b, 2001c) to solve the SAT problem 
(Garey & Johnson, 1979).

The original MBO algorithm is a hybrid MH 
based on Simulated Annealing (SA) (Kirkpatrick, 
Gelatt, & Vecchi, 1983), Genetic Algorithms (GA) 
(Goldberg, 1989), and Local Search (LS) (Talbi, 
2009). It incorporates a mating function similar 
to SA and provides the advantages of GA and 
LS for generating and improving the broods by 
the worker bees. However, MBO also has a large 
number of distinguishing characteristics.

The literature includes two approaches based 
on the mating behavior of bees: MBO and Hon-

eybee Mating Optimization (HBMO), the second 
is a modified version of MBO that considers bee 
populations. Chang (2006) demonstrated the theo-
retical capacity of MBO for solving combinatorial 
optimization problems and pointed out that the 
algorithm converges. A. Baykasoğlu et al. (2007) 
reviewed the literature on bee MH approaches. 
Both methods have been applied to a variety of 
problems, including SAT, data mining (Amiri & 
Fathian, 2007; Benatchba, Admane, & Koudil, 
2005; Fathian, Amiri, & Maroosi, 2007), water 
resource management (A. Afshar, Bozorg Had-
dad, Marino, & Adams, 2007; Bozorg Haddad & 
A. Afshar, 2004; Bozorg Haddad, Abbas Afshar, 
& Mariño, 2006), constrained and unconstrained 
nonlinear optimization (Bozorg Haddad et al., 
2006), the traveling salesman (C. Yang, Tu, & 
Chen, 2007), the traveling salesman with vehicle 
routing (Marinakis, Marinaki, & Dounias, 2007, 
2008), dynamic stochastic scheduling (Bozorg 
Haddad et al., 2006), the reconfiguration of a 
radial energy distribution system (Niknam, 2009; 
Niknam, Olamaie, & Khorshidi, 2008), state es-
timation of a power distribution network system 
(Niknam, 2008), and the sales forecast problem 
(Pai, S. Yang, & P. Chang, 2009).

This chapter provides an exploratory analysis 
of MBO application for scheduling problems and 
evaluates the potential utility and adaptability 
of this method. Two scheduling problems are 
considered: minimization of earliness-tardiness 
penalties under single machine scheduling with a 
common due date constraint and the permutation 
flow shop problem.

MARRIAGE IN HONEYBEE 
OPTIMIZATION

Fundamentally, Marriage in Honeybee Optimi-
zation is a biological inspired algorithm that at-
tempts to emulate the social behavior related to 
marriage in a bee colony. The MBO strategy is 
based on a search for neighboring solutions. The 
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natural coupling process in a bee colony, which 
is composed of a queen bee, drones, workers, and 
broods, begins when the queen bee and the drones 
complete a nuptial flight. In each effective coupling 
between the queen and a drone, the queen stores the 
drone’s material in a “spermatheca”, which forms 
the genetic reserve of the hive. Every egg laid by 
the queen bee is fertilized by a random mixture 
of the material accumulated in the spermatheca. 
These eggs generate the broods, which are cared 
for by the worker bees. A schematic diagram is 
presented in Figure 1.

In MBO, the mating flight of the queen bee is 
represented by a set of state transitions. The queen 
moves between different states and selects drones 
probabilistically. The algorithm randomly initial-
izes the queen’s genotype and then improves it 
using heuristics that represent worker bees. A 
series of mating flights occur in which the queen’s 
energy and speed are initialized randomly. Thus, 
in each flight, the queen moves among the differ-
ent states (solutions) in the space according to its 
speed and mates with drones that have randomly 
generated genotypes. The probability of success-
ful mating is high when the queen is at the begin-
ning of its flight and therefore has high speed or 
when the fitness (the value of the objective func-

tion) of the drone is as good as that of the queen. 
If a drone mates successfully with the queen, its 
genetic material is added to the queen’s sperma-
theca (list of partial solutions), and the queen’s 
speed and energy are immediately reduced. After 
the queen completes its mating flight, it returns 
to the hive, randomly chooses material from the 
spermatheca, and then generates the broods 
through crossover and mutation operations be-
tween its genetic material and that of the drones. 
The broods created through the crossover are 
improved by local search heuristics, which rep-
resent the role of workers. Finally, the queen is 
replaced by the larva with the best fitness if the 
larva is more fit than the queen. The rest of the 
broods are eliminated, and a new flight begins; 
the algorithm ends when a certain number of 
mating flights have been completed.

MBO includes three main processes: a) the mat-
ing flight of the queen, which selects the parents 
of the future broods; b) the crossover between the 
genetic material of the queen bee and the drones 
selected in the mating flight, which generates the 
broods; and c) the care and improvement of the 
broods carried out by the workers, which corre-
sponds to the process of solution mutation through 
the application of heuristics (Teo & Abbass, 2001). 

Figure 1. Representation of the Marriage Bee Optimization
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All of these processes are equally relevant in the 
algorithm because each step or change is signifi-
cant in the structure of the final solution.

The Mating Flight of the Queen

At the beginning of the flight (and therefore of 
the algorithm), the queen has an initial energy E0 
and an initial speed S0; these values are initialized 
randomly in the [0.5, 1] interval to ensure a rea-
sonable number of mating events per flight. Initial 
values are sufficient for mating with between 7 and 
17 drones per flight. Both the energy and speed of 
the queen decrease according to the rules defined 
by Equations (1) and (2), respectively:

E(t+1) = E(t) – g (1)

S(t+1) = αS(t)  (2)

Parameters g and α correspond to the reduction 
factors for the queen’s energy and speed at instant 
t, respectively; g is defined by Equation (3), and 
M is the capacity of the spermatheca.

g = 0.5 E(t)/M (3)

The energy and speed specifications for the 
queen logically emulate the behavior observed in 
nature; the queen’s energy specification is directly 
related to the duration of each flight because the 
queen can search for drones in the neighborhood 
of the solution space until either its energy is zero 
or its spermatheca is full. Similarly, the queen’s 
speed specification is related to the probability of 
successfully mating with each drone. Thus, when 
the queen’s speed is high (at the beginning of its 
flight), there is a higher probability of successful 
mating. In contrast, when the queen’s speed is 
low, the probability of successful mating is lower.

The success of the random mating flight of 
the queen depends on the route followed by the 
drones due to drones that are closer to the queen 
are more likely to successfully mate.

Although the drones are also initialized ran-
domly, they mutate in the solution space before 
mating with a probability that depends on the 
queen’s speed.

After the generation of the initial trajectories 
of the queen (q) and drones (d), the drones with 
which the crossover of genetic material will take 
place are selected. This process is conducted by 
considering the crossover probability of each 
drone with the queen, as defined by Equation (4).

p(q, d) = exp{- l(q,d)/s(q) }  (4)

Where l(q,d) = diff(f(q), f(d)) is the difference 
between the evaluations of the fitness functions; 
if f is defined in R, then l(q,d) = |(f(q) - f(d) |. 
The function p(q, d) represents the probability 
of successful mating (the probability that the 
genetic material of the drone will be added to the 
spermatheca of the queen). The function s(q) is 
the speed of queen q at instant t. The probability 
of a successful mating is high when the differ-
ence between the fitness of the queen and of the 
drone is small or when the speed of the queen is 
sufficiently high.

In MBO, the queen accepts the drones as 
parents by a random process. To emulate that 
behavior a random number in the [0, 1] interval 
is generated for each queen and is then compared 
with the highest mating probability of a certain 
drone with respect to each queen. If the mating 
probability is greater than the generated number, 
the queen accepts the drone as a parent and utilizes 
one-half of the drone’s genetic material.

After each state transition in a flight, the 
queen’s energy and speed are updated according 
to Equations (1) and (2). The mating flight ends 
when the queen’s energy is zero (E(t) = 0) or when 
its spermatheca (M) is full.

Crossover

Once the queen’s flight has ended, the reproduction 
stage takes place by generating the larvae. During 
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reproduction, a drone’s sperm that was previously 
deposited in the spermatheca is selected randomly; 
the crossover creates a new larva.

The Care and Improvement of Broods

Once the larvae have been created, the workers 
improve them by mutation. The workers are mod-
eled as local search algorithms that improve the 
larvae obtained from the queen-drone crossover. 
Once the broods have been improved, if there is a 
larva with better fitness than the queen, it replaces 
the queen. The remaining broods are eliminated, 
and a new mating flight begins. This is repeated 
until all of the mating flights have been completed 
or until the end condition is satisfied.

Abbass (2001b) describes a variant of MBO 
that considers the mating flight of several queens. 
In the main loop, the algorithm initializes the 
speed and energy of each queen, which then 
moves between different states and chooses drones 
probabilistically. In the final stage, the weakest 
queen is replaced by the best brood.

APPLYING MBO TO 
SCHEDULING PROBLEMS

The purpose of this section is to apply MBO to 
two types of scheduling problems: the minimiza-
tion of earliness-tardiness penalties in a single 
machine scheduling problem with a common tight 
due date and the permutation flow shop problem 
(Pinedo, 2008).

Minimizing Earliness: Tardiness 
Penalties in a Single Machine 
Scheduling Problem with 
Common Tight Due Dates

In a single machine scheduling problem, opti-
mization techniques are used to minimize the 
total penalties accrued due to early or tardy job 

completion time with respect to a common due 
date (SMWET). Each job j, j = {1,2,…, n} has a 
processing time pj, and the due date d is shared by 
all of the jobs within the set. A job is considered 
early if its completion time Cj is less than the time 
between the start time and the common due date. 
On the other hand, a job is considered tardy if it 
is completed after the due date. Therefore, if the 
time for completing the job j is longer or shorter 
than the period between the start time and the due 
date, a penalty is incurred.

Earliness and tardiness are obtained as Ej = 
max { 0, -Lj } = max { 0, d - Cj } and Tj = max { 
0, Lj } = max { 0, Cj – d }, respectively, for each 
job j. The unit penalties per unit time of job j for 
being early or tardy are α j and β j, respectively. 
The objective is to find a feasible schedule, S, 
that minimizes the total penalties for earliness 
and tardiness (Equation 5).
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In general, problems that involve common due 
dates can be classified into two categories: Tight 
and Loose Due Dates. If the common due date 
has no influence on the optimum sequence of the 
jobs, the problem is said to be a Loose Due Date 
case. On the other hand, if the given common 
due date influences the optimum job sequence, 
the problem is said to be a Tight Due Date (M. 
Feldmann & D. Biskup, 2003). Equation (5) refers 
to the Tight Due Date case.

The minimization problem for total job earli-
ness and tardiness penalties with respect to a 
common due date has been studied by multiple 
authors (Gordon, V. et al., 2002, Baker & Scud-
der, 1989, 1990). Hall et al. (1991) showed that 
the problem is NP-Hard.

Due to the complexity of the problem, several 
authors have used heuristic approaches. For ex-
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ample, Lee and Kim (1995) solved SMWET by 
means of a parallel genetic algorithm, and James 
(1997) used a tabu search algorithm. However, 
until Biskup and Feldmann (2001), no authors 
had accounted for the third property mentioned 
by these authors: an optimum sequence of jobs 
does not necessarily start at time zero. Biskup 
and Feldmann (2001) prepared a set of test in-
stances and solved them by two specific heuristic 
methods. They presented the values obtained for 
the upper bounds of the solution and established 
a point of comparison for future approaches. 
Biskup and Feldmann (2001) studied SMWET 
with five different MH approaches: evolutionary 
strategy, simulated annealing, algorithms based 
on threshold-accepting, evolutionary strategy with 
a destabilizing phase, and algorithms based on 
threshold-accepting strategy with search process 
stabilization. Later, Hino et al. (2005), Pan, Q-K. 
et al.(2006), Shih-Wei Lin et al. (2007), Liao C. 
and Cheng C. (2007), Pham D.T. et al. (2007), and 
Nearchou (2008) utilized the comparison points 
proposed by Biskup and Feldmann (2001) during 
their studies of SMWET.

In order to present a generic solution for 
SMWET (Nearchou, 2008), we use a permutation 
chain that represents a physical sequence of jobs. 
Thus, for an instance that considers n jobs, the 
solution space contains n! different permutations.

Defining the Set of Parameters

Each genotype (queen, drone and larva) is rep-
resented by a sequence of jobs of equal length 
n. The first job in an optimum schedule may not 
start at time zero. Fixed parameters are used to 
solve all of the instances (Dirk Biskup & Martin 
Feldmann, 2001).

Three general parameters are employed in 
the proposed algorithm. The number of queens 
(Q) was set at four, and a different solution was 
delivered for each of the queens at each iteration. 
The number of drones (D), the maximum number 
of drones with which the queen will mate in a 
flight, was set experimentally at D = 10 drones 
per flight. The capacity of the spermatheca (M), 
the amount of drone genetic material that the 
queen can store after each flight, was defined as 
M = 10 (Abbas, 2001b). The other parameters are 
shown in Table 1.

Determining the Initial Population

To provide greater diversity in the algorithm, the 
initial solution was randomly generated for two 
of the four queens and was obtained from the 
LPT and SPT rules for the other two (A. Afshar 
et al., 2007; Pinedo, 2008; Teo & Abbass, 2003).

The initial queens were improved by local 
search algorithms, which represent the workers. 

Table 1. Parameters for Marriage Bees Optimization 

Parameter Source Value

Number of queen bees Preliminary Experiments 4

Number of drones Preliminary Experiments 100

Initial speed of the queen bees Teo & Abbass (2003) 0.9

Energy reduction factor of 
the queen bees

Teo & Abbass (2001) g

Speed reduction factor of 
the queen bees

Preliminary Experiments 0.98

Spermatheca capacity Abbass (2001a, 2001b, 2001c) 10

Number of flights Preliminary Experiments 20
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The initial population of drones was also randomly 
generated, and each drone mutated randomly at 
the time of coupling.

Mutations were completed with a genotype 
marker that randomly marks exactly one-half 
of the genes in the drone’s genotype. These 
marked genes, which correspond to those used 
in the crossover, are disordered after the marking 
operation. Figure 2 depicts a drone’s genotype, 
the genotype marker operator, and the mutation 
operator; m corresponds to a marked gene, n/m 
indicates that the genotype has not been marked, 
and * represents a nonexistent gene.

Through this process, the original drone 
genotype denoted by SD becomes the mutated 
drone genotype denoted by S’D at each transition. 
If f (S’D) < f (SD), the mutated drone replaces the 
original one: SD= S’D.

Selecting the Drones’ Genetic Material

In the application of the algorithm to SMWET, 
the queen randomly adds the drone’s material 
to its spermatheca according to Equation (4). A 
random number in the interval [0, 1] is generated 
for each queen and is then compared to the highest 
mating probability of a certain drone with respect 
to each queen. If the mating probability is greater 
than the generated number, the queen accepts the 
drone as a parent and accepts half of the drone’s 
genetic material. Finally, if the fitness of a drone 
is better than the fitness of a queen, the latter is 
replaced by the former.

Obtaining Broods

The drone genetic material is chosen randomly 
from the available material stored in the sperma-
theca and is combined with randomly chosen queen 
genetic material to generate broods by applying 
the crossover operator.

A new larva is generated from the genotypes of 
parent 1 and parent 2. Genes from parents 1 and 
2 are used as the tail and head of the new larva, 
respectively, as depicted in Figure 3.

Experimentally, it was decided to consider the 
drone to be parent 1 in 70% of the cases and the 
queen to parent 1 in 30% of the cases. This is 
justified because the genotype of the queen is 
generally better than of the drone.

Improvement of the Larvae

Three heuristics were applied to model the pro-
cess by which workers improve both the initial 
queen population and the larvae obtained from 
the crossover. The heuristics corresponded to hill 
climbing (Haouari & M’Hallah, 1997), simulated 
annealing (Kirkpatrick et al., 1983), and a local 
search operator of Biskup and Feldmann ((2001). 
The heuristic was selected from the three candi-
dates probabilistically. Each heuristic candidate 
was associated with a choice probability, and the 
heuristic with the highest probability was chosen. 
At the beginning of the iterations, the probability 
was 1/w, where w represents the total number of 
workers.

The average improvement ih obtained by each 
heuristic, which corresponds to the average im-

Figure 2. “Genotype Marker” operator
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provement of the solution (larva), was updated 
and saved on a list. The choice probability was 
updated to consider the impact of the heuristic 
that provided the greatest average improvement. 
The new choice probability p’ is defined as the 
previous probability p plus the fraction of total 
improvement due to h, corrected by the number 
of workers w. The new choice probability is given 
by Equation (6):

p’ = p + ih/∑w ih (6)

The choice rule shown in Equation (6) was used 
after each iteration of the heuristics to identify 
the heuristic with the highest choice probability. 
After the method of improvement was chosen, it 
was executed multiple times: 200 iterations for 
simulated annealing, 50 for hill climbing, and 
40 for the local search operator. The numbers of 
iterations were obtained experimentally.

Test Instances Used for Experiments

The MBO proposed for SMWET was implemented 
in the Python language on Linux and was executed 
on a personal computer with an AMD Athlon 64 
3000+, 1 GB RAM. The algorithm was tested by 
solving a set of test instances available in OR-

Library (Beasley, 1990). This set of instances 
includes a total of 280 benchmarks covering seven 
problem categories, with n = 10, 20, 50, 100, 200, 
500 and 1000 jobs with ten instances each. Tight 
due date values were r = 0.2, 0.4, 0.6 and 0.8. 
The common due date value was generated by 
d = r∙∑pj; in other words, for each instance, the 
common due date value was estimated by multi-
plying the value of the tight factor by the sum of 
the processing times pj of the n jobs. Thus, smaller 
values of r indicate tighter problems.

Numerical Results

MBO performance was measured by comparing 
the percent error e (Equation 7) of the solutions 
obtained (f*) related to the upper bound values 
u, which were taken from Biskup and Feldmann 
(2001).

e = 100(f* - u)/u (7)

Tables 2 and 3 detail the results obtained for 
the 280 instances. Table 2 shows the results for 
the small instances with 10, 20 and 50 jobs, and 
Table 3 shows the results for the large instances 
with 100, 200, 500 and 1000 jobs. For each set 
of instances, the two tables include the problem 

Figure 3. Crossover operators
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size n, the instance number k, the tight due date 
factor r, the upper bound u found by Bector et al. 
(1988), the value found by the MBO f*, and the 
error e according to Equation (7).

For all 120 small instances, the solution found 
is better or equal to the best known solution. On 
average, the solution improved the previously 
best known solution by 1.40% (Table 2). Simi-

Table 2. Result for SMWET, with n = 10, 20 and 50 

r = 0.2 r = 0.4 r = 0.6 r = 0.8

n k u f* e (%) u f* e (%) u f* e(%) u f* e(%)

10 1 1936 1936 0.00 1025 1025 0.00 841 841 0.00 818 818 0.00

2 1042 1042 0.00 615 615 0.00 615 615 0.00 615 615 0.00

3 1586 1586 0.00 917 917 0.00 793 793 0.00 793 793 0.00

4 2139 2139 0.00 1230 1230 0.00 815 815 0.00 803 803 0.00

5 1187 1187 0.00 630 630 0.00 521 521 0.00 521 521 0.00

6 1521 1521 0.00 908 908 0.00 755 755 0.00 755 755 0.00

7 2170 2170 0.00 1374 1374 0.00 1101 1101 0.00 1083 1083 0.00

8 1720 1720 0.00 1020 1020 0.00 610 610 0.00 540 540 0.00

9 1574 1574 0.00 876 876 0.00 582 582 0.00 554 554 0.00

10 1869 1869 0.00 1136 1136 0.00 710 710 0.00 671 671 0.00

20 1 4431 4394 -0.01 3066 3066 0.00 2986 2986 0.00 2986 2986 0.00

2 8567 8430 -0.02 4897 4847 -0.01 3260 3206 -0.02 2980 2980 0.00

3 6331 6210 -0.02 3883 3838 -0.01 3600 3583 -0.01 3600 3583 -0.01

4 9478 9188 -0.03 5122 5118 -0.01 3336 3317 -0.01 3040 3040 0.00

5 4340 4215 -0.03 2571 2495 -0.03 2206 2173 -0.02 2206 2173 -0.02

6 6766 6527 -0.04 3601 3582 -0.01 3016 3010 0.00 3016 3010 0.00

7 11101 10455 -0.06 6357 6238 -0.02 4175 4126 -0.01 3900 3878 -0.01

8 4203 3920 -0.07 2151 2145 0.00 1638 1638 0.00 1638 1638 0.00

9 3530 3465 -0.02 2097 2096 0.00 1992 1965 -0.01 1992 1965 -0.01

10 5545 4979 -0.10 3192 2925 -0.08 2116 2110 0.00 1995 1995 0.00

50 1 42363 40697 -0.04 24868 23792 -0.04 17990 17969 0.00 17990 17937 0.00

2 33637 30624 -0.09 19279 17920 -0.07 14231 14054 -0.01 14132 14200 0.01

3 37641 34425 -0.09 21353 20502 -0.04 16497 16509 0.00 16497 16591 0.01

4 30166 27755 -0.08 17495 16657 -0.05 14105 14121 0.00 14105 14215 0.01

5 32604 32307 -0.01 18441 18007 -0.02 14650 14612 0.00 14650 14618 0.00

6 36920 34969 -0.05 21497 20385 -0.05 14251 14274 0.00 14075 14116 0.00

7 44277 43134 -0.03 23883 23038 -0.04 17715 17637 0.00 17715 17682 0.00

8 46065 43859 -0.05 25402 24892 -0.02 21367 21403 0.00 21367 21435 0.00

9 36397 34234 -0.06 21929 19986 -0.09 14298 14202 -0.01 13952 14056 0.01

10 35797 32960 -0.08 20048 19167 -0.04 14377 14409 0.00 14377 14416 0.00
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Table 3. Result for SMWET, with n = 100, 200, 500 and 1000 

r = 0.2 r = 0.4 r = 0.8

N k u f* e (%) u f* e (%) u f* e(%)

100 1 156103 145623 -6.71 89588 86380 -3.58 72019 73183 1.62

2 132605 124972 5.76 74854 73486 -1.83 59351 60362 1.70

3 137463 129911 -5.49 85363 79763 -6.56 68537 69697 1.69

4 137265 129749 -5.48 87730 79589 -9.28 69231 70262 1.49

5 136761 124436 -9.01 76424 71627 -6.28 55277 55973 1.26

6 151930 139321 -8.30 86724 78067 -9.98 62519 63146 1.00

7 141613 135181 -4.54 79854 78597 -1.57 62213 63453 1.99

8 168086 160158 -4.72 95361 94629 -0.77 80844 81370 0.65

9 125153 116653 -6.79 73605 69916 -5.01 58771 58996 0.38

10 124446 119120 -4.28 72399 72133 -0.37 61419 62285 1.41

200 1 526666 499408 -5.18 301449 298952 -0.83 254268 264365 3.97

2 566643 543008 -4.17 335714 320699 -4.47 266028 274201 3.07

3 529919 490462 -7.45 308278 298587 -3.14 254647 268894 5.59

4 603709 587741 -2.64 360852 353113 -2.14 297269 307182 3.33

5 547953 515285 -5.96 322268 305632 -5.16 260455 269743 3.57

6 502276 479853 -4.46 292453 280955 -3.93 236160 247641 4.86

7 479651 456839 -4.76 279576 278022 -0.56 247555 256231 3.50

8 530896 496257 -6.52 288746 280299 -2.93 225572 233697 3.60

9 575353 530693 -7.76 331107 316412 -4.44 255029 265234 4.00

10 572866 540116 -5.72 332808 326195 -1.99 269236 279286 3.73

500 1 3113088 2975034 -4.43 1839902 1789511 -2.74 1581233 1640983 3.78

2 3569058 3393446 -4.92 2064998 1999487 -3.17 1715332 1810535 5.55

3 3300744 3121429 -5.43 1909304 1900634 -0.45 1644947 1698452 3.25

4 3408867 3255505 -4.50 1930829 1888910 -2.17 1640942 1703427 3.81

5 3377547 3132862 -7.24 1881221 1809312 -3.82 1468325 1519876 3.51

6 3024082 2811235 -7.04 1658411 1632663 -1.55 1413345 1489321 5.38

7 3381166 3199398 -5.38 1971176 1904756 -3.37 1634912 1698743 3.90

8 3376678 3154755 -6.57 1924191 1843914 -4.17 1542090 1602894 3.94

9 3617807 3391379 -6.26 2065647 1979537 -4.17 1684055 1772641 5.26

10 3315019 3163870 -4.56 1928579 1840624 -4.56 1520515 1601720 5.34

1000 1 15190371 14099474 -7.18 8570154 8149624 -4.91 6411581 6685430 4.27

2 13356727 12454682 -6.75 7592040 7327215 -3.49 6112598 6365740 4.14

3 12919259 12061237 -6.64 7313736 7116546 -2.70 5985538 6250910 4.43

4 12705259 11903382 -6.31 7300217 7105489 -2.67 6096729 6354634 4.23

5 13276868 12556618 -5.42 7738367 7398453 -4.39 6348242 6672924 5.11

continued on following page
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larly, for instances with 100 or more jobs, MBO 
achieved better solutions for all instances with 
tight factors of 0.2 and 0.4 (Table 3). For the tight 
instances (r = 0.2), average improvements were 
3.84% for instances with 20 jobs, 5.69% for in-
stances with 50 jobs, 6.11% for instances with 
100 jobs, and 5.46% for 200 jobs. For instances 
with 20 jobs and r = 0.6 or 0.8, the average im-
provements obtained were 0.72% and 0.41%, 
respectively. For instances with 50 jobs, average 
improvements obtained were 0.20% for r = 0.6 
and 0.28% for r = 0.8 (Table 2). For problems 
with r = 0.8 and n = more than 100 jobs, MBO 
solutions were worse than the previously best 
known solutions.

The experiment shows the potential of using 
MBO to minimize the total penalties due to earli-
ness and tardiness in a single machines schedul-
ing problem. Performance was evaluated with a 
set of 280 standard instances from the SMWET 
literature. It was found that MBO performed quite 
well for a wide range of instances and achieved an 
average improvement of 1.4% for all instances. 
We obtained better solutions than the available 
upper bound for 141 instances. Additionally, for 
193 instances, MBO yielded solutions that were 
better than or equal to the previously best known 
solution, demonstrating that MBO is an effective 
tool for SMWET.

Permutation Flow-Shop Problem

The permutation flow-shop problem (PFSP) is a 
particular case of the flow-shop problem in which 

there are m machines in series and each job has 
to be processed sequentially by every machine. 
The objective is to determine an optimal schedule 
(Pinedo, 2008). In PFSP, the sequence of jobs is the 
same for every machine. In other words, if a job is 
at the ith position on one machine, then it is at the 
ith position on all machines. As a consequence, 
optimization is used to minimize the makespan: 
the finishing time for n jobs on m machines. This 
problem has been widely studied because it has 
many real applications and because it continues 
to pose a challenge due to its computational 
complexity (Amiri & Fathian, 2007; Framinan, 
J. N. Gupta, & Leisten, 2004; Ribas, Companys, 
& Tort-Martorell, 2010).

Structure of Solution and Parameters

The genotypes of the drones, queens and larvae 
are represented by a permutational sequence of 
jobs of equal length for all the individuals. For 
example, Figure 4 depicts representations of a 
queen, a drone and a larva when seven jobs are 
available.

MBO parameters for PFSP are shown in Table 
4. Most of these parameters were obtained ex-
perimentally, and the others were obtained from 
the literature.

Obtaining the Initial Population

The best queen was generated by Palmer’s heuris-
tic (1965), and the rest of the queens were obtained 
by a random procedure. The drone population was 

r = 0.2 r = 0.4 r = 0.8

N k u f* e (%) u f* e (%) u f* e(%)

6 12236080 11749705 -3.97 7144491 6987842 -2.19 6082142 6415273 5.48

7 14160773 13354947 -5.69 8426024 7982541 -5.26 6575879 6903158 4.98

8 13314723 12324002 -7.44 7508507 7289547 -2.92 6069658 6360704 4.80

9 12433821 11865221 -4.57 7299271 7284531 -0.20 6188416 6468270 4.52

10 13395234 12485997 -6.79 7617658 7322548 -3.87 6147295 6493815 5.64

Table 3. Continued
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obtained by a random procedure that is designed 
to generate only feasible solutions. Because the 
drones cannot have the same genetic material, 
different drones were created for different flights 
to increase the number of explored permutations.

Selecting the Drone’s Genetic Material

Energy and speed are defined as uniform random 
variables in the interval [0, 1], and both param-
eters decrease according to α and g, respectively 
(Equations 1 and 2). When a particular mating 
takes place, the queen chooses randomly whether 
to open its spermatheca for the selected drone; a 
number between 0 and 1 is generated to represent 
the queen’s decision. If this number is smaller 
than the drone’s mating probability, the queen will 
open its spermatheca, allowing the algorithm to 
choose among the different solutions provided by 
the drones. Finally, once all of the selected drone’s 

sperm has entered the spermatheca, the drone 
is immediately removed from the search space.

Obtaining Broods

Crossover is achieved by randomly selecting a 
cutting point in the genetic material for each of 
the queens within the sequence of jobs. Specifi-
cally, we used the crossover developed by Davis 
(1991) called OX. In Figure 5, five jobs are used 
to describe a crossover between queen R1 and 
drone Z1 to produce two larvae.

Mutation involves the random alteration of 
each component in the sequence of jobs. The 
mutation used is illustrated in Figure 6.

Evaluating the Larvae and Updating the 
Population

The evaluation function determines whether an 
individual fits in the configuration space based on 
its cost. The function attempts to obtain the best 
makespan for each individual. The population 
is updated by replacing the least adapted queen 
with the best larvae that was obtained from the 
crossover between a queen and a drone.

Stopping Criteria

During the iteration process, the objective function 
is always reduced. Therefore, the number of flights 
(iterations) initialized and input to the computer 
program controls the extent of the evaluation of 

Table 4. Parameters for the Permutation Flow 
Shop Problem with MBO 

Parameters Source Value

Number of Queens Preliminary Experiments 3

Drones population Preliminary Experiments 100

Spermatheca capacity Preliminary Experiments 100

Initial speed of Queen Bees Preliminary Experiments 10

Initial energy of Queen Bees Random [0, 1]

Lost energy of Queen Bees Abbass (2001a) 0.1

Figure 4. Structure of individual genotypes
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MBO efficiency. In this case, the stopping criterion 
was 1000 iterations.

Numerical Results

A computer with an AMD Athlon 64 3000+, 1 GB 
RAM, Linux and the Python 2.5 programming 
language was used for the experiment. Instances 
were taken from OR-Library (Beasley, 1990) and 
120 instances from Taillard (1990).

Each instance was executed ten times with its 
corresponding parameters to assess the average 
error and efficiency of the algorithm. The error 
in the best solution (e) is determined by Equation 
(8), where f* is best solution found and u is the 
best known solution.

e = 100f*/u (8)

The results obtained for each evaluated 
configuration are depicted in Table 5; the first 
column presents the number of the configuration, 
the second presents the number of jobs, the third 
presents the number of machines and the fourth 
corresponds to the average error. In Table 5, the 
average general error for the 120 test instances 
is 4.93%.

The first set of ten instances, which considered 
twenty jobs and five machines, yielded an average 
error of 1.24% and a standard deviation of 0.56%.

As given in the last column of Table 6, running 
time averaged 46.3 seconds. Additionally, Table 7 
shows other results with different numbers of jobs.

A comparison of running times (Table 6) 
demonstrates that run times tend to increase as 
the number of jobs and the number of machines 
in the test instances increase.

Table 8 shows the results for Taillard’s in-
stances (1990), which are larger and tend to 
require a greater amount of computation time. 
Nevertheless, the percent error with respect to 
the best value available in the OR-Library did 
not necessarily increase.

The MBO used in this work achieved an ef-
ficiency of 96.5% and an average error of 3.5% 
for the set of 120 test instances. The running time 
was affected more by the number of jobs to be 
scheduled than by the number of machines used. 
We believe that this is primarily due to the time 
required to handle more extensive genotypes.

Figure 6. Transposed mutation for a larva

Figure 5. OX crossover between a queen bee and 
a drone
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CONCLUSION

In this chapter, we apply an MBO-based approach 
to solve two scheduling optimization problems: 
the minimization of earliness-tardiness penalties 
on single machine scheduling and the permutation 
flow shop. This method yielded solutions that were 
equal to or better than the best known solutions 
for most of the instances studied.

State-of-the-art evolutionary techniques have 
proven to be powerful tools for solving scheduling 
problems; their results are competitive with those 

produced by traditional techniques. Although 
MBO is a recent technique that has been applied 
to only a limited number of problems, it has 
delivered promising results. Additional experi-
mental work will provide interesting information 
on its potential, adaptability and results for other 
scheduling problems.

By appropriately combining parameters and 
adequately representing the solution, competitive 
results are obtained for both running time and 
solution quality.

Table 6. Results for the Permutation Flow Shop Problem with 20 jobs and 5 machines 

Problem u f* e [%] Running Time [s]

1 1278 1288 0.78 45.78

2 1359 1368 0.66 46.89

3 1081 1102 1.94 46.51

4 1293 1309 1.24 44.79

5 1235 1243 0.65 46.12

6 1195 1222 2.26 48.38

7 1234 1253 1.54 46.77

8 1206 1215 0.75 46.95

9 1230 1247 1.38 44.16

10 1108 1121 1.17 46.69

Table 5. Instances used for the Permutation Flow Shop Problem 

Configuration Number Number of Jobs Number of Machines e [%]

1 20 5 3.60

2 20 10 4.80

3 20 20 4.70

4 50 5 3.30

5 50 10 7.30

6 50 20 9.10

7 100 5 2.30

8 100 10 4.60

9 100 20 9.10

10 200 10 4.10

11 200 20 8.90

12 500 20 6.30
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Table 7. Computational results with MBO for the Permutation Flow Shop Problem 

Number, 
Instance 
size (m.n)

u f* e [%] Running 
Time [s]

Number 
Instance 
size (m.n)

u f* e [%] Running 
Time [s]

1(20.10) 1582 1631 3.10 54.14 1(50.10) 2991 3065 2.47 85.4

2 1659 1715 3.38 54.47 2 2867 3023 5.44 85.2

3 1496 1513 1.14 53.89 3 2839 2982 5.04 83.6

4 1377 1414 2.69 55.86 4 3063 3138 2.45 84.5

5 1419 1458 2.75 54.54 5 2976 3121 4.87 85.2

6 1397 1428 2.22 54.34 6 3006 3178 5.72 82.4

7 1484 1511 1.82 53.47 7 3093 3261 5.43 83.2

8 1538 1593 3.58 54.27 8 3037 3163 4.15 85.1

9 1593 1651 3.64 54.59 9 2897 3030 4.59 86.0

10 1591 1643 3.27 54.64 10 3065 3229 5.35 84.1

1(20.20) 2297 2345 2.09 71.9 1(50.20) 3847 4031 4.78 120.8

2 2099 2135 1.72 69.6 2 3704 3874 4.59 123.4

3 2326 2394 2.92 70.4 3 3640 3818 4.89 120.2

4 2223 2294 3.19 70.2 4 3719 3903 4.95 122.1

5 2291 2361 3.06 71.3 5 3610 3759 4.13 122.0

6 2226 2275 2.20 69.7 6 3679 3853 4.73 123.1

7 2273 2357 3.70 70.8 7 3704 3871 4.51 121.3

8 2200 2258 2.64 70.2 8 3691 3841 4.06 120.2

9 2237 2310 3.26 69.9 9 3741 3915 4.65 121.2

10 2178 2263 3.90 70.4 10 3756 3939 4.87 122.6

1(50.5) 2724 2770 1.69 66.3 1(100.5) 5493 5604 2.02 99.4

2 2834 2921 3.07 67.1 2 5268 5311 0.82 99.7

3 2621 2687 2.52 69.3 3 5175 5305 2.51 101.2

4 2751 2848 3.53 68.2 4 5014 5058 0.88 100.4

5 2863 2961 3.42 68.4 5 5250 5326 1.45 101.3

6 2829 2832 0.11 69.4 6 5135 5259 2.41 98.6

7 2725 2812 3.19 67.3 7 5246 5370 2.36 100.4

8 2683 2702 0.71 67.0 8 5094 5242 2.91 101.8

9 2552 2634 3.21 68.8 9 5448 5598 2.75 101.3

10 2782 2846 2.30 66.7 10 5322 5414 1.73 100.5
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ABSTRACT

A large number of real-life optimization problems in economics and business are complex and difficult 
to solve. Hence, using approximate algorithms is a very good alternative to solve this class of problems. 
Meta-heuristics solution procedures represent general approximate algorithms applicable to a large 
variety of optimization problems. Most of the meta-heuristics mimic natural metaphors to solve complex 
optimization problems. This chapter presents a novel procedure based on Bacterial Phototaxis, called 
Global Bacteria Optimization (GBO) algorithm, to solve combinatorial optimization problems. The 
algorithm emulates the movement of an organism in response to stimulus from light. The effectiveness 
of the proposed meta-heuristic algorithm is first compared with the well-known meta-heuristic MOEA 
(Multi-Objective Evolutionary Algorithm) using mathematical functions. The performance of GBO is 
also analyzed by solving some single- and multi-objective classical jobshop scheduling problems against 
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INTRODUCTION

A large number of real-life optimization problems 
in economics and business are complex and dif-
ficult to solve. They cannot be solved in an exact 
manner within a reasonable amount of time (Talbi, 
2009). Using approximate algorithms is the main 
alternative to solve this class of problems. Accord-
ing to Talbi (2009), approximate algorithms can 
be classified in two classes: dedicated heuristics 
and meta-heuristics. The former are problem-
dependent and are designed and applicable to a 
particular problem. The latter are called meta-heu-
ristics procedures and represent more general ap-
proximate algorithms applicable to a large variety 
of optimization problems. Meta-heuristics solve 
instances of problems that are believed to be hard 
in general, by exploring the usually large solution 
search space of these instances. Those algorithms 
achieve this by reducing the effective size of the 
space and by exploring that space efficiently. With 
the improvement of computing performance, the 
past 20 years have witnessed the development of 
numerous meta-heuristic algorithms in various 
communities that sit at the intersection of several 
fields, including artificial intelligence, computa-
tional intelligence, soft computing, mathematical 
programming, and operations research. Most of 
the meta-heuristics mimic natural metaphors to 
solve complex optimization problems (e.g., evo-
lution of species, annealing process, ant colony, 
particle swarm, immune system, bee colony, and 
wasp swarm). Meta-heuristics are more and more 
popular in different research areas and industries.

In this chapter, we present a novel meta-
heuristic to solve hard combinatorial optimization 
problems. The meta-heuristic is inspired from 
biology, and in particular from the bacterial pho-
totaxis, which is a kind of taxis that occurs when 
an organism reacts to light stimulation. This is 
advantageous for phototrophic organisms as they 
can orient themselves most efficiently to receive 
light for photosynthesis. The effectiveness of the 
proposed meta-heuristic algorithm is compared 

with the well-known meta-heuristic MOEA 
(Multi-Objective Evolutionary Algorithm) using a 
set of mathematical functions. Its performance is 
also analyzed by solving mono-criterion and multi-
criteria jobshop scheduling problems against well 
known state-of-the-art procedures.

GLOBAL BACTERIA OPTIMIZATION 
META-HEURISTIC

Preliminaries: What is a Bacterium?

A bacterium is a prokaryotic unicellular organism. 
Its structure is basically conformed by a central 
body of microscopic size that can take many dif-
ferent forms (Young, 2006) and whose size can 
vary from 0.01 μm3 to a volume 1010 times bigger 
(Angert et al., 1993; Rappe et al., 2002). Many 
bacteria are endowed with a series of rotating 
flagella in its cell surface that act as propellants, 
allowing them to swim at a speed of 10-35 μm/s 
(Guzmán et al., 2010). In addition to the appro-
priate structure to move in an autonomous way, 
bacteria have potential receivers (chemoreceptors 
and photoreceptors) capable of detecting temporal-
space changes in the environment that surrounds 
them. In this way, when an external perturbation 
is detected, bacteria use their memory to make a 
temporal-space comparison of the gradients found. 
Depending on the external conditions sensed, 
bacteria change their movements from a random 
walk to a biased walk (Guzmán et al., 2010).

Preliminaries: Bacterial Behavior 
to Solve Optimization Problems

When using this behavior to solve optimization 
problems, works in literature have only applied 
the artificial chemotaxis optimization process 
(Sierakowski & dos Santos Coelho, 2006; Guzmán 
et al., 2010; Chen et al., 2010). The chemotaxis 
algorithm (CA) is pioneered by Bremermannand 
(1974), proposed by analogy to the way bacteria 
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react to chemo-attractants in concentration gradi-
ents. Müller et al. (2000,2002) and Passino (2002) 
proposed the bacterial chemotaxis (BC) algorithm 
based on the chemotaxis algorithm (CA). The 
simplicity and robustness of BC algorithm have 
been verified, however, the bacteria are considered 
as individuals and social interaction is not used in 
the models. As pointed out by Kuo et al. (2011), 
these models differ from the interaction models for 
the behavior of social insects (such as ants, bees, 
wasps, or termites) that are viewed as systems with 
collective intelligence and the performance of the 
basic BC algorithm is just equivalent to the basic 
genetic algorithm (GA) and is even poorer than 
the improved GA (Coelho, 2006). The bacterial 
colony chemotaxis (BCC) algorithm, proposed by 
Li et al. (2005), is a swarm intelligent algorithm 
and is developed from the bacterial chemotaxis 
(BC) algorithm. In this model, both the reaction re-
sponse to the chemo-attractants of the individuals 
and their social interaction are considered, and the 
performance is improved greatly. BCC algorithm 
is an excellent swarm intelligent algorithm with 
the capabilities of global search, fast convergence 
speed and high precision and has been applied to 
the structure optimization of neural network (Zhao 
et al., 2007) and the reactive power optimization 
in power system (Huang et al., 2007).

To the best of our knowledge, the emulation of 
the bacteria phototaxis process has been very little 
applied to solve combinatorial optimization prob-
lem: some preliminary works have been presented 
by Montoya-Torres et al. (2010) who tested the 
algorithm on the solution of the makespan jobshop 
scheduling problem. The proposed meta-heuristic 
procedure, called Global Bacterial Optimization 
(GBO), emulates the biological process known as 
“bacterial phototaxis”. This is a kind of taxis that 
occurs when a whole organism moves in response 
to the stimulus from light. This is advantageous 
for phototrophic organisms as they can orient 
themselves most efficiently to receive light for 
photosynthesis. Phototaxis is called positive if the 

movement is in the direction of light and negative 
if the direction is opposite.

Two types of positive phototaxis are observed 
in prokaryotes (i.e., bacteria). The first is called 
scotophobotaxis (from the word “scotophobia”), 
which is observed only under a microscope. This 
occurs when a bacterium swims by chance out of 
the area illuminated by the microscope. Entering 
darkness signals the cell to reverse direction and 
re-enter the light. The second type of phototaxis 
is true phototaxis, which is a directed movement 
up a gradient to an increasing amount of light. 
This is analogous to positive chemotaxis (i.e., ori-
ented movement toward or away from a chemical 
stimulus) except that the attractant is light rather 
than a chemical.

As stated before, we propose the design of an 
effective (in terms of quality of solution) meta-
heuristic algorithm based on bacteria phototaxis to 
solve hard combinatorial optimization problems. 
Algorithm’s performance is first validated on 
multi-objective mathematical functions and then 
on two jobshop scheduling problems with single 
and multiple objectives. The next subsection 
presents the algorithm in detail.

Algorithm Description

The pseudo-code of the bacterial algorithm 
is presented in figure 1. In order to solve any 
combinatorial optimization problem using this 
meta-heuristic, an object-oriented programming 
model can be used. It is mandatory to define a 
class, named “Colony” that is composed of an 
array of bacteria and the number of bacteria, and 
a class named “Bacterium” which is represented 
by a class with the attribute “energy”. Depending 
on the problem under study, many other classes 
have to be defined. For example, for the case of 
jobshop scheduling problems, as proposed later 
in this chapter, three classes of objects are to be 
defined: a class called “Processing routes” that 
contains the execution order of operations on 
machines; a class named “Machines” which is a 
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class that contains the number of machines, their 
identification codes and the set of jobs that has 
to be processed on each one; and finally, a class 
named “Jobs” containing the identification code 
of jobs, their processing times on machines, their 
due dates, and their starting dates of processing.

The complexity of this algorithms is O A C( ),×  
where A is the number of bacterium cycles (it-
erations), and |C| is the number of initial bacteria 
in the Colony (Montoya-Torres et al., 2010). 
Subroutines of the algorithm are presented next.

• Colony_of_Initial_Bacteria. This subrou-
tine builds the initial solution for the par-
ticular problem under study. It is necessary 
to define an object class named “Colony” 
with a set of feasible bacteria, which repre-
sents a set of feasible solutions. It is hence 
necessary to define how these feasible so-
lutions (bacteria) will be built to start run-
ning the algorithm (initial solution).

• Bacterial_Spin. Each bacterium with en-
ergy level higher than the lost caused by 
rotation can implement the “cartwheel” 
(term used in biology that refers to a bac-
terial turnaround). This creates an array of 
best solutions, which are evaluated using 
equation (1):
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Where nobj is the total number of objectives 
for the given optimization problem, fr is the r-th 
objective function, C is the colony of bacteria, 
and Bi is the i-th bacterium. The size of the 
colony (number of bacteria) is a parameter of 
the algorithm that has be defined set. The actual 
value recommended for the problems under study 
in this chapter will be presented later under the 
computational experiments section.

• Race_to_Light. This subprocedure allows 
each bacterium to move following the in-
tensity of light. For the algorithm here, one 
of the best fourth bacteria is randomly se-
lected from the vector of best solutions.

• Binary_Fission. The binary fission meth-
od consists on duplicating a bacterium in 
order to generate a new bacterium with en-
ergy equal to that of the initial bacterium 
and located at the position of this initial 
bacterium. If such initial bacterium has 
enough energy, it hence moves to the light.

• Spontaneous_Mutation. A bacterium 
changes its structure and position with 
reference to the light, which may improve 
or not the current solution. This mutation 
is made only over some bacteria selected 
according to a certain probability. Those 
bacteria must have enough energy to be 
mutated.

• Reverse_Mutation. This process is made 
over a given percentage of mutated bacte-
ria. It consists on relocating mutated bac-
teria to their initial position if the solution 
obtained after the Spontaneous Mutation 
procedure did not improve the current 
solution.

Figure 1. Pseudo-code of the bacterial algorithm
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• Bacterium_Discharge. Bacteria having 
lower energy than a given lower bond lev-
el are eliminated from the Colony because 
they are far away from the light and do not 
have the energy required to change the po-
sition or to mutate. New bacteria generated 
during binary fission process are included 
in the Colony.

• Photosynthesis. As explained previously, 
in the natural process, bacteria need energy 
to survive. Using chemical processes, pho-
totrophic bacteria transform light in ener-
gy. In order to emulate this natural process 
in the algorithm, a mathematical formula 
was developed to assign energy (ATP) de-
pending on the closeness of the bacterium 
to the simulated light, as shown by:

ATP Energy from photosynthesis e
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Where ATP
i
 is the energy that bacterium i 

obtains after the photosynthesis process, nobj is 
the total number of objectives for the given opti-
mization problem, fr is the r-th objective function, 
C is the colony of bacteria, and Bi is the i-th bac-
terium.

• Select_Best_Solution. At the end of each 
bacterium cycle (iteration), a colony of 
bacteria is obtained, representing the set of 
solutions. In order to obtain the final solu-
tion of the iteration, only the best solution 
is useful for the final colony.

It is to note that GBO can be seen as belonging 
to the family of evolutionary algorithms.

PERFORMANCE ANALYSIS: 
EXPERIMENTS ON 
MATHEMATICAL FUNCTIONS

This section presents a first experimental analysis 
on the proposed algorithm. The purpose of these 
experiments is to study its behavior on generic 
mathematical functions which may act as rep-
resentations of an objective function of a hard 
combinatorial optimization problem (Deb et al., 
2002; Guzmán et al., 2010). Two functions have 
been chosen according to previous works in the 
literature. We first present the experimental design 
and then the analysis of results.

Description of Experiments

As considered in several works in the literature 
(see for example Deb et al., 2002; Guzmán et 
al., 2010), one of the most interesting experi-
ments that allow a rigorous comparison about 
the performance of heuristic algorithms for 
hard optimization problems consists on using 
mathematical functions. In order to analyze the 
efficiency and effectiveness of the algorithm, 
an experimental study was conducted using the 
same multiple objective mathematical functions 
presented by Donoso and Fabregat (2007). The 
experiment aimed to analyze the behavior of the 
GBO algorithm against the well-known meta-heu-
ristic procedure called MOEA (Multi-Objective 
Evolutionary Algorithm). The experiments were 
run on a PC bi-processor Intel(R) Pentium(R) Dual 
CPU T2370 at 1.73 GHz with 2.00 GB RAM 
and was programmed on C++ language. Simple 
mathematical functions are considered:

f x y x y
1

2 2,( ) = +  (3)

f x y x y
2

2 22 2, ( ) ( )( ) = − + −  (4)
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In order to run the algorithm for a compara-
tive computational experiment, some parameters 
have to be well defined. For the purpose of this 
experiment, the spin radius was defined to be 5. 
The Race large was set to be 13, 16, and 19. The 
probability of spontaneous mutation was defined 
to be 0.7. The probability of reverse mutation was 
defined to be 0.3. The initial energy was defined 
to be 30, while the photosynthesis energy was de-
fined to be 8. The waste for mutation was defined 
to be 1. The waste for fission was defined to be 
3. The waste for spin was defined to be 4. The 
number of the initial bacteria was set to be 20, 30, 
and 40. Finally, the bacterial cycle was set to be 
6 and 12. These parameters were used to perform 
the experiments whose results are presented next.

Results

Figure 2 presents a comparison of the Pareto-front 
obtained using both GBO and MOEA procedures 
over the mathematical function considered in 
this experiment. When generating the combined 
Pareto-front of GBO versus MOEA procedures, 

we can see that algorithms overlap, except the 
maximum and minimum of the function in which 
the GBO dominates completely. At the first end-
point, function f1 has been increased by 6.4811%, 
while function f2 decreases over a 97.7701%. 
Besides, in the second endpoint the function f1 
decreases a 99.9686% and the function f2 increases 
by 5.2621%.

Two performance metrics were also computed 
so as to obtain numerical values of the effective-
ness of the GBO procedure. These metrics were 
spacing and the error ratio. The spacing metric 
evaluates the distribution of points in the non-
dominated Pareto front calculated by the algo-
rithm. Original presented by Schott (1995), the 
equation presented here is the one reproduced by 
Deb (2001) and Coello et al. (2002). The spacing 
metric was computed as:

Spacing
q

d d
i

m

i
=

−
−

=
∑

1
1 1

2( )  (5)

Figure 2. Results for the Pareto-front: GBO versus MOEA
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This metric intends to evaluate the distribution 
of points in the non-dominated Pareto-front. In 
the formula, q represents the number of solutions, 
m is the number of objective functions, di is the 
Euclidean distance between two continuous points, 
and d  is the average of di. After computing this 
metric, MOEA gave a value of spacing of 
0.327562988 while the value obtained for GBO 
was 0.059675638. Hence GBO is the best of both 
outperformed MOEA about 5.489 times. This 
results shows that GBO clearly outperforms 
MOEA, since GBO gives a better distribution of 
points within the Pareto front.

The second metric, the error ratio, is com-
puted using equation (6). This metric counts the 
number of solutions in the solution set Q that are 
not members of the Pareto-optimal set P*. In this 
formula, ei=1 if solution i P∉ *  and ei=0 other-
wise. For this analysis, since MOEA and GBO 
overlap and are on the same face, the true error 
rate is 0. This means that GBO performs as well 
as MOEA, according to the value of the true error.

ER
e

Q
i

Q

i
= =∑ 1

| |

 (6)

APPLICATION TO SOLVE SHOP 
SCHEDULING PROBLEMS

This section aims to analyze the performance 
of the Global Bacteria Optimization algorithm 
on hard single- and multi-criteria combinatorial 
optimization problems. In Scheduling Theory, the 
jobshop problem is a hard optimization problem 
found in real industrial contexts for which several 
meta-heuristics procedures have been successfully 
applied (Jourdan et al., 2009). Generally speak-
ing, scheduling is a form of decision-making that 
plays a crucial role in manufacturing and service 
industries. It deals with the allocation of limited 
resources (machines) to tasks (jobs) over given 

time periods and its goal is to optimize one or 
more objectives (Pinedo, 2008; Montoya-Torres, 
2010). Among the various types of scheduling 
problems, jobshop scheduling is one of the most 
challenging ones.

Formally, the problem can be described as 
follows. A set J j j n= = …{ | , , }1  of n jobs is 
to be processed on a set M i i m= = …{ | , , }1  
of m machines. Each job has a technological rout-
ing of processing on the machines. The process-
ing of job j on machine i is called the operation 
Oij. Operation Oij requires an exclusive use of 
machine i for a non-preemptive duration pij, called 
processing time. A schedule is a set of starting 
(Sij) or completion (Cij) times of each operation 
that satisfies given constraints. The challenge is 
to determine the optimum sequence in which the 
jobs should be processed in order to optimize one 
or more performance measures, such as the total 
duration of the schedule (or makespan), the mean 
flowtime, the total tardiness, the number of late 
jobs, etc. In this chapter, we consider both the 
makespan, computed as C C

max j
= max{ }  where 

Cj is the completion time of job j, and the total 

tardiness of jobs, computed as T L
j

n

j
=

=
∑

1

0max{ , }  

where L C d
j j j
= −  is the lateness of job j.

The classical jobshop scheduling problem with 
minimization of the makespan is known to be 
NP-hard (Garey et al., 1976). This means that it 
is not possible to find exact (optimal) solutions 
for large-sized instances in reasonable computa-
tional time, except for some strongly restricted 
special cases. For the standard jobshop scheduling 
problem, the size of the solution search space is 
( !)n m  and it is computationally unfeasible to try 
every possible solution since the required com-
putation time increases exponentially with the 
size of the instance (i.e., the number of jobs). In 
practice, many real-life jobshop scheduling prob-
lems have larger number of jobs and machines as 
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well as additional constraints, which in turn further 
increase its complexity.

In the literature, comprehensive surveys of 
solution approaches for the general jobshop 
scheduling problem are proposed by Blazewicz 
et al. (1996) or Jain and Meeran (1998). Exact 
approaches, such as mathematical programming, 
branch-and-bound techniques have been proposed. 
Because of its complexity, heuristic and meta-
heuristic algorithms have also been considered 
by researchers. For instance, for the single objec-
tive case, Tabu Search (TS) has revealed to be an 
effective local search algorithm for the jobshop 
scheduling problem (Nowick and Smutnicki, 
1996). However, the best solution found by TS 
may depend on the initial solution used. Simulated 
Annealing (SA) is the most popular technique in 
threshold algorithm category. It has been applied 
extensively to jobshop scheduling (Aarts et al., 
1994; Yamada, 2003) and can avoid local optima. 
However, as SA is a generic technique, it is unable 
to achieve good solutions quickly. The Shifting 
Bottleneck (SB) heuristic (Pinedo, 2008) has had 
the greatest influence on approximation methods. 
The primary weakness of this algorithm, however, 
is the high computing effort required and many 
re-optimizations are necessary to achieve good 
results. In addition, best solutions are achieved 
from several different parameter settings. An-
other fundamental problem is the difficulty in 
performing re-optimization and the generation 
of unfeasible solutions.

Inspired by the principles of behavior found 
in real ant colonies, the Ant Colony Optimization 
(ACO) meta-heuristic has been applied to a variety 
of scheduling problems with promising results. 
However, the available results are quite poor 
and have yet to prove with currents state-of-art 
algorithms (Hart et al., 2005). Greedy Random-
ized Adaptive Search Procedure (GRASP) is a 
problem-space-based method that consists of a 
constructive phase and an iterative phase (Feo 
and Resende, 1989, 1995). It generates many 
different starting solutions using fast problem-

specific constructive procedures, which are then 
used by local search. Even though GRASP has 
been applied successfully to several NP-complete 
problems, the limited results available so far 
for jobshop scheduling are quite poor (Jain and 
Meeran, 1998). Genetic algorithms have also been 
proposed in literature for the jobshop scheduling 
problem (Cheng et al., 1996).

In real-life jobshop scheduling, it is necessary 
to optimize several criteria, such as the length 
of the schedule (makespan) or the utilization of 
different resources simultaneously. In general, 
the minimization of the makespan is used as the 
optimization criterion in single-objective job-
shop scheduling. However, the minimization of 
tardiness, flowtime, machine idle time, etc, are 
also important criteria in jobshop scheduling. As 
discussed in Hart et al. (2005), makespan may 
not be the only commercial interest in schedul-
ing. It is desirable to generate many near-optimal 
schedules considering multiple (often conflicting) 
objectives, according to the requirements of the 
production order or customer demand.

During the past decades, attention from re-
searchers has been given to solve jobshop sched-
uling with multiple criteria. Sakawa and Kubota 
(2000) presented a genetic algorithm incorporating 
the concept of similarity among individuals by 
using Gantt charts with fuzzy processing times 
and fuzzy due dates. The objective is to maximize 
the minimum agreement index, to maximize the 
average agreement index and to minimize the 
maximum fuzzy completion time. Werner et al. 
(2000) proposed to associate a genetic algorithm 
with genetic programming to evolve the genetic 
algorithm. Ponnambalam et al. (2001) proposed 
a multi-objective genetic algorithm to derive the 
optimal machine-wise priority dispatching rules 
to resolve the conflict among the contending jobs 
in the Giffler-Thompson procedure (Giffler and 
Thompson, 1960) applied in jobshop scheduling. 
The objective was to minimize the weighted sum 
of completion times, the total idle time of machines 
and the total tardiness. Esquivel et al. (2002) pro-



186

Global Bacteria Optimization Meta-Heuristic

posed an evolutionary algorithm for single and 
multi-objective jobshop scheduling. Kacem et al. 
(2002) presented a hybrid approach based on the 
fusion of fuzzy logic and multi-objective evolu-
tionary algorithm. Xia and Wu (2005) proposed 
a hybrid particle swarm optimization (PSO) and 
simulated annealing algorithm to multi-objective 
flexible job shop scheduling problems. Those 
mentioned approaches optimize the weighted 
sum of objective functions and can produce one 
or several optimal solutions.

Some studies have attempted to simultane-
ously optimize all objectives and obtain a group 
of Pareto optimal solutions. Lei and Wu (2006) 
developed a crowding measure-based multi-
objective evolutionary algorithm. Ripon (2007) 
also proposed a genetic algorithm using jump-
ing genes with the objective of simultaneous 
minimizing the makespan and the total tardiness, 
named JGGA. Lei (2008) proposed a particle 
swarm optimization (PSO) for multi-objective 
job shop scheduling problem with simultaneous 
minimization of makespan and total tardiness of 
jobs. The jobshop scheduling is converted into a 
continuous optimization problem and then Pareto-
archive particle swarm optimization is designed, 
in which the global best position selection is com-
bined with the crowding measure-based archive 
maintenance. Other works on solving jobshop 
scheduling problems with multiple objectives are 
those of Ponnambalam et al. (2001), Wang and 
Zheng (2001), Xia and Wu (2005), Liang et al. 
(2005), Suresh and Mohanasndaram (2006), Lei 
(2008) or Sha and Lin (2010),

In this section, we consider two applications 
of GBO procedure to solve jobshop scheduling 
problems. The first study is as single-objective 
jobshop problem in which the aim is to minimize 
the total tardiness, while the second application 
concerns the resolution of the jobshop scheduling 
problem when both makespan and total tardiness 
are minimized.

Solving the Minimum Tardiness 
Jobshop Scheduling Problem

This subsection considers the minimization of the 

total tardiness of jobs, that is 
j

n

j
T

=
∑

1

,  where 

T L
j j n j
=

∈ …
max { , }
{ , , }1

0  with L C d
j j j
= − ,  and Cj 

and dj being, respectively, the completion time 
and due date of job j. Using the classical notation, 
the problem considered here is noted as 
Jm T

j
|| .∑  This problem is known to be NP-hard 

(Garey et al., 1976), which means that it is not 
possible to find exact (optimal) solutions for 
large-sized instances in reasonable computa-
tional time. In order to evaluate the performance 
of the meta-heuristic in terms of solution quality, 
we run the algorithm on various benchmark in-
stances. These instances were selected taken into 
account the selection of previous works from 
literature (Ripon et al., 2006), and (Ripon, 2007). 
The first set of instances considered was the well-
known data sets named mt06, mt10, and mt20 
formulated by Muth and Thomson (1963); the 
second set of instances are those proposed by 
Adams et al. (1988), which consists on sets abz7, 
abz8, abz9; and the last set of instances were 
proposed by Lawrence (1984) and consists of sets 
named as la21, la24, la25, la27, la29, la38, and 
la40. The full description of all those instances is 
available on the Internet at the OR-Library web-
page at http://people.brunel.ac.uk/~mastjjb/jeb/
info.html. Since we consider the minimization of 
the total tardiness, due dates for all jobs have to 
be defined. Due dates values considered in this 
chapter are the same employed by Ripon (2007) 
and Ripon et al. (2006), which are based on the 
work of Ponnambalam et al. (2001) and Lei and 
Wu (2006).

In order to run the algorithm, some parameters 
need to be defined. Some preliminary runs were 
performed to define those parameters (Montoya-
Torres et al., 2010). The final values are presented 
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next. The initial colony of bacteria representing 
the initial feasible solutions for the problem is 
generated randomly. The size of the colony is a 
m×n, where m is the number of machines in the 
jobshop and n is the number of jobs to be sched-
uled. The initial energy level was set to be 30; the 
photosynthesis energy was set to be 8; the spin 
radius was 5 and the race large was set to be 13, 
16 and 19. The probabilities of spontaneous and 
reverse mutation were respectively defined as 
0.7 and 0.3. The energy levels were 1 for energy 
waste due to mutation, 3 for energy waste due to 
fission, and 4 for energy waste due to spin.

Table 1 shows the comparison of our algorithms 
with procedures JGGA and NSGAII reported by 
Ripon (2007). The last two columns of this table 
correspond to the improvement obtained using our 
algorithm against those from literature, computed 
using equation (7), where Z is either procedure 
JGGA or procedure NSGAII:

% ( )
( ) ( )

( )
dev Z

T GBO T Z

T Z

j j

j

=
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∑
 (7)

It is to note that if %imp(Z)=0%, then our 
algorithm obtains the same value of the total 
tardiness than the corresponding Z procedure. 
Also, if %imp(Z)>0%, then GBO algorithm out-
performs previous results from literature. Among 
the instances considered, we can observe that our 
procedure always outperformed algorithm NSGA-
II. Also, when the solution given by our algorithm 
was not better than JGGA, the solution of the 
bacteria phototaxis algorithm was never worse 
than -3% of the solution given by JGGA (this 
occurred for instances mt10 and la40). For the 
other instances (except la25, la27, la29) GBO 
algorithm outperformed or obtained the same 
solution value given by JGGA. In comparison 
with algorithm NSGA II, the bacterial procedure 
GBO obtained a better value (except for instanc-
es mt10 and la40).

Solving a Bi-Criteria Jobshop 
Scheduling Problem

As stated before, extraordinary research efforts 
have been done in the scientific community to 
solve mono-objective jobshop scheduling prob-
lems. In order to have more realistic models, 

Table 1. Comparison of results for the total tardiness jobshop problem 

Instance JGGA NSGA II GBO %dev(JGGA) %dev(NSGA II)

mt06 0 0 0 0% 0%

mt10 625 630 645 3% 2%

mt20 8359 7997 7989* -4% 0%

abz7 531 553 531 0% -4%

abz8 654 757 654 0% -14%

abz9 1009 1213 763* -24% -37%

la21 1299 1316 1297 0% -1%

la24 1216 1206 1205* -1% 0%

la25 1070 1225 1089 2% -11%

la27 3300 3436 3342 1% -3%

la29 4311 4419 4357 1% -1%

la38 1339 1343 1345 0% 0%

la40 551 535 570 3% 7%
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multiple criteria can be considered when solving 
scheduling problems. In this part of the chapter, 
we consider again the jobshop scheduling problem 
described before, but this time we seek to simul-
taneously optimize the makespan and the total 
tardiness. The first criterion is computed as 
C C
max j n j
=

∈ …
max ,
{ , , }1

 where Cj is the completion 

time of job j. We recall that the total tardiness of 

jobs is computed as 
j

n

j
j

n

j n j
T L

= =
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1 1
1

0max { , },
{ , , }

 

with L C d
j j j
= − ,  and Cj and dj being, respec-

tively, the completion time and due date of job j. 
Attention from researchers has been given to solve 
jobshop scheduling with multiple criteria, as 
explained before.

In order to evaluate the performance of the 
GBO meta-heuristic in the context of multi-
objective jobshop scheduling problem described 
here, we run the algorithm on various benchmark 
instances. We again considered the same experi-
mental design already proposed in literature by 
Ripon (2007), who solved the same problem 
studied in this section. The first sets of instances 
are the well-known data sets considered previ-
ously in the previous section. The parameters of 
the GBO algorithm were set to be the same as in 
the experiments of the previous section.

Table 2 shows the best results of the experi-
mental comparison of our procedure with multi-
objective procedures JGGA and NSGAII re-
ported by Ripon (2007). The last two columns of 
this table corresponds to the deviation of each 
objective value (i.e. makespan and total tardiness) 
given by our procedure against the values re-
ported in literature. This percentage deviation is 
computed using equation (8), where F is the ob-
jective function either the makespan (Cmax) or the 
total tardiness (∑Tj ). It is to note that if 
%dev<0%, then GBO algorithm outperforms 
previous results from literature.

% ( )
( ) ( )

( )
dev F

GBO F
F

=
−  (8)

As it is possible to observe in Table 2, among 
the instances considered, our proposed procedure 
obtained a makespan value never higher than 0.1% 
and a total tardiness never higher than 6.5% of 
previous results from literature. It is to note that 
our algorithm equals (%dev=0) or outperformed 
(%dev<0) previous results in 92.3% of the cases 
tested (12 of a total of 13 instances) for the makes-
pan value, and in 69.2% of the cases tested (9 of 
a total of 13 instances) for the total tardiness 
value. In this last situation, the total tardiness was 
even improved in more than 37% (instance abz9).

In order to illustrate the convergence and 
diversity of the solutions, the non-dominated 
solutions (i.e., the Pareto-front) of the final gen-
eration produced by procedures JGGA (Ripon, 
2007) and the GBO based on bacterial phototaxis 
proposed in this chapter, for the test instances 
la21 and la38, are presented in Figures 3 and 4, 
respectively. From these, we can observe that the 
final solutions are well spread and converged. In 
particular, the solutions produced by our proposed 
meta-heuristic procedure are as well spread as that 
of JGGA, which was shown by Ripon (2007) to 
be a capable to find extreme solutions. This means 
that our procedure is also able to find extreme solu-
tions. It can be further justified that our algorithm 
performs well in terms of diversity of solutions.

CONCLUDING REMARKS

This chapter presented a novel meta-heuristic 
algorithm inspired from the behavior of bacteria 
and their reaction to the stimulus of light and is 
called global bacteria optimization (GBO). The 
performance of this procedure was first studied 
on mathematical functions. Afterwards, two 
NP-hard combinatorial optimization problems 
from Scheduling Theory were considered: the 
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Table 2. Results for the multi-objective jobshop problem 

Instance Procedure %dev(Cmax) %dev(ΣJj)

mt06
JGGA 0.0% 0.0%

NSGA II 0.0% 0.0%

mt10
JGGA 0.0% 3.2%

NSGA II -1.3% 2.4%

mt20
JGGA -1.6% -4.4%

NSGA II -0.5% -0.1%

abz7
JGGA -0.7% 0.0%

NSGA II 0.0% -4.0%

abz8
JGGA -0.1% 0.0%

NSGA II -1.0% -13.6%

abz9
JGGA -0.4% -24.4%

NSGA II 0.0% -37.1%

la21
JGGA 0.0% -0.2%

NSGA II 0.0% -1.4%

la24
JGGA 0.0% -0.9%

NSGA II 0.0% -0.1%

la25
JGGA 0.0% 1.8%

NSGA II 0.0% -11.1%

la27
JGGA 0.1% 1.3%

NSGA II 0.1% -2.7%

la29
JGGA -3.1% 1.1%

NSGA II -3.4% -1.4%

la38
JGGA -0.1% 0.4%

NSGA II 0.0% 0.1%

la40
JGGA -0.2% 3.4%

NSGA II -0.5% 6.5%

Figure 3. Comparison of final Pareto-front for instance la21
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single-objective jobshop problem with total tardi-
ness minimization and the bi-objective jobshop 
problem with makespan and total tardiness mini-
mization. Results are very interesting and show 
that the proposed procedure can obtain very good 
solutions and even betters solutions compared 
against those procedures.

In further research, our algorithm may be 
implemented to solve other complex scheduling 
problems, such as flowshops or flexible job-
shops, or even other combinatorial optimization 
problems. The hybridization of this algorithm 
can also be considered, as for example obtaining 
the initial solution by applying some efficient 
heuristic algorithm.
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KEY TERMS AND DEFINITIONS

Approximate Algorithm: Solution procedure 
that runs in polynomial time used to find approxi-
mate solutions for hard optimization problems 
without guaranteeing the optimum value of the 
objective function.

Job Shop: Shop configuration in which jobs 
has to visits a set of machines with a predefined 
processing route that may not be the same as the 
one of other jobs.

Meta-Heuristic: A kind of approximate algo-
rithm that iteratively tries to improve a candidate 
solution with regard to a given measure of qual-
ity, by making few or no assumptions about the 
problem being optimized and can search very 
large spaces of candidate solutions.

Scheduling: Decision-making process con-
sisting on the allocation of a set of jobs to a set 
of machines in order to optimize one or several 
objective functions.
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ABSTRACT

This chapter investigates manufacturing rescheduling of customised production and compares the results 
with those found for commodity production in earlier research by the authors. The hybrid rescheduling 
algorithms presented in this chapter were obtained by combining two key rescheduling-related elements 
found in the literature (a) rescheduling criteria (i.e., job priority, machine utilisation and right-shift delay) 
with (b) level of disruption transmitted to the shop-floor due to rescheduling (i.e., High disruption and 
Low disruption). The main advantage of hybrid rescheduling algorithms over individual rescheduling 
algorithms consists of their ability to combine the main features of two different algorithms, in order to 
achieve enhanced performance, depending on the objective of the organisation. The five hybrid resched-
uling algorithms taken into account in this chapter are: Priority High, Priority Low, Utilisation High, 
Utilisation Low and Right-Shift. The authors’ case study research in three manufacturing companies has 
identified the use of a set of these hybrid algorithms in practice. Each of the case studies is evaluated 
in terms of time-based performance in three main areas: suppliers’ interface, internal production and 
customers’ interface. This evaluation is carried out for both customised and commodity production, using 
the same hybrid rescheduling algorithms and performance measure the authors used in their previous 
research work, for comparability purposes (i.e. the entropic-related complexity). The findings show 
that customised production exhibits a lower entropic-related complexity than commodity production. 
Although this behaviour may seem unexpected, the entropic-related complexity analysis allows for an 
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INTRODUCTION

This chapter aims to assess the relationship be-
tween hybrid rescheduling algorithms, entropic-
related complexity, and customised production, 
by using real-world manufacturing case studies. 
The paper thus makes a theoretical and applied 
contribution on these inter-related topics, which 
(to our knowledge) have not been previously 
studied in conjunction before.

The main research question explored in this 
chapter is: In the context of customised produc-
tion, how do hybrid rescheduling algorithms 
impact entropic-related complexity? The follow-
ing objectives guide this chapter: (a) To identify 
the typical hybrid rescheduling algorithms used 
in the context of customised production, and (b) 
To explain why and how hybrid rescheduling 
algorithms vary across organisations.

Given the current climate of increased global 
competition, manufacturing companies need to 
focus on customised production. It is important to 
consider the ever-increasing need for value-adding 
product design and manufacturing processes 
(Browning et al., 2002). Tu et al. (2001) argue that 
firms need to move from the internal efficiency 
maximisation mindset towards the emphasis on 
customer value. In the same vein, Professor El-
Maraghy (ElMaraghy, 2009) states that one of the 
key challenges that manufacturing organisations 
face nowadays is “to satisfy the market need for 
products variations and customization, utilizing 
new technologies, while reducing the resulting 

variations in their manufacturing and associated 
cost” (p. v).

In order to satisfy the customization need of 
the market at a competitive price, it is necessary 
to understand that the above goals are neither 
straightforward nor easily achievable. Further-
more, the additional complexity that arises in try-
ing to pursue them should be carefully managed. 
As Griffiths and Margetts (2000) point out: “cus-
tomers want high quality products and services, 
at a reasonable cost, and they want them ‘now’” 
(p. 155). Managing the complexity resulting from 
such a dynamic environment plays a key role in 
keeping costs under control. If organisations do 
not manage complexity through rescheduling or 
other complexity management approaches, they 
could face some of the following consequences 
(Huaccho Huatuco, 2003): customer dissatisfac-
tion, which can then lead to losing customer 
demand and, related to this, less flexibility and 
product variety.

The type of rescheduling problem tackled in 
this chapter could be classified as a “stochastic 
scheduling problem” (Pinedo, 2008) where the 
disturbances were arbitrarily assigned, but the 
spare capacity of the original production schedule 
(processing times, number of jobs and number of 
loaded machines) varied according to a random 
probability distribution. These experiments were 
designed, run and tested in our previous work 
(Huaccho Hautuco et al., 2009), so their detailed 
discussion is outside the scope of this chapter. The 
aim in this chapter is to provide manufacturing 
organisations that make customised products with 

interpretation / understanding of its underlying reasons. For example, companies making customised 
products first agreed the specifications of the products with the customer, and then they mutually agreed 
on a contract which would financially protect manufacturers (should last minute customer changes oc-
cur), by specifying analytically determined penalties or premium charges. Furthermore, a set of recom-
mendations were made to the companies involved in this research study based on the analysis presented 
in this chapter, such as the need for manufacturing organisations of customised products to ensure they 
have dependable suppliers, and that, internally, they plan for and embed sufficient spare capacity to 
cope with internal or external disturbances.
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recommendations on which hybrid rescheduling 
algorithms are more likely to be of effective use 
to them.

The hybrid rescheduling algorithms presented 
in this chapter combine priority dispatch rules with 
the disruption effects on the shop floor, namely: 
Priority High, Priority Low, Utilisation High, 
Utilisation Low and Right-Shift. These algorithms 
were previously studied by the authors (Huaccho 
Huatuco et al., 2009) for commodity production. 
The novelty and thus contribution of this chapter 
consists of the extension of these hybrid algorithms 
to the context of customised production.

The remainder of this chapter is organised 
as follows. A literature review follows next, on 
three inter-related topics: hybrid rescheduling 
algorithms, entropic-related complexity and 
customised production. Then, the measurement 
methodology section gives details on the case-
based research carried out. Next, the data analysis 
section is briefly presented. After that, the section 
on case studies for customised production covers 
the following results: entropic-related complexity, 
hybrid rescheduling algorithms, customised versus 
commodity production, and recommendations 
to case study companies. Next, the discussion of 
results section focuses on implications to Schedul-
ing practice as well as Value-adding (VA) versus 
non-value adding complexity (NVA). Finally, 
some conclusions including some implications 
for theory and practice, together with some future 
work directions are provided.

LITERATURE REVIEW

This section discusses the links and dependencies 
among hybrid rescheduling algorithms, entropic-
related complexity and customised production. 
Major, established and more recent publications in 
these topics include a diverse range of rescheduling 
methods (Ouelhadj & Petrovic, 2009; Silva et al., 
2008), as well as links with customised production 
(Da Silveira et al., 2001; Smart, 2009).

Hybrid Rescheduling Algorithms

There has been no shortage of hybrid algorithms 
reported in the literature for manufacturing sys-
tems. For example, Bierwirth & Mattfeld (1999) 
used Genetic Algorithms (GA) together with a 
tunable parameter (in terms of the length of ma-
chine idle time) to carry out hybrid scheduling, 
whereas Gao et al. (2009) also proposed the use 
of GA in combination with Ant-colony algorithms 
to determine the order of manufacturing jobs and 
machine assignment, respectively. Wang et al. 
(2006, 2010) focused on hybrid algorithms for the 
blocking flow shop scheduling problem, proposing 
a combination of genetic algorithms with local 
search algorithms. In relation to rescheduling, the 
work by Deblaere et al. (2010) combined exact 
reactive scheduling with Tabu search algorithms. 
Most of the work presented in previous literature 
uses simulations as a means to test the performance 
of rescheduling algorithms. This chapter analyses 
and discusses hybrid rescheduling algorithms us-
ing real-world manufacturing case studies, rather 
than computer simulations.

The hybrid rescheduling algorithms presented 
in this chapter were obtained by combining two 
key rescheduling-related elements found in the 
literature (a) rescheduling criteria (i.e., job priority) 
(Yamamoto & Nof, 1985; Jain and ElMaraghy, 
1997, Smith 2002), machine utilisation (Jain & El-
Maraghy, 1997) and right-shift delay (Yamamoto 
& Nof, 1985; Cheng, 1998; Holthaus, 1999) with 
(b) level of disruption transmitted to the shop-
floor due to rescheduling (i.e., High disruption) 
(Yamamoto & Nof, 1985) and Low disruption 
(Smith, 2002). It is worth mentioning that Priority 
is normally assigned by order / job due date, but 
it could be also assigned by customer importance, 
by order value, or by a factor determined at the 
discretion of the scheduler.

The main advantage of using hybrid resched-
uling algorithms is that they provide a better ap-
proach to rescheduling than if separate individual 
rescheduling algorithms were used, such as their 
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ability to combine the best features of two differ-
ent algorithms in order to achieve an enhanced 
performance, depending on the objective of the or-
ganisation. For example, while some organisations 
may strive on getting robust schedules (schedules 
that would remain valid for a long period of time), 
other organisations could be interested in getting 
near-optimal schedules which could be generated 
in a relatively shorter time. As mentioned before, 
the five hybrid rescheduling algorithms that have 
been used in our previous research are: Priority 
High, Priority Low, Utilisation High, Utilisation 
Low and Right-Shift (Huaccho Huatuco et al., 
2009).

Algorithms Description

Each of these hybrid rescheduling algorithms is 
briefly described next.

• Priority High: This algorithm takes into 
account the Priority of the jobs (e.g. each 
job’s due date). Additionally, in the case of 
a disturbance affecting production (e.g., cus-
tomer changes), the Priority High algorithm 
generates a new schedule (rescheduling) 
immediately. This causes high disruption to 
the shop floor (i.e., no threshold condition is 
used to filter down the disruption transmitted 
to the production shop floor).

• Priority Low: This algorithm includes a 
threshold condition (added to the Priority 
High algorithm) in order to filter down the 
disruption to the shop floor (Low disruption). 
In our previous research on the impact of 
machine breakdowns on rescheduling, the 
threshold condition was based on the down-
time being greater than the remaining time of 
the disrupted job (Huaccho Huatuco, 2009). 
Once the threshold condition is fulfilled or 
surpassed (Pfeiffer et al., 2007), reschedul-
ing takes place.

• Utilisation High: The algorithm takes into 
account machine utilisation. In the case of 

a disturbance, it chooses the least utilized 
machine immediately (High disruption) to 
allocate the affected job.

• Utilisation Low: The algorithm includes a 
threshold condition (added to the Utilisation 
High algorithm), as explained for the Priority 
Low algorithm.

• Right-Shift: The algorithm delays the dis-
rupted job until the disturbance has ended, 
right-shifting (delaying) all the remaining 
jobs accordingly.

The pseudocode for these hybrid rescheduling 
algorithms is provided next, where:

• Active: The processing time of the job before 
the occurrence of the disturbance.

• Affected Jobs Downtime: The procedure 
that checks that the arrival times of the jobs 
affected by the disturbance is right-shifted.

• Alternatives: The procedure that looks for 
alternative machines for the jobs affected 
by disturbances.

• Knock-On Effect: The procedure that right-
shifts the jobs both on the affected machine 
and on the alternative machine, due to the 
occurrence of a disturbance.

• Remaining: The remaining processing time 
of the job that needs to complete after the 
occurrence of a disturbance.

• Disturbances: The procedure that writes 
the disturbance effect on the production 
schedule, in the form of unavailability of 
the affected machine.

• Right-Shift: The procedure that delays the 
jobs affected by disturbances.

The pseudocode for the main part of the High 
disruption algorithms (Priority High and Utilisa-
tion High) is given next.

The pseudocode for the Low disruption algo-
rithms (Priority Low and Utilisation Low) is 
given next. Note that only Step 7 changes in rela-
tion to the High disruption pseudocode.
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Algorithm 1.

1.   Process schedule, part data and disturbance data 

2.   Assign Excel data to VBA variables (This is how Arena 5.0 handles the 

introduction of the analysts’ own logic into the simulation package) 

3.   For all jobs (i=1 to n, where n is the number of scheduled jobs) 

If Jobi
 is affected by a disturbance, then

Rewrite arrival time of Jobi

Call ‘Knock-on effect’ procedure 

4.   If disturbance affects a machine that is busy, then 

Generate Schedule [Perform Rescheduling] 

Go to (6) 

5.   Process (run jobs) according to Process Schedule, then go to (10)

6.   If active
i
>0, then 

7.   If remaining
i
>0, then

Rewrite Process Time of Part Data 

Update schedule 

Call ‘Alternatives’ procedure 

Call ‘Disturbances’ procedure 

8.   Else [remaining
i
 >0]

Process according to Process Schedule 

Call ‘Affected jobs downtime’ 

Call ‘Disturbances’ 

Call ‘Knock-on effect’ 

9.   Else [active
i
 >0] Call ‘Alternatives’ procedure

10.   End

Algorithm 2.

7.   If remaining
i
>0, then

Rewrite Process Time of Part Data 

Update schedule 

If Downtimei
>Remaining

i
, then

Call ‘Alternatives’ procedure 

Call ‘Disturbances’ procedure 

Else [Downtimei
>Remaining

i
]

Call ‘Right-shift’ procedure 

Call ‘Disturbances’ procedure

Algorithm 3.

7.   If remaining
i
>0, then

Rewrite Process Time of Part Data 

Update schedule 

Call ‘Right-shift’ procedure 

Call ‘Disturbances’ procedure 

8.   Else [remaining
i
 >0]

Process according to Process Schedule 

Call ‘Affected jobs downtime’ 

Call ‘Disturbances’ 

Call ‘Knock-on effect’ 

9.     End
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The pseudocode for the Right-shift algorithm 
is given next. Note that Steps 7, 8 and 9 change 
in relation to the High disruption pseudo code.

Although disturbances can affect both custom-
ised and commodity production, the analysis of 
the performance needs to focus on the type of 
disturbance that is more relevant to the problem 
under study. Thus, the analysis in this chapter 
focuses on customer changes, which are more 
relevant to customised production than machine 
breakdowns (as studied previously). Customer 
satisfaction is one of the main targets of manu-
facturing organisations, which can be achieved 
by accommodating customer changes requests in 
their production schedule. As stated by Efstathiou 
(1996), schedules should retain flexibility (which 
could be achieved by allowing spare capacity in 
the production schedule, for example) in order to 
allow manufacturing companies attending to those 
requests, while at the same time companies should 
be able to estimate the inconvenience and the 
possible disruption to other orders. Customer 
changes include: changes in order specifications 
(e.g. quantity ordered [more or less], delivery 
times [earlier or later], cancellations, inserting 
new—ordinary or rush—orders) or in terms of 
customisation changes, modifying the product 
specifications. However, satisfying the customer 
has to be carefully balanced with production 
schedule stability. For example, in the case of rush 
orders (also called Fast Turn Around or FTA or-
ders), Krajewski et al. (2005) suggested that 
suppliers can use their contracts to their advantage 
(e.g. charging a premium for them).

The decision element of the rescheduling 
model will be whether to satisfy a customer that 
requires a rescheduling action or not and, if so, to 
what extent (this is determined by the disruption 
threshold conditions). The threshold conditions are 
taken into consideration by the level of disruption 
to the shop floor (High or Low disruption) that the 
scheduler would prefer / allow to accommodate. 
As Monostori et al. (2007) expressed, finding 
the appropriate threshold, which ideally should 

be an informed and quantitative-based decision, 
may imply that there is a compromise between 
schedule stability and schedule quality. In an-
other paper, Pfeifer et al. (2007) tested different 
levels of thresholds before rescheduling took 
place by evaluating the performance in terms of 
schedule efficiency and schedule stability. It is 
worth mentioning that the level of threshold can 
be determined either statically or dynamically (at 
run time). Examples of criteria which could be 
used for deciding which type of threshold to use 
include: the type of manufacturing environment, 
performance objectives, information availability 
and information processing costs.

With reference to customer changes, the fol-
lowing disturbances were derived from Jain & 
ElMaraghy (1997): (a) Increasing the priority of 
existing orders (as noted earlier, also known as rush 
orders or Fast turn around or FTA), (b) Decreas-
ing the priority of existing orders, (c) Introducing 
new orders, which could be either rush orders 
or standard duration orders, and (d) Cancelling 
already placed orders. Each of these is explained 
in turn below. Assuming that a customer’s order 
corresponds to a single machine job, then:

A.  Increasing the priority of existing orders 
(rush orders or Fast Turn around or FTA): 
This disturbance involves finding the job 
corresponding to the order for which the 
priority is increased. If the job has not been 
loaded to any machine, and if the machine 
required to process it is free, then assign the 
job to start immediately on it. Otherwise, 
pre-empt the machine and start the job im-
mediately, all the other jobs on that machine 
are right-shifted accordingly.

B.  Decreasing the priority of existing orders: 
This disturbance involves finding the job 
corresponding to the order for which the 
priority is decreased. If the job has not been 
loaded to any machine, and if the machine 
required to process it is free, then recalculate 
the priority of the jobs and assign a lower 
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priority to the job, depending on the revised 
due date. Otherwise, pre-empt the machine 
and start the next higher priority job on it, the 
remaining part of the job gets right-shifted 
accordingly.

C.  Introducing new orders, which could be 
either rush orders or standard duration 
orders: If it is a rush order the highest priority 
is assigned to its corresponding job, then the 
new job is treated as in part (a) above. If it 
is a standard duration order, then priority is 
assigned accordingly, and the job is inserted 
into the current schedule.

D.  Cancelling already placed orders: This 
disturbance involves finding the job cor-
responding to the cancelled order. If the job 
has not been loaded to any machine and if 
the machine required to process it is free, 
then do not load it. Otherwise, pre-empt the 
machine and cancel the remaining comple-
tion time of the job from it. Advance any 
jobs that were due to be processed later on 
that machine to finish earlier too.

Entropic-Related Complexity

Entropic-related complexity is a measure derived 
from entropy (Shannon, 1949). This measure was 
adapted and applied to manufacturing systems 
in the “Complexity in the Supply Chain” project 
by Efstathiou & Frizelle (EPSRC Grant No. GR/
M57842). This project was run jointly by the 
University of Oxford and the University of Cam-
bridge, in collaboration with industrial partners 
including: Unilever, BAE Systems and ALPLA. 
Complexity, within this context, is defined as 
the uncertainty and the variety within a system. 
Hence the two main characteristics of complexity 
which we consider in this chapter are uncertainty 
and variety. Variety refers to the many parts of the 
manufacturing system that need to be managed, 
whereas uncertainty refers to the unpredictability 
of the behaviour of each of those parts (probability 
of occurrence).

Entropic-related complexity is quantified into 
indices that highlight high complexity areas and 
help focus management attention to examine 
their causes. The higher the index the greater the 
complexity displayed by the system. This can be 
measured in different areas or levels, for example 
in this chapter we focus on three areas: at the 
suppliers’ interface, internal production, and at 
the customers’ interface. The complexity index is 
evaluated based on Equation 1, which gives the 
fundamental form for describing entropy. Here, 
the entropy (H) is defined as the uncertainty and 
variety of the system associated with a set of n 
events (states), where pi is the probability of the 
ith event occurring. The complexity index units 
are given in bits per state (bps).

H p pi i
i

n

= −
=
∑ log ( )2
1

 (1)

For example, a machine can be in one of three 
states: “idle,” “making product” or “broken down.” 
Each state occurs with certain frequency in a given 
period of time, which can then be used to obtain its 
probability of occurrence. Assuming the machine 
is “idle” for 10% of the time, “making product” 
for 85% of the time and “broken down” for the 
remaining 5% of the time, then the Complexity 
index is calculated as follows:

H = − × − × − ×0 1 0 1 0 85 0 85 0 05 0 052 2 2. log . . log . . log .

H = 0.75bps

Several practical considerations need to be 
taken into account when taking the entropic-related 
complexity measurements. First, a series of ob-
servations are made of the production processes 
relevant to the research study. These observa-
tions include both qualitative and quantitative 
behaviour, in the form of managing information 
flows, applying formal and informal methods, 
such as generating production schedules, taking 
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/ making customer phone calls, or carrying out 
procedures in case of unexpected events. Counting 
the variations and weighting each by the likeli-
hood of occurrence gives rise to the probability 
of each state. The overall complexity index is 
calculated using Equation 1, and represents the 
entropic-related complexity of the system or sub-
systems investigated.

The level of unexpected variation (which 
corresponds to the uncertainty) within a system, 
indicates the level of “out of control.” A system 
that behaves totally predictably can be assumed to 
be completely “in control.” As the uncertainty and 
thus unpredictability of the system increases, the 
level of control decreases. A greater understand-
ing of the behaviour and level of controllability 
of a system can be achieved through measuring 
the deviations from what was expected to hap-
pen. The aim of the measurements is to record 
these variations, and to identify their causes. This 
method of measuring the variations can be ap-
plied to information, to material flows, and/or to 
monetary values. The variations can be analysed 
by employing a time-, quantity- or reason-based 
analysis, or a combination of these.

Entropic-related complexity methods can 
be used for analysing and understanding how 
manufacturing organisations behave within their 
supply chain. The main idea is that the delivery 
performance of suppliers impacts upon the manu-
facturing organisation, which in turn could affect 
its delivery performance towards its customers. In 
this connection, it is hypothesised that resched-
uling plays a key role in managing complexity.

Customised Production

As stated by Duray et al. (2000), without some 
degree of customer involvement in the design 
process, a product cannot be called customised. 
At the customised end of the spectrum the fol-
lowing customisation levels are considered: 
Build-to-order and Make-to-order manufacturers 
(Gunasekaran & Ngai, 2005). They considered 

that responsiveness and flexibility were both the 
key objectives and enablers in the customised 
production environment.

Four quadrants were presented in Huaccho 
Huatuco (2003), which resulted from the com-
bination of the X-axes: “functional product” and 
“innovative product” and the Y-axes: “efficient 
scheduling objective” and “responsive scheduling 
objective.” The two quadrants of interest to the 
work presented in this chapter are: “functional 
product, responsive scheduling” and “innovative 
product, responsive scheduling.” The former refers 
to commodity production, whereas the latter refers 
to customised production. In terms of managing 
complexity, companies belonging to either of these 
two quadrants were identified to manage complex-
ity using “rescheduling.” However, in the search 
for an alternative way of managing complexity, 
the emphasis shifts from using “decision-making,” 
for commodity production, towards the use of 
“spare capacity” in customised production. So, 
ideally, the production schedules in customised 
production should embed higher spare capacity 
levels than the production schedules in commodity 
production. “Responsive scheduling” is related to 
the Just-in-Time (JIT) Operations Management 
philosophy by its aim to satisfy the customer by 
delivering the right product, in the right quantity 
and at the right time.

Duray et al. (2000) built upon Mintzberg’s 
work (1988), and stated that customization can 
be pure (from the conception stage), tailored (at 
the fabrication stage) or standardised (at the as-
sembly stage).

Summary of the Literature Review

This section has covered the three inter-related 
topics of interest for this chapter: hybrid resched-
uling algorithms, entropic-related complexity 
and customised production. Hybrid reschedul-
ing algorithms have been extensively used in the 
manufacturing context, since they are robust in 
providing solutions that could take the best features 
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of each algorithm. The rescheduling algorithms 
considered in this chapter are: Priority High, 
Priority Low, Utilisation High, Utilisation Low 
and Right-shift. Entropic-related complexity has 
been presented as a holistic, comparable and useful 
measure to managers. They can use it to prioritise 
and direct their efforts in an informed and objective 
manner. Customised production was discussed 
in the light of the level of customisation, and the 
need to enable organisations to achieve flexibility 
and responsiveness. This can be done through a 
combination of “rescheduling” and “spare capac-
ity” approaches to managing complexity.

MEASUREMENT METHODOLOGY

The measurement methodology used in this re-
search was case-based research, with individual-
companies case study analyses followed by a 
cross-case analysis. The case study protocol was 
followed (Voss et al., 2002) with particular ap-
plication of the stages proposed in Sivadasan et al. 
(2002), which are diagrammatically represented 
in Figure 1.

Company A, Company B and Company C 
participated in the “Rescheduling and complex-
ity for customised products” project. The informa-
tion flow complexity within these companies was 
evaluated by measuring the entropic-related 
complexity (i.e., the uncertainty and variety of 
the information transfers between suppliers and 
customers), for example. Data was triangulated 
using: (a) semi-structured interviews, (b) observa-
tions of the shop floor and (c) documents in 
electronic or hard copy form.

Familiarisation

Prior to conducting the actual complexity mea-
surements, between two and three days were spent 
within each company for collecting preliminary 
information with people, information flows and 
processes. This involved an interactive process 
of semi-structured interviews with key personnel, 
to understand the operations and to map out the 
key material and information flows. In terms of 
plant familiarisation a tour of the plant sites was 
given by the companies, which provided a better 
understanding of the manufacturing processes 
such as process layout, and additional information 

Figure 1. The case study methodology
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about types of resources and their capabilities, at 
each organisation.

Key Information Flows 
and Variations

The diagrammatic representation of the informa-
tion flows studied is given in Figure 2, where the 
arrows represent the information flows.

The variations identified and investigated in 
this research are given in Table 1.

The Parameters Considered Prior to 
Data Collection

To ensure the effectiveness and accuracy of data 
collection, and the applicability of the complexity 
measurement method, the following parameters 
were determined prior to taking measurements:

•  The variables to be measured (time-based, 
quantity-based or reason-based variables).

•  The possible states of interest (using Equa-
tion 1) (e.g. at any given time a machine can 
be in one of three states: “idle,” “making 
product” or “broken down”).

•  Frequency and duration of observations 
(e.g. once every hour, shift or day, for two 
weeks).

•  Key information flows and variations (e.g. 
despatch notes and delivery requirements 
for the last three months).

The Variables to be Measured

For example, in the case of deliveries at the sup-
plier interface, goods may not arrive on time and 
/ or in full (OTIF) (i.e., time and quantity varia-
tions). The variables we chose were: time-based 
deliveries—for the suppliers’ and customers’ 
interfaces, and time-based production—for the 
internal production.

Additionally, the reasons for time and quantity 
variations were identified and recorded, in order to 
detect the instances of importing, exporting and ab-
sorbing complexity. Briefly, importing complexity 
consists of accepting complexity from elsewhere 
outside the organisation (e.g. suppliers or custom-
ers), whereas exporting complexity consists of 
transferring complexity to those organisations. 
Absorbing complexity is the way organisations 
decrease / minimise complexity internally. For 

Figure 2. Information flows investigated

Table 1. Variations identified and measured

Area Variation*

Suppliers’ interface: Procurement 2. Actual Delivery Date – 1. Required Delivery Date

Company: Internal Production 4. Actual Production – 3. Scheduled Production

Customers’ interface: Delivery 6. Actual delivery Date – 5. Customer agreed date

*Note: the symbol “–” refers to arithmetic difference.
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a full discussion on complexity transfers please 
refer to Sivadasan et al. (2004). Also, the reasons 
for variations are useful in order to facilitate the 
understanding, interpretation and meaningfulness 
of the entropic-related complexity.

The Possible States of Interest

The results of this study focused on time-based 
analysis (i.e. the variations stated in Table 1). 
States were defined so as to accurately capture 
the investigated processes. They were kept the 
same across all case studies, whenever possible, 
for comparability purposes. The following states 
of interest were taken into account at the suppliers’ 
and customers’ interface:

•  on time or early.
•  < 1 week late.
•  1-2 weeks late.
•  2-4 weeks late.
•  4-8 weeks late.
•  > 8 weeks late.

Frequency and Duration 
of Observations

The frequency of the information and material 
transfer was used as a guideline for the frequency 
of measurements. In the case of event-based 
activities (such as deliveries) the analyses utilise 
all the available data for each case study, which 
can be either live or historical. In terms of live 
data, two weeks were used for carrying out the 
data collection on site. In terms of historical data, 
it was determined that at least three months of 
weekly data would provide sufficient data points 
for the analysis.

Data Collection

Data collection consists of sampling information 
and material flows over time. In this study, infor-
mation variations were investigated and recorded 

in terms of actual versus expected performance 
over the data collection period. Thus sufficient data 
(typically a minimum of 30 data points) should be 
gathered to ensure each state have been observed 
to give an estimate of its probability. As mentioned 
earlier, data consists of: (a) semi-structured inter-
views, (b) observations of the shop floor and (c) 
documents in electronic or hard copy form.

Data Analysis

The data analysis involved the calculation of the 
complexity indices, for the variations mentioned 
earlier, and the interpretation of the results thus 
obtained.

The computation of the complexity indices 
comprises five steps:

1.  Calculate the arithmetic difference between 
the actual information flows and the sched-
uled information flows (e.g. if a delivery was 
expected on the 5th August, but it arrived on 
the 4th August, then the arithmetic difference 
would be: 4-5=-1 [a day early]).

2.  Classify the difference calculated at step 1 
using the pre-defined states (e.g. if a state is 
defined as “a day early”) then, for illustration 
purposes, suppose 40 deliveries belong to 
that state.

3.  Estimate the probability associated with each 
state. For the example above, if the total 
deliveries were 400, therefore 40 deliveries 
represent 10%, so the probability of “a day 
early” deliveries is 0.10.

4.  With the estimated probabilities at step 3, 
use Equation 1 to calculate the entropy (e.g. 
continuing with the calculation from previ-
ous step: -0.1 log2 0.1 = 0.33 bps).

5.  Add up all the entropy values to calcu-
late the entropic-related complexity (e.g. 
0.33+…=2.58 bps).

The subsequent analysis of the indices involves 
three more steps:
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1.  Compare relevant complexity indices calcu-
lated for the different areas being analysed, 
to identify high complexity areas. The rule of 
thumb used here was: < 1 bps: low; 1 to 2 bps: 
medium; > 2 bps: high. This rule of thumb 
results from considering that the maximum 
entropic complexity for a six-state system 
is 2.58 bps or bits per state (=log26), and a 
rough estimation of the low, medium and 
high values, respectively. It is worth mention-
ing that the specific state definitions have a 
direct impact on the results. However, the 
recommendations derived from the calcula-
tions in this chapter are robust, as they hold 
when tested with slightly different states, as 
in the case of Company B (Huaccho Huatuco 
et al., 2010). For more details on the issue 
of state definitions for the entropic-related 
complexity, please refer to Sivadasan et al. 
(2001).

2.  Identify specific reasons within each com-
plexity area (e.g. suppliers’ interface, inter-
nal production and customers’ interface), 
and observe their frequency of recurrence 
throughout the flows, grouping them if 

necessary. For example, similar reasons can 
be aggregated into a state, “low materials 
quality” and “delays in suppliers’ delivery” 
could be grouped into “suppliers-related 
reasons.”

3.  Provide recommendations to the manu-
facturing organisations about managing 
their entropic-related complexity. The key 
findings, such as high complexity areas 
and prioritisation of the areas that require 
managerial attention, were presented to each 
participating manufacturing organisation.

CASE STUDIES FOR 
CUSTOMISED PRODUCTION

This section is based on the “Rescheduling and 
Complexity for Customised Products” project 
involving three UK manufacturing companies in 
customised production (Huaccho Huatuco, 2006). 
The case studies are summarised in Table 2.

Both material flows (such as the raw materials 
and work in progress) and information flows (such 
as the production schedules) are important when 

Table 2. Summary of the case study companies

Company (size) Product Main disturbance(s) Relative level of customisation according to 
Duray et al. (2000)

A (Large, part of a mul-
tinational corporation)

Pumps for oil, water 
or waste

Suppliers do not always deliver on time. 
Bottlenecks exist in the production 
shopfloor (as a consequence, queues 
develop)

Each pump is a project on its own, depending on 
where the pump is to be installed. The customer 
determines the specification of the pump. Cus-
tomisation is tailored (at the fabrication stage).

B (Large, part of a mul-
tinational corporation)

Paper chemicals man-
ufacturer

Customers change their orders at the 
last minute, and innovative products 
are likely to fail in the shop floor. For 
example, new chemical products for 
paper to achieve particular properties, 
such as: allowing the quick drying of 
the ink printed on them.

Innovative paper chemicals with improved 
properties. Customer needs are gathered by the 
company’s own dedicated customer service staff 
who work closely with customers. Customisation 
is pure (at the conception stage).

C (SME) Industrial doors None apparent Each door is a project on its own, depending 
on where the door is to be installed. There is 
a limited range of door types on offer (four 
types), but the overall specifications such as 
size and location characteristics are unique for 
each door. Customisation is standardised (at the 
assembly stage).
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rescheduling manufacturing systems. Details of 
the companies rescheduling practices were col-
lected from interviews, direct observations of the 
shop floor and paper / electronic documents. These 
case studies are used to abstract the characteristics 
of the hybrid rescheduling algorithms as used in 
practice.

The following benefits to the participating 
companies were anticipated:

•  Diagnosis and benchmarking of each com-
pany’s rescheduling practice.

•  Evaluation of the amount of entropic-related 
complexity they are handling when resched-
uling.

•  Recommendations as how to manage com-
plexity to their advantage.

These companies are based in the UK and were 
chosen among different candidate companies due 
to their different levels of customisation. All three 
companies agreed to participate in the research 
project by providing access to their management 
staff in relation to scheduling and production.

The following good practice elements were 
gathered from all the case studies:

•  People involvement and commitment.
•  Frequent communications both formal 

(printed documents) and informal (phone 
and face-to-face conversations).

•  Expertise coming from experience.
•  Quality awareness throughout the process.

Some of the issues identified at each manufac-
turing organisation are given in Table 3.

Table 4 shows the data collection details in 
terms of time period. It also shows that between 
3 and 17 months historical data were collected.

The remainder of this results section is di-
vided into: entropic-related complexity, hybrid 
rescheduling algorithms, customised versus com-
modity production, and recommendations to case 
study companies. These are discussed in turn next.

Table 3. Issues identified

Company      Issues identified

Company A • Difficult for the researchers to see the big picture (i.e. what is happening in other departments and the organisation 
as a whole). 
• Not much historical data recording. 
• Pressure on the scheduler for the individual projects to meet milestones / deadlines.

Company B • Frequent rescheduling due to customer rush orders 
• No charge to customers for rush orders 
• Flexibility: strength or weakness? There is enough spare capacity to accommodate rush orders. However, the sched-
uler is finding increasingly difficult to manage the complexity associated with them. 
• Not enough operators – in the short term this is mostly because in the original schedule not many operators are 
needed, but in practice with the new rush orders coming in, shortage of labour becomes an issue.

Company C • No extra charge to customers for rush orders or fast turnaround (FTA) deliveries. 
• Production earliness could become an issue when storage space is limited.

Table 4. Data collection details

Company Area of assessment Time Period

Company A Suppliers’ interface 10 months

Internal Production 3 months

Customers’ interface 17 months

Company B Suppliers’ interface 3 months

Internal Production 9 months

Customers’ interface 3 months

Company C Suppliers’ interface 7 months

Internal Production 4 months

Customers’ interface 4 months
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Entropic-Related Complexity Results

The results were shown to each manufacturing 
organisation by means of a Power Point presen-
tation. Prior to this meeting, hard-copies of the 
presentation were distributed to the attendees to 
allow them to assess the confidentiality and sen-
sitivity of the information. The attendees included 
key people within the organisation, people who 
had participated in the case study and people to 
whom the results would be most relevant. The 
participants provided feedback on their views 
and agreed with the results of our analysis. The 
most important point they made was in regards to 
being able to “quantify” the amount of complex-
ity they were handling. Also, they acknowledged 
the fact that internal complexity does not exist in 
isolation and it is influenced by their suppliers’ 
and customers’ interfaces.

The results of the analysis have been classified, 
according to the type of entropic-related com-
plexity handled due to rescheduling: Suppliers’ 
interface, Internal Production, and Customers’ 
interface. Each of these categories is discussed 
in turn next.

Suppliers’ Interface

The complexity indices associated with the pro-
curement or suppliers’ performance are plotted 
in Figure 3. An example of the entropic-related 
complexity calculation is presented next. Com-
pany C’s suppliers’ interface was observed to be 
in one of the following states: “on time or early,” 
“< 1 week late” and “2-4 weeks late.” There were: 
21, 59 and 20 occurrences of each of these states, 
respectively. Applying Equation 1, they generate: 
0.22, 0.39 and 0.15 bps, respectively. Adding these 
up, the complexity associated with the suppliers’ 
interface at Company C is calculated at 0.76 bps.

In Figure 3, the horizontal axis shows the states 
of earliness or lateness associated with suppliers’ 
deliveries to Company A, Company B and Com-
pany C, whereas the vertical axis shows the 
complexity index associated with those states. It 
can be seen that the average complexity associ-
ated with deliveries from suppliers to Company 
A is high at 2.41 bps (>2 bps), it is medium from 
suppliers to Company B at 1.09 bps (1-2 bps) and 
it is low from suppliers to Company C at 0.76 bps 

Figure 3. Entropic-related complexity at the suppliers’ interface
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(<1 bps). All three results are within the limits of 
manageable complexity (Miller, 1956).

The complexity associated with the state of 
being “on time or early” could be regarded as 
value-adding complexity, which is the complexity 
that is needed to satisfy the end customer. How-
ever, early deliveries can cause some problems 
to companies, in terms of inventory, especially 
those working in a lean / JIT environment. The 
states of lateness are regarded as non-value add-
ing complexity. Suppliers to Company A are 
most complex in the “on time or early” and the 
“>8 weeks late” states. This could be explained 
as due to the fact that suppliers’ deliveries of 
common components are not a problem, whereas 
suppliers’ deliveries of critical components such 
as pump motors are more prone to take longer 
than estimated. Suppliers to Company B and to 
Company C show a similar pattern of behaviour, 
with the highest source of complexity coming from 
the “<1 week late,” and decreasing for the rest of 
the lateness states. This is because their suppliers 
are reasonably reliable and, if they missed the 
requested delivery date, they will deliver sooner 
rather than later. This is a direct consequence of 
the percentage of occurrence of states, which is 
presented in Table 5. As mentioned earlier, states 
are pre-defined in the analysis, so another way of 
analysing the data could consider two states: “on 
time or early” versus “late” deliveries. However, 
the six states used here have been defined taking 
into account the scheduler’s decision making 
points as to whether to take action according to 

their implications on the shop floor production. 
For example, lateness of less than a week (i.e. “<1 
week late”) would not normally prompt as much 
managerial attention as lateness by a month or so 
(i.e. “4-8 weeks”) would.

Internal Complexity

Although all three companies make customised 
products, they have their own individual produc-
tion scheduling characteristics that make them 
different from one another. For example, their 
production lead time is 9 to 12 months, 1 to 2 
weeks, and 4 weeks for Company A, Company 
B and Company C, respectively. Thus, the com-
plexity results of their internal production are 
presented separately, in the next three sections.

Company A

Table 6 shows the percentage of occurrences for 
each of the areas which can be rescheduled in the 
order book. It can be observed that the schedule 
adherence (“OK” state) accounts for 17% of the 
total. The following processes contribute almost 
equally: factored, project equipment and materi-
als (between 14% and 15%). Most importantly, 
it can be observed that rescheduling of the order 
book due to the assembly area accounts for 22% 
of the total. This is not surprising, given the nature 
of the product which is engineer-to-order pumps, 
and which implies that there is a high level of 
uncertainty when making one-off products.

Table 5. Percentage of occurrence of states (suppliers’ interface)

State Company A Company B Company C

On time or early 32 75 84

< 1 week late 8 19 13

1-2 weeks late 17 3 0

2-4 weeks late 10 2 3

4-8 weeks late 10 1 0

> 8 weeks late 23 0 0
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Figure 4 shows that the amount of complex-
ity that is handled at Company A accounts for 
2.80 bps, which is classified as high in this research. 
The value-adding complexity (represented by the 
black bar) accounts for 15% of the total, and the 
state that contributes the most to the non-value 
adding complexity is “assembly.” Assembly 
consists of a series of steps, some of which are 
outsourced, so the performance is highly influ-
enced by the performance of the outsourcees.

Company B.

Table 7 shows that on time or according to the 
schedule production accounts for 46% of the to-
tal. The data used in the table corresponds to the 
combined live and historical data. Also, it can be 
seen that the percentages increase with lateness 
(i.e. once Company B has missed the produc-
tion scheduled date, the customised product is 
expected to be made later rather than sooner). 
This can be due to technical issues, such as the 
different behaviour of the chemicals in the shop 
floor compared with the experiments carried out 
previously in the laboratory.

Table 6. Order book rescheduling by production 
process at Company A

Production process %

OK (production according to 
schedule)

17

Assembly 22

Factored 15

Project equipment 15

Materials 14

Machining 10

Fabrications 7

Figure 4. Internal entropic-related complexity at Company A

Table 7. Actual versus scheduled production 
performance at Company B

State %

On time 46

<2 days late 6

2-3 days late 6

3-6 days late 12

6-8 days late 12

>8 days late 18
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In Figure 5, we observe that Company B man-
ages a high overall amount of complexity, at 2.16 
bps, and that the value-adding complexity (rep-
resented by the black bar) accounts for 24% of 
the total. Then the non-value adding complexity 
states increase with lateness, with the biggest one 
coming from the “>8 days late” state. This can be 
attributed to technical errors during production 
and to knock-on effects in the production sched-
ule.

Company C

During the period for which data were collected, 
which comprised both live and historical data, 
Company C’s production was always on time 
or early. This was mainly due to the fact that 
the standard delivery time had been set to four 
weeks, which gave plenty of time to account for 
any unforeseen circumstances that could delay 
production. So, Company C’s way of absorbing 
complexity consisted of allocating high spare ca-
pacity levels in their original production schedule. 
This also relates to the “spare capacity” identified 
earlier as another way of managing complexity 
instead of “rescheduling.” It was also noted that 
Company C placed a strong emphasis on fixed 
delivery dates with the customer, so once these 
are agreed with them, deadlines are quite firm, 

with the customer potentially bearing the costs 
for any rescheduling caused by them.

Further analysis was performed regarding 
the earliness of production, as seen in Table 8. It 
can be observed from this table that 50% of the 
doors were finished up to a week early; another 
observation is that the percentage of finished 
doors decreased with increased levels of earliness.

The overall amount of complexity handled at 
Company C, at 1.99 bps is in the medium range 
(1-2 bps), as seen in Figure 6. The value-adding 
complexity or “on-time” delivery accounts for 
21% of the total. It could be argued that finishing 
products early is value-adding, since once the 
doors are completed the resulting spare capacity 
could be used for accommodating other orders. 
However, finishing products too early, such as 

Figure 5. Internal entropic-related complexity at Company B

Table 8. Actual versus scheduled production 
performance at Company C

State %

On time 16

<7 days early 50

7-9 days early 19

9-11 days early 5

11-13 days early 5

>13 days early 5



212

Hybrid Algorithms for Manufacturing Rescheduling

the last three states (“9-11,” “11-13” and “>13” 
days early) may be tying up capital that could be 
otherwise used, doors could become damaged or 
lost, and physical space may become an issue if 
the business were to expand. That is why those 
early states have been classified as non-value 
adding. This understanding was communicated 
to and validated by the company during the pre-
sentation of results.

It is worth mentioning that Company C’s 
performance is remarkable, because no instances 
of late internal production were identified during 
the analysis period. This case is unusual among 
the other case studies carried out to date by the 
authors. The fact that 74% of Company’s C re-
quested deliveries were classified as fast turn-
around (FTA) or rush orders makes its reliable 
performance even more surprising.

Customers’ Interface

The entropic-related complexity was calculated 
at the customers’ interface too. Table 9 shows the 
percentage of occurrences for each state at each 
company. It can be seen in this table that Company 
A and Company B exhibit about 60% on time or 
early deliveries to customers, compared with 98% 
from Company C. It is also shown that the last 
two lateness states (“4-8” and “>8 weeks” late) 
are heavily occurring in the case of Company A, 
but are hardly seen in Company B or Company C.

In this context, Figure 7 shows that Company 
A and Company B exhibit a medium amount of 
complexity (1-2 bps), whereas Company C trans-
fers a very low amount (<1 bps). Company B and 
Company C show a similar pattern in terms of 
the states, with the highest being “<1 week late,” 

Figure 6. Internal entropic-related complexity at Company C

Table 9. Percentage of occurrence of states (customers’ interface)

State Company A Company B Company C

On time or early 61 62 98

< 1 week late 2 20 2

1-2 weeks late 5 9 0

2-4 weeks late 7 7 0

4-8 weeks late 10 1 0

> 8 weeks late 14 1 0



213

Hybrid Algorithms for Manufacturing Rescheduling

and then decreasing complexity as the lateness 
increase. This means that once these companies 
have missed a promised delivery date they will 
try to deliver sooner rather than later. Company 
A’s deliveries show a different pattern, with a 
distinctive increase of the complexity as lateness 
increases (Figure 7). The reason for this behav-
ioural pattern is that, having missed the deadline, 
efforts are made to deliver as soon as possible, to 
avoid reaching and surpassing the penalties ceil-
ing. Once this ceiling is surpassed, the efforts are 
then directed towards other projects (pumps) that 
may be in danger of becoming late, too.

Summary of Entropic-Related 
Complexity Results

Table 10 summarises the results presented so 
far in this chapter. The results indicate that the 
higher the complexity at the suppliers’ interface, 
the higher the complexity handled internally. As 
mentioned earlier, the more complexity is imported 
by suppliers or customers into the organisation, 
the more complexity the company would need to 
handle internally. So, not surprisingly, good sup-
pliers enable good internal performance. It was 

also noticed that all three companies handled less 
complexity at their customers’ interface than the 
complexity they handled internally. This can be 
explained as the case study companies absorb-
ing complexity (i.e., using ways of managing 
complexity such as “rescheduling” and the use 
of “spare capacity” in the production schedule 
to absorb it). It was suggested to companies that 
they should make their customers aware of this 
fact. By doing this, customers could become 
more amenable to pay a Premium (cost of peace 
of mind), as in the case of Company C; this ap-
proach could also help ease some of the pressure 
from Company A. These understanding and 
control mechanisms can be linked to the variety 
and uncertainty of processes, which in the case of 
customised products were prone to happen more 
often, as seen in Company B.

Hybrid Rescheduling Algorithms 
Results

Company A

The emphasis of the production of the pumps at 
Company A was on the deadlines for achieving 

Figure 7. Entropic-related complexity at the customers’ interface
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the milestones of each project (pump). If a need 
for rescheduling occurred, Priority was given ac-
cording to the importance of the project (dictated 
by its monetary value). Company A operates in a 
highly regulated supply chain environment, with 
contractual clauses which will penalise it for not 
delivering on time to the customer. In terms of the 
level of disruption transmitted to the shop floor, 
the scheduler at Company A would consider the 
customer requests carefully against all the projects 
that were in the pipeline, and would just delay the 
jobs rather than pre-empt and interrupt the course 
of the jobs already running. So, Low disruption 
was transmitted to the shopfloor. Therefore, it 
could be concluded that Company A’s preferred 
hybrid rescheduling algorithm was Priority Low 
(Figure 4).

Company A’s poor performance at the customer 
interface is mostly the result of a knock-on ac-
cumulated effect of its suppliers’ failure to deliver 
on time and in full, and of its own NVA internal 
complexity.

Company B

In terms of rescheduling strategies, it was ob-
served that Company B was using Utilisation-
based rescheduling strategies. This is because it 
was normally operating with large amounts of 
spare capacity, in the form of idle vessels. Thus, 
when a rush order was requested by a customer, 
Company B could easily accommodate it in its 
current production schedule by allocating the rush 
order to one of the vessels that was available. In 
terms of disruptions transmitted to the shopfloor, 

the objective of the scheduler was to satisfy the 
customer. As a result, the production schedule was 
updated quite often, on a shift-by-shift basis. So, 
it could be concluded that Company B’s preferred 
hybrid rescheduling algorithm was Utilisation 
High (Please note that “High” refers to the high 
disruption transmitted to the shopfloor and not to 
high utilisation). See Figure 5.

In terms of the disturbances due to customer 
requests, Company B showed the following com-
mon requests: (a) increasing the priority of exist-
ing orders, and (b) introducing new orders, which 
were mostly rush orders. From the interviews at 
Company B it was found that it had verbal agree-
ments with suppliers and contractual agreements 
with customers. This was because, as Company 
B’s customers are a small set of paper mills (who 
may switch to another supplier if not satisfied), 
they had to pay extra attention to customer ser-
vice. This could place Company B in a vulnerable 
situation in the context of its supply chain, since 
power can be imbalanced (New & Ramsay, 1997).

Company C

Company C did not need to carry out rescheduling 
at all (Figure 6) – the reasons for this are explained 
next. Firstly, at the suppliers’ interface, Company 
C carefully selected its suppliers, such that they 
were highly dependable. It is worth mentioning 
that Company C was in a position to do so, as they 
focussed on a niche in the market, raising issues 
of costs versus added-value. Internally, spare ca-
pacity was built in the production schedule, so it 
remained mostly unaffected by disturbances (again 

Table 10. Entropic-related complexity in bits per state (bps)

Case study Suppliers’ interface Internal complexity 
(value adding %)

Customers’ interface

Company A 2.41 2.80 (15%) 1.78

Company B 1.09 2.16 (24%) 1.59

Company C 0.76 1.99 (21%) 0.16

Note: <1:low; 1-2: medium; >2: high
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a way of absorbing complexity). At the custom-
ers’ interface, Company C used formal contracts 
with customers to protect itself against last minute 
changes. As a consequence, Company C did not 
need to reschedule its production at all during the 
studied period. This result was due to including 
spare capacity in its production schedule, and to 
its careful selection of suppliers and customers. 
This solution may be more suitable and feasible 
in the Company’s C industry type rather than in 
other industries.

Customised vs. Commodity 
Production

Table 11 deals with the comparison between cus-
tomised and commodity production results. Key 
differences between these two types of production 
on observed rescheduling practices are:

•  The use of threshold conditions (associated 
with Low disruption rescheduling algo-
rithms) for carrying out rescheduling is more 
common in customised production than in 
commodity production. Threshold condi-
tions mean the use of decision making points 
in order to filter disruption transmitted to 
the shop floor due to disturbances (Low 
disruption). Typically companies of custom-
ised production are protected by formal 

contracts against customer changes, with 
attached penalties / premiums for last min-
ute changes or late deliveries.

•  Spare capacity in the original production 
schedule is higher in the customised produc-
tion than in commodity production.

A key similarity between the two contexts is 
that Utilisation High is a useful hybrid resched-
uling algorithm in both customised and com-
modity production. Additionally, Priority Low 
(as observed in Company A) is better suited for 
customised production, and Right-shift is better 
suited for commodity production.

RECOMMENDATIONS TO 
CASE STUDY COMPANIES

The following recommendations were given to 
the case study companies; these are linked with 
Table 3, about the issues identified:

Suppliers’ Interface (Figure 3)

⇒  Company A (high complexity): Exercise 
tighter control over suppliers’ performance, 
develop partnerships with key reliable sup-
pliers, and allow the production schedulers 
to play a more important role in the process 

Table 11. Rescheduling characteristics: customised vs. commodity production

Rescheduling characteristics Customised production Commodity production

Product unit cost (£) High Low

Product type Specialised Standard

Pace of production Slow Fast

Threshold conditions used for production re-
scheduling

More common Less common

Spare capacity embedded in the production schedule Medium to High Low to Medium

Company protected by contractual agreements 
with customers

Very common Not common

Preferred hybrid rescheduling algorithms for reduc-
ing entropic-related complexity

Priority Low (Company A) and Utilisa-
tion High (Company B)

Utilisation High and Right-shift (Huaccho 
Huatuco et al., 2009)
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of purchasing materials or components. This 
approach will allow Company A to focus on 
managing its own internal complexity, by 
first reducing the uncertainty of suppliers’ 
deliveries. However, it should be kept in mind 
that changing structures / responsibilities 
could be difficult in a large company such 
as this. Change should be driven by the top 
management with direct involvement of the 
shopfloor management and operators, and 
it should be carefully monitored and con-
trolled to ensure that the overall objectives 
are achieved.

⇒  Company B (medium complexity) and 
Company C (low complexity): Maintain the 
good planning of purchasing materials by the 
production scheduler, and further develop 
good relationships with reliable suppliers. 
These were identified through observations 
/ interviews with the productions schedulers 
at these companies.

Internal Complexity 
(Figures 4, 5 and 6)

⇒	  Company A (high complexity): Synchro-
nise production machining-assembly-test, 
in order to avoid bottlenecks, and improve 
forecasting of delivery dates (they were too 
optimistic) by allowing some slack in the 
production schedule, to cater for unforeseen 
problems (this recommendation also applies 
to Company B). This may allow the schedule 
to become more robust, therefore reducing 
the need for rescheduling. However, it is 
acknowledged that they may find allocat-
ing slack time in the schedule is too costly, 
if there are idle times when many jobs are 
waiting to be processed.

⇒  Company B (high complexity): Continue 
monitoring the production system; resched-
uling does help towards delivering the 
products on time.

⇒ Company C (medium complexity): Improve 
forecast of delivery dates (they were too 
pessimistic), since most of the complexity 
is coming from earliness. This is a potential 
problem, and the company was made aware 
of this at the result presentation. This may 
seem to contradict the earlier “slack in the 
schedule” recommendation. However, it was 
noticed that Company C was overbuffering 
itself, and it could easily promise the cus-
tomer and achieve “on time” deliveries of 
standard products up to 3 weeks instead of 
4 weeks, should they wish to do so.

Customers’ Interface (Figure 7)

⇒  Company A (medium complexity): Develop 
partnerships with customers, with especial 
review of the contractual agreements and 
the applied penalties in case of lateness.

⇒  Company B (medium complexity) and 
Company C (low complexity): Develop 
threshold conditions regarding rush orders 
or fast turnaround products (FTA). This will 
allow Company B to achieve Low disrup-
tion transmitted to the shop floor because, 
during the period of study, the customers 
were taking for granted that their requests 
will be taken into account without penalty. 
For Company C, the threshold is so wide 
that it could risk becoming uncompetitive, 
should its competitors offer to provide the 
same product faster.

Although managers knew that certain areas 
were more complex than others, entropic-related 
complexity allowed them to measure and to com-
pare the complexity levels. The ability to integrate 
and quantify complexity in a single comparable 
measure was considered useful by managers, and 
it provided a basis for fruitful discussions between 
researchers and practitioners.
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DISCUSSION OF RESULTS

The counter-intuitive result in this chapter is 
that companies in customised production do not 
necessarily face high levels of complexity. This is 
because, as observed in the companies reported in 
this chapter, in practice companies in customised 
production ensure that they have formal contrac-
tual agreements in place for the delivery of the 
final products. Also, these companies ensure they 
have the resources to enable them flexibility, and 
to cope with the additional process complexity 
due to customisation. This can work in their fa-
vour, such in the case of Company C, which uses 
spare capacity as a buffer to protect itself from 
disturbances. Alternatively, it could work against 
the company, such as in the case of Company 
A, which tries to avoid the lateness penalties of 
its tightly arranged schedule. It could be argued 
that Company C operated in a niche market and 
could afford to place higher conditions onto its 
customers, than, for example, Company B, for 
which competition is more intense.

Table 12 compares the results previously re-
ported in the literature by the authors (Huaccho 
Huatuco et al., 2009) with the results of the case 
studies reported in this chapter. It can be seen 
that Utilisation High achieves lower levels of 
entropic-related complexity than Priority Low, 
in both customised and commodity productions. 
However, customised production shows, surpris-
ingly, a lower level of complexity than commodity 

production for both identified hybrid rescheduling 
algorithms. In order to explain this, it is important 
to use the case-based research methodology to 
investigate entropic-related complexity, since 
it also captures the qualitative aspects through 
interviews and observations. Direct observa-
tions and historical data have been used to obtain 
meaningful results, by providing explanations 
from schedulers and managers about the reasons 
for rescheduling. Historical data can also help to 
smooth out any unusual performance into a more 
stable, and thus representative pattern.

Implications for Scheduling Practice

The more threshold conditions are embedded in 
the hybrid rescheduling algorithm, the less dis-
ruption is transmitted to the shop floor. So, this 
chapter encourages manufacturing organisations 
to be reactive to disturbances, whilst also taking 
into account thresholds for deciding when to re-
act. As discussed in the literature review section 
(Monostori et al., 2007; Pfeiffer et al., 2007), 
thresholds could be tested at different levels us-
ing computer simulations in order to test ‘what 
if’ scenarios and taking into account the studied 
organisation’s objectives.

The High disruption algorithms (Priority High 
and Utilisation High) monitor the state of the 
system and react whenever there is a disruption. 
This is called event-based rescheduling. However, 
that reaction is constrained sometimes because the 

Table 12. Entropic-related complexity for each hybrid rescheduling algorithm: customised vs. commod-
ity production

Hybrid rescheduling algorithm Customised production Commodity production*

Priority High Not identified 2.731b

Priority Low 2.800 3.028a

Utilisation High 2.160 2.709 b

Utilisation Low Not identified 2.713 b

Right Shift Not identified 2.712 b

*Taken from Huaccho Huatuco et al. (2009): (a) The complexity associated with the information content of schedules and (b) The complexity 
associated with the variation between schedules (bps).
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alternative machine is busy, but the effort to check 
alternative machine availability had already been 
made. Whereas the Low disruption algorithms 
(Priority Low and Utilisation Low) monitor the 
state of the system, they only react if the remaining 
processing time is greater than a threshold. When 
executing the Right-shift algorithm there is less 
need to update the schedule, as it only affects the 
jobs on the affected machine.

Value-Adding (VA) vs. Non-Value 
Adding Complexity (NVA)

Table 10 depicts the value adding percentage of 
internal complexity. In this chapter value adding 
is related to “on time or early” production, as it is 
assumed that these states will allow a manufac-
turing company to satisfy its customers. In this 
respect, Company B and C achieved over 20% 
VA complexity, whereas Company A achieved a 
15% VA complexity.

It is worth mentioning that determining what is 
VA and NVA complexity depends on the company 
or industry sector under study. A trade-off of the 
potential benefits versus losses should be per-
formed in order to give more general insights and 
to decide the VA and NVA states and complexity.

Even when a company is handling a high 
amount of VA complexity, this still needs to be 
managed by the company. However, a different 
type of action is needed for this. As mentioned in 
the Appendix: “Key Terms and Definitions,” the 
manager would need to decide on the VA complex-
ity level it could allow into the system depending 
on the company, sector and wider context.

The NVA complexity, which is the complexity 
that does not help with satisfying the customers, 
needs to be both monitored and controlled. NVA 
complexity could possibly not be entirely elimi-
nated, but it can be reduced. In order to do this, 
the reasons that cause it in the first place need to 
be identified and analysed.

CONCLUSION

The conclusions section provides theoretical-
based insights for customised versus commodity 
production, and it derives practical guidelines 
for production managers / schedulers about the 
hybrid rescheduling algorithms which are more 
likely to succeed in practice.

The main research question explored in this 
chapter was: In the context of customised pro-
duction, how do hybrid rescheduling algorithms 
impact entropic-related complexity? The follow-
ing objectives guided this chapter: (a) To identify 
the typical hybrid rescheduling algorithms used 
in the context of customised production, and (b) 
To explain why and how hybrid rescheduling 
algorithms vary across organisations.

For the research question, it can be seen from 
the results that Priority Low (originated from 
Company A) generates higher complexity indices 
than Utilisation High (originated from Company 
B). This can be dependent on the context of the 
organisations studied, for example production lead 
times were longer at Company A than Company 
B. It was also confirmed that the less reschedul-
ing is carried out the lower the complexity, with 
Company C (SME making customised production) 
showing a level of complexity management that 
could serve as a beacon for other companies. As 
a reminder, Company C embedded flexibility into 
their manufacturing process by allocating spare 
capacity in their production schedule.

A counter-intuitive finding was that the 
entropic-related complexity associated with cus-
tomised production was lower than that related to 
commodity production. This could be explained 
by the fact that commoditised production typically 
faces tougher competition; the customer could 
easily switch from one supplier to another and 
this can happen as late as already placed orders 
or production set into motion (Sivadasan et al., 
2010). By contrast, in the case of customised pro-
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duction, once the customer has made up their mind 
and agreed to the specification of their product 
(which had been discussed in order to match its 
specifications), then the company is protected (or 
bounded) by contract to provide what has been 
agreed. This leads to a more stable production 
schedule in practice.

Regarding the first objective, it could be argued 
that manufacturing organisations in customised 
production prefer the two hybrid rescheduling 
algorithms identified in this chapter: Priority Low 
and Utilisation High. However, this is dependent 
on the companies selected for the case studies, so 
different companies may use different hybrid re-
scheduling algorithms. With respect to the second 
objective, several other factors not included in this 
chapter could have an influence on the different 
choices of hybrid rescheduling algorithms by 
manufacturing companies, production lead times 
(e.g. weeks or months) or the type of competition 
(e.g. sheltered or competitive).

Implications for Theory and Practice

This chapter brings a novel and analytically-based 
insight into the effects of hybrid rescheduling 
algorithms on entropic-related complexity. An 
unpredicted result─of customised production lead-
ing to lower complexity than mass production─is 
highlighted and explained. The work presented 
in this chapter has shown the application of 
concepts derived from previous research carried 
out by the authors to real-world manufacturing 
companies. As stated earlier, the two quadrants 
of interest to the work presented in this chapter 
were: “functional product, responsive scheduling” 
and “innovative product, responsive scheduling” 
(Huaccho Huatuco, 2003). The former refers to 
commodity production, whereas the latter refers 
to customised production.

Organisations that belong to the “functional 
product, responsive scheduling” quadrant can 

manage complexity through decision-making 
and rescheduling. Here the key point is to be 
responsive to customer requests by adapting the 
current scheduled quantity. This was observed in 
previous case studies carried out by the authors 
(Sivadasan et al., 2010).

Organisations that belong to the “innovative 
product, responsive scheduling” quadrant, which 
are made-to-order of customised products, can 
deal with complexity through spare capacity and 
rescheduling in order to become responsive. In 
this chapter it has been found that Priority Low 
and Utilisation High are the preferred hybrid 
rescheduling algorithms used by manufacturing 
organisations in practice. However, these results 
should not be taken prescriptively. Each company 
should identify its main objectives, and design and 
manage the system consistently with these objec-
tives. The thresholds/ tolerance limits / trade-offs 
of spare capacity should be analytically investi-
gated and linked with each company’s ability to 
manage the additional complexity, either value- or 
non-value adding, associated with these decisions. 
In this line, companies should reserve spare ca-
pacity for products at greater risk of mismatch 
between their supply and demand, since additional 
spare capacity in the production schedule can be 
a detriment to internal performance measures and 
a drain on costs.

Future work should consider the possibility 
of carrying out extra case studies for customised 
production to see whether the other rescheduling 
strategies are used in practice: Priority High, 
Utilisation Low and Right Shift in the context of 
customised production environment. Another fu-
ture work direction could be to design, set up and 
run computer simulations, which should include 
some spare capacity already built-in the Original 
Schedule (OS), a sign of robust and sound sched-
uling methods. Then, a comprehensive statistical 
analysis of results could be performed.
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KEY TERMS AND DEFINITIONS

Commodity Production: Commodity produc-
tion refers to the production of mass produced, 
standard or off-the-shelf products.

Customised Production: Customised produc-
tion refers to the production where the customer’s 
preferences for the configuration of a final product 
are taken into account.

Entropic-Related Complexity: Entropic-
related complexity is defined as the expected 
amount of information required to describe the 
state of the system (Calinescu et al., 2000). It is 
based on “entropy,” which was first proposed in 
the seminal work by Shannon (1949), and was 
later adapted to manufacturing systems by Fri-
zelle & Woodcock (1995) and Efstathiou et al. 
(1999). As a result, a number of studies about the 
entropy measure in the context of manufacturing 

systems emerged (e.g. Sivadasan et al., 2002, 
2004, 2006, 2010 and Huaccho Huatuco et al., 
2009). Entropy captures two characteristics of 
complexity: the variety and uncertainty within 
the system, corresponding to the structural and 
operational complexity, respectively (Calinescu 
et al., 2000).

Hybrid Algorithm: Taking the separate defini-
tions of “hybrid” and “algorithm” from the Oxford 
Dictionary (Hornby, 2000), and combining them, a 
“Hybrid algorithm” can be defined as the product 
of mixing two or more sets of rules that must be 
followed when solving a particular problem. In 
this chapter the problem refers to rescheduling 
manufacturing systems.

Non-Value Adding (NVA) Complexity: 
Non-value-adding (NVA) complexity is the com-
plexity that is not helping the company achieve 
the satisfaction of its customers (e.g. in the form 
of late deliveries). This complexity needs to be 
both monitored and controlled, in order to reduce 
it and mitigate its possible consequences. For a 
paper on VA and NVA complexity, please refer 
to Huaccho Huatuco et al. (2001).

Rescheduling: Rescheduling, also known as 
“predictive-reactive scheduling” (Vieira et al., 
2003; Morton & Pentico, 1993), is defined in 
this chapter as changing the schedule in terms 
of time, quantity or product specifications in re-
sponse to disturbances (Huaccho Huatuco et al., 
2009). Disturbances can be of internal or external 
nature. Internal disturbances are those that occur 
within the manufacturing system, such as machine 
breakdowns; whereas external disturbances are 
those that occur outside the manufacturing sys-
tem, such as customer changes (Calinescu et al., 
1998). Rescheduling affects the performance of 
manufacturing organisation(s) (Herrmann, 2001; 
Hermann & Delalio, 2001; Hermann & Pundoor, 
2002). Previous research normally uses traditional 
measures, such as mean tardiness to evaluate the 
effectiveness of the rescheduling procedure (e.g. 
Bean et al., 1991).
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Value Adding (VA) Complexity: Value adding 
(VA) complexity is defined in this chapter as the 
complexity needed to satisfy the customers (e.g. 
in the form of “on time” delivery). This complex-

ity needs to be managed too, with the manager 
judging the level that is suitable to allow into the 
system. This decision depends on the company, its 
industry sector and wider context where it operates.



Section 3
Other Applications of Hybrid 

Algorithms
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ABSTRACT

Small geographic basic units (BU) are grouped into larger geographic territories on a Territory Design 
Problem (TDP). Proposed approach to solve a TDP is presented through a study case developed on a large 
soft drinks company which operates in the city of Monterrey, México. Each BU of our TDP is defined by 
three activity measures: (1) number of customers, (2) sales volume and (3) workload. Some geographic 
issues about contiguity and compactness for the territories to be constructed are considered. An optimal 
solution is obtained when the constructed territories are well balanced taking into consideration each 
activity measure simultaneously. In particular, contiguity is hard to be represented mathematically. All 
previous research work indicates that this NP-Hard problem is not suitable for solving on large-scale 
instances. A new strategy which is based on a hybrid-mixed integer programming (HMIP) approach is 
developed. Specifically, our implementation is based on a Cut-Generation Strategy. We take advantage 
from territory centers obtained through a relaxation of a P-median based model. This model has a very 
high degree of connectivity. Thus, small number of iterations to find connected solutions is required. 
The authors detail out their methodology and then they proceed to its computational implementation. 
Experimental results show the effectiveness of our method in finding near-optimal solutions for very 
large instances up to 10,000 BU’s in short computational times (less than 10 minutes). Nowadays, this 
model is being used by the firm with important economical benefits.
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INTRODUCTION

A territory design problem (TDP) is defined as 
the problem of grouping small geographic areas 
called basic units (e.g. counties, zip codes or 
customers) into larger geographic clusters called 
territories in such a way that these territories 
are acceptable according to relevant planning 
criterion. Depending on any particular context, 
these considerations can either be economically 
motivated (e.g. average sales, workload or number 
of customers) or have a demographic background 
(e.g. number of inhabitants, voting population). 
Moreover some spatial constraints like contigu-
ity and compactness are often required. Note that 
literature often uses the term Territory Alignment 
instead of Territory Design.

The model we propose on this work is integrat-
ed into an interactive and user-friendly Geographic 
Information System (GIS) application, named 
MAPINFO©. This chapter illustrates the potential 
of the proposed approach as an easy to use decision 
tool in the context of a study case developed on 
a large soft drinks company that operates in the 
city of Monterrey, México. Embotelladoras ARCA 
(www.e-arca.com.mx) is a company dedicated to 
production, distribution and sale of soft drinks 
brands owned by The Coca-Cola Company, some 
own-labels and third parties. ARCA was formed 
in 2001 by integrating three of the oldest bottlers 
in Mexico and become the second largest bottler 
of Coca-Cola products in Latin America and the 
fifth in the world. The company distributes its 
products in the north region of the Mexican Re-
public and since 2008, in the northeastern region 
of Argentina. ARCA also produces and distributes 
branded salty snacks Bokados. Thus, the company 
has an enormous market that makes us think that 
it could be better achieved by taking into account 
an operation research model.

The company faces a commercial TDP. On this 
work we are going to focus our application in the 
distribution operation on the city of Monterrey, 
México. In distribution industry, TDP is motivated 

by changes on the customers served by a given 
route. As each territory is serviced by a single 
resource, it makes sense to use some planning 
criterion to balance the number of customers, 
volume of sales and workload required to cover 
on each territory. It is often required to balance 
demand among the territories in order to delegate 
responsibility fairly. For this, the firm wishes to 
partition the city area into disjoint territories that 
are suitable for their commercial purposes. In 
particular, given a set of basic units (BU’s), the 
firm wants to create a specific number of territo-
ries according to some planning criterion such as 
compactness and balancing. The main objective of 
TDP is to group customers into manageable sized 
territories in order to guarantee that BU’s assigned 
to a territory are relatively close to each other.

On this work we are proposing a Hybrid Mixed 
Integer Programming model (HMIP) to find near-
optimal solutions for our commercial TDP. This 
HMIP model heuristically oriented is integrated in 
an interactive and user friendly Geographic Infor-
mation Systems (GIS). The algorithm consists of 
iteratively solving a relaxed MIP model (relaxing 
contiguity constraints). Then we identify the vio-
lated contiguity constraints in order to add a subset 
of cuts to the model as necessary. The procedure 
continues until no more contiguity constraints are 
needed. The model was implemented and tested. 
We found that this procedure is successful to 
find near-optimal solutions for very large-scale 
instances up to 10,000 BU’s.

BACKGROUND AND SOME 
APPLICATIONS FOR 
TERRITORY DESIGN

The criteria for defining a meaningful territory 
design lie in the purpose of the studies and depend 
mainly on each particular case. These criteria are 
often guided by the problem specifications or even 
more restricted by the available data. For a sales 
territory context, well–planned decisions enable an 
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efficient market penetration and lead to decreased 
costs and improved customer service. By the other 
hand in terms of political districting, an algorithmic 
approach protects against politically motivated 
manipulations during the territory design process. 
Either way, the most commonly used set of criteria 
includes contiguity, compactness and balanced 
territories. We can define Compactness as the 
spatial property of being close and firmly united 
(i.e. having the minimum distance between all 
the entities of a given area). We define Contiguity 
as a continuous connection of a group of entities 
throughout an unbroken sequence and sharing a 
common border. Researchers and practitioners 
have put diverse opinions on what other design 
criteria to consider. These include:

•  Minimum variation in spatial characteristics 
among territories (i.e. area, size, shape);

•  Territorial homogeneity in economic char-
acteristics like number of customers or level 
of sales.

•  Equal trip generation or workload.
•  Maximum compatibility with already exist-

ing territories.

TDP is a truly multidisciplinary research which 
includes several fields like Geography, Political 
Science, Public Administration and OR as well. 
We can generalize that TDP is common to all ap-
plications that operate within a group of resources 
that need to be assigned in an optimal way in order 
to subdivide the work area into balanced regions 
of responsibility. We can mention pickup and 
delivery applications, waste collection, school 
districting, sales workforce territory design and 
even some others related to geopolitical concerns. 
Most public services including hospitals, schools, 
etc., are administered along territorial boundaries. 
We can mention either economic or demographic 
issues that may be considered for setup a well 
balanced territory. TDP is motivated by quite 
different applications like political districting, 
design of territories for schools, social facilities, 

emergency services, waste collection and sales & 
service territory design. In what follows we will 
present several applications which all have in 
common the task of subdividing the region under 
inspection into a number of territories, subject to 
some side constraints.

In political districting applications, a gov-
ernmental area, such as a city or state, has to be 
partitioned into a given number of territories. 
We note that in this context, territories are usu-
ally called districts. The problem of determining 
political territories can be viewed as one of divid-
ing a governmental area, such as a city or a state, 
into subareas from which political candidates are 
elected. As each territory elects a single member 
to a parliamentary assembly, the main planning 
criterion is to have approximately the same num-
ber of voters in each territory (i.e. territories of 
similar size) in order to respect the principle of 
“one man–one vote.” In general, the process of 
redistricting has to be periodically undertaken in 
order to account for population shifts. The length 
of these periods varies from country to country. 
For recent books on political districting, the reader 
is referred to Mehrotra et al. (1998) and Grilli di 
Cortona et al. (1999).

The other common set of applications is 
referred as sales and service territory design 
problems. In general, the task of designing sales 
territories is common to all companies which 
operate a sales-force and need to subdivide the 
market area into regions of responsibility. Typical 
planning requirements are to design territories 
which are similar in size, e.g. in terms of sales 
potentials or workload, or that reduce travel times 
within the territories needed to attend the custom-
ers or service incidents. The TDP applications for 
attending customers asking for technical facilities 
are very common and often quite similar criterion 
is employed. Sales promotions and advertising 
amongst the retailers is very important in the 
considered business and is carried out by sales 
agents, where each agent is in charge of a certain 
territory. Some cases are motivated mainly because 
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of the uneven distribution of workload. Here, the 
workload is expressed taking into account sales 
value and frequency of visits. In general, there 
are several motivations for aligning existing or 
designing new territories. First an increase or de-
crease in the number of sales or service obviously 
requires some adjustment of the territories. Other 
reasons are to achieve better coverage with the 
existing personnel or to evenly balance workload 
among them. Moreover, customer shifts or the 
introduction of new products make it necessary 
to align territories see Zoltners and Sinha (1983).

Besides the most common problems for sales 
territory design and political districting, several 
authors report on various other closely related ap-
plications. In some cases, it is required to design 
territories for facilities which provide service at a 
fixed location. On these cases, customers have to 
visit a public facility in order to obtain service (e.g. 
schools or hospitals). Ferland and Guénette (1990) 
deal with the problem of assigning residential 
areas to schools. As an outcome of the planning 
process, all residential areas in the region under 
consideration are partitioned into a number of ter-
ritories, one for each school. A criterion generally 
taken into account is capacity limitations, equal 
utilization of the schools, maximal or average 
travel distances for students, good accessibility 
and racial balance. When planning territories 
for social facilities, like hospitals or public utili-
ties, administrative units have to be aggregated 
into territories. As a result, it is determined for 
every inhabitant to which facility he should go 
in order to obtain service. Typically the number 
of inhabitants on each territory has to be within 
predetermined bounds in order to account for ser-
vice utilization and a limited capacity of the social 
facility. Moreover territories should be contiguous 
and the facilities should be easily accessible for 
all inhabitants within the respective territory, as 
public transportation for example.

Several (public) institutions provide their ser-
vice not at a fixed location but distributed over 
a geographic region or on–site where the service 

incident occurs. Muyldermans et al. (2002) deal 
with the planning of winter gritting and salt spread-
ing services. Thus, the region under consideration 
has to be partitioned into territories, where each 
territory contains at least one vehicle depot. Af-
terwards, vehicle routes for providing service are 
planned for each territory separately. The main 
design criterion for the territories is balance in 
terms of travel distance, compactness and conti-
guity. Closely related is the problem of waste or 
garbage collection. In a first step, so-called sectors 
are determined, where each sectors consists of a 
set of streets or street segments in which waste 
has to be collected on a certain day. Afterwards, 
routes for the garbage trucks within the sectors 
are computed. According to Hanafi et al. (1999), 
the overall time for collecting garbage should be 
minimized (i.e. compactness). In other words, the 
time for collecting garbage should be approxi-
mately the same for all sectors (i.e. balance) and 
the sectors should be contiguous. Whereas in the 
case study of Muyldermans et al. (2002), territories 
are required to be non–overlapping, Hanafi et al. 
(1999) reports that, depending on how often per 
week waste has to be collected, certain streets can 
belong to more than one territory. Thus, in this 
special case, the BU’s are not mutually exclusively 
assigned to territories. D’Amico et al. (2002) report 
a case study for police district design. Here the 
police departments have to partition their jurisdic-
tion into so-called command districts. After the 
districts have been fixed, an optimal number of 
patrol cars that should be on duty are assigned to 
each command district. The “goodness” of the 
districts in terms of several different performance 
measures is assessed.

There are many ways of assigning small 
geographic BU’s to larger territories. Territory 
design has the spatial constraint which accounts 
for contiguity which is important for all BU’s 
contained within each territory. This constraint 
limits the set of acceptable solutions to the 
problem. The main difficulty with this feature is 
that a typical mixed integer programming (MIP) 
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model has an exponential number of contiguity 
constraints. It is impossible to write all these 
constraints explicitly. Thus, the problem grows 
exponentially with additional individual BU’s. 
This feature increases considerably the complexity 
of our problem. Indeed, one of the reasons TDP 
for being especially difficult is the size of the 
solution space. The dimension of a common real 
world problem makes unfeasible any attempt to 
explicitly enumerate all the possible solutions. 
The total number of possible solutions for a TDP 
is very large and is given by the Stirling number 
of the second kind (Altman, 1998). For large, 
complex sets, the problem is immense. Indeed, 
in terms of computational complexity, the TDP 
has been shown to be NP-Complete (Crescenzi, 
& Kann, 1998). Due to legal regulations, shift-
ing markets or the introduction of new products, 
territory design decisions have to be frequently 
re–evaluated. Especially for a large number of 
BU’s and territories this is a lengthy task and 
therefore an algorithmic optimization approach 
for expediting the process is often required. Thus, 
hybrid techniques seem to be the best available 
option to produce solutions to the problem in 
reasonable computational time.

PREVIOUS SOLUTION 
APPROACHES FOR 
TERRITORY DESIGN

The TDP has been largely studied since the 60’s 
and several models and techniques have been 
proposed to solve it. In Operations Research the 
first work about TDP can be traced back to For-
rest (1964) and to Garfinkel’s (1968). Some of 
these approaches are based on set covering or set 
partitioning formulations. In general for solving 
large scale problems, the allocation phase can be 
tackled by relaxing the integrality constraints on 
the assignment variables (i.e. binary variables). 
However, this procedure usually assigns portions 
of BU’s to more than one territory center which is 

not desired. Hess et al. (1971) propose a simple 
rule, which exclusively assigns the so-called split 
areas to the territory center that “owns” the largest 
share of the split area. Zoltners and Sinha (1983) 
model the allocation problem assigning BU’s to 
the closest territory center. This procedure yields 
compact and often connected territories, however, 
usually not well balanced. Moreover, Fleischmann 
and Paraschis (1988) report poor results with this 
heuristic based on a two phase Location-allocation 
approach. They find that about 50% of the balanc-
ing activity constraints for the territories obtained 
were violated.

It is interesting to note that only a few authors 
consider more than one criterion simultaneously 
for a balanced TDP (Zoltners and Sinha, 1983). 
By the other hand, very few works provide opti-
mal solutions for the problem with connectivity 
constraints. Particularly, Hojati (1996) show that 
a good selection for the territory centers may 
impact on the resulting territories. Mehrotra, et 
al. (1998) use an exact method based on a Brach 
and Price structure to find optimal solutions for 
a political districting problem with connectivity 
constraints. In their empirical work, they are able 
to solve instances with up to 39 BU’s. Among the 
last works we find on exact methods for TDP we 
have Caro et al. (2004), Lorena & Senne (2004) 
and Senne, Lorena, & Pereira (2005). These 
models have been based on Column generation 
strategies and Branch-and-price. Size instances 
up to 1000 BU’s are reported here.

Some metaheuristics have been developed 
extensively to solve TDP. Algorithms based on 
simulated annealing are proposed by Browdy 
(1990), and D’Amico et al. (2002). Ricca (1997) 
develop a Tabu-search algorithm. Tabu-search al-
gorithm has been applied in Bozkaya et al. (2003), 
Blais et al. (2003) and Taillard (2003). Genetic 
algorithms for solving territory design problems 
have been introduced by Forman and Yue (2003) 
and Bergey et al. (2003). They encode the solution 
in a similar way as is used to solve the Traveling 
Salesman Problem (i.e. TSP). The encoding is 
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a path representation through each BU. As the 
BU’s are traversed, territories are built on this se-
quence. In Genetic Algorithms we find some more 
recently works on Kirkizoglu (2005) and Bacao 
et.al (2005). Vargas-Suarez, Ríos-Mercado, and 
López–Perez (2005) address a related commercial 
TDP with a variable number of territories P, using 
as an objective a weighted function of the activity 
deviations from a given goal. No compactness is 
considered here. A basic GRASP is developed 
and tested for a few instances obtaining relatively 
good results. Haugland et al. (2007) work with 
stochastic data which they argue is frequently 
present in territory design decisions. They deal 
with uncertain demand for BU’s. In Segura and 
Ríos-Mercado (2007), they model the dispersion 
as a p-median (p-MP) objective function.

Among the most important applications for 
the TDP we find Ríos-Mercado and Fernandez 
(2009). They study the problem considering 
compactness and contiguity but without joint 
assignment constraints. They model TDP as a 
p-center problem (p-CP). This scheme consists 
of a two-stage iterative process where territory 
centers are first located and then customers are 
allocated to centers. However this technique has 
been designed to solve problems involving just 
one single balancing constraint. In this work, the 
authors propose and develop a reactive GRASP 
algorithm for instances up to 500 BU’s. They test 
with some instances of different sizes and find 
that solutions obtained from the relaxation of the 
p-MP based models have a very high degree of 
connectivity. When p-CP is used as dispersion 
measure, the number of instances that require 
additional cuts on its relaxed problem is larger 
than when p-MP is used as dispersion. Particularly 
this p-MP feature has a good impact on compu-
tational efficiency since very few iterations are 
needed, to find connected solutions as opposed 
to the center-based models. As a consequence, 
they conclude that models with a p-MP objective 
function are solved faster than the ones using a 
p-CP objective. On Table 1 we present a brief list 

of previous research works applied to TDP. The 
paper by Kalcsics, Nickel, and Schröder (2005) 
is an extensive survey of approaches to TDP that 
gives an up to date state of the art and unifying 
approach to the topic. For a more extensive review 
related to TDP solution approaches see Zoltners 
and Sinha (2005).

TERRITORY DESIGN APPLICATION 
AT EMBOTELLADORAS ARCA

TDP solutions are case-specific, since each one 
of them has its own constraints and objectives, 
making it virtually impossible to create an algo-
rithm that can be applied to all types of instances. 
When reviewing the literature, one can observe 
that only few papers consider territory design 
problems independently from a concrete practical 
background. Hence the tendency in operations 
research to separate the model from the application 
and establish the model itself as a self-contained 
topic of research cannot be observed. Therefore, 
we will introduce a real business model applied 
for territory design and present our approach for 
solving the problem in detail.

Territory Design Problem (TDP) groups small 
geographic areas, into territories. Every basic unit 
(BU) should be assigned to just one territory. We 
require compactness and contiguity for territories 
to be constructed. Contiguity can be defined as 
a territory that is undistorted geographically. In 
order to obtain contiguous territories, explicit 
neighborhood information for the BU’s is required. 
Our problem definition includes some prescribed 
and/or forbidden territories. This modeling feature 
can be applied to take into account geographical 
obstacles like rivers and mountains. As can be 
verified, prescribed and/or forbidden features can 
be easily extended to consider some territories 
that may already exist at the start of the planning 
process. The TDP for Embotelladoras ARCA is 
stated as follows:
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a.  Given a set V of BU’s (city blocks or indi-
vidual customers) for delivery of goods, we 
need to assign each BU to just one territory 
for delivery tasks. The firm wants to parti-
tion these BU’s into a specific number of 
disjoint territories. The number of territories 
P is fixed and given as a parameter. These 
territories define a partition of V, which is 
represented by a subset of BU’s VT ⊂ V.

b.  All BU’s must be assigned fully to just one 
territory. It is not allowed to split BU’s. For 
all BU’s the route that delivers products 
type 1 should be the same as the one that is 
responsible for delivery of products type 2, 
3, etc.

c.  Each BU i (where i ∈ V) has associated loca-
tion coordinates (Xi, Yi). In addition, there 
are three quantifiable activity measures for 
each BU. We define A={1,2,3} as the set of 
activities measures for each BU. Let Wm

i be 
the value of activity m at the BU i, where m 
∈ A. We define m = 1 (number of customers), 
m = 2 (sales volume), and m = 3 (workload). 
The total activity measure for a territory is 
the sum up of the total BU’s contained on 
that territory.

d.  The firm wants to design territories that are 
balanced (similar in size). This balancing 
requirement exists to each of the three dif-
ferent activity measures individually and 

Table 1. List of previous research work applied to TDP 

Reference Year Comments Solution Method

Garfinkel 1968 Set Covering & Set Partitioning Implicit enumeration

Hess & Samuels 1971 Split Resolution technique Heuristic

Fleischmann & Paraschis 1988 Two phase location-allocation method Heuristic

Hojati 1996 How territory centers impact on BU’s Allocation Centers: Relaxation. Splitting: Capaci-
tated Transp

Ricca & Simeone 1997 Tabu Search Meta-Heuristics

Mehrotra et al. 1998 Up to 39 BU’s Exact MIP, Branch-and-price

D’Amico et al. 2002 Simulated Annealing Meta-Heuristics

Bozkaya et al. 2003 P-median, Tabu Search and Adaptive memory Meta-Heuristics

Forman and Yue 2003 Genetic Algorithms Meta-Heuristics

Blais et al. 2003 Tabu Search Meta-Heuristics

Taillard 2003 Tabu Search Heuristic methods

Caro et al. 2004 Column generation and Branch-and-price Integer programming

Lorena & Senne 2004 Size up to 900 BU’s Capacitated p-median, Column genera-
tion

Klose and Drexl 2005 Column generation and Branch-and-price Branch and Bound

Zolterns and Sinha 2005, 
1983

Several approaches. Alignment of sales territories. Meta-Heuristics

Bacao et al. 2005 Genetic Algorithms Meta-Heuristics

Kalcsics et al. 2005 From 100 up to 1000 BU’s Heuristic & Metaheuristics

Senne et al. 2005 Up to 818 BU’s P-median, Branch-and-price

Haugland et al. 2007 Stochastic Meta-Heuristics

Ríos-Mercado & Fernán-
dez

2009 Up to 500 BU’s Meta-Heuristics: GRASP
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simultaneously. In other words, the number 
of customers, volume of sales and workload 
of the BU’s assigned to each territory should 
be evenly distributed among the workforce 
(i.e. territories).

e.  An important feature is that all the customers 
(i.e. BU’s) assigned to each territory should 
be contained totally within the territory. This 
is territory contiguity.

f.  We have some pre-defined and/or forbidden 
joint assignments of BU’s, so that specified 
pairs of BU’s must (or must not) be assigned 
to the same territory. It means that from 
the beginning of the planning process we 
already have some BU’s that require (or 
do not require) to be assigned to a specific 
territory.

g.  The objective function is to minimize the 
territory dispersion. Formally we have as 
follows: make an optimal and feasible 
partition of a set of BU’s V into a number 
of P territories which satisfy the specified 
planning criterion of balance, compactness 
and contiguity.

HMIP MODEL FOR TERRITORY 
DESIGN PROBLEM

We develop a new strategy based on a Hybrid-
Mixed Integer Programming method (HMIP). 
From previous research work found in Ríos-
Mercado and Fernandez (2009), we decided to 
model our TDP as a P-Median (i.e. p-MP) distance 
objective function. The p-MP objective is a good 
alternative to be used in TDP that have compact-
ness as performance criterion. Before we detail 
out each step, we present our solution approach 
as follows on Table 2:

A. Pre-Processing Heuristic for 
Network Simplification

For explanation purposes, we start here from a 
quantity of 5000 BU’s (set V) which constitutes 
the entire Monterrey metropolitan area. Each BU 
is represented by a node i. The problem is modeled 
by a graph. Let G = (V, L) be an adjacent graph. 
An arc connecting nodes (i,j) exists in set L if 
BU’s i and j are adjacent BU’s (where i,j ∈ V). 
Each BU i is defined by a geographic location with 

Table 2. MHIP procedure for TDP 

HMIP procedure for TDP
Input: Instance of the TDP 
          Graph of adjacent (BU’s contiguity) → G = (V, L)
          Total set of network arcs. Euclidean distance between BU i and BU j → Dij.
          Set of activity measures. Activity measure m for each BU j → Wj

m

          Tolerance for territory balance on each activity measure m → Tm

          Number of territories to be constructed → p
(a) Pre-Processing Heuristic for Network Simplification: 
Input: set heuristic parameter F1 for network simplification
Output: reduced set R → binary variables Xij, where i,j ∈ V, Xij ∈ R and R⊂ D
(b) MIP Model for Territory Centers Location: 
Input: set heuristic parameter F2 for territory center strategy
          Output 1: subset P of BU’s selected for territory centers (where P ⊂ V)
Output 2: reduced set S → variables Xij, where i∈ P⊂V, j ∈ V, Xij ∈ S and S ⊂ R⊂ D
(c) MIP Model for BU’s Allocation to Territory Centers: 
Input: set heuristic parameter F3 for territory kernels
Integral assignments → binary variables Xij, where i∈ P⊂V, j ∈ V, Xij ∈ S and S ⊂ R⊂ D
                                          ⇒ (1) if BU j is assigned to territory center i, (0) otherwise
(d) Pre-assigned and forbidden BU’s constraints 
(e) Territory contiguity constraints 
(f) Heuristic for fast convergence: set heuristic parameter F4.
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coordinates (Xi, Yi). Let’s define Dij as the entire 
set of arcs that represents the distance between 
BU i and BU j. All BU’s can be used as candidate 
location for final territories centers. We need to 
model the network Dij in order to identify a subset 
P of BU’s (where P ⊂ V) that will be selected for 
territory centers. This is done by assigning each 
BU j to only one BU i. We can define that the 
total activity measure for a territory with center 
at BU i is the sum up of the total contained BU’s 
j assigned to that territory (i.e. assigned to BU i). 
Ideally each territory i should have an average 
size for each activity measure m. The average of 
each activity measure m is defined as:

µm j
m

j V
j
m

W
p

m W= ∀ ∈
∈
∑ , ,Α  = activity measure  

of m of BU j, p = # of territories to construct  
(1.1)

As an integer assignment problem, it is easy to 
verify that each arc on Dij would require a binary 
decision variable. We proceed now to reduce the 
complexity of our problem by limiting the number 
of relevant arcs on the original set Dij. For each 
BU i we identify a reduced sub set of l neighbor 
BU’s with minimal Euclidean distance. We have 
now a reduced set of arcs R with size i*l (where 
R ⊂ D). The basic idea of our heuristic is to select 
a sub set of arcs from the network Dij in such a 
way that each element will not be greater than a 
certain upper bound. With this in mind, the problem 
can be solved more efficiently. We must assure 
that each relevant BU j has at least one arc on 
set R connecting to the entire network. If there is 
any BU without this connectivity feature, a sub-
set of arcs should be added to set R if required. 
However, in our implementation we find that it 
is quite problematic to estimate in advance an 
appropriate set of arcs R that are required in order 
to keep the problem feasible. For that reason, we 
propose a special strategy for the upper bound used 
to define the set R. We implement in the model a 

parameter F1 that define an upper bound for each 
activity measure. Thus, the subset of BU’s l that 
are considered for each BU i on set R depends 
not only on a minimal Euclidean distance but 
also considering an upper bound for each activity 
measure as well. Formally we define elements of 
set R as follows:

Define Xij binary ∈R⊂D, such that  
XijW F i V m A Hj

m

j V

m

∈
∑ ≅ ∀ ∈ ∀ ∈ { }1 1 2 3 1µ , , , , ( )  

On the heuristic expression (H1), we define 
binary variables Xij until we reach the upper 
bound on the three activity measures. However 
the BU’s j must be first sorted according to their 
Euclidean distance to the candidate territory center 
i. Thus, parameter F1 can be defined in terms 
of the number of times we allocate BU’s j to a 
given territory with center at BU i. Our problem 
definition considers three activity measures. For 
that reason, three upper bounds must be reached 
on each BU i before we stop to add arcs on set 
R. As a result we obtain a reduced set of decision 
variables Xij, where BU’s i,j ∈ V, arcs Xij ∈ R 
and R⊂ D. Now, we introduce a new parameter 
F2 that accounts for the territory center strategy. 
Parameter F2 is the strategy that the model uses to 
calculate the optimal centers on the location stage. 
Parameter F2=1 assures integral constraints on 
binary variable Yi only. Parameter F2=2 assures 
integral constraints on binary variables Yi and Xij 
as well. Taking in mind that our initial instance 
has 5000 BU’s, we can show now the following 
information on Table 3 for nonzero elements 
and binary variables that result from different 
combinations on values for parameter F1 and 
F2. The last column is a ratio that indicates how 
many elements from original set Dij has being 
considered on the reduced subset R.

We can verify on Table 3 that the number of 
binary variables grows exponentially as long as 
we increase the value of parameter F1. If we set 
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the parameter F1equal to 4, this means that each 
BU i candidate for a territory center, will allocate 
BU’s j in such a way that all activity measures 
sum up to 4 times the activity average defined for 
each territory on equation (1.1). In summary, the 
strategy we adopt is to decrease the solution search 
space into a new and less complex problem that 
can be solved more efficiently without a significant 
lost on optimality. This strategy reduces the search 
space because it decreases the number of possible 
candidates for territory centers selection. This 
trade-off on optimality is going to be detailed on 
the next section.

B. MIP Model for Territory 
Centers Location

We have a parameter p that defines the number of 
territories to be constructed. We proceed now to 
identify the subset P of BU’s (where P ⊂ V) that 
will be selected for territory centers. We imple-
ment and solve a relaxed assignment MIP model 
in order to identify the BU’s i to be selected as 
territory center. We use the subset R defined on 
the previous section to model this optimal location 
problem. Constraint (1.2) assures that each BU 
j is assigned to only one BU i. Constraint (1.3) 
assures that each BU j can be assigned to a BU 
i if and only if the BU i is selected as a territory 
center. Constraint (1.4) assures the creation of 

exactly p territories. BU’s j should be assigned 
to the territories centers i in such a way that all p 
territories constructed must be balanced. As can 
be verified, due to the discrete structure of the 
problem and the unique assignment constraint, it is 
practically impossible to have perfectly balanced 
territories with respect to each activity measure m. 
To overcome this difficulty we measure a balance 
degree by computing the relative deviation of 
each territory from its average size μm. Indeed, we 
consider a tolerance Tm for each activity measure 
m. Thus, parameter Tm on constraint (1.5) defines 
a lower bound that must be fully covered for each 
territory that is constructed. Upper bound for ter-
ritorial balance is not considered on this stage since 
this MIP model is implemented just to find the 
optimal territory centers only. Integral assignments 
of BU j to BU i can be considered at this stage. 
As we mention before, parameter F2=1 assures 
integral constraints on binary variable Yi only. By 
the other hand, parameter F2=2 assures integral 
constraints on binary variables Yi and Xij as well.

Compact territories usually have geographi-
cally concentrated operation, therefore we can 
expect less travel and better service levels because 
we have more time available to attend the cus-
tomers. Therefore, we model compactness as an 
objective function. In particular, we implement a 
P-median location model as the objective function 
on equation (1.6). Territory dispersity represents 

Table. 3 Non-zero elements and binary variables as a function of parameters F1 and F2 for network 
simplification heuristic 

F2 Territory
center strategy

1 Int. Yi
2 Int. Yi, Xij

F1 Network 
Simplification

Nonzero Elements 
(Constraints and Variables)

Number of Binary 
Variables

Network
Simplification
Ratio: R / D

1 2.0 538,507 5,000 0.02%

1 4.0 1,062,085 5,000 0.02%

1 8.0 2,030,480 5,000 0.02%

2 2.0 538,507 92,628 0.37%

2 4.0 1,062,085 182,868 0.73%

2 8.0 2,030,480 350,941 1.40%
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the sum of the Euclidean distances between each 
BU j and its center BU i. In this sense, minimizing 
dispersion is equivalent to maximizing compact-
ness. Our territory centers location MIP model is 
presented as follows:

Parameters:

Dij = set of network arcs. Euclidean distance 
between BU i and BU j.

Tm = territorial tolerance (i.e. lower bound) for 
each activity measure m.

Decision Variables:

Yi binary ⇒ (1) if BU i is defined as territory 
center, (0) otherwise. ∀ i ∈ V

Xij binary ⇒ (1) if BU j is assigned to BU i, (0) 
otherwise. ∀ i,j ∈ V, Xij∈R, R⊂D

Subject to:

Xij j V Xij R R D
i V∈
∑ = ∀ ∈ ∈ ⊂1, , ,  (1.2)

Xij Yi ij V Xij R R D≤ ∀ ∈ ∈ ⊂, , ,  (1.3)

Yi p
i V∈
∑ = ,where p = number of territories to 

 construct  (1.4)

XijW Yi T i V Xij R R D m Aj
m

j V

m m

∈
∑ ≥ − ∀ ∈ ∈ ⊂ ∀ ∈µ ( ), , , ,1  

(1.5)

F.OBJ min XijDij Xij R R D
jeVieV
∑∑ ∈ ⊂, ,  

(1.6)

Taking in mind that our initial instance has 
5000 BU’s, we can show now the following in-
formation on Table 4. This table shows different 
combinations on values for parameter F1 (network 
simplification) and parameter F2 (territory center 
strategy). This table is useful to figure out how 
much optimality is lost as a trade-off of param-
eters F1 and F2.

We can verify that the best solution found for 
F1 = 2 is not very different from obtained for F1 
= 4. Even, if we assume integral assignments on 
variable Xij we obtain similar values on the objec-
tive function. Thus for gap optimality we have 
(62.9642 / 62.2926 – 1) equal to 1.08%. So, there 
is no significant lost on optimality. For integral-
ity constrains applied just for variable Yi (param-
eter F2 = 1), the lost on optimality is even much 
lower (0.13%). In Table 4, it is interesting to 
compare solution results depending if integral 
assignments for Xij are constrained or not. This 
is particularly true when we compare results 
obtained for F1 = 4. We have 61.2212 on the 
objective function for not constrained case versus 

Table 4. Trade-off on optimality as a function of parameters F1 and F2 for the territory centers location 
MIP model 

F2 Territory
center strategy

1 Int. Yi
2 Int. Yi, Xij

F1 Factor 
for Network 

Simplification

Number 
of Binary 
Variables

Simplex LP 
Relaxed 
Solution

Computational 
Minutes

Branch 
& Bound 
Solution

% Gap to 
Optimality

% Lost on 
Optimality

1 2.0 5,000 61.0747 10 61.3021 0.1977% 0.13%

1 4.0 5,000 61.0747 20 61.2212 0.2333% 0%

1 8.0 5,000 61.0747 20 61.2212 0.23% 0%

2 2.0 92,628 61.0747 10 62.9642 2.669% 1.08%

2 4.0 182,868 61.0747 20 62.2926 0.8998% 0%

2 8.0 350,941 61.0747 not finish not finish not finish not finish
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62.2926 for integral constrained case. There is no 
significant difference on the gap to optimality 
reported on both cases and computational effort 
is comparable. However, it is plausible to deter-
mine that BU’s selection for territory centers 
would be better when we set integral assignments 
on variables Xij. This comparison is going to be 
developed on the next section.

C. MIP Model for BUs Allocation 
to Territory Centers

For this allocation MIP model, we take only the 
BU’s i that were defined as territory centers on the 
previous model. Let’s define this subset of BU’s 
i selected for territory centers as P, where P ⊂ 
V. It is easy to verify that set R can be simplified 
again filtering the partition of territory centers that 
were found on the previous model. Let’s name this 
new reduced set as S, where Xij ∈ S, S ⊂ R ⊂ D. 
Moreover, as we have now a set of fixed territory 
centers P, thus we can heuristically assign a parti-
tion of geographic BU’s j to the nearest territory 
center i where i ∈ P. This heuristic is implemented 
with a new parameter F3. Thus parameters F1 and 
F3, both are expressed in terms of the average of 
each activity measure defined on equation (1.1) 
for each territory. Particularly, parameter F3 is 
used as an upper bound to pre-assign (e.g. with 
a value of 1) a partial subset of binary arcs Xij of 
subset S. In other words, a partition of BU’s j will 
be fixed as a kernel for a territory i. For example, 
if we set parameter F3 = 0.5, it means that each 
territory center i, will have some BU’s j fixed as-
signed in such a way that each territory activity 
measure sum up to 0.5 times the average defined 
on equation (1.1). We test several values for the 
parameter F3. These results are shown afterwards 
on the next sections. Use of parameter F3 can be 
formally presented as follows:

Let (Xij = 1) ⊂ S ⊂ R ⊂ D, such that  
XijW F i P m A Hj

m

j V

m

∈
∑ ≅ ∀ ∈ ∀ ∈ { }3 1 2 3 2µ , , , , ( )

On the heuristic expression (H2), we set (Xij 
= 1) until we reach the upper bound for the three 
activity measures on each territory center i. How-
ever the BU’s j must be first sorted according to 
their Euclidean distance to the territory center i. 
All BU’s j should be integrally assigned to ter-
ritories centers i in such a way that all p territories 
constructed must be well balanced. A set of con-
straints are defined on (2.2) to ensure that each 
territory is within a maximal deviation from the 
average target µm  defined for each activity mea-
sure. These constraints assure that each activity 
measure is within predefined lower and upper 
bounds. Thus, the size of each territory must lie 
within a range (measured by tolerance Tm ) around 
its average size µm . In particular, the upper bound 
on constraint (2.2) assures that if no territory 
center is placed at i, no BU j can be assigned to 
it. Constraint (2.1) assures that each BU j is as-
signed to one territory only. Formally we have 
our BU’s allocation MIP model presented as fol-
lows:

Decision Variables:

Xij binary ⇒ (1) if BU j is assigned to BU i, (0) 
otherwise. ∀i∈P, j∈V, Xij∈S, S⊂R⊂D

Subject to:

Xij j V Xij S S R D
i P∈
∑ = ∀ ∈ ∈ ⊂ ⊂1, , ,  

(2.1)

µ µm m
j
m

j V

m mT XijW T i P Xij S m A( ) ( ), , , , ,1 1 1 2 3− ≤ ≤ + ∀ ∈ ∈ ∀ ∈ { }
∈
∑

 

(2.2)

F. OBJ min XijDij Xij S S R D
j Vi P ∈∈
∑∑ ∈ ⊂ ⊂, ,  

      
(2.3)
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D. Pre-Assigned and Forbidden 
BU’s Constraints Modeling

As we point out before, we have some pre-defined 
and/or forbidden joint assignments of BU’s, so 
that specified pairs of BU’s must (or must not) be 
assigned to the same territory. It means that from 
the beginning of the planning process we already 
have some BU’s that require (or do not require) 
to be assigned to a specific territory. Depending 
on the context of the requirement we can model 
it as a hard constraint or as an objective function. 
Geographical issues like rivers or mountains 
are modeled explicitly as hard constraints. We 
explicitly enumerate into a subset F all pairs of 
BU’s that cannot be assigned on the same territory. 
Formally we have:

Xij Xih i P jh F V Xij S D+ ≤ ∀ ∈ ∀ ∈ ⊂ ∈ ⊂1, , ,  
(2.4)

By the other hand, pre-assigned or forbidden 
requirements that arise from business issues like 
territory realignment, we model it in the objective 
function. From the practical standpoint, the issue 
of territory realignment for the daily basis is an 
important area of opportunity for the company. 
The basic idea about any given current territory 
design is on how the model could efficiently ac-
commodate for changes like customer´s additions 
or dropouts trying not to disrupt the previous 
design considerably. Something similar happens 
for customers that may require to be visited on 
a specific day of the week or even on a different 
frequency per week. In all those cases specific 
information is input to the model as predefined 
assignments. Some of these pre-assignments may 
come from the actual territory design. Some others 
come from changes on customers demand. Let’s 
define a subset E for all BU’s with pre-assigned 
information. It is important to point out that in 
our implementation only a small proportion of 
the BU’s is set up in this special subset E. This 
subset E never exceeds from 15% of the total 

BU’s. Subset E is implemented as a second com-
ponent on the objective function. Moreover, we 
weight all BU’s assignments on subset E with a 
parameter Mij. This parameter Mij is different 
from case to case and depends on how important 
is each pre-assigned BU j to a territory center i. 
We modeled as follows:

F. OBJ min  
XijDij MijXij Xij S D Mij E

j Vi P j Vi P∈∈ ∈∈
∑∑ ∑∑− ∈ ⊂ ∈, ,  

(2.5)

It is easy to verify that this formulation is not 
hard enough to prevent that some pre-assigned 
BU’s may change. However, we formulate a hard 
constraint to assure that at least a proportion of 
these pre-assigned BU’s can be assured (in this 
example we set a 10%). We modeled as follows:

Xij E Xij E S
j Vi P ∈∈
∑∑ ≥ ⋅ ∈ ⊂10% | |,  (2.6)

E. Territory Contiguity 
Constraints Modeling

In order to obtain contiguous territories, explicit 
neighborhood information for the BU’s is required 
to be considered on the MIP allocation model. The 
main difficulty we have here is that our problem has 
an exponential number of contiguity constraints, 
which makes it impossible to write them explic-
itly. Instead, our computational implementation 
incorporates this graph information based on a 
cut generation strategy. That is, iteratively we add 
some relevant cuts on the primal problem. The 
basic idea of our method is to recursively check 
for the contiguity constraints that are required to 
impose on each territory. For each iteration, the 
procedure evaluates if all the territories obtained 
satisfy the contiguity constraint. For each terri-
tory that violates this condition, we formulate 
additional geographic constraints in order to 
setup a new incremental model. This procedure 



239

HMIP Model for a Territory Design Problem with Capacity and Contiguity Constraints

iterates until no additional contiguity constraints 
are needed and therefore territory design problem 
is finally solved. Note that, a feasible solution to 
the relaxed previous model may yield unconnected 
territories. One way to reinforce the formulation 
of the relaxed model is by introducing the fol-
lowing constraint:

Xiq Xij i P j V Xij S
q N j∈
∑ ≥ ∀ ∈ ∀ ∈ ∈, , ,  (2.7)

These valid inequalities can be interpreted as 
follows. If BU j is assigned to territory i at least 
one of the neighbors of BU j (q ∈ N j) needs to 
be assigned to the same territory as BU j. These 
constraints avoid territories with just one single BU 
unconnected. The motivation for this constraint 
(2.7) comes from previous research work in Ríos-
Mercado and Fernandez (2009). They show that 
optimal solutions of the relaxed model contain 
most of the unconnected subsets with cardinality 
equal to 1, that is where |C| = 1. In fact, we have 
a polynomial number of these constraints. So, we 
don’t have to implement constraints (2.7) within 
a cut generation stage, instead these can be easily 
written from the beginning of the primal model. 
This strategy is chosen in order to speed up the 
procedure and converge on feasible solutions for 
most of the contiguity constraints. However our 
cut generation strategy, consider all the uncon-
nected subsets with cardinality |C| > 1. Thus, we 
can model our cut generation strategy as follows:

Xiq Xij C i P Ci Xij N N Xij S
q N j C

C j

j CC∈ ∈ ∈
∑ ∑− = ∀ ∈ ⊂ ={ } = ∈1 1| |, , , ,



 

(2.8)

Constraints (2.8) guarantee the connectivity of 
the territories. It evaluates if a subset C contains 
a partition of BU’s that are assigned to a territory 
center i but are disconnected from the rest of 
BU’s assigned to the same territory. Cardinality 
of subset C ranges from 1 up to H/2, where H 
is the number of BU’s assigned to the territory. 

Subset Nc represents the union set of all BU’s that 
are adjacent to any member of C. Constraint (2.8) 
operates very similar as constraint (2.7). At least 
one of the BU’s q that are adjacent to any of the 
member of C must be assigned to the same ter-
ritory i as it is with all the members of C. These 
constraints were proposed by Drexl and Haase 
in 1999 and are similar to the constraints used in 
routing problems to guarantee routes connectiv-
ity. Note that there are an exponential number of 
such constraints. For that reason this constraints 
are implemented within a cut generation stage. 
In summary, our model can be viewed as a P-
median problem with multiple capacity and side 
constraints. Given that even the incapacitated 
vertex p-center problem is NP-hard, it follows 
that our TDP is also NP-hard. All the computa-
tional experiments we perform from here are done 
taking in consideration a value of 0.1% for our 
solver MIP optimality tolerance. This optimal-
ity tolerance is set in the solver engine in order 
to identify a true near-optimal solution for each 
instance tested. Finally, it is important to point 
out about the territory tolerance for each activity 
measure (i.e. parameter Tm) that will be used for 
the solution preference. We set equal criterion 
on lower and upper bounds for the three activity 
measures around +10% and -10%.

We test the efficiency of our model with two 
values on parameter F2 which accounts for the 
strategy that the model uses to calculate the op-
timal centers on the MIP model. Parameter F2 = 
1 assures integral constraints on variable Yi only. 
Parameter F2 = 2 assures integral constraints on 
variables Yi and Xij as well. In order to compare 
the results for different values on parameter F1 for 
territory centers location MIP model, we deploy 
the information in two tables. Specifically, table 
5 corresponds to our results obtained for terri-
tory centers location MIP model with parameter 
F1 = 2. Table 6 results are for territory centers 
location MIP model with parameter F1 = 4. It is 
important to point out here that the effect of the 
parameter F1 for territory centers location MIP 
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model is different from the effect on parameter 
F1 for BU’s allocation MIP model. Territory 
centers location MIP model does not consider all 
the side and contiguity constraints. By the other 
hand, BU’s allocation MIP model takes a full 
consideration about all the required constraints 
including contiguity. We report now on Table 5 
and Table 6, our results obtained with different 
values on parameters F1, F2 and F3. As we can 
verify, depending on the setting we use for param-
eters F1 and F2 for the territory centers location 

MIP model we can obtain different results on the 
optimality of BU’s allocation MIP model. In the 
following we will analyze this impact.

Thus, with our results we can be able now to 
analyze some questions:

•  How the parameter F1 for territory centers 
location MIP model impacts on the BU’s 
allocation optimality? Do we lose some 
optimality if we set a smaller value on F1 
for territory centers location MIP model?

Table 5. Trade-off on optimality as a function of F1, F2 and F3 heuristic parameters at the BU’s alloca-
tion MIP model (territory centers location MIP model with F1 = 2) 

F2 Territory
center strategy

1 Int. Yi
2 Int. Yi, Xij

F1 for Allocation BU’s 
to Territory

Centers

F3 Kernel for 
Territories

# of 
Iterations

Computational 
seconds

Branch 
& Bound 
Solution

% Lost on 
Optimality

1 3.0 0.55 49 121 63.0545 0.06%

1 3.0 0.25 33 116 63.0146 0.00%

1 3.0 0.10 51 195 63.017 0.00%

1 3.0 0.0 52 212 63.0165 0.00%

1 4.0 0.55 36 127 63.0592 0.07%

1 4.0 0.25 27 118 63.0209 0.01%

1 4.0 0.10 79 447 63.0195 0.01%

1 4.0 0.0 56 319 63.0209 0.01%

1 5.0 0.55 35 136 63.0512 0.06%

1 5.0 0.25 70 354 63.0188 0.01%

1 5.0 0.10 46 309 63.0164 0.00%

1 5.0 0.0 64 485 63.0191 0.01%

2 3.0 0.55 40 105 63.1659 0.24%

2 3.0 0.25 51 170 63.1541 0.22%

2 3.0 0.10 33 121 63.1501 0.22%

2 3.0 0.0 48 194 63.1555 0.22%

2 4.0 0.55 42 147 63.1723 0.25%

2 4.0 0.25 34 155 63.155 0.22%

2 4.0 0.10 47 236 63.1593 0.23%

2 4.0 0.0 82 584 63.1554 0.22%

2 5.0 0.55 49 194 63.1696 0.25%

2 5.0 0.25 36 191 63.1553 0.22%

2 5.0 0.10 39 239 63.1471 0.21%

2 5.0 0.0 64 471 63.16 0.23%
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•  How much the parameter F2 for territory 
center strategy on the MIP location model 
impacts on the BU’s allocation optimality? 
Do we gain some optimality on BU’s al-
location if we constraint variables Xij for 
integrality on the territory centers location 
MIP model?

•  Do we lose some optimality on BU’s al-
location MIP model if we make a network 
simplification (parameter F1) and relax the 
integrality constraints (parameter F2) on the 
territory centers location MIP model?

From Tables 3 and 4 we can make some mea-
sures to synthesize our results. We average each 
indicator assuming that parameter F3 for kernel 
on territories affects in the same manner for the 
rest of the parameters. On Table 7 we present the 

average indicators for different combinations on 
parameters as following:

Finally from results indicated on Table 7 we 
can make the following assumptions:

•  The parameter F1 for territory centers loca-
tion impacts on the BU’s allocation optimal-
ity. We can gain some optimality if we set 
a larger value on F1 for territory centers 
location (e.g. F1 = 4).

•  The parameter F2 for territory center strategy 
impacts on the BU’s allocation optimality. 
The territory centers location model can be 
relaxed on integrality constraints for vari-
ables Xij without any lost on optimality. In 
other words, we can set parameter F2 = 1.

Table 6. Trade-off on optimality as a function of F1, F2 and F3 heuristic parameters at the BU’s alloca-
tion MIP model (territory centers location MIP model with F1 = 4) 

F2 Territory
center strategy

1 Int. Yi
2 Int. Yi, Xij

F1 for Allocation BU’s 
to Territory

Centers

F3 Kernel for 
Territories

# of 
Iterations

Computational 
seconds

Branch 
& Bound 
Solution

% Lost on 
Optimality

1 3.0 0.55 25 56 62.5027 0.01%

1 3.0 0.25 38 116 62.5056 0.02%

1 3.0 0.10 46 155 62.4972 0.00%

1 3.0 0.0 50 181 62.4978 0.00%

1 4.0 0.55 44 144 62.5011 0.01%

1 4.0 0.25 60 241 62.4986 0.00%

1 4.0 0.10 48 195 62.4972 0.00%

1 4.0 0.0 54 264 62.4957 0.00%

2 3.0 0.55 36 95 62.7553 0.42%

2 3.0 0.25 52 157 62.732 0.38%

2 3.0 0.10 110 396 62.7302 0.38%

2 3.0 0.0 35 123 62.7367 0.39%

2 4.0 0.55 41 142 62.7563 0.42%

2 4.0 0.25 52 218 62.7349 0.38%

2 4.0 0.10 53 239 62.7391 0.39%

2 4.0 0.0 53 251 62.7345 0.38%
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F. Heuristic for Fast Convergence

Our model presented on previous section with 
valid inequalities for contiguity constraints works 
fine in terms of processing time for instances up 
to 5000 BU’s. Our model converges on feasible 
near-optimal solutions on less than 3 minutes in 
average and in some cases in less than 2 minutes. 
However, for larger instances up to 10,000 BU’s 
we have computational times very large that are 
not practical for a business user application (more 
than an hour). Thus, we proceed to implement a 
new heuristic as part of the whole Hybrid MIP 
model. As was explained on previous section, for 
each iteration, our algorithm identifies violated 
contiguity constraints and adds these cuts to the 
model. After cuts are added to the basis and just 
before the algorithm iterates to solve the new basis 
of the problem, we implement some changes on the 
objective function. In fact, we add some penalize 
terms to the objective function. Two aspects must 
be analyzed for each BU in order to add a penalize 
term on the objective function: (1) contiguity and 
(2) compactness. Contiguity is easy to implement 
because was already evaluated for each BU on 
previous section. Indeed constraints (2.8) are 
added at each iteration for all the BU’s that are 
disconnected. Let’s define a dynamical parameter 

Zt as the number of BU’s that are disconnected 
at each iteration t. This parameter is dynamical 
because the number of BU’s disconnected changes 
at each iteration. In fact, it is expected that this 
parameter Zt will reduce at each iteration as a 
result of constraints (2.8) which are added to the 
problem basis.

We add now a penalize term for all the BU’s 
which are already connected. The basic idea of 
this heuristic is to feedback to the MIP objective 
function about which BU’s j are already con-
nected to a territory center i and no further 
changes are expected. Let’s name this sub set of 
BU’s already connected to territory center i as U, 
where U ⊂ Xij. Subset U is redefined at each it-
eration as well. Thus, subset Uij

t  is used to indicate 
to the MIP objective function about which BU’s 
j are expected to maintain assigned to the actual 
territory center i with no further changes. Param-
eter Zt is used to weight Uij

t  criterion on the objec-
tive function. As can be verified on equation (2.9), 
if we have a smaller value on parameter Zt,  the 
weight of Uij

t  criterion on the objective function 
will be larger. In other words, at any given itera-
tion if we have a smaller number of BU’s that are 
disconnected, the current connected assignments 
criterion on the objective function will be larger 

Table 7. Average indicators on optimality for different combinations on heuristic parameters F1 and 
F2 at the BU’s allocation MIP model (territory centers location MIP model with F1 = 2 and F1 = 4) 

F1 for
Territory 
Centers 
Location

F2 Territory
center strategy

1 Int. Yi
2 Int. Yi, Xij

F1 for Allocation 
BU’s to Territory

Centers

# of 
Iterations

Computational 
seconds

Branch & Bound 
Solution

% Lost on 
Optimality

2 1 3 46.3 161.0 63.0257 0.84%

2 1 4 49.5 252.8 63.0301 0.85%

2 2 3 43.0 147.5 63.1564 1.05%

2 2 4 51.3 280.5 63.1605 1.06%

4 1 3 39.8 127.0 62.5008 0.00%

4 1 4 51.5 211.0 62.4982 0.00%

4 2 3 58.3 192.8 62.7386 0.38%

4 2 4 49.8 212.5 62.7412 0.39%
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in order to rapidly converge. On this way, our 
objective function is now suffixed at each iteration 
as well (i.e. FOt).

About compactness issue, the penalize term on 
the objective function for each BU j is inversely 
proportional to Dij. That is, as closer we have the 
distance of the BU j to the territory center i, larger 
will be the penalize term on the objective function 
in order to avoid any change on this assignment 
for the decision variable Xij. In other words, this 
pursuit to hold BU j assigned to the actual terri-
tory center i. The new objective function includes 
now a third component that is modeled as follows:

F. OBJ (t)min  
DijXij MijXij F Uij Dij Z

j Vi P j Vi P

t

j Vi P
t

∈∈ ∈∈ ∈∈
∑∑ ∑∑ ∑∑− − 4 /

where: Xij S Mij E Uij Xijt∈ ∈ ⊂, ,  (2.9)

As can be verified on equation (2.9), our heu-
ristic is implemented as a penalized function 
added to the MIP objective function just for Uij

t

current connected assignments where i ∈ P and 
j ∈ V. This penalized function is redefined on each 
iteration t. It is easy to verify that subsets Uij

t  and 
Zt are dynamic in nature and they are a function 
of the current connected BU’s assignments to 
territory centers on the MIP problem. By the 
other hand, the parameter F4 weights the Uij

t  
criterion on the objective function in a static mode. 
As we have a larger value in parameter F4 we 
enforce the MIP objective function to procure no 
different assignments on BU’s to territory centers. 
This heuristic is true cost effective because we 
reduce the computational time for a feasible near-
optimal solution. Obviously, if we set a value of 
zero for parameter F4 means that we cancel at all 
this special heuristic for fast convergence. No 
further cuts are added to the model as part of our 
heuristics. Thus, there is no space solution omit-
ted on the branch & bound search tree.

We report now on Table 8, our results obtained 
with different values on F1, F3 and F4 parameters. 
We use the territory centers obtained from MIP 
location model with parameter F1 = 4 (network 
simplification) and parameter F2 = 1 (territory 
center strategy) as was pointed out from results of 
Table 7. Due to comparison reasons our results on 
Table 8 corresponds to the same set of instances 
of 5000 BU’s that were considered on Tables 3, 
4 and 5. Once again, optimality tolerance is set to 
0.1% on the solver engine in order to identify a 
true near-optimal solution for each instance. The 
territory tolerance for each activity measure (i.e. 
parameter Tm) is set equally on lower and upper 
bounds for the three activity measures around 
+10% and -10%. It is important to let it know that 
our new dynamical objective function (see equa-
tion 2.9) has changed and for that reason cannot 
be directly compared with the original model (see 
equation 2.5). Thus, for gap optimality analysis 
we need to separate the fast convergence heuristic 
from the objective function. From here now, we 
will report all our results without the heuristic 
element on the objective function. With this in 
mind, we can make an appropriate comparison 
versus the original model.

From results on Table 8, it is very interesting 
to verify how fast a near-optimal solution can be 
found. The optimal solution is obtained in 264 
seconds when we set the parameter F4 = 0 (i.e. 
no heuristic for fast convergence). The fastest 
solution time is found in 7 seconds. Combinations 
on parameters offer very short computational 
times that range from 7 to 45 seconds with an 
average of 17 seconds. All these computational 
times are very far away from the ones obtained 
on Tables 3, 4 and 5. Besides that and much more 
important we can verify that the problem can be 
solved more efficiently without a significant lost 
on optimality. Thus, our lost on optimality is less 
than 0.13% in average. On the next section we 
are going to deploy our full model including the 
fast convergence heuristic in order to solve a very 
large real world instance of 10000 BU’s.
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IMPLEMENTATION AND RESULTS

According to our H-MIP solution procedure pre-
viously presented, some input data is required to 
feed to the model. Thus, some tasks are necessary 
to consider:

•  A Geo-database layer with the set of points 
representing the customers to group into 
territories. To develop this database was 
necessary to locate all customers using a 
GPS device. This data collection was ac-
complished by sales people thru hand held 
equipments. All the customers on the city of 
Monterrey (about 65000) were visited and 
points to every one of them were marked 
using a GPS device that received latitude 
and longitude coordinates.

•  Eventually thru a very simple GIS applica-
tion, all these customers were aggregated 
into a number of 10000 BU’s. Each of these 

BU’s corresponds to a physical block on the 
city of Monterrey.

•  An Info-database layer containing the three 
activity measures (attributes) for each BU. 
As we mention before we have: (1) num-
ber of customers, (2) sales volume and (3) 
workload.

•  Territory tolerance Tm for each activity 
measure used for the solution preference. 
We use equal criterion bounds for the three 
activity measures around +10% and -10%.

•  The number of territories the end-user re-
quires to construct.

We present now on Table 9 the computational 
results of our method for solving a very large scale 
instance of 10,000 BU’s. For each combination 
with different values for parameters we measure 
the computational time required to optimize or 
at least achieve a feasible, near-optimal solution. 
CPU configuration used in our implementation 
was Win X32, 2 Intel Cores at 1.4GHz. We imple-

Table 8. Heuristic parameters F1, F3 and F4 for BU’s allocation MIP model. Territory centers location 
obtained from MIP model with parameter F1 = 4 and parameter F2 = 1. Instance = 5000 BU’s 

F1 for Allocation BU’s to 
Territory Centers

F3 Kernel for 
Territories

F4 for Fast 
Convergence

# of 
Iterations

Computational 
seconds

Branch 
& Bound 
Solution

% Lost on 
Optimality

3.0 0.55 10 8 10 62.5605 0.10%

3.0 0.25 10 9 11 62.628 0.21%

3.0 0.10 10 15 18 62.5937 0.16%

3.0 0.0 10 13 15 62.6166 0.19%

4.0 0.55 10 12 19 62.5409 0.07%

4.0 0.25 10 5 7 62.5454 0.08%

4.0 0.10 10 5 7 62.5454 0.08%

4.0 0.0 15 23 33 62.5951 0.16%

4.0 0.0 12 17 24 62.6067 0.18%

4.0 0.0 10 5 7 62.5454 0.08%

4.0 0.0 7 7 11 62.5499 0.09%

4.0 0.0 5 9 13 62.5682 0.12%

4.0 0.0 3 29 45 62.5682 0.12%

4.0 0.0 0 (optimal) 54 264 62.4957 0.00%
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Table 9. Results for a 10000 BU’s instance: heuristic parameters for the allocation MIP model. Territory 
centers location obtained from MIP model with parameter F1 set to 4 and parameter F2 set to 

F1 for Allocation BU’s 
to Territory

Centers

F3 Kernel for 
Territories

F4 for Fast 
Convergence

# of 
Iterations

Computational 
seconds

Branch 
& Bound 
Solution

% Lost on 
Optimality

3 0.0 15 64 200 124.295 0.13%

3 0.0 10 53 182 124.222 0.07%

3 0.0 7 84 288 124.189 0.04%

3 0.0 5 54 237 124.15 0.01%

3 0.0 2 (optimal) 135 870 124.139 0.00%

3 0.10 20 136 413 124.297 0.13%

3 0.10 15 47 169 124.256 0.09%

3 0.10 12 75 242 124.372 0.19%

3 0.10 10 33 110 124.225 0.07%

3 0.10 9 41 143 124.209 0.06%

3 0.10 7 52 194 124.169 0.02%

3 0.10 5 47 203 124.171 0.03%

3 0.10 2 181 1242 124.146 0.01%

3 0.25 20 50 164 124.294 0.12%

3 0.25 15 25 83 124.226 0.07%

3 0.25 12 30 114 124.255 0.09%

3 0.25 10 29 113 124.248 0.09%

3 0.25 7 49 173 124.227 0.07%

3 0.25 5 60 233 124.185 0.04%

3 0.25 2 138 752 124.169 0.02%

3 0.50 50 305 891 124.732 0.48%

3 0.50 40 21 78 124.558 0.34%

3 0.50 20 61 189 124.473 0.27%

3 0.50 15 49 173 124.386 0.20%

3 0.50 12 48 152 124.442 0.24%

3 0.50 10 76 243 124.443 0.24%

3 0.50 7 79 284 124.312 0.14%

3 0.50 5 97 404 124.373 0.19%

3 0.50 3 107 502 124.318 0.14%

3 0.50 2 135 805 124.302 0.13%

3 0.50 1 193 2496 124.274 0.11%

4 0.0 10 33 168 124.232 0.07%

4 0.10 10 114 561 124.328 0.15%

4 0.25 10 57 244 124.256 0.09%

4 0.50 10 54 264 124.401 0.19%
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ment our model on X-PRESS © MIP Solver from 
FICOTM (i.e. Fair Isaac, formerly Dash Optimi-
zation). The number of territories we use on this 
test is P = 50. Optimality tolerance is set to 0.1% 
on the solver engine in order to identify a true 
near-optimal solution for each instance. For this 
BU’s allocation MIP model we use the territory 
centers obtained from the MIP location model 
with parameter F1 = 4 and parameter F2 = 1. The 
territory tolerance for each activity measure (i.e. 
parameter Tm) is set equally on lower and upper 
bounds for the three activity measures around 
+10% and -10%. We test some combinations for 
different values on heuristic parameters F1 (net-
work simplification), F3 (kernel for territories) 
and F4 (fast convergence). Results are presented 
as following:

As we can verify on Table 9, large values for 
parameter F4 results on short computational times. 
We obtain computational times around 206 sec-
onds in average for instances with parameter F4 
≥ 7. By the other hand, we have computational 
times around 583 seconds in average for 1 < F4 
< 7. Particularly when we set the parameter F4 
= 1 (i.e. a small value), we observe a very large 
computational time (up to 2496 seconds). How-
ever, we can verify that all branch & bound solu-
tions obtained are very similar. We obtain branch 
& bound solutions around 124.3048 in average 
for instances with parameter F4 ≥ 7. By the 
other hand, we have branch & bound solutions 
around 124.2227 in average for 1 ≤ F4 < 7. Thus, 
our lost on optimality is less than 0.07% in aver-

age. In other words, practically there is no opti-
mality lost when the parameter F4 is used to speed 
up the solution time for a feasible near-optimal 
solution. In order to show the behavior of our 
model in terms of solution quality versus compu-
tational time we graph the following measures: 
(1) unconnected BU’s, (2) unconnected territories, 
(3) cuts added and (4) objective function value. 
Several instances are graphed as is indicated on 
Table 10.

As it can be verified on figures 1-2, the first 
two runs with a very high value on parameter F4 
have a similar behavior. The number of uncon-
nected BU’s, unconnected territories and cuts 
added on the MIP model are reducing as the 
computational time is in progress. Something 
similar happens with the objective function value 
but in a growing sense. We average here 124.7965 
in the objective value. On the other two cases 
(figures 3-4) with a lower value on parameter F4, 
we have a very different behavior. Particularly, 
the objective function value moves slowly as the 
computational time take place. Indeed, this is the 
reason why we average here a lower value 
(124.2395) in the objective function. In this com-
parison analysis we have up to 0.62% on the 
optimality lost. Either way, it is important to point 
out that our methodology presents a MIP model 
that ensures integral assignments at each iteration 
all the time. Thus, it is interesting to verify how 
rapidly our heuristic implemented on the alloca-
tion MIP model can evolve and converge on cu-
asi-connected solutions (see Figures 1-4). How-

Table 10. Cross-reference figures for a 10000 BU’s instance. Parameter Tm defined equally on lower 
and upper bounds for the three activity measures around +10% and -10% 

Figure 
No.

F1 for Allocation BU’s 
to Territory

Centers

F3 Kernel for 
Territories

F4 for Fast 
Convergence

Computational 
seconds

Branch & 
Bound Solution

% Lost on 
Optimality

1 3 0.25 50 138 124.688 0.44%

2 3 0.25 35 226 124.905 0.62%

3 3 0.25 25 258 124.310 0.14%

4 3 0.10 7 191 124.169 0.02%
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ever, a future research opportunity exists in order 
to prove the viability of this paradigm when gap 
optimality is required to confirm.

We test now the efficiency of our model with 
a smaller territory tolerance. Parameter Tm is now 
defined equally on lower and upper bounds for 
the three activity measures around +5% and -5%. 

This new value for parameter Tm is much nar-
rower than the previous one. Thus, we have a very 
large scale instance with a very narrow territory 
tolerance. This makes the problem extraordi-
narily difficult to solve. Our results are presented 
on Table 11 as follows.

Figure 1. Model’s behavior in terms of solution quality versus computational time. F3 = 0.25, F4 = 50.

Figure 2. Model’s behavior in terms of solution quality versus computational time. F3 = 0.25, F4 = 35.
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We obtain computational times around 828 
seconds in average for instances with parameter 
F4 ≥ 7. By the other hand, we have computa-
tional times around 1112 seconds in average for 
F4 < 7. However, we can verify that all the branch 
& bound solutions obtained are very similar. We 

obtain branch & bound solutions around 127.709 
in average for instances with parameter F4 ≥ 7. 
By the other hand, we have branch & bound solu-
tions around 127.572 in average for F4 < 7. Thus, 
our lost on optimality is less than 0.11% in aver-
age. In other words, practically there is no opti-

Figure 3. Model’s behavior in terms of solution quality versus computational time. F3 = 0.25, F4 = 25.

Figure 4. Model’s behavior in terms of solution quality versus computational time. F3 = 0.10, F4 = 7.
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mality lost when the parameter F4 is used to speed 
up the solution time for a feasible near-optimal 
solution.

After the solution generation, the proposed 
solution and its compactness measurements can be 
visually displayed on MAPINFO © GIS applica-
tion. Due to clearness convenience, we report the 
geographical output for our 5000 BU’s instance 
of Monterrey metropolitan area. On figure 5 we 
graph 50 Territories. Each territory complies 
within (+/-) 5% tolerance for the parameter Tm 
(i.e. from 95% up to 105%). This is in reference 
to the μm target that we define for each activity 
measure. Contiguity and compactness properties 
can be verified for each territory obtained.

The legend besides the graph indicates the 
number of BU’s contained on each territory. As 
expected, we don’t find any balancing representa-
tion regarding this measure because it was not 
considered an activity measure in our problem 
definition.

ACHIEVEMENTS AND SAVINGS

We integrate our model into an advanced inter-
active tool based on MAPINFO © application. 

Thus, we achieve a practical functionality to the 
end-users. This GIS environment can be used 
in different contexts. At the operational level, it 
represents a valuable tool to quickly produce and 
deploy different solutions. At the tactical level it 
can be used to simulate alternative scenarios and 
evaluate the impact of changes in territories. It is 
important to point out the interest of the end users 
about how our model can easily take the already 
existing territories into account. Particularly, the 
model is ready prepared to consider any prescribed 
and forbidden territory centers. This means that 
one can impose some fixed territory centers or 
BU’s allocations to territory centers, which have 
to be taken into account, or, in the other way, that 
cannot be allowed to be selected. Thus all these 
features can be extended for any case when some 
territory information is present at the beginning 
of the planning process. The issue of territory 
realignment is an important area of opportunity 
because it is crucial for customer’s satisfaction 
of the firm. Thus, the company evaluates how 
our model efficiently accommodates for system 
changes like customer´s additions or dropouts try-
ing not to disrupt the previous design considerably.

From business standpoint, our TDP application 
was developed and implemented at Embotellado-

Table 11. Results for a 10000 BU’s instance with parameter Tm defined equally on lower and upper 
bounds for the three activity measures around +5% and -5% 

F1 for Allocation BU’s 
to Territory

Centers

F3 Kernel for 
Territories

F4 for Fast 
Convergence

# of Iterations Computational 
seconds

Branch 
& Bound 
Solution

% Lost on 
Optimality

3 0.10 15 478 1697 127.929 0.31%

3 0.10 10 154 812 127.698 0.13%

3 0.10 7 100 545 127.626 0.07%

3 0.10 5 61 694 127.532 0.00%

3 0.10 3 75 2261 127.543 0.01%

3 0.25 15 55 424 127.633 0.08%

3 0.25 10 54 689 127.77 0.19%

3 0.25 7 45 800 127.595 0.05%

3 0.25 5 35 615 127.587 0.04%

3 0.25 3 54 874 127.626 0.07%
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ras ARCA in order to optimize the distribution 
operation to the end customers. During the last 
years, the firm was interested in developing a bet-
ter territory and routing plan for the distribution 
operation to end customers. In fact, this is the first 
operation research (OR) application that has been 
implemented in ARCA. The company point out 
that the overall results have been very positive. 
The firm’s top management recognize that features 
included in the OR model implemented are truly 
outstanding. The project was a major undertak-
ing, requiring a great deal of thought and effort. 
The first plans for territory design suggested by 
the optimization model were implemented eight 
months ago. Throughout the ramp-up and launch 

of the project, those plans for distribution operation 
were analyzed. Sometime after, the project has 
resulted in a significant increase in productivity 
and direct savings to the firm. We can list some 
of the benefits that the company has achieved 
within this project:

•  The firm identifies now a rational set of ac-
tivity measures to target and balance on each 
truck resource. This results on an optimal 
fleet of trucks, drivers and sales people.

•  An increase in efficiency and effectiveness 
on the planning process required to set up 
territory and route designs. The typical 
fully-manual planning process time was 

Figure 5. Geographic results for a Territory Design Problem applied on Monterrey city with 5000 BU’s
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reduced from 2 weeks to less than an hour 
using the new OR application. This permit-
ted the company to refine its capacity each 
season on a dynamic basis. As a result the 
company achieves an optimal capacity to 
attend demand on each territory with an 
optimization of 30 delivery routes on the 
Monterrey metropolitan area. This represents 
a 15% reduction from the original number 
of routes.

• Streamline truck capacity to align it to a 
new end customer distribution strategy. 
The added throughput allows the firm 
to defer investments on trucks and other 
equipments that were originally allocated. 
The save on investments for trucks was 
about 8% of the entire fleet.

• Identify and implement an optimal cost 
of service depending on each route model 
type. This allowed the firm to set an opti-
mal frequency for customer delivery oper-
ations. This means less travel time between 
customers and 5% increase in volume de-
livered per route per day.

• As a result of our contiguity constraining 
featured model, there are no more territory 
overlaps and the territories are now better 
geographically defined. It is now easy to 
decide which sales worker would be re-
sponsible when new customers appears 
(and for dropouts too). They have been 
able to better define areas of responsibility 
and loading.

• As a result of our compactness objective 
featured model, the territories are more 
compact so the total travel time decreased, 
improving the productivity of the distribu-
tion people. According to the compactness 
measurement, the managers decided to ra-
tionalize the number of trucks available to 
the distribution people.

•  Our model deals with a small territory tol-
erance on lower and upper bounds for the 
three activity measures around +/-5%. The 

“after alignment” structure is much better 
balanced than the former one. The standard 
deviation of the “number of customers per 
territory” or the “level of workload for each 
salesman” decreased 24% in average. This 
alignment allows making an increase in the 
level of service to the end customers on the 
marketplace. An increase on sales at the 3% 
is estimated as direct benefit of the new ter-
ritory alignment.

Besides all these business benefits, the new 
OR model will allow the company to speed up 
some others “Route to Market” initiatives which 
are of special interest among Coca Cola bottlers 
around the world. The proposed model approach 
can extend the basic problem to address differ-
ent specific business rules or additional planning 
criterion. This can easily be modeled as activity 
measures on the BU’s. Overall, we have provided 
a very valuable tool for a more efficient territory 
design planning according to the company busi-
ness requirements. Our model is ready prepared 
to deal with very large instances, even larger than 
10000 BU’s. Nowadays, our model is being used 
by the firm to obtain a business solution with 
significant benefits.

MODEL APPROACH CONTRIBUTION 
AND APPLICABILITY

We think that districting problems are multi-
criteria in nature, thus we avoided to state a single 
holistic model. As can been seen in our background 
section, there are a lot of applications, each being 
slightly different from the other, requiring a dif-
ferent model. The same argumentation applies to 
the objective(s). The solutions are case-specific, 
since each one of them has its own constraints 
and objectives, making it virtually impossible to 
create an algorithm that can be applied to all TDP 
applications. Rather, we present building blocks of 
a broad applicability. In TDP is very application 
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related to identify which criteria are viewed as a 
(hard) constraints and which should be optimized. 
Hence, we don’t want to restrict to a specific objec-
tive. Moreover, the model we present is flexible 
enough to cope with different combinations of 
objectives and constraints that are very common 
to find on typical TDP problems. Particularly, our 
method is not focused on minimize the total activ-
ity measure deviation for each territory. Instead, 
our P-median objective function is focused to 
minimize the total geographic distance that exists 
on each territory (i.e. maximizes compactness). 
The model we present try to achieve the different 
goals in a heuristic fashion. The novelty of our 
model approach presented in this chapter is the 
combination of 3 basic components that interact 
in order to solve effectively the TDP. The three 
components are:

•  A pre-processing heuristic to create a network 
simplification for the TDP that reduce the 
search space. We prove that this heuristic has 
a minimal impact on the optimal solution.

•  A MIP model to define near optimal location 
for territory centers. Here we relax some side 
and contiguity constraints.

•  A hybrid MIP model to define near optimal 
BU’s allocation to territory centers. Contigu-
ity constraints are fully considered within 
an iterative cut strategy framework. Some 
heuristics are considered within this model 
in order to speed up the MIP search for a 
feasible near optimal solution.

We are aware that working with a point–repre-
sentation of the BU’s could lead to problems with 
the compactness of the territories. For that reason 
we prefer to work from the beginning with BU’s 
represented by polygons (see figure 5). The idea 
to include only a small percentage of the possible 
links (subset Xij ∈ S and S ⊂ R⊂ D) as decision 
variables in the MIP allocation model is based 
on a distance criterion. However this heuristic is 
not robust at all to handle all the cases. Indeed, 

it is quite problematic to estimate in advance the 
number of links necessary for each BU in order 
to assure the allocation model feasibility. For 
arbitrarily chosen territory center locations any 
type of assumptions cannot be made. Thus, one of 
the main contributions of our work is to develop a 
model that is stable on input data in order to find 
a way to dismiss enough links to make the solu-
tion of the MIP allocation model very efficient. 
In order to accomplish that goal some heuristics 
are developed (see expressions H1 and H2). Both 
heuristics are implemented very successfully for 
our territory centers location model and also for 
the BU’s allocation model.

A main contribution of our work is the imple-
mentation of contiguity constraints. Particularly 
our implementation is based on a cut generation 
strategy. Empirical results show the efficiency of 
these valid inequalities to constraint connected 
territories. To the best of our knowledge, this 
is the first time that these valid constraints are 
implemented for instances of comparable size. In 
addition, we take advantage that solutions obtained 
from the relaxation of the P-median based model 
have a very high degree of connectivity. Thus, a 
very few iterations are needed to find connected 
solutions as opposed to the P-center based models. 
In addition, our model is suitable to handle dif-
ferent values on lower and upper tolerances for 
each activity measure (i.e. parameter Tm) which 
is very common in real world TDP applications. 
Our implementation indicates that the considered 
model provides with an appropriate trade-off for 
the various activity measures that are considered. 
All these features are very important if we con-
sider how easy this model could be extended to 
other cases.

The proposed model not only addresses the 
difficulties embedded in the TDP problem but also 
some practical concerns about pre-defined and/or 
forbidden joint assignments of BU’s. Pre-assigned 
or forbidden requirements arise from business 
issues like territory realignment. From the practi-
cal standpoint, the issue of territory realignment 
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is as how the model could efficiently accom-
modate for changes like customer´s additions or 
dropouts trying not to disrupt the previous design 
considerably. Moreover, geographic obstacles can 
be easily handled in our approach by delivering 
neighboring information of incumbent BU’s to the 
allocation MIP model. With respect to our indus-
trial experience as well as the end-users thoughts 
at Embotelladoras ARCA, we believe that our 
model can be applied in quite different settings 
like sales territories, locations of new stores in a 
chain and delivery areas for distribution.

We believe that our main contribution in present 
work is the incorporation of the special heuristic 
for fast convergence on the BU’s allocation MIP 
model (see equation 2.9). This dynamic objective 
function approach is crucial to solve very large 
scale instances beyond 10,000 BU’s when solution 
time is critical. To the best of our knowledge, there 
is no previous work on heuristics or meta-heuristics 
that can handle efficiently this scale of instances. 
Either way, it is important to point out that our 
methodology presents a MIP model that ensures 
integral assignments at each iteration all the time. 
Thus, it is interesting to verify how rapidly this 
heuristic implemented on the allocation MIP model 
can evolve and converge on quasi-connected solu-
tions (see figures 1-4). However, a future research 
opportunity exists in order to prove the viability 
of this paradigm when gap optimality is required 
to confirm. Our computational results are only 
to give some evidence to our arguments. They 
are not intended to be an in-depth comparison of 
available methods for TDP. Finally, it is true the 
convenience we achieve when we integrate our 
OR model into a GIS environment application 
in order to complete a territory design frame-
work. Clearly territory design process cannot be 
completely automated, but GIS is an appropriate 
tool to help in this process. However, a pure GIS 
does not offer much support for the design and 
optimization of the territories. Therefore a hybrid 
combination of heuristics and MIP exact models 
for optimization are required. We think that this 

kind of optimization featured applications will be 
the future trend on GIS industry.

CONCLUSION

This chapter has addressed the territory design 
problem as a critical component of the operational 
planning process in sales and services companies. 
Many logistics problems found in service industry 
can be modeled as a TDP problem. TDP problems 
are multidisciplinary and have been widely studied 
in the operations research literature. However, 
solving a real world TDP possesses a significant 
challenge for both researchers and practitioners. A 
real world TDP problem includes many business 
rules and logic that are beyond those addressed in 
mathematical models in literature. In particular, 
there are some business rules like contiguity that 
cannot be easily modeled. A particular emphasis 
is given to a business application case at Embotel-
ladoras ARCA. With a real world application from 
the service industry, we present a rich featured TDP 
model. We include some extensions that are very 
common to some of the problems encountered in 
industry. Because of the characteristics of a TDP, 
it is also challenging to solve it within a reason-
able computational time based upon the concrete 
business requirement. Furthermore, field people 
who are going to deploy the solution of a TDP 
may have to pay more attention to the feasibility 
of the solution in practice than a pure optimal 
solution in terms of mathematics.

TDP is NP-hard since we can reduce the well-
known Partition Problem to it. Within OR various 
algorithmic approaches have been proposed, some 
based on integer linear programming, others on 
classical heuristics and, more recently, on some 
meta-heuristics. Real-world instances of this 
NP-hard combinatorial optimization problem are 
very large, so exact methods have failed even for 
relatively medium-size instances. In fact, demand 
points are first aggregated into small groups (i.e. 
BU’s) that serve as the basis for the construction 
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of final territories. As a result, depending on the 
level of detail or aggregation, we can reduce the 
mathematical complexity of the problem.

Our TDP instance is motivated by a real 
world application in the soft drink industry. In 
particular, it is of interest to deal with very large 
scale instances. Several different objectives and 
constraints in the territory design process are 
identified and discussed. In order to tackle these 
simultaneous and conflicting objectives, a hybrid 
approach has been developed to accommodate 
to the particular business requirements. Some 
heuristics and optimization techniques we use to 
solve the TDP more effectively are discussed in 
detail. We present the components of the model 
and a step-by-step description of the solution 
procedure. In particular, we implement a minimal 
dispersion TDP based on a P-Median objective 
function. We extend some previous approaches 
and propose a new adaptation to handle multiple 
balancing constraints. An important contribution 
of our work is the implementation of contiguity 
constraints. Particularly our implementation is 
based on a cut generation strategy. Empirical re-
sults show the efficiency of these valid inequalities 
to constraint connected territories.

The main contribution for the present work 
is the incorporation of a special heuristic for fast 
convergence on the BU’s allocation MIP model. 
Without this heuristic we can solve to optimal-
ity only instances not greater than 5000 BU’s. 
For gap optimality comparison we implement 
this heuristic first on instances of 5000 BU’s. 
The optimal solution is obtained in 264 seconds 
when we set the parameter F4 = 0 (i.e. no heu-
ristic for fast convergence). The fastest solution 
time is found in 7 seconds. All combinations on 
parameters offer very short computational times 
that range from 7 to 45 seconds with an aver-
age of 17 seconds. Thus, it is very interesting to 
verify how fast a near-optimal solution is found 
with this heuristic. We verify that the problem is 
solved more efficiently without a significant lost 
on optimality; less than 0.13% in average.

This heuristic approach is crucial to solve 
very large scale instances beyond 10000 BU’s. 
Experimental results show the effectiveness of 
this heuristic in finding good-quality solutions in 
reasonably short computation times. We imple-
ment this heuristic first for a deviation tolerance 
Tm = 10%. We obtain solution times around 206 
seconds in average for instances with parameter 
F4 ≥ 7 and 583 seconds in average for 1<F4<7. 
Branch & bound solutions obtained are very 
similar, 124.3048 in average for the first case and 
124.2227 in average for the second case. Thus, our 
lost on optimality is less than 0.07% in average. 
Practically there is no lost on optimality when 
the parameter F4 is used to speed up the solution 
time for a feasible near-optimal solution. Latter 
on we implemented this heuristic for a deviation 
tolerance Tm = 5%. We obtained similar results for 
a lost on optimality less than 0.11% in average.

In summary, our model is capable of solving 
very large-scale real world TDP problems, and 
results are closer to real practice and accepted by 
user people. We solve instances of 10000 BU’s 
in 222 seconds in average for parameter Tm = 
10% and 684 seconds in average for parameter 
Tm = 5%. Practically there is no lost on optimality 
when the parameter F4 is used to speed up the 
solution time for a feasible near-optimal solution. 
The outcomes demonstrate the effectiveness and 
economic benefits of the proposed model. The 
potential of the proposed approach as a practical 
and readily implementable tool decision is also 
demonstrated. To the best of our knowledge, no 
hybrid MIP schemes have been ever developed for 
instances of comparable size. However, a future 
research opportunity exists in order to prove the 
viability of this paradigm when gap optimality 
is required to confirm. Finally, we conclude that 
all districting problems are multi-objective in 
nature. Depending on the specific application we 
can define which attributes may be modeled as 
hard constraints and which should be optimized.
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KEY TERMS AND DEFINITIONS

Compactness: The spatial property of being 
closes and firmly united (i.e. having the minimum 
distance between all the entities of a given area).

Contiguity: Continuous connection of a 
series of entities, a grouping of parts connected 
throughout an unbroken sequence and sharing a 
common border.
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Geographic Information System: Computer-
based system for collecting, storing, editing, 
mapping, visualizing and analyzing spatial data.

Meta-Heuristic: Advanced heuristic opti-
mization techniques that serve as guidelines for 
various searchprocedures and attempt to perform 
a more effective search over the solution space 
of the problem of interest.

Sales-Force: Company people who execute 
several activities related to the marketing func-
tion and are a crucial connection between the 
companies and their customers.

Territory Alignment: The process of shaping 
and balancing small geographic units and grouping 
them in such a way that they completely cover a 
given territory under analysis, based on criteria 
important to a business or activity.

Territory Design: Planning of territories, 
measuring and allocating resources to each of 
them, so as to completely cover a region, in the 
most efficient and effective manner, according to 
criteria related to the type of activity in question.
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ABSTRACT

The territory alignment problem is part of a bigger procedure, the territory design, which consists of 
assigning small geographic regions to larger areas following the most relevant criteria for planning. 
This chapter aims to briefly update the review of the existing literature on the territory alignment prob-
lem, its applications and solution approaches, and to illustrate the most recent tendencies by means of 
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The approach is based in GRASP and Tabu Search meta-heuristics. The algorithm was integrated in 
an interactive and user-friendly Geographic Information System application, named MultiACE, also 
developed in the context of this study. This application was embedded in the ArcGIS software.
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mentable management decision aid in the context of a current case that involved the maintenance team 
of a Portuguese regional office of a worldwide equipment company.
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1 INTRODUCTION

The territory alignment problem (TAP) is part of 
a bigger procedure, the territory design, which 
consists of assigning small geographical regions 
to larger areas following the most relevant criteria 
for planning.

The territory design problem, that also has been 
referred to in the literature as the territory project, 
the automatic zoning design, the land allocation, 
the (re)districting, the region partitioning and the 
geographic deployment, is an important problem 
that is present in a great number of geographic 
projects and has potential application in various 
subjects, for instance, the establishment of politi-
cal districts, location of schools, trash collection, 
social services (health centers, hospitals, etc.), 
emergency services, sales and distribution of 
products and maintenance teams. A quite interest-
ing evaluation of the several areas of application 
of the territory design can be found in (Kalcsics, 
Nickel, & Schroder, 2005).

There are many ways of assigning small geo-
graphic regions to larger areas or, in other words, of 
defining a zoning system. The criteria for defining 
a meaningful zoning system lie in the purpose of 
the studies and depend on the experience of the 
zone designer. The zoning criteria are often guided 
by the problem specifications or restricted by the 
available data. Depending on the problem context, 
a careful partition of a territory may represent 
an increase of efficiency of an activity, a better 
workload balance or a shorter distance covered.

In the problem of electoral districting, probably 
the most well known case of the TAP, aside from 
its obviously political aspect, the process must be 
evaluated against specified redistricting criteria. 
For instance, some of the criteria are constitution-
ally required while other geographical and political 
concerns may be advocated. Electoral districting 
consists of the partitioning of administrative units 
into a predetermined number of zones (districts) 
such that the units in each zone are contiguous, 
each zone is geographically compact and the sum 

of the populations of the units in any district are 
as similar as possible or lies within a predeter-
mined range.

According to (Bacao, Lobo, & Painho, 2005a), 
the constraints of the zone design problem are 
similar to the ones that characterize the clustering 
problem. Let the set of initial areal units be X = 
{x1,x2…,xn}, where xi is the i-th areal unit. Let the 
number of zones be K. Let Zi be the set of all the 
areal units that belong to zone Zi. Then:

Zi ≠ 0, for i = 1,…,K,

Z Zi j = 0, for i ≠ j,

 i
K

iZ X= =1  (1)

These constitute the set of constraints that 
can be applied equally in clustering and in zone 
design. Nevertheless, in zone design an additional 
constraint has to be included, which accounts for 
contiguity and creates a more complex problem. 
This constraint limits the set of acceptable solu-
tions to the problem and consists in assuring 
contiguity between all the areal units that build 
up a zone. Contiguity is defined as a continuous 
connection of a series of entities, a grouping of 
parts connected throughout an unbroken sequence 
and sharing a common border. In other words, it 
means that each areal unit in a zone is connected 
to every other areal unit via areal units that are 
also in the zone (Cloonan, 1972; Niemi et al., 
1990; Shirabe, 2005a; Shirabe, 2005b).

One of the reasons for the zone design problem 
being especially difficult is the size of the solu-
tion space. The dimension of a usual real world 
problem makes unfeasible any attempt to explicitly 
enumerate all the possible solutions. The calcula-
tion of the total number of possible solutions for 
a zone design problem is similar to the clustering 
problem and is given by the Stirling number of 
the second kind (Altman, 1998). If we have “n” 
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unit blocks and want to create “k” districts, the 
number S of possible districts is:

S n k
k

k
k i i

k i
i

k
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( )! !
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−

=
∑1 1
0
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Additionally, in terms of computational com-
plexity, the zone design problem has been shown to 
be NP-Complete (Crescenzi, & Kann, 1998). Thus, 
heuristic techniques seem to be the best available 
option to produce solutions to the problem in a 
reasonable computational time. This is certainly 
a compromise, but guaranteed optimality seems 
at this stage merely a mirage.

The knowledge about this kind of algorithm, 
heuristically oriented, and integrated in interactive 
and user friendly Geographic Information Systems 
(GIS), is the core of this chapter.

Another purpose of this chapter is to demon-
strate the potential of the proposed approach as a 
practical and readily implementable management 
decision aid in the context of a real case involving 
the maintenance team of a Portuguese regional 
office of a worldwide equipment company (called 
“Company A” for confidentiality reasons). The 
regional managers at Company A were interested 
in learning how our approach could be used to 
evaluate and possibly improve their territories 
structure.

According to (Zoltners, 2004), the TAP is a 
question that most companies face at least once 
a year, because it depends on the changes that 
may occur in the territories, and, frequently, these 
changes are most relevant on a yearly basis.

The algorithm presented in this chapter was 
developed to attend only the balancing of terri-
tories. Once the boundaries of the territories are 
defined, a routing solver or algorithm can be ap-
plied to each territory in order to provide a route 
or optimized sequence that has to be followed.

The remainder of this chapter is organized as 
follows:

Section 2 outlines the main concepts regarding 
territory design; discusses some of the traditional 
approaches to the territories alignment problem; 
and presents a literature review on the main sub-
jects used to implement the solution proposed 
in this chapter. Sections 3 and 4 introduce the 
innovative approach to the TAP and present the 
main characteristics of the implementation of 
the MultiACE algorithm. Sections 5 and 6 pres-
ent some remarks regarding the efficiency of 
the algorithm and discusses the results obtained 
applying the MultiACE algorithm to a real case. 
Section 7 proposes subjects for future research. 
Finally, in Section 8, we highlight some conclu-
sions to this chapter.

2 BACKGROUND OF 
TERRITORY DESIGN

2.1 Approaches and Areas of 
Application in the Literature

The TAP has been largely studied since the 60’s and 
several models and techniques have been proposed 
to solve it. Most of these approaches are based on 
set covering or set partitioning formulations, where 
the objective function consists in the minimization 
of the sum of the distances. In most cases, these 
models are solved using integer programming 
techniques often supported by column generation 
methods. More recently, several meta-heuristics 
have been applied to the set covering and the set 
partitioning problems with very promising results. 
The reader who wants to further review the basic 
concepts of TAP approaches and algorithms is 
referred to the research papers in Table 1.

In more recent years, there has been a growing 
interest in hybrid meta-heuristic algorithms ap-
plied to combinatorial optimization problems, but 
only a very low number of approaches are related 
to the territory alignment problem (Ehrgott, & 
Gandibleux, 2000). In Table 2 is a quite interest-
ing list of papers, mainly regarding heuristics and 



261

Hybrid Heuristics for the Territory Alignment Problem

meta-heuristics applied to TAP and related loca-
tion problems.

According to the literature, one can notice that 
the early papers regarding TAP were related to 
the pharmaceutical industry representatives’ ter-
ritories and school and political districting, and 
there was a tendency of migration from solutions 
based on set-covering and enumeration techniques 
to solutions based on heuristics and meta-heuris-
tics. Another interesting consideration is that the 
authors developed several algorithms based on 
p-median formulations, adapting them to their 
specific problem and available data.

Two additional remarks:

•  There is a tendency to use heuristic-based 
solutions, especially hybrid solutions, which 
apply concepts of meta-heuristics as GRASP, 
Tabu Search and Genetic Algorithms, among 
others;

•  The solutions are case-specific, since each 
one of them has its own constraints and 
objectives, making it virtually impossible 
to create an algorithm that can be applied 
to all TAP.

In the context of our work, we developed a 
new algorithm that applies the core ideas of two 
meta-heuristics, GRASP and Tabu Search, in 
conjunction with a technique of spatial division 
based on Voronoi diagrams. Additionally, we 
implemented a partition strategy that reduces 
the solution space, inserting characteristics in 
the MultiACE algorithm that are still lacking in 
the literature.

2.2 Software and Companies 
for Territory Alignment

The territory optimization software packages use 
algorithms that evaluate millions of potential align-

Table 1. Selected operations research studies for the TAP

Reference Application

Hess et al., 1965 Political redistricting

Hess, & Samuels, 1971 Sales districts of a pharmaceutical and a computer company

Zoltners, 1976 Sales territory alignment

Parasuraman, 1977 Profitability of territories and sales resource allocation decision making

Zoltners, 1980 Modeling of a structure for the sales resource allocation

Lodish, 1980 Sales force sizing and products and markets allocation

Zoltners, & Lorimer, 1983 Sales force sizing of a pharmaceutical company

Lodish et al., 1988 Sales force sizing

Howick, & Pidd, 1990 Models for sales force sizing, sales people’s time allocation and sales territory 
alignment

Mehrotra, Johnson, & Nemhauser, 1998 Political districting

Barker, 2001 Territory design and sales organization performance

Kalcsics et al., 2001 Sales territory design

Scaparra, & Scutella, 2001 Building blocks of location models

Sinha, & Zoltners, 2001 Activities and decisions of a sales force changes implementation process

Zoltners, Sinha, & Lorimer, 2004 Sales territories and their impact on the profitability of the companies

Pereira et al., 2004 Dividing territories in “homogeneous” areas

Zoltners, & Sinha, 2005 Alignment of sales territories.
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Table 2. Selected papers regarding different solution approaches for TAP and location problems

Number Reference Application Solution Approach or Tool

1 Garfinkel, & Nemhauser, 1969 Set-Partitioning Set-covering with equality constraints

2 Garfinkel, & Nemhauser, 1970 Political districting Implicit enumeration

3 Helbig, Orr, & Roediger, 1972 Political districting Computer method (heuristic)

4 Shanker, Turner, & Zoltners, 1975 Sales territory design Set-partitioning

5 Ross, & Zoltners, 1979 Various applications Weighted Assignment Models

6 Fleischmann, & Paraschis, 1988 Districting Location-allocation approach

7 Leach, & Kandel, 1990 Redistricting PC-based expert system

8 Beasley, 1993 Location Lagrangean heuristic

9 Leach, & Kandel, 1993 Redistricting Knowledge-based expert system

10 Rolland, Schilling, & Current, 1996 P-median Tabu Search

11 Bozkaya, Zhang, & Erkut, 1997 P-median Tabu Search

12 Resende, 1998 Maximum Covering GRASP

13 Klose, 1998 Facility Location Branch and Bound

14 Mehrotra, Johnson, & Nemhauser, 1998 Political districting Branch-and-price

15 Delmaire et al., 1999 Capacitated plant location Tabu Search and GRASP

16 Pirkul, Gupta, & Rolland, 1999 P-median Visual interactive tool

17 Drexl, & Haase, 1999 Sales force deployment Fast approximation methods

18 Lorena et al., 1999 P-median Column generation and GIS

19 Cano et al., 2000 Clustering GRASP

20 Guo, Trinidad, & Smith, 2001 Zoning Graph partitioning

21 Macmillian, 2001 Redistricting Switching points

22 D’Amico et al., 2002 Police district design Simulated annealing

23 Zhou, Min, & Gen, 2002 Balanced allocation of cus-
tomers

Genetic algorithm

24 Bozkaya, Erkut, & Laporte 2003 Political districting Tabu Search and Adaptive memory

25 Taillard, 2003 Clustering Heuristic methods

26 Bergey, Ragsdale, & Hoskote, 2003 Electrical power districting Simulated Annealing and Genetic Algorithm

27 Wei, & Chai, 2004 Spatial zoning Hybrid meta-heuristic (tabu search and 
scatter search)

28 Pereira et al., 2004 Districting Evolutionary algorithm with local search

29 Caro et al., 2004 School redistricting Integer programming

30 Lorena, & Senne, 2004 Capacitated p-median Column generation

31 Senne, Lorena, & Pereira, 2005 P-median Branch-and-price

32 Ahmadi, & Osman, 2005 Capacitated clustering Greedy random adaptive memory program-
ming search

33 Kirkizoglu, 2005 Sales territory alignment Genetic algorithm

34 Bacao, Lobo, & Painho, 2005 Zone design Genetic algorithm

35 Batun, 2005 Sales Territory Alignment Tabu Search

36 Marianov, & Fresard, 2005 Locations, capacities and dis-
tricting of jails

Minimum regret procedure

37 Reese, 2005 P-median Annotated bibliography

continued on following page
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ments to find one that best meets specified criteria 
regarding territory profitability, workload, sales 
potential, size, travel, and/or disruption (Zoltners, 
Sinha, & Lorimer, 2004).

There are several products on the market that 
intend to treat the problem of alignment and op-
timization of territories. With the sole purpose of 
informing the reader, we present in Table 3 a list 
of some of these commercial systems and their 
websites. In general, such systems have some 
characteristics in common, as listed below:

• Import data from several types of sources 
(ODBC, TXT, Access, DBF, etc.);

• Use georeferenced digital maps with auto-
matic updating possibilities;

• Possess a support to assist the customers 
and a good group of tutorials;

• Use tools for map manipulation and for 
thematic map creation;

• The optimization algorithms work with 
real street networks data and can optimize 
trip time;

• Create compact and contiguous territories;

• Present the capacity to produce reports 
in text files and electronic spreadsheet 
formats;

• Do not provide many details about their 
territory alignment algorithm and the ap-
plied techniques.

This last issue - coupled with the high cost of the 
listed software and the lack of a set of “benchmark” 
problems - complicates a comparative analysis of 
the performance of the available solvers.

The interested reader may find in (Junior, 2008) 
a comparison between the results achieved by the 
MultiACE algorithm and the optimal solutions 
obtained by CPLEX, when solving a set of small 
to medium instances of “laboratory” problems, 
which may be obtained from the authors upon 
request. A sample of these results can be found 
in Section 5 of this chapter.

3 THE MULTIACE ALGORITHM

The novelty of the new algebraic approach pre-
sented in this chapter is the combination of five 

Number Reference Application Solution Approach or Tool

38 Galvao et al., 2006 Logistics districting Multiplicatively-weighted Voronoi diagram

39 Negreiros, & Palhano, 2006 Capacitated centred clustering Polynomial heuristic algorithm

40 Resende, & Werneck, 2006 Uncapacitated facility location Multistart heuristic

41 Diaz, & Fernandez, 2006 Capacitated p-median Hybrid scatter search

42 Jackson, Rouskas, & Stallmann, 2007 P-median Specific heuristic

43 Ricca, Scozzari, & Simeone, 2008 Political districting Weighted Voronoi diagram

44 Ríos-Mercado, & Fernández, 2009 Territory alignment GRASP

45 Novaes et al., 2009 Location-districting Voronoi diagrams

46 Hu, Ding, & Shao, 2009 Partition balancing Evolutionary algorithm

47 Yamada, 2009 Political districting Mini-max spanning forest

48 Gonzalez-Ramirez et al., 2010 Logistics districting (tobacco 
distribution)

Tabu Search and GRASP

49 Hu, Yang, & Huang, 2010 Distribution partition Evolutionary algorithm

Table 2. Continued
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basic components that interact in order to solve 
the TAP. The five components are:

•  A Voronoi Diagram based strategy, to create 
solutions;

•  A 2-sets partitioning strategy, to decrease 
the search space;

•  A GRASP based candidates list;
•  Tabu Search (TS) based short-term and 

long-term memories;
•  An optimization technique to define the best 

solutions.

Moreover, the algorithm was integrated into 
an advanced interactive tool (ArcGIS Geographic 
Information System (GIS) environment) which 
can be used in different contexts. At the opera-
tional level, it represents a valuable tool to quickly 
produce alternative solutions. At the tactical level 
it can be used to simulate different operating 
scenarios and evaluate the impact of changes in 
territories. Furthermore, it can be also applied by 
planners to support the testing of new prerequisites 
and new criteria can be easily incorporated.

Figure 1 shows the flowchart for the algorithm 
and how these five components interact to create 
the solutions and manipulate the data. The reader 
who wants to further review the details and main 
concepts regarding the basic components of the 
MultiACE algorithm is referred to (Júnior, 2008; 
Júnior, Sousa, & Basto, 2008).

3.1 Voronoi Diagram Based 
Solutions

A Voronoi Diagram is a special kind of decompo-
sition of a metric space determined by distances 
to a specified discrete set of objects in the space 
(e.g., determined by a discrete set of points) (Au-
renhammer, & Klein, 2000).

Let S be a set of points in an Euclidean space 
of dimension d and with cardinality equal to P. 
Let T be the number of territories in which we 
want to divide the set S. For each point c (the 
centers of the territories) of S, the Voronoi cell 
V(c) (the territory of c) is the set of points that are 
closer to c than to other centers of S. The Voronoi 

Table 3. Software and companies for territory alignment

Software/Company Website

AlignPlus http://www.advantagems.com/

AlignStar http://www.alignstar.com/optimizer.html

Analytics In Focus, LLC http://www.salesterritoryalignment.com/

ArcGIS/ESRI http://www.esri.com

Arcus http://www.arcusgroup.ca/

Bayser Consulting http://www.bayser.com/

Empower Geographics http://www.empower.com/

IncentAlign http://incentalign.com/products/salesalign-territory/

Maponics http://www.maponics.com/

Mapping Analytics – Proalign http://www.mappinganalytics.com/ProAlign/index.html

MarketRx http://www.marketrx.com/Solutions/smo.asp

Synygy http://www.synygy.com/

TerrAlign http://www.terralign.com/about/leadership.html

TransCAD http://www.caliper.com/tcovu.htm

ZS Associates/MAPS http://www.zsassociates.com/
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Figure 1. The MultiACE algorithm overall flowchart
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Diagram V(S) is the space partition induced by 
the Voronoi cells.

Figure 2(a) presents a set of points and Figure 
2(b) presents the selected ones as centers (high-
lighted) and the limits for the territories created 
using them.

The most important reasons for choosing this 
strategy are:

•  Its ability to create contiguous territories 
for the solutions of TAP, since the Voronoi 
Diagram, according to its definition, always 
creates subsets that are contiguous around 
the selected centers;

•  To store, to create or to recreate a solution, 
one needs just the “centers” (“centers” is 
applied here to indicate the points used to 

Figure 2. A Voronoi diagram
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generate the territories, not in the geometric 
sense). This advantage is very useful when 
dealing with big sets of points and there is 
the need to make many calculations based 
on the “centers” positions.

3.2 2-Sets Partitioning Strategy 
to Decrease the Search Space

The strategy adopted to decrease the solutions 
search space divides the problem into some minor 
problems that can be solved more efficiently. It 
basically dismembers the original problem into 
new, smaller and less complex problems, starting 
with the original set of points and dividing it into 
two parts as follows:

Proportional to and if is odd

both proportional to if

T T T

T

− +1
2

1
2

2

, ,

, TT is even.
 

where T is the number of territories. Then, this 
procedure is repeated until it generates T differ-
ent territories. This procedure is represented in 
the Algorithm 1.

The number of dismemberments is always T-1 
and, in the end, T subparts are obtained, which 
will be the balanced territories, according to the 
balancing bounds. If one tries to divide 100 points 
into 4 territories using 4 centers at a time, there are 
8214570 possible solutions. If one uses the 2-sets 
partition strategy, the total number of solutions 
needed to evaluate is equal to 10680 (i.e., it is only 
0.13% of the total amount for the first strategy).

For each one of the levels of partitions defined 
in Algorithm 1, the summation bounds of the se-
lected criteria for the partitions are also defined. 
The higher level receives the bounds defined by 
the decision-maker (DM) and the other levels 
receive bounds according to the number of the 
level, as follows:

UpperBound UpperBound
LowerBound LowerBound

i i
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where:

•  i is the index of the level of partition;
•  UpperBoundi and LowerBoundi are the 

upper and lower bounds for the summation 
of the selected criteria for the partitions of 
the level i;

•  UpperBoundi+1 and LowerBoundi+1 are the 
upper and lower bounds for the summation 
of the selected criteria for the partitions of 
the level i+1.

This strategy reduces the search space because 
it decreases the number of possible candidates for 
the centers selection (Voronoi Diagram). Since 
each set is divided into two and only two subsets, 
the algorithm always selects two points as centers 
and allocates all the others to one, and only one, 
of these centers. This is a very fast way to gener-
ate and test solutions, because there is no need to 
improve the created solution in any way; it is just 
created and tested.

For all the dismemberments, the main objective 
is to create two balanced sub-sets. The algorithm 
tries to keep all the subsets balanced, when con-
sidering the attributes selected by the DM. If, in a 
given level, the algorithm does not find a feasible 
solution, it takes the closest solution obtained and 
continues executing the other dismemberments in 
order to obtain partial solutions that can be manu-
ally adjusted later. These manual adjustments are 
very easy to accomplish, because the data can be 
manipulated inside the GIS environment. Some 
of these manual adjustments can be used, after 
obtaining a solution, as an easy way to make its fine 
tuning. Section 6 provides a real case application 
of the algorithm and explains how these manual 
adjustments can be done and the importance of 
the DM’s will in this process.
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Algorithm 1. The Partition Scheme Algorithm Structure

1. Initialize the number of territories (NumberOfTerritories)

2. NumberOfPartitions = NumberOfTerritories -1

3.  

4. for i = 1 To 10 (2 ^ i is the maximum number of territories the algorithm can create) 

5.  TerritoriesLimit = 2 ^ i

6.    If (NumberOfTerritories <= TerritoriesLimit) Then

7.       NumberOfPartitionLevels = i

8.       Exit for

9.    end if

10. end for

11. 

12. for Level=1 to NumberOfPartitionLevels

13.    if Level = 1 then

14.       NumberToDivide = NumberOfTerritories

15.       if NumberToDivide is even then

16.       PartitionsMatrix(1, 1) = NumberToDivide / 2

17.         PartitionsMatrix(2, 1) = NumberToDivide / 2

18.       else

19.         PartitionsMatrix(1, 1) = (NumberToDivide - 1) / 2

20.         PartitionsMatrix(2, 1) = (NumberToDivide + 1) / 2

21.       end if

22.    else

23.       for j=1 to 2(Level-1)

24.         NumberToDivide = PartitionsMatrix(j, Level - 1)

25.         if NumberToDivide = 1 then

26.            PartitionsMatrix(2 * j - 1, Level) = 0

27.            PartitionsMatrix(2 * j, Level) = 0

28.         end if

29.         if NumberToDivide > 1 And NumberToDivide is even then

30.            PartitionsMatrix(2 * j - 1, Level) = NumberToDivide / 2

31.            PartitionsMatrix(2 * j, Level) = NumberToDivide / 2

32.         end if

33.         if NumberToDivide > 1 And NumberToDivide is odd then

34.            PartitionsMatrix(2 * j - 1, Level) = (NumberToDivide - 1) / 2

35.            PartitionsMatrix(2 * j, Level) = (NumberToDivide + 1) / 2

36.         end if

37.       end for

38.    end if

39. end for
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3.3 GRASP Based Candidates List

The greedy randomized adaptive search procedure 
(GRASP) is a meta-heuristic algorithm commonly 
applied to combinatorial optimization problems. 
GRASP typically consists of iterations made up of 
successive constructions of a greedy randomized 
solution and subsequent iterative improvements 
of it through a local search. The greedy random-
ized solutions are generated by adding elements 
to the problem’s solution set from a list of ele-
ments ranked by a greedy function according to 
the quality of the solution they will achieve. To 
obtain variability in the candidate set of greedy 
solutions, well-ranked candidate elements are 
often placed on a restricted candidate list (also 
known as RCL), and chosen at random when 
building up the solution. (Feo, & Resende, 1995; 
Resende, 1998; Festa, & Resende, 2002; Festa, 
& Resende, 2004).

In the MultiACE algorithm, the ideal point 
is defined, for each one of the sub-partitions, as 
the most desirable, weighted, hypothetical alter-
native (decision outcome) and, for optimization 
problems, the closest alternative to the ideal point 
is the best alternative (the separation is measured 
in terms of metric distance (Lorena et al., 1999)).

For the TAP problem, the location (LI) of the 
ideal point in the Euclidean space of dimension 
d can be described in Eq. 3:

L a a aI d= ( , , , )1 2   (3)

These numbers a1,...,ad are called the coor-
dinates of the ideal point and each one of them 
represents the summation of one specific attribute 
of the points of an ideal territory.

The calculation of the location of the ideal 
point is important for the evaluation of the pos-
sible centers and the creation of the candidate list 
that will be used in the solution search.

When one wants to divide a set of points into 
two subsets, the first step, according to the algo-

rithm, is to select the centers from a candidate 
list using a greedy strategy. The alternatives are 
ranked according to their distance from the ideal 
point and are sorted to create the candidate list.

Since a wide exploration of the solution space 
is important to effectively force the algorithm to 
navigate into the various regions of the search 
domain, one important step in the current ap-
proach is to create solutions with a diversification 
purpose in order to encourage the search process 
to examine random regions of the solution space.

The algorithm generates a solution using the 
candidates list, but it includes randomness in 
this process. The centers ranking defines a prob-
ability ranking as well. This probability ranking 
is defined in Eq. 4.

Pr( ) ( )c
i N

N
c=
−

−
+

1
δ ϕ  (4)

where, Pr(c) is the probability of the point c to be 
selected as a center, ic is the position of the point 
in the candidates list, N is the number of sites, φ 
is the lowest probability value and δ + φ is the 
highest probability value.

If one chooses δ=0.8 and φ=0.1, the best 
center will have the probability of 90% and the 
worst center the probability of 10%. The range 
90% – 10% is used by the algorithm to select the 
centers. These values permit the choice of the best 
centers as the inclusion of randomness can help 
to search a wider space and to avoid local optima 
at the same time.

The complete process to select two points as 
centers of a solution consists of these steps:

•  The algorithm starts at the top of the candi-
dates list and randomly generates a number 
in the range of 0 to 1 (normally distributed);

•  If the random number is equal or smaller 
than the Pr(c) defined to this point, it will 
be selected as a center;
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•  If the random number is larger than the Pr(c) 
defined to this point, it will not be selected 
as a center and the algorithm will go down 
the candidates list repeating this process;

•  If the algorithm reaches the end of the can-
didates list, it will start again at the top of 
the list and will repeat the search process 
until it finds two points to be used to create 
a solution.

3.4 Tabu Search Based Memories

Tabu search (TS) is a mathematical optimization 
method, belonging to the class of local search 
techniques. TS enhances the performance of a 
local search method by using memory structures: 
once a potential solution has been determined, it 
is marked as “taboo” (“tabu” being a different 
spelling of the same word) so that the algorithm 
will not visit that possibility repeatedly. TS is at-
tributed to Fred W. Glover (Glover 1989; Glover 
1990a; Glover 1990b; Glover, & Laguna, 1993; 
Glover, Taillard, & Werra, 1993; Hertz, Taillard, 
& Werra, 1995; Laguna, & Glover, 1996).

The algorithm we propose uses a short-term 
memory and a long-term memory. The long-term 
memory lists the set of solutions that have been 
tested. Complementarily, the short-term memory 
leads the way by which our algorithm tries to 
explore the search space.

When a point is selected as a center to gener-
ate a territory and the result is not feasible, given 
the bounds in one or more criteria, this aspirant 
center enters the TS list with a number equal to 
the number of rounds that this point will be denied 
to enter in the solutions creation process.

Once this “quarantine” expires, the point can 
eventually be chosen again as a center. We need 
to define the quarantine’s size as a function of 
the number of points being divided at the cur-
rent stage of the algorithm. As can be imagined, 
the quarantine size for a large set must be bigger 
than for a small set of points, given the need for 
a “rejected” center to stay away from the solution 

candidates during an extra period of time in order 
to allow the exploration of a larger search space.

3.5 Optimization Criteria

We adopted the Distance to the Ideal Point Tech-
nique as the objective function to be minimized 
in our algorithm. This measurement was chosen 
given that:

•  It is easy to understand and to implement;
•  It is easy to incorporate the DM’s choices;
•  It is efficient, in terms of the computational 

requirements.

During the course of the algorithm, we pro-
ceed to the division of the current set of points. 
For each one of the divisions, an Ideal Point is 
calculated. Then, the territories of the solutions 
are compared to the bounds for each one of their 
attributes, and, if both the territories are feasible 
(a feasible territory is a territory whose attributes 
satisfy the constraints defined by the DM, in rela-
tion to the Ideal Point and the error bounds), the 
solution is considered valid.

Next, if a solution is valid, it is then compared 
to the “so far” best found solution. We continue 
to use the same concept of Ideal Point, but trying 
to achieve an Ideal Point that is “perfectly bal-
anced”: achieving smaller differences between the 
attributes of the solution’s territories will give us 
a better solution.

The MultiACE algorithm tries to minimize 
the grade shown in Eq. 5.

SG w a aj ji
i

F

jl
l

G

j

= −
= =
∑ ∑∑ ( )

1 1

 (5)

where:

•  SG is the solution grade;
•  F is the number of points in the first subset;
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•  G is the number of points in the second 
subset;

•  i is the index of the point in the first subset;
•  l is the index of the point in the second subset;
•  j is the index of the attribute selected by the 

DM;
•  wj is the weight of the attribute j defined by 

the DM;
•  aji is the value of the attribute j to the i point 

of the first subset;
•  ajl is the value of the attribute j to the l point 

of the second subset.

4 IMPLEMENTATION 
AND APPLICATION

The algorithm was built on top of ArcGIS, a 
powerful GIS software.

The main reasons for choosing the ArcGIS 
package as the environment for implementing 
the MultiACE algorithm were:

•  The 9.2 release of ArcGIS includes some 
scripting languages allowing the user to 
customize or extend the software in order 
to suit his/her particular needs;

•  It also offers a geo-environment that allows 
the execution of traditional GIS processing 
tools (such as clipping, overlay, and spatial 
analysis) either interactively or from any 
scripting language that supports COM stan-
dards;

•  The graphical functionality in ArcGIS pro-
vides the user means to visualize the solu-
tions and, hence, speed up the feedback loop. 
Furthermore, ArcGIS provides a mechanism 
for the user to make a manual edition of 
the solutions, a task that would be difficult 
without a GIS.

We have chosen Visual Basic Application 
(VBA) to code the MultiACE embedded in the GIS 
package. The input data for the TAP was stored 

in proprietary formats of ArcGIS. Each feature 
layer contains a set of objects considered as ele-
ments of alternative solutions. Since it was not 
possible to use the GIS standard operations alone 
to generate the solutions, the proposed algorithm 
was specifically designed, coded and aggregated 
in the VBA code to deal with the TAP.

4.1 Data

To input the necessary data to feed the algorithm, 
the user (DM) must build:

•  A personal geo-database layer with points 
representing the units to aggregate into ter-
ritories. The authors are aware that working 
with a point-representation of the basic units 
could lead to problems with the compactness 
of territories, but the geographic obstacles, 
on the other hand, can be easily handled in 
this approach by delivering to the algorithm 
the network distances between points;

•  A database containing all the attributes of 
each unit (point).

The finding of solutions is done by ArcGIS 
and the MultiACE algorithm. The user must guide 
the software by supplying a few parameters and 
choosing some basic options. After the solution 
generation, the proposed solution and its measure-
ments of compactness can be visually controlled.

4.2 Constraints

In our problem, constraints may be classified as 
hard or soft.

Soft constraints are the ones defined by the 
DM and consider criteria faced as requirements 
in the objective function or in the constraints of 
the mathematical model.

Hard constraints are the natural bounds such 
as rivers or one-way streets. To avoid splitting a 
territory with respect to natural boundaries such 
as major rivers or bodies of water, the DM must 
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choose the network distances option. The algo-
rithm will read a file containing all the distances 
between each pair of points and shall use these 
distances during the computations. The tool 
“Network Analyst”, that is part of the ArcGIS 
package, can be used to easily obtain the required 
file of distances.

4.3 Objectives

The MultiACE algorithm tries to cover two main 
objectives:

The first objective is that the territories should 
be contiguous and as compact as achievable. There 
are many proposed ways to measure compactness 
and the MultiACE uses the summation of the 
Euclidean distances of all points to the geometric 
center of the territories. This objective is achieved 
using the Voronoi Diagram based strategy.

The second objective is that the territories must 
be balanced by one or more criteria. This means 
that the summation of the attributes for every ter-
ritory must lie within the defined bounds. These 
constraints can be formulated as shown in Eq. 6.
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where:

•  j is the index of the criteria selected by the 
DM;

•  F is the number of points in the first subset;
•  G is the number of points in the second 

subset;
•  i is the index of the point in the first subset;
•  l is the index of the point in the second subset;
•  Idealj1 is the value of the attribute j to the 

Ideal Point 1; (each subset is compared to a 

different Ideal Point, since the subsets can 
be of different sizes; if the subsets are of the 
same size, the Ideal Point 1 is equal to the 
Ideal Point 2.);

• Idealj2 is the value of the attribute j to the 
Ideal Point 2;

• aji is the value of the attribute j to the i point 
of the first subset;

•  ajl is the value of the attribute j to the l point 
of the second subset;

•  βj is the lower bound for the attribute j of 
the subsets;

•  φj is the upper bound for the attribute j of 
the subsets.

According to Eq. 6, one can notice that the 
greater the number of points, the harder it will 
be to solve the system, because the number of 
constraints increases. It can also be noticed that 
the smaller the attribute bounds, the harder it will 
be for the algorithm to find feasible solutions, 
because this will decrease the size of the area 
in the search space where the feasible solutions 
can be found. Finally, the bigger the number of 
attributes, the harder it will be to determine the 
solutions for the problem, also because it increases 
the number of equations in the set of constraints.

4.4 Algorithm’s Parameters

The algorithm’s parameters are:

•  Number of territories to generate;
•  Set of points to process (in the GIS environ-

ment, the layer of points);
•  Criteria (attributes of the points) to use in 

the multi-criteria analysis;
•  Weights of each criterion used in the analysis 

and the solution preferences;
•  Stopping rules;
•  The type of measurement for the geographi-

cal distance between points.
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The number of territories to generate is the 
first and the easiest parameter to choose and un-
derstand. According to this number, the algorithm 
will elaborate the scheme of partitions to follow 
until the final solution.

The set (layer) of points to process is the layer 
of information that will be used in the analysis. 
The user has to choose not only the layer, but 
the key field, the field where the solution will be 
stored, and, if it is necessary, a field that indicates 
a subgroup selection. The subgroup selection is 
used to generate territories using only a selected 
set of units that are in the selected layer.

The criteria (up to three) are the fields where 
the values of the attributes for each unit are stored. 
First, the DM selects how many criteria he will use 
and then he selects each field separately. The last 
definition about criteria is the weight definition. 
These weights will guide the algorithm through 
the solutions search.

The stopping rules are the criteria that the al-
gorithm will use to stop the solutions search. The 
options are: a time limit; a limit for the number of 
tested solutions; the finding of the first feasible 
solution, or the DM will.

In order to measure the physical (geographi-
cal) distance between points, four options may be 
used: Euclidean distances, Chebyshev distances, 
Manhattan distances and Network distances; in this 
latter one there are still two options, considering 
two-way or one-way streets. The option selected 
will impact the shape of the territories and it has 
to be done according to:

•  the existence of any specific geographical 
constraint for the area under analysis (rivers, 
lakes, etc.);

•  the availability of data concerning the direc-
tion of the flow in each link of the network.

There are three important decisions that influ-
ence the way the algorithm works.

The first one is to choose if the algorithm will 
look for solutions in a heuristic way or if it will 

make an exhaustive search. The exhaustive search 
is indicated when one have small sets of points, 
because the algorithm can be more efficient. One 
has to define the size of the sets that will make the 
algorithm use the exhaustive search procedure. 
The DM also defines the maximum number of 
analyzed solutions to keep in memory (long-term 
memory) and the percentage of the number of 
points that will define the short-term memory.

The next decision to make is related to the 
objective function. The DM must decide if the 
algorithm will look for:

•  the most compact solutions, or;
•  the most well-balanced (with the least 

deviation from the Ideal Point) solutions, 
according to the criteria selected.

This is an important question, because it in-
fluences the shape of the territories and the final 
results. Figure 3 shows two different territory 
solutions for the same problem. The first one 
shows a set of territories optimized for the DM 
preferences (weights), while the second shows a 
set of territories more compact than the ones of 
the first solution.

The third decision to make is optional and 
related to the bounds defined for each of the 
partitions carried out by the algorithm. If it is 
necessary, the DM may allow the algorithm to 
increase the bounds considered for the partition 
until it finds a feasible solution for that partition. 
This option is useful in helping to find solutions 
when the DM defines very narrow bounds for the 
balancing of the territory criteria.

Regarding to the checking of the proposed 
solutions, there is still another parameter to define, 
namely the territory Compactness Measurement. 
It can be calculated in one, and only one, of these 
four ways:

•  Average distance from the points to the center 
of the territory;
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•  Summation of the distances from the points 
to the center of the territory;

•  Maximum radius from the territory centroid 
(MRTC) (i.e. the distance from the center 
of the territory to the most distant point);

•  Maximum distance between two points of 
a territory.

The compactness measurement used by the DM 
to analyze the quality of the solution is directly 
connected to a specific operational objective. Its 
choice can influence the final solution because it 
can affect the shape of the territories. Section 6 
presents a real case where the operational objective 
was to create territories with a minimum MRTC 
because the company had an operational objective 
properly explained in Section 6.6.

4.5 Algorithm Structure

The MultiACE algorithm can be summarized in 
the structure listed in Algorithm 2.

5 ALGORITHM’S EFFICIENCY

In order to present the algorithm’s efficiency, Table 
4 summarizes the results obtained applying the 
MultiACE algorithm and the CPLEX optimization 
package. In this set of experiments we decided to 
show that the strategy to create solutions (Voronoi 
based strategy) and the strategy to decrease the 
search space (Two-set partitioning strategy) work 
well and can generate high-quality solutions in 
a set of “laboratory” problems. We carried out 
the experiments varying the parameters of our 
problems and a more complete explanation can 
be found in (Júnior, 2008).

We can notice that the difference between 
MultiACE results and CPLEX results (DIST. 
SUMM) is not greater than 5% and the amount 
of time to find the solutions, for these datasets, is 
always greater when we use the CPLEX formula-
tion. The mean of the differences is 1,3% and the 
greatest value is 19,9%, but it occurred just once. 
The greatest differences appeared when we set 
the values for the number of territories close to 
the maximum number for each dataset and when 

Figure 3. Two different solutions for the same problem



275

Hybrid Heuristics for the Territory Alignment Problem

we tried to balance three criteria at the same time, 
increasing the complexity of the partition problem.

For all runs, CPLEX is the most time-
consuming method. For this set of experiments, 
the required computation times for the smallest 
datasets (100 and 200 points) are not significantly 
larger than the ones of MultiACE but, as the size 
of problems grows, the required computation times 
become much larger, compared to MultiACE.

6 SOLVING REAL PROBLEMS

6.1 Company A Case Background

The company sells new equipment and provides 
maintenance to new and old equipment. There is a 
specific division responsible for the maintenance 
tasks, and, in Portugal, the operation is divided 

into sub-areas. The area in which this study was 
accomplished is a sub-area in the North of Portugal 
and is shown in Figure 4. The area under study is 
almost restricted to the district of Porto, with just 
a few equipment out of this district.

Company A designs, manufactures, installs, 
maintains, and modernizes equipment for almost 
every type of building requirement worldwide. 
The company is dedicated to latest-technology 
engineering, and mechanical and microprocessor-
technology products designed and rigorously 
tested for comfort, efficiency, and reliability.

In the area under analysis, the company main-
tains approximately six thousand equipmentsup-
ported by a team of technical experts and solution 
providers. In the office, ten supervisors coordinate 
and lead various crews that maintain and repair 
customers’ equipment.

Algorithm 2. MultiACE algorithm structure

1. Initialize the number of territories 

2. Calculate the Number of Partition Levels (NumLev) 

3. Calculate the Number of Partitions in each Level (NumPartOfLev) 

4. Generate the Partitions Scheme 

5. for Level=1 to NumLev do 

6.      for Partition=1 to NumPartOfLev 

7.           Calculate the Proportion Between the Territories 

8.           Read the points attributes 

9.           Calculate the Ideal Point 

10.           Read or Calculate the distances between points 

11.           Evaluate each point as a possible center 

12.           Generate the candidates list 

13.           while (Keep calculating solutions = TRUE) 

14.                Define the centers to generate a solution 

15.                Generate the solution 

16.                Calculate the statistics of the solution 

17.                Evaluate the solution 

18.                Test the Stopping Criteria 

19.           end while 

20.      end for 

21. end for
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There are two special supervisors: one that 
takes care of a special group of equipment and 
another one that takes care of a special type of cli-
ents’ equipment. The other eight supervisors take 
care of the remaining equipment, approximately 
five thousand and two hundred.

Each technician has a list of equipment for 
which to provide maintenance. This list is what we 
define as the technician’s territory. The supervisor 
is responsible for all equipment of the technicians 
of his group and he manages all the back-office 
work related to the equipment.

The technicians are supposed to visit each of 
the equipment on his list once a month to perform 
both preventive maintenance (adjusting, examin-
ing and repairing or replacing worn components, 
lubricating and cleaning parts) and services for 
customer trouble calls (callbacks). Customer 
callbacks are usually assigned to the responsible 
maintenance technician, if available.

6.2 The Territory 
Assignment Process

A territory assignment process according to (Zolt-
ners, Sinha, & Lorimer, 2004), was implemented: 
a central alignment that acts as a benchmark, 
with local adjustments. The central benchmark 
alignment parameters (criteria) were defined by 
the Company A managers and were based on 
objective business criteria.

In the first step, the managers determined 
the main objectives and the alignment criteria 
as follows:

•  To distribute equipment equitably. First, 
define the supervisors’ territories and then 
subdivide these territories into technicians’ 
territories. The number of supervisors’ ter-
ritories should change to 7 territories, instead 
of 8, and the technicians’ territories should 

Table 4. CLEX vs MultiACE efficiency comparison

Dataset
Number 

of 
territories

Bounds for the Criteria: +/- 5%

CPLEX TIME (s) MultiACE TIME (s) CPLEX DIST. SUMM. (m) MultiACE DIST. SUMM. (m)

100 2 8 2 7306 7306

200
2 108 20 14333 14335

3 109 26 11575 11697

300

2 874 64 21389 21390

3 1352 83 16977 17416

4 535 81 14128 14140

400

2 3569 150 29848 29875

3 2571 195 23868 24297

4 3084 191 19535 19538

5 1798 205 17659 17901

6 1415 212 15761 16373

500

2 8326 287 35664 35664

3 5720 372 28583 29040

4 4495 364 24023 24161

5 4975 390 21963 22418

6 12137 388 19852 20549

7 3589 392 18223 18636
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be in the range of 108 to 132 pieces of equip-
ment (120 pieces of equipment ±10%);

•  To distribute workload equitably and, since 
there is a calculated maintenance time (based 
on characteristics of the equipment such as: 
age, size, technology, etc.) for each piece 
of equipment, the total sum of a territory’s 
maintenance time should never be more than 
136 maintenance hours per month;

•  To merge the Company A territories and the 
territories of the small companies subcon-
tracted by Company A;

•  To create contiguous territories;
•  To create territories as compact as possible.

These criteria were defined after some brain-
storming sessions and after some scenarios pro-
posed using the MultiACE algorithm. Here, only 
the final group of criteria is listed.

In the second step, a database was devel-
oped. This database included all the equipment 
locations and alignment attributes (workload). 
The first step to developing this database was to 
locate all equipment using a GPS device and this 
data collection was accomplished with the help 
of the maintenance team. All the equipment of 
their territories were visited and points to every 
one of them were marked using a GPS device 
(each equipment received latitude and longitude 
coordinates). The current hierarchical organiza-

Figure 4. Company A: equipments of the area under study
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tion information (supervisor, technician, region, 
districts, etc.) was inserted in the database too.

In the third step, a new territory structure based 
on the predetermined objectives and constraints 
was proposed. This analysis was carried out using 
the MultiACE algorithm. The shape and balance 
of the proposed territories were based on the 
combination of the criteria. The result of this step 
was an optimized territory alignment.

In the fourth step, the real-world factors and 
organizational uniqueness that shapes the mainte-
nance team environment were taken into account. 
The management team audited and adjusted the 
territories. The audit group included the regional 
and district managers.

In the fifth step, the optimal territory align-
ments were developed. After this, a personnel 
assignment was proposed and adjusted, since the 
specific geography and account assignments for 
each territory were known.

In the sixth step, the alignments and personnel 
assignments were audited and finalized with the 
help of the management team.

6.3 The “Prior to Alignment” 
Territory Structure

After developing the database, all the informa-
tion was inserted into a personal geodatabase 
(ArcGIS file format) and the work inside the 
GIS environment began. The first task was to 
analyze the current situation of the territories. 
This evaluation was very important to define the 
regions or subgroups of equipment that needed 
more attention or were less balanced.

The “prior to alignment” supervisor areas pre-
sented some problems, unbalanced situations and 
different shapes and geographical distributions. 
Table 5 shows, for each territory, its number of 
equipment, its workload (summation of the theo-
retical work mean-time of each piece of equipment 
in the territory), its maximum distance between 
points (MDBP), and its mean sum of Euclidean 
distances to the center of the territory (MDTC).

Table 6 shows the “prior to alignment” super-
visors’ territories balance situation for the area 
under study.

Table 5. “Prior to alignment” supervisor territories data

Equipment Workload (hours) Compact Measurement (m)

Supervisor Quantity % of Mean Quantity % of Mean MDBP MDTC

01 581 96,87% 651,59 97,82% 26667,29 5493,97

02 639 106,54% 685,71 102,95% 35869,67 9251,38

03 612 102,03% 652,05 97,89% 64062,85 10865,15

04 736 122,71% 782,99 117,55% 27446 8365,32

05 712 118,71% 779,06 116,96% 7683,58 1985,25

06 545 90,86% 556,36 83,53% 3769,54 767,11

07 524 87,36% 588,47 88,35% 5279,69 1355,53

09 804 134,04% 943,66 141,67% 44128,78 4191,92

11 162 27,01% 290,87 43,67% 11219,11 1391,1

12 683 113,87% 730,12 109,61% 29949,24 7458,22

Minimum 162 290,87

Maximum 804 943,66

Mean 599,8 666,09

Standard Deviation 167,99 163,46

Total 5998 6660,89
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For the final analysis, we excluded, from the 
5998 equipment set, the supervisor 11 territory 
(special client equipment), some equipment trans-
ferred to other regional office and some equipment 
assigned to the special equipment supervisor. In 
Table 6 one can see the distance between the 
minimum and maximum number of equipment 
in the territories and notice their unbalanced state.

Besides the different sizes and shapes, the 
supervisors’ territories have a contiguity prob-
lem. There are overlaps in some areas, as shown 
in Figure 5. The same problem occurs to several 
territories of the maintenance team and it is an 
important factor that decreases the productivity 
of the teams and increases the company costs.

Table 7 shows the summary of the “prior to 
alignment” territories balance situation for the 
study area. One can notice the distance between 
the minimum and maximum number of equipment 
in the maintenance team territories and their un-
balanced state.

After the analysis of the “prior to alignment” 
supervisors and maintenance team territories, we 
noticed that the area under analysis needed to be 

subdivided before we start to generate the new 
territory structure. The reason for this procedure 
is that the study area was very large and had a 
heterogeneous distribution of equipment. So, the 
managers decided to divide the equipment into 3 
areas (see Figure 6): the first one, a very compact 
and central area; the second one, bigger than the 
first area and around it; and the third one, a very 
big and dispersed area in the outskirts.

To divide these areas we used only the ArcGIS 
tools (selection and database tools), according to 
the managers’ will. We carried out this partition 
trying to use the geographical characteristics of 
the areas, either visually or using the database 
tools.

To confirm the differences between these areas 
we used the Network Analyst to create minimum 
distance routes passing in every point of the areas 
and we used the total distance of the routes to 
calculate the mean distance between equipment 
(MDBE) and the mean distance between stops 
(MDBS), shown in Table 8.

According to the comparative analysis of the 
3 areas, the managers decided to change the bounds 

Table 6. Supervisors’ territories: “prior to alignment” balance

Equipment Workload (hours)

Supervisor Quantity % of Mean Quantity % of Mean

01 578 101,05% 645,67 105,23%

02 633 110,66% 673,09 109,69%

03 375 65,56% 403,55 65,77%

04 736 128,67% 782,99 127,60%

05 691 120,80% 747,39 121,80%

06 545 95,28% 541,92 88,32%

07 507 88,64% 562,79 91,72%

09 400 69,93% 436,1 71,07%

12 683 119,41% 729,01 118,81%

Minimum 375 403,55

Maximum 736 782,99

Mean 572 613,61

Standard Deviation 120,40 128,16

Total 5148 5522,51
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of the number of equipment for the areas 2 and 
3. They did not set new values for the bounds but 
decided that areas 2 and 3 could have territories 
5-10% smaller than the territories in area 1. The 
reason for this change is that the mean distances 
between equipment in these areas are very large, 
increasing the travel time between equipment.

6.4 “After Alignment” 
Territory Structure

After the evaluation of the “prior to alignment” 
situation, the next step was to project the new 
territories for the supervisors. We divided the 
5148 (pieces of) equipment into 7 territories 
using some different strategies to create them, 
but, to run the MultiACE algorithm we used the 
following options:

•  Number of supervisors territories: 3;
•  First criterion: Number of equipment;
•  First criterion bounds: +10% and -10%;
•  First criterion weight: 1;
•  Second criterion: Workload;
•  Second criterion bounds: +10% and -10%;

Figure 5. Overlap of the territories of supervisors 01, 02, 03, and 12

Table 7. “Prior to alignment” maintenance team 
territories balance summary

Statistics
Number of 
Equipment

Workload 
(hours)

Minimum 55 55,88

Maximum 433 451,64

Mean 122,58 131,49

Standard Deviation 79,08 84,27

Total 5148 5522,51
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•  Second criterion weight: 1;
•  Processing time limit: 10 minutes;
•  Ideal point distance measurement: Euclidean 

distances;
•  Physical distance measurement: Network 

distances;
•  Streets type: two-way distances;
•  Short term memory: 30% of the number of 

points;
•  Long term memory: 200000 solutions.

The first supervisor territory was obtained 
manually using the ArcGIS selection tools and the 

MultiACE to generate a summary of the criteria 
values of this territory. We used this approach 
to create the first territory because it covered a 
very sparse area and the algorithm aims to solve 
problems in homogeneous areas. After this, we 
selected part of the Area 3 to create the supervi-
sor territory 01.

The remaining points of Area 3 points and all 
the points of Area 2 were used to generate 3 ter-
ritories and, finally, Area 1 was used to generate 
the last 3 territories, with the help of the Multi-
ACE algorithm.

Figure 6. The 3 different areas obtained during the analysis of the “prior to alignment” territories 
structure and definition of the “after alignment” territories structure

Table 8. A comparative analysis of the data related to the 3 generated areas

Area Equipment Stops Total Distance (m) MDBE (m) MDBS (m)

1 2160 1248 211919,4 98,11 169,80

2 2007 1015 474507,8 236,42 467,49

3 981 559 455099,4 463,91 814,13
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After the generation of the solutions, we ana-
lyzed them and did some small manual adjust-
ments. The proposed solutions were very good and 
we just changed some points from one territory to 
another to adjust the shape of the territories. The 
last adjustment in the supervisors’ territories was 
carried out only after we calculated the Technicians 
territories, but, at this time, we did just the whole 
technician territory changes, moving from one 
Supervisor territory to another. The final supervi-
sors’ territories are shown in Table 9.

The next step consisted of matching the su-
pervisors’ territories and the new maintenance 
teams’ territories. At this time, we used the Mul-
tiACE algorithm to create all the territories. For 
each one of the supervisors’ territories we applied 
the MultiACE algorithm and, since we did not 
have very large sets of points, we used the exhaus-
tive method to create better solutions. The Mul-
tiACE parameters used are:

•  Number of territories: 5 or 6;
•  First criterion: Number of equipment;
•  First criterion bounds: +10% and -10%;
•  First criterion weight: 1;
•  Second criterion: Workload;

•  Second criterion bounds: +10% and -10%;
•  Second criterion weight: 1;
•  Exhaustive method;
•  Ideal point distance measurement: Euclidean 

distances;
•  Physical distance measurement: Network 

distances;
•  Streets type: two-way distances.

The final maintenance team territories sum-
mary is shown in Table 10. The territory with the 
minimum number of equipment and workload is 
beyond the bounds determined by the managers 
because it is located in the most dispersed area.

6.5 Achievements and Savings

The “after alignment” territory structure imple-
mented and the main achievements and savings 
obtained with it were:

•  Comparing Table 6 to Table 9, the standard 
deviation of the “Number of Equipment” 
decreased from 79,08 to 8,00 (90% reduc-
tion) and the standard deviation for the 
“Workload” decreased from 84,27 to 9,03 

Table 9. Supervisors’ territories: “after alignment” balance

Equipment Workload (hours) Compactness Measurement (m)

Supervisor Quantity % of Mean Quantity % of Mean MDBP MDTC

01 762 103,61% 807,32 102,33% 60354,13 10765,61

02 794 107,96% 869,02 110,15% 24870,64 7910,59

03 752 102,25% 817,01 103,56% 23291,99 5681,51

04 798 108,51% 851,98 107,99% 11704,06 3226,56

05 697 94,77% 762,16 96,61% 7015,9 1947,96

06 723 98,31% 785,58 99,58% 6128,06 1539,69

07 622 84,58% 629,43 79,78% 5730,88 951,03

Minimum 622 629,43

Maximum 798 869,02

Mean 735,43 788,93

Standard Deviation 57,10 73,37

Total 5148 5522,51
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(89% reduction). This demonstrates that the 
“after alignment” structure is much better 
balanced than the former one;

•  The managers were able to quickly get 
an overview of where all the territories 
were and where there was some overlap in 
the structure. There are no more territory 
overlaps and the territories are now better 
geographically defined. It was easy to decide 
which maintenance worker would take care 
of new equipment. They have been able to 
better define areas of responsibility and 
loading;

•  The maintenance team territories were more 
compact, so the total travel time decreased, 
improving the productivity of the mainte-
nance team;

•  According to the MRTC compactness mea-
surement, the managers decided to decrease 
the number of cars available to the mainte-
nance team. They decided that the territories 
with MRTC smaller than 1700 meters would 
not have a car. The result was a decreasing 
of eight cars from the maintenance fleet, 
with direct and indirect cost reduction of 
approximately eighty thousands Euros per 
year.

6.6 Improving the Solution

The solution represented by the “after alignment” 
structure is one of the six scenarios studied dur-

ing the whole study. The managers could explain 
their ideas, including the constraints that we must 
respect and their subjective goals for the new 
structure.

Some of these constraints and subjective goals 
influenced the final result and we believed that 
we could improve this solution. So, we decided 
to create a different structure to compare to the 
selected one and show some improvements that 
could be made.

The changes we decided to make are:

•  Number of supervisors: instead of seven 
supervisors, we decided to use eight;

•  Number of technicians: instead of forty-
five, we decided to use forty-six;

One may think that these changes would in-
crease the direct and indirect costs, but we intend to 
show that the selection of a structure (scenario) in 
a territory design is a trade-off among the several 
objectives the managers have to achieve.

To create the territories for the supervisors, 
we used the three Areas defined previously, but 
this time we divided Area 3 into two territories, 
Area 2 into three territories and Area 1 into three 
territories.

The next step was to divide the supervisors’ 
territories into maintenance team territories. We 
used the same criteria and MultiACE parameters 
defined previously, but this time we changed the 
number of territories according to Table 11. The 
improved “new aligned” territory structure is 
shown in Table 12.

The main remark we would like to make about 
the data of the “new aligned” structure (Table 12) 
is that the number of territories with MRTC 
smaller than 1700 meters (in bold) increased from 
15 to 20, decreasing thirteen cars from the main-
tenance fleet, with direct and indirect cost reduc-
tion of approximately ninety-six thousand Euros 
per year, including the costs of one more supervi-
sor, one more maintenance worker and one more 
vehicle for the supervisor. This kind of trade-off 

Table 10. “After alignment” maintenance team 
territories balance summary

Statistics
Number of 
Equipment

Workload 
(hours)

Minimum 89 92,54

Maximum 130 137,18

Mean 114,4 122,72

Standard Deviation 8,00 9,03

Total 5148 5522,51
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between the size of the maintenance team and the 
cost reduction can be made easily and many sce-
narios can be analyzed in a very short time.

7 FUTURE RESEARCH DIRECTIONS

A research work such as the one described in this 
chapter is never fully closed. Several issues do 
clearly deserve further research. In the following 
points we briefly present some of these issues:

•  The heuristic can be tested handling several 
other activity measures. In this case while 
examining a partition, one could take dif-
ferent activity measures into account when 
determining the best territory structure;

•  The algorithm can be prepared to consider 
prescribed and forbidden territory centers. 
This means that one can impose some fixed 
territory centers at the beginning, which have 
to be taken into account, or, the other way 
around, some basic entities that cannot be 
allowed to be selected as centers;

•  In the case in which some territories are 
already given at the beginning of the plan-
ning process the algorithm can be adapted 
to take the already existing territories into 
account and possibly add additional clients 
to them;

•  The heuristic can be incorporated into a larger 
framework in order to apply it to different 
practical planning problems. For example, 
scenarios where a limit on the maximal al-
lowed geographic extent of the territories 
has to be taken into account;

•  One can avoid the number of territories to 
be fixed in advance. Instead, the algorithm 
can choose the appropriate number of ter-
ritories in such a way that the planning cri-
teria would be best fulfilled. For example, 
the partition of the basic areas in the region 
under consideration into as few as possible 
territories such that the size of all territories 
should be below a certain maximal bound;

•  The heuristic can be incorporated into an 
open source framework in order to allow it 
to be used and tested by several planners, 
decision-makers and developers around the 
world. This can be a good way to spread 
the utility of the GIS in the field of territory 
planning. This action can also encourage 
other developers to solve different kinds of 
alignment problems, with different kinds 
of criteria and in different situations. This 
open source implementation can be the 
cornerstone of a promising field of applied 
research.

8 CONCLUSION

This chapter has addressed the territory alignment 
problem as a critical component of the operational 
planning process in sales/services companies. A 
particular emphasis was given to the case of a 
Portuguese company and the tool developed and 
used in this context has been described in more 
detail.

A new perspective on approaching TAP that 
is closer to the real problems and to the planners’ 
work has been proposed and several different 
objectives and constraints used by companies 
in their alignment process were identified and 

Table 11. Improving the solution: number of ter-
ritories

Supervisor Maintenance Territories

11 6

12 6

13 6

21 6

22 6

23 6

31 5

32 5

Total 46
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Table 12. Improved “new aligned” territory structure: maintenance team

Territory

Equipments Workload (hours)

MRTCQuantity % of Mean Quantity % of Mean

111 14 99,65% 126,17 110,29% 1686,66

112 21 105,77% 128,04 111,93% 1683,41

113 13 98,78% 124,61 108,93% 1552,41

114 20 104,90% 125,09 109,34% 1521,71

115 19 104,02% 129,20 112,94% 1355,31

116 10 96,15% 129,97 113,61% 845,86

121 17 102,27% 132,27 115,62% 1980,00

122 18 103,15% 120,71 105,51% 1765,94

123 15 100,52% 120,88 105,66% 1488,59

124 18 103,15% 137,18 119,92% 1170,32

125 26 110,14% 134,78 117,82% 1139,13

126 22 106,64% 136,24 119,09% 1055,98

131 30 113,64% 132,87 116,14% 2537,08

132 18 103,15% 123,72 108,15% 950,21

133 21 105,77% 126,47 110,55% 940,12

134 23 107,52% 122,93 107,46% 841,27

135 27 111,01% 122,77 107,32% 746,70

136 28 111,89% 131,39 114,85% 740,78

211 20 104,90% 128,32 112,17% 5532,80

212 16 101,40% 129,30 113,03% 3071,89

213 18 103,15% 127,06 111,07% 2522,92

214 08 94,41% 116,51 101,84% 2008,93

215 08 94,41% 120,86 105,65% 1631,53

216 14 99,65% 136,46 119,28% 920,67

221 9 86,54% 104,23 91,11% 4403,48

222 10 96,15% 109,57 95,78% 3609,37

223 11 97,03% 115,91 101,32% 2780,20

224 14 99,65% 124,45 108,79% 2299,70

225 20 104,90% 134,74 117,78% 2024,33

226 17 102,27% 126,66 110,72% 1673,83

231 01 88,29% 106,24 92,87% 9427,35

232 08 94,41% 115,88 101,29% 8531,43

233 16 101,40% 125,54 109,74% 3101,91

234 16 101,40% 130,05 113,68% 2856,50

235 01 88,29% 113,46 99,18% 2292,30

236 10 96,15% 122,49 107,07% 1942,48

311 02 89,16% 113,99 99,64% 10719,57

312 8 76,92% 84,22 73,62% 10638,55

313 10 96,15% 117,38 102,61% 6240,20

continued on following page
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discussed. In order to tackle these simultaneous 
and conflicting objectives, an approach based on 
GRASP and TS has been developed.

This new hybrid meta-heuristic lies on a com-
bination of a Voronoi Diagram based strategy, to 
create solutions; a two-sets partitioning strategy, 
to decrease the search space; a GRASP based 
candidates list; Tabu Search based short and long 
term memories; and an optimization technique 
to define the best solutions. We presented and 
discussed these components and a step-by-step de-
scription of the meta-heuristic solution procedure, 
its basic structure, initialization, subset generation 
and combination, dominance comparison, quality 
measurement and adaptive memory structure used.

Finally, the potential of the proposed approach 
as a practical and readily implementable manage-
ment decision aid in the context of a current case 
that involved the maintenance team attached to 
the Portuguese regional office of a worldwide 
equipment company was also demonstrated.
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KEY TERMS AND DEFINITIONS

Case Study: collection and presentation of 
detailed information and analysis about a particu-
lar entity (person, organization, business, etc.), 
that constitutes a form of qualitative descriptive 
research.

Compactness: the spatial property of being 
close and firmly united (i.e. having the minimum 
distance between all the entities of a given area).

Contiguity: continuous connection of a se-
ries of entities, a grouping of parts connected 
throughout an unbroken sequence and sharing a 
common border.

Decision Support System: a class of com-
puter-based systems dedicated to supporting 
decision-making activities.

Geographic Information System: any sys-
tem that captures, stores, analyzes, manages, and 
presents data that are linked to location.

Salesforce/Maintenance Team: company 
people who execute several activities related to 
the marketing/maintenance function and are a 
crucial connection between the companies and 
their customers.
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Territory Alignment: the process of shaping 
and balancing small geographic units and grouping 
them in such a way that they completely cover a 
given territory under analysis, based on criteria 
important to a business or activity.

Territory Design: planning of territories, 
measuring and allocating resources to each of 
them, so as to completely cover a region, in the 
most efficient and effective manner, according to 
criteria related to the type of activity in question.
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INTRODUCTION

The interest about hybrid optimization methods 
has grown rapidly for last few years (Talbi, 2002; 
Jourdan et al., 2009). Hybridization has become a 
pervasive trend and a very promising strategy in 
designing and developing improved metaheuristic 
solution methods, in view of their heuristic nature, 
greater flexibility and less strict mathematical 
property. A hybrid metaheuristic method combines 
structure and efficiency advantages from different 
principles and approaches and often provides a 
highly flexible and efficient tool in solving difficult 
combinatorial optimization problems.

A large number of production, communica-
tion, distribution and transportation infrastructure 
investment and planning problems can be charac-
terized as network design problems. The common 
goal of a generic network design problem is to 
seek an optimal cost-effective network topology 
and capacity expansion solution with taking 
into account the infrastructure investment cost 
and the resulting network operation efficiency. 
Discrete network design problems, which deal 
with selecting (and deselecting) facility location 
and capacity at nodes or on arcs from a discrete 
choice set, are typically formulated as integer or 
mixed integer programming models (Wong, 1985). 
Many of these network design problems cause 
very difficult combinatorial issues, depending on 
the interrelationship between individual discrete 
choice components and the underlying network 
flow routing behaviors. Even in their simplest 
form, discrete network design problems pose the 
NP-hard computational complexity. Johnson et al. 
(1978) establishes its NP-completeness by show-
ing that the classic knapsack problem is reducible 
to the simplest discrete network design problem; 
Wong (1980) showed that even finding an ap-
proximate discrete network solution is NP-hard.

Exact solution methods, such as branch and 
bound and Benders decomposition, are limited to 
solving discrete network design problems of small 
size (see, for example, Boyce et al., 1973; Hoang, 

1973, 1982; LeBlanc, 1975; Dionne and Florian, 
1979; Geoffrion and Graves, 1974; Magnanti and 
Wong, 1984; Magnanti et al., 1986; Sherali et 
al., 1991; Cordeau et al., 2006). In contrast, for 
large-scale applications, more research efforts 
have been devoted in the past two decades to 
developing heuristic and metaheuristic solution 
methods, including genetic algorithms (e.g., 
Xiong and Schneider, 1992; Jeon et al., 2006), 
memetic algorithms (Baños et al., 2007), simulated 
annealing (e.g., Lee and Yang, 1994; Drezner 
and Wesolowsky, 1997, 2003; Cantarella et al., 
2006), tabu search (e.g., Mouskos, 1991; Crainic 
et al., 2000; Berger et al., 2000), and ant colony 
optimization (e.g., Poorzahedy and Abulghasemi, 
2005), among others.

This chapter discusses a hybrid metaheuristic 
solution strategy for a class of network design 
problems that contain complex topological or 
temporal restrictions (or flexibilities) between 
discrete arc selection decisions subject to a limited 
amount of resources (i.e., budget, space, time, 
etc.). Specifically, given a network G = (N, A), 
where N is the node set and A = Af ∪ Av is the arc 
set (where Af and Av are the subsets of fixed arcs 
and variable arcs, respectively), such a generic 
form of network design problems is considered 
as below. For discussion convenience, the nota-
tion used in the problem formulation is presented 
first in Table 1.

Now the generic form of network design 
problems with discrete arc selections can be writ-
ten as:

min  t x  (1.1)

subject to 0 ≤ ≤ ( )x c y  (1.2)

y Y
v v
∈  (1.3)

∆x b=  (1.4)
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g x( ) ≤ 0  (1.5)

h y
v( ) ≤ 0  (1.6)

where  t t x y= ( ),  (1.7)

This network design problem has two sets of 
decision variables: namely, arc flow rates 
x = 


 ×x

js A 1
,  ∀(j,s)∈A and arc design choices 

y
v js A
y

v

= 

 ×1

,  ∀(j,s)∈Av, where yv denotes the 

variable part of the arc presence vector. The con-
straint set of the problem includes the flow bound-
ing constraints (1.2), discrete choice constraints 
(1.3), flow conservation constraints (1.4), flow 
routing constraints (1.5), and interdependent 
design constraints (1.6), as well as a definitional 
constraint (1.7) for arc costs. In constraints (1.5) 
and (1.6), g(x) and h(yv) respectively represent 
an aggregate set of functions specifying the flow 
routing in the network and defining the interde-
pendent choice relationships among discrete 
decision variables; these functions may be linear 
or nonlinear. The flow conservation constraints 

reserve the net rate of flows emanating from and 
arriving at any node1. The arc bounding constraints 
simply set the lower and upper bounds on arc flow 
rates: 0 ≤ xjs ≤ cjs(yjs). If the upper bound is simply 
determined by a 0 – 1 design choice (i.e., 0 ≤ xjs 
≤ cjsyjs, where yjs = {0,1}), an all-or-nothing capac-
ity assignment scheme is resulted: if yjs = 1, xjs ≤ 
cjs; if yjs = 0, xjs = 0. The flow routing constraints 
specify the spatial distribution pattern of flows 
over the network. When traffic congestion is 
considered, some equilibrium-based routing 
principles are often employed to describe the 
network flow distribution. This is the case that 
will be discussed in this chapter.

The interdependent design constraints define 
an interdependent-choice relationship on the arc 
design variables. In its simplest form, a frequent-
ly encountered interdependent-choice constraint 
is the budget or resource constraint (Ohlmann and 
Bean, 2009), such as 

j s A
js js

v

d y B
,

,
( )∈
∑ − ≤ 0  where 

djs is the design cost or resource associated with 
selecting candidate arc (j,s) and B is the total 
available budget or resource for network expan-
sion. Another simple example of interdependent-
choice constraints appears in the so-called multi-

Table 1. The notation used in the generic form of network design problems 

Notation Definition

N Set of nodes

A Set of arcs

Af Set of fixed arcs

Av Set of variable arcs

b Vector of net node flow rates: b = [bi], ∀i∈N

c Vector of arc capacities: c = [cjs], ∀(j,s)∈A

x Vector of arc flow rates: x = [xjs], ∀(j,s)∈A

y Vector of arc presence: y = [yjs], ∀(j,s)∈A, where y = (yf, yv)

yf Vector of presence of fixed arcs: yf = [yjs], where yjs = 1, ∀(j,s)∈Af

yv Vector of presence of variable arcs: yv = [yjs], where yjs = {0,1}, ∀(j,s)∈Av

t Vector of arc costs: t = [tjs], ∀(j,s)∈A

Δ Matrix of node-arc incidence indicators: Δ = [δi,js], ∀i∈N, (j,s)∈A where δi,js = 1, if i = j; δi,js = – 1, if i = s; δi,js = 0, if i ≠ 
j and i ≠ s
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level or multi-facility network design problem 
(Balakrishnan et al., 1994; Gouveia and Telhada, 
2001; Randazzo et al., 2001), in which each vari-
able arc has multiple candidate facilities but only 
at most one of them can be selected. However, 
many real-world network design problems are 
subject to a much more complex spatial and tem-
poral interdependent-choice constraint set, which 
significantly increases the model complexity and 
reduces the solution tractability.

As for the definitional constraint, it simply 
specifies the travel cost on any arc (j,s), tjs, as a 
function of the flow rate on this arc: tjs = tjs(xjs), 
∀(j,s)∈A. In a more general setting, the travel cost 
on an arc may be a function of flow rates of both 
this arc and some other arcs in the network. For 
simplicity, this more general case is not considered 
in this text. Finally, the objective function of the 
problem is considered, which simply represents 
the total travel cost in the network. Given that the 
total travel cost is the only term in the objective 
function, if the interdependent-choice constraint 
is a design budget constraint, as mentioned above, 
the resulting network design problem becomes 
the so-called budget design problem (Magnanti 
and Wong, 1984).

This type of discrete network design problems 
with a complex interdependent-choice constraint 
set constitutes an important branch of combina-
torial optimization problems. Examples of such 
network design problems include lane-based 
traffic network design (Wong and Wong, 2002), 
route-based transit network design (Guihaire and 
Hao, 2008), water distribution network design 
(Baños et al., 2007), and hub-and-spoke logistics 
network design (O’Kelly and Miller, 1994), to just 
name a few. In addition to these transportation and 
logistics problems, many network design problems 
arising from other fields may have a similar com-
binatorial difficulty. The common feature of these 
problems is that the complex logic relationship 
implied by the problem’s interdependent-choice 
constraints (i.e., the set of constraints (1.6)) makes 
it very difficult to define and exhaust the prob-

lem’s candidate solutions in the solution space, 
but the problem’s constraint set is decomposable 
or partitionable and the formed smaller problems 
after decomposition or partition are relatively 
readily solvable.

A general algorithmic procedure to tackle this 
type of problems is to start from a feasible solu-
tion as an initial point and iteratively update the 
current solution through a neighborhood search 
until the optimal solution is found or a certain 
prespecified stopping criterion is met. Due to 
the complicated combinatorial relationship on 
discrete decision variables (as defined by the set 
of constraints (1.6)), however, implementing this 
general solution procedure for the above type of 
network design problems may not be feasible. 
Specifically, two solution difficulties are often 
encountered when tackling this class of problems: 
first, it is difficult to obtain an initial feasible solu-
tion; second, it is difficult to define a neighborhood 
structure. The extensive literature shows that the 
harder it is to find feasible neighboring solutions, 
the more ineffective such a search procedure 
(Boschetti and Maniezzo, 2009). These solution 
difficulties will be elaborated through an example 
interdependence-choice network design problem 
in Section 3.

The focus of this chapter is to present an in-
tegrated Lagrangian relaxation and tabu search 
method and illustrate its effectiveness in tack-
ling the combinatorial complexity of a class of 
network design problems that contain a complex 
interdependent-choice relationship (hereafter 
referred to as the interdependent-choice network 
design problem). The metaheuristic method takes 
advantage of Lagrangian relaxation for problem 
decomposition and structure simplification and 
its algorithmic design is based on the principles 
of tabu search. By integrated, it means that the 
updating of Lagrangian multipliers is integrated 
into the iterative tabu search process, in which 
Lagrangian multiplier values are reviewed and 
updated at each iteration in terms of historical and 
current solutions. This method has been success-
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fully applied to some static and dynamic network 
design problems of this type, arising from the 
context of urban evacuation planning (see Xie et 
al., 2010; Xie and Turnquist, 2011).

This chapter is structured in six sections as 
follows. Following an introduction above, we 
give in the next section a brief description about 
the essential ingredients of Lagrangian relaxation 
and tabu search techniques and presents the basic 
idea of the integrated Lagrangian relaxation and 
tabu search (LR-TS) method. Next, a transporta-
tion network design problem with lane reversal 
(on arcs) and crossing elimination (at nodes) 
strategies is introduced, which emerges from the 
urban evacuation planning practice. We use it 
as an illustrative example to elaborate how the 
integrated method is designed and implemented. 
The algorithm effectiveness and computation 
performance are then evaluated by an example 
application for an evacuation network of realistic 
size. Finally, the chapter is concluded in the last 
section.

INTEGRATION OF LAGRANGIAN 
RELAXATION AND TABU SEARCH

As the discussion involves both the Lagrangian 
relaxation and tabu search techniques, this sec-
tion gets started with a general overview of these 
two techniques. Following it, the algorithmic idea 
of combining them for tackling interdependent-
choice network design problems is presented.

Lagrangian relaxation is a general mathemati-
cal programming method applied for decompos-
ing or relaxing problems to exploit their special 
structures. It has long been used for discovering 
theoretical insights and developing solution algo-
rithms for various difficult mathematical program-
ming problems. For discrete and combinatorial 
optimization problems, Lagrangian relaxation is 
typically used to relax a set of complicating side 
constraints and accordingly compensate a penalty 
term in the objective function (see Geoffrion, 

1974, for example). By adjusting the values of 
Lagrangian multipliers with the penalty term to 
an appropriate level, the optimal solution may be 
found by solving the relaxed Lagrangian problem 
that can often take advantage of various previously 
developed algorithms.

Tabu search is one of the metaheuristic op-
timization techniques that are usually used to 
guide and orient the search of other (local) search 
procedures. The foundation of tabu search is 
generally attributed to Glover (1986), in which 
he described the present form of this technique 
we use today. Though it belongs to the class of 
local search techniques, tabu search enhances the 
performance of a local search method by using 
memory structures. Tabu search uses a neighbor-
hood search procedure to iteratively move from 
a solution to another neighboring solution, until 
some stopping criterion is satisfied. To explore 
regions of the search space that would be left 
unexplored and escape local optimality formed 
by local search, tabu search modifies the neigh-
borhood structure of each solution as the search 
progresses. The solutions admitted to the new 
neighborhood are determined through the use of 
special memory structures.

It is well known that Lagrangian relaxation 
and tabu search both have been extensively used 
to construct effective solution methods for dif-
ficult discrete and combinatorial optimization 
problems. The algorithmic idea of combining 
Lagrangian relaxation and tabu search is not 
entirely new. Filho and Galvão (1998) discussed 
and emphasized the effectiveness and efficacy 
of both Lagrangian relaxation and tabu search 
techniques in solving computer network design 
problems (e.g., the capacitated concentrator loca-
tion problem). Borghetti et al. (2001) suggested 
utilizing these two techniques in an iterative man-
ner to tackle the unit commitment problem (i.e., 
a specific network design problem arising from 
electric power system design), by which Lagrang-
ian relaxation is used to obtain good starting solu-
tions and tabu search functions at refining them. 
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Grünert (2002) proposed a so-called Lagrangian 
tabu search (LTS) method for linear mixed integer 
programming problems. In particular, he used a 
capacitated facility location problem in the context 
of distribution network design as an example to 
illustrate the concept and implementation of the 
LTS method. His LTS procedure is constructed 
by inserting a Lagrangian relaxation device into 
a common tabu search framework, in which 
Lagrangian relaxation performs as defining the 
solution neighborhood and updating the current 
solution (with other tabu settings).

In contrast, the hybrid metaheuristic presented 
in this chapter follows an alternative algorithmic 
principle to those described above. Given a net-
work design problem or a general combinatorial 
optimization problem with a complex interdepen-
dent-choice relationship on discrete decisions, the 
most challenging algorithmic barrier is on how to 
define the neighborhood structure and exhaust the 
solution evaluations in the neighborhood. To re-
lieve this solution difficulty, a tabu search process 
is placed into a Lagrangian relaxation framework, 
by which Lagrangian relaxation decomposes 
the problem into a relaxation problem and a (or 
more) penalty term evaluation problem(s) while 
tabu search is used to tackle the easier relaxation 
problem and update Lagrangian multipliers.

The integration of Lagrangian relaxation and 
tabu search for interdependent-choice network 
design problems is intrigued by the following ob-
servation. Suppose that the interdependent-choice 
constraints of such a network design problem have 
a special decomposable structure such as,

h y
h y

h yv
v

v

( ) ≤ ⇒
( )≤
( ) ≤








0
0

0
1

2

 

where h2(yv) ≤ 0 is an extra part of the interde-
pendent-choice constraints that complicate the 
definition of the neighborhood structure of the 
problem. By the extra part here, it implicitly 

means that a reduced network design problem, 
as obtained by removing the h2(yv) ≤ 0 part from 
the original problem, is relatively readily solvable 
by using traditional exact or approximate solution 
methods. This structural feature motivates the use 
of Lagrangian relaxation.

By relaxing h2(yv) ≤ 0 and compensating this 
constraint subset by a penalty term into the ob-
jective function, the relaxed Lagrangian problem 
can be written as,

min  t x p h y + ( )2 v
 (2.1)

subject to 0 ≤ ≤ ( )x c y  (2.2)

y Y
v v
∈  (2.3)

∆x b=  (2.4)

g x( ) ≤ 0  (2.5)

h y
1

0
v( ) ≤  (2.6)

where  t t x y= ( ),  (2.7)

where p ≥ 0 is the Lagrangian multiplier vector, 
whose length equals the number of constraints 
in h2(yv) ≤ 0. Each of the Lagrangian multipliers 
is used to compensate the violation of one cor-
responding interdependent-choice constraint in 
h2(yv) ≤ 0.

Under the Lagrangian relaxation framework, 
it is well known that the effectiveness of the 
Lagrangian relaxation method mainly depends 
on how to determine the values of Lagrangian 
multipliers. The conventional way to do so is 
to employ the subgradient method, which is to 
adjust the Lagrangian multiplier values based on 
the results of repeatedly solving the Lagrangian 
problem until the Lagrangian multiplier values 
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converge to a satisfied level. However, given that 
the relaxed Lagrangian problem is still a difficult 
combinatorial optimization problem, a procedure 
that requires solving it repeatedly may not be 
cost-effective.

Suppose that the relaxed Lagrangian problem 
can be well tackled by tabu search. Thus, an 
alternative approach of circumventing the task 
of determining the optimal values of Lagrangian 
multipliers is to integrate a multiplier updating 
mechanism into a tabu search procedure (Gen-
dreau, 2002). Different from the subgradient 
method that updates Lagrangian multipliers en-
tirely based on the optimal Lagrangian problem 
solution, the use of iteration-based self-adjusting 
Lagrangian multipliers is much more efficient 
and flexible. At any iteration of the tabu search 
process, the current solution (to the relaxed La-
grangian problem) is examined for the existence 
of any violation of constraints in h2(yv) ≤ 0 and the 
examination result is recorded into a frequency-
based memory, which will then be used to make 
adjustments to the Lagrangian multiplier values. 
With the continuously updated Lagrangain 
multipliers along the search itinerary, the search 
procedure attempts to find an optimal (or near 
optimal) solution to the original network design 
problem by solving the Lagrangian problem (with 
a set of dynamic Lagrangian multiplier values) 
once. Such a multiplier self-adjusting mechanism 
embedded in a tabu search procedure was suc-
cessfully implemented in Gendreau et al. (1994).

It is clear that the tabu search procedure sug-
gested here performs two functions simultaneous-
ly, namely, searching for the optimal solution to the 
Lagrangian problem and updating the Lagrangian 
multipliers. The implementation of the resulting 
LR-TS method follows such a rather straight-
forward manner: starting with an initial feasible 
solution to the relaxed Lagrangian problem, the 
search proceeds with a sequence of local searches 
and diversification phases until a predetermined 
stopping criterion is met. Each local search scans 
all candidate solutions in the neighborhood with 

evaluating the objective function of the Lagrangian 
problem for each solution. The objective function 
evaluation in our case includes two parts: the travel 
cost term and the penalty cost term. An iteration 
is finished by accepting the best solution in the 
neighborhood as the new current solution and 
updating the Lagrangian multipliers. This scanning 
and selection process finally stops with the best 
feasible solution (to the original network design 
problem) encountered during the search, once a 
predefined number of diversification phases has 
been performed. The whole search procedure can 
be sketched as follows:

Step 0. Choose an initial solution s to the relaxed 
Lagrangian problem in the search space S. 
Set s* = s, i = 0 and j = 0.

Step 1. Set i = i + 1 and conduct a diversification 
move.

Step 2. Set j = j +1 and generate a subset S* of 
candidate solutions from the neighborhood 
of s, N(s), in terms of the recency-based 
memory and aspiration criterion.

Step 3. Choose an elite subset S** in S*, and con-
duct local moves belonging to S** as well 
as update the recency-based and frequency-
based memories, aspiration criterion, current 
solution s, best solution s*, and Lagrangian 
multipliers p.

Step 4. If a stopping criterion for the local search 
is met, go to the next step; otherwise, go 
to step 3.

Step 5. If a stopping criterion for the diversification 
search is met, stop; otherwise, go to step 1.

A LANE-BASED NETWORK DESIGN 
PROBLEM WITH INTERDEPENDENT-
CHOICE CONSTRAINTS

In many cases, the best way to interpret an al-
gorithmic idea is through an example. This text 
is not an exclusive case. The applicability and 
effectiveness of the proposed LR-TS method 
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can be better justified and validated by using an 
example network design problem (in this section) 
and an application of the method for its solutions 
(in next section).

The structural complexity of this example 
problem is mainly caused by the incorporation 
of two lane-based network design strategies, lane 
reversal and crossing elimination, which forms 
the problem’s interdependent-choice constraints. 
Lane reversal has long been used as a traffic 
control measure to accommodate the unbalanced 
traffic flows between the two counter driving 
directions of a congested roadway section. When 
implemented in evacuation networks, an optimal 
lane-reversal configuration typically results in the 
traffic directions of inbound lanes reversed to serve 
the overwhelming outbound traffic, by which the 
outbound capacity and network throughput rate are 
significantly increased. Recent numerical studies 
(Tuydes and Ziliaskopoulos, 2006; Shekhar and 
Kim, 2006; Meng et al., 2008; Hamza-Lup et al., 
2007) and evacuation practices (Urbina and Wol-
shon, 2003; Wolshon and Lambert, 2004) proved 
the effectiveness of lane reversal in traffic delay 
reduction and evacuation efficiency enhancement. 
Crossing elimination, on the other hand, is a lane-
based capacity reallocation strategy to reduce 
traffic delays at intersections (Cova and Johnson, 
2003). The basic rationale underlying this tech-
nique is to convert an intersection with interrupted 
flow conditions to an uninterrupted flow facility by 
disabling the existing traffic control device (e.g., 
a signal or stop/yield sign) and prohibiting some 
turning movements (through blocking lane entries 
and limiting flow directions). With removing the 
stop-and-go traffic control setting, the intersection 
capacity for those allowable traffic movements 
is significantly expanded. Recent research has 
suggested a combination of these two lane-based 
strategies for evacuation network optimization, 
which shows greater potential in improving the 
evacuation efficiency than the application of either 
of them solely (Kalafaras and Peeta, 2010; Xie 
et al., 2010; Xie and Turnquist, 2011;). Several 

examples of the joint use of lane reversal and 
crossing elimination are illustrated in Figure 1.

The combination creates a more difficult net-
work design problem than problems relying on 
either of them solely. To better understand the 
problem complexity, the problem is defined and 
analyzed on an expanded traffic network as shown 
in Figure 2. Given such a network representation, 
each intersection is represented by an intersection 
subnetwork and each roadway section repre-
sented by a roadway-section subnetwork in the 
node-arc network. The roadway-section subnet-
work between the two intersections includes 6 
nodes and 4 arcs, where each traffic direction is 
represented by a pair of consecutive directed arcs 
and there are one upstream node, downstream 
node and intermediate node associated with each 
traffic direction. The upstream and downstream 
nodes (i.e., nodes j, k, l, and m) provide connec-
tions between the roadway section and its adjacent 
intersections. The intermediate node is assigned 
as a traffic source node (i.e., nodes s and t. On the 
other hand, the intersection subnetwork consists 
of 8 nodes and 12 arcs, creating 16 potential 
crossing points if all these arcs are allowed to be 
present.

The notation used in defining the problem is 
given in Table 2. The discrete arc design choices 
of  such a  network des ign problem, 
y y y n
v

c r r
ij
c

js
r

js
ry y n= ( ) =      ( ), , , , ,  ∀(i,j)∈Ac 

(j,s)∈Ar, determine the network capacity and con-
nectivity configurations. The connectivity vari-
ables, y

ij
c ,  ∀(i,j)∈Ac and y

js
r ,  ∀(i,j)∈Ar, are both 

0 – 1 dummy variables. When y
ij
c = 1,  it indicates 

that a positive flow rate on intersection arc (i,j) 
is allowed; when y

ij
c = 0,  it indicates that arc (i,j) 

is blocked and accordingly xij = 0. When y
js
r = 1  

(or n
js
r ≥ 1 ), it indicates that at least one lane 

along roadway-section arc (j,s), is used; when 
y
js
r = 0  (or n

js
r = 0 ), it indicates that arc (j,s) 

vanishes in the network (i.e., all lanes originally 
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Figure 1. Examples of the joint use of lane reversal and crossing elimination

Figure 2. The expanded network representation
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Table 2. The notation used in the example network design problem with interdependent-choice constraints 

Notation Definition

N Set of nodes

No Set of origin nodes

Nd Set of destination nodes

Γj Set of downstream nodes of node j, ∀j∈N

Γ
j
−1

Set of upstream nodes of node j, ∀j∈N

A Set of arcs

Av Set of variable arcs

Ar
Set of roadway-section arcs, where A A

r v
⊂

Ac
Set of intersection arcs, where A A

c v
⊂

Wod Set of paths between O-D pair o-d, ∀o∈No, d∈Nd

c
js
l

Lane capacity of arc (j,s), ∀(j,s)∈Ar

t
js
0

Free-flow travel cost on arc (j,s), ∀(j,s)∈Ar

bo Net flow rate from origin node o, ∀o∈No

Njk,bn Total number of lanes of two reverse directions of a roadway section, along each of which there is a pair of consecutive 
roadway-section arcs [(j,s),(s,k)] or [(l,t),(t,m)], ∀(j,s),(s,k),(l,t),(t,m)∈Ar

n
js
r

Number of lanes on arc (j,s), ∀(j,s)∈Ar

n
jk
r

Number of lanes on consecutive arc pair [(j,s),(s,k)], ∀(j,s),(s,k)∈Ar

cjs
Capacity arc (j,s), ∀(j,s)∈Ar, where c c n

js js
l
js
r=

xjs Flow rate on arc (j,s), ∀(j,s)∈A

tjs
Travel cost on arc (j,s), ∀(j,s)∈Ar, where tjs is a function of xjs and n

js
r

y
ij
c Connectivity indicator of arc (i,j), ∀(i,j)∈Ac, where y

ij
c = 0  or 1

y
js
r Connectivity indicator of arc (j,s), ∀(j,s)∈Ar, where y

js
r = 0  or 1

vod Flow rate between O-D pair o-d, ∀o∈No, d∈Nd

f
w
od

Flow rate on path w between O-D pair o-d, ∀o∈No, d∈Nd, w∈Wod

τ
w
od Cumulative individual marginal travel cost on path w between O-D pair o-d, ∀o∈No, d∈Nd, w∈Wod

continued on following page
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designed for this traffic direction are reversed for 
its counter flows). In summary, the decision vari-
ables, y

ij
c ,  ∀(i,j)∈Ac, and n

js
r  and y

js
r ,  ∀(j,s)∈Ar, 

specify the lane-reversal and crossing-elimination 
settings, respectively.

It is well known that an emergency evacuation 
is typically caused by one or more unique, one-
time events under which, unlike their daily com-
muting travels, evacuees inevitably have a certain 
degree of ambiguity and frustration in choosing 
destinations and routes. In some cases, there are 
a set of prepared public refuges or shelters by the 
emergency management authority, while in many 
other cases, evacuees are only prompted to leave 
the emergency area as soon as possible. Many 
evacuees may not affirmatively choose a spe-
cific refuge or shelter outside the evacuation 
network as their destinations before setting out 
their evacuating trips. Numerous experiences 
showed that evacuees tend to select their evacuat-
ing routes and destinations based on their own 
perceptions of danger and observations to ongo-
ing traffic conditions (Golding and Kasperson, 
1988). To accommodate this ambiguity and un-
certainty within travel choices, two specific 

modeling techniques are applied to describe the 
traffic distribution and routing process under 
emergency conditions: 1) the simultaneous des-
tination and route choice concept; 2) the stochas-
tic user-equilibrium traffic routing principle. 
Without resorting to complex modeling mecha-
nisms, the integrated destination and route choice 
concept can be readily modeled by a super-des-
tination network representation (see Sheffi, 1985). 
With this single-destination setting, the destination 
choice process does not need to be explicitly 
modeled; instead, all used egress nodes of the 
evacuation network would be determined as a 
virtual destination simultaneously when any 
evacuee chooses a route to the super destination. 
This setting also simplifies the composition of 
traffic flows over the network―traffic flows are 
homogeneous by destination. Stochastic user-
equilibrium traffic flows may be described by an 
equivalent mathematical program, variational 
inequality, complementarity system, or fixed-point 
problem. In the problem formulation given below, 
a mathematical program will be used to define 
the stochastic user-equilibrium routing.

Notation Definition

π
w
od Supplementary travel cost on path w between O-D pair o-d, ∀o∈No, d∈Nd, w∈Wod

ξ
w
od Travel cost perception error on path w between O-D pair o-d, ∀o∈No, d∈Nd, w∈Wod

T
w
od Individual perceived travel time on path w between O-D pair o-d, ∀o∈No, d∈Nd, w∈Wod, where T

w
od

w
od

w
od

w
od= + +τ π ξ

P
w
od Probability of individuals choosing path w among all paths between O-D pair o-d, ∀o∈No, d∈Nd, w∈Wod

δ
js w
od

,
Arc-path incidence indicator denoting the relationship between arc (j,s) and path w, where δ

ij w
od
,

, ,= { }0 1

∀ ( ) ∈i j A, , o N
o

∈ , o N
o

∈ , d N
d

∈ , w∈Wod

Table 2. Continued
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Problem Formulation

Following the notation list specific to the example 
problem in Table 2, a detailed mathematical speci-
fication of the lane-based network design problem 
is given, in the modeling framework defined by 
the generic form of interdependent-choice network 
design problems. The objective of the problem 
is to minimize the total travel cost (i.e., the total 
evacuation time):

min ,
,

t x = ( )
( )∈
∑
j s A

js js js
r

js

r

t x n x  (3)

where the travel cost of arc (j,s), tjs, is a function 
of both the arc flow rate, xjs, and the number of 
traffic lanes, n

js
r .  The following increasing, con-

vex, continuously differentiable function is used 
to specify arc travel cost tjs,

t t
x

c njs js js

js

js
l
js
r

js

= +























0 1 α

β



∀ ( ) ∈j s A
r

,

 (4.1)

where αjs > 0 and βjs > 0 are arc-specific function 
parameters, t

js
0  is the free-flow travel cost, and 

c
js
l  is the lane capacity. Note that the arc cost 

function presented above is only applicable to 
roadway-section arcs. For modeling simplicity, 
the travel cost associated with any intersection 
arc is assumed to be zero, because no traffic delay 
occurs at intersections after crossing elimination:

t

i j A
ij

c

=

∀( ) ∈
0

,
 (4.2)

Due to this reason, the objective function of 
the problem includes the travel cost associated 
with roadway-section arcs only.

The flow bounding constraints 0 ≤ x ≤ c(y) 
includes two parts: the arc capacity constraints 
and the flow nonnegativity constraints. By using 
the discrete design variables, y

js
r ,  and the con-

nectivity indicator of roadway-section arc (j,s), 
and y

ij
c ,  the connectivity indicator of intersection 

arc (i,j), the arc capacity and flow nonnegativity 
constraints for arc (j,s)are,

x Ny

j s A
js js

r

r

≤

∀( ) ∈,
 (5.1)

x

j s A
js

r

≥

∀( ) ∈
0

,
 (5.2)

and the arc capacity and flow nonnegativity con-
straints for arc (i,j) are,

x Ny

i j A
ij ij

c

c

≤

∀( ) ∈,
 (5.3)

x

i j A
ij

c

≥

∀( ) ∈
0

,
 (5.4)

where N is a sufficiently large number.
The discrete choice constraints for design vari-

ables, yv∈Yv, include the 0-1 arc presence settings:

y

i j A
ij
c

c

= { }
∀ ( ) ∈

0 1,

,
 (6.1)

y

j s A
js
r

r

= { }
∀ ( ) ∈

0 1,

,
 (6.2)

and lane-based capacity availability settings:
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n

j s A
js
r

r

≥

∀( ) ∈
0�

,

and�integral
 (6.3)

The set of flow conservation constraints, Δx = 
b, have two forms corresponding to two different 
lane-reversal configurations. Consider the source 
nodes (i.e., nodes s and t) in the roadway-section 
subnetwork in Figure 2. When the roadway section 
allows two-way traffic, the traffic generated from 
the source node with any direction is accommo-
dated by its corresponding traffic lane(s). The flow 
conservation constraints for source nodes s and t 
for the two-way traffic operation are respectively,

x x b

s N
sk js s

o

− =
∀ ∈

 

x x b

t N
tm lt t

o

− =
∀ ∈

 

On the other hand, when one traffic direction 
(e.g., [(l,t),(t,m)]) is fully reversed to serve the other 
direction (i.e., [(j,s),(s,k)]), the traffic originating 
from the source node (i.e., node s) associated with 
this direction will be carried by its counter direc-
tion. It is equivalent to setting the net flow rate 
from node t to be 0 and accordingly increasing 
the net flow rate from node s to bs + bt. For this 
one-way traffic operation, the flow conservation 
constraints for origin nodes s and t are:

x x b b

s N
sk js s t

o

− = +
∀ ∈

 

x x

t N
tm lt

o

− =
∀ ∈

0
 

The above two lane operations can be inte-
grated into the following set of flow conservation 

constraints, with using the connectivity indicators 
y
jk
r  and y

lm
r ,

x x b y b y

s t N
sk js s jk

r
t lm

r

o

− = + −( )
∀ ∈

1

,
 (7.1)

x x b y b y

s t N
tm lt t lm

r
s jk

r

o

− = + −( )
∀ ∈

1

,
 (7.2)

where y y y
jk
r

js
r

sk
r= =  and y y y

lm
r

lt
r

tm
r= = .  The 

flow conservation constraints for other nodes 
(except for the destination node) have a standard 
form with the net flow rate equal to zero. For 
example, for node j and m in Figure 2, the fol-
lowing flow conservation constraints hold:

x x

j N N N

js

i

ij

o d

j

− =

∀ ∈ ( )
∈ −
∑

∪
Γ 1

0

\
 (7.3)

x x

m N N N

tm
n

mn

o d

m

− =

∀ ∈ ( )
∈
∑

∪
Γ

0

\
 (7.4)

The arc-based flow conservation constraints 
given above may be written in the path-based form, 
by using the following complimentary equations, 
which favors the expression of the flow routing 
constraints,

v f

o N d N

od
w
w
od

o d

=

∀ ∈ ∈

∑
,

 

x f

j s A

js
od w

w
od
js w
od=

∀( ) ∈
∑∑ δ

,

,
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where the O-D flow rate vod is a function of rel-
evant node flow rates, and arc-path incidence 
indicator δ

js w
od

,
 is determined by relevant arc con-

nectivity indicators.
As aforementioned, the stochastic user-equilib-

rium principle is adopted to describe traffic flow 
routing in evacuation networks. In this manner, 
the flow routing constraints, g(x) ≤ 0, can be ex-
pressed by the following mathematical program2:

min min
od

od w w
od od od od

od w
w
od
w
odv E T f∑ ∑∑( )+ ( )( )−|τ π πf f  

(8)

It is important to recognize that the optimal 
solution of the above mathematical program is 
equivalent to the stochastic user-equilibrium flow 
pattern. Due to space limit, only a brief description 
is provided here. Interested readers are encouraged 
to refer to Daganzo (1982) and Sheffi (1985) for 
details about the solution equivalence and unique-
ness. In the objective function given above, vod 
and f

w
od  are the traffic flow rate from origin o to 

destination d and the traffic flow rate on path w 
from origin o to destination d, respectively. The 
expectation function in the first term, 
E T

w w
od od od odmin ,|τ πf f( )+ ( )( )  denotes the ex-

pected perceived travel cost over all the paths 
connecting O-D pair o-d, where the individual 
perceived travel cost, T

w
od ,  is a random variable, 

defined as T
w
od

w
od

w
od

w
od= + +τ π ξ .  The first two 

parts of T
w
od  are deterministic: τ

w
od  is a function 

related to the traffic flow and travel cost of all 

arcs on path w, 
js

x

js js js w
od

js

t x∑ ∫ ( )










0

ω ω δd /
,

 and 

π
w
od  is defined as such a supplementary path cost 

in T
w
od  that the relationship is maintained; the 

third part, ξ
w
od ,  is the individual stochastic percep-

tion error. It is noted that given the flow routing 
constraints are specified by the mathematical 

program given above, the problem formulation 
has the so-called bi-level structure.

Finally, let us turn to the design choice con-
straints, h(yv) ≤ 0, which define the interdependent 
relationship of the discrete decision variables 
of the problem. First, there exist a set of capac-
ity conservation and continuity constraints for 
roadway-section subnetworks, which reserves 
the total capacity of a roadway section that can 
be used by the two reverse traffic directions and 
maintains the consistency of number of lanes along 
either of the traffic directions. Given the fixed lane 
capacity, the capacity exchange between the two 
directions of the roadway section is represented 
by the numbers of their lanes. Referring to the 
example roadway-section subnetwork in Figure 
2, the capacity conservation and continuity con-
straints can be written as,

n n n

j s s k l t t m A
jk
r

lm
r

jk mn

r

+ =

∀( ) ( ) ( ) ( ) ∈
,

, , , , , , ,
 (9.1)

n n n n n n

j s s k l t t m
js
r

sk
r

jk
r

lt
r

tm
r

lm
r= = = =

∀( ) ( ) ( ) ( ) ∈
� �

, , , , , , ,

and

AA
r

 (9.2)

where njk,mn is the total number of lanes of the two 
reverse traffic directions of a roadway section. 
This set of constraints regulates the lane-reversal 
configuration.

There exists an inherent connection between 
the connectivity indicator of a roadway-section 
arc and its corresponding number of lanes: for 
example, given zjs and njs in Figure 2, if y

js
r = 1,  

then njs ≥ 1, and vice versa; if y
js
r = 0,  then njs = 

0, and vice versa. The following set of inequalities 
is used to describe this relationship:

y n

j s A
js
r

js
r

r

≤

∀( ) ∈,
 (10.1)
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y M n

j s A
js
r

js
r

r

≥

∀( ) ∈,
 (10.2)

where y
js
r  is a 0-1 binary integer, n

js
r  is a non-

negative integer, and M is a sufficiently large 
number.

Finally, there are a set of crossing-elimination 
constraints for intersection arcs. By referring to 
Figure 2, it can be seen that these constraints 
have two forms, namely, two-arc constraints and 
three-arc constraints, as follows,

y y

o j q p A
oj
c

qp
c

c

+ ≤

∀( ) ( ) ∈
1

, , ,
 (11.1)

y y y

i j m n q p A
ij
c

mn
c

qp
c

c

+ + ≤

∀( ) ( ) ( ) ∈
1

, , , , ,
 (11.2)

where these two constraints state that any potential 
crossing conflict between arc yoj and yqp and be-
tween any two of arcs yij, ymn, and yqp, respectively, 
is not allowed in an evacuation network. In other 
words, it means that at most one arc can carry 
traffic flows and other arcs crossing this one must 
be disallowed. At a four-leg intersection, there 
exist 16 potential crossing points, which leads to 
4 two-arc constraints and 4 three-arc constraints.

Problem Complexities

Due to the complex relationship among the discrete 
choice variables confined by the interdependence-
choice constraints (see [9] – [11]), a few algo-
rithmic difficulties emerge from implementing 
a general iterative solution procedure. First, the 
crossing-elimination constraints define such a 
strict intersection-arc configuration that no appar-
ent feasible solution is available at hand as an initial 
solution. The ordinary configuration of a traffic 
network with intersection controls, as used for 
daily commuting traffic, does not deliver a feasible 
solution, because the traffic turning movements 

at any intersection controlled by traffic signals or 
stop/yield signs allow crossing points. Therefore, 
some external procedure, if possible, needs to be 
developed to obtain an initial feasible solution.

Second, the neighborhood structure of an 
arbitrary solution is too complex to be defined, 
given the complementary and conflicting interrela-
tionships between the lane-reversal and crossing-
elimination constraint sets. An intuitive definition 
for a candidate move in a neighborhood region 
may be an arc addition, reduction, or swap (for 
intersection arcs) and a lane exchange between the 
counter arc pairs (for roadway-section arcs). It is 
not hard to speculate that, to satisfy the network 
connectivity requirements, implementation of a 
candidate move typically requires a set of com-
plex network manipulations. Under this situation, 
extracting an exhaustive candidate list from the 
neighborhood of a feasible solution becomes a 
very difficult task.

To tackle these problem difficulties, our focus 
in the next section is given to how the proposed 
LR-TS method can be applied for problem decom-
position and complexity reduction. In particular, 
under the Lagrangian relaxation framework, the 
set of crossing-elimination constraints (i.e., [11]) 
are relaxed and compensated by a penalty term 
in the objective function. The relaxed Lagrangian 
problem is inherently a pure optimal lane-reversal 
problem (hereafter referred to as the lane-reversal 
subproblem) plus a penalty term. The evaluation 
of the penalty term becomes a set of optimal 
intersection crossing-reduction subproblems 
(hereafter referred to as the crossing-elimination 
subproblem), where it generates one crossing-
reduction subproblem for each eligible intersec-
tion subnetwork.

IMPLEMENTATION OF 
THE LR-TS METHOD

The rationale behind the application of the LR-TS 
method comes from the special structural feature 
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of the proposed model. Note that travel costs are 
all associated with roadway-section arcs while 
intersection arcs are merely used for maintain-
ing the network connectivity. In accordance, the 
intersection crossing-elimination constraints can 
be regarded as side constraints and the objective 
function value of the lane-reversal subproblem 
is actually the system cost with an ignorance of 
these side constraints. To this end, Lagrangian 
relaxation offers a convenient tool to decompose 
the problem and reduce its structural complexity 
so that the lane-reversal and crossing-elimination 
subproblems can be dealt with separately.

Lagrangian Relaxation

The Lagrangian problem is generated as follows, 
after relaxing the crossing-elimination constraints 
and adding a corresponding penalty term into the 
objective function,

min
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Note that here (i,j) and (m,n) are a pair of 
intersection arcs that have a potential crossing 
point (refer to Figure 2).

The objective function of the Lagrangian 
problem consists of two parts. The first part is the 
objective function of the original problem (i.e., 
the total travel cost), while the second one is the 
penalty term supplemented by the Lagrangian 
relaxation, representing the sum of all penalty 
costs from the relaxation of the crossing-elimi-
nation constraints. In the penalty term, pij,mn is a 
Lagrangian multiplier (pij,mn ≥ 0), which, in our 

case, is also termed as the unit penalty cost. The 
unit penalty cost is used to compensate the viola-
tion of a single crossing-elimination constraint 
y y
ij
c

mn
c+ −1.

With the Lagrangian relaxation action above, 
the problem is not only benefited from the removal 
of the crossing-elimination constraints, but also the 
overall size of the problem is significantly reduced. 
This can be seen from the observation that with the 
removal of the crossing-elimination constraints, 
an intersection subnetwork is reduced to a node, 
since the lane-reversal manipulation does not take 
into account and does not need the constraints as-
sociated with the crossing-elimination configura-
tion at intersections. The graphical topology with 
this intersection subnetwork reduction is named 
reduced network. The reduced network from the 
expanded network in Figure 2 is illustrated in 
Figure 3, where the intersection subnetwork with 
8 nodes and 12 arcs is replaced by a single node. 
Following the network reduction, network flows 
can be evaluated much more efficiently on the 
reduced network than its expanded counterpart.

The complexity reduction is also embodied by 
the availability of initial feasible solutions. For 
example, an existing network solution without 
any lane-reversal and crossing-elimination con-
figuration (e.g., the existing traffic network con-
figuration used for daily commuting traffic) can 
be used as an initial solution for the Lagrangian 
problem. Of course, a better initial solution may 
be obtained by considering reversing lanes on 
some major eligible roadways. Nevertheless, 
obtaining an initial feasible solution for the relaxed 
Lagrangian problem is a relatively easy task 
compared to that for the original problem.

The relaxed Lagrangian problem is still a 
complex combinatorial optimization problem. To 
tackle its combinatorial complexity, a tabu search 
procedure is implemented below, which func-
tions at searching for the optimal solution of the 
Lagrangian problem and updating the Lagrangian 
multipliers simultaneously.
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Tabu Search

The basic elements of the tabu search procedure 
specific to the example problem are briefly de-
scribed below, including the neighborhood, moves, 
elite list, tabu list, aspiration criteria, intensifica-
tion, diversification, and Lagrangian multiplier 
updating. More implementation details can be 
referred to in Xie and Turnquist (2011).

Two types of neighborhoods are used in the 
proposed tabu search procedure: an adjacent 
neighborhood for the local search phase, and 
a distant neighborhood for the diversification 
search. A distant neighborhood is used to guide 
the diversification search to enter an unvisited 
feasible region and its neighborhood structure and 
moving mechanism is distinct from an adjacent 
neighborhood, therefore, the discussion of its 
implementation will be postponed to a later place 
in this section.

The adjacent neighborhood for a current 
network solution is made up of all lane-based 
network configurations that can be reached by 
a single lane-reversing transformation from the 
current solution. The capacity exchange with a 
lane-reversing operation only occurs between 
the two adjacent, counter traffic directions of a 
roadway section. In other words, a move is defined 
as a lane exchange between the two directions 
in a roadway-section subnetwork. A single lane 
reversal may only change the capacity of the two 

adjacent arc pairs, or change both the capacity and 
connectivity of the network, depending on the 
number of lanes to be reversed and the number of 
lanes on these two arc pairs before and after the 
lane reversal. In this regard, three types of moves 
may be defined to reach a candidate solution in 
the neighborhood.

The first type of moves only involves a ca-
pacity exchange without modifying the network 
connectivity. The lane-reversing direction of such 
a move may be ideally determined by comparing 
the marginal costs to the whole network gener-
ated by the two potential directions. Typically, the 
lane-reversing direction that results in a negative 
marginal cost should be selected. However, given 
the discrete requirement, the capacity-reversing 
amount is quantified by the number of lanes, 
which in general does not necessarily match the 
appropriate amount demanded by the desired 
lane-reversing direction. On the other hand, an ac-
curate estimation of the marginal cost to the whole 
network with regard to a capacity exchange must 
be evaluated in terms of some sensitivity analysis 
technique. Given a stochastic user-equilibrium 
flow pattern in the network, such a sensitiv-
ity analysis is quite complicated. Therefore, an 
approximation method is used for determining 
the lane-reversing direction that is to compare 
the marginal costs with the two potential lane-
reversing directions to the local roadway-section 
subnetwork.

Figure 3. The reduced network representation
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The second type of moves changes the network 
topology. Specifically, it reduces the number of 
arcs in the network by reversing all the lanes along 
a traffic direction in an eligible roadway subnet-
work. Suppose the following network configura-
tion and traffic conditions in the roadway-section 
subnetwork shown in Figure 2: there is one or 
more lanes on both of the traffic directions (i.e., 
n n
jk
r

lm
r, ≥ 1 ) but the flow rate on arc pair 

[(j,s),(s,k)] is equal or close to zero. A direct re-
sponse to this situation is that the capacity of arc 
pair [(j,s),(s,k)] is fully or extremely underutilized 
and hence all of its lanes should be fully reversed 
to serve the traffic flow on its reverse arc pair 
[(l,t),(t,m)]. This observation defines the second 
type of moves: a full reversal of lanes on a traffic 
direction to its reverse direction should be con-
ducted when there is no or ignorable traffic along 
this direction.

The third type of moves arises subsequent to 
an iteration that has implemented a move of the 
second type. In a given network solution, in case 
that all of the lanes in a roadway subnetwork are 
used to serve one traffic direction (e.g., n

jk
r = 0  

and n n
lm
r

jk lm
=

,
 in Figure 2), no matter how 

congested this subnetwork is along the current 
traffic direction, a candidate move should be sug-
gested that a lane is deducted from the current 
direction and added to its reverse direction. In our 
case, if a number of one-way roadway sections 
exist in the initial network or a large number of 
full lane reversals emerge in the search itinerary, 
this type of moves would be frequently encoun-
tered. A move of the third type adds an arc pair 
into the network.

In a local neighborhood search, a scan will 
exhaust all the eligible roadway subnetworks in 
the current network solution and choose a candi-
date move from each roadway subnetwork into a 
candidate list. In classic tabu search applications, 
a single best move is selected from this candidate 
list, in terms of the objective evaluation results 
as well as subject to the current tabu list and as-

piration criterion. While this best-candidate-only 
policy provides a precise ordering of potential 
moves, it may not sufficiently exploit the value 
of a candidate list, which is determined each time 
by an exhaustive evaluation of all the eligible 
lane-reversing operations throughout the whole 
network and the identification process of which is 
the most time-consuming computational part of the 
whole search process. A more efficient method is 
to select and implement a set of moves in a batch 
after a candidate list is determined.

A simple heuristic rule is suggested to select 
a set of moves that may better take advantage of 
the information implied in a candidate list and ac-
celerate search iterations. An elite candidate list is 
elected from the candidate list, which consists of 
a given number of best candidate moves based on 
the sorting result of their corresponding objective 
function values. The size of this elite candidate 
list, where it is named elite capacity, is an algo-
rithmic parameter, which indicates at most how far 
a search can move or how many moves a search 
can convey each time after a move candidate list 
is presented. An appropriate elite capacity value 
should be given so as to choose those apparently 
promising moves in a move candidate list and 
maintain a good trade-off between the solution 
quality and search efficiency.

The two most important and essential compo-
nents used here may be tabu list and aspiration 
criterion (in addition to Lagrangian multipliers). 
These two memory elements are used to record 
various information (e.g., solution values and at-
tributes) of the solutions encountered in a search 
history. The purpose of using a tabu list is to avoid 
cycling traps and hence local optima in a local 
search procedure. The concept of recency-based 
memory is used to construct a tabu list that con-
tains a set of recent moves. Whenever a candidate 
move is identified during the search process, it 
is compared to the recorded members in the tabu 
list. If the comparison tells that a member in the 
tabu list is exactly the counter operation of the 
candidate move, this candidate move is labeled as 
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a tabu and its candidacy will be canceled unless it 
satisfies the aspiration criterion. Since a tabu list 
is built based on the recency-based memory, the 
general updating mechanism is to put the latest 
implemented move into the tabu list in place of 
the oldest member.

Since any lane exchange caused by a move 
occurs merely between the two counter traffic 
directions, there is no need of recording both the 
participating arc pairs, in which one obtains capac-
ity while the other loses. Instead, a more effective 
tabu-recording rule is to add the arc pair that loses 
capacity into the tabu list. At each iteration, a tabu 
examination invokes a comparison between the 
arc pair that potentially obtains capacity through 
a candidate move and all the members in the tabu 
list. If the comparison indicates that this arc pair is 
equivalent to a member in the current tabu list, this 
candidate move under consideration is regarded as 
a tabu move and should be accordingly prohibited 
in the immediate iteration.

The intensification and diversification strate-
gies realize their functions by using frequency-
based memories. A frequency measure, residence 
frequency, is used to evaluate the need for intensi-
fication and diversification. Residence frequency 
is defined as the ratio of the number of iterations 
where an attribute or element belongs to solutions 
in a search itinerary (or a section of this itinerary) 
over the total number of iterations in this itinerary 
(or the corresponding section of this itinerary). 
The purpose of using residence frequency is to 
keep track of how often attributes or elements 
are members of the historical solutions or how 
frequently they satisfy some specific status in 
the search history.

For the lane-reversal subproblem, intensifica-
tion is useful when a roadway-section subnetwork 
is set at a specific lane-reversal configuration on 
a very frequent level, which indicates that a move 
representing an alternative lane assignment of 
this subnetwork is seldom selected into the elite 
list. A frequency threshold is set to determine the 
qualification of a lane reversal—if the residence 

frequency of a full reversal has been greater 
than the predefined threshold since the first time 
it appears in the search trajectory, its existence 
should be fixed in the subsequent solutions until a 
diversification move is conducted. In other words, 
this “locked” roadway-section subnetwork will 
be excluded from the candidate list in succeeding 
neighborhood searches. In our experiments, it is 
found that many arcs close to egress nodes or on 
major routes quickly obtain the intensification 
qualification for a full reversal assignment for 
outbound traffic directions.

A high residence frequency with a specific 
lane reversal in some roadway subnetwork may 
indicate that this lane-reversal configuration is 
highly attractive, or may indicate the opposite, if 
its associated iterations correspond to low-quality 
solutions. On the other hand, a high residence 
frequency at which a specific lane reversal exists 
when there are both high- and low-quality solu-
tions may point to an entrenched attribute that 
causes the search space to be restricted, and that 
needs to be jettisoned to allow increased diversity 
(Glover and Laguna, 1997). Therefore, to judge 
the necessity of diversifications, it is suggested 
to investigate both the residence frequency and 
the solution quality associated with those lane 
reversals implemented along the search itinerary. 
The motivation for diversification in our lane-
reversal subproblem is, when a large number 
of iterations have been conducted without any 
improvement to the objective function value, it 
may be more attractive to transfer our search into 
a distant unexplored region than to continue the 
current local search.

As discussed before, the Lagrangian multiplier 
updating mechanism is critical to the feasibility 
and optimality of the solutions derived from the 
LR-TS procedure. An excessively low value of 
a Lagrangian multiplier in the penalty term may 
result in an infeasible solution; an excessively high 
value may lead to the search process to deviate 
away from the optimal point (in spite of suboptimal 
conditions caused by other heuristic factors). A 



313

A Hybrid Lagrangian Relaxation and Tabu Search Method

simple but effective iteration-based self-adjusting 
method for the multiplier updating is set based on 
the use of another residence frequency that is the 
number of any specific intersection crossing point 
existing in solutions during the search process. If 
a crossing point consecutively exists in the solu-
tion itinerary (e.g., 5 times), its corresponding 
unit penalty cost (i.e., Lagrangian multiplier) is 
increased; otherwise, the penalty cost is decreased. 
A unit updating cost is used to specify the incre-
ment/decrement amount each time, whose value 
is dependent on the particular target problem.

Evaluation of the Objective Function

Evaluating the objective function of the Lagrang-
ian problem includes two computational pro-
cesses: first, a stochastic traffic assignment on the 
given reduced network; second, an independent 
traffic crossing-elimination examination for each 
intersection subject to the network flow pattern 
obtained from the preceding traffic assignment 
process.

The stochastic user-equilibrium traffic assign-
ment may be carried out by two network loading 
methods: logit-based and probit-based methods. 
The probit-based loading method is preferable to 
the logit-based because it can properly take into 
account the overlapping or correlated network 
proportions when estimating the route cost distri-
butions and route choice probabilities. However, 
there exists no closed form of exact methods 
of computing route choice probability for the 
probit-based network loading. Previous research 
suggested two approaches of implementing the 
probit-based network loading: Monte Carlo simu-
lation (Sheffi and Powell, 1982; Sheffi, 1985) and 
Clark’s approximation (Maher, 1992; Maher and 
Hughes, 1997). The analytical algorithm based on 
Clark’s approximation is employed here to find 
the stochastic user-equilibrium flow pattern and 
obtain the corresponding total travel cost over 
the network.

The traffic flow pattern resulting from the 
above traffic assignment process on the reduced 
network does not specify the turning movements 
at intersections. In fact, the representation of an 
intersection as a node ignores the crossing-elim-
ination subproblem and regards the intersection 
as a “black box.” To calculate the value of the 
penalty term of the Lagrangian problem, it is re-
quired to check the crossing-elimination violation 
conditions at all considered intersections subject 
to the given traffic flow pattern in the reduced 
network. A mixed integer programming model 
for the defined intersection crossing-optimization 
subproblem is suggested for this purpose. The 
objective of this program is to find the minimum 
number of crossing points at the given intersec-
tion; the constraints include the flow bounding 
constraints, discrete choice constraints, and flow 
reservation constraints. For a four-leg intersection 
such as the one shown in Figure 2, the formulation 
of this local optimization problem is,
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and xtm denote the traffic flow rates on roadway-
section arcs (j,s)and (t,m), whose values are from 
the current lane-reversal network solution. This 
crossing optimization subproblem can be effi-
ciently solved by the branch-and-bound method 
or a simplex-based pivot method, due to its rela-
tive small number of search spaces. The latter 
method is described and justified in detail in Xie 
et al. (2011).

EXAMPLE APPLICATION 
AND EVALUATION

Solution quality and efficiency may be the most 
important indicators for an algorithm’s perfor-
mance. This section evaluates these performance 
measures of the proposed LR-TS method for the 
example problem on an evacuation network of 
realistic size. A couple of simple heuristic methods 
are used to solve the same problem as comparative 
alternatives; the solution quality and efficiency of 
these methods will be discussed and compared.

The Network

The evacuation network is located in Monticello, 
Minnesota, surrounding the Monticello nuclear 
power plant. As enacted by the U.S. Nuclear 
Regulatory Commission (NRC) and Federal 
Emergency Management Agency (FEMA), an 
emergency planning zone (EPZ) with a 10-mile 
radius must be delimited centered at the site of 
any nuclear power plant in the U.S. If a nuclear 
accident alarm is triggered, all inhabitants in the 
EPZ are required to leave the area for one or more 
designated reception centers, to avoid potential 
expose to a released radioactive plume. Recep-
tion centers can provide evacuees with basic 
accommodation facilities and medical services. 
Following the evacuation planning requirement, 
an evacuation network is extracted from the high-
ways and major arterials in the region, as shown in 
Figure 4. The reception center for the Monticello 

nuclear power plant is located at node 40, which 
forms the only destination of the network. The 
evacuation demand generation is estimated based 
on the demographic data of the region from the 
U.S. Census 2000 survey. The anticipated number 
of vehicles leaving the network is about 21,000.

Algorithm Calibration and 
Implementation

The LR-TS algorithm was coded in C++ and all 
the numerical experiments was conducted on a 
PC with a Dual-Core 1.80 GHz CPU and 2 GB 
RAM. It is well known that the performance of 
any metaheuristic is highly dependent on the 
calibration result of its algorithmic parameters. 
Our LR-TS method is not exclusive. A calibration 
phase is required prior to the implementation of 
the algorithmic procedure for large-scale problems 
and thus it becomes an integral part of the devel-
opment of the solution procedure. A calibration 
process on a set of synthetic and realistic networks 
of small size has been conducted, which suggests 
the following parameter choices for the example 
network design problem defined here: tabu tenure 
= 12, elite capacity = 9, frequency threshold = 
0.9, number of allowable unimproved iterations 
= 50, and number of diversification phases = 3. 
In addition, the calibration result confirms the 
initial value of the unit penalty cost = 0 and the use 
of dynamic increment/decrement penalty costs. 
As a metaheuristic method, though the solution 
performance is heavily affected by the parameter 
calibration result and their relationship is in general 
not clearly defined, the solution robustness can be 
appreciated if a set of solutions with a comparable 
quality level are obtained as long as the parameter 
values are specified in a reasonable range. In an 
extensive set of experiments using synthetic and 
realistic example problems with different sizes, 
it is found that the largest gap between the best 
solution and the worst one for any problem in-
stance is 4.2 percent and the average gap is about 
1.1 percent. This result indicates the insensitivity 
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of solution quality with respect to algorithmic 
parameters in this problem.

The resulting search itinerary and network 
solution from applying the calibrated LR-TS al-
gorithm to the Monticello network are presented 
in Figure 5 and Figure 6, respectively. One piece 
of the computational complexity with this ex-
ample network design problem can be seen from 
the search itinerary, in that a larger number of 

local optima are encountered during the search 
process. The optimized solution is identified at 
iteration 413, and the CPU time for finding this 
optimized solution is 2.015x103 sec. A detailed 
solution interpretation and policy analysis about 
this computational result as well as other network 
scenarios can be referred to in Xie and Turnquist 
(2011). The remainder of this section focuses on 

Figure 4. The Monticello evacuation network
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a discussion about the solution quality and ef-
ficiency in a comparative assessment.

A Comparative Assessment

For the purpose of comparison, two alterna-
tive heuristic methods were coded and imple-
mented, which are used to solve the example 
interdependent-choice network design problem. 
The first method is based on a shortest-path tree 
(SPT) construction procedure, as proposed by 
Hamza-Lup et al. (2004, 2007); the second one is 
a flip-high-flow-edge (FHFE) method developed 
by Kim et al. (2008), in which the lane-reversal 
direction on any roadway section is dependent 
on the congestion conditions of its two traffic 
directions. Although these two algorithms do not 
explicitly incorporate the intersection crossing-
elimination requirement, the full lane-reversal 
assumption guarantees an automatic satisfaction 
of the crossing-elimination constraints and hence 
the feasibility of optimized solutions.

The modified versions of these two solution 
procedures for our specific network settings can be 
briefly described as follows. In the SPT method, a 
shortest-path tree is first developed in terms of the 
initial travel impedance (e.g., the free-flow travel 
cost), starting from the super destination node to 
all other nodes in the network, and the distance 
along the shortest path between any node and 
the destination node is labeled; the lane-reversal 
direction of each arc is then determined in terms 
of the distance labels of the two end nodes, that 
is, the direction is set from the end node with the 
larger distance value to the other end node with 
the lower value.

The FHFE method also has a two-stage process. 
In the first stage, a traffic assignment is carried out 
in the original network and the traffic flow rate on 
each arc is recorded; the second stage resorts to a 
comparison of the congestion level (e.g., volume/
capacity (V/C) ratio) of the two traffic directions 
of each roadway segment, by which the capacity 
of the traffic direction with the lower V/C value 

Figure 5. The search itinerary for the Monticello evacuation network
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Figure 6. The optimized solution for the Monticello evacuation network
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is fully reassigned to supplement its counter traf-
fic direction.

The prominent merit of these alternative solu-
tion procedures is their simple algorithmic logic 
and low computation cost, in which none or only 
one time of the objective function evaluation needs 
to be invoked for determining the final solution 
and no intersection subnetwork manipulation 
or optimization needs to be actually conducted. 
However, the optimality condition of these solu-
tions may be subject to the following deficien-
cies. First, both of the methods do not explicitly 
consider the network optimization objective such 
as minimization of the total travel cost. Second, 
both of the methods do not invoke any iterative 
process to monitor the network flow variation due 
to the network capacity and connectivity change, 
in that the SPT method completely ignores the 
network congestion effect and the FHFE method 
only makes use of the congestion information at 
the local level and in its minimum form. Given 
these reasons, the two algorithmic procedures can 
only be regarded as some naïve heuristics for the 
example network design problem.

Despite these algorithmic deficiencies, from 
a practical point of view, the simple logic and 
intuitive solution-deriving principle make these 
methods to be very attractive candidates and their 
solutions may be on some degree regarded as a 
surrogate of evacuation plans that are derived from 
simple engineering judgments. In contrast, this 
chapter presents a relatively sophisticated solution 
procedure. Some algorithm selection questions 
naturally arise, when we consider the relative 
performance between these different methods: 
Is a sophisticated, time-consuming metaheuristic 
worthwhile, compared to those simple, intuitive 
heuristics, for the network design problem defined 
here? If different methods perform on different 
aspects better than one another, can one combine 
their merits to form a better hybrid method?

To address these concerns, the two simple 
heuristics and our hybrid metaheuristic are tested 
over a set of example synthetic and realistic evacu-

ation networks, including the Monticello network 
described above. The computation results obtained 
from experiments conducted on the aforemen-
tioned PC are listed in Table 3. Solution quality 
and computation cost are the major performance 
measures in this comparative assessment. It is 
apparent that the two simple heuristics run ex-
tremely fast, say in one or a few seconds, whilst 
the LR-TS method typically takes hundreds or 
thousands of seconds to finish the search process 
in a range of moderate-size networks. However, 
when comparing the solution quality, we found that 
the LR-TS method consistently and significantly 
outperforms the other two methods: in terms of 
the objective function value, the SPT and FHFE 
methods perform worse than the LR-TS method 
approximately by 40-130 percent and by 20-50 
percent, respectively. Evidently, the performance 
of the two simple methods is far below the LR-TS 
method in approaching the optimal evacuation 
network solution with lane reversal and crossing 
elimination. As shown in Table 3, for example, 
for the Monticello network, the total travel cost of 
the SPT solution is 2.92x107 vehicle-hours and the 
FHFE solution gives a total travel cost of 2.52x107 
vehicle-hours. Compared to the optimized LR-TS 
solution, these two figures are 41.1 percent and 
21.7 percent higher, respectively.

Despite this huge discrepancy on solution 
quality, the solutions obtained from implementing 
the SPT and FHFE methods for the Monticello 
network, for example, are quite similar to the 
solution from the LR-TS method in terms of the 
lane-reversal configuration. The SPT and FHFE 
solutions contain 12 and 5 roadway sections with 
a different lane-reversal direction from the LR-TS 
solution, corresponding to merely 16 and 7 percent 
of the number of reversible roadway sections in 
the network, respectively. However, similar net-
work solutions do not imply similar network 
performances, as shown above. This fact exhibits 
the solution complexity of such an interdependent-
choice network design problem, whose objective 
function is nonlinear and nonconvex to its deci-
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sion variables (if these variables are continuous), 
due to the nonlinear arc cost function and the 
network equilibrium requirement. On the other 
hand, this result justifies, at least empirically, the 
necessity of applying a sophisticated solution 
algorithm like the one presented in this chapter 
to solve these difficult network design problems, 
as long as an adequate amount of computing time 
is allowed.

Two suggestions may be drawn with regard 
to the comparison result between the LR-TS 
metaheuristic and the two simple heuristics. First, 
the LR-TS method apparently outperforms the 
two tested simple heuristics in terms of solution 
quality. The FHFE method could be regarded as 
an easy alternative method for the network design 
problem, considering its relatively good solution 
quality and low computational cost. Specifically, 
the gap between the objective function values 
of the FHFE and LR-TS solutions is around 20 
percent while the FHFE method only requires 
running the time-consuming traffic assignment 
process once. However, no guarantee can be made 
on that such a small solution quality gap would be 
kept with the increasing the network complexity. 
Second, due to the structural similarity of these 
solutions, the solutions derived from these simple 
heuristics could be used as a good initial solution 
of the sophisticated LR-TS method. With check-
ing the search itinerary of the LR-TS method for 

the example problem instance (see Figure 5), it 
is found that the objective function values of the 
SPT and FHFE solutions are comparable to that of 
the LR-TS solutions encountered approximately 
at its iterations 30 and 150, respectively. If, for 
example, the FHFE solution is used as the starting 
point of the LR-TS procedure, a large number of 
iterations could be eliminated during the search 
process and the search procedure can focus on 
more important solution regions more thoroughly.

CONCLUSION

The main body of this chapter is an algorithmic 
framework of integrating Lagrangian relaxation 
and tabu search. This hybrid metaheuristic method 
provides a promising way for solving a class of 
discrete network design problems with complex 
interdependent-choice constraints, under which 
it is very difficult to directly define and search 
for candidate solutions in the solution space. The 
basic algorithmic idea of this hybrid method is 
to decompose the target problem into a relaxed 
Lagrangian problem and one (or more) penalty 
evaluation problem(s) and apply tabu search to 
solve the relaxed Lagrangian problem and update 
Lagrangian multipliers. Through an example 
network design problem with lane-reversal and 
crossing-elimination constraints, it is demon-

Table 3. Comparison of the solution quality and computation cost 

Example 
Network

Number of 
nodes

Number of 
arcs

Objective function value3 (x103) Computing time (sec)

SPT FHFE LR-TS SPT FHFE LR-TS

Synthetic small 
network 40 60 208.2 133.9 90.4 < 1.0 1.5 250.4

Synthetic grid 
network 64 96 72.2 58.1 38.0 < 1.0 1.8 538.5

Synthetic urban 
network 85 128 119.9 89.6 74.2 < 1.0 2.5 1,024.8

Sioux Falls 
network 100 152 8.6 6.6 5.5 < 1.0 3.9 1,589.3

Monticello 
network 99 200 29,283.6 25,245.6 20,750.5 < 1.0 3.4 2,015.5
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strated in this chapter how this hybrid method can 
be applied and implemented and its algorithmic 
advantages and computational challenges may 
arise in implementation.

Lagrangian relaxation provides a very flexible 
problem decomposition paradigm that can accom-
modate a variety of heuristic and metaheuristic 
methods. The integration of Lagrangian relaxation 
and tabu search is only one part of a larger effort 
in creating new hybrid solution methods for com-
plex combinatorial optimization problems. Other 
types of Lagrangian-based metaheuristics, such as 
applying memetic algorithms, simulated anneal-
ing, scatter search, or ant colony optimization to 
tackle relaxed Lagrangian problems and update 
Lagrangian multipliers, should be investigated and 
may provide new algorithmic and computational 
advances. This remains as an important task to 
algorithm developers in the future.
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KEY TERMS AND DEFINITIONS

Combinatorial Optimization: Optimization 
problems whose space of feasible solutions is 
discrete.

Crossing Elimination: A traffic control strat-
egy typically used at roadway or highway-rail 
intersections, which permanently or temporarily 
removes potential crossings formed by traffic 
flows of different directions.

Evacuation Planning: A planning process 
which determines destinations, routes and sched-
ules of moving people threatened by occurring 
or impending disasters to safe areas or shelters.

Lagrangian Relaxation: A problem relaxation 
technique which works by moving hard constraints 
into the objective so as to exact a penalty on the 
objective if they are not satisfied.

Lane Reversal: A traffic control technique 
which reverses some or all of the lanes along a 
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traffic direction to its counter direction, to aid in 
an emergency evacuation or special event, or to 
facilitate highway widening or reconstruction 
activities.

Metaheuristic: A general solution strategy 
which guides other heuristics to search for fea-
sible solutions.

Network Design: A design process which en-
compasses topological connectivity and capacity 
setting of a node-arc network.

Tabu Search: A mathematical optimization 
method, belonging to the class of local search 
techniques, which enhances the performance of a 
local search method by using memory structures.

ENDNOTES

1  It is implicitly assumed here that the under-
lying network flow problem contains only a 
single commodity (i.e., network flows have 
only a single origin or a single destination), so 
the arc-based flow conservation constraints 
(1.2) are sufficient to specify a complete 
origin-destination (O-D) flow pattern.

2  Note that this is a convex program subject 
to the flow conservation and nonnegativity 
constraints. Note that the unconstrained 
concave program (if multiplied by -1) for 
the stochastic user-equilibrium problem by 
Sheffi and Powell (1982) is a Lagrangian 
dual to this program.

3  Note that the units of the objective function 
value associated with different networks are 
different.
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