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ABSTRACT
Datacenter networks provide the communication substrate for large parallel computer systems that
form the ecosystem for high performance computing (HPC) systems and modern Internet appli-
cations. The design of new datacenter networks is motivated by an array of applications ranging
from communication intensive climatology, complex material simulations and molecular dynamics
to such Internet applications as Web search, language translation, collaborative Internet applications,
streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network
enables distributed applications to communicate and interoperate in an orchestrated and efficient
way.

This book describes the design and engineering tradeoffs of datacenter networks. It de-
scribes interconnection networks from topology and network architecture to routing algorithms,
and presents opportunities for taking advantage of the emerging technology trends that are influ-
encing router microarchitecture. With the emergence of “many-core” processor chips, it is evident
that we will also need “many-port” routing chips to provide a bandwidth-rich network to avoid the
performance limiting effects of Amdahl’s Law. We provide an overview of conventional topologies
and their routing algorithms and show how technology, signaling rates and cost-effective optics are
motivating new network topologies that scale up to millions of hosts.The book also provides detailed
case studies of two high performance parallel computer systems and their networks.

KEYWORDS
network architecture and design, topology, interconnection networks, fiber optics, par-
allel computer architecture, system design
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Preface
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computing. We assume the reader is familiar with computer architecture and basic networking
concepts. We show the evolution of high-performance interconnection networks over the span of
two decades, and the underlying technology trends driving these changes. We describe how to apply
these technology drivers to enable new network topologies and routing algorithms that scale to
millions of processing cores. We hope that practitioners will find the material useful for making
design tradeoffs, and researchers will find the material both timely and relevant to modern parallel
computer systems which make up today’s datacenters.
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Introduction
Today’s datacenters have emerged from the collection of loosely connected workstations, which
shaped the humble beginnings of the Internet, and grown into massive “warehouse-scale comput-
ers” (Figure 1.1) capable of running the most demanding workloads. Barroso and Hölzle describe the
architecture of a warehouse-scale computer (WSC) [9] and give an overview of the programming
model and common workloads executed on these machines.The hardware building blocks are pack-
aged into “racks” of about 40 servers, and many racks are interconnected using a high-performance
network to form a “cluster” with hundreds or thousands of tightly-coupled servers for performance,

cooling
towers

power substation
warehouse-scale

computer

Figure 1.1: A datacenter with cooling infrastructure and power delivery highlighted.
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Figure 1.2: Comparison of web search interest and terminology.

but loosely-coupled for fault tolerance and isolation. This highlights some distinctions between what
have traditionally been called “supercomputers” and what we now consider “cloud computing,” which
appears to have emerged around 2008 (based on the relative Web Search interest shown in Figure
1.2) as a moniker for server-side computing. Increasingly, our computing needs are moving away
from desktop computers toward more mobile clients (e.g., smart phones, tablet computers, and net-
books) that depend on Internet services, applications, and storage. As an example, it is much more
efficient to maintain a repository of digital photography on a server in the “cloud” than on a PC-like
computer that is perhaps not as well maintained as a server in a large datacenter, which is more
reminiscent of a clean room environment than a living room where your precious digital memories
are subjected to the daily routine of kids, spills, power failures, and varying temperatures; in addition,
most consumers upgrade computers every few years, requiring them to migrate all their precious data
to their newest piece of technology. In contrast, the “cloud” provides a clean, temperature controlled
environment with ample power distribution and backup. Not to mention your data in the “cloud” is
probably replicated for redundancy in the event of a hardware failure the user data is replicated and
restored generally without the user even aware that an error occurred.
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1.1 FROM SUPERCOMPUTING TO CLOUD COMPUTING
As the ARPANET transformed into the Internet over the past forty years, and the World Wide
Web emerges from adolescence and turns twenty, this metamorphosis has seen changes in both
supercomputing and cloud computing. The supercomputing industry was born in 1976 when Sey-
mour Cray announced the Cray-1 [54]. Among the many innovations were its processor design,
process technology, system packaging, and instruction set architecture. The foundation of the ar-
chitecture was based on the notion of vector operations that allowed a single instruction to operate
on an array, or “vector,” of elements simultaneously. In contrast to scalar processors of the time
whose instructions operated on single data items. The vector parallelism approach dominated the
high-performance computing landscape for much of the 1980s and early 1990s until “commodity”
microprocessors began aggressively implementing forms of instruction-level parallelism (ILP) and
better cache memory systems to exploit spatial and temporal locality exhibited by most applications.
Improvements in CMOS process technology and full-custom CMOS design practices allowed mi-
croprocessors to quickly ramp up clock rates to several gigahertz. This coupled with multi-issue
pipelines; efficient branch prediction and speculation eventually allowed microprocessors to catch
up with their proprietary vector processors from Cray, Convex, and NEC. Over time, conventional
microprocessors incorporated short vector units (e.g., SSE, MMX, AltiVec) into the instruction set.
However, the largest beneficiary of vector processing has been multimedia applications as evidenced
by the jointly developed (by Sony,Toshiba, and IBM) Cell processor which found widespread success
in Sony’s Playstation3 game console, and even some special-purpose computer systems like Mercury
Systems.

Parallel applications eventually have to synchronize and communicate among parallel threads.
Amdahl’s Law is relentless and unless enough parallelism is exposed, the time spent orchestrating the
parallelism and executing the sequential region will ultimately limit the application performance [27].

1.2 BEOWULF: THE CLUSTER IS BORN
In 1994 Thomas Sterling (then dually affiliated with the California Institute of Technology and
NASAs JPL) and Donald Becker (then a researcher at NASA) assembled a parallel computer that
became known as a Beowulf cluster1. What was unique about Beowulf [61] systems was that they
were built from common “off-the-shelf ” computers, as Figure 1.3 shows, system packaging was not
an emphasis. More importantly, as a loosely-coupled distributed memory machine, Beowulf forced
researchers to think about how to efficiently program parallel computers. As a result, we benefited
from portable and free programming interfaces such as parallel virtual machines (PVM), message
passing interfaces (MPICH and OpenMPI), local area multiprocessor (LAM); with MPI being
embraced by the HPC community and highly optimized.

The Beowulf cluster was organized so that one machine was designated the “server,” and it
managed job scheduling, pushing binaries to clients, and monitoring. It also acted as the gateway
1The genesis of the name comes from the poem which describes Beowulf as having “thirty men’s heft of grasp in the gripe of his
hand.”
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Figure 1.3: An 128 processor Beowulf cluster at NASA.

to the “outside world,” so researchers had a login host. The model is still quite common: with some
nodes being designated as service and IO nodes where users actually login to the parallel machine.
From there, they can compile their code, and launch the job on “compute only” nodes — the worker
bees of the colony — and console information, machine status is communicated to the service nodes.

1.3 OVERVIEW OF PARALLEL PROGRAMMING MODELS

Early supercomputers were able to work efficiently, in part, because they shared a common physical
memory space. As a result, communication among processors was very efficient as they updated
shared variables and operated on common data. However, as the size of the systems grew, this
shared memory model evolved into a distributed shared memory (DSM) model where each processing
node owns a portion of the machines physical memory and the programmer is provided with a
logically shared address space making it easy to reason about how the application is partitioned and
communication among threads. The Stanford DASH [45] was the first to demonstrate this cache-
coherent non-uniform memory (ccNUMA) access model, and the SGI Origin2000 [43] was the
first machine to successfully commercialize the DSM architecture.

We commonly refer to distributed memory machines as “clusters” since they are loosely-coupled
and rely on message passing for communication among processing nodes. With the inception of
Beowulf clusters, the HPC community realized they could build modest-sized parallel computers on
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a relatively small budget. To their benefit, the common benchmark for measuring the performance
of a parallel computer is LINPACK, which is not communication intensive, so it was commonplace
to use inexpensive Ethernet networks to string together commodity nodes. As a result, Ethernet got
a foothold on the list of the TOP500 [62] civilian supercomputers with almost 50% of the TOP500
systems using Ethernet.

1.4 PUTTING IT ALL TOGETHER
The first Cray-1 [54] supercomputer had expected to ship one system per quarter in 1977. Today,
microprocessor companies have refined their CMOS processes and manufacturing making them
very cost-effective building blocks for large-scale parallel systems capable of 10s of petaflops. This
shift away from “proprietary” processors and trend toward “commodity” processors has fueled the
growth of systems. At the time of this writing, the largest computer on the TOP500 list [62] has in
excess of 220,000 cores (see Figure 7.5) and consumes almost seven megawatts!

A datacenter server has many commonalities as one used in a supercomputer, however, there
are also some very glaring differences. We enumerate several properties of both a warehouse-scale
computer (WSC) and a supercomputer (Cray XE6).
Datacenter server

• Sockets per server 2 sockets x86 platform

• Memory capacity 16 GB DRAM

• Disk capacity 5×1TB disk drive, and 1×160GB SSD (FLASH)

• Compute density 80 sockets per rack

• Network bandwidth per rack 1×48-port GigE switch with 40 down links, and 8 uplinks (5×
oversubscription)

• Network bandwidth per socket 100 Mb/s if 1 GigE rack switch, or 1 Gb/s if 10 GigE rack
switch

Supercomputer server

• Sockets per server 8 sockets x86 platform

• Memory capacity 32 or 64 GB DRAM

• Disk capacity IO capacity varies. Each XIO blade has four PCIe-Gen2 interfaces, for a total
of 96 PCIe-Gen2 ×16 IO devices for a peak IO bandwidth of 768 GB/s per direction.

• Compute density 192 sockets per rack
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• Network bandwidth per rack 48×48-port Gemini switch chips each with 160 GB/s switching
bandwidth

• Network bandwidth per socket 9.6GB/s injection bandwidth with non-coherent Hyper-
Transport 3.0 (ncHT3)

Several things stand out as differences between a datacenter server and supercomputer node.
First, the compute density for the supercomputer is significantly better than a standard 40U rack. On
the other hand, this dense packaging also puts pressure on cooling requirements not to mention
power delivery. As power and its associated delivery become increasingly expensive, it becomes more
important to optimize the number of operations per watt; often the size of a system is limited by
power distribution and cooling infrastructure.

Another point is the vast difference in network bandwidth per socket in large part because ncHT3
is a much higher bandwidth processor interface than PCIe-Gen2, however, as PCI-Gen3×16 be-
comes available we expect that gap to narrow.

1.5 QUALITY OF SERVICE (QOS) REQUIREMENTS
With HPC systems it is commonplace to dedicate the system for the duration of application ex-
ecution. Allowing all processors to be used for compute resources. As a result, there is no need
for performance isolation from competing applications. Quality of Service (QoS) provides both per-
formance isolation and differentiated service for applications2. Cloud computing often has a varied
workloads requiring multiple applications to share resources. Workload consolidation [33] is becom-
ing increasingly important as memory and processor cost increase, as a result so does the value of
increased system utilization.

The QoS class refers to the end-to-end class of service as observed by the application. In
principle, QoS is divided into three categories:

Best effort - traffic is treated as a FIFO with no differentiation provided.

Differentiated service - also referred to as “soft QoS” where traffic is given a statistical preference
over other traffic. This means it is less likely to be dropped relative to best effort traffic, for
example, resulting in lower average latency and increased average bandwidth.

Guaranteed service - also referred to as “hard QoS” where a fraction of the network bandwidth is
reserved to provide no-loss, low jitter bandwidth guarantees.

In practice, there are many intermediate pieces which are, in part, responsible for implementing a QoS
scheme. A routing algorithm determines the set of usable paths through the network between any
source and destination. Generally speaking, routing is a background process that attempts to load-
balance the physical links in the system taking into account any network faults and programming
2We use the term “applications” loosely here to represent processes or threads, at whatever granularity a service level agreement is
applied.
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the forwarding tables within each router. When a new packet arrives, the header is inspected and
the network address of the destination is used to index into the forwarding table which emits the
output port where the packet is scheduled for transmission.The “packet forwarding” process is done
on a packet-by-packet basis and is responsible for identifying packets marked for special treatment
according to its QoS class.

The basic unit over which a QoS class is applied is the flow. A flow is described as a tuple
(SourceIP, SourcePort, DestIP, DestPort). Packets are marked by the host or edge switch using
either 1) port range, or 2) host (sender/client-side) marking. Since we are talking about end-to-end
service levels, ideally the host which initiates the communication would request a specific level of
service. This requires some client-side API for establishing the QoS requirements prior to sending
a message. Alternatively, edge routers can mark packets as they are injected into the core fabric.

Packets are marked with their service class which is interpreted at each hop and acted upon by
routers along the path. For common Internet protocols, the differentiated service (DS) field of the IP
header provides this function as defined by the DiffServ [RFC2475] architecture for network layer
QoS. For compatibility reasons, this is the same field as the type of service (ToS) field [RFC791] of
the IP header. Since the RFC does not clearly describe how “low,” “medium,” or “high” are supposed
to be interpreted, it is common to use five classes: best effort (BE), AF1, AF2, AF3, AF4, and set
the drop priority to 0 (ignored).

1.6 FLOW CONTROL
Surprisingly, a key difference in system interconnects is flow control. How the switch and buffer
resources are managed is very different in Ethernet than what is typical in a supercomputer in-
terconnect. There are several kinds of flow control in a large distributed parallel computer. The
interconnection network is a shared resource among all the compute nodes, and network resources
must be carefully managed to avoid corrupting data, overflowing a buffer, etc. The basic mechanism
by which resources in the network are managed is flow control. Flow control provides a simple ac-
counting method for managing resources that are in demand by multiple uncoordinated sources.
The resource is managed in units of flits (flow control units). When a resource is requested but not
currently available for use, we must decide what to do with the incoming request. In general, we can
1) drop the request and all subsequent requests until the resource is freed, or 2) block and wait for
the request to free.

1.6.1 LOSSY FLOW CONTROL
With a lossy flow control [20, 48], the hardware can discard packets until there is room in the desired
resource. This approach is usually applied to input buffers on each switch chip, but also applies to
resources in the network interface controller (NIC) chip as well. When packets are dropped, the
software layers must detect the loss, usually through an unexpected sequence number indicating that
one or more packets are missing or out of order. The receiver software layers will discard packets
that do not match the expected sequence number, and the sender software layers will detect that it
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Figure 1.4: Example of credit-based flow control across a network link.

has not received an acknowledgment packet and will cause a sender timeout which prompts the “send
window” — packets sent since the last acknowledgment was received — to be retransmitted. This
algorithm is referred to as go-back-N since the sender will “go back” and retransmit the last N (send
window) packets.

1.6.2 LOSSLESS FLOW CONTROL
Lossless flow control implies that packets are never dropped as a results of lack of buffer space (i.e.,
in the presence of congestion). Instead, it provides back pressure to indicate the absence of available
buffer space in the resource being managed.

1.6.2.1 Stop/Go (XON/XOFF) flow control
A common approach is XON/XOFF or stop/go flow control. In this approach, the receiver provides
simple handshaking to the sender indicating whether it is safe (XON) to transmit, or not (XOFF).
The sender is able to send flits until the receiver asserts stop (XOFF). Then, as the receiver continues
to process packets from the input buffer freeing space, and when a threshold is reached the receiver
will assert the XON again allowing the sender to again start sending. This Stop/Go functionality
correctly manages the resource and avoids overflow as long as the time at which XON is asserted
again (i.e., the threshold level in the input buffer) minus the time XOFF is asserted and the buffer
is sufficient to allow any in-flight flits to land. This slack in the buffer is necessary to act as a flow
control shock absorber for outstanding flits necessary to cover the propagation delay of the flow
control signals.

1.6.2.2 Credit-based flow control
Credit based flow control (Figure 1.4) provides more efficient use of the buffer resources.The sender
maintains a count of the number of available credits, which represent the amount of free space in
the receiver’s input buffer. A separate count is used for each virtual channel (VC) [21]. When a new
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packet arrives at the output port, the sender checks the available credit counter. For wormhole flow
control [20] across the link, the sender’s available credit needs to only be one or more. For virtual
cut-through (VCT) [20, 22] flow control across the link, the sender’s available credit must be more
than the size of the packet. In practice, the switch hardware doesn’t have to track the size of the
packet in order to allow VCT flow control. The sender can simply check the available credit count
is larger than the maximum packet size.

1.7 THE RISE OF ETHERNET

It may be an extreme example comparing a typical datacenter server to a state-of-the-art super-
computer node, but the fact remains that Ethernet is gaining a significant foothold in the high-
performance computing space with nearly 50% of the systems on the TOP500 list [62] using Gi-
gabit Ethernet as shown in Figure 1.5(b). Infiniband (includes SDR, DDR and QDR) accounts
for 41% of the interconnects leaving very little room for proprietary networks. The landscape was
very different in 2002, as shown in Figure 1.5(a), where Myrinet accounted for about one third of
the system interconnects. The IBM SP2 interconnect accounted for about 18%, and the remaining
50% of the system interconnects were split among about nine different manufacturers. In 2002, only
about 8% of the TOP500 systems used gigabit Ethernet, compared to the nearly 50% in June of
2010.

1.8 SUMMARY

No doubt “cloud computing” benefited from this wild growth and acceptance in the HPC community,
driving prices down and making more reliable parts. Moving forward we may see even further
consolidation as 40 Gig Ethernet converges with some of the Infiniband semantics with RDMA
over Ethernet (ROE). However, a warehouse-scale computer (WSC) [9] and a supercomputer have
different usage models. For example, most supercomputer applications expect to run on the machine
in a dedicated mode, not having to compete for compute, network, or IO resources with any other
applications.

Supercomputing applications will commonly checkpoint their dataset, since the MTBF of a
large system is usually measured in 10s of hours. Supercomputing applications also typically run with
a dedicated system, so QoS demands are not typically a concern. On the other hand, a datacenter
will run a wide variety of applications, some user-facing like Internet email, and others behind the
scenes. The workloads vary drastically, and programmers must learn that hardware can, and does,
fail and the application must be fault-aware and deal with it gracefully. Furthermore, clusters in the
datacenter are often shared across dozens of applications, so performance isolation and fault isolation
are key to scaling applications to large processor counts.

Choosing the “right” topology is important to the overall system performance. We must take
into account the flow control, QoS requirements, fault tolerance and resilience, as well as workloads
to better understand the latency and bandwidth characteristics of the entire system. For example,
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(a) 2002

(b) 2010

Figure 1.5: Breakdown of supercomputer interconnects from the Top500 list.
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topologies with abundant path diversity are able to find alternate routes between arbitrary endpoints.
This is only one aspect of topology choice that we will consider in subsequent chapters.
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C H A P T E R 2

Background
Over the past three decades, Moore’s Law has ushered in an era where transistors within a single
silicon package are abundant; a trend that system architects took advantage of to create a class of
many-core chip multiprocessors (CMPs) which interconnect many small processing cores using an
on-chip network. However, the pin density, or number of signal pins per unit of silicon area, has not
kept up with this pace. As a result pin bandwidth, the amount of data we can get on and off the chip
package, has become a first-order design constraint and precious resource for system designers.

2.1 INTERCONNECTION NETWORKS

The components of a computer system often have to communicate to exchange status information,
or data that is used for computation. The interconnection network is the substrate over which this
communication takes place. Many-core CMPs employ an on-chip network for low-latency, high-
bandwidth load/store operations between processing cores and memory, and among processing cores
within a chip package.

Processor, memory, and its associated IO devices are often packaged together and referred
to as a processing node. The system-level interconnection network connects all the processing nodes
according to the network topology. In the past, system components shared a bus over which address
and data were exchanged, however, this communication model did not scale as the number of
components sharing the bus increased. Modern interconnection networks take advantage of high-
speed signaling [28] with point-to-point serial links providing high-bandwidth connections between
processors and memory in multiprocessors [29, 32], connecting input/output (IO) devices [31, 51],
and as switching fabrics for routers.

2.2 TECHNOLOGY TRENDS

There are many considerations that go into building a large-scale cluster computer, many of which
revolve around its cost effectiveness, in both capital (procurement) cost and operating expense. Al-
though many of the components that go into a cluster each have different technology drivers which
blurs the line that defines the optimal solution for both performance and cost. This chapter takes a
look at a few of the technology drivers and how they pertain to the interconnection network.

The interconnection network is the substrate over which processors, memory and I/O devices
interoperate. The underlying technology from which the network is built determines the data rate,
resiliency, and cost of the network. Ideally, the processor,network, and I/O devices are all orchestrated
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in a way that leads to a cost-effective, high-performance computer system. The system, however, is
no better than the components from which it is built.

The basic building block of the network is the switch (router) chip that interconnects the
processing nodes according to some prescribed topology.The topology and how the system is packaged
are closely related; typical packaging schemes are hierarchical – chips are packaged onto printed
circuit boards, which in turn are packaged into an enclosure (e.g., rack), which are connected together
to create a single system.

ITRS Trend

Figure 2.1: Off-chip bandwidth of prior routers, and ITRS predicted growth.

The past 20 years has seen several orders of magnitude increase in off-chip bandwidth spanning
from several gigabits per second up to several terabits per second today. The bandwidth shown in
Figure 2.1 plots the total pin bandwidth of a router – i.e., equivalent to the total number of signals
times the signaling rate of each signal – and illustrates an exponential increase in pin bandwidth.
Moreover, we expect this trend to continue into the next decade as shown by the International
Roadmap for Semiconductors (ITRS) in Figure 2.1, with 1000s of pins per package and more than
100 Tb/s of off-chip bandwidth. Despite this exponential growth, pin and wire density simply does
not match the growth rates of transistors as predicted by Moore’s Law.
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Figure 2.2: Network latency and bandwidth characteristics.
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2.3 TOPOLOGY, ROUTING AND FLOW CONTROL
Before diving into details of what drives network performance, we pause to lay the ground work for
some fundamental terminology and concepts. Network performance is characterized by its latency
and bandwidth characteristics as illustrated in Figure 2.2. The queueing delay, Q(λ), is a function
of the offered load (λ) and described by the latency-bandwidth characteristics of the network. An
approximation of Q(λ) is given by an M/D/1 queue model, Figure 2.2(a). If we overlay the average
accepted bandwidth observed by each node, assuming benign traffic, we Figure 2.2(b).

Q(λ) = 1

1 − λ
(2.1)

When there is very low offered load on the network, the Q(λ) delay is negligible. However, as traffic
intensity increases, and the network approaches saturation, the queueing delay will dominate the
total packet latency.

The performance and cost of the interconnect are driven by a number of design factors,
including topology, routing, flow control, and message efficiency.The topology describes how network
nodes are interconnected and determines the path diversity — the number of distinct paths between
any two nodes. The routing algorithm determines which path a packet will take in such as way as
to load balance the physical links in the network. Network resources (primarily buffers for packet
storage) are managed using a flow control mechanism. In general, flow control happens at the link-
layer and possibly end-to-end. Finally, packets carry a data payload and the packet efficiency determines
the delivered bandwidth to the application.

While recent many-core processors have spurred a 2× and 4× increase in the number of
processing cores in each cluster, unless network performance keeps pace, the effects of Amdahl’s
Law will become a limitation. The topology, routing, flow control, and message efficiency all have
first-order affects on the system performance, thus we will dive into each of these areas in more
detail in subsequent chapters.

2.4 COMMUNICATION STACK
Layers of abstraction are commonly used in networking to provide fault isolation and device in-
dependence. Figure 2.3 shows the communication stack that is largely representative of the lower
four layers of the OSI networking model. To reduce software overhead and the resulting end-to-
end latency, we want a thin networking stack. Some of the protocol processing that is common
in Internet communication protocols is handled in specialized hardware in the network interface
controller (NIC). For example, the transport layer provides reliable message delivery to applications
and whether the protocol bookkeeping is done in software (e.g., TCP) or hardware (e.g., Infiniband
reliable connection) directly affects the application performance.The network layer provides a logical
namespace for endpoints (and possibly switches) in the system. The network layer handles pack-
ets, and provides the routing information identifying paths through the network among all source,
destination pairs. It is the network layer that asserts routes, either at the source (i.e., source-routed)
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or along each individual hop (i.e., distributed routing) along the path. The data link layer provides
link-level flow control to manage the receiver’s input buffer in units of flits (flow control units). The
lowest level of the protocol stack, the physical media layer, is where data is encoded and driven onto
the medium. The physical encoding must maintain a DC-neutral transmission line and commonly
uses 8b10b or 64b66b encoding to balance the transition density. For example, a 10-bit encoded
value is used to represent 8-bits of data resulting in a 20% physical encoding overhead.

SUMMARY

Interconnection networks are a critical component of modern computer systems. The emergence
of cloud computing, which provides a homogenous cluster using conventional microprocessors and
common Internet communication protocols aimed at providing Internet services (e.g., email, Web
search, collaborative Internet applications, streaming video, and so forth) at large scale. While In-
ternet services themselves may be insensitive to latency, since they operate on human timescales
measured in 100s of milliseconds, the backend applications providing those services may indeed
require large amounts of bandwidth (e.g., indexing the Web) and low latency characteristics. The
programming model for cloud services is built largely around distributed message passing, commonly
implemented around TCP (transport control protocol) as a conduit for making a remote procedure
call (RPC).

Supercomputing applications, on the other hand, are often communication intensive and can
be sensitive to network latency. The programming model may use a combination of shared memory
and message passing (e.g., MPI) with often very fine-grained communication and synchronization
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needs. For example, collective operations, such as global sum, are commonplace in supercomputing
applications and rare in Internet services. This is largely because Internet applications evolved from
simple hardware primitives (e.g., low-cost ethernet NIC) and common communication models (e.g.,
TCP sockets) that were incapable of such operations.

As processor and memory performance continues to increase, the interconnection network
is becoming increasingly important and largely determines the bandwidth and latency of remote
memory access. Going forward, the emergence of super datacenters will convolve into exa-scale
parallel computers.
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C H A P T E R 3

Topology Basics
The network topology — describing precisely how nodes are connected — plays a central role in
both the performance and cost of the network. In addition, the topology drives aspects of the switch
design (e.g., virtual channel requirements, routing function, etc), fault tolerance, and sensitivity to
adversarial traffic. There are subtle yet very practical design issues that only arise at scale; we try to
highlight those key points as they appear.

3.1 INTRODUCTION

Many scientific problems can be decomposed into a 3-D structure that represents the basic building
blocks of the underlying phenomenon being studied. Such problems often have nearest neighbor
communication patterns, for example, and lend themselves nicely to k-ary n-cube networks. A
high-performance application will often use the system dedicated to provide the necessary perfor-
mance isolation, however, a large production datacenter cluster will often run multiple applications
simultaneously with varying workloads and often unstructured communication patterns.

The choice of topology is largely driven by two factors: technology and packaging constraints.
Here, technology refers to the underlying silicon from which the routers are fabricated (i.e., node size,
pin density, power, etc) and the signaling technology (e.g., optical versus electrical). The packaging
constraints will determine the compute density, or amount of computation per unit of area on the
datacenter floor. The packaging constraints will also dictate the data rate (signaling speed) and
distance over which we can reliably communicate.

As a result of evolving technology, the topologies used in large-scale systems have also changed.
Many of the earliest interconnection networks were designed using topologies such as butterflies or
hypercubes, based on the simple observation that these topologies minimized hop count. Analysis
by both Dally [18] and Agarwal [5] showed that under fixed packaging constraints, a low-radix
network offered lower packet latency and thus better performance. Since the mid-1990s, k-ary
n-cube networks were used by several high-performance multiprocessors such as the SGI Origin
2000 hypercube [43], the 2-D torus of the Cray X1 [16], the 3-D torus of the Cray T3E [55]
and XT3 [12, 17] and the torus of the Alpha 21364 [49] and IBM BlueGene [35]. However, the
increasing pin bandwidth has recently motivated the migration towards high-radix topologies such
as the radix-64 folded-Clos topology used in the Cray BlackWidow system [56]. In this chapter, we
will discuss mesh/torus topologies while in the next chapter, we will present high-radix topologies.
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3.2 TYPES OF NETWORKS
Topologies can be broken down into two different genres: direct and indirect [20]. A direct network
has processing nodes attached directly to the switching fabric; that is, the switching fabric is dis-
tributed among the processing nodes. An indirect network has the endpoint network independent
of the endpoints themselves – i.e., dedicated switch nodes exist and packets are forwarded indirectly
through these switch nodes. The type of network determines some of the packaging and cabling
requirements as well as fault resilience. It also impacts cost, for example, since a direct network can
combine the switching fabric and the network interface controller (NIC) functionality in the same
silicon package. An indirect network typically has two separate chips, with one for the NIC and
another for the switching fabric of the network. Examples of direct network include mesh, torus, and
hypercubes discussed in this chapter as well as high-radix topologies such as the flattened butterfly
described in the next chapter. Indirect networks include conventional butterfly topology and fat-tree
topologies.

The term radix and dimension are often used to describe both types of networks but have been
used differently for each network. For an indirect network, radix often refers to the number of ports
of a switch, and the dimension is related to the number of stages in the network. However, for a
direct network, the two terminologies are reversed – radix refers to the number of nodes within a
dimension, and the network size can be further increased by adding multiple dimensions. The two
terms are actually a duality of each other for the different networks – for example, in order to reduce
the network diameter, the radix of an indirect network or the dimension of a direct network can be
increased. To be consistent with existing literature, we will use the term radix to refer to different
aspects of a direct and an indirect network.

3.3 MESH, TORUS, AND HYPERCUBES
The mesh, torus and hypercube networks all belong to the same family of direct networks often referred
to as k-ary n-mesh or k-ary n-cube.The scalability of the network is largely determined by the radix,
k, and number of dimensions,n, with N = kn total endpoints in the network. In practice, the radix of
the network is not necessarily the same for every dimension (Figure 3.2). Therefore, a more general
way to express the total number of endpoints is given by Equation 3.1.

N =
n−1∏
i=0

ki (3.1)

4321 65 70 4321 65 70

(a) 8-ary 1-mesh. (b) 8-ary 1-cube.

Figure 3.1: Mesh (a) and torus (b) networks.
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Mesh and torus networks (Figure 3.1) provide a convenient starting point to discuss topology
tradeoffs. Starting with the observation that each router in a k-ary n-mesh, as shown in Figure
3.1(a), requires only three ports; one port connects to its neighboring node to the left, another to its
right neighbor, and one port (not shown) connects the router to the processor. Nodes that lie along
the edge of a mesh, for example nodes 0 and 7 in Figure 3.1(a), require one less port. The same
applies to k-ary n-cube (torus) networks. In general, the number of input and output ports, or radix
of each router is given by Equation 3.2. The term “radix” is often used to describe both the number
of input and output ports on the router, and the size or number of nodes in each dimension of the
network.

r = 2n + 1 (3.2)

The number of dimensions (n) in a mesh or torus network is limited by practical packaging
constraints with typical values of n=2 or n=3. Since n is fixed we vary the radix (k) to increase the
size of the network. For example, to scale the network in Figure 3.2a from 32 nodes to 64 nodes, we
increase the radix of the y dimension from 4 to 8 as shown in Figure 3.2b.

4320 1 65 7

1211108 9 1413 15

20191816 17 2221 23

28272624 25 3029 31

4320 1 65 7

1211108 9 1413 15

20191816 17 2221 23

28272624 25 3029 31

36353432 33 3837 39

44434240 41 4645 47

52515048 49 5453 55

60595856 57 6261 63

(a) (8,4)-ary 2-mesh (b) 8-ary 2-mesh.

Figure 3.2: Irregular (a) and regular (b) mesh networks.

Since a binary hypercube (Figure 3.4) has a fixed radix (k=2), we scale the number of dimen-
sions (n) to increase its size. The number of dimensions in a system of size N is simply n = lg2(N)

from Equation 3.1.
r = n + 1 = lg2(N) + 1 (3.3)

As a result, hypercube networks require a router with more ports (Equation 3.3) than a mesh or
torus. For example, a 512 node 3-D torus (n=3) requires seven router ports, but a hypercube requires
n = lg2(512) + 1 = 10 ports. It is useful to note, an n-dimension binary hypercube is isomorphic to
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a n
2 -dimension torus with radix 4 (k=4). Router pin bandwidth is limited, thus building a 10-ported

router for a hypercube instead of a 7-ported torus router may not be feasible without making each
port narrower.

3.3.1 NODE IDENTIFIERS
The nodes in a k-ary n-cube are identified with an n-digit, radix k number. It is common to refer to
a node identifier as an endpoint’s “network address.” A packet makes a finite number of hops in each
of the n dimensions. A packet may traverse an intermediate router, ci , en route to its destination.
When it reaches the correct ordinate of the destination, that is ci = di , we have resolved the ith
dimension of the destination address.

3.3.2 k-ARY n-CUBE TRADEOFFS
The worst-case distance (measured in hops) that a packet must traverse between any source and any
destination is called the diameter of the network. The network diameter is an important metric as it
bounds the worst-case latency in the network. Since each hop entails an arbitration stage to choose
the appropriate output port, reducing the network diameter will, in general, reduce the variance in
observed packet latency. The network diameter is independent of traffic pattern, and is entirely a
function of the topology, as shown in Table 3.1

Table 3.1: Network diameter and average latency.
Diameter Average

Network (hops) (hops)
mesh k − 1 (k + 1)/3
torus k/2 k/4

hypercube n n/2
flattened butterfly n + 1 n + 1 − (n − 1)/k

from/to 0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8

1 1 0 1 2 3 4 5 6 7

2 2 1 0 1 2 3 4 5 6

3 3 2 1 0 1 2 3 4 5

4 4 3 2 1 0 1 2 3 4

5 5 4 3 2 1 0 1 2 3

6 6 5 4 3 2 1 0 1 2

7 7 6 5 4 3 2 1 0 1

8 8 7 6 5 4 3 2 1 0

from/to 0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 4 3 2 1

1 1 0 1 2 3 4 4 3 2

2 2 1 0 1 2 3 4 4 3

3 3 2 1 0 1 2 3 4 4

4 4 3 2 1 0 1 2 3 4

5 4 4 3 2 1 0 1 2 3

6 3 4 4 3 2 1 0 1 2

7 2 3 4 4 3 2 1 0 1

8 1 2 3 4 4 3 2 1 0

(a) radix-9 mesh (b) radix-9 torus

Figure 3.3: Hops between every source, destination pair in a mesh (a) and torus (b).

In a mesh (Figure 3.3), the destination node is, at most, k-1 hops away. To compute the
average, we compute the distance from all sources to all destinations, thus a packet from node 1 to
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node 2 is one hop, node 1 to node 3 is two hops, and so on. Summing the number of hops from
each source to each destination and dividing by the total number of packets sent k(k-1) to arrive at
the average hops taken. A packet traversing a torus network will use the wraparound links to reduce
the average hop count and network diameter. The worst-case distance in a torus with radix k is k/2,
but the average distance is only half of that, k/4. In practice, when the radix k of a torus is odd, and
there are two equidistant paths regardless of the direction (i.e., whether the wraparound link is used)
then a routing convention is used to break ties so that half the traffic goes in each direction across
the two paths.

A binary hypercube (Figure 3.4) has a fixed radix (k=2) and varies the number of dimensions
(n) to scale the network size. Each node in the network can be viewed as a binary number, as shown
in Figure 3.4. Nodes that differ in only one digit are connected together. More specifically, if two
nodes differ in the ith digit, then they are connected in the ith dimension. Minimal routing in a
hypercube will require, at most, n hops if the source and destination differ in every dimension, for
example, traversing from 000 to 111 in Figure 3.4. On average, however, a packet will take n/2 hops.

010

000

011

001

110

100

111

101

x

y

z

Figure 3.4: A binary hypercube with three dimensions.

SUMMARY

This chapter provided an overview of direct and indirect networks, focusing on topologies built from
low-radix routers with a relatively small number of wide ports. We describe key performance metrics
of diameter and average hops and discuss tradeoffs.Technology trends motivated the use of low-radix
topologies in the 80s and the early 90s.
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In practice, there are other issues that emerge as the system architecture is considered as
a whole; such as, QoS requirements, flow control requirements, and tolerance for latency variance.
However, these are secondary to the guiding technology (signaling speed) and packaging and cooling
constraints. In the next chapter, we describe how evolving technology motivates the use of high-radix
routers and how different high-radix topologies can efficiently exploit these many-ported switches.
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C H A P T E R 4

High-Radix Topologies
Dally [18] and Agarwal [5] showed that under fixed packaging constraints, lower radix networks
offered lower packet latency. As a result, many studies have focused on low-radix topologies such as
the k-ary n-cube topology discussed in Chapter 3.The fundamental result of these authors still holds
– technology and packaging constraints should drive topology design. However, what has changed
in recent years are the topologies that these constraints lead us toward. In this section, we describe
the high-radix topologies that can better exploit today’s technology.

(a) radix-16 one-dimensional torus with each unidirectional link L lanes wide.

(b) radix-4 two-dimensional torus with each unidirectional link L/2 lanes wide.

Figure 4.1: Each router node has the same amount of pin bandwidth but differ in the number of ports.

4.1 TOWARDS HIGH-RADIX TOPOLOGIES
Technology trends and packaging constraints can and do have a major impact on the chosen topology.
For example, consider the diagram of two 16-node networks in Figure 4.1. The radix-16 one-
dimensional torus in Figure 4.1a has two ports on each router node; each port consists of an input
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and output and are L lanes wide. The amount of pin bandwidth off each router node is 4 × L. If
we partitioned the router bandwidth slightly differently, we can make better use of the bandwidth
as shown in Figure 4.1b. We transformed the one-dimensional torus of Figure 4.1a into a radix-4
two-dimensional torus in Figure 4.1b, where we have twice as many ports on each router, but each
port is only half as wide — so the pin bandwidth on the router is held constant. There are several
direct benefits of the high-radix topology in Figure 4.1b compared to its low-radix topology in Figure
4.1a:

(a) by increasing the number of ports on each router, but making each port narrower, we doubled
the amount of bisection bandwidth, and

(b) we decreased the average number of hops by half.

The topology in Figure 4.1b requires longer cables which can adversely impact the signaling rate
since the maximum bandwidth of an electrical cable drops with increasing cable length since signal
attenuation due to skin effect and dielectric absorption increases linearly with distance.

4.2 TECHNOLOGY DRIVERS
The trend toward high-radix networks is being driven by several technologies:

• high-speed signaling, allowing each channel to be narrower while still providing the same
bandwidth,

• affordable optical signaling through CMOS photonics and active optical cables that decouple
data rate from cable reach, and

• new router microarchitectures that scale to high port counts and exploit the abundant wire
and transistor density of modern CMOS devices.

The first two items are described further in this section while the router microarchitecture details
will be discussed in Chapter 6.

4.2.1 PIN BANDWIDTH
As described earlier in Chapter 2, the amount of total pin bandwidth has increased at a rate of 100×
over each decade for the past 20-25 years. To understand how this increased pin bandwidth affects
the optimal network radix, consider the latency (T ) of a packet traveling through a network. Under
low loads, this latency is the sum of header latency and serialization latency. The header latency
(Th) is the time for the beginning of a packet to traverse the network and is equal to the number
of hops (H ) a packet takes times a per hop router delay (tr ). Since packets are generally wider than
the network channels, the body of the packet must be squeezed across the channel, incurring an
additional serialization delay (Ts). Thus, total delay can be written as

T = Th + Ts = Htr + L/b (4.1)
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where L is the length of a packet, and b is the bandwidth of the channels. For an N node network
with radix k routers (k input channels and k output channels per router), the number of hops1 must
be at least 2logkN . Also, if the total bandwidth of a router is B, that bandwidth is divided among
the 2k input and output channels and b = B/2k. Substituting this into the expression for latency
from Equation (4.1)

T = 2tr logk N + 2kL/B (4.2)

Then, setting dT /dk equal to zero and isolating k gives the optimal radix in terms of the network
parameters,

k log2 k = Btr log N

L
(4.3)

In this differentiation, we assume B and tr are independent of the radix k. Since we are evaluating
the optimal radix for a given bandwidth, we can assume B is independent of k. The tr parameter is
a function of k but has only a small impact on the total latency and has no impact on the optimal
radix. Router delay tr can be expressed as the number of pipeline stages (P ) times the cycle time
(tcy). As radix increases, the router microarchitecture can be designed where tcy remains constant
and P increases logarithmically. The number of pipeline stages P can be further broken down into
a component that is independent of the radix X and a component which is dependent on the radix
Y log2 k. 2 Thus, router delay (tr ) can be rewritten as

tr = tcyP = tcy(X + Y log2 k) (4.4)

If this relationship is substituted back into Equation (4.2) and differentiated, the dependency on
radix k coming from the router delay disappears and does not change the optimal radix. Intuitively,
although a single router delay increases with a log(k) dependence, the effect is offset in the network
by the fact that the hop count decreases as 1/ log(k) and as a result, the router delay does not
significantly affect the optimal radix.

In Equation (4.2), we also ignore time of flight for packets to traverse the wires that make
up the network channels. The time of flight does not depend on the radix(k) and thus has minimal
impact on the optimal radix. Time of flight is D/v where D is the total physical distance traveled
by a packet, and v is the propagation velocity. As radix increases, the distance between two router
nodes increases. However, the total distance traveled by a packet will be approximately equal since
the lower-radix network requires more hops. 3

From Equation (4.3),we refer to the quantity A = Btr log N
L

as the aspect ratio of the router [42].
This aspect ratio impacts the router radix that minimizes network latency. A high aspect ratio implies
a “tall, skinny” router (many, narrow channels) minimizes latency, while a low ratio implies a “short,
fat” router (few, wide channels).
1Uniform traffic is assumed and 2logkN hops are required for a non-blocking network.
2For example, routing pipeline stage is often independent of the radix while the switch allocation is dependent on the radix.
3The time of flight is also dependent on the packaging of the system but we ignore packaging in this analysis.
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Figure 4.2: Relationship between the optimal radix for minimum latency and router aspect ratio. The
labeled points show the approximate aspect ratio for a given year’s technology with a packet size of L=128
bits
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Figure 4.3: Latency (a) and cost (b) of the network as the radix is increased for two different technologies.

A plot of the minimum latency radix versus aspect ratio is shown in Figure 4.2 annotated with
aspect ratios from several years.These particular numbers are representative of large supercomputers
with single-word network accesses4, but the general trend of the radix increasing significantly over
time remains. Figure 4.3(a) shows how latency varies with radix for 2003 and 2010 aspect ratios. As
radix is increased, latency first decreases as hop count, and hence Th, is reduced. However, beyond a
certain radix, serialization latency begins to dominate the overall latency and latency increases. As
bandwidth, and hence aspect ratio, is increased, the radix that gives minimum latency also increases.
For 2004 technology (aspect ratio = 652), the optimum radix is 45 while for 2010 technology (aspect
ratio = 3013) the optimum radix is 128.

4The 1996 data is from the Cray T3E [55] (B=48Gb/s, tr=40ns, N=2048), the 2003 data is combined from the Alpha 21364 [49]
and Velio VC2002 [20] (1Tb/s, 10ns, 4096), and the 2010 data was estimated as (20Tb/s, 2ns, 8192).
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Increasing the radix of networks monotonically reduces the overall cost of a network. Network
cost is largely due to router pins and connectors and hence is roughly proportional to total router
bandwidth: the number of channels times their bandwidth. For a fixed network bisection bandwidth,
this cost is proportional to hop count.Since increasing radix reduces hop count,higher radix networks
have lower cost as shown in Figure 4.3(b). Power dissipated by a network also decreases with
increasing radix. The network power is roughly proportional to the number of router nodes in
the network. As radix increases, hop count decreases, and the number of router nodes decreases.The
power of an individual router node is largely independent of radix as long as total router bandwidth
is held constant. Router power is largely due to SerDes (serializer/deserializer) I/O circuits and
internal switch datapaths. The arbitration logic, which becomes more complex as radix increases,
represents a negligible fraction of total power [67].

4.2.2 ECONOMICAL OPTICAL SIGNALING
Migrating from low-radix topology to high-radix topology increases the length of the channels
as described earlier in Section 4.1. For low-radix routers, the routers are often only connected to
neighboring routers – e.g., with a radix-6 router in a 3-D torus network, each router is connect to
two neighbors in the x, y, and z dimensions. The long wraparound link of a torus topology can be
removed by creating a “folded” torus, as shown in Figure 4.1(a). As a result, the cable lengths are
reasonably short and only need to cross one or two cabinets at most and thus often under a few
meters in length. The benefit of short cables, under say five meters, is that they can be driven using
low-cost passive electrical signaling. With a high-radix router, such as a radix-64 router, each router
is now connected to a larger number of routers which can be either centrally located or physically
distributed, yet far away. Although high-radix reduces the network diameter, it increases the length
of the cables required in the system as demonstrated in Figure 4.1(b).

Historically, the high cost of optical signaling limited its use to very long distances or applica-
tions that demanded performance regardless of cost. Recent advances in silicon photonics and their
application to active optical cables such as Intel Connects Cables [23] and Luxtera Blazar [46, 47]
have enabled economical optical interconnect.These active optical cables have electrical connections
at either end and EO and OE 5 modules integrated into the cable itself.

Figure 4.4 compares the cost of electrical and optical signaling bandwidth as a function of
distance. The cost of Intel Connects Cables[23] is compared with the electrical cable cost model
presented in [41]. 6 Optical cables have a higher fixed cost (y-intercept) but a lower cost per unit
distance (slope) than electrical cables. Based on the data presented here, the crossover point is at
10m. For distances shorter than 10m, electrical signaling is less expensive. Beyond 10m, optical
signaling is more economical. By reducing the number of global cables it minimizes the effect of
the higher fixed overhead of optical signaling, and by making the global cables longer, it maximizes

5EO : Electrical to Optical, OE : Optical to Electrical
6The optical cost was based on prices available at http://shop.intel.com at the time this analysis was done in 2008 [38]. If purchased
in bulk, the prices will likely be lower. The use of multi-mode fiber instead of single-mode fiber may also result in lower cost.
Subsequently, the Connects Cables were acquired from Intel by EMCORE Corporation.
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Figure 4.4: Cable cost comparison between optical and electrical cables.

the advantage of the lower per-unit cost of optical fibers. The high-radix topologies described in
the following section exploits this relationship between cost and distance and thus, exploiting the
availability of high-radix routers.

4.3 HIGH-RADIX TOPOLOGY
4.3.1 HIGH-DIMENSION HYPERCUBE, MESH, TORUS
The direct networks described earlier in Chapter 3 can use high-radix routers to create high-dimension
topologies, including hypercube, mesh, and torus. The high-dimension topologies reduce the net-
work diameter, but since the number of routers required for these topologies is proportional to N or
the network size, the wiring or the cabling complexity can become prohibitively expensive and also
increase the network cost. The indirect networks described earlier in Chapter 3 can better exploit
high-radix routers while reduce network cost and wiring complexity. In addition, concentration [20]
can be used to where the router is shared among multiple terminal nodes to further reduce the
wiring complexity. The topologies that we describe in this chapter leverage concentration to exploit
high-radix routers (which enable connecting multiple nodes to a router) and make cabling feasible.

4.3.2 BUTTERFLY
The butterfly network (k-ary n-fly) can take advantage of high-radix routers to reduce latency and
network cost [20]. For a network with N nodes and radix-k routers, logk(N) + 1 stages with N/k

routers in each stage are needed.For example, a 64-node butterfly network with radix-4 routers (4-ary
3-fly) is shown in Figure 4.5, with the input nodes shown on the left and the output nodes shown on
the right.The butterfly topology minimizes the network diameter and as a result, minimizes network
cost. However, there are two noticeable disadvantages of the butterfly network. There is a lack of
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Figure 4.5: Conventional Butterfly Topology (4-ary 3-fly) with 64 nodes. P represents the processor or
the terminals nodes and R represents the switches or the routers. For simplicity, the network injection
ports (terminal ports) are shown on the left while the network ejection ports are shown on the right.
However, they represent the same physical terminal nodes.

path diversity in the topology as there is only a single path between any source and any destination.
This results in poor throughput for any non-uniform traffic patterns. In addition, a butterfly network
cannot exploit traffic locality as all packets must traverse the diameter of the network.

4.3.3 HIGH-RADIX FOLDED-CLOS
A Clos network [14] is a multi-stage interconnection network consisting of an odd number of
stages connecting input ports to output ports (Figure 4.6(a)). The Clos network can be created by
combining two butterfly networks back-to-back with the first stage used for load-balancing (input
network) and the second stage used to route the traffic (output network). A Clos network provides
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Figure 4.6: (a) High-Radix Clos topology and (b) corresponding folded-Clos topology.The channels in
the folded-Clos represent bidirectional channels. The routers in the right-most column of (b) are radix-4
while the others in (b) are radix-8. If the same radix-8 routers need to be used in the folded-Clos network,
two radix-4 routers can be combined into a single radix-8 router.

many paths – one for each middle-stage switch in the Clos – between each pair of nodes. This path
diversity enables the Clos to route arbitrary traffic patterns with no loss of throughput.

Like a butterfly (k-ary n-fly) network, a folded-Clos is also an indirect network. The router
nodes are distinct from the endpoints.The first tier of the network connects k/2 hosts (endpoints) to
the switch, and k/2 uplinks to other switches in the next tier. If the injection bandwidth is balanced
with the uplink bandwidth, we refer to the network as fully provisioned; however, if there is more
injection bandwidth than uplink bandwidth, then it is oversubscribed. Oversubscription is common
in datacenter applications since it reduces cost and improves utilization.The input and output stages
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Figure 4.7: Deriving a Flattened Butterfly from a conventional butterfly shown in Figure 4.5.
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of a Clos network can be combined or folded on top of one another creating a folded Clos or fat-
tree [44] network which can exploit traffic locality with the input/output ports co-located, as shown
in Figure 4.6(b).

A Clos or folded Clos network, however, has a cost that is nearly double that of a butterfly
with equal capacity and has greater latency than a butterfly.The increased cost and latency both stem
from the need to route packets first to an arbitrary middle stage switch and then to their ultimate
destination. This doubles the number of long cables in the network, which approximately doubles
cost, and doubles the number of inter-router channels traversed, which drives up latency.

4.3.4 FLATTENED BUTTERFLY
To overcome the limitations of the folded-Clos topology, the flattened butterfly [41] removes in-
termediate stages and creates a direct network. As a result, the flattened butterfly is a topology that
exploits high-radix routers to realize lower cost than a Clos on load-balanced traffic, and provide
better performance and path diversity than a conventional butterfly. The flattened butterfly can be
derived by starting with a conventional butterfly (k-ary n-fly) and combining or flattening the routers
in each row of the network into a single router. An example of flattened butterfly construction is
shown in Figure 4.7. 4-ary 3-fly network is shown in Figure 4.7(a) with the corresponding flattened
butterflies shown in Figure 4.7(b).The routers R1, R2, and R3 from the first row of Figure 4.7(a) are
combined into a single router R0′ in the flattened butterfly of Figure 4.7(b). As a row of routers is
combined, channels entirely local to the row, e.g., channel (R0,R1) in Figure 4.7(a), are eliminated.
All other channels of the original butterfly remain in the flattened butterfly. Because channels in a
flattened butterfly are symmetrical, each line in Figures 4.7(b) represents a bidirectional channel (i.e.,
two unidirectional channels), while each line in Figures 4.7(a) represents a unidirectional channel.

A k-ary n-flat, the flattened butterfly derived from a k-ary n-fly, is composed of N
k

radix
k′ = n(k − 1) + 1 routers where N is the size of the network.The routers are connected by channels
in n′ = n − 1 dimensions, corresponding to the n − 1 columns of inter-rank wiring in the butterfly.
In each dimension d, from 1 to n′, router i is connected to each router j given by

j = i +
[
m −

(⌊
i

kd−1

⌋
mod k

)]
kd−1 (4.5)

for m from 0 to k − 1, where the connection from i to itself is omitted. For example, in Figure 4.7(d),
R4′ is connected to R5′ in dimension 1, R6′ in dimension 2, and R0′ in dimension 3. With this
construction, it is easy to see that the flattened butterfly is equivalent to the generalized hypercube
topology [10], but with k-way concentration. With this concentration, the topology is better able
to exploit the properties of high-radix routers.

4.3.5 DRAGONFLY
Although the flattened butterfly can cost-efficiently exploit high-radix routers, it is ultimately limited
by the physical constraints of a router radix and cost of scaling to large node count. For example, if
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the router radix is limited to radix-64, the network can scale up to 64k nodes with three dimensions.
However, to scale the network further, the number of dimensions of the flattened butterfly needs
to be increased – which can create packaging difficulties as well as increase cost and latency. In
addition, most of the channels (two of the three dimensions) require global or expensive channels
which significantly increase the cost. To overcome this limitation, a collection of routers can be used
together to create a very high-radix virtual router. The dragonfly topology [38] described in this
section leverages this concept of a virtual router to create a more scalable topology.
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Figure 4.8: (a) High-level block diagram of dragonfly topology and (b) a virtual high-radix router.

The dragonfly is a hierarchical network with three levels: router, group, and system as shown in
Figure 4.8. At the bottom level, each router has three different type of connections : 1) connections
to p terminals, 2) a − 1 local channels to other routers in the same group, and 3) h global channels
to routers in other groups. Hence, the radix (or degree) of each router is k = p + a + h − 1. A
group consists of a routers connected via an intra-group interconnection network formed from local
channels. Each group has ap connections to terminals and ah connections to global channels, and
all of the routers in a group collectively act as a virtual router with radix k′ = a(p + h). As shown in
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Figure 4.8(b), if the details of the intra-group is ignored, a group can be viewed as a virtual high-radix
router. This very high radix, k′ >> k enables the system level network to be realized with very low
global diameter (the maximum number of expensive global channels on the minimum path between
any two nodes). Up to g = ah + 1 groups (N = ap(ah + 1) terminals) can be connected with a
global diameter of one. In contrast, a system-level network built directly with radix k routers would
require a larger global diameter.

In a maximum-size (N = ap(ah + 1)) dragonfly, there is exactly one connection between
each pair of groups. In smaller dragonflies, there are more global connections out of each group
than there are other groups. These excess global connections are distributed over the groups with
each pair of groups connected by at least � ah+1

g
� channels. The dragonfly parameters a, p, and h

can have any values. However, to balance channel load on load-balanced traffic, the network should
have a = 2p = 2h. Because each packet traverses two local channels along its route (one at each
end of the global channel) for one global channel and one terminal channel, this ratio maintains
balance. Additional details of routing and load-balancing on the dragonfly topology will be discussed
in Chapter 5. Because global channels are expensive, deviations from this 2:1 ratio should be done
in a manner that overprovisions local and terminal channels, so that the expensive global channels
remain fully utilized. That is, the network should be balanced so that a ≥ 2h, 2p ≥ 2h.

The scalability of a balanced dragonfly is shown in Figure 4.9. By increasing the effective
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Figure 4.9: Scalability of the dragonfly topology as router radix increases. 1D flattened butterfly is
assumed for both the intra- and the inter-group networks.

radix, the dragonfly topology is highly scalable – with radix-64 routers, the topology scales to over
256k nodes with a network diameter of only three hops. In comparison, a 2D flattened butterfly
using radix-64 routers can scale to approximately 10k nodes while a 3D flattened butterfly can only
scale up to 64k nodes. Arbitrary networks can be used for the intra-group and inter-group networks
in Figure 4.8. However, to minimize the network cost, a flattened butterfly with the smallest number
of dimensions will be appropriate. A simple example of the dragonfly is shown in Figure 4.10 with
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p = h = 2, a = 4 that scales to N = 72 with k = 7 routers. For both the intra- and inter-group
networks, a 1D flattened butterfly (or a fully connected topology) is used. By using virtual routers,
the effective radix is increased from k = 7 to k′ = 16.
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Figure 4.10: Example of a Dragonfly Topology for N = 72. The dotted line represents the intra-group
channels and for simplicity, only the intra-group channels for G0 is shown.

4.3.6 HYPERX
The flattened butterfly described earlier in this chapter is regular as the number of nodes or switches
in each dimension are identical. The HyperX [6] topology extends the flattened butterfly topology
to create a more general class of topology. Similar to the flattened butterfly, all routers in each
dimension of the HyperX are fully connected to other peers in each dimension. However, HyperX
allows different number of switches in each dimension. An example of a HyperX topology is shown
in Figure 4.11 with two dimensions (L = 2), different number of switches in each dimension (S1 =
2, S2 = 4), and a concentration of 4 (T = 4) as 4 terminals or end nodes are connected to each switch.
Another parameter used to define a HyperX topology is K , which represents the relative bandwidth
of the channels in each dimension, where the unit of bandwidth is the terminal bandwidth (i.e., the
bandwidth between the terminals or the end nodes and the switch). The example in Figure 4.11
assumed K = 1 as all the channels had equal bandwidth. However, if K = 2, the inter-switch
channels would have 2× the bandwidth of the terminal channels. Different HyperX topologies can
be described by these four parameters (L, S, K, T ) and each value of S and K in each dimension
can have the same value (i.e., S1 = S2 = . . . = s) to create a regular HyperX or have different values
for each dimensions and result in an irregular HyperX. Using these parameters, an n-dimensional
hypercube can be described as (L = n, S = 2, K = 1, T = 1) and a k-ary n-flat flattened butterfly
can be described as (L = n, T = S = k, K = 2).
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SUMMARY
This chapter provides an introduction into how the evolving technology motivates the migration
towards high-radix networks, compared to previous low-radix networks.Different high-radix topolo-
gies that have been recently proposed are also presented which include flattened butterfly, dragonfly,
and HyperX. The optimal topology for a given large-scale system is ultimately determined by the
packaging constraint and packaging/signaling cost. For example, dragonfly [38] was shown to be
more cost-efficient based on the cost model described in Figure 4.4; however, if the cost of active
cables are significantly reduced further such that they are similar to the cost of electrical cables,
a more flattened topology such as the flattened butterfly or the HyperX, instead of a hierarchical
topology such as the dragonfly, can result in a more cost-efficient topology. To fully exploit the ben-
efits of these topologies compared to other high-radix topologies such as the folded-Clos topology,
proper adaptive routing is critical to achieve the full benefits of these topology. In the next chapter,
we describe the different types of routing algorithms that can be implemented on these topologies
to take advantage of the path diversity, both minimal and nonminimal paths to load-balance the
channels.
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Routing
Routing determines the path a packet takes from its source to its destination. Even if the topology
provides path diversity, it is the routing algorithm that determines whether the path diversity is
exploited or not. In addition, proper routing algorithms are critical to fully exploit the benefits of
the recently proposed topologies such as the flattened butterfly or the dragonfly topology described
in the previous chapter. In this section, we review the basics of routing algorithm in interconnection
networks and present routing algorithms on recently proposed high-radix topologies.

5.1 ROUTING BASICS
Routing algorithms can be classified according to the following different metrics:

• Adaptivity:

– Adaptive Routing: The state of the network is incorporated in making the routing
decision to adapt to network state such as network congestion.

– Oblivious Routing: No network information is used in making the routing decision.
Deterministic routing can also be classified as oblivious routing.

• Hop Count:

– Minimal Routing: Minimal number of hop count between source and destination is
traversed. Depending on the topology and the adaptivity of the routing algorithm, there
might be multiple minimal paths.

– Nonminimal Routing: The number of hop count traversed enroute to the destination
node exceeds the minimal hop count. Nonminimal routing increases path diversity and
can improve network throughput.

• Routing Decision:

– Source routing: The routing path is determined at the source and the path computation
only needs to be done once for each packet.

– Per-hop routing: At each hop enroute to the destination, the packet goes through routing
computation to determine the next productive hop. The progressive adaptive routing
(PAR) described in this chapter is a variant of per-hop routing, and the adaptive routing
decision is revisited at each hop.



40 5. ROUTING

• Routing Implementation: Regardless of the routing decision mechanism, a route computation is
needed to determine the output port at each router.The route computation can be implemented
using either algorithmic logic or a table-based structure.

– Algorithmic: Based on the current node and destination information, a fixed logic can
be used to determine the output port.This can result in simple logic but inflexible routing
algorithm.

– Table-based routing: A lookup table can be implemented whose inputs are either the
source (or current node) and destination, and the table returns the appropriate output
port.

5.1.1 OBJECTIVES OF A ROUTING ALGORITHM
In designing a routing algorithm for a given topology, the objective of the algorithm should include
the following:

• path diversity : Exploit the path diversity of the topology, which can include both minimal
and non-minimal paths.

• load balancing : Proper load-balancing of the channels across both benign and adversarial
traffic pattern is needed to achieve high throughput.

• complexity effective : To minimize the impact of the routing algorithm on packet latency,
and load imbalance that may result from a fault in the network, the routing algorithm must be
able to be implemented efficiently. For example, it is not practical for a routing algorithm to
perform a simulated-annealing process to find the optimal load balance each time a network
fault occurs.

In the rest of this chapter, we describe various routing algorithms that try to achieve these character-
istics on both conventional topologies (Chapter 3) as well as recently proposed high-radix topologies
(Chapter 4).

5.2 MINIMAL ROUTING
With minimal routing, all packets traverse the minimal hop count from source to its destination.
Minimal routing can be done either deterministically, obliviously, or adaptively.

5.2.1 DETERMINISTIC ROUTING
The simplest form of minimal routing is using dimension-ordered routing (DOR) where the routing
is restricted to traverse in a pre-determined order. For example, XY routing can be used on a 2D
mesh network where all packets first traverse in the X dimension and then, traverse the Y dimension
to reach its destination. This is the simplest form of routing in a given topology but does not exploit
any possible path diversity and can not load-balance channels on adversarial traffic patterns.
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5.2.2 OBLIVIOUS ROUTING
If path diversity exists in the topology (i.e., there is more than one minimal path between a source
and a destination), oblivious minimal routing can be used and take advantage of path diversity. All
routing paths consist of minimal hop count but different paths can be used according to the routing
algorithm. Examples of minimal oblivious routing include ROMM [50], O1turn [57], and CDR [3].

ROMM (Randomized, Oblivious Multi-phase Minimal) routing consists of p phases and
p − 1 randomly selected intermediate nodes.The packets are routed to an intermediate node in each
of the first p − 1 phases and routed to its destination in the final phase. The intermediate nodes
are selected such that the routing is still minimal – i.e., within each phase, the routing output at
each route is productive as the packet moves closer to the destination. To avoid routing deadlock, p
virtual channels (VC) [21] are needed.While ROMM provides very high path diversity, randomized
DOR or O1turn routing [57] on a 2D mesh network limits path diversity to 2. For each packet,
O1turn routing algorithm randomly select either XY or YX routing – with a probability of 1/2,
packets are routed using XY DOR while the other packets are routed using YX DOR. This routing
algorithm maintains the simplicity of a DOR algorithm except for the need for an extra VC. Packets
routed using XY use one VC while packets routed using YX use another VC to avoid routing
deadlock. Despite providing only a path diversity of 2, it has been shown to be near-optimal in its
performance [57].

A variation of O1turn routing algorithm is the class-based deterministic routing (CDR) [3]
algorithm. Similar to O1turn, both XY and YX routing is used but instead of randomly selecting a
packet for either XY or YX routing, the routing path is determined by the packet class. For example,
if there are request and reply traffic class in the network, packets in the request class use one routing
algorithm (i.e., XY) while the other class (reply traffic) uses YX routing. CDR exploits path diversity
of the topology while all packets still traverse minimal hop count. Compared to O1turn, this routing
algorithm has the additional benefit of reducing the number of VCs needed since another separate
set of VC are not need to avoid protocol deadlock as the same VCs can be used for both routing and
protocol deadlock avoidance.

5.3 NON-MINIMAL ROUTING

Minimal routing minimizes the hop count but when network congestion occurs, taking a non-
minimal route can sometimes reduce the network latency. In addition, for adversarial traffic patterns,
better load-balancing of the channels can be achieved with non-minimal routing and result in
higher network throughput. In this section, we describe an oblivious non-minimal routing algorithm
(Valiant’s algorithm [66]) and several different adaptive non-minimal routing algorithm including
Universal Globally Adaptive routing algorithm (UGAL) [58].
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5.3.1 VALIANT’S ALGORITHM (VAL)
VAL routing [66] uses randomization and non-minimal routing to exploit the path diversity of a
topology and achieve load-balancing. VAL is a two-phase routing algorithm with a random node in
the network initially selected. In the first phase, minimal routing is used to route the packet to the
intermediate node. Once the packet reaches the intermediate node, in the second phase, the packet
is routed to the destination. If the random node happens to be either the source or the destination,
VAL degenerates into minimal routing as only one phase of the VAL routing is needed.

By using randomization to load-balance the traffic, high throughput can be achieved on
adversarial traffic patterns as VAL can provide optimal performance on adversarial traffic pattern,
or 50% throughput of capacity [63]. However, by converting all traffic pattern into two phases of
uniform random traffic, VAL causes higher zero-load latency and loss of traffic locality. Thus, on
benign traffic pattern such as uniform random traffic, network throughput is reduced by a factor of
2 compared to minimal routing. In the following sections, we discuss how adaptive routing can be
used to adaptively decide between minimal and nonminimal routing to maximize performance to
overcome the limitations of VAL routing.

5.3.2 UNIVERSAL GLOBAL ADAPTIVE LOAD-BALANCING (UGAL)
UGAL routing [58] was proposed to adapt between minimal and nonminimal routing on a per-
packet basis based on the congestion information of the network. If nonminimal routing is chosen,
packet is routed as VAL routing – otherwise, minimal routing is used. For benign traffic patterns,
UGAL attempts to approach the performance of minimal routing to exploit traffic locality or benign
traffic patterns. For adversarial traffic patterns, UGAL sends most of its traffic nonminimally using
VAL to load-balance the channels.

The UGAL routing decision is based at the source router – i.e., the router connected to the
source node of the packet – and once the routing decision is made, the routing decision is not revisited
as the packet follows either the minimal or the nonminimal path. The congestion information used
by the UGAL routing algorithm is the product of the queue depth (q) and the hop count (H ) for a
minimal and a nonminimal path. The minimal queue depth (qm) represents the congestion on the
output port which is used for minimal routing and minimal hop count (Hm) is the minimal hop
count between source and destination. With a randomly chosen intermediate node, nonminimal
queue depth (qnm) represents the congestion on the output port which is used for minimal routing
to reach the randomly selected intermediate node while nonminimal hop count (Hnm) is the sum of
the hop count from the source to the intermediate node and the hop count from the intermediate
node to the destination. Thus, UGAL can be summarized as follows:
if (qmHm ≤ qnmHnm)

route minimally;
else

route nonminimally;
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Other routing algorithms such as Globally Oblivious Adaptive Local (GOAL) [59] routing or
Channel-Queue Routing (CQR) [60] implement similar source-based adaptive routing algorithm
in a torus network such that minimal or nonminimal routing decision is made at the source router.

5.3.3 PROGRESSIVE ADAPTIVE ROUTING (PAR)
Unlike UGAL where adaptive routing decision is made only once at the source router, incremental
adaptive routing can be done using Progressive Adaptive Routing (PAR) [34] where the adaptive
routing decision is revisited at each hop. By incrementally adapting, a better sense of congestion
can be obtained – i.e., a congestion might not be observed at the source router but as the packet
traverses the network, congestion can be encountered. PAR attempts to avoid this limitation of
source adaptive routing by progressively re-evaluating the adaptive routing decision. However, to
ensure forward progress and prevent livelock, restrictions in the amount of adaptivity are needed.
In PAR routing, once a packet decides to route nonminimally (i.e., congestion is encountered), the
packet is routed non-minimally without revisiting the adaptive routing decision.

5.3.4 DIMENSIONALLY-ADAPTIVE, LOAD-BALANCED (DAL) ROUTING
Similar to PAR, DAL [6] routing also attempts to adapt to congestion that is not visible at the
source router and adapt en route to the destination. At each hop, all minimal and nonminimal paths
are compared using only local congestion information. By revisiting the routing decision at each
hop, a more accurate view of network congestion can be obtained and packets in-flight can switch
from minimal to nonminimal as well as from nonminimal to minimal routing. To avoid livelock,
restriction is applied such that packets can only be misrouted once per dimension. In addition, once
a packet becomes aligned 1 with the destination in a given dimension, no misrouting is allowed for
that particular dimension. Thus, DAL is able to incrementally select its nonminimal intermediate
node based on congestion – instead of randomly selecting an intermediate node in the network as
done with VAL implementation in adaptive routing algorithms such as UGAL.

5.4 INDIRECT ADAPTIVE ROUTING

Another class of adaptive routing that has been recently proposed is indirect adaptive routing [34, 39].
When congestion information used to make adaptive routing is not directly available at the source
router, it becomes difficult to accurately estimate the congestion of the network. Congestion is often
measured using queue lengths which relies on backpressure. However, if congestion information
needs to propagate through multiple intermediate routers, backpressure needs to propagate through
the intermediate routers which increases the propagation delay of the congestion information. Con-
sider the dragonfly topology shown in Figure 5.1. Assume a packet in R1 is making its global adaptive
routing decision of routing either minimally through gc0 or non-minimally through gc7. The rout-

1For a packet originating from source (xs , ys , ..) to destination (xd , yd , ..), for dimension i, if is == id , the packet is defined to
be aligned with the destination in dimension i.
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ing decision needs to load balance global channel utilization and ideally, the channel utilization can
be obtained from the queues associated with the global channels, q0 and q3. However, q0 and q3

queue information are only available at R0 and R2 and not readily available at R1 – thus, the routing
decision can only be made indirectly through the local queue information available at R1. In this
example, q1 reflects the state of q0 and q2 reflects the state of q3. When either q0 or q3 is full, the
flow control provides backpressure to q1 and q2 as shown with the arrows in Figure 5.1. As a result,
in steady-state measurement, this local queue information can be used to accurately measure the
throughput. Since the throughput is defined as the offered load when the latency goes to infinity
(or the queue occupancy goes to infinity), this local queue information is sufficient. However, q0

needs to be completely full in order for q1 to reflect the congestion of gc0 and allow R1 to route
packets non-minimally. Thus, using local information requires sacrificing some packets to properly
determine the congestion – resulting in packets being sent minimally having much higher latency. As
the load increases, although minimally routed packets continue to increase in latency, more packets
are sent non-minimally resulting in a decrease in average latency until saturation.

Group
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Figure 5.1: Example of routing indirectness in a dragonfly topology.

One implementation of indirect adaptive routing is the progressive adaptive routing described
earlier in Section 5.3.3. Other implementations of indirect adaptive routing include using credit
round-trip latency to stiffen backpressure [38], piggybacking congestion information [34], and us-
ing reservation-based routing mechanism [34]. As network size increases, indirectness becomes a
more significant issue and properly incorporating it into the routing decision is critical to achieve
the full benefit of adaptive routing.

5.5 ROUTING ALGORITHM EXAMPLES
In this section, we describe routing algorithms on different high-radix topologies, including the
folded-Clos, flattened butterfly, and the dragonfly topologies. Even if the same routing algorithm
is used, the different characteristics of a topology results in different implementations and different
benefits of a routing algorithm.
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5.5.1 EXAMPLE 1: FOLDED-CLOS
Routing a packet through a folded-Clos network proceeds in two phases: input and output. The
input phase routing is also referred to as uprouting and the output phase routing is referred to as
downrouting. During the input phase, a middle-stage switch is selected and the packet is routed to
that switch. For a folded-Clos topology, the packet need not route all the way to the middle stage but
can stop as soon as a common ancestor of the source and destination nodes is reached. Any middle-
stage switch (or common ancestor switch) can be selected during the input phase.The selection may
be made using either oblivious or adaptive routing. During the output phase, the packet is routed
from the selected middle-stage switch (or common ancestor) to its destination output port. This
routing is deterministic as there exists only a single path to the destination.

Many other topologies, including mesh, torus, or flattened butterfly, have path diversity that
includes non-minimal paths. The folded-Clos topology also has high path diversity, but all of the
paths are minimal. As a result, the difference between oblivious and adaptive routing is different
from other topologies as both routing algorithms can exploit all the path diversity. For example,
because the folded-Clos topology itself provides load-balancing capability with the input network
as shown earlier in Figure 4.6(a), adaptive routing provides minimal benefit in terms of overall
throughput on adversarial traffic patterns [40]. However, adaptive routing on a folded-Clos can
provide benefits including the ability to route around nonuniformities in the network (such as the
presence of deterministically routed traffic or faults) and provide lower variance in packet latency [40].

Recent router chips developed for high performance computing (HPC) systems that are
often used in a fat-tree or a folded-Clos topology have included adaptive routing. For example,
QsNetIII [53] implements adaptive routing in a fat-tree topology to adaptively select the common
ancestor while also routing around faults in the network. Different adaptive routing strategies have
also been proposed for Myrinet [24] to avoid the limitation of static or deterministic routing.

5.5.2 EXAMPLE 2: FLATTENED BUTTERFLY
Both minimal and nonminimal routing can be used on the flattened butterfly topology. If minimal
routing is used along with deterministic routing, the flattened butterfly topology behaves identical
to a conventional butterfly topology. An example of routing on a conventional butterfly is shown
in Figure 5.2(a) with the corresponding minimal routing on the flattened butterfly in Figure 5.2(b)
where the channels in the flattened butterfly are traversed in the same order as the conventional
butterfly. However, since there are multiple dimensions, another possibly minimal path exists on the
flattend butterfly as shown in Figure 5.3(a). If nonminimal routing is exploited, path diversity similar
to a folded-Clos topology can be achieved. An example is shown in Figure 5.3(b) where the packet
is first routed to an intermediate router (R13) before routing to its destination. In this section, we
describe different routing algorithms on the flattened butterfly topology.
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Figure 5.2: Routing example on (a) conventional buttefly and (b) corresponding flattened butterfly using
minimal routing.

5.5.2.1 Minimal routing
Routing in a flattened butterfly requires a hop from a node to its local router, zero or more inter-
router hops, and a final hop from a router to the destination node. If we label each node with a
n-digit radix-k node address, an inter-router hop in dimension d changes the d th digit of the current
node address to an arbitrary value, and the final hop sets the 0th (rightmost) digit of the current
node address to an arbitrary value. Thus, to route minimally from node a = an−1, . . . , a0 to node
b = bn−1, . . . , b0 where a and b are n-digit radix-k node addresses involves taking one inter-router
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Figure 5.3: Different path diversity for the example shown earlier in Figure 5.2 with (a) minimal routing
and (b) nonminimal routing.

hop for each digit, other than the rightmost, in which a and b differ. For example, in Figure 4.7(d)
routing from node 0 (00002) to node 10 (10102) requires taking inter-router hops in dimensions
1 and 3. These inter-router hops can be taken in either order giving two minimal routes between
these two nodes. In general, if two nodes a and b have addresses that differ in j digits (other than
the rightmost digit), then there are j ! minimal routes between a and b. This path diversity derives
from the fact that a packet routing in a flattened butterfly is able to traverse the dimensions in any
order, while a packet traversing a conventional butterfly must visit the dimensions in a fixed order –
leading to no path diversity.
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Minimal Deterministic : The minimal deterministic algorithm chooses the next hop in a
deterministic order – similar to dimension-ordered routing (DOR).An example of DOR on flattened
butterfly includes routing packets along increasing dimension order. This routing algorithm does
not require additional virtual channels (VCs) [21] for routing deadlock but no path diversity exists
and results in a performance similar to a conventional butterfly.

Minimal Adaptive : The minimal adaptive algorithm operates by choosing for the next hop
the productive channel with the shortest queue. To prevent deadlock, n′ VC are used with the VC
channel selected based on the number of hops remaining to the destination.

5.5.2.2 Non-minimal Routing
Routing non-minimally in a flattened butterfly provides additional path diversity and can achieve
load-balanced routing for arbitrary traffic patterns. Consider, for example, Figure 4.7(b) and suppose
that all of the traffic from nodes 0-3 (attached to router R0′) was destined for nodes 4-7 (attached
to R1′). With minimal routing, all of this traffic would overload channel (R0′,R1′). By misrouting a
fraction of this traffic to R2′ and R3′, which then forward the traffic on to R1′, load is balanced. With
non-minimal routing, a flattened butterfly is able to match the load-balancing (and non-blocking)
properties of a Clos network – in effect acting as a flattened Clos.

We consider routing in a k-ary n-flat where the source node s, destination node d, and current
node c are represented as n-digit radix-k numbers, e.g., sn−1, . . . , s0. At a given step of the route, a
channel is productive if it is part of a minimal route; that is, a channel in dimension j is productive
if cj �= dj before traversing the channel, and cj = dj after traversing the channel.

Valiant (VAL) [66]: Valiant’s algorithm load balances traffic by converting any traffic pattern
into two phases of random traffic. It operates by picking a random intermediate node b, routing
minimally from s to b, and then routing minimally from b to d. Routing through b perfectly balances
load (on average) but at the cost of doubling the worst-case hop count, from n′ to 2n′. While any
minimal algorithm can be used for each phase, our evaluation uses dimension order routing. Two
VCs, one for each phase, are needed to avoid deadlock with this algorithm.

Universal Globally-Adaptive Load-balanced (UGAL [58],UGAL-S) :UGAL chooses between
MIN AD and VAL on a packet-by-packet basis to minimize the estimated delay for each packet as
described earlier in Section 5.3.2. With UGAL, traffic is routed minimally on benign traffic patterns
and at low loads, matching the performance of MIN AD, and non-minimally on adversarial patterns
at high loads,matching the performance of VAL.UGAL-S is identical to UGAL but with a sequential
allocator while UGAL uses greedy allocator [40].

Adaptive Clos (CLOS AD): Like UGAL, the router chooses between minimal and non-
minimal on a packet-by-packet basis using queue lengths to estimate delays. If the router chooses
to route a packet non-minimally, however, the packet is routed as if it were adaptively routing to
the middle stage of a Clos network. A non-minimal packet arrives at the intermediate node b by
traversing each dimension using the channel with the shortest queue for that dimension (including
a “dummy queue” for staying at the current coordinate in that dimension). Like UGAL-S, CLOS
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Figure 5.4: Routing and virtual channel assignment on the dragonfly topology.

AD uses a sequential allocator. The routing is identical to adaptive routing in a folded-Clos[40]
where the folded-Clos is flattened into the routers of the flattened butterfly. Thus, the intermediate
node is chosen from the closest common ancestors and not among all nodes. As a result, even though
CLOS AD is non-minimal routing, the hop count is always equal or less than that of a corresponding
folded-Clos network.

5.5.3 EXAMPLE 3: DRAGONFLY
The dragonfly topology routing differs as the routing consists of an intra-group and inter-group
routing. Because the inter-group or the global channels are more expensive, the main objective is to
load-balance these global channels with adaptive routing.

Minimal routing in a dragonfly from source node s attached to router Rs in group Gs to
destination node d attached to router Rd in group Gd traverses a single global channel and is
accomplished in three steps:

Step 1 : If Gs �= Gd and Rs does not have a connection to Gd , route within Gs from Rs to
Ra , a router that has a global channel to Gd .

Step 2 : If Gs �= Gd , traverse the global channel from Ra to reach router Rb in Gd .
Step 3 : If Rb �= Rd , route within Gd from Rb to Rd .

Step 1 and Step 3 are intra-group routing while Step 2 is the inter-group routing. This minimal
routing works well for load-balanced traffic, but results in very poor performance on adversarial
traffic patterns.

To load-balance adversarial traffic patterns, Valiant’s algorithm [66] can be applied at the
system level — routing each packet first to a randomly-selected intermediate group Gi and then
to its final destination d. Applying Valiant’s algorithm to groups suffices to balance load on both
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the global and local channels. This randomized non-minimal routing traverses at most two global
channels and requires five steps:

Step 1 : If Gs �= Gi and Rs does not have a connection to Gi , route within Gs from Rs to
Ra , a router that has a global channel to Gi .

Step 2 : If Gs �= Gi traverse the global channel from Ra to reach router Rx in Gi .
Step 3 : If Gi �= Gd and Rx does not have a connection to Gd , route within Gi from Rx to

Ry , a router that has a global channel to Gd .
Step 4 : If Gi �= Gd , traverse the global channel from Ry to router Rb in Gd .
Step 5 : If Rb �= Rd , route within Gd from Rb to Rd .

Figure 5.4 shows how VCs [21] are used to avoid routing deadlock. To prevent routing
deadlock [19], two VCs are needed for minimal routing and three VCs are required for non-minimal
routing. This assignment eliminates all channel dependencies due to routing. For some applications,
additional virtual channels may be required to avoid protocol deadlock — e.g., for shared memory
systems, separate sets of virtual channels are required for request and reply messages. Based on these
descriptions of minimal and nonminimal routing, adaptive routing algorithms described earlier in
this chapter can also be applied to the dragonfly topology.

SUMMARY
Although the topology determines the performance bounds, the routing algorithm is critical in
determining how much of this performance can be realized. Recently proposed high-radix topologies
rely on proper adaptive routing algorithms to load-balance both the minimal and non-minimal
channels. High-radix networks also present interesting challenges to adaptive routing because of
indirectness of network congestion information and we demonstrate how indirect adaptive routing
is needed for these routing algorithms.
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C H A P T E R 6

Scalable Switch
Microarchitecture

To enable high-radix topologies described in earlier chapters, a scalable switch microarchitecture
is needed that can scale to a high port count. Conventional router microarchitecture for low-radix
topologies had a limited number of ports (i.e., 6 to 8 ports) and thus, centralized arbitration could
be used. However, arbitration logic is proportional the O(k2) where k is the router radix (number
of input and output ports). In this chapter, we describe a baseline router design, similar to that used
for a low-radix router [49, 55]. This design scales poorly to high radix due to the complexity of the
allocators and the wiring needed to connect them to the input and output ports. To overcome this
limitation while also providing high performance, we describe a hierarchical switch organization that
uses intermediate buffering to decouple the allocation between inputs and outputs while reducing
the amount of intermediate buffers required.

6.1 ROUTER MICROARCHITECTURE BASICS

A block diagram of the baseline router architecture is shown in Figure 6.1. Arriving data is stored in
the input buffers.These input buffers are typically separated into several parallel virtual channels that
can be used to prevent deadlock, implement priority classes, and increase throughput by allowing
blocked packets to be passed. The input buffers and other router resources are allocated in fixed-size
units called flits, and each packet is broken into one or more flits as shown in Figure 6.2(a).

The progression of a packet through this router can be separated into per-packet and per-flit
steps. The per-packet actions are initiated as soon as the header flit, the first flit of a packet, arrives:

1. Route computation (RC) - based on information stored in the header, the output port of the
packet is selected.

2. Virtual-channel allocation (VA) - a packet must gain exclusive access to a downstream virtual
channel associated with the output port from route computation. Once these per-packet steps
are completed, per-flit scheduling of the packet can begin.

3. Switch allocation (SA) - if there is a free buffer in its output virtual channel, a flit can vie for
access to the crossbar.

4. Switch traversal (ST) - once a flit gains access to the crossbar, it can be transferred from its
input buffers to its output and on to the downstream router.
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Figure 6.1: Baseline virtual channel router.
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Figure 6.2: (a) Packets are broken into one or more flits (b) Example pipeline of flits through the baseline
router.

These steps are repeated for each flit of the packet and upon the transmission of the tail flit,
the final flit of a packet, the virtual channel is freed and is available for another packet. A simple
pipeline diagram of this process is shown in Figure 6.2(b) for a three-flit packet assuming each step
takes a single cycle.

6.2 SCALING BASELINE MICROARCHITECTURE TO HIGH
RADIX

As radix is increased, a centralized approach to allocation rapidly becomes infeasible because the
wiring, die area, and the latency all increase to prohibitive levels. In this section, we introduce
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distributed structures for both switch and virtual channel allocation that scale well to high port
counts.
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Figure 6.3: Scalable switch allocator architecture. The input arbiters are localized but the output ar-
biters are distributed across the router to limit wiring complexity. A detailed view of the output arbiter
corresponding to output k is shown to the right.

We address the scalability of the switch allocator by using a distributed separable allocator
design as shown in Figure 6.3. The allocation takes place in three stages: input arbitration, local
output arbitration, and global output arbitration. During the first stage all ready virtual channels in
each input controller request access to the crossbar switch.The winning virtual channel in each input
controller then forwards its request to the appropriate local output arbiter by driving the binary code
for the requested output onto a per-input set of horizontal request lines.

At each output arbiter, the input requests are decoded and, during stage two, each local output
arbiter selects a request (if any) for its switch output from among a local group of m (in Figure 6.3,
m = 8) input requests and forwards this request to the global output arbiter. Finally, the global
output arbiter selects a request (if any) from among the k/m local output arbiters to be granted
access to its switch output. For very high-radix routers, the two-stage output arbiter can be extended
to a larger number of stages.

At each stage of the distributed arbiter, the arbitration decision is made over a relatively small
number of inputs (typically 16 or less) such that each stage can fit in a clock cycle. For the first
two stages, the arbitration is also local - selecting among requests that are physically co-located.
For the final stage, the distributed request signals are collected via global wiring to allow the actual
arbitration to be performed locally. Once the winning requester for an output is known, a grant
signal is propagated back through to the requesting input virtual channel. To ensure fairness, the
arbiter at each stage maintains a priority pointer which rotates in a round-robin manner based on
the requests.
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Figure 6.4: Block diagram of a (a) baseline crossbar switch and (b) fully buffered crossbar switch.

Virtual channel allocation (VA) poses an even more difficult problem than switch allocation
because the number of resources to be allocated is multiplied by the number of virtual channels v.
In contrast to switch allocation, where the availability of free downstream buffers is tracked with a
credit count, with virtual channel allocation, the availability of downstream VCs is unknown. An
ideal VC allocator would allow all input VCs to monitor the status of all output VCs they are waiting
on. Such an allocator would be prohibitively expensive, with v2k2 wiring complexity.

Building off the ideas developed for switch allocation, a scalable virtual channel allocator
architectures can be built.The state of the output virtual channels are maintained at each crosspoint,
and allocation is also performed at the crosspoints. However, VA involve speculation where switch
allocation proceeds before virtual channel allocation is complete to reduce latency. Simple virtual
channel speculation was proposed in [52] where the switch allocation and the VC allocation occurs
in parallel to reduce the critical path through the router. With a deeper pipeline in a high-radix
router, VC allocation is resolved later in the pipeline, which leads to more aggressive speculation

6.3 FULLY BUFFERED CROSSBAR
Adding buffering at the crosspoints of the switch (Figure 6.4b) decouples input and output vir-
tual channel and switch allocation. This decoupling simplifies the allocation, reduces the need for
speculation, and overcomes the performance problems of the baseline architecture with distributed,
speculative allocators. Since input and output switch allocation are completely decoupled, a flit whose
request wins the input arbitration is immediately forwarded to the crosspoint buffer corresponding
to its output. At the crosspoint, local and global output arbitration are performed as in the unbuffered
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switch. However, because the flit is buffered at the crosspoint, it does not have to re-arbitrate at the
input if it loses arbitration at the output.

The intermediate buffers are associated with the input VCs. In effect, the crosspoint buffers
are per-output extensions of the input buffers. Thus, no VC allocation has to be performed to reach
the crosspoint — the flit already holds the input VC. Output VC allocation is performed in two
stages: a v-to-1 arbiter that selects a VC at each crosspoint followed by a k-to-1 arbiter that selects
a crosspoint to communicate with the output.

To ensure that the crosspoint buffers never overflow, credit-based flow control is needed. Each
input keeps a separate free buffer counter for each of the kv crosspoint buffers in its row. For each flit
sent to one of these buffers, the corresponding free count is decremented. When a count is zero, no
flit can be sent to the corresponding buffer. Likewise, when a flit departs a crosspoint buffer, a credit
is returned to increment the input’s free buffer count. The required size of the crosspoint buffers is
determined by the credit latency – the latency between when the buffer count is decremented at the
input and when the credit is returned in an unloaded switch.

It is possible for multiple crosspoints on the same input row to issue flits on the same cycle (to
different outputs) and thus produce multiple credits in a single cycle. Communicating these credits
back to the input efficiently presents a challenge. Dedicated credit wires from each crosspoint to
the input would be prohibitively expensive. To avoid this cost, all crosspoints on a single input row
share a single credit return bus. To return a credit, a crosspoint must arbitrate for access to this bus.
The credit return bus arbiter is distributed, using the same local-global arbitration approach as the
output switch arbiter.

With sufficient crosspoint buffers, this design achieves a saturation throughput of 100% of
capacity because head-of-line blocking [36] is completely removed. As the amount of buffering at
the crosspoints increases, the fully buffered architecture begins to resemble a virtual-output queued
(VOQ) switch where each input maintains a separate buffer for each output. The advantage of the
fully buffered crossbar compared to a VOQ switch is that there is no need for a complex allocator -
the simple distributed allocation scheme discussed in Section 6.2 is able to achieve 100% throughput.

However, the performance benefits of a fully-buffered switch come at the cost of a much
larger router area. The crosspoint buffering is proportional to vk2 and dominates chip area as the
radix increases. Figure 6.5 shows how storage and wire area grow with k in a 0.10μm technology
for v=4. The storage area includes crosspoint and input buffers. The wire area includes area for the
crossbar itself as well as all control signals for arbitration and credit return. As radix is increased, the
bandwidth of the crossbar (and hence its area) is held constant. The increase in wire area with radix
is due to increased control complexity. For a radix greater than 50, storage area exceeds wire area.

6.4 HIERARCHICAL CROSSBAR ARCHITECTURE

To overcome the high cost (area) associated with the fully buffered crossbar, a hierarchical switch
architecture can significantly reduce the amount of intermediate buffers required [42]. A block
diagram of the hierarchical crossbar is shown in Figure 6.6. The hierarchical crossbar divides the
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Figure 6.6: Hierarchical Crossbar (k=4) built from smaller subswitches (p=2).

crossbar switch into subswitches where only the inputs and outputs of the subswitch are buffered.
A crossbar switch with k ports that has a subswitch of size p is made up of (k/p)2 p × p crossbars,
each with its own input and output buffers.

By implementing a subswitch design the total amount of buffer area grows as O(vk2/p), so
by adjusting p¸ the buffer area can be significantly reduced from the fully-buffered design. This
architecture also provides a natural hierarchy in the control logic — local control logic only needs to
consider information within a subswitch and global control logic coordinates the subswitches.
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Similar to the fully-buffered architecture, the intermediate buffers on the subswitch boundaries
are allocated on a per-VC basis. The subswitch input buffers are allocated according to a packet’s
input VC while the subswitch output buffers are allocated according to a packet’s output VC. This
decoupled allocation reduces HoL blocking when VC allocation fails and also eliminates the need to
NACK flits in the intermediate buffers. By having this separation at the subswitches with buffers, it
divides the VC allocation into a local VC allocation within the subswitch and a global VC allocation
among the subswitches.

With the hierarchical design, an important design parameter is the size of the subswitch, p

which can range from 1 to k.With small p, the switch resembles a fully-buffered crossbar resulting in
high performance but also high cost. As p approaches the radix k, the switch resembles the baseline
crossbar architecture giving low cost but also lower performance. In the next section, we describe the
Cray YARC router [56] which implements this hierarchical organization with k = 64 and p = 8.

6.5 EXAMPLES OF HIGH-RADIX ROUTERS
With increasing pin bandwidth, we are seeing a paradigm shift to many-ported routers, along with
many-core processors. As core count increases, the network ingress ports must also increase to avoid
congestion and lock contention for shared resources at the sending host. This section describes two
high-radix (k>32) routers, the Cray YARC and Mellanox InfiniScale IV. We focus on these because
they provide raw bandwidth of 2.4Tb/s and 2.88Tb/s, respectively, yet have a fundamentally different
microarchitecture.

6.5.1 CRAY YARC ROUTER
The Cray BlackWidow vector multiprocessor system [2], described in detail in Chapter 8, is one of
the first systems to implement a high-radix network and YARC is the high-radix (radix-64) router
used in the network that is based on the hierarchical organization described earlier in this chapter.
The details of the YARC router can be found in [56], but in this section, we highlight some of
the key differences between the YARC implementation and the hierarchical crossbar organization
described earlier in Section 6.4.

A block diagram of the YARC router and a die photo is shown in Figure 6.7.The YARC router
is a radix-64 router and the implementation is partitioned into 64 tiles with each tile containing an
8×8 subswitch, an input and an output port, and associated buffers which consist of input buffers,
row buffers, and column buffers. The tiles communicate with other tiles through the row bus and
the column channels. The tiled organization of the high-radix router led to a complexity-effective
design as only a single design of a tile is required and is duplicated across the router. The die photo
shown in Figure 6.7(b) shows the regular structure of the microarchitecture with a tile-based layout
and the perimeter of the layout containing the SerDes (serializer/deserializer) I/O’s.

The YARC implementation can be viewed as a two-stage network as shown in Figure 6.8 –
the first stage consisting of the input speedup to the subswitches and the second stage consisting of
output speedup to the output ports. Similar to a crossbar, there is only a single path between an input
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Figure 6.7: (a) Block diagram of the Cray YARC router and (b) die photo (courtesy Cray Inc).

and an output port but an 8× speedup is provided at both the input and the output ports. Both the
hierarchical organization (Section 6.4) and the YARC router provide an input speedup [20] since
each input port is connected to all subswitches in its row. However, the YARC router exploits the
abundant wire resources available on-chip as output speedup is also provided from the subswitches –
i.e., the outputs of the subswitch are fully connected to all the outputs in each column. In comparison,
a global bus was assumed for each output port in the hierarchical organization in Section 6.4. With
the large number ports in a high-radix router, the output arbitration needs to be broken into multiple
stages and the YARC router also performs output arbitration in two stages. The first stage arbitrates
for the outputs of the subswitches and the second stage arbitrates for the output ports among the
subswitches’ outputs in each column. However, by providing output speedup, the output arbitration
is simplified because the arbiter is local to the output port rather than being a central, shared resource.

Although there are abundant amount of wire resources available on-chip, the buffering avail-
able on-chip to implement the YARC router microarchitecture is limited. Thus, the intermediate
buffers (row buffers and the column buffers) are area-constrained and the number of entries in these
buffers are limited. As a result, although virtual cut-through flow control is implemented across
YARC routers in the network, wormhole flow control is implemented within the YARC router –
across row buffers and column buffers.



6.5. EXAMPLES OF HIGH-RADIX ROUTERS 59

IN0

IN7

Tile(0,0)

Tile(0,1)

Tile(0,2)

Tile(0,3)

Tile(0,4)

Tile(0,5)

Tile(0,6)

Tile(0,7)

IN1

IN2

IN3

IN4

IN5

IN6

IN8

IN15
IN16

IN23
IN24

IN31
IN32

IN39
IN40

IN47

IN48

IN55
IN56

IN63

OUT08-to-1
Arbiter

OUT8

OUT63

OUT78-to-1
Arbiter

Figure 6.8: Block diagram of the Cray YARC router illustrating the internal speedup.

6.5.2 MELLANOX INFINISCALE IV
The Infiniband Trade Association (ITA) has a long-standing specification for a point-to-point IO
communications. Over the years, it has evolved into a high-performance fabric through a combina-
tion of increased port count, and fast signaling speeds. The links in the InfinisScale IV (IS4) operate
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plesiochronously at data rates of 2.5Gb/s, 5Gb/s, and 10Gb/s. The width of the links can vary from
1× or 4× for a total link bandwidth of 10Gb/s (SDR), 20Gb/s (DDR) or 40Gb/s (QDR).

The microarchitecture of the IS4 takes a more conventional approach with a non-blocking
12×12 crossbar as the basic building block (Figure 6.9). The crossbars are replicated 3× to produce
a 36-port router. Each host in the Infiniband fabric is labeled with a local identifier (LID)1 Each
crossbar uses a 48K entry linear forwarding table (LFT) to route unicast packets by indexing into
the LFT using the destination LID.

(a) Packaged IS4 switch chip.

(b) Block diagram of the IS4 switch chip with 36 ports each 4×10 Gb/s, for an aggregate of 2.88
Tb/s off-chip bandwidth

Figure 6.9: Packaged silicon and block diagram of the Mellanox InfiniScale IV router.

1A LID is essentially the host endpoint or node identifier.
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Several 4× ports can be aggregated to form a 8× or 12× port — providing 40, 80, or 120 Gb/s
of bandwidth per direction, respectively. This allows the 36-ported 4× QDR router to be treated as
a 12-port 12× QDR (120 Gb/s per direction) router which provides flexibility for building fat-trees,
and torus networks with speedup in the network fabric, for example.

Each IS4 chip provide 16 service levels (SLs) with SL15 being reserved for control messages
called management datatgrams (MADs). The SL is carried in the packet header and is invariant
throughout the route. At each hop, a service level to virtual lane (VL) assignment takes place. The
IS4 chip provides up to eight independent VLs which can be used for deadlock avoidance in the
routing algorithm, performance isolation or QoS. The VLs use credit-based flow control to manage
to downstream input buffer space and never will drop a packet due to congestion in the input buffer.
Instead, the packet is blocked at the sender. If a different VL has room in the input buffer it may flow.
Virtual cut-through flow control (VCT) [37] is used across the network links, with the exception
of SL15 (the management SL) where no flow control is provided by the hardware. Software must
provide the flow control in this case.

SUMMARY
As off-chip router bandwidth exponentially increases while typical packet sizes remain roughly
constant, the increase in pin bandwidth relative to packet size motivates networks built from many
thin links and create high-radix routers. However, the router microarchitecture needs to scale to
a high port count effectively to enable a high-radix network. In this chapter, we described the
challenges in scaling to high-radix – primarily the complexity of the switch and the virtual channel
allocation that is proportional to the square of the radix. We presented an alternative hierarchical
router microarchitectures and provided an example of a radix-64 Cray YARC router that leverages
this hierarchical organization. By decoupling the input and the output allocation and reducing the
intermediate buffering requirements, an hierarchical switch organization provides a cost-effective
router microarchitecture that can scale to high port count.
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C H A P T E R 7

System Packaging
The packaging of various components imposes several constraints on the overall system design, such
as topology, cooling, and cost. Since, ultimately, the system will be installed on the datacenter floor,
the packaging density is the number of processing nodes per unit of area. The system must dissipate
the heat which it generates, thus its power density describes the amount of power consumed per unit
of area. The higher the power density, the more cooling required to dissipate the heat.

7.1 PACKAGING HIERARCHY
The system components, processing nodes and routers, are packaged within a packaging hierarchy.
At the lowest level of the hierarchy are the compute modules which contain the processing nodes,
and the routing modules which contain the switch chips. At the next level of the hierarchy, the
modules may be connected via a backplane or midplane printed circuit board. Note, it may not be
economical for a backplane because of airflow or cost limitations. The modules and backplane are
contained within a cabinet or rack enclosure. The system consists of one or more rack enclosures with
the necessary cables connecting the router ports according to the network topology. The network
cables may aggregate multiple network links into a single cable to reduce both cost and cable bulk.

For example, the Cray XT6 compute blade (Figure 7.1) densely packages eight processors
along with their DRAM and network interface controllers (NICs) onto a single blade. A total of
24 blades are packaged into one cabinet (Figure 7.2) providing 192 multi-core processor sockets in a
single cabinet1. A single cabinet provides 1536 processing cores, interconnected using either a 2-D
or 3-D torus network. Blades are inserted from the front of the system (Figure 7.2a) into a backplane
which aggregates multiple network links and brings them out to a connector on the back (Figure
7.2b).

7.2 POWER DELIVERY AND COOLING
The power delivery and cooling system must be designed to accommodate the worst-case power
consumption at 100% utilization. In practice, however, a large cluster system rarely operates at full
utilization. Nonetheless, with the cost of operating a large cluster largely determined by the energy
cost [26] we want to deliver power from the utility to the datacenter as efficiently as possible. The
power usage effectiveness (PUE) is the ratio of a datacenter’s total power to the power actually used by
computing equipment. According to a 2007 study by the United States Environmental Protection

1The two air-cooled cabinets shown in Figure 7.2 weigh about the same as a Volkswagen Beatle automobile!
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and heatsinks
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 and heatsinks

Figure 7.1: Cray XT6 compute blade with processors, DRAM, and NICs (source Cray Inc.)

Agency (EPA), the average datacenter PUE is 2.0 [65] and most efficient is 1.2 [30]. For example,
assuming the average industrial electricity rate of $0.07 per kilowatt-hour (KWh) [64], each eight-
processor Cray XT6 compute blade uses about 2KW of power resulting in an annual energy cost2

in excess of $8M for a 32k processor system (Equation 7.1).

$0.07

KWh
× 24 h

day
× 2 KW

blade
× 4096 blades × 1.6 PUE = $8.04 million (7.1)

The cooling system must evacuate the heat generated by the processor sockets, DRAM, and
networking equipment. Heat removal can be done via convection — blowing air across the hot
components. Fans in each cabinet or rack are used to blow air across the component in combination
with a heat sink to increase the surface area of the component, thereby improving its cooling efficiency.
Copper or aluminum are common materials used for heat sinks. Although copper has twice the
thermal conductivity as aluminum, it is also three times the weight. Figure 7.1 illustrates the use of
copper as a heat sink for the processor and NIC chips.

2Equation 7.1 assumes a PUE of 1.6, which is the midpoint between the best-case (1.2) and average (2.0) PUE from the EPA’s
2007 survey.
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(a) Front view. (b) Back view showing network cables.

Figure 7.2: Cray XT system packaging. (source Cray Inc.)

The exhaust air is then captured by an air return and passed through a cooling element (e.g.,
chiller or air conditioner) where the chilled air is recirculated and the process repeats. Direction of
airflow is typically front-to-back, where cool air is drawn in from the front of the rack and exhausted
out the back of the enclosure, or back-to-front with cool air enters from the front and warm air is
exhausted out the front. The packaging constraints force a certain airflow, for example, if the cable
bulk in the back of the machine impedes sufficient air intake. For this reason, the Cray XT (Figure
7.2) provides bottom-to-top airflow with a single large fan in the bottom of each cabinet. A 19-inch
enclosure (Figure 7.3) is a standard rack for mounting common computer equipment such as servers
and network switches in the datacenter. The pitch, or height, of each module in the rack is 1.75
inches — commonly referred to as one rack unit, or 1U for short. In practice, the actual pitch of the
equipment that fits in a 1U slot allows about 30 mils (a mil is 1/1000 of an inch) of clearance to
provide a gap for easier insertion and removal from the enclosure. An example of a Google rack is
shown in Figure 7.4 circa 2003. Cabinets or racks are arranged in a sequence of rows and columns (or
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(a) 19-inch rack. (b) 1U module assembly.

Figure 7.3: An example a standard 19-inch rack common in many datacenter applications.

aisles) that maps the packaging onto the two-dimension floor surface of the datacenter, as shown
in Figure 7.5. The airflow requirements in the datacenter often dictate that cabinets be arranged so
that adjacent rows are back-to-back such that the exhausted air is dumped into a “hot aisle” and cool
air drawn from a “cold aisle.”

Another active cooling method is water cooling, which is less influenced by the ambient
temperature in the datacenter.A water-cooled system uses plumbing in the cabinet or rack to circulate
coolant through the system, as shown in Figure 7.6. Refrigeration units are distributed within the
datacenter, as shown by the small black cabinets at the end of each aisle in Figure 7.5. Water is a
common coolant used for such applications.Another agent commonly used to cool computer systems
is flourinert [1], which is a non-toxic, non-flammable, and non-corrosive synthetic liquid. Flourinert
can be synthesized to operate at a specific boiling point for single-phase liquid cooling applications,
where it remains in liquid form. In a two-phase application, such as spray evaporative cooling where
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Figure 7.4: An example Google rack with Xeon processors, circa 2003.
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Courtesy of Cray Inc. and Oak Ridge National Laboratory

Figure 7.5: Example layout of a Cray XT system on the datacenter floor.

the Flourinert is injected directly on the surface of the die, where it boils, and undergoes a phase
change from a liquid to a gas thereby removing the latent heat in the process.The process is similar to
the cooling affects of perspiration and subsequent evaporation which the human body uses to cool
itself.

The power distribution and cooling accounts for about 25% of the total datacenter cost [26].
The utility delivers power across transmission lines using 110KV (or above) to reduce energy loss
across long distances. The incoming transmission lines are stepped down at a substation closer to
end user, a datacenter in this case, to a 13KV line which is brought into an uninterruptible power
supply (UPS) within the facility.The UPS is typically about 95% efficient, and is a small contributor
to the power usage effectiveness (PUE) which is the ratio of a datacenter’s total power to the power
actually used by computing equipment. Efficient packaging, power, and cooling has a large impact
on both the capital and operating cost of the cluster.

7.3 TOPOLOGY AND PACKAGING LOCALITY

One often overlooked property of a network is how a given topology maps to physical packaging.
For example, a torus or mesh network which connect to their neighboring nodes makes most links



7.3. TOPOLOGY AND PACKAGING LOCALITY 69

Figure 7.6: An example of plumbing in a liquid-cooled system (source Cray Inc.).

very short. The wraparound links in a torus can be made shorter by cabling the system as a folded
torus as shown in (Figure 7.7). Mesh and torus networks have several packaging advantages:

(a) a portion of one dimension can be implemented on the printed circuit board (PCB) by con-
necting the adjacent nodes on the same board with PCB trace,

(b) a portion of one dimension can be implemented within a backplane PCB to connect adjacent
nodes within the same rack or cabinet enclosure,

(c) cabling the mesh or torus is very regular,

(d) require relatively short cables which can operate at high signal rates and generally have a cost
advantage over longer cables, and

(e) requires only a small number of different cable lengths.

Items (a) and (b) relate directly to packaging locality — nodes close together are connected together
and can be aggregated since they originate and terminate near to one another. A direct network often
has this quality of packaging locality. A folded-Clos, an indirect network, for example, has links from
each router going to different terminating points since they connect to different switches in the next
stage of the network. Item (c) is helpful from a manufacturing and deployment perspective, since a
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Figure 7.7: Decreasing the longest cable length in a torus (a) by “folding” it (b).

very regular cabling diagram is less difficult to correctly cable. Items (d) and (e) point out that torus
and mesh networks have both shorter links, and just a few different cable lengths to interconnect
nodes in different cabinets as shown in Figure 7.7b. Keeping the cables short3 eliminates the need for
repeaters or expensive optical links, and allows for high-speed serial point-to-point communication,
with signal rates in excess of 10 Gb/s commonplace over a few meters.

The flattened butterfly is another example of a topology with a lot of packaging locality. A
k-ary n-flat will have k switches co-located with each cabinet, where each switch has a minimum of
p ports (Equation 7.2).

p ≥ (n − 1)(k − 1) + k (7.2)

Each switch will use k electrical links to connect to its hosts, and another 1
2k − 1 links to interconnect

the other switches4 (call this dimension 1) as shown in Figure 7.8. The total number of electrical
links used (Equation 7.3)

e = k + (k − 1) (7.3)

Assume that all inter-cabinet links for the remaining n − 2 dimensions will require optics since it is
likely they will be in excess of a few meters. Each switch connects k − 1 ports to cabinets in the same
row (dimension 2), and another k − 1 ports to cabinets in the same column (dimension 3) as shown
in Figure 7.8. More generally, the number of optical links in a k-ary n-flat is given by Equation 7.4.

o = (n − 2)(k − 1) (7.4)

The fraction of electrical links in the network is given by Equation 7.5. For example, an 8-ary 5-flat
with 32k nodes, will use about 42% low cost, electrical links.

fe = k + (k − 1)

(n − 1)(k − 1) + k
(7.5)

3We consider “short” distances as cables shorter than 5m.
4These could be arranged as a stack of 1U switches co-located with the hosts, for instance.
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Figure 7.8: Example of how a flattened butterfly with four dimensions would map to a two-dimensional
datacenter floor.

SUMMARY
The cost of power and its associated delivery and cooling are becoming significant factors in the
cost of large datacenters. The interconnection network in a large parallel computer plays a central
role both in its cost and performance. The way a system is packaged will ultimately influence the
design of the network since it impacts the topology, cable reach, signaling technology, and cost per
unit of bandwidth. A large-scale parallel computer is packaged with different levels of the packaging
hierarchy, which must be efficiently mapped onto the two-dimensional floor of a datacenter.
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C H A P T E R 8

Case Studies
This Chapter is created to be a standalone entity; as such, it may repeat some of the concepts
(e.g., flits, phits, routing, etc.) that have already been covered thus far. That is intentional.
We want the reader to see how everything fits together and be able to look back at previous
Chapters if questions arise.

8.1 CRAY BLACKWIDOW MULTIPROCESSOR

The Cray BlackWidow (BW) vector multiprocessor is designed to run demanding applications with
high communication and memory bandwidth requirements. It uses a distributed shared memory
(DSM) architecture to provide the programmer with the appearance of a large globally shared memory
with direct load/store access. Unlike conventional microprocessors, each BW processor supports
abundant memory level parallelism (MLP), with up to 4K outstanding global memory references
per processor. Latency hiding and efficient synchronization are central to the BW design, and the
network must therefore provide high global bandwidth while also providing low latency for efficient
synchronization. The high-radix folded-Clos network [56] allows the system to scale up to 32K
processors with a worst-case diameter of seven hops.

8.1.1 BLACKWIDOW NODE ORGANIZATION
Figure 8.1 shows a block diagram of a BlackWidow compute node consisting of four BW processors,
and 16 Weaver chips with their associated DDR2 memory parts co-located on a memory daughter
card (MDC).The processor to memory channels between each BW chip and Weaver chip use a 4-bit
wide 6.25 Gbaud serializer/deserializer (SerDes) for an aggregate channel bandwidth of 16×3.125
Gbytes/s = 50 Gbytes/s per direction — 200 Gbytes/s per direction for each node.

The Weaver chips serve as pin expanders, converting a small number of high-speed differ-
ential signals from the BW processors into a large number of single-ended signals that interface
to commodity DDR2 memory parts. Each Weaver chip manages four DDR2 memory channels,
each with a 32-bit of data, 7-bit error correcting code (ECC), and one “spare bit”. The 32-bit data
path, coupled with the four-deep memory access bursts of DDR2, provides a minimum transfer
granularity of only 16 bytes. Thus, the BlackWidow memory daughter card has twice the peak data
bandwidth and four times the single-word bandwidth of a standard 72-bit-wide DIMM. Each of
the eight MDCs contains 20 or 40 memory parts, providing up to 128 Gbytes of memory capacity
per node using 1-Gbit memory parts.
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Figure 8.1: BlackWidow node organization.

8.1.2 HIGH-RADIX FOLDED-CLOS NETWORK
To reduce the cost and the latency of the network, BlackWidow uses a folded-Clos [14] network
that is modified by adding sidelinks that connect peer subtrees and statically partition the global
network bandwidth. Deterministic routing is performed using a hash function to obliviously balance
network traffic while maintaining ordering on a cache line basis. Machines of up to 1024 processors
can be constructed by connecting up to 32 rank 1 (R1) subtrees, each with 32 processors, to rank
2 (R2) routers. Machines of up to 4608 processors can be constructed by connecting up to nine
512-processor R2 subtrees via side links. Up to 16K processors may be connected by a rank 3 (R3)
network where up to 32 512-processor R2 subtrees are connected by R3 routers.Multiple R3 subtrees
can be interconnected using sidelinks to scale up to 32K processors.

The BlackWidow system topology and packaging scheme enables very flexible provisioning
of network bandwidth. For instance, by only using a single rank 1 router module, instead of two as
shown in Figure 8.1.2a, the port bandwidth of each processor is reduced in half — halving both the
cost of the network and its global bandwidth. An additional bandwidth taper can be achieved by
connecting only a subset of the rank 1 to rank 2 network cables, reducing cabling cost and R2 router
cost at the expense of the bandwidth taper as shown by the 1

4 taper in Figure 8.1.2b.
The network is built using a high-radix router, which provides 64 ports ×3 lanes operating up

to 6.25 Gb/s each lane. Each YARC router has an aggregate bandwidth of 2.4 Tb/s. BlackWidow
scales up to 32K processors with a worst-case diameter of seven hops. YARC uses a hierarchical



8.1. CRAY BLACKWIDOW MULTIPROCESSOR 75

(a) Rank 1 network.

(b) Rank 2 network, shown with a 1
4 taper.

Figure 8.2: The BlackWidow high-radix network.

organization [42] to overcome the quadratic scaling of conventional input-buffered routers. A two-
level hierarchy is organized as an 8×8 array of tiles. This organization simplifies arbitration with a
minimal loss in performance. The tiled organization also resulted in a modular design that could be
implemented in a short period of time.

8.1.3 SYSTEM PACKAGING
Each compute module contains two compute nodes, as shown in Figure 8.1.3(a) providing a dense
packaging solution with eight BW processors and 32 MDCs. At the next level of the hierarchy (see
Figure 8.1.3 (b)), a set of eight compute modules and four router cards, each containing two YARC
router chips, are connected via a midplane into a chassis. The router cards are mounted orthogonally
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(a) BlackWidow compute module with two nodes.

(b) BlackWidow chassis with eight compute modules and four network cards.

Figure 8.3: BlackWidow packaging.

to the compute blades, and each router chip connects to 32 of the 64 processors in the chassis. The
chassis contains two rank-1 sub-trees, as shown in Figure 8.1.2(a).

All routing within a rank-1 sub-tree is carried via the PCB routing within the chassis. All
routing between rank-1 sub-trees is carried over cables, which leave the back of the router cards.
Two chassis are contained within one compute cabinet for a total of 128 BW processors providing
an aggregate of ≈2.6 Tflops per cabinet. The BlackWidow system consists of one or more cabinets
interconnected with the necessary cables using the high-radix folded-Clos [56] network.

8.1.4 HIGH-RADIX FAT-TREE
YARC is a high-radix router used in the network of the Cray BlackWidow multiprocessor. Using
YARC routers, each with 64 3-bit wide ports, the BlackWidow scales up to 32K processors using a
folded-Clos topology with a worst-case diameter of seven hops. Each YARC router has an aggregate
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bandwidth of 2.4Tb/s and a 32K-processor BlackWidow system has a bisection bandwidth of
2.5Pb/s.

YARC uses a hierarchical organization[42] to overcome the quadratic scaling of conventional
input-buffered routers. A two-level hierarchy is organized as an 8×8 array of tiles.This organization
simplifies arbitration with a minimal loss in performance. The tiled organization also resulted in a
modular design that could be implemented in a short period of time.

The architecture of YARC is strongly influenced by the constraints of modern ASIC tech-
nology. YARC takes advantage of abundant on-chip wiring to provide separate column buses from
each subswitch to each output port, greatly simplifying output arbitration. To operate using limited
on-chip buffering, YARC uses wormhole flow control internally while using virtual-cut-through
flow control over external channels.

To reduce the cost and the latency of the network, BlackWidow uses a folded-Clos network
that is modified by adding sidelinks that connect peer subtrees and statically partition the global
network bandwidth. We showed the benefits of high-radix Clos, compared to the previous torus
networks, in terms of fault tolerance, bandwidth spreading, and simpler routing algorithm. Both
adaptive and deterministic routing algorithms are implemented in the network to provide load-
balancing across the network and still maintain ordering on memory requests. Deterministic routing
is performed using a robust hash function to obliviously balance load while maintaining ordering on
a cache line basis.

8.1.5 PACKET FORMAT
The format of a packet within the BlackWidow network is shown in Figure 8.4. Packets are divided
into 24-bit phits for transmission over internal YARC datapaths. These phits are further serialized
for transmission over 3-bit wide network channels. A minimum packet contains 4 phits carrying
32 payload bits. Longer packets are constructed by inserting additional payload phits (like the third
phit in the figure) before the tail phit. Two-bits of each phit, as well as all of the tail phit are used by
the data-link layer.

The head phit of the packet controls routing in addition to specifying the destination; this
phit contains a v bit that specifies which virtual channel to use, and three bits, h, a, and r, that control
specifically how the packet is routed. If the r bit is set, the packet will employ source routing. In this
case, the packet header will be accompanied by a routing vector that indicates the path through the
network as a list of ports to select the output port at each hop. Source routed packets are used only
for maintenance operations such as reading and writing configuration registers on the YARC. If the
a bit is set, the packet will route adaptively; otherwise, it will route deterministically. If the h bit is
set, the deterministic routing algorithm employs the hash bits in the second phit to select the output
port.
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Figure 8.4: Packet format of the BlackWidow network.

8.1.6 NETWORK LAYER FLOW CONTROL
The allocation unit for flow control is a 24-bit phit — thus, the phit is really the flit (flow control
unit).The BlackWidow network uses two virtual channels (VCs) [21], designated request (v=0) and
response (v=1) to avoid request-response deadlocks in the network. Therefore, all buffer resources
are allocated according to the virtual channel bit in the head phit. Each input buffer is 256 phits
and is sized to cover the round-trip latency across the network channel. Virtual cut-through flow
control [37] is used across the network links.

8.1.7 DATA-LINK LAYER PROTOCOL
The YARC data-link layer protocol is implemented by the link control block (LCB). The LCB
receives phits from the router core and injects them into the serializer logic where they are transmitted
over the physical medium. The primary function of the LCB is to reliably transmit packets over the
network links using a sliding window go-back-N protocol. The send buffer storage and retry is on
a packet granularity.

The 24-bit phit uses 2-bits of sideband dedicated as a control channel for the LCB to carry
sequence numbers and status information. The virtual channel acknowledgment status bits travel in
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the LCB sideband. These VC acks are used to increment the per-vc credit counters in the output
port logic.The ok field in the EOP phit indicates if the packet is healthy, encountered a transmission
error on the current link (transmit_error), or was corrupted prior to transmission (soft_error). The
YARC internal datapath uses the CRC to detect soft errors in the pipeline data paths and static
memories used for storage. Before transmitting a tail phit onto the network link, the LCB will check
the current CRC against the packet contents to determine if a soft error has corrupted the packet.
If the packet is corrupted, it is marked as soft_error, and a good CRC is generated so that it is not
detected by the receiver as a transmission error.The packet will continue to flow through the network
marked as a bad packet with a soft error and eventually be discarded by the network interface at the
destination processor.

The narrow links of a high-radix router cause a higher serialization latency to squeeze the
packet over a link. For example, a 32B cache-line write results in a packet with 19 phits (6 header,
12 data, and 1 EOP). Consequently, the LCB passes phits up to the higher-level logic speculatively,
prior to verifying the packet CRC, which avoids store-and-forward serialization latency at each hop.
However, this early forwarding complicates various error conditions in order to correctly handle a
packet with a transmission error and reclaim the space in the input queue at the receiver.

Because a packet with a transmission error is speculatively passed up to the router core and
may have already flowed to the next router by the time the tail phit is processed, the LCB and
input queue must prevent corrupting the router state. The LCB detects packet CRC errors and
marks the packet as transmit_error with a corrected CRC before handing the end-of-packet (EOP)
phit up to the router core. The LCB also monitors the packet length of the received data stream
and clips any packets that exceed the maximum packet length, which is programmed into an LCB
configuration register. When a packet is clipped, an EOP phit is appended to the truncated packet
and it is marked as transmit_error. On either error, the LCB will enter error recovery mode and await
the retransmission.

The input queue in the router must protect from overflow. If it receives more phits than can be
stored, the input queue logic will adjust the tail pointer to excise the bad packet and discard further
phits from the LCB until the EOP phit is received. If a packet marked transmit_error is received at
the input buffer, we want to drop the packet and avoid sending any virtual channel acknowledgments.
The sender will eventually timeout and retransmit the packet. If the bad packet has not yet flowed
out of the input buffer, it can simply be removed by setting the tail pointer of the queue to the tail
of the previous packet. Otherwise, if the packet has flowed out of the input buffer, we let the packet
go and decrement the number of virtual channel acknowledgments to send by the size of the bad
packet. The transmit-side router core does not need to know anything about recovering from bad
packets. All effects of the error are contained within the LCB and YARC input queueing logic.
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8.1.8 SERIALIZER/DESERIALIZER
The serializer/deserializer (SerDes) implements the physical layer of the communication stack.YARC
instantiates a high-speed SerDes in which each lane consists of two complimentary signals making
a balanced differential pair.

The SerDes is organized as a macro which replicates multiple lanes. For full duplex operation,
we must instantiate the 8-lane receiver as well as an 8-lane transmitter macro. YARC instantiates 48
8-lane SerDes macros, 24 8-lane transmit and 24 8-lane receive macros, consuming ≈91.32 mm2

of the 289 mm2 die area, which is almost 1/3 of the available silicon (Figure 6.7).
The SerDes supports two full-speed data rates: 5 Gbps or 6.25 Gbps. Each SerDes macro is

capable of supporting full, half, and quarter data rates using clock dividers in the PLL module. This
allows the following supported data rates: 6.25, 5.0, 3.125, 2.5, 1.5625, and 1.25 Gbps. We expect
to be able to drive a 6 meter, 26 gauge cable at the full data rate of 6.25 Gbps, allowing for adequate
PCB foil at both ends.

Each port on YARC is three bits wide, for a total of 384 low voltage differential signals coming
off each router, 192 transmit and 192 receive. Since the SerDes macro is 8 lanes wide and each YARC
port is only 3 lanes wide, a naive assignment of tiles to SerDes would have 2 and 2/3 ports (8 lanes)
for each SerDes macro. Consequently, we must aggregate three SerDes macros (24 lanes) to share
across eight YARC tiles (also 24 lanes). This grouping of eight tiles is called an octant and imposes
the constraint that each octant must operate at the same data rate.

The SerDes has a 16/20 bit parallel interface which is managed by the link control block
(LCB). The positive and negative components of each differential signal pair can be arbitrarily
swapped between the transmit/receive pair. In addition, each of the 3 lanes which comprise the
LCB port can be permuted or “swizzled.” The LCB determines which are the positive and negative
differential pairs during channel initialization, as well as which lanes are “swizzled”. This degree of
freedom simplifies the board-level river routing of the channels and reduces the number of metal
layers on a PCB for the router module.

8.2 CRAY XT MULTIPROCESSOR
The Cray XT4 system scales up to 32k nodes using a bidirectional three-dimensional torus intercon-
nection network. Each node in the system consists of an AMD64 superscalar processor connected to
a Cray Seastar chip [13] (Figure 8.5) which provides the processor-network interface, and 6-ported
router for interconnecting the nodes. The system supports an efficient distributed memory mes-
sage passing programming model. The underlying message transport is handled by the Portals [11]
messaging interface.

The Cray XT interconnection network has several key features that set it apart from other
networks:

• scales up to 32K network endpoints,

• high injection bandwidth using HypterTransport (HT) links directly to the network interface,
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• reliable link-level packet delivery in hardware,

• multiple virtual channels for both deadlock avoidance and performance isolation, and

• age-based arbitration to provide fair access to network resources.

There are two types of nodes in the Cray XT system. Endpoints (nodes) in the system are
either compute or system and IO (SIO) nodes. SIO nodes are where user’s login to the system and
compile/launch applications.

Figure 8.5: High level block diagram of the Seastar interconnect chip.

8.2.1 3-D TORUS
The Cray XT interconnect can be configured as either a k-ary n-mesh or k-ary n-cube (torus)
topology. As a torus, the system is implemented as a folded torus to reduce the cable length of the
wrap around link. The 7-ported Seastar router provides a processor port, and six network ports
corresponding to +x, -x, +y, -y, +z, and -z directions. The port assignment for network links is not
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fixed, any port can correspond to any of the six directions. The non-coherent HyperTransport (HT)
protocol provides a low latency, point-to-point channel used to drive the Seastar network interface.

Four virtual channels are used to provide point-to-point flow control and deadlock avoidance.
Using virtual channels avoids unnecessary head-of-line (HoL) blocking for different network traffic
flows, however, the extent to which virtual channels improve network utilization depends on the
distribution of packets among the virtual channels.

8.2.2 ROUTING
The routing rules for the Cray XT are subject to several constraints. Foremost, the network must
provide error-free transmission of each packet from the source node identifier (NID) to the destination.
To accomplish this, the distributed table-driven routing algorithm is implemented with a dedicated
routing table at each input port that is used to lookup the destination port and virtual channel of the
incoming packet. The lookup table at each input port is not sized to cover the maximum 32k node
network since most systems will be much smaller, only a few thousand nodes. Instead, a hierarchical
routing scheme divides the node name space into global and local regions.The upper three bits of the
destination field (given by the destination[14:12] in the packet header) of the incoming packet
are compared to the global partition of the current SeaStar router. If the global partition does not
match, then the packet is routed to the output port specified in the global lookup table (GLUT).
The GLUT is indexed by destination[14:12] to choose one of eight global partitions.

Once the packet arrives at the correct global region, it will precisely route within a local
partition of 4096 nodes given by the destination[11:0] field in the packet header. The tables
must be constructed to avoid deadlocks. Glass and Ni [25] describe turn cycles that can occur
in k-ary n-cube networks. However, torus networks are also susceptible to deadlock that results
from overlapping virtual channel dependencies (this only applies to k-ary n-cubes, where k >4) as
described by Dally and Seitz [19]. Additionally, the SeaStar router does not allow 180 degree turns
within the network. The routing algorithm must both provide deadlock-freedom and achieve good
performance on benign traffic. In a fault-free network, a straightforward dimension-ordered routing
(DOR) algorithm will provide balanced traffic across the network links. Although, in practice,
faulty links will occur and the routing algorithm must route around the bad link in a way that
preserves deadlock freedom and attempts to balance the load across the physical links. Furthermore,
it is important to optimize the buffer space within the SeaStar router by balancing the number of
packets within each virtual channel.

8.2.2.1 Avoiding deadlock in the presence of faults and turn constraints
The routing algorithm rests upon a set of rules to prevent deadlock. In the turn model, a positive first
(x+, y+, z+ then x-, y-, z-) rule prevents deadlock and allows some routing options to avoid faulty
links or nodes. The global/local routing table adds an additional constraint for valid turns. Packets
must be able to travel to their local area of the destination without the deadlock rule preventing free
movement within the local area. In the Cray XT network the localities are split with yz planes. To



8.2. CRAY XT MULTIPROCESSOR 83

allow both x+ and x- movement without restricting later directions, the deadlock avoidance rule is
modified to (x+, x-, y+, z+ then y+, y-, z+ then z+, z-). Thus, free movement is preserved. Note that
missing or broken X links may induce a non-minimal route when a packet is routed via the global
table (since only y+ and z+ are “safe”). With this rule, packets using the global table will prefer to
move in the X direction, to get to their correct global region as quickly as possible. In the absence
of any broken links, routes between compute nodes can be generated by moving in x dimension,
then y, then z. Also, when y=Ymax , it is permissible to dodge y- then go x+/x-. If the dimension is
configured as a mesh — there are no y+ links, for example, anywhere at y=Ymax then a deadlock
cycle is not possible.

In the presence of a faulty link, the deadlock avoidance strategy depends on the direction
prescribed by dimension order routing for a given destination. In addition, toroidal networks add
dateline restrictions. Once a dateline is crossed in a given dimension, routing in a higher dimension
(e.g., X is “higher” than Y) is not permitted.

8.2.2.2 Routing rules for X links
When x+ or x- is desired, but that link is broken, y+ is taken if available. This handles crossing from
compute nodes to service nodes, where some X links are not present. If y+ is not available, z+ is
taken. This z+ link must not cross a dateline. To avoid this, the dateline in Z is chosen so that there
are no nodes with a broken X link and a broken y+ link. Although the desired X link is available,
the routing algorithm may choose to take an alternate path when the node at the other side of the X
link has a broken y+ and z+ link (note the y+ might not be present if configured as a mesh), then an
early detour toward z+ is considered. If the X link crosses a partition boundary into the destination
partition or the current partition matches the destination partition and the current Y matches the
destination Y coordinate, route in z+ instead. Otherwise, the packet might be boxed in at the next
node, with no safe way out.

8.2.2.3 Routing rules for Y links
When the desired route follows a Y link that is broken, the preference is to travel in z+ to find a
good Y link. If z+ is also broken, it is feasible to travel in the opposite direction in the Y dimension.
However, the routing in the node in that direction must now look ahead to avoid a 180 degree turn
if it were to direct a packet to the node with the faulty links. When the desired Y link is available,
it is necessary to check that the node at that next hop does not have a z+ link that the packet might
prefer (based on XYZ routing) to follow next. That is, if the default direction for this destination in
the next node is z+ and the z+ link is broken there, the routing choice at this node would be changed
from the default Y link to z+.

8.2.2.4 Routing rules for Z links
When the desired route follows a z+ link that is broken, the preference is to travel in y+ to find a
good z+ link. In this scenario, the Y link look ahead is relied up to avoid the node at y+ from sending
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the packet right back along y-. When the y+ link is not present (at the edge of the mesh), the second
choice is y-. When the desired route is to travel in the z- direction, the logic must follow the z- path
to ensure there are no broken links at all on the path to the final destination. If one is found, the
route is forced to z+, effectively forcing the packet to go the long way around the Z torus.

8.2.3 FLOW CONTROL
Buffer resources are managed using credit-based flow control at the data-link level. The link control
block (LCB) is shown at the periphery of the Seastar router chip in Figure 8.6. Packets flow across
the network links using virtual cut-through flow control — that is, a packet does not start to flow
until there is sufficient space in the receiving input buffer. Each virtual channel (VC) has dedicated
buffer space. A 3-bit field (Figure 8.7) in each flit is used to designate the virtual channel, with a
value of all 1’s representing an idle flit. Idle flits are used to maintain byte and lane alignment across
the plesiochronous channel. They can also carry VC credit information back to the sender.

8.2.4 SEASTAR ROUTER MICROARCHITECTURE

(a) Seastar block diagram. (b) Seastar die photo.

Figure 8.6: Block diagram of the Seastar system chip.

Network packets are comprised of one or more 68-bit flits (flow control units). The first flit of
the packet (Figure 8.7) is the header flit and contains all the necessary routing fields (destination[14:0],
age[10:0], vc[2:0]) as well as a tail (t) bit to mark the end of a packet. Since most XT networks are
on the order of several thousand nodes, the lookup table at each input port is not sized to cover the
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maximum 32k node network.To make the routing mechanism more space-efficient, the 15-bit node
identifier is partitioned to allow a two-level hierarchical lookup: a small 8-entry table identifies a
region, the second table precisely identifies the node within the region.The region table is indexed by
the upper 3-bits of the destination field of the packet, and the low-order 12-bits identifies the node
within 4k-entry table. Each network port has a dedicated routing table and is capable of routing
a packet each cycle. This provides the necessary lookup bandwidth to route a new packet every
cycle. However, if each input port used a 32k-entry lookup table, it would be sparsely populated for
modest-sized systems, and use an extravagant amount of silicon area.
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Figure 8.7: Seastar packet format.

A two-level hierarchical routing scheme is used to efficiently lookup the egress port at each
router. Each router is assigned a unique node identifier, corresponding to its destination address.
Upon arrival at the input port, the packet destination field is compared to the node identifier. If
the upper three bits of the destination address match the upper three bits of the node identifier,
then the packet is in the correct global partition. Otherwise, the upper three bits are used to index
into the 8-entry global lookup table (GLUT) to determine the egress port. Conceptually, the 32k
possible destinations are split into eight, 4k partitions denoted by bits destination[11:0] of the
destination field.

The SeaStar router has six full-duplex network ports and one processor port that interfaces
with the Tx/Rx DMA engine (Figure 8.6).The network channels operate at 3.2 Gb/s ×12 lanes over
electrical wires, providing a peak of 4.8 GB/s per direction of network bandwidth. The link control
block (LCB) implements a sliding window go-back-N link-layer protocol that provides reliable
chip-to-chip communication over the network links. The router switch is both input-queued and
output-queued. Each input port has four (one for each virtual channel) 96-entry buffers, with each
entry storing one flit. The input buffer is sized to cover the round-trip latency across the network
link at 3.2 Gb/s signal rates. There are 24 staging buffers in front of each output port, one for each
input source (five network ports, and one processor port), each with four VCs. The staging buffers
are only 16 entries deep and are sized to cover the crossbar arbitration round-trip latency. Virtual
cut-through [37] flow control into the output staging buffers requires them to be at least 9 entries
deep to cover the maximum packet size.
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8.2.4.1 Age-based output arbitration
Packet latency is divided into two components: queueing and router latency. The total delay (T ) of a
packet through the network with H hops is the sum of the queueing and router delay.

T = HQ(λ) + Htr (8.1)

where tr is the per-hop router delay (which is ≈ 50 ns for the Seastar router). The queueing delay,
Q(λ), is a function of the offered load (λ) and described by the latency-bandwidth characteristics of
the network. An approximation of Q(λ) is given by an M/D/1 queue model (Figure 8.8).

Q(λ) = 1

1 − λ
(8.2)

When there is very low offered load on the network, the Q(λ) delay is negligible. However, as traffic
intensity increases, and the network approaches saturation, the queueing delay will dominate the
total packet latency.
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Figure 8.8: Offered load versus latency for an ideal M/D/1 queue model.

As traffic flows through the network it merges with newly injected packets and traffic from
other directions in the network (Figure 8.9). This merging of traffic from different sources causes
packets that have further to travel (more hops) to receive geometrically less bandwidth. For example,
consider the 8-ary 1-mesh in Figure 8.9(a) where processors P0 thru P6 are sending to P7. The
switch allocates the output port by granting packets fairly among the input ports. With a round-
robin packet arbitration policy, the processor closest to the destination (P6 is only one hop away) will
get the most bandwidth — 1/2 of the available bandwidth. The processor two hops away, P5, will
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get half of the bandwidth into router node 6, for a total of 1/2×1/2 = 1/4 of the available bandwidth.
That is, every two arbitration cycles node 7 will deliver a packet from source P6, and every four
arbitration cycles it will deliver a packet from source P5. A packet will merge with traffic from at
most 2n other ports since each router has 2n network ports with 2n − 1 from other directions and
one from the processor port. In the worst case, a packet traveling H hops and merging with traffic
from 2n other input ports, will have a latency of:

Tworst = L

(2n)H
(8.3)

where L is the length of the message (number of packets), and n is the number of dimensions. In this
example, P0 and P1 each receive 1/64 of the available bandwidth into node 7, a factor of 32 times
less than that of P6. Reducing the variation in bandwidth is critical for application performance,
particularly as applications are scaled to increasingly higher processor counts. Topologies with a
lower diameter will reduce the impact of merging traffic. A torus is less affected than a mesh of the
same radix (Figure 8.9a and 8.9b), for example, since it has a lower diameter. With dimension-order
routing (DOR), once a packet starts flowing on a given dimension it stays on that dimension until
it reaches the ordinate of its destination.
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Figure 8.9: All nodes are sending to P7 and merging traffic at each hop.
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8.2.4.2 Key parameters associated with age-based arbitration
The Cray XT network provides age-based arbitration to mitigate the affects of this traffic merging
as shown in Figure 8.9, thus reducing the variation in packet delivery time. However, age-based
arbitration can introduce a starvation scenario whereby younger packets are starved at the output
port and cannot make forward progress toward the destination. The details of the algorithm along
with performance results are given by Abts and Weisser [4]. There are three key parameters for
controlling the aging algorithm.

• AGE_CLOCK_PERIOD – a chip-wide 32-bit countdown timer that controls the rate at which
packets age. If the age rate is too slow, it will appear as though packets are not accruing any
queueing delay, their ages will not change, and all packets will appear to have the same age. On
the other hand, if the age rate is too fast, packets ages will saturate very quickly — perhaps after
only a few hops — at the maximum age of 255, and packets will not generally be distinguishable
by age. The resolution of AGE_CLOCK_PERIOD allows anywhere from 2 nanoseconds to more
than 8 seconds of queueing delay to be accrued before the age value is incremented.

• REQ_AGE_BIAS and RSP_AGE_BIAS – each hop that a packet takes increments the packet age
by the REQ_AGE_BIAS if the packet arrived on VC0/VC1 or by RSP_AGE_BIAS if the packet
arrived on VC2/VC3. The age bias fields are configurable on a per-port basis, with the default
bias of 1.

• AGE_RR_SELECT – a 64-bit array specifying the output arbitration policy. A value of all 0s
will select round-robin arbitration, and a value of all 1s will select age-based arbitration. A
combination of 0s and 1s will control the ratio of round-robin to age-based. For example, a
value of 0101· · · 0101 will use half round-robin and half age-based.

When a packet arrives at the head of the input queue, it undergoes routing by indexing into the
LUT with destination[11:0] to choose the target port and virtual channel. Since each input port and
VC has a dedicated buffer at the output staging buffer, there is no arbitration necessary to allocate
the staging buffer — only flow control. At the output port, arbitration is performed on a per-packet
basis (not per flit, as wormhole flow control would). Each output port is allocated by performing a
4-to-1 VC arbitration along with a 7-to-1 arbitration to select among the input ports. Each output
port maintains two independent arbitration pointers — one for round-robin and one for age-based.
A 6-bit counter is incremented on each grant cycle and indexes into the AGE_RR_SELECT bit array
to choose the per-packet arbitration policy.

8.3 SUMMARY
The Cray BlackWidow is a scalable shared memory multiprocessor using custom vector processors,
and the Cray XT is a distributed memory multiprocessor built from commodity microprocessors.
The Cray XT uses a 3-D torus (low-radix) network, in contrast to the high-radix folded-Clos of the
BlackWidow. This topology difference is in large part because the 3-D torus is a direct network and
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simply doesn’t have silicon area to accommodate the additional SerDes. The BlackWidow network
is an indirect network with the YARC switch chip having 192 SerDes surrounding the periphery
of a 17x17mm die. The dense SerDes enabled a high-radix folded-Clos topology instead of a torus.
More importantly, many scientific codes still have 3-D domain decomposition that exploits nearest
neighbor communication and is best suited for a torus. So the topology choice is not only technology
driven, but sometimes workload driven.
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C H A P T E R 9

Closing Remarks
Interconnection networks are the glue that binds the otherwise loosely-coupled distributed memory
cluster systems that are common in datatcenter networks and the high-performance computing
(HPC) community. The system scale — number of processor sockets capable of being housed in a
single system — is impacted dramatically by the network. With exa-scale parallel computers being
designed with 100s of thousands and even millions of processing cores, the cost of power and its
associated delivery and cooling are becoming significant factors in the total expenditures of large-
scale datacenters. Barroso and Hölzle recently showed a mismatch between common server workload
profiles and server energy efficiency [8]. In particular, they show that a typical Google cluster spends
most of its time within the 10-50% CPU utilization range, but that servers are inefficient at these
levels. They therefore make the call for energy proportional computing systems that ideally consume
almost no power when idle and gradually consume more power as the activity level increases. As
of June, 2010 Top500 [62] list, the Cray XT5-HE with 224,162 processing cores achieving 1.759
petaflops and nearly 7 megawatts on the LINPACK benchmark1.

9.1 PROGRAMMING MODELS
Warehouse-scale Computers (WSC) [9] such as those shown in Figure 1.1 fuel the Internet ap-
plications of today and tomorrow. WSC and HPC machines differ in programming models with
datatcenter clusters dominated by TCP socket-based models, and distributed memory HPC sys-
tems commonly use message passing interfaces like (MPI), or hierarchical programming models that
exploit shared memory (ccNUMA) within the node using an OpenMP interface and distributed
memory between nodes with MPI. These differences result in O(1μs) end-to-end message latency,
compared to O(100μs) of latency within datacenter servers. In large part, the software transport plays
a critical role in latency — with TCP transport and multiple kernel-user space copies — confound-
ing low-latency messaging. Efficient user-level messaging have been demonstrated with large-scale
global communications on the order of 1μs in the HPC community, where efficient fine-grain
communication and low-latency synchronization are hallmarks of scalable machines [7, 15, 35, 55].

9.2 WIRE PROTOCOLS
Supercomputers often take the design approach of building the entire machine from the most
efficient packaging, chip technology, and signaling. As a result, they typically don’t have a high-
1It is worth emphasizing that the Top500 list is simply a measure of how well a parallel computer solves systems of dense linear
algebra, and suitability to other tasks may vary.
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volume market, noting the original Cray-1 [54] in 1977 set a goal of delivering one system per
quarter. The proprietary signaling and wire protocols (packet formats, etc.) have made traditional
supercomputers incompatible with other vendors. However, the emergence of 40 gigabit and 100
gigabit Ethernet, coupled with a common processor-network interface like PCIe-Gen3 ×16 has
the potential to convolve datacenters and supercomputing into “super datacenters” — what Barroso
and Hölzle refer to as warehouse-scale computers [9].

9.3 OPPORTUNITIES
Going forward, highly scalable machines capable of a exaflop computation will require low-diameter
scalable networks. Moreover, reliability and scalability are inseparable. System designers need to focus
on building power-efficient systems without sacrificing reliability in the hardware, while application
programmers will need to accept that servers are vulnerable to faults in components such as the
processors, memory, network, disks, etc., including system software; hardware can and does fail, and
programmers need to focus on fault-aware applications that can detect the loss of a component and
still function. Power-efficiency and reliability are the two largest impediments to continued scaling.
When programmers from both the supercomputing and Internet (datacenter) communities embrace
these concepts, we will benefit from greater interoperability and converged programming models
and best practices.
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