Introduction

Information in This Chapter:

* Motivation for multicore CPU/GPU implementations
» Applications of deformable registration

* Algorithmic approaches to deformable registration

* Organization of the book

1.1 INTRODUCTION

The fundamental step for combining three-dimensional (3D) geometric
data is registration, which is the process of aligning two or more
images that capture the geometric structure of the same scene, but in
their own relative coordinate frames, into a common coordinate frame.
The images themselves can be obtained at different times and from dif-
ferent viewpoints, using similar or different imaging modalities. Here,
we focus on volumetric registration, where the images are pixel or voxel
intensities arranged in a regular grid, and the relative alignment of
multiple images must be found. Volumetric registration is often used in
biomedical imaging, e.g., to track changes in a patient’s anatomy using
images taken at different time points or to align stacks of microscopy
data in either space or time.

A registration is called rigid if the motion or change is limited to global
rotations and translations, and is called deformable if it includes complex
local variations. One of the images is often called the static or reference
image and the second image is the moving image, and registration involves
spatially transforming the moving image to align with the reference image.
When registering medical images, €.g., of a patient’s anatomy taken at dif-
ferent time points, one must account for deformation of the anatomy itself
due to the patient’s breathing, anatomical changes, and so on.

Modern imaging techniques such as computed tomography (CT),
positron emission tomography (PET), and magnetic resonance imaging
(MRI) provide physicians with 3D image volumes of patient anatomy

High-Performance Deformable Image Registration Algorithms for Manycore Processors.
DOI: http://dx.doi.org/10.1016/B978-0-12-407741-6.00001-3
© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-407741-6.00001-3

2 High-Performance Deformable Image Registration Algorithms for Manycore Processors

which convey information instrumental in treating a wide range of
afflictions. It is often useful to register one image volume to another to
understand how patient anatomy has changed over time or to relate
image volumes obtained via different imaging techniques. For exam-
ple, MRI provides a means of distinguishing soft tissues that are other-
wise indiscernible in a transmission-based CT scan, and the recent
availability of portable CT scanners inside the operating room has led
to the development of new methods of localizing cancerous soft tissue
by registering intraoperative CT scans to a preoperative MRI as shown
in Figure 1.1, thus allowing for precise tumor localization during the
resection procedure.

Efficient and timely processing of 3D data obtained from high-
resolution/high-throughput imaging systems requires image analysis
algorithms to be significantly accelerated, and registration is no excep-
tion. In fact, modern registration algorithms are computationally
intensive, and reports of deformable registration algorithms requiring
hours to compute for demanding image resolutions and applications
are not uncommon (Aylward et al., 2007). Cluster computing is a well-
established technique for accelerating image-processing algorithms,
since, in many cases, these algorithms can be appropriately parallelized
and operations performed independently on different portions of the
image. Recent advances in multicore processor design, however, offer
new opportunities for truly large-scale and cost-effective parallel com-
puting right at the desk of an individual researcher. For example,
CPUs in Intel’s Core 17 family have up to six processing cores operat-
ing at 3.5 GHz each, and can achieve a peak processing rate of about
100 GLOPs. Graphics Processing Units (GPUs) are considerably more
powerful: a modern GPU such as the NVidia C2050 has 448 cores,
each operating at 1.1 GHz, and can achieve a peak processing rate of
one TFLOP. However, the processing cores on GPUs are considerably
simpler in their design than CPU cores. For algorithms that can be
parallelized within its programming model, a single GPU offers the
computing power equivalent to a small cluster of CPUs.

This book develops highly data-parallel deformable image registra-
tion algorithms suitable for use on modern multicore architectures,
including GPUs. Reducing the execution time incurred by modern reg-
istration algorithms will allow these techniques to be routinely used in
both time-sensitive and data-intensive applications.

Introduction 3

Figure 1.1 Computing organ motion via deformable registration. (A) A preoperative MRI image (in red) super-
imposed on an intraoperative CT image (in blue) before deformable registration. (B) The preoperative MRI
superimposed on the intraoperative CT after deformable registration. (C) The deformation vector field (in blue)
derived by the registration process superimposed on the intraoperative CT scan wherein the vector field quantita-
tively describes the organ motion between the CT and MRI scans.

4 High-Performance Deformable Image Registration Algorithms for Manycore Processors

» Time-sensitive applications: Many medical-imaging applications are
time sensitive. A modern CT scanner can generate 5 GB of raw data
in about 20 s, which must be processed and used in applications
such as image-guided surgery and image-guided radiotherapy that
require very small latencies from imaging to analysis. Examples
from computer vision include real-time object recognition in clut-
tered scenes using range-image registration to solve navigation-
related problems in humanoid robots and unmanned vehicles.

* Data-intensive applications: Processing large amounts of volumetric
data in real time can be done right on a desktop machine equipped
with a multicore CPU/GPU, e.g., when constructing statistical ana-
tomical atlases in which a large number of images must be registered
with each other.

1.2 APPLICATIONS OF DEFORMABLE IMAGE REGISTRATION

The volumetric registration process consists of aligning two or more
3D images into a common coordinate frame via a deformation vector
field. Fusing multiple images in this fashion provides physicians with a
more complete understanding of patient anatomy and function. Rigid
matching is adequate for serial imaging of the skull, brain, or other rig-
idly immobilized sites. Deformable registration is appropriate for
almost all other scenarios and is useful for many applications within
medical research, medical diagnosis, and interventional treatments.

The use of deformable registration has already begun to change
medical research practices, especially in the fields of neuroanatomy and
brain science. Deformable registration plays an important role in study-
ing a variety of diseases including Alzheimer’s disease (Freeborough and
Fox, 1998; Scahill et al., 2003; Thompson et al., 2001), schizophrenia
(Gharaibeh et al., 2000; Job et al., 2003), and generalized brain develop-
ment (Thompson et al., 2000). Many of these studies make use of a pow-
erful concept known as brain functional localization (Gholipour et al.,
2007), which provides a method of mapping functional information to
corresponding anatomic locations within the brain. This allows research-
ers to correlate patient MRI scans with a brain atlas to improve our
understanding of how the brain is damaged by disease.

Deformable registration is also beginning to impact the field of
image-guided surgery. For example, neurosurgeons can now track
localized deformations within the brain during surgical procedures,

Introduction 5

thus reducing the amount of unresected tumor (Ferrant et al., 2002;
Hartkens et al., 2003). Similar benefits may be observed in surgical
operations involving the prostate (Bharatha et al., 2001; Mohamed
et al., 2002), heart (Stoyanov, 2005), and the liver (Boctor et al., 2006;
Lange et al., 2003) where local complex organ deformation are a com-
mon impediment to procedural success. The application of deformable
registration to such interventional surgical procedures does, however,
carry with it unique challenges. Often, multimodal imaging is required,
such as matching an intraoperative ultrasound with preoperative MRI
or a preoperative MRI with an intraoperative CT scan. Since such
registrations must be performed during active surgical procedures, the
time to acquire an accurate solution must be reasonably fast.
Additionally, surgical incisions and resections performed prior to
intraoperative imaging analysis result in additional deformations that
may be difficult to recover algorithmically.

In image-guided radiotherapy, deformable registration is used to
improve the geometric and dosimetric accuracy of radiation treat-
ments. Motion due to respiration has a “dose-blurring” effect, which is
important for treatments in the lung (Flampouri et al., 2006; Lu et al.,
2004; Wang et al., 2005) and liver (Brock et al., 2003; Rietzel et al.,
2005; Rohlfing et al., 2004). Day-to-day changes in organ position and
shape also affect radiological treatments to the prostate (Foskey et al.,
2005) and head and neck regions (Zhang et al., 2007). In addition to
improving treatment delivery, deformable registration is also used in
treatment verification and treatment response assessment (Brock et al.,
2006). Furthermore, deformable registration can be used to construct
time-continuous four-dimensional (4D) fields that provide a basis for
motion estimation (Mcclelland et al., 2006; Rohkohl et al., 2010) and
time-evolution visualization (Brunet et al., 2006), which aids in
improving the dosimetric accuracy to tumors within the lung.

1.3 ALGORITHMIC APPROACHES TO DEFORMABLE
REGISTRATION

The choice of an image registration method for a particular application is
still largely unsettled. There are a variety of deformable image registration
algorithms, distinguished by choice of similarity measure, transformation
model, and optimization process (Crum et al., 2004; Maintz and
Viergever, 1998; Sharp et al., 2010a, 2010b; Zitova and Flusser, 2003). The
most popular and successful methods seem to be based on surface

6 High-Performance Deformable Image Registration Algorithms for Manycore Processors

matching (Thompson and Toga, 1996), optical flow equations (Thirion,
1998), fluid registration (Christensen et al., 1996), thin-plate splines
(Bookstein, 1989), finite-element models (FEMs) (Metaxas, 1997), and B-
splines (Rueckert et al., 1999). The involvement of academic researchers in
the development of deformable registration methods has resulted in several
high-quality open-source software packages. Notable examples include
the Insight Segmentation and Registration Toolkit (ITK) (Ibanez et al.,
2003), Elastix (Klein et al., 2010), ANTS (Advanced Normalization
Tools) providing diffeomorphic registration tools with emphasis on brain
mapping (www.picsl.upenn.edu/ANTS/), and IRTK (Image Registration
Toolkit) Statistical Parametric, as well as somewhat older packages such
as Mapping software (Frackowiak et al., 1997), AIR (Woods et al., 1992),
Freesurfer (Fischl et al., 2001), and vtkCISG (Hartkens, 1993).

Though deformable registration has the potential to greatly improve
the geometric precision for a variety of medical procedures, modern algo-
rithms are computationally intensive. Consequently, deformable registra-
tion algorithms are not commonly accepted into general clinical practice
due to their excessive processing time requirements. The fastest family of
deformable registration algorithms are based on optical flow methods
typically requiring several minutes to compute (Wang et al., 2005), and it
is not unusual to hear of B-spline registration algorithms requiring hours
to compute (Aylward et al., 2007; Rohde et al., 2003) depending on
the specific algorithm implementation, image resolution, and clinical
application requirements. However, despite its computational complex-
ity, B-spline-based registration remains popular due to its flexibility and
robustness in providing the ability to perform both unimodal and multi-
modal registrations. In other words, B-spline-based registration is capable
of registering two images obtained via the same imaging method (unimo-
dal registration) as well as images obtained via differing imaging methods
(multimodal registration). Consequently, surgical operations benefiting
from CT to MRI registration may be routinely performed once multi-
modal B-spline-based registration can be performed with adequate speed.

A key element in accelerating medical-imaging algorithms, including
deformable registration, is the use of parallel processing. In many cases,
images may be partitioned into computationally independent subregions
and subsequently farmed out to be processed in parallel. The most prom-
inent example of this approach is the use of a solver such as PETSc
(http://www.mcs.anl.gov/petsc). The PETSc library is a suite of data
structures and parallel routines for partial differential equations (PDEs)

http://www.picsl.upenn.edu/ANTS/
http://www.mcs.anl.gov/petsc

Introduction 7

that are accelerated using a combination of Message Passing Interface
(MPI), shared memory pthreads, and GPU programming. Parallel MPI-
based implementations of the FEM-based registration method using
PETsc have been demonstrated and benchmarked by Warfield et al.
(2000, 2005) and Sermesant et al. (2003). The overall approach is to first
parallelize the appropriate algorithmic steps (e.g., the displacement field
estimation), partition the image data into small sets, and then process
each set independently on a computer within the cluster.

While cluster computing is a well-established technique for accelerat-
ing image computing algorithms, recent advances in multicore processor
design offer new opportunities for truly large-scale and cost-effective par-
allel computing on a single chip. The cell processor and GPUs are two
examples of many-core processors designed specifically to support the
single chip parallel computing paradigm. These processors have a large
number of arithmetic units on chip, far more than any general-purpose
microprocessor, making them well suited for high-performance parallel-
processing tasks. There has been a significant amount of recent research
aimed at accelerating a range of image computing algorithms, including
image reconstruction, registration, and fusion using these new hardware
platforms, especially GPUs, and we refer the interested reader to the fol-
lowing two recent articles and the references therein for a good survey of
ongoing research in this area. Pratx and Xing (2011) survey applications
of GPU computing in the major areas of medical physics: image recon-
struction, dose calculation and treatment plan optimization, and image
processing. Shams (2010) provides a survey of registration algorithms for
medical images, both rigid and deformable, that have been implemented
using high-performance computing architectures including multicore
CPUs and GPUs.

1.4 ORGANIZATION OF CHAPTERS

This book aims to provide the reader with an understanding of how to
design and implement deformable registration algorithms suitable for
execution on multicore CPUs and GPUs, focusing on two widely used
algorithms: demons (optical flow) and B-spline-based registration. The
GPU kernels are implemented using Compute Unified Device
Architecture (CUDA), the programming interface used by NVidia
GPUs, and the multicore CPU versions are developed using OpenMP.
The algorithms discussed in the subsequent chapters have been
implemented and validated as part of the Plastimatch project (http:/

http://www.plastimatch.org

8 High-Performance Deformable Image Registration Algorithms for Manycore Processors

www.plastimatch.org), a suite of open-source, high-performance algo-
rithms for image computing being developed by the authors (Shackleford
et al., 2010a, 2010b, 2012a, 2012b; Sharp et al., 2007, 2010a, 2010b).

Chapter 2 provides an overview of the unimodal B-spline registra-
tion algorithm and subsequently introduces a grid-alignment scheme
for improving the algorithm’s computation speed for both single and
multicore architectures. Using the grid-alignment scheme as a founda-
tion, a high-performance multicore algorithm is developed and
described in detail. The fundamental concepts of image-similarity scor-
ing, vector field evolution, and B-spline parameterization are covered
in depth. Additionally, aspects of the CUDA programming model rele-
vant to implementing the B-spline deformable registration algorithm
on modern GPU hardware are introduced and discussed, and a highly
parallel GPU implementation is developed. Finally, the single-core
CPU, multicore CPU, and many-core GPU-based implementations are
benchmarked for performance and registration quality using synthetic
CT images as well as thoracic CT image volumes.

Chapter 3 describes how the B-spline registration algorithm may be
extended to perform multimodal image registration by utilizing the
mutual information (MI) similarity metric. Modifications to the algo-
rithm structure and the data flow presented in Chapter 2 are discussed
in detail, and strategies for accelerating these new algorithmic addi-
tions are explored. Specific attention is directed toward developing
memory-efficient and data-parallel methods of constructing the mar-
ginal and joint image-intensity histograms, since these data structures
are key to successfully performing the MI-based registration. The
impact of the MI similarity metric on the analytic formalism driving
the vector field evolution is covered in depth. The partial volume inter-
polation method is also introduced; dictating how the image-intensity
histogram data structures evolve with the vector field evolution.
Multicore implementations are benchmarked for performance using
synthetic image volumes. Finally, registration quality is assessed using
examples of multimodal thoracic MRI to CT deformable registration.

Chapter 4 develops an analytic method for constraining the evolu-
tion of the deformation vector field that seamlessly integrates into both
unimodal and multimodal B-spline-based registration algorithms.
Although the registration methods presented in Chapters 2 and 3 gen-
erate vector fields describing how best to transform one image to
match the other, there is no guarantee that these transformations will

http://www.plastimatch.org

Introduction 9

be physically valid. Image registration is an ill-posed problem in that it
lacks a unique solution to the vector deformation field, and conse-
quently, the solution may describe a physical deformation that did not
or could not have occurred. However, by imposing constraints on the
character of the vector field, it is possible to guide its evolution toward
physically meaningful solutions; in other words, the ill-posed problem
is regularized. This chapter provides the analytic mathematical formal-
ism required to impose second-order smoothness upon the deformation
vector field in a faster and more efficient fashion than numerically
based central differencing methods. Furthermore, we show that such
analytically-derived matrix operators may be applied directly to the B-
spline parameterization of the vector field to achieve the desired physi-
cally meaningful solutions. Single and multicore CPU implementations
are developed and discussed and the performance for both implemen-
tations is investigated with respect to the numerical method in terms of
execution-time overhead, and the quality of the analytic implementa-
tions is investigated via a thoracic MRI to CT case study.

Chapter 5 deals with optical flow methods that describe the registra-
tion problem as a set of flow equations, under the assumption that image
intensities are constant between views. The most common variant is the
“demons algorithm,” which combines a stabilized vector field estimation
algorithm with Gaussian regularization. The algorithm is iterative and
alternates between solving the flow equations and regularization. We
describe data-parallel designs for the demons deformable registration
algorithm, suitable for use on a GPU. Streaming versions of these algo-
rithms are implemented using the CUDA programming environment.

Free and open-source software is playing an increasingly important
role throughout society. Free software provides a common economic
good by reducing duplicated effort and advances science by promoting
the open exchange of ideas. Chapter 6 introduces the Plastimatch open
software suite, which implements a variety of useful tools for high-
performance image computing. These tools include cone-beam CT
reconstruction, rigid and deformable image registration, digitally
reconstructed radiographs, and DICOM-RT file exchange.

REFERENCES

Aylward, S., Jomier, J., Barre, S., Davis, B., Ibanez, L., 2007. Optimizing ITK’s registra-
tion methods for multi-processor, shared-memory systems. MICCAI Open Source and Open
Data Workshop. Brisbane, Australia.

10 High-Performance Deformable Image Registration Algorithms for Manycore Processors

Bharatha, A., Hirose, M., Hata, N., Warfield, S.K., Ferrant, M., Zou, K.H., et al., 2001.
Evaluation of three-dimensional finite element-based deformable registration of pre- and intrao-
perative prostate imaging. Med. Phys. 28 (12), 2551—-2560.

Boctor, E., deOliveira, M., Choti, M., Ghanem, R., Taylor, R., Hager, G., et al., 2006.
Ultrasound monitoring of tissue ablation via deformation model and shape priors. International
Conference on Medical Image Computing and Computer-Assisted Intervention, Copenhagen,
Denmark., pp. 405—412.

Bookstein, F., 1989. Principal warps: thin-plate splines and the decomposition of deformations.
IEEE Trans. Pattern Anal. Mach. Intell. 11 (6), 567—585.

Brock, K., Balter, J., Dawson, L., Kessler, M., Meyer, C., 2003. Automated generation of a
four-dimensional model of the liver using warping and mutual information. Med. Phys. 30 (6),
1128—1133.

Brock, K., Dawson, L., Sharpe, M., Moseley, D., Jaffray, D., 2006. Feasibility of a novel
deformable image registration technique to facilitate classification, targeting, and monitoring of
tumor and normal tissue. Int. J. Radiat. Oncol. Biol. Phys. 64 (4), 1245—1254.

Brunet, T., Nowak, K., Gleicher, M., 2006. Integrating dynamic deformations into interactive
volume visualization. Eurographics/IEEE VGTC Conference on Visualization. Lisbon, Portugal.,
pp- 219-226.

Christensen, G., Rabbitt, R., Miller, M., 1996. Deformable templates using large deformation
kinematics. IEEE Trans. Image Process. 5 (10), 1435—1447.

Crum, W., Hartkens, T., Hill, D., 2004. Non-rigid image registration: theory and practice. Br. J.
Radiol. 77, S140—S153.

Ferrant, M., Nabavi, A., Macq, B., Black, P., Jolesz, F., Kikinis, R., et al., 2002. Serial registra-
tion of intra-operative MR images of the brain. Med. Image Anal. 6 (4), 337—360.

Fischl, B., Liu, A., Dale, A., 2001. Automated manifold surgery: constructing geometrically accu-
rate and topologically correct models of the human cerebral cortex. IEEE Trans. Med. Imaging
20 (1), 70—80.

Flampouri, S., Jiang, S., Sharp, G., Wolfgang, J., Patel, A., Choi, N., 2006. Estimation of the
delivered patient dose in lung IMRT treatment based on deformable registration of 4D-CT data
and Monte Carlo simulations. Phys. Med. Biol. 51 (11), 2763—2779.

Foskey, M., Davis, B., Goyal, L., Chang, S., Chaney, E., Strehl, N., et al., 2005. Large deforma-
tion three-dimensional image registration in image-guided radiation therapy. Phys. Med. Biol. 50
(24), 5869—5892.

Frackowiak, R., Friston, K., Frith, C., Dolan, R., Mazziotta, J. (Eds.), 1997. Human Brain
Function. Academic Press, Waltham, MA, USA.

Freeborough, P., Fox, N., 1998. Modeling brain deformations in Alzheimer disease by fluid regis-
tration of serial 3D MR images. J. Comput. Assist. Tomogr. 22 (5), 838—843.

Gharaibeh, W., Rohlf, F., Slice, D., DeLisi, L., 2000. A geometric morphometric assessment of
change in midline brain structural shape following a first episode of schizophrenia. Biol.
Psychiatry 48 (5), 398—405.

Gholipour, A., Kehtarnavaz, N., Briggs, R., Devous, M., Gopinath, K., 2007. Brain functional
localization: a survey of image registration techniques. IEEE Trans. Med. Imaging 26 (4),
427—-451.

Hartkens, T., 1993. Measuring, Analyzing, and Visualizing Brain Deformation Using Non-Rigid
Registration. PhD thesis, King’s College, London.

Hartkens, T., Hill, D.L., Castellano-Smith, A.D, Hawkes, D.J., Maurer Jr., C.R., Martin, T.,
et al., 2003. Measurement and analysis of brain deformation during neurosurgery. IEEE Trans.
Med. Imaging 22 (1), 82—92.

http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref5
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref5
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref5
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref7
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref7
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref7
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref8
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref8
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref8
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref8
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref9
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref9
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref9
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref9
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref10
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref10
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref10
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref10
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref11
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref11
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref12
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref12
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref12
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref13
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref13
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref13
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref13
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref14
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref14
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref14
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref14
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref15
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref15
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref15
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref15

Introduction 11

Ibanez, L., Schroeder, W., Ng, L., Cates, J., 2003. The ITK Software Guide. Kitware, Inc.,
Clifton Park, NY, USA, <http://www.itk.org/ItkSoftwareGuide.pdf>.

Job, D., Whalley, H., McConnell, S., Glabus, M., Johnstone, E., Lawrie, S., 2003. Voxel-based mor-
phometry of grey matter densities in subjects at high risk of schizophrenia. Schizophr. Res. 64 (1),
1-13.

Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W., 2010. Elastix: a toolbox for
intensity based medical image registration. IEEE Trans. Med. Imaging 29 (1), 196—205.

Lange, T., Eulenstein, S., Hunerbein, M., Schlag, P., 2003. Vessel-based non-rigid registration of
MR/CT and 3D ultrasound for navigation in liver surgery. Comput. Aided Surg. 8 (5), 228—240.

Lu, W., Chen, M., Olivera, G., Ruchala, K., Mackie, T., 2004. Fast free-form deformable regis-
tration via calculus of variations. Phys. Med. Biol. 49 (14), 3067—3087.

Maintz, J., Viergever, M., 1998. A survey of medical image registration. Med. Image Anal. 2 (1),
1-37.

McClelland, J.R., Blackall, J.M., Tarte, S., Chandler, A.C., Hughes, S., Ahmad, S., et al., 2006.
A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy.
Med. Phys. 33 (9), 3348—3359.

Metaxas, D., 1997. Physics-Based Deformable Models: Applications to Computer Vision,
Graphics and Medical Imaging. Kluwer Academic Publishers, Norwell, MA, USA.

Mohamed, A., Davatzikos, C., Taylor, R., 2002. A combined statistical and biomechanical model
for estimation of intra-operative prostate deformation. International Conference on Medical
Image Computing and Computer-Assisted Intervention. Tokyo, Japan., pp. 452—460.

Pratx, G., Xing, L., 2011. GPU computing in medical physics: a review. Med. Phys. 38 (5),
2685—2698.

Rietzel, E., Chen, G., Choi, N., Willet, C., 2005. Four-dimensional image-based treatment plan-
ning: target volume segmentation and dose calculation in the presence of respiratory motion. Int.
J. Radiat. Oncol. Biol. Phys. 61 (5), 1535—1550.

Rohde, G., Aldroubi, A., Dawant, B., 2003. The adaptive bases algorithm for intensity based
nonrigid image registration. IEEE Trans. Med. Imaging 22 (11), 1470—1479.

Rohkohl, C., Lauritsch, G., Biller, L., Primmer, M., Boese, J., Rohkohl, C., et al., 2010.
Interventional 4-D motion estimation and reconstruction of cardiac vasculature without motion
periodicity assumption. Med. Image Anal. 14 (5), 687—694.

Rohlfing, T., Maurer, C., O’Dell, W., Zhong, J., 2004. Modeling liver motion and deformation
during the respiratory cycle using intensity-based nonrigid registration of gated MR images. Med.
Phys. 31 (3), 427—432.

Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J., et al., 1999.
Nonrigid registration using free-form deformations: application to breast MR images. IEEE
Trans. Med. Imaging 18 (8), 712—721.

Scahill, R.I., Frost, C., Jenkins, R., Whitwell, J.L., Rossor, M.N., Fox, N.C., et al., 2003. A lon-
gitudinal study of brain volume changes in normal aging using serial registered magnetic reso-
nance imaging. Arch. Neurol. 60 (7), 989—994.

Sermesant, Clatz, M.O., Li, Z., Lantéri, S., Delingette, H., Ayache, N., 2003. A parallel imple-
mentation of non-rigid registration using a volumetric biomechanical model. WBIR Workshop,
Springer-Verlag, Philadelphia, PA, USA, pp. 398—407.

Shackleford, J., Kandasamy, N., Sharp, G., 2010a. On developing B-spline registration algo-
rithms for multi-core processors. Phys. Med. Biol. 55 (21), 6329—6352.

Shackleford, J., Kandasamy, N., Sharp, G., 2010b. Deformable volumetric registration using B-
splines. In: Hwu, W.-M. (Ed.), GPU Computing Gems, 4. Elsevier, Amsterdam, The Netherlands.

http://www.itk.org/ItkSoftwareGuide.pdf
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref17
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref17
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref17
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref17
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref18
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref18
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref18
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref19
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref19
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref19
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref20
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref20
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref20
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref21
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref21
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref21
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref22
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref22
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref22
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref22
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref23
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref23
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref24
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref24
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref24
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref25
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref25
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref25
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref25
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref26
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref26
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref26
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref27
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref27
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref27
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref27
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref28
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref28
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref28
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref28
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref29
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref29
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref29
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref29
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref30
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref30
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref30
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref30
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref31
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref31
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref31
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref32
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref32

12 High-Performance Deformable Image Registration Algorithms for Manycore Processors

Shackleford, J., Yang, Q., Louren, A., Shusharina, N., Kandasamy, N., Sharp, G.,2012a.
Analytic regularization of uniform cubic <mac_ah > B-spline </mac_ah > deformation fields.
International Conference on Medical Image Computing and Computer Assisted Intervention,
Nice, France, vol. 15 (Part 2), pp. 122—129.

Shackleford, J., Kandasamy, N., Sharp, G., 2012b. Accelerating MI-based B-spline registration
using CUDA enabled GPUs. MICCAI 2012 Data- and Compute-Intensive Clinical and
Translational Imaging Applications (DICTA-MICCAI) Workshop, Nice, France.

Shams, R., Sadeghi, P., Kennedy, R.A., Hartley, R.I., 2010. A survey of medical image registra-
tion on multi-core and the GPU. IEEE Signal Process. Mag. 27 (2), 50—60.

Sharp, G., Kandasamy, N., Singh, H., Folkert, M., 2007. GPU-based streaming architectures for
fast cone-beam CT image reconstruction and demons deformable registration. Phys. Med. Biol.
52 (19), 5771-5783.

Sharp, G., Peroni, M., Li, R., Shackleford, J., Kandasamy, N., 2010a. Evaluation of Plastimatch
B-spline registration on the empirel0 data set. Medical Image Analysis for the Clinic: A Grand
Challenge, MICCAI Workshop, Beijing, China, pp. 99—108.

Sharp, G., Li, R., Wolfgang, J., Chen, G., Peroni, M., Spadea, M., et al., 2010b. Plastimatch: an
open source software suite for radiotherapy image processing. International Conference on
Computers Radiation Therapy (ICCR), Amsterdam, The Netherlands.

Stoyanov, D., Mylonas, G., Deligianni, F., Darzi, A., Yang, G., 2005. Soft-tissue motion track-
ing and structure estimation for robotic assisted MIS procedures. International Conference on
Medical Image Computing and Computer-Assisted Intervention. Palm Springs, California, USA,
pp. 139—146.

Thirion, J., 1998. Image matching as a diffusion process: an analogy with Maxwell’s demons.
Med. Image Anal. 2 (3), 243—260.

Thompson, P., Toga, A., 1996. A surface-based technique for warping three-dimensional images
of the brain. IEEE Trans. Med. Imaging 15 (4), 402—417.

Thompson, P., Giedd, J., Woods, R., MacDonald, D., Evans, A., Toga, A., 2000. Growth pat-
terns in the developing human brain detected using continuum-mechanical tensor mapping.
Nature 404 (6774), 190—193.

Thompson, P.M, Mega, M.S., Woods, R.P., Zoumalan, C.I., Lindshield, C.J., Blanton, R.E.,
et al., 2001. Cortical change in Alzheimer’s disease detected with a disease-specific population-
based brain atlas. Cereb. Cortex 11 (1), 1-16.

Wang, H., Dong, L., O’Daniel, H., Mohan, R., Garden, A.S., Ang, K.K., et al., 2005.
Validation of an accelerated ‘demons’ algorithm for deformable image registration in radiation
therapy. Phys. Med. Biol. 50 (12), 2887—2905.

Warfield, S., Ferrant, M., Gallez, X., Nabavi, A., Jolesz, F., Kikinis, R., 2000. Real-time bio-
mechanical simulation of volumetric brain deformation for image guided neurosurgery.
Supercomputing. Article 23, 1—16.

Warfield, S.K, Haker, S.J., Talos, L.F., Kemper, C.A., Weisenfeld, N., Mewes, A.U., et al., 2005.
Capturing intraoperative deformations: research experience at Brigham and Women’s hospital.
Med. Image Anal. 9 (2), 145—162.

Woods, R., Cherry, S., Mazziotta, J., 1992. Rapid automated algorithm for aligning and reslicing
PET images. J. Comput. Assist. Tomogr. 16 (4), 620—633.

Zhang, T., Chi, Y., Meldolesi, E., Yan, D., 2007. Automatic delineation of on-line head-and-
neck computed tomography images: toward on-line adaptive radiotherapy. Int. J. Radiat. Oncol.
Biol. Phys. 68 (2), 522—530.

Zitova, B., Flusser, J., 2003. Image registration methods: a survey. Image Vis. Comput. 21,
977—1000.

http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref33
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref33
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref33
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref34
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref34
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref34
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref34
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref35
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref35
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref35
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref36
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref36
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref36
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref37
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref37
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref37
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref37
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref38
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref38
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref38
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref38
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref39
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref39
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref39
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref39
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref40
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref40
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref40
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref40
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref41
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref41
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref41
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref41
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref42
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref42
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref42
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref43
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref43
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref43
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref43
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref44
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref44
http://refhub.elsevier.com/B978-0-12-407741-6.00001-3/sbref44

Unimodal B-Spline Registration

Information in This Chapter:

* Overview of B-spline registration

* Optimized implementation of the B-spline interpolation operation

* Computation of the cost function gradient and optimization of the
B-spline coefficients

* Design of GPU kernels to perform the interpolation and gradient
calculations

* Performance evaluation

2.1 INTRODUCTION

B-spline registration is a method of deformable registration that uses
B-spline curves to define a continuous deformation field that maps
each and every voxel in a moving image to a corresponding voxel
within a fixed or reference image (Rueckert et al., 1999). An optimal
deformation field accurately describes how the voxels in the moving
image have been displaced with respect to their original positions in
the fixed image. Naturally, this assumes that the two images are of the
same scene taken at different times using similar or different imaging
modalities. This chapter deals with unimodal registration which is the
process of matching images obtained via the same imaging modality.
Figure 2.1 shows an example of deformable registration of two 3D CT
images using B-splines, where registration is performed between an
inhaled lung image and an exhaled image taken at two different times.
Prior to registration, the image difference shown is quite large,
highlighting the motion of the diaphragm and pulmonary vessels dur-
ing breathing. Registration is performed to generate the vector or dis-
placement field. After registration, the image difference is much
smaller, demonstrating that the registration has successfully matched
tissues of similar density.

In the case of B-spline registration, the dense deformation field can
be parameterized by a sparse set of control points which are uniformly
High-Performance Deformable Image Registration Algorithms for Manycore Processors.

DOTI: http://dx.doi.org/10.1016/B978-0-12-407741-6.00002-5
© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-407741-6.00002-5

14 High-Performance Deformable Image Registration Algorithms for Manycore Processors

——>| B-Spline registration |—>| Deformation |—>

Exhaled lung : : Applied deformation field

Difference without registration

Inhaled lung Difference with registration

Figure 2.1 Deformable registration of two 3D CT volumes. Images of an inhaled lung and an exhaled lung taken at
different times from the same patient serve as the fixed and moving images, respectively. The registration algorithm
iteratively deforms the moving image in an attempt to minimize the intensity difference between the images. The
final result is a vector field describing how voxels in the moving image should be shifted in order to make it match
the fixed image. The difference between the fixed and moving images with and without registration is also shown.

distributed throughout the moving image’s voxel grid. This results in
the formation of two grids that are aligned with one another: a dense
voxel grid and a sparse control point grid. Individual voxel movement
between the two images is parameterized in terms of the coefficient
values provided by these control points, and the displacement vectors
are obtained via interpolation of these control point coefficients using
piecewise continuous B-spline basis functions. Registration of images
can then be posed as a numerical optimization problem wherein the
spline coefficients are refined iteratively until the warped moving image
closely matches the fixed image. Gradient descent optimization is often
used, meaning ecither analytic or numeric gradient estimates must be
available to the optimizer after each iteration. This requires that we
evaluate (i) a cost function corresponding to a given set of spline coef-
ficients that quantifies the similarity between the fixed and moving
images and (ii) the change in this cost function with respect to the coef-
ficient values at each individual control point which we will refer to as
the cost function gradient. The registration process then becomes one
of iteratively defining coefficients, performing B-spline interpolation,
evaluating the cost function, calculating the cost function gradient for
each control point, and performing gradient descent optimization to
generate the next set of coefficients.

The above-described process has two time-consuming steps:
B-spline interpolation, wherein a coarse array of B-spline coefficients is
taken as the input and a fine array of displacement values is computed
as the output defining the vector field from the moving image to the

Unimodal B-Spline Registration 15

reference image, and the cost function gradient computation that
requires evaluating the partial derivatives of the cost function with
respect to each spline-coefficient value. Recent work has focused on
accelerating these steps within the overall registration process using
multicore processors. For example, the authors Rohlfing et al. (2003),
Rohrer et al. (2008), Zheng et al. (2009), and Saxena et al. (2010) have
developed parallel deformable registration algorithms using mutual
information between the images as the similarity measure. Results
reported by Zheng et al. (2009) for B-splines show a speedup of n/2
for n processors compared to a sequential implementation; two
512 X 512 X459 images are registered in 12 min using a cluster of
10 computers, each with a 3.4-GHz CPU, compared to 50 min for a
sequential program. Rohfling et al. (2003) present a parallel design
and implementation of a B-spline registration algorithm based on
mutual information for shared-memory multiprocessor machines.
Rohrer et al. (2008) describe a design for the Cell processor and a
GPU-based design is discussed in Saxena et al. (2010).

This chapter describes how to develop GPU-based designs to accel-
erate both steps in the B-spline registration process, and its main con-
tribution with respect to the state of the art lies in the design of the
second step: the cost function gradient computation. We show how to
optimize the GPU-based designs to achieve coalesced accesses to GPU
global memory, a high compute to memory access ratio (number of
floating point calculations performed for each memory access), and
efficient use of shared memory. The resulting design, therefore, com-
putes and aggregates the large amount of intermediate values needed
to obtain the gradient very efficiently and can process large data sets.

We follow a systematic approach to accelerating B-spline registra-
tion algorithms. First, we develop a fast reference (sequential) imple-
mentation by developing a grid-alignment technique and
accompanying data structure that greatly reduces redundant computa-
tion in the registration algorithm. We then show how to identify the
data parallelism of the grid-aligned algorithm and how to restructure it
to fit the single instruction, multiple data (SIMD) model, necessary to
effectively utilize the large number of processing cores available in
modern GPUs. The SIMD model can exploit the fine-grain parallelism
present in registration algorithms, wherein operations can be per-
formed on individual voxels in parallel. For complex spline-based

16 High-Performance Deformable Image Registration Algorithms for Manycore Processors

algorithms, however, there are many ways of structuring the same
algorithm within the SIMD model, making the problem quite challeng-
ing. A number of SIMD versions must therefore be developed and
their performance analyzed to discover the optimal implementation.
We introduce a carefully optimized implementation that avoids redun-
dant computations while exhibiting regular memory access patterns
that are highly conducive to the GPU’s memory architecture. We also
evaluate other design options with speedup implications such as using
a lookup table (LUT) on the GPU to store precomputed spline param-
eterization data versus computing this information on the fly.

Finally, single-core CPU, multicore CPU, and many-core GPU-
based implementations are benchmarked for performance as well as
registration quality. The NVidia Tesla C1060 and 680 GTX GPU plat-
forms are used for the GPU versions. Though speedup varies by image
size, in the best case, the 680 GTX achieves a speedup of 39 times over
the reference implementation and the multicore CPU algorithm
achieves a speedup of 8 times over the reference when executed on
eight CPU cores. Furthermore, the registration quality achieved by the
GPU is nearly identical to that of the CPU in terms of the RMS differ-
ences between the vector fields.

2.2 OVERVIEW OF B-SPLINE REGISTRATION

The B-spline deformable registration algorithm maps each and every
voxel in a fixed image S to a corresponding voxel in a moving image
M. This mapping is described by a deformation field v, which is
defined at each and every voxel within the fixed image. An optimal
deformation field accurately describes how the voxels in M have been
displaced with respect to their original positions in S and finding this
deformation field is an iterative process. Also, as noted in the introduc-
tion, B-spline interpolation and gradient computation are the two most
time-consuming stages within the overall registration process, and so
we will focus on accelerating these stages using a grid-alignment
scheme and accompanying data structures.

2.2.1 Using B-Splines to Represent the Deformation Field

The dense deformation field v is parameterized by a sparse set of con-
trol points, which are uniformly distributed throughout the fixed
image’s voxel grid. This results in the formation of two grids that are

Unimodal B-Spline Registration 17

aligned to one another: a dense voxel grid and a sparse control point
grid. In this scheme, the control point grid partitions the voxel grid
into many equally sized regions called tiles. A spline curve is a type of
continuous curve defined by a sparse set of discrete control points.
Generally speaking, the number of control points required for each
dimension is n + 1, where 7 is the order of the employed spline curve.
Since we are working with cubic B-splines, we require 4 control points
in each dimension, which results in 64 (4*) control points for each tile.
The deformation field at any given voxel within a tile is computed by
utilizing the 64 control points in the immediate vicinity of the tile.
Furthermore, because we are working in three dimensions, three coeffi-
cients (Py, Py, P.) are associated with each control point, one for each
dimension. Mathematically, the x-component of the deformation field
for a voxel located at coordinates (x,y,z) in the fixed image can be
described as

3
> BiwB;0)B(w)P(l,m, n), 2.1)

303

V\(}) =

i=0 j=0 k=0
where ((.) are the spline basis functions obtained as follows. Let
Ny, N,, and N. denote the distance between control points in terms of
voxels in the x,y, and z directions, respectively. The volume is there-
fore segmented by the control point grid into many equal-sized tiles,
each of dimension N, X N, X N. voxels. Then, the 3D coordinate of
the tile within which the voxel v falls is given by

il I A .
o e

and the 64 control points influencing the voxels within the tile are
indexed via /, m, and n, where

z

X . y .
== -1+ m=|— —1+ = - .
/ { - 1 lJ, { ; 1]J, n { - 1 kJ 2.3)

The local coordinates (u, v, w) of the voxel within its housing tile are

X X y ¥ z z
- x| X P - 24
“TN. {NJ TN, {NJ’ Y LVJ 24)

Z

18 High-Performance Deformable Image Registration Algorithms for Manycore Processors

which are normalized between [0, 1]. Finally, the uniform cubic B-
spline basis function 3; along the x-direction is given by

4 1_ 3
—(6u) =0
3u — 6u? + 4
_— i=1
6
() = 2.5
biw) 3+ 3 +3u+1 @)
i=2
6
3
% i=3

and similarly for §,, and (3, along the y and z directions, respectively.

Figure 2.2 visualizes the computation of the deformation field within
a single tile for a two-dimensional image. Because this example is 2D,
only 16 control points are required to compute the deformation field for

’v
EEE<ENN

Tile | Tile Tile
0,0)] (1,j) (4,0)

o= Olb

0 70 O (D O
rf4144 (1-u) =
'A /) o N - o
3uP-6u’+4 for n=1
FXORY °
. “3uP+3uP+3ut1 o =2
6
\ %3 for n=3
(b)

Figure 2.2 Graphical example of computing the deformation field from B-spline coefficients in two dimensions.
(A) The 16 control points needed to compute the deformation field within the highlighted tile are shown in blue.
The purple arrows represent the deformation vectors associated with each voxel within the tile. (B) Uniform cubic
B-spline basis function plotted (top) and written as a piecewise algebraic equation (bottom).

Unimodal B-Spline Registration 19

any given tile; the 16 needed to compute the deformation field within
the highlighted tile have been drawn in grey, whereas all the other con-
trol points are drawn in black. Each of these control points has associ-
ated with it two coefficients, (Py, P,), which are depicted as the x and y
components of the larger arrows. The B-spline basis functions (3; and
0,, have been superimposed on the grid’s x-axis and y-axis, respectively,
to aid understanding. Pieces of the B-spline basis functions irrelevant to
the highlighted tile’s deformation field computation have been faded.
The smaller arrows represent the deformation field, which is obtained
by computing v, and v, for each voxel within the tile. The 3D case is
similar but requires the additional computation of v, at each voxel.

A straightforward implementation of Eq. (2.1) to compute the dis-
placement vector v for a single voxel requires 192 computations of the
cubic polynomial B-spline basis function 3 as well as 192 multiplica-
tions and 63 additions. However, many of these calculations are redun-
dant and can be eliminated by implementing a data structure that
exploits symmetrical features that emerge as a result of the grid align-
ment, making the implementation of Eq. (2.1) much faster
(Shackleford et al., 2010). To see how this can be done, let us consider
the example shown in Figure 2.3A. By aligning the voxel grid with a
uniformly spaced control grid, the image volume becomes partitioned
into many equal-sized tiles. In the example, the control grid partitions
the voxel grid into 6 X5 tiles. The vector field at any given voxel
within a tile is influenced by the 16 control points in the tile’s immedi-
ate vicinity and the value of the B-spline basis function product evalu-
ated at the voxel, which depends only on the voxel’s local coordinates
(or offset) within the tile. Notice that the two marked voxels in
Figure 2.3A, while residing at different locations within the image,
both possess the same offsets within their respective tiles. This results
in the B-spline basis function product yielding identical values when
evaluated at these two voxels. This property allows us to precompute
all relevant B-spline basis function products once instead of recomput-
ing the evaluation for each individual tile. In general, aligning the con-
trol and voxel grids allows us to perform the following optimizations
when performing the interpolation operation using cubic B-splines:

+ All voxels residing within a single tile use the same set of 64 control
points to compute their respective displacement vectors. So, for each
tile in the volume, the corresponding set of control point indices can

20 High-Performance Deformable Image Registration Algorithms for Manycore Processors

(A) > X Legend
*----@0---- @ ---- * - -
0 X X —— Voxel grid
: : : - — B-spline grid
I I I @ Control point
y & -

\

R S
|
|
|
|
I

I I
Voxel (8,7) at offset (2,2) of tile (1,1)
Voxel (2,7) at offset (2,2) of tile (0,1)

(B) Index LUT Coefficents
[T1 I]

—
[11 I

—+—>(®)—> Interpolant

Voxel { Tile B
index

Multiplier LUT Gradient
[11 |

L
[1 I

—p |

Gradient T

Figure 2.3 (A) A portion of a 2D image showing a B-spline control point grid superimposed upon an aligned voxel
grid. Since both the marked voxel and the grayed voxel are located at the same relative offset within their respec-
tive tiles, both voxels will use the same (3,(u)g3,,(v). (B) For aligned grids, LUTSs can accelerate deformable regis-
tration computations by eliminating redundant computations.

be precomputed and stored in an LUT, called the Index LUT.
These indices then serve as pointers to a table containing the corre-
sponding B-spline coefficients.

* For a tile of dimension N, =N,XN,XN., the number of
Bw)B(v)B(w) combinations is limited to &, values. Furthermore,
two voxels belonging to different tiles but possessing the same

Unimodal B-Spline Registration 21

normalized coordinates (u,v,w) within their respective tiles will be
subject to identical G(u)B(v)B(w) products. Therefore, we can pre-
compute these values for all valid normalized coordinate combina-
tions (u#, v, and w) and store the results into a LUT called the
Multiplier LUT.

Figure 2.3B shows the complete data structure required to support the
above-described optimizations. For each voxel, its absolute coordinate
(x,y,z) within the volume is used to calculate the tile number that the
voxel falls within as well as the voxel’s relative coordinates within that tile
using Egs. (2.2) and (2.4), respectively. The tile number is used to query
the Index LUT, which provides the coefficient values associated with the
64 control points influencing the voxel’s interpolation calculation. The
voxel’s relative coordinates (u, v, w) within the tile determine its index
within [0, N,,], which is used to retrieve the appropriate precomputed
Bw)B(v)B(w) product from the Multiplier LUT. Computing v, the x-
component of the displacement vector for the voxel, therefore, requires
looping through the 64 entries of each LUT, fetching the associated
values, multiplying, and accumulating. Similar computations are required
to obtain v, and v.. The LUTs are stored in CPU cache or in the texture
unit on the GPU, thereby achieving very fast lookup times.

2.2.2 Computing the Cost Function

Once the displacement vector field is generated as per Eq. (2.1), it is
used to deform each voxel in the moving image. Trilinear interpolation
is used to determine the value of voxels mapping to noninteger grid
coordinates. Once deformed, the moving image is compared to the
fixed image in terms of a cost function. Recall that a better registration
results in a mapping between the fixed and moving images causing
them to appear more similar. As a result, the cost function is some-
times also referred to as a similarity metric. The unimodal registration
process matches images using the sum of squared differences (SSD) cost
function which is computed once per iteration by accumulating the
square of the intensity difference between the fixed image S and the
deformed moving image M as

1
C= IS S S p)= Mt vyt)P, (26)

where N denotes the total number of voxels in the moving image M
after the application of the deformation field ».

22 High-Performance Deformable Image Registration Algorithms for Manycore Processors

2.2.3 Optimizing the B-Spline Coefficients

While evaluating the cost function provides a metric for determining
the quality of a registration for a given set of coefficients, it provides
no insight as to how we can optimize the coefficients to yield an even
better registration. However, by taking the derivative of the cost func-
tion C with respect to the B-spline coefficients P, we can determine
how the cost function changes as the coefficients change. This provides
us with the means to conduct an intelligent search for coefficients that
cause the cost function to decrease and, thus, obtain a better registra-
tion. Such a method of optimization is known as gradient descent and,
in this context, the derivative of the cost function is referred to as the
cost function gradient. As we move along the cost function gradient,
the cost function will decrease until we reach a global (or local) mini-
mum. Though there are more sophisticated methods of optimization, a
simple method would be to use

oC

Py =Pi—ai—,
+1 a@P,-

i=1,2,3,... 2.7)

to iteratively tune P, the vector comprising the P, P,, and P. B-spline
coefficients. Here, i denotes the iteration number and a; is a scalar gain
factor that regulates how fast we descend along the gradient.

To compute the gradient for a control point at grid coordinates
(k, A\, 1) we begin by using the chain rule to decompose the expression
into two terms as

oc 1 oC AT y.z)
aP:‘u7>\a/1 N(_x’y,z) al_j('x?yﬂ Z) aP

2.8)

where the summation is performed over all voxels (x,y,z) contained
within the 64 tiles found in the control point’s local support region
(Kybic and Unser, 2003). This decomposition allows us to evaluate
the cost function gradient’s dependencies on the cost function and
spline coefficients separately. The first term describes how the cost
function changes with the deformation field, and since the deforma-
tion field is defined at every voxel, so is C/0v. It depends only on
the cost function and is independent of the type of spline parameter-
ization employed. The second term describes how the deformation
field changes with respect to the control point coefficients and can

Unimodal B-Spline Registration 23

be found by simply taking the derivative of Eq. (2.1) with respect
to P as

W) ZZZB;(M)Bm(V)ﬁn(W) 29)

=0 m=0 n=

We find that this term is dependent only on the B-spline basis func-
tions. So, it will remain constant over all optimization iterations. This
allows us to precompute and store Eq. (2.9) for each voxel coordinate
prior to the optimization process. Note also, that the values generated
by Eq. (2.9) are already available via the Multiplier LUT.

When using the SSD as the cost function, the first term of Eq. (2.8)
can be rewritten in terms of the moving image’s spatial gradient
VM(x,y,z) as

oC

— =2X [S(x,y,z) ~Mx+ve,y+v,z+ I/Z)]VM(X,y,Z)
ov(x,y,z)

(2.10)

Equation (2.10) depends on the intensity values of the static and
moving images, S and M, respectively, as well as the current value of
the vector field v. During each iteration, the vector field will change,
modifying the correspondences between the static and moving images.
Therefore, unlike 0v /0P,0C/dv, must be recomputed during each
iteration of the optimization problem. Once both terms are computed,
they are combined using the chain rule in Eq. (2.8).

Notice that “transforming” the change in the cost function from
being in terms of the deformation field to being in terms of the coeffi-
cients requires us to employ the B-spline basis functions once again—
essentially the reverse operation of what we did when computing the
deformation field. Figure 2.4 illustrates the operation of computing the
cost function gradient at a single control point (marked in red) for a
2D image. Here, 0C/0v has been computed at all voxels including the
voxel highlighted in red shown in the zoomed view having local coor-
dinates (2, 1) within tile (0, 0). The location of this red voxel’s tile with
respect to the red control point results in the evaluation of the “red
piece” of B-spline basis function in both the x and y dimensions. These
evaluations are performed using the normalized local coordinates of
the voxel; for our red voxel, this would result in evaluating 3,(2/5) in

24 High-Performance Deformable Image Registration Algorithms for Manycore Processors

ZOOM

.----
/ I
Local coordinate)

(2,1)2|n tile (0’10) Local coordinate]
=< =1 2,1) in tile (1,1
u=g veg ()2 (-)
- _ u==%< V=—
I=0 m=0 5 5

/=1 m=1

Figure 2.4 A 2D example of parameterizing the cost function gradient using B-splines. Local coordinates are nor-
malized by the number of voxels in the corresponding tile dimensions. This normalization is necessary since the B-
spline basis functions are only defined within zero and one.

the x-dimension and $(1/5) in the y-dimension. These two results and
the value of 0C/dv at the voxel in question are multiplied together and
the product is stored away for later. Once this procedure is performed
at every voxel for each tile in the vicinity of the control point, all of
the resulting products are summed together. This results in the value of
cost function gradient at the control point in question.

Since this example is in 2D, 16 control points are required to
parameterize how the cost function changes at any given voxel with
respect to the deformation field. As a result, when computing the value
of the cost function gradient at a given control point, the 16 tiles that
the control point affects must be included in the computation. These
tiles have been highlighted in blue in Figure 2.4. Also, notice how each
of the highlighted tiles have been marked with a number between 1
and 16. Each number represents the specific combination of B-spline
basis function pieces (red-purple, blue-green, etc.) used to compute a
tile’s contribution to the cost function gradient at the red control point.
In the 2D case, it should be noted that each tile will affect exactly
16 control points and will be subjected to each of the 16 possible
B-spline combinations exactly once. This is an important property we
exploit when parallelizing this algorithm on the GPU.

Unimodal B-Spline Registration 25

On the gradient is calculated, the coefficient values P that minimize
the registration cost function are found using L-BFGS-B, a quasi-
Newton optimizer suitable for either bounded or unbounded problems
(Zhu et al., 1997). During each iteration, the optimizer chooses a set of
coefficient values; for these coefficient values, Egs. (2.1)—(2.6) and
Egs. (2.8)—(2.10) are used to compute the cost and gradient, respec-
tively. The cost and gradient values are transmitted back to the opti-
mizer, and the process is repeated for a set number of iterations or
until the cost function converges to a local (or global) minimum.

2.3 B-SPLINE REGISTRATION ON THE GPU

The GPU is an attractive platform to accelerate compute-intensive
algorithms such as image registration due to its ability to perform
many arithmetic operations in parallel. Our GPU implementations use
NVidia’s Compute Unified Device Architecture (CUDA), a parallel
computing interface accessible to software developers via a set of C
programming language extensions. Algorithms written using CUDA
can be executed on GPUs such as the Tesla C1060, which consists of
30 streaming multiprocessors (SMs) each containing 8 cores clocked at
1.5 GHz for a total of 240 cores. The CUDA architecture simplifies
thread management by logically partitioning threads into equally sized
groups called thread blocks. Up to eight thread blocks can be sched-
uled for execution on a single SM. In the context of image registration,
a single thread is responsible for processing one voxel, and thus, a
thread block is responsible for processing a group of voxels.

This section outlines the overall software organization of our imple-
mentations and then describes in depth the GPU kernels that realize
the B-spline interpolation and gradient computation steps.

2.3.1 Software Organization

The overall software organization is shown in Figure 2.5 wherein the
spline interpolation as well as the cost function and gradient computa-
tions are performed on the GPU, while the optimization is performed
on the CPU. During each iteration the optimizer, executing on the
CPU, chooses a set of coefficient values to evaluate and transmits these
to the GPU. The GPU then computes both the cost function and the
cost function gradient and returns these to the optimizer. When a min-
ima has been reached in the cost function gradient, the optimizer halts

26 High-Performance Deformable Image Registration Algorithms for Manycore Processors

Inputs Iterative registration process
Static Cost
image (C)

Image
difference —l

Moving Warped
image image
A c v
- v oP
g Deformation
field (v) T
Moving image *
spatial gradient .
Gradient
descent
- Control point quantity

I:l Voxelized quantity
- Optimizer
[Lookup table CPUtoGPU GPU to CPU GPU to GPU

L

Figure 2.5 Flow chart demonstrating the iterative B-spline registration process. The optimizer alone is executed on
the CPU for greater flexibility.

and invokes the interpolation routine on the GPU to compute the final
deformation field.

Returning to Figure 2.5, the value of the evaluated cost function C
as well as its gradient 60C /0P must be transferred from the CPU to the
GPU for every iteration of the registration process. Transfers between
the CPU and GPU memories are the most costly in terms of time, and
one must take special care to minimize these types of transactions. In
our case, the cost function is a single floating point value, and transfer-
ring it to the CPU incurs negligible overhead. The gradient, however,
consists of three floating point coefficient values for each control point
in the grid. For example, registering two 256 X 256 X 256 images with
a control grid spacing of 10 X 10 X 10 voxels requires 73,167 B-spline
coefficients to be transferred between the GPU and the CPU per itera-
tion, incurring about 0.35ms over a PCle 2.0 X 16 bus. (The PCle
2.0 X 16 bus provides a maximum bandwidth of 8 GB/s.) Registering
the same two volumes with a control grid spacing of 30 X 30 X 30, $30
incurs 0.30 ms to transfer 5184 coefficients between the GPU and the
CPU. Comparable transfer times are incurred in transferring the coeffi-
cients generated by the optimizer back to the GPU. Based on detailed

Unimodal B-Spline Registration 27

profiling experiments on the hardware platform available to us, the
CPU-GPU communication overhead demands roughly 0.14% of the
total algorithm execution time. We therefore conclude that these PCle
transfers deliver an insignificant impact on the overall algorithm per-
formance even for high-resolution images with fine control grids.

2.3.2 Calculating the Cost Function and 0C/ov

Before the iterative registration process can begin on the GPU, several
initialization processes must first be carried out on the CPU in prepa-
ration. This consists primarily of initializing the coefficient array P to
all zeros, copying data from host memory to GPU memory, and pre-
computing reusable intermediate values. The Multiplier LUT is gener-
ated and bound to texture memory for accelerated access on the GPU.
Finally, to reduce redundant computations associated with evaluating
the cost function, the spatial gradient of the moving image VM is com-
puted (not to be confused with the cost function gradient 0C/0P).
Here, VM is a 3D image volume and does not change during the regis-
tration process.

The GPU kernel shown in Figure 2.6 calculates the cost function C
as well as the C/0v values. It is launched with one thread per voxel
in the fixed image S, and the variables (x, y, z) defining the coordinates
of a voxel within the volume are derived from each thread’s index 7.
As shown in the pseudocode, the coordinates (/,m,n) of the tile hous-
ing the voxel of interest as well as the normalized coordinates (u, v, w)
of the voxel within the tile are calculated in lines 4 and 7, respectively.
Lines 10—17 of the kernel calculate the displacement vectors for the
voxel using Eq. (2.1). Lines 23 and 24 apply the deformation vector v
to the moving image to calculate the intensity difference between the
fixed image S and moving image M for the voxel in question as well as
the SSD cost function C. Finally, lines 27—29 compute 0C/0v using
Eq. (2.10) and store the result to GPU global memory in an inter-
leaved fashion. Calculating C and 0C/dv exemplifies an algorithm
that is easily parallelized on the GPU. Once the kernel has completed,
the individual cost function values computed for each voxel are accu-
mulated using a sum reduction kernel to obtain the overall similarity
metric C given in Eq. (2.6). Note that to obtain the normalized SSD,
we divide the sum by the number of voxels falling within the moving
image.

28 High-Performance Deformable Image Registration Algorithms for Manycore Processors

Figure 2.6 Code listing for the GPU kernel that calculates the cost function C and dC/0v.

2.3.3 Calculating the Cost Function Gradient 6C /0P

Figure 2.7 outlines our first (and most straightforward) attempt at design-
ing a kernel to calculate 0C/0P for a control point as defined by the
chain rule in Eq. (2.8) using the 6C/dv values computed previously by
Kernel 1. It is launched with as many threads as there are control points,
where each thread computes 0C /0P for its assigned control point. Thus,
the operations performed by a single thread to obtain 0C/0P for its con-
trol point are done serially, but 0C/0P is calculated in parallel for all con-
trol points in the grid. The coordinates of a control point (k, A, ;1) within
the volume are derived from each thread’s index 7. We then identify the
64 tiles influenced by the control point, and for each tile perform the
operations detailed in lines 4—27: (i) load the C/0v value for each voxel
from GPU memory and calculate the corresponding B-spline basis func-
tion product, (ii) compute 0C/d(v) X 3,(u)5,,(v)3,(w), and (iii) accumu-
late the results for each spatial dimension as per the chain rule in
Eq. (2.8). Once a thread has accumulated the results for all 64 tiles into

Unimodal B-Spline Registration 29

Figure 2.7 Code listing for a straightforward and “naive” GPU kernel that calculates dC /P for a control point.

registers A, A,, and 4., lines 30—32 interleave and insert these values
into the C /0P array residing in GPU global memory.

Though Kernel 2 details perhaps the most straightforward way of par-
allelizing 0C /0P calculations on the GPU, it has a very serious perfor-
mance deficiency in that the threads executing this kernel perform a large
number of redundant load operations from GPU global memory. We
outline this problem using an example from Figure 2.8. Consider the
shaded tile shown in the top-left corner of the volume. The set of voxels
within this tile are influenced by a set of 64 control points (of which eight
are shown as black spheres). Conversely, voxels within this tile contribute
a > 0C/ov X dv /oP value to the gradient calculations of the respective
64 control points as per the chain rule in Eq. (2.8). Now, considering the

30 High-Performance Deformable Image Registration Algorithms for Manycore Processors

=0 N =0 N
m=1 m=1
n=3 N n=2 N -
- — H
(A) (B)
1 =2
& m=3
N n=1|x
(E) (F)
=0 N /=0 3
m=1 m=2
n=1 n=A1
(&) (D)
1=2 1=2 =%
m=3 m=3
n=2 n=3
(G) (H)

Figure 2.8 Visualization of tile influence on B-spline control points. Voxels within the shaded tile (in the top-left
corner of the volume) are influenced by a set of 64 control points, of which eight are shown as black spheres. This
tile partially contributes to the gradient values dC /0P at each of these points. (A)—(H) show that the same tile
is utilized in different relative positions with respect to each of the control points influencing it. So, each tile in the
volume will be viewed in 64 unique ways by the corresponding 64 control points influencing it, which results in 64
unique (I, m,n) combinations being applied to each tile.

control points shown in Figures 2.8B and C, the position of the tile rela-
tive to these two points is (/ =0,m=1,n=2) and (/=0,m=1,n=1),
respectively. This implies that though the two GPU threads computing
the gradient for these control points use the same 0C/0v values belonging
to the tile, they must use different basis function products when comput-
ing 0v /0P to obtain their respective contributions to C /8P for the con-
trol points they are each working on; the thread responsible for the
control point in Figure 2.8B will calculate the contribution of the
highlighted tile to 0C /0P as

S @M

Ny a]_;(xa) Z)

Unimodal B-Spline Registration 31

»] oad % values for a single tile

Produce 64 Z vectors
One for each of the 64 relative control knot orientations

\AAAAAAAAAAAAAAAARAAMAAAAMAAAAAARAAAAARAAAAAAAAAAAAALL] Stage |
(Kernel 3)

Using LUT to place each value into corresponding 9C vy

P

NN R 22 A

bin(k, 4, 4) bin(k, 4, . 4) e e o bin(k,A,4) e o o bin(k,A . 1) e o o bin(kydy,py)

w0t nn

é

Finished with tile. Move on to next.

bin(x,, 4, 4) bin(x, l JH) o e o bin(K,A.H) e o e bin(k,A 1) o e e bin(y Ay y)

\(%f{/ \\C"g/ \}g/ \\C:g/ \kg/ Koz

oC 9C

"P& by Od "PK” Aok LN Prey. Ay .y

Figure 2.9 The flow corresponding to the “condense” process performed by the optimized GPU implementation.
For each tile, we compute all 64 of its 0C/OP contributions to its surrounding control points. These partial contri-
butions are then binned appropriately according to which control points are affected by the tile. We use (k, \, j1)
to denote the 3D coordinates (J a control point within the volume. Notice how each control point is shown as hav-
ing its own bin that stores all Z vectors that contribute to its cost function gradient.

whereas the thread processing the control point in Figure 2.8C will
compute the contribution of the highlighted tile to dC /0P for its con-
trol point as

Zau()ﬁo(w)B1(v)B1(w)

Here, (u,v,w) represent the normalized position of a voxel within
the tile. Since the two threads execute independently of each other and
in parallel, each thread will end up loading 0C/ov values from the
shaded tile separately. In general, given the design of Kernel 2, every
tile in the volume will be loaded 64 times by different threads during
the process of computing 0C/0P values for the control points. Our
goal, therefore, is to develop kernels that eliminate these redundant
load operations.

The first step in developing kernels that compute 0C /0P efficiently
is to reduce the large amount of 0C/dv data generated by Kernel 1
residing in GPU global memory into smaller, more manageable
chunks. Figure 2.9 shows the overall flow comprising two major
stages. During the first stage, the 9C/0v values corresponding to a tile
are read from global memory in coalesced fashion. Since any given

32 High-Performance Deformable Image Registration Algorithms for Manycore Processors

voxel tile is influenced by (and influences) 64 control points, it is sub-
ject to each of the 64 possible (/,m,n) configurations exactly once. This
allows us to form intermediate solutions to Eq. (2.8) as follows, where
for each tile, we obtain

_ N: ‘N."' N,\‘ ac
Zti/e,l,m,n = Z Z ———— ﬁl(u)ﬂm(v)ﬁn(w) (2 1 1)
y=0 x

The above operation is performed for the 64 possible (/,m,n) con-
figurations, resulting in 64 Z values per tile, where each Z is a partial
solution to the gradient computation at a particular control point
within the grid. Equation 2.11 can be implemented as a GPU kernel
since multiple 6C/0v tiles may be “condensed” in parallel due to the
absence of any data dependencies between tiles. Moreover, once a
0C/ov tile is read and condensed, it may be discarded since all rele-
vant information required to compute 0C /OP is now represented by
the Z values. Therefore, the optimized flow shown in Figure 2.9 loads
each 0C/0v value from GPU global memory only once, unlike the
design of Kernel 2 where each tile is loaded 64 times by different GPU
threads.

Equation 2.11 is applied to each tile in the volume. Once the 6C/ ov
values for a%tile are condensed into 64 Z values, we consult a LUT that
maps each Z value to one of the 64 control points influenced by the tile.
Specifically, the output of this first stage is an array of bins with each bin
possessing 64 slots. Each control point in the grid has exactly one bin.
For each of the 64 Z values computed by Eq. (2.11), the LUT provides
not only the mapping to the appropriate control point bin, but also the
slot within that bin into which the Z value should be stored. Note that
each of the 64 Z values generated from a single tile will not only be writ-
ten to different control point bins but to different slots within those bins
as well. This property, in combination with each bin of 64 slots starting
on an 8-byte boundary, allows us to adhere to the memory coalescence
requirements imposed by the CUDA architecture. The second stage of
the gradient computation simply sums the 64 Z values within each bin to
calculate C /0P at each control point.

We now discuss the GPU kernels that implement the design flow
shown in Figure 2.9. As a first step, Kernel 1 is modified to store
0C/0v values as three separate noninterleaved arrays whose values can

Unimodal B-Spline Registration 33

be read in coalesced fashion. Kernel 3, whose pseudocode is shown in
Figure 2.10, is designed to be launched with 64 threads operating on a
single tile. The outermost loop iterates through the entire set of voxels
within the tile in chunks of 64, and during each iteration of this loop,
lines 5 and 6 load dC/dv values for the current chunk of voxels into
GPU shared memory. Each thread executes lines 14—16 to compute the
0C /0P value contributed by its voxel for the currently chosen basis
function product. These values are then accumulated into an array Q,
indexed by the (/,m,n) combination, via a tree-style reduction in which
all 64 threads contribute (lines 18—25). The inner loops compute the

1: /* Get thread-block index B and the local thead index T'. */

2:

3: /* Threads process a dC/97 tile in groups of 64. All threads belonging to a thread block B
work on the same tile whose index is denoted by O. This mapping is maintained in a lookup
table LUTp¢sser- ¥/

4: for G = 0 to N,,/64 step 64 do

5: O = LUTossset [B]1

6: ag[T] = 0C/0v [0+ G+ TJ; ay[T] = 0C/05,[0 + G + TY; a.[T] = 0C/07.[0 + G + T};

7

8 /* Obtain the normalized coordinates (u,v,w) for the voxel within the tile. Code is omitted.
*/

9:

10: P =0; // The (I,m,n) combination number, ranging from 0 to 63
11: for n =0 to 3 step 1 do

12: for m =0 to 3 step 1 do

13: for I =0 to 3 step 1 do

14: U = Bi(u) B (v)Brn(w); // Evaluate the basis function product

15: /* Store the dC /AP value contributed by this voxel. */

16: Ro[T) = @,[T) x U; R,[T] = &,[T] x U; R.[T) = @[T x U;

17:

18: /* Since there are 64 threads operating on different voxels, each thread will generate

a dC'/OP value per voxel corresponding to the (I,m,n) combination. Reduce these
values to a single value and store in R;[0], R,[0], and R.[0]. Code is omitted. */

19:

20: _syncthreads(); // Threads wait here until the reduction is complete

21: /* Thread 0 accumulates the dC'/OP values corresponding to this (I,m,n) combina-
tion. */

22: if T'=0 then

23: Qu[P] = Qu[P] + Ry [0]; Qy[P] = Qy[P] + Ry[0]; Q-[P] = Q:[P] + R.[0];

24: end if

25: __syncthreads();

26: P =P +1; // Move on to the next combination

27: end for

28: end for

29: end for

30: end for

31: /* Identify the 64 control points affecting the tile using LUTtp and store 9C/OP values to the
appropriate bins. */

32 K = LUTp[64 % B+ TJ;

33: Va[64 x K + T) = Qu[T; V,[64 x K +T] = Q,[T); V2[64 x K +T] = Q.[T};

Figure 2.10 The first stage of the optimized kernel designed to calculate 0C/OP.

34 High-Performance Deformable Image Registration Algorithms for Manycore Processors

next set of 0C /0P values corresponding to a different combination on
the same batch of voxels. Once computed, the dC/0P values are placed
into bins corresponding to the control points that influence the tile (lines
31—33). When executed on the NVidia Tesla C1060, approximately 15
tiles can be processed in parallel at any given time.

Kernel 4 implements the second stage of the flow in Figure 2.9. It
reduces the 64 0C /0P values into a final gradient value for each con-
trol point. Lines 8—16 use shared memory to interleave the (x,y,z)
components of the 0C/0P stream to improve the coalescence of write
to GPU global memory in line 18. Kernel 4 is launched with as many
threads as there are control points (Figure 2.11).

To summarize, the optimized GPU implementation focuses primar-
ily on restructuring the B-spline algorithm to use available GPU mem-
ory and processing resources as effectively as possible. We restructure
the data flow of the algorithm so that loads from global memory are
performed only once and in a coalesced fashion for optimal bus band-
width utilization. Data fetched from global memory is placed into
shared memory where threads within a thread block may quickly and
effectively work together. Furthermore, for efficient parallel processing,
we recognize the smallest independent unit of work is a tile. This leads
to an interesting situation in which high-resolution control grids provide

1: /* Get the thread index T and the thread-block index B for this thread. */

2: &,[T) = V,[64 x B+ T &,[T) =V, [64 x B + T); &.[T] = V.[64 x B +TJ;

3: _syncthreads();

4:

5: /* Reduce £ and store results in £[0]. Code is omitted. */

6:

7: /* Interleave gradient values in shared memory and store to GPU global memory. */
8: if T'==0 then

9 ¢[0] = &[0];

10: end if

11: if T == 1 then

12 1)=&, 0]

13: end if

14: if T == 2 then

15 2] = &[0];

16: end if

17: if T < 2 then

18: 9C/OP[3 x B+ T]| =¢[T];
19: end if

Figure 2.11 The second stage of the optimized kernel designed to calculate dC/OP.

Unimodal B-Spline Registration 35

many smaller work units while lower resolution ones provide fewer, but
larger work units. So, high-resolution grids yield a greater amount of
data parallelism than lower resolution ones, leading to better perfor-
mance on the GPU.

2.4 PERFORMANCE EVALUATION

We present experimental results obtained for the CPU and GPU
implementations in terms of both execution speed and registration
quality. We compare the performance achieved by six separate imple-
mentations: the single-threaded reference code, the multicore OpenMP
implementation on the CPU, and four GPU-based implementations.
The GPU implementations are the naive method comprising Kernels 1
and 2, and three versions of the optimized implementation comprising
of Kernels 1, 3, and 4. The first version uses an LUT of precomputed
basis function products, whereas the second version computes these
values on the fly. The third version simply implements the standard
code optimization technique of loop unrolling in an effort to maximize
performance; the innermost loop (lines 13—27) of Kernel 4 is fully
unrolled, and the tree style sum reduction portrayed in line 18 is also
fully unrolled. The reason for comparing the first two versions of the
optimized GPU-based design is to experimentally determine if the
GPU can evaluate the B-spline basis functions faster than the time
taken to retrieve precomputed values from the relatively slow global
memory. We also quantify each implementation’s sensitivity to both
volume size as well as control point spacing (i.e., the tile size). These
tests are performed on a machine with two Intel Xeon E5540 proces-
sors (a total of eight CPU cores), each clocked at 2.5 GHz, 24 GB of
RAM, and an NVidia Tesla C1060 GPU card. The Tesla GPU con-
tains 240 cores, each clocked at 1.5 GHz and 4 GB of onboard mem-
ory. In addition to this comparative performance analysis, we take the
best performing algorithm implementations across the single-threaded,
multicore, and GPU paradigms and compare their performance using
the most modern CPU and GPU platforms available at the time of
this writing. For example, the best performing single and multicore
CPU algorithms are timed using an Intel 17-3770 CPU with four SMT
cores, each clocked at 3.4 GHz, and the best performing GPU algo-
rithm is timed using an NVidia GeForce GTX 680 containing 1536
cores, each clocked at 1.1 GHz, and with 2 GB of onboard memory.

36 High-Performance Deformable Image Registration Algorithms for Manycore Processors

2.4.1 Registration Quality

Figure 2.12 shows the registration of two 512 X 512 X 128 CT images
of a patient’s thorax on the GPU. The image on the left is the refer-
ence image, captured as the patient was fully exhaled, and the image
on the right is the moving image, captured after the patient had fully
inhaled. The resulting vector field after registration is overlaid on the
inhale image. Figure 2.13 is a zoomed-in view of Figure 2.12, focusing

Figure 2.12 Deformable registration result for two 3D CT images. The deformation vector field is shown superim-
posed upon inhaled image. The registration is performed using optimized GPU implementation.

Exhaled lung Inhaled lung

Figure 2.13 An expanded view of the deformable registration result. The superimposed deformation field shows
how the inhaled lung has been warped to register to the exhaled lung.

Unimodal B-Spline Registration 37

on just the left lung. To determine the registration quality, we generate
the deformation field by running the registration process for 50 itera-
tions and then compare the results against the reference implementa-
tion. Both the multicore and GPU versions generate near-identical
vector fields with an RMS error of less than 0.014 with respect to the
reference.

2.4.2 Sensitivity to Volume Size

We test each algorithm’s sensitivity to increasing volume size by hold-
ing the control point spacing constant at 10 voxels in each physical
dimension while increasing the size of synthetically generated input
volumes in steps of 10X 10X 10 voxels. For each volume size, we
record the execution time taken for a single registration iteration to
complete. Figure 2.14 shows the results for each of the five implemen-
tations. The plot on the left compares all five implementations, where
we see that the execution time increases linearly with the number of
voxels in a volume. The multicore implementations provide an order
of magnitude improvement in execution speed over the reference
implementation. For large volume sizes around 350° voxels, the most
highly optimized GPU implementation achieves a speedup of 15 times
compared to the reference code, whereas the multicore CPU imple-
mentation achieves a speedup proportional to the number of CPU
cores (eight times when executed on dual Xeon E5540 four-core pro-
cessors). Furthermore, note that the naive GPU implementation can-
not handle volumes having more than 4.3 X 107 voxels. Recall that
Kernel 2 suffers from a serious performance flaw: redundant and
uncoalesced loads of 0C/dv values from GPU global memory. Using
the texture unit as a cache provides a method of mitigation, but the
resulting speedup varies unpredictably with control grid resolution
(Figure 2.15). Moreover, the texture unit cannot cache very large
volumes, limiting the maximum size that the naive implementation can
correctly process to about 350° voxels.

Finally, Figure 2.15A compares the performance of the serial,
OpenMP, and the optimized GPU implementations (LUT, unrolled
from Figure 2.14) on the Intel 17-3770 and the GTX 680 GPU for a
fixed control point spacing of 20 X 20 X 20 voxels. Figure 2.15B isolates
the OpenMP and GPU implementations so that the nature of the per-
formance improvement can better viewed. For these architectures, the

38 High-Performance Deformable Image Registration Algorithms for Manycore Processors

(A) 25 F— : : : .
—A— Single core CPU
=——@— Multi core CPU
—— "Naive" GPU - 7
20 F| —s¢— Optimized GPU (on-thefly) [|*"" """t T
@ ~——+— Optimized GPU (LUT)
TS) - - -
315 TP TR TR
[0}
£
c
S 10 B RTY EE R TRt P PPN PP R R R PPN SR
=) -
O z
(9] z
X -
w z
5 o P i I NELEY - oo > JII IR
0 Ao N =
Or R ot * 20+
Q*’\ o * o* o
07 o0 2° e

Volume size (voxels)

B 4 - x : : :
——@— Multi core CPU)
35} =¥ Optimized GPU (on-the-fly) |, ., B
=== Optimized GPU (LUT)
==&-— Optimized GPU (LUT, unrolled)
& 3 - - — e A s
°
c
9]
gz_s-....‘....‘-....
2
)
E 2F it R S SN g
c
el
B 15k il AT T TG T T g
[
9]
i)
b oo PN R0
05F LB SRT . oA
0 QO N 36)0 a0 SN N
+ % i%"@*% 33 33 2 * *b‘b‘g*
,100 ,150 A0 o0 A0 N

Volume Size (voxels)

Figure 2.14 (A) The execution time incurred by a single iteration of the registration algorithm as a function of
volume size. The control point spacing is fixed at 10 X 10 X 10 voxels. (B) The execution time versus volume size
for the various multicore implementations described in the chapter.

Unimodal B-Spline Registration 39

(@) 551

e |tel i7-3770 at 3.40GHz (serial)
== |ntel i7-3770 at 3.40GHz (OpenMP)
GeForce GTX 680 at 1.1GHz

50

451

Execution time (seconds)

0
Q0 Q0 I\ 20 N
O "f,p*%s*'l' Q,Q*'L o o oo
of SN U RV CLalR <
) ARSI GG g0 o +F o
Volume size (voxels)
(b) 15¢
e |ntel i7-3770 at 3.40GHz (OpenMP)
GeForce GTX 680 at 1.1GHz
m
2 10t
O
Q
@2
[}
£
c
S
=]
3 5f
x
w
0 ,.bQ() '5’79 'BD‘Q
S ISR 0% 0 o o oF
A0 AN 'Lb‘ 20 3 s e
\QQ* rLQQ‘i;L'LQ*rL&Q* rLQ')Q* rL Q,QQ* Q,'LQ* %D(Q*

Volume size (voxels)

Figure 2.15 (A) The execution time incurred by a single iteration of the registration algorithm as a function of
volume size. The control point spacing is fixed at 20 X 20 X 20 voxels. (B) Execution time versus volume size for
Just the multicore CPU and GPU implementations.

40 High-Performance Deformable Image Registration Algorithms for Manycore Processors

OpenMP implementation outperforms the single-core implementation
by a factor of 4.4 times; the GPU implementation outperforms
OpenMP by a factor of 8.8 times and the single-core implementation by
a factor of 39 times.

2.4.3 Sensitivity to Control Point Spacing

The optimized GPU design achieves short iteration times by assigning
individual volume tiles to processing cores as the basic work unit.
Since tile size is determined by the spacing between control points, we
investigated whether the execution time is sensitive to the control point
spacing. Figure 2.16A shows the impact of different grid spacings on
our B-spline implementations when the volume size is fixed at
256 X 256 X 256 voxels. Notice that all implementations, except for the
naive GPU version, are agnostic to spacing.

Figure 2.16B focuses just on the multicore designs. Interestingly, the
multicore CPU implementation outperforms the optimized GPU
implementations for coarse control grids, starting at a spacing of about
40 voxels. The higher clocked CPU cores process these significantly
larger tiles more rapidly than the lower clocked GPU cores. So, for
practitioners doing multiresolution registration, the coarser control
grids can be handled by the CPU, whereas the GPU-based design can
be invoked as the control point spacing becomes finer.

Figure 2.17A again compares the performance of the serial,
OpenMP, and the optimized GPU implementation on the Intel i7-3770
and the GTX 680 for a fixed volume size of 350 X 350 X 350 voxels.
As before, Figure 2.17B isolates the OpenMP and GPU implementa-
tions so that the nature of the performance improvement can better
viewed. Again, it is seen that as the control point spacing increases, the
GPU implementation begins to suffer for reasons previously discussed.
However, for these newer hardware platforms, the GPU implementa-
tion manages to continue to outperform the OpenMP implementation
for large work units in spite of the performance bottleneck.

2.5 SUMMARY

This chapter has developed a grid-alignment technique and associated
data structures that greatly reduce the complexity of B-spline-based

(A) 16 . :

Unimodal B-Spline Registration

—&A— Single core CPU
14| =@ Multi core CPU

—&— "Naive" GPU

12| =—¥— Optimized GPU (on-the-fly)

Execution time (seconds)
oo

20 OOV NG TIVENGY. Qo4 WP T Do
0 - - -
0 10 20 30 40 50
Grid spacing (voxels)
(B) 18 . : , 5
——@— Multi core CPU : SO
—3— Optimized GPU (on-thefly) | : -0
16 1| —s— Optimized GPU (LUT) AR g A
N N z E
B A R o8
3 :
2 12+t ey -
o © i
E :
5 1
3
2
X 08t
0B} ¥
04 i ; i :
0 10 20 30 40 50

Grid spacing (voxels)

41

Figure 2.16 (A) The execution time for a single registration iteration is shown as a function of the control point
spacing (same in all three dimensions). The volume size is held constant at 256> voxels. (B) The execution time

versus control point spacing for the multicore implementations.

registration. We have then used the main ideas underlying the aligned
grid method to develop highly parallel and scalable designs for com-

puting the score and cost function gradient on multicore processors.

We have demonstrated the speed and robustness of our parallelization
strategy via experiments using both clinical and synthetic data. Our
experiments also demonstrate a fairly strong independence between the

B-spline grid resolution and execution time for the parallel algorithms.

42 High-Performance Deformable Image Registration Algorithms for Manycore Processors

= |ntel i7-3770 @ 3.40GHz (serial)
= |ntel i7-3770 @ 3.40GHz (openMP)
60 GeForce GTX 680 at 1.1GHz
50 F
m
°
c
Q
(8]
f,,i 40
(0]
£
S 30t
=
(5]
(5]
x
|
20
m
101
20 40 60 80 100 120
Grid spacing (voxels)
= |ntel i7-3770 @ 3.40GHz (OpenMP)
GeForce GTX 680 @ 1.1GHz
2 10}
C
Q
(5]
Q
<
o)
£
c
K]
5
(5]
2
M

20 40 60 80 100 120
Grid spacing (voxels)

Figure 2.17 (A) The execution time incurred by a single iteration of the registration algorithm as a function of
control point spacing. The volume size is fixed at 350 X 350 X 350 voxels. (B) Execution time versus control point
spacing for just the multicore CPU and GPU implementations.

Unimodal B-Spline Registration 43

REFERENCES

Kybic, J., Unser, M., 2003. Fast parametric elastic image registration. IEEE Trans. Med.
Imaging 12 (11), 1427—1442.

Rohlfing, T., Maurer Jr, C.R., 2003. Nonrigid image registration in shared-memory multiproces-
sor environments with application to brains, breasts, and bees. IEEE Trans. Information Tech.
Biomedicine 7 (1), 16—25.

Rohrer, J., Gong, L., Szekely. G., et al., 2008. Parallel mutual information based 3D non-rigid
registration on a multi-core platform. MICCAI Workshop High-Performance Medical Image
Computing and Computer Aided Intervention, New York, NY, USA.

Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D., Leach, M.O., Hawkes, D.J., 1999. Nonrigid reg-
istration using free-form deformations: application to breast MR images. IEEE Trans. Med.
Imaging 18 (8), 712—721.

Saxena, V., Rohrer, J., Gong, L., 2010. A parallel GPU algorithm for mutual information based
3D nonrigid image registration. Proc. Int. Euro-Par. Conf. Part 11, 223—-234.

Shackleford, J., Kandasamy, N., Sharp, G., 2010. On developing B-spline registration algorithms
for multi-core processors. Phys. Med. Biol. 55 (21), .6329—6352, Ischia, Italy

Zheng, X., Udupa, J., Chen, X., 2009. Cluster of workstation based nonrigid image registration
using free-form deformation. Proceedings of the SPIE 7261, Medical Imaging 2009: Visualization,
Image-Guided Procedures, and Modeling, 72611N, Orlando, FL, USA.

Zhu, C., Byrd, R., Nocedal, J., 1997. L-BFGS-B: algorithm 778: L-BFGS-B, FORTRAN rou-
tines for large scale bound constrained optimization. ACM Trans. Math. Softw. 23 (4), 550—560.

http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref8
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref8
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref8
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref8
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref5
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref5
http://refhub.elsevier.com/B978-0-12-407741-6.00002-5/sbref5

Multimodal B-Spline Registration

Information in This Chapter

* Overview of Multimodal B-Spline Registration

* Mutual Information as A Cost Function

+ Efficient Computation of Mutual Information

* Gradient Descent Optimization to Iteratively Tune the B-Spline
Coefficients

* Performance Evaluation

3.1 INTRODUCTION

The B-spline deformable registration algorithm maps each and every vox-
el in a fixed or static image S to a corresponding voxel in a moving image
M as described by a deformation field 7, which is defined at each and
every voxel within the static image. An optimal deformation field accu-
rately describes how the voxels in M have been displaced with respect to
their original positions in S. The existence of such an optimal and physi-
cally meaningful deformation field assumes that the two images represent
the same underlying physiology. If the images are obtained using the
same imaging method, the registration is said to be unimodal and the
quality of the deformation field is assessed using the sum of squared dif-
ferences between the intensity values of voxels in the static image and the
corresponding voxels in the warped moving image. Alternatively, images
obtained using differing imaging methods must be matched using multi-
modal registration. The registration modality is important since assessing
the quality of the deformation field for multimodal registrations requires
more complex methods than those required by unimodal registration.
This is due to the involved images having different color spaces which are
not guaranteed to possess any type of linear or one-to-one mapping.
Mutual information (MI) and normalized MI are widely used similarity
metrics when registering multimodality images in which the MI quantifies
the amount of information content common to the two images
(Thevenaz and Unser, 2000). The images will be optimally aligned when
the shared information content is maximized.

High-Performance Deformable Image Registration Algorithms for Manycore Processors.
DOTI: http://dx.doi.org/10.1016/B978-0-12-407741-6.00003-7
© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-407741-6.00003-7

46 High-Performance Deformable Image Registration Algorithms for Manycore Processors

Figure 3.1 shows the overall process used for registering multimod-
ality images, comprising of the following major steps: (i) generating a
deformation field using the B-spline coefficients, (ii) applying the
deformation field to the moving image, (iii) generating voxel-intensity
histograms for both the static and deformed moving images as well as
their joint histogram, (iv) computing the MI using the histograms to
assess the registration quality, (v) computing the change in the MI
with respect to the B-spline coefficients, and (vi) generating a new set
of B-spline coefficients. The above process is repeated until an optimal
deformation field is obtained that warps the moving image such that it
is most similar to the static image. The number of iterations required
depends on factors, such as the severity of the initial misalignment, the
complexity of local deformations in the patient’s anatomy, and the
level of accuracy the end user deems necessary.

Each iteration of the process shown in Figure 3.1 optimizes the
deformation field 7, resulting in a more accurate mapping or

Inputs Iterative registration process
ici Joint
Static _ Ste?llc 1mage . ! - Mutual information
image (S) histogram histogram © et TN
¢ (hy) ()
| Nov— |
. oving image
. Moving o .Computc . hislocgramc > E
image (M) partial volumes (w) dhj
(hy)
A
Per voxel Partial volume
correspondence spatial derivatives
A
A
Deformation ac < ac
field (v) P v
B-spline _ Gradient v
coefficients (P) | ~ descent P

Figure 3.1 The overall process used to register multimodality images using MI as the similarity metric. All major
steps in this process (except for the gradient descent optimization) have been parallelized on multi-core processors
including the GPU.

Multimodal B-Spline Registration 47

correspondence of voxels in the static image to coordinates within the
moving image. Any given voxel in the static image can map to a point
lying between multiple voxels in the moving image; in 3D images, for
example, a voxel in the static image can map to eight neighboring voxels
in the moving image. The case of “one-to-many” correspondence is han-
dled via a technique called partial volume interpolation (PVI, Maes
et al., 1997) and is discussed in greater detail later in the chapter. Once
the correspondence has been performed for a voxel and the partial
volumes have been computed, the intensity histograms for the static and
moving images, as well as the joint histogram, are updated appropri-
ately. These histograms capture the entropy in the individual images as
well as the joint entropy describing the amount of uncertainty when
considering both images as a joint system. For 3D images, this means
updating one static-image histogram bin, eight moving-image histogram
bins, and eight joint-histogram bins. The completed histograms are then
used to compute the MI, which measures how similar the static image is
to the moving image (after the moving image is subjected to 7).

The best registration is obtained by modifying the deformation field v
so as to maximize the MI. This process can be posed as an optimization
problem. However, since medical image volumes can be quite large' and
since the deformation field is defined at every voxel, operating on the vec-
tor field directly is a problem too large to handle even for modern compu-
ters. For faster computation, the deformation field 7 can be
parameterized using a sparse number of B-spline coefficients which results
in a compressed representation of the deformation field. The problem
then becomes one of optimizing the B-spline coefficients P to maximize
the MI cost function C. Performing this optimization via gradient descent
(or quasi-Newtonian) methods requires that we know how the cost func-
tion C changes with respect to the B-spline coefficients P. The steps
needed to obtain this derivative 0C /0P are also outlined in Figure 3.2.

3.2 USING B-SPLINES TO REPRESENT THE DEFORMATION
FIELD

The material presented in this section has been previously covered in
depth in Chapter 2. Here, we provide a recap of the major concepts.

'A typical image volume has a resolution of 512 X 512 X 128 or about 33 million voxels.

48 High-Performance Deformable Image Registration Algorithms for Manycore Processors

B-spline
control point
[

=

3x3 tile of ¢
voxels

Voxel (2,1)
b in tile (5,1)
%

p
v 4 ? 4 ? . :

Figure 3.2 The code listing for a kernel that obtains the deformation vector at a given voxel.

Given a number of uniformly spaced discrete control points, a
second-order continuous function involving these points can be
described using uniform cubic B-spline basis functions. Describing a
function in this fashion is advantageous when the desired function is
unknown but we are required to maximize an optimization condition
while maintaining second-order continuity. In deformable image regis-
tration, the deformation field v that maps voxels in the static image to
voxels in the moving image must maintain this level of smoothness; yet
the form of v is not known when starting the registration process since
v depends on the geometry of the anatomy being registered. It is
therefore advantageous to parameterize the dense deformation field v
using a sparse set of control points which are uniformly distributed
throughout the fixed image’s voxel grid. The placement of control
points forms two grids that are aligned to one another: a dense voxel
grid and a sparse control-point grid. As shown in Figure 3.3, the
control-point grid partitions the voxel grid into equally sized regions
called tiles. The deformation field 7 can be found at any given voxel
within a tile by performing B-spline interpolation using control points
with local support regions that include the tile. Since the local support
region for a cubic spline curve involves four control points in each of
the three dimensions, computing a single point in the displacement
field involves the 64 control points found in the immediate vicinity of
a voxel’s housing tile. Also, since three coefficients p,, p,, and p.
are associated with each control point, the interpolation uses
192 coefficients.

Mathematically, the x component of the deformation field for a
voxel located at coordinates X =(x,y,z) in the fixed image can be
described as

Multimodal B-Spline Registration 49

1: function decompress_vector (C, N , D, Q)

2: /* vector C contains the control-point grid dimensions */

3. /% vector N contains the tile dimensions */

4: /* vector p contains the voxel’s tile coordinates */

5: /* vector ¢ contains the voxel’s local coordinates within the tile */
6: /* Returns U/, the displacement vector at voxel */

7

8 =00

9: for k=0 to 3step 1 do

10: n=p,+k

11: Brn = LUT Bspline_zk x N, + q.]

12: for j = 0 to 3 step 1 do

13: m=py,+J

14: Bm = LUT Bspline_y[j x Ny + ¢,]

15: for i = 0 to 3 step 1 do

16: l=py+i

17: B1 = LUT Bspline x[i X N, + ¢,]

18:

19: /* Get index into coefficient look up table clut, given [,m,n */
20: cidx = 3 x ((n X ¢z X ¢y) + (m x ¢z) +1)
21:
22: /* Add the control point’s contribution to displacement vector */
23: Q=B X Bm X Bn
24: Uy = Vg + QX clut[cidx + 0]
25: vy = vy + @Qx clutcidx + 1]
26: v, = v, + QX clutfcidx + 2]
27: end for
28: end for

29: end for
30: return
31: end function

Figure 3.3 The grid of uniformly spaced B-spline control points partitions the voxel grid into equally sized tiles. In
this example, each tile is three voxels wide and three voxels tall. The number of control points in the X dimension
is three greater than the number of tiles in the x dimension. Although not shown, this is true for all dimensions.

3
()= DD > Bi@d 0B wp.(lm,n) 3.1

303
i=0 j=0 k=0

The components in the y and z directions are defined similarly. The
symbols /, m, and n are indices for control points in the neighborhood
of the tile of interest, and in the 3D case there are 64 combinations for
[, m, and n. If (N, N,, N.) are the dimensions, in voxels, of a tile, then
|x/Ni| =1, |y/N,| — 1, and |z/N-| — 1 denote the x, y, and z coordi-
nates, respectively, of the tile in the volume within which a voxel v
falls, and the set of control points indexed by /, m, and 7 is

Ilel—l+iJ,m={%—l+jJ,nZ{Ni—l‘i‘kJ (3.2)

x v

z

50 High-Performance Deformable Image Registration Algorithms for Manycore Processors

In Eq. (3.1), §; is the B-spline basis function along the x direction
given as

(1_ 3
(6u) i=0
3P — 6u* + 4 i—1
6
() = 3.3
piw) —3ud +3u? +3u+1 3-3)
=2
6
3
% i=3

with 3; and (3, defined similarly in the y and z directions, respectively.
Finally, ¢ = (u, v, w) denotes the local coordinates of voxel X within its
housing tile where

X X ¥ y z z
N N = "\~ = — | 3.4
T At o A A
Since the basis function is only defined within the range between 0 and

1, the local coordinates are appropriately normalized to fall within this
range.

Representing the dense deformation field as a sparse set of B-spline
coefficients is akin to information compression and the deformation
field is optimized by modifying only its compressed form. In other
words, the deformation field is never directly modified but is always
tuned via the B-spline coefficient values. Obtaining the deformation
field from B-spline coefficients is akin to a decompression operation,
which is needed to check the registration quality. Figure 3.2 shows the
process of obtaining a deformation vector at a single voxel. The vec-
tor’s coordinate, x, is specified in terms of the coordinate pair (p,).
The tile p within which the deformation vector is computed deter-
mines the set of 64 B-spline control points involved in the decompres-
sion operation. The local coordinate ¢ is used to retrieve the
precomputed evaluation of the B-spline basis function stored within
the lookup tables LUT Bspline x, LUT Bspline y, and
LUT Bspline z. Line 20 uses the control-point indices (/,m,n) and
the dimensions of the control-point grid to compute a one-dimensional

Multimodal B-Spline Registration 51

Organization of coefficient look-up table:
P P P P P P P

x,0,0,0 |"y,0,00 |'20,0,0 x,0,0,1 |"y.0,0,1 |"z0,0,1 |*x0,0,1

"30,0,1 E,o,o,w i g E,Nx +3, Ny+3, Nz+3 ENX +3, Ny#3, Nz+3 EN, +3,Ny#3, Nz+3

Figure 3.4 Organization and memory layout of the coefficient lookup table. The number of control points in the
control grid is greater than the number of tiles by three in each dimension as shown in Figure. 3.2.

index into the data structure used to store the B-spline coefficients
(Figure 3.4). Finally, lines 23—26 accumulate the contribution of con-
trol point (/, m, n) to the three components of 7(X).

Obtaining the entire deformation field is a simple matter of applying
the technique shown in Figure 3.2 for every voxel X in the static image
S. The most effective single instruction, multiple data (SIMD)-style
threading model on the GPU to obtain the correspondence between the
static and moving images is to assign one thread per voxel S. Given an
execution grid of threads, each thread uses its unique identifier within
the grid to locate the voxel and compute the voxel’s tile and local coor-
dinates, p and ¢, respectively. Once these coordinates are obtained,
each thread can decompress the vector at its voxel location in parallel
using the operations listed in Figure 3.2. Once a thread has obtained the
deformation vector v, it continues to work independently to find the
correspondence in the moving image, which will consist of a group of
eight voxels. The thread then computes the partial volumes associated
with this neighborhood of voxels and accumulates them into the image
histograms. The lookup tables LUT Bspline x, LUT Bspline vy,
LUT Bspline z, and clut are stored as textures to accelerate mem-
ory reads through the caching provided by the GPU’s texture unit.

3.3 MI AS A COST FUNCTION

A cost function or similarity metric is used to determine the quality of
the deformation field v, which is equivalent to assessing the registra-
tion quality since v directly determines the voxel correspondence
between the static and moving images. The cost function for assessing
the quality of a unimodal registration simply accumulates the square
of the intensity difference between the static image S and the moving
image M subject to the deformation field v as

—1 g g E (S(x,y,z)—M(x-FVx,)H-Vy,Z%-VZ))2 (3.9)
N
z y X

52 High-Performance Deformable Image Registration Algorithms for Manycore Processors

where N is the total number of voxels mapping from S to M.
However, this cost function cannot be used to assess the quality of a
deformation field that is attempting to register images acquired using
different imaging modalities since these images may have differing
voxel-intensity maps for identical anatomy. For such multimodality
registrations, the more sophisticated cost function of MI may be
used which qualifies the amount of information content the two
images share in common; the images will be optimally aligned when
the shared information content is maximum. To understand MI as a
cost function, consider the intensity a of a voxel located at coordi-
nates x within the static image, a = S(X), and the intensity b of a
voxel at coordinates y within the moving image, b= M(y). The
goal is to apply a coordinate transform 7(3) to the moving image
such that it registers best with the static image. The statistical MI 1is
obtained as

pi(a, T(b))
ps(@pm(T(D))

which depends on the probability distributions of the voxel intensities
in the static and moving images. So, we can view a and b as random
variables with associated probability distribution functions ps(a) and
pm(b), respectively, and joint probability pj(a,b). Applying the spatial
transformation 7(») to M modifies pj(a,b) and this effect is implied
using the notation pj(a, T'(b)). Furthermore, if T results in voxels being
displaced outside of the moving image, pm(7'(b)) will change, and if T
results in a voxel being remapped to a location that falls between
points on the voxel grid, some form of interpolation must be employed
to obtain b, which will modify pn(b) as well. These effects are implied
using the notation pn(7T'(5)).

I=> pia T(h)n (3.6)
a,b

The interpolation method used to obtain b, given T'(¥), is impor-
tant both in terms of executions speed and convergence time. Our
implementation uses the PVI method (Maes et al., 1997). Figure 3.5A
shows an example of computing partial volumes for 2D images in
which the deformation vector has mapped a pixel to the static image
to a point falling within a neighborhood of four pixels in the moving
image. The pixel centers are shown as black circles and the interpola-
tion point is denoted by A. The interpolation method divides the vol-
ume defined by the four neighboring pixels into corresponding partial

Multimodal B-Spline Registration 53

Added amounts are equal to
corresponding partial volumes

) [
Static image Moving image IJII \ /III

‘Bl Ay -
o L

L[] L] L[]
Nearest neighbors Partial volumes 2 3 4

(A (B)

L]
L]
of voxels

Figure 3.5 (A) PVI for 2D images using a neighborhood of four voxels. Notice that the first partial volume is the
smallest since the first neighbor is the furthest away from the interpolation point A. (B) The nearest neighbor
voxels are binned according to their intensity values. The amount added to each bin is determined by each voxel’s
corresponding partial volume which is equivalent to adding fractional voxels to each histogram bin involved in the
interpolation operation.

volumes that share the interpolation point in common. Once the par-
tial volumes are computed, they are placed into the histogram bins of
the corresponding voxels as shown in Figure 3.5B.

For 3D images, PVI is performed using a neighborhood of eight
voxels where the partial volumes wy—w; are defined in terms of the
interpolation point A as shown by the compute pv () function in
Figure 3.6. Note that 3.7, w; = 1. Once the partial volumes have been
computed, they are placed into the histogram bins of the correspond-
ing voxels: partial volume wy is placed into the histogram bin associ-
ated with the neighboring voxel ny, w; with n;, and so on. The indices
of the bins are computed using the find nearest neighbors ()
function, also listed in Figure 3.6. The PVI technique is used to com-
pute both py(7(b)) and pj(a, T(b)). Since the static image is not subject
to the coordinate transform T, PVI does not apply when generating
ps(a). However, if T results in a voxel X within S mapping outside of
M, then that voxel is not included in the distribution ps(a). Such voxels
cannot be registered, and so are excluded when computing the cost
function and related items like intensity distributions.

Given that the coordinate transformation T is defined by the defor-
mation field 7 such that T(b)= M(T(y))= M(X + V)= M(A), an

54 High-Performance Deformable Image Registration Algorithms for Manycore Processors

1: /* Compute partial volumes */

2: function compute_pv (5)

3: /* Here { } is the sawtooth function (i.e. {z}=x— |z]) */
4: wo =1 —{A}) x (1 —-{A,}) x (1 —-{A.})
5 =(0+{Az}) x (1 —{A,}) x (1 —{A.})
6: w2 =(1={Az}) x (0+{A,}) x (1 —{A:})
7wz = (0+{Az}) x (0+{Ay}) x (1 —{A.})
8 ws=(1-{Az}) x (1—-{A,}) x (0+{A.})
9: ws = (0+{Az}) x (1= {Ay}) x (0+{A.})
10: w6: (1 ={Az}) x (0+{A,}) x (0+{A.})
11: = (0+{Az}) x (0+{A,}) x (0+{A:})

12: return w

13: end function

14:

15: /* Computes indices of the eight nearest neighbors */

16: function find nearest_neighbors (A, Mx, My)

17: /* Mx and My are the dimensions of the moving image in the z and y
directions, respectively */

18 mno=(lA.] X Mx x My)+ (|[Az] x Mx)+ |Az]

19: ny=mng+1

20: n2:n0+MX

21: mnzg=ng+1

22: ng =ng + Mx X My
23: ns =mng + 1

24: nG:n4+MX

25: ny =ng+ 1
26: return
27: end function

Figure 3.6 Computation of the partial volumes as well as the nearest neighbors.

algorithm to compute the MI cost function C is best implemented by
modifying Eq. (3.6) as

Ks

iy N X h; (z,])
ZZh(l,])l 7O X I (3.7)

where the probability distributions ps(a), pm(T'(b)), and pj(a, T(b)) are
constructed as image histograms /g, /iy, and /; consisting of Ks, Ky,
and Kg X Ky bins, respectively. Also, Eq. (3.7) incorporates N, the
number of voxels being registered, thereby allowing the use of unnor-
malized histograms (which reduces the number of division operations
during histogram generation).

3.4 EFFICIENT COMPUTATION OF MI

Evaluating the MI-based cost function in Eq. (3.7) requires constructing
the image histograms /g, /iy, and /;. Generating these histograms using a

Multimodal B-Spline Registration 55

—

: /* Calculate the appropriate bin in the static-image histogram and increment it
*/

/* hg[] is an array containing histogram values */

/* Bg is the destination bin for voxel a = S(&) */

/¥ Og is the minimum static-image voxel value */

/* Dg is the histogram bin spacing */

: Bs = |(5(F) - Os)/Ds]

: hg[Bs| = hs[Bg] +1

© P DTR PN

: /* Use the deformation vector ¥ to find nearest neighbors and partial volumes
*/

10: 7 = find nearest neighbors (¥ + 7/, Mx, My)

11: W = compute_pv (Z + ¥)

12:

13: /* Add partial volumes to the moving-image histogram and the joint histogram */

14: /* ha|] is an array containing the moving-image histogram values */
15: /* hy[] is a 2D array of values in the joint histogram */

16: /* Bj; is the destination bin for voxel b= S(rny)*/

17: /* Op is the minimum moving-image voxel value */

18: /* Djps is the histogram bin spacing */

19: for i = 0 to 7 step 1 do

20: By = I_(M('I‘L,L) — OM)/DMJ

22 hy[Bul[Bs] = hi[Bu][Bs] + wi

23: end for

Figure 3.7 A serial method of histogram construction. (The expanded definitions of the functions find near-
est neighbors () and compute pv () can be found in Figure 3.6.)

serial (or single-threaded) program, as shown in Figure 3.7, is straightfor-
ward. First, the voxel « = S(x) found at the tail of the deformation vector
located at X is processed for inclusion in the static-image histogram
hs(a). This is a simple matter of determining which bin the intensity value
a falls within and incrementing it by one (lines 6 and 7). The second oper-
ation is to compute the coordinates of the eight corresponding voxels,
ny—ny, associated with 7'(3) within the moving image by looking at the
head of the deformation vector v with the tail placed at X (line 10).
Similarly, the partial volumes, wy—w>, are obtained in line 11 for PVI.

For each of the eight voxels, the associated bin within the moving-
image histogram /iy, is incremented by the corresponding partial vol-
ume (lines 20 and 21). Additionally, the joint-histogram bins of interest
are easily found using the appropriate bin within Ag and the eight bins
within /.. Each of these bins within the joint histogram #; is incremen-
ted by the appropriate partial volume (line 22). After the process out-
lined in Figure 3.7 is performed for every voxel in that static image
processing a correspondence, the image histograms are complete—
keeping in mind that voxels mapping to coordinates outside the mov-
ing image have no correspondence.

56 High-Performance Deformable Image Registration Algorithms for Manycore Processors

The algorithm listed in Figure 3.7 is invoked for each vector v in
the deformation field and since the number of vectors equals the num-
ber of voxels found in the static image, this algorithm must be invoked
N times. When trying to improve computational efficiency, the algo-
rithm cannot simply be invoked in parallel across N threads due to
write hazards associated with histogram construction wherein two or
more threads attempt to increment the same histogram bin simulta-
neously. We use two separate thread-safe techniques: one targeting /ig
and /1 and the other targeting 4; to construct the image histograms in
parallel on the GPU. Since both methods make effective use of the
memory hierarchy available within the GPU, we familiarize the reader
with this topic via the following brief discussion. The interested reader
is referred to Kirk and Hwu (2012) for more details.

The memory hierarchy within a GPU is comprised of registers,
shared memory, and global memory. Registers provide the fastest access
but are also the most scarce in number. They exhibit thread-level scope,
meaning every thread is assigned a set of registers that store data that is
private to that thread. Shared memory is the fastest memory type acces-
sible to multiple threads; it exhibits what is known as thread-block
scope. Since GPU kernels can comprise of thousands of threads, these
threads are grouped into many smaller sets called thread blocks of up to
512 threads each, and each thread block is assigned a modest amount of
shared memory that allows the threads within the block to communicate
quickly with each other. The size of the shared memory assigned to a
thread block ranges from 16 KB to 48 KB on various GPU platforms.
Finally, ranging on the order of gigabytes, global memory is the largest
yet slowest memory available. It is accessible to every thread, which
provides a means for thread blocks to communicate with each other.
Furthermore, global memory is how the CPU and GPU exchange data
and it remains persistent between multiple kernel invocations.
Consequently, kernels generally begin with a read from global memory
and end with a write to global memory.

3.4.1 Constructing Histograms for the Static and

Moving Images

This technique partitions an image into many nonoverlapping subre-
gions. Each subregion is assigned to a unique thread block which then
generates a histogram for its assigned subregion of the image, where
the size of a subregion (in voxels) equals the number of threads within

Multimodal B-Spline Registration 57

a thread block. Figure 3.8 describes the operations performed by a
thread block computing the moving-image histogram, beginning with
each thread obtaining the deformation vector v corresponding to its
assigned voxel X within the subregion delegated to the thread block.
Given v, each thread computes the eight nearest neighbors in the mov-
ing image corresponding to its assigned voxel X and the weights asso-
ciated with each of these neighbors by computing the partial volumes
(lines 4 and 5). Upon reaching line 8, each thread has local copies of
16 items: the indices of the nearest neighbors and the associated
weights. At this point, all threads simultaneously place each of the

: /* Note: Each thread is assigned a deformation vector ¥ */

: /* Each thread finds nearest neighbors and partial volumes */
. 1 = find nearest_neighbors (7 + , Mx, My)

-

. W = compute_pv (& + ¥)

: /* Accumulate weights into shared memory array s_partitions */

: /* Here threadIdx is the index of the thread within the thread block */
9: for i = 0 to 7 step 1 do

10: By = [(M(n;) = Om)/Du)

11: idx = threadIdx + Bjs X threadsPerBlock

12: s_partitions([idx] = s_partitions[idx] + w;

13: end for

15: /* Synchronize threads to this point */
16: __syncthreads()

18: /* Assign each thread to a single sub-histogram bin */
19: if threadIdx < num_bins then

20: sum = 0.0

21: element = (threadIdx) AND (0xOF)

22: offset = threadIdx X threadsPerBlock

24: /* Merge bin partitions */
25: for i = 0 to (threadsPerBlock — 1) step 1 do

26: sum = sum + s_partitions[offset + element]
27: element = element + 1

28: if element = threadsPerBlock then

29: element = 0

30: end if

31: end for

32: /* Each bin has now been merged */

33:

34: /* Write merged bins to sub-histogram for this thread block */

35: /* Here, blockIdxInGrid denotes the index of a thread block within the grid
of thread blocks */

36: sub_hist[blockIdxInGrid * num bins + threadIdx] = sum

37: end if

Figure 3.8 A parallel method of histogram construction using sub-histograms.

58 High-Performance Deformable Image Registration Algorithms for Manycore Processors

Organization of s_partitions]]:
|thread 0 | thread 1 |thread 2 |§§| thread N| thread 0 | thread 1 |thread 2 |§§| thread N| thread 0 | thread 1 |thread 2 |§§| thread ng

L L Il |
Bin 0 Bin 1 Bin 2

Organization of sub_hist[]:
[Bino [Bin1 | Bin2 [BN [Bin0 [Bin1 | Bin2 |§§| Binn | Bino | Bin1 | Bin2 [&] Binw [¢
I Sub-histogram 0 ! Sub-histogram 1 ! Sub-histogram 2 I

Figure 3.9 Memory organization for the sub-histogram method showing the graphical representation of the mem-
ory layout for arrays s_partition[] and sub _hist[] used in Figure 3.8.

eight weights into the moving-image histogram bins associated with
the intensity values of the nearest neighbors (lines 9—13).

Since all threads within a thread block perform the operations listed in
Figure 3.8 concurrently, we must ensure that threads wishing to modify
the same histogram bin do not modify the same memory location simul-
taneously. If a thread block has Np threads, we divide each bin into Ny
partitions as shown in Figure 3.9. This data structure, s partitions,
resides within the GPU’s shared memory and allows each thread to have
its own copy of each histogram bin, which prevents write collisions. On
line 16, all threads within the thread block are synchronized to ensure
that each has incremented its personal copy of the moving-image histo-
gram before moving on to the next step of merging the partitions within
each bin. This operation, shown in lines 19—36, assigns one thread to
each bin. Because the number of partitions equals the number of threads
within the thread block, each thread merging a partition performs Ng
accumulation operations to complete the process. All bins can be pro-
cessed in parallel in this fashion since there are no dependencies between
bins. However, some special considerations must be taken due to the way
shared memory is organized. Shared memory is organized as 16 banks of
1 KB memory each. If two threads attempt to read from the same mem-
ory bank simultancously, the reads become serialized, which negatively
impacts performance. We therefore aim to minimize these bank conflicts
by starting each thread off on a different bank as shown in line 21.
Thread 0 sums its N partitions starting with partition 0, residing in the
first bank; thread 1 starts with partition 1, residing in the second bank,
sums through to Ny and then “wraps around” to end on partition 0, and
so on. This way, each thread responsible for merging the partitions within
a bin in s partitions will always read from a different shared-
memory bank when generating a histogram with up to 16 bins. For histo-
grams with more than 16 bins, bank conflicts will occur when reading,

Multimodal B-Spline Registration 59

but they will be minimal; to construct an 18-bin histogram, for example,
threads 0 and 16 will read bank 1 simultaneously, and threads 1 and 17
will read bank 2 simultaneously, while the reads issued by threads 2—15
will remain free of conflicts.

Once each thread has merged the partitions of a bin down to a sin-
gle value (lines 25—31), the threads copy the histogram bins to the
sub_hist array residing in the GPU’s global memory (line 36), where
thread block 0 writes out the sub-histogram 0, thread block 1 writes
out sub-histogram 1, and so on. Once all thread blocks have written
their sub-histograms to sub_hist, a simple tree-style sum reduction
kernel is used to merge these sub-histograms into one histogram that is
representative of the moving image M.

3.4.2 Constructing the Joint Histogram

The above-described method cannot be used to generate the joint his-
togram h; since GPUs typically do not have sufficient shared memory
to maintain individual copies of the joint histogram for each thread
within a thread block. Therefore, the proposed method, detailed in
Figure 3.10, relies on atomic operations available in more recent GPU
models to guarantee mutually exclusive access to histogram bins and
requires considerably less shared memory.

For popular older GPU modules (such as the Tesla C1060 and the
GTX 200 series Nvidia GPUs), atomic addition operations on
floating-point values residing in global or shared memories are not
supported. However, these models support atomic-exchange operations
on floating-point values residing in shared memory; one can safely
swap a value in a shared-memory location with a register value that is
private to the thread. The technique discussed below uses the concept
of atomic exchange to regulate access to histogram bins and avoid
write conflicts between multiple threads. More recent GPUs can simply
replace lines 16—24 with an atomic addition instruction.

The image is once again divided into subregions, each of which is
assigned to individual thread blocks to generate the corresponding sub-
histograms. However, instead of maintaining a separate partition for
each thread within a bin, all threads write to the same bin in shared
memory. So, for a joint histogram with Kj = Kg X Ky bins, Kj elements
of shared memory are allocated per thread block. This array, s joint,
holds the entire sub-histogram for the thread block. Write conflicts to

60 High-Performance Deformable Image Registration Algorithms for Manycore Processors

/* Note: Each thread is assigned a deformation vector 7 */

/* Each thread finds nearest neighbors and partial volumes */
7i = find nearest_neighbors (Z + 7/, Mx, My)

—

W = compute_pv (Z + 7)

/* Compute the fixed histogram bin and joint offset */
Bs = [(S(#) — Os)/Ds]
offset = Bg X K

— =
= O

: /* Add partial volumes to joint histogram */
: for i = 0 to 7 step 1 do
By = [(M(ni) — On)/Du|
idx = offset + By
if idx != inferred_bin then
success = FALSE
while success == FALSE do
val =atomicExch(s_joint[idx], —1)
if val! = —1 then
success = TRUE
val = val + w;
atomicExch(s_joint[idx], val)
end if
end while
end if
: end for

O I I T I I T S I e e RN
e B R val = S S AR o

: /* Copy sub-histogram from shared to global memory */
: chunks = (Kj X block_size — 1) + block_size
: for i = 0 to chunks step 1 do
idx = threadIdx + ¢ X block_size
if idx < Ky then
j-hist[j_stride + idx] = s_joint [idx]
end if
: end for

W W W W W W N
SIS

Figure 3.10 Parallel histogram construction using the atomic-exchange operation.

the same bin are handled using the atomic-exchange instruction, as
shown in lines 16—24. The GPU instruction atomicExch (x, y)
allows a thread to swap a value x in a shared-memory location with a
register value y that is private to the thread, while returning the previous
value of x. If multiple threads attempt to exchange their private values
with the same memory location simultaneously, it is guaranteed that
only one will succeed. Returning to line 18, the successful thread obtains

Multimodal B-Spline Registration 61

a private copy of the histogram value in val, leaves the value —1 in the
shared-memory locations s joint[idx], and proceeds to lines
20—23; other threads attempting to access the same bin simultaneously
will obtain the —1 previously placed into shared memory. This tech-
nique, therefore, provides an efficient mechanism of serializing threads
attempting to write to the same memory location simultaneously. Note
that the threads proceeding to line 20 increment the histogram value
val obtained from shared memory by the appropriate partial volume
weight (line 21), exchange the incremented value back into shared mem-
ory (thus removing the —1 placed earlier), and set their success flag
to TRUE to indicate that their contributions to the joint histogram have
been committed. Finally, lines 29—35 copy the sub-histogram from
shared memory to the GPU’s global memory.

When generating the joint histogram, we also perform a simple but
key optimization step to improve computational efficiency. Since medical
images generally contain a predominant intensity—for example, black,
which is the intensity value of air, is abundant in most CT scans—the
technique presented here can result in the serialization of many threads if
they all update histogram bins involving this value. We prevent this situa-
tion, however, by inferring the value of the bin corresponding to the pre-
dominant value since this bin is expected to cause the most write
conflicts. Since the sum of all unnormalized histogram bins must equal
the total number of voxels in the static image having a correspondence
within the moving image, one bin may be omitted during the histogram
construction phase and filled in later using the simple relationship

hi(inferred_bin) = N — " k(i) (3.8)

where inferred bin is the bin that is skipped in line 15 of
Figure 3.10. Initially, an educated guess is made for inferred bin
based on the imaging modality, but as the registration is performed
over multiple iterations, the largest bin is tracked and skipped for the
next iteration. Experimental results using CT images indicate a notice-
able speedup, since on average, 80% of GPU threads attempt to bin
values correlating to air which would otherwise be serialized.

3.4.3 Evaluating the Cost Function
Once the histograms are generated, evaluating the MI-based cost func-
tion is straightforward, consisting of simply cycling through these

62 High-Performance Deformable Image Registration Algorithms for Manycore Processors

histograms while accumulating the results of the computation into C
as in Eq. (3.7). Care must be taken, however, to avoid evaluating the
natural logarithm of zero in instances where the joint-histogram bin is
empty. Since the operation does not substantially benefit from paralle-
lization, it is performed on the CPU. Moving the histogram data from
the GPU to the CPU requires negligible time since even large histo-
grams incur very small transfer times on a modern PCle bus. Once
evaluated, a single cost value is copied back to the GPU for use in sub-
sequent operations.

3.4.4 Optimizing the B-Spline Coefficients

Since we have chosen the coordinate transformation 7(y)= X + v,
where v is parameterized in terms of the sparse B-spline coefficients
P, it follows that the MI can be maximized by optimizing these coeffi-
cients. We choose to perform this optimization of gradient descent for
which an analytic expression for the gradient 0C/0P is required at
every control point P. The expression 0C/0P can be separated into
partial derivatives using the chain rule:

E—%Zaﬁ (3.9)
oP Ov ap

where the first term depends on the similarity metric. The second term
depends on the parameterization of the deformation field v and is eas-
ily obtained by taking the derivative of Eq. (3.1) with respect to P as

H 3 3
% ZZZﬁ/(u)ﬁm(V)ﬁn(W) (3.10)

1=0 m=0 n=0

In the first term of Eq. (3.9), C and v are coupled through the
probability distribution p; and are therefore directly affected by the
PVI. This becomes clearer when 6C/dv is further decomposed as

oac_ aC X%@M@»

oV apla M(A)) oV

! 6WY
=2\ G, Mn) M(m)) “

x=0

(3.11)

Multimodal B-Spline Registration 63

where M (ﬁ) is the value of the voxel in the moving image that corre-
sponds to the static-image voxel a = S(X). However, since A falls between
voxels in the moving image, eight moving-image voxels of varying weights
are taken to correspond to X due to the PVI, resulting in the simplifica-
tion as shown in Eq. (3.11). The first term of Eq. (3.11) is obtained using
the derivative of Eq. (3.6) with respect to the joint distribution p; as

oC _ _,._ piaM@n)
op(a, M)~ ps(@pu(M(n,)

The second term describes how the joint distribution changes with the
vector field. Recall that the displacement vector locally transforms the
coordinates of a voxel in the moving image M such that A= X + v. As
the vector field is modified, the partial volumes, wy—w7, are to be inserted
into the moving-image and joint histograms /ny; and /4; will change in size.
Therefore, dpj(a, M(A))/ 6_? is determined by changes exhibited in the
partial volumes wy—w7; as A evolves with the governing deformation field
v. These changes in the partial volumes with respect to the deformation
field 6w, /ov for xe[0, 7], with respect to each of the Cartesian directions
are easily obtained, thus resulting in 24 expressions. (The mathematical
expressions for wp—w7 can be found in the compute pv () function as
shown in Figure 3.6). So, for partial volume wy:

e (3.12)

6w0

& = (DXA={ADXT-{A]) (3.13)
wo =(-)xA-{ADX1—-{A} (3.14)
ovy

T (X - {anx1-{ay) (3.15)

and similarly for wy—w5. Therefore, as prescribed by Eq. (3.11), com-
puting dC/dv at a given voxel X in S involves cycling through the
eight bins corresponding to the neighbors described by A. So, for the
first neighbor ng, we determine which bin By, within histogram /1y the
voxel value ny belongs. This gives hnm(Bwm,). Similarly, the bin Bs
within the static-image histogram /g associated with the static-image
voxel a = S(X) is easily obtained, thus giving ss(Bs). Knowing Bs and
By, gives the associated joint-histogram value A;(Bs, By,). Now,
0C/0p; for neighbor n; is obtained as

oC Cn hij(Bs, Bw,)

e M) hs(Boym(Bry) (3.16)

64 High-Performance Deformable Image Registration Algorithms for Manycore Processors

As prescribed by Eq. (3.11), the contribution of nearest neighbor n
and its associated partial volume wy on dC/dv is found by first com-
puting dwy/0x as in Eq. (3.15). Each of the three components of
Owo/0x are weighted by Eq. (3.16), leading to

oC owy oC ow; oC
—— = X — 1. |+ X1, | + - 1
Ovy (Vx op; 0) <Vx op; 1> G.17)
8_C=<% X£n0>+(% xa_¢n1>+... (3.18)
ovy, vy op; vy op;
oC 8W0 oC éwl oC

= X — 1|, | + X1, |+ - 1
ov: (vz Opj °> (v: Opj 1) G19)

which gives 0C/dv at the static-image voxel coordinate x. This opera-
tion is performed for all N voxels in S.

The operations needed to compute C/0v are performed in parallel
by assigning a GPU thread to each voxel in the static image that has a
correspondence in the moving image. Figure 3.11 shows the operations
performed by each thread. Once 0C/0v has been computed at every
voxel, we can now use Eq. (3.9) to describe how the cost function
changes with the B-spline coefficients P associated with each control

i = find_nearest_neighbors (A, Mx, My)

/* Compute partial volumes spatial derivatives */
OwW/0x = compute_pv_derivatives x (A)
O0W/0y = compute_pv_derivatives_y (A)

—

0wW/0z = compute_pv_derivatives_z (A)

/* Calculate static image histogram bin */

Bs = [(S(%) — Os)/Ds]

=
124

11: /* Compute OC/OV at voxel coordinate I */

12: for i = 0 to 7 step 1 do

14: 0C/0p; = In((N x h;[Bum](Bs])/(hs|Bs] x ha[Bum])) — C
15: 9C/0vy = 0C /0y + Ow;/0x x OC/0p;

16: 0C/0vy, = 0C/0vy + Ow; /0y x OC/0p;

7. 9C/dv, = 0C/dv, + Ow;/Dz x OC/Op,

18: end for

Figure 3.11 Computing the derivative of the cost function with respect to vector field.

Multimodal B-Spline Registration 65

point. Figure 3.12 shows an example of how the cost-function gradient
is obtained at a single control point, highlighted in white, in a 2D
image. Here, 0C/0v has been computed at all voxels, including the
hatched voxel shown in the zoomed-in view at local coordinates (1,1)
within tile (0,0). The locations of this hatched voxel’s tile with respect
to the highlighted control point result in the evaluation of the B-spline
basis function with /=0 and m =0 in the x and y dimensions, respec-
tively. Moreover, these evaluations are performed using the normalized
coordinates of the voxel within the tile, therefore evaluating (,(1/3)
and [y(1/3) in the x and y dimensions, respectively. These two results
and the value of 0C/ov at the voxel in question are multiplied
together and the product is stored away for later. Once this procedure
is performed at every voxel for each tile in the vicinity of the control
point, all of the resulting products are accumulated, resulting in the
value of the cost-function gradient 0C/ 0P at the control point.

Since the example in Figure 3.12 uses a 2D image, 16 control points
are needed to parameterize how the cost function changes at any given
voxel with respect to the deformation field. Therefore, when computing
the value of the cost-function gradient at a given control point, the 16 tiles
affected by the control point must be included in the computation; these
tiles are numbered 1—16 in the figure. Each tile number represents a spe-
cific combination of the B-spline basis-function pieces used to compute a

Zoom B ()
Byt for/i=1
ﬁm (V) Local coordinate
form=0 (0,1) in tile (1,1)
u=-or v=vj;
=1 m=1
B (V)

[[
L geie, |
‘.’]T3EIZ4 EI 51 1?6- vt e

=0 m=0

Local coordinate

Figure 3.12 A 2D example of the cost-function gradient computation. The process | of re-expressing 0C [0V in
terms of the B-spline control point coefficients yields the cost-function gradient 0C, /6P at each control point. This
is partially demonstrated for the control point highlighted in white.

66 High-Performance Deformable Image Registration Algorithms for Manycore Processors

tile’s contribution to the gradient at the highlighted control point. For
example, voxels within tile number 1 use basis functions with / =0 and
m =0 in the x and y directions, respectively; voxels within tile 2 use basis
function with /=1 and m =0, and so on. Furthermore, in the 2D case,
each tile of 0C/0v affects exactly 16 control points and is therefore sub-
jected to each of the 16 possible B-spline combinations exactly 1. In the
3D case, each tile affects 64 control points. This is an important property
that forms the basis of our parallel implementation of this algorithm.

The GPU-based algorithm computes 0C/ oP operations on tiles
instead of individual voxels. Here, one thread block of 64 threads is
assigned to each tile in the static image. Given a tile in which 0C/ov
values are defined at each voxel location, the 64 threads work together to
parameterize these derivative values in terms of the B-spline control-point
coefficients, namely a sec of 0C /0P values. Since 64 control points are
needed to parameterize a tile’s contents using cubic B-splines, the thread
block will contribute to the gradient values defined at the 64 control points
in the tile’s immediate vicinity. In fact, each control point in the grid will
receive such gradient value contributions from exactly 64 tiles (or thread
blocks). The final value of the cost-function gradient at a given control
point is the sum of the 64 contributions received from its surrounding tiles.

Figure 3.13 shows the multistage process of computing the x com-
ponent of dC/0P in parallel on the GPU. This process takes as input,
the starting address of the tile within the C/0v array that is associ-
ated with the thread block. During stage 1, the 64 threads work in uni-
son to fetch a cluster of 64 contiguous 0C/0v values from global
memory, which are then stored into register. Once the cluster has been
loaded, each thread computed the local coordinates within the tile for
the 0C/0v value that it is responsible for. Also, as shown in
Figure 3.13, the input values are zero padded to 64, which was chosen
to make the tile size a multiple of thread-block size. The padding pre-
vents a cluster from reading into the next tile when the control-point
configuration results in tiles that are not naturally a multiple of the
cluster size. Stage 2 sequentially cycles through each of the 64 possible
B-spline piece was function combinations, using the local coordinates
of the 0C/0v values previously computed in Stage 1. Each of the
64 function combinations are applied to each element in the cluster in
parallel; the results are stored in a temporary array located within the
GPU’s shared memory which is then reduced to a single value and

Multimodal B-Spline Registration

Stage1 -- Each thread loads a value from the current cluster

67

Global | Cluster 0 | Cluster 1 Cluster 2 U0
deav X
Coalesced read
(64 threads)
: q aC L .
Register Each tile of =— values is divided into clusters of 64
il vl v v vl v

Stage 2 -- Each thread calculates all 64 possible B-spline basis function products for its dC_dv value

Relative tile position 0,0,0 Relative tile position 0,0,1 Relative tile position 3,3,3
(64 threads) (64 threads) (64 threads)
4 4 y
Texture

lookup Bopo (threadidx) Boos (threadldx) B335 (threadldx)

bbb RRRRR

calculate calculate calculate
Oxpad | |t || EDxod . e
Sligred reduction[threadldx]
memory

reduction[threadldx] reduction[threadldx]

b [contribftile_pos]] [_contribftile_pos]]
memory contribtile_pos] contribftile_pos] contribftile_pos]

Once all 64 relative positions are calculated, we return to Stage 1, move on to the next cluster, and repeat Stage 2
when all n clusters have been processed in Stage 2, we progress to Stage 3

Stage 3 -- Sort condensed tile’s contributions to approtriate control point bins in preparation for final sum reductions

[(64 threads) |
Shared (64 threads)

memory -
contrib[threadldx]
Global i 64 contribution values 64 CDI‘I(I’ibI:ﬂiDI‘I values 64 tontribution values 64 contribution values
Y I
memory
sorted_contrib_x[] Control pomt 0 Control pomt 1 Control po|nt 2 LU Control pOlnt m
Bin reductions \%}V : g ; g
Global Y| Z)t Y| Z X Y|Z
e -
dc_dp[]

| I
Control point 0 Contvol point 1 Control point 2 control point m

Bin reductions are performed only after Stages 1, 2, and 3 have been completed for all tiles

Figure, 3.13 The gradient computation workflow showing thg process of computing the cost-function gradient
0C/OP in parallel. Computation of the x component of 0C /0P is depicted. Components in the y and z directions

are calculated similarly.

68 High-Performance Deformable Image Registration Algorithms for Manycore Processors

accumulated into sorted contrib x, a region of shared memory
indexed by the piecewise B-spline function combination. This stage
ends once these operations have been performed for the 64 piecewise
combinations. Upon completion, control returns back to stage 1,
beginning another cycle by loading the next cluster of 64 values.

Once stage 2 has processed all the clusters within a tile, we will
have 64 gradient contributions stored within shared memory that must
be distributed to the control points they influence. Stage 3 assigned
one contribution, to be distributed appropriately based on the combi-
nation number, to each of the 64 threads in the thread block. To avoid
race conditions when multiple threads belonging to different thread
blocks write to the same memory location, each control point is given
64 “slots” in which to store these contributions. Once all contribution
values have been distributed, each set of 64 slots is reduced to a single
value, resulting in the gradient 0C /0P at each control point. As shown
in Figure 3.13, the array dc_dp that holds the gradient is organized in
a interleaved fashion as opposed to using separate arrays for each of
the x, y, and z components. This provides better cache locality when
these values are read back by the optimizer, which is executed on the
CPU. The time needed to copy the dc dp array from the GPU to the
CPU over the PCle bus is negligible; for example, registering
two256 X 256 X 256 images with a control-point spacing of
10 X 10 X 10 voxels requires 73,167 B-spline coefficients to be trans-
ferred between the GPU and the CPU per iteration, which incurs a
transfer overhead of 0.35 ms over a PCle 2.0 X 16 bus.

3.5 PERFORMANCE EVALUATION

This section presents experimental results obtained for the CPU and
GPU implementations in terms of both execution speed and registra-
tion quality. We compare the performance achieved by the following
different implementations:

» Single-threaded CPU implementation. This reference implementation
serves as a baseline for comparing the performance of the multi-core
CPU and GPU implementations. It is highly optimized and uses the
Streaming SIMD Extensions (SSE) instruction set to acceleration
pointing point operations when applicable. Characterizing its perfor-
mance using Valgrind, a profiling system for Linux programs

Multimodal B-Spline Registration 69

Figure 3.14 Thoracic MRI to CT registration using MI. (A) A 512X 384 X 16 voxel MRI volume (shown in
red) is superimposed on a 512 X 512 X 115 voxel CT volume (shown in blue) prior to deformable registration.
(B) The same MRI and CT volumes superimposed on each other after 20 iterations of the deformable registration
process on the GPU. The control-point grid spacing is set to 100° voxels.

(Nethercote and Seward, 2007), indicates a very low miss rate of
about 0.1% in both the L1 and L2 data caches.

* Multi-core implementation on the CPU using OpenMP. This imple-
mentation uses OpenMP, a portable programming interface for
shared-memory parallel computers (Chapman et al., 2007), to paral-
lelize the steps involving histogram generation, cost-function evalua-
tion, and gradient computation.

* GPU-based implementation. This implementation uses the compute
unified device architecture or CUDA programming interface to per-
form both histogram generation and gradient computation on the
GPU. The cost-function evaluation and the gradient descent optimi-
zation are performed on the CPU.

In addition to the registration quality, we quantify the impact of the
volume size and control-point spacing on the execution times incurred
by each of the above implementations. The tests reported here use a
machine equipped with a quad-core Intel i7-3770 processor with
Simultaneous multithreading (SMT) in which each core is clocked at
3.4 GHz. The GPU used is the NVidia GeForce GTX 680 model with
1536 cores, each clocked at 1.1 GHz, and with 2 GB of on-board mem-
ory. This GPU is a compute capability 3.0 CUDA device (Figure 3.14).

3.5.1 Registration Quality
This series of tests characterizes each implementation’s sensitivity, in
terms of execution time, to increasing volume size where the volumes

70 High-Performance Deformable Image Registration Algorithms for Manycore Processors

are synthetically generated. We fix the control-point spacing at 20 vox-
els in each physical dimension and increase the volume size in steps of
10 X 10 X 10 vozxels. For each volume size, we record the execution
time incurred by a single iteration of the registration process.
Figure 3.15A summarizes the results. As expected, the execution time
increases linearly with the number of voxels involved. The OpenMP
versions offers better performance with respect to the reference imple-
mentation, with a speedup of 4.4 times. The GPU achieves a speedup
of 28 times with respect to the reference implementation and 6.3 times
with respect to the OpenMP implementation. Also, the relatively sim-
ple optimization step of inferring the value of the histogram bin
expected to incur the most write conflicts (in other words, the most
number of atomic operations) significantly improves performance on
the GeForce GTX 680 GPU; for actual CT data, this optimization
step speeds up the histogram generation phase by five times. Finally,
the atomicAdd () instruction available on newer models like the
GeForce GTX 680 allows bins to be incremented in a thread-safe man-
ner without having to perform the complex atomic-exchange logic
shown in lines 15—25 of the histogram generation algorithm listed in
Figure 3.10.

3.5.2 Sensitivity to Control-Point Spacing

As discussed earlier, the parallel gradient computation exploits key
attributes of the uniform control-point spacing scheme to achieve fast
execution times. We consider each tile in the volume as a work unit
where each unit is farmed out to individual cores that are single
threaded in the case of a CPU core or multi-threaded in the case of a
GPU. If the volume size is fixed, then increasing the control-point
spacing results in fewer, yet larger, work units. Figure 3.15B shows the
impact of varying the control-point spacing in increments of 5X 5 X5
voxels with the volume size fixed at 350 X 350 X 350 voxels. Note that
the execution times are relatively unaffected by the control-point spac-
ing for all implementations.

The GPU-based versions show a slight sublinear increase in execu-
tion time starting at a control-point spacing of approximately 65 vox-
els. For larger spacings, the work-unit size becomes adequately large
such that the processing time dominates the time required to swap
work units in and out. When the time needed to process a work unit is
significantly less than the overhead associated with swapping it in and

Multimodal B-Spline Registration 71

(A) 120 -
e |ntel i7-3770 at 3.40GHz (serial)
m——— |ntel i7-3770 at 3.40GHz (openMP)
GeForce GTX 680 at 1.1GHz

100 -

80
z
Q
£

§ 60

=
(5]
Q
X
i

40 +

20F ———
O 1 J
20 40 60 80 100 120
Grid spacing (voxels)
(B) 100

—— |ntel i7-3770 at 3.40GHz (Serial)
90 T | s Intel i7-3770 at 3.40GHz (OpenMP)
GeForce GTX 680 at 1.1GHz

Execution time (s)

0 Q O
S oS J%"(: ?;L S ﬂ% ‘b@@
,LQQ*rL DQ* ,LQ,Q* ,ﬂﬁ* ’560

Volume size (voxels)

Figure 3.15 (A) The impact of volume size on the execution times incurred by the single-threaded and multi-
threaded CPU implementations and the GPU implementations. The control-point spacing is fixed at 20 X 20 X 20
voxels. (B) The impact of control-point spacing on the execution times incurred by the single-threaded and multi-
threaded CPU implementations and the GPU implementations. The volume size is fixed at 350 X 350 X 350
voxels.

72 High-Performance Deformable Image Registration Algorithms for Manycore Processors

out of a GPU core, the execution time is essentially constant since the
overhead incurred by the swapping is constant. When the processing
time begins to dominate, we expect the execution time to increase as
the number of elements within the work unit increases.

3.6 RELATED WORK

Other researchers have attacked the problem of multimodal registra-
tion using GPUs as well and this section provides the reader with an
overview of some existing work, focusing on the following specific
areas: B-spline interpolation and histogram generation. The B-spline
interpolation step generates the deformation field and some existing
techniques aim to accelerate this step using GPUs (Modat et al., 2010;
Ruijters et al., 2008; Sigg and Hadwiger, 2005). The B-spline interpola-
tion method described by Ruijters et al. (2008) uses the GPU’s linear
interpolation hardware as originally proposed by Sigg and Hadwiger
(2005). The arguments for this method are based on the reduction of
memory reads required to interpolate a single point (from 64 to 8 in
the 3D case) and the ability of the GPU’s interpolation unit to deliver
these 8 interpolated reads faster than it can provide the 64 noninterpo-
lated reads. Naturally, the quality of the interpolation depends on the
arithmetic precision supported by the underlying texture hardware. In
our work, we use the floating-point units on the GPU to compute the
deformation field and use 32-bit floating-point representation through-
out to improve the accuracy of the registration process.

Shams et al. consider the rigid registration of multimodality images
using MI and focus on accelerating the histogram generation step on
the GPU (Shams et al., 2010). The authors apply a concept termed
“sort and count” to compute histogram bins in a collision-free manner,
thereby eliminating the need for atomic operations. The basic idea uses
a parallel version of bitonic sort to order the array of input elements
while simultaneously counting the number of occurrences of each
unique element in the sorted set; the outcome of the sort returns a sin-
gle non-zero counter value for each unique value in the input set.
Multiple threads can, in parallel, use these counters to update the his-
togram bins corresponding to each unique element in the input set.
The authors present performance results for this technique using input
sets comprising of unsigned integers. Comparing the above-described
method to our methods of histogram generation, the major difference

Multimodal B-Spline Registration 73

is that our techniques are specifically aimed at generating histograms
with floating-point bin values. Floating-point representation is neces-
sary to correctly handle the case of one-to-many voxel correspondence
wherein a voxel in the static-image maps to a point lying between mul-
tiple neighboring voxels in the moving image. This situation is handled
via a technique called PVI which requires adding fractional voxels, i.c.,
floating-point values, to histogram bins. A comparison-based sorting
strategy like bitonic sort will be computationally expensive since the
cost of comparing floating-point numbers is significantly higher than
that of comparing integers. Theoretically, any algorithm that can sort
integers can be used to sort floating-point values by converting the
float into an integer representation that achieves the same sorted order
as the float and then translating back to the floating-point format.
However, the conversion to a comparable integer format will be
exceedingly difficult, if not impossible, in the context of our applica-
tion. Therefore, one needs to develop histogram generation methods
that use atomic intrinsics supported by the underlying instruction set
architecture of more recent GPU models while mitigating the impact
of thread serialization.

Shams and Kennedy develop a histogram generation method in
which the input image is partitioned into many nonoverlapping subre-
gions and each subregion is assigned to a thread block that generates a
histogram for its assigned subregion; these individual histograms are
then merged into one histogram (Shams and Kennedy, 2007). This
method was developed before the availability of GPU platforms sup-
porting atomic intrinsics and as a result, uses software-based synchro-
nization mechanisms to regulate access to the histogram bins;
software-based synchronization solutions incur much higher overhead
than atomic intrinsics.

3.7 SUMMARY

We have developed a B-spline based deformable registration process
for aligning multimodality images, suitable for use on multi-core pro-
cessors and GPUs. Using MI as the similarity metric, the goal is to
obtain a deformation field that warps the moving image such that it is
most similar to the static image. We developed and implemented paral-
lel algorithms to realize the following major steps of the registration
process: generating a deformation field using the B-spline control-point

74 High-Performance Deformable Image Registration Algorithms for Manycore Processors

grid, calculating the image histograms needed to compute the MI, and
calculating the change in the MI with respect to the B-spline coeffi-
cients for the gradient descent optimizer. We have evaluated the multi-
core CPU and GPU implementations in terms of both execution speed
and registration quality. Our results indicate that the speedup varies
with volume size and the voxel-intensity distribution within the images,
but is relatively insensitive to the control-point spacing. Our GPU-
based implementations achieve, on average, a speedup of 28 times with
respect to the reference implementation and 6.3 times with respect to a
multi-core CPU implementation using four cores, with near-identical
registration quality.

REFERENCES

Chapman, B., Jost, G., Pas, R.V.D., 2007. Using OpenMP: Portable Shared Memory Parallel
Programming. MIT Press, Cambridge, MA, USA.

Kirk, D., Hwu, W.-M., 2012. Programming Massively Parallel Processors: A Hands-on
Approach, second ed. Morgan Kaufmann, Waltham, MA, USA.

Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Seutens, P., 1997. Multimodality image
registration by maximization of mutual information. IEEE Trans. Med. Imaging 16 (2),
187—198.

Modat, M., et al., 2010. Fast free form deformation using graphics processing units. Comput.
Methods Programs Biomed. 98 (3), 278—284.

Nethercote, N., Seward, J., 2007. Valgrind: a framework for heavyweight dynamic binary instru-
mentation. In: ACM SIGPLAN Conference on Programming Language Design Implementation,
San Diego, CA, USA, pp. 89—100.

Ruijters, D., Haar-Romeny, B., Suetens, P., 2008. Accuracy of GPU-based B-spline evaluation.
IASTED International Conference Computer Graphics Imaging. Acta Press, Innsbruck, Austria,
pp. 117—-122.

Shams, R., Kennedy, R., 2007. Efficient histogram algorithms for Nvidia CUDA compatible
devices. In: International Conference on Signal Processing and Communications Systems, Gold
Coast, Australia, pp. 418—422.

Shams, R., Sadeghi, P., Kennedy, R., Hartley, R., 2010. Parallel computation of mutual informa-
tion on the GPU with application to real-time registration of 3D medical images. Comput.
Methods Programs Biomed. 99 (2), 133—146.

Sigg, C., Hadwiger, M., 2005. Fast third-order texture filtering. GPU Gems 2. Morgan
Kaufmann, Waltham, MA, USA, pp. 313—329.

Thevenaz, P., Unser, M., 2000. Optimization of mutual information for multi-resolution image
registration. IEEE Trans. Image Process. 9 (12), 2083—2099.

http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref5
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref5
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref5
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref5
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref7
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref7
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref7
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref8
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref8
http://refhub.elsevier.com/B978-0-12-407741-6.00003-7/sbref8

Analytic Vector Field Regularization
for B-spline Parameterized Methods

Information in This Chapter:

* Theory and Mathematical Formalism behind Analytical Regularization
» Algorithmic Implementation

* Performance Evaluation and Sensitivity Analysis

4.1 INTRODUCTION

B-spline-based deformable registration has become a popular method for
deriving coordinate system transforms between image volumes exhibiting
complex local variations due to its compact local support, rapid computa-
tion, and applicability to both single and multimodalities. Such trans-
forms allow nonrigid structures to be mapped between images and
provide a quantitative measure of local motion and volumetric change
over time. However, due to the inherent ill-posed nature of image regis-
tration, the existence of a unique mapping is not guaranteed and the solu-
tion space must, therefore, be confined to only physically meaningful
transforms. To this end, several regularization methods have been pro-
posed: Rueckert et al. (1999) propose penalizing high thin-plate bending
energy whereas Rohlfing et al. (2003) penalize local deviations from a
unity Jacobian determinate. Miller et al. (1993) propose minimizing linear
elastic energy. Li et al. (2009) enforce a maximum delta between adjacent
B-spline coefficients, whereas Chun and Fessler propose encouraging
invertible diffeomorphic transforms by placing more complex constraints
upon coefficients. In this chapter, we build upon (Rueckert et al., 1999)
by developing and validating a fast analytic method for computing the
thin-plate bending energy penalty via a set of static matrix operators.

4.2 THEORY AND MATHEMATICAL FORMALISM

Given a uniformly spaced control-point grid as shown in Figure 4.1,
the bending energy of the entire deformation may be expressed as a

High-Performance Deformable Image Registration Algorithms for Manycore Processors.
DOI: http://dx.doi.org/10.1016/B978-0-12-407741-6.00004-9
© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-407741-6.00004-9

76 High-Performance Deformable Image Registration Algorithms for Manycore Processors

Figure 4.1 A 2-D region supported by 16 control points.

linear combination of the bending energies computed within the indi-
vidual regions of the B-spline control grid. Therefore, the goal of the
approach is to develop an operator that computes the bending energy
within a region as a function of the B-spline control points that sup-
port the region.

_, Given a three-dimensional fixed image F with voxel coordinates
f =x,y,z and voxel intensity f = F(#) and moving image M with
voxel coordinates ¢ = x> z> and voxel intensity m = M(¢) represent-
ing the same underlying anatomy as F within the image overlap
domain €2, the two images F' and M are said to be registered when the
cost-function

C= > W(f,m+AS (4.1)
?(_é)eé

is optimized according to the similarity metric ¥ under the coordinate
mapping 7(¢) =6 +v. Here v is the dense vector field defined for
every voxel 0 €2, which is assumed to be capable of providing a good
one-to-one mapping from F to M. The smoothness S of v is added to
C with weight X\ to drive T to a physically meaningful coordinate
map. When represented sparsely via the uniform cubic B-spline basis,
the vectgr field v is parameterized by the set of B-spline basis coeffi-
cients P;j; = p_;, p_;, 17 where

Px,0,0,0 Py,0,0,0 Pz,0,0,0
Px = : s> Py = : s Pz = : 4.2)
Dx1,J.K Dy.1J.K Dz1J.K

are defined for n=1XJ X K control points with real-world spacing
7 =ry, ry, r-. From this new basis, the vector field may be expressed at a

Analytic Vector Field Regularization for B-spline Parameterized Methods 77

point 6 with Euclidean coefficients © computed via the following tensor
product using the 64 B-spline coefficients supporting 6:

V= i i i Pijk io 0, a) 35(61); O (i,b) ¥ (b) i@ 0)(i,0)Z ()
_ 7 _ 4.3)

for the x-dimension and similarly for the y- and z-dimensions. Here
X=[lx x? x3]T 4.4)

forms a Cartesian basis and y and Z are defined similarly. The matri-
ces OO, Qi‘s), are Q¥ are defined by

0V =BRA®, 0V =BR,AY, 0¥ =BRA® (4.5)

where B forms the cubic B-spline basis and R,, R, and R. confine the
evaluation of the B-spline basis to €0, 1]:

1 0 0 O
1
1 - 1 0 P, 0 O
11]4 - 3 B 1
0 0 o
0 0 O E
The matrix A® is defined for §€[0, 2] as follows:
10 0 07 0 00O
A0 — 01 00 A — 1 00 O
001 0| 020 0f
0 0 0 1 0 0 30
:0 0 0 0: @7
AO 0 00O
2.0 00
10 6 0 0]

78 High-Performance Deformable Image Registration Algorithms for Manycore Processors

and provides a convenient method for obtaining v/ and v” with respect
to the Euclidean basis as required by the calculation of the smoothness
penalty (Rueckert et al., 1999):

N2 N\ 2 N2 N2
v v v &*v
S= — | t =] + | == + | =—
ox? 0y? 0z2 oxy
Q
— 2 — 2
&Pv v -
+|(— +|=—]dx
oxz oyz

We may obtain expressions for these derivative terms by referring
to Eq. (4.3) and expanding the triple summation over (i,j, k) to pro-
duce the 64 X 1 vector:

4.8)

(0©9(0,a) ¥ (@))(O(0,5) ¥ (B)(QL(0, ¢) Z (¢)

Ly _ | (@PLOX@NGTOHTENEPO,0Z©) | 44

3 — 6}, i — . —
(QP)(3,a) 3 (@)(Q (3,) F (B3, 0)Z (0))
leading to the expression
TOwY7:) = ,Y(%»,vy,v;) ® ,Y(wxﬂ,m/;) (4.10)

which allows for the production of the polynomial expressions for the
squared second-order partial derivatives by setting (6, 0,,6-) and oper-
ating directly on the control-point coefficients. For example,

2 22

62 X — — a X — —
(angz) =pfF“’°’“pxand< a;) =pr, @

We can now devise a single matrix operator for computing
Eq. (4.8) over any given region supported by a set of 64 B-spline con-
trol points. Figure 4.1 provides a 2-D visualization. To later simplify
computation, we separate the term I by B-spline basis orientation
such that:

TOen7) = PO @ 1) g 102 (4.12)

Analytic Vector Field Regularization for B-spline Parameterized Methods 79

By separating the four rows of Q') into unit vectors
r 7T (6\’)

(0x) — X,
o=\ _7 (4.13)

L qx,3 .

we may define the sixteen 4 X 4 matrices given by Zyup = ¢,, ® ¢
and construct the 4 X 4 matrix:

I'®Na,b) = =, 40 (4.14)

—

Grouping like-order polynomial terms within =, ,, yields the col-
umn vector:

=(0,0)
=(0, 1)+ =(1,0)
2(0,2)+=2(1, 1)+ Z(2,0)
Oxan = | 5(0,3)+=(1,2)+Z(2, 1)+ 5(3,0) (4.15)
2(1,3)+2(2,2)+ 23, 1)
2(2,3)+2(3,2)
=(3,3)

L Jdx,ab

and by integrating the resulting eighth order Cartesian bases over 7

4

- 1 1.3 1 1.5 1.6
¢x:|:rx 3 31 gy 57x 6ly

T
3l (4.16)

the integral of I"® over a B-spline region may be expressed as a 4 X 4
matrix of vector products

ré) = JO r'®dx = oL apths (4.17)

and similarly for I', and I'.. This allows for the construction of the six
desired composite matrix operators

(4.18)

PO — I @ e re) fors, +6,+6.=1
0 otherwise

80 High-Performance Deformable Image Registration Algorithms for Manycore Processors

which facilitate the rapid computation of the smoothness metric over a
region indexed by (l, m,n) as

— T — —
Stmn="Y (B VORI G 4 B Vet g BTt) (4.19)
(6x.5,.62)

and the derivative with respect to a B-spline control-point P;; is

6S1,m,n
8PiJ,k

= > VOSP4 2yCet®p oy ehig) (4.20)
(8x,6y,62)

The total penalty S and its gradient are expressible via the
summations

aS m,n
S=>" Symaand 8Pl - ZZZ apll,,, 4.21)

(I,m,n) =0 m=0 n=

where the summation for S indexed by (/,m,n) is over all regions and
the summation for the gradient is over the 64 regions within the local
support of the control point P; .

4.3 ALGORITHMIC IMPLEMENTATION

Because the set of six matrix operators V%) depend only on the B-
spline grid configuration, they may be precomputed before the registra-
tion begins and simply reused within each iteration. Therefore, the
algorithmic implementation of the regularization process consists of
two stages: an initialization stage and an update stage. During the ini-
tialization stage, the six matrix operators are simply constructed and
stored. The update stage occurs at the end of each optimization itera-
tion and consists of applying the precomputed matrix operators to the
B-spline coefficients in order to compute the vector field smoothness S
and its derivative with respect to each control point 6S/0P. This stage
concludes by adding the smoothness S to the overall cost function C
as in Eq. (4.2) and the smoothness derivative 0S/0P to the cost-
function gradient 0C /0P as per Eq. (5.3).

First we consider the initialization process, which is performed along
with all other B-spline initialization procedures. Only the B-spline con-
trol-point spacing in each spatial dimension is required for generation
of the six V%) matrix operators. This initialization process is

Analytic Vector Field Regularization for B-spline Parameterized Methods 81

1: /* Generate the Q matrices from (4.5) through (4.7) */

2. Q) =BR,

3 QY =BR,

4 QY =BR,

5:

6: /* Generate first and second derivatives as in (4.5) through (4.7) */
7. QW = Q(U)A 1)

8: Qfll) Q(U)A(

9. QW) = Q(())A(l)

10: QELZ) QVA®

11: QY = QVA®

12: Q(Q<°>A<2>

13:

14: /* Generate T\, T, T as per (4.13) through (4.17) */
15: T = eval_ integral(Q{ 9 ry)

16: T = eval_ integral(Q\Y,), rz)

17: TP = eval_ integral(Q? rT)

18:

19: /* Generate 1_"5,()), 1:‘131), l_"z(f) as per (4.13) through (4.17) */
20: 1‘“5,0) = eval_integral(QLO),ry)

21: f‘g,l) = eval_integral(Q,(yD,ry)

22: 1_"5,2) = eval_integral(Qy),ry)

23:

24: /* Generate 17‘(;()), 1"“&”, 1_"22) as per (4.13) through (4.17) */
25: T = eval. integral(Q\Y,r.)

26: T = eval. integral(Q\Y,r.)

o7 T = eval_integral(Q?,r.)

28:

29: /* Generate V; through Vg as per (4.18) */

30: V; =T o T o T

31: Vo =T ®F<2) ® TP

32 V3 =IO o T o I

33 Vv, =TV ® 1"“) o

34: V5 =TV ®I‘(°) TV

35 Vo =T o T{) o T

Figure 4.2 Initializing the regularizer by constructing the various matrix operators.

described algorithmically in Figures 4.2 and 4.3. Lines 1—4 normalize
the B-spline basis by the control-grid spacing for each Cartesian axis as
per Eq. (4.5). This is necessary so that any given voxel coordinate within
a tile will be normalized within [0,1], the range within which the B-
spline basis functions are defined. Lines 6—12 generate the first- and
second-order spatial derivatives of the normalized B-spline basis func-
tions as per Eq. (4.7). Lines 14—17 generate the matricesF&o),Ff&), and
I'® by squaring Eq. (4.2) for the zeroth-, first-, and second-order nor-
malized B-spline basis functions 9,0, and Q'?, respectively, by and

82 High-Performance Deformable Image Registration Algorithms for Manycore Processors

1: function eval_integral(Q,r)

2 for A =0 to 3 step 1

3 for Ay =0to 3 step 1

4: /* As per (4.13) */

5 = = q(\) ® 4h)

6.

7 /* As per (4.14) through (4.17) */
8 T(A12e) = T(2(0,0)

9: +Z(E(0,1) + E(1,0))
10: +L(E(0,2) + E(1,1) + E(2,0))
1 +17(2(0,3) + E(1,2) + E(2,1) + E(3,0))
12: +Z(2(1,3) + E(2,2) + E(3,1))
13: +I(E(2,3) + E(3,2))
14: +5(2(3,3))
15: end for
16: end for
17:

18: return T
19: end function

Figure 4.3 Generation of the integrated sub-matrices I'.

integrating the resulting 6th order polynomials over the control-point
spacing in the x-direction as per Eqs. (4.14)—(4.17). Similarly, this oper-
ation is performed in the y and z directions to obtain
Fﬁ,o),l“;l),F(yz),FE,O),FE,”, and Ff). This process of squaring and integrating
is performed within the function eval integral (), which is algo-
rithmically described in Figure 4.3. Finally, lines 29—35 complete the
initialization process by computing the six ¥®+%-%:) matrices via the ten-
sor product as per Eq. (4.18).

Once the six V%) matrix operators are obtained, the smooth-
ness S and its derivative 0S/0P may be quickly computed for any
given tile via Egs. (4.19) and (4.20). Figures 4.4 and 4.5 describe the
process of computing the smoothness for the entire vector field by
sequentially computing the vector field smoothness for each tile S;,,,
and accumulating the results as in Eq. (4.21). For each iteration we
first use the tile’s index tile index to compute the indices of
the 64 control points that are associated with that tile. These indices
are stored into the 64 element array cp lut as shown in line 4.
The remainder of the iteration computes the smoothness of the
individual tile’s vector field by applying the six V%) matrix opera-
tors as shown in lines 7—12 in Figure 4.4 and summing the results.

Analytic Vector Field Regularization for B-spline Parameterized Methods 83

S=0

: for tile_idx = 0 to NUM_TILES-1 step 1

/* Generate array containing indices for tile’s 64 control points */
cp-lut = find_control_points(tile_idx)

/* Sum partial derivatives as per (4.19) and (4.20) */
+= apply-operator(cp-lut,Vy)
+= apply_operator(cp_lut,Vz)
+= apply_operator(cp_lut,V3)
apply_operator(cp_lut,Vy)
11: += apply_operator(cp_lut,Vsy)
12: += apply_operator(cp_lut, Vg)
13: end for

H
[en)

Ny
I

Figure 4.4 The update stage of the regularizer that computes the smoothness for the entire vector field.

1: function apply_operator(cp_lut, V)

2: for j =0 to 63 step 1

3 /* Compute tile smoothness as per (4.19). */
4 for i =0 to 63 step 1

5: tmpx[j] += P[3*cp_lut[i]+0] * V[64 * j + 7]

6 tmp_y [j1 += P[3*cp-lut[i]+1] * V[64 * j + 7]

7 tmp_z[j] += P[3*cp-lut[i]+2] * V[64 % j + 7]

8

9

end for
10: Stite += tmp_x[j] * P[3*cp_lut[i]+0]
11: Stite += tmp_y[j] * P[3*cp_lut[i]+1]
12: Stite += tmp_z[j] * P[3*cp_lut[i]+2]
13: [K e e */
14:
15: /* Compute tiles smoothness derivative as per (4.20). */
16: OC /0P [3*cp-lut [j1+0] += 2x A% tmp_x[j]
17: OC/OP [3*cp-lut [j1+1] += 2x Ax tmp_y[j]
18: OC/OP [3*cp_lut[j1+2] += 2% Ax tmp_z[j]
19: end for
20:

21: return Sye
22: end function

Figure 4.5 The regularization operation applied to the B-spline coefficients.

For subsequent iterations we continue to accumulate into S, thereby
computing the smoothness for the entire vector field as prescribed by
Eq. (4.21).

Figure 4.5 details the steps involved in applying the V®~%-%) matrix
operators to a set of 64 control points. Here, lines 4—12 implement the
straightforward matrix multiplication required by the p Vp,

84 High-Performance Deformable Image Registration Algorithms for Manycore Processors

operation found in Eq. (4.19). The array V[] holds the 64 X 64 matrix
operator being applied to the B-spline coefficients stored within P[],
which is x, y, z-interlaced. The control-point index lookup
table cp lut passed into the function contains the indices of the 64
control points for the tile in question; thus its use in lines 5—7 and
10—12 serves as a means of converting from tile-centric control-point
indexing (ranging from 0 to 63) to the absolute control-point indexing
used within the B-spline coefficient array P[] . Furthermore, due to
the operational similarity found in the computation of the tile smooth-
ness S;m, and its derivative 0Sj,,,/0P, we are able to compute
Eq. (4.20) in place using the partial solutions tmp x[], tmp vy],
and tmp_z[] from the tile smoothness computations as shown in lines
16—18.

Finally, it should be noted that since the computation of an individ-
ual tile’s smoothness is independent of all other tiles, it is possible to
parallelize the algorithm by simply spreading the iterations of
Figure 4.4 across N cores and performing a sum reduction on the
resulting N values of S. Additionally, because lines 16—18 of
Figure 4.5 attempt to update 64 control-point dC/0P values by
appending A weighted 0S/0P values as in Eq. (4.1), the cost-function
gradient update operations must be modified to be thread safe. For
this, the same thread-safe parallel method from Chapters 2 and 3 used
to update the set of 64 0C /0P values given a tile of 0C/dv values may
be employed due to the identical data structures used in the operation
with the only difference being that the 0S/0P data values replace the
0C/ov values.

4.4 PERFORMANCE EVALUATION

This section presents experimental results obtained for single- and
multi-core CPU implementations in terms of both execution speed and
registration quality. A numerical central differencing implementation
that computes the vector field smoothness by operating directly on the
vector field is provided as a basis for comparison. All implementations
are evaluated in terms of execution speed as a function of (i) volume
size given a fixed control-point grid and (ii) control-point spacing given
a fixed volume size. Additionally, the processing time incurred for a
single tile as a function of the tile’s size is also investigated. As previ-
ously described, the sequential analytic implementation computes the

Analytic Vector Field Regularization for B-spline Parameterized Methods 85

smoothness by applying the six V©+%-%) matrix operators to the B-
spline coefficients pertaining to each tile—one tile at a time until all
tiles within the volume are processed. Since the computation of each
individual tile’s smoothness is independent of other tiles, the parallel
analytic implementations may process the smoothness for N tiles in
parallel given N cores. Additionally, this implementation uses the par-
allel gradient update method developed in Chapters 2 and 3 to further
accelerate the algorithm. These analytic implementations provide an
interesting contrast to the numerical method of smoothness computa-
tion, which is based on central differencing of the raw vector field
values at each individual voxel in the volume. Consequently, the
numerical method differs from the analytic method in that it is voxel
resolution centric and not control-grid resolution centric. This results
in the two methods having not only differing processing speeds but
fundamentally different execution-time profiles with respect to the vari-
ous input parameters.

Lastly, we demonstrate the effectiveness of regularization for a mul-
timodal case requiring the registration of an intraoperative CT to a
preoperative MRI. Warped moving images with and without regulari-
zation are shown as well as their associated deformation vector field
transforms. Additionally, post-warp CT-MRI fusion images are pro-
vided in order to more clearly demonstrate the affects of regularization
on registration solution convergence. The tests reported here were per-
formed using a machine equipped with an Intel quad-core 17 920 pro-
cessor with each core clocked at 2.6 GHz.

4.4.1 Registration Quality

Figure 4.6 shows axial cross sections of thoracic image volumes
involved in an MRI to CT multimodal registration using mutual infor-
mation. CT images are shown in blue and MRI images are shown in
red. Figure 4.6A is a cross section of the CT volume serving as the
fixed image. Similarly, Figure 4.6B is a cross section of the MRI serv-
ing as the moving image. Figure 4.6C shows the result of a carefully
conducted five-stage multiresolution B-spline grid registration that
does not impose any regularization on the deformation vector field.
Figure 4.6D shows the same registration that imposes the smoothness
penalty term with a weight of A=5Xx10"°. Figure 4.7A shows the
unwarped MRI image superimposed upon the CT image prior to
deformable registration. As shown, the two images have been rigidly

86 High-Performance Deformable Image Registration Algorithms for Manycore Processors

Figure 4.6 Warped thoracic images with and without regularization. (A) The static CT image, (B) the moving
MRI image, (C) the warped MRI after registration without regularization, and (D) the warped MRI after regis-
tration with a regularization factor of A\=5x107°.

registered manually to one another such that the common vertebra is
aligned. Notice the significant liver deformation on the left of the tho-
rax and the spleen deformation found on the right posterior. The aim
of the deformable registration is to recover the deformation vector field
accurately describing the movement of these organs and surrounding
dynamic anatomy.

We will first analyze the registration result in Figure 4.7 without
regularization. Despite this deformation being physically impossible, as
we will show, it does meet the mutual information criteria for a good
registration. Consequently, the fusion of this solution with the fixed
CT image is visually favorable as shown in Figure 4.7B. However,
notice how the MRI image warped by the unregularized vector field,
when viewed by itself in Figure 4.6C appears “wavy” and exhibits arti-
facting reminiscent of a thin film of oil—particularly pronounced
within the spinal column and the anterior layer of fat around the

Analytic Vector Field Regularization for B-spline Parameterized Methods 87

Figure 4.7 Fusion of MRI and CT thoracic images with and without regularization. (A) The original MRI image
superimposed on the CT image, (B) the MRI warped without regularization and superimposed on the CT, and
(C) the MRI warped with regularization and superimposed on the CT.

abdomen. Naturally, the human body is incapable of deforming in this
fashion and direct inspection of the deformation field shown in
Figure 4.8A confirms its implausibility.

In contrast, Figure 4.6D shows the result for the same registration
performed with a regularization penalty weight of A =5 X 107, Notice
how the artifacting is no longer present—the deformation appears
physically sane; accordingly, the deformation vector field shown in
Figure 4.8B confirms that the mapping is sane. Finally, the superimpo-
sition of this warped MRI upon the reference CT image shown in
Figure 4.7C represents an accurate anatomical correlation between the
intraoperative CT and the preoperative MRI images.

4.4.2 Sensitivity to Volume Size
This set of tests characterizes each implementation’s sensitivity, in
terms of execution time, to increasing volume size where the volumes

88 High-Performance Deformable Image Registration Algorithms for Manycore Processors

Figure 4.8 Multimodal vector fields with and without regularization. (A) Superimposed position of a 2-D slice of
a 3-D deformation vector field upon the corresponding axial thoracic CT slice. This vector field was generated
from an MRI to CT registration that did not employ regularization. (B) Superimposition of a vector field upon a
CT image that underwent the same registration but with a regularization penalty weight of A=5 X 107°.

are synthetically generated. We fix the control-point spacing at 15 vox-
els in each physical dimension and increase the volume size in steps of
5 X 5% 5 voxels. For each volume size, we record the execution time
incurred by a single iteration of the regularization process. Figure 4.9A
summarizes the results. As expected for the numerically derived solu-
tion, the execution time increases linearly with the number of voxels
involved. Figure 4.9B shows the same graph excluding the numerical
method. Notice how the execution time for the analytic method
increases only when the volume size increases by an integer multiple of
the control-point grid spacing. This is because the analytic algorithm
operates directly on the control-point coefficients in order to compute
the vector field smoothness for a tile. Therefore, the execution time
depends only on the number of tiles within the volume. Increasing the
volume size by a multiple of the control-point spacing introduces addi-
tional tiles, incurring additional overall processing time for the volume.
In the case of a large test volume of 500 X 500 X 500 voxels, the single-
core analytic implementation exhibits a speedup of 191 times over the
numerical method. For the same volume size, the parallel analytic
method achieves an additional 3.2x speedup—a speedup of 613x with
respect to the numerical method.

4.4.3 Sensitivity to Control-Point Spacing

Figure 4.10A shows the execution time for all three regularizer imple-
mentations over a single registration iteration as a function of control-
point grid spacing with the volume size held constant at

Numerical (1 core)
- Analytic (1 core)
600 Analytic (OpenMP: 4 cores) |~~~ <= = /]
500 .
z
[0} 4
£ 400
=
9
3 300 1
x
i
200 1
100 1
ol
S SIPLSS ST L & & &
Y YIS 5 5 ¥ Y Y ¥ N S
P FHFFTFTISSFT & ¢ & & &
& ¥ O SITFO & & O ¥ © Gy S
S WAVZeE el e B SN S N > o
V §FfiFFTFTF T & ¢ & & &
FETTEFSE S &F ¥ & & &

Volume size (voxels)

(B) 35 ST
Analytic (1 core)
Analytic (OpenMP: 4 cores)

Execution Time (seconds)

S SPLSL ST S & & &
N R R = B - g N N3 A he)
S FIFFFF S & & & & ¥
v O OSSO & L Q Q' Q' N)
N Y OSSNy O o 9 W 2 'Y G S
Q s B N I N g Ng N3 he)
V FIFFFLSyF & & & F & ¥
FSSPFSLSSFF 6 & &
v v o o wow W W w o

Volume size (voxels)

Figure 4.9 Performance of the regularizer with respect to volume size. (A) Execution times for each regulariza-
tion implementation as a function of input volume size. Control-point spacing is fixed at 5X5X5 voxels.
(B) Only showing analytic implementations.

90 High-Performance Deformable Image Registration Algorithms for Manycore Processors

(A) "',\;'~"""""
m— Numerical (1 core)
Analytic (1 core)
200 Analytic (OpenMP: 4 cores) 4
150 b
@
©
£
c
ke
3 100 | .
9]
X
L
50 - i
0
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Grid spacing (voxels)
(B) 05—
Analytic (1 core)
045} Analytic (OpenMP: 4 cores) i
0.4} E E
0.35
@ 0.3
o
£
_5 0.25
5
(5]
£ 02
L
0.15
0.1
0.05

0 1 1 1 1 1 1 1 1 1
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Grid spacing (voxels)

Figure 4.10 Performance of the regularizer with respect to the control-grid spacing. (A) The execution times for
each regularization implementation as a function of control-point grid size. The input volume size is fixed at
320 X 320 X 320 voxels. (B) Showing the performance of only the analytic implementations.

Analytic Vector Field Regularization for B-spline Parameterized Methods 91

320 X 320 X 320 voxels. As explained, the execution time for the
numerical implementation is agnostic to the control-point spacing since
it performs central differencing at every point in the vector field.
Figure 4.10B shows the execution times incurred by just the analyti-
cally derived solutions. Interestingly, the analytic implementations
exhibit an inverse cubic decay in execution time with respect to
control-point spacing, with finer spacings incurring longer execution
times. This phenomenon is most easily explained by examining the exe-
cution time required to compute the smoothness for a single tile with
respect to tile size as shown in Figure 4.11. As shown in Figure 4.11B,
as the tile size increases, the time required for the analytic implementa-
tions to process that tile remains constant. This is because the compu-
tation operation is based only on the coefficients of the 64 control
points which define the tile. If the spacing between these 64 control
points increase, the number of elements required to perform the com-
putation remains unchanged—only the B-spline normalization matrices
R\,R,, and R. from Eq. (4.6) are modified, which has no effect on pro-
cessing time. Consequently, the inverse cubic execution profile exhib-
ited by the analytic algorithms in Figure 4.10B is due only to the
number of tiles decreasing in each of the three spatial volume dimen-
sions as the control-point spacing is isometrically increased. Finally,
Figure 4.11A shows the execution time to increase with tile size for the
central differencing-based numerical algorithm. However, because this
algorithm’s processing time is solely dependent on the total number of
voxels in the image volume, the overall execution time remains
unchanged with control-point spacing as shown in Figure 4.10A. In
other words, if the volume holds constant dimensionality, increase the
control-point spacing results in longer processing times per tile, how-
ever the number of tiles have proportionally decreased; thus resulting
in an overall unchanged processing time for the image volume as a
whole.

4.5 SUMMARY

We have developed an analytic method for computing the smoothness
of a vector deformation field parameterized by uniform cubic B-spline
basis coefficients. Furthermore, we have demonstrated how to inte-
grate this smoothness metric into the deformable registration work-
flow; thereby constraining the solution of the vector deformation field
and regularizing the ill-posedness of the image registration problem.

92 High-Performance Deformable Image Registration Algorithms for Manycore Processors

- Numerical (1 core)
Analytic (1 core)
Analytic (OpenMP: 4 cores)
2
©
£ :
'5 100 E : : : : =
5 .
[.
19} .
x -
w .
50 |]
ok
S S L & & &
N NI A A Y v))
Y STF S & & & N N
v SfePdF S P S 9
V §§FF g & & & S <
0 S LV 'S o) Qo) S %
NN o o v v o5 B

Tile size (voxels)

Analytic (1 core)
Analytic (OpenMP: 4 cores)

25F 1
2
o
£
c -
kel -
§1_5_'_...,. i
i &Ll W 7 N
1F :
05F : : : : -
O'...
S ST F & & & 5
y X I T L S &
Y ST & & & & N &
g PPy T & & S &
Vfddd & & & §
S O LV g S %
NN o v v Vv 05 o)

Tile size (voxels)

Figure 4.11 Performance of the regularizer with respect to tile size. (A) Execution times for each regularizer
implementation as a function of tile size. For these tests, only the time to process a single tile is measured. (B)
Showing the performance of only the analytic implementations.

Analytic Vector Field Regularization for B-spline Parameterized Methods 93

The effectiveness of this method of regularization has been validated
by performing multimodal MI-based deformable registration of a pre-
operative thoracic MRI to an intraoperational thoracic CT scan. The
warped images, fused images, and vector field visualizations show
increased anatomical correctness for registration procedures incorpo-
rating regularization over otherwise identical procedures excluding reg-
ularization. Finally, performance analysis shows our analytic method
for computing the smoothness metric to be independent of volume res-
olution and 191 times faster than the traditional numerical method of
computation based on central differencing—reducing the operation
from hundreds of seconds to approximately 1s for most registration
configurations. By parallelizing the analytic algorithm via OpenMP,
we achieved a speed up of over 3.2 times the single-core analytic algo-
rithm when executed on a four core Intel 17 920 processor; thus provid-
ing sub-second processing times for even the most demanding medical
image registration problems.

REFERENCES

Chun, S.Y., Fessler, J.A., Kessler, M.L., 2009. A simple penalty that encourages local invertibil-
ity and considers sliding effects for respiratory motion. Proc. SPIE7259, Medical Imaging: Image
Processing 72592U, Lake Buena Vista, FL, USA.

Li, X., Dawant, B., Welch, E., Chakravarthy, A., Freehardt, D., Mayer, 1., et al., 2009. A non-
rigid registration algorithm for longitudinal breast MR images and the analysis of breast tumor
response. Magn. Reson. Imaging 27 (9), 1258—1270.

Miller, M., Christensen, G., Amit, Y., Grenander, U., 1993. Mathematical textbook of deform-
able neuroanatomies. Proc. Natl. Acad. Sci. USA. 90 (24), 11944—11948.

Rohlfing, T., Maurer Jr, C., Bluemke, D., Jacobs, M., 2003. Volume-preserving nonrigid registra-
tion of MR breast images using free-form deformation with an incompressibility constraint. IEEE
Trans. Med. Imaging 22 (6), 730—741.

Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D., 1999. Nonrigid registra-
tion using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging
18 (8), 712—721.

http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00004-9/sbref4

Deformable Registration Using Optical-Flow
Methods

Information in This Chapter:

* Demons algorithm for deformable registration
* GPU-based version of demons algorithm

* Performance results

5.1 INTRODUCTION

This chapter develops a data-parallel model for the “demons” algo-
rithm, a well-known deformable registration method based on optical
flow (Horn and Schunck, 1981). In general, optical-flow methods
describe the registration problem as a set of flow equations under the
assumption that image intensities are constant between views. The
demons algorithm is a variant of this approach which combines a sta-
bilized vector-field estimation algorithm with Gaussian regularization
(Thirion, 1998). It is iterative and alternates between solving the flow
equations and regularization.

Demons registration is a good candidate for GPU-based accelera-
tion due to the significant amount of fine-grain parallelism that can be
extracted from the algorithm; the flow equations can be evaluated at
each individual voxel in parallel and so can the smoothing procedure
(Gu et al., 2010; Samant et al., 2008; Sharp et al., 2007). Samant et al.
develop and benchmark a CUDA version of the demons algorithm on
the Nvidia 8800 GTX GPU, reporting a speedup of about 30 times
over a multithreaded implementation using two threads on a 2.4 GHz
Intel CPU. Gu et al. implement both the basic version of the demons
algorithm and five additional variants in CUDA to determine the algo-
rithm(s) with the best performance in terms of both accuracy and effi-
ciency. The algorithms are used in the context of a multiresolution
registration workflow for adaptive radiotherapy applications. The
authors also benchmark the algorithms using a Nvidia 285 GTX GPU
and report a speedup of 40 times over a 2.3 GHz Intel Xeon processor.

High-Performance Deformable Image Registration Algorithms for Manycore Processors.
DOI: http://dx.doi.org/10.1016/B978-0-12-407741-6.00005-0
© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-407741-6.00005-0

96 High-Performance Deformable Image Registration Algorithms for Manycore Processors

We describe a data-parallel design for the demons deformable regis-
tration algorithm that develops both the flow equations and the regu-
larizer within the SIMD model. The GPU version is implemented
using CUDA on the Nvidia 680 GTX GPU and its performance is
analyzed in terms of speed and accuracy using CT data of a preserved
swine lung. Our results indicate substantial speedup of 150 times for
large volumes (e.g., 250% voxels) over a single-threaded CPU reference
implementation executed on an Intel Core i7-3770 CPU clocked at
3.40 GHz. Also, comparing the accuracy of CPU and GPU implemen-
tations, the RMS differences were less than 0.1 mm for the vector field
generated for deformable registration.

5.2 DEMONS ALGORITHM FOR DEFORMABLE REGISTRATION

Optical-flow methods describe the registration problem as a set of flow
equations under the assumption that image intensities are constant
between views. The most common variant, especially that used in med-
ical applications, is the “demons algorithm,” which combines a stabi-
lized vector-field estimation algorithm with Gaussian regularization.
The algorithm is iterative and alternates between solving the flow
equations and regularization.

Let us consider two time-lapse images M and S, where M denotes
the moving image and S the static image. For a given voxel, let m and
s be its intensities within M and S, respectively. The theoretic basis of
optical flow follows from an assumption that the intensity of a moving
object (from M to S) is constant with time, which, for small displace-
ments, gives the optical-flow equation

Z.eszm—s 5.1

where Vs denotes the brightness gradient within the image S (Horn
and Schunck, 1981). Here, v denotes the velocity of the voxel in the
(x,y,z) space since the images correspond to two successive time
frames; v can also be considered as the displacement of the voxel dur-
ing the time interval between the two image frames.

The goal is to solve for the displacement vector v for each voxel.
Since Eq. (5.1) is under-constrained, a minimum-norm constraint can
be applied to yield a solution for the optical flow. However, the flow
will be unstable in regions where the image gradient Vs is very small,

Deformable Registration Using Optical-Flow Methods 97

leading to a very large (even infinite) value for v. Therefore, to correct
this problem, Thirion stabilized the vector-field estimation by underes-
timating the displacement at locations where the image gradient is
small (Thirion, 1998); to compensate for this, Gaussian regularization
(or smoothing) is applied to the vector field to fill in those regions that
are underestimated.

The following equations are solved for each voxel and make up the
overall demons algorithm.

—

vy = 0 (52)
Vo= Vpor + IV (5.3)
(Vs)? + (m—s)?

vy = smooth (v/}) (5.4)

During each iteration k, Eq. (5.3) obtains a preliminary estimate of
the displacement v, for each voxel using the spatial gradient of image
intensities Vs and the image-intensity difference m —s. However, if
(Vs)? + (m—s)? in the denominator of Eq. (5.3) is too small, then the
equation is unstable and v} is not changed. Next, the displacement
field is regularized using a Gaussian smoothing filter in Eq. (5.4),
ensuring that displacement estimates diffuse out from regions having
strong image gradients to regions with weak gradients. This optical-
flow process is repeated for the number of iterations needed for v to
converge—usually between 50 and 100 iterations.

If k iterations are performed on a volume of m* voxels, and if the
size of the smoothing kernel is small, the demons algorithm has a
computational complexity of O(km?). The computations of m — s and
Vs can be performed independently for each voxel and therefore can
be parallelized. So, if there are p processors, the complexity is
O(kn® /p).

5.3 SIMD VERSION OF DEMONS ALGORITHM

As discussed in the earlier section, the demons algorithm for deformable
registration is iterative and alternates between the computationally
intensive tasks of updating the velocity vector field and Gaussian regu-
larization. We show how to develop kernels to: (1) compute the intensity

98

High-Performance Deformable Image Registration Algorithms for Manycore Processors

gradient of an image %s; (2) estimate the displacement-vector field using
Eq. (5.3); and (3) regularize the vector field via separable Gaussian fil-
ters (Eq. (5.4)).

Figure 5.1 lists a snippet of the CUDA code executed on the CPU to

calculate the deformation field using the demons algorithm. Lines 5—9

void demons_host_code(Volume *S, Volume *M, Volume *result, int num_iter){

1.

Ealiadi

0 20N

10.

12.
13.

15.

17.

18.

20.
21.

22.
23.

24.

25.

float3 dim = (S->dim[0], S->dim[1], S->dim[2]); // The (x, y, z) dimensions of the volume
float3 spacing = (S->spacing[0], S->spacing[1], S->spacing[2]); // Dimensions of each voxel

float vol_size = M->dim[0] * M->dim[1] * M->dim[2] * sizeof(float); // Size of the volume in bytes

float interleaved_vol_size = 3 * S->dim[0] * S->dim[1] * S->dim[2] * sizeof(float); // Size of interleaved volume

/* Set up the execution grid on the GPU. */

int threadX = BLOCK_SIZE; int threadY = 1; int threadZ = 1;

int blockX = (S->dim[0] + threadX - 1) / threadX;

int blockY = (S->dim[1] + threadY - 1) / threadY;

int blockZ = (S->dim[2] + threadZ - 1) / threadZ;

dim3 block = dim3(threadX, threadY, threadZ); dim3 grid = dim3(blockX, blockY * blockZ);

/* Allocate and copy the necessary data structures to GPU memory. Bind the fixed image volume S and the moving
image volume M to GPU texture memory. Copy the dim and spacing data structures to GPU constant memory.
Code is omitted for brevity. */

/* Kernel call to compute the gradient of the moving image; the resulting volume is strored in d_m_grad. */
gradient_kernel<<< grid, block>>>(d_m_grad, blockY);
cudaBindTexture(0, tex_grad, d_m_grad, interleaved_vol_size); / Bind the gradient volume to GPU texture

/* Calculate magnitude of the gradient vector at each voxel and bind the resulting volume to texture. */
gradient_magnitude_kernel<<< grid, block>>> (d_m_grad_mag, blockY);
cudaBindTexture (0, tex_grad_mag, d_m_grad_mag, vol_size);

/* Create the separable smoothing kernels for (x, y, z) directions and copy them to GPU constant memory. */

/* Obtain the vector field in iterative fashion. */

for(int i = 0; i < num_iter; i++){
cudaBindTexture(0, tex_vf_smooth, d_vf_smooth, interleaved_vol_size);
estimate_kernel<<< grid, block >>> (d_vf_est, denominator_eps, blockY);

/* Smooth the estimate into vf_smooth. The volumes are ping-ponged. */
cudaUnbindTexture(tex_vf_smooth); cudaBindTexture(0, tex_vf_est, d_vf_est, interleaved_vol_size);
vf_convolve_x_kernel<<< grid, block >>>(d_vf_smooth, d_kerx, half_width, blockY);

cudaUnbindTexture(tex_vf_est); cudaBindTexture(0, tex_vf_smooth, d_vf_smooth, interleaved_vol_size);
vi_convolve_y_kernel<<< grid, block >>>(d_vf_est, d_kery, half_width, blockY);

cudaUnbindTexture(tex_vf_smooth); cudaBindTexture(0, tex_vf_est, d_vf_est, interleaved_vol_size);
vi_convolve_z_kernel<<< grid, block >>>(d_vf_smooth, d_kerz, half_width, blockY);

d_swap =d_vf_est; d_vf_est=d_vf_smooth; d_vf_smooth = d_swap; // Ping-pong between buffers

}

/* Copy result back to the CPU. */
cudaMemcpy (result->img, d_vf_est, interleaved_vol_size, cadaMemcpyDeviceToHost);

Figure 5.1 Snippet of the code executed on the CPU side to obtain the deformation vector field using demons
registration.

Deformable Registration Using Optical-Flow Methods 99

set up the execution grid on the GPU. (The thread-block size, which is
tunable, is set to BLOCK_SIZE = 256 threads in our experiments.)
Then the static and moving images, S and M, respectively, as well as
other key data structures are transferred from the CPU’s memory to the
GPU, and mapped to texture and constant memories. Constant mem-
ory is a type of cached memory in the GPU’s memory hierarchy that
can be used for data that will not change over the course of a kernel’s
execution. Reading from constant memory conserves memory band-
width when compared to reading the same data from global memory.
The use of constant memory has other advantages as well: a single read
from constant memory can be broadcast to all threads making up a
half-warp (a group of 16 threads), and since constant memory is cached,
consecutive reads to the same address does not incur any additional
memory traffic. Texture memory is another type of read-only memory
on the GPU which like constant memory is also cached on chip. So, it
can provide higher effective bandwidth by reducing memory requests to
global memory. Texture caches are specifically designed for memory
access patterns that exhibit spatial locality.

Returning to Figure 5.1, once the static and moving images have
been transferred to the GPU, the kernel call to gradient kernel ()
calculates the intensity gradient Vs, denoted as d m grad, which is
then bound to the texture cache (lines 10 and 11). The kernel gra-
dient magnitude kernel () calculates the magnitude of the gradi-
ent (Vs) 2 at each voxel location, which is also cached within the texture
unit (lines 12 and 13). Finally, lines 15—24 obtain the vector field in an
iterative fashion by first obtaining an initial estimate d_vf est via a
kernel call to estimate kernel () and then smoothing this estimate,
also on the GPU, using three separable Gaussian kernels to obtain
d vf smooth. The calculation “ping-pongs” between the d vf est
and d_vf smooth volumes in thatif d vf est is treated as the input
volume and d_vf smooth as the output buffer during an iteration, the
roles of these volumes are reversed in the following iteration, and so on.
Also, since the various kernel calls shown in Figure 5.1 have data depen-
dencies between them, we introduce synchronization barriers between
them (using cudaThreadSynchronize ()), which are not shown in
the listing for the sake of brevity.

Figure 5.2 provides the listing for gradient kernel () that com-
putes the image-intensity gradient Vs on the GPU using the central

100

High-Performance Deformable Image Registration Algorithms for Manycore Processors

/* The various texture mappings. */

texture<float, 1, cudaReadModeElementType> tex_fixed; // Fixed image

texture<float, 1, cudaReadModeElementType> tex_moving; /I Moving image

texture<float, 1, cudaReadModeElementType> tex_grad; // Tmage gradient

texture<float, 1, cudaReadModeElementType> tex_grad_mag; // Magnitude of the gradient at each voxel
texture<float, 1, cudaReadModeElementType> tex_vf_est; // Estimated vector field

texture<float, 1, cudaReadModeElementType> tex_vf_smooth; // Smoothed vector field

/* Allocations in constant memory. */
__constant__int dim[3]; // Dimensions of the volume in the x, y, and z dimensions
__constant spacing(3]; /I Voxel spacing in each dimension

/* This helper function returns the linear address of the voxel (i, j, k) within the volume array. */
__device__ int volume_index(int *dims, int i, int j, int k){

)

return i + (dims[0] * (j + dims[1] * k));

__global void gradient_kernel (float *out_img, unsigned int blockY){

= BARESI ol e

*

10.
1.

12.
13.

14.
15.

16.
17.

/* Find the 3D position (i, j, k) of the voxel within the volume. */
int blockldx_z = __float2int_rd(blockIdx.y/(float)BlockY);

int blockldx_y = blockIdx.y - blockldx_z, * blockY;

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockldx_y * blockDim.y + threadldx.y;

int k = blockIdx_z * blockDim.z + threadldx.z;

if (i >= dim[0] Il j >= dim[1] Il k >= dim[2]) return;

/* Obtain the immediate neighbors in each dimension. Index p denotes the previous voxel, n denotes the next voxel. */
inti_p=(>i==0)?0:i-1;inti_n=(@==dim[0] - 1) ?dim[0] - 1 :i+ 1;
intj_p=(G==0)?0:j-liintj_n=(==dim[1]- 1) 2dim[1]-1:j+ 1;

intk_p=(k==0)?0:k- I;intk_n=(k==dim[2] - 1) ?dim[2] - 1 : k + 1}

/* Obtain the linear address of the voxel within the volume. The volume is stored in an interleaved fashion. */
long v3 =3 * ((k * dim[1] * dim[0]) + (j * dim[0]) + 1);
long gi = v3; long gj = v3 + 1; long gk = v3 +2;

/* Obtain the linear address of the immediate neighbors in each dimension; Fetch the voxel intensity values from
texture memory and calculate the gradient at the current voxel via central differencing. */

int idx_p = volume_index(dim, i_p, j, k); int idx_n = volume_index(dim, i_n, j, k);

out_img|gi] = (float) (tex 1 Dfetch(tex_moving, idx_n) - tex 1 Dfetch(tex_moving, idx_p))/spacing[0];

idx_p = volume_index(dim, i, j_p, k); idx_n = volume_index (dim, i, j_n, k);
out_img|gj] = (float) (tex1Dfetch(tex_moving, idx_n) - tex1Dfetch(tex_moving, idx_p))/spacing[1];

idx_p = volume_index(dim, i, j, k_p); idx_n = volume_index (dim, i, j, k_n);
out_img[gk] = (float) (tex1Dfetch(tex_moving, idx_n) - tex | Dfetch(tex_moving, idx_p))/spacing[2];

Figure 5.2 Code listing for gradient kernel () that computes the intensity gradient at each voxel using the
central differencing method.

differencing technique. First, we find the 3D coordinates (i,], k) of the
voxel within the volume (lines 1—5) and then obtain the 3D coordi-
nates of the six immediate neighbors to either side of this voxel (lines
7—9). The linear addresses of the immediate neighbors in each dimen-
sion are obtained; their voxel intensity values are fetched from texture
memory; and the gradient is calculated at the current voxel via central
differencing (lines 10—17).

Deformable Registration Using Optical-Flow Methods 101

/* Map relevant data structures to constant memory. */
__constant__ int moving_dim[3]; /I Dimensions of the moving image in voxels
__constant__ float moving_spacing([3]; // Individual voxel spacing in millimeters in the moving image

__global__ void estimate_kernel (float *vf_est_img, float denominator_eps, int blockY){
/* Find position (i, j, k) within the volume */

int blockldx_z = __float2int_rd(blockldx.y/(float)BlockY);

int blockIdx_y = blockIdx.y - blockldx_z * blockY;

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockldx_y * blockDim.y + threadIdx.y;

int k = blockldx_z * blockDim.z + threadldx.z;

SR W

6. if (i >= dim[0] Il j >= dim[1] Il k >= dim[2]) return;

/* Obtain linear address of the voxel within the volume. Recall that the volume is stored in interleaved fashion. */
7. long fv = (k * dim[1] * dim[0]) + (j * dim[0]) + i;
8. long f3v =3 * fv;

/* Find corresponding pixels (mx, my, mz) using nearest neighbor interpolation and boundary checking.
Since the deformation vector field is specified in millimeters, we must convert the values to the corresponding
voxel spacing. */
. int mz = __float2int_rn (k + tex1Dfetch(tex_vf_smooth, f3v + 2)/moving_spacing[2]);
10. if (mz < 0 Il mz >= moving_dim[2]) return;

11. int my = __float2int_rn (j + tex1Dfetch(tex_vf_smooth, f3v + 1)/moving_spacing[1]);
12. if (my < 0 Il my >= moving_dim[1]) return;

13. int mx = __float2int_rn (i + tex1Dfetch(tex_vf_smooth, f3v)/moving_spacing[0]);
14. if (mx < 0 Il mx >= moving_dim[0]) return;

/* Obtain the linear address of the corresponding voxel within the moving volume. */
15. long mv = (mz * moving_dim[1] + my) * moving_dim[0] + mXx;
16. long m3v =3 * mv;

/* Find the intensity difference at this correspondence between the static and moving images. */
17. float diff = tex I Dfetch(tex_fixed, fv) - tex 1 Dfetch(tex_moving, mv);

18. /¥ Compute denominator in Equation (5.3). */
19. float denom = tex 1 Dfetch(tex_grad_mag, mv) + diff * diff;
20. if (denom < denominator_eps) return; // Threshold the denominator to stabilize the estimation

/* Compute new estimate of displacement in millimeters and store the updated values in global memory. */
21. float mult = diff / denom;
22. vi_est_img[f3v] += mult * tex1Dfetch(tex_grad, m3v);
23. vf_est_img[f3v + 1] += mult * tex1Dfetch(tex_grad, m3v + 1);
24. vf_est_img[f3v + 2] += mult * tex1Dfetch(tex_grad, m3v + 2);

Figure 5.3 Code listing for estimate kernel () that computes Eq. (5.3) for each voxel.

Figure 5.3 lists the estimate kernel () that implements Eq. (5.3)
in the demons algorithm. As with the previous kernels, lines 1—5 obtain
the (i,/, k) coordinates of the voxel within the volume. Lines 7 and §
obtain the linear address of the voxel within the volume, recalling that the
volume is stored in interleaved fashion in both global and texture memo-
ries. Lines 9—14 find the correspondence between the static and moving
images using the current vector field, that is, the corresponding pixels in
M using nearest neighbor interpolation. Note that since the deformation

102 High-Performance Deformable Image Registration Algorithms for Manycore Processors

vector field vf smooth is specified in millimeters, we must convert
the values to voxel spacings. Lines 15 and 16 obtain the linear address of
the corresponding voxel within the moving volume and Line 17 finds the
intensity difference at the correspondence between the static and moving
images; the value m —s specified in Eq. (5.3). Line 19 calculates
(Vs)? + (m — s), the denominator in Eq. (5.3) and if this value is less than
a specified threshold, line 20 ensures that the velocity vector at that voxel
is not updated, thereby ensuring the stability of the updated equation.
Finally, lines 21—24 complete the calculation of Eq. (5.3) and store the
updated vector field in GPU global memory.

Once the initial estimate of the vector field d vf est is obtained, it
is processed using convolution filters on the GPU to obtain a smoothed
field d vf smooth. A 1D convolution filter is simply a scalar product
of the filter weights with the input pixels within a window surrounding
each of the corresponding output pixels. More specifically, given a vector
v and a convolution kernel p of size n, the convolution of the ith element
of the vector is given by > v(i — n)p(n). The elements at the boundaries,
that is, elements that are “outside” the vector v are treated as if they had
the value zero. A separable filter for a 3D volume is a special type of filter
that can be expressed as the composition of three 1D filters, one for each
of the x, y, and z directions. In this scenario, the 3D convolution opera-
tion can be decomposed into three consecutive 1D convolution opera-
tions on the data, requiring far fewer multiplications for each output
element compared to a traditional 3D filter.

Figure 5.4 lists the GPU-based filter that smooths the three compo-
nents of the displacement vector at each voxel in the x direction; filters
for the y and z directions can be developed similarly to complete the
calculation of Eq. (5.4). The filter mask is stored in constant memory
on the GPU for fast access. Lines 8—11 calculate the indices for the fil-
ter, appropriately clamping the values for elements at the boundaries
of the volume. The vector field d vf est is cached in the texture
unit, and lines 14—21 convolve each of the three components corre-
sponding to the voxel’s displacement vector in the x direction.

5.4 PERFORMANCE EVALUATION

We now present results quantifying both the speedup achieved by the
GPU version of demons over the corresponding single-threaded CPU

Deformable Registration Using Optical-Flow Methods 103

/* Map the kernel mask to constant memory. */
__constant___ float kerf WIDTH]; // The width of the kernel is set to 2*half_width + 1

__global__ void vf_convolve_x_kernel (float *vf_out, float *ker, int half_width, int blockY){

inti,il; // i is the offset in the vector field
int j, j1,j2; /1 j is the index of the kernel being applied
int d; /1 d is the vector field direction

/* Find the voxel position within the volume. */

int blockldx_z = __float2int_rd(blockldx.y/(float)blockY);
int blockIdx_y = blockIdx.y - blockIdx_z * blockY;

int X = blockldx.x * blockDim.x + threadldx.x;

int y = blockldx_y * blockDim.y + threadldx.y;

int z = blockIdx_z * blockDim.z + threadldx.z;

ARl S

/* Obtain the linear address of the voxel within the volume (which is stored in an interleaved fashion). */
if (x >=dim[0] Il y >= dim[1] Il z >= dim[2]) return;
7. long v3 =3 * ((z * dim[1] * dim[0]) + (y * dim[0]) + x);

o

/* Compute the appropriate indices for the filter, clamping if necessary. */
8. jl = x - half_width; j2 = x + half_width;
9. if 1 <0)jl1=0;
10. if (2 >=dim[0]) j2 = dim[0] - 1;
1. il =j1-x;jl =jl - x + half_width; j2 = j2 - X + half_width;

/* Convolve in the x direction for each of the three components corresponding to our voxel’s displacement vector. */
14. long index;
15. for (d=0;d <3;d++) {

16. float sum = 0.0;

17. for i=1il,j=jl;j<=j2; i++ j++) {

18. index =v3 + (3 *i)+d;

19. sum += ker[j] * tex1Dfetch(tex_vf_est, index);
}

20. vf_out[v3 + d] = sum;
}
}

Figure 5.4 Code listing for convolve x kernel () on the GPU that smooths each of the three components of
the displacement vector estimated at each voxel in the X direction. Kernels for the y and z directions can be devel-
oped similarly.

implementation as well as the registration quality. The CPU version is
benchmarked using an Intel Core 17-3770 CPU with four SMT cores,
each clocked at 3.4 GHz, and the GPU-based algorithm is timed using
an Nvidia GeForce GTX 680 containing 1536 cores, each clocked at
1.1 GHz and with 2 GB of onboard memory.

The registration algorithms were tested using CT data of a pre-
served swine lung inflated at constant pressure (Folkert et al., 2006),
obtained from an Image-guided radiation therapy (IGRT) test bed
(Berbeco et al., 2004). Both the CPU and GPU versions are validated
using swine-lung images that are warped by known deformations, and
the registration algorithms are expected to recover these deformations.

104 High-Performance Deformable Image Registration Algorithms for Manycore Processors

(A) Original lung image Warped lung image
(B) (©
Difference between the images before registration Difference between the images before registration
Difference between the images after registration Difference between the images after registration

Figure 5.5 (A) The two lung images to be registered; (B) the registration results in which the warped and original
lungs are the static and moving images, respectively; and (C) the registration results in which the original and
warped lungs are the static and moving images, respectively.

Figure 5.5A shows the original and warped lung volumes of
424 X 180 X 150 resolution to be registered, where the warping is
achieved via a radially varying sinusoidal deformation. Figure 5.5B
shows the registration results obtained by the GPU when the warped
lung is treated as the static image and the original lungs as the moving
image. Figure 5.5C shows the results assuming the original and warped
lungs are now the static and moving images, respectively. This particu-
lar result as well as testing on other image sets confirms that the GPU
is capable of high-quality registration with both the CPU and GPU
implementations generating near-identical deformation vector fields;
the RMS differences were less than 0.1 mm for the vector field gener-
ated for deformable registration.

The timing experiments performed on the CPU and GPU versions
are summarized in Figure 5.6 which plots the execution time as a func-
tion of volume size (in voxels) for different widths of the smoothing ker-
nel. The initialized vector fields are downloaded to the GPU at the

Deformable Registration Using Optical-Flow Methods 105

100 [s e R toL ton L B S L R L
| == Gaussian width: 20 voxels | - - - : : : : : : :
90 [Gaussian width: 15voxels | =" " " @7 o e S

- Gaussian width: 10 voxels :

80 B Gaussian width: 5 voxels o
O .
) :
£ :
c K
kel s
= -
3 .

8 Lo
] :
w -
0 R R S N N S B i

O 0 ,a® P N O N N N o
\@*\,\w&c*%s*\z@ﬂ“ ﬂs*ﬂ o ,LQ,Q*'L% ,L@*'L% o0 < N ,bbp*'bk
YANSTORN T f W f e N
,\QQ ,\5‘0 ,\60 ,\%Q ,LQQ* ,LrLQ ,7}9* ,LQ,Q ,L%Q ,500 o 'bb‘g

Volume size (voxels)

0.25*'1 tot B L D Lo . oL .
e Gaussian width: 20 voxels : : : : : :
Gaussian width: 15 voxels
= Gaussian width: 10 voxels : : : : : : :
0.2 1 Gaussian width: 5 voxels | =~ T R DT o

Execution time (s)

0 1 I I I I I I I I I 1 I I

O A0 N N N N Q
AR A AN AS AT N s U
o *»\QQQ *\'79* o *»\D«Q* o *\%Q* o *\%Q* o *790* N *rﬂp* B"g’@*
AQOT AT AN A D 2 o> s

Volume size (voxels)

Figure 5.6 (A) Execution time incurred per iteration of the demons algorithm by a single-threaded implementa-
tion on the Intel Core i7-3770 CPU as a function of volume size and smoothing-kernel width and (B) the execu-
tion time incurred by the Nvidia 680 GTX GPU.

beginning of the registration process and read back after the specified
number of iterations of the demons algorithm. Our results indicate that
for larger volume sizes, the GPU achieves a substantial speedup over
the serial version; for example, registering two 250 volumes on the
CPU incurred 8 s per iteration whereas the GPU incurred 0.05 s per
iteration—a speedup of about 160 times.

106 High-Performance Deformable Image Registration Algorithms for Manycore Processors

5.5 SUMMARY

This chapter has described the development of the demons algorithm
within the SIMD programming paradigm on a GPU, implemented
using CUDA and executed on the Nvidia 680 GTX GPU. Performance
analysis using CT data of a preserved swine lung indicates a substantial
speedup over a CPU-based reference implementation. Our results also
indicate that the GPU is capable of high-quality registration with both
CPU and GPU implementations generating near-identical deformation
vector fields.

REFERENCES

Berbeco, R.I., Jiang, S.B., Sharp, G.C., Chen, G.T.Y., Mostafavi, H., Shirato, H., 2004.
Integrated radiotherapy imaging system (IRIS): design considerations of tumor tracking with
linac gantry-mounted kv x-ray systems. Phys. Med. Biol. 49 (2), 243—-255.

Folkert, M., Dedual, N., Chen, G.T.Y., 2006. A biological lung phantom for {IGRT} studies.
Med. Phys. 33 (6), 2234.

Gu, X., Pan, H., Liang, Y., Castillo, R., Yang, D., Choi, D., et al., 2010. Implementation and
evaluation of various demons deformable image registration algorithms on a GPU. Phys. Med.
Biol. 55, 207-219.

Horn, B.K.P., Schunck, B.G., 1981. Determining optical flow. Artif. Intell. 17, 185—203.

Samant, S.S., Xia, J., Muyan-Ozg:elik, P., Owens, J.D., 2008. High performance computing for
deformable image registration: towards a new paradigm in adaptive radiotherapy. Med. Phys. 35
(8), 3546—3554.

Sharp, G., Kandasamy, N., Singh, H., Folkert, M., 2007. GPU-based streaming architectures for
fast cone-beam CT image reconstruction and demons deformable registration. Phys. Med. Biol.
52 (19), 5771-5783.

Thirion, J.P., 1998. Image matching as a diffusion process: an analogy with Maxwell’s demons.
Med. Image Anal. 2 (3), 243—260.

http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref5
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref5
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref5
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref5
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref7
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref7
http://refhub.elsevier.com/B978-0-12-407741-6.00005-0/sbref7

Plastimatch—An Open-Source Software for
Radiotherapy Imaging

Information in This Chapter:
* Overview of Plastimatch
* Licensing

6.1 INTRODUCTION

Radiotherapy is a highly technical and rapidly changing field where
increasingly sophisticated software is used to support clinical goals.
Commercial software is generally high quality and is used by most
clinics for routine treatment planning and delivery. However, the reli-
ance on commercial software leaves several gaps in our ability to
deliver cutting-edge treatments. When commercial software has bugs
or is missing features, the clinic is required to implement complicated
workarounds. Commercial software also often lacks the flexibility to
communicate with complementary software from other vendors,
including in-house solutions. Furthermore, it is difficult to do research
with commercial medical software. Not only are vendors reluctant to
provide open interfaces, but purchase and support costs are generally
too high for research use. For these reasons, we expect that the role of
open-source software will grow in the radiotherapy clinic.

This chapter describes the plastimatch software suite for radiother-
apy image processing (Shackleford et al., 2012). Plastimatch is open-
source software, distributed under a Berkeley Software Distribution
(BSD)-style license. The focus of plastimatch is on high-performance
algorithms for medical image computing and on flexible radiotherapy
utilities. Using standard interchange formats such as DICOM and
DICOM-RT, plastimatch can be easily used together with other open-
source tools, including CERR (Deasy et al., 2003), Conquest DICOM
(http://www.xs4all.nl/ ~ ingenium/dicom.html), ImageJ (http://rsb.info.
nih.gov/ij), and 3D Slicer (http://slicer.org).

High-Performance Deformable Image Registration Algorithms for Manycore Processors.
DOI: http://dx.doi.org/10.1016/B978-0-12-407741-6.00006-2
© 2013 Elsevier Inc. All rights reserved.

http://www.xs4all.nl/∼ingenium/dicom.html
http://www.xs4all.nl/∼ingenium/dicom.html
http://rsb.info.nih.gov/ij
http://rsb.info.nih.gov/ij
http://slicer.org
http://dx.doi.org/10.1016/B978-0-12-407741-6.00006-2

108 High-Performance Deformable Image Registration Algorithms for Manycore Processors

6.2 OVERVIEW OF PLASTIMATCH

Plastimatch has been conceived and developed as an end-user applica-
tion rather than as a library or toolkit. The standard method of using
plastimatch is via the command line, with configuration files and com-
mand line options. A typical invocation would be to specify a com-
mand, such as “register,” together with the necessary input files,
configuration files, and options. A list of supported commands are
shown in the usage screen:

$ plastimatch --help
plastimatch version 1.5.11-beta (3583M)
Usage: plastimatch command [options]

Commands:
add adjust average crop compare
compose convert diff dvh fill
header mask probe register resample
scale segment stats synth synth-vf
thumbnail warp xf-convert

6.2.1 Automatic 3D—3D Registration

Plastimatch uses a multistage, multialgorithm framework for automatic
image registration. Only pairwise registration is supported. In the ini-
tialization stage, the images are loaded, together with any image masks
or initial transformations. The framework runs a fixed sequence of reg-
istration stages as directed by a parameter file. Each registration stage
specifies the image resolution (for multiresolution registration), the
transform and metric to be optimized, and the optimization algorithm
and parameters. If desired, output files can be specified at each stage for
saving intermediate results. A typical sequence of stages might include a
single rigid alignment stage, followed by two to four deformable regis-
tration stages with increasing resolution and decreasing grid spacings.
Figure 6.1 summarizes the algorithms included in plastimatch, which
includes six different core registration methods. Depending on the regis-
tration method, one can choose one of four implementations: ITK, sin-
gle core (SC), multicore (MC), or GPU. The six registration algorithms
can operate on eight different transform types: six ITK transforms and
two native transforms. At the end of each stage, the optimal transform
is propagated to the next stage and is automatically converted to a new
transform type by the plastimatch application framework.

Plastimatch—An Open-Source Software for Radiotherapy Imaging 109

Registration algorithm |[ITK SC MC GPU
Translation

Rigid

Affine

Demons

B-spline (MSE, MI)
Viscous fluid
Thin-plate spline
Wendland, Gaussian spline v

SNENESENEN
ENEN

\
SNENEN

N

Figure 6.1 Summary of plastimatch algorithms for 3D image registration.

6.2.2 Cone-Beam CT and Digitally Reconstructed Radiographs
A cone-beam CT reconstruction application is provided which imple-
ments filtered back-projection using the Feldkamp, Davis, and Kress
(FDK) algorithm. Input images in either raw, pfm, or hnd format are
read, filtered, and back-projected into a user-defined volume geometry.
Images in raw or pfm format must be accompanied by a geometry
specification file whereas files in the Varian hnd format use the geome-
try specified by the file header. Ramp filtering is performed on the
CPU using the FFTW library (Frigo, 2005), while back-projection is
performed on either the CPU or the GPU. The plastimatch digitally-
reconstructed radiograph (DRR) generator implements three variants
of the Siddon ray tracing method (Siddon, 1985). The fastest and most
popular method uses the original exact path length method based on
the intersection of rays with the image voxels. In addition, two voxel
interpolation methods are included, which can be used to increase the
apparent resolution of the DRR construction. Both multicore and
GPU versions are available.

6.2.3 Interactive (Landmark-Based) Image Registration

While automatic registration yields acceptable results in many cases, we
are often confronted with difficult registration problems where auto-
matic registration fails. For this purpose, plastimatch includes two man-
ual registration tools: a “global” landmark-based tool based on thin
plate splines, and a tool based on radial basis functions (RBF) which
allows us to make local registrations by adjusting the RBF support.

The global tool, implemented as an ITK wrapper, takes a list of
corresponding points in 3D and generates a complete vector field that
interpolates all of the input landmarks. This method requires a mini-
mum of six landmarks, which are used to find a global affine

110 High-Performance Deformable Image Registration Algorithms for Manycore Processors

Figure 6.2 Interactive registration is used to warp the MRI of a 6-month old infant onto the CT of the same
patient at age 2. The initial registration properly matches the skull, but features within the brain are not properly
aligned (left). Landmarks are placed (center), which improve the registration (right).

transform superimposed with a minimum energy deformation field
(Bookstein, 1989). The global landmark registration results can be
used as a standalone method or to initialize the automatic registration.
On the other hand, the RBF tool is a native warper and does not per-
form global rigid or affine mapping. Instead, it uses a small number of
landmark pairs to correct failed deformable registration results. The
algorithm utilizes two types of RBFs: a Wendland function with finite
support (Arad and Reisfeld, 1995; Fornefett et al., 2001) and a non-
truncated Gaussian function (Arad et al., 1994; Shusharina and Sharp,
2012). In both cases, a deformation is found by solving a system of lin-
ear equations which is computationally very efficient when compared
with algorithms based on complex multidimensional minimization. In
addition, Gaussian RBFs have a distinct feature with respect to regu-
larization, because the regularized vector field can be solved exactly
with a simple equation. An independent regularization parameter is
defined to control the balance between the fidelity of the alignment of
landmark pairs and the smoothness of the deformation field. An exam-
ple of this idea is shown in Figure 6.2 where the failed registration
(left) is corrected using two pairs of landmarks (center and right).

6.2.4 2D—3D Registration

The Reg23 module of plastimatch enables rigid registration of a 3D
volumetric image (e.g., a CT) with an essentially arbitrary number of
projective 2D images (e.g., X-rays). The transformation parameters
(three rotations and three translations) are iteratively optimized with
respect to a cost function which assesses the similarity between the
X-rays and on-the-fly DRRs computed from the volume. Uniform
ray-casting DRR computation is implemented on the GPU using the

Plastimatch—An Open-Source Software for Radiotherapy Imaging 11

Figure 6.3 A schematic overview of the various Reg23 components (left). The Reg23 GUI showing colored over-
lays of X-rays and DRRs (right). The ROI generated by the auto-masking module is shown as a blue contour.
The various registration parameters are displayed in the control panel on the extreme right.

OpenGL shading language. Besides the selected similarity metrics
derived from ITK (normalized mutual information, normalized cross
correlation, gradient difference, and mean reciprocal square differ-
ence), stochastic rank correlation (Steininger et al., 2010) is another
configurable cost function. The input images can be preprocessed prior
to registration via resampling, rescaling, cropping, or unsharp mask-
ing. Downhill simplex (AMOEBA) and 1 + 1 evolutionary algorithms
are available for optimization. To restrict similarity evaluation to a
certain region of interest (ROI) in the X-rays, a so-called auto-masking
module is also available (Neuner et al., 2011). Based on RT structure
sets which are typically generated in the preplanning stage, an entity-
specific heuristic can be designed which allows logical combination,
dilation/erosion, and projection of structures onto the X-ray planes
which produces binary mask images that constrain metric evaluation.
For example, in the case of pelvis registration, this mechanism enables
automatic determination of ROIs that exclude the femora which are
more prone to move, over the duration of the treatment (Steininger
et al., 2012). Figure 6.3 presents a schematic overview of the main
components using the example of dual 2D/3D pelvis registration. In
addition to the core algorithm offering the mentioned capabilities, a
Qt-based general user interface is provided as shown in Figure 6.3.
The GUI enables the user to monitor the registration process and to
simultaneously influence registration by mouse interactions (transla-
tion, rotation, registration, and initialization). The overall program is

112 High-Performance Deformable Image Registration Algorithms for Manycore Processors

configurable via a simple ASCII file to enable easy integration with
other applications such as record and verify systems. Also, batch pro-
cessing is available where the registration results are stored in output
files. We are currently working on providing more convenient means
of setting up the imaging geometry, extending the portfolio of avail-
able DRR algorithms, and implementing appearance model-based 2D/
3D registration.

6.2.5 Automatic Feature Detection and Matching

Several algorithms have been developed in the literature to perform
automatic landmark extraction and matching, with the goal of increas-
ing the accuracy of feature detection and decreasing the cost in terms
of time. Scale Invariant Features Transform (SIFT) is a method that
provides extraction and matching of stable and prominent points at
different scales between two images. The algorithm, supported by
Plastimatch, is derived from Cheung and Hamarneh (2009) and imple-
mented in C+ + using ITK. This method takes two 3D (isotropic or
anisotropic) images as inputs and generates lists containing
stable landmarks for each image as well as feature matches between
the two images. The output files contain landmarks in physical coordi-
nates that can be used with the 3D Slicer Fiducial module. Figure 6.4
shows examples of successful individuation of corresponding features
in the original (left) and synthetic (right) image of a phantom
(RANDO phantom, The Phantom Laboratories, Salem, NY). The
synthetic image is obtained by applying rigid and nonrigid transforma-
tions to the phantom.

Figure 6.4 Examples of successful corresponding features detection (red codes) in the original (right) and synthetic
(left) image of RANDO phantom. Rigid transforms: (A) Translation (6 mm) in right-left, anterior-posterior,
superior-inferior directions and (b) rotation in superior-inferior direction. Nonrigid transform: (c) maximum defor-
mation of 15.42, 5.72, 4.16 mm in right-left, anterior-posterior, superior-inferior directions, respectively.

Plastimatch—An Open-Source Software for Radiotherapy Imaging 113

6.2.6 Data Interchange

Plastimatch supports a wide variety of file input types for data inter-
change. Using ITK wrappers, most image formats are supported,
including DICOM, Analyze, Metaimage, and NRRD. In addition,
partial support exists for DICOM-RT, XiO, and RTOG formats.
Plastimatch is capable of rasterizing DICOM-RT structure sets into
images, as well as converting images back into DICOM-RT structure
sets. In addition, a utility is provided for attaching existing DICOM-
RT structure sets onto arbitrary DICOM series.

6.2.7 User Interface

While a native user interface is supported by Reg23, the plastimatch
module offers a user interface as a plugin for Aqualizer (Mori and
Chen, 2008) and 3D Slicer. Aqualizer is a specialized research software
for 4D treatment planning. Deformable image registration is used to
map radiation dose from all breathing phases onto a reference phase,
and accumulate the time-averaged dose. 3D Slicer is a general purpose
research software for medical image computing and plastimatch plu-
gins are available for automatic registration, landmark-based registra-
tion, and DICOM-RT import.

6.3 LICENSING

The plastimatch software is licensed under a BSD license for reg-2-3
and a custom BSD-style license for plastimatch. These licenses specifi-
cally allows royalty-free nonexclusive license to use, modify, and redis-
tribute the software. The primary restrictions on licensing are that (1)
attribution and copyright notices be retained, (2) modified versions
must be clearly marked, and (3) names, logos, and trademarks of our
institutions are not used for promotion. Our software is provided “AS
IS,” without warranty. The custom license clearly states that the soft-
ware has been designed for research purposes only, and that clinical
applications are neither recommended nor advised. A complete copy
of the license is available online at http://www.plastimatch.org.

REFERENCES

Arad, N., Reisfeld, D., 1995. Image warping using few anchor points and radial functions.
Comput. Graph. Forum 14 (1), 35—46.

Arad, N., Dyn, N., Reisfeld, D., Yeshurun, Y., 1994. Image warping by radial basis functions:
application to facial expression. CVGIP: Graph. Models Image Process. 56 (2), 161—172.

http://www.plastimatch.org
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref1
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref2
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref2

114 High-Performance Deformable Image Registration Algorithms for Manycore Processors

Bookstein, F.L., 1989. Principal warps: thin-plate splines and the decomposition of deformations.
IEEE Trans. Pat. Anal. Mach. Intell. 11 (6), 567—585.

Cheung, W., Hamarneh, G., 2009. n-SIFT: n-dimensional scale invariant feature transform. IEEE
Trans. Image Process. 18 (9), 2012—2021.

Deasy, J.O., Blanco, A.I., Clark, V.H., 2003. CERR: a computational environment for radiother-
apy research. Med. Phys. 30 (5), 979—-985, <http://radium.wustl.edu/CERR >.

Fornefett, M., Rohr, K., Stiehl, H.S., 2001. Radial basis functions with compact support for elas-
tic registration of medical images. Image Vis. Comp. 19 (1—-2), 87—96.

Frigo, M., Johnson, S.G., 2005. The design and implementation of FFTW3. Proc. IEEE 93 (2),
216-231.

Mori, S., Chen, G., 2008. Quantification and visualization of charged particle range variations.
Int. J. Radiat. Oncol. Biol. Phys. 72 (1), 268—277.

Neuner, M., Steininger, P., Mittendorfer, C., Sedlmayer, F., Deutschmann, H., 2011. Automatic
mask generation for 2D/3D image registration with clinical images of the pelvis. Int. J. Comput.
Assist. Radiol. Surg. 6 (1), S54—S55.

Shackleford, J., Shusharina, N., Verberg, J., Warmerdam, G., Winey, B., Neuner, M., et al.,
2012. Plastimatch 1.6: current capabilities and future directions. MICCAI 2012 Image-Guidance
and Multi-modal Dose Planning in Radiation Therapy Workshop. Nice, France.

Shusharina, N., Sharp, G., 2012. Landmark-based image registration with analytic regularization.
Phys. Med. Biol. 57 (6), 1477—1498.

Siddon, R.L., 1985. Fast calculation of the exact radiological path for a three-dimensional CT
array. Med. Phys. 12 (2), 252—-255.

Steininger, P., Neuner, M., Birkfellner, W., Gendrin, C., Mooslechner, M., Bloch, C., et al.,
2010. An ITK-based implementation of the stochastic rank correlation (SRC) metric. Insight J.
July—December 2010 Issue.

Steininger, P., Neuner, M., Weichenberger, H., Sharp, G., Winey, B., Kametriser, G., et al.,
2012. Auto-masked 2D/3D image registration and its validation with clinical cone-beam com-
puted tomography. Phys. Med. Biol. 57 (13), 4277—4292.

http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref3
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref4
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref4
http://radium.wustl.edu/CERR
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref6
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref7
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref7
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref7
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref8
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref8
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref8
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref9
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref9
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref9
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref9
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref10
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref10
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref10
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref11
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref11
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref11
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref12
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref12
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref12
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref12
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref13
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref13
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref13
http://refhub.elsevier.com/B978-0-12-407741-6.00006-2/sbref13

High-Performance Deformable
Image Registration Algorithms
for Manycore Processors

High-Performance Deformable
Image Registration Algorithms
for Manycore Processors

James Shackleford
Electrical and Computer Engineering Department,
Drexel University

Nagarajan Kandasamy
Electrical and Computer Engineering Department,
Drexel University

Gregory Sharp
Department of Radiation Oncology,
Massachusetts General Hospital

AMSTERDAM -« BOSTON « HEIDELBERG * LONDON
NEW YORK + OXFORD *« PARIS * SAN DIEGO
SAN FRANCISCO + SINGAPORE * SYDNEY * TOKYO
ELSEVIER Morgan Kaufmann is an imprint of Elsevier

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA, 02451, USA

First published 2013
Copyright © 2013 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our arrangement
with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency,
can be found at our website: www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under copyright by
the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods, professional practices,
or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information, methods, compounds, or experiments described herein.
In using such information or methods they should be mindful of their own safety and the safety
of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-407741-6

For information on all MK publications
visit our website at www.mkp.com

aa Working together
to grow libraries in

ELSEVIER Intematlonal developlng countries

www.elsevier.com ¢ www.bookaid.org

http://www.elsevier.com/permissions
http://www.mkp.com

James Shackleford is an assistant professor in the electrical and computer
engineering department at Drexel University. Prior to joining Drexel,
he was a postdoctoral researcher at Massachusetts General Hospital in
the department of radiation oncology. Dr. Shackleford received his Ph.D.
from Drexel University in 2011 for his work on GPU-accelerated medical
image processing, implemented as part of the plastimatch project (www.
plastimatch.org), a deformable registration toolkit for medical images
maintained by Drs. Shackleford and Sharp. He has authored a chapter
in NVIDIA’s GPU Computing Gems (Emerald Edition) on the topic of
accelerating deformable 3-D image registration using uniform cubic
B-splines and this work has also been published as a featured article in
the Physics in Medicine and Biology journal. His other research interests
include nanoscale solid-state device physics.

Nagarajan Kandasamy is an associate professor in the electrical and
computer engineering department at Drexel University, where he teaches
and conducts research in the area of computer engineering, with specific
interests in performance management, parallel computing, embedded sys-
tems, fault-tolerant computing, and computer architecture. He received
his Ph.D. in 2003 from the University of Michigan. Prof. Kandasamy is a
recipient of the National Science Foundation Early Faculty (CAREER)
Award, as well as best paper awards at the 2006 and 2008 IEEE
International Conferences on Autonomic Computing, for work focusing
on the power and performance management of large-scale computer
clusters.

Greg Sharp is a computer scientist and medical physicist at
Massachusetts General Hospital. He received his Ph.D. in the depart-
ment of electrical engineering and computer science from the University
of Michigan in 2002, and currently holds an appointment of assistant
professor of radiation oncology at Harvard Medical School. Prof.
Sharp’s research interests include medical image computing, image-
guided radiation therapy, and motion management.

http://www.plastimatch.org
http://www.plastimatch.org

	1 Introduction
	1.1 Introduction
	1.2 Applications of Deformable Image Registration
	1.3 Algorithmic Approaches to Deformable Registration
	1.4 Organization of Chapters
	References

	2 Unimodal B-Spline Registration
	2.1 Introduction
	2.2 Overview of B-Spline Registration
	2.2.1 Using B-Splines to Represent the Deformation Field
	2.2.2 Computing the Cost Function
	2.2.3 Optimizing the B-Spline Coefficients

	2.3 B-Spline Registration on the GPU
	2.3.1 Software Organization
	2.3.2 Calculating the Cost Function and ∂C/∂ν→
	2.3.3 Calculating the Cost Function Gradient ∂C/∂P

	2.4 Performance Evaluation
	2.4.1 Registration Quality
	2.4.2 Sensitivity to Volume Size
	2.4.3 Sensitivity to Control Point Spacing

	2.5 Summary
	References

	3 Multimodal B-Spline Registration
	3.1 Introduction
	3.2 Using B-Splines to Represent the Deformation Field
	3.3 MI as A Cost Function
	3.4 Efficient Computation of MI
	3.4.1 Constructing Histograms for the Static and Moving Images
	3.4.2 Constructing the Joint Histogram
	3.4.3 Evaluating the Cost Function
	3.4.4 Optimizing the B-Spline Coefficients

	3.5 Performance Evaluation
	3.5.1 Registration Quality
	3.5.2 Sensitivity to Control-Point Spacing

	3.6 Related Work
	3.7 Summary
	References

	4 Analytic Vector Field Regularization for B-spline Parameterized Methods
	4.1 Introduction
	4.2 Theory and Mathematical Formalism
	4.3 Algorithmic Implementation
	4.4 Performance Evaluation
	4.4.1 Registration Quality
	4.4.2 Sensitivity to Volume Size
	4.4.3 Sensitivity to Control-Point Spacing

	4.5 Summary
	References

	5 Deformable Registration Using Optical-Flow Methods
	5.1 Introduction
	5.2 Demons Algorithm for Deformable Registration
	5.3 SIMD Version of Demons Algorithm
	5.4 Performance Evaluation
	5.5 Summary
	References

	6 Plastimatch—An Open-Source Software for Radiotherapy Imaging
	6.1 Introduction
	6.2 Overview of Plastimatch
	6.2.1 Automatic 3D–3D Registration
	6.2.2 Cone-Beam CT and Digitally Reconstructed Radiographs
	6.2.3 Interactive �䰀愀渀搀洀愀爀欀ⴀ䈀愀猀攀搀 Image Registration
	6.2.4 2D–3D Registration
	6.2.5 Automatic Feature Detection and Matching
	6.2.6 Data Interchange
	6.2.7 User Interface

	6.3 Licensing
	References

	High-Performance Deformable Image Registration Algorithms for Manycore Processors
	Copyright
	Biographies

