
123

Integrated Circuits and Systems

Algorithms and Architectures

High E� ciency
Video Coding
(HEVC)

Vivienne Sze
Madhukar Budagavi
Gary J. Sullivan Editors

Integrated Circuits and Systems

Series Editor
Anantha P. Chandrakasan
Massachusetts Institute of Technology
Cambridge, Massachusetts

For further volumes:
http://www.springer.com/series/7236

http://www.springer.com/series/7236

Vivienne Sze • Madhukar Budagavi
Gary J. Sullivan
Editors

High Efficiency Video
Coding (HEVC)

Algorithms and Architectures

123

Editors
Vivienne Sze
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology
Cambridge, MA, USA

Gary J. Sullivan
Microsoft Corp.
Redmond, WA, USA

Madhukar Budagavi
Texas Instruments Inc.
Dallas, TX, USA

ISSN 1558-9412
ISBN 978-3-319-06894-7 ISBN 978-3-319-06895-4 (eBook)
DOI 10.1007/978-3-319-06895-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014930758

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

Advances in video compression, which have enabled us to squeeze more pixels
through bandwidth-limited channels, have been critical in the rapid growth of video
usage. As we continue to push for higher coding efficiency, higher resolution and
more sophisticated multimedia applications, the required number of computations
per pixel and the pixel processing rate will grow exponentially. The High Efficiency
Video Coding (HEVC) standard, which was completed in January 2013, was
developed to address these challenges. In addition to delivering improved coding
efficiency relative to the previous video coding standards, such as H.264/AVC,
implementation-friendly features were incorporated into the HEVC standard to
address the power and throughput requirements for many of today’s and tomorrow’s
video applications.

This book is intended for readers who are generally familiar with video coding
concepts and are interested in learning about the features in HEVC (especially in
comparison to H.264/MPEG-4 AVC). It is meant to serve as a companion to the
formal text specification and reference software. In addition to providing a detailed
explanation of the standard, this book also gives insight into the development of
various tools, and the trade-offs that were considered during the design process.
Accordingly, many of the contributing authors are leading experts who were directly
and deeply involved in the development of the standard itself.

As both algorithms and architectures were considered in the development of the
HEVC, this aims to provide insight from both fronts. The first nine chapters of the
book focus on the algorithms for the various tools in HEVC, and the techniques that
were used to achieve its improved coding efficiency. The last two chapters address
the HEVC tools from an architectural perspective and discuss the implementation
considerations for building hardware to support HEVC encoding and decoding.

In addition to reviews from contributing authors, we would also like to thank the
various external reviewers for their valuable feedback, which has helped improve the
clarity and technical accuracy of the book. These reviewers include Yu-Hsin Chen,

v

vi Preface

Chih-Chi Cheng, Keiichi Chono, Luis Fernandez, Daniel Finchelstein, Hun-Seok
Kim, Hyungjoon Kim, Yasutomo Matsuba, Akira Osamoto, Rahul Rithe, Mahmut
Sinangil, Hideo Tamama, Ye-Kui Wang and Minhua Zhou.

Cambridge, MA, USA Vivienne Sze
Dallas, TX, USA Madhukar Budagavi
Redmond, WA, USA Gary J. Sullivan

About the Editors

Vivienne Sze is an Assistant Professor at the Massachusetts Institute of Technology
(MIT) in the Electrical Engineering and Computer Science Department. Her
research interests include energy-aware signal processing algorithms, and low-
power circuit and system design for portable multimedia applications. Prior to
joining MIT, she was with the R&D Center at Texas Instruments (TI), where she
represented TI in the JCT-VC committee of ITU-T and ISO/IEC standards body
during the development of HEVC (ITU-T H.265 j ISO/IEC 23008-2). Within the
committee, she was the Primary Coordinator of the core experiments on coefficient
scanning and coding and Chairman of ad hoc groups on topics related to entropy
coding and parallel processing. Dr. Sze received the Ph.D. degree in Electrical
Engineering from MIT. She has contributed over 70 technical documents to HEVC,
and has published over 25 journal and conference papers. She was a recipient of
the 2007 DAC/ISSCC Student Design Contest Award and a co-recipient of the
2008 A-SSCC Outstanding Design Award. In 2011, she received the Jin-Au Kong
Outstanding Doctoral Thesis Prize in Electrical Engineering at MIT for her thesis
on “Parallel Algorithms and Architectures for Low Power Video Decoding”.

Madhukar Budagavi is a Senior Member of the Technical Staff at Texas Instru-
ments (TI) and leads Compression R&D activities in the Embedded Processing
R&D Center in Dallas, TX, USA. His responsibilities at TI include research and
development of compression algorithms, embedded software implementation and
prototyping, and video codec SoC architecture for TI products in addition to video
coding standards participation. Dr. Budagavi represents TI in ITU-T and ISO/IEC
international video coding standardization activity. He has been an active participant
in the standardization of HEVC (ITU-T H.265 j ISO/IEC 23008-2) next-generation
video coding standard by the JCT-VC committee of ITU-T and ISO/IEC. Within
the JCT-VC committee he has helped coordinate sub-group activities on spatial
transforms, quantization, entropy coding, in-loop filtering, intra prediction, screen
content coding and scalable HEVC (SHVC). Dr. Budagavi received the Ph.D. degree
in Electrical Engineering from Texas A&M University. He has published 6 book
chapters and over 35 journal and conference papers. He is a Senior Member of
the IEEE.

vii

viii About the Editors

Gary J. Sullivan is a Video and Image Technology Architect at Microsoft Cor-
poration in its Corporate Standardization Group. He has been a longstanding chair-
man or co-chairman of various video and image coding standardization activities
in ITU-T VCEG, ISO/IEC MPEG, ISO/IEC JPEG, and in their joint collabo-
rative teams since 1996. He is best known for leading the development of the
AVC (ITU-T H.264 j ISO/IEC 14496-10) and HEVC (ITU-T H.265 j ISO/IEC
23008-2) standards, and the extensions of those standards for format application
range enhancement, scalable video coding, and 3D/stereoscopic/multiview video
coding. At Microsoft, he has been the originator and lead designer of the DirectX
Video Acceleration (DXVA) video decoding feature of the Microsoft Windows
operating system. Dr. Sullivan received the Ph.D. degree in Electrical Engineering
from the University of California, Los Angeles. He has published approximately
10 book chapters and prefaces and 50 conference and journal papers. He has
received the IEEE Masaru Ibuka Consumer Electronics Technical Field Award,
the IEEE Consumer Electronics Engineering Excellence Award, the Best Paper
award of the IEEE Trans. CSVT, the INCITS Technical Excellence Award, the
IMTC Leadership Award, and the University of Louisville J. B. Speed Professional
Award in Engineering. The team efforts that he has led have been recognized by an
ATAS Primetime Emmy Engineering Award and a pair of NATAS Technology &
Engineering Emmy Awards. He is a Fellow of the IEEE and SPIE.

Contents

1 Introduction . 1
Gary J. Sullivan

2 HEVC High-Level Syntax . 13
Rickard Sjöberg and Jill Boyce

3 Block Structures and Parallelism Features in HEVC 49
Heiko Schwarz, Thomas Schierl, and Detlev Marpe

4 Intra-Picture Prediction in HEVC . 91
Jani Lainema and Woo-Jin Han

5 Inter-Picture Prediction in HEVC . 113
Benjamin Bross, Philipp Helle, Haricharan Lakshman,
and Kemal Ugur

6 HEVC Transform and Quantization . 141
Madhukar Budagavi, Arild Fuldseth, and Gisle Bjøntegaard

7 In-Loop Filters in HEVC . 171
Andrey Norkin, Chih-Ming Fu, Yu-Wen Huang,
and Shawmin Lei

8 Entropy Coding in HEVC . 209
Vivienne Sze and Detlev Marpe

9 Compression Performance Analysis in HEVC . 275
Ali Tabatabai, Teruhiko Suzuki, Philippe Hanhart,
Pavel Korshunov, Touradj Ebrahimi, Michael Horowitz,
Faouzi Kossentini, and Hassene Tmar

ix

x Contents

10 Decoder Hardware Architecture for HEVC . 303
Mehul Tikekar, Chao-Tsung Huang, Chiraag Juvekar,
Vivienne Sze, and Anantha Chandrakasan

11 Encoder Hardware Architecture for HEVC . 343
Sung-Fang Tsai, Cheng-Han Tsai, and Liang-Gee Chen

Chapter 1
Introduction

Gary J. Sullivan

Abstract The new HEVC standard enables a major advance in compression
relative to its predecessors, and its development was a large collaborative effort that
distilled the collective knowledge of the whole industry and academic community
into a single coherent and extensible design. This book collects the knowledge
of some of the key people who have been directly involved in developing or
deploying the standard to help the community understand the standard itself and
its implications. A detailed presentation is provided for each of the standard’s
fundamental building blocks and how they fit together to make HEVC the powerful
package that it is. The compression performance of the standard is analyzed, and
architectures for its implementation are described. We believe this book provides
important information for the community to help ensure the broad success of HEVC
as it emerges in a wide range of products and applications. The applications for
HEVC will not only cover the space of the well-known current uses and capabilities
of digital video—they will also include the deployment of new services and the
delivery of enhanced video quality, such as the deployment of ultra-high-definition
television (UHDTV) and video with higher dynamic range, a wider range of
representable color, and greater representation precision than what is typically found
today.

1.1 HEVC Background and Development

The standard now known as High Efficiency Video Coding (HEVC) [3] reflects the
accumulated experience of about four decades of research and three decades of
international standardization for digital video coding technology. Its development

G.J. Sullivan (�)
Microsoft Corp., Redmond, WA, USA
e-mail: garysull@microsoft.com

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__1,
© Springer International Publishing Switzerland 2014

1

mailto:garysull@microsoft.com

2 G.J. Sullivan

was a massive undertaking that dwarfed prior projects in terms of the sheer quantity
of engineering effort devoted to its design and standardization. The result is now
formally standardized as ITU-T Recommendation H.265 and ISO/IEC International
Standard 23008-2 (MPEG-H part 2). The first version of HEVC was completed in
January 2013 (with final approval and formal publication following a few months
later—specifically, ITU-T formal publication was in June, and ISO/IEC formal
publication was in November). While some previous treatments of the HEVC
standard have been published (e.g., [8]), this book provides a more comprehensive
and unified collection of key information about the new standard that will help the
community to understand it well and to make maximal use of its capabilities.

The HEVC project was formally launched in January 2010, when a joint Call
for Proposals (CfP) [4, 6, 10] was issued by the ITU-T Video Coding Experts
Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG). Before
launching the formal CfP, both organizations had conducted investigative work to
determine that it was feasible to create a new standard that would substantially
advance the state of the art in compression capability—relative to the prior major
standard known as H.264/MPEG-4 Advanced Video Coding (AVC) [2, 7, 9] (the
first version of which was completed in May 2003).

One notable aspect of the investigative work toward HEVC was the “key
technology area” (KTA) studies in VCEG that began around the end of 2004 and
included the development of publicly-available KTA software codebase for testing
various promising algorithm proposals. In MPEG, several workshops were held, and
a Call for Evidence (CFE) was issued in 2009. When the two groups both reached
the conclusion that substantial progress was possible and that working together on
the topic was feasible, a formal partnership was established and the joint CfP was
issued. The VCEG KTA software and the algorithmic techniques found therein were
used as the basis of many of the proposals submitted in response to both the MPEG
CfE and the joint CfP.

Interest in developing a new standard has been driven not only by the simple
desire to improve compression as much as possible—e.g., to ease the burden
of video on storage systems and global communication networks, but also to
help enable the deployment of new services, including capabilities that have not
previously been practical—such as ultra-high-definition television (UHDTV) and
video with higher-dynamic range, wider color gamut, and greater representation
precision than what is typically found today.

To formalize the partnership arrangement, a new joint organization was created,
called the Joint Collaborative Team on Video Coding (JCT-VC). The JCT-VC met
four times per year after its creation, and each meeting had hundreds of attending
participants and involved the consideration of hundreds of contribution documents
(all of which were made publicly available on the web as they were submitted for
consideration).

The project had an unprecedented scale, with a peak participation reaching about
300 people and more than 1,000 documents at a single meeting. Meeting notes were
publicly released on a daily basis during meetings, and the work continued between
meetings, with active discussions by email on a reflector with a distribution list with

1 Introduction 3

thousands of members, and with formal coordination between meetings in the form
of work by “ad hoc groups” to address particular topics and “core experiments”
to test various proposals. Essentially the entire community of relevant companies,
universities, and other research institutions was attending and actively participating
as the standard was developed.

There had been two previous occasions when the ITU’s VCEG and ISO/IEC’s
MPEG groups had formed similar partnerships. One was AVC, about a decade
earlier, and the other was what became known as MPEG-2 (which was Recom-
mendation H.262 in the ITU naming convention), about a decade before that.
Each of these had been major milestones in video coding history. About a
decade before those was when the standardization of digital video began, with the
creation of the ITU’s Recommendation 601 in 1982 for uncompressed digital video
representation and its Recommendation H.120 in 1984 as the first standard digital
video compression technology—although it would not be until the second version of
Recommendation H.261 was established in 1990 that a really adequate compression
design would emerge (and in several ways, even the HEVC standard owes its basic
design principles to the scheme found in H.261).

1.2 Compression Capability: The Fundamental Need

Uncompressed video signals generate a huge quantity of data, and video use has
become more and more ubiquitous. There is also a constant hunger for higher
quality video—e.g., in the form of higher resolutions, higher frame rates, and
higher fidelity—as well as a hunger for greater access to video content. Moreover,
the creation of video content has moved from the being the exclusive domain
of professional studios toward individual authorship, real-time video chat, remote
home surveillance, and even “always on” wearable cameras. As a result, video traffic
is the biggest load on communication networks and data storage world-wide—a
situation that is unlikely to fundamentally change; although anything that can help
ease the burden is an important development. HEVC offers a major step forward in
that regard [5].

Today, AVC is the dominant video coding technology used world-wide. As a
rough estimate, about half the bits sent on communication networks world-wide
are for coded video using AVC, and the percentage is still growing. However, the
emerging use of HEVC is likely to be the inflection point that will soon cause that
growth to cease as the next generation rises toward dominance.

MPEG-2 basically created the world of digital video television as we know it,
so while AVC was being developed, some people doubted that it could achieve
a similar degree of ubiquity when so much infrastructure had been built around
the use of MPEG-2. Although it was acknowledged that AVC might have better
compression capability, some thought that the entrenched universality of MPEG-2
might not allow a new non-compatible coding format to achieve “critical mass”.

4 G.J. Sullivan

When completed, AVC had about twice the compression capability of
MPEG-2—i.e., one could code video using only about half the bit rate while
still achieving the same level of quality—so that one could send twice as many
TV channels through a communication link or store twice as much video on a
disc without sacrificing quality. Alternatively, the improved compression capability
could be used to provide higher quality or enable the use of higher picture resolution
or higher frame rates than would otherwise be possible. AVC also emerged at
around the same time that service providers and disc storage format designers were
considering a transition to offer higher resolution “HDTV” rather than their prior
“standard definition” television services. Once system developers realized that they
needed to store and send twice as much data if they were going to use MPEG-2
instead of AVC for whatever video service they were trying to provide, most of
them decided they needed to find a transition path to AVC. While MPEG-2 video
remains a major presence today for legacy compatibility reasons, it is clearly fading
away in terms of importance.

HEVC offers the same basic value proposition today that AVC did when it
emerged—i.e., a doubling of compression capability. It can compress video about
twice as much as AVC without sacrificing quality, or it can alternatively be used to
enable delivery of higher resolutions and frame rates—or other forms of higher
quality, such as a higher dynamic range or higher precision for improved color
quality. It also comes at another time when new video services are emerging—this
time for UHDTV, higher dynamic range, and wider color gamut.

Compression capability—also known as “coding efficiency” or “compression
efficiency”—is the most fundamental driving force behind the adoption of modern
digital video compression technology, and HEVC is exceptionally strong in that
area. It is this meaning from which the High Efficiency Video Coding standard
derives its name. However, it is also important to remember that the standard
only provides encoders with the ability to compress video efficiently—it does not
guarantee any particular level of quality, since it does not govern whether or not
encoders will take full advantage of the capability of the syntax design (or whether
or not they will use that syntax for other purposes such as enhanced loss robustness).

1.3 Collaborative Development, Interoperability,
and Flexibility

As noted earlier, the HEVC standard was developed in an open process with very
broad participation. This helped to ensure that the design would apply generically
across a very broad range of applications, and that it was well studied and flexible
and would not contain quirky shortcomings that could have been prevented by
greater scrutiny during the design process.

Moreover, much of what can distinguish a good formal “standard” from simply
any particular well-performing technology product is the degree to which interop-

1 Introduction 5

erability is enabled across a breadth of products made by different entities. The goal
of the HEVC standard is not just to compress video well, but also to enable the
design to be used in many different products and services across a very wide range
of application environments. No assumption is made that encoders and decoders
will all work the same way—in fact, a great deal of intentional flexibility is built
into the design. Indeed, strictly speaking, it is incorrect to refer to a standard such as
HEVC or AVC as a “codec”—since the standard does not specify an encoder and a
decoder. Instead, it specifies only a common format—a common language by which
encoding and decoding systems, each made separately using different computing
architectures and with different design constraints and priorities, can nevertheless
communicate effectively.

A great deal of what characterizes a product has been deliberately left outside the
scope of the standard, particularly including the following:

• The entire encoding process: Encoder designers are allowed to encode video
using any searching and decision criteria they choose—so long as the format of
their output conforms to the format specifications of the standard. This particu-
larly includes the relative prioritization of various bitstream characteristics—the
standard allows encoders to be designed primarily for low complexity, primarily
for high coding efficiency, primarily to enable good recovery from data losses,
primarily to minimize real-time communication latency, etc.

• Many aspects of the decoding process: When presented with a complete and
uncorrupted coded bitstream, the standard requires decoders to produce partic-
ular decoded picture data values at some processing stage as their theoretical
“output”; however, it does not require the decoders to use the same exact
processing steps in order to produce that data.

• Data loss and corruption detection and recovery: The standard does not
govern what a decoder will do if it is presented with incomplete or corrupted
video data. However, in real-world products, coping with imperfect input is a
fundamental requirement.

• Extra functionalities: Operations such as random access and channel switching,
“trick mode” operations like fast-forwarding and smooth rewind, and other
functions such as bitstream splicing are all left out of the scope of the standard to
allow products to use the coded data as they choose.

• Pre-processing, post-processing, and display: Deliberate alteration of encoder
input data and post-decoding picture modification is allowed for whatever reason
the designers may choose, and how the video is ultimately displayed (including
key aspects such as the accuracy of color rendering) is each product’s own
responsibility.

All of this gives implementers a great deal of freedom and flexibility, while
governing only what is absolutely necessary to establish the ability for data that is
properly encoded by any “conforming” encoder to be decoded by any “conforming”
decoder (subject to profile/tier/level compatibility as further discussed below). It
does not necessarily make the job of the encoder and decoder designer especially
easy, but it enables products made by many different people to communicate

6 G.J. Sullivan

effectively with each other. In some cases, some freedom that is provided in
the video coding standard may be constrained in other ways, such as constraints
imposed by other specifications that govern usage in particular application environ-
ments.

Another key element of a good international standard is the quality of its
specification documentation and the availability of additional material to help
implementers to use the design and to use it well. In the case of HEVC (and AVC
and some other international standards before those), this includes the following:

• The text specification itself: in the case of HEVC version 1, the document [3]
is about 300 pages of carefully-written (although dense and not necessarily easy
to read) detailed specification text that very clearly describes all aspects of the
standard.

• Reference software source code: a collaboratively developed software codebase
that can provide a valuable example of how to use the standard format (for
both encoding and decoding) and help clarify any ambiguities or difficulties of
interpreting the specification document.

• Conformance data test set: a suite of tests to be performed to check implemen-
tations for proper conformance to the standard.

• Other standards designed to work with the technology: this includes many
other industry specifications and formal standards that have been developed,
maintained, and enhanced within the same broad industry community that
developed the video coding specification itself—e.g., data multiplexing designs,
systems signaling and negotiation mechanisms, storage formats, dynamic deliv-
ery protocols, etc.

• Many supplemental publications in industry and academic research
literature: a diverse source of tutorial information, commentary, and exploration
of the capabilities, uses, limitations, and possibilities for further enhancement
of the design. This book, of course, is intended to become a key part of this
phenomenon.

The syntax of the HEVC standard has been carefully designed to enable
flexibility in how it is used. Thus, the syntax contains features that give it a unified
syntax architecture that can be used in many different system environments and
can provide customized tradeoffs between compression and other aspects such as
robustness to data losses. Moreover, the high-level syntax framework of the standard
is highly extensible and provides flexible mechanisms for conveying (standard or
non-standard) supplemental enhancement information along with the coded video
pictures.

Maintenance of the standard specifications (and the development of further
enhancement extensions in a harmonized manner) is another significant part of the
phenomenon of standardization best practices. In the case of HEVC, the standard,
and the associated related standards, have been collaboratively developed by the
most well-established committees in the area and with a commitment to follow
through on the developments represented by the formal specifications.

1 Introduction 7

1.4 Complexity, Parallelism, Hardware, and Economies
of Scale

When a technical design such as HEVC is new, its practicality for implementation is
especially important. And when they emerged as new standards, H.261, MPEG-2,
and AVC were each rather difficult to implement in decoders—they stretched the
bounds of what was practical to produce at the time, although they each proved to be
entirely feasible in short order. In each of those cases, major increases in computing
power and memory capacity were needed to deploy the new technology. Of course,
as time has moved forward, Moore’s law has worked its magic, and what was once
a major challenge has become a mundane expectation.

Thankfully, HEVC is less of a problem than its predecessors in that regard [1].
Although its decoding requirements do exceed those of the prior AVC standard,
the increase is relatively moderate. The memory capacity requirement has not
substantially increased beyond that for AVC, and the computational resource
requirements for decoding are typically estimated in the range of 1.5–2 times those
for AVC. With a decade of technology progress since AVC was developed, this
makes HEVC decoding not really so much of a problem. The modesty of this
complexity increase was the result of careful attention to practicality throughout
the design process.

Moreover, the need to take advantage of parallel processing architectures was
recognized throughout the development of HEVC, so it contains key new features—
both large and small—that are friendly to parallel implementation. Each design
element was inspected for potential serialized bottlenecks, which were avoided as
much as possible. As parallelism is an increasingly important element of modern
processing architectures, we are proud that its use has been deeply integrated into
the HEVC design.

Another key issue is power consumption. Today’s devices increasingly demand
mobility and long battery life. It has already been well-demonstrated that HEVC
is entirely practical to implement using only software—even for high-resolution
video and even using only the computing resources found in typical laptops, tablets,
and even mobile phones. However, the best battery life will be obtained by the use
of custom silicon, and having the design stability, well-documented specification,
and cross-product interoperability of a well-developed international standard will
help convince silicon designers that investing in HEVC is appropriate. Once broad
support in custom silicon is available from multiple vendor sources, economies of
scale will further take hold and drive down the cost and power consumption to very
low levels (aside, perhaps, for patent licensing costs, as further discussed below).
Indeed, this is already evident, as some custom-silicon support is already emerging
in products.

Encoding is more of a challenge than decoding—quite a substantial challenge,
at this point. HEVC offers a myriad of choices to encoders, which must search
among the various possibilities and decide which to use to represent their video most
effectively. Although this is likely to present a challenge for some time to come,

8 G.J. Sullivan

preliminary product implementations have already shown that HEVC encoding is
entirely feasible. Moreover, experience has also shown that as time moves forward,
the effectiveness of encoders to compress video within the constraints imposed by
the syntax of a particular standard can continue to increase more and more, while
maintaining compatibility with existing decoders. Indeed, encoders for MPEG-2
and AVC have continued to improve, despite the limitations of their syntax.

1.5 Profiles, Levels, Tiers, and Extensibility

Although we tend to think of a standard as a single recipe for guaranteed inter-
operability, some variation in capabilities is necessary to support a broad range of
applications. In HEVC, as with some prior designs, this variation is handled by
specifying multiple “profiles” and “levels”. Moreover, for HEVC a new concept of
“tiers” has been introduced. However, the diversity of separate potential “islands” of
interoperability in version 1 of HEVC is quite modest—and depends on the intended
applications in a straightforward manner. Only three profiles are found in the first
version of the standard:

• Main profile: for use in the typical applications that are familiar to most
consumers today. This profile represents video data with 8 bits per sample and
the typical representation with a “luma” brightness signal and two “chroma”
channels that have half the luma resolution both horizontally and vertically.

• Main Still Picture profile: for use as still photography for cameras, or for
extraction of snapshots from video sequences. This profile is a subset of the
capabilities of the Main profile.

• Main 10 profile: supporting up to 10 bits per sample of decoded picture
precision. This profile provides increased bit depth for increased brightness
dynamic range, extended color-gamut content, or simply higher fidelity color
representations to avoid contouring artifacts and reduce rounding error. This
profile is a superset of the capabilities of the Main profile.

However, the syntax design is highly extensible, and various other profiles
are planned to be added in future extensions. The extensions under development
include major efforts on extensions of the range of supported video formats
(including higher bit depths and higher-fidelity chroma formats such as the use of
full-resolution chroma), layered coding scalability, and 3D multiview video. The
JCT-VC, and a new similar organization called the JCT-3V for 3D video work, have
continued to meet at the same meeting frequency to develop these extensions and
they remain very active in that effort—with more than 150 participants and more
than 500 contribution documents per meeting.

While profiles define the syntax and coding features that can be used for the
video content, a significant other consideration is the degree of capability within a
given feature set. This is the purpose of “levels”. Levels of capability are defined

1 Introduction 9

to establish the picture resolution, frame rate, bit rate, buffering capacity, and other
aspects that are matters of degree rather than basic feature sets. For HEVC, the
lowest levels have only low resolution and low frame rate capability—e.g., a typical
video format for level 1 may be only 176 � 144 resolution at 15 frames per second,
whereas level 4.1 would be capable of 1920 � 1080 HDTV at 60 frames per second,
and levels in version 1 are defined up to level 6.1, which is capable of 8192� 4320
video resolution at up to 120 frames per second.

However, when defining the levels of HEVC, a problem was encountered
between the demands of consumer use and those of professional use for similar
picture resolutions and frame rates. In professional environments, much higher bit
rates are needed for adequate quality than what would be necessary for consumer
applications. The solution for this was to introduce the concept of “tiers”. Several
levels in HEVC have both a Main tier and a High tier of capability specified, based
on the bit rates they are capable of handling.

1.6 Patent Rights Licensing

The consideration of a modern video coding design would be incomplete without
some understanding of the costs of the patent rights needed to use it. Digital video
technology is a subject of active research, investment, and innovation, and many
patents have been filed on advances in this field.

The international standardization organizations have patent policies that require
that technology cannot be included in a standard if the patent rights that are essential
to its implementation are known to not be available for licensing to all interested
parties on a world-wide basis under “reasonable and non-discriminatory” (RAND)
licensing terms. The idea behind this is that anyone should be able to implement an
international standard without being forced to agree to unreasonable business terms.
In other respects, the major standardization bodies generally do not get involved
in the licensing details for necessary patent rights—these are to be negotiated
separately, between the parties involved, outside the standardization development
process.

In recent history—e.g., for both AVC and MPEG-2, multiple companies have
gotten together to offer “pooled” patent licensing as a “one-stop shop” for licens-
ing the rights to a large number of necessary patents. A pool for HEVC patent
licensing has also recently begun to be formed and has announced preliminary
licensing terms. However, it is important for the community to understand that the
formation of such a pool is entirely separate from the development of the standard
itself. Patent holders are not required to join a pool, and even if they choose to join
a pool, they may also offer licenses outside the pool as well—as such pools are
non-exclusive licensing authorities. And licensees are thus not required to get their
licensing rights through such a pool and can seek any rights that are required on a
bilateral basis outside of the pool.

10 G.J. Sullivan

Patent pools and standardization do not offer perfect answers to the sticky
problems surrounding the establishment of known and reasonable costs for
implementing modern digital video technology. In fact, a number of substantial
disputes have arisen in relation to the previous major standards for video coding,
and such disputes may occur for HEVC as well. However, proposed proprietary
alternatives—including those asserted to be “open source” or “royalty free”—
are not necessarily an improvement over that situation, as they bring with them
their own legal ambiguity. For example, since those proprietary technologies are
not generally standardized, such designs may carry no assurances of licensing
availability or of licenses having “reasonable and non-discriminatory” terms.

It is likely to take some time for the industry to sort out the patent situation for
HEVC, as has been the case for other designs. There is little clear alternative to that,
since the only designs that are clearly likely to be free of patent rights are those
that were developed so long ago that all the associated patents have expired—and
such schemes generally may not have adequate technical capability. In regard to the
previous major international standards, the industry has ultimately sorted out the
business terms so that the technology could be widely used by all with reasonable
costs and a manageable level of business risk—and we certainly hope that this will
also be the case for HEVC.

1.7 Overview of This Book

This book collects together the key information about the design of the new
HEVC standard, its capabilities, and its emerging use in deployed systems. It has
been written by key experts on the subject—people who were directly and deeply
involved in developing and writing the standard itself and its associated software
and conformance testing suite or are well-known pioneering authorities on HEVC
hardware implementation architecture. We hope that this material will help the
industry and the community at large to learn how to take full advantage of the
promise shown by the new design to facilitate its widespread use.

Chapter 2 by Sjöberg and Boyce describes the high-level syntax of HEVC, which
provides a robust, flexible and extensible framework for carrying the coded video
and associated information to enable the video content to be used in the most
effective possible ways and in many different application environments.

Chapter 3 by Schwarz, Schierl, and Marpe covers the block structures and
parallelism features of HEVC, which establish the fundamental structure of its
coding design.

Chapter 4 by Lainema and Han describes the intra-picture prediction design in
HEVC, which has made it a substantial advance over prior technologies even for
still-picture coding.

Chapter 5 by Bross et al. describes inter-picture prediction, which is the heart
of what distinguishes a video coding design from other compression applications.
Efficient inter-picture prediction is crucial to what makes HEVC powerful and
flexible.

1 Introduction 11

Chapter 6 by Budagavi, Fuldseth, and Bjøntegaard describes the transform
and quantization related aspects of HEVC. Ultimately, no matter how effective a
prediction scheme is applied, there is generally a remaining unpredictable signal
that needs to be represented, and HEVC has greater flexibility and adaptivity in
its transform and quantization design than ever before, and it also includes some
additional coding modes in which the transform stage and sometimes also the
quantization stage are skipped altogether.

Chapter 7 by Norkin et al. discusses the in-loop filtering in HEVC, which
includes processing elements not found in older video coding designs. As with its
AVC predecessor, HEVC contains an in-loop deblocking filter—which has been
simplified and made more parallel-friendly for HEVC. Moreover, HEVC introduces
a new filtering stage called the sample-adaptive offset (SAO) filter, which can
provide both an objective and subjective improvement in video quality.

Chapter 8 by Sze and Marpe covers the entropy coding design in HEVC, through
which all of the decisions are communicated as efficiently as possible. HEVC
builds on the prior concepts of context-based arithmetic coding (CABAC) for this
purpose—pushing ever closer to the inherent entropy limit of efficiency while
minimizing the necessary processing requirements, enabling the use of parallel
processing, and limiting worst-case behavior.

Chapter 9 by Suzuki et al. covers the compression performance of the
design—investigating this crucial capability in multiple ways for various example
applications—and including both objective and subjective performance testing. It
shows the major advance of HEVC relative to its predecessors. It also shows that
the compression improvement cuts across a very broad range of applications, rather
than having only narrow benefits for particular uses.

Chapter 10 by Tikekar et al. describes hardware architecture design for HEVC
decoding. Decoders are likely to vastly outnumber encoders, and minimizing their
cost and power consumption is crucial to widespread use.

Chapter 11 by Tsai, Tsai, and Chen describes hardware architecture design
for HEVC encoding. While the requirements for making a decoder are relatively
clear—i.e., to properly decode the video according to the semantics of the syntax
of the standard—encoders present the open-ended challenge of determining how to
search the vast range of possible indications that may be carried by the syntax and
select the decisions that will enable good compression performance while keeping
within the limits of practical implementation.

We are proud to provide the community with this timely and valuable information
collected together into one volume, and we hope it will help spread an understanding
of the HEVC standard and of video coding design in general. We expect this book
to facilitate the development and widespread deployment of HEVC products and of
video-enabled devices and services in general.

12 G.J. Sullivan

References

1. Bossen F, Bross B, Sühring K, Flynn D (2012) HEVC complexity and implementation analysis.
IEEE Trans Circuits Syst Video Technol 22(12):1685–1696

2. ITU-T Rec. H.264 and ISO/IEC 14496-10 (2003) Advanced video coding (May 2003 and
subsequent editions)

3. ITU-T Rec. H.265 and ISO/IEC 23008-2 (2013) High efficiency video coding. Final draft
approval Jan. 2013 (formally published by ITU-T in June, 2013, and in ISO/IEC in Nov. 2013)

4. ITU-T SG16 Q6 and ISO/IEC JTC1/SC29/WG11 (2010) Joint call for proposals on
video compression technology. ITU-T SG16 Q6 document VCEG-AM91 and ISO/IEC
JTC1/SC29/WG11 document N11113, Kyoto, 22 Jan. 2010

5. Ohm J-R, Sullivan GJ, Schwarz H, Tan TK, Wiegand T (2012) Comparison of the coding
efficiency of video coding standards - including High Efficiency Video Coding (HEVC). IEEE
Trans Circuits Syst Video Technol 22(12):1669–1684

6. Sullivan GJ, Ohm J-R (2010) Recent developments in standardization of High Efficiency Video
Coding (HEVC). In: Proc. SPIE. 7798, Applications of Digital Image Processing XXXIII, no.
77980V, Aug. 2010

7. Sullivan GJ, Wiegand T (2005) Video compression - from concepts to the H.264/AVC standard.
Proc IEEE 93(1):18–31

8. Sullivan GJ, Ohm J-R, Han W-J, Wiegand T (2012) Overview of the High Efficiency Video
Coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649–1668

9. Wiegand T, Sullivan GJ, Bjøntegaard G, Luthra A (2003) Overview of the H.264/AVC video
coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576

10. Wiegand T, Ohm J-R, Sullivan GJ, Han W-J, Joshi R, Tan TK, Ugur K (2010) Special section
on the joint call for proposals on High Efficiency Video Coding (HEVC) standardization. IEEE
Trans Circuits Syst Video Technol 20(12):1661–1666

Chapter 2
HEVC High-Level Syntax

Rickard Sjöberg and Jill Boyce

Abstract An HEVC bitstream consists of a sequence of data units called network
abstraction layer (NAL) units. Some NAL units contain parameter sets that carry
high-level information regarding the entire coded video sequence or a subset of the
pictures within it. Other NAL units carry coded samples in the form of slices that
belong to one of the various picture types that are defined in HEVC. Some picture
types indicate that the picture can be discarded without affecting the decodability
of other pictures, and other picture types indicate positions in the bitstream where
random access is possible. The slices contain information on how decoded pictures
are managed, both what previous pictures to keep and in which order they are to be
output. Some NAL units contain optional supplementary enhancement information
(SEI) that aids the decoding process or may assist in other ways, such as providing
hints about how best to display the video. The syntax elements that describe the
structure of the bitstream or provide information that applies to multiple pictures
or to multiple coded block regions within a picture, such as the parameter sets,
reference picture management syntax, and SEI messages, are known as the “high-
level syntax” part of HEVC. A considerable amount of attention has been devoted to
the design of the high-level syntax in HEVC, in order to make it broadly applicable,
flexible, robust to data losses, and generally highly capable of providing useful
information to decoders and receiving systems.

R. Sjöberg (�)
Ericsson Research, Ericsson, Stockholm, Sweden
e-mail: rickard.sjoberg@ericsson.com

J. Boyce
Vidyo, Inc., Hackensack, NJ, USA
e-mail: jill@vidyo.com

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__2,
© Springer International Publishing Switzerland 2014

13

mailto:rickard.sjoberg@ericsson.com
mailto:jill@vidyo.com

14 R. Sjöberg and J. Boyce

2.1 Introduction

The “high-level syntax” part of HEVC [7, 9] includes the structure of the bitstream
as well as signaling of high-level information that applies to one or more entire slices
or pictures of a bitstream. For example, the high-level syntax indicates the spatial
resolution of the video, which coding tools are used, and describes random access
functionalities of the bitstream. In addition to the signaling of syntax elements, the
high-level tool decoding processes associated with the syntax elements are also
considered to be included in the high level syntax part of the standard. Example
high-level syntax decoding processes include reference picture management and
the output of decoded pictures.

Figure 2.1 shows an HEVC encoder and decoder. Input pictures are fed to an
encoder that encodes the pictures into a bitstream. An HEVC bitstream consists of a
sequence of data units called network abstraction layer (NAL) units, each of which
contains an integer number of bytes. The first two bytes of a NAL unit constitutes
the NAL unit header, while the rest of the NAL unit contains the payload data.
Some NAL units carry parameter sets containing control information that apply to
one or more entire pictures, while other NAL units carry coded samples within an
individual picture.

The NAL units are decoded by the decoder to produce the decoded pictures
that are output from the decoder. Both the encoder and decoder store pictures in
a decoded picture buffer (DPB). This buffer is mainly used for storing pictures so
that previously coded pictures can be used to generate prediction signals to use when
coding other pictures. These stored pictures are called reference pictures.

Each picture in HEVC is partitioned into one or multiple slices. Each slice is
independent of other slices in the sense that the information carried in the slice is
coded without any dependency on data from other slices within the same picture. A
slice consists of one or multiple slice segments, where the first slice segment of a
slice is called independent slice segment and is independent of other slice segments.
The subsequent slice segments, if any, are called dependent slice segments since
they depend on previous slice segments.

Input
pictures

Decoded
pictures

Encoder

Encoding
engine

DPB

Decoder

Decoding
engine

DPB
Bitstream

NAL units

Fig. 2.1 Overview of HEVC encoding and decoding

2 HEVC High-Level Syntax 15

Each coded slice segment consists of a slice segment header followed by slice
segment data. The slice segment header carries control information for the slice
segment, and the slice segment data carries the coded samples. The independent
slice header is referred to as the slice header, since the information in this header
pertains to all slice segments of the slice.

2.2 The NAL Unit Header and the HEVC Bitstream

There are two classes of NAL units in HEVC—video coding layer (VCL) NAL
units and non-VCL NAL units. Each VCL NAL unit carries one slice segment of
coded picture data while the non-VCL NAL units contain control information that
typically relates to multiple coded pictures. One coded picture, together with the
non-VCL NAL units that are associated with the coded picture, is called an HEVC
access unit. There is no requirement that an access unit must contain any non-VCL
NAL units, and in some applications such as video conferencing, most access units
do not contain non-VCL NAL units. However, since each access unit contains a
coded picture, it must consist of one or more VCL NAL units—one for each slice
(or slice segment) that the coded picture is partitioned into.

2.2.1 The NAL Unit Header

Figure 2.2 shows the structure of the NAL unit header, which is two bytes long.
All HEVC NAL unit headers, for both VCL and non-VCL NAL units, start with
this two-byte NAL unit header that is designed to make it easy to parse the main
properties of a NAL unit; what type it is, and what layer and temporal sub-layer it
belongs to.

The first bit of the NAL unit header is always set to ‘0’ in order to prevent
generating bit patterns that could be interpreted as MPEG-2 start codes in legacy
MPEG-2 systems environments. The next six bits contains the type of the NAL
unit, identifying the type of data that is carried in the NAL unit. Six bits means
that there are 64 possible NAL unit type values. The values are allocated equally
between VCL and non-VCL NAL units so they have 32 types each. NAL unit types
will be explained in more detail in Sect. 2.2.2 and 2.2.4.

+---------------+---------------+
|0|1|2|3|4|5|6|7|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|F| NALType | LayerId | TID |
+-------------+-----------------+Fig. 2.2 The two-byte NAL

unit header

16 R. Sjöberg and J. Boyce

B2

I0 P3P1

B4 P1

I0 P4P2

P3

temporal sub-layer 1a b

temporal sub-layer 0

temporal sub-layer 1

temporal sub-layer 0

Fig. 2.3 Temporal sub-layer examples

The following six bits contains a layer identifier that indicates what layer the
NAL unit belongs to, intended for use in future scalable and layered extensions.
Although the first version of HEVC, which was published in June 2013, supports
temporal scalability, it does not include any other scalable or layered coding so the
layer identifier (layer ID) is always set to ‘000000’ for all NAL units in the first
version. In later versions of HEVC, the layer ID is expected to be used to identify
what spatial scalable layer, quality scalable layer, or scalable multiview layer the
NAL belongs to. These later versions are “layered extensions” to the first version
of HEVC and designed to be backwards compatible to the first version [10]. This is
achieved by enforcing that all NAL units of the lowest layer (also known as the base
layer) in any extension bitstream must have the layer ID set to ‘000000’, and that
this lowest layer must be decodable by legacy HEVC decoders that only support the
first version of HEVC. For this reason, version one decoders discard all NAL units
for which the layer ID is not equal to ‘000000’. This will filter out all layers except
the base layer which can then be correctly decoded.

The last three bits of the NAL unit header contains the temporal identifier of
the NAL unit, to represent seven possible values, with one value forbidden. Each
access unit in HEVC belongs to one temporal sub-layer, as indicated by the temporal
ID. Since each access unit belongs to one temporal sub-layer, all VCL NAL units
belonging to the same access unit must have the same temporal ID signaled in their
NAL unit headers.

Figure 2.3 shows two different example referencing structures for pictures in a
coded video sequence, both with two temporal sub-layers corresponding to temporal
ID values of 0 and 1. The slice type is indicated in the figure using I, P, and B, and
the arrows show how the pictures reference other pictures. For example, picture B2

in Fig. 2.3a is a picture using bi-prediction that references pictures I0 and P1, see
Sect. 2.4.4 for more details on prediction types.

Two very important concepts in order to understand HEVC referencing structures
are the concepts of decoding order and output order. Decoding order is the order in
which the pictures are decoded. This is the same order as pictures are included in
the bitstream and is typically the same order as the pictures are encoded, and is thus
also sometimes referred to as bitstream order. There are media transport protocols
that allow reordering of coded pictures in transmission, but then the coded pictures

2 HEVC High-Level Syntax 17

are reordered to be in decoding order before decoding. The decoding order for the
pictures in Fig. 2.3, and other figures in this chapter, is indicated by the subscript
numbers inside the pictures.

Output order is the order in which pictures are output from the DPB, which is
the order in which the pictures are generally intended to be displayed. Typically, all
pictures are output, but there is an optional picture output flag in the slice header
that, when set equal to 0, will suppress the output of a particular picture. The HEVC
standard uses the term “output” rather than “display” as a way to establish a well-
defined boundary for the scope of the standard—what happens after the point of
“output” specified in the standard, such as exactly how (and whether) the pictures
are displayed and whether any post-processing steps are applied before the display,
is considered to be outside the scope of the standard.

Note that pictures that are output are not necessarily displayed. For example,
during transcoding the output pictures may be re-encoded without being displayed.
The output order of each picture is explicitly signaled in the bitstream, using an
integer picture order count (POC) value. The output order of the pictures in each
coded video sequence (CVS, see Sect. 2.2.3) is determined separately, such that all
output pictures for a particular CVS are output before any pictures of the next CVS
that appears in the bitstream in decoding order. Output pictures within each CVS
are always output in increasing POC value order. The output order in Fig. 2.3, and
other figures in this chapter, is shown by the order of the pictures themselves where
pictures are output from left to right. Note that the decoding order and the output
order is the same in Fig. 2.3b while this is not the case in Fig. 2.3a. The POC values
for pictures in different CVSs are not relevant to each other—only the relative POC
relationships within each CVS matter.

HEVC prohibits the decoding process of pictures of any lower temporal sub-
layer from having any dependencies on data sent for a higher temporal sub-layer. As
shown in Fig. 2.3, no pictures in the lower sub-layer reference any pictures in the
higher sub-layer. Since there are no dependencies from higher sub-layers to lower
sub-layers, it is possible to remove higher sub-layers from a bitstream to create a
new bitstream with fewer pictures in it. The process of removing sub-layers is called
sub-bitstream extraction, and the resulting bitstream is called a sub-bitstream of the
original bitstream. Sub-bitstream extraction is done by discarding all NAL units
which have a temporal ID higher than a target temporal ID value called HighestTid.
HEVC encoders are required to ensure that each possible such sub-bitstream is itself
a valid HEVC bitstream.

Discarding higher sub-layer pictures can either be done in the path between the
encoder and decoder, or the decoder itself may choose to discard higher sub-layers
before decoding. One use-case of discarding sub-layers is rate adaptation, where
a node in a network between the encoder and decoder removes higher sub-layers
when network congestion between itself and the decoder is detected.

18 R. Sjöberg and J. Boyce

Table 2.1 The 32 HEVC VCL NAL unit types

Trailing non-IRAP pictures

Non-TSA, non-STSA trailing 0 TRAIL_N Sub-layer non-reference
1 TRAIL_R Sub-layer reference

Temporal sub-layer access 2 TSA_N Sub-layer non-reference
3 TSA_R Sub-layer reference

Step-wise temporal sub-layer 4 STSA_N Sub-layer non-reference
5 STSA_R Sub-layer reference

Leading pictures

Random access decodable 6 RADL_N Sub-layer non-reference
7 RADL_R Sub-layer reference

Random access skipped leading 8 RASL_N Sub-layer non-reference
9 RASL_R Sub-layer reference

Intra random access point (IRAP) pictures

Broken link access 16 BLA_W_LP May have leading pictures
17 BLA_W_RADL May have RADL leading
18 BLA_N_LP Without leading pictures

Instantaneous decoding refresh 19 IDR_W_RADL May have leading pictures
20 IDR_N_LP Without leading pictures

Clean random access 21 CRA May have leading pictures

Reserved

Reserved non-IRAP 10–15 RSV
Reserved IRAP 22–23 RSV
Reserved non-IRAP 24–31 RSV

2.2.2 VCL NAL Unit Types

Table 2.1 shows all 32 VCL NAL unit types and their NAL unit type (NALType
in Fig. 2.2) values in the NAL unit header. All VCL NAL units of the same access
unit must have the same value of NAL unit type and that value defines the type of
the access unit and its coded picture. For example, when all VCL NAL units of an
access unit have NAL unit type equal to 21, the access unit is called a CRA access
unit and the coded picture is called a CRA picture. There are three basic classes of
pictures in HEVC: intra random access point (IRAP) pictures, leading pictures, and
trailing pictures.

2.2.2.1 IRAP Pictures

The IRAP picture types consist of NAL unit types 16–23. This includes IDR, CRA,
and BLA picture types as well as types 22 and 23, which currently are reserved for
future use. All IRAP pictures must belong to temporal sub-layer 0 and be coded
without using the content of any other pictures as reference data (i.e., using only
“intra-picture” or “intra” coding techniques). Note that pictures that are intra coded

2 HEVC High-Level Syntax 19

but not marked as IRAP pictures are allowed in a bitstream. The IRAP picture types
are used to provide points in the bitstream where it is possible to start decoding. The
IRAP pictures themselves are therefore not allowed to be dependent on any other
picture in the bitstream.

The first picture of a bitstream must be an IRAP picture, but there may be
many other IRAP pictures throughout the bitstream. IRAP pictures also provide
the possibility to tune in to a bitstream, for example when starting to watch TV or
switching from one TV channel to another. IRAP pictures can also be used to enable
temporal position seeking in video content—for example to move the current play
position in a video program by using the control bar of a video player. Finally, IRAP
pictures can also be used to seamlessly switch from one video stream to another in
the compressed domain. This is called bitstream switching or splicing, and it can
occur between two live video streams, between a live stream and a stored video file,
or between two stored video files. It is always possible to decode from the IRAP
picture and onwards to output any subsequent pictures in output order even if all
pictures that precede the IRAP picture in decoding order are discarded from the
bitstream.

When coding content for storage and later playback or for broadcast applications,
IRAP pictures are typically evenly distributed to provide a similar frequency of
random access points throughout a bitstream. In real-time communication applica-
tions in which random access functionality is not so important or the relatively large
number of bits needed to send an IRAP picture is a significant burden that would
increase communication delay, IRAP pictures may be very infrequently sent, or may
only be sent when some feedback signal indicates that the video data has become
corrupted and the scene needs to be refreshed.

2.2.2.2 Leading and Trailing Pictures

A leading picture is a picture that follows a particular IRAP picture in decoding
order and precedes it in output order. A trailing picture is a picture that follows
a particular IRAP picture in both decoding order and output order. Figure 2.4
shows examples of leading and trailing pictures. Leading and trailing pictures are
considered to be associated with the closest previous IRAP picture in decoding
order, such as picture I1 in Fig. 2.4. Trailing pictures must use one of the trailing
picture NAL unit types 0–5. Trailing pictures of a particular IRAP picture are not
allowed to depend on any leading pictures nor on any trailing pictures of previous
IRAP pictures; instead they can only depend on the associated IRAP picture and
other trailing pictures of the same IRAP picture. Also, all leading pictures of an
IRAP picture must precede, in decoding order, all trailing pictures that are associated
with the same IRAP picture. This means that the decoding order of associated
pictures is always: (1) The IRAP picture, (2) the associated leading pictures, if any,
and then (3) the associated trailing pictures, if any.

20 R. Sjöberg and J. Boyce

B3 B4

IRAP

B2

P0 I1

B7 B8

B6

P5

leading pictures trailing pictures

Fig. 2.4 Leading pictures and trailing pictures

P1 P3

TSA

P2

I0 P4

P5 P7

P6

P8

Fig. 2.5 TSA example

There are three types of trailing pictures in HEVC: temporal sub-layer access
(TSA) pictures, step-wise temporal sub-layer access (STSA) pictures, and ordinary
trailing pictures (TRAIL).

2.2.2.3 Temporal Sub-layer Access (TSA) Pictures

A TSA picture is a trailing picture that indicates a temporal sub-layer switching
point. The TSA picture type can only be used for a picture if it is guaranteed that
no picture that precedes the TSA picture in decoding order with a temporal ID that
is greater than or equal to the temporal ID of the TSA picture itself is used for
prediction of the TSA picture or any subsequent (in decoding order) pictures in the
same or higher temporal sub-layer as the TSA picture. For example, picture P6 in
Fig. 2.5 can use the TSA picture type since only previous pictures in temporal sub-
layer 0 are used for prediction of the TSA picture itself and subsequent pictures in
decoding order.

When a decoder is decoding a subset of the temporal sub-layers in the bitstream
and encounters a TSA picture type of the temporal sub-layer just above the
maximum temporal sub-layer it is decoding, it is possible for the decoder to switch
up to and decode any number of additional temporal sub-layers. For the example in
Fig. 2.5, a decoder that decodes only temporal sub-layer 0 can from the TSA picture

2 HEVC High-Level Syntax 21

either (1) keep decoding temporal sub-layer 0 only, (2) decide to start decoding
temporal sub-layer 1 as well as sub-layer 0, or (3) start to decode all three sub-layers.
A similar action is possible for a network node that is forwarding only the lowest
temporal sub-layer, for example due to a previous network congestion situation.
The network node can inspect the NAL unit type of incoming pictures that have
a temporal ID equal to 1. This does not require a lot of computational resources
since the NAL unit type and the temporal ID are found in the NAL unit header and
are easy to parse. When a TSA picture of temporal sub-layer 1 is encountered, the
network node can switch to forward any temporal sub-layer pictures succeeding the
TSA picture in decoding order without any risk of the decoder not being able to
properly decode them as a result of not having all necessary reference pictures that
they depend on.

2.2.2.4 Step-wise Temporal Sub-layer Access (STSA) Pictures

The STSA picture type is similar to the TSA picture type, but it only guarantees that
the STSA picture itself and pictures of the same temporal ID as the STSA picture
that follow it in decoding order do not reference pictures of the same temporal ID
that precede the STSA picture in decoding order. The STSA pictures can therefore
be used to mark positions in the bitstream where it is possible to switch to the sub-
layer with the same temporal ID as the STSA picture, while the TSA pictures can
mark positions in the bitstream where it is possible to switch up to any higher sub-
layer. One example of an STSA picture in Fig. 2.5 is picture P2. This picture cannot
be a TSA picture since P3 references P1. However, picture P2 can be an STSA picture
because P2 does not reference any picture of sub-layer 1, nor does any sub-layer
1 picture that follows P2 in decoding order reference any sub-layer 1 picture that
precedes P2 in decoding order. Both TSA and STSA pictures must have a temporal
ID higher than 0.

Note also that since prediction from a higher to a lower temporal sub-layer is
forbidden in HEVC, it is always possible at any picture to down-switch to a lower
temporal sub-layer, regardless of the picture type or temporal sub-layer.

2.2.2.5 Ordinary Trailing (TRAIL) Pictures

Ordinary trailing pictures are denoted with the enumeration type TRAIL. Trailing
pictures may belong to any temporal sub-layer. They may reference the associated
IRAP picture and other trailing pictures associated with the same IRAP picture, but
they cannot reference leading pictures (or any other pictures that are not trailing
pictures associated with the same IRAP picture). They also cannot be output after
the next IRAP picture in decoding order is output. Note that all TSA and STSA
pictures could instead be marked as TRAIL pictures, and that all TSA pictures could
be marked as STSA pictures. It is, however, recommended that trailing pictures
should use the most restrictive type in order to indicate all possible temporal sub-
layer switching points that exist in the bitstream.

22 R. Sjöberg and J. Boyce

2.2.2.6 Instantaneous Decoding Refresh (IDR) Pictures

The IDR picture is an intra picture that completely refreshes the decoding process
and starts a new CVS (see Sect. 2.2.3). This means that neither the IDR picture nor
any picture that follows the IDR picture in decoding order can have any dependency
on any picture that precedes the IDR picture in decoding order. There are two sub-
types of IDR pictures, type IDR_W_RADL that may have associated random access
decodable leading (RADL) pictures and type IDR_N_LP that does not have any
leading pictures. Note that it is allowed, but not recommended, for an encoder to
use type IDR_W_RADL even though the IDR picture does not have any leading
pictures. It is however forbidden to use type IDR_N_LP for an IDR that has leading
pictures. The reason for having two different IDR picture types is to enable system
layers to know at random access whether the IDR picture is the first picture to output
or not. The POC value of an IDR picture is always equal to zero. Thus, the leading
pictures associated with an IDR picture, if any, all have negative POC values.

2.2.2.7 Clean Random Access (CRA) Pictures

A CRA picture is an intra picture that, in contrast to an IDR picture, does not refresh
the decoder and does not begin a new CVS. This enables leading pictures of the
CRA picture to depend upon pictures that precede the CRA picture in decoding
order. Allowing such leading pictures typically makes sequences containing CRA
pictures more compression efficient than sequences containing IDR pictures (e.g.,
about 6 %, as reported in [2]).

Random access at a CRA picture is done by decoding the CRA picture, its
leading pictures that are not dependent on any picture preceding the CRA picture
in decoding order (see Sect. 2.2.2.8 below), and all pictures that follow the CRA in
both decoding and output order. Note that a CRA picture does not necessarily have
associated leading pictures.

2.2.2.8 Random Access Decodable Leading (RADL) and Random
Access Skipped Leading (RASL) Pictures

The leading pictures must be signaled using either the RADL or RASL NAL unit
type. RADL and RASL pictures can belong to any temporal sub-layer, but they are
not allowed to be referenced by any trailing picture. A RADL picture is a leading
picture that is guaranteed to be decodable when random access is performed at the
associated IRAP picture. Therefore, RADL pictures are only allowed to reference
the associated IRAP picture and other RADL pictures of the same IRAP picture.

A RASL picture is a leading picture that may not be decodable when random
access is performed from the associated IRAP picture. Figure 2.6 shows two RASL
pictures which are both non-decodable since picture P2 precedes the CRA picture in
decoding order. Because of its position in decoding order, a decoder that performs

2 HEVC High-Level Syntax 23

IRAP

P0 P2

P6 P5

P4

I3 P7I1

RASL

RASL RADL

CRA TRAIL

Fig. 2.6 RADL and RASL pictures

random access at the position of the CRA picture will not decode the P2 picture, and
therefore cannot decode these RASL pictures and will discard them. Even though it
is not forbidden to use the RASL type for decodable leading pictures, such as the
RADL picture in Fig. 2.6, it is recommended to use the RADL type when possible
to be more network friendly. Only other RASL pictures are allowed to be dependent
on a RASL picture. This means that every picture that depends on a RASL picture
must also be a RASL picture. RADL and RASL pictures may be mixed in decoding
order, but not in output order. RASL pictures must precede RADL pictures in output
order.

All leading pictures of an IDR_W_RADL picture must be decodable and use the
RADL type. RASL pictures are not allowed to be associated with any IDR picture.
A CRA picture may have both associated RADL and RASL pictures, as shown
in Fig. 2.6. RASL pictures are allowed to reference the IRAP picture preceding
the associated IRAP picture and may also reference other pictures that follow that
IRAP picture in decoding order, but cannot reference earlier pictures in decoding
order—e.g., the RASL pictures in Fig. 2.6 cannot reference the picture P0.

There are three constraints in HEVC that aim to eliminate uneven output
of pictures when performing random access. Two of the constraints depend on
the variable PicOutputFlag which is set for each picture and indicates whether
the picture is to be output or not. This variable is set to 0 when a flag called
pic_output_flag is present in the slice header and is equal to 0, or when the current
picture is a RASL picture and the associated IRAP picture is the first picture in the
CVS (see Sect. 2.2.3). Otherwise PicOutputFlag is set equal to 1.

The first constraint is that any picture that has PicOutputFlag equal to 1 that
precedes an IRAP picture in decoding order must precede the IRAP picture in
output order. The structure in Fig. 2.7a is forbidden by this constraint, since picture
P1 precedes the CRA in decoding order but follows it in output order. If this was
allowed and random access was made at the CRA picture, picture P1 would be
missing, resulting in uneven output.

The second constraint is that any picture that has PicOutputFlag equal to 1
that precedes an IRAP picture in decoding order must precede any RADL picture
associated with the IRAP picture in output order. A referencing structure that is

24 R. Sjöberg and J. Boyce

I2 P1 P3 P0 P3 P1 I2

RADL CRACRA

P0

a b

Fig. 2.7 Examples of disallowed referencing structures

P0

B2

P1 I3 P10

B12

P11

B14

I13

B16

P15

CRACRA

RASL

B4

a b

Fig. 2.8 Original (a) and new (b) referencing structures before splicing has occurred

disallowed by this constraint is shown in Fig. 2.7b since P1 precedes I2 but follows
P3 in output order. If this referencing structure was allowed and random access was
made at the CRA picture, the missing P1 picture would cause uneven output.

The third constraint is that all RASL pictures must precede any RADL picture
in output order. Since RASL pictures are discarded at random access but RADL
are not, any RASL picture that would be displayed after a RADL picture could
otherwise potentially cause uneven output upon random access.

2.2.2.9 Splicing and Broken Link Access (BLA) Pictures

Besides using a CRA picture for random access, it is also possible to use a CRA
picture for splicing video streams—where a particular IRAP access unit and all
subsequent access units of the original bitstream are replaced by an IRAP access
unit and the subsequent access units from a new bitstream. The CRA picture is the
most compression efficient IRAP picture type so splicing at CRA picture positions
may be the most common splicing case.

Figure 2.8a shows an example original bitstream before splicing where the
pictures preceding the CRA picture in the bitstream have been highlighted by a
dotted box. Figure 2.8b shows an example new bitstream where the IRAP picture
and the pictures that follow it in the bitstream are highlighted.

If the CRA picture is followed by RASL pictures, the RASL pictures may not be
decodable after splicing since they may reference one or more pictures that are not in
the resulting bitstream, e.g. the picture P11 in Fig. 2.8b. The decoder should therefore
not try to decode those RASL pictures. One way to prevent the decoder from trying

2 HEVC High-Level Syntax 25

P0

B2

P1 I13

B16

P15 P0

B2

P1

B14

I13

B16

P15

BLACRA

RASL

a b

Fig. 2.9 Bitstream after splicing when discarding RASL pictures (a) and keeping RASL pictures
and converting the CRA picture to BLA (b)

to decode these RASL pictures would be to discard them during splicing. The result
for splicing the two streams in Fig. 2.8 by discarding RASL pictures is shown in
Fig. 2.9a. Note that RADL pictures, if present, could either be kept or discarded.

A disadvantage with this method of discarding RASL pictures is that discarding
data in a stream may impact system layer buffers. The splicer may therefore need
to be capable of modifying low-level system parameters. If the RASL pictures are
forwarded, the system layer buffers are not affected.

Another problem is that the POC values that follow the splicing point would
need to indicate the proper output order relationship relative to the pictures that
precede the splicing point, since a CRA picture does not begin a new CVS. This
could require modification of all POC values that follow the splicing point in the
resulting CVS.

An alternative splicing option that is available in HEVC is a “broken link”
which indicates that the POC timeline, and the prediction from preceding pictures
that RASL pictures may depend on, are broken when splicing is done. Unless the
decoder is informed of the broken link, there could be serious visual artifacts if the
decoder tries to decode the RASL pictures or if the POC values after the splice point
are not appropriately aligned. To avoid visual artifacts, a decoder must be informed
when a splicing operation has occurred in order to know whether the associated
RASL pictures (if present) should be decoded or not. In HEVC, a broken link access
(BLA) picture NAL unit type can be used for such spliced CRA pictures.

During splicing, the CRA picture should be re-typed as a BLA picture. The result
of such an operation for the example in Fig. 2.8 is shown in Fig. 2.9b where the
RASL picture is kept and the CRA picture is re-typed as a BLA picture. A decoder
that encounters BLA and CRA pictures will discard any RASL pictures associated
with BLA pictures but decode the RASL pictures associated with CRA pictures. All
RADL pictures are required to be decoded.

Like an IDR picture, a BLA picture starts a new CVS and resets the POC
relationship calculation. However, the POC value assigned to a BLA picture is not
the value 0—instead, the POC value is set equal to the POC value signaled in the
slice header of the BLA picture—which is a necessary adjustment since the POC
value for a CRA picture would likely be non-zero before its conversion to a BLA

26 R. Sjöberg and J. Boyce

picture, and changing its POC value to zero would change its POC relationship with
other pictures that follow it in decoding order. Note that the BLA picture type is
allowed to be used even though no splicing has occurred.

IDR and BLA picture types may look similar, and converting a CRA picture into
an IDR picture may look like a possibility during splicing. This is certainly possible
but not easy in practice. Firstly, RASL pictures are not allowed to be associated with
IDR pictures, so their presence has to be checked before it can be decided whether
the IDR picture type actually can be used. Alternatively they can be removed but
then it might be necessary to recalculate the buffer parameters. Secondly, the syntax
of an IDR picture slice segment header differs for CRA and BLA pictures. One
example is that POC information is signaled for CRA and BLA pictures but not for
IDR pictures. Therefore the splicer needs to rewrite the slice segment header of the
picture. None of this is needed if BLA is chosen, then changing the NAL unit type
in the NAL unit headers is sufficient.

As shown in Table 2.1, there are three BLA NAL unit types in HEVC.
BLA_N_LP for which leading pictures are forbidden, BLA_W_RADL for which
RASL pictures are forbidden but RADL pictures may be present, and BLA_W_LP
for which both RASL and RADL pictures are allowed. Even though it is recom-
mended that the splicer checks the subsequent leading picture types and uses the
correct BLA type in the spliced output bitstream, it is allowed for a splicer to always
use BLA_W_LP. By this, the splicer does not need to inspect the NAL units that
follow to check for leading pictures.

2.2.2.10 Sub-layer Reference and Sub-layer Non-reference Pictures

As can be seen in Table 2.1, each leading picture and trailing picture type has
two type values. The even picture type numbers indicate sub-layer non-reference
pictures and odd picture type numbers indicate sub-layer reference pictures. An
encoder can use the sub-layer non-reference picture types for pictures that are not
used for reference for prediction of any picture in the same temporal sub-layer.
Note that a sub-layer non-reference picture may still be used as a reference picture
for prediction of a picture in a higher temporal sub-layer. A network node can use
this information to discard individual sub-layer non-reference pictures of the highest
sub-layer that it operates on.

Figure 2.10 shows an example where pictures that may use the sub-layer non-
reference picture NAL unit types are indicated by an asterisk (*). These are the
pictures that are not used for reference by pictures of the same temporal sub-layer,
i.e. they do not have an arrow to a picture of the same layer. If HighestTid is
two, pictures B4, B7, and B8 may be individually discarded without affecting the
ability to decode other pictures in temporal sub-layers up to that sub-layer, but not
other pictures. If HighestTid is one, picture B6 could be similarly discarded, and if
HighestTid is zero, picture P1 could be similarly discarded.

2 HEVC High-Level Syntax 27

B3 B4
*

B2

I0 P1
*

B7
* B8

*

B6
*

I5

Fig. 2.10 Sub-layer reference and sub-layer non-reference pictures

2.2.2.11 Reserved and Unspecified VCL NAL Unit Types

In addition to the VCL NAL unit types described above, Table 2.1 contains
several reserved VCL NAL unit types, which are divided into IRAP and non-
IRAP categories. These reserved values are not allowed to be used in bitstreams
conforming to the version 1 specification, and are intended for future extensions.
Decoders conforming to version 1 of HEVC must discard NAL units with NAL
unit types indicating reserved values. Some NAL unit types are also defined as
“unspecified”, which means they can be used by systems to carry indications or
data that do not affect the specified decoding process.

2.2.3 Coded Video Sequences and Bitstream Conformance

A coded video sequence (CVS) in HEVC is a series of access units that starts with
an IDR or BLA access unit and includes all access units up to but not including the
next IDR or BLA access unit or until the end of the bitstream. A CVS will also start
with a CRA access unit if the CRA is the first access unit in the bitstream or if the
decoder is set to treat a CRA picture as a BLA picture by external means.

A bitstream is a series of one or more coded video sequences. The bitstream can
be in the form of a NAL unit stream, which is a sequence of NAL units in decoding
order, or in the form of a byte stream, which is a NAL unit stream with special fixed-
value strings called “start codes” inserted in-between the NAL units. The boundaries
of the NAL units in a byte stream can be identified by scanning for the start code
string values, whereas a NAL unit stream requires some extra framing information
to be provided by a system environment in order to identify the location and size of
each of the NAL units in the stream.

In order for a bitstream to conform to the HEVC specification, all requirements
and restrictions in the HEVC specification must be fulfilled. All syntax restrictions
must be met, for example the temporal ID of IRAP NAL units must be equal to 0.
Data that does not conform to the HEVC specification can be simply rejected
by decoders; the standard does not specify what a decoder should do if such
data is encountered. Non-conforming data may be the result of problems in a

28 R. Sjöberg and J. Boyce

communication system, such as the loss of some of the data packets that contain
bitstream data. A decoder may or may not attempt to continue decoding when non-
conforming data is encountered. Nevertheless, the output of an HEVC encoder shall
always fully conform to the HEVC specification.

There are also syntax element values that are reserved in the specification. These
are values that are not in use for a particular version of the HEVC specification, but
may be specified and used in future HEVC versions. An encoder is not allowed to
use reserved values for a syntax element. If the entire syntax element is reserved,
the HEVC specification specifies what value a first version encoder may use. The
encoder must obey these rules in order for the output bitstream to be conforming.

A decoder must ignore the reserved syntax element values. If a reserved value
is found in the NAL unit header, for instance in the NAL unit type or layer ID
syntax elements, the decoder must discard the entire NAL unit. This enables legacy
decoders to correctly decode the base layer of any future bitstream that contains
additional extension layers that are unknown to the decoders made for earlier
versions of the standard.

Some syntax element values are unspecified; those values must be also be ignored
by a decoder, as far as their effect on the standard decoding process is concerned.
The difference between an unspecified value and a reserved value is that a reserved
value may be used in future versions of HEVC while an unspecified value is
guaranteed never to be specified in the future and may be used for other purposes
that are not defined in the standard. The main purpose of unspecified values is to
allow external specifications to make use of them. One example is the unspecified
NAL unit type value 48 which is proposed to be used in the HEVC RTP payload
specification [11] to signal aggregated packets that contain multiple NAL units. In
the proposed RTP payload specification, the value 48 is used as an escape code to
indicate that data should not be passed to the HEVC decoder as is, but that additional
RTP header data will follow to identify the locations and sizes of the NAL units
in the RTP packet. The RTP payload specification is described in more detail in
Sect. 2.3.5.

2.2.4 Non-VCL NAL Unit Types

Table 2.2 shows all 32 non-VCL NAL unit types and their NAL unit type values in
the NAL unit header.

There are three parameter set types in HEVC, they are explained further in
Sect. 2.3.

The access unit delimiter NAL unit may optionally be used to indicate the
boundary between access units. If present, the access unit delimiter must signal
the same temporal ID as the associated coded picture and be the first NAL unit in
the access unit. It has only one codeword in its payload; this codeword indicates
what slice types may occur in the access unit.

2 HEVC High-Level Syntax 29

Table 2.2 The 32 HEVC non-VCL NAL unit types

Non-VCL NAL unit types

Parameter sets 32 VPS_NUT Video parameter set
33 SPS_NUT Sequence parameter set
34 PPS_NUT Picture parameter set

Delimiters 35 AUD_NUT Access unit delimiter
36 EOS_NUT End of sequence
37 EOB_NUT End of bitstream

Filler data 38 FD_NUT Filler data
Supplemental enhancement

information (SEI)
39 PREFIX_SEI_NUT
40 SUFFIX_SEI_NUT

Reserved 41–47 RSV
Unspecified 48–63 UNSPEC

The end of sequence and end of bitstream types are used to indicate the end of
a coded video sequence and the end of a bitstream, respectively. If used, they are
placed last in their access units and must indicate temporal layer 0. They have no
payload so they both consist of only the two byte NAL unit header.

Filler data NAL units have no impact on the decoding process. The payload is a
series of bytes equal to ‘11111111’ followed by a byte equal to ‘10000000’. It can
be used to fill up a data channel to a desired bit rate in the absence of an adequate
amount of VCL data. Filler data NAL units must signal the same temporal ID as
the coded picture and they are not allowed to precede the first VCL NAL unit in the
access unit.

The Supplemental Enhancement Information (SEI) NAL unit type is explained
in more detail in Sect. 2.5.

NAL unit types 41–47 are reserved, and types 48–63 are unspecified.

2.3 Parameter Sets

Parameter sets in HEVC are fundamentally similar to the parameter sets in
H.264/AVC, and share the same basic design goals—namely bit rate efficiency,
error resiliency, and providing systems layer interfaces. There is a hierarchy of
parameter sets in HEVC, including the Sequence Parameter Set (SPS) and Picture
Parameter Set (PPS) which are similar to their counterparts in AVC. Additionally,
HEVC introduces a new type of parameter set called the Video Parameter Set (VPS).

Each slice references a single active PPS, SPS and VPS to access information
used for decoding the slice. The PPS contains information which applies to all slices
in a picture, and hence all slices in a picture must refer to the same PPS. The slices
in different pictures are also allowed to refer to the same PPS. Similarly, the SPS
contains information which applies to all pictures in the same coded video sequence.
The VPS contains information which applies to all layers within a coded video

30 R. Sjöberg and J. Boyce

VPS id SPS id PPS id First slice flag

VPS data
VPS index

SPS data

VPS SPS PPS Slice segment

SPS index

PPS data

PPS index

Add’l Slice seg. header

Slice segment data

Fig. 2.11 Parameter set referencing hierarchy

sequence, and is intended for use in the upcoming layered extensions of HEVC,
which will enable scalable and multiview coding. While the PPS may differ for
separate pictures, it is common for many or all pictures in a coded video sequence
to refer to the same PPS. Reusing parameter sets is bit rate efficient because it
avoids the necessity to send shared information multiple times. It is also loss robust
because it allows parameter set content to be carried by some more reliable external
communication link or to be repeated frequently within the bitstream to ensure that
it will not get lost. This ability to reuse the content of a picture parameter set in dif-
ferent pictures and to reuse the content of SPSs and VPSs in different CVSs is what
primarily distinguishes the concept of a “parameter set” from the “picture header”
and “sequence header” syntax used in older standards established prior to AVC.

To identify for a given slice the active parameter set at each level of the parameter
set type hierarchy, each slice header contains a PPS identifier which references a
particular PPS. Within the PPS is an identifier that references a particular SPS. In
turn, within the SPS is an identifier that references a particular VPS. Figure 2.11
illustrates this referencing hierarchy.

A parameter set is activated when the current coded slice to be decoded
references that parameter set or when an SEI message indicates its activation. All
active parameter sets must be available to the decoder when they are first referenced.
Parameter sets may be sent in-band or out-of-band, and may be sent repeatedly.
Parameter sets may be received in any order. There are no parsing dependencies
between parameter sets, e.g. a PPS may be parsed and its parameters stored without
the need for referencing the information contained within the SPS to which it refers.
These parameter set features provide improved error resiliency, by overcoming some
network loss of parameter sets. Additionally, the use of parameter sets allows an
individual slice to be decoded even if another slice in the same picture suffered
network loss, compared to if a picture header containing the same information was
present in a subset of the slices of a picture. The hierarchy of parameter sets can
be exploited by systems interfaces, which may benefit from having sequence-level
and bitstream-level information available in advance. All parameter sets contain
extension flags, to enable backwards-compatible future extensions.

2 HEVC High-Level Syntax 31

2.3.1 The Video Parameter Set (VPS)

The VPS is a new type of parameter set defined in HEVC, and applies to all of
the layers of a bitstream. A layer may contain multiple temporal sub-layers, and all
version 1 bitstreams are restricted to a single layer. The future layered extensions
under development for scalability and multiview will enable multiple layers, with a
backwards compatible version 1 base layer.

AVC did not include a parameter set similar to the VPS, which led to complexity
and overhead for AVC’s scalable video coding (SVC) and multiview video coding
(MVC) extensions. The Scalability Information SEI message in SVC, and the View
Scalability Information SEI message in MVC contained some of the same types of
information contained within the VPS.

Some of the information contained within the VPS is also duplicated within the
SPS. The VPS is required to be included in an HEVC version 1 compliant bitstream
or provided through external means, but a version 1 decoder may safely discard
NAL units containing a VPS. Duplication of some information in the VPS and
SPS requires some (very small degree of) bit rate inefficiency, but enables the VPS
to contain information relevant to all layers and their temporal sub-layers, which
may be beneficial for systems interfaces, without making it necessary for version 1
decoders to process the VPS to access this information.

Information related to temporal scalability is included in both the VPS and the
SPS. The maximum number of temporal sub-layers in the bitstream is indicated.
Also a temporal nesting flag which indicates whether temporal sub-layer up-
switching can always be performed, e.g. whether all pictures with temporal ID
greater than 0 have the TSA picture functionality, as described in Sect. 2.2.2.3.
Decoded picture buffer size and picture ordering parameters may be sent for each
temporal layer, which indicate restrictions on the size of the decoded picture buffer,
and restrictions on the allowable variation of picture decoding and output orders, as
described in Sect. 2.4.1. The VPS includes an indication of the maximum number
of layers, which for version 1 is restricted to be one. For layered extensions such as
scalability and multiview extensions, the relationships between multiple layers are
intended to be defined in the VPS extension.

The VPS may also contain layer set and timing information for operation points
used for the Hypothetical Reference Decoder, as described in Sect. 2.6.

2.3.2 The Sequence Parameter Set (SPS)

The SPS contains parameters that apply to an entire coded video sequence, and do
not change from picture to picture within a coded video sequence. All pictures in the
same CVS must use the same SPS. The SPS contains an SPS identifier, as well as
an index to identify the associated VPS. The remaining SPS parameters fit into the
following categories. Some of the parameters provide key descriptions of the coded

32 R. Sjöberg and J. Boyce

sequence, which can be useful for systems interfaces. Other parameters describe
usage of coding tools, or provide coding tool parameters, which can improve bit rate
efficiency. Additionally, the SPS can optionally contain Video Usability Information
(VUI) data which provides information that does not directly impact the decoding
process, as described in Sect. 2.5.

Key parameters describing the characteristics of the coded sequence are included
in the SPS. The profile, tier, and level indications specify conformance points,
similar to the profile and level definitions in AVC. A profile defines a set of coding
tools, a level imposes capability restrictions on maximum sample rate, picture
size, and capabilities of the DPB, etc. HEVC introduces a tier indication, which
in combination with level, imposes a maximum bit rate restriction. The coded
picture height and width in luma samples are included in the SPS, as well as the
conformance window cropping parameters to indicate the output region of the coded
picture. Luma and chroma bit depth are also indicated, and their allowable values
are constrained by profiles. The SPS also contains some duplicated information from
the VPS related to temporal scalability, as described in Sect. 2.3.1.

The SPS also contains parameters to enable or disable coding tools, or to set
restrictions on coding tools. In some cases, a coding tool enable flag in the SPS
allows a coded slice to avoid containing syntax elements related to the unused
coding tool. Examples of tools with enable flags are asymmetric motion partitioning
(AMP) as described in Chap. 3, Sample Adaptive Offset (SAO) as described in
Chap. 7, and PCM coding as described in Chap. 6. Restrictions on the coding tree
block and transform unit sizes are also signaled.

The SPS also can optionally include coding tool parameters, which may also be
sent at lower layers if per picture variation is used. These include scaling list data,
which provides quantization matrices as described in Chap. 6, and reference picture
set (RPS) data as described in Sect. 2.4.2.

2.3.3 The Picture Parameter Set (PPS)

The PPS contains parameters that may change for different pictures within the
same coded video sequence. However, multiple pictures may refer to the same
PPS, even those with different slice coding types (I, P, and B). Including these
parameters within parameter sets rather than within the slice header can improve
bit rate efficiency and provide error resiliency when the PPS is transmitted more
reliably.

The PPS contains a PPS identifier, as well as an index to a reference SPS. The
remaining parameters describe coding tools used in the slices which refer to the
PPS. Coding tools are enabled or disabled, including dependent slices, sign data
hiding, constrained intra prediction, weighted prediction, trans/quant bypass, tiles,
and reference list modification. Coding tool parameters signaled in the PPS include
the number of reference indices, initial quantization parameter (QP), and chroma
QP offsets. Coding tool parameters may also be signaled in a PPS, e.g. deblocking
filter controls, tile configurations, and scaling list data.

2 HEVC High-Level Syntax 33

For future extensibility, the PPS contains syntax elements indicating extensions
to the slice segment header. A syntax element indicates a number of extra slice
header bits, in the range of 0–7, to be included at the beginning of the slice header.
In addition, a slice segment header extension flag in the PPS indicates the presence
of additional bits at the end of the slice segment header.

2.3.4 The Slice Segment Header

The slice segment header contains an index to a reference PPS. The slice segment
header contains data identifying the slice segment, including a first slice segment
in picture flag and a slice segment address. When dependent slices are used, a slice
may be split into multiple slice segments. Some parameters are included only in the
first slice segment of a slice, including the slice type (I, P, or B), picture output flag,
and long term and short term RPS info (described in more detail in Sect. 2.4.2).

The presence of some coding tool parameters are present in the slice segment
header if the tools were enabled in the SPS or PPS, including enabling SAO
separately for luma and chroma, enabling deblocking filter operation across slices,
and an initial slice quantization parameter (QP) value. Deblocking filter parameters
may either be present in the slice segment header or the PPS. If tiles or wavefronts
are used, entry points are provided in the slice segment header.

Optional extra slice segment header bits may be included at the beginning of the
slice segment header, when indicated in the PPS. Their use is intended for future
extensibility, to allow association of parameters with a backwards compatible base
layer in a manner that is easily accessible by systems entities.

2.3.5 System Layer Integration Aspects

Virtually all applications of video codecs involve some type of systems interface,
for storage and/or transport, and to provide timing information and alignment of the
video with other media types, such as audio. Because the HEVC high level syntax
design has much commonality with AVC, the systems and transport standards used
for carriage of AVC can be updated to carry HEVC [8]. Both HEVC and AVC
were designed with network friendliness being a key design goal. The key elements
of the HEVC design relevant to the systems interfaces are the NAL unit design,
parameter sets, and SEI messages. The main systems standards of interest are Real-
time Transport Protocol (RTP) [11], MPEG-2 systems [3, 4], and ISO Base Media
File Format (ISOBMFF) [5]. Many other systems and application specifications
build upon these three standards. For example, several file format specifications and
Dynamic Adaptive Streaming over HTTP (DASH) [6] are based upon ISOBMFF,
most broadcast standards use MPEG-2 systems, and most IP videoconferencing
applications use RTP.

34 R. Sjöberg and J. Boyce

MPEG-2 transport streams use fixed-length 188-byte packets, which do not
directly align with variable length HEVC NAL units. The start of NAL units in
MPEG-2 systems can be identified using unique start codes along with the optional
byte stream format. Avoidance of start code emulation within NAL units has been
part of the NAL unit designs in both AVC and HEVC.

At the time of this writing, a proposed real-time protocol (RTP) payload format
for HEVC [11] is in Internet Draft status in the Internet Engineering Task Force
(IETF). RTP packets are of variable size, enabling alignment between variable
length NAL units and RTP packets. The aggregation packet allows multiple NAL
units to be placed within a single RTP packet. For example, parameter sets and/or
SEI messages may be placed within the same packet as coded slice segments. The
fragmentation unit packet allows a coded slice segment to be split into two or more
RTP packets. However, the use of fragmentation units can negatively impact error
resiliency, because loss of one packet of a fragmented slice renders the other packets
in the slice undecodable. Slices are designed to be individually decodable, with no
parsing dependencies between slices. However, parsing of slices does depend upon
parameter sets.

In HEVC, like in AVC, parameter sets may be sent in-band or out-of-band, and
may be sent repeatedly for improved error resiliency. Many systems specifications
provide special handling of parameter sets, to benefit from advance availability
of sequence and bitstream level information. For example, when RTP is used,
parameter sets may be carried in the Session Description Protocol (SDP), which
is used for describing streaming media parameters for session announcement and
capabilities exchange/negotiation. In ISOBMFF, parameter sets may be carried in
the sample entry of a track.

A Media Aware Network Element (MANE), located in a network between an
encoder and decoder, may perform adaptation upon packets of a video transmission,
based upon examination of the NAL unit header. As described in Sect. 2.2, all NAL
units contain the NAL unit header followed by the NAL unit payload data. The
NAL unit header is of fixed length, and contains a temporal identifier value, and
reserved bits for a layer identifier to be used in the extensions to HEVC. A MANE
may easily access the temporal ID of each packet, and discard those packets whose
temporal ID value exceeds a target value, creating a compliant sub-bitstream at a
lower frame rate. For systems like MPEG-2 which do not align NAL units with
packets, each temporal sub-layer may be placed in a separate Packetized Elementary
Streams (PES) to enable sub-bitstream extraction based upon the PES.

The NAL unit header also contains a NAL unit type, which describes the coded
picture type. As described in Sect. 2.2.2.1, certain NAL unit type values correspond
to random access points. Identification of random access points is particularly
important for ISOBMFF. In ISOBMFF, the location of random access points within
a bitstream can be identified in multiple ways, such as by the sync sample table
and/or some random access points related sample groups.

2 HEVC High-Level Syntax 35

2.4 Picture Buffering Management

2.4.1 Picture Order Count and the DPB

Every picture in HEVC has a picture order count (POC) value assigned to it, denoted
as PicOrderCntVal. It has three main uses: to uniquely identify pictures, to indicate
the output position relative to other pictures in the same CVS, and to perform motion
vector scaling within the lower-level VCL decoding process. All pictures in the same
CVS must have a unique POC value. Pictures from different CVSs may share the
same POC value, but pictures can still be uniquely identified since there are no
possibilities to mix pictures from one CVS with any picture of another CVS. Gaps
in POC values are allowed in a CVS—i.e., the POC value difference between two
pictures that are consecutive in output order can differ by more than one (and in fact
the amount by which the POC values for consecutive pictures may differ can vary
arbitrarily).

The POC value of a picture is signaled by the slice_pic_order_cnt_lsb codeword
in the slice header. The range of allowed POC values is from �231 to 231 � 1, so
in order to save bits in the slice header, only the least significant bits of the POC
value (POC LSB) is signaled. The number of bits to use for POC LSB can be
between 4 and 16, and is signaled in the SPS. Since only the POC LSB is signaled
in the slice header, the most significant POC value bits (POC MSB) for the current
picture are derived from a previous picture, called prevTid0Pic. In order for POC
derivation to work the same way even if pictures are removed, prevTid0Pic is set to
the closest previous picture of temporal layer 0 that is not a RASL picture, a RADL
picture, or a sub-layer non-reference picture. The decoder derives the POC MSB
value by comparing the POC value of the current picture with the POC value of the
prevTid0Pic picture.

The decoded picture buffer (DPB) in HEVC is a buffer that contains decoded
pictures. Decoded pictures other than the current picture may be stored in the
DPB either because they are needed for reference, or because they have not been
output yet, something that is necessary to enable out-of-order output. Note that the
current decoded picture is also stored in the DPB. Figure 2.12 shows two example
referencing structures that both need a DPB size of at least three pictures. Pictures
P1 and P2 in Fig 2.12a both need to be stored in the DPB when P3 is being decoded
since they are both output after P3. The DPB therefore needs to be capable to store
P1, P2, and P3 simultaneously. In Fig. 2.12b, each picture uses two reference pictures
so the DPB needs to be large enough to store three pictures simultaneously here as
well. The referencing structure in Fig. 2.12b is an example of a so-called low-delay
B structure, in which bi-prediction is extensively used without any out-of-order
output.

The minimum DPB size that the decoder needs to allocate for decoding a par-
ticular bitstream is signaled by the sps_max_dec_pic_buffering_minus1 codeword,
which may be sent for each temporal sub-layer in the sequence parameter set. The
maximum possible DPB size that is allowed in the first version of HEVC is 16,

36 R. Sjöberg and J. Boyce

P0 P3 P2 P1 B0 B1 B2 B3P4 B4

a b

Fig. 2.12 Two referencing structures that need a DPB size of at least three pictures

A picture is
decoded

Non-
referenceShort-term Long-term

Fig. 2.13 Picture marking

but the maximum size may be further limited depending on the combination of the
picture size and the “level” of decoding capability that is used. Note that HEVC
specifies the current picture to be included in the DPB, so a DPB size of one would
not allow for any reference pictures. If the DPB size is one, all pictures must be intra
coded.

The pictures in the DPB are marked to indicate their reference statuses. Each
picture in the DPB is marked as “unused for reference”, “used for short-term
reference”, or “used for long-term reference”. It is common to refer to these types
of pictures as non-reference, short-term, and long-term pictures, respectively.

A reference picture is either a short-term or a long-term picture. The difference
is that a long-term picture can be kept in the DPB much longer than a short-term
picture. There is a rule determining how long a short-term picture can stay in the
DPB. It says that the POC span of the set of pictures consisting of (1) the current
picture, (2) prevTid0Pic, (3) the short-term reference pictures in the DPB, and (4) the
pictures in the DPB that are waiting for output, must be within half of the POC span
covered by POC LSB. This rule guarantees the correctness of POC MSB derivation
and improves error robustness by enabling the decoder to identify lost short-term
pictures.

A non-reference picture is a picture that is not used for reference but may still be
kept in the DPB if it needs to be output later.

Picture markings change for each decoded picture as shown in Fig. 2.13. After
a picture has been decoded, it is initially always marked as a short-term picture. A
short-term picture may stay as short-term or change to a non-reference or long-term
picture. Long-term pictures may stay as long-term or change into non-reference
pictures, but they can never be made into short-term pictures again. A non-reference
picture can never be made into a reference picture again.

A picture in the DPB may be held for future output regardless of whether it is a
reference or non-reference picture. When a picture has been decoded, it is generally
waiting for output, unless pic_output_flag in the slice header is equal to 0 or the

2 HEVC High-Level Syntax 37

I0 P2 P3 P4 P5 P1 P6

Fig. 2.14 A referencing structure with DPB size equal to 3, NumReorderPics equal to 1, and
MaxLatencyPictures equal to 4

picture is a RASL picture that is associated with the first picture in a CVS. If that is
the case, the picture will not be output.

The picture marking and picture output are done in separate processes, but when a
picture is both a non-reference picture and not waiting for output, the picture storage
buffer in the DPB is emptied and can be used to store future decoded pictures.
The encoder is responsible to manage picture marking and picture output such that
the number of pictures in the DPB does not exceed the DPB size as indicated by
sps_max_dec_pic_buffering_minus1.

Two other codewords in the SPS that are related to picture output are
sps_max_num_reorder_pics and sps_max_latency_increase_plus1, which both can
be sent for each temporal sub-layer. sps_max_num_reorder_pics, here denoted as
NumReorderPics, indicates the maximum number of pictures that can precede
any picture in decoding order and follow it in output order. The value of
NumReorderPics for the referencing structure in Fig. 2.12a is two since picture
P3 has two pictures that precede it in decoding order but follow it in output order.
NumReorderPics for Fig. 2.12b is zero since no picture is sent out-of-order.

sps_max_latency_increase_plus1 is used to signal MaxLatencyPictures, which
indicates the maximum number of pictures that can precede any picture in output
order and follow that picture in decoding order. Figure 2.14 shows the difference
between NumReorderPics and MaxLatencyPictures. NumReorderPics is here equal
to one since P1 is the only picture that is sent out-of-order. MaxLatencyPictures is
set to four since pictures P2, P3, P4, and P5 all precedes P1 in output order. The
minimum DPB size for this referencing structure is three.

One can say that NumReorderPics denotes the minimum number of picture stores
in the DPB that are necessary for taking care of out-of-order pictures, and that
MaxLatencyPictures denotes the minimum amount of coding delay, measured in
pictures, that is caused by out-of-order pictures.

For low-delay applications it is recommended to use referencing structures that
have no coding delay caused by out-of-order output. This is achieved by ensuring
that the decoding order and output order is the same which can be expressed by
signaling either NumReorderPics or MaxLatencyPictures, or both, equal to zero.

38 R. Sjöberg and J. Boyce

Table 2.3 The five RPS lists

List name Long-term or short-term Availability flag POC

RefPicSetStCurrBefore Short-term Available Lower
RefPicSetStCurrAfter Short-term Available Higher
RefPicSetStFoll Short-term Unavailable –
RefPicSetLtCurr Long-term Available –
RefPicSetLtFoll Long-term Unavailable –

2.4.2 Reference Picture Sets

The process of marking pictures as “used for short-term reference”, “used for long-
term reference”, or “unused for reference” is done using the reference picture set
(RPS) concept. An RPS is a set of picture indicators that is signaled in each slice
header and consists of one set of short-term pictures and one set of long-term
pictures. After the first slice header of a picture has been decoded, the pictures in
the DPB are marked as specified by the RPS.

The pictures in the DPB that are indicated in the short-term picture part of the
RPS are kept as short-term pictures. The short-term or long-term pictures in the
DPB that are indicated in the long-term picture part in the RPS are converted to
or kept as long-term pictures. And finally, pictures in the DPB for which there is
no indicator in the RPS are marked as unused for reference. Thus, all pictures that
have been decoded that may be used as references for prediction of any subsequent
pictures in decoding order must be included in the RPS.

An RPS consists of a set of picture order count (POC) values that are used for
identifying the pictures in the DPB. Besides signaling POC information, the RPS
also signals one flag for each picture. Each flag indicates whether the corresponding
picture is available or unavailable for reference for the current picture. Note that
even though a reference picture is signaled as unavailable for the current picture, it
is still kept in the DPB and may be made available for reference later on and used
for decoding future pictures. From the POC information and the availability flag,
five lists of reference pictures as shown in Table 2.3 can be created.

The list RefPicSetStCurrBefore consists of short-term pictures that are available
for reference for the current picture and have POC values that are lower than
the POC value of the current picture. RefPicSetStCurrAfter consist of available
short-term pictures with a POC value that is higher than the POC value of the
current picture. RefPicSetStFoll is a list that contains all short-term pictures that are
made unavailable for the current picture but may be used as reference pictures for
decoding subsequent pictures in decoding order. Finally, the lists RefPicSetLtCurr
and RefPicSetLtFoll contain long-term pictures that are available and unavailable
for reference for the current picture, respectively.

Figure 2.15 and Table 2.4 show an example referencing structure using three
temporal sub-layers and the content of the RPS lists for each picture in decoding
order.

2 HEVC High-Level Syntax 39

B3 B4

B2

I0 P1

B7 B8

B6

P5

Fig. 2.15 Example referencing structure

Table 2.4 RPS for each picture of Fig. 2.15

Picture POC RefPicSetStCurr RefPicSetStFoll RefPicSetLtCurr RefPicSetLtFoll

I0 0 – – – –
P1 4 I0 – – –
B2 2 I0, P1 – – –
B3 1 I0, B2 P1 – –
B4 3 P1, B2, B3 – – I0

P5 8 P1 – I0 –
B6 6 P1, P5 – – I0

B7 5 P1, B6 P5 – I0

B8 7 P5, B7 – – I0

An IDR picture resets the codec which includes turning all pictures in the DPB
into non-reference pictures. Since the RPSs of IDR pictures are empty, there is no
RPS syntax signaled for IDR pictures. All lists in Table 2.4 are therefore empty for
the IDR picture I0. At picture B3, picture P1 is put in RefPicSetStFoll since P1 is not
referenced by B3. P1 is however kept in the DPB since it is used for future pictures.
At picture B4, I0 is made into a long-term picture in this example, it is therefore put
in RefPicSetLtFoll since it is not referenced by B4. At picture P5, the encoder makes
pictures B2 and B3 non-reference pictures by not including them in the RPS at all.
At the same time, picture I0 is moved to RefPicSetLtCurr since it is referenced by
P5. I0 is thereafter kept in RefPicSetLtFoll for later use.

The encoder is required to ensure that every picture that is indicated in RefPic-
SetStCurr and RefPicSetStFoll are present in the DPB. If this is not the case, the
decoder should infer that as a bitstream error and take appropriate action. However,
if there is no corresponding picture in the DPB for an entry in the RPS that is
indicated not to be used for reference for the current picture, the decoder takes no
action since this situation may occur due to the removal of individual sub-layer non-
reference pictures or entire higher temporal sub-layers.

Although no RPS is sent for IDR pictures, both CRA and BLA pictures may
have pictures in their RPS so that the associated RASL pictures can use those

40 R. Sjöberg and J. Boyce

RefPicSetStCurr and RefPicSetLtCurr lists are both empty for CRA and BLA
pictures.

2.4.3 Reference Picture Set Signaling

Three pieces of information are signaled for each picture in the RPS; the POC
information, the availability state, and whether the picture is a short-term or long-
term picture.

The POC information for short-term pictures is signaled in two groups. Group S0
is signaled first and it consists of all short-term pictures with lower POC values than
the current picture. This group is followed by group S1 which contains all short-term
pictures with higher POC values than the current picture. The information for each
group is sent in POC distance order relative to the current picture, starting with the
POC value that is closest to the POC value of the current picture. For each picture, a
POC delta relative to the previous picture is signaled. The current picture acts as the
previous picture for the first picture in each group since there is no previous picture
for the first pictures.

Coding long-term pictures by POC deltas may result in very long codewords
since long-term pictures can stay in the DPB for a very long time. Therefore, long-
term pictures are instead signaled by their POC LSB values. The same number of
bits that is used for the slice header POC LSB values is used also for long-term
pictures. The decoder will match each POC LSB value signaled in the RPS with
the POC LSB values of the pictures in the DPB. Since it is possible to have more
than one picture with the same POC LSB value in the DPB, there is an optional
possibility to also signal POC MSB information for long-term pictures. This MSB
information must be sent when there is a risk that a decoder is unable to correctly
identify the pictures. One way of avoiding this risk is to always signal POC MSB
information for long-term pictures when the corresponding POC LSB value has
been used by two or more different long-term pictures.

The availability state for each picture in the RPS is signaled by a one-bit flag
where ‘1’ indicates that the picture is available for reference for the current picture
and ‘0’ indicates that it is not.

Table 2.5 shows example RPS syntax for picture B7 in Fig. 2.15. The first column
in the table shows whether the syntax is related to signaling short-term pictures or
long-term pictures. The second column contains the HEVC specification name of
each syntax element. The third column indicates the related pictures in the RPS,
and the fourth column shows the value of the syntax element in the example. The
fifth column shows the type of the syntax element where ‘uvlc’ denotes a universal
variable-length code, ‘flag’ is a one-bit binary flag, and ‘flc’ is a fixed-length code.
The last column shows the resulting bits for encoding the value of each syntax
element using the type.

The POC value of picture B7 in Fig. 2.15 is 5 and its RPS contains three short-
term pictures; picture P1 in group S0 and pictures B6 and P5 in group S1. The first

pictures in the RPS as references for prediction. However, it is required that the

2 HEVC High-Level Syntax 41

Table 2.5 RPS syntax for picture B7 in Fig. 2.15

Part Syntax element Picture Value Type Codeword

Short-term num_negative_pics P1 1 uvlc ‘010’
num_positive_pics P5, B6 2 uvlc ‘011’
delta_poc_s0_minus1 P1 0 uvlc ‘1’
used_by_curr_pic_s0_flag Used flag ‘1’
delta_poc_s1_minus1 B6 0 uvlc ‘1’
used_by_curr_pic_s1_flag Used flag ‘1’
delta_poc_s1_minus1 P5 1 uvlc ‘010’
used_by_curr_pic_s1_flag Unused flag ‘0’

Long-term num_long_term_pics I0 1 uvlc ‘010’
poc_lsb_lt 0 flc ‘00000000’
used_by_curr_pic_lt_flag Unused flag ‘0’
delta_poc_msb_present_flag 0 flag ‘0’

two syntax elements for the RPS convey the number of pictures in S0 and S1; this is
encoded by the uvlc codes ‘010’ and ‘011’. Then the picture in group S0 is signaled.
The POC delta of P1 is 1 since its POC value is 4 and the current picture has a
POC value equal to 5. POC deltas are subtracted by 1 before encoding, so the final
signaled value is 0 which results in the uvlc code ‘1’. Picture P1 is used for reference
for the current picture B7; this is signaled by the flag ‘1’.

The next syntax elements cover the pictures in S1. The current picture has a POC
value equal to 5 so the codeword ‘1’ is used for B6 since its POC value is equal to
6. Picture B6 is also used for reference for the current picture which is indicated by
the flag ‘1’. The second picture in S1 is P5 which has a POC value of 8. It is coded
relative to the previous picture in S1 which is B6 with POC value equal to 6. The
delta is 2 which subtracted by one is equal to 1 and encoded as ‘010’. Picture P5 is
not used for reference by the current picture B7; this is signaled by the flag ‘0’.

The next codeword in the RPS signals the number of long-term pictures in the
RPS, which is one and uvlc coded using ‘010’. Then the POC LSB value of the
long-term picture I0 is signaled. This is by the codeword ‘00000000’ assuming that
8 bits are used for signaling POC LSB values. The long-term picture I0 is not used
for reference by the current picture B7; this is signaled with the flag ‘0’. Finally, the
POC MSB information is not signaled for this long-term picture since there are no
other pictures in the DPB sharing the same POC LSB value; this is signaled with
the present flag ‘0’.

2.4.3.1 RPS Signaling in the Slice Header and SPS

The RPS information is signaled in every slice header for resilience reasons, but
repeating the RPS information as is for every slice could cost many bits. Not only
can pictures be split into multiple slices for which the RPS must be repeated, the
pictures in a bitstream are often coded by repeating the same GOP structure, so the

42 R. Sjöberg and J. Boyce

same RPS information is repeated for the pictures that share the same position in
the GOP structure.

To exploit the redundancy and reduce the overall bit cost, some of the RPS syntax
can be sent in the SPS and referred to from the slice header. The short-term picture
part of an RPS is coded relative to the POC value of the current picture. This makes
it possible to store multiple short-term RPS parts in a list in the SPS and only signal a
list index in the slice header. The list may contain one RPS for each picture position
in the GOP structure. The number of RPSs in the SPS would then be equal to the
GOP length, and each slice would only need to send a list index in order to signal
its short-term picture part.

Sending the RPS information for each GOP position may require relatively many
bits in the SPS, there are examples of several hundred bits for some GOP structures.
In order to save bits in the SPS, there is the option in HEVC to use RPS prediction.
This requires the RPSs to be sent in GOP decoding order and exploits the fact that
each RPS is similar to the previous one. Picture references may be removed from
one RPS to the next in decoding order, but no more than one new picture is possible
to add relative to the previous RPS. The RPS prediction mechanism in HEVC is
utilizing this property, and reductions of up to 50 % of the RPS bit count in the SPS
can be achieved relative to explicit signaling.

2.4.4 Reference Picture Lists

There are two types of sample prediction in HEVC, intra prediction and inter
prediction. Intra prediction does not include prediction from any reference picture,
only sample prediction using reconstructed samples of the same picture is allowed.
Inter prediction uses reference pictures where picture identifiers, called reference
indices, and motion vectors are used to specify what part of which reference picture
to use for prediction.

There are three slice types in HEVC. The intra (I) slice for which only intra
prediction is allowed. The predictive (P) slice which in addition to intra prediction
also allows inter prediction from one reference picture per block using one motion
vector and one reference index. This is called uni-prediction. Finally, there is the
bi-predictive (B) slice which in addition to intra and uni-prediction also allows
inter prediction using two motion vectors and two reference indices. This results
in two prediction blocks that are combined to form a final prediction block. Using
bi-prediction is generally more compression efficient than using uni-prediction but
the computational complexity is higher.

Note that the use of uni-prediction and bi-prediction is completely decoupled
from both the output order as well as from the number of reference pictures used.
Different blocks within the same P slice can reference different reference pictures,
and a block that uses bi-prediction can have both its motion vectors pointing to the
same picture.

2 HEVC High-Level Syntax 43

B3 B4

B2

I0 P1

B7 B8

B6

P5long-term

Fig. 2.16 Reference picture list construction example

When a slice header of a P or B slice has been decoded, the decoder sets up
reference picture lists for the current slice. There are two reference picture lists,
L0 and L1. L0 is used for both P and B slices while L1 is only used for B slices.
Figure 2.16 shows a reference picture list example for a picture B7 that uses five
reference pictures for prediction.

First, temporary lists for L0 and L1 are constructed. Temporary list L0 starts
with the pictures in RPS list RefPicSetStCurrBefore sorted in descending POC value
order. These are all short-term pictures that are available for reference for the current
picture and have a POC value that is less than the POC value of the current picture.
The temporary list L0 for picture B7 in Fig. 2.16 therefore starts with P1 followed
by B2. These are followed by the pictures in the RPS list RefPicSetStCurrAfter
sorted in ascending POC value order, which are B6 and P5 in Fig. 2.16. Finally,
the available long-term pictures are added, so picture I0 is the last picture to be
added. The final temporary list L0 for picture B7 is then fP1, B2, B6, P5, I0g. The
temporary list L1 is set up similar to L0, but the order of RefPicSetStCurrBefore and
RefPicSetStCurrAfter is swapped. The temporary list L1 for picture B7 therefore
becomes fB6, P5, P1, B2, I0g.

The temporary lists are used for constructing the final L0 and L1 lists. The length
of L0 and L1 are signaled in the PPS, but can be overridden by optional codewords
in the slice header. The maximum list length is 15. If the specified length of L0 or
L1 is less than the length of the temporary lists L0 or L1, respectively, the final list
is constructed by truncating the corresponding temporary list. If the specified length
is greater than the length of the respective temporary list, the pictures are repeatedly
included from the temporary list. For example, L0 becomes equal to fP1, B2g if the
length is 2 and equal to fP1, B2, B6, P5, I0, P1, B2, B6, P5g if the length is 9. The
reason for enabling a list that is longer than the temporary list is weighted prediction,
to enable different weighting factors to be applied to the same reference picture.

An alternative method to construct L0 and L1 from the temporary lists is through
explicit list signaling. In this case, there is a codeword for each entry in the list
that specifies which picture from the temporary list to use. So if the length of L0
is specified to be equal to three, there are three codewords for specifying L0. For
example, if those three codewords are equal to 1, 1, 0 the list L0 becomes fB2, B2,
P1g when P1 is the first picture in temporary list L0 and B2 is the second.

44 R. Sjöberg and J. Boyce

The final lists L0 and L1 are used for motion compensation. For uni-prediction,
one motion vector and one reference picture index is indicated for a block. For
instance, the first picture in L0 is the picture to use for motion compensation if the
signaled index for a block is equal to 0.

2.5 Video Usability Information (VUI) and Supplemental
Enhancement Information (SEI)

HEVC VUI and SEI are similar in behavior to the VUI and SEI of AVC. The video
usability information (VUI) is an optional section of syntax within the SPS. VUI
data do not directly impact the decoding process, but provides useful information
in two main categories. The first category is related to display of the decoded
pictures, including information such as aspect ratio, overscan, and color primaries.
The category also includes timing information which is used by the hypothetical
reference decoder (HRD), as described in Sect. 2.6. The second category of VUI
data is for bitstream restrictions, to provide information to the decoder indicating
that the encoder did not exercise the full flexibilities of the standard. The restrictions
signaled relate to tiles, motion vectors, reference picture lists, and bytes per coded
picture.

SEI messages provide metadata and are generally optional. SEI messages are
carried within SEI NAL units. In AVC, all SEI messages are considered to be of
a prefix type, which means that the SEI message is required to precede all VCL
NAL units of an access unit. HEVC introduces the concept of a suffix SEI message,
which follows a VCL NAL unit of an access unit. Table 2.6 lists all of the HEVC SEI
messages, and indicates whether they are of prefix or suffix type. Some messages
may be used in either prefix or suffix mode.

SEI messages have different rules for persistence. Some SEI messages apply only
to the current access unit, while others persist until another SEI message cancels or
replaces it or until a new CVS begins. The scalable nesting SEI message can be used
to indicate if an SEI message applies to particular temporal sub-layers, and in the
future layered extensions, to which particular layers.

Many of the SEI messages are very similar to related messages in AVC, although
they do not always follow the exact same syntax. Buffering period, picture timing,
and decoding unit info messages are used in the HRD operation, as described
in Sect. 2.6. The following SEI messages are carried over from AVC: pan-scan
rectangle, filler payload user data registered, user data unregistered, recovery point,
scene information, progressive refinement segment start, progressive refinement
segment end, film grain characteristics, post filter hint, tone mapping information,
and frame packing arrangement.

In AVC, the scalable nesting SEI message is part of the SVC extension in Annex
G, but in HEVC it is included in version 1, because of version 1 support for temporal
scalability. The HEVC temporal sub-layer zero information SEI message is similar

2 HEVC High-Level Syntax 45

Table 2.6 HEVC SEI messages

SEI message Type Description

Buffering period Prefix Provides parameters for HRD
initialization

Picture timing Prefix Provides HRD parameters and interlaced
picture indication

Pan scan rectangle Prefix Provides conformance cropping window
parameters, to indicate when output
pictures are smaller than decoded
pictures

Filler payload Prefix/suffix Carries unused data, to enable encoder to
achieve desired bit rate

User data registered Prefix/suffix Carries user-specific data, with type
registered through registration
authority

User data unregistered Prefix/suffix Carries user-specific data, not registered
Recovery point Prefix Indicates first picture with acceptable

quality after non-IRAP random
access

Scene info Prefix Description of scene and scene transition
Picture snapshot Prefix Indicates picture intended for use as

still-image snapshot of the video
Progressive refinement seg. start Prefix Indicates start of a sequence of coded

pictures to progressively improve
quality of a particular picture

Progressive refinement seg. end Prefix Indicates end of a sequence of coded
pictures to progressively improve
quality of a particular picture

Film grain characteristics Prefix Describes a parameterized model for
film grain synthesis

Post filter hint Prefix/suffix Provides coefficients of a post filter
Tone mapping info Prefix Provides remapping information of the

colour samples of the output pictures
for customization to particular
display environments

Frame packing arrangement Prefix Indicates that the output picture contains
multiple distinct spatially packed
frames, and the particular
arrangement used

Display orientation Prefix Indicates to decoder to rotate or flip the
output picture prior to display

Structure of pictures info Prefix Provides series pattern information of
coded picture types

Decoded picture hash Suffix Provides a hash for each colour
component of the decoded picture, to
assist decoder to detect mismatch
with encoder

Active parameter sets Prefix Indicates the active VPS and SPS

(continued)

46 R. Sjöberg and J. Boyce

Table 2.6 (continued)

SEI message Type Description

Decoding unit info Prefix Provides HRD parameters for sub-AU
decoding units

Temporal sub layer zero index Prefix Provides information to assist decoder to
detect missing coded pictures

Scalable nesting Prefix Associates other SEI messages with
bitstream subsets

Region refresh info Prefix Indicates if slice segments belong to a
refreshed region of the picture

Reserved Prefix/suffix For future extensions

to the temporal level zero dependency representation index SEI message in AVC’s
SVC extension. Some of the newly introduced SEI messages in HEVC are described
below.

The decoded picture hash SEI provides a calculated hash for each colour
component of the decoded picture. Three different hash calculation methods are
supported: MD5, CRC, and checksum. This SEI message is intended for debugging
and interoperability testing, and allows a decoder to determine if the decoded picture
exactly matches that of the encoder.

The display orientation SEI message informs the decoder of a recommended
transformation to be applied to the cropped decoded picture prior to display. The
message includes indications to flip the picture horizontally or vertically, and an
anticlockwise rotation amount.

The structure of pictures SEI message provides information about patterns of
coded pictures within the coded video sequence. Patterns of pictures in terms of
their values of NAL unit type, temporal ID values, short-term reference picture set
index, and POC delta.

The active parameter sets SEI message provides easily accessible information to
a middle box or decoder of the active video parameter set ID value, and optionally
sequence parameter set ID values. Without using this SEI message, it is required to
parse the slice header to find the PPS ID, access the contents of the picture parameter
set to find the SPS ID, and access the contents of the sequence parameter set to
determine the VPS ID.

2.6 Hypothetical Reference Decoder (HRD)

The operation of the HRD in HEVC [1] behaves similarly to the HRD of
H.264/AVC, but provides additional functionalities. The HRD allows an encoder
to specify the constraints of a bitstream to identify the capabilities needed to
ensure that the bitstream can be correctly buffered, decoded, and output. Signaling
of HRD parameters is optional for an encoder. HRD parameters do not directly

2 HEVC High-Level Syntax 47

impact decoding operation, but when used, must conform to profile, tier, and level
constraints. The HRD models a coded picture buffer (CPB) using a leaky bucket
model with the following parameters: transmission bit rate R, buffer size B, and
initial buffer fullness F. In addition to access unit level HRD operation, as provided
in H.264/AVC, the HEVC HRD adds support for sub-picture level HRD operation
for ultra-low delay applications, by specifying parameters per Decoding Unit (DU).

HEVC version 1 includes temporal scalability capability and the planned
extensions will support multiple layers, for spatial or quality scalability and for
multi-view, with a backwards-compatible base layer. Even though HEVC version 1
itself does not include multi-layer capability, HRD parameters may be specified for
multiple layers. This allows an HEVC version 1 decoder to receive HRD parameters
of a multi-layer bitstream, even though the decoder is only capable of decoding the
base layer.

To provide multi-layer HRD functionality, one or more sets of HRD parameters
may be sent, each corresponding to an operation point. An operation point defines
the parameters used for sub-bitstream extraction, which include a list of target layers
and a target highest temporal layer. Multiple operation points may be specified for
a particular bitstream.

A subset of the HRD parameters is signaled in the SPS or VPS. These include
indications if HRD information is included in the bitstream, and if the HRD
parameters apply to either a Type I bitstream, which includes only VCL NAL units
and filler data NAL units, or to a Type II bitstream, which also includes other
types of non-VCL NAL units. Access unit and/or decoding unit granularity is also
indicated. Fixed frame rate can also be specified.

The remaining HRD parameters are signaled in the buffering period, picture
timing, and decoding unit SEI messages, as follows. The buffering period SEI
message includes initial CPB and DPB delay and offset parameters which are
used for deriving the nominal CPB and DPB removal time of access units. The
buffering period SEI message may also optionally include alternate values for those
parameters when leading pictures (as described in Sect. 2.2.2.2) are discarded. When
used, buffering period SEI messages are required to be sent for each IRAP access
unit, to enable random access.

The picture timing SEI message is typically sent for each coded picture when
the HRD is used, and it includes parameters for CPB removal delay and DPB
output delay for each picture. When sub-picture operation is used for ultra-low delay
operation, CPB removal delay and DPB output delay for each DU may either be
sent in the picture timing SEI message for all DUs in the picture, or may be sent in
a separate decoding unit info SEI message for each DU.

References

1. Deshpande S, Hannuksela MM, Kazui K, Schierl T (2013) An improved hypothetical reference
decoder for HEVC. In Proc. SPIE. 8666, Visual Information Processing and Communication
IV, no. 866608, Feb. 2013

48 R. Sjöberg and J. Boyce

2. Fujibayashi A, Tan TK (2011) Random access support for HEVC, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-D234, Daegu, Jan. 2011

3. Grüneberg K, Schierl T, Narasimhan S (2013) ISO/IEC 13818-1:2013/FDAM 3, Transport of
High Efficiency Video Coding (HEVC) video over MPEG-2 systems

4. ISO/IEC 14496-15:2012/DAM 2, Carriage of HEVC
5. ISO/IEC 14496-15:2012, Information technology - coding of audio-visual objects - Part 12:

ISO base media file format
6. ISO/IEC 23009-1:2012 Information technology - dynamic adaptive streaming over HTTP

(DASH) - Part 1: Media presentation description and segment formats
7. ITU-T Rec. H.265 and ISO/IEC 23008-2 (2013) High efficiency video coding
8. Schierl T, Hannuksela MM, Wang Y-K, Wenger S (2012) System layer integration of high

efficiency video coding. IEEE Trans Circuits Syst Video Technol 22(12):1871–1884
9. Sjöberg R, Chen Y, Fujibayashi A, Hannuksela MM, Samuelsson J, Tan TK, Wang Y-K,

Wenger S (2012) Overview of HEVC high-level syntax and reference picture management.
IEEE Trans Circuits Syst Video Technol 22(12):1858–1870

10. Sullivan GJ, Boyce JM, Chen Y, Ohm J-R, Segall CA, Vetro A (2013) Standardized extensions
of High Efficiency Video Coding (HEVC). IEEE J Sel Top Signal Process 7(6):1001–1016

11. Wang Y-K, Sanchez Y, Schierl T, Wenger S, Hannuksela MM (2013) RTP payload format for
high efficiency video coding. http://tools.ietf.org/html/draft-ietf-payload-rtp-h265-03

http://tools.ietf.org/html/draft-ietf-payload-rtp-h265-03

Chapter 3
Block Structures and Parallelism
Features in HEVC

Heiko Schwarz, Thomas Schierl, and Detlev Marpe

Abstract In block-based hybrid video coding, each picture is partitioned into
blocks of samples and multiple blocks within a picture are aggregated to form
slices as independently decodable entities. While adhering to this basic principle,
the new High Efficiency Video Coding (HEVC) standard provides a number of
innovative features both with respect to sample aggregating block partitioning and
block aggregating picture partitioning. This chapter first describes the quadtree-
based block partitioning concept of HEVC for improved prediction and transform
coding, including its integral parts of coding tree blocks (CTBs), coding blocks
(CBs), prediction blocks (PBs), and transform blocks (TBs). Additionally, the
coding efficiency improvements for different configurations of HEVC with respect
to the choice of different tree depths and block sizes for both prediction and
transform are evaluated. As one outcome of this experimental evaluation, it was
observed that more than half of the average bit-rate savings of HEVC relative to
its predecessor H.264 j MPEG-4 AVC can be attributed to its increased flexibility
of block partitioning for prediction and transform coding. The second part of this
chapter focuses on improved picture partitioning concepts for packetization and
parallel processing purposes in HEVC. This includes the discussion of novel tools
for supporting high-level parallelism, such as tiles and wavefront parallel processing
(WPP). Furthermore, the new concept for fragmenting slices into dependent slice
segments for both parallel bitstream access and ultra-low delay processing is
presented along with a summarizing discussion of the pros and cons of both WPP
and tiles.

H. Schwarz (�) • T. Schierl • D. Marpe
Fraunhofer HHI, Einsteinufer 37, Berlin, Germany
e-mail: heiko.schwarz@hhi.fraunhofer.de; thomas.schierl@hhi.fraunhofer.de;
detlev.marpe@hhi.fraunhofer.de

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__3,
© Springer International Publishing Switzerland 2014

49

mailto:heiko.schwarz@hhi.fraunhofer.de
mailto:thomas.schierl@hhi.fraunhofer.de
mailto:detlev.marpe@hhi.fraunhofer.de

50 H. Schwarz et al.

3.1 Introduction

The High Efficiency Video Coding (HEVC) standard is designed along the suc-
cessful principle of block-based hybrid video coding. Following this principle, a
picture is first partitioned into blocks and then each block is predicted by using
either intra-picture or inter-picture prediction. While the former prediction method
uses only decoded samples within the same picture as a reference, the latter uses
displaced blocks of already decoded pictures as a reference. Since inter-picture
prediction typically compensates for the motion of real-world objects between
pictures of a video sequence, it is also referred to as motion-compensated prediction.
While intra-picture prediction exploits the spatial redundancy between neighboring
blocks inside a picture, motion-compensated prediction utilizes the large amount
of temporal redundancy between pictures. In either case, the resulting prediction
error, which is formed by taking the difference between the original block and
its prediction, is transmitted using transform coding, which exploits the spatial
redundancy inside a block and consists of a decorrelating linear transform, scalar
quantization of the transform coefficients and entropy coding of the resulting
transform coefficient levels.

Figure 3.1 shows a block diagram of a block-based hybrid video encoder with
some characteristic ingredients of HEVC regarding its novel block partitioning
concept. This innovative feature of HEVC along with its specific key elements
will be one of the main subjects of this chapter. In a first step of this new block
partitioning approach, each picture in HEVC is subdivided into disjunct square
blocks of the same size, each of which serves as the root of a first block partitioning
quadtree structure, the coding tree, and which are therefore referred to as coding tree
blocks (CTBs). The CTBs can be further subdivided along the coding tree structure
into coding blocks (CBs), which are the entities for which an encoder has to
decide between intra-picture and motion-compensated prediction. The partitioning
of pictures into CTBs and the partitioning of CTBs into CBs are described in
Sects. 3.2.1 and 3.2.2, respectively. Both sections highlight the similarities and
differences of the CTB/CB partitioning to the macroblock partitioning that is used in
older video coding standards. The partitioning of CBs for the purpose of prediction
is to a large degree independent of the coding tree structure and will be described in
Sect. 3.2.3. Transform coding of the prediction residual at the CB level relies on the
second, nested block partitioning quadtree structure, the so-called residual quadtree,
and will be described along with its resulting transform blocks (TBs) in Sect. 3.2.4.
Finally, Sect. 3.2.5 presents an experimental evaluation of some aspects of the block
partitioning concept of HEVC and compares the HEVC design to that of older video
coding standards.

In the second part of this chapter, the focus is on aspects of picture partitioning
for the purposes of packetization and parallel processing. Section 3.3.1 describes the
segmentation of a picture into slices, as already known from previous video coding
standards, and the novel, optional fragmentation of a slice into slice segments.
Aspects of high-level parallelization are discussed in Sect. 3.3.2 along with the

3 Block Structures and Parallelism Features in HEVC 51

Subdivision into
Coding Tree Blocks

Scaling &
Inverse Transform

Intra-Picture
Prediction

Inter-Picture
Prediction

CABAC
Entropy
Coding

In-Loop Filter

Coding Quadtree
with
Coding Blocks

Prediction Blocks

Residual Quadtree
with
Transform Blocks

Video Signal

Bitstream

Output

Input

Mode-, Quadtree-,
Motion- and
Filter Information

Quantized
Transform
Coefficients

010110...
Transform,
Scaling &

Quantization

Decoded Picture Buffer

Output

Video Signal

Motion Estimation

Encoder Control

Decoder

-

Fig. 3.1 Block diagram of an HEVC encoder with built-in decoder (gray shaded)

new features of tiles and wavefront parallel processing (WPP). Also, it is described
how these picture partitioning features can be used together with the concept of
slice segments for improved bitstream access. Section 3.3.3 deals with the same
combination of tools but from the different perspective of support for ultra-low delay
applications. Finally, in Sect. 3.3.4, the assets and drawbacks of tiles and WPP are
discussed. The whole chapter is concluded in Sect. 3.4.

3.2 Block Partitioning for Prediction and Transform Coding

All ITU-T and ISO/IEC video coding standards since H.261 [14] follow the
approach of block-based hybrid video coding, as it was already briefly discussed
above and illustrated in Fig. 3.1. One significant difference between the different
generations of video coding standards is that they provide different sets of coding
modes for a block of samples. On the one hand, the selected coding mode determines
whether the block of samples is predicted using intra-picture or inter-picture
prediction. On the other hand, it can also determine the subdivision of a given block
into subblocks used for prediction and/or transform coding. Blocks that are used for
prediction are typically additionally associated with prediction parameters, such as
motion vectors or intra prediction modes.

52 H. Schwarz et al.

In order to give the developers of encoder and decoder products as much
freedom as possible while ensuring interoperability between devices of different
manufacturers, the video coding standards only specify the bitstream syntax and
the result of the decoding process,1 while the encoding process is left out of scope.
However, the coding efficiency of a particular encoder depends to a large extent
on the encoding algorithm that is used for determining the values of the syntax
elements written to the bitstream. This includes the selection of coding modes,
associated prediction parameters, quantization parameters as well as quantization
indices for the transform coefficients. A conceptually simple and very effective class
of encoding algorithms are based on Lagrangian bit-allocation [31, 39, 43]. With
these approaches, the used coding parameters p� are determined by minimizing a
weighted sum of the resulting distortion D and the associated number of bits R over
the set A of available choices,

p� D arg min8p2A
D.p/ C � � R.p/: (3.1)

The Lagrange parameter � is a constant that determines the trade-off between
distortion D and the number of bits R and thus both the quality of the reconstructed
video and the bit rate of the bitstream.

The coding efficiency that a hybrid video coding standard can achieve depends
on several design aspects such as the used interpolation filters for sub-sample
interpolation, the efficiency of the entropy coding, or the employed in-loop filtering
techniques. However, the main source of improvement from one standard generation
to the next is typically given by the increased number of supported possibilities for
coding a picture or a block of samples. This includes, for example, an increased
precision of motion vectors, a larger flexibility for choosing the coding order
of pictures, an extended set of available reference pictures, an increased number
of intra prediction modes, an increased number of motion vector predictors, an
increased number of supported transform sizes as well as an increased number of
block sizes for motion-compensated prediction.

In the following, we investigate the set of choices that are supported for
partitioning a picture into blocks for motion-compensated prediction, intra-picture
prediction, and transform coding. If we consider a given block of samples, different
subdivisions into blocks used for prediction or transform coding are associated with
different trade-offs between distortion and rate. When we subdivide a block into
multiple subblocks and select the best prediction parameters for each subblock, we
typically decrease the prediction error energy, but increase the bit rate required for
transmitting the prediction parameters. Whether a subdivision is advantageous in
rate-distortion sense depends on the actual block of samples. By extending the set
of supported subdivision modes we typically increase the bit rate that is required for

1The standards specify an example decoding process. A decoder implementation is conforming
to a standard if it produces the same output pictures as the specified decoding process. For older
standards such as MPEG-2 Video, an accuracy requirement for the inverse transform is specified.

3 Block Structures and Parallelism Features in HEVC 53

signaling the selected modes, but decrease the resulting average rate-distortion cost
for coding the prediction residuals, presuming a suitable encoder decision algorithm.
One set A of partitioning modes improves the coding efficiency relative to another
set if it yields a smaller expectation value,

E

�
min8p2A

D.p/ C � � R.p/

�
; (3.2)

of the Lagrangian rate-distortion cost for typical video content. It should, however,
be noted that for a larger set of possible subdivision modes, in general, an encoder
also requires a higher computational complexity for evaluating the set of supported
modes. Hence, when designing a standard, a reasonable compromise between the
potential coding efficiency and the required encoder complexity has to be chosen.

Due to continuous improvements in computing power, newer video coding stan-
dards support an increased set of coding options. In the development of HEVC, it
was further taken into account that the coding of high and ultra-high definition video
becomes more and more important. For dealing with such high resolutions, it is
generally advantageous to support larger block sizes for both motion-compensated
prediction and transform coding. But for adapting the block partitioning to the
local properties of pictures, it is also important to additionally support small block
sizes. Both objectives have been addressed in HEVC by introducing a hierarchical
block partitioning concept based on a simple and unified but yet efficient quadtree
syntax [27, 44]. In addition, this quadtree-based block partitioning concept allows
the application of fast optimal tree pruning algorithms [5] in the encoder for
determining the best block partitioning in terms of Lagrangian rate-distortion cost.

3.2.1 Coding Tree Blocks and Coding Tree Units

In all prior video coding standards [11, 12, 14–17] of the ITU-T and ISO/IEC, each
picture of a video sequence is partitioned into so-called macroblocks. A macroblock
consists of a 16 � 16 block of luma samples and, in the 4:2:0 chroma sampling
format, two associated 8 � 8 blocks of chroma samples (one for each chroma
component). The macroblocks can be considered as the basic processing units
in these standards. For each macroblock of a picture, a coding mode has to be
selected by the encoder. The chosen macroblock coding mode determines whether
all samples of a macroblock are predicted using intra-picture prediction or motion-
compensated prediction. Depending on the features supported in the actual standard,
it can additionally determine the partitioning of the macroblock into subblocks
that are used for motion-compensated prediction or intra-picture coding. The
macroblock size of 16 � 16 luma samples represents the largest block size that can
be used for signaling prediction parameters such as motion data.

Although video coding standards such as H.262 j MPEG-2 Video [16]
and H.264 j MPEG-4 AVC [17] are used today for storing and transmitting

54 H. Schwarz et al.

high-definition (HD) video content, with typical picture resolutions of 1280�720 or
1920 � 1080 luma samples, they have been primarily designed for video resolutions
ranging from QCIF (176 � 144 luma samples) to standard definition (720 � 480 or
720�576 luma samples). Due to the popularity of HD video and the growing interest
in Ultra HD (UHD) formats [13] with resolutions of, for example, 3840 � 2160 or
even 7680 � 4320 luma samples, HEVC [18] has been designed with a focus on
high resolution video. However, for such large picture resolutions, restricting the
largest block size that can be used for signaling prediction parameters to 16 � 16

luma samples as in prior video coding standards is inefficient in rate-distortion
sense [4, 26, 37]. For typical HD or UHD video content, many picture areas that
can be described by the same motion parameters are much larger than blocks of
16 � 16 luma samples. Signaling a coding mode for each 16 � 16 macroblock
would already require a substantial amount of the target bit rate. Furthermore, due
to the increased spatial correlation between neighboring samples in high-resolution
video, using transform sizes larger than 16 � 16 for coding the residual signal can
also be advantageous for many image parts. The support of larger block sizes for
intra-picture prediction, motion-compensated prediction and transform coding was
one of the key aspects in many proposals for HEVC, for example [25, 27, 44].

Even though the coding of HD and UHD video was one important aspect in
the HEVC development, the standard has been designed to provide an improved
coding efficiency relative to its predecessor H.264 j MPEG-4 AVC for all existing
video coding applications. While increasing the size of the largest supported block
size is advantageous for high-resolution video, it may have a negative impact on
coding efficiency for low-resolution video, in particular if low-complexity encoder
implementations are used that are not capable of evaluating all supported sub-
partitioning modes. For this reason, HEVC includes a flexible mechanism for
partitioning video pictures into basic processing units of variable sizes.

As already mentioned, in HEVC, each picture is partitioned into square-shaped
coding tree blocks (CTBs) such that the resulting number of CTBs is identical
for both the luma and chroma picture components (assuming a non-monochrome
video format).2 Consequently, each CTB of luma samples together with its two
corresponding CTBs of chroma samples and the syntax associated with these sample
blocks is subsumed under a so-called coding tree unit (CTU). A CTU represents
the basic processing unit in HEVC and is in that regard similar to the concept
of a macroblock in prior video coding standards. The luma CTB covers a square
picture area of 2N � 2N luma samples. In the 4:2:0 chroma sampling format, each
of the two chroma CTBs covers the corresponding area of 2N �1 � 2N �1 chroma
samples of one of the two chroma components. The parameter N is transmitted in
the sequence parameter set and can be chosen by the encoder among the values
N D 4, 5, and 6, corresponding to CTU sizes of 16 � 16, 32 � 32, and 64 � 64

2The profiles defined in version 1 of the HEVC standard [18] only support video in the 4:2:0
chroma sampling format; monochrome video is not supported in these profiles.

3 Block Structures and Parallelism Features in HEVC 55

Fig. 3.2 Illustration of the partitioning of a picture with 1280 � 720 luma samples into macro-
blocks and coding tree units: (a) Partitioning of the picture into 16 � 16 macroblocks as found
in all prior video coding standards of the ITU-T and ISO/IEC; (b) Partitioning of the picture into
64 � 64 coding tree units, the largest coding tree unit size supported in the Main profile of HEVC

luma samples. Larger CTU sizes3 typically provide better coding efficiency, but
may also increase the encoder/decoder delay, the memory requirements, and the
computational complexity of the encoder process. The encoder has the freedom to
choose the CTU size that provides the best trade-off for the targeted application.

For illustration, Fig. 3.2 shows the partitioning of a picture with 1280�720 luma
samples into 16 � 16 macroblocks and 64 � 64 CTUs. It can be seen that a 16 � 16

3Here and in the following, the CTU size always refers to the corresponding luma CTB size.

56 H. Schwarz et al.

macroblock covers only a very small area of a picture, much smaller than the regions
that can typically be described by the same motion parameters. Taking into account
that some of the CTUs will be subdivided for assigning different prediction modes
and parameters, as will be described in more detail in the following, the partitioning
into 64 � 64 CTUs provides a more suitable description.

3.2.2 Coding Trees, Coding Blocks, and Coding Units

In the prior ITU-T and ISO/IEC video coding standards, a macroblock is not only
used for partitioning a video picture; it also represents the processing unit for
which a coding mode is chosen by the encoder. For each macroblock, it is decided
whether all samples of the corresponding luma and chroma blocks are transmitted
using inter-picture coding (i.e., motion-compensated prediction) or intra-picture
coding. Furthermore, in both intra-picture and inter-picture coding, a macroblock
can typically be subdivided into smaller blocks for the purpose of prediction and
signaling of prediction parameters.

In the widely used High profile of H.264 j MPEG-4 AVC, three intra macroblock
coding modes4 are supported, which are referred to as Intra-4 � 4, Intra-8 � 8, and
Intra-16�16. In the Intra-4�4 coding mode, the luma component of the macroblock
is subdivided into 4 � 4 blocks. The samples of each 4 � 4 block are predicted based
on the samples of already coded neighboring blocks and the prediction residual is
coded using a 4�4 transform. When using the Intra-8�8 mode, the intra prediction
and transform coding of the luma component is done for 8 � 8 blocks. For the Intra-
16 � 16 mode, the entire 16 � 16 luma block is predicted using the samples of
already coded neighboring macroblocks and the prediction residual is coded using
a two-stage transform, which could be interpreted as a low-complexity variant of
a 16 � 16 transform. In all three intra macroblock modes, the entire 8 � 8 chroma
blocks are predicted and the residual is coded using a two-stage variant of an 8 � 8

transform. The partitioning of the luma component of a macroblock for intra-picture
coding is illustrated in the bottom of Fig. 3.3.

For motion-compensated prediction, H.264 j MPEG-4 AVC supports four parti-
tioning modes, which are referred to as Inter-16 � 16, Inter-16 � 8, Inter-8 � 16,
and Inter-8 � 8 coding mode and are illustrated in the top of Fig. 3.3. In the Inter-
16 � 16 mode, the motion-compensated prediction for all luma and chroma samples
is done with the same set of motion parameters. For the Inter-16�8 and Inter-8�16

modes, the luma and chroma blocks of a macroblock are horizontally and vertically
split into two rectangles of the same size, respectively, and each of the two resulting
blocks is associated with a separate set of motion parameters. When the Inter-8 � 8

mode is used, the macroblock is split into four sub-macroblocks, each with a size of

4H.264 j MPEG-4 AVC additionally supports a so-called PCM mode, in which the macroblock
samples are directly written into the bitstream.

3 Block Structures and Parallelism Features in HEVC 57

Inter-16×16 Inter-16×8 Inter-8×16 Inter-8×8

Intra-16×16 Intra-8×8 Intra-4×4

Fig. 3.3 Macroblock partitioning modes supported in the High profile of H.264 j MPEG-4 AVC
for inter-picture coding (top line) and intra-picture coding (bottom line). If the Inter-8�8 is chosen,
the 8 � 8 sub-macroblocks can be further partitioned into 8 � 4, 4 � 8, or 4 � 4 blocks

8 � 8 luma samples. Each of the resulting sub-macroblocks can be coded as a single
8 � 8 block, using a single set of motion parameters, or they can be further split into
two 8 � 4, two 4 � 8, or four 4 � 4 blocks. Note that the supported subdivisions for
8�8 sub-macroblocks are the same as the subdivisions for macroblocks. For coding
the luma prediction residual of inter-picture coded macroblocks, the High profile of
H.264 j MPEG-4 AVC supports transform coding based on 4�4 and 8�8 blocks, the
chosen transform size is signaled on a macroblock level. If a macroblock is coded
in the Inter-8�8 mode and at least one of the sub-macroblocks is further subdivided,
the syntax element signaling the transform size is not transmitted but the usage of
the 4 � 4 transform is inferred; transform coding across boundaries of blocks used
for motion-compensated prediction is not supported. The chroma residual signals in
inter-picture coding modes are always coded using the 4 � 4 transform.

In HEVC, the basic processing units into which video pictures are partitioned
can be as large as 64 � 64 luma samples. A direct application of the H.264 j
MPEG-4 AVC macroblock syntax to the coding tree units in HEVC would cause
some problems. On the one hand, choosing between intra-picture and motion-
compensated prediction for large blocks is unfavorable in rate-distortion sense. In
P and B slices, typically most of the samples can be well predicted using motion-
compensated prediction. Only for a small amount of samples, intra-picture coding is
advantageous in rate-distortion sense. If the standard would allow to choose between
motion-compensated prediction and intra-picture coding only on the level of coding
tree units, it would result in a significant loss in coding efficiency. Actually, it has
been shown [21, 35] that enabling the decision between intra-picture and inter-
picture coding at units smaller than a 16 � 16 macroblock can increase the coding
efficiency. On the other hand, for allowing such fine block structures for motion-
compensated prediction as in H.264 j MPEG-4 AVC, the concept of macroblock and
sub-macroblock modes would have to be extended over additional hierarchy levels

58 H. Schwarz et al.

1 2

3 4

5 6
7

8

9 10

11 12
13

14 15

16

168

1514137

1210 1196543

21

Fig. 3.4 Example for the partitioning of a 64 � 64 coding tree unit (CTU) into coding units (CUs)
of 8 � 8 to 32 � 32 luma samples. The partitioning can be described by a quadtree, also referred to
as coding tree, which is shown on the right. The numbers indicate the coding order of the CUs

yielding a complicated syntax. Additionally, if the transform size cannot change
within a coding tree block, the encoder cannot well adapt to the local statistics in a
video picture.

In order to overcome these potential issues, another processing unit, called
coding unit (CU), has been introduced in HEVC. As illustrated for an example in
Fig. 3.4, a CTU can be split into multiple coding units (CUs) of variable sizes. For
that purpose, each CTU contains a quadtree syntax, also referred to as coding tree,
which specifies its subdivision into CUs. Similarly as a CTU, a CU consists of a
square block of luma samples, the two corresponding blocks of chroma samples
(for non-monochrome video formats), and the syntax associated with these sample
blocks. The luma and chroma sample arrays that are contained in a CU are referred
to as coding blocks (CB). The subdivision of the chroma CTBs of a CTU is always
aligned with that of the luma CTB. Thus, in the 4:2:0 chroma sampling format, each
2N � 2N luma CB is associated with two 2N �1 � 2N �1 chroma CBs.

At the CTU level, a flag named split_cu_flag is included into the bitstream,
which indicates whether the complete CTU forms a CU or whether it is split into
four equally-sized blocks corresponding to square luma sample blocks. If the CTU
is split, for each of the resulting blocks, another split_cu_flag is transmitted
specifying whether the block represents a CU or whether it is further split into four
equally-sized blocks. This hierarchical subdivision is continued until none of the
resulting blocks is further subdivided. The minimum size of CUs is signaled in the
sequence parameter set, it can range from 8�8 luma samples to the size of the CTU,
inclusive. When the minimum CU size is reached in the hierarchical subdivision
process, no splitting flags are transmitted for the corresponding blocks; instead it is
inferred that these blocks are not further split. Hence, if a low-complexity encoder
is used that does never use coding blocks smaller than a particular size, the CU size
in the sequence parameter can be set accordingly, which avoids the transmission
of unnecessary splitting flags. In typical encoder settings, the maximum range of
supported CU sizes is exploited so that CUs ranging from 8 � 8 to 64 � 64 luma
samples can be used.

3 Block Structures and Parallelism Features in HEVC 59

The CUs inside a CTU are coded in a depth-first order. This coding order is also
referred to as z-scan and is illustrated in Fig. 3.4. It ensures that for each CU, except
those located at the top or left boundary of a slice, all samples above the CU and left
to the CU have already been coded, so that the corresponding samples can be used
for intra prediction and the associated coding parameters can be used for predicting
the coding parameters of the current CU.

The horizontal and vertical size of a video picture, in luma samples, has to be
an integer multiple of the minimum CU size,5 in luma samples, transmitted in the
sequence parameter set, but it does not need to be an integer multiple of the CTU
size. If the horizontal or vertical size of the video pictures does not represent an
integer multiple of the CTU size (as it is, for example, the case in Fig. 3.2b), the
CTUs at the borders are inferred to be split until the boundaries of the resulting
blocks coincide with the picture boundary. For this enforced splitting no splitting
flags are transmitted, but the resulting blocks can be further split using the quadtree
syntax described above. The CUs that lie outside the picture area not coded.

The CUs represent the processing units to which a coding mode is assigned.
For each CU, it is decided whether the luma and chroma samples are predicted
using intra-picture prediction or motion-compensated prediction. In that respect,
CUs in HEVC are similar to macroblocks in older video coding standards. However,
in contrast to macroblocks, CUs have variable sizes. Multiple CUs form a CTU,
which represents the basic processing unit used for partitioning a picture. For intra-
picture prediction, motion-compensated prediction, and transform coding of the
prediction residuals, a CU can be further split into smaller blocks along the coding
tree structure as will be discussed in the following subsections. The main advantage
of introducing the coding tree structure is that in this way an elegant and unified
syntax is obtained for specifying the partitioning of CTUs into blocks that are used
for intra-picture prediction, motion-compensated prediction, and transform coding.

3.2.3 Prediction Blocks and Prediction Units

For each CU, a prediction mode is signaled inside the bitstream. The predic-
tion mode indicates whether the CU is coded using intra-picture prediction or
motion-compensated prediction. If intra-picture prediction is chosen, one of the 35
supported spatial intra prediction modes has to be selected for the luma CB and
signaled inside the bitstream. If the CU has the minimum CU size specified in the
sequence parameter set, the luma CB can also be decomposed into four equally-
sized square subblocks, in which case a separate intra prediction mode is transmitted
for each of these subblocks. Independent of the CU size, a single chroma intra

5Videos with picture sizes that do not represent an integer multiple of the minimum CU size can be
coded by extending the picture area using arbitrary sample values and specifying a conformance
cropping window in the sequence parameter set.

60 H. Schwarz et al.

a bFig. 3.5 Illustration of the
horizontal intra prediction of
a selected sample inside an
8 � 8 coding block with 4 � 4

transform blocks, if the intra
prediction is applied on the
basis of coding blocks (a) or
transform blocks (b)

prediction mode is selected for a CU and signaled inside the bitstream. The chroma
intra prediction mode applies to both chroma CBs and can be selected among five
candidates, where one of the candidates represents the intra prediction mode chosen
for the luma CB or the first luma intra block in case four intra prediction modes
are transmitted for the luma CB. The reason why the signaling of four luma intra
prediction modes is only supported for the minimum CU size is the following.
If we consider a picture block of 2N � 2N luma samples that is larger than the
minimum CU size, then partitioning the block into four CUs and transmitting a
luma intra prediction mode for each of the CUs is, for the luma component, the
same as coding the entire block as one CU and transmitting an intra prediction
mode for the four luma subblocks. Even though these partitioning methods do not
yield the same result for the chroma components, they can be seen as redundant
syntax features. And since the impact of coding the chroma components on the
overall coding efficiency is usually very small, the corresponding redundant syntax
is avoided and a subdivision of the luma CB for signaling intra prediction modes is
only supported for the minimum CU size.

The actual intra prediction is not always applied to the blocks for which the intra
prediction modes are signaled. A coding block can be split into multiple transform
blocks, which represent the units to which a single two-dimensional transform is
applied for coding the prediction residuals. As will be discussed in Sect. 3.2.4, the
subdivision of the coding blocks of a CU into transform blocks is specified by a
second quadtree structure, for which the CU represents the quadtree root. If a luma
CB is subdivided into four subblocks for signaling the intra prediction modes, it
is also subdivided for the purpose of transform coding so that all samples inside
a transform block are always predicted using the same intra prediction mode. It is,
however, possible that a block for which a single intra prediction mode is transmitted
is further partitioned into multiple transform blocks. Since the correlation between
two image samples decreases with the distance between the samples (for any given
direction), on average, a better prediction signal is obtained if we use reconstructed
samples that are closer to the samples we want to predict. Due to this reason, the
intra prediction is done on the basis of transform blocks. The effect is illustrated
in Fig. 3.5 for the example of horizontal intra prediction of an 8 � 8 coding block
that is split into 4 � 4 transform blocks. It should be noted that, on the one hand
side, the efficiency of intra prediction decreases with increasing the size of the
transform blocks, since the average distance between a predicted sample and the
reference samples used for prediction increases. On the other hand side, however,

3 Block Structures and Parallelism Features in HEVC 61

M × M M × (M/2) (M/2) × M (M/2) × (M/2)

M × (M/4) M × (3M/4) (M/4) × M (3M/4) × M

Fig. 3.6 Supported partitioning modes for splitting a coding unit (CU) into one, two, or four
prediction units (PU). The .M=2/ � .M=2/ mode and the modes shown in the bottom row are
not supported for all CU sizes

the average coding efficiency of transform coding (in terms of the average mean
squared error for a given bit rate) typically increases with the transform size [1,42].
Hence, the syntax feature that allows the splitting of a coding block (or a block used
for signaling the intra prediction mode) into multiple transform blocks provides the
possibility to select a suitable trade-off between the intra prediction and transform
coding efficiency for the considered block. From a different point of view, it can
also be argued that coding a single intra prediction mode for multiple transform
blocks (i.e., the blocks that are actually used for intra prediction) represents a way
for reducing the bit rate required for transmitting the intra prediction modes.

If a CU is coded using inter-picture prediction, the luma and chroma CBs can be
further split into so-called prediction blocks. A prediction block (PB) is a block of
samples of the luma or a chroma component that uses the same motion parameters
for motion-compensated prediction. The motion parameters include the number of
motion hypotheses (which is either one or two) as well as the reference picture
index and motion vector for each of the motion hypotheses. For both chroma CBs
of a CU, the same splitting as for the luma CB is used. The luma PB and chroma
PBs, together with the associated syntax, form a prediction unit (PU). For each PU,
a single set of motion parameters is signaled in the bitstream, which is used for
motion-compensated prediction of the luma PB and the chroma PBs.

HEVC supports eight different modes for partitioning a CU into PUs. As
illustrated in Fig. 3.6, a CU can either be coded as a single PU or it can be split
into two or four rectangular PUs. The partitioning mode in which the entire CU
is coded as a single PU is referred to as M � M mode. If a CU is split into
four PUs, the resulting PUs represent square blocks of the same size and the
partitioning mode is referred to as .M=2/ � .M=2/ mode. Since the splitting of
a CU into four equally-sized square PUs is conceptually equivalent to splitting
the corresponding picture block into four CUs and coding each of these CUs as

62 H. Schwarz et al.

a single PU, the .M=2/ � .M=2/ mode is only supported for the minimum CU
size that is signaled in the sequence parameter set. For splitting a CU into two
PUs, HEVC supports six partitioning modes. In the M � .M=2/ mode, the CU
is vertically subdivided into two rectangular PUs of the same size. Similarly, the
.M=2/ � M mode horizontally subdivides the CU in two PUs of the same size.
In addition to these symmetric partitioning modes, four asymmetric partitioning
modes are supported, which subdivide the CU into two rectangular PUs of different
sizes, as is illustrated in the bottom row of Fig. 3.6. One of the resulting PUs has a
rectangular shape with one side having a length equal to the width and height M of
the CU and the other side having a length equal to M=4; the other PU covers the
remaining rectangular area of the CU. The asymmetric partitioning modes are only
supported for CU sizes larger than 8�8 luma samples. Furthermore, for minimizing
the worst-case memory bandwidth, the .M=2/ � .M=2/ mode is only supported if
the selected minimum CU size is larger than 8 � 8 luma samples, so that blocks of
8�4 and 4�8 are the smallest block sizes that can be used for motion-compensated
prediction. In addition, PUs of 8 � 4 and 4 � 8 luma samples are restricted to use a
single motion hypothesis.

Supporting more modes for partitioning a picture block into subblocks used
for motion-compensated prediction typically provides the potential for increasing
the coding efficiency. However, this potential can only be exploited if an encoder
evaluates a significant number of the supported partitioning modes. Otherwise,
the syntax overhead associated with an increased number of modes may actually
decrease the coding efficiency in comparison to supporting a smaller set of modes.
The set of partitioning modes supported in HEVC has been selected as a reasonable
trade-off. In addition, HEVC provides the possibility to disable the asymmetric
partitioning modes via a syntax element coded in the sequence parameter set (SPS).
If these modes are disabled, the entropy coding of the partitioning mode is modified
so that the remaining partitioning modes can be signaled with less bits (see Chap. 8).
This feature is particularly useful for low-complexity encoders that do not have the
computational resources to evaluate all possible partitioning modes.

In the development of video coding standards, one key aspect for improving the
coding efficiency from one generation of standards to the next was to increase
the number of supported block sizes for motion-compensated prediction. If we
concentrate on profiles intended for the coding of progressive video, H.262 j
MPEG-2 Video supports only a single block size of 16 � 16 luma samples for
specifying motion parameters. In H.263 and MPEG-4 Visual, a subdivision of the
16 � 16 macroblocks into four 8 � 8 blocks is additionally allowed. The concept of
subdividing a 16 � 16 macroblock into smaller blocks is further extended in H.264 j
MPEG-4 AVC, where block sizes from 4�4 to 16�16 luma samples, including non-
square blocks, are supported. Now in HEVC, the concept is additionally extended
towards larger block sizes, resulting in motion compensation block sizes that range
from 4�8 and 8�4 luma samples to 64�64 luma samples. The motion compensation
block sizes that are supported in different standards (excluding special tools for
interlaced video) are summarized in Table 3.1.

3 Block Structures and Parallelism Features in HEVC 63

Table 3.1 Comparison of motion compensation block sizes supported in different standards

Video coding standard Supported block sizes for motion-compensated prediction

H.262 j MPEG-2 Video 16 � 16

H.263 16 � 16, 8 � 8

MPEG-4 Visual 16 � 16, 8 � 8

H.264 j MPEG-4 AVC 16 � 16, 16 � 8, 8 � 16, 8 � 8, 8 � 4, 4 � 8, 4 � 4

HEVC 64 � 64, 64 � 48, 64 � 32, 64 � 16, 48 � 64, 32 � 64, 16 � 64,
32 � 32, 32 � 24, 32 � 16, 32 � 8, 24 � 32, 16 � 32, 8 � 32,
16 � 16, 16 � 12, 16 � 8, 16 � 4, 12 � 16, 8 � 16, 4 � 16,
8 � 8, 8 � 4, 4 � 8

3.2.4 Residual Quadtree Transform, Transform Blocks,
and Transform Units

As already mentioned above, for transform coding of the prediction residuals in
HEVC, a CB can be partitioned into multiple transform blocks (TBs). A transform
block represents a square block of samples of a color component on which the same
two-dimensional transform is applied for coding the residual signal. The partitioning
of a luma CB into luma TBs is carried out recursively based on a quadtree approach.
The corresponding structure, denoted as the residual quadtree (RQT), determines
for each luma CB at the root of the RQT a collection of luma TBs at the leaves
of the RQT in such a way that the union of corresponding disjoint luma TBs is
covering the whole associated luma CB. Figure 3.7 shows an example of a 64 � 64

luma CTB that is subdivided recursively into luma CBs and luma TBs along the
corresponding nested quadtree structures of coding tree and residual quadtrees. In
general, the partitioning of chroma CBs into chroma TBs is described by the same
residual quadtree. As will be described below, there is, however, one exception, for
which the splittings of the luma and chroma CBs of the same CU are not the same.

By allowing different transform block sizes, the residual quadtree transform
enables the adaptation of the transform basis functions to the varying space-
frequency characteristics of the residual signal. Larger transform block sizes,
which have larger spatial support, provide better frequency resolution. However,
smaller transform block sizes, which have smaller spatial support, provide better
spatial resolution. The trade-off between the two, spatial and frequency resolution,
can be freely chosen by the encoder control, for example, based on Lagrangian
optimization techniques. In the next subsection, the RQT structure is described in
detail followed by the description of its related parameter signaling scheme as well
as a brief discussion of a fast encoder implementation for RQT using an early-
pruning criterion.

64 H. Schwarz et al.

Fig. 3.7 Example for the partitioning of a 64 � 64 luma coding tree block (black) into coding
blocks (blue) and transform blocks (red). In the illustration on the right, the blue lines show the
corresponding coding tree with the coding tree block (black square) at its root and the coding
blocks (blue circles) at its leaf nodes; the red lines show the non-degenerated residual quadtrees
with the transform blocks (red circles) as leaf nodes. Note that the transform blocks chosen
identical to the corresponding coding blocks are not explicitly marked in this figure. The numbers
indicate the coding order of the transform blocks

3.2.4.1 Residual Quadtree Structure

Each RQT is restricted by three parameters: The maximum depth dmax of the tree,
the minimum allowed transform size nmin and the maximum allowed transform size
nmax, where the latter two are given as the binary logarithm of the transform block
width. Both nmin and nmax can vary within the range from two to five, which means
that transform block sizes from 4�4 to 32�32 samples are supported in HEVC. The
maximum allowed depth dmax of the RQT restricts the number of subdivision levels.
For example, a value of dmax D 1 means that a luma CB can either be coded as a
single TB or it can be split into 4 TBs, but no further splitting is allowed.

As a result of the interaction of these limits on transform block size and tree
depth, there are conditions that imply an internal (i.e., branching) node or a leaf
(i.e., non-branching) node in the RQT. As an example, consider a case, in which the
luma CB of the CU associated with the RQT root has a size of 64 � 64 samples, the
maximum depth is dmax D 0 and the maximum transform size is equal to 32 � 32,
i.e., nmax D 5. In HEVC, if the luma CB size is larger than the maximum transform
size, as in the mentioned example, the luma CB is forced to be subdivided to comply
with the limitations on the transform size.

If the decorrelating transform is applied across multiple prediction blocks,
the transformed residual signal often includes block edges at the corresponding
prediction boundaries, which increase the energy in the high-frequency transform
coefficients and, hence, decrease the coding efficiency. Due to this reason, HEVC
includes a special condition for implicit subdivision when the maximum RQT depth
is equal to zero. If dmax D 0, the CU is predicted using motion compensation, and
the associated prediction partitioning consists of more than one PU, the luma CB
is always split into four TBs [32]. For dmax > 0 and the case of inter-predicted

3 Block Structures and Parallelism Features in HEVC 65

CUs, the RQT subdivision is independent of the PU partitioning, which may lead
to a transform block covering several different PBs having the same CB as the
root. Note that even though applying the transform across PB boundaries can cause
unwanted coding efficiency degradations for several CBs, it may also increase the
coding efficiency for other CBs. Experimental results [23] showed that giving the
encoder the freedom to decide whether a transform is applied across PB boundaries
increases the average coding efficiency by about 0.4–0.7 % Bjøntegaard Delta bit
rate (BD rate) [3].

As discussed in Sect. 3.2.3, for intra-predicted CUs, the splitting of the luma and
chroma CBs into transform blocks does not only determine the size of the transform
that is applied for residual coding, but also the size of the blocks for which a single
intra prediction signal is generated. If the size of a luma CB size is equal to the
minimum CB size signaled in the sequence parameter set, it is possible to signal
four luma intra prediction modes for the luma CB, each for one of the four equally-
sized square subblocks. In that case, a transform block cannot span the complete
luma CB, since the neighboring subblocks within the luma CB that precede a current
subblock in coding order have to be fully reconstructed for generating the prediction
signal for the current subblock. As a consequence, if a luma CB is subdivided into
four subblocks for transmitting intra prediction modes, it is also subdivided into four
TBs. Note, however, that each of the resulting TBs may then be further subdivided.

A leaf node is implied in the RQT when the minimum transform size is reached,
i.e., if the binary logarithm n of the actual transform block size satisfies the condition
n D nmin. However, the recursive subdivision is also restricted by the maximum
RQT depth, even when smaller TBs are allowed by the minimum transform size,
which corresponds to the case that the actual RQT depth d conforms with d D dmax

and that the above-mentioned conditions on implicit subdivision are not fulfilled.
Note that at most one single transform tree syntax is transmitted for each CU, and

thus, the same RQT structure determines the TBs of all color components, resulting
in the same subdivision of luma and chroma components. An exception to this rule,
however, is given for the case of a 4�4 luma TB in a 4:2:0 chroma-formatted video
signal, where the subdivision would lead to a corresponding 2�2 chroma TB, which
is not supported in HEVC. Therefore, an RQT is allowed to split an 8�8 luma TB,
but not the corresponding 4�4 chroma TB, leading to a different interpretation of
the corresponding RQT structure for luma and chroma in this particular case. A
transform unit (TU) represents a luma TB greater than 4 � 4 samples or four luma
TBs with a size of 4 � 4 samples, the corresponding two chroma TBs, and the
associated syntax structures.

3.2.4.2 Parameter Signaling

The RQT parameters introduced in the previous subsection, i.e., the maximum RQT
depth dmax and the binary logarithms of the minimum and maximum transform sizes
nmin and nmax are transmitted in the bitstream at the SPS level. Regarding the RQT
depth, different values can be specified and signaled for intra- and inter-predicted

66 H. Schwarz et al.

CUs. Furthermore, it should be kept in mind that the transmitted depth values do not
necessarily correspond to the number of subdivisions when subdivisions are forced,
due to resulting TB sizes greater than the maximum transform size, as already
mentioned above.

Since the RQT structure is nested in the coding tree, it has to be signaled for each
coding tree leaf node, i.e., for each CU after transmission of CU prediction mode,
PU partitioning, and PU related syntax, provided that the residual signal of the CU is
represented by one or more non-zero transform coefficients levels. In that case, the
syntax element split_transform_flag is transmitted for every RQT node
to indicate whether it is a leaf node (with a value of 0) or an internal node (with
a value of 1). Note that for the cases presented in the previous subsection, where
a signaling of this flag would be redundant, split_transform_flag is not
explicitly signaled but inferred at the decoder side instead.

In addition to the actual structure of the RQT but often also as its replacement, it
is signaled whether there are significant, i.e., non-zero transform coefficient levels
present in a particular TB or the whole CU. For CUs using motion-compensated
prediction, one single coded block flag (cbf) signals the information whether at least
one non-zero transform coefficient level is transmitted for the whole CU. When
this so-called rqt_root_cbf is equal to 1, the RQT structure is signaled as
described above. Otherwise, no further residual information is transmitted and all
transform coefficient levels are inferred to be equal to zero. In the latter case, all
residual sample values are also equal to zero and no RQT syntax is transmitted.
The syntax element rqt_root_cbf is especially useful for coding of video
signals at low bit rates or for coding picture areas that can be motion-compensated
predicted in a sufficiently accurate way, because, with one single flag, a potentially
large number of transform coefficient levels equal to zero can be signaled very
efficiently. Also note that in the case of a skipped CU, i.e., a motion-compensated
CU with cu_skip_flag set equal to 1, no residual and hence, no transform
syntax including the rqt_root_cbf is transmitted. For intra-predicted CUs,
however, the rqt_root_cbf is always inferred to be equal to 1, since in that case,
a reasonable assumption is that at least some of the residual transform coefficient
levels are not equal to zero.

Furthermore, in case of rqt_root_cbf D 1, an additional cbf is transmitted
for each luma TB and each of the two associated chroma TBs. The significance
for luma TBs is signaled at the RQT leaf node level using the syntax element
cbf_luma, while for the chroma components, the flags cbf_cb and cbf_cr
are coded interleaved with the split_transform_flag symbols, i.e., at an
internal RQT node. This concept enables an efficient signaling for square blocks in
the video signal for which one or both of the chroma residual signals are equal to
zero, but the luma residual signal is not equal to zero. Under certain conditions, the
signaling of cbfs for luma and chroma TBs is also redundant and can be inferred
instead. Details on this redundancy reduction can be found in [24, 30].

3 Block Structures and Parallelism Features in HEVC 67

3.2.4.3 Fast Encoder Control

The number of different RQT partitionings as well as the number of different coding
tree partitionings grows faster than the double exponential expression 24d�1

with
increasing depth d of the tree. However, as further explained in [25], by application
of the generalized BFOS algorithm [5], the derivation of an optimal partitioning in
a rate-distortion sense can be achieved without the need of a brute-force exhaustive
search that requires to compare each partitioning option with all of its competing
options. In fact, it can be shown that without applying any early termination strategy,
the computational complexity of the fast tree-pruning process is proportional to
.4d � 1/=3, which is the number of internal nodes of a quadtree with maximum
depth d . However, in order to further reduce the computational complexity for the
tree-growing process at the encoder side, heuristic early-pruning techniques [25,38]
can be additionally applied.

In case of the RQT partitioning, such an algorithm was presented in [38]. Here,
the idea is that the evaluation of further subdivisions at a given RQT node should
be terminated when all magnitudes of unquantized transform coefficients are below
an appropriately chosen, quantizer step size-dependent threshold. It was shown that
by applying such a strategy, the encoder runtime can be reduced by about 5–15 %
with only minor impact on coding efficiency. Also, the reduction of encoder runtime
is consistently higher for a larger maximum RQT depth, since with a larger search
space for the optimal RQT partitioning, typically larger improvements in complexity
reduction can be achieved if only a subset of the whole search space is considered.
For more details, the reader is referred to [38].

3.2.5 Performance

For evaluating selected design aspects of the HEVC block structures, we performed
coding experiments for two different application scenarios. The first scenario
considers the coding of high-resolution video with entertainment quality, while the
second scenario addresses interactive video applications such as video conferencing.

For the scenario of entertainment applications, we selected five HD sequences of
varying content, all having a resolution of 1920�1080 luma samples. The sequences
were coded using a dyadic high-delay hierarchical prediction structure with groups
of eight pictures [36] and four active reference pictures. Random access points,
which are coded as I pictures, are inserted in regular intervals of about 1 s. In order
to enable clean random access, pictures that follow an I picture in both coding and
display order are restricted in a way that they do not reference any pictures that
precede the I picture in coding or display order. With exception of the random access
pictures, all pictures are coded as B pictures. The quantization parameter (QP) is
increased by 1 from one hierarchy level to the next and the QP for the B pictures of
the lowest hierarchy level is increased by 1 relative to that of the random access I
pictures. All pictures are coded as a single slice.

68 H. Schwarz et al.

Table 3.2 Summary of the test sequences for the two considered application scenarios that are
used in the comparisons. All sequences are given in the 4:2:0 chroma sampling format with a bit
depth of 8 bit per sample and have a duration of 10 s. The resolution is specified in luma samples

Entertainment applications Interactive applications

Sequence name Resolution Frame rate Sequence name Resolution Frame rate

Kimono 1920 � 1080 24 Hz Four People 1280 � 720 60 Hz
Park Scene 1920 � 1080 24 Hz Johnny 1280 � 720 60 Hz
Cactus 1920 � 1080 50 Hz Kristen & Sara 1280 � 720 60 Hz
BQ Terrace 1920 � 1080 60 Hz Vidyo 1 1280 � 720 60 Hz
Basketball Drive 1920 � 1080 50 Hz Vidyo 2 1280 � 720 60 Hz

Vidyo 3 1280 � 720 60 Hz

The hierarchical prediction structure chosen for the entertainment application
scenario provides a very high coding efficiency, but it is associated with a structural
delay of eight pictures. For interactive video applications, such a high delay is not
acceptable. Here, we used a dyadic low-delay hierarchical prediction structure with
groups of four pictures [36] and four active reference pictures. For this coding
structure, all pictures are coded in display order, but the QP is varied depending on
the hierarchy level. Similarly as for the coding structure chosen for the entertainment
scenario, the QP is increased by 1 from one hierarchy level to the next. Except the
first picture of a video sequence, which is coded as I picture, all pictures are coded
as B pictures. The QP for the I picture is decreased by 1 relative to the QP for the B
pictures of the lowest hierarchy level. Furthermore, all pictures are coded as a single
slice. For the application scenario of interactive video application, we selected six
sequences with typical video conferencing content. All of these sequences have a
resolution of 1280 � 720 luma samples.

The chosen test sequences for both scenarios are summarized in Table 3.2. They
represent a subset of the sequences that have been used by the standardization group
during the development of HEVC. Furthermore, the configurations for both selected
application scenarios are consistent with the test conditions [19] recommended by
the standardization group. All coding experiments were performed with the HEVC
reference software, version HM10.1 [20]. The encoder employs the Lagrangian
bit allocation technique described in [31]. For evaluating the impact of particular
aspects of the HEVC block structures and comparing it to the block structures
supported in older standards, selected block sizes for prediction and transform
coding were disabled in some of the simulations. This was partly done by specifying
corresponding parameters, such as the CTU size, the minimum CU size, or the
minimum and maximum transform size, in the encoder configuration files. Other
features were disabled by modifying the corresponding source code. In order to
compare the HEVC design to that of H.264 j MPEG-4 AVC, we additionally enabled
4 � 4 PUs in some experimental settings by slightly modifying the HEVC syntax.

The efficiency of different configurations was compared by encoding each of
the test sequences for an application scenario at ten different quantization settings.
Therefore, the QP for I pictures was varied from 20 to 38, inclusive, in steps of 2.

3 Block Structures and Parallelism Features in HEVC 69

As quality measure, we used a weighted sum of the average PSNR values for the
luma and chroma component, defined by

PSNRYUV D .6 � PSNRY C PSNRU C PSNRV/=8; (3.3)

where PSNRY, PSNRU, and PSNRV represent the average PSNR values, averaged
over the pictures, for the individual color component. For video with a bit depth of
8 bit per sample, the picture PSNR for a particular color component is given by

PSNR D �10 � log10

0
@ 1

2552 � W � H

W �1X
xD0

H�1X
yD0

�
s.x; y/ � s0.x; y/

�2

1
A ; (3.4)

where s and s0 represent the W � H sample arrays of the original and reconstructed
color component, respectively. By measuring the reconstruction quality using the
PSNRYUV and the average bit rate of the generated bitstreams for ten different
quantization settings, we obtained a rate-distortion curve for each configuration
and sequence, which characterizes the coding efficiency. In order to express the
difference in coding efficiency between two configurations as a single number, we
calculated an average bit-rate saving. Therefore, we interpolated the rate-distortion
curves of the two considered configurations for a test sequence in the logarithmic
domain using cubic splines with the “not-a-knot” condition at the border points and
determined the average bit-rate saving for the sequence by numerical integration
with 1,000 equal-sized subintervals.6 Finally, the average bit-rate savings for the
application scenarios given in the following were obtained by averaging the bit-rate
savings over the test sequences.

In a first experiment, we investigated the impact of supporting different block
sizes for signaling motion parameters. In order to exclude the effect of different
transform sizes, the maximum TU size was set to 4 � 4 for all investigated
configurations. As reference configuration, we used a setting in which only 16 � 16

PUs are enabled, similarly as in H.262 j MPEG-2 Video. Based on this reference
setting, we successively enabled additional PU sizes as summarized in Table 3.3. It
can be seen that also for high-resolution video, supporting PU sizes smaller than
16 � 16, as has been done in developing H.263, MPEG-4 Visual, and H.264 j
MPEG-4 AVC, improves the coding efficiency. However, the biggest gain is
achieved by additionally supporting PU sizes larger than 16 � 16 luma samples.
While most of the coding gain relative to the reference configuration can already
be obtained by enabling all square PUs from 4 � 4 to 64 � 64 luma samples,
the additional support of rectangular PUs with symmetric and asymmetric CU
partitioning modes further improves the coding efficiency. In order to include design

6The employed approach for calculating an average bit-rate saving between two rate-distortion
curves represents a generalization, that is also applicable to experimental data with more than four
rate-distortion points, of the often used Bjøntegaard Delta bit rate (BD-rate) [3].

70 H. Schwarz et al.

Table 3.3 Coding efficiency improvement for successively enabling PUs of selected sizes. The
shown average bit-rate savings are measured relative to a configuration with 16 � 16 PUs only. In
all configurations, the transform coding is done using a 4 � 4 transform

Enabled PU sizes Entertainment applications Interactive applications

16 � 16 and 8 � 8 PUs 2:7 % 4:4 %
Square PUs from 4 � 4 to 16 � 16 6:1 % 5:6 %
Square PUs from 4 � 4 to 32 � 32 15:4 % 23:0 %
Square PUs from 4 � 4 to 64 � 64 18:7 % 30:3 %
All modes except asym. (C4 � 4 PUs) 20:0 % 31:0 %
All HEVC PU sizes (C4 � 4 PUs) 20:7 % 33:0 %

Table 3.4 Coding efficiency improvement for successively increasing the maximum TU size. The
shown average bit-rate savings are measured relative to a configuration with 4 � 4 TUs only. In all
configurations, all supported CU and PU sizes are enabled and the minimum TU size is 4 � 4

Maximum enabled TU size Entertainment applications Interactive applications

Maximum TU size of 8 � 8 6:8 % 8:5 %
Maximum TU size of 16 � 16 11:9 % 14:7 %
Maximum TU size of 32 � 32 13:9 % 17:5 %

aspects of H.264 j MPEG-4 AVC in the comparison, we enabled 4 � 4 PUs in
most of the configurations, even though they are not supported in the HEVC. This
small syntax modification does not change the interpretation of the results, since the
average bit-rate saving for additionally enabling 4�4 PUs in HEVC is typically less
than 0.1 % for high-resolution video [22].

The second experiment evaluates the impact of supporting different transform
sizes. Here, we enabled all CU and PU sizes supported in the HEVC standard, but
restricted the maximum TU size. In the reference configuration, only 4 � 4 TUs
were allowed, similar as in the Main profile of H.264 j MPEG-4 AVC. While the
minimum TU size of 4 � 4 samples was held constant, the maximum TU size was
successively increased. The corresponding coding efficiency gains are summarized
in Table 3.4. A significant gain of 6.8 % for the entertainment scenario and 8.5 %
for the interactive scenario is already obtained by additionally enabling 8 � 8 TUs, a
configuration which is conceptionally similar to the High profile of H.264 j MPEG-4
AVC. The bit-rate saving relative to the configuration with 4 � 4 TUs only is further
increased to 13.9 % and 17.5 % for the entertainment and interactive application
scenarios, respectively, if all transform sizes supported in HEVC are enabled.

Besides the maximum and minimum TU sizes, also the maximum depth of the
residual quadtree (RQT) can be chosen by an encoder in HEVC. For investigating
its impact on coding efficiency, we enabled all transform sizes, but restricted the
maximum RQT depth. In the reference configuration, we set the maximum RQT
to the minimum supported value of 0. It should be noted that in this setting, as
already discussed above, the partitioning of a CU into multiple PUs implies also
the subdivision into four TUs. If the maximum RQT depth is set equal to 1, the
subdivision of a CU into four TUs can be selected by the encoder, unless the CU

3 Block Structures and Parallelism Features in HEVC 71

Table 3.5 Coding efficiency improvement for successively increasing the maximum depth of
the residual quadtree (RQT). The shown average bit-rate savings are measured relative to a
configuration in which the RQT depth is equal to 0. All supported CU, PU, and TU sizes are
enabled

Residual quadtree depth Entertainment applications Interactive applications

RQT depth equal to 1 0.7 % 0.7 %
Maximum supported RQT depth 1.2 % 1.0 %

Table 3.6 Coding efficiency improvement for successively increasing the CTU size and the
number of hierarchy levels in the coding tree. The shown average bit-rate savings are measured
relative to a configuration with a CTU size of 16 � 16 and a minimum CU size of 8 � 8 luma
samples

CTU size and minimum CU size Entertainment applications Interactive applications

32 � 32 CTU, 16 � 16 minimum CU 9:2 % 17.4 %
32 � 32 CTU, 8 � 8 minimum CU 12:1 % 20.2 %
64 � 64 CTU, 16 � 16 minimum CU 12:7 % 23.8 %
64 � 64 CTU, 8 � 8 minimum CU 14:9 % 25.5 %

is subdivided for the purpose of signaling intra prediction modes. The results are
summarized in Table 3.5. It can be seen that providing the possibility of applying the
transform across PU boundaries yields a bit-rate saving of 0.7 % for both application
scenarios. By allowing more than one level of the residual quadtree, the coding
efficiency can be further increased, even though the improvement is small compared
to the impact of other coding options.

In the next experiment, we compared different configurations for the CTU size
and the minimum CU size. As reference, we used a configuration with a CTU size
of 16 � 16 luma samples and a minimum CU size of 8 � 8 luma samples. This
configuration provides similar partitioning modes as the High profile of H.264 j
MPEG-4 AVC. The bit-rate savings obtained by successively increasing both the
CTU size and the depth of the coding tree are summarized in Table 3.6. A significant
gain is already achieved if all block sizes are basically increased by a factor of 2 in
horizontal and vertical direction, corresponding to a CTU size of 32 � 32 luma
samples and a minimum CU size of 16�16 luma samples. By further increasing the
depth of the coding tree and the CTU size, the compression performance is further
improved for the tested HD sequences.

If we look at the development of video coding standards from H.262 j MPEG-2
Video to HEVC, one key aspect for improving the compression performance was
to increase the set of supported block sizes for motion-compensated prediction
and transform coding. In the last experiment, we evaluated the associated coding
efficiency improvement using the HEVC reference software. It should be noted
that we do not compare the different video coding standards, but only investigate
the impact of increasing the supported set of block sizes for motion-compensated
prediction and transform coding. For all other aspects, the coding tools of HEVC
are used in the experiment. As a reference, we used a configuration that is

72 H. Schwarz et al.

Table 3.7 Coding efficiency improvement for increasing the set of PU and TU sizes as has been
done in the development of video coding standards. The shown average bit-rates are measured
relative to a configuration corresponding to H.262 j MPEG-2 Video (16 � 16 PUs and 8 � 8 TUs
only)

Supported PU and TU sizes Entertainment applications Interactive applications

H.263 & MPEG-4 Visual 2:8 % 4:3 %
H.264 j MPEG-4 AVC 7:3 % 5:7 %
HEVC 26:6 % 37:6 %

restricted to 16 � 16 PUs and 8 � 8 TUs and thus corresponds to the block sizes
supported in H.262 j MPEG-2 AVC. A configuration corresponding to H.263 and
MPEG-4 Visual is obtained by additionally allowing PU sizes of 8 � 8 luma
samples. For simulating the partitioning features of H.264 j MPEG-4 AVC, we
set the maximum CTU size to 16 � 16 luma samples, allowed all subdivisions
supported in HEVC, except the asymmetric partitioning modes, and additionally
enabled 4 � 4 PUs by slightly modifying the syntax. Even though this configuration
differs in some aspects from the actual syntax features of H.264 j MPEG-4 AVC, it
still provides a suitable comparison point. Finally, in the HEVC configuration, the
maximum set of supported block sizes was enabled. The average bit-rate savings
relative to the H.262 j MPEG-2 Video configuration are summarized in Table 3.7.
Additionally, diagrams with rate-distortion curves for a representative sequence for
both application scenarios are shown in Fig. 3.8. For the tested HD sequences, the
increase of partitioning modes from H.262 j MPEG-2 Video to H.264 j MPEG-4
AVC yields bit-rate savings of 7.3 and 5.7 % for the entertainment and interactive
scenario, respectively. The experiment indicates that most of the coding efficiency
improvements [31] that are obtained by H.264 j MPEG-4 AVC for HD material are
related to other coding tools, not the additional partitioning modes. In contrast to
that, a significant part of the coding gain of HEVC relative to H.264 j MPEG-4
AVC can be attributed to supporting increased block sizes for motion-compensated
prediction and transform coding.

3.3 Picture Partitioning for Packetization
and Parallel Processing

As already noted above, both HEVC and H.264 j MPEG-4 AVC follow the
same block-based hybrid video coding paradigm. Conceptually, both video coding
standards also share the two-layered high-level system design consisting of a video
coding layer (VCL) and a network abstraction layer (NAL). The VCL includes all
low-level signal processing, including block partitioning, inter- and intra-picture
prediction, transform coding, entropy coding, and in-loop filtering. The NAL
encapsulates coded data and associated information into NAL units, a logical data
packet format that facilitates video transmission over various transport layers.

3 Block Structures and Parallelism Features in HEVC 73

34

35

36

37

38

39

40

0 5000 10000 15000 20000 25000 30000

Y
U

V
-P

S
N

R
 [

d
B

]

bit rate [kbit/s]

Cactus, 1920x1080, 50Hz

H.262/MPEG-2 configuration

H.263 and MPEG-4 configuration

H.264/MPEG-4 AVC configuration

HEVC (all PU and TU sizes)

35

36

37

38

39

40

41

42

43

44

45

0 500 1000 1500 2000 2500 3000 3500 4000

Y
U

V
-P

S
N

R
 [

d
B

]

bit rate [kbit/s]

FourPeople, 1280x720, 60Hz

H.262/MPEG-2 configuration

H.263 and MPEG-4 configuration

H.264/MPEG-4 AVC configuration

HEVC (all PU and TU sizes)

Fig. 3.8 Impact of restricting the PU and TU sizes of HEVC in a way that corresponds to the
syntax features of different prior video coding standards. The diagrams shows the corresponding
distortion-rate curves for a representative example for the scenario of entertainment applications
(top) and the scenario of interactive applications (bottom)

As in H.264 j MPEG-4 AVC, an HEVC bitstream consists of a number of
access units, each including coded data associated with a picture that has a distinct
capturing or presentation time. Each access unit is divided into NAL units, including
one or more VCL NAL units and zero or more non-VCL NAL units. The VCL

74 H. Schwarz et al.

NAL units consist of coded slices which, as will be discussed in more detail in
Sect. 3.3.1 below, represent grouped blocks of samples of the video picture. The
non-VCL NAL units contain associated data such as, e.g., parameter set NAL units
or supplemental enhancement information (SEI) NAL units. Parameter sets contain
data that are essential for the decoding process, while the SEI syntax enables the
optional support of supplemental data. Besides the sequence parameter set (SPS)
and the picture parameter set (PPS), as known from H.264 j MPEG-4 AVC, HEVC
also includes the novel video parameter set (VPS) for conveying additional metadata
about the characteristics of the coded video sequences to be used at the systems
layer.

Each NAL unit consists of a NAL unit header and a NAL unit payload. The two-
byte NAL unit header in HEVC contains information about the type of payload and,
similar to the scalable video coding (SVC) extension of H.264 j MPEG-4 AVC, a
temporal identifier, which indicates the level in the temporal hierarchical prediction
structure. This information can be conveniently accessed by media gateways, also
known as media-aware network elements (MANEs), for intelligent, media-aware
operations on the stream, such as bitstream thinning using temporal scalability. Note
that this can be achieved without the need of parsing the NAL payload data. The
payload data is also interleaved with emulation prevention bytes when necessary to
ensure that no byte-aligned start code prefix within the NAL payload is emulated.
Details about the NAL concept and parameter sets can be found in Chap. 2.

3.3.1 Slices and Their Fragmentation into Slice Segments
and Slice Segment Subsets

The high-level segmentation of a picture in HEVC is achieved similar to that in
H.264 j MPEG-4 AVC based on the slice concept. The slice concept provides a
partitioning of a picture in such a way that each slice is independently decodable
from other slices of the same picture, where decoding refers to entropy, residual,
and predictive decoding. A slice may consist of a complete picture as well as parts
thereof. In HEVC, the minimum block structure unit of a picture contained in a slice
is a single coding tree unit (CTU).

Picture partitioning by slices serves the following three purposes:

1. Error Robustness: To partition the picture into smaller self-contained entities in
order to gain error robustness by the ability to re-synchronize both the decoding
and parsing process in case of data losses. This typically implies that the slices
are transported packet-wise, i.e., a loss of a transport packet results in a loss of a
slice.

2. MTU Size Matching: To adapt to the network constraint of maximum trans-
mission unit (MTU) size commonly found in IP networks. Such a packetization
scheme is also referred to as MTU size matching and restricts the maximum
number of payload bits within a slice regardless of the size of the coded picture.

3 Block Structures and Parallelism Features in HEVC 75

To keep each slice within this limit and, at the same time, minimize the
packetization overhead, the encoder may produce slices with varying number
of CTUs within a picture.

3. Parallel Processing: To partition the picture into units which can be processed
in parallel. This is given by the fact that all slice-based encoding/decoding
operations including reconstruction prior to loop filtering can be independently
carried out in parallel.

Similar to what is specified in H.264 j MPEG-4 AVC, slices in HEVC consist of
an integer number of its minimum building block which, as already noted above,
is given by a CTU instead of a macroblock. CTUs in a slice are processed in
raster scan order such that each slice of a picture is independently parsable and
decodable. This is achieved by terminating the CABAC bitstream at the end of
each slice and by breaking CTU dependencies across slice boundaries within a
picture such as, e.g., dependencies used for in-picture prediction, context selection,
or probability estimation. Due to this reduced exploitation of spatial redundancy, the
coding efficiency usually decreases quite substantially with increasing the number
of slices used for a picture.

Conceptually, a slice consists of a slice header and the slice data. The slice header
provides specific information for the decoding of the slice data, i.e., the coded CTUs
within the picture to which the slice belongs. Therefore, the slice header precedes
the actual slice data. Note that the overhead of each slice header also contributes
to the reduced coding efficiency when using multiple slices, especially at lower bit
rates.

During the development of HEVC it turned out that the conventional slice
concept, as outlined above and supported by prior video coding standards, is a
too rigid concept to properly meet all anticipated needs. In particular, the bit-rate
overhead caused by multiple slice headers and the strict breaking of in-picture
dependencies at slice boundaries was found to be critical in certain application use
cases.

Therefore, HEVC introduces the novel functionality of slice fragmentation at
conceptually two distinct levels. For the first level of fragmentation, each slice can
be divided into one or more slice segments at the CTU boundaries. The first slice
segment of a slice (in CTU raster scan order) is the independent slice segment and
includes the full slice (segment) header. The independent slice segment is also often
referred to as a regular slice, since it is conceptually equivalent to what is specified
in H.264 j MPEG-4 AVC. All subsequent slice segments within a slice (if any) are
so-called dependent slice segments with drastically shortened slice segment headers.
Note that within the same slice CTU dependencies across slice segment boundaries,
both in terms of in-picture prediction and entropy coding, are allowed for dependent
slice segments, provided that no further restrictions are given. Slice segments will
be discussed in more detail in Sect. 3.3.1.1 below.

The second slice fragmentation level of HEVC is given by the instrument of
slice segment subsets, often referred to as substreams. Each slice segment subset
contains all coded bits of a subset of CTUs covered by the corresponding slice

76 H. Schwarz et al.

4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32

33 34 35

60 61 62 63 64 65

66 67 68 69 70 71 72 73 74 75 76

77 78 79 80 81 82 83 84 85 86 87

88 89 90 91 92 93 94 95 96 97 98

49 50 51 52 53 54

55 56 57 58 59

36 37 38 39 40 41 42 43

44 45 46 47 48

0 1 2 3
Slice Segment
Boundary

Slice Boundary

Independent
Slice Segment

Dependent
Slice Segment

Fig. 3.9 Picture structuring in HEVC using slices, showing the CTUs belonging to independent
slice segments (blue shaded) and dependent slice segments of two slices of a picture. Note that the
slice boundaries are marked by a solid line, whereas the boundaries between slice segments of the
same slice are marked by dashed lines

segment data, and an entry point offset is provided for each (but the first) subset
in the corresponding slice segment header for proper subset identification. Subsets
are most appropriate for the use together with the novel high-level parallelization
tools of HEVC, as will be discussed in Sect. 3.3.2. Slice segment subsets will be
presented in Sect. 3.3.1.2, followed by a discussion of the slice segment header in
Sect. 3.3.1.3.

3.3.1.1 Slice Segments

The fragmentation of slices by the use of dependent slice segments was first
proposed in [34]. According to this fragmentation concept, a slice in HEVC is
defined as a set of slice segments, where the first segment of a slice is the
independent slice segment, followed by zero or more dependent slice segments, as
exemplarily shown in Fig. 3.9.

Dependent slice segments do only contain a minimum set of slice header parame-
ters and its use is indicated by the slice header syntax elementdependent_slice
_segment_flag, as further explained in Sect. 3.3.1.3. As another distinct feature
in comparison to regular slices or independent slice segments, dependent slice
segments do not break in-picture dependencies across CTU boundaries within the
slice to which the segment belongs. Although each dependent slice segment data is
conveyed by its own CABAC bitstream and therefore, the CABAC engine needs to
be flushed and reset at the segment boundaries, the adapted content of all CABAC
context variables are stored at the end of each slice segment (including those of the
independent slice segment) in order to be re-used for initialization in the subsequent
dependent slice segment. In this way, no coding efficiency penalty is introduced by
the use of dependent slice segments except for the additional, rather small amount
of slice segment header bits. Note that for each CTU in a slice segment, the syntax

3 Block Structures and Parallelism Features in HEVC 77

element end_of_slice_segment_flag is signaled to indicate whether the
corresponding CTU is the last CTU in the slice segment and, if this is the case,
to properly terminate the CABAC bitstream and to perform the above-mentioned
storage process for CABAC context variables. For more details about termination
and the handling of context memory in HEVC CABAC, please refer to Chap. 8.

Obviously, dependent slice segments do not provide the same error robustness as
independent slice segments. In an error-free environment, however, an encoder can
choose to fragment a coded picture in potentially many small units and provide them
to the network transmission stack before having finished encoding the remainder of
the picture, and without incurring the penalty of broken in-picture dependencies.

One use case of dependent slice segments is the reduction of the end-to-end delay
for ultra-low delay applications, such as remote video or broadcast contribution.
Since the dependent slice segment header only carries a minimum of data, slice
segments may also be used as entry points for parallelization techniques. The latter
aspect as well as the relation to ultra-low delay requirements is discussed in more
detail in Sect. 3.3.4.

In addition, the slice segment concept provides a fragmentation mechanism
for bitstream partitioning of over-sized NAL units to comply with the MTU size
requirements without incurring substantial coding efficiency losses, as it is usually
the case for regular slices. Slice segments are also useful for providing a correct
and byte-aligned fragmentation of entropy coded data in such a way that in case of
losing a dependent slice segment, the independent slice segment together with all
its dependent slice segments preceding the lost segment can be decoded correctly.

3.3.1.2 Slice Segment Subsets

Picture partitioning for the purpose of parallel processing does not necessarily
require each resulting partition to be included in an individual NAL unit. Therefore,
HEVC provides a fragmentation of coded slice data without the use of additional
header data. This is achieved by dividing the slice segment data, preferably that of
an independent slice segment, into disjoint subsets of coded CTU data such that the
union of all subsets cover the whole slice segment data. Each slice segment subset
consists of an individual byte aligned CABAC bitstream, which is terminated by
using the special terminating syntax element end_of_sub_stream_one_bit.
For all but the first substream, the entry point offsets (in bytes) are signaled by
the syntax elements entry_point_offset_minus1[i] in the corresponding
slice segment header, where the length (in bits) of the entry point offset syntax
elements is given by the prior signaled offset_len_minus1 syntax element.
Note that the first subset starts with the first byte of the slice segment data,
immediately after the slice segment header data, which is considered to be byte 0.
It is also important to understand that the entry point signaling is based on
the calculation of the byte aligned substream lengths including any potentially
necessary emulation prevention bytes. However, without any further externally
derived information of the location of the first CTU in each slice segment subset,

78 H. Schwarz et al.

no parallel decoding is possible and, therefore, it is quite obvious that there are a
number of further restrictions imposed on slice segment subsets, when used together
with the new high-level parallelization tools in HEVC, as will be further explained
in Sect. 3.3.2.

3.3.1.3 Slice Segment Header

A lot of syntax elements in the HEVC slice segment header are already known from
the corresponding slice header syntax in H.264 j MPEG-4 AVC. This subsection
gives a brief survey of the main syntax elements in the slice segment header
of both independent and dependent slice segments in HEVC by discussing the
commonalities and differences in relationship to the slice header syntax of its
predecessor.

If the slice segment is not the first slice segment in a picture, which is signaled
by the first_slice_segment_in_pic_flag at the beginning of the slice
segment header, the syntax element slice_segment_address determines the
address of the first CTU in the slice segment in CTU raster scan order, analogous
to the address of the first macroblock in the slice header of H.264 j MPEG-4 AVC.
Note that the first CTU of the first (independent) slice segment in a picture is always
given as the CTU that covers the luma CTB containing the top left luma sample of
the picture.

Each slice segment header refers to the specific picture parameter set that is in
use for the picture to which the slice belongs. The corresponding identifier slice_
pic_parameter_set_id must have the same value for all slices of a given
picture. The referred PPS contains further information such as the referred SPS
and information controlling the presence of particular syntax elements in the slice
segment header.

All above-mentioned syntax elements are present for both independent and
dependent slice segment headers. The discrimination between both slice segment
types is signaled by the dependent_slice_segment_flag, if the corre-
sponding fragmentation functionality is enabled in the PPS. Since for dependent
slice segments only a shortened header is transmitted, all values of the remaining
slice header syntax elements, excluding the entry point offset signaling for slice
segment subsets, are derived from the full slice segment header of the preceding
independent slice segment, instead of being explicitly transmitted.

One of these syntax elements unique to the header of independent slice segments
is the slice_type that indicates the coding type of the slice. This syntax element
is also known from H.264 j MPEG-4 AVC and specifies whether the slice is a
B slice, a P slice, or an I slice, depending on whether the use of bi-predictive, uni-
predictive, or only intra-predictive coding is allowed, respectively.

For all pictures which are not instantaneous decoding refresh (IDR) pictures, the
(independent) slice segment header also contains information that allows derivation
of the picture order count (POC) of the enclosing picture. The POC allows to
identify pictures that needs to be present in the decoded picture buffer (DPB) for

3 Block Structures and Parallelism Features in HEVC 79

decoding of remaining pictures, where the set of retained reference pictures is
called the reference picture set (RPS). For a proper management of the RPS, HEVC
supports a couple of new syntax elements in the (independent) slice segment header
that lead to a far more robust approach in case of picture and/or slice losses when
compared to the corresponding capabilities of H.264 j MPEG-4 AVC.

Other syntax elements in the (independent) slice segment header are directly
related to the decoding and parsing process, such as a flag indicating the use of
the temporal motion vector predictor, the slice QP delta, parameters for weighted
prediction as well as a flag indicating the use of a specific set of CABAC
initialization values for P and B slices.

For in-loop filtering, there are optional flags in the (independent) slice segment
header for enabling/disabling the deblocking filter for the current slice or for
enabling/disabling the whole in-loop filtering, including sample-adaptive offset
(SAO) filtering, across the left and upper boundaries of the current slice.

In order to be future proof in terms of extensibility, the HEVC slice header syntax
also includes optional syntax elements that allow for extensions of the slice header
by later versions and/or profiles of the standard.

3.3.2 High-Level Parallelization Features

Parallel processing can enable the operation of a video codec in real-time on
systems which would not be able to support the codec operation in real-time in a
non-parallel execution fashion. Today’s hardware architectures inherently support
multi-threading also on low power platforms. This is somewhat motivated by the
fact that manufacturers of general purpose processors and later also manufactures
of low-power ARM based processors started producing multi-core processors when
it became more difficult/costly to boost CPU processing power by raising clock
speed as they had done prior to the multi-core revolution. The performance gain of
multi-threading is only achievable, if the target platform also supports the parallel
execution of threads in such a way that multiple hardware execution units such as,
e.g., multi-core processor(s) can be used.

Multi-threading in the software context refers to a programming model in which
the computation is specified in multiple independent units called threads that share
some resources, specifically memory. These threads can run in a time division or
in a parallel manner depending on the implementation and underlying hardware.
Threads usually communicate via shared memory, and have to use synchronization
operations to ensure a proper use of shared resources and to satisfy ordering
constraints in the program. Commonly synchronization statements such as locks,
semaphores, barriers, and condition variables are used to control the progress among
the threads.

The performance gain achieved by multi-threading is measured as speed up in
terms of execution time of the program code on a single processing unit divided
by the execution time of the program code on multiple p parallel processing units.

80 H. Schwarz et al.

Thus, typically the maximum speed-up factor using p processing units is p. Since
the actual speed-up is influenced by various characteristics such as synchronization
between threads, memory access or memory characteristics, an optimized imple-
mentation would avoid main memory access, assuming a hierarchical memory
structure, as much as possible and instead rely on cache memory access, as the
latter typically has much faster access times compared to the main memory albeit at
smaller memory sizes.

Different parallelization techniques have been introduced for improved utiliza-
tion of computational resources in the implementation of video coding standards. In
the following only the most important ones are mentioned:

• Picture-Level Parallelization: Picture-level parallelism consists of processing
multiple pictures at the same time provided that the temporal dependencies for
motion-compensated prediction are satisfied. Picture-level parallelism is often
sufficient for multi-core systems with a few cores. Because it is relatively
simple to implement and does not incur coding efficiency losses, it has become
the state-of-the art for software-based implementations of H.264 j MPEG-4
AVC. However, picture-level parallelism has a number of limitations. First, the
parallelization scalability is determined by the lengths of the motion vectors
and/or the size of the underlying group of pictures (GOP). Second, the workload
of each core may be imbalanced because the picture encoding/decoding times
can vary significantly. Finally, picture-level parallelism increases the processing
frame rate but does not improve latency.

• Slice-Level Parallelization: In HEVC and H.264 j MPEG-4 AVC, each picture
can be partitioned into slices, as described in Sect. 3.3.1. All (regular) slices
within a picture are independent from each other except for potential depen-
dencies regarding cross-slice border in-loop filtering. Therefore, slices can be
used for parallel processing. Slice-level parallelism, however, has a number of
disadvantages. Although slices are completely independent from each other in
terms of prediction, transform and entropy coding, in-loop filtering may be
applied across slice boundaries. For H.264 j MPEG-4 AVC it may be required
to perform deblocking of the complete picture using a single processing unit,
whereas HEVC, in principle, allows in-loop filtering to be performed on CTU
rows in parallel. Moreover, as already mentioned above, multiple slices reduce
the coding efficiency significantly due to the restrictions of in-picture prediction
and entropy coding across slice boundaries. Due to these disadvantages, exploit-
ing slice-level parallelism is only advisable when the number of slices per picture
is strictly limited [33].

• Block-Level Parallelization: In hardware-based implementations of H.264 j
MPEG-4 AVC, for example, a macroblock-level pipeline is very widely used.
This kind of block-level parallelization technique is based on using heterogenous
processing cores, where one core is dedicated for entropy coding, one for in-
loop filtering, one for intra prediction and so on. In this way, macroblocks
will be processed concurrently on the different cores. Note, however, that
efficient parallel processing of macroblocks may require an elaborate scheduling

3 Block Structures and Parallelism Features in HEVC 81

algorithm for determining the order of macroblock processing, given their mul-
tiple spatial dependencies. Another approach of block-level parallelism is given
by the wavefront scheduling approach [40], where macroblocks are grouped in
a wavefront-like manner to ensure that a sufficient number of macroblocks are
available, as dictated by the spatial dependencies between adjacent macroblocks.
At the same time, all macroblocks belonging to the same “wavefront” can be
processed concurrently. Furthermore, macroblocks of different pictures can be
processed in parallel provided that the temporal dependencies due to motion-
compensated prediction are handled correctly [28]. Entropy decoding, however,
can only be parallelized at the slice level and therefore it has to be decoupled
from macroblock or CTU reconstruction. Although this approach can scale up
to multi-core architectures, it has some limitations too. First, the decoupling of
entropy decoding and reconstruction increases the memory usage. Furthermore,
this strategy only reduces the decoding time of a picture in the reconstruction
stage but not in the entropy decoding stage. Consequently, a single-threaded
entropy decoding step itself may be the bottleneck and the limiting factor of the
overall throughput.

In order to overcome the limitations of the parallelization strategies employed
in H.264 j MPEG-4 AVC, HEVC provides VCL-based coding tools that are
specifically designed to enable processing on high-level parallel architectures. Two
new tools aiming at facilitating high-level parallel processing have been included in
the HEVC standard [9, 10, 18]:

• Wavefront Parallel Processing (WPP): A parallel processing approach along
the wavefront scheduling principle, which is based on a partitioning of the picture
into CTU rows such that the dependencies between CTUs of different partitions,
both in terms of predictive coding and entropy coding, are preserved to a large
extent.

• Tiles: A picture partitioning mechanism similar to slices, which is based on a
flexible subdivision of the picture into rectangular regions of CTUs such that
coding dependencies between CTUs of different partitions are prohibited.

Both of these tools allow subdivision of each picture into multiple partitions that
can be processed in parallel. Each partition contains an integer number of CTUs that
may or may not have dependencies on CTUs of other partitions. When WPP or tiles
are enabled, typically for each partition a separate slice segment subset is used such
that the corresponding entry point offsets (in the slice segment header) indicate the
start positions of all picture partition substreams (except for the first substream) in
the slice segment. This is necessary for each core to immediately access the partition
it has been assigned to decode. More details about parallel partition access are given
in Sect. 3.3.2.3 below.

In the HEVC Main, Main10 and Main Still Picture profile, only one of the tools
can be used at the same time, although the entry point signaling design would allow
for a co-existence in future profiles.

82 H. Schwarz et al.

Although the following subsections discuss the high-level parallelization tools
mainly from a decoder point-of-view, both WPP and tiles may be used for
parallelization of encoders as well.

3.3.2.1 Tiles

When tiles are enabled in HEVC, the picture is divided into rectangular-shaped
groups of CTUs separated by vertical and/or horizontal boundaries [9, 18, 29]. The
PPS syntax element tiles_enabled_flag indicates the use of tiles. The tile
approach has some similarities to slice groups in H.264 j MPEG-4 AVC using the
feature of flexible macroblock ordering (FMO) with slice group map type 2.

The number of tiles and the location of their boundaries can be defined
for the entire sequence or changed from picture to picture. This is achieved
in the PPS by signaling parameters such as num_tile_columns_minus1,
num_tile_rows_ minus1, uniform_spacing_flag, column_width
minus1 and row height_minus1. With these syntax elements the number
of tiles, as well as the picture partitioning into tiles can be defined. Since the
tile signaling is included in the PPS, this structure may change on a per picture
basis. This has the benefit that an encoder can use different ways of arranging
the tiles in different pictures in order to control the load balancing between cores
used for encoding/decoding. For example, if a region of a picture should require
more processing resources, such a region may be subdivided into more tiles than
other regions which may require less encoding/decoding resources. But the required
encoder/decoder resource management, which determines the tile structure, needs
to be applied before the actual encoding process.

Tile boundaries, similarly to slice boundaries, do break parsing and prediction
dependencies so that a tile can be processed independently, but the in-loop (deblock-
ing and SAO) filters can still cross tile boundaries in order to optionally prevent tile
border artifacts. This functionality is controlled by the loop_filter_across_
tiles_enabled_flag syntax element in the PPS.

The fact that a tile can be processed independently from other tiles in a picture
makes tiles also very suitable for lossy transmission environments, if tiles of a
picture are transported in different packets.

Tiles do change the regular scan order of CTUs from picture-based raster scan
order (i.e., CTUs are processed row-wise from left to right) to a tile-based raster
scan order, of which an example is shown in Fig. 3.10. Since the tile scan order
itself may be different from the picture raster scan order used in typical picture
processing systems, decoders may process the CTUs of tiles still in a picture-based
raster scan fashion not exploiting any parallelization. Note that this can be achieved
by storing and reloading the values of all CABAC context variables for each tile at
the tile boundaries while moving from one CTU row to the next.

Constraints are set on the relationship between slices, slice segments and tiles. At
least one of the following conditions shall be true for each slice and tile in a picture:
All CTUs in a slice belong to the same tile, or all CTUs in a tile belong to the

3 Block Structures and Parallelism Features in HEVC 83

Fig. 3.10 Tile-based raster
scan order of CTUs with nine
tiles of different sizes in the
picture. Note that the tile
boundaries are marked with
bold dashed lines

4 45 46 47 48 49 50

5 6 7 8 9 51 52 53 54 55 56

10 11 12 13 14 57 58 59 60 61 62

15 16 17

75 76 77 78 79 80

30 31 32 33 34 81 82 83 84 85 86

35 36 37 38 39 87 88 89 90 91 92

40 41 42 43 44 93 94 95 96 97 98

69 70 71 72 73 74

25 26 27 28 29

18 19 63 64 65 66 67 68

20 21 22 23 24

0 1 2 3

Tile
Boundary

4 45 46 47 48 49 50

5 6 7 8 9 51 52 53 54 55 56

10 11 12 13 14 57 58 59 60 61 62

15 16 17

75 76 77 78 79 80

30 31 32 33 34 81 82 83 84 85 86

35 36 37 38 39 87 88 89 90 91 92

40 41 42 43 44 93 94 95 96 97 98

69 70 71 72 73 74

25 26 27 28 29

18 19 63 64 65 66 67 68

20 21 22 23 24

0 1 2 3

Fig. 3.11 Two different ways of fragmenting an exemplary tile partitioning using two tiles into
slices and slice segments. Left: One slice including four dependent slice segments. Right: Three
slices, each containing one dependent slice segment. Note that the tile boundaries are marked
with bold dashed lines, the slice boundaries with bold solid lines, and the boundaries between slice
segments with dotted lines. The CTUs belonging to the independent slice segments are blue shaded

same slice. For each slice segment and tile at least one of the following conditions
shall be true in a picture: All CTUs in a slice segment belong to the same tile, or all
CTUs in a tile belong to the same slice segment. Note that as a consequence of these
constraints, a slice or slice segment whose starting point does not coincide with the
starting point of a tile cannot span multiple tiles. An example of this situation is
given in Fig. 3.11, which shows the same partitioning of a picture into two tiles with
two different ways of fragmentation into slices and slice segments.

Tiles do not require communication between processors for CTU-level entropy
decoding and reconstruction, but communication is needed if in-loop filtering
stages operate in the cross tile-border filtering mode. Although the cross tile-border
filtering mode may be switched off to avoid data exchange between processors, it
can result in visual artifacts at tile boundaries.

Compared to slices, tiles usually provide a better coding efficiency since
reduced spatial distances in tiles lead to a potentially higher exploitation of spatial
correlations between samples within a tile. Furthermore, the use of tiles may
reduce slice header overhead, at least in cases where not exactly one slice per tile

84 H. Schwarz et al.

109874 5 6

11 12 13 14 15 16

22 23 24 25 26

33 34 35

55 56

36

44 45 46

0 1 2 3Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

... Propagation of
CABAC context
variables

47

37 38

27 28

17 18 19 20

29

Fig. 3.12 Wavefront parallel
processing along CTU rows
and propagation of CABAC
context variables from CTU1
to CTU11, from CTU12 to
CTU22, . . . , from CTU45 to
CTU55, and so on

is used. But, similar to slices, the coding efficiency loss typically increases with the
number of tiles, due to the breaking of dependencies along tile boundaries and the
re-initialization of all CABAC context variables at the beginning of each tile.

3.3.2.2 Wavefront Parallel Processing (WPP)

When wavefront parallel processing (WPP) is enabled in HEVC, each CTU row
of a picture constitutes a separate partition [10, 18]. WPP is enabled/disabled by
the PPS syntax element entropy_coding_ sync_enabled_flag. As shown
in Fig. 3.12, in WPP mode each CTU row is processed relative to its preceding
CTU row by using a delay of two consecutive CTUs. In this way, no dependencies
between consecutive CTU rows are broken at the partition boundaries except for the
CABAC context variables at the end of each CTU row. To mitigate the potential loss
in coding efficiency that would result from the conventional CABAC initialization
at the starting point of each CTU row, the content of the (partially) adapted CABAC
context variables are propagated from the encoded/decoded second CTU of the
preceding CTU row to the first CTU of the current CTU row, as shown in Fig. 3.12.
As a result, the coding efficiency losses introduced by WPP are relatively small
compared to the case of a picture encoding using no WPP but with otherwise
identical settings [6, 10]. Also, WPP does not change the regular raster scan order
of CTUs. Furthermore, by using a relatively simple CABAC transcoding technique,
a WPP bitstream can be transcoded to or from a non-WPP bitstream without any
change to the picture reconstruction process [7].

When WPP is enabled, a number of threads up to the number of CTU rows in a
picture can work in parallel to process the individual CTU rows, where the number
of CTU rows depends on the ratio of the picture height in luma samples and the
luma CTB size in either width or height.

By using wavefront parallel processing in a decoder, each decoding thread
processes a single CTU row of the picture. Since the CTU dependencies need to be
maintained between the decoding threads, the scheduling of the thread processing
must be organized in such a way that for each CTU the decoding of its top right

3 Block Structures and Parallelism Features in HEVC 85

neighboring CTU in the preceding CTU row must have been finished. In other
words, at any time the thread processing of the preceding CTU row must have
processed two consecutive CTUs more than the thread processing of the current
CTU row, which results in a “wavefront” of CTUs rolling from the top left to
the bottom right corner of the picture, as illustrated in Fig. 3.12. This is why
the wavefront dependencies do not allow all threads of processing CTU rows
to start decoding simultaneously. Consequently, the row-wise CTU processing
threads cannot finish decoding at the same time at the end of each row. This
introduces parallelization inefficiencies, referred to as ramping inefficiencies, that
become more evident with an increasing number of threads being used. Additional
pipelining issues might arise because of stalls from an inefficient load balancing
of CTUs. For example, a slow CTU in one CTU row could cause stalls in the
processing of subsequent CTU rows.

As an additional small overhead in processing, WPP requires to store the content
of all CABAC context variables after having finished encoding/decoding of the
second CTU in each CTU row. Beyond that, however, WPP does not require any
extra handling of partition borders to preserve the dependencies utilized by entropy
encoding/decoding, in-picture prediction or in-loop filtering. An example WPP
scheme for executing all HEVC decoder operations within the hybrid video coding
loop can be found in [6].

The header overhead associated with WPP can be kept small and may consist
only of signaling the partition entry point offsets via slice segment subsets or,
alternatively, the reduced slice segment header of dependent slice segments, as
discussed in Sect. 3.3.2.3 below. Together with the minor coding efficiency loss due
to the above-mentioned CABAC re-initialization by propagation of context variables
at the partition starting points, the resulting overall overhead of a WPP bitstream
is small compared to a non-parallel bitstream, while enabling a fair amount of
parallelism that scales with the picture resolution.

In order to maintain bitstream conformance for the CTU row partitioning
approach, a constraint has been set on the presence of slices and slice segments
in a CTU row. According to this constraint, it is required that the last CTU of a slice
or a slice segment that does not start with the first CTU of a CTU row belongs to
the same CTU row as the first CTU in the same slice or slice segment.

As already mentioned above, the scalability of wavefront parallel processing is
limited by the reduced number of independent CTUs at the beginning and at the
end of each picture. To overcome this limitation and increase the parallelization
scalability of WPP, a technique called overlapped wavefront (OWF) has been
proposed in [2,6], which is not part of the HEVC standard, but may be implemented
by using additional constraints on the encoding process. By using OWF, multiple
pictures can be decoded simultaneously such that a more constant parallelization
gain can be obtained. An in-depth analysis of the parallelization tools included
in HEVC has shown that when WPP is combined with the OWF algorithm, it
provides a better parallelization scalability than tiles. For quantitative details of the
comparison of WPP and tiles as well as the overlapping wavefront approach, the
reader is referred to the discussions and results in [6].

86 H. Schwarz et al.

3.3.2.3 Bitstream Access for Parallel Decoding

In order to provide access to the individual partitions of the high-level parallelization
tools as presented above, both slice segments and slice segment subsets can be used.
For the latter, the very efficient entry point signaling in the slice segment header is
available. However, as already noted above, for each subset except for the first in
a slice segment, the location of the first CTU is not known and, therefore, needs to
be derived by external means. This is why the following additional constraints are
given on the use of slice segment subsets for tiles and WPP, respectively.

For tiles, each subset of a slice segment shall be fully contained in one tile and
the number of subsets shall be equal to the number of tiles that do have at least one
CTU in the given slice segment. This means that a subset cannot cover more than
one tile and in case, the corresponding slice segment covers more than a single tile,
each subset starts with the first CTU in one tile and ends with the last CTU in the
same tile. In any case, the address of the first CTU of each subset can be derived
from the tile pattern signaled in the PPS. Note that, as already mentioned above,
in the case where a slice segment covers more than one tile, all tiles must be fully
contained in the same slice segment.

Equivalently for WPP, a subset cannot cover more than one CTU row and in case,
the enclosing slice segment covers more than one CTU row, each subset in this slice
segment starts with the first CTU in a CTU row and ends with the last CTU in the
same CTU row with the possible exception of the last subset. Thus, for every subset
the address of its first CTU is equal to the first CTU of a CTU row and each subset,
possibly except the last subset, spans a whole CTU row in the given slice segment.

In the two cases where there is only a single tile or a single CTU row or less
contained in a slice segment, the offset signaling is not present in the corresponding
slice segment header.

As an alternative to slice segment subsets, the use of slice segments, especially
dependent slice segments due to its comparably small header overhead may be
equally appropriate for the partition access. Since the dependent slice segment
header also contains explicitly the address of its first CTU, no further restrictions on
the use of dependent slice segments together with tiles and WPP are given beyond
the ones already mentioned in the previous subsections.

3.3.3 Support for Ultra-Low Delay Applications

HEVC introduces a new hypothetical reference decoder (HRD) processing concept.
Details and fundamentals about the HRD process are given in [8] and Chap. 2. The
new concept is defined alternatively to the one based on access units, which is the
concept of sub-pictures called decoding units (DU). Those sub-pictures may get
assigned an additional decoding timestamp by the DU information SEI message.
This timing can be used to indicate additionally to the picture timing SEI, which
indicates the timing for coded picture buffer (CPB) removal and decoded picture

3 Block Structures and Parallelism Features in HEVC 87

Fig. 3.13 Ultra-low delay operation mode combined with high-level parallelism tools of tiles (left)
and WPP (right) with end of DU indicated by crosses

buffer (DPB) removal for the whole access unit, a timestamp for each DU. The DU
timing gives a separate, possibly earlier timing for decoding of the DU compared
to the whole picture. This has the merits that parts of the picture may be encoded
by the sender, transmitted to the receiver and decoded at the receiver earlier than if
the whole access unit is processed at once. This means that this indication of earlier
decoding times of sub-pictures allows to reduce the whole end-to-end delay of a
capturing, coding, transmission, decoding and presentation chain [8].

In ultra-low delay applications, such as remote-video or broadcast contribution
where delays below picture durations are required, the encoder needs to output a
picture partition in the form of a DU to the transmission chain as soon as encoding
is finished.

HEVC further provides the ability of using high-level parallelization techniques
in order to reduce processing demands in multiprocessing unit environments.
Therefore, HEVC allows for subdividing the picture into tiles or WPP substreams,
i.e., rows of CTUs as described above in Sect. 3.3.2. Either of the methods may be
used with ultra-low latency operations, where the WPP case can only be achieved
using dependent slice segments, as discussed in Sect. 3.3.1.

The ultra-low latency mode for high-level parallelism is shown in Fig. 3.13. The
left part of the Fig. 3.13 shows the coding process of tiles, where the first three tiles
(marked by cross) are bound to the same decoding unit. In the right part of Fig. 3.13,
six CTU rows are provided, where each CTU row belongs to a single decoding unit,
each consisting of a single slice segment (and marked by a cross).

3.3.4 Summary of High-Level Parallelization Tools

It is clear from the previous sections that tiles and WPP have different pros and cons.
WPP is generally well-suited for the parallelization of the encoder and decoder

because it allows a high number of picture partitions with relatively low coding-
efficiency losses. Additionally, WPP does not need an additional pass of in-loop
filtering in comparison to slices and tiles [41]. WPP can also be used for low-delay
applications, especially those requiring sub-picture delay (also called ultra-low
delay), as described in Sect. 3.3.3.

88 H. Schwarz et al.

Tiles are also well-suited for a general parallelization of encoder and decoder.
The amount of parallelism is not fixed, as is the case for WPP, allowing the encoder
to adjust the number of tiles according to its computational resources. Because
tiles can be used to subdivide the picture into multiple rectangles spanning the
picture horizontally and vertically, they are also better suited for region of interest
(ROI) coding than, e.g., slices. In conversational applications, for example, tiles
in combination with a tracking algorithm can be used to dynamically adjust the
size and error protection of the ROIs. Tiles are also good for applications where
coding tasks need to be distributed onto different hardware machines/systems, since
each tile can be, assuming cross tile-border filtering is done separately, processed
relatively independent from other tiles within the picture and therefore, in this case
require a minimum of communication between the threads processing the individual
tiles. However, tiles usually come along with the cost of a significant overhead in
bit rate.

In order to simplify implementations of the standard, HEVC does not allow the
use of tiles and WPP simultaneously in the same compressed video sequence. It
may be interesting, however, to allow some combination of these tools in the future.
For instance, it could be necessary to divide an ultra-high definition video signal
into sub-pictures using tiles with WPP inside each sub-picture, to enable real-time
encoding/decoding.

3.4 Conclusions

The nested quadtree-based block partitioning as a distinguished feature of HEVC
has been presented. It has been shown that more than half of the coding efficiency
improvements of HEVC relative to H.264 j MPEG-4 AVC for HD video material is
obtained solely by introducing this flexible block partitioning concept for improved
prediction and transform coding. Furthermore, it has been elaborated on how the
two novel picture partitioning features of tiles and wavefront parallel processing can
improve the parallel-processing friendliness of HEVC in order to meet the increased
demand in computational complexity. Finally, it has also been discussed how the
new concept of dependent slice segments in HEVC can facilitate ultra-low delay
processing on a sub-picture level without substantial loss in coding efficiency, when
used together with the aforementioned novel picture partitioning tools.

References

1. Ahmed N, Natarajan T, Rao KR (1974) Discrete cosine transform. IEEE Trans Comput
C-23:90–93

2. Alvarez-Mesa M, George V, Chi CC, Schierl T (2012) Improving parallelization efficiency
of WPP using overlapped wavefront, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-J0425, Stockholm, July 2012

3 Block Structures and Parallelism Features in HEVC 89

3. Bjøntegaard, G (2001) Calculation of average PSNR differences between RD curves. ITU-T
SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-M33, Austin, Apr. 2001

4. Chen P, Ye Y, Karczewicz M (2008) Video coding using extended block sizes. ITU-T SG16
Q6 Video Coding Experts Group (VCEG), Document VCEG- AJ23, San Diego, Oct. 2008

5. Chou PA, Lookabaugh T, Gray RM (1989) Optimal pruning with applications to tree-structured
source coding and modeling. IEEE Trans Inf Theory 35:299–315

6. Chi CC, Alvarez-Mesa M, Juurlink B, Clare G, Henry F, Pateux S, Schierl T (2012) Parallel
scalability and efficiency of HEVC parallelization approaches. IEEE Trans Circuits Syst Video
Technol 22:1827–1838

7. Clare G, Henry F (2012) An HEVC transcoder converting non-parallel bitstreams to/from WPP,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC- J0032, Stockholm,
July 2012

8. Deshpande S, Hannuksela MM, Kazui K, Schierl T (2013) An improved hypothetical reference
decoder for HEVC. In Proc. SPIE. 8666, Visual Information Processing and Communication
IV, no. 866608, Feb. 2013

9. Fuldseth A, Horowitz M, Xu S, Zhou M (2011) Tiles, Joint Collaborative Team on Video
Coding (JCT-VC), Document JCTVC-E408, Geneva, Mar. 2011

10. Henry F, Pateux S (2011) Wavefront parallel processing, Joint Collaborative Team on Video
Coding (JCT-VC), Document JCTVC-E196, Geneva, Mar. 2011

11. ISO/IEC 11172-2:1993 Coding of moving pictures and associated audio information for digital
storage media at up to about 1.5 Mbit/s – Part 2: Video. (MPEG-1)

12. ISO/IEC 14496-2:1999 Coding of audio-visual objects – Part 2: Video. (MPEG-4 Visual)
13. ITU-R Rec. BT.2020 (2012) Parameter values for ultra-high definition television systems for

production and international programme exchange.
14. ITU-T Rec. H.261 (1993) Video codec for audiovisual services at p � 64 kbit/s. 3rd edn.
15. ITU-T Rec. H.263 (2005) Video coding for low bit rate communication. 3rd edn.
16. ITU-T Rec. H.262 and ISO/IEC 13818-2 (2000) Generic coding of moving pictures and

associated audio information: Video. (MPEG-2 Video), 2nd edn
17. ITU-T Rec. H.264 and ISO/IEC 14496-10 (2012) Advanced video coding. 7th edn.
18. ITU-T Rec. H.265 and ISO/IEC 23008-10 (2013) High efficiency video coding
19. F. Bossen (2012) Common conditions and software reference configurations, Joint Collabora-

tive Team on Video Coding (JCT-VC), Document JCTVC-H1100, San Jose, Feb. 2012
20. Joint Collaborative Team on Video Coding (2012) HM 10.1 Reference Software. https://hevc.

hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-10.1/
21. Kim I-K, Min JM, Lee T, Han W-J, Park JH (2012) Block partitioning structure in the HEVC

standard. IEEE Trans Circuits Syst Video Technol 22:1697–1706
22. Kondo K, Suzuki T (2012) AHG7: Level definition to limit memory bandwidth of MC, Joint

Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0106, Geneva, Apr.-May
2012

23. Lee T, Chen J, Han, W-J (2010) TE12.1: Experimental results of transform unit quadtree/2-
level test, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-C200,
Guangzhou, Oct. 2010

24. Li B, Xu J,Wu F, Sullivan G J, Li H (2010) Redundancy reduction in CBF and merging coding,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-C277, Guangzhou,
Oct. 2010

25. Marpe D, Schwarz H, Bosse S, Bross B, Helle P, Hinz T, Kirchhoffer H, Lakshman H, Nguyen
T, Oudin S, Siekmann M, Sühring K, Winken M, Wiegand T (2010) Video compression using
quadtrees, leaf merging and novel techniques for motion representation and entropy coding.
IEEE Trans Circuits Syst Video Technol 20:1676–1687

26. Ma S, Kuo C-CJ (2007) High-definition video coding with super-macroblocks. In: Proceedings
of visual communications and image processing, vol. 6508

27. McCann K, Han W-J, Kim I-K, Min JH, Alshina E, Alshin A, Lee T, Chen J, Seregin V, Lee
S, Hong YM, Cheon MS, Shlyakhov N (2010) Samsung’s response to the Call for Proposals
on Video Compression Technology, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-A124, Dresden, Apr. 2010

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-10.1/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-10.1/

90 H. Schwarz et al.

28. Meenderinck C, Azevedo A, Alvarez M, Juurlink B, Ramirez A (2009) Parallel scalability of
video decoders. J Signal Process Syst 57:173–194

29. Misra K, Segall A, Horowitz M, Xu S, Fuldseth A, Zhou M (2013) An overview of tiles in
HEVC. IEEE J Sel Topics Signal Process 7:969–977

30. Minezawa A, Li B, Sugimoto K, Sekiguchi S, Xu J (2011) Proposed fix on CBF flag signaling,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G444, Geneva, Nov.
2011

31. Ohm J-R, Sullivan GJ, Schwarz H, Tan TK, Wiegand T (2012) Comparison of the coding
efficiency of video coding standards – including High Efficiency Video Coding (HEVC). IEEE
Trans Circuits Syst Video Technol 22:1669–1684

32. Panusopone K, Fang X, Wang L (2011) Proposal on RQT root location, Joint Collaborative
Team on Video Coding (JCT-VC), Document JCTVC-E364, Geneva, Mar. 2011

33. RoitzschM(2007) Slice-balancing H.264 video encoding for improved scalability of multicore
decoding. In: Proceedings of the 7th ACM IEEE International conference on Embedded
Software, pp 269–278

34. Schierl T, George V, Henkel A, Marpe D (2012) Dependent slices, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-I0229, Geneva, Apr.-May 2012

35. Schwarz H, Wiegand T (2001) Tree-structured macroblock partition, ITU-T SG16 Q6 Video
Coding Experts Group (VCEG), Document VCEG-O17, Pattaya, Dec. 2001

36. Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of
the H.264/AVC standard. IEEE Trans Circuits Syst Video Technol 17:1103–1120

37. Sekiguchi S, Yamagishi S (2009) On coding efficiency with extended block sizes for UHDTV.
MPEG document M16019

38. Siekmann M, Schwarz H, Bross B, Marpe D,Wiegand T (2011) Fast encoder control for RQT,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E425, Geneva, Mar.
2011

39. Sullivan GJ, Wiegand T (1998) Rate-distortion optimization for video compression. IEEE
Signal Process Mag 15:74–90

40. Van der Tol EB, Jaspers EGT, Gelderblom RH (2003) Mapping of H.264 decoding on a
multiprocessor architecture. In: Proc. SPIE. 5022, Image and Video Communications and
Processing 2003, 707–718, May 2003

41. Viéron J, Thiesse J-M (2012) On tiles and wavefront tools for parallelism, Joint Collaborative
Team on Video Coding (JCT-VC), Document JCTVC-I0198, Geneva, Apr.-May 2012

42. Wiegand T, Schwarz H (2011) Source coding: Part I of fundamentals of source and video
coding. Found Trends Signal Process 4:1–222

43. Wiegand T, Schwarz H, Joch A, Kossentini F, Sullivan G (2003) Rate-constrained coder control
and comparison of video coding standards. IEEE Trans Circuits Syst Video Technol 13:688–
703

44. Winken M, Bosse S, Bross B, Helle P, Hinz T, Kirchhoffer H, Lakshman H,Marpe D, Oudin S,
Preiss M, Schwarz H, Siekmann M, Suehring K, Wiegand T (2010) Video coding technology
proposal by Fraunhofer HHI, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-A116, Dresden, Apr. 2010

Chapter 4
Intra-Picture Prediction in HEVC

Jani Lainema and Woo-Jin Han

Abstract The intra prediction framework of HEVC consists of three steps: ref-
erence sample array construction, sample prediction, and post-processing. All the
three steps have been designed to achieve high coding efficiency while minimizing
the computational requirements in both the encoder and decoder. The set of defined
prediction modes consists of methods modeling various types of content typically
present in video and still images. The HEVC angular prediction provides high-
fidelity predictors for objects with directional structures, and the additional planar
and DC prediction modes can effectively model smooth image areas.

4.1 Introduction

The HEVC intra prediction methods can be classified in two categories. Angular
prediction methods [17] form the first category and provide the codec with a
possibility to accurately model structures with directional edges. The methods
in the second category, namely planar prediction [7] and DC prediction, provide
predictors estimating smooth image content. The total number of intra prediction
modes supported by HEVC is 35 as listed in Table 4.1.

All the HEVC intra prediction modes use reference samples from the adjacent
reconstructed blocks as illustrated in Fig. 4.1. As the reconstruction is performed
at transform block granularity, also the intra prediction is operated at the selected
transform block size ranging from 4 � 4 to 32 � 32 samples. HEVC allows usage

J. Lainema (�)
Nokia Research Center, Tampere, Finland
e-mail: jani.lainema@nokia.com

W.-J. Han
Gachon University, Seongnam-si, Gyeonggi-do, Korea
e-mail: hurumi@gmail.com

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__4,
© Springer International Publishing Switzerland 2014

91

mailto:jani.lainema@nokia.com
mailto:hurumi@gmail.com

92 J. Lainema and W.-J. Han

Table 4.1 Relationship between intra prediction mode number and
associated names

Intra prediction mode number Associated names

0 INTRA_PLANAR
1 INTRA_DC
2 : : : 34 INTRA_ANGULAR[i], i D 2 : : : 34

p[-1][-1] p[N-1][-1] p[2N-1][-1]p[0][-1]

p[-1][N-1]

p[-1][2N-1]

p[-1][0]

...
...

Fig. 4.1 An example of reference samples p[x][�1], p[�1][y] HEVC intra prediction uses for a
block of size N � N samples

of all the defined prediction modes for all the block sizes. Due to the very large
amount of different block size—prediction mode combinations all the prediction
modes have been designed in a way to allow easy algorithmic implementations
for arbitrary block sizes and prediction directions as discussed in the following
sections.

In order to improve the likelihood of finding good prediction candidates, HEVC
supports different filtering alternatives for pre-processing the reference samples
prior to applying those in the actual intra prediction process. Similarly, some of
the prediction modes include a post-processing step to refine the sample surface
continuity on the block boundaries as described in the following sections. Typical
characteristics of the different intra prediction modes are illustrated in Fig. 4.2.
The figure represents the final predictions obtained with all the 35 HEVC intra
prediction modes when using reference samples shown in Fig. 4.1 as input. Effects
of the post-processing are visible for the DC prediction and angular modes 10
and 26 for which the prediction block boundaries include a component from the
neighboring sample values.

4 Intra-Picture Prediction in HEVC 93

Planar mode

Angular modes

DC mode

2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34

0 1

Fig. 4.2 Examples of 8 � 8 luma prediction blocks generated with all the HEVC intra prediction
modes. Effects of the prediction post-processing can be seen on the top and left borders of the DC
prediction (mode 1), top border of horizontal mode 10 and left border of vertical mode 26

4.2 Reference Sample Generation

The intra sample prediction in HEVC is performed by extrapolating sample values
from the reconstructed reference samples as defined by the selected intra prediction
mode. Compared to the H.264/AVC, HEVC introduces a reference sample substitu-
tion process which allows HEVC to use the complete set of intra prediction modes
regardless of the availability of the neighboring reference samples. In addition, there
is an adaptive filtering process that can pre-filter the reference samples according to
the intra prediction mode, block size and directionality to increase the diversity of
the available predictors.

94 J. Lainema and W.-J. Han

p[2N-1][-1]p[0][-1]

p[-1][-1]

p[-1][N-1]

p[-1][2N-1]

A

B

C

D

E F G H

A

B

C

D

E F G H

A

A

A

A

D H H H H

Block to be
predicted

Block to be
predicted

a b

Fig. 4.3 An example of reference sample substitution process. Non-available reference samples
are marked as grey: (a) reference samples before the substitution process (b) reference samples
after the substitution process

4.2.1 Reference Sample Substitution

Some or all of the reference samples may not be available for prediction due
to several reasons. For example, samples outside of the picture, slice or tile are
considered unavailable for prediction. In addition, when constrained intra prediction
is enabled, reference samples belonging to inter-predicted PUs are omitted in order
to avoid error propagation from potentially erroneously received and reconstructed
prior pictures. As opposed to H.264/AVC which allows only DC prediction to
be used in these cases, HEVC allows the use of all its prediction modes after
substituting the non-available reference samples.

For the extreme case with none of the reference samples available, all the
reference samples are substituted by a nominal average sample value for a given
bit depth (e.g., 128 for 8-bit data). If there is at least one reference sample marked
as available for intra prediction, the unavailable reference samples are substituted
by using the available reference samples. The unavailable reference samples are
substituted by scanning the reference samples in clock-wise direction and using the
latest available sample value for the unavailable ones. More specifically, the process
is defined as follows:

1. When p[�1][2N � 1] is not available, it is substituted by the first encoun-
tered available reference sample when scanning the samples in the order of
p[�1][2N � 2], : : : , p[�1][�1], followed by p[0][�1], : : : , p[2N � 1][�1].

2. All non-available reference samples of p[�1][y] with y D 2N � 2 : : : � 1 are
substituted by the reference sample below p[�1][y C 1].

3. All non-available reference samples of p[x][�1] with x D 0 : : : 2N � 1 are substi-
tuted by the reference sample left p[x � 1][�1].

Figure 4.3 shows an example of reference sample substitution.

4 Intra-Picture Prediction in HEVC 95

4.2.2 Filtering Process of Reference Samples

The reference samples used by HEVC intra prediction are conditionally filtered by a
smoothing filter similarly to what was done in 8 � 8 intra prediction of H.264/AVC.
The intention of this processing is to improve visual appearance of the prediction
block by avoiding steps in the values of reference samples that could potentially
generate unwanted directional edges to the prediction block. For the optimal usage
of the smoothing filter, the decision to apply the filter is done based on the selected
intra prediction mode and size of the prediction block.

If DC prediction is used or if the prediction block is of size 4 � 4 the smoothing
filter is switched off. For other cases, block size and directionality of the prediction
are used to decide whether the smoothing filter is applied. For 8 � 8 prediction
blocks, the smoothing filter is only applied for the exactly diagonal directions
(angular modes 2, 18 and 34). For 16 � 16 prediction blocks, the smoothing filter
is applied to most cases except the near-horizontal and near-vertical directions
(angular modes 9, 10, 11, 25, 26 and 27). For 32 � 32 prediction blocks, only exactly
vertical and exactly horizontal directions (angular modes 10 and 26) are excluded
from the smoothing.

Once it is decided that filtering will be applied, one of two filtering processes is
chosen depending on the block size and the continuity of the reference samples. By
default, a three-tap [1 2 1]/4 smoothing filter is used. The outmost reference samples,
p[�1][2N � 1] and p[2N � 1][�1] are not modified. All other reference samples are
filtered by using two neighboring reference samples as:

p Œ�1 � Œ�1� D .p Œ�1 � Œ 0� C 2p Œ�1 � Œ�1� C p Œ 0 � Œ�1� C 2/ >> 2 (4.1)

p Œ�1 � Œ y� D .p Œ�1 � Œ y C 1� C 2p Œ�1 � Œ y� C p Œ�1 � Œ y � 1� C 2/ >> 2

(4.2)

p Œ x � Œ�1� D .p Œ x C 1 � Œ�1� C 2p Œ x � Œ�1� C p Œ x � 1 � Œ�1� C 2/ >> 2

(4.3)

for y D 0 : : : 2N � 2 and x D 0 : : : 2N � 2, where “>>” indicates an arithmetic right
shift operation.

Otherwise, if the prediction block size is equal to 32 � 32 and the reference
samples are found to be sufficiently flat, the reference samples are generated by
applying linear interpolation between the three corner reference samples, p[�1][63],
p[�1][�1] and p[63][�1] instead of the three-tap smoothing filter. The flatness is
determined by using the following two inequalities based on the experimentally
determined thresholds.

j p Œ�1 � Œ�1� C p Œ 2N � 1 � Œ�1� � 2p Œ N � 1 � Œ�1�j < .1 << .b � 5 / / (4.4)

96 J. Lainema and W.-J. Han

a b

Block to be
predicted

Block to be
predicted

Linear interpolation

Li
ne

ar
 in

te
rp

ol
at

io
n

DYC

B

X

A

B Y C

X

A

Fig. 4.4 Two types of filtering process of reference samples: (a) shows a three-tap filtering using
two neighboring reference samples. Reference sample X is replaced by the filtered value using A,
X and B while reference sample Y is replaced by the filtered value using C, Y and D. (b) Shows a
strong intra smoothing process using corner reference samples. Reference sample X is replaced by
a linearly filtered value using A and B while Y is replaced by a linearly filtered value using B and C

j p Œ�1 � Œ�1� C p Œ�1 � Œ 2N � 1� � 2p Œ�1 � Œ N � 1�j < .1 << .b � 5 / / (4.5)

where b specifies the sample bit depth. If the above two inequalities are satisfied
and the prediction block size is equal to 32 � 32, the non-corner reference samples
of p[�1][0], : : : , p[�1][62] and p[0][�1], : : : , p[62][�1] are generated as:

p Œ�1 � Œ y� D ..63 � y/ � p Œ�1 � Œ�1� C .y C 1/ � p Œ�1 � Œ 63� C 32/ >> 6

(4.6)

p Œ x � Œ�1� D ..63 � x/ � p Œ�1 � Œ�1� C .x C 1/ � p Œ 63 � Œ�1� C 32/ >> 6

(4.7)

for y D 0 : : : 62 and x D 0 : : : 62.
This process is referred to as strong intra smoothing as it substitutes nearly all

the original reference samples with interpolated ones. The process was developed
to remove some blocking and contouring artifacts visible on extremely smooth
image areas and it can be selectively turned on or off by the syntax element
strong_intra_smoothing_enabled_flag in a sequence parameter set. Figure 4.4
illustrates the two types of filtering process of reference samples.

4.3 Intra Sample Prediction

In order to predict different kinds of content efficiently HEVC supports a range
of sample prediction methods. The angular intra prediction is designed to model
different directional structures typically present in pictures. Whereas planar and DC

4 Intra-Picture Prediction in HEVC 97

prediction modes provide predictions for image areas with smooth and gradually
changing content. Planar and DC predictions are also useful in creating “neutral”
prediction blocks with no high frequency components for complex textures that
cannot be properly modeled with any of the directional predictors that the angular
intra prediction is able to generate. In order to further improve the prediction quality,
some of the angular modes and the DC prediction mode include a light post-filtering
operation to enhance continuity of the prediction signal at block boundaries.

4.3.1 Angular Prediction

Angular intra prediction in HEVC is designed to efficiently model different
directional structures typically present in video and image content. The set of
available prediction directions has been selected to provide a good trade-off between
encoding complexity and coding efficiency for typical video material. The sample
prediction process itself is designed to have low computational requirements and
to be consistent across different block sizes and prediction directions. This has
been found especially important as the number of block sizes and prediction
directions supported by HEVC intra coding far exceeds those of previous video
codecs, such as H.264/AVC. In HEVC there are four effective intra prediction block
sizes ranging from 4 � 4 to 32 � 32 samples, each of which supports 33 distinct
prediction directions. A decoder must thus support 132 combinations of block size
and prediction direction.

4.3.1.1 Angle Definitions

HEVC defines a set of 33 angular prediction directions at 1/32 sample accuracy as
illustrated in Fig. 4.5. In natural imagery, horizontal and vertical patterns typically
occur more frequently than patterns with other directionalities. Small differences
for displacement parameters for modes close to horizontal and vertical directions
take advantage of that phenomenon and provide more accurate prediction for
nearly horizontal and vertical patterns [10]. The displacement parameter differences
become larger closer to diagonal directions to reduce the density of prediction
modes for less frequently occurring patterns.

Table 4.2 provides the exact mapping from indicated intra prediction mode to
angular parameter A. That parameter defines the angularity of the selected prediction
mode (how many 1/32 sample grid units each row of samples is displaced with
respect to the previous row).

4.3.1.2 Reference Row Extension for the Negative Prediction Directions

In order to simplify the sample prediction process, the reference samples above the
block p[x][�1] and left of the block p[�1][y] are placed in a one dimensional (1-D)

98 J. Lainema and W.-J. Han

26
V0

27
V+2

28
V+5

29
V+9

30
V+13

31
V+17

32
V+21

33
V+26

34
V+32

25
V-2

24
V-5

23
V-9

22
V-13

21
V-17

20
V-21

19
V-26

H
0

10
H

+32
2

H
+26
3

H
+21
4

H
+17
5

H
+13
6

H
+9
7

H
+5
8

H
+2
9

H
- 2

11
H

- 5
12

H
-9

13
H

-13
14

H
-17
15

H
-21
16

H
-2 6
17

18
V-32

Fig. 4.5 Angle definitions of angular intra prediction in HEVC numbered from 2 to 34 and the
associated displacement parameters. H and V are used to indicate the horizontal and vertical
directionalities, respectively, while the numeric part of the identifier refers to the sample position
displacements in 1/32 fractions of sample grid positions. Reproduced with permission from [8], ©
2012 IEEE

Table 4.2 Angular parameter A defines the directionality of each angular intra prediction mode

Horizontal modes

Mode 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
A 32 26 21 17 13 9 5 2 0 �2 �5 �9 �13 �17 �21 �26

Vertical modes

Mode 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
A �32 �26 �21 �17 �13 �9 �5 �2 0 2 5 9 13 17 21 26

array. For the modes with positive angular parameter A (vertical modes 26 to 33
and horizontal modes 2 to 10) the 1-D reference array is simply created by copying
reference samples from the direction of the prediction:

4 Intra-Picture Prediction in HEVC 99

Table 4.3 Inverse angle parameter B as a function of angular parameter A

A �32 �26 �21 �17 �13 �9 �5 �2
B �256 �315 �390 �482 �630 �910 �1638 �4096

Fig. 4.6 An example of
projecting left reference
samples to extend the top
reference row. The bold
arrow represents the
prediction direction, the thin
arrows the reference sample
projections in the case of intra
mode 23 (vertical prediction
with a displacement of �9/32
samples per row).
Reproduced with permission
from [8], © 2012 IEEE

ref Œ x� D p Œ�1 C x � Œ�1� ; .x � 0/ for vertical modes (4.8)

ref Œ y� D p Œ�1 � Œ�1 C y� ; .y � 0/ for horizontal modes (4.9)

If angular parameter A is negative for the selected mode, samples from both
left and above of the block are required for the reference array. In these cases
the samples in ref [x] array with non-negative indexes are populated as described
above. The sample values for negative indexes are obtained by projecting the left
reference column to extend the top reference row towards left, or projecting the top
reference row to extend the left reference column upwards in the case of vertical
and horizontal predictions, respectively. This projection is defined as follows:

ref Œ x� D p Œ�1 � Œ�1 C ..x � B C 128/ >> 8/� ; .x < 0/ for vertical modes
(4.10)

ref Œ y� D p Œ�1 C ..y � B C 128/ >> 8 / � Œ�1� ; .y < 0/ for horizontal modes
(4.11)

where B represents the inverse angle of the angular parameter A and is given in
Table 4.3.

Figure 4.6 illustrates extension of the reference row for the vertical prediction
mode 23 with angular parameter A equal to �9. In this case, two of the samples in
the left reference column are required in the sample prediction process and projected
to extend the reference array with inverse angle parameter of �910.

100 J. Lainema and W.-J. Han

4.3.1.3 Sample Prediction for Angular Prediction Modes

Predicted sample values p[x][y] are obtained by projecting the location of the sample
p[x][y] to the reference sample array applying the selected prediction direction and
interpolating a value for the sample at 1/32 sample position accuracy. Interpolation
is performed linearly utilizing the two closest reference samples in the direction of
prediction.

Sample prediction for horizontal modes (modes 2–17) is given by:

p Œ x � Œ y� D ..32 � f / � ref Œ y C i C 1� C f � ref Œ y C i C 2� C 16/ >> 5

(4.12)

And sample prediction for vertical modes (modes 18–34) is given by:

p Œ x � Œ y� D ..32 � f / � ref Œ x C i C 1� C f � ref Œ x C i C 2� C 16/ >> 5

(4.13)

where i is the projected integer displacement on row y (for vertical modes) or column
x (for horizontal modes) and calculated as a function of angular parameter A as
follows:

i D ..x C 1/ � A/ >> 5; for horizontal modes (4.14)

i D ..y C 1/ � A/ >> 5; for vertical modes (4.15)

f represents the fractional part of the projected displacement on the same row or
column and is calculated as:

f D ..x C 1/ � A/ &31; for horizontal modes (4.16)

f D ..y C 1/ � A/ &31; for vertical modes (4.17)

The projection parameters i and f are constant for a row of samples in vertical
prediction and a column of samples in horizontal predictions. Thus, the only
operation that needs to be performed for each sample is the linear interpolation
to derive p[x][y]. It should be also noted that in the case the fractional parameter f
is zero, the interpolation can be omitted and a sample from the reference array can
be directly used as the predicted sample.

4 Intra-Picture Prediction in HEVC 101

4.3.2 DC Prediction

In the case of DC prediction, the predicted sample values are populated with a
constant value representing the average of the reference samples immediately left
and to the above of the block to be predicted. The DC predicted luminance blocks
of size 16 � 16 and smaller go through a light filtering process to soften the left and
above edges of the block as described in Sect. 4.3.4.

4.3.3 Planar Prediction

While angular prediction provides good approximations for structures with sig-
nificant edges, it can create some visible contouring in smooth image areas.
Similarly, some blockiness can typically be observed in smooth image areas when
DC prediction is applied at low or medium bit rates. The planar prediction of
HEVC is designed to overcome these issues by having the capability to generate a
prediction surface without discontinuities on the block boundaries. This is achieved
by averaging a horizontal and vertical linear prediction on sample basis as follows:

p Œ x � Œ y� D .ph Œ x � Œ y� C pv Œ x � Œ y� C N / >> .log2 . N / C 1 / (4.18)

The horizontal prediction ph[x][y] and the vertical prediction pv[x][y] for
location [x][y] are calculated as follows:

ph Œ x � Œ y� D .N � 1 � x/ � p Œ�1 � Œ y� C .x C 1/ � p Œ N � Œ�1 � (4.19)

pv Œ x � Œ y� D .N � 1 � y/ � p Œ x � Œ�1� C .y C 1/ � p Œ�1 � Œ N � (4.20)

Figure 4.7 illustrates derivation of predicted sample values in the case of planar
mode. The top-right reference sample p[N][�1] is used as the right reference for
all the horizontal filtering. Similarly, the bottom-left reference sample p[�1][N] is
used as the bottom reference for all the vertical operations. Final prediction value
for each sample is obtained by averaging the horizontal and vertical predictions.

4.3.4 Post-processing for Predicted Samples

Some of the prediction modes can generate discontinuities for the predicted sample
values on the boundaries of the prediction blocks. Such cases are most evident for
the DC prediction and for the directly horizontal and vertical angular predictions.
In the case of DC prediction, such discontinuity can occur on both top and left
boundary of the block as all the predicted samples are replaced with a single value.

102 J. Lainema and W.-J. Han

Fig. 4.7 Example of planar prediction: (a) illustrates calculation of the horizontal component,
(b) illustrates generation of the vertical component and (c) provides an example of a final planar
prediction created by averaging the horizontal and vertical components

In the case of directly vertical prediction, there may be discontinuities on the left
boundary of the block as the leftmost column of predicted samples replicate the
value of the leftmost reference sample above the block. Similar discontinuities can
occur on the top edge of the block when directly horizontal prediction is selected.

To reduce these discontinuities along the block boundaries, the boundary samples
inside the prediction block are replaced by the filtered values by considering the
slope at the edge of the block [11]. This boundary smoothing is applied only for the
abovementioned three intra modes (DC prediction, the exactly horizontal angular
mode 26 and the exactly vertical angular mode 10) and when the prediction block
size is smaller than 32 � 32. Different approaches for other modes and block sizes
were studied during the course of HEVC development, but this combination of
modes and block sizes was found to provide a desirable balance between coding
efficiency and complexity. As the prediction for chroma components tends to be
very smooth, the benefits of the boundary smoothing would be limited. Thus, in
order to avoid extra processing with marginal quality improvements the prediction
boundary smoothing is only applied to the luma component.

When the intra mode is equal to exactly vertical direction, the prediction samples
p[0][y] with y D 0 : : : N � 1 are modified by using the sample difference between
two reference samples p[�1][�1] and p[�1][y] as:

p Œ 0 � Œ y� Dp Œ 0 � Œ y� C ..p Œ�1 � Œ y� � p Œ�1 � Œ�1�/ >> 1 / for yD0 : : : N � 1

(4.21)

where clipping operation to restrict the computed value within the sample bit-
depth is omitted for simplicity. For the exactly horizontal direction, the boundary
smoothing is done in a similar way.

In the case of DC prediction, a three-tap [1 2 1]/4 smoothing filter is applied to
the first prediction sample p[0][0] by using the predicted DC value dcVal and two
neighboring reference samples, p[�1][0] and p[0][�1], as follows:

4 Intra-Picture Prediction in HEVC 103

p Œ 0 � Œ 0� D .p Œ�1 � Œ 0� C 2 � dcVal C p Œ 0 � Œ�1� C 2/ >> 2 (4.22)

For other boundary samples, a two-tap [3 1]/4 smoothing filter is applied with the
higher weight on the DC value:

p Œ x � Œ 0� D .p Œ x � Œ�1� C 3 � dcVal C 2/ >> 2 for x D 1 : : : N � 1 (4.23)

p Œ 0 � Œ y� D .p Œ�1 � Œ y� C 3 � dcVal C 2/ >> 2 for y D 1 : : : N � 1 (4.24)

4.4 Intra Mode Coding

While increasing the number of intra prediction modes provides better prediction,
efficient intra mode coding is required to ensure that the selected mode is signaled
with minimal overhead. For luma component, three most probable modes are
derived to predict the intra mode instead of a single most probable one as in
H.264/AVC. Possible redundancies among the three most probable modes are also
considered and redundant modes are substituted with alternative ones to maximize
the signaling efficiency. For chroma intra mode, HEVC introduces a derived mode
which allows efficient signaling of the likely scenario where chroma is using the
same prediction mode as luma. The syntax elements for signaling luma and chroma
intra modes are designed by utilizing the increased number of most probable modes
for the luma component and the statistical behavior of the chroma component.

4.4.1 Prediction of Luma Intra Mode

HEVC supports a total of 33 angular prediction modes as well as planar and DC
prediction for luma intra prediction for all the PU sizes. Due to the large number of
intra prediction modes, H.264/AVC-like mode coding approach based on a single
most probable mode was not effective in HEVC. Instead, HEVC defines three most
probable modes for each PU based on the modes of the neighboring PUs. The
selected number of most probable modes makes it also possible to indicate one of
the 32 remaining modes by a CABAC bypassed fixed-length code, as distribution of
the mode probabilities outside of the set of most probable modes has been found to
be relatively uniform.

The selection of the set of three most probable modes is based on modes of two
neighboring PUs, one left and one to the above of the current PU. Let the intra
modes of left and above of the current PU be A and B, respectively. If a neighboring
PU is not coded as intra or is coded with pulse code modulation (PCM) mode, the
PU is considered to be a DC predicted one. In addition, B is assumed to be DC

104 J. Lainema and W.-J. Han

mode when the above neighboring PU is outside the CTU to avoid introduction of
an additional line buffer for intra mode reconstruction.

If A is not equal to B, the first two most probable modes denoted as MPM[0] and
MPM[1] are set equal to A and B, respectively, and the third most probable mode
denoted as MPM[2] is determined as follows:

• If neither of A or B is planar mode, MPM[2] is set to planar mode.
• Otherwise, if neither of A or B is DC mode, MPM[2] is set to DC mode.
• Otherwise (one of the two most probable modes is planar and the other is DC),

MPM[2] is set equal to angular mode 26 (directly vertical).

If A is equal to B, the three most probable modes are determined as follows. In the
case they are not angular modes (A and B are less than 2), the three most probable
modes are set equal to planar mode, DC mode and angular mode 26, respectively.
Otherwise (A and B are greater than or equal to 2), the first most probable mode
MPM[0] is set equal to A and two remaining most probable modes MPM[1] and
MPM[2] are set equal to the neighboring directions of A and calculated as:

MPM Œ 1� D 2 C ..A � 2 � 1 C 32/ % 32 / (4.25)

MPM Œ 2� D 2 C ..A � 2 C 1/ % 32 / (4.26)

where % denotes the modulo operator (i.e., a % b denotes the remainder of a divided
by b). Figure 4.8 summarizes the derivation process for the three most probable
modes MPM[0], MPM[1] and MPM[2] from the neighboring intra modes A and B.

The three most probable modes MPM[0], MPM[1] and MPM[2] identified as
described above are further sorted in an ascending order according to their mode
number to form the ordered set of most probable modes. If the current intra
prediction mode is equal to one of the elements in the set of most probable modes,
only the index in the set is transmitted to the decoder. Otherwise, a 5-bit CABAC
bypassed codeword is used to specify the selected mode outside of the set of most
probable modes as the number of modes outside of the set is equal to 32. The
bitstream syntax design for signaling intra modes is described in Sect. 4.4.3.

4.4.2 Derived Mode for Chroma Intra Prediction

To enable the use of the increased number of directionalities in the chroma
intra prediction while minimizing the signaling overhead, HEVC introduces the
INTRA_DERIVED mode to indicate the cases when a chroma PU uses the same
prediction mode as the corresponding luma PU. More specifically, for a chroma PU
one of the five chroma intra prediction modes: planar, angular 26 (directly vertical),
angular 10 (directly horizontal), DC or derived mode is signaled.

4 Intra-Picture Prediction in HEVC 105

A ≠ B

MPM[0] = A
MPM[1] = B

A ≠ INTRA_PLANAR
B ≠ INTRA_PLANAR

MPM[2] = INTRA_PLANARA ≠ INTRA_DC
B ≠ INTRA_DC

MPM[2] = INTRA_DC
MPM[2] =

INTRA_ANGULAR[26]

A < 2 (B < 2)

MPM[0] = INTRA_PLANAR
MPM[1] = INTRA_DC
MPM[2] = INTRA_ANGULAR[26]

MPM[0] = A
MPM[1] = 2 + ((A – 2 – 1 + 32) % 32)
MPM[2] = 2 + ((A – 2 + 1) % 32)

Yes

Yes

Yes

Yes

No

No

No

No

Fig. 4.8 Derivation process for the three most probable modes MPM[0], MPM[1] and MPM[2].
A and B indicate the neighboring intra modes of the left and the above PU, respectively

Table 4.4 Determination of chroma intra prediction mode according to luma intra
prediction mode

Initial chroma intra mode

Final chroma intra mode
when derived
mode ¤ initial chroma
intra mode

Final chroma intra mode
when derived
mode D initial chroma
intra mode

INTRA_PLANAR INTRA_PLANAR INTRA_ANGULAR[34]
INTRA_ANGULAR[26] INTRA_ANGULAR[26] INTRA_ANGULAR[34]
INTRA_ANGULAR[10] INTRA_ANGULAR[10] INTRA_ANGULAR[34]
INTRA_DC INTRA_DC INTRA_ANGULAR[34]
INTRA_DERIVED Luma intra mode N/A

This design is based on the finding that often structures in the chroma signal
follow those of the luma. In the case the derived mode is indicated for a chroma PU,
intra prediction is performed by using the corresponding luma PU mode. Angular
intra mode 34 is used to substitute the four chroma prediction modes with individual
identifiers when the derived mode is one of those four modes. The substitution
process is illustrated in Table 4.4.

106 J. Lainema and W.-J. Han

Table 4.5 Binarization of the syntax element intra_chroma_pred_mode
with respect to the chroma intra prediction mode

Chroma intra prediction mode Binarization of intra_chroma_pred_mode

INTRA_DERIVED 0
INTRA_PLANAR 100
INTRA_ANGULAR[26] 101
INTRA_ANGULAR[10] 110
INTRA_DC 111

4.4.3 Syntax Design for Intra Mode Coding

Let three sorted most probable modes in an ascending order for luma intra
mode be SMPM[0], SMPM[1] and SMPM[2], respectively. The syntax element
prev_intra_luma_pred_flag specifies whether the luma intra mode is
equal to one of the three most probable modes. In this case, the additional syntax
element mpm_idx indicates that SMPM[mpm_idx] is the selected luma intra
mode.

Otherwise (prev_intra_luma_pred_flag is equal to 0), the syntax ele-
ment rem_intra_luma_pred_mode is used to specify the luma intra mode.
Since the total number of luma intra modes is equal to 35 and the number of most
probable modes is equal to 3, the range of rem_intra_luma_pred_mode is
from 0 to 31, inclusive, which can be expressed by a 5-bit codeword conveniently.
Given rem_intra_luma_pred_mode, the luma intra mode is derived as
follows:

1. Let L be equal to the value of rem_intra_luma_pred_mode.
2. For i D 0 : : : 2 (sequentially in an increasing order), L is incremented by one if L

is greater than or equal to SMPM[i].

For chroma intra mode coding, it has been observed that the derived mode
is used most frequently while other four chroma intra modes with their own
identifiers (planar, angular 26, angular 10 and DC modes) are typically used with
roughly similar probabilities. The syntax element intra_chroma_pred_mode
is binarized with respect to the above observations as given in Table 4.5.

4.5 Encoding Algorithms

Due to the large number of intra modes in HEVC, the computations of the rate-
distortion costs for all intra modes are impractical for most of the applications. In
the HEVC reference software, the sum of absolute transformed differences (SATD)
between prediction and original samples is used to reduce the number of luma
intra mode candidates before applying rate-distortion optimization (RDO) [12].

4 Intra-Picture Prediction in HEVC 107

The number of luma intra mode candidates entering full RDO is determined
according to the corresponding PU sizes as eight for PUs of size 4 � 4 and 8 � 8
PU, and three for other PU sizes. For those luma intra mode candidates as well
as luma intra modes which are a part of the most probable mode set, intra sample
prediction and transform coding are performed to obtain both the number of required
bits and the resulting distortion. Finally, the luma intra mode which minimizes the
rate-distortion cost is selected. For the chroma intra encoding, all possible intra
chroma modes are evaluated based on their rate-distortion costs as the number of
intra chroma modes is much smaller than that of luma modes. It has been reported
that this kind of technique can provide negligible coding efficiency loss (less than
1 % increase in bit rate at aligned objective quality) compared to a full rate-distortion
search while reducing the encoding complexity by a factor of three [8].

In the literature, several fast intra coding algorithms have been studied in the
context of HEVC. One popular approach for achieving this purpose is to reduce
the number of block sizes to be tested in the HEVC intra coding. Shen et al. [13]
proposed a fast CU size decision and mode decision algorithm for HEVC intra
coding based on the previous decisions in spatially nearby blocks. It results to about
21 % encoding time decrease with negligible loss of coding efficiency. In [4], the
fast CU splitting and pruning decisions according to a Bayes decision rule for the
HEVC intra coding was proposed and about 50 % encoding time reduction was
reported with 0.6 % bit rate increases.

Another approach is to reduce the number of intra mode candidates based
on local image characteristics. Zhao et al. [19] proposed forced use of the most
probable mode with a reduced number of luma intra mode candidates in the rate-
distortion optimization stage. Around 20 % encoding time reduction was achieved
with this approach and the method was also decided to be included in the HEVC
reference software. In [3, 5, 14], it has been shown that reducing the intra mode
candidates based on directionalities of the source and neighboring blocks about 20–
30 % encoding time reduction can be achieved.

4.6 Coding Efficiency and Decoder Complexity

4.6.1 Coding Efficiency

Coding efficiency of HEVC intra coding has been reported to exceed significantly
that of earlier video and still picture codecs. For example, Hanhart et al. [6]
evaluated both objective (PSNR) and subjective (MOS) quality of HEVC intra
coding, JPEG and JPEG 2000 using the JPEG XR test set. Test material in this case
consisted solely of camera captured photographic content. The study concluded that
HEVC outperformed legacy still picture codecs with most significant differences
at bit rates below 1.00 bpp. Table 4.6 summarizes the average bit rate reductions
HEVC obtained over other codecs in this study.

108 J. Lainema and W.-J. Han

Table 4.6 Average objective and subjective
bit rate reductions provided by HEVC with
respect to JPEG and JPEG 2000 as reported in
[6]

Measure JPEG (%) JPEG 2000 (%)

�BR (PSNR) �61.6 �20.3
�BR (MOS) �43.1 �31.0

Table 4.7 Average objective
bit rate reductions provided
by HEVC with respect to
JPEG, JPEG XR and JPEG
2000 as reported in [16]

Quality range JPEG (%) JPEG XR (%) JPEG 2000 (%)

High �49.3 �32.2 �26.0
Medium �58.2 �39.8 �30.7
Low �62.5 �42.6 �26.1

Similar levels of improvement over legacy codecs were reported in [16] using the
JCT-VC test set and Bjøntegaard delta metrics [1]. This test set includes material
mostly captured with video cameras, but it also contains some computer generated
material as well as typical screen content. Table 4.7 summarizes the results of this
study which analyzed performance at three different quality ranges: high (HEVC
QPs 12–27), medium (HEVC QPs 22–37) and low (HEVC QPs 32–47). In these
tests corresponding reference implementations were used and the resulting PSNRs
for each codec were aligned by adjusting the respective quality factors.

Coding efficiency improvements over H.264/AVC intra coding has been analyzed
for example in [9]. Results of that study indicate that HEVC requires on average
23 % less bit rate than H.264/AVC for still picture coding. The report also points
out that the subjective differences may be larger than that as some of the new HEVC
tools are expected to contribute more to the visual image quality than to the objective
performance of the codec.

4.6.2 Decoder Complexity

Although estimating the decoding complexity accurately can be an extremely
difficult task due to various architectural aspects depending on the implementation
platform, analyzing the traditional operational cycle counts can give reasonable
estimates about relative complexities of different algorithms.

The DC prediction, the exactly horizontal angular mode 26 and the exactly
vertical angular mode 10 in the HEVC are similar to those specified in the
H.264/AVC. Although the additional boundary smoothing operation is required in
HEVC, its impact becomes negligible when the prediction block size becomes larger
due to the smaller relative area of the filtered samples.

4 Intra-Picture Prediction in HEVC 109

The elementary operation of the angular prediction described in Sect. 4.3.1.3 can
be simplified as:

p D .u � a C v � b C 16/ >> 5 (4.27)

where u and v are two pre-computed constants, and a and b are two pre-fetched
reference sample values. It suggests that the angular prediction requires a total of
five operations including two multiplications, two additions and one shift per one
predicted sample. In the H.264/AVC case, the directional prediction process can be
expressed as:

p D .a C 2 � b C c C 2/ >> 2 (4.28)

where a, b and c are three pre-fetched reference sample values. It means that the
H.264/AVC process requires also a total of five operations including three additions
and two shifts.

The directional prediction of H.264/AVC can be implemented by using only
multiplication-free operations easily, thus it is reported to have less computational
complexity compared with the angular prediction of HEVC in some specific
architecture, but the difference tends to be relatively minor [8]. On the other hand,
all the HEVC angular prediction modes use the same prediction process regardless
of the block sizes whereas H.264/AVC defines slightly different operations for 4 � 4,
8 � 8 and 16 � 16 block sizes. This property of HEVC can be considered very useful
when it comes to implementing the HEVC prediction modes as there is such a
large amount of different combinations of prediction block sizes and the prediction
directions in HEVC.

In [8], a more detailed decoder complexity analysis has been carried out by using
decoding times measured in an optimized software implementation [2]. For the
detailed information such as the relative decoding time of intra prediction to overall
decoding time or cycle counts for each prediction mode, please refer to [8].

4.7 Main Still Picture Profile and Its Applications

HEVC version 1 includes a specific profile for still picture coding purposes [15]. The
“Main Still Picture profile” defines bitstream characteristics and decoder operation
for using the HEVC toolset to efficiently represent both typical camera captured
still pictures as well as synthetic images. Typical use cases for the profile include
traditional photography, capturing still pictures during video recording, extraction
of still pictures from video sequences, sharing pictures over Internet or other
communication channels, and different computational photography applications.
HEVC Still Picture profile is able to provide a very bandwidth efficient way to
represent high quality images in each of these use cases. In the future extensions

110 J. Lainema and W.-J. Han

of the standard it is expected that the HEVC still imaging features will be
further extended towards 4:4:4 color formats and high dynamic range photography
requiring support for bit-depths above 8 bits per sample.

The key characteristics of the HEVC Main Still Picture profile can be summa-
rized as follows:

• HEVC Main profile intra coding tools are used

– Chroma format is limited to 4:2:0
– Bit depth is limited to 8 bits per sample
– Coding tree block size can vary from 16 � 16 to 64 � 64

• Bitstream contains only one picture
• Decoded picture buffer is of size one picture

4.8 Summary of Differences from H.264/AVC

Both HEVC intra coding and H.264/AVC intra coding are based on spatial sample
prediction followed by transform coding [18]. However, the intra coding methods
in HEVC are more elaborated in number of ways. Firstly, the set of supported
prediction block sizes is extended up to 32 � 32 to be aligned with the HEVC
coding structures and to improve reconstruction of smooth image areas. Secondly,
the number of available directional modes is extended from 8 to 33 to improve
modelling of directional textures. In HEVC the whole range of directional predictors
is made available for both luma and chroma blocks, while in H.264/AVC the number
of available directional prediction modes for chroma is limited to two (namely the
directly horizontal and vertical modes). Also sample continuities along the block
boundaries are considered more by redefining the planar mode and applying post-
processing for directly horizontal, vertical and the DC mode. Another advantage
of HEVC is its ability to pad the missing reference samples and allow usage of all
the prediction modes independent of availability of certain reference samples. The
HEVC intra mode coding also uses an approach different from that of H.264/AVC.
Due to the large number of intra modes in HEVC, the luma intra mode is signaled
by using three most probable modes and the selected luma mode is always made
available as one of the candidate modes for the corresponding chroma blocks.
Table 4.8 summarizes key differences of intra prediction in H.264/AVC and HEVC.
Lainema et al. [8] provides further analysis on contribution of individual intra
prediction tools to the overall coding efficiency.

4 Intra-Picture Prediction in HEVC 111

Table 4.8 Key differences of intra prediction techniques between H.264/AVC and HEVC

Functionality H.264/AVC HEVC

Prediction block sizes 4 � 4, 8 � 8 and 16 � 16 4 � 4, 8 � 8, 16 � 16 and 32 � 32
Luma intra prediction modes 9 (4 � 4 and 8 � 8), 4

(16 � 16)
35

Chroma intra prediction modes 4 4 C the luma mode
Reference sample smoothing 8 � 8 8 � 8 and above
Boundary smoothing N/A Used for directly horizontal,

vertical and DC modes
Operation when reference

samples missing
Use DC mode Reference sample substitution

Number of most probable
modes in mode coding

1 3

References

1. Bjøntegaard G (2008) Improvements of the BD-PSNR model, ITU-T SG16/Q6 Video Coding
Experts Group (VCEG), Document VCEG-AI11, Berlin, July 2008

2. Bossen F (2011) On Software Complexity, Joint Collaborative Team on Video Coding (JCT-
VC), Document JCTVC-G757, Geneva, Nov. 2011

3. Chen G, Liu Z, Ikenaga T, Wang D (2013) Fast HEVC intra mode decision using matching
edge detector and kernel density estimation alike histogram generation. In: Proceedings of
IEEE international symposium on circuits and systems (ISCAS), May 2013, pp 53–56

4. Cho S, Kim M (2013) Fast CU splitting and pruning for suboptimal CU partitioning in HEVC
intra coding. IEEE Trans Circuits Syst Video Technol 23(9):1555–1564

5. Jiang W, Ma H, Chen Y (2012) Gradient based fast mode decision algorithm for intra
prediction in HEVC. In: Proceedings of international conference on Consumer Electronics,
Communications and Networks (CECNet), Apr. 2012, pp 1836–1840

6. Hanhart P, Rerabek M, Korshunov P, Ebrahimi T (2013) Subjective evaluation of HEVC intra
coding for still image compression, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-L0380, Geneva, Jan. 2013

7. Kanumuri S, Tan TK, Bossen F (2011) Enhancements to intra coding, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-D235, Daegu, Jan. 2011

8. Lainema J, Bossen F, Han W-J, Min J, Ugur K (2012) Intra coding of the HEVC standard.
IEEE Trans Circuits Syst Video Technol 22(12):1792–1801

9. Li B, Sullivan GJ, Xu J (2013) Comparison of compression performance of HEVC draft
10 with AVC high profile, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-M0041, Incheon, Apr. 2013

10. Min J, Lee S, Kim I, Han W-J, Lainema J, Ugur K (2010) Unification of the directional intra
prediction methods in TMuC, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-B100, Geneva, July 2010

11. Minezawa A, Sugimoto K, Sekiguchi S (2011) An improved intra vertical and horizontal
prediction, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F172,
Torino, July 2011

12. Piao Y, Min J, Chen J (2010) Encoder improvement of unified intra prediction, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-C207, Guangzhou, Oct.
2010

13. Shen L, Zhang Z, An P (2013) Fast CU size decision and mode decision algorithm for HEVC
intra coding. IEEE Trans Consum Electron 59(1):207–213

112 J. Lainema and W.-J. Han

14. Silva TL, Agostini LV, Silva Cruz LA (2012) Fast HEVC intra prediction mode decision
based on EDGE direction information. In: Proceedings of 20th European signal processing
conference (EUSIPCO), Aug. 2012, pp 1214–1218

15. Sullivan GJ, Ohm J-R, Han W-J, Wiegand T (2012) Overview of high efficiency video coding
(HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649–1668

16. Ugur K, Lainema J (2013) Updated results on HEVC still picture coding performance, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-M0041, Incheon, Apr.
2013

17. Ugur K, Andersson KR, Fuldseth A (2010) Video coding technology proposal by Tandberg,
Nokia, and Ericsson, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
A119, Dresden, Apr. 2010

18. Wiegand T, Sullivan GJ, Bjøntegaard G, Luthra A (2003) Overview of the H.264/AVC video
coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576

19. Zhao L, Zhang L, Ma S, Zhao D (2011) Fast mode decision algorithm for intra prediction in
HEVC. In: Proceedings of visual communications and image processing (VCIP), Nov. 2011,
O-02-4, pp 1–4

Chapter 5
Inter-Picture Prediction in HEVC

Benjamin Bross, Philipp Helle, Haricharan Lakshman, and Kemal Ugur

Abstract Inter-picture prediction in HEVC can be seen as a steady improvement
and generalization of all parts known from previous video coding standards, e.g.
H.264/AVC. The motion vector prediction was enhanced with advanced motion
vector prediction based on motion vector competition. An inter-prediction block
merging technique significantly simplified the block-wise motion data signaling
by inferring all motion data from already decoded blocks. When it comes to
interpolation of fractional reference picture samples, high precision interpolation
filter kernels with extended support, i.e. 7/8-tap filter kernels for luma and 4-tap filter
kernels for chroma, improve the filtering especially in the high frequency range.
Finally, the weighted prediction signaling was simplified by either applying explic-
itly signaled weights for each motion compensated prediction or just averaging two
motion compensated predictions. This chapter provides a detailed description of
these aspects of HEVC standard and explains their coding efficiency and complexity
characteristics.

5.1 Introduction

In HEVC, the same basic hybrid video coding approach as in previous standards
is applied. Hybrid video coding is known to be a combination of video sample
prediction and transformation of the prediction error, i.e. the residual, followed
by entropy coding of the prediction information and the transform coefficients.

B. Bross (�) • P. Helle • H. Lakshman
Fraunhofer Institute for Telecommunications - Heinrich Hertz Institute,
Einsteinufer 37, D-10587 Berlin, Germany
e-mail: benjamin.bross@hhi.fraunhofer.de

K. Ugur
Nokia Corporation, Tampere 33720, Finland
e-mail: Kemal.Ugur@nokia.com

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__5,
© Springer International Publishing Switzerland 2014

113

mailto:benjamin.bross@hhi.fraunhofer.de
mailto:Kemal.Ugur@nokia.com

114 B. Bross et al.

x

y

x y: Spatial displacement:

Current Picture Prior Decoded Pictures as Reference

t0 = 2t1 = 4

t: Reference picture index:

Fig. 5.1 Inter-picture prediction concept and parameters using a translational motion model

While intra-picture prediction exploits the correlation between spatially neighboring
samples, inter-picture prediction makes use of the temporal correlation between
pictures in order to derive a motion-compensated prediction (MCP) for a block of
image samples.

For this block-based MCP, a video picture is divided into rectangular blocks.
Assuming homogeneous motion inside one block and that moving objects are larger
than one block, for each block, a corresponding block in a previously decoded
picture can be found that serves as a predictor. The general concept of MCP based on
a translational motion model is illustrated in Fig. 5.1. Using a translational motion
model, the position of the block in a previously decoded picture is indicated by
a motion vector .�x; �y) where �x specifies the horizontal and �y the vertical
displacement relative to the position of the current block. The motion vectors
.�x; �y) could be of fractional sample accuracy to more accurately capture the
movement of the underlying object. Interpolation is applied on the reference pictures
to derive the prediction signal when the corresponding motion vector has fractional
sample accuracy. The previously decoded picture is referred to as the reference
picture and indicated by a reference index �t to a reference picture list. These
translational motion model parameters, i.e. motion vectors and reference indices, are
further referred to as motion data. Two kinds of inter-picture prediction are allowed
in modern video coding standards, namely uni-prediction and bi-prediction.

In case of bi-prediction, two sets of motion data (�x0; �y0; �t0 and
�x1; �y1; �t1) are used to generate two MCPs (possibly from different pictures),
which are then combined to get the final MCP. Per default, this is done by averaging
but in case of weighted prediction, different weights can be applied to each MCP,
e.g. to compensate for scene fade outs. The reference pictures that can be used in
bi-prediction are stored in two separate lists, namely list 0 and list 1. In order to
limit the memory bandwidth in slices allowing bi-prediction, the HEVC standard
restricts PUs with 4 � 8 and 8 � 4 luma prediction blocks to use uni-prediction only.
Motion data is derived at the encoder using a motion estimation process. Motion

5 Inter-Picture Prediction in HEVC 115

Inter-picture
Prediction
Block Merging

Advanced
Motion Vector
Prediction

Merge Index

MVP Index 0,1
MVD 0,1
RefIdx t0, t1

Weighted
Sample
Prediction

Motion Data
MV: (x0, y0),(x1, y1)
RefIdx: t0, t1

Fractional
Sample
Interpolation

Final Motion
Compensated
Prediction

Motion
Compensated
Prediction 0

Motion
Compensated
Prediction 1

Motion Data Coding

Fig. 5.2 Inter-picture prediction in HEVC (grey parts represent the bi-prediction path)

estimation is not specified within video standards so different encoders can utilize
different complexity-quality tradeoffs in their implementations.

An overview block diagram of the HEVC inter-picture prediction is shown in
Fig. 5.2. The motion data of a block is correlated with the neighboring blocks.
To exploit this correlation, motion data is not directly coded in the bitstream but
predictively coded based on neighboring motion data. In HEVC, two concepts are
used for that. The predictive coding of the motion vectors was improved in HEVC
by introducing a new tool called advanced motion vector prediction (AMVP) where
the best predictor for each motion block is signaled to the decoder. In addition, a new
technique called inter-prediction block merging derives all motion data of a block
from the neighboring blocks replacing the direct and skip modes in H.264/AVC [26].
Section 5.2 describes all aspects of motion data coding in HEVC including AMVP,
inter-prediction block merging and motion data storage reduction. The improved
fractional sample interpolation filter is explained in Sect. 5.3. Additional weighting
of the MCP or, in case of bi-prediction, the weighting of the two MCPs is further
detailed in Sect. 5.4. Finally, Sect. 5.5 summarizes and concludes this chapter.

5.2 Motion Data Coding

5.2.1 Advanced Motion Vector Prediction

As in previous video coding standards, the HEVC motion vectors are coded in terms
of horizontal (x) and vertical (y) components as a difference to a so called motion
vector predictor (MVP). The calculation of both motion vector difference (MVD)
components is shown in Eqs. (5.1) and (5.2).

MVDx D �x � MVPx (5.1)

MVDy D �y � MVPy (5.2)

116 B. Bross et al.

CTU0 CTU1 MB0 MB1

Fig. 5.3 Maximum number of left neighbors with motion data in HEVC with CTU0 having 16
8�4 luma PBs next to CTU1 with one 64�64 luma PB (left) and in H.264/AVC with MB0 having
four 4�4 partitions next to MB1 with one 16� 16 partition (right)

Motion vectors of the current block are usually correlated with the motion vectors
of neighboring blocks in the current picture or in the earlier coded pictures. This is
because neighboring blocks are likely to correspond to the same moving object with
similar motion and the motion of the object is not likely to change abruptly over
time. Consequently, using the motion vectors in neighboring blocks as predictors
reduces the size of the signaled motion vector difference. The MVPs are usually
derived from already decoded motion vectors from spatial neighboring blocks or
from temporally neighboring blocks in the co-located picture.1 In H.264/AVC, this
is done by doing a component wise median of three spatially neighboring motion
vectors. Using this approach, no signaling of the predictor is required. Temporal
MVPs from a co-located picture are only considered in the so called temporal direct
mode of H.264/AVC. The H.264/AVC direct modes are also used to derive other
motion data than the motion vectors. Hence, they relate more to the block merging
concept in HEVC and are further discussed in Sect. 5.2.2.

In HEVC, the approach of implicitly deriving the MVP was replaced by a
technique known as motion vector competition, which explicitly signals which
MVP from a list of MVPs, is used for motion vector derivation [19]. The variable
coding quadtree block structure in HEVC can result in one block having several
neighboring blocks with motion vectors as potential MVP candidates. Taking the
left neighbor as an example, in the worst case a 64�64 luma prediction block
could have 16 8�4 luma prediction blocks to the left when a 64�64 luma coding
tree block is not further split and the left one is split to the maximum depth.
Figure 5.3 illustrates this example and compares it to the worst case in H.264/AVC.
Advanced Motion Vector Prediction (AMVP) was introduced to modify motion
vector competition to account for such a flexible block structure [11]. During

1In some cases, the zero motion vector can also be used as MVP.

5 Inter-Picture Prediction in HEVC 117

the development of HEVC, the initial AMVP design was significantly simplified
to provide a good trade-off between coding efficiency and an implementation
friendly design. Section 5.2.1.1 describes in detail how the list of potential MVPs
is constructed in HEVC. Section 5.2.1.2 describes the signaling of all motion data,
including the index to the AMVP list, when AMVP is used for MV coding.

5.2.1.1 AMVP Candidate List Construction

The initial design of AMVP included five MVPs from three different classes
of predictors: three motion vectors from spatial neighbors, the median of the
three spatial predictors and a scaled motion vector from a co-located, temporally
neighboring block. Furthermore, the list of predictors was modified by reordering
to place the most probable motion predictor in the first position and by removing
redundant candidates to assure minimal signaling overhead. Exhaustive experiments
throughout the standardization process investigated how the complexity of this
motion vector prediction and signaling scheme could be reduced without sacrificing
too much coding efficiency [7, 8, 14]. This led to significant simplifications of the
AMVP design such as removing the median predictor, reducing the number of
candidates in the list from five to two, fixing the candidate order in the list and
reducing the number of redundancy checks. The final design of the AMVP candidate
list construction includes the following two MVP candidates:

• up to two spatial candidate MVPs that are derived from five spatial neighboring
blocks

• one temporal candidate MVPs derived from two temporal, co-located blocks
when both spatial candidate MVPs are not available or they are identical

• zero motion vectors when the spatial, the temporal or both candidates are not
available

Spatial Candidates

As already mentioned, two spatial MVP candidates A and B are derived from five
spatially neighboring blocks which are shown in Fig. 5.4b. The locations of the
spatial candidate blocks are the same for both AMVP and inter-prediction block
merging that will be presented in Sect. 5.2.2.

The derivation process flow for the two spatial candidates A and B is depicted
in Fig. 5.5. For candidate A, motion data from the two blocks A0 and A1 at the
bottom left corner is taken into account in a two pass approach. In the first pass,
it is checked whether any of the candidate blocks contain a reference index that is
equal to the reference index of the current block. The first motion vector found will
be taken as candidate A. When all reference indices from A0 and A1 are pointing
to a different reference picture than the reference index of the current block, the
associated motion vector cannot be used as is. Therefore, in a second pass, the

118 B. Bross et al.

C0

C1

Co-located block Current block

A0

A1

B0
B1

B2

a b

Fig. 5.4 Motion vector predictor and merge candidates. (a) Temporal. (b) Spatial

A0, A1

available?

find non-
scaled MV

find scaled MV with
both curr. ref pic and ref pic

being short term ref pics

A

B0, B1, B2

A0 or A1
available?

yes

not
found

first
non-scaled
MV found

available?

find non-
scaled MV

Find non-scaled MV
 or scaled MV with
both curr. ref pic and

 ref pic being
short term ref pics

B

yes

not
found

first
non-scaled
MV found

no

first scaled
MV found

first non-scaled
or scaled MV
found

A0 or A1
available?

no

Find non-scaled MV
 or scaled MV with

both curr. ref pic and
 ref pic being

short term ref pics

yes

first non-scaled
or scaled MV
found

Fig. 5.5 Derivation of spatial AMVP candidates A and B from motion data of neighboring blocks
A0, A1, B0, B1 and B2

motion vectors need to be scaled according to the temporal distances between
the candidate reference picture and the current reference picture. Equation (5.3)
shows how the candidate motion vector mvcand is scaled according to a scale factor.
ScaleFactor is calculated in Eq. (5.4) based on the temporal distance between the
current picture and the reference picture of the candidate block td and the temporal
distance between the current picture and the reference picture of the current block
tb. The temporal distance is expressed in terms of difference between the picture
order count (POC) values which define the display order of the pictures. The scaling
operation is basically the same scheme that is used for the temporal direct mode
in H.264/AVC. This factoring allows pre-computation of ScaleFactor at slice-level

5 Inter-Picture Prediction in HEVC 119

since it only depends on the reference picture list structure signaled in the slice
header. Note that the MV scaling is only performed when the current reference
picture and the candidate reference picture are both short term reference pictures.

mv D sign.mvcand � ScaleFactor/ � ..jmvcand � ScaleFactorj C 27/ � 8/ (5.3)

ScaleFactor D clip.�212; 212 � 1; .tb � tx C 25/ � 6/ (5.4)

tx D 214 C j td
2

j
td

(5.5)

For candidate B, the candidates B0 to B2 are checked sequentially in the same
way as A0 and A1 are checked in the first pass. The second pass, however, is only
performed when blocks A0 and A1 do not contain any motion information, i.e. are
not available or coded using intra-picture prediction. Then, candidate A is set equal
to the non-scaled candidate B, if found, and candidate B is set equal to a second,
non-scaled or scaled variant of candidate B. Since you could also end up in the
second pass when there still might be potential non-scaled candidates, the second
pass searches for non-scaled as well as for scaled MVs derived from candidates B0
to B2.

Overall, this design allows to process A0 and A1 independently from B0, B1,
and B2. The derivation of B should only be aware of the availability of both A0 and
A1 in order to search for a scaled or an additional non-scaled MV derived from B0
to B2. This dependency is acceptable given that it significantly reduces the complex
motion vector scaling operations for candidate B. Reducing the number of motion
vector scalings represents a significant complexity reduction in the motion vector
predictor derivation process.

Temporal Candidate

It can be seen from Fig. 5.4b that only motion vectors from spatial neighboring
blocks to the left and above the current block are considered as spatial MVP
candidates. This can be explained by the fact that the blocks to the right and below
the current block are not yet decoded and hence, their motion data is not available.
Since the co-located picture is a reference picture which is already decoded, it is
possible to also consider motion data from the block at the same position, from
blocks to the right of the co-located block or from the blocks below. In HEVC,
the block to the bottom right and at the center of the current block have been
determined to be the most suitable to provide a good temporal motion vector
predictor (TMVP). These candidates are illustrated in Fig. 5.4a where C0 represents
the bottom right neighbor and C1 represents the center block. Here again, motion
data of C0 is considered first and, if not available, motion data from the co-located
candidate block at the center is used to derive the temporal MVP candidate C. The
motion data of C0 is also considered as not being available when the associated

120 B. Bross et al.

PU belongs to a CTU beyond the current CTU row. This minimizes the memory
bandwidth requirements to store the co-located motion data. In contrast to the
spatial MVP candidates, where the motion vectors may refer to the same reference
picture, motion vector scaling is mandatory for the TMVP. Hence, the same scaling
operation from Eq. (5.3) as for the spatial MVPs is used whereas td is defined as
the POC difference between the co-located picture and the reference picture of the
co-located candidate block.

While the temporal direct mode in H.264/AVC always refers to the first reference
picture in the second reference picture list, list 1, and is only allowed in bi-predictive
slices, HEVC offers the possibility to indicate for each picture which reference
picture is considered as the co-located picture. This is done by signaling in the slice
header the co-located reference picture list and reference picture index as well as
requiring that these syntax elements in all slices in a picture should specify the
same reference picture.

Since the temporal MVP candidate introduces additional dependencies, it might
be desirable to disable its usage for error robustness reasons. In H.264/AVC there
is the possibility to disable the temporal direct mode for bi-predictive slices in
the slice header (direct_spatial_mv_pred_flag). HEVC syntax extends
this signaling by allowing to disable the TMVP at sequence level or at picture
level (sps/slice_temporal_mvp_enabled_flag). Although the flag is
signaled in the slice header, it is a requirement of bitstream conformance that its
value shall be the same for all slices in one picture. Since the signaling of the picture-
level flag depends on the SPS flag, signaling it in the PPS would introduce a parsing
dependency between SPS and PPS. Another advantage of this slice header signaling
is that if you want to change only the value of this flag and no other parameter in
the PPS, there is no need to transmit a second PPS.

5.2.1.2 AMVP Motion Data Signaling

In general, motion data signaling in HEVC is similar as in H.264/AVC. An inter-
picture prediction syntax element, inter_pred_idc, signals whether reference
list 0, 1 or both are used. For each MCP obtained from one reference picture list, the
corresponding reference picture (�t) is signaled by an index to the reference picture
list, ref_idx_l0/1, and the MV (�x; �y) is represented by an index to the MVP,
mvp_l0/1_flag, and its MVD. The MVD syntax is further detailed in Chap. 8. A
newly introduced flag in the slice header,mvd_l1_zero_flag, indicates whether
the MVD for the second reference picture list is equal to zero and therefore not
signaled in the bitstream. When the motion vector is fully reconstructed, a final
clipping operation assures that the values of each component of the final motion
vector will always be in the range of �215 to 215 � 1, inclusive.

5 Inter-Picture Prediction in HEVC 121

Fig. 5.6 Detail of a video sequence exemplifying the merge concept. (a) In the foreground, the
scene contains a moving object (a pendulum) with motion indicated by the arrow. (b) A rate-
distortion optimized quadtree partitioning for inter-picture prediction parameters is indicated by
the white borders. (c) Only effective block borders are shown, i.e. borders that separate blocks
with different motion parameters. Reproduced with permission from [12], © 2012 IEEE

5.2.2 Inter-picture Prediction Block Merging

In image or video compression it is very reasonable to deploy a block based
image partitioning mechanism in order to apply different prediction models to
different regions of an image. This is because a single model can in general not
be expected to capture the versatile characteristics of a whole image or video.
HEVC uses a quadtree structure to describe the partitioning of a region into sub-
blocks. In terms of bit rate, this is a very low-cost structure while at the same
time, it allows for partitioning into a wide range of differently sized sub-blocks.
While this simplicity is an advantage for example for encoder design, it also bears
the disadvantage of over-segmenting the image, potentially leading to redundant
signaling and ineffective borders. This drawback is effectively addressed by block
merging as explained in Sect. 5.2.2.1. A description of the exact algorithm and
bitstream syntax follows in Sects. 5.2.2.2–5.2.2.5.

5.2.2.1 Background

An example partitioning using the quadtree structure is shown in Fig. 5.6a for a
uni-predictive slice in an HEVC-encoded video. As can be seen, the area around
the pendulum is heavily partitioned in order to capture the motion in front of the
still background. Figure 5.6c shows the same partitioning, but without ineffective
borders, i.e. borders dividing regions of equal motion parameters. It becomes
evident that in this particular situation, the quadtree structure is unable to accurately
capture the motion without introducing ineffective borders. It is easy to see that
this over-segmentation easily occurs whenever moving objects in a scene cause

122 B. Bross et al.

abrupt changes in the field of motion parameters, which is common in natural video
content. One reason is that the quad-tree structure systematically does not allow for
joint description of child blocks that belong to different parent blocks. Also, the fact
that a block can only be divided into exactly four child blocks will eventually lead
to ineffective borders.

To remedy these inherent drawbacks of the quad-tree structure, HEVC uses block
merging which allows us to code motion parameters very cheaply (in terms of bit
rate) in these ineffective border situations [9, 12, 23]. The algorithm was inspired
by the work of [10], in which the authors show that rate-distortion optimized
tree pruning for quadtree-based motion models can be substantially improved by
introducing a subsequent leaf merging step. In [22], the authors study the benefits of
leaf merging on a broader theoretical basis. Here we leave it at the intuitive example
given above and concentrate on the integration of block merging into HEVC.
Following from the observation of ineffective borders, block merging introduces
a terse syntax allowing for a sub-block to explicitly reuse the exact same motion
parameters contained in neighboring blocks. Like AMVP, it compiles a list of
candidate motion parameter tuples by picking from neighboring blocks. Then, an
index is signaled which identifies the candidate to be used. Block merging also
allows for temporal prediction by including into the list a candidate obtained from
previously coded pictures. A more detailed description is given in the following.

5.2.2.2 Merge Candidate List Construction

Although they appear similar, there is one main difference between the AMVP
and the merge candidate list. The AMVP list only contains motion vectors for
one reference list while a merge candidate contains all motion data including
the information whether one or two reference picture lists are used as well as a
reference index and a motion vector for each list. This significantly reduces motion
data signaling overhead. Section 5.2.2.3 describes the signaling in detail as well as
discusses how parsing robustness is achieved. Overall, the merge candidate list is
constructed based on the following candidates:

• up to four spatial merge candidates that are derived from five spatial neighboring
blocks

• one temporal merge candidate derived from two temporal, co-located blocks
• additional merge candidates including combined bi-predictive candidates and

zero motion vector candidates

Spatial Candidates

The first candidates in the merge candidate list are the spatial neighbors. Here, the
same neighboring blocks as for the spatial AMVP candidates are considered which
are described in Sect. 5.2.1.1 and illustrated in Fig. 5.4b. In order to derive a list
of motion vector predictors for AMVP, one MVP is derived from A0 and A1 and

5 Inter-Picture Prediction in HEVC 123

one from B0, B1 and B2, respectively in that order. However, for inter-prediction
block merging, up to four candidates are inserted in the merge list by sequentially
checking A1, B1, B0, A0 and B2, in that order.

Instead of just checking whether a neighboring block is available and contains
motion information, some additional redundancy checks are performed before
taking all the motion data of the neighboring block as a merge candidate. These
redundancy checks can be divided into two categories for two different purposes:

• avoid having candidates with redundant motion data in the list
• prevent merging two partitions that could be expressed by other means which

would create redundant syntax

When N is the number of spatial merge candidates, a complete redundancy
check would consist of N �.N �1/

2
motion data comparisons. In case of the five

potential spatial merge candidates, ten motion data comparisons would be needed
to assure that all candidates in the merge list have different motion data. During the
development of HEVC, the checks for redundant motion data have been reduced
to a subset in a way that the coding efficiency is kept while the comparison logic
is significantly reduced [1]. In the final design, no more than two comparisons are
performed per candidate resulting in five overall comparisons. Given the order of
{A1, B1, B0, A0, B2}, B0 only checks B1, A0 only A1 and B2 only A1 and B1.

For an explanation of the partitioning redundancy check consider the following
example. The bottom PU of a 2N�N partitioning is merged with the top one by
choosing candidate B1. This would result in one CU with two PUs having the same
motion data which could be equally signaled as a 2N�2N CU. Overall, this check
applies for all second PUs of the rectangular and asymmetric partitions 2N�N,
2N�nU, 2N�nD, N�2N, nR�2N and nL�2N. Please note that for the spatial merge
candidates, only the redundancy checks are performed and the motion data is copied
from the candidate blocks as it is. Hence, no motion vector scaling is needed here.

Temporal Candidate

The derivation of the motion vectors for the temporal merge candidate is the same
as for the TMVP described in Sect. 5.2.1.1. Since a merge candidate comprises all
motion data and the TMVP is only one motion vector, the derivation of the whole
motion data only depends on the slice type. For bi-predictive slices, a TMVP is
derived for each reference picture list. Depending on the availability of the TMVP
for each list, the prediction type is set to bi-prediction or to the list for which the
TMVP is available. All associated reference picture indices are set equal to zero.
Consequently for uni-predictive slices, only the TMVP for list 0 is derived together
with the reference picture index equal to zero.

When at least one TMVP is available and the temporal merge candidate is added
to the list, no redundancy check is performed. This makes the merge list construction
independent of the co-located picture which improves error resilience. Consider the
case where the temporal merge candidate would be redundant and therefore not

124 B. Bross et al.

Table 5.1 Order in which motion data combinations of different merge candidates,
that have been already inserted in the merge list, are tested to create combined bi-
predictive merge candidates

Combination Order 0 1 2 3 4 5 6 7 8 9 10 11

�x0; �y0; �t0 from Cand. 0 1 0 2 1 2 0 3 1 3 2 3
�x1; �y1; �t1 from Cand. 1 0 2 0 2 1 3 0 3 1 3 2

included in the merge candidate list. In the event of a lost co-located picture, the
decoder could not derive the temporal candidates and hence not check whether it
would be redundant. The indexing of all subsequent candidates would be affected
by this.

Additional Candidates

For parsing robustness reasons, which will be explained in Sect. 5.2.2.3, the length
of the merge candidate list is fixed. After the spatial and the temporal merge
candidates have been added, it can happen that the list has not yet the fixed length.
In order to compensate for the coding efficiency loss that comes along with the
non-length adaptive list index signaling, additional candidates are generated [25].
Depending on the slice type, up to two kind of candidates are used to fully populate
the list:

• Combined bi-predictive candidates
• Zero motion vector candidates

In bi-predictive slices, additional candidates can be generated based on the existing
ones by combining reference picture list 0 motion data of one candidate with and
the list 1 motion data of another one. This is done by copying �x0; �y0; �t0 from
one candidate, e.g. the first one, and �x1; �y1; �t1 from another, e.g. the second
one. The different combinations are predefined and given in Table 5.1.

When the list is still not full after adding the combined bi-predictive candidates,
or for uni-predictive slices, zero motion vector candidates are calculated to complete
the list. All zero motion vector candidates have one zero displacement motion vector
for uni-predictive slices and two for bi-predictive slices. The reference indices are
set equal to zero and are incremented by one for each additional candidate until the
maximum number of reference indices is reached. If that is the case and there are
still additional candidates missing, a reference index equal to zero is used to create
these. For all the additional candidates, no redundancy checks are performed as it
turned out that omitting these checks will not introduce a coding efficiency loss [21].

5 Inter-Picture Prediction in HEVC 125

5.2.2.3 Merge Motion Data Signaling and Skip Mode

The motion data signaling scheme using the merge mode is quite simple. For each
PU coded in inter-picture prediction mode, a so called merge_flag indicates
that block merging is used to derive the motion data. The merge_idx further
determines the candidate in the merge list that provides all the motion data needed
for the MCP. Therefore, instead of all the syntax elements needed for AMVP
based motion data coding described in Sect. 5.2.1.2, only a flag and a list index are
transmitted. This difference can be seen when comparing the input to the AMVP
and the merge motion data coding block in Fig. 5.2.

Besides this PU-level signaling, the number of candidates in the merge list is
signaled in the slice header. Since the default value is five, it is represented as a
difference to five (five_minus_max_num_merge_cand). That way, the five
is signaled with a short codeword for the 0 whereas using only one candidate,
is signaled with a longer codeword for the 4. Regarding the impact on the merge
candidate list construction process, the overall process remains the same although
it terminates after the list contains the maximum number of merge candidates. In
the initial design, the maximum value for the merge index coding was given by the
number of available spatial and temporal candidates in the list. When e.g. only two
candidates are available, the index can be efficiently coded as a flag. But, in order
to parse the merge index, the whole merge candidate list has to be constructed to
know the actual number of candidates. Assuming unavailable neighboring blocks
due to transmission errors, it would not be possible to parse the merge index
anymore. Fixing the number of merge candidates improves the parsing robustness
by decoupling the parsing and the merge candidate list construction while sacrificing
coding efficiency. Populating the list with the additional merge candidates presented
in Sect. 5.2.2.2 compensates again for that loss while keeping the parsing robustness.

A crucial application of the block merging concept in HEVC is its combination
with a skip mode. In previous video coding standards, the skip mode was used to
indicate for a block that the motion data is inferred instead of explicitly signaled and
that the prediction residual is zero, i.e. no transform coefficients are transmitted.
This mode is well suited to code static image regions where the prediction error
tends to be very small. In HEVC, at the beginning of each CU in an inter-picture
prediction slice, a skip_flag is signaled that implies the following:

• the CU only contains one PU (2N�2N partition type)
• the merge mode is used to derive the motion data (merge_flag equal to 1)
• no residual data is present in the bitstream

5.2.2.4 Coding Efficiency of HEVC Merge and Skip Mode

In this section, the coding efficiency of the HEVC merge and skip modes is
analyzed. This is done experimentally by disabling the merge mode as well as
the skip mode, i.e. removing merge_flag, merge_index and skip_flag

126 B. Bross et al.

Table 5.2 Average bit rate savings of HEVC merge and skip mode using
HM8.0

BD-rate [%]

Class Sequence RA-Main LB-Main LD-Main

A Traffic �8:8 n/a n/a
(2560 � 1600) PeopleOnStreet �6:5 n/a n/a

Nebuta �1:5 n/a n/a
SteamLocomotive �11:1 n/a n/a

B Kimono �9:6 �7:8 �5:4

(1920 � 1080) ParkScene �7:3 �7:0 �5:6

Cactus �11:7 �8:8 �6:9

Basketball Drive �9:1 �8:1 �6:1

BQTerrace �10:2 �10:3 �5:9

C Basketball Drill �7:5 �7:6 �6:1

(832 � 480) BQMall �9:2 �7:5 �5:7

PartyScene �4:8 �3:4 �2:5

RaceHorses �3:9 �4:3 �3:3

D Basketball Pass �6:1 �5:1 �4:0

(416 � 240) BQSquare �6:9 �3:3 �2:5

BlowingBubbles �6:1 �3:7 �3:1

RaceHorses �4:4 �3:9 �3:6

E FourPeople n/a �11:4 �8:5

(1280 � 720) Johnny n/a �20:0 �16:4

KristenAndSara n/a �15:0 �11:2

Average �7.3 �8.0 �6.0

syntax. The software used for this experiment is version 8.0 of the HEVC test model
reference software (HM) [13] with the random access main, low delay B and P main
coding configurations as described in [5].

The coding efficiency gains in terms of Bjøntegaard Delta (BD) rate [2], when
enabling the merge and skip modes, are reported in [9] and [12] and also summa-
rized in Table 5.2. Average bit rate savings between 6 % and 8 % are observed. It
can be seen that the gains for the random access main (RA-Main) and low delay
B main (LB-Main) configurations using bi-predictive B pictures are higher than
for the low delay P main (LP-Main) configuration, which is restricted to use uni-
prediction. Since the merge mode only uses a flag and an index to signal all motion
data, it is more efficient the more motion data signaling is omitted that way, e.g.
two sets of motion data in bi-prediction. Another observation is that merge and
skip modes are saving up to 20 % for the class E sequences. These sequences
represent videoconferencing content where the static background can efficiently be
coded using skip and merge modes. More detailed results and a comparison with an
AMVP-based direct mode can be found in [12].

5 Inter-Picture Prediction in HEVC 127

32x32 merge estimation region (MER)

Potentially available candidate (different MER)

Unavailable candidate (same MER)

Unavailable candidate (not coded yet)

PU7

PU8

PU9

PU0 PU2

PU1

PU3

PU4
PU5

PU6

Fig. 5.7 Example of a CTU with a 64�64 luma CTB, when motion estimation of for PUs inside
a 32�32 motion estimation region is carried out independently, enabling the possibility to do it in
parallel

5.2.2.5 Merge Estimation Regions for Parallel Merge Mode Estimation

The way the merge candidate list is constructed introduces dependencies between
neighboring blocks. Especially in embedded encoder implementations, the motion
estimation stage of neighboring blocks is typically performed in parallel or at least
pipelined to increase the throughput. For AMVP, this is not a big issue since the
MVP is only used to differentially code the MV found by the motion search. The
motion estimation stage for the merge mode, however, would typically just consist
of the candidate list construction and the decision which candidate to choose, based
on a cost function. Due to the aforementioned dependency between neighboring
blocks, merge candidate lists of neighboring blocks cannot be generated in parallel
and represent a bottleneck for parallel encoder designs. Therefore, a parallel merge
estimation level was introduced in HEVC that indicates the region in which merge
candidate lists can be independently derived by checking whether a candidate block
is located in that merge estimation region (MER). A candidate block that is in
the same MER is not included in the merge candidate list. Hence, its motion data
does not need to be available at the time of the list construction. When this level
is e.g. 32, all prediction units in a 32�32 area can construct the merge candidate
list in parallel since all merge candidates that are in the same 32�32 MER, are not
inserted in the list. Figure 5.7 illustrates that example showing a CTU partitioning
with seven CUs and ten PUs. All potential merge candidates for the first PU0 are
available because they are outside the first 32�32 MER. For the second MER, merge
candidate lists of PUs 2–6 cannot include motion data from these PUs when the
merge estimation inside that MER should be independent. Therefore, when looking
at a PU5 for example, no merge candidates are available and hence not inserted in

128 B. Bross et al.

Table 5.3 Average bit rate
losses for different merge
estimation regions in terms of
BD-rate using HM5.0
reference software

Merge estimation region

8 � 8 16 � 16 32 � 32 64 � 64

RA-HE 0.1 % 0.6 % 1.6 % 2.7 %
LB-HE 0.2 % 0.7 % 2.0 % 3.4 %

the merge candidate list. In that case, the merge list of PU5 consists only of the
temporal candidate (if available) and zero MV candidates.

In order to enable an encoder to trade-off parallelism and coding effi-
ciency, the parallel merge estimation level is adaptive and signaled as
log2_parallel_merge_level_minus2 in the picture parameter set. The
following MER sizes are allowed: 4�4 (no parallel merge estimation possible),
8�8, 16�16, 32�32 and 64 � 64. A higher degree of parallelization, enabled by
a larger MER, excludes more potential candidates from the merge candidate list.
That, on the other hand, decreases the coding efficiency. The coding efficiency
losses in terms of BD-rate [2] for different MER sizes are reported in [28] and
summarized in Table 5.3. Results are generated using HM5.0 [13] with random
access high efficiency (RA-HE) and low delay B high efficiency (LB-HE) coding
configurations as described in [3].

When the merge estimation region is larger than a 4�4 block, another modifica-
tion of the merge list construction to increase the throughput kicks in. For a CU with
an 8�8 luma CB, only a single merge candidate list is used for all PUs inside that
CU.

5.2.3 Motion Data Storage Reduction

The usage of the TMVP, in AMVP as well as in the merge mode, requires the
storage of the motion data (including motion vectors, reference indices and coding
modes) in co-located reference pictures. Considering the granularity of motion
representation, the memory size needed for storing motion data could be significant.
HEVC employs motion data storage reduction (MDSR) to reduce the size of the
motion data buffer and the associated memory access bandwidth by sub-sampling
motion data in the reference pictures [20]. While H.264/AVC is storing these
information on a 4�4 block basis, HEVC uses a 16�16 block where, in case of
sub-sampling a 4�4 grid, the information of the top-left 4�4 block is stored. Due
to this sub-sampling, MDSR impacts on the quality of the temporal prediction.
Furthermore, there is a tight correlation between the position of the MV used in
the co-located picture, and the position of the MV stored by MDSR.

During the standardization process of HEVC, the impact of the sub-sampling
scheme as well as the interaction with the TMVP was investigated in a core
experiment on MDSR [15]. It turned out that storing the motion data of the
top left block inside the 16�16 area together with the bottom right and center

5 Inter-Picture Prediction in HEVC 129

TMVP candidates provide the best tradeoff between coding efficiency and memory
bandwidth reduction. Furthermore, the general impact of sub-sampling the motion
information was measured. While the 8�8 subsampling show no difference in
coding efficiency compared to 4�4, the current 16�16 scheme results in a coding
efficiency loss of 0.1 % BD-rate which is negligible and can be considered as being
in the noise margin.

5.3 Fractional Sample Interpolation

Interpolation tasks arise naturally in the context of video coding because the
true displacements of objects from one picture to another are independent of the
sampling grid of cameras. Therefore, in MCP, fractional-sample accuracy is used to
more accurately capture continuous motion. Samples available at integer positions
are filtered to estimate values at fractional positions. This spatial domain operation
can be seen in the frequency domain as introducing phase delays to individual
frequency components. An ideal interpolation filter for band-limited signals induces
a constant phase delay to all frequencies and does not alter their magnitudes. The
efficiency of MCP is limited by many factors—the spectral content of original and
already reconstructed pictures, camera noise level, motion blur, quantization noise
in reconstructed pictures, etc.

Similar to H.264/AVC, HEVC supports motion vectors with quarter-pixel
accuracy for the luma component and one-eighth pixel accuracy for chroma
components. If the motion vector has a half or quarter-pixel accuracy, samples
at fractional positions need to be interpolated using the samples at integer-sample
positions. The interpolation process in HEVC introduces several improvements over
H.264/AVC that contributes to the significant coding efficiency increase of HEVC.
In this section, these differences are first explained and then the complexity and
coding efficiency characteristics of the HEVC interpolation process are presented.

5.3.1 Overview

In order to improve the filter response in the high frequency range, luma and chroma
interpolation filters have been re-designed and the tap-lengths were increased. The
luma interpolation process in HEVC uses a symmetric 8-tap filter for half-sample
positions and an asymmetric 7-tap filter for quarter-sample positions. For chroma
samples, a 4-tap filter was introduced.

The intermediate values used in interpolation process are kept at a higher
accuracy in HEVC to improve coding efficiency. This is done as follows (please
refer to Fig. 5.9 for notation throughout the text, where integer-sample values are
shown with dark squares and the fractional-sample values are shown with white
squares):

130 B. Bross et al.

• H.264/AVC obtains the quarter-sample values by first obtaining the values of
nearest half-pixel samples and averaging those with the nearest integer samples,
according the position of the quarter-pixel [27]. However, HEVC obtains the
quarter-pixel samples without using such cascaded steps but by instead directly
applying a 7 or 8-tap filter on the integer pixels.

• In H.264/AVC, a bi-predictively coded block is calculated by averaging two uni-
predicted blocks. If interpolation is performed to obtain the samples of the uni-
prediction blocks, those samples are shifted and clipped to input bit-depth after
interpolation, prior to averaging. On the other hand, HEVC keeps the samples
of each one of the uni-prediction blocks at a higher accuracy and only performs
rounding to input bit-depth at the final stage, improving the coding efficiency by
reducing the rounding error.

The details of these features are presented in the following sections.

5.3.1.1 Redesigned Filters

An important parameter for interpolation filters is the number of filter taps as it has a
direct influence on both coding efficiency and implementation complexity. In terms
of implementation, it not only has an impact on the arithmetic operations but also
on the memory bandwidth required to access the reference samples. Although the
6-tap filter for estimating half-pixel positions in H.264/AVC produces a constant
phase delay of 0.5 for all frequency components due to symmetry, the passband
(range of frequencies where the magnitudes are relatively unaltered) is not large.
Increasing the number of taps can yield filters that produce desired response
for a larger range of frequencies which can help to predict the corresponding
frequencies in the samples to be coded. Considering modern computing capabilities,
the performance of many MCP filters were evaluated in the context of HEVC and a
coding efficiency/complexity trade-off was targeted during the standardization.

Consider the design of a half-pixel interpolation filter with 2N taps denoted
as h D Œh0; h1; � � � ; h2N �1�T . Due to the desired half-pixel symmetry only
N coefficients can be different, which can be denoted in the form h D
Œh0; h1; � � � ; hN �1; � � � ; h1; h0�

T . Now consider the interpolation of a DC signal
(with all samples equal). It is desired that the interpolated value be the same as
the input. Hence, we require 2 � PN �1

nD0 hn D 1, also known as the normalization
constraint. This further reduces the number of degrees of freedom from N to N �1.
In the case of a quarter-pixel interpolation filter however, only the normalization
condition

P2N �1
nD0 hn D 1 is imposed as symmetry is not necessary, which gives

2N � 1 degrees of freedom. The aim of interpolation filter design is to determine
these degrees of freedom so as to remain close to the desired frequency response.

Here a brief overview of the design of HEVC interpolation filters is provided.
For a detailed explanation the reader is referred to [17]. The basic idea is to forward
transform the known integer samples to the DCT domain and inverse transform

5 Inter-Picture Prediction in HEVC 131

Table 5.4 Filter coefficients
for luma interpolation in
MCP

Phase Luma filter coefficients

1/4 Œ�1; 4; �10; 58; 17; �5; 1�=64

1/2 Œ�1; 4; �11; 40; 40; �11; 4; �1�=64

Table 5.5 Filter coefficients
for chroma interpolation in
MCP

Phase Chroma filter coefficients

1/8 Œ�2; 58; 10; �2�=64

1/4 Œ�4; 54; 16; �2�=64

3/8 Œ�6; 46; 28; �4�=64

1/2 Œ�4; 36; 36; �4�=64

the DCT coefficients to the spatial domain using DCT basis sampled at desired
fractional positions instead of integer positions. Fortunately, these operations can
be combined into a single FIR filtering step. Let the available samples at integer
positions be denoted as a column vector s and the forward transform as a matrix B.
The DCT coefficients c can be computed as c D B � s. Since DCT basis is
composed of cosine functions (which are continuous in nature), they can be sampled
at fractional positions. Let the DCT basis sampled at desired fractional positions be
denoted by a row vector r. This is used to transform back the DCT coefficients
to the spatial domain, which results in the interpolated value Os D r � B � s. These
stages can be combined into a single filter f D r � B. In addition to the above
steps, the reference samples are smoothed in the actual HEVC design to combat
noise in the reference samples. Therefore the final interpolation filter can be written
in the form f D r � B � W, where W is a diagonal matrix with weights for
smoothing. The resulting filter coefficients are rounded to 6-bit precision (for a
simple fixed-point implementation) and an integer optimization is carried out under
the normalization constraint to ensure that the filter coefficients provide close to
desired frequency response even after rounding. For the chroma interpolation filters,
a slightly different smoothing of reference samples is performed during the filter
design. The filter coefficients’ bit-depth of 6 also makes it possible to realize the
entire MCP process for 8-bit videos using 16-bit intermediate buffers. The filter
coefficients resulting from the design described above for luma and chroma MCP
are given in Tables 5.4 and 5.5, respectively. The magnitude responses of half-pel
luma interpolation filters of H.264/AVC and HEVC are depicted in Fig. 5.8. It can
be seen that the half-pel interpolation filter of HEVC comes closer to the desired
response than the H.264/AVC filter.

5.3.1.2 High Precision Filtering Operations

In H.264/AVC, some of the intermediate values used within interpolation are
shifted to lower accuracy, which introduces rounding error and reduces coding
efficiency. This loss of accuracy is due to several reasons. Firstly, the half-pixel

132 B. Bross et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.9

0.95

1

1.05

1.1

Normalized frequency

A
m

pl
itu

de

Ideal

H.264/AVC

H.265/HEVC

Fig. 5.8 Comparison of magnitude response of half-pel interpolation filters of H.264/AVC and
HEVC relative to an ideal filter

A−1,−1 A0,−1 a0,−1 b0,−1 c0,−1 A1,−1

A−1,0 A0,0 A1,0

A−1,1 A0,1 A1,1a0,1 b0,1 c0,1

a0,0 b0,0 c0,0

d0,0

h0,0

n0,0

e0,0

i0,0

p0,0

f0,0

j0,0

q0,0

g0,0

k0,0

r0,0

d−1,0

h−1,0

n−1,0

d1,0

h1,0

n1,0

A2,−1

A2,0

A2,1

d2,0

h2,0

n2,0

A−1,2 A0,2 A1,2a0,2 b0,2 c0,2 A2,2

Fig. 5.9 Fractional positions used in luma motion compensation with 1/4 pixel accuracy

samples obtained by 6-tap FIR filter are first rounded to input bit-depth, prior
to using those for obtaining the quarter-pixel samples. To illustrate this effect,
let’s consider interpolating the quarter-pixel sample a0,0 using the H.264/AVC
interpolation process. In order to obtain a0,0, the half-pixel sample b0,0 needs to

5 Inter-Picture Prediction in HEVC 133

be obtained first by applying a 6-tap horizontal FIR filter and rounding the result to
input bit-depth, as shown in Eq. (5.6). The quarter-pixel sample a0,0 is then obtained
by averaging the half-pixel sample, b0,0 with the integer sample A0,0 as shown in
Eq. (5.7). Because b0,0 is first rounded back to input bit-depth, a rounding error of
33=128 is introduced to obtain a0,0 [16].

b0;0 D .A�2;0 � 5 � A�1;0 C 20 � A0;0 C 20 � A1;0 � 5 � A2;0 C A3;0 C 16/ >> 5

(5.6)

a0;0 D .A0;0 C b0;0 C 1/ >> 1 (5.7)

Instead of using a two-stage cascaded filtering process, HEVC interpolation filter
computes the quarter-pixels directly using a 7-tap filter using the coefficients shown
in Sect. 5.3.1.1, which significantly reduces the rounding error to 1=128.

The second reason for reduction of accuracy in H.264/AVC motion compensation
process is due to averaging in bi-prediction. In H.264/AVC, the prediction signal of
the bi-predictively coded motion blocks (denoted by S) is obtained by averaging
prediction signals from two prediction lists (denoted by S1 and S2) as shown in
Eq. (5.8).

S D .S1 C S2 C 1/ >> 1 (5.8)

The averaging operation shown in Eq. (5.8) is done at the precision of input
bit-depth (i.e. S1 and S2 are 8-bit for an 8-bit video). If the motion vectors have
fractional pixel accuracy, then S1 and S2 are obtained using interpolation and the
intermediate values are rounded to input bit-depth. In HEVC, instead of averaging
each prediction signal at the precision of the bit-depth, they are averaged at a higher
precision if fractional motion vectors are used for the corresponding block [18].
This means that, if the motion vectors to obtain S1 or S2 have sub-pixel accuracy,
the interpolation process does not round the intermediate values to input-bit depth
prior to averaging, but keeps it at a higher precision. It should be noted that for
the cases where one of the prediction signal is obtained without interpolation (i.e.
the corresponding motion vector has an integer pixel accuracy) the bit-depth of the
corresponding prediction signal is first increased accordingly before bi-prediction
averaging so that both prediction signals are averaged at the same bit-depth.

This process is illustrated in Fig. 5.10 (a) for the case of H.264/AVC where
bi-prediction averages two prediction signals at input bit-depth and (b) for HEVC
where the averaging is performed at a higher bit-depth and intermediate rounding
step is not used.

5.3.1.3 Other Important Features

To make sure the intermediate values do not overflow the 16-bit registers, after
horizontal interpolation the intermediate values are shifted to the right by bit depth
minus 2. This means that when the bit depth of the video is more than 8 bits, the

134 B. Bross et al.

Compute Intermediate
Filter Sum

Round to
input bit-depth

+
Compute Intermediate
Filter Sum

Round to
input bit-depth

Round to
input bit-depth

S1

S2

S

Compute Intermediate
Filter Sum

+
Compute Intermediate
Filter Sum

Round to
input bit-depth

S’1

S’1

S’2

S’2

S

a

b

Fig. 5.10 Bi-prediction process in (a) H.264/AVC and in (b) HEVC. Reproduced with permission
from [17], © 2013 IEEE

order in which horizontal filtering and vertical filtering is done needs to be specified
(horizontal first in HEVC). This specific order was selected mainly to simplify
implementation on specific architectures.

It should also be noted that in HEVC the only clipping operation is at the
very end of the motion compensation process, with no clipping in intermediate
stages. As there is also no rounding in intermediate stages, HEVC interpolation
filter allows certain implementation optimizations. Consider the case where bi-
prediction is used and motion vectors of each prediction direction points to the same
fractional position. In these cases, final prediction could be obtained by first adding
two reference signals and performing interpolation and rounding once, instead of
interpolating each reference block, thus saving one interpolation process.

5.3.2 Complexity and Coding Efficiency Characteristics

In this section, the complexity of the interpolation filter design in HEVC is
analyzed and compared with that of H.264/AVC. In addition, the coding efficiency
improvements brought with the improved design are also presented.

5 Inter-Picture Prediction in HEVC 135

5.3.2.1 Complexity of HEVC Interpolation Filter

When evaluating the complexity of a video coding algorithm, several aspects, such
as memory bandwidth, number of operations and storage buffer size need to be
carefully considered.

In terms of memory bandwidth, utilizing longer tap filters in HEVC (7–8 tap
filter for luma sub-pixels and 4-tap filter for chroma sub-pixels) compared to
shorter filters in H.264/AVC (6-tap filter for luma sub-pixels and bilinear filter for
chroma) increases the amount of data that needs to be fetched from the reference
memory. The worst case happens when a small motion block is bi-predicted and its
corresponding motion vector points to a sub-pixel position where two-dimensional
filtering needs to be performed (such as position f0,0). In order to reduce the worst
case memory bandwidth, HEVC introduces several restrictions. Firstly, the smallest
prediction block size is fixed to be 4 � 8 or 8 � 4, instead of 4 � 4. In addition, these
smallest block sizes of size 4�8 and 8�4 can only be predicted with uni-prediction.
With these restrictions in place, the worst-case memory bandwidth of HEVC
interpolation filter is around 51 % higher than that of H.264/AVC. The increase
in memory bandwidth is not very high for larger block sizes. For example, for a
32 � 32 motion block, HEVC requires around 13 % increased memory bandwidth
over H.264/AVC [17].

Similarly, the longer tap-length filters increase the number of arithmetic opera-
tions required to obtain the interpolated sample. If the complexity is measured by
the number of multiply-and-add operations (MACs), interpolation filter in HEVC
represents roughly a 20 % increase over H.264/AVC filter for 8-bit video.

The high-precision bi-directional averaging described in Sect. 5.3.1.2 increases
the size of intermediate storage buffers for storing the temporary uni-prediction
signals as each one of the prediction signals need to be stored at a higher bit-depth
compared to H.264/AVC before the bi-directional averaging takes place.

HEVC uses 7-tap FIR filter for interpolating samples at quarter-pixel locations,
which has an impact on motion estimation of a video encoder. An H.264/AVC
encoder could store only the integer and half-pel samples in the memory and
generate the quarter-pixels on-the-fly during motion estimation. This would be
significantly more costly in HEVC because of the complexity of generating each
quarter-pixel sample on-the-fly with a 7-tap FIR filter. Instead, an HEVC encoder
could store the quarter-pixel samples in addition to integer and half-pixel samples
and use those in motion estimation. Alternatively, an HEVC encoder could estimate
the values of quarter-pixel samples during motion estimation by low complexity
non-normative means.

5.3.2.2 Coding Efficiency of HEVC Interpolation Filter

In this section, the coding efficiency of interpolation filter design in HEVC is
analyzed. For this purpose, the H.264/AVC interpolation filter is first implemented
in version 6.0 of the HEVC test model and then run with the test conditions advised
by JCT-VC [4]. Same test model is also run with the HEVC interpolation filter

136 B. Bross et al.

Table 5.6 Average bit rate savings of HEVC interpolation filter for the
luma component using HM6.0

BD-rate [%]

Class Sequence RA-Main LB-Main LD-Main

A Traffic �2:4 n/a n/a
(2560 � 1600) PeopleOnStreet 0.1 n/a n/a

Nebuta 0.4 n/a n/a
SteamLocomotive �1:0 n/a n/a

B Kimono �1:8 �2:6 0.6
(1920 � 1080) ParkScene �2:7 �4:5 �2:2

Cactus �1:3 �2:9 �0:8

Basketball Drive �2:0 �3:1 �0:2

BQTerrace �5:0 �7:1 0.5

C Basketball Drill �2:5 �3:6 �2:1

(832 � 480) BQMall �4:3 �5:5 �2:7

PartyScene �10:7 �11:9 �10:5

RaceHorses �1:2 �2:2 �0:1

D Basketball Pass �1:8 �2:7 �1:0

(416 � 240) BQSquare �21:6 �21:7 �18:0

BlowingBubbles �7:5 �9:1 �7:6

RaceHorses �1:8 �3:4 �2:3

E FourPeople n/a �2:0 0.6
(1280 � 720) Johnny n/a �6:8 �2:2

KristenAndSara n/a �3:9 �0:5

Average �4:0 �4:9 �2:6

and the results are compared. This experiment is conducted to see how much gain
collectively all the improvements the HEVC interpolation filter brings. The test
conditions can be summarized as:

• Four quantization values used: 22, 27, 32 and 37
• A total number of 24 different sequences are coded. These sequences are divided

into different classes that represent different use-cases and video characteristics.
• Tests are conducted for three different prediction structures: Random Access,

Low Delay with B pictures and Low Delay with P pictures.
• The coding efficiency is measured by using the Bjøntegaard-Delta bit rate

measure [2].

The detailed results are shown in Table 5.6 for the luma component, where it
is shown that on average, the interpolation filter of HEVC brings 4.0 % coding
efficiency gain. The results for the chroma component is also summarized in
Table 5.7 where the average coding efficiency gains reach 11.27 %. For some
sequences, especially for those that contain more high frequency content, gains

5 Inter-Picture Prediction in HEVC 137

Table 5.7 Average bit rate savings of HEVC interpolation filter for the
chroma component

BD-rate [%]

RA-Main LB-Main LD-Main

Class Cb Cr Cb Cr Cb Cr

A (2560 � 1600) �10:8 �11:3 n/a n/a n/a n/a
B (1920 � 1080) �10:8 �12:2 �14:7 �16:8 �5:8 �6:5

C (832 � 480) �10:3 �10:8 �13:0 �13:5 �8:9 �9:6

D (416 � 240) �15:3 �17:1 �20:4 �21:7 �16:6 �18:1

E (1280 � 720) �2:4 �2:5 �5:4 �4:7 �2:5 �2:8

Average �11.7 �12.8 �13.3 �14.3 �7.4 �8.1

become very large and become more than 20 %. Further experiments show that
close to half of this gain is due to high precision filter operations as described in
Sect. 5.3.1.2 and the rest of the gain is due to improved filter coefficients with longer
tap-lengths.

5.4 Weighted Sample Prediction

Similar to H.264/AVC, HEVC includes a weighted prediction (WP) tool that
is particularly useful for coding sequences with fades. In WP, a multiplicative
weighting factor and an additive offset are applied to the motion compensated
prediction. In principle, WP replaces the inter prediction signal P by a linearly
weighted prediction signal OP D w � P C o, where w is an Illumination
Compensation weight and o is an offset. Care is taken to handle uni-prediction
and bi-prediction weights appropriately using the flags weighted_pred_flag
and weighted_bipred_flag transmitted in the Picture Parameter Set (PPS).
Consequently, WP has a very small overhead in PPS and slice headers contain
only non-default WP scaling values. WP is an optional PPS parameter and it may
be switched on/off when necessary. The inputs to the WP process are: the width
and the height of the luma prediction block, prediction samples to be weighted,
the prediction list utilization flags, the reference indices for each list, and the color
component index. Weighting factors w0 and w1, and offsets o0 and o1 are determined
using the data transmitted in the bitstream. The subscripts indicate the reference
picture list to which the weight and the offset are applied. The output of this process
is the array of prediction sample values. The WP process, for the case when only
the list L0 is used, can be written in a simplified form as:

OP Œx�Œy� D Clip3.0; max_val; PL0Œx�Œy� � w0 C o0/ (5.9)

where x and y denote spatial coordinates within the prediction block and max_val
represents the maximum value in the considered bit depth. Additionally, a log

138 B. Bross et al.

weight denominator (LWD) rounding factor may be used before adding the offset.
For the case of bi-prediction, the value to be clipped is calculated as follows (similar
rounding offset is used for uni-prediction case as well):

.PL0Œx�Œy��w0 CPL1Œx�Œy��w1 C.o0Co1 C1/ � LWD/ � .LWDC1/ (5.10)

In H.264/AVC, weight and offset parameters are either derived by relative distances
between the current picture and the reference distances (implicit mode) or weight
and offset parameters are explicitly signaled (explicit mode) [6]. Unlike H.264/AVC,
HEVC only includes explicit mode as the coding efficiency provided by deriving the
weighted prediction parameters with implicit mode was considered negligible.

It should be noted that the weighted prediction process defined in HEVC version
1 was found to be not optimal for higher bit-depths as the offset parameter is
calculated at low precision. The next version of the standard will likely modify the
derivation of the offset parameter for higher bit-depths [24].

The determination of appropriate WP parameters in an encoder is outside the
scope of the HEVC standard. Several algorithms for estimating WP parameters have
been proposed in literature. Optimal solutions are obtained when the Illumination
Compensation weights, motion estimation and Rate Distortion Optimization (RDO)
are considered jointly. However, practical systems usually employ simplified tech-
niques, such as determining approximate weights by considering picture-to-picture
mean variation.

5.5 Summary and Conclusions

The inter-picture prediction part of the HEVC video coding standard is not
introducing a revolutionary whole new design. Moreover, it can be seen as a
steady improvement and generalization of all parts known from previous video
coding standards, e.g. H.264/AVC. The motion vector prediction was enhanced with
advanced motion vector prediction based on motion vector competition. An inter-
prediction block merging technique significantly simplified the block-wise motion
data signaling by inferring all motion data from already decoded blocks. When
it comes to interpolation of fractional reference picture samples, high precision
interpolation filter kernels with extended support, i.e. 7/8-tap filter kernels for luma
and 4-tap filter kernels for chroma, improve the filtering especially in the high
frequency range. Finally, the weighted prediction signaling was simplified by either
applying explicitly signaled weights for each motion compensated prediction or just
averaging two motion compensated predictions.

5 Inter-Picture Prediction in HEVC 139

References

1. Bici O, Lainema J, Ugur K (2012) CE9: Results of SP experiments on simplification of merge
process, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H0252, San
Jose, Feb. 2012

2. Bjøntegaard G (2001) Calculation of average PSNR differences between RD curves, ITU-T
SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-M33, Austin, Apr. 2001

3. Bossen F (2011) HM 5 common test conditions and software reference configurations, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G1200, Geneva, Nov.
2011

4. Bossen F (2012a) HM 6 common test conditions and software reference configurations, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H1100, San Jose, Feb.
2012

5. Bossen F (2012b) HM 8 common test conditions and software reference configurations, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J1100, Stockholm, July
2012

6. Boyce J (2004) Weighted prediction in the H.264/MPEG AVC video coding standard. In:
Proceedings of the 2004 international symposium on circuits and systems, ISCAS ’04, vol
3, pp III–789–92, 2004

7. Bross B, Jung J, Chien WJ, Kim IK, Zhou M (2011) CE9: Summary report of core experiment
on MV coding and skip/merge operations, Joint Collaborative Team on Video Coding (JCT-
VC), Document JCTVC-G039, Geneva, Nov. 2011

8. Bross B, Jung J, Huang YW, Tan YH, Kim IK, Sugio T, Zhou M, Tan TK, Francois E,
Kazui K, Chien WJ, Sekiguchi S, Park S, Wan W (2011) BoG report of CE9: MV Coding
and Skip/Merge operations, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-E481, Geneva, Mar. 2011

9. Bross B, Oudin S, Helle P, Marpe D, Wiegand T (2012) Block merging for quadtree-based
partitioning in HEVC. In: Proc. SPIE. 8499, Applications of Digital Image Processing XXXV,
no. 84990R, Oct. 2012

10. De Forni R, Taubman D (2005) On the benefits of leaf merging in quad-tree motion models.
In: IEEE international conference on image processing, pp II–858, IEEE, 2005

11. Han WJ, Min J, Kim IK, Alshina E, Alshin A, Lee T, Chen J, Seregin V, Lee S, Hong YM,
Cheon MS, Shlyakhov N, McCann K, Davies T, Park JH (2010) Improved video compression
efficiency through flexible unit representation and corresponding extension of coding tools.
IEEE Trans Circuits Syst Video Technol 20(12):1709–1720

12. Helle P, Oudin S, Bross B,Marpe D, Bici M, Ugur K, Jung J, Clare G,Wiegand T (2012) Block
merging for quadtree-based partitioning in HEVC. IEEE Trans Circuits Syst Video Technol
22(12):1720–1731

13. JCT-VC (2014) Subversion repository for the HEVC test model reference software. https://
hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware

14. Jung J, Bross B (2011) CE9: Summary report for CE9 on motion vector coding, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-D149, Daegu, Jan. 2011

15. Jung J, Onno P, Huang YW (2011) CE1: Summary report of core experiment 1 on motion data
storage reduction, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
F021, Torino, July 2011

16. Kamp S, Ballé J, Wien M (2009) Multihypothesis prediction using decoder side-motion vector
derivation in inter-frame video coding. In: Proc. SPIE. 7257, Visual Communications and
Image Processing 2009, no. 725704, Jan. 2009

17. Ugur K, Alshin A, Alshina E, Bossen F, HanW, Park J, Lainema J (2013) Motion compensated
prediction and interpolation filter design in H.265/HEVC. IEEE J Sel Top Signal Process 7(6):
946–956

18. Ugur K, Lainema J, Hallapuro A (2011) High precision bi-directional averaging, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-D321, Daegu, Jan. 2011

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware

140 B. Bross et al.

19. Laroche G, Jung J, Pesquet-Popescu B (2008) RD optimized coding for motion vector predictor
selection. IEEE Trans Circuits Syst Video Technol 18(9):1247–1257

20. Li B, Xu J (2011) Parsing robustness in high efficiency video coding-analysis and improve-
ment. In: IEEE visual communications and image processing (VCIP), pp 1–4, 2011

21. Li B, Xu J, Li H (2011) Non-CE9/Non-CE13: Simplification of adding new merge candidates,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G397, Geneva, Nov.
2011

22. Mathew R, Taubman DS (2010) Quad-tree motion modeling with leaf merging. IEEE Trans
Circuits Syst Video Technol 20(10):1331–1345

23. Oudin S, Helle P, Stegemann J, Bartnik C, Bross B, Marpe D, Schwarz H, Wiegand T
(2011) Block merging for quadtree-based video coding. In: IEEE international conference on
multimedia and expo, pp 1–6, IEEE, 2011

24. Pu W, Chen J, Karczewicz M, Kim WS, Sole J, Guo L (2013) High precision weighted
prediction for HEVC range extension, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-O0235, Geneva, Oct.-Nov. 2013

25. Sugio T, Nishi T (2011) Parsing robustness for merge/AMVP, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-F470, Torino, July 2011

26. Tourapis AM, Wu F, Li S (2005) Direct mode coding for bipredictive slices in the H.264
standard. IEEE Trans Circuits Syst Video Technol 15(1):119–126

27. Wiegand T, Sullivan GJ, Bjøntegaard G, Luthra A (2003) Overview of the H.264/AVC video
coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576

28. Zhou M (2012) AHG10: Configurable and CU-group level parallel merge/skip, Joint Collabo-
rative Team on Video Coding (JCT-VC), Document JCTVC-H0082, San Jose, Feb. 2012

Chapter 6
HEVC Transform and Quantization

Madhukar Budagavi, Arild Fuldseth, and Gisle Bjøntegaard

Abstract This chapter provides an overview of the transform and quantization
design in HEVC. HEVC specifies two-dimensional transforms of various sizes
from 4 � 4 to 32 � 32 that are finite precision approximations to the discrete cosine
transform (DCT). In addition, HEVC also specifies an alternate 4 � 4 integer
transform based on the discrete sine transform (DST) for use with 4 � 4 luma Intra
prediction residual blocks. During the transform design, special care was taken
to allow implementation friendliness, including limited bit depth, preservation of
symmetry properties, embedded structure and basis vectors having almost equal
norm. The HEVC quantizer design is similar to that of H.264/AVC where a
quantization parameter (QP) in the range of 0–51 (for 8-bit video sequences) is
mapped to a quantizer step size that doubles each time the QP value increases
by 6. A key difference, however, is that the transform basis norm correction factors
incorporated into the descaling matrices of H.264/AVC are no longer needed in
HEVC simplifying the quantizer design. A QP value can be transmitted (in the form
of delta QP) for a quantization group as small as 8 � 8 samples for rate control
and perceptual quantization purposes. The QP predictor used for calculating the
delta QP uses a combination of left, above and previous QP values. HEVC also
supports frequency-dependent quantization by using quantization matrices for all
transform block sizes. This chapter also provides an overview of the three special
coding modes in HEVC (I_PCM mode, lossless mode, and transform skip mode)
that modify the transform and quantization process by either skipping the transform
or by skipping both transform and quantization.

M. Budagavi (�)
Texas Instruments Inc., Dallas, TX, USA
e-mail: madhu072@yahoo.com

A. Fuldseth • G. Bjøntegaard
Cisco Systems Norway, 1366 Lysaker, Norway
e-mail: arild.fuldseth@cisco.com; gbjonteg@cisco.com

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__6,
© Springer International Publishing Switzerland 2014

141

mailto:madhu072@yahoo.com
mailto:arild.fuldseth@cisco.com
mailto:gbjonteg@cisco.com

142 M. Budagavi et al.

6.1 Introduction

In the block-based hybrid video coding approach, transforms are applied to the
residual signal resulting from inter- or intra-picture prediction as shown in Fig. 6.1.
At the encoder, the residual signal of a picture is divided into square blocks
of size N � N where N D 2M and M is an integer. Each residual block (U) is
then input to a two-dimensional N � N forward transform. The two-dimensional
transform can be implemented as a separable transform by applying an N-point one-
dimensional transform to each row and each column separately. The resulting N � N
transform coefficients (coeff) are then subject to quantization (which is equivalent
to division by quantization step size Qstep and subsequent rounding) to obtain
quantized transform coefficients (level). At the decoder, the quantized transform
coefficients are then de-quantized (which is equivalent to multiplication by Qstep).
Finally, a two-dimensional N � N separable inverse transform is applied to the de-
quantized transform coefficients (coeffQ) resulting in a residual block of quantized
samples which is then added to the intra- or inter-prediction samples to obtain the
reconstructed block.

Typically, the forward- and inverse transform matrices are transposes of each
other and are designed to achieve near lossless reconstruction of the input residual
block when concatenated without the intermediate quantization and de-quantization
steps.

Intra/Inter
prediction

Input block

Entropy
encode

Bitstream

Forward
transform

Quant

C

Qstep

coeff

level

U

Intra/Inter
prediction

Entropy
decode

Bitstream

Inverse
transform

De-quant

C

Qstep

X= coeffQ

level

Reconstructed
block

a b

Fig. 6.1 Block-based hybrid video coding. (a) Encoder, (b) Decoder. C is the transform matrix
and Qstep is the quantization step size. Reproduced with permission from [6]. © IEEE 2013

6 HEVC Transform and Quantization 143

In video coding standards such as HEVC, the de-quantization process and inverse
transforms are specified, while the forward transforms and quantization process are
chosen by the implementer (subject to constraints on the bitstream).

This chapter is organized as follows. Section 6.2 describes the two transform
types used in HEVC: the core transform based on the discrete cosine transform
and the alternate transform based on the discrete sine transform. Design principles
used to develop the transform are also highlighted to provide insight into the
transform design process which considered both coding efficiency and complexity.
In Sect. 6.3, the HEVC quantization process is described. Topics covered in this
section include the actual quantization and de-quantization steps, quantization
matrices, and quantization parameter derivation. Section 6.4 provides an overview
of the three special coding modes in HEVC (I_PCM mode, Lossless mode, and
Transform skip mode) that modify the transform and quantization process by either
skipping the transform or by skipping both transform and quantization. Sections 6.5
and 6.6 provide complexity analysis and coding performance results respectively.

6.2 HEVC Transform1

The HEVC standard [16] specifies core transform matrices of size 4 � 4, 8 � 8,
16 � 16 and 32 � 32 to be used for two-dimensional transforms in the context
of block-based motion-compensated video compression. Multiple transform sizes
improve compression performance, but also increase the implementation complex-
ity. Hence a careful design of the core transforms is needed.

HEVC specifies two-dimensional core transforms that are finite precision
approximations to the inverse discrete cosine transform (IDCT) for all transform
sizes. Note that because of the approximations, the HEVC core transforms are not
the IDCT. The fact that an IDCT is not used does not necessarily make the HEVC
core transforms imperfect. In fact, the finite precision approximations are desirable
as explained in the next two paragraphs. The main purpose of the transform is
to de-correlate the input residual block. The optimal de-correlating transform is
the Karhunen–Loeve transform (KLT) [22] and not necessarily the DCT. This
is especially true for the coding of 4 � 4 luma intra-prediction residual blocks
where HEVC specifies an alternate 4 � 4 integer transform based on the discrete
sine transform (DST) [24]. Note that only the inverse transforms are specified in
the HEVC standard and the forward transforms are not. So an encoder may get
additional coding efficiency benefits by using the actual inverse rather than the
transpose of the inverse transform.

1Portions of this section are © 2013 IEEE. Reprinted, with permission, from M. Budagavi,
A. Fuldseth, G. Bjøntegaard, V. Sze, M. Sadafale, “Core Transform Design in the High Efficiency
Video Coding (HEVC) Standard,” IEEE Journal of Selected Topics in Signal Processing,
December 2013.

144 M. Budagavi et al.

In the H.261, MPEG-1, H.262/MPEG-2, and H.263 video coding standards, an
8-point IDCT was specified with infinite precision. To ensure interoperability and to
minimize drift between encoder and decoder implementations using finite precision,
two features were included in the standards. First, block-level periodic intra refresh
was mandatory. Second, a conformance test for the accuracy of the IDCT using a
pseudo-random test pattern was specified.

In the H.264/MPEG-4 Advanced Video Coding (AVC) standard [15], the
problem of encoder–decoder drift was solved by specifying integer valued 4 � 4
and 8 � 8 transform matrices. The transforms were designed as approximations to
the IDCT with emphasis on minimizing the number of arithmetic operations. These
transforms had large variations of the norm of the basis vectors. As a consequence
of this, non-flat default de-quantization matrices were specified to compensate for
the different norms of the basis vectors [20].

During the development of HEVC, several different approximations of the IDCT
were studied for the core transform. The first version of the HEVC Test Model
HM1 used the H.264/AVC transforms for 4 � 4 and 8 � 8 blocks and integer
approximation of Chen’s fast IDCT [7] for 16 � 16 and 32 � 32 blocks. The HM1
inverse transforms had the following characteristics [23, 28]:

• Non-flat de-quantization matrices for all transform sizes: While acceptable for
small transform sizes, the implementation cost of using de-quantization matrices
for larger transforms is high because of larger block sizes,

• Different architectures for different transform sizes: This leads to increased area
since hardware sharing across different transform sizes is difficult,

• A 20-bit transpose buffer used for storing intermediate results after the first
transform stage in 2D transform: An increased transpose buffer size leads to
larger memory and memory bandwidth. In hardware, the transpose buffer area
can be significant and comparable to transform logic area [30],

• Full factorization architecture requiring cascaded multipliers and intermediate
rounding for 16- and 32-point transforms: This increases data path dependencies
and impacts parallel processing performance. It also leads to increased bit width
for multipliers and accumulators (32 bits and 64 bits respectively in software).
In hardware, in addition to area increase, it also leads to increased circuit delay
thereby limiting the maximum frequency at which the inverse transform block
can operate.

To address the complexity concerns of the HM1 transforms, a matrix multipli-
cation based core transform was proposed in [10] and eventually adopted as the
HEVC core transform. The design goal was to develop a transform that was efficient
to implement in both software on SIMD machines and in hardware. Alternative
proposals to the HEVC core transform design can be found in [1, 9, 17].

The HEVC core transform matrices were designed to have the following
properties [10]:

• Closeness to the IDCT
• Almost orthogonal basis vectors

6 HEVC Transform and Quantization 145

• Almost equal norm of all basis vectors
• Same symmetry properties as the IDCT basis vectors
• Smaller transform matrices are embedded in larger transform matrices
• Eight-bit representation of transform matrix elements
• Sixteen-bit transpose buffer
• Multipliers can be represented using 16 bits or less with no cascaded multiplica-

tions or intermediate rounding
• Accumulators can be implemented using less than 32 bits

6.2.1 Discrete Cosine Transform

The N transform coefficients vi of an N-point 1D DCT applied to the input samples
ui can be expressed as

vi D
N �1X
j D0

uj cij (6.1)

where i D 0, : : : , N �1. Elements cij of the DCT transform matrix C are defined as

cij D Pp
N

cos

�
�

N

�
j C 1

2

�
i

	
(6.2)

where i, j D 0, : : : , N �1 and where P is equal to 1 and
p

2 for i D 0 and
i > 0, respectively. Furthermore, the basis vectors ci of the DCT are defined as
ci D [ci0, : : : , ci(N �1)]T where i D 0, : : : , N �1.

The DCT has several properties that are considered useful both for compression
efficiency and for efficient implementation [22].

1. The basis vectors are orthogonal, i.e. cT
i cj D 0 for i ¤ j. This property is desir-

able for compression efficiency by achieving transform coefficients that are
uncorrelated.

2. The basis vectors of the DCT have been shown to provide good energy
compaction which is also desirable for compression efficiency.

3. The basis vectors of the DCT have equal norm, i.e. cT
i ci D 1 for i D 0, : : : , N �1.

This property is desirable for simplifying the quantization/de-quantization pro-
cess. Assuming that equal frequency-weighting of the quantization error is
desired, equal norm of the basis vectors eliminates the need for quantization/de-
quantization matrices.

4. Let N D 2M. The elements of a DCT matrix of size 2M � 2M is a subset of the
elements of a DCT matrix of size 2M C 1 � 2M C 1. More specifically, the basis
vectors of the smaller matrix is equal to the first half of the even basis vectors of

146 M. Budagavi et al.

the larger matrix. This property is useful to reduce implementation costs as the
same multipliers can be reused for various transform sizes.

5. The DCT matrix can be specified by using a small number of unique elements.
By examining the elements cij of (6.2) it can be shown that the number of
unique elements in a DCT matrix of size 2M � 2M is equal to 2M �1. As
further elaborated in Sect. 6.2.4, this is particularly advantageous in hardware
implementations.

6. The even basis vectors of the DCT are symmetric, while the odd basis vectors
are anti-symmetric. This property is useful to reduce the number of arithmetic
operations.

7. The coefficients of a DCT matrix have certain trigonometric relationships that
allows for a reduction of the number of arithmetic operations beyond what is
possible by exploiting the (anti-)symmetry properties. These properties can be
utilized to implement fast algorithms such as the Chen’s fast factorization [7].

6.2.2 Finite Precision DCT Approximations

The core transform matrices of HEVC are finite precision approximations of the
DCT matrix. The benefit of using finite precision in a video coding standard is that
the approximation to the real-valued DCT matrix is specified in the standard rather
than being implementation dependent. This avoids encoder–decoder mismatch and
drift caused by manufacturers implementing the IDCT with slightly different float-
ing point representations. On the other hand, a disadvantage of using approximate
matrix elements is that some of the properties of the DCT discussed in Sect. 6.2.1
may not be satisfied anymore. More specifically, there is a trade-off between the
computational cost associated with using high bit-depth for the matrix elements and
the degree to which some of the conditions of Sect. 6.2.1 are satisfied.

A straightforward way of determining integer approximations to the DCT matrix
elements is to scale each matrix element with some large number (typically between
25 and 216) and then round to the closest integer. However, this approach does not
necessarily result in the best compression performance. As shown in Sect. 6.2.3, for
a given bit-depth of the matrix elements, a different strategy for approximating the
DCT matrix elements results in a different trade-off between some of the properties
of Sect. 6.2.1.

6.2.3 HEVC Core Transform Design Principles

The DCT approximations used for the core transforms of HEVC were chosen
according to the following principles. First, properties 4–6 of Sect. 6.2.1 were
satisfied without any compromise. This choice ensures that several implementation
friendly aspects of the DCT are preserved. Second, for properties 1–3 and 7 of
Sect. 6.2.1, there were trade-offs between the number of bits used to represent each
matrix element and the degree by which each of the properties were satisfied.

6 HEVC Transform and Quantization 147

Table 6.1 Comparison of transform design methods

HEVC core transforms Scaling and rounding

Orthogonality oij < 0.0029 oij < 0.0037
Closeness to DCT mij < 0.0213 mij < 0.0077
Norm measure ni < 0.0014 ni < 0.0109

To measure the degree of approximation for properties 1–3 of Sect. 6.2.1, the
following measures are defined for an integer N-point DCT approximation with
scaled matrix elements equal to dij and basis vectors equal to di D [di0, : : : , di(N �1)]T

where i D 0, : : : , N �1.

1. Orthogonality measure: oij D dT
i dj/dT

0 d0, i ¤ j
2. Closeness to DCT measure: mij D j˛cij �dijj/d00

3. Norm measure: ni D j1 �dT
i di/dT

0 d0j
where i, j D 0, : : : , N �1, cij are the DCT matrix elements of (6.2), and the scale
factor ˛ is defined as d00N1/2.

As a result of careful investigation, it was decided to represent each matrix
coefficient with 8 bit (including sign bit), and to choose the elements of the first
basis vector to be equal to 64 (i.e. d0j D 64, j D 0, : : : , N �1). Note that this results
in a scale factor of 26 C M/2 for the HEVC transform matrix when compared to the
orthonormal DCT. The remaining matrix elements were hand-tuned (within the
constraints of properties 4–6 of Sect. 6.2.1) to achieve a good balance between
properties 1–3 of Sect. 6.2.1. The hand-tuning was performed as follows. First,
the real-valued scaled DCT matrix elements, ˛cij, were derived. Next, for each
unique number in the resulting matrices, each integer value in the interval [�1.5, 1.5]
around ˛cij was examined and the resulting values of oij, mij, and ni were calculated.
Since there are only 31 unique numbers in the transform matrices (see Sect. 6.2.4),
various permutations can be examined systematically (although not exhaustively).
The final integer matrix elements were chosen to give a good compromise between
all measures oij, mij, and ni. The resulting worst case values of oij, mij, and
ni are shown in the second column of Table 6.1. The norm was considered to be
sufficiently close to 1 (i.e. the norm measure ni is sufficiently close to 0) to justify
not using a non-flat default de-quantization matrix in HEVC (i.e. all transform
coefficients scaled equally).

For comparison purposes, the resulting measures when multiplying the real-
valued DCT matrix elements with 26 C M/2 and rounding to the closest integer are
listed in the third column of Table 6.1. As can be seen from the table, although the
matrix elements of the HEVC transforms are farther from the scaled DCT matrix
elements, they have better orthogonality and norm properties.

Finally, by using only 8 bit representation, property 7 of Sect. 6.2.1 (trigonomet-
ric relationship between matrix elements) was not easily preserved. The authors are
not aware of any trigonometric property of the HEVC core transforms that can be
utilized to reduce the number of arithmetic operations below those required when
using the (anti-) symmetry properties.

148 M. Budagavi et al.

6.2.4 Basis Vectors of the HEVC Core Transforms

The left half of the 32 � 32 matrix specifying the 32-point forward transform is
shown in Fig. 6.2. The right half can be derived by using the (anti-) symmetry
properties of the basis vectors (property 6 of Sect. 6.2.1). The inverse transform
matrix of HEVC is defined as the transpose of the matrix resulting from the figure.
The 32 � 32 matrix contains up to 31 unique numbers as follows.

d 32
i;0; i D 1; : : : ; 31 D

n
90; 90; 90; 89; 88; 87; 85; 83; 82; 80; 78; 75; 73; 70; 67; 64;

61; 57; 54; 50; 46; 43; 38; 36; 31; 25; 22; 18; 13; 9; 4
o

(6.3)

These unique numbers are elements 1–31 of the first column of the forward
transform matrix. Note that although the number 90 occurs three times, this is by
accident and not generally true. The unique numbers property was used in [26] to
enable 25 % area reduction for hardware designs with practical throughput.

Furthermore, the coefficients dN
ij of the smaller transform matrices (N D 4, 8, 16)

can be derived from the coefficients d32
ij of the 32 � 32 transform matrix as:

d N
ij D d 32

i.32=N /;j ; i; j D 0; : : : ; N � 1 (6.4)

Let D4 denote the 4 � 4 transform matrix. By using (6.4) and Fig. 6.2, D4 can be
obtained as:

D4 D

2
6664

d 32
0;0 d 32

0;1

d 32
8;0 d 32

8;1

d 32
0;2 d 32

0;3

d 32
8;2 d 32

8;3

d 32
16;0 d 32

16;1

d 32
24;0 d 32

24;1

d 32
16;2 d 32

16;3

d 32
24;2 d 32

24;3

3
7775 D

2
664

64 64

83 36

64 64

�36 �83

64 �64

36 �83

�64 64

83 �36

3
775

The 8 � 8 transform matrix D8 and the 16 � 16 transform matrix D16 can be
similarly obtained from the 32 � 32 transform matrix as shown in Fig. 6.2 where
different colors are used to highlight the embedded 16 � 16, 8 � 8 and 4 � 4
forward transform matrices. This property allows for different transform sizes to be
implemented using the same architecture thereby facilitating hardware sharing [6].

Note that from the unique numbers property of (6.3) and the (anti-)symmetry
properties, D4 is also equal to:

D4 D

2
6664

d 32
16;0 d 32

16;0

d 32
8;0 d 32

24;0

d 32
16;0 d 32

16;0

� d 32
24;0 �d 32

8;0

d 32
16;0 �d 32

16;0

d 32
24;0 �d 32

8;0

�d 32
16;0 d 32

16;0

d 32
8;0 �d 32

24;0

3
7775 (6.5)

6 HEVC Transform and Quantization 149

64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64

90 90 88 85 82 78 73 67 61 54 46 38 31 22 13 4

90 87 80 70 57 43 25 9 -9 -25 -43 -57 -70 -80 -87 -90

90 82 67 46 22 -4 -31 -54 -73 -85 -90 -88 -78 -61 -38 -13

89 75 50 18 -18 -50 -75 -89 -89 -75 -50 -18 18 50 75 89

88 67 31 -13 -54 -82 -90 -78 -46 -4 38 73 90 85 61 22

87 57 9 -43 -80 -90 -70 -25 25 70 90 80 43 -9 -57 -87

85 46 -13 -67 -90 -73 -22 38 82 88 54 -4 -61 -90 -78 -31

83 36 -36 -83 -83 -36 36 83 83 36 -36 -83 -83 -36 36 83

82 22 -54 -90 -61 13 78 85 31 -46 -90 -67 4 73 88 38

80 9 -70 -87 -25 57 90 43 -43 -90 -57 25 87 70 -9 -80

78 -4 -82 -73 13 85 67 -22 -88 -61 31 90 54 -38 -90 -46

75 -18 -89 -50 50 89 18 -75 -75 18 89 50 -50 -89 -18 75

73 -31 -90 -22 78 67 -38 -90 -13 82 61 -46 -88 -4 85 54

70 -43 -87 9 90 25 -80 -57 57 80 -25 -90 -9 87 43 -70

67 -54 -78 38 85 -22 -90 4 90 13 -88 -31 82 46 -73 -61

64 -64 -64 64 64 -64 -64 64 64 -64 -64 64 64 -64 -64 64

61 -73 -46 82 31 -88 -13 90 -4 -90 22 85 -38 -78 54 67

57 -80 -25 90 -9 -87 43 70 -70 -43 87 9 -90 25 80 -57

54 -85 -4 88 -46 -61 82 13 -90 38 67 -78 -22 90 -31 -73

50 -89 18 75 -75 -18 89 -50 -50 89 -18 -75 75 18 -89 50

46 -90 38 54 -90 31 61 -88 22 67 -85 13 73 -82 4 78

43 -90 57 25 -87 70 9 -80 80 -9 -70 87 -25 -57 90 -43

38 -88 73 -4 -67 90 -46 -31 85 -78 13 61 -90 54 22 -82

36 -83 83 -36 -36 83 -83 36 36 -83 83 -36 -36 83 -83 36

31 -78 90 -61 4 54 -88 82 -38 -22 73 -90 67 -13 -46 85

25 -70 90 -80 43 9 -57 87 -87 57 -9 -43 80 -90 70 -25

22 -61 85 -90 73 -38 -4 46 -78 90 -82 54 -13 -31 67 -88

18 -50 75 -89 89 -75 50 -18 -18 50 -75 89 -89 75 -50 18

13 -38 61 -78 88 -90 85 -73 54 -31 4 22 -46 67 -82 90

9 -25 43 -57 70 -80 87 -90 90 -87 80 -70 57 -43 25 -9

4 -13 22 -31 38 -46 54 -61 67 -73 78 -82 85 -88 90 -90

Fig. 6.2 Left half of the 32 � 32 matrix specifying the 32-point forward transform. Embedded
4-point (green shading), 8-point (pink shading) and 16-point (yellow shading) forward transform
matrices are also shown in the figure. Reproduced with permission from [6]. © IEEE 2013

150 M. Budagavi et al.

Qstep

142

1D column
forward
transform

Quant

1D row
forward
transform

[]×D

[] TD×

1TS×

2TS×

QS×

coeff

level

U

[]×TD

[] D×

1ITS×

2ITS×

Qstep62

level

IQS×

C)(D)26(2 M+=

X (=coeffQ)

1D column
inverse
transform

1D row
inverse
transform

)26(2 M+×C

2D forward
transform De-quant

2D inverse
transform

C)(D)26(2 M+=

)26(2 M+×C

Qstep

142

1D column
forward
transform

1D row
forward
transform

[]×D

[] TD×

1TS×

2TS×

QS×

coeff

[]×TD

[] D×

1ITS×

2ITS×

Qstep6262

IQS×

C))26(2 M+=

1D column
inverse
transform

1D row
inverse
transform

)26(2 M+×)26(2 M+×

C))26(2 M+

)26(2 M+×)26(2 M+×

a b

Fig. 6.3 Additional scale factors ST1, ST2, SIT1, SIT2, SQ, SIQ required to implement HEVC integer
transform and quantization. (a) Forward transform and quantization, (b) inverse transform and
quantization. The 2D forward and inverse transform are implemented as separable 1D column
and row transforms. C is the orthonormal DCT matrix. D is the scaled approximation of the DCT
matrix. M D log2(N) where N is the transform size. Reproduced with permission from [6]. © IEEE
2013

6.2.5 Intermediate Scaling

Since the HEVC matrices are scaled by 2(6 C M/2) compared to an orthonormal
DCT transform, and in order to preserve the norm of the residual block through
the forward and inverse two-dimensional transforms, additional scale factors—
ST1, ST2, SIT1, SIT2 —need to be applied as shown in Fig. 6.3. Note that Fig. 6.3 is
basically a fixed point implementation of the transform and quantization in Fig. 6.1.
While the HEVC standard specifies the scale factors of the inverse transform (i.e.
SIT1, SIT2), the HEVC reference software also specifies corresponding scale factors
for the forward transform (i.e. ST1, ST2). The scale factors were chosen with the
following constraints:

1. All scale factors shall be a power of two to allow the scaling to be implemented
as a right shift.

2. Assuming full range of the input residual block (e.g. a DC block with all samples
having maximum amplitude), the bit depth after each transform stage shall be
equal to 16 bits (including the sign bit). This was considered a reasonable trade-
off between accuracy and implementation costs.

6 HEVC Transform and Quantization 151

3. Since the HEVC matrices are scaled by 2(6 C M/2), cascading of the two-
dimensional forward and inverse transform will results in a scaling of 2(6 C M/2)

for each of the 1D row forward transform, the 1D column forward transform, the
1D column inverse transform, and the 1D row inverse transform. Consequently to
preserve the norm through the two-dimensional forward and inverse transforms,
the product of all scale factors shall be equal to (1/2(6 C M/2))4 D 2�242�2M.

The process of selecting the forward transform scale factors is illustrated using
the 4 � 4 forward transform as an example in Fig. 6.4. When video has a bit depth
of B bits, the residual will be in the range of [�2B C 1, 2B �1] requiring (B C 1)
bits to represent it. In the following worst case bit-depth analysis we will assume a
residual block with all samples having maximum amplitude equal to �2B as input to
the first stage of the forward transform. We believe this is a reasonable assumption
since all basis vectors have almost the same norm. Note also that we are using �2B

instead of �2B C 1 or 2B �1 in the worst case analysis since it is a power of 2. The
scale factor derivation becomes simpler assuming input to be �2B (which still fits
within (B C 1) bits) since all the scale factors are a power of 2. For this worst case
input block, the maximum value of an output sample will be �2B � N � 64. This
corresponds to the dot product of the first basis vector (of length N with all values
equal to 64) with an input vector consisting of values equal to �2B. Therefore, with
N D 2M , for the output to fit within 16 bits (i.e., maximum value of �215) a scaling
of 1/(2B � 2M � 26 � 2�15) is required. Consequently, the scale factor after the first
transform stage is chosen as ST1 D 2�(B C M �9).

The second stage of the forward transform consists of multiplication of the result
of the first transform stage with DT

4 . The input into the second stage of the forward
transform is the output from the first stage which is a matrix with all elements in the
first row having a value of �215. All other elements will be zero as shown in Fig. 6.4.
The output of multiplication with DT

4 will be a matrix with only a DC value equal
to �215 � 2M � 26 and all remaining values equal to 0. This implies that the scaling
required after the second stage of transform is ST2 D 2�(M C 6) in order for the output
to fit within 16 bits.

The first stage of the inverse transform consists of multiplication of the result of
the forward transform with DT

4 . In our example, the input into the first stage of the
inverse transform is the output matrix from the forward transform which is a matrix
with only the DC element equal to �215. The output of multiplication with DT

4 will
be a matrix with first column elements equal to �215 � 26. Consequently, the scaling
required after the first stage of the inverse transform for the output to fit within 16
bits is SIT1 D 2�6.

The second stage of the inverse transform consists of multiplication of the result
of the first stage of the inverse transform with D4. The input into the second
stage of the inverse transform is the output matrix from the first stage of inverse
transform which is a matrix with first column elements equal to �215. The output of
multiplication with D4 will be a matrix with all elements equal to �215 � 26. So the
scaling required after the second stage of inverse transform to get the output values
into the original range of [�2B, 2B �1] is SIT2 D 2�(21 �B).

152 M. Budagavi et al.

−−−−
−−−−
−−−−
−−−−

256256256256

256256256256

256256256256

256256256256

[]×4D

−−−−

0000

0000

0000

65536655366553665536

1>>

−−−−

0000

0000

0000

32768327683276832768

−−−−

0000

0000

0000

32768327683276832768

[] T
4D×

−

0000

0000

0000

0008388608

8>>

−

0000

0000

0000

00032768

First stage of forward transform Second stage of forward transform

ST2 = 2−(M+6) = 2−8ST1 = 2−(B+M−9) = 2−1

a b

Fig. 6.4 Intermediate scaling factor determination for the forward transform so that the interme-
diate and output values fit within 16-bits. B is video bit depth and M D log2(N) where N is the
transform size. Worst case bit-depth analysis is done assuming a residual block with all samples
having maximum amplitude equal to �2B (where B D 8 is the video bit depth), as input to the first
stage of the forward transform. (a) First stage of the forward transform, (b) Second stage of the
forward transform. Reproduced with permission from [6]. © IEEE 2013

In summary the constraints imposed in this section result in the following scale
factors after different transform stages:

• After the first forward transform stage: ST1 D 2�(B C M �9)

• After the second forward transform stage: ST2 D 2�(M C 6)

• After the first inverse transform stage: SIT1 D 2�6

• After the second inverse transform stage: SIT2 D 2�(21 �B)

where B is the bit depth of the input/output signal (e.g. 8 bit) and M D log2(N).
Without quantization/de-quantization, this choice of scale factors ensures a bit

depth of 16 bit after all transform stages. However, quantization errors introduced by
the quantization/de-quantization process might increase the dynamic range before
each inverse transform stage to more than 16 bit. For example, consider the situation
where B D 8 and all input samples to the forward transform are equal to 255. In this
case, the output of the forward transform will be a DC coefficient with value equal to
255 << 7 D 32640. For high QP values and with a quantizer rounding upwards, the
input to each inverse transform stage can easily exceed the allowed 16 bit dynamic
range of [�32768, 32767]. While clipping to 16 bit range was considered trivial
after the de-quantizer, it was considered undesirable after the first inverse transform
stage. In order to allow for quantization error of some reasonable magnitude and at

6 HEVC Transform and Quantization 153

[]×T
4D

000−2097152

000−2097152

000−2097152

000−2097152

7>>

−
−
−
−

00016384

00016384

00016384

00016384

−
−
−
−

00016384

00016384

00016384

00016384

[] 4D×

−−−−
−−−−
−−−−
−−−−

1048576104857610485761048576

1048576104857610485761048576

1048576104857610485761048576

1048576104857610485761048576

12>>

−−−−
−−−−
−−−−
−−−−

256256256256

256256256256

256256256256

256256256256

−

0000

0000

0000

00032768

7
1 2−=ITS 12)20(

2 22 −−− == B
ITS

First stage of inverse transform Second stage of inverse transform
a b

Fig. 6.5 Use of the inverse transform scale factors assuming the input to be the final output of
Fig. 6.4. Video bit depth B D 8 (a) First stage of the inverse transform, (b) Second stage of the
inverse transform. Reproduced with permission from [6]. © IEEE 2013

the same time limit the dynamic range between the two inverse transform stages to
16 bits, the choice of scale factors for the inverse transform was finally modified as
follows2:

• After the first inverse transform stage: SIT1 D 2�7

• After the second inverse transform stage: SIT2 D 2�(20 �B)

The use of the inverse transform scale factors is illustrated in Fig. 6.5 using the
4 � 4 inverse transform as an example assuming the input to be the final output of
Fig. 6.4.

Tables 6.2 and 6.3 summarize the different scaling factors of the forward and
inverse transform, respectively, when compared to the orthonormal DCT.

The HEVC specification specifies an offset value to be added before scaling to
carry out rounding. This offset value is equal to the scale factor divided by 2. The
offset is not explicitly shown in Figs. 6.3, 6.4, and 6.5.

2Note that in the final HEVC specification [16], a clipping operation is introduced after the first
inverse transform stage, mainly to allow for random quantization that could be used to create “evil”
bitstreams used for stress testing video decoders. With the clipping introduced, the modification to
the inverse transform scale factors is not necessary but has been retained in the HEVC specification
and Test Model software for maturity reasons.

154 M. Budagavi et al.

Table 6.2 Scaling in
different stages for the 2D
forward transform

Scale factor

First forward transform stage 2(6 C M/2)

After the first forward transform stage (STI) 2�(B C M �9)

Second forward transform stage 2(6 C M/2)

After the second forward transform stage (ST2) 2�(M C 6)

Total scaling for the forward transform 2(15 �B �M)

Table 6.3 Scaling in
different stages for the 2D
inverse transform

Scale factor

First inverse transform stage 2(6 C M/2)

After the first inverse transform stage (SITI) 2�7

Second inverse transform stage 2(6 C M/2)

After the second inverse transform stage (SIT2) 2�(20 �B)

Total scaling for the inverse transform 2�(15 �B �M)

Finally, two useful consequences of using 8-bit coefficients and limiting the bit-
depth of the intermediate data to 16 bit is that all multiplications can be represented
with multipliers having 16 bits or less and that the accumulators before right shift
can be implemented with less than 32 bits for all transform stages.

Note also a relevant analysis in [18] that studies the dynamic range of the HEVC
inverse transform and provides additional information on the bit depth limits of the
intermediate data in the inverse transform.

6.2.6 HEVC Alternate 4 � 4 Transform

The alternate transform is applied to 4 � 4 Luma intra-prediction residual blocks.
The forward transform matrix is given by:

A4 D

2
664

29 55

74 74

74 84

0 �74

84 �29

55 �84

�74 55

74 �29

3
775

The inverse transform matrix is AT
4 . Elements aij of the alternate transform matrix

A4 are a fixed point representation of Type-7 discrete sine transform (DST) obtained
as follows:

aij D round

�
128 � 2p

2N C 1
sin

�
.2i C 1/ .j C 1/ �

2N C 1

��

The intermediate scaling and quantization/de-quantization used for the alternate
transform is the same as that for the core transform.

6 HEVC Transform and Quantization 155

The alternate transform provides around 1 % bit-rate reduction while coding
intra pictures [25]. In intra-picture prediction, a block is predicted from left and/or
top neighboring samples. The prediction quality is better near the left and/or top
boundary resulting in an intra-prediction residual that tends to have lower amplitude
near the boundary samples and higher amplitudes away from the boundary samples.
The DST basis functions are better than the DCT basis functions in modeling this
spatial characteristic of the intra prediction residual. This can be seen from the first
row (basis function) of the alternate transform matrix which increases from left to
right as opposed to the DCT transform matrix that has a flat first row. A theoretical
analysis of the optimality of DST for intra-prediction residual is provided in [25].

During the course of the development of HEVC, alternate transforms for
transform block sizes of 8 � 8 and higher were also studied. However, only the
4 � 4 alternate transform was adopted in HEVC since the additional coding gain
from using the larger alternate transforms was not significant (also, their complexity
is higher since there is no symmetry in the transform matrix and a full matrix
multiplication is needed to implement them for transform sizes 8 � 8 and larger).

6.3 Quantization and De-quantization

Quantization consists of division by a quantization step size (Qstep) and subsequent
rounding while inverse quantization consists of multiplication by the quantization
step size. Here, Qstep refers to the equivalent step size for an orthonormal transform,
i.e. without the scaling factors of Tables 6.2 and 6.3. Similar to H.264/AVC [27],
a quantization parameter (QP) is used to determine the quantization step size in
HEVC. QP can take 52 values from 0 to 51 for 8-bit video sequences. An increase
of 1 in QP means an increase of the quantization step size by approximately 12 %
(i.e., 21/6). An increase of 6 leads to an increase in the quantization step size by a
factor of 2. In addition to specifying the relative difference between the step-sizes
of two consecutive QP values, there is also a need to define the absolute step-size
associated with the range of QP values. This was done by selecting Qstep D 1 for
QP D 4.

The resulting relationship between QP and the equivalent quantization step size
for an orthonormal transform is now given by:

Qstep.QP / D �
21=6

�QP �4
(6.6)

Figure 6.6 shows how the quantization step size increases non-linearly with QP.
Equation (6.6) can be also be expressed as:

Qstep.QP / D GQP %6 <<
QP

6
(6.7)

156 M. Budagavi et al.

where

G D ŒG0; G1; G2; G3; G4; G5�T D

2�4=6; 2�3=6; 2�2=6; 2�1=6; 20; 21=6

�T

The fixed point approximation of (6.7) in HEVC is given by

gQP %6 D round
�
26 � GQP %6

�

This results in

g D Œg0; g1; g2; g3; g4; g5�T D Œ40; 45; 51; 57; 64; 72�T

HEVC supports frequency-dependent quantization by using quantization matri-
ces for all transform block sizes. Let W[x][y] denote the quantization matrix weight
for the transform coefficients at location (x, y) in a transform block. A value of
W[x][y] D 1 indicates that there is no weighting. The fixed point representation of
W[x][y] is given by:

w Œx� Œy� D round .16 � W Œx� Œy�/

where w[x][y] is represented using 8-bit values.
For a quantizer output, level[x][y], the de-quantizer is specified in the HEVC

standard as

coeff Q Œx� Œy� D
��

level Œx� Œy� � w Œx� Œy� �
�
gQP %6 <<

QP

6

C offsetIQ

>> shift1

(6.8)

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

QP

Q
st

ep

Fig. 6.6 Relationship
between quantization step
size (Qstep) and quantization
parameter (QP)

6 HEVC Transform and Quantization 157

where shift1 D (M �5 C B) and offsetIQ D 1 << (M �6 C B). Note that the quan-
tization matrix weights w[x][y] modulate the quantization step size used for
level at different positions in the transform block leading to a frequency-dependent
quantization.

The scale factor SIQ of Fig. 6.3 is equal to 2�shift1 and is obtained as follows:
When QP D 4 (i.e., Qstep D 1) and there is no frequency dependent scaling (i.e.,
w[x][y] D 16), the combined scaling of the inverse transform and de-quantization in
Fig. 6.3 when multiplied together should result in a product of 1 to maintain the
norm of the residual block through inverse transform and inverse quantization, i.e.,

SIQ � g4 � 16 � 2�.15�B�M/ D 1 (6.9)

This results in SIQ D 2�(M �5 C B) leading to shift1 being equal to right shift by
(M �5 C B). The scale factor 2�(15 �B �M) in (6.9) is obtained from Table 6.3.

For the output sample of the forward transform, coeff [x][y], a straightforward
quantization scheme can be implemented as follows:

level Œx� Œy� D sign .coeff Œx� Œy�/

�
���

abs .coeff Œx� Œy�/ � fQP %6 � 16
wŒx�Œy�

C offsetQ

>>
QP

6

>> shift2

(6.10)

where shift2 D 29 �M �B, and

f D Œf0; f1; f2; f3; f4; f5�
T D Œ26214; 23302; 20560; 18396; 16384; 14564�T

Note that fQP % 6 	 214/GQP % 6. The value of shift2 is obtained by imposing
similar constraints on the combined scaling in the forward transform and the
quantizater as in (6.9), i.e., SQ � f4 � 215 �B �M D 1, where SQ D 2�shift2.

Finally, offsetQ is chosen to achieve the desired rounding.
To summarize, the quantizer multipliers, fi, and dequantizer multipliers, gi, were

chosen to satisfy the following conditions

• Ensure that gi can be represented with signed 8 bit data type (i.e.,
gi < 27, i D 0, : : : , 5)

• Ensure an almost equal increase in step size from one QP value to the next
(approximately 12 %) (i.e., gi C 1/gi 	 21/6, i D 0, : : : , 4 and 2g0/g5 	 21/6)

• Ensure approximately unity gain through the quantization and de-quantization
processes (i.e., fi � gi � 16 	 1 << (shift1 C shift2) D 26 � 214 � 16, i D 0, : : : , 5)

• Provide the desired absolute value of the quantization step size for QP D 4 (i.e.
Qstep(4) D 1, or equivalently, level D coeff � 2�(15 �B �M) for QP D 4).

Note that the quantization equation in (6.10) is not specified in the HEVC
standard and the encoder has flexibility to implement more sophisticated quanti-
zation schemes such as the rate-distortion optimized quantization (RDOQ) scheme
implemented in the HEVC Test Model [13]. The idea behind RDOQ is briefly
described in Chap. 9.

158 M. Budagavi et al.

1 16

1 16

1 16

1 16

(Flat matrix)

Default 4x4 for
IntraLuma, IntraCb,
IntraCr, InterLuma,

InterCb, InterCr

16 16 6

16 16 6

16 16 6

16 16 6

3 29 25 24

3 25 22 21

2 22 19 18

2 20 17 17

2 18 16 16

1 17 16 16

1 16 16 16

1 16 16 16

Def
IntraL

3

3

2

1

1

1

f
L

1 88 65 47 36

 70 54 41 31

6 54 44 35 7

4 41 35 30 4

3 31 27 24 21

2 25 22 20 18

2 22 19 17 16

2 21 18 17 16

ault 8x8 for
Luma, IntraCb,

IntraCr

6

L

15

88

5

7

6

9

5

4

25 24

24 20

20 18

18 17

17 16

16 16

16 16

16 16

 54 41 33 28

 41 33 28 25

 33 28 25 24

 28 25 24 20

 25 24 20 18

 24 20 18 17

 20 18 17 16

 18 17 16 16

Default 8x8 for
InterLuma, InterCb,

InterCr

91 71

71 54

54 41

41 33

33 28

28 25

25 24

24 20

Fig. 6.7 Default quantization matrices for transform blocks of size 4 � 4 and 8 � 8

6.3.1 Quantization Matrix

In HEVC, the encoder can signal whether or not to use quantization matrices
enabling frequency dependent scaling. Frequency dependent scaling is useful to
carry out human visual system (HVS)-based quantization where low frequency
coefficients are quantized with a finer quantization step size when compared to
high frequency coefficients in the transform block [12]. HVS-based quantization
can provide better visual quality than frequency independent quantization on some
video sequences. HEVC uses the following 20 quantization matrices that depend on
the size and type of the transform block:

• Luma: Intra 4 � 4, Inter 4 � 4, Intra 8 � 8, Inter 8 � 8, Intra 16 � 16, Inter 16 � 16,
Intra 32 � 32, Inter 32 � 32

• Cb: Intra 4 � 4, Inter 4 � 4, Intra 8 � 8, Inter 8 � 8, Intra 16 � 16, Inter 16 � 16
• Cr: Intra 4 � 4, Inter 4 � 4, Intra 8 � 8, Inter 8 � 8, Intra 16 � 16, Inter 16 � 16

When frequency dependent scaling is enabled by using the syntax element
scaling_list_enabled_flag, the quantization matrices of sizes 4 � 4 and
8 � 8 have default values as shown in Fig. 6.7. The default quantization matrices
for transform blocks of size 16 � 16 and 32 � 32 are obtained from the default 8 � 8
quantization matrices of the same type by upsampling using replication as shown
in Fig. 6.8. The red colored blocks in the figure indicate that a quantization matrix
entry in the 8 � 8 quantization matrix is replicated into a 2 � 2 region in the 16 � 16
quantization matrix and into a 4 � 4 region in the 32 � 32 quantization matrix. 8 � 8
matrices are used to represent 16 � 16 and 32 � 32 quantization matrices in order to
reduce the memory needed to store the quantization matrices.

Non-default quantization matrices can also be optionally transmitted in the
bitstream in sequence parameter sets (SPS) or picture parameter sets (PPS).
Quantization matrix entries are scanned using an up-right diagonal scan and
DPCM coded and transmitted. For 16 � 16 and 32 � 32 quantization matrices,
only size 8 � 8 matrices (which then get upsampled to the correct size in the

6 HEVC Transform and Quantization 159

8x8

16x16

32x32

Fig. 6.8 Construction of
default quantization matrices
for transform block sizes
16 � 16 and 32 � 32 by using
the default quantization
matrix of size 8 � 8

Table 6.4 Quantization group size for different coding tree unit sizes

diff_cu_qp_delta_depth

Quantization
group size for
64 � 64 CTU

Quantization
group size for
32 � 32 CTU

Quantization
group size for
16 � 16 CTU

0 64 � 64 32 � 32 16 � 16
1 32 � 32 16 � 16 8 � 8
2 16 � 16 8 � 8 –
3 8 � 8 – –

decoder as shown in Fig. 6.8) and the quantization matrix entry at the DC
(zero-frequency) position are transmitted. HEVC also allows for prediction of a
quantization matrix from another quantization matrix of the same size. The use
of quantization matrix (termed as scaling matrix in HEVC) is enabled by setting
the flag scaling_list_enabled_flag in SPS. When this flag is enabled,
additional flags in SPS and PPS control whether the default quantization matrices
or non-default quantization matrices are used.

6.3.2 QP Parameter Derivation

The quantization step size (and therefore the QP value) may need to be changed
within a picture for e.g. rate control and perceptual quantization purposes. HEVC
allows for transmission of a delta QP value at a quantization group (QG) level to
allow for QP changes within a picture. This is similar to H.264/AVC that allows
for modification of QP values at a macroblock level. The QG size is a multiple of
coding unit size that can vary from 8 � 8 to 64 � 64 depending on the coding tree
unit (CTU) size and the syntax element diff_cu_qp_delta_depth as shown
in Table 6.4.

160 M. Budagavi et al.

START

QPLEFT is available?

QPPRED = (QPABOVE + QPLEFT + 1) >> 1

END

QPLEFT = QPPREV

QPABOVE = QPPREV

QPABOVE is available?

YES

YES

NO

NO

Fig. 6.9 QP predictor
calculation using QP values
from the left, above and
previous QGs [21]

The delta QP is transmitted only in coding units with non-zero transform
coefficients. If the CTU is split into coding units that are greater than the QG size,
then delta QP is signaled at a coding unit (with non-zero transform coefficients) that
is greater than the QG size. If the CTU is split into coding units that are smaller
than the QG size, then the delta QP is signaled in the first coding unit with non-zero
transform coefficients in the QG. If a QG has coding units with all zero transform
coefficients (e.g. if the merge mode is used in all the coding units of the QG), then
delta QP will not be signaled.

The QP predictor used for calculating the delta QP uses a combination of QP
values from the left, above and the previous QG in decoding order as shown in
Fig. 6.9 [21]. The QP predictor uses a combination of two predictive techniques:
spatial QP prediction (from left and above QGs) and previous QP prediction. It uses
spatial prediction from left and above within a CTU and uses the previous QP as
predictor at the CTU boundary. This is shown in Fig. 6.9. The spatially adjacent
QP values, QPLEFT and QPABOVE are considered to be not available when they are
in a different CTU or if the current QG is at a slice/tile/picture boundary. When
a spatially adjacent QP value is not available, it is replaced with the previous QP
value, QPPREV, in decoding order. The previous QP, QPPREV, is initialized to the
slice QP value at the beginning of the slice, tile or wavefront.

6 HEVC Transform and Quantization 161

Intra/Inter
prediction

Entropy
decode

Bitstream

Inverse
transform

De-quant

Reconstructed
block

Transform
skip mode

Lossless mode

I_PCM mode

Fig. 6.10 I_PCM, lossless
and transform skip modes in
decoder

The QP derivation process described in this subsection is used for calculating the
luma QP value. The chroma QP values (one for the Cr component and one for the
Cb component) are derived from the luma QP by using picture level and slice level
offsets and a table lookup.

6.4 HEVC Special Coding Modes

HEVC has three special modes that modify the transform and quantization process:
(a) I_PCM mode [8], (b) lossless mode [31], and (c) transform skip mode [19].
These modes skip either the transform or both the transform and quantization.
Figure 6.10 shows these modes on top of the generic video decoder data flow of
Fig. 6.1.

• In the I_PCM mode, both transform and transform-domain quantization are
skipped. In addition, entropy coding and prediction are skipped too and the video
samples are directly coded with the specified PCM bit depth. The I_PCM mode
is designed for use when there is data expansion during coding e.g. when random
noise is input to the video codec. By directly coding the video samples, the data
expansion can be avoided for such extreme video sequences. The IPCM mode is
signaled at the coding unit level using the syntax element pcm_flag.

• In the lossless mode, both transform and quantization are skipped. (The in-loop
filter which is not shown in Fig. 6.1 is skipped too.) Mathematically lossless
reconstruction is possible since the residual from inter- or intra-picture prediction
is directly coded. The lossless mode is signaled at a coding unit level (using
the syntax element cu_transquant_bypass_flag) in order to enable

162 M. Budagavi et al.

mixed lossy/lossless coding of pictures. Such a feature is useful in coding video
sequences with mixed content, e.g. natural video with overlaid text and graphics.
The text and graphics regions can be coded losslessly to maximize readability
whereas the natural content can be coded in a lossy fashion.

• In the transform skip mode, only the transform is skipped. This mode was
found to improve compression of screen-content video sequences generated in
applications such as remote desktop, slideshows etc. These video sequences
predominantly contain text and graphics. Transform skip is restricted to only
4 � 4 transform blocks and its use is signaled at the transform unit level by the
transform_skip_flag syntax element.

6.5 Complexity Analysis

With straightforward matrix multiplication, the number of operations for the 1D
inverse transform is N2 multiplications and N(N �1) additions. For the 2D trans-
form, the number of multiplications required is 2N3 and the number of additions
required is 2N2(N �1). However, by utilizing the (anti-) symmetry properties of
each basis vector inherited from DCT, the number of arithmetic operations can be
significantly reduced. We refer to the algorithm that does this as the Even–Odd
decomposition in this paper (it was also referred to as partial butterfly during HEVC
development) [14]. Even–Odd decomposition is illustrated below using the 4- and
8-point inverse transform.

Consider the 4-point forward transform matrix defined in (6.5). For notational
simplicity the constants d32

i,0 of Eq. (6.5) will be denoted by di. Using the new
notation (6.5) becomes

D4 D

2
664

d16 d16

d8 d24

d16 d16

� d24 �d8

d16 �d16

d24 �d8

�d16 d16

d8 �d24

3
775 (6.11)

The inverse transform matrix is given by DT
4 . Let x D [x0, x1, x2, x3]T be the input

vector and y D [y0, y1, y2, y3]T denote the output. The 1D 4-point inverse transform
is given by the following equation:

y D DT
4 x (6.12)

The Even–Odd decomposition of the inverse transform of an N-point input
consists of the following three steps:

1. Calculate the even part using a N/2 � N/2 subset matrix obtained from the even
columns of the inverse transform matrix (6.13 shows an example).

6 HEVC Transform and Quantization 163

2. Calculate the odd part using a N/2 � N/2 subset matrix obtained from the odd
columns of the inverse transform matrix (6.15 shows an example).

3. Add/subtract the odd and even parts to generate N-point output (6.16 shows an
example).

Even–odd decomposition of the inverse 4-point transform is given by (6.14–
6.16):

Even part:

�
z0

z1

	
D

�
d16 d16

d16 �d16

	 �
x0

x2

	
(6.13)

The even part can be further simplified as:

t0 D d16x0

t1 D d16x2�
z0

z1

	
D

�
t0 C t1
t0 � t1

	 (6.14)

Odd part:

�
z2

z3

	
D

� �d24 d8

� d8 �d24

	 �
x1

x3

	
(6.15)

Add/sub:

2
664

y0

y1

y2

y3

3
775 D

2
664

z0 � z3

z1 � z2

z1 C z2

z0 C z3

3
775 (6.16)

The direct 1D 4-point transform using (6.12) would require 16 multiplications
and 12 additions. The 2D transform will require 128 multiplications and 96
additions. Even–Odd decomposition on the other hand requires a total of six
multiplications and eight additions for 1D transform using (6.14–6.16). The 2D
transform using Even–Odd decomposition will require a total of 48 multiplications
and 64 additions which is 62.5 % savings in number of multiplications and 33.3 %
savings in number of additions when compared to direct matrix multiplication.

The 8-point 1D inverse transform is defined by the following equation:

y D DT
8 x (6.17)

where x D [x0, x1, : : : , x7]T is input and y D [y0, y1, : : : , y7]T is output, and D8 is
given by:

164 M. Budagavi et al.

D8 D

2
666666666664

d16 d16 d16 d16 d16 d16 d16 d16

d4 d12 d20 d28 �d28 �d20 �d12 �d4

d8 d24 �d24 �d8 �d8 �d24 d24 d8

d12 �d28 �d4 �d20 d20 d4 d28 �d12

d16 �d16 �d16 d16 d16 �d16 �d16 d16

d20 �d4 d28 d12 �d12 �d28 d4 �d20

d24 �d8 d8 �d24 �d24 d8 �d8 d24

d28 �d20 d12 �d4 d4 �d12 d20 �d28

3
777777777775

(6.18)

Even–Odd decomposition for the 8-point inverse transform is given by
(6.19–6.21).

Even part:

2
664

z0

z1

z2

z3

3
775 D

2
664

d16 d8

d16 d24

d16 d24

� d16 �d8

d16 �d24

d16 �d8

�d16 d8

d16 �d24

3
775

2
664

x0

x2

x4

x6

3
775 (6.19)

Odd part:

2
664

z4

z5

z6

z7

3
775 D

2
664

�d28 d20

� d20 d4

�d12 d4

� d28 �d12

�d12 d28

� d4 �d12

d4 d20

� d20 �d28

3
775

2
664

x1

x3

x5

x7

3
775 (6.20)

Add/sub:

y D Œz0 � z7; z1 � z6; z2 � z5; z3 � z4; z3 C z4; z2 C z5; z1 C z6; z0 C z7�
T (6.21)

Note that the even part of the 8-point inverse transform is actually a 4-point
inverse transform (by comparing 6.19 with transpose of D4 in 6.11) i.e.,

2
664

z0

z1

z2

z3

3
775 D DT

4

2
664

x0

x2

x4

x6

3
775 (6.22)

So the Even–Odd decomposition of the 4-point inverse transform (6.14–6.16) can
be used to further reduce computational complexity of the even part of the 8-point
transform in (6.19).

The direct 1D 8-point transform using (6.17) would require 64 multiplications
and 56 additions. The 2D transform will require 1,024 multiplications and 896
additions. An even–odd decomposition on the other hand requires 6 multiplications
for (6.22) and 16 multiplications for (6.20) resulting in a total of 22 multiplications.
It requires 8 additions for (6.22), 12 additions for (6.20) and 8 additions for

6 HEVC Transform and Quantization 165

(6.21) resulting in a total of 28 additions. The 2D transform using Even–Odd
decomposition will require a total of 352 multiplications and 448 additions.

The computational complexity calculation for the 4-point and 8-point inverse
transform can be extended to inverse transforms of larger sizes. In general, the
resulting number of multiplications and additions (excluding the rounding opera-
tions associated with the shift operations) for the two-dimensional N-point inverse
transform can be shown to be

Omult D 2N

0
@1 C

log2 NX
kD1

22k�2

1
A

Oadd D 2N

0
@log2 NX

kD1

2k�1
�
2k�1 C 1

�
1
A

The number of arithmetic operations for the inverse transform can be further
reduced if knowledge about zero-valued input transform coefficients is assumed. In
an HEVC decoder, this information can be obtained from the entropy decoding or
de-quantization process. For typical video content many blocks of size N � N will
have non-zero coefficients only in a K � K low frequency sub-block. For example in
[5] it was found that on average around 75 % of the transform blocks had non-zero
coefficients only in K � K low frequency sub-blocks. Computations can be saved in
two ways for such transform blocks. Figure 6.11 shows the first way. Columns that
are completely zero need not be inverse transformed. So only K 1D IDCTs along
columns needs to be carried out. However, all N rows will need to be transformed
subsequently. The second way to reduce computations is by exploiting the fact that
each of the column and row IDCT is on a vector that has non-zero values only in the
first K locations. For example with K D N/2, x4 D x5 D x6 D x7 D 0, roughly half the
computations for the inverse transformation can be eliminated by simplifying Eqs.
(6.19–6.20) to

Even part:

2
664

z0

z1

z2

z3

3
775 D

2
664

d16 d8

d16 d24

d16 �d24

d16 �d8

3
775

�
x0

x2

	

Odd part:

2
664

z4

z5

z6

z7

3
775 D

2
664

�d28 d20

� d20 d4

�d12 d28

� d4 �d12

3
775

�
x1

x3

	

166 M. Budagavi et al.

NxN

K 1D IDCT
along columns

N 1D IDCT
along rows

KxK

Fig. 6.11 Efficient
implementation of inverse
transform of a block with
non-zero coefficients in only
the K � K low frequency
sub-block. Shaded regions
denote the regions that can
contain non-zero coefficients.
Only K 1D IDCTs are
required along columns

Table 6.5 Arithmetic
operation counts for HEVC
two-dimensional inverse
transforms

N K Omult Oadd

4 4 48 64
8 8 352 448
8 4 132 228

16 16 2,752 3,200
16 8 1,032 1,512
16 4 420 820
32 32 21,888 23,808
32 16 8,208 10,320
32 8 3,400 5,320
32 4 1,476 3,060

In general, the number of multiplications can be reduced approximately by a
factor of (N/K)2 for the first stage and a factor of (N/K) for the second stage.
Table 6.5 shows the number of arithmetic operations for various values of N and K.

Note that the majority of the arithmetic operations listed in Table 6.5 can be
efficiently implemented using SIMD instructions since the operations are matrix
multiply operations. For example, for an 8 � 8 inverse transform implementation,
(6.20) can be efficiently implemented on a 4-way SIMD processor in 4 cycles v/s
16 cycles on a processor without SIMD acceleration. Software performance using
SIMD acceleration on various Intel processor architectures for the 8 � 8, 16 � 16,
and 32 � 32 transform sizes are provided in [3, 11].

Only the Even–Odd decomposition of the inverse transform has been described in
this subsection. However, the Even–Odd decomposition idea can be used to reduce
the complexity of the forward transform too. The article [6] presents analysis of
both the forward and the inverse core transform in more details. It also describes
hardware sharing by the application of property 4 of Sect. 6.2.1 (smaller transforms
being embedded in larger transforms).

6 HEVC Transform and Quantization 167

6.6 Coding Performance

The different transform sizes used in a coding block in HEVC are signaled in a
quadtree structure [29]. The maximum transform size to use in a coding block
is signaled in the sequence parameter set. Table 6.6 compares the coding perfor-
mance of HEVC when all transform sizes (up to 32 � 32) are used to the coding
performance when only 4 � 4 and 8 � 8 transforms are used as in H.264/AVC.
The standard Bjøntegaard Delta-Rate (BD-Rate) metric [2] is used for comparison.
Table 6.6 shows that there is a bit rate savings in the range of 5.6–6.8 % on average
because of the introduction of larger transform sizes (16 � 16 and 32 � 32) in HEVC.
The bit rate savings are higher at larger resolution video such as 4K (2560 � 1600)
and 1080p (1920 � 1080). The HEVC Test Model, HM-9.0.1 [13] was used for the
simulations and the video sequences and coding conditions used were as described
in [4].

Table 6.7 compares the coding performance of the HEVC 4 � 4 and 8 � 8
transforms to that of the corresponding H.264/AVC transforms. The H.264/AVC
4 � 4 and 8 � 8 transforms were converted to 8-bit precision and implemented in the
HM-9.0.1 Test Model. Only the 4 � 4 and 8 � 8 transform sizes were enabled in the
simulations. It can be seen from Table 6.7 that the HEVC 4 � 4 and 8 � 8 transforms
perform better than the corresponding H.264/AVC transforms in terms of coding
performance.

Table 6.6 BD-rate savings of using larger transform sizes (16 � 16 and 32 � 32) on
top of the smaller transform sizes (4 � 4 and 8 � 8)

All Intra (%) Random access (%) Low delay B (%)

4K �9.1 �10.1 n/a
1080p �6.7 �8.0 �9.1
WVGA �2.5 �4.3 �6.0
WQVA �2.2 �2.8 �3.7
720p �7.7 n/a �8.4
Overall �5.6 �6.4 �6.8

Table 6.7 BD-Rate savings of the HEVC 4 � 4 and 8 � 8 transforms versus the
H.264/AVC 4 � 4 and 8 � 8 transforms

All Intra (%) Random access (%) Low delay B (%)

4K �1.2 �0.7 n/a
1080p �0.6 �0.4 �0.3
WVGA �0.2 �0.2 �0.1
WQVA �0.1 0.0 �0.1
720p �0.5 n/a �0.2
Overall �0.5 �0.3 �0.2

168 M. Budagavi et al.

References

1. Alshina E, Alshin A, Lee W, Park J (2011) Full factorization core transforms for HEVC, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G737, Geneva, Nov. 2011.

2. Bjøntegaard G (2001) VCEG-M33: calculation of average PSNR differences between RD
curves, ITU-T SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-M33,
Austin, Apr. 2001.

3. Bossen F (2011) On software complexity, Joint Collaborative Team on Video Coding (JCT-
VC), Document JCTVC-G757, Geneva, Nov. 2011.

4. Bossen F (2012) Common HM test conditions and software reference configurations, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-K1100, Shanghai, Oct.
2012.

5. Budagavi M (2011) IDCT pruning, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-E386, Geneva, Mar. 2011

6. Budagavi M, Fuldseth A, Bjøntegaard G, Sze V, Sadafale M (2013) Core transform design in
the High Efficiency Video Coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol
7(6):1029–1041

7. Chen W-H, Smith CH, Fralick S (1977) A fast computational algorithm for the discrete cosine
transform. IEEE Trans Commun COM-25(9):1004–1009

8. Chono K, Aoki H, Wahadaniah V, Lim CS (2011) Proposal of enhanced PCM coding in HEVC,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E192, Geneva, Mar.
2011

9. Dai W, Krishnan M, Topiwala J, Topiwala P, Alshina E (2011) Lossless core transforms
for HEVC, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G266,
Geneva, Nov. 2011

10. Fuldseth A, Bjøntegaard G, Sadafale M, Budagavi M (2011) Core transform design for HEVC,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G495, Geneva, Nov.
2011

11. Fuldseth A, Endresen LP, Selnes S, Arbatov V, Franchetti F, Puschel M (2011) SIMD
Optimization of proposed HEVC transforms, Joint Collaborative Team on Video Coding (JCT-
VC), Document JCTVC-G497, Geneva, Nov. 2011

12. Haque M, Tabatabai A, Morigami Y (2011) HVS model based default quantization matrices,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G880, Geneva, Nov.
2011

13. HEVC Test Model HM-9.0.1 Nov. 2012 [Online]. Available https://hevc.hhi.fraunhofer.
de/svn/svn_HEVCSoftware/tags/HM-9.0.1/

14. Hung C-Y, Landman P (1997) Compact inverse discrete cosine transform circuit for MPEG
video decoding. In: Proceedings of IEEE SIPS, Nov. 1997, pp 364–373

15. ITU-T Rec. H.264 and ISO/IEC 14496-10 (2003) Advanced video coding
16. ITU-T Rec. H.265 and ISO/IEC 23008-2 (2013) High efficiency video coding
17. Joshi R, Sole J, Karczewicz M (2011) Scaled integer transform supporting recursive factoriza-

tion structure, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G579,
Geneva, Nov. 2011

18. Kerofsky L, Riabtsev S (2012) Dynamic range analysis of HEVC/H.265 inverse transform
operations, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-L0332,
Geneva, Jan. 2013

19. Lan C, Xu J, Sullivan GJ, Wu F (2012) Intra transform skipping, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-I0408, Geneva, Apr. 2012

20. Malvar HS, Hallapuro A, Karczewicz M, Kerofsky L (2003) Low complexity transform and
quantization in H.264/AVC. IEEE Trans Circuits Syst Video Technol 13(7):598–603

21. Nakamura H, Nishitani M, Fukushima S (2012) Non-CE4: compatible QP prediction with RC
and AQ, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H0204, San
Jose, Feb. 2012

6 HEVC Transform and Quantization 169

22. Rao KR, Yip P (1990) Discrete cosine transform: algorithms, advantages, applications.
Academic, Boston

23. Sadafale M, Budagavi M (2010) Low-complexity configurable transform architecture for
HEVC, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-C226,
Guangzhou, Oct. 2010

24. Saxena A, Fernandes FC (2011) CE7: mode-dependent DCT/DST without 4 � 4 full matrix
multiplication for intra prediction, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-E125, Geneva, Mar. 2011

25. Saxena A, Fernandes FC (2013) DCT/DST-based transform coding for intra prediction in
image/video coding. IEEE Trans Image Proc 22(10):3974–3981

26. Tikekar M, Huang C-T, Juvekar C, Chandrakasan A (2011) Core transform property for
practical throughput hardware design. Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-G265, Geneva, Nov. 2011

27. Wiegand T, Sullivan GJ, Bjøntegaard G, Luthra A (2003) Overview of the H.264/AVC video
coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–570

28. Wiegand T, Han W-J, Ohm J-R, Sullivan GJ (2010) High Efficiency Video Coding (HEVC) text
specification working draft 1, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-C403, Guangzhou, Oct. 2010

29. Winken M, Helle P, Marpe D, Schwarz H, Wiegand T (2011) Transform coding in the
HEVC Test Model. In: Proceedings of the IEEE international conference image processing,
pp 3693–3696

30. Zhou M, Sze V (2010) TE 12: evaluation of transform unit (TU) size, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-C056, Guangzhou, Oct. 2010

31. Zhou M, Gao W, Jiang M, Yu H (2012) HEVC lossless coding and improvements. IEEE Trans
Circuits Syst Video Technol 22(12):1839–1843

Chapter 7
In-Loop Filters in HEVC

Andrey Norkin, Chih-Ming Fu, Yu-Wen Huang, and Shawmin Lei

Abstract The HEVC standard specifies two in-loop filters, a deblocking filter and
a sample adaptive offset (SAO). The in-loop filters are applied in the encoding
and decoding loops, after the inverse quantization and before saving the picture
in the decoded picture buffer. The deblocking filter is applied first. It attenuates
discontinuities at the prediction and transform block boundaries. The second in-loop
filter, SAO, is applied to the output of the deblocking filter and further improves the
quality of the decoded picture by attenuating ringing artifacts and changes in sample
intensity of some areas of a picture. The most important advantage of the in-loop
filters is improved subjective quality of reconstructed pictures. In addition, using the
filters in the decoding loop also increases the quality of the reference pictures and
hence also the compression efficiency.

7.1 Introduction

The in-loop filters constitute an important part of the HEVC video coding standard.
As seen from the name, the in-loop filters are applied in the encoding and decoding
loops, after the inverse quantization but before saving the picture to the decoded
picture buffer. HEVC standard specifies two in-loop filters, a deblocking filter,
which is applied first, and a sample adaptive offset (SAO), which is applied to the
output of the [40] deblocking filter. The deblocking filter attenuates discontinuities
at prediction and transform block boundaries [36, 37]. The SAO further improves

A. Norkin (�)
Ericsson Research, Ericsson, Stockholm, Sweden
e-mail: andrey.norkin@ericsson.com

C.-M. Fu • Y.-W. Huang • S. Lei
MediaTek, Hsinchu, Taiwan
e-mail: chihming.fu@mediatek.com; yuwen.huang@mediatek.com; shawmin.lei@mediatek.com

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__7,
© Springer International Publishing Switzerland 2014

171

mailto:andrey.norkin@ericsson.com
mailto:chihming.fu@mediatek.com
mailto:yuwen.huang@mediatek.com
mailto:shawmin.lei@mediatek.com

172 A. Norkin et al.

Entropy
Decoding

Intra Mode Information
Inter Mode Information

Residues

Inverse
Quantization

Inverse
TransformReconstruction

Decoded Picture
Buffer

Intra
Prediction

Motion
Compensation

Deblocking Filter

Sample Adaptive Offset Information

Sample Adaptive Offset

Fig. 7.1 Block diagram of HEVC decoder. Reproduced with permission from [13], © 2012 IEEE

the quality of the decoded picture by reducing the ringing artifacts and changes in
the sample intensity of areas of a reconstructed picture. Since the deblocking and
SAO attenuate different artifacts, their benefits are additive when used together. An
HEVC encoder can turn on and off each of the in-loop filters independently.

Modern video coding standards try to remove as much redundancy from the
coded representation of video as possible. One of the sources of redundancy is
the temporal redundancy, i.e. similarity between the subsequent pictures in a video
sequence. This type of redundancy is effectively removed by motion prediction.
Another type of redundancy is spatial redundancy and is removed by intra-
prediction from the neighboring samples and spatial transforms. In HEVC, both
the motion prediction and transform coding are block-based. The size of motion-
predicted blocks varies from 8 � 4 and 4 � 8, to 64 � 64 luma samples, while the
size of block transforms and intra-predicted blocks varies from 4 � 4 to 32 � 32
samples.

These blocks are coded relatively independently from the neighboring blocks and
approximate the original signal with some degree of similarity. Since coded blocks
only approximate the original signal, the difference between the approximations
may cause discontinuities at the prediction and transform block boundaries [27, 36,
37]. These discontinuities are attenuated by the deblocking filter.

Larger transforms used in HEVC can also introduce more ringing artifacts
compared to H.264/AVC that mainly come from quantization error of transform
coefficients [17]. In addition to that, HEVC uses 8 or 7-tap fractional luma sample
interpolation and 4-tap fractional chroma sample interpolation, while H.264/AVC
uses 6-tap and 2-tap for luma and chroma respectively. A higher number of
interpolation taps can also lead to more ringing artifacts. These artifacts are
corrected by a new filter: sample adaptive offset (SAO). As shown in Fig. 7.1, SAO
is applied to the output of the deblocking filter when the deblocking filter is turned
on, otherwise, it is applied to the reconstructed picture

There are several reasons for making in-loop filters a part of the standard. In
principle, the in-loop filters can also be applied as post-filters. An advantage of

7 In-Loop Filters in HEVC 173

using post-filters is that decoder manufacturers can create post-filters that better
suit their needs. However, if the filter is a part of the standard, the encoder has
control over the filter and can assure the necessary level of quality by instructing
the decoder to enable the filter and specifying the filter parameters. Moreover,
since the in-loop filters increase the quality of the reference pictures, they also
improve the compression efficiency. A post-filter would also require an additional
buffer for filtered pictures, while the output of an in-loop filter can be kept in the
decoded picture buffer (DPB). There is also another specific advantage of using
the deblocking filter as an in-loop filter compared to the deblocking post-filter. If
the deblocking is applied as a post-filter, block artifacts can be copied by motion
estimation inside the blocks, which can make the artifacts detection more difficult
and increases the deblocking complexity compared to the in-loop filtering, which
needs to be applied only to the block boundaries [27, 36, 37].

It is known that the deblocking in-loop filter in H.264/AVC constitutes a
significant part of the decoder complexity [27]. Therefore, when designing the in-
loop filters in HEVC, efforts have been spent on reducing the loop filters complexity,
while still achieving improvements of subjective quality. The HEVC in-loop filters
are easily parallelizable, which can bring advantages when running the HEVC
decoders and encoders on multi-core architectures.

This chapter is organized as follows. Section 7.2 of the chapter describes the
HEVC deblocking filter. Section 7.3 describes SAO, in particular, two types of
sample offsets: an edge offset and a band offset. Section 7.4 discusses implementa-
tion and parallelization aspects of the HEVC in-loop filters as well as the details
of CTU-based implementation of the filter operations. Section 7.5 demonstrates
the subjective quality and coding efficiency improvements. Section 7.6 summarizes
the main differences between the in-loop filters in HEVC and H.264/AVC while
Sect. 7.7 concludes the chapter.

7.2 Deblocking Filter

7.2.1 Block Artifacts in Video Coding

As mentioned in Sect. 7.1, in HEVC both the motion prediction and transform
coding are block-based. The size of motion predicted blocks varies from 4 � 8 and
8 � 4 to 64 � 64 luma samples, while the size of block transforms and intra-predicted
blocks varies from 4 � 4 to 32 � 32 samples. These blocks are coded relatively inde-
pendently from their neighboring blocks and approximate the original signal with
some degree of similarity. Since coded blocks only approximate the original signal,
the difference between the approximations may cause discontinuities at the predic-
tion and transform block boundaries. For example, motion prediction of the adjacent
blocks may come from the non-adjacent areas of a reference picture (see Fig. 7.2) or
even from different reference pictures. In case of non-overlapping block transforms,

174 A. Norkin et al.

Current pictureReference picture

Block
artifact

Fig. 7.2 Block artifact may
be created when adjacent
blocks are predicted from
non-adjacent areas in the
reference picture

p3
p2 p1

p0

q3q2q1
q0

PU/TU boundary

Fig. 7.3 Example of block
artifact in one dimension [37]

used in HEVC, coarse quantization can also create discontinuities at the block
boundaries. In highly detailed areas with high-frequency content, such artifacts can
be masked by the human visual system. However, in the smooth areas, discontinu-
ities between the blocks are easily noticed by a viewer and may cause significant
degradation of the perceived video quality. The example of a block artifact in one
dimension is shown in Fig. 7.3. The horizontal axis shows the sample positions
along a horizontal or vertical 1-D line, and the vertical axis shows the sample values.

Deblocking filter attenuates the artifacts in the areas, where they are mostly
visible, i.e. in the smooth, uniform areas. The excessive filtering in the highly
detailed areas should be avoided since it can cause undesirable blurring. The
artifacts in those areas are rarely noticed by the human eye, while it is also more
difficult to determine whether the discontinuity is caused by a block boundary or
belongs to the original signal [27]. Therefore, an important part of the deblocking
filter is the deblocking filtering decisions, which determine whether a particular
part of a block boundary is to be filtered. In these decisions, the HEVC deblocking
filter uses the mode and motion information from the decoded bitstream as well as
analyses the values of reconstructed samples on the sides of the block boundary. The
strength of the deblocking filter can also be adjusted by the encoder on the picture
and the slice basis.

Section 7.2.2 provides a description of the HEVC deblocking filer, while
Sect. 7.5.1 discusses the coding efficiency and subjective quality improvements

7 In-Loop Filters in HEVC 175

first
second
third
fourth

HEVC H.264/AVC

MB 1 MB 2

Fig. 7.4 Order of boundaries processing in HEVC and H.264/AVC deblocking. In each group
(first to fourth), boundaries are processed from left to right and from top to bottom. In HEVC all
vertical (horizontal) boundaries can be processed in parallel

brought by HEVC deblocking filtering. The deblocking filter complexity and
parallelization aspects are addressed in Sect. 7.4.1.

7.2.2 HEVC Deblocking Filter Description

7.2.2.1 Decisions to Filter a Block Boundary

As a compromise between the subjective quality and computational complexity,
the HEVC deblocking filter in case of 4:2:0 chroma subsampling is only applied
to the block boundaries that lie at the luma and chroma sample positions that are
multiples of eight (in H.264/AVC the deblocking is applied on the 4 � 4 luma and
chroma sample grid). Since the deblocking filtering is only applied to the boundaries
between the coding units (CU), prediction units (PU), or transform units (TU) and
not to the inside areas, the average complexity of the HEVC deblocking is further
decreased compared to the H.264/AVC since HEVC can use larger block sizes.

In HEVC deblocking, the vertical boundaries in a picture are filtered first,
followed by the horizontal boundaries. In a coding unit, the vertical boundaries
between the coding blocks are processed starting from the left-most boundary
towards the right-hand side. The horizontal boundaries are processed starting from
the top-most boundary towards the bottom. In contrast to that, the H.264/AVC
deblocking filter operates on a macroblock (MB) basis, where the four vertical
boundaries in an MB are processed sequentially starting from the left-most MB
boundary, and then the four horizontal MB boundaries are processed starting from
the top-most MB boundary. The order of processing of the block boundaries in
HEVC and H.264/AVC is compared in Fig. 7.4. One can see that the filtering
order in HEVC deblocking is more regular than that in H.264/AVC. Moreover,
since the deblocking of one vertical (horizontal) boundary in HEVC does not affect
deblocking of other vertical (horizontal) boundaries because of only filtering the
boundaries on the 8 � 8 sample grid, all the vertical (horizontal) boundaries can be

176 A. Norkin et al.

Table 7.1 Boundary strength
(Bs) derivation [37]

Conditions Bs

At least one of the adjacent blocks is intra 2
At least one of the adjacent blocks has non-zero

transform coefficients
1

Absolute difference between the motion vectors that
belong to the adjacent blocks is greater than or
equal to one integer luma sample

1

Motion prediction in the adjacent blocks refers to
different reference pictures or number of motion
vectors is different

1

Otherwise 0

processed in parallel. This allows better parallelization which is addressed in more
detail in Sect. 7.4.1. The parallelization of H.264/AVC deblocking filtering is more
complicated since filtering of a block boundary affects the deblocking decisions at
a parallel block boundary, and the vertical and horizontal filtering operations are
alternating.

A decision whether to filter a block boundary uses the bitstream information
such as prediction modes and motion vectors. Some coding conditions are more
likely to create strong block artifacts, which are represented by a so-called boundary
strength (Bs) variable that is assigned to every block boundary and is determined
as in Table 7.1. The deblocking is only applied to the block boundaries with
Bs greater than zero for a luma component and Bs greater than 1 for chroma
components. Higher values of Bs enable stronger filtering by using higher clipping
parameter values. The Bs derivation conditions reflect the probability that the
strongest block artifacts appear at the intra-predicted block boundaries. The condi-
tions also enable luma deblocking when there is possibility of block artifacts caused
by quantization and by prediction from non-adjacent areas in a reference picture.
Not filtering block boundaries with Bs equal to zero avoids multiple repetitive
filtering of static areas where the samples are just copied from one picture to another.
In chroma deblocking, only the block boundaries adjacent to intra-predicted blocks
are filtered, which reduces the deblocking complexity while still removing the
strongest block artifacts. The algorithm for Bs derivation is explained in a flowchart
in Fig. 7.5.

For luma block boundaries with non-zero Bs values, the signal on the sides of the
block boundary is evaluated to decide whether the deblocking should be applied.
For chroma block boundaries, no further evaluation is performed.

The deblocking decisions are made separately for each four-sample segment of
a block boundary (see Fig. 7.6). Since the deblocking needs to attenuate visible
artifacts in smooth areas, the deblocking decisions evaluate whether the signal at
the sides of the block boundary is smooth, i.e. if the signal is flat or has a shape of
an inclined plane (ramp) [36, 37, 43]. The deblocking filtering is applied to a block
boundary if the following expression is evaluated to be true:

7 In-Loop Filters in HEVC 177

No

BS = 2

P or Q is intra?

No

P or Q has
non-zero

coefficients?

P and Q
use different ref.

pictures?

No

Abs. difference
between P and Q’s
MVs is ≥1 integer

sample?

No

Bs = 0Bs = 1

Fig. 7.5 Derivation of boundary strength (Bs) for block boundary. P denotes the left (or top) block
and Q denotes the right (or bottom) block at the block boundary

q0,0 q1,0 q2,0 q3,0

q0,1 q1,1 q2,1 q3,1

q0,2 q1,2 q2,2 q3,2

q0,3 q1,3 q2,3 q3,3

p3,0 p2,0 p1,0 p0,0

p3,1 p2,1 p1,1 p0,1

p3,2 p2,2 p1,2 p0,2

p3,3 p2,3 p1,3 p0,3

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

Block P Block Q

Fig. 7.6 Four-sample segment of vertical block boundary between adjacent blocks P and Q.
Deblocking decision are made based on lines 0 and 3 (dashed)

jp2;0 � 2p1;0 C p0;0j C jp2;3 � 2p1;3 C p0;3j
C jq2;0 � 2q1;0 C q0;0j C jq2;3 � 2q1;3 C q0;3j < “; (7.1)

where the threshold “ depends on the quantization parameters QP and is derived
from a look-up table. Equation (7.1) is used to check how much the signal on each
side of the block boundary deviates from a straight line (ramp). The equations in
this book chapter are given for the case of a vertical block boundary as in Fig. 7.6.
The equations for a horizontal block boundary may be obtained from the equations
for the vertical boundary by swapping the row and column indices.

178 A. Norkin et al.

The HEVC deblocking has two filtering modes: a normal filtering mode and a
strong filtering mode. A decision between these two modes is done for each four-
sample segment of a block boundary. The strong filtering is applied to the block
boundary if all of the following conditions are true for lines i D 0 and i D 3 (see
Fig. 7.6) [32, 37, 43].

jp2;i � 2p1;i C p0;ij C jq2;i � 2q1;i C q0;ij < “=8; (7.2)

jp3;i � p0;ij C jq0;i � q3;ij < “=8; (7.3)

jp0;i � q0;ij < 2:5tC : (7.4)

If all of the (7.2)–(7.4) are true, the strong filtering is applied, otherwise, the
normal deblocking filter is applied. The threshold parameter tC is the clipping
parameter described later in this section. Equation (7.4) makes sure that the step
between the sample values at the sides of the block boundary is small, while (7.2)
checks that there are no significant signal variations at the sides of the boundary,
and (7.3) verifies that the signal on both sides is flat.

The deblocking filtering decisions for a block boundary including the decisions
between the strong and the normal filtering are summarized in a flowchart in
Fig. 7.7.

7.2.2.2 Normal Filtering Mode

When a normal deblocking filtering mode is used, the following conditions are eval-
uated to decide how many samples are modified at each side of the block boundary.
Condition in (7.5) determines how many samples from the block boundary are
modified in block P, while condition in (7.6) determines how many samples are
modified in block Q (see Fig. 7.6) [36]. The decisions use the same principle as
decision (7.1). The smoother the signal on the side of the block boundary, the more
filtering is applied [35].

jp2;0 � 2p1;0 C p0;0j C jp2;3 � 2p1;3 C p0;3j < 3=16 “; (7.5)

jq2;0 � 2q1;0 C q0;0j C jq2;3 � 2q1;3 C q0;3j < 3=16 “: (7.6)

If (7.5) is true, two samples from the block boundary are modified in block P,
otherwise, one sample is modified. If (7.6) is true, two samples from the block
boundary are modified in block Q, otherwise, one sample is modified. The decisions
are made for each side of the block boundary independently, i.e. one sample may be
filtered on one side of the block boundary, and two samples on the other side.

When condition in (7.1) is true for a four-sample segment of the block boundary,
the deblocking filtering operations are subsequently applied to each of the four lines

7 In-Loop Filters in HEVC 179

Boundary is
between PU

or TU?

Boundary
strength
Bs > 0?

Condition (7.1) true?

Conditions
(7.2), (7.3), (7.4)

true?

No

No

No

NoYes

Strong filtering Normal filtering

No filtering

Boundary is
aligned with 8x8

sample grid?

No

Fig. 7.7 Decisions for each
four-sample segment of block
boundary. PU prediction unit,
TU transform unit [37]

crossing the block boundary. Since condition in (7.1) is evaluated true for the signal
that forms a perfect ramp passing across the block boundary (such as a gradual
change in the luma component), the deblocking in the normal filtering mode is
designed to not modify the ramp. The filtered sample values p0

0 and q0
0 (the row

index j is omitted for brevity) are determined by adding or subtracting an offset
value 40 to each of the sample values:

p0
0 D p0 C �0; (7.7)

q0
0 D q0 � �0; (7.8)

where the value of 40 is obtained as in

�0 D Clip3 .–tC ; tC ; •/ ; (7.9)

180 A. Norkin et al.

where tC is a clipping parameter dependent on the QP, and Clip3(a, b, x) function
clips the variable x to the range (a, b), i.e.

Clip3 .a; b; x/ D Max .a; Min .b; x// ; (7.10)

and • is determined as

• D .9 � .q0 � p0/ � 3 � .q1 � p1/ C 8/ >> 4: (7.11)

Neglecting the clipping operation, the impulse response of the filter is (3, 7, 9,
�3)/16. The value of • is proportional to the deviation of the signal at the sides
of the block boundary from a ramp and is equal to zero when the signal across the
boundary has the form of a perfect ramp across the block boundary [35].

Deblocking filtering is only applied to a line of samples across the block
boundary if the absolute value of • is below tC , i.e.

j•j < 10 tC : (7.12)

Expression (7.12) evaluates whether the discontinuity at the block boundary is
likely to be a natural edge or caused by a block artifact.

If two samples are modified in block P, i.e. condition in (7.5) is true, the sample
p1 is modified as

p1
0 D p1 C �p1; (7.13)

and if condition in (7.6) is true, sample q1 is modified as

q1
0 D q1 C �q1; (7.14)

where the p1
0 and q1

0 are new values of samples p1 and q1 respectively, and the
values of 4p1 and 4q1 are obtained as follows:

�p1 D Clip3 .–tC =2; tC =2;p2 C p0 C 1/ >> 1/ � p1 C �0/ >> 1// ;

(7.15)

�q1 D Clip3 .–tC =2; tC =2;q2 C q0 C 1/ >> 1/ � q1 � �0/ >> 1// : (7.16)

The impulse response of the filter is (8, 19, –1, 9, –3)/32 if the clipping operation
is neglected. One can see that the value of the offset obtained in (7.9) is used in
calculation of 4p1 and 4q1. The filtering operations at positions p0, p1, q0, and q1

do not modify the signal that has a form of a perfect ramp across the block boundary.
The deblocking filter decisions done for each line of a four-sample segment of a

block boundary are summarized in a flowchart in Fig. 7.8.
An example of modifications to the block boundary samples in the normal

filtering mode is shown in Fig. 7.9.

7 In-Loop Filters in HEVC 181

Condition (7.12)
true?

Condition (7.5)
true?

No

Modify p1

No filtering

No

Modify
p0 and q0

Condition (7.6)
true?

Modify q1

No

Fig. 7.8 Decisions for
normal filter that are applied
to each line of four-sample
segment of block boundary

q0 q1 q2 q3

p3 p2 p1 p0

Fig. 7.9 Illustration of
normal filtering mode
operations: original block
boundary (solid black line)
and modified block boundary
(dashed gray line)

182 A. Norkin et al.

7.2.2.3 Strong Filtering Mode

The strong deblocking filter in HEVC is applied to smooth flat areas, where block
artifacts are more visible. This filtering mode modifies three samples from the block
boundary and enables strong low-pass filtering. The HEVC strong filter is similar
to the strong filter used by the H.264/AVC video standard [21] except the clipping
operation, which is not present in the H.264/AVC strong filter. The reason for the
clipping operation in HEVC deblocking filter is that the strong filtering decision is
made based on the sample values in only two of the lines in the block, corresponding
to i D 0 and i D 3. The clipping operation limits the amount of filtering in order to
make sure that there is no excessive filtering on the lines which were not evaluated
in the filtering decisions [19]. The filtering for the samples in block P is performed
using the following equations if the clipping operation is neglected:

p0
0 D .p2 C 2p1 C 2p0 C 2q0 C q1 C 4/ >> 3; (7.17)

p1
0 D .p2 C p1 C p0 C q0 C 2/ >> 2; (7.18)

p2
0 D .2p3 C 3p2 C p1 C p0 C q0 C 4/ >> 3; (7.19)

where p0
0, p1

0, and p2
0 are modified values of samples p0, p1, and p2 respectively.

The modified sample values are then clipped to the range [pi � 2tC, pi C 2tC]. The
equations for modification of samples q0, q1, and q2 can be obtained by replacing p
with q in (7.17)–(7.19).

7.2.2.4 Chroma Deblocking

As mentioned in Sect. 7.2.2.1, the deblocking is only applied to the chroma block
boundaries which have boundary strength Bs equal to 2, i.e. when one of the
adjacent blocks is intra-predicted. The block boundary should also be a CU, TU or
a prediction partition boundary and be aligned with the 8 � 8 chroma sample grid.
No further evaluation on the signal is done for chroma block boundaries. Chroma
deblocking only modifies one sample from each side of the block boundary. The
following expression is used to obtain the modification offset for the chroma block
boundary.

�c D Clip3 .�tC ; tC ; ...q0 � p0/ << 2/ C p1 � q1 C 4/ >> 3/ (7.20)

The value of 4c is used for modification of the chroma samples p0 and q0

similarly to luma samples as in (7.7) and (7.8).

7 In-Loop Filters in HEVC 183

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

QP

be
ta

(Q
P

)

Fig. 7.10 Dependency of “ on QP. Reproduced with permission from [37], © 2012 IEEE

7.2.2.5 Deblocking Adaption

Clipping operations are used in deblocking to avoid excessive filtering. The clipping
parameter tC is derived from a look-up table and depends on the average of the
quantization parameter QP of the two adjacent blocks [44], which determines how
coarse the quantization is. Variable tC is obtained from a table as tC (QP) when both
adjacent blocks are inter-predicted (Bs D 1) and tC (QP C 2) when at least one of
the adjacent blocks is intra-predicted (Bs D 2). The deblocking parameter “, which
mainly determines which block boundaries are modified by the deblocking filtering,
also depends on the quantization parameter QP. One can see the dependency of
the parameter “ on the QP in Fig. 7.10 and parameter tC on QP in Fig. 7.11. The
higher the QP, the higher are the values of “ and tC and therefore the more often
the deblocking filtering is applied, and more samples from the block boundary are
modified. In addition, greater modifications to the sample values are allowed for
higher QP. For low QP values, when a reconstructed picture has higher quality, the
deblocking is essentially turned off by setting “ and tC to zero.

The deblocking strength can be further adjusted on a slice or picture level
by sending parameters tc_offset_div2 and beta_offset_div2 in the
slice header or picture parameter set (PPS) [46]. These parameters specify offsets
(divided by two) that are added to a QP value before determining “ and tC from the
look-up tables. This gives an encoder a possibility to adapt the deblocking strength
depending on the sequence characteristics, the encoding mode, and other factors.

Changing the deblocking parameters on a picture level can be used to improve
the subjective quality when using a hierarchical coding structure. An example
of a hierarchical-B GOP8 coding structure, similar to the one used in the HM
common test conditions random-access mode [6] is shown in Fig. 7.12. In this
structure, the encoder can use QP cascading in order to improve the compression

184 A. Norkin et al.

0 10 20 30 40 50 60
0

5

10

15

20

25

QP

tc
(Q

P
)

Fig. 7.11 Dependency of tC

on QP. Reproduced with
permission from [37], © 2012
IEEE

b4 b5

B3

I0

B2

b7 b8

B6

P1
Hier. level 0

Hier. level 1

Hier. level 2

Hier. level 3

Fig. 7.12 Hierarchical-B coding structure with GOP8 illustrating different depth of the picture in
the coding structure [38]

efficiency by applying the base QP to the intra-coded pictures, QP C 1 to the B-
pictures at hierarchy level 0 (e.g. picture P1), QP C 2 to the pictures at hierarchy
level 1. Hierarchy level 2 uses QP C 3 and non-reference b-pictures at level 3 use
QP C 4. The improvement in compression efficiency is achieved by coding with
better quality the pictures at lower hierarchical levels, which are used for prediction
of the pictures at higher hierarchy levels. However, in video sequences with chaotic
motion, e.g. showing water, smoke, fire, rain, or snow, the QP cascading may cause
block artifacts in the pictures at higher hierarchy levels, which is related to using
lower bit budget for those pictures because of higher QP values and coarser mode
decisions.

When the encoder uses hierarchical coding structure and QP cascading, the
deblocking parameters tc_offset_div2 and beta_offset_div2 can be
used to increase the deblocking strength for the pictures at higher hierarchy levels,
which improves the subjective quality on sequences with chaotic motion, while

7 In-Loop Filters in HEVC 185

preserving the subjective quality on other types of video content [33, 38, 39]. An
example of deblocking parameters improving the subjective quality on chaotic con-
tent in the hierarchical-B GOP8 coding structure is setting the tc_offset_div2
to values 0, 3, 3, and 5 for pictures at hierarchy levels 0, 1, 2, and 3 respectively,
while the beta_offset_div2 is set to zero for all levels.

7.3 Sample Adaptive Offset (SAO)

7.3.1 Motivation and Overview of SAO

The key function of the sample adaptive offset is to attenuate ringing artifacts,
which are more likely to appear when larger transform sizes are used. The SAO
reduces sample distortion by first classifying the samples in the region into multiple
categories with as selected classifier and adding a specific offset to each sample
depending on its category. The classifier index and the offsets for each region
are signaled in the bitstream [7, 8]. The SAO encoder is not standardized. It may
minimize the average sample rate-distortion cost, as done in the HM reference
software, or may use another criterion to generate SAO parameters. SAO can use
different sample offsets in a region depending on the sample classification, and SAO
parameters can change from one region of a picture to another. The HEVC uses two
SAO types: edge offset (EO) and band offset (BO) [11]. In EO, the classification of
a sample is based on its neighborhood, i.e. on the comparison between the current
sample and its neighboring samples. In BO, the classification is based on the sample
value.

The best coding efficiency could be achieved by a picture-based region partition-
ing method [11], which would, however, introduce additional encoding latency. In
order to achieve low encoding latency and reduce the buffer requirement, the size
of the region can be fixed and set as small as one coding tree unit (CTU). Multiple
CTUs can share the same SAO parameters by region merging [14] to reduce side
information. In HEVC, a CTU consists of three coding tree blocks (CTBs) of color
components, and each color component can have its own SAO offsets and share the
same EO/BO type for chroma components [10].

7.3.2 Edge Offset

Figure 7.13 shows the Gibbs phenomenon, which can be used to explain the
appearance of ringing artifacts in image and video coding. The horizontal axis shows
the sample position along a 1-D line and the vertical axis denotes the sample value.
The dotted curve represents the original samples while the solid curve represents
the reconstructed samples when the highest frequencies in the signal are discarded
due to quantization of transform coefficients. Local peaks, convex edges/corners,

186 A. Norkin et al.

Fig. 7.13 Gibbs
phenomenon, where the
dotted curve is the original
samples and the solid curve is
the reconstructed samples.
Local peaks, convex corners,
concave corners, and local
valleys are marked with solid
circles and none-of-the-above
samples with empty circles.
Reproduced with permission
from [13], © 2012 IEEE

a c b

a

c

b

a

c

b

a

c

b

Fig. 7.14 Four 1-D directional patterns for EO sample classification: horizontal (EO class D 0),
vertical (EO class D 1), 135ı diagonal (EO class D 2), and 45ı diagonal (EO class D 3). Repro-
duced with permission from [13], © 2012 IEEE

concave edges/corners, and local valleys are marked with solid circles and none-
of-the-above samples with empty circles. One can observe from the figure that the
distortion can be reduced by applying negative offsets to local peaks and convex
corners and positive offsets to concave corners and valleys. The operation of the
edge offset is based on this observation. EO uses four one-directional patterns
for sample classification: horizontal, vertical, 135ı diagonal, and 45ı diagonal, as
shown in Fig. 7.14, where label “c” represents the current sample and labels “a” and
“b” represent the two neighboring samples. These four sample patterns form four
EO classes. Only one EO class can be selected for each CTB that enables EO. Based
on the rate-distortion optimization, one EO class is chosen and an index indicating
which EO class is selected is signaled in the bitstream.

For a given EO class with the specific direction, each sample inside the CTB
is classified into one of five categories. The current sample value, labeled as “c”,
is compared with its two neighbors along the selected 1-D pattern. The category
classification rules for each sample are summarized in Table 7.2. Categories 1 and
4 are associated with a local valley and a local peak, respectively, along the selected
1-D pattern. Categories 2 and 3 are associated with concave and convex corners,
respectively. If the current sample does not belong to any of EO categories 1–4, it is
assigned to category 0 and SAO is not applied. Note that the categories are mutually
exclusive and a sample can belong only to one category.

7 In-Loop Filters in HEVC 187

Table 7.2 Sample category
classification rules for edge
offset

Category Condition

1 c < a && c < b
2 (c < a && cDDb) jj (c DD a && c < b)
3 (c > a && cDDb) jj (c DD a && c > b)
4 c > a && c > b
0 None of the above

sample index
a c b

value
Category 1

sample index
a c b

Category 2

a c b

a c b

Category 3

a c b

a c b

Category 4

sample index

sample index sample index

sample index

value value value

value value

Fig. 7.15 Positive offsets for EO categories 1 and 2 and negative offsets for EO categories 3 and 4
results in smoothing, where the x-axis is sample index and the y-axis is sample value. Reproduced
with permission from [13], © 2012 IEEE

The effect of the positive and negative edge offsets is illustrated in Fig. 7.15
and explained as follows. Positive offsets for categories 1 and 2 result in smoothing
since local valleys and concave corners become smoother, while negative offsets
for these categories result in sharpening. On the contrary, for categories 3 and 4,
the negative offsets result in smoothing and positive offsets result in sharpening.
In HEVC, sharpening in EO is not allowed. Therefore, the absolute values of four
specific offsets are signaled by the encoder—one for each EO category, and the signs
of the signaled offsets are implicitly derived from the corresponding EO categories
[12, 23, 24]. Both EO and BO use four offsets, which limits the number of offsets
to reduce the requirements for a line buffer (the line buffer is explained further in
Sect. 7.4.3).

7.3.3 Band Offset

Another offset used by the HEVC SAO tool is band offset (BO). In band offset,
one offset is added to all samples whose values belong to the same band (range of

188 A. Norkin et al.

band index = k

band index = k+1

band index = k+2

band index = k+3

Fig. 7.16 Example of BO,
where the dotted curve
represents original samples
and the solid curve denotes
reconstructed samples.
Reproduced with permission
from [13], © 2012 IEEE

values). The sample values range is divided into 32 equal bands. For 8-bit samples
in the range from 0 to 255, the width of a band is 8. Thus, sample values from 8k to
8k C 7 belong to band k, where k ranges from 0 to 31. The difference between the
original samples and reconstructed samples in a band (i.e. the offset of a band) can
be signaled to the decoder. There is no constraint on the offset sign for the BO.

Figure 7.16 demonstrates how the BO compensates sample intensity offset of
a region. The horizontal axis denotes the sample position and the vertical axis
denotes the sample value. The dotted curve represents the original samples, while
the solid curve denotes the reconstructed samples, affected by quantization errors of
prediction residues and phase shifts because of the coded motion vectors that deviate
from the true motion. As shown in Fig. 7.16, if there is a phase shift (difference)
between the reconstructed motion vector and the “true” motion vector, a smooth
region with a gradient may be offset with a certain value compared to the original
signal. In this example, the reconstructed samples are shifted to the left compared
to the original samples, which results in a systematic negative error that can be
corrected by BO for bands k, k C 1, k C 2, and k C 3, where the samples ranging
from k * 8 to ((k C 1) * 8) � 1 are classified as belonging to band k, and can be
modified by using the corresponding offset value.

In HEVC, only offsets of four consecutive bands and the starting (or minimum)
band position of the current region are signaled to the decoder [25, 29]. Four offsets
are signaled in the BO, which is equal to the number of signaled offsets in EO (the
number of offsets is limited to reduce the line buffer requirement). The reason for
signaling only four bands is that the range of sample values in a region formed
by CTBs can be quite limited. Therefore, by signaling the starting band position
of current region, BO can identify the minimum sample value to be compensated
in the current region so that the decoder can recover it, as shown in the example
in Fig. 7.17. This is especially true for chroma CTBs. In natural images, chroma
components are often represented by a narrow-band signal, which means that by
several band offsets, the encoder can recover most samples in the region.

7 In-Loop Filters in HEVC 189

signal four offsets from
the first band

first band position x-axis:
sample intensity

y-axis:
number of samples in band

Fig. 7.17 Example of sample distribution in a CTB, where BO sends the offsets of four
consecutive bands. Reproduced with permission from [13], © 2012 IEEE

Merge
Up

Merge
Left

Current
CTU

Cr
CTB

Cb
CTB

Luma
CTB

CTU

Fig. 7.18 CTU consists of three CTBs of color components; the current CTU can reuse SAO
parameters of the left or above CTU. Reproduced with permission from [13], © 2012 IEEE

7.3.4 SAO Parameters Signaling

A syntax element sample_adaptive_offset_enabled_flag signaled
in the Sequence Parameter Set (SPS) indicates whether SAO is enabled
in the current video sequence. In the slice header, two syntax elements,
slice_sao_luma_flag and slice_sao_chroma_flag, indicate if SAO
is enabled for luma and chroma, respectively, in the current slice.

Low-delay applications can use the Coding Tree Unit (CTU) based SAO
encoding algorithm. As shown in Fig. 7.18, a CTU comprises its corresponding
luma CTB, Cb CTB, and Cr CTB. Syntax-wise, the basic unit for SAO parameters
adaptation is always one CTU. If SAO is enabled in the current slice, the SAO
parameters of each CTU are interleaved into the slice data. The SAO data in
the bitstream are signaled in the beginning of each CTU. The CTU-level SAO
parameters consist of SAO merging information, type information, and offset
information.

7.3.4.1 SAO Parameters Merging

A CTU can use three options for signaling SAO parameters: reusing SAO param-
eters of the left CTU (by setting a syntax element sao_merge_left_flag

190 A. Norkin et al.

EO BO

EO

Not applied

Not applied

BO

exit

unsigned Cb offsets

chroma SAO type (EO, BO, not applied)

chroma EO class

unsigned Cr offsets

unsigned luma offsets signed luma offsets

luma EO class luma band position

luma SAO type (EO, BO, not applied)

Cb band position

signed Cb offsets

Cr band position

signed Cr offsets

Fig. 7.19 Illustration of CTU-level SAO information coding when the current CTU is not merged
with the CTU on the left or above. Reproduced with permission from [13], © 2012 IEEE

to 1), reusing SAO parameters of the above CTU (by setting a syntax element
sao_merge_up_flag to 1), or by transmitting new SAO parameters. The SAO
merging information is shared by all three color components. When SAO merge-
left or SAO merge-up mode is indicated, all SAO parameters from the left or above
CTU are copied and no more information is signaled for the current CTU. This
CTU-based SAO information merging effectively reduces the SAO information that
needs to be signaled [31].

7.3.4.2 SAO Type and Offsets Signaling

If merging of SAO information is not used, the information for the current CTU
is signaled as shown in Fig. 7.19. Syntax elements for the luma component are
first sent, followed by the Cb syntax elements and then the Cr syntax elements.
For each color component, the SAO type is transmitted (sao_type_idx_luma
or sao_type_idx_chroma), which indicates EO, BO, or not applied (SAO
turned off). If BO or EO is selected, four offsets are transmitted. If BO
is selected, the starting band position (sao_band_position) is signaled.
Otherwise, if EO is selected, the EO class (sao_eo_class_luma or
sao_eo_class_chroma) is signaled. The Cb and Cr components share the SAO
type (sao_type_idx_chroma) and EO class (sao_eo_class_chroma)

7 In-Loop Filters in HEVC 191

syntax elements to reduce the side information and speed-up SAO processing by
achieving more efficient memory access on certain platforms [4]. These syntax
elements are therefore only coded for the Cb component. The design of the
codewords (including “off”, “EO class selection index”, and “BO band position
index”) is based on the probability distribution to reduce side information.

7.3.4.3 CABAC Contexts and Bypass Coding

All CTU-level, SAO syntax elements including SAO merging information, SAO
type information, and offset information are coded with context-based adaptive
binary arithmetic coding (CABAC). Only the first bin of the SAO type, which
specifies whether SAO is turned on or off in the current CTU, and the SAO merge-
left and merge-up flags use CABAC contexts. All other bins are coded in the bypass
mode, which significantly increases the SAO parsing throughput in CABAC without
much coding efficiency loss [1, 3, 15, 30, 45].

7.4 Implementation and Parallelization Aspects

7.4.1 Deblocking Filter Complexity and Parallelism

When designing the HEVC deblocking filter, a lot of attention was paid to complex-
ity and parallelization aspects. In H.264/AVC video decoders, deblocking takes a
significant part of the computational complexity [27, 28]. Moreover, in H.264/AVC,
the deblocking operations at one block boundary may affect the samples used in
deblocking of the next block boundary, which complicates parallel processing.

7.4.1.1 HEVC Deblocking Filter Complexity

The complexity of the HEVC deblocking filter has been significantly decreased
compared to the H.264/AVC deblocking. First of all, the deblocking is only applied
to the block boundaries on the 8 � 8 luma sample grid. This already decreases
the worst-case complexity of the deblocking compared to H.264/AVC, where the
deblocking is applied on the 4 � 4 sample grid. The average complexity of the
deblocking operation is also decreased compared to H.264/AVC since the prediction
and transform blocks in HEVC are on average larger than those in H.264/AVC,
where the maximum size of prediction blocks is 16 � 16 luma samples and the size
of the transform blocks is 8 � 8 luma samples (if the maximum transform size in
HEVC is not restricted to the same limits resulting in the worst-case scenario).

The filtering decisions constitute a significant part of the deblocking filter
complexity. In order to reduce the complexity of deblocking decisions, the HEVC

192 A. Norkin et al.

deblocking uses decisions for a four-sample segment of the block boundary based
on two lines crossing the block boundary. In contrast, the decisions in H.264/AVC
deblocking are done for every line. The complexity of chroma deblocking filtering
in HEVC has also been reduced compared to H.264/AVC since only chroma block
boundaries with Bs equal to 2 are filtered. Therefore, only block boundaries adjacent
to the intra-predicted blocks are filtered in the chroma components in contrast to
H.264/AVC, where the chroma deblocking is also applied to the block boundaries
between the inter-predicted blocks.

7.4.1.2 Deblocking Filter Parallelization Aspects

HEVC deblocking filter allows easy parallelization on several levels. First, paral-
lelization is possible on the color component level. In HEVC, filtering decisions
for chroma components are only based on the block boundary strength. Therefore,
the only data to be shared between the luma and the chroma deblocking is the
Bs, which depends on the prediction type [43]. This makes it possible to process
chroma components independently of the luma component unlike in H.264/AVC,
where chroma deblocking uses the decisions made for luma deblocking.

The vertical and horizontal block boundaries in HEVC are processed in a
different order than in H.264/AVC. In HEVC, all the vertical block boundaries in
the picture are filtered first, and then all the horizontal block boundaries are filtered
[20, 37]. Since the minimum distance between two parallel block boundaries in
HEVC is eight samples, and HEVC deblocking modifies at most three samples from
the block boundary and uses four samples from the block boundary for deblocking
decisions, filtering of one vertical boundary does not affect filtering of any other
vertical boundary. This means there are no deblocking dependencies across the
block boundaries. In principle, any vertical block boundary can be processed
in parallel to any other vertical boundary. The same holds for the horizontal
boundaries, although the modified samples from filtering the vertical boundaries
are used as the input to filtering the horizontal boundaries.

The deblocking in HEVC can also be performed on the 8 � 8 block basis
[32, 37, 47]. Figure 7.20 illustrates how the deblocking (both for vertical and hori-
zontal boundaries) can be performed independently for each 8 � 8 block of samples.
The deblocking is performed on the 8 � 8 luma sample grid and decisions are done
separately for each four-sample segment of the block boundary, which means that
two parts of the eight-sample block boundary are deblocked independently of each
other [34]. Therefore, the deblocking of the 8 � 8 sample square with the crossing
of vertical and horizontal lines on the 8 � 8 sample filtering grid in the middle of the
block is not dependent on the deblocking in the other parts of the picture. Basically,
the whole picture can be split into such 8 � 8 sample blocks (4 � 8 and 8 � 4 blocks
at the picture boundaries), which can all be processed independently of other blocks.
Since all vertical block boundaries in HEVC are processed before the horizontal

7 In-Loop Filters in HEVC 193

Boundaries where
deblocking applies

8x8 block where deblocking
can be performed

independently

Luma samples

Fig. 7.20 Illustration of picture samples, horizontal and vertical block boundaries on the 8 � 8
grid, and those non-overlapping blocks of 8 � 8 samples (marked with dotted lines), which can be
deblocked in parallel. The dashed lines mark samples used in deblocking decisions (vertical and
horizontal)

block boundaries, the order of deblocking in each of these 8 � 8 deblocking units
is the same: the vertical block boundary is filtered first, which is followed by the
horizontal block boundary.

Since the HEVC deblocking can be easily parallelized, it can be done on a slice
or tile [16] basis. In this case, an encoder or decoder can choose the option to first
apply deblocking to the inner areas of a tile or slice, while leaving the deblocking on
the tile or slice boundaries. When the decoding and deblocking of all tiles or slices
is finished, the tile or slice boundaries can be processed as the last step.

Since the deblocking in HEVC is less computationally expensive and more
parallelizable than the H.264/AVC deblocking, it can be said that the deblocking
in HEVC has a better trade-off between the computational complexity, throughput,
subjective and objective quality improvements than the H.264/AVC deblocking and
is less of a bottleneck when implementing a decoder.

7.4.2 SAO Implementation Aspects and Parameters Estimation

Since SAO requires sample level operations to classify each sample into bands
or categories in both encoder and decoder, the number of operations for each
sample needs be reduced as much as possible to reduce the overall computational
complexity. At encoder-side, there are many SAO types to be tested to achieve a bet-
ter rate-distortion performance at reasonable computational complexity. Therefore,
some efficient encoder algorithms are discussed in the following sections.

194 A. Norkin et al.

7.4.2.1 Fast Edge Offset Sample Classification

Although the sample classification rules of EO in Table 7.2 seem non-trivial, the
EO sample classification can be implemented in a more efficient way by using the
following function and equations:

sign3.x/ D .x > 0/ ‹ .C1/ W .x DD 0/ ‹ .0/ W �1; (7.21)

edgeIdx D 2 C sign3 .c � a/ C sign3 .c � b/ ; (7.22)

edgeIdx2category Œ � D f1; 2; 0; 3; 4g ; (7.23)

category D edgeIdx2category ŒedgeIdx� (7.24)

where, “c” is the current sample, and “a” and “b” are the two neighboring samples,
as shown in Fig. 7.14 and Table 7.2. As a further speed-up, the data obtained in a
previous step can be reused in the classification of the next sample. For example,
assume that the EO class is 0 (i.e., a 1-D horizontal pattern) and the samples in
the CTB are processed in the raster scan order. The “sign3(c � a)” of the current
sample is equal to “�sign3(c � b)” of the neighboring sample to the left. Likewise,
the “sign3(c � b)” of the current sample can be reused by the neighboring sample to
the right. In software implementations, the sign3(x) function can be implemented by
using a bitwise operation or a look-up table to avoid using if-else operation, which
can be time-consuming on certain platforms.

7.4.2.2 Fast Band Offset Sample Classification

The sample range is equally divided into 32 bands in BO. Since 32 is equal to
two to the power of five, the BO sample classification can be implemented as
using the five most significant bits of each sample as the classification result. In
this way, the complexity of BO decreases, especially in hardware that only needs
wire connections without logic gates to obtain the classification result from the
sample value. To reduce the software decoding run time, the BO classification can
be implemented by using bitwise operation or a look-up table to avoid using if-else
operations.

7.4.2.3 Distortion Estimation for Encoder

The rate-distortion optimization process [41] requires multiple calculation of the
distortion between the original and reconstructed sample values. A straightforward
SAO implementation would add offsets to the samples modified by deblocking
and then calculate the distortion between the resulting and the original samples.
To reduce the memory access and the number of operations, a fast distortion
estimation method [9] can be implemented as follows. Let k; s.k/; and x.k/ be

7 In-Loop Filters in HEVC 195

sample positions, original samples, and the reconstructed samples, respectively,
where k belongs to C , the set of samples inside the CTB that belong to a specific
SAO type (i.e., BO or EO), a starting band position or EO class, and a specific band
or category. The distortion between original samples and reconstructed samples can
be described by the following equation:

Dpre D
X
k2C

.s.k/ � x.k//2 (7.25)

The distortion between the original samples and samples modified by SAO can
be described by the following equation

Dpost D
X
k2C

.s.k/ � .x.k/ C h//2 (7.26)

where h is the offset for the sample set. The distortion change is defined by the
following equation:

�D D Dpost � Dpre D
X
k2C

�
h2 � 2h .s.k/ � x.k//

� D N h2 � 2hE (7.27)

where N is the number of samples in the set, and E is the sum of differences
between the original samples and the reconstructed samples (before SAO) as defined
by the following equation:

E D
X
k2C

.s.k/ � x.k// (7.28)

Please note that the sample classification and (7.28) can be calculated right after
the input samples become available after the deblocking filtering. Thus, N and E

can be calculated only once and stored. Then, the delta rate-distortion cost is defined
as follows:

�J D �D C �R (7.29)

where � is the Lagrange multiplier, and R represents the estimated bits of side
information.

For a given CTB with a specific SAO type (i.e., BO or EO), starting band position
or EO class, and a specific band or category, several h values (offsets) close to E/N
are tested, and the offset that minimizes �J is chosen. After offsets for all bands
or categories have been chosen, the �J for each of the 32 bands of BO or each of
the five categories of EO are added to obtain the delta (change) of the rate-distortion
cost of the entire CTB. The distortion of the BO bands using zero offsets and the EO
category 0 can be pre-calculated by (7.25) and stored for subsequent re-use. When
SAO decreases the cost for the entire CTB (i.e. the delta cost is negative), SAO is
enabled for this CTB. Similarly, the best SAO type and the best starting position or
EO class can be found by the fast distortion estimation.

196 A. Norkin et al.

7.4.2.4 Slice-Level On/Off Control

The HM reference software common test conditions [6] use hierarchical quantiza-
tion parameter (QP) settings. As an example, in the random access condition, the
GOP size is eight. Picture can belong to different hierarchy levels depending on
their positions in the GOP (see Fig. 7.12). Normally, the picture is only predicted
from the pictures with a smaller or the same hierarchy level. A picture with at higher
hierarchy level will likely be given a higher QP.

A slice-level on/off decision algorithm [2, 26] is provided as follows. For
hierarchy level 0 pictures, SAO is always enabled in the slice header. Given a current
picture with a nonzero hierarchy level N, the previous picture is defined as the last
picture with hierarchy level (N � 1) in the decoding order. If SAO is disabled in
more than 75 % of the CTBs in the previous picture, the HM reference encoder will
disable SAO in all slice headers of the current picture and skip the SAO encoding
process. This encoder technique not only can decrease the number of syntax to be
parsed, but also provides 0.5 % BD-rate improvement [2, 26]. Please note that luma
and chroma SAO can be enabled or disabled independently in the slice header.

7.4.2.5 SAO Parameters Estimation and Interaction with Deblocking

In the HM reference encoder, SAO parameters are estimated for each CTU. Since
SAO is applied to the output of the deblocking filter, the SAO parameters cannot
be precisely determined until the deblocked samples are available. However, the
deblocked samples of the right columns and the bottom rows in the current coded-
tree block (CTB) may be unavailable because the CTU to the right and the CTU
below the current CTU may not have been reconstructed yet (in a one-pass encoder).
This constraint can be overcome with one of the two options. The first option
[18] estimates the SAO parameters on the available CTB samples, i.e. on the CTB
samples except the three bottom rows of luma samples, one bottom row of Cb
and Cr samples, the rightmost four columns of luma samples, the rightmost two
columns of Cb and Cr samples. The proposed approach does not incur a noticeable
coding efficiency loss when the 64 � 64 CTU size is used. However, for smaller CTU
sizes, the percentage of samples not used in the SAO parameter estimation is higher,
which may cause significant coding efficiency loss. In this case, the second option
[22] uses samples before the deblocking instead of unavailable deblocked samples
during SAO parameter estimation, which can reduce the loss in coding efficiency
for smaller CTU sizes.

7.4.3 CTU-Based Processing and Line Buffer

CTU-based processing is commonly adopted in practical implementations. CTUs
are encoded or decoded one by one in a raster scan order and the in-loop filtering is
applied right after the encoding/decoding of a CTU. The deblocking filtering of the

7 In-Loop Filters in HEVC 197

Horizontal CTU boundary

Unavailable samples

To be modified by deblocking

Can be used in deblocking decisions
and filtering and SAO classification

In-loop filters have been applied

Fig. 7.21 Example of luma samples line buffer. Samples below the dashed line and above the
horizontal CTU boundary should be kept in the line buffer until the unavailable samples have been
reconstructed

bottom horizontal CTU boundary needs samples from the CTU below. Hence, after
the current CTU has been processed, the deblocking cannot be applied yet to the
bottom rows of samples since the reconstructed samples of the CTB to the bottom of
the current CTB are not yet available (see Fig. 7.21). Likewise, since SAO is applied
after the deblocking filter, SAO cannot be applied to the bottom sample rows before
the deblocking is done. In order to decrease memory bandwidth requirements, the
information needed for in-loop filtering over the lower CTU boundary is kept in
the fast on-chip memory until the CTU below has been reconstructed and the in-
loop filters applied. This on-chip memory is usually called a “line buffer” since the
information for horizontal lines of samples typically needs to be kept.

In the deblocking filter, vertical filtering across a horizontal CTU boundary needs
four rows of luma samples, two rows of Cb samples, and two rows of Cr samples
from the upper CTU to be kept in the line buffer for the filtering decisions and
operations. Deblocking can modify up to three rows of luma samples, one row of
Cb samples, and one row of Cr samples from the block boundary.

Let us assume that the deblocking filter needs to keep N rows of the above CTBs,
where N is equal to four for luma and two for Cb and Cr. Since the N-th row above
the horizontal CTB boundary will not to be modified by the vertical deblocking
filtering, the SAO can be applied to the (N C 1)-th row above the horizontal CTB
boundary. However, the bottom N rows of the current CTB should be kept in the line
buffer before the CTB below is reconstructed and deblocking and SAO are applied
(see Fig. 7.21 for luma samples example).

When the CTB below is reconstructed and SAO in the CTB above uses EO with
the class greater than zero, applying SAO for the N-th row above the boundary needs
the (N C 1)-th row above the boundary to be available. A straightforward solution
is to store reconstructed and deblocked samples of the (N C 1)-th row in the line
buffer. However, using the fast EO sample classification, the “sign3” results [the
sign of the difference or 0 value between the N-th row and the (N C 1)-th row] can
be stored instead, which reduces the memory requirements to two bits per sample.

In addition to the described four lines on luma samples, two lines of Cb, two
lines of Cr samples, three lines of two-bit “sign3” values, and some CTU- and
PU-level information need to be stored. The deblocking needs information about

198 A. Norkin et al.

Table 7.3 Size of the
elements of a 16 � 16 CTU
needed to be kept in a line
buffer

Values in line buffer Required bits

Four motion vectors* 128 bits
4 reference picture indices* 16 bits
8 � 8 / 4 � 8 partitions flags* 2 bits
B-/P-prediction flags in 8 � 8 partitions* 2 bits
sign3 64 bits
Luma SAO type 2 bits
Chroma SAO type 2 bits
Starting band positions or EO classes 15 bits
Luma and chroma offsets 48 bits

Total elements 279 bits
64 luma samples 512 bits
32 chroma samples 256 bits

Total samples 768 bits

Total bits for CTU 1047 bits

*This information is also used in motion vector derivation

the motion vectors adjacent to the lower CTU boundary, and SAO needs SAO type
and SAO offsets of the upper CTB row. For an 8-bit 4:2:0 video and the smallest
CTU size (16 � 16 luma and 8 � 8 chroma samples), the information stored per
CTU is 279 bits (this number may depend on the implementation). Among these
279 bits, 128 bits are for four motion vectors (4 � 8 and 8 � 4 partitions can only use
one motion vector), 16 bits are for four indices of reference pictures in the decoded
picture buffer, two bits are for signaling whether 4 � 8 or 8 � 8 partitions are used,
and two bits are for signaling if one or two MVs are used in 8 � 8 partitions. Please
note that this information is also needed for other modules, such as motion vector
derivation. Alternatively, 8 bits with four Bs values may be stored if the information
about motion vectors in the next CTU row is available. Then, 64 bits are for “sign3”
values of 16 luma and 16 chroma samples, two bits are for luma SAO type, two bits
are for chroma SAO type, 15 bits are from starting band positions or EO classes, and
48 bits are from luma and chroma offsets. The sample line buffers for the 16 � 16
CTU keep 64 luma samples and 32 chroma samples, which requires 768 bits (see
Table 7.3 for details). Therefore, the total line buffer size is about 15K bytes for full
HD (i.e. 1920 � 1080) videos.

The line buffer size would be somewhat smaller when larger CTU sizes are used
since the same parameters apply to a larger number of samples. The size of the line
buffer can be further reduced by using vertical tiles, hence splitting the horizontal
“span” of CTUs to be processed before the bottom CTU is encoded/decoded.

7.4.4 Error Resilience

In order to provide additional error resilience, HEVC allows an encoder to
disable in-loop filters over tile and slice boundaries. A flag slice_loop_

7 In-Loop Filters in HEVC 199

filter_across_slices_enabled_flag equal to 1 indicates that the in-
loop filters are applied across the left and upper boundaries of the current slice.
When the flag is equal to 0, in-loop filtering operations are not applied across the left
and upper boundaries of the current slice. When the flag is not present, it is inferred
to be equal to pps_loop_filter_across_slices_enabled_flag.

A picture parameters set (PPS) flag loop_filter_across_tiles_
enabled_flag equal to 1 specifies that in-loop filters are applied across tile
boundaries. When the flag is equal to 0, it specifies that in-loop filtering operations
are not performed across tile boundaries. When the flag is not present, the value of
loop_filter_across_tiles_enabled_flag is inferred to be equal to 1.

These flags provide additional error resilience since an error created because of a
slice or tile loss will not propagate into neighboring slices or tiles of the same picture
(however, it may propagate to other slices or tiles of subsequent pictures because of
inter-picture prediction).

7.5 Coding Efficiency and Subjective Quality Improvements

The HEVC in-loop filters improve both the objective and subjective quality. The
objective quality improvement is achieved due to increasing the quality of the
reconstructed pictures. There is also an additional effect due to better quality of
reference pictures, which improves motion prediction and therefore the coding
efficiency.

In this section, the compression efficiency improvements have been evaluated on
the JCT-VC video sequences test set. The results are provided for several classes
of sequences and under different coding conditions defined in the HEVC common
test conditions document [6]. These configurations are: All Intra where only intra-
prediction is used; Random Access which uses intra pictures over certain time
intervals and hierarchical-B coding structure; and two low-delay configurations,
which have only one intra-picture, and where motion-compensated prediction uses
only temporally preceding pictures. The Low Delay P (LP) configuration does
not use bi-directional motion-compensated prediction. The BD-rate is used in the
HEVC standardization as a measure for the average bit rate reduction at the same
mean squared error [5]. The HEVC reference software HM11.0 was used in all
experiments. The reported decoding time has been evaluated by decoding the
bitstreams on a Windows 7 (64bit) PC with i7-920 CPU and 8GB of RAM without
writing the reconstructed pictures to the disk.

7.5.1 Deblocking Coding Efficiency and Subjective
Quality Improvements

The results for objective performance of the deblocking filter are provided in
Table 7.4. The results show that applying HEVC deblocking leads to the 1.3–3.2 %

200 A. Norkin et al.

Table 7.4 Luma BD-rates evaluating objective effects of using deblocking filtering under various
coding conditions

Anchor: disable
deblocking
Test: enable
deblocking

Y BD-rate

All Intra
(AI)

Random
Access
(RA)

Low
Delay B
(LB)

Low
Delay P
(LP)

Class A Traffic �2.3 % �2.7 % n/a n/a
Cropped 4K � 2K PeopleOnStreet �2.0 % �4.4 % n/a n/a

Nebuta �1.1 % �1.1 % n/a n/a
SteamLocomotive �2.3 % �5.4 % n/a n/a

Class B Kimono �4.1 % �5.7 % �5.9 % �8.0 %
1080p ParkScene �1.4 % �1.9 % �2.0 % �2.8 %

Cactus �1.3 % �3.4 % �3.7 % �4.5 %
BasketballDrive �1.8 % �3.9 % �3.7 % �4.9 %
BQTerrace �0.3 % �1.1 % �0.6 % �2.3 %

Class C BasketballDrill �0.7 % �2.1 % �2.1 % �2.8 %
WVGA BQMall �1.5 % �2.5 % �2.6 % �3.1 %

PartyScene �0.4 % �0.8 % �0.8 % �0.9 %
RaceHorses �1.2 % �2.6 % �2.9 % �3.2 %

Class D BasketballPass �1.4 % �2.5 % �2.5 % �2.9 %
WQVGA BQSquare �0.1 % 0.0 % 0.6 % 0.3 %

BlowingBubbles �0.4 % �0.9 % �0.8 % �1.1 %
RaceHorses �0.9 % �2.3 % �2.4 % �2.7 %

Class E FourPeople �2.3 % n/a �4.9 % �6.6 %
720p Johnny �2.2 % n/a �2.2 % �5.8 %

KristenAndSara �2.1 % n/a �4.0 % �6.0 %
Class F BasketballDrillText �0.6 % �2.0 % �1.9 % �2.5 %

ChinaSpeed �0.7 % �1.8 % �1.9 % �2.3 %
SlideEditing �0.3 % �0.3 % �0.5 % �0.7 %
SlideShow �0.8 % �0.9 % �0.8 % �1.1 %

Class summary Class A �1.9 % �3.4 % n/a n/a
Class B �1.8 % �3.2 % �3.2 % �4.5 %
Class C �0.9 % �2.0 % �2.1 % �2.5 %
Class D �0.7 % �1.4 % �1.3 % �1.6 %
Class E �2.2 % n/a �3.7 % �6.1 %
Class F �0.6 % �1.2 % �1.3 % �1.6 %

Overall summary All �1.3 % �2.3 % �2.3 % �3.2 %
Decoding time (%) 107 % 104 % 104 % 105 %

bit rate decrease at the same quality depending on the configuration. For certain
classes of sequences, 6 % decrease of bit rate is achieved.

Figure 7.22 compares a part of a decoded picture from the BasketballDrive
sequence (1080p, 50 fps) in Random Access configuration at QP D 32 where
the deblocking was applied with the configuration where the deblocking was
turned off. Figure 7.23 shows same comparison for the sequence KristenAndSara

7 In-Loop Filters in HEVC 201

Fig. 7.22 Sequence BasketballDrive, Random Access, QP32: (a) deblocking turned off, (b)
deblocking turned on

Fig. 7.23 Sequence KristenAndSara, Low Delay, QP37: (a) deblocking turned off, (b) deblocking
turned on

(720p@60 fps) coded in Low Delay B configuration at QP D 37. It can be seen that
the deblocking filter effectively attenuates block artifacts.

202 A. Norkin et al.

7.5.2 SAO Coding Efficiency and Subjective Quality
Improvement

This section illustrates the subjective and objective performance of the SAO tool.
Table 7.5 reports the sequence-wise luma BD-rates and the average luma BD-rates
and run-times for different encoding structures and CTU sizes equal to 64 � 64 in
luma using the skipping boundary samples algorithm as described in Sect. 7.4.2.5.
For BQTerrace in the LP condition, the SAO coding gain reaches 18.9 %. It is
noted that SAO is particularly effective for Class F sequences, which mostly contain
computer graphics and screen content rather than natural video. One could also
notice that SAO shows higher coding gains in the LP configuration without bi-
directional prediction. Regarding the computational complexity, SAO increases the
average decoding time by less than 2–3 %.

The subjective quality improvements due to reduction of ringing artifacts are
shown in Figs. 7.24 and 7.25. Figure 7.24 shows an example of the coded computer-
generated sequence SlideEditing. SAO significantly improves visual quality by
suppressing ringing artifacts near objects edges. Figure 7.25 shows examples of
natural video sequences RaceHorses and BasketballPass where the edges of objects
are much cleaner when SAO is enabled. According to viewing tests, SAO improves
subjective quality [42].

7.5.3 Combined Effect of In-Loop Filters on Coding Efficiency

Table 7.6 demonstrates objective compression efficiency improvements due to both
in-loop filters compared to the configuration where both the deblocking filter and
SAO are turned off. One can see that the compression efficiency improvements
are 2.6–15 % depending on coding configurations. The decoding time increase is
about 10 % and depends on the coding conditions. The encoding complexity mostly
depends on a particular encoder implementation and is not significant in the HM11.0
encoder operating in common test conditions (on the order of 1 % encoding time
increase [13]). These numbers indicate that the in-loop filters are an efficient tool in
improving the HEVC compression efficiency.

7.6 Main Differences between HEVC and H.264/AVC
In-Loop Filters

This section summarizes key differences between the HEVC and H.264/AVC in-
loop filters. There is only a deblocking in-loop filter in H.264/AVC, while the HEVC
standard defines two in-loop filters: the deblocking filter and the sample adaptive
offset, SAO.

7 In-Loop Filters in HEVC 203

Table 7.5 Luma BD-rates evaluating objective effects of using SAO under various coding
conditions

Anchor: disabling
SAO Test: enabling
SAO CTU Size in
luma: 64 � 64 CTU
boundary: option 1

Y BD-rate

All Intra
(AI)

Random
Access
(RA)

Low
Delay B
(LB)

Low
Delay P
(LP)

Class A Traffic �0.9 % �1.2 % n/a n/a
Cropped 4K � 2K PeopleOnStreet �1.3 % �2.1 % n/a n/a

Nebuta �0.1 % �2.3 % n/a n/a
SteamLocomotive �0.2 % �2.6 % n/a n/a

Class B Kimono �0.5 % �0.6 % �0.8 % �7.8 %
1080p ParkScene �0.7 % �0.8 % �1.3 % �9.1 %

Cactus �0.4 % �2.4 % �2.9 % �10.4 %
BasketballDrive �0.2 % �1.5 % �1.5 % �9.0 %
BQTerrace �0.5 % �4.8 % �3.8 % �18.9 %

Class C BasketballDrill �1.0 % �1.7 % �2.7 % �6.4 %
WVGA BQMall �0.3 % �0.9 % �1.7 % �8.2 %

PartyScene �0.1 % 0.2 % �0.7 % �4.0 %
RaceHorses �0.5 % �1.9 % �1.8 % �9.7 %

Class D BasketballPass �0.2 % �0.6 % �1.3 % �4.7 %
WQVGA BQSquare �0.5 % �0.0 % �0.7 % �3.9 %

BlowingBubbles �0.2 % 0.4 % 0.0 % �2.9 %
RaceHorses �0.5 % �1.2 % �1.3 % �6.4 %

Class E FourPeople �0.7 % n/a �2.9 % �9.1 %
720p Johnny �0.4 % n/a �1.9 % �13.3 %

KristenAndSara �0.6 % n/a �2.3 % �11.4 %
Class F BasketballDrillText �1.1 % �2.0 % �3.9 % �6.7 %

ChinaSpeed �1.3 % �3.6 % �6.9 % �9.3 %
SlideEditing �1.5 % �3.0 % �4.5 % �5.0 %
SlideShow �1.9 % �2.2 % �5.4 % �6.4 %

Class summary Class A �0.6 % �2.0 % n/a n/a
Class B �0.4 % �2.0 % �2.0 % �11.1 %
Class C �0.5 % �1.1 % �1.7 % �7.1 %
Class D �0.4 % �0.3 % �0.8 % �4.5 %
Class E �0.6 % n/a �2.6 % �11.3 %
Class F �1.5 % �2.7 % �5.2 % �6.8 %

Overall summary All �0.7 % �1.7 % �2.4 % �9.2 %
Decoding time (%) 103 % 102 % 102 % 103 %

204 A. Norkin et al.

Fig. 7.24 Example of test sequence SliceEditing in LP condition, POC D 100, QP D 32: (a) SAO
is disabled, (b) SAO is enabled

Fig. 7.25 Subjective quality comparison of RaceHorses test sequence, POC D 20, QP D 32, LP
condition: (a) SAO is disabled, (b) SAO is enabled, (c) original (uncoded) sequence

The computational complexity of the HEVC deblocking is lower than that of
the H.264/AVC. Reduction of the HEVC deblocking complexity is achieved by
restricting the filtering to the 8 � 8 sample grid in contrast to the 4 � 4 sample grid in
the H.264/AVC deblocking. Additional complexity reduction in HEVC is achieved
by making the sample-based filtering decisions based on a subset of lines across the
block boundary in contrast to the line-based decisions in H.264/AVC deblocking.
Moreover, the HEVC deblocking of chroma components is only applied to the intra-
predicted block boundaries. The HEVC deblocking is also more suitable for parallel
implementation than the H.264/AVC deblocking since each 8 � 8 sample block in
HEVC can be deblocked independently of other 8 � 8 blocks and the order of the
vertical and horizontal filtering operations in HEVC deblocking is always the same.
The processing order for the horizontal and vertical block boundaries is therefore
different in HEVC and H.264/AVC. When applying the HEVC deblocking on the
CU basis, right after the CU reconstruction, filtering of four right-most samples of
horizontal block boundaries in a CU should be delayed until the next CU to the right
is reconstructed and the vertical boundary between the CUs is filtered.

HEVC and H.264/AVC deblocking filters are also different in terms of criteria
that evaluate the signal (reconstructed sample values) at the sides of a block
boundary to decide whether the deblocking is applied to this block boundary. In
H.264/AVC, the deblocking is typically applied to the block boundary when the

7 In-Loop Filters in HEVC 205

Table 7.6 Luma BD-rates evaluating the objective effects of using deblocking filter and SAO
under various coding conditions

Y BD-rate

Anchor: disable deblocking
and SAO Test: enable
deblocking and SAO

All
Intra
(AI)

Random
Access
(RA)

Low
Delay B
(LB)

Low
Delay P
(LP)

Class A Traffic �4.4 % �5.0 % n/a n/a
Cropped 4K � 2K PeopleOnStreet �4.4 % �8.1 % n/a n/a

Nebuta �1.5 % �4.9 % n/a n/a
SteamLocomotive �3.3 % �9.5 % n/a n/a

Class B Kimono �6.1 % �7.7 % �8.1 % �22.0 %
1080p ParkScene �2.9 % �3.5 % �4.2 % �18.1 %

Cactus �2.3 % �6.7 % �7.2 % �18.9 %
BasketballDrive �2.7 % �6.5 % �6.1 % �18.2 %
BQTerrace �1.0 % �6.7 % �5.3 % �25.7 %

Class C BasketballDrill �2.4 % �4.5 % �5.4 % �11.9 %
WVGA BQMall �2.3 % �4.0 % �5.2 % �15.2 %

PartyScene �0.7 % �1.0 % �2.0 % �7.7 %
RaceHorses �2.4 % �5.8 % �5.9 % �16.0 %

Class D BasketballPass �2.3 % �3.7 % �4.8 % �10.4 %
WQVGA BQSquare �0.7 % �0.1 % �0.3 % �5.2 %

BlowingBubbles �0.9 % �0.7 % �1.2 % �6.3 %
RaceHorses �2.1 % �4.4 % �4.9 % �12.0 %

Class E FourPeople �3.8 % n/a �8.4 % �20.6 %
720p Johnny �3.4 % n/a �5.3 % �28.2 %

KristenAndSara �3.4 % n/a �6.9 % �23.9 %
Class F BasketballDrillText �2.3 % �4.6 % �6.2 % �11.6 %

ChinaSpeed �2.3 % �5.9 % �9.6 % �13.2 %
SlideEditing �1.8 % �3.4 % �5.5 % �5.6 %
SlideShow �2.8 % �3.3 % �6.9 % �8.4 %

Class summary Class A �3.4 % �6.9 % n/a n/a
Class B �3.0 % �6.2 % �6.2 % �20.6 %
Class C �2.0 % �3.8 % �4.6 % �12.7 %
Class D �1.5 % �2.2 % �2.8 % �8.5 %
Class E �3.5 % n/a �6.9 % �24.2 %
Class F �2.3 % �4.3 % �7.1 % �9.7 %

Overall summary All �2.6 % �4.8 % �5.5 % �15.0 %
Decoding time (%) 113 % 107 % 107 % 109 %

signal on both sides of the boundary is flat. Therefore in HEVC, the deblocking is
also applied when the signal on each side of the block boundary approximates a
ramp or a slope, which can happen in smooth areas with changing luma intensity.

The SAO in-loop filter attenuates ringing artifacts, which can be more pro-
nounced in HEVC when larger transform sizes are used by the encoder. Moreover,
SAO can also be applied to the inside samples of the large blocks, which cannot be
corrected by the deblocking filter. This is especially important for HEVC because
of the large transform sizes allowed in the standard.

206 A. Norkin et al.

In case of a CTU-based processing, four lines of samples for the luma component
and two lines for the chroma components should be kept in a line buffer for in a
line buffer both the HEVC and H.264/AVC deblocking. The fourth line of samples
would also be modified by SAO in HEVC and is therefore delayed to be written
to the memory compared to H.264/AVC. Some additional memory is required for
keeping the SAO parameters (see Table 7.3).

7.7 Conclusions

HEVC defines two in-loop filters, deblocking and sample adaptive offset (SAO),
which significantly improve the subjective quality of decoded video sequences
as well as compression efficiency by increasing the quality of the reconstruct-
ed/reference pictures. The deblocking filter attenuates discontinuities on the block
boundaries, while SAO mainly corrects ringing artifacts caused by large transforms
and quantization and sample value offsets in certain regions of a picture caused
by coding of motion vectors. The complexity of the HEVC deblocking has
been significantly reduced compared to the H.264/AVC. Moreover, the HEVC
deblocking filter is highly parallelizable with parallelization down to 8 � 8 sample
blocks. Having lower computational complexity and being highly parallelizable,
the HEVC deblocking is less of a bottleneck in the decoder implementation than
the H.264/AVC deblocking and provides better trade-off between the computational
complexity and coding efficiency (subjective and objective quality). SAO is a new
in-loop filter, not present in H.264/AVC, which provides significant reduction of
ringing artifacts at relatively low decoding complexity. The deblocking and SAO
can also be implemented in the same processing unit, which simplifies CTU-based
encoding and decoding and reduces cost in hardware implementations.

References

1. Alshina E, Alshin A, Park JH (2012) AHG5: on bypass coding for SAO syntax elements, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J0043, Stockholm, July
2012

2. Alshina E, Alshin A, Park JH (2012) Encoder modification for SAO, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-J0044, Stockholm, July 2012

3. Alshina E, Alshin A, Park JH, Fu C-M, Huang Y-W, Lei S (2012) AHG5/AHG6: on reducing
context models for SAO merge syntax, Joint Collaborative Team on Video Coding Coding
(JCT-VC), Document JCTVC-J0041, Stockholm, July 2012

4. Alshina E, Alshin A, Park JH, Laroche G, Gisquet C, Onno P (2012) AHG6: on SAO type
sharing between U and V components, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-J0045, Stockholm, July 2012

5. Bjøntegaard G (2001) Calculation of average PSNR differences between RD-curves, ITU-T
SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-M33, Austin, Apr. 2001

7 In-Loop Filters in HEVC 207

6. Bossen F (2013) Common test conditions and software reference configurations, Joint Collab-
orative Team on Video Coding (JCT-VC), Document JCTVC-L1100, Geneva, Jan. 2013

7. Fu C-M, Chen C-Y, Huang Y-W, Lei S (2010) TE10 Subtest 3: Quadtree-based adaptive offset,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-C147, Guangzhou,
Oct. 2010

8. Fu C-M, C-Y Chen, Huang Y-W, Lei S (2011) CE8 Subset 3: picture quadtree adaptive offset,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-D122, Daegu, Jan.
2011

9. Fu C-M, Chen C-Y, Huang Y-W, Lei S (2011) Sample adaptive offset for HEVC. In: IEEE 13th
international workshop on multimedia signal processing (MMSP) 2011

10. Fu C-M, Chen C-Y, Huang Y-W, Lei S, Park S, Jeon B, Alshin A, Alshina E (2011) Sample
adaptive offset for chroma, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-F057, Torino, July 2011

11. Fu C-M, Chen C-Y, Tsai C-Y, Huang Y-W, Lei S (2011) CE13: sample adaptive offset with
LCU-independent decoding, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-E049, Geneva, Mar. 2011

12. Fu C-M, Huang Y-W, Lei S, Chong IS, Karczewicz M (2011) Non-CE8: offset coding in SAO,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G222, Geneva, Nov.
2011

13. Fu C-M, Alshina E, Alshin A, Huang Y-W, Chen C-Y, Tsai C-Y, Hsu C-W, Lei S, Park JH,
Han W-J (2012) Sample adaptive offset in the HEVC standard. IEEE Trans Circuits Syst Video
Technol 22(12):1755–1764

14. Fu C-M, Chen C-Y, Tsai C-Y, Huang Y-W, Lei S, Chong IS, Karczewicz M, Alshina E, Alshin
A (2012) E8.a.3: SAO with LCU-based syntax, Joint Collaborative Team on Video Coding
(JCT-VC), Document JCTVC-H0273, San Jose, Feb. 2012

15. Fu C-M, Huang Y-W, Lei S (2012) Non-CE1: bug-fix of offset coding in SAO interleaving
mode, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0168,
Geneva, Apr. 2012

16. Fuldseth A, Horowitz M, Xu S, Segall A, Zhou M (2011) Tiles, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-F335, Torino, July 2011

17. Han W-J, Min J, Kim IK, Alshina E, Alshin A, Lee T, Chen J, Seregin V, Lee S, Hong YM,
Cheon MS, Sklyakhov N, McCann K, Davies T, Park JH (2010) Improved video compression
efficiency through flexible unit representation and corresponding extension of coding tools.
IEEE Trans Circuits Syst Video Technol 20(12):1709–1720

18. Huang Y-W, Alshina E, Chong IS, Wan W, Zhou M (2012) Description of core experiment 1
(CE1): sample adaptive offset filtering, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-H1101, San Jose, Feb. 2012

19. Ikeda M, Suzuki T (2012) Non-CE10: introduction of strong filter, Joint Collaborative Team
on Video Coding, Document JCTVC-H0275, San Jose, Feb. 2012

20. Ikeda M, Tanaka J, Suzuki T (2011) CE12 Subset2: parallel deblocking filter, Joint Collabora-
tive Team on video coding (JCT-VC), Document JCTVC-E181, Geneva, Mar. 2011

21. ITU-T Rec. H.264 and ISO/IEC 14496-10 (2003) Advanced Video Coding
22. Kim W-S (2012) AHG6: SAO parameter estimation using non-deblocked pixels, Joint Collab-

orative Team on Video Coding (JCT-VC), Document JCTVC-J0139, Stockholm, July 2012
23. Kim W-S, Kwon D-K (2012) Non-CE8: method of visual coding artifact removal for SAO,

Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G680, Geneva,
Nov. 2012

24. Kim W-S, Kwon D-K (2012) CE8 Subset c: necessity of sign bits for SAO offsets, Joint Col-
laborative Team on Video Coding (JCT-VC), Document JCTVC-H0434, San Jose, Feb. 2012

25. Laroche G, Poirier T, Onno P (2011) On additional SAO band offset classifications, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G246, Geneva, Nov. 2011

26. Laroche G, Poirier T, Onno P (2012) Non-CE1: encoder modification for SAO interleaving
mode, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0184,
Geneva, Apr. 2012

208 A. Norkin et al.

27. List P, Josh A, Lainema J, Bjøntegaard G, Karczewicz M (2003) Adaptive loop filter. IEEE
Trans Circuits Syst Video Technol 13:614 -619

28. Lou J, Jagmohan A, He D, Lu L, Sun M-T (2009) H.264 deblocking speedup. IEEE Trans
Circuits Syst Video Technol 19(8):1178–1182

29. Maani E, Nakagami O (2012) Flexible band offset mode in SAO, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-H0406, San Jose, Feb. 2012

30. Minezawa A, Sugimoto K, Sekiguchi S (2012) Non-CE1: improved edge offset coding for
SAO, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0066, Geneva,
Apr. 2012

31. Minoo K, Baylon D (2012) AHG6: coding of SAO merge left and merge up flags, Joint Col-
laborative Team on Video Coding (JCT-VC), Document JCTVC-J0355, Stockholm, July 2012

32. Narroschke M, Esenlik S, Wedi T (2011) CE12 Subtest 1: results for modified decisions for
deblocking, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G590,
Geneva, Nov. 2011

33. Norkin A (2012) Non-CE1: non-normative improvement to deblocking filtering, Joint Collab-
orative Team on Video Coding (JCT-VC), Document JCTVC-K0289, Shanghai, Oct. 2012

34. Norkin A (2012) CE10.3: deblocking filter simplifications: Bs computation and strong filtering
decision, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H0473,
San Jose, Feb. 2012

35. Norkin A, Andersson K, Sjöberg R, Huang Q, An J, Guo X, Lei S (2011) CE12: Ericsson’s and
MediaTek’s deblocking filter, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-F118, Torino, July 2011

36. Norkin A, Andersson K, Fuldseth A, Bjøntegaard G (2012) HEVC deblocking filtering and
decisions. In: Proc. SPIE. 8499, Applications of Digital Image Processing XXXV, no. 849912,
Oct. 2012

37. Norkin A, Bjøntegaard G, Fuldseth A, Narroschke M, Ikeda M, Andersson K, Zhou M,
Van der Auwera G (2012) HEVC deblocking filter. IEEE Trans Circuits Syst Video Technol
22(11):1746–1754

38. Norkin A, Andersson K, Kulyk V (2013) Two HEVC encoder methods for block artifact
reduction. In: Proceedings of the IEEE international conference on visual communications
and image processing (VCIP) 2013, Kuching, Sarawak, 17–20 Nov. 2013

39. Norkin A, Andersson K, Sjöberg R (2013) AHG6: on deblocking filter and parameters
signaling, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-L0232,
Geneva, Jan. 2013

40. ITU-T Rec. H.265 and ISO/IEC 23008-2 (2013) High efficiency video coding
41. Sullivan GJ, Wiegand T (1998) Rate-distortion optimization for video compression. IEEE

Signal Processing Magazine, pp 74–90
42. Tan TK, Fujibayashi A, Suzuki Y, Takiue J (2012) AHG8: objective and subjective evaluation

of HM5.0, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H0116,
San Jose, Feb. 2012

43. Ugur K, Andersson KR, Fuldseth A (2010) Video coding technology proposal by Tandberg,
Nokia, and Ericsson, Joint Collaborative Team on Video Coding, Document JCTVC-A119,
Dresden, Apr. 2010

44. Van der Auwera G, Wang X, Karczewicz M, Narroschke M, Kotra A, Wedi T (2011) Support
of varying QP in deblocking, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-G1031, Geneva, Nov. 2011

45. Xu J, Tabatabai A (2012) AHG6: on SAO signaling, Joint Collaborative Team on Video Coding
(JCT-VC), Document JCTVC-J0268, Stockholm, July 2012

46. Yamakage T, Asaka S, Chujoh T, Karczewicz M, Chong IS (2011) CE12: deblocking filter
parameter adjustment in slice level, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-G174, Geneva, Nov. 2011

47. Zhou M, Sezer O, Sze V (2011) CE12 subset 2: test results and architectural study on de-
blocking filter without parallel on/off filter decision, Joint Collaborative Team on Video Coding
(JCT-VC), Document JCTVC-G088, Geneva, Nov. 2011

Chapter 8
Entropy Coding in HEVC

Vivienne Sze and Detlev Marpe

Abstract Context-Based Adaptive Binary Arithmetic Coding (CABAC) is a
method of entropy coding first introduced in H.264/AVC and now used in the latest
High Efficiency Video Coding (HEVC) standard. While it provides high coding
efficiency, the data dependencies in H.264/AVC CABAC make it challenging to
parallelize and thus limit its throughput. Accordingly, during the standardization
of entropy coding for HEVC, both aspects of coding efficiency and throughput
were considered. This chapter describes the functionality and design methodology
behind CABAC entropy coding in HEVC.

8.1 Introduction

Context-Based Adaptive Binary Arithmetic Coding (CABAC) [46] is a form of
entropy coding used in H.264/AVC [63] and also in HEVC [64]. Entropy coding is
a lossless compression scheme that uses the statistical properties to compress data
such that the number of bits used to represent the data is logarithmically proportional
to the probability of the data. For instance, when compressing a string of characters,
frequently used characters are each represented by a few bits, while infrequently
used characters are each represented by many bits. From Shannon’s information
theory [72], when the compressed data is represented in bits {0,1}, the optimal
average code length for a character with probability p is � log2 p.

V. Sze (�)
Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
e-mail: sze@mit.edu

D. Marpe
Fraunhofer Institute for Telecommunications Heinrich Hertz Institute (HHI), Berlin, Germany
e-mail: Detlev.Marpe@hhi.fraunhofer.de

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__8,
© Springer International Publishing Switzerland 2014

209

mailto:sze@mit.edu
mailto:Detlev.Marpe@hhi.fraunhofer.de

210 V. Sze and D. Marpe

Entropy coding is performed at the last stage of video encoding (and first stage
of video decoding), after the video signal has been reduced to a series of syntax
elements. Syntax elements describe how the video signal can be reconstructed at the
decoder. This includes the method of prediction (e.g., spatial or temporal prediction)
along with its associated prediction parameters as well as the prediction error signal,
also referred to as the residual signal. Note that in HEVC only the syntax elements
belonging to the slice segment data are CABAC encoded. All other high level
syntax elements are coded either with zero-order Exponential (Exp)-Golomb codes
or fixed-pattern bit strings. Table 8.1 shows the syntax elements that are encoded
with CABAC in HEVC and H.264/AVC. For HEVC, these syntax elements describe
properties of the coding tree unit (CTU), prediction unit (PU), and transform unit
(TU), while for H.264/AVC, the equivalent syntax elements have been grouped
together along the same categories in Table 8.1. For a CTU, the related syntax
elements describe the block partitioning of the CTU into coding units (CU), whether
the CU is intra-picture (i.e., spatially) predicted or inter-picture (i.e., temporally)
predicted, the quantization parameters of the CU, and the type (edge or band) and
offsets for sample adaptive offset (SAO) in-loop filtering performed on the CTU.
For a PU, the syntax elements describe the intra prediction mode or the motion data.
For a TU, the syntax elements describe the residual signal in terms of frequency
position, sign and magnitude of the quantized transform coefficients.

This chapter describes how CABAC entropy coding has evolved from
H.264/AVC to HEVC. While high coding efficiency is important for reducing
the transmission and storage cost of video, processing speed and area cost also need
to be considered in the development of HEVC in order to handle the demand for
higher resolutions and frame rates in future video coding systems. Accordingly,
both coding efficiency and throughput improvement tools are discussed. Section 8.2
provides an overview of CABAC entropy coding. Section 8.3 explains the design
considerations and techniques used to address both coding efficiency and throughput
requirements. Sections 8.4–8.7 describe how these techniques were applied to
coding tree unit coding, prediction unit coding, transform unit coding and context
initialization, respectively. Section 8.8 compares the coding efficiency, throughput
and memory requirements of HEVC and H.264/AVC for both common conditions
and worst case conditions.

8.2 CABAC Overview

The CABAC algorithm was originally developed within the joint H.264/AVC stan-
dardization process of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC
Moving Picture Experts Group (MPEG). In a first preliminary version, the new
entropy-coding method of CABAC was introduced as a standard contribution [44]
to the ITU-T VCEG meeting in January 2001. CABAC was adopted as one of two
alternative methods of entropy coding within the H.264/AVC standard. The other
method specified in H.264/AVC was a low-complexity entropy coding technique

8 Entropy Coding in HEVC 211

T
ab

le
8.

1
C

A
B

A
C

co
de

d
sy

nt
ax

el
em

en
ts

in
H

E
V

C
an

d
H

.2
64

/A
V

C

212 V. Sze and D. Marpe

Binarizer

Probability
Estimator &

Assigner

Regular
Arithmetic
Encoder

Bypass
Arithmetic
Encoder

syntax
element

regular/bypass
mode switch

bi

A

L

context
derivation

(b1,b2,...,bn)

),(
MPS

tibi ⊕v
),(

LPS
tip

bi−1

),,()1,1(
LPS

)1,1(
MPS1

(t−i−t−i−
i−

i−1,t) pvb=FpLPSbi

Context
Memory

p=0.5

bj

serial processing
of bins

adaptive prob. estimation

Muxbin-by-bin
processing

Fig. 8.1 CABAC block diagram (from the encoder perspective): Binarization, context modeling
(including probability estimation and assignment), and binary arithmetic coding. In red: Potential
throughput bottlenecks, as further discussed from the decoder perspective in Sect. 8.3.2

based on the usage of context-adaptively switched sets of variable-length codes, so-
called Context-Adaptive Variable-Length Coding (CAVLC). Compared to CABAC,
CAVLC offers reduced implementation cost at the price of lower compression
efficiency. Typically, the bit-rate overhead for CAVLC relative to CABAC is in
the range of 10–16 % for standard definition (SD) interlaced material, encoded at
Main Profile, and 15–22 % for high definition (HD) 1080p material, encoded at
High Profile, both measured at the same objective video quality and for the case that
all other used coding tools within the corresponding H.264/AVC Profile remain the
same [46, 48].

CABAC became also part of the first HEVC test model HM1.0 [53] together with
the so-called low-complexity entropy coding (LCEC) as a follow-up of CAVLC.
Later, during the HEVC standardization process, it turned out that to improve the
compression efficiency of LCEC, the complexity of LCEC had to be increased
to a point where LCEC was not significantly lower complexity than CABAC.
Thus, CABAC in its improved form, both with respect to throughput speed and
compression efficiency, became the single entropy coding method of the HEVC
standard.

The basic design of CABAC involves the key elements of binarization, context
modeling, and binary arithmetic coding. These elements are illustrated as the main
algorithmic building blocks of the CABAC encoding block diagram in Fig. 8.1.
Binarization maps the syntax elements to binary symbols (bins). Context modeling
estimates the probability of each non-bypassed (i.e., regular coded) bin based on
some specific context. Finally, binary arithmetic coding compresses the bins to bits
according to the estimated probability.

8 Entropy Coding in HEVC 213

Table 8.2 Examples of different binarizations

Truncated Truncated Exp-Golomb Fixed-Length
Unary (TrU) Rice (TRk) (EGk) (FL)

N Unary (U) cMaxD7 k D 1; cMaxD7 k D 0 cMaxD7

0 0 0 00 1 000
1 10 10 01 010 001
2 110 110 100 011 010
3 1110 1110 101 00100 011
4 11110 11110 1100 00101 100
5 111110 111110 1101 00110 101
6 1111110 1111110 1110 00111 110
7 11111110 1111111 1111 0001000 111

8.2.1 Binarization

The coding strategy of CABAC is based on the finding that a very efficient coding
of non-binary syntax element values in a hybrid block-based video coder, like
components of motion vector differences or transform coefficient level values, can
be achieved by employing a binarization scheme as a kind of preprocessing unit
for the subsequent stages of context modeling and arithmetic coding. In general,
a binarization scheme defines a unique mapping of syntax element values to
sequences of binary symbols, so-called bins, which can also be interpreted in terms
of a binary code tree. The design of binarization schemes in CABAC both for
H.264/AVC and HEVC is based on a few elementary prototypes whose structure
enables fast implementations and which are representatives of some suitable model-
probability distributions.

Several different binarization processes are used in HEVC including k-th
order truncated Rice (TRk), k-th order Exp-Golomb (EGk), and fixed-length (FL)
binarization. Parts of these forms of binarization, including the truncated unary
(TrU) scheme as the zero-order TRk binarization, were also used in H.264/AVC.
These various methods of binarization can be explained in terms of how they would
signal an unsigned value N . Examples are also provided in Table 8.2.

• Unary coding involves signaling a bin string of length N C 1, where the first N

bins are 1 and the last bin is 0. The decoder searches for a 0 to determine when
the syntax element is complete. For the TrU scheme, truncation is invoked for
the largest possible value cMax1 of the syntax element being decoded.

• k-th order truncated Rice is a parameterized Rice code that is composed of a
prefix and a suffix. The prefix is a truncated unary string of value N >> k,
where the largest possible value is cMax. The suffix is a fixed length binary
representation of the least significant bins of N ; k indicates the number of least

1cMax is defined by the standard for each relevant type of syntax element.

214 V. Sze and D. Marpe

significant bins. Note that for k D 0, the truncated Rice is equal to the truncated
unary binarization.

• k-th order Exp-Golomb code is proved to be a robust, near-optimal prefix-free
code for geometrically distributed sources with unknown or varying distribution
parameter. Each codeword consists of a unary prefix of length lN C1 and a suffix
of length lN C k, where lN D blog2..N >> k/ C 1/c [46].

• Fixed-length code uses a fixed-length bin string with length dlog2.cMax C 1/e
and with most significant bins signaled before least significant bins.

The binarization process is selected based on the type of syntax element. In some
cases, binarization also depends on the value of a previously processed syntax ele-
ment (e.g., binarization of coeff_abs_level_remainingdepends on the pre-
viously decoded coefficient levels) or slice parameters that indicate if certain modes
are enabled (e.g., binarization of partition mode, so-called part_mode, depends
on whether asymmetric motion partition is enabled). The majority of the syntax
elements use the binarization processes as listed above, or some combination of
them (e.g., cu_qp_delta_abs uses TrU (prefix) + EG0 (suffix) [98]). However,
certain syntax elements (e.g., part_mode and intra_chroma_pred_mode)
use custom binarization processes.

During the HEVC standardization process, special attention has been put on the
development of an adequately designed binarization scheme for absolute values of
transform coefficient levels. In order to guarantee a sufficiently high throughput,
the goal here was the maximization of bypass-coded bins under the constraint
of not sacrificing coding efficiency too much. This was accomplished by making
the binarization scheme adaptive based on previously coded transform coefficient
levels. More details on that are given in Sect. 8.6.5.

8.2.2 Context Modeling, Probability Estimation
and Assignment

By decomposing each non-binary syntax element value into a sequence of bins,
further processing of each bin value in CABAC depends on the associated coding-
mode decision, which can be either chosen as the regular or the bypass mode (as
described in Sect. 8.2.3). The latter is chosen for bins, which are assumed to be uni-
formly distributed and for which, consequently, the whole regular binary arithmetic
encoding (and decoding) process is simply bypassed. In the regular coding mode,
each bin value is encoded by using the regular binary arithmetic coding engine,
where the associated probability model is either determined by a fixed choice, based
on the type of syntax element and the bin position or bin index (binIdx) in the
binarized representation of the syntax element, or adaptively chosen from two or
more probability models depending on the related side information (e.g., spatial
neighbors as illustrated in Fig. 8.1, component, depth or size of CU/PU/TU, or
position within TU). Selection of the probability model is referred to as context

8 Entropy Coding in HEVC 215

modeling. As an important design decision, the latter case is generally applied to
the most frequently observed bins only, whereas the other, usually less frequently
observed bins, will be treated using a joint, typically zero-order probability model.
In this way, CABAC enables selective adaptive probability modeling on a sub-
symbol level, and hence, provides an efficient instrument for exploiting inter-symbol
redundancies at significantly reduced overall modeling or learning costs. Note that
for both the fixed and the adaptive case, in principle, a switch from one probability
model to another can occur between any two consecutive regular coded bins. In
general, the design of context models in CABAC reflects the aim to find a good
compromise between the conflicting objectives of avoiding unnecessary modeling-
cost overhead and exploiting the statistical dependencies to a large extent.

The parameters of probability models in CABAC are adaptive, which means
that an adaptation of the model probabilities to the statistical variations of the
source of bins is performed on a bin-by-bin basis in a backward-adaptive and
synchronized fashion both in the encoder and decoder; this process is called
probability estimation. For that purpose, each probability model in CABAC can take
one out of 126 different states with associated model probability values p ranging
in the interval Œ0:01875; 0:98125�. The two parameters of each probability model
are stored as 7-bit entries in a context memory: 6 bits for each of the 63 probability
states representing the model probability pLPS of the least probable symbol (LPS)
and 1 bit for �MPS, the value of the most probable symbol (MPS). The probability
estimator in CABAC is based on a model of “exponential aging” with the following
recursive probability update after coding a bin b at time instance t :

p
.tC1/
LPS D

(
˛ � p

.t/
LPS; if b D �MPS; i.e., an MPS occurs

1 � ˛ � .1 � p
.t/
LPS/; otherwise.

(8.1)

Here, the choice of the scaling factor ˛ determines the speed of adaptation: A value
of ˛ close to 1 results in a slow adaptation (“steady-state behavior”), while faster
adaptation can be achieved for the non-stationary case with decreasing ˛. Note
that this estimation is equivalent to using a sliding window technique [4, 65] with
window size W˛ D .1 � ˛/�1. In the design of CABAC, Eq. (8.1) has been used
together with the choice of

˛ D
�

0:01875

0:5

� 1
63

with min
t

p
.t/
LPS D 0:01875; (8.2)

and a suitable quantization of the underlying LPS-related model probabilities into
63 different states, to derive a finite-state machine (FSM) with tabulated transition
rules [46]. This table-based probability estimation method was unchanged in HEVC,
although some proposals for alternative probability estimators [1, 78] have shown
average bit rate savings of 0.8–0.9 %, albeit at higher computational costs.

Each probability model in CABAC is addressed using a unique context index
(ctxIdx), either determined by a fixed assignment or computed by the context

216 V. Sze and D. Marpe

derivation logic by which, in turn, the given context model is specified. A lot of
effort has been spent during the HEVC standardization process to improve the model
assignment and context derivation logic both in terms of throughput and coding
efficiency. More details on the specific choice of context models for selected syntax
elements in HEVC are given in Sect. 8.4–8.6.

8.2.3 Multiplication-Free Binary Arithmetic Coding:
The M Coder

Binary arithmetic coding, or arithmetic coding in general, is based on the principle
of recursive interval subdivision. An initially given interval represented by its lower
bound (base) L and its width (range) R is subdivided into two disjoint subintervals:
one interval of width

RLPS D pLPS � R; (8.3)

which is associated with the LPS, and the dual interval of width RMPS D R �
RLPS, which is assigned to the MPS. Depending on the binary value to encode,
either identified as LPS or MPS, the corresponding subinterval is then chosen as
the new coding interval. By recursively applying this interval-subdivision scheme
to each bin bj of a given sequence b D .b1; b2; : : : ; bN / of bins, the encoder finally
determines a value cb in the subinterval ŒL.N /; L.N / C R.N // that results after the
N th interval subdivision process. The (minimal) binary representation of cb is the
arithmetic code of the input bin sequence b. To ensure that finite-precision registers
are sufficient to represent R.j / and L.j / for all j 2 f1; 2; : : : ; N g, a renormalization
operation is required, whenever R.j / falls below a certain limit after one or more
interval subdivision process(es). By renormalizing R.j /, and accordingly L.j /, the
leading bits of the arithmetic code can be output as soon as they are unambiguously
identified.

On the decoder side, the sequence of encoded binary values can be easily
recovered by tracking the interval subdivision, including renormalization, according
to Eq. (8.3) step-by-step and by comparing the bounds of both subintervals to the
transmitted value representing the final subinterval. Note that the width R.N / of the
final subinterval is proportional to the product

QN
j D1 p.bj / of the individual model

probability p.bj / assigned to the bins bj of the bin sequence, such that for signaling
the final subinterval, the lower bound of the empirical entropy of the bin sequence
given by � log2

QN
j D1 p.bj / D � PN

j D1 log2 p.bj / is approximately achieved.
From a practical implementation point of view, the most costly operation

involved in binary arithmetic coding is given by the multiplication in Eq. (8.3).
Even worse, if probability estimation is based on a simple scaled-count estimator
using scaled cumulative frequency counts of bins, this operation may even involve
an integer division. A solution to this problem was already proposed during the

8 Entropy Coding in HEVC 217

H.264/AVC standardization process by using a design of a family of multiplication-
free binary arithmetic coders, which later became known as the modulo coder
(M coder) [43, 45]. The main innovative features of this design are given by
a table-based interval subdivision coupled with the above-mentioned FSM-based
probability estimation as well as a fast bypass coding mode. The former, which is
also the basis of what is called the regular coding mode of the M coder, will be
briefly reviewed next, followed by a short discussion of the latter aspect.

8.2.3.1 Regular Coding Mode

The basic idea of the M-coder approach of interval subdivision is to quantize the
range of possible interval widths induced by renormalization into a small number of
K cells. To further simplify matters, a uniform quantization with K D 2� is assumed
to be performed, resulting in a set W D fW0; W1; � � � ; WK�1g of representative
interval widths. Together with the representative set of LPS-related probability
values of the FSM given by P D fp0; p1; � � � ; pN �1g, this quantization enables
the approximation of the multiplication on the right-hand side of Eq. (8.3) by means
of a table of K � N pre-calculated product values fWk � pn j 0
 k < KI 0

n < N g in a suitable chosen integer precision. The entries of the corresponding
2-D lookup table TabRangeLPS are addressed by the (probability) state index n and
the quantization cell index k.R/ related to the given value of the interval range R.
Computation of k.R/ is easily carried out by a concatenation of a bit shift and a bit-
masking operation, where the latter can be interpreted as a modulo operation using
the operand K D 2� , hence the naming of the family of coders.

In the context of H.264/AVC, the optimal empirical choice of the free parameters
� D 2 and N D 64 was determined under the constraint of a maximum table size
of 2� � N
 256 bytes for the lookup table TabRangeLPS with each of its entries
being represented with 8 bits. This specific M-coder design of using a lookup table
TabRangeLPS with 4 � 64 entries was also adopted for HEVC. Please note that by
choosing a value of � D 0, the 2-D table TabRangeLPS degenerates to a 1-D table,
where for all possible values of R only one single representative interval width value
W is used for each of the N product values pn � R, where 0
 n < N . This choice
is equivalent to the subinterval division operation performed in the Q coder and its
derivatives of QM and MQ coder, as has been standardized in JBIG, JPEG, and
JPEG2000. Thus, the M-coder design can be interpreted as a generalization of the
Q-coder family.2 Compared to the QM/MQ coder, the M coder, being configured as
in H.264/AVC and HEVC, achieves an increase in throughput of 18 %, while at the
same time it provides bit-rate savings of 2–4 %, when evaluated in the CABAC
environment of H.264/AVC [43]. Interestingly, the throughput improvements of

2Please note that apart from the interval subdivision aspect there are some subtle technical
differences between (and also within) the coder families, such as concerning, e.g., probability
estimation, conditional exchange, carry-over handling, and termination.

218 V. Sze and D. Marpe

the M coder can be largely attributed to its unique bypass functionality, as being
reviewed in the next subsection, while its use of a larger lookup table for interval
subdivision generates the main effects in coding-efficiency gain; however, this
increased table size can also adversely affect the overall throughput gain of the
M coder.

8.2.3.2 Bypass Coding Mode

As already mentioned, most of the throughput improvements of the M coder relative
to the Q-coder technology can be attributed to its second innovative feature, which
is given by a bypass of the probability estimation for approximately uniform
distributed bins. In addition, the interval subdivision is substituted by a hard-
wired equipartition in this so-called bypass coding mode. In this way, the whole
encoding/decoding process (including renormalization) can be realized by nothing
more than a bit shift, a comparison, and for half of the symbols an additional
subtraction.

Bypass coding has become an even more important feature during the HEVC
standardization process. While in H.264/AVC bypass coding was mainly used
for signs and least significant bins of absolute values of quantized transform
coefficients, in HEVC the majority of possible bin values is handled through the
bypass coding mode. As noted above, this is also a consequence of carefully
designed binarization schemes, which already serve as a kind of near-optimal prefix-
free codes of the corresponding syntax elements.

8.2.3.3 Fast Renormalization

One of the major throughput bottlenecks in any arithmetic encoding and decoding
process is given by the renormalization procedure. Renormalization in the M coder
is required whenever the new interval range R after interval subdivision no longer
stays within its admissible domain. Each time a renormalization operation must be
carried out, one or more bits can be outputted at the encoder or, equivalently, have to
be read by the decoder. This process, as it is specified in H.264/AVC and HEVC, is
performed bit-by-bit and is controlled by some conditional branches to check each
time if further renormalization loops are required. Both conditional branching and
bitwise processing, however, constitute considerable obstacles to a sufficiently high
throughput.

As a mitigation of this problem, a fast renormalization policy for the M coder was
proposed in [48]. By replacing the conventionally bitwise performed operations in
the regular coding mode with byte-wise or word-wise processing, a considerably
increased decoder throughput of around 25 % can be achieved. The corresponding
non-normative, fully standard-compliant changes were integrated into the reference
software implementations of both H.264/AVC and HEVC. For more details, please
refer to [47, 48].

8 Entropy Coding in HEVC 219

8.2.3.4 Termination

For termination of the arithmetic codeword in the M coder a special, non-adapting
probability state is reserved. The corresponding probability state index is given
by n D 63 and the corresponding entries of TabRangeLPS deliver a constant
value of RLPS D 2. As a consequence, for each terminating syntax element, such
as end_of_slice_segment_flag, end_of_sub_stream_one_bit, or
pcm_flag, 7 bits of output are generated in the renormalization process. Two
more bits are needed to be flushed in order to properly terminate the arithmetic
codeword. Note that the least significant bit in this flushing procedure, i.e., the
last written bit at the encoder, is always equal to 1 and thus, represents the so-
called rbsp_stop_one_bit. Before packaging of the bitstream, the arithmetic
codeword is filled up for byte alignment with zero-valued alignment bits.

8.3 Design Considerations

Most of the proposals submitted to the joint Call for Proposals on HEVC in April
2010 already included some form of advanced entropy coding. Some of those
techniques were based on improved versions of CAVLC or CABAC, others were
using alternative methods of statistical coding, such as V2V (variable-to-variable)
codes [31] or PIPE (probability interval partitioning entropy) codes [50, 51, 102],
and a third category introduced increased capabilities for parallel processing on
a bin level [84], syntax element level [94, 96], or slice level [25, 28, 105]. In
addition, improved techniques for coding of transform coefficients, such as zero-
tree representations [2], alternate scanning schemes [40], or template-based context
models [55, 102], were proposed.

After an initial testing phase of video coding technology from the best perform-
ing HEVC proposals, it was decided to start the first HEVC test model (HM1.0)
[53] with two alternate configurations similar to what was given for entropy
coding in H.264/AVC: a high efficiency configuration based on CABAC and a
low-complexity configuration based on LCEC as a CAVLC surrogate. Interestingly
enough, the CABAC-based entropy coding of HM1.0 already included techniques
for improving both coding efficiency and throughput relative to its H.264/AVC-
related predecessor. To be more specific, a template-based context modeling scheme
for larger transform block sizes [49, 55] and a parallel context processing technique
for selected syntax elements of transform coefficient coding [10] were already
part of HM1.0. During the subsequent collaborative HEVC standardization phase,
more techniques covering both aspects of coding efficiency and throughput were
integrated, as will be discussed in more details in the following.

While CABAC inherently is targeting at high coding efficiency, its data depen-
dencies can cause it to be a throughput bottleneck, especially at high bit rates as was
already analyzed in the context of H.264/AVC [95]. This means that, without any
further provision, it might have been difficult to support the growing throughput

220 V. Sze and D. Marpe

requirements for future video codecs. Furthermore, since high throughput can
be traded-off for power savings using voltage scaling [14], the serial nature
of CABAC may limit the battery life for video codecs that reside on mobile
devices. This limitation is a critical concern, as a significant portion of video
codecs today are running on battery-operated devices. Accordingly, both coding
efficiency and throughput improvement tools as well as the trade-off between these
two requirements were investigated in the standardization of entropy coding for
HEVC. The trade-off between coding efficiency and throughput comes from the
fact that, in general, dependencies are a result of removing redundancy which, in
turn, improves coding efficiency; however, increasing dependencies usually makes
parallel processing more difficult which, as a consequence, may degrade throughput.
This section describes the various techniques used to improve both coding efficiency
and throughput of CABAC entropy coding for HEVC.

8.3.1 Brief Summary of HEVC Block Structures and CABAC
Coding Efficiency Improvements

In the evolutionary process from H.264/AVC to HEVC, improved coding efficiency
for CABAC entropy coding was addressed in a number of proposals, such as
[24, 102, 106]. The majority of coding-efficiency related CABAC proposals in the
HEVC standardization process was oriented towards transform coefficient coding,
since at medium to high bit rates the dominant part of bits is consumed by syntax
elements related to residual coding. As a consequence, this subsection will focus on
considerations that were made with regards to the specific CABAC design for those
syntax elements. Note, however, that due to the more consistent design of HEVC
in terms of tree structures for both partitioning of prediction blocks and transform
blocks, special care has also been taken to ensure an efficient modeling and coding
of the corresponding tree structuring elements. In addition, for new coding tools in
HEVC, such as block merging and sample adaptive offset (SAO) in-loop filtering,
additional assignments of binarization and context modeling schemes were needed.

Transform coding in HEVC is based on a tree-structured variable block size
approach with the corresponding quadtree structure referred to as residual quadtree
(RQT) [49, 102]. RQTs are nested into the leaves of another quadtree, the so-
called coding quadtree (CQT), which determines the subdivision of each block of
2N � 2N luma samples, referred to as a coding tree block (CTB) [49, 102]. The
block partitioning for both prediction and transform coding is the same for luma
and chroma picture component samples,3 and hence, a common coding and residual
quadtree syntax is used to signal the partitioning. As a result, the blocks of luma and
chroma samples and associated syntax elements are grouped together in a so-called
unit.

3There is one exception to this general rule in HEVC, which is discussed in more detail in Chap. 3.

8 Entropy Coding in HEVC 221

A transform unit (TU) aggregates the transform blocks (TBs) of luma and chroma
samples as well as the syntax elements used to represent the associated transform
coefficient levels. Each TU and the related luma and two chroma TBs are determined
as a leaf of the corresponding RQT. Supported TB sizes for both luma and chroma
are in the range from 4 � 4 to 32 � 32 samples, where the corresponding core
transforms are separable applications of a fixed-point approximation of the 1-D
Discrete Cosine Transform (DCT) for dyadically increasing lengths from 4 to 32
points [26]. An exception is given for 4 � 4 luma TBs of residual signals resulting
from intra-picture predicted blocks, where instead of the DCT-like core transform
a separable fixed-point approximation of the 1-D Discrete Sine Transform (DST) is
used [100].

Note that a prediction unit (PU) aggregates the prediction blocks (PBs) of
luma and chroma samples and the associated syntax elements like motion data.
A coding unit (CU) encapsulates the luma and chroma coding block (CB) samples
and the so-called prediction mode, i.e., the decision whether the corresponding
samples are coded using intra-picture or inter-picture prediction, as well as some
additional syntax elements. On the top level of the hierarchy, a coding tree unit
(CTU) comprises the CTBs of luma and chroma samples, the associated CQT syntax
structure and all CUs at the CQT leaves.

8.3.1.1 Coefficient Grouping into Subblocks

Given the larger variety of TB sizes, one of the primary goals of CABAC entropy
coding for transform coefficient data in HEVC was to achieve a design that uses
for all block sizes as much of the same logic and the same procedures as possible.
Although at first glance this objective seems to be somehow unrelated to coding
efficiency, it turns out that at least one particular element leading to such a unified
design is also crucial for achieving high coding efficiency. This coding element is
given by the grouping of coefficients into so-called subblocks of size 4 � 4 for
transform blocks with size greater than 4 � 4: Subblocks were first proposed in
[49, 55, 102] and became part of HM1.0. In the subsequent HEVC development
process, their use was iteratively refined and extended in a way as will be explained
in more detail in Sect. 8.6.

8.3.1.2 Hierarchy of Significance Flags

Since for most common coding conditions, a large portion of transform coefficients
is quantized to zero, or equivalently, the representation of the residual signal in the
DCT-/DST-like basis functions is supposed to be sparse, a hierarchical structured set

222 V. Sze and D. Marpe

of four different significance flags4 is introduced in HEVC to reduce the number of
individual significance flags to be transmitted. This hierarchy of syntax elements
also reflects the hierarchical processing of TBs within the RQT as well as the
processing of subblocks within a given TB.

The use of so-called coded block flags (CBF), indicating the occurrence of
significant, i.e., nonzero transform coefficients in a TB, was already part of
H.264/AVC CABAC-based residual coding. In HEVC, this concept was extended
to also cover the RQT root on the top level of the hierarchy as well as the subblock
on a lower level of the hierarchy. Consequently, there are a rqt_root_cbf, at
least for RQT roots in inter-predicted CUs, cbf_luma, cbf_cb, and cbf_cr for
the visited TBs of the three color components, and a coded_sub_block_flag
(CSBF) for each visited subblock in a TB. On the lowest level of the hierarchy, for
each visited subblock a so-called significance map indicates the location of nonzero
coefficients for each scan position in a subblock.

This hierarchy of significance flags is complemented by the syntax elements
indicating the last significant scan position in a TB, which somehow serve as
an entry point into each significant TB and which is equivalent to signaling the
insignificance of a partial area of a TB. The latter concept differs from H.264/AVC,
where for each significant_coeff_flag (SIG) with a value of one, a last
_significant_coefficient_flag (LAST) is signaled indicating if the
current scan position is the last nonzero coefficient inside the TB. Note that this
latter signaling scheme is equivalent to using a TrU binarization (with inverted bin
values) for the number of nonzero coefficients in a TB, such that each bin of the
resulting bin sequence is intertwined with the corresponding nonzero significance
flag. This design aspect of mixing two flags on a bin level in H.264/AVC was later
found to be critical in terms of throughput, as will be discussed in Sect. 8.6.

8.3.1.3 Context Modeling for Coding of Significance Flags

Particular care has been taken to properly specify the context models for coding
of significance flags. For instance, modeling of the CBF is based on the RQT
depth, while that for the CSBF is using neighboring CSBF information. For coding
of the significance map, which typically consumes most of the bits in HEVC
transform coding, additional dependencies between neighboring elements have been
exploited, at least for TBs larger than 4 � 4: Initially, for that purpose a local
template was proposed [49, 55, 102] and adopted for HM1.0. Although this design
provides high coding efficiency, it introduces some critical data dependencies.
As a solution to this problem, a combination of position-based information (as
used in H.264/AVC) and template-based neighborhood information was finally
adopted for context modeling of significance map entries [41, 77]. This particular

4Note that the term “significance flag” is interpreted here and in the following in a much broader
sense than originally used in the context of H.264/AVC.

8 Entropy Coding in HEVC 223

probability Context
Modeler

Arithmetic
Decoder

bitstream

De-
Binarizer

bin syntax
elements

range
update

3
1

context update 2

binIdx 4

Fig. 8.2 Three key operations in CABAC (from a decoder perspective): Binarization, Context
Modeling/Selection and (Binary) Arithmetic Coding. Feedback loops in the decoder are high-
lighted with dashed lines

example also illustrates how both aspects of coding efficiency and throughput were
considered during the HEVC standardization process in a balanced way. More on
the throughput aspects is given in the next subsection, while the details of context
modeling for all syntax elements related to residual coding are provided in Sect. 8.6.

8.3.2 CABAC Throughput Bottlenecks

CABAC, as originally designed for H.264/AVC and also, as initially selected for
the HEVC standardization starting point in HM1.0, has some serious throughput
issues (particularly for decoder implementations at higher bit rates) [80, 95]. The
throughput of CABAC is determined based on the number of binary symbols (bins)
that it can process per second. The throughput can be improved by increasing the
number of bins that can be processed in a cycle. However, the data dependencies
in CABAC make processing multiple bins in parallel difficult and costly to achieve.
These dependencies result in feedback loops in the CABAC decoder as shown in
Fig. 8.2, and can be described as follows:

1. The updated range is fed back for recursive interval subdivision.
2. The updated context is fed back for probability estimation.
3. The context modeler selects the probability model based on the type of syntax

element and, as already noted above, for selected syntax elements, based on some
derivation process that involves other previously decoded bin values or other
relevant side information. At the decoder, for non-binary syntax elements, the
decoded bin value is fed back to determine whether to continue processing the
same syntax element or to switch to another syntax element. If a switch occurs,
the value of the decoded bin may also be used to determine which syntax element
to decode next.

4. The context modeler may also select the probability model based on the bin
position in the syntax element (binIdx). At the decoder, the decoded bin value
is fed back to determine whether to increment binIdx and continue to decode
the current syntax element, or set binIdx equal to 0 and switch to another syntax
element.

224 V. Sze and D. Marpe

SIG(i)

0 1 LAST(i)

SIG(i+1)

EOB

EOB

0

1

i>= i1

i < i1

0
1

LAST(i)

SIG(i+2)

EOB

EOB

0

1

(i+1)>= i1

(i+1) < i1

0 1
LAST(i)

SIG(i+3)

EOB

EOB

0

1

(i+2)>= i1

(i+2)< i1

1
LAST(i)

0

(i+3)>= i1

(i+3)< i1
SIG(i+4)

EOB

Fig. 8.3 Context speculation required to achieve 5� parallelism when processing the sig-
nificance map in H.264/AVC. Notation: i = coefficient position; i1 = MaxNumCoeff
(BlockType)�1; EOB = end of block; SIG = significant_coeff_flag; LAST = last_
significant_coeff_flag

Note that the feedback loops have different degrees of impact on throughput.
The range update (1) and context update (2) feedback loops are simpler than the
context modeling loops (3, 4) and thus do not affect throughput as severely. If the
context of a bin depends on the value of another bin being decoded in parallel,
then speculative computations are required, which increases area cost and critical
path delay [94]. The amount of speculation can grow exponentially with the number
of parallel bins, which limits the throughput that can be achieved [80]. Figure 8.3
shows an example of the speculation tree for significance map in H.264/AVC. Thus
the throughput bottleneck is primarily due to the context modeling dependencies.

8.3.3 Summary of Techniques for CABAC Throughput
Improvements

Several techniques were used to improve the throughput of CABAC in HEVC [88].
There was a lot of effort spent in determining how to use these techniques with
minimal coding loss. They were applied to various parts of entropy coding in HEVC
and will be referred to throughout the rest of this chapter.

8.3.3.1 Reduce Regular Coded Bins

The throughput is limited for regular coded bins due to the data dependencies
described in Sect. 8.3.2. However, it is easier to process bypass coded bins in parallel
since they do not have the data dependencies related to context modeling (i.e.,
feedback loops 2, 3 and 4 in Fig. 8.2). In addition, arithmetic coding for bypass bins
is simpler as it only requires a right shift versus a table look up for regular coded
bins. Thus, the throughput can be improved by reducing the number of regular coded
bins and using bypass coded bins instead [16, 54, 58, 59].

8 Entropy Coding in HEVC 225

8.3.3.2 Group Bypass Coded Bins

Multiple bypass bins can be processed in the same cycle only if they occur
consecutively within the bitstream. Thus, bins should be reordered such that bypass
coded bins are grouped together in order to increase the likelihood that multiple bins
are processed per cycle [19, 67, 87].

8.3.3.3 Group Bins with Same Context

Processing multiple regular coded bins in the same cycle often requires specula-
tive calculations for context modeling. The amount of speculative computations
increases if bins using different contexts and context modeling logic are interleaved,
since numerous combinations and permutations must be accounted for. Thus, to
reduce speculative computations, bins should be reordered such that bins with the
same contexts and context modeling logic are grouped together so that they are
likely to be processed in the same cycle [9, 10, 73]. This also reduces context
switching resulting in fewer memory accesses, which also increases throughput
and reduces power consumption. This technique was first introduced in [10] and
was referred to as parallel context processing (PCP) throughout the standardization
process.

8.3.3.4 Reduce Context Modeling Dependencies

Speculative computations are required for multiple bins per cycle decoding due to
the dependencies in the context modeling. For instance, this is an issue when the
context modeling for the next bin depends on the decoded value of the current bin.
Reducing these dependencies simplifies the context modeling logic and reduces the
amount of speculative calculations required to process multiple bins in parallel [18,
80, 85].

8.3.3.5 Reduce Total Number of Bins

In addition to increasing the throughput, it is desirable to reduce the workload itself
by reducing the total number of bins that need to be processed. This can be achieved
by changing the binarization, inferring the value of some bins,5 and sending higher
level flags to avoid signaling redundant bins [12, 56, 59].

5The benefit of inferring bins must be traded-off with a potential increase in context selection
complexity.

226 V. Sze and D. Marpe

8.3.3.6 Reduce Parsing Dependencies

As parsing with CABAC may constitute a throughput bottleneck, it is important to
minimize any dependency on other video decoding processes, which could cause
CABAC to stall or may even prevent a successful parsing process in case of picture
loss due to transmission errors [7, 79, 108] (see Sect. 8.5.1.1). Ideally the parsing
process should be decoupled from all other decoding processes, which actually is the
case for CABAC in H.264/AVC. Decoupling parsing from the sample reconstruction
process is also important when entropy decoupling is used, i.e., when a large frame
level buffer is inserted between the entropy decoder and the rest of the decoder to
absorb the variance in the bit-rate and pixel-rate workloads, respectively.

8.3.3.7 Reduce Memory Requirements

Memory accesses often contribute to the critical path delay. Thus, reducing memory
storage requirements is desirable as fewer memory accesses increases throughput as
well as reduces implementation cost and power consumption [81, 90].

8.4 Coding Tree Unit and Coding Unit Syntax Elements

In HEVC, a picture is partitioned into a regular grid of disjoint square blocks of
2N � 2N luma samples and, in case of 4:2:0 color sampling, corresponding square
blocks of 2N �1 � 2N �1 chroma samples. The parameter N D 4; 5, or 6 can be
chosen by the encoder and transmitted in the sequence parameter set (SPS), such
that the corresponding coding tree units represent luma CTBs of size 16 � 16,
32 � 32, or 64 � 64 samples, respectively. The CTU syntax elements describe how
the corresponding CTBs can be further partitioned into smaller coding blocks by use
of the coding quadtree and how the method of sample adaptive offset (SAO) in-loop
filtering is performed on the reconstructed luma and chroma samples belonging to
the CTU.

Within a picture, an integer number of CTUs can be grouped into a slice.
Each slice itself consists of one (leading) independent slice segment and zero
or more subsequently ordered dependent slice segments. A flag called end_of
_slice_segment_flag is sent to indicate the last CTU in a slice segment.
In addition, tiles and wavefront parallel processing, which are introduced in
Chap. 3, can be used to fragment the slice segment into multiple substreams,6 each
being represented by its own CABAC codeword. Therefore, if end_of_slice
_segment_flag indicates that it is not the last CTU in a slice segment, a flag
called end_of_sub_stream_one_bit is used to indicate whether it is the

6Slice segments can also be used to fragment tiles and wavefronts into substreams.

8 Entropy Coding in HEVC 227

1

a b
2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 42 44

45 46 47 48

substreams

1 2 3 4

9 10 11 12

17 18 19 20

25 26 27 28

33 34 35 36

41 42 43 44

5 6 7 8

13 14 15 16

21 22 23 24

29 30 31 32

37 38 39 40

45 46 47 48

substreams

Fig. 8.4 These two examples illustrate which CTUs are terminated when slice segments
are divided into substreams using tiles and wavefront parallel processing. Values of
(end_of_slice_segment_flag, end_of_sub_stream_one_bit) are given for each
configuration. (a) Tiles: CTU 12, 24, and 36 have (0, 1); CTU 48 (1, not signaled); and the rest
of the CTUs have (0,0). (b) Wavefront parallel processing: CTU 8, 16, 24, 32 and 40 have (0, 1);
CTU 48 (1, not signaled); and the rest of the CTUs have (0,0)

start code CTU 1-12 BA CTU 13-24 BA CTU 25-36 BA CTU 37-48 BA BA 3 entry points

slice_segment_header() slice_segment_data() rbsp_slice_segment_trailing_bits()

substream substream substream substream

Fig. 8.5 Ordering of the bitstream for the tiles example in Fig. 8.4a. CABAC needs to be
terminated before byte alignment (BA) as shown by the black boxes. Entry points for substreams
are sent in slice_segment_header()

last CTU of the corresponding substream.7 An example of this is illustrated in
Fig. 8.4. Both end_of_slice_segment_flag and end_of_sub_stream
_one_bit are coded using the terminating mode of the arithmetic coding engine.
This is required since at the end of a slice segment or a substream, the arithmetic
coding engine must be flushed and the resulting CABAC codeword must be byte
aligned before, at least in the former case, inserting the startcode for the next slice or
entry point for the next slice segment. Figure 8.5 shows an example of the locations
of CABAC termination within a bitstream.

8.4.1 Coding Block Structure

The coding block structure is determined by the coding quadtree which is signaled
by a flag called split_cu_flag at each of its nodes to indicate whether a given
coding block should be further subdivided into four smaller CBs. There is a strong
spatial correlation between the chosen CQT depth of neighboring CBs, i.e., the

7Note that the value of end_of_sub_stream_one_bit is always 1 and it is only sent for the
last CTU of a substream.

228 V. Sze and D. Marpe

block sizes of neighboring CBs, thus the context selection for split_cu_flag
depends on the relative depth of the top and left neighboring CBs compared to that of
the current CB. Note that in H.264/AVC the partitioning information is sent together
with other data as aggregated syntax elements mb_type and sub_mb_type with
different ranges of allowed values and hence different binarization schemes for
different slices.8 This kind of aggregating different information in one single syntax
element is mostly due to historical reasons, reflecting the circumstances that earlier
video coding standards (including H.264/AVC) were designed under the regime
of VLC-based entropy coding, where alphabet extensions are used to circumvent
the lower bound of 1 bit per symbol. Thus, by allowing the signaling of a coding
quadtree structure with a one-bin syntax element, i.e., the split_cu_flag
at each node, HEVC is much more flexible and allows many more coding and
prediction block structures than H.264/AVC, even when choosing a CTB size of
16 � 16 luma samples and ignoring the fact that HEVC doesn’t allow for inter-
predicted 4 � 4 luma blocks, as discussed in Chap. 3.

8.4.2 Prediction Mode and Prediction Block Structure

In P and B slices, a cu_skip_flag is sent for each CU to indicate whether
all associated CBs are coded using skip mode, i.e., by using the so-called merge
mode for inter-picture prediction (as explicitly described in Sect. 8.5) and not
sending any residual data. To leverage spatial correlation of neighboring CUs, the
context of the cu_skip_flag depends on whether the top and left neighboring
CUs are also skipped. For every non-skipped CU, a regular coded flag called
pred_mode_flag is sent to indicate the prediction mode, i.e., the decision
whether the CU is either intra coded or inter coded.9

Every non-skipped CU may be further subdivided into PUs, as shown for the
example in Fig. 8.6. The syntax element part_mode indicates if and how each CU
is partitioned for the purpose of prediction. The choice of prediction block structures
for each CU depends on whether the CU is intra-coded or inter-coded; accordingly,
part_mode is binarized and coded differently for intra-coded CUs and inter-coded
CUs, as shown in Fig. 8.7.

Intra-coded CUs can have a single PU (referred to as PART_2Nx2N) equal to the
size of the CU, or be subdivided into four smaller PUs (referred to as PART_NxN).
PART_NxN, however, is only allowed when the CU size is equal to the minimum
allowed CU size. If the CU size is greater than the minimum allowed CU size,

8In H.264/AVC, mb_type and sub_mb_type are used to represent the following equivalent
information in HEVC: split_cu_flag, pred_mode_flag, part_mode, pcm_flag,
inter_pred_idc, coded block pattern (cbf_luma, cbf_cr, cbf_cb) and intra prediction
mode for 16 � 16 intra-coded PU.
9pred_mode_flag is not sent for CUs in I slices since they are all intra-coded.

8 Entropy Coding in HEVC 229

Coding
Tree Unit

(CTU)

skip

Asymmetric
Motion Partition

Divide into
coding units

(CU) with
quad tree

Divide into
prediction
units (PU)

Fig. 8.6 A coding tree unit is subdivided into CUs along the associated coding quadtree. Each
resulting CU may be further subdivided into PUs. The intra-coded CUs are in blue while inter-
coded CUs are in orange. Note that the figure only shows the corresponding CTB, CBs, and PBs
of the luma component

split_cu_flag is used instead of part_mode to avoid redundant signaling.
For instance, if the minimum CU size is 8 � 8 in terms of luma samples, a CU
of size 16 � 16 with four 8 � 8 PUs is signaled with split_cu_flagD 1,
and part_modeDPART_2Nx2N rather than split_cu_flagD 0 and part
_modeDPART_NxN. Accordingly, part_mode is not signaled but inferred to be
PART_2Nx2N when the CU size is greater than the minimum allowed CU size. If
the CU size is equal to the minimum allowed CU size, part_mode is coded using
a flag with a fixed context for a given slice type.

Inter-coded CUs have more prediction partitioning options than intra-coded
CUs. In addition to PART_2Nx2N and PART_NxN, inter-coded CU can also
be subdivided into two rectangular PUs in either horizontal (PART_Nx2N) or
vertical directions (PART_2NxN). In case of enabling the so-called asymmetric
motion partitioning (AMP), the additional prediction partitioning possibilities
PART_2NxnU, PART_2NxnD, PART_nLx2N, and PART_nRx2N are supported.
Custom binarization is used for part_mode as shown in Fig. 8.7b. The first bin
indicates whether or not the CU is partitioned into smaller PUs. If the CU size is
greater than the minimum allowed CU size, the second bin indicates the direction
of the partition (vertical or horizontal), the third bin indicates whether AMP is used
and if so, then a fourth bin is sent to indicate which asymmetric partition is used in

230 V. Sze and D. Marpe

part_mode CU Size > min CU Size CU Size = min CU Size

PART_2Nx2N Inferred 1

PART_NxN Not Allowed 0

part_mode

CU Size > min CU Size CU Size = min CU Size

AMP
disabled

AMP enabled
CU Size =

8x8
CU Size >

8x8

PART_2Nx2N 1 1 1 1

PART_Nx2N 0 1 0 1 1 0 1 0 1

PART_2NxN 0 0 0 0 1 0 0 0 0 1

PART_NxN 0 0 0

PART_2NxnU 0 1 0 0

PART_2NxnD 0 1 0 1

PART_nLx2N 0 0 0 0

PART_nRx2N 0 0 0 1

Partition into smaller PU
Direction of PU

Use Asymmetric Partitions (AMP)

P
ar

ti
ti

o
n

 in
to

 s
m

al
le

r
P

U

P
ar

ti
ti

o
n

 in
to

 s
m

al
le

r
P

U

D
ir

ec
ti

o
n

 o
f

P
U

D
ir

ec
ti

o
n

 o
f

P
U

Select AMP

Tr
u

n
ca

te
d

 u
n

ar
y

fo
r

P
U

 s
iz

e

P
ar

ti
ti

o
n

 in
to

 s
m

al
le

r
P

U

a

b

Fig. 8.7 Context selection and binarization of part_mode. Underlined symbols are bypass
coded. (a) Intra-coded CU, (b) inter-coded CU

the given direction. If the CU size is equal to the minimum allowed CU size, AMP
is not allowed and truncated unary coding is used to indicate if the partitions are
PART_Nx2N, PART_2NxN, and PART_NxN, respectively.10 A different context is

10Note that the minimum allowed inter-coded PART_NxN size is 8 � 8, so for CU size equal to
8 � 8, the only allowed partitions are PART_2NxN and PART_Nx2N, and cMax of 2 is used for
truncated unary.

8 Entropy Coding in HEVC 231

used for the first and second bin to estimate the probabilities of whether the PU is
partitioned into smaller PUs, and the direction of the PU. Two different contexts
are used for the third bin depending on when the CU size is greater or equal to the
minimum allowed CU size. In the former, the context is based on the probability
of whether asymmetric partitions are used, while in the latter, the context is based
on the probability of whether PART_NxN is used. To reduce the number of regular
coded bins, the fourth bin (for AMP) is bypass coded.

8.4.3 Signaling of Special Coding Modes

HEVC supports two special coding modes, which are invoked on a CU level: the
so-called I_PCM mode and the lossless coding mode. Both modes, albeit similar in
appearance to some degree, serve different purposes and hence, use different syntax
elements for providing different functionalities.

A pcm_flag is sent to indicate whether all samples of the whole CU are coded
with pulse code modulation (PCM), such that prediction, transform, quantization,
and entropy coding as well as their counterparts on the decoder side are simply
bypassed. This I_PCM mode, however, is only allowed for intra-coded CUs with
prediction partitioning mode PART_2Nx2N.11 The pcm_flag is coded with the
termination mode of the arithmetic coding engine, since in most cases I_PCM mode
is not used, and if it is used, the arithmetic coding engine must be flushed and the
resulting CABAC codeword must be byte aligned before the PCM sample values can
be written directly into the bitstream with fixed length codewords.12 This procedure
also indicates that the I_PCM mode is in particular useful in cases, where the
statistics of the residual signal would be such that otherwise, an excessive amount of
bits would be generated when applying the regular CABAC residual coding process.

The option of lossless coding, where for coding of the prediction residual both the
transform and quantization (but not the entropy coding) are bypassed, is also enabled
on a CU level and indicated by a regular coded flag called cu_transquant_
bypass_flag. The resulting samples of the losslessly represented residual signal
in the spatial domain are entropy coded by the CABAC residual coding process
(see Sect. 8.6), as if they were conventional transform coefficient levels. Note that
in lossless coding mode, both in-loop filters are also bypassed in the reconstruction
process (which is not necessarily the case for I_PCM), such that a mathematically
lossless (local) reconstruction of the input signal is achieved.

11I_PCM is not allowed for intra-coded 4 � 4 blocks.
12Note that the PCM sample bit depth (i.e., wordlength) for luma and chroma samples can be
specified independently in the SPS.

232 V. Sze and D. Marpe

8.4.4 Signaling of Block-Based Quantization Parameter
Change

In the regular, i.e., lossy residual coding process, a different quantizer step size
can be used for each CU to improve bit allocation, rate control, or both. Rather
than sending the absolute quantization parameter (QP), the difference in QP steps
relative to the slice QP is sent in the form of a so-called delta QP. This functionality
can be enabled in the picture parameter set (PPS) by using the syntax element cu
_qp_delta_enabled_flag.

In H.264/AVC, mb_qp_delta is used to provide the same instrument of delta
QP at the macroblock level. The value of mb_qp_delta can range from �.26 C
QpBdOffsetY=2) to 25 C QpBdOffsetY=2. For 8-bit video, this is �26 to 25, while
for 10-bit video this is �32 to 31. mb_qp_delta is unary coded and thus requires
up to 53 bins for 8-bit video and 65 bins for 10-bit video. All bins are regular coded.

In HEVC, delta QP is represented by the two syntax elements cu_qp_delta
_abs and cu_qp_delta_sign_flag, if cu_qp_delta_enabled_flag
in the PPS indicates so. The sign is sent separately from the absolute value, which
reduces the average number of bins by half [23]. cu_qp_delta_sign_flag
is only sent if the absolute value is non-zero. The absolute value is binarized with
TrU (cMax=5) as the prefix and EG0 as the suffix [98]. The prefix is regular coded
and the suffix is bypass coded. The first bin of the prefix uses a different context
than the other four bins in the prefix (which share the same context) to capture the
probability of having a zero-valued delta QP. Note that syntax elements for delta
QP are only signaled for CUs that have non-vanishing prediction errors (i.e., at least
one non-zero transform coefficient). Conceptually, the delta QP is an element of
the transform coding part of HEVC and hence, can also be interpreted as a syntax
element that is always signaled at the root of the RQT, regardless which transform
block partitioning is given by the RQT structure. Table 8.3 shows examples of how
delta QP is signaled for H.264/AVC and HEVC.

8.4.5 Signaling of SAO Parameters

SAO is a form of in-loop filtering that was introduced in HEVC. It is used to process
the output of samples from the deblocking filter process and is the last step of the
decoding process. SAO involves sample based processing rather than block based
processing. There are two types of filtering: edge offset and band offset.

Edge offset (EO) involves comparing the sample and its neighboring sample
values in one of four angular directions (horizontal, vertical, 45ı, 135ı).13 The
sample is compared to its neighbors in the selected direction (e.g., the sample has
a lower value than both its neighbors); based on the comparison, the sample is

13Direction is also referred to as class in the HEVC specification.

8 Entropy Coding in HEVC 233

Table 8.3 Coding of delta QP in HEVC and H.264/AVC

Underlined symbols are bypass coded

assigned to a category, which determines the offset that is added to the sample.
The value of the offset for a given category is set by the encoder. Band offset (BO)
involves dividing the intensity range into four bands and then adding a different
offset to the sample depending which band its sample intensity belongs to. For more
details on SAO, please refer to Chap. 7.

The type, direction and offsets used to define the SAO filter can change for each
CTB; however, all samples belonging to a CTB are processed with the same SAO
filter (but luma and chroma CTBs may use different SAO filters). The SAO type is
signaled using sao_type_idx_luma and sao_type_idx_chromawith TrU
binarization. The first bin indicates whether the SAO filter is enabled and is regular
coded, while the second bin indicates if edge or band offset is used and is bypass
coded.

If edge offset is used, the direction of the edge is signaled using sao_eo
_class_luma and sao_eo_class_chromawith FL binarization of two bins,
all of which are bypass coded. If band offset is used, four sao_band_position
syntax elements are signaled to indicate the start position of each band with a FL
binarization of five bins, all of which are bypass coded.

For both types of SAO filtering, four sao_offset_abs are signaled (one for
each category or band) using TrU with cMax computed by Eq. (8.4) and all bins are
bypass coded.

cMax D .1 << .min.bitDepth; 10/ � 5// � 1 (8.4)

234 V. Sze and D. Marpe

Table 8.4 Differences in signaling between CTU/CU layer in HEVC and MB layer in H.264/AVC

HEVC H.264/AVC

Prediction and Coding
Block Structure and
Prediction Mode

cu_skip_flag,
split_cu_flag,
pred_mode_flag,
part_mode

mb_skip_flag, mb_type,
sub_mb_type

Maximum number of
bins for delta QP

5 (regular), 10 (bypass) 53 (regular)

Maximum number of
bins for SAO
parameters

4 (regular), 113 (bypass) n/a

For the band offset, the sao_offset_sign is signaled only when the offset is
non-zero to reduce the total number of bins [36], while for edge offset the sign is
inferred from the category [40].

To leverage the spatial correlation across CTBs, sao_merge_left_flag and
sao_merge_up_flag are used to indicate if SAO parameters can be inherited
from neighboring CTBs, which reduces signaling overhead. Both of these flags are
regular coded using separate context models.

Significant effort was made to reduce the number of regular coded bins required
to represent SAO filter syntax elements. As a result, the only regular coded bins are
the merge flags and the first bin of the sao_type_idx_luma and sao_type
_idx_chroma with the latter indicating whether SAO is enabled for luma and
chroma CTBs, respectively.

8.4.6 Comparison of HEVC and H.264/AVC

Table 8.4 highlights the differences in signaling between the CTU/CU layer in
HEVC and the macroblock (MB) layer in H.264/AVC, when processing 8-bit video.
For a comparable block partitioning, HEVC typically produces fewer regular coded
bins than H.264/AVC. At the same time, some of those regular coded bins in
addition to those of the skip flag are adaptively selected based on CU depth, size
and neighbors in HEVC, which improves coding efficiency relative to H.264/AVC.
In general, however, the total amount of bits spent for signaling at the CTU/CU or
MB layer is lower by more than an order of magnitude compared to the total amount
of bits spent for transform coefficient level coding. As already discussed above and
summarized in Table 8.4, the majority of bypass bins for the SAO parameters are due
to the signaling of the offsets, while for H.264/AVC an excessive number of bins is
only generated in the rare cases where large delta QP values have to be transmitted.

8 Entropy Coding in HEVC 235

8.5 Prediction Unit Syntax Elements

The prediction unit (PU) syntax elements describe how the prediction is performed
in order to reconstruct the samples belonging to each PU. Coding efficiency
improvements have been made in HEVC for both modeling and coding of motion
parameters and intra prediction modes. While H.264/AVC uses a single motion
vector predictor (unless direct mode is used) and a single most probable mode
(MPM), HEVC uses multiple candidate predictors or MPMs together with an index
or flag for signaling the selected predictor or MPM, respectively. In addition,
HEVC provides a mechanism for exploiting spatial and temporal dependencies with
regard to motion modeling by merging neighboring blocks with identical motion
parameters. This has been found to be particularly useful in combination with
quadtree-based block partitioning, since a pure hierarchical subdivision approach
may lead to partitionings with suboptimal rate-distortion behavior [32, 49, 102].
Also, due to the significant increased number of angular intra prediction modes
relative to H.264/AVC, three MPMs for each PU are considered in HEVC.

This section will discuss how the various PU syntax elements are processed
in terms of binarization, context modeling, and context assignment. Also, aspects
related to parsing dependencies and throughput for the various prediction parame-
ters are considered.

8.5.1 Motion Data Coding

In HEVC, motion data can be either signaled using merge mode or directly using
motion vector differences, reference indices, and inter-prediction direction.

8.5.1.1 Signaling of Merge Mode

In HEVC, merge mode enables motion data (i.e., prediction direction, reference
index and motion vectors) to be inherited from a spatial or temporal (co-located)
neighbor. A list of merge candidates are generated from these neighbors. merge
_flag is signaled to indicate whether merge is used in a given PU. If merge is
used, then merge_idx is signaled to indicate from which candidate the motion
data should be inherited. merge_idx is coded with truncated unary, which means
that the bins are parsed until a zero bin value is reached or when the number of bins
is equal to the cMax, the max allowed number of bins.

Determining how to set cMax involved evaluating the throughput and coding
efficiency trade-offs in a core experiment [7]. For optimal coding efficiency, cMax
should be set to equal the merge candidate list size of the PU. Furthermore,
merge_flag should not be signaled if the list is empty. However, this makes
parsing depend on list construction, which is needed to determine the list size.

236 V. Sze and D. Marpe

Constructing the list requires a large amount of computation since it involves
reading from multiple locations (i.e., fetching the co-located neighbor and spatial
neighbors) and performing several comparisons to prune the list; thus, dependency
on list construction would significantly degrade parsing throughput [33, 108].

To decouple the list generation process from the parsing process such that
they can operate in parallel in HEVC, cMax is signaled in the slice header using
five_minus_max_num_merge_cand and does not depend on list size. To
compensate for the coding loss due to the fixed cMax, combined bi-predictive and
zero motion vector candidates are added when the list size is less than the maximum
number of allowed candidates as defined by cMax [79]. This also ensures that the
list is never empty and that merge_flag is always signaled [107]. For more details
on candidate list construction please refer to Chap. 5.

8.5.1.2 Signaling of Motion Vector Differences, Reference Indices,
and Inter-Prediction Direction

If merge mode is not used, then the motion vector is predicted from its neighboring
blocks and the difference between motion vector (mv) and motion vector prediction
(mvp), referred to as motion vector difference (mvd), is signaled:

mvd.x; y/ D mv.x; y/ � mvp.x; y/

In H.264/AVC, a single predictor is calculated for mvp from the median of the left,
top and top-right spatial 4 � 4 neighbors.

In HEVC, advanced motion vector prediction (AMVP) is used, where several
candidates for mvp are determined from spatial and temporal neighbors [38]. A list
of mvp candidates is generated from these neighbors, and the list is pruned to
remove redundant candidates such that there is a maximum of two candidates.
A syntax element called mvp_l0_flag (or mvp_l1_flag depending on the
reference list) is used to indicate which candidate is used from the list as the mvp. To
ensure that parsing is independent of list construction, mvp_l0_flag is signaled
even if there is only one candidate in the list. The list is never empty as the zero
motion vector is used as the default candidate.

In HEVC, improvements were also made on the coding process of mvd itself.
In H.264/AVC, the first nine bins of mvd are regular coded truncated unary bins,
followed by bypass coded 3rd order Exp-Golomb bins. In HEVC, the number of reg-
ular coded bins for mvd is significantly reduced [58]. Only the first two bins are reg-
ular coded (abs_mvd_greater0_flag, abs_mvd_greater1_flag), fol-
lowed by bypass coded first-order Exp-Golomb (EG1) bins (abs_mvd_minus2).

In H.264/AVC, context selection for the first bin in mvd depends on whether
the sum of the motion vectors of the top and left 4 � 4 neighbors are greater
than 32 (or less than 3). This requires 5-bit storage per neighboring motion vector,
which accounts 24,576 of the 30,720-bit CABAC line buffer needed to support a
4k �2k sequence. The need to reduce the line buffer size in HEVC by modifying

8 Entropy Coding in HEVC 237

the context selection logic was highlighted in [90]. Accordingly, all dependencies
on the neighbors were removed and the context is selected based on the binIdx (i.e.,
whether it is the first or second bin) [82, 91].

To maximize the impact of fast bypass coding, the bypass coded bins for both
the horizontal (x) and vertical (y) components of mvd are grouped together in
HEVC [67]. For instance, for a motion vector difference of mvd.x; y/ D .2; 2/,
the coding order is 11110000, where underlined values are bypass coded. Without
bypass grouping, the coding order is 11001100. If four bypass bins can be processed
in a single cycle, enabling bypass grouping reduces the number of cycles required
to process the motion vector by one.

In HEVC, reference indices ref_idx_l0 and ref_idx_l1 are coded with
truncated unary regular coded bins, which is the same as for H.264/AVC; the
maximum length of the truncated unary binarization, cMax, is dictated by the
reference picture list size. However, in HEVC only the first two bins are regular
coded [71], whereas all bins are regular coded in H.264/AVC. In both HEVC and
H.264/AVC, the regular coded bins of the reference indices for different reference
picture lists share the same set of contexts. The inter-prediction direction (list 0, list
1 or bi-directional) is signaled using inter_pred_idcwith custom binarization.

8.5.2 Intra Prediction Mode Coding

Similar to motion data coding, a most probable mode (MPM) is calculated for intra
mode coding. In H.264/AVC, the minimum mode of the top and left neighbors is
used as MPM. prev_intra4x4_pred_mode_flag (or prev_intra8x8_
pred_mode_flag) is signaled to indicate whether the most probable mode is
used. If the MPM is not used, the remainder mode rem_intra4x4_pred_mode
_flag (or rem_intra8x8_pred_mode_flag) is signaled.

In HEVC, additional MPMs are used to improve coding efficiency. A candidate
list of most probable modes with a fixed length of three is constructed based on the
left and top neighbors. The additional candidate modes (DC, planar, vertical) can
be added if the left and top neighbors are the same or unavailable. Note that the top
neighbors outside the current CTU are considered unavailable in order to avoid the
need for a line buffer.14 The prediction flag prev_intra_pred_mode_flag
is signaled to indicate whether one of the most probable modes is used. If an MPM
is used, a most probable mode index (mpm_idx) is signaled to indicate which
candidate to use. It should be noted that in HEVC, the order in which the coefficients
of the residual are parsed (e.g., diagonal, vertical or horizontal) depends on the
reconstructed intra mode (i.e., the parsing of the TU data that follows depends on
list construction and intra mode reconstruction). Thus, the candidate list size was
limited to three for reduced computation to ensure that it would not affect entropy
decoding throughput [22, 83].

14For more details on MPM list construction please refer to Chap. 4.

238 V. Sze and D. Marpe

Table 8.5 Differences between prediction unit coding in HEVC and H.264/AVC

HEVC H.264/AVC

Properties Intra Mode AMVP Merge Intra Mode MVP

Max number of
candidates in list

3 2 5 1 1

Spatial neighbor used used used used used
Temporal co-located

neighbor
not used used used not used not used

Number of contexts 2 10 2 6 20
Max regular coded bins

per PU
2 16 2 7 98

The number of regular coded bins was reduced for intra mode coding in HEVC
relative to the corresponding part in H.264/AVC, where both the flag and the 3 fixed-
length bins of the remainder mode are regular coded using two separate context
models. In HEVC, the flag is regular coded as well, but the remainder mode is
a fixed-length 5-bin value that is entirely bypass coded. The most probable mode
index (mpm_idx) is also entirely bypass coded. The number of contexts used to
code intra_chroma_pred_mode is reduced from 4 to 1 for HEVC relative
to H.264/AVC. To maximize the impact of fast bypass coding, the bypass coded
bins for luma intra prediction mode coding within a CU are grouped together in
HEVC [19]. This is beneficial when the partition mode is PART_NxN, and there are
four sets of prediction modes.

8.5.3 Comparison of HEVC and H.264/AVC

The differences between H.264/AVC and HEVC in signaling of syntax elements
at the PU layer are summarized in Table 8.5. HEVC uses both spatial and temporal
neighbors as predictors, while H.264/AVC only uses spatial neighbors (unless direct
mode is enabled). In terms of the impact of the throughput improvement techniques,
HEVC has around 6� fewer maximum regular coded bins per inter-predicted PU
than H.264/AVC. HEVC also requires around 2� fewer contexts for PU syntax
elements than H.264/AVC.

8.6 Transform Unit Syntax Elements

In video coding, both intra and inter prediction are used to reduce the amount of data
that needs to be transmitted. In addition, rather than sending the original samples of
the prediction signal, an appropriately quantized approximation of the prediction
error is transmitted. To this end, the prediction error is blockwise transformed

8 Entropy Coding in HEVC 239

Table 8.6 Distribution of bins in CABAC for HEVC and H.264/AVC under common test
conditions [6, 101] and for the worst case

HEVC H.264/AVC

Common
conditions

AI LP LB RA worst worst
MAIN MAIN MAIN MAIN case HierB HierP case

CTU/CU bins 5.4% 15.8% 16.7% 11.7% 1.4% 27.0% 34.0% 0.5%
PU bins 9.2% 20.6% 19.5% 18.8% 5.0% 23.4% 26.3% 15.8%
TU bins 85.4% 63.7% 63.8% 69.4% 94.0% 49.7% 39.7% 83.7%

Generated bins are discriminated along the HEVC categories CTU/CU, PU, and TU as well as
their corresponding counterparts in H.264/AVC

from spatial to frequency domain, thereby decorrelating the residual samples and
performing an energy compaction in the sense that, after quantization, the signal can
be represented in terms of a few non-vanishing coefficients. The method of signaling
the quantized values and frequency positions of these coefficients is referred to as
transform coefficient coding.

Syntax elements related to transform coefficient coding account for a significant
portion of the bin workload as shown in Table 8.6. At the same time, those
syntax elements also account for a significant portion of the total number of bits
for a compressed video, and as a result the compression of quantized transform
coefficients significantly impacts the overall coding efficiency. Thus, transform
coefficient coding with CABAC must be carefully designed in order to balance
coding efficiency and throughput demands. Accordingly, as part of the HEVC
standardization process, a core experiment on coefficient scanning and coding was
established to investigate tools related to transform coefficient coding [97].

This section describes how transform coefficient coding evolved from
H.264/AVC to the first test model of HEVC (HM1.0) to the Final Draft International
Standard (FDIS) of HEVC (HM10.0), and discusses the reasons behind design
choices that were made. Many of the throughput improvement techniques were
applied, and new tools for improved coding efficiency were simplified. As a
reference for the beginning and end points of the development, Figs. 8.8 and 8.9
show examples of transform coefficient coding for 4 � 4 blocks in H.264/AVC and
HEVC, respectively.

8.6.1 Transform Block Structure

As already discussed in Sect. 8.3.1, transform coding in HEVC involves a tree-
structured variable block-size approach with supported transform block sizes of
4 � 4; 8 � 8; 16 � 16; and 32 � 32: This means that the actual transform block
sizes, used to code the prediction error of a given CU, can be selected based on
the characteristics of the residual signal by using a quadtree-based partitioning,
also known as residual quadtree (RQT), as illustrated in Fig. 8.10. While this larger

240 V. Sze and D. Marpe

9 0 0 −1

−6 0 0 0

3 1 0 0

0 0 0 0

significant_coeff_flag 1 0 1 1 0 0 1 0 1

last_significant_coeff_flag 0 0 0 0 1

coeff_abs_level_minus1 8 5 2 0 0

coeff_sign_flag 0 1 0 1 0

Zig-zag Scan
(forward for significance

map, reverse for coefficient
level & sign)

0 1 5 6

2 4 7 12

3 8 11 13

9 10 14 15

Signaling order

1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1

Significance map

0 0 0 1 2 0 5 1 8 0

Coefficient level and sign

Fig. 8.8 Example of CABAC-based transform coefficient coding for a 4 � 4 transform block
in H.264/AVC. Note, however, that the corresponding bins for signaling of the absolute level (in
yellow) are not explicitly shown

variety of transform block partitioning relative to H.264/AVC provides significant
coding gains, it also has implications in terms of implementation costs, both in terms
of memory bandwidth and computational complexity. To address this issue, HEVC
allows to restrict the RQT-based transform block partitioning by four parameters,
signaled by corresponding syntax elements in the SPS: the maximum and minimum
allowed transform block size (in terms of block width) nmax and nmin, respectively,
and the maximum depth of the RQT dmax, with the latter given both individually
for intra-picture and inter-picture prediction. Note, however, that there is a rather
involved interdependency between these parameters (and other syntax elements),
such that, for instance, implicit subdivisions or implicit leaf nodes of the RQT may
occur. For more details, please refer to Chap. 3.

The signaling of the transform block structure for each CU is similar to that of
the coding block structure at the CTU level. For each node of the RQT, a flag called
split_transform_flag is signaled to indicate whether a given transform
block should be further subdivided into four smaller TBs. Context modeling for
the coding of this flag involves three different contexts with its related context
increment equal to 5 � log2.TrafoSize/, where TrafoSize denotes the block width
of the corresponding luma transform block at the given RQT depth. Note that for
the choice of a luma CTB size of 64, nmax D 32, nmin D 4, and dmax D 4, an
implicit leaf node is implied for the case of TrafoSize D 4, whereas an implicit

8 Entropy Coding in HEVC 241

9 0 0 −1

−6 0 0 0

3 1 0 0

0 0 0 0

last_sig_coeff_x 3

last_sig_coeff_y 0

sig_coeff_flag 1* 0 1 0 0 0 1 0 1 1

coeff_abs_level_greater1_flag 0 0 1 1 1

coeff_abs_level_greater2_flag 1

coeff_abs_level_remaining 0 4 7

coeff_sign_flag 0 1 0 1 0

15 13 10 6

14 11 7 3

12 8 4 1

9 5 2 0

Diagonal Scan
(same direction for all)

1 3 0 1 0 0 0 0 1 0 1 1

Significance map

0 0 0 1 4 0 7

Coefficient level and sign

x

y

1 1 1 1 0 1 0

Bypass coded bins Regular coded bins

*inferred

Fig. 8.9 Example of transform coefficient coding for a 4 � 4 transform block in HEVC. Note,
however, that the corresponding bins for signaling of the “last” information (in red) and absolute
level remaining (in yellow) are not explicitly shown

subdivision is given for a luma CB size of 64 at RQT depth equal to 0. Table 8.7
and Fig. 8.11 illustrate an example of this configuration. Therefore, even if up to
five different RQT levels are permitted, only up to three different context models
are required for coding of split_transform_flag. Note that the signaling of
split_transform_flag at the RQT root is omitted if the quantized residual
of the corresponding CU contains no non-zero transform coefficient at all, i.e., if the
corresponding coded block flag at the RQT root (see Sect. 8.6.3) is equal to 0.

8.6.2 Transform Skip

For regions or blocks with many sharp edges (e.g., as typically given in screen
content coding), coding gains can be achieved by skipping the transform [42, 61].
When the transform is skipped for a given block, the prediction error in the spatial
domain is quantized and coded in the same manner as for transform coefficient
coding (i.e., the quantized block samples of the spatial error are coded as if they
were quantized transform coefficients). The so-called transform skip mode is only

242 V. Sze and D. Marpe

Coding
Tree Unit

(CTU)

Divide into
coding units

(CU) with
quad tree

Divide into
transform units
(TU) with quad

tree

skip

Fig. 8.10 Illustration of residual quadtrees (one for each CU) used to signal transform units for
residual coding of CUs. Note that the same relationships and comments as given in Fig. 8.6 apply
here as well

allowed for 4 � 4 TUs and only if the corresponding functionality is enabled by
the transform_skip_enabled_flag in the PPS. Signaling of this mode is
performed by using the transform_skip_flag, which is coded using a single
fixed context model.

8.6.3 Coded Block Flags

At the top level of the hierarchy of significance flags, as already explained in
Sect. 8.3.1, coded block flags (CBFs) are signaled for the RQT root, i.e., at the CU
level in the form of the rqt_root_cbf and for subsequent luma and chroma
TBs in the form of cbf_luma and cbf_cb, cbf_cr, respectively. rqt_root
_cbf is only coded and transmitted for inter-predicted CUs that are not coded in
merge mode using a single PU (PART_2Nx2N)15; for that a single context model
is used. While signaling of cbf_luma is only performed at the leaf nodes of the
RQT, provided that a non-zero rqt_root_cbf was signaled before, the chroma
CBFs cbf_cb and cbf_cr are transmitted at each internal node as long as a
corresponding non-zero chroma CBF at its parent node occurred. For coding of both

15Intra-predicted CUs typically have nonzero residual, so rqt_root_cbf is not used.

8 Entropy Coding in HEVC 243

rqt_root_cbf=1

cbf_cb,
cbf_cr,
cbf_luma

split_transform_flag=0 split_transform_flag=0 split_transform_flag=1 split_transform_flag=0

cbf_cb=1,
cbf_cr=0

cbf_cb=1
cbf_cb
cbf_luma

cbf_cb

split_transform_flag=1 split_transform_flag=0

cbf_cb,
cbf_cr,
cbf_luma

cbf_cb
cbf_luma

cbf_cb
cbf_luma

cbf_cb
cbf_luma

cbf_cb
cbf_luma

cbf_cb
cbf_luma

cbf_lumacbf_lumacbf_lumacbf_luma

split_transform_flag=1

split_transform_flag=0

split_transform_flag=0

cbf_cb=1,
cbf_cr=1

RQT
depth = 0

RQT
depth = 1

RQT
depth = 2

RQT
depth = 3

RQT
depth = 4

cbf_cb,
cbf_cr,
cbf_luma

split_transform_flag=0
for each
TB

Fig. 8.11 Illustration of signaling of split_transform_flag, cbf_luma, cbf_cb, and
cbf_cr for an RQT with depth 4. Note that at RQT depth = 0, no split_transform_flag
is signaled since an implicit transform split occurs for CU of 64 as nmax D 32. cbf_luma is only
signaled for leaf transform blocks (highlighted in red). cbf_cb and cbf_cr are signaled for the
root node and all nodes where the corresponding CBF at the parent node is non-zero, except for
the nodes related to TrafoSize D 4

cbf_cb and cbf_cr, four contexts are used such that the corresponding context
increment depends on the RQT depth (with admissible values between 0 and 3, since
for the case of TrafoSize D 4 no chroma CBFs are transmitted), whereas for cbf
_luma only two contexts are provided with its discriminating context increment
depending on the condition RQT depth D 0. For more background on the use of
RQT and related syntax elements, please refer to Chap. 3.

8.6.4 Significance Map

In H.264/AVC, the significance map for each transform block is signaled by
transmitting a significant_coeff_flag (SIG) for each position to indicate
whether the coefficient is non-zero. The positions are processed in an order based
on a zig-zag scan. After each non-zero SIG, an additional flag called last
_significant_coeff_flag (LAST) is immediately sent to indicate whether

244 V. Sze and D. Marpe

Table 8.7 Derivation of context increment (ctxInc) for split_transform_flag,
cbf_luma, cbf_cb, and cbf_cr for the example in Fig. 8.11

RQT Transform split_transform_flag cbf_luma cbf_cb, cbf_cr
depth Size (ctxInc) (ctxInc) (ctxInc)

0 n/a n/a 1 0
1 32 � 32 0 0 1
2 16 � 16 1 0 2
3 8 � 8 2 0 3
4 4 � 4 n/a 0 n/a

0 1 4 5

2 3 4 5

6 6 8 8

7 7 8 8

Fig. 8.12 Context index
assignment for
sig_coeff_flag in
4 � 4 TBs

it is the last non-zero SIG; this prevents unnecessary SIG from being signaled.
Different contexts are used depending on the position within the 4 � 4 and 8 � 8

transform blocks, and whether the bin represents an SIG or LAST. Since SIG
and LAST are interleaved, the context selection of the current bin depends on the
immediate preceding bin. The dependency of LAST on SIG results in a strong bin
to bin dependency for context selection of significance map entries in H.264/AVC
as illustrated in Fig. 8.3.

8.6.4.1 sig_coeff_flag (SIG)

While in HEVC position based context assignment for coding of sig_coeff_
flag (SIG) is used for 4 � 4 TBs as shown in Fig. 8.12, new forms of context
assignment for larger transforms were needed. In HM1.0, additional dependencies
were introduced in the context selection of SIG for 16 � 16 and 32 � 32 TBs to
improve coding efficiency. Specifically, the context selection of SIG was calculated
based on a local template using 10 (already decoded) SIG neighbors as shown in
Fig. 8.13a [57, 102]. By using this template-based context selection bit rate savings
of 1.4–2.8 % were reported [57].

To reduce context selection dependencies and storage costs, Sze and Budagavi
[85] proposed using fewer neighbors and showed that this could be done without
severely sacrificing coding efficiency. For instance, using only a maximum of 8
neighbors (removing neighbors A and D as shown in Fig. 8.13b) had negligible
impact on coding efficiency, while using only six neighbors (removing neighbors
A, B, D, E and H as shown in Fig. 8.13c) results in a coding efficiency loss of
only 0.2 %. This was further extended in [18] for HM2.0, where only a maximum
of five neighbors was used by removing dependencies on positions G and K, as

8 Entropy Coding in HEVC 245

D

a b

c d

e

H J

A E I K

B F X

C G

H J

E I K

B F X

C G

J
I K

F X

C G

H
E I

B F X

H
EI
BFX

Fig. 8.13 Local templates
for SIG context selection.
X (in blue) represents the
current position of the bin
being processed. (a) Ten
neighbors (HM1.0), (b) eight
neighbors, (c) six neighbors,
(d) 5 neighbors (HM3.0), and
(e) inverted for reverse scan
(HM4.0)

a bFig. 8.14 Scans used to
process SIG. Diagonal scan
avoids dependency on the
most recently processed bin.
Context selection for blue
positions is affected by values
of the neighboring grey
positions. (a) Zig-zag scan
and (b) diagonal scan

shown in Fig. 8.13d. In HM2.0, the significance map was scanned in zig-zag order,
so removing the diagonal neighbors G and K is important since those neighbors
pertain to the most recently decoded SIG.

Despite reducing the number of SIG neighbors in HM2.0, dependency on the
most recently processed SIG neighbors still existed for the positions at the edge of
the transform block as shown in Fig. 8.14a. The horizontal or vertical shift that is
required to go from one diagonal to the next in the zig-zag scan causes the previously
decoded bin to be one of the neighbors (F or I) that is needed for context selection.
In order to address this issue, in HM4.0, a diagonal scan was introduced to replace
the zig-zag scan [86] as shown in Fig. 8.14b. Changing from zig-zag to diagonal
scan had negligible impact on coding efficiency, but removed the dependency on
recently processed SIG for all positions in the TB. In HM4.0, the scan was also
reversed (from high frequency to low frequency) [74]. Accordingly, the neighbor
dependencies were inverted from top-left to bottom-right, as shown in Fig. 8.13e.

Dependencies in context selection of SIG for 16 � 16 and 32 � 32 TBs
were further reduced in HM7.0, where 16 � 16 and 32 � 32 TBs are divided
into 4 � 4 subblocks. This will be described in more detail in Sect. 8.6.4.3 on

246 V. Sze and D. Marpe

DC
Low Frequency

(DC 4x4 subblock)

Mid to High
Frequency

(Non-DC subblock)

X
F
B

H I
E

Fig. 8.15 Regions in 8 � 8;

16 � 16 and 32 � 32 TBs map
to different context sets for
SIG

0 = diagonal 1 = horizontal 2 = vertical

Fig. 8.16 Diagonal, vertical, and horizontal scans for 4 � 4 TBs

Table 8.8 Mode dependent coefficient scanning: Mapping of intra prediction mode to scans
(0 D Diagonal, 1 D Horizontal, 2 D Vertical) for different TB sizes and components

Intra Prediction Mode 0 (Planar) 1 (DC) 2 3 4 5 6 to 14 15 to 21 22 to 30 31 to 34

8 � 8 (luma) 0 0 2 0 1 0
4 � 4 (luma or chroma) TB 0 0 2 0 1 0
Otherwise 0

coded_sub_block_flag (CSBF). In HM8.0, 8 � 8 TBs were also divided into
4 � 4 subblocks such that all TB sizes above 4 � 4 are based on a 4 � 4 subblock
processing for a harmonized design [77].

The 8 � 8; 16 � 16 and 32 � 32 TBs are divided into three regions based on
frequency, as shown in Fig. 8.15. The DC, low-frequency and mid/high-frequency
regions all use different sets of contexts. To reduce memory size, the contexts for
coding the SIG of 16 � 16 and 32 � 32 TBs are shared [81, 99].

For improved coding efficiency for intra predicted CUs, so-called mode depen-
dent coefficient scanning (MDCS) is used to select between vertical, horizontal,
and diagonal scans based on the chosen intra prediction mode [106], as illustrated
in Fig. 8.16. Table 8.8 shows how the scans are assigned based on intra prediction
mode, TB size, and component. As mentioned in Sect. 8.5.2, this requires the intra
mode to be decoded before decoding the corresponding transform coefficients.
MDCS is only used for 4 � 4 and 8 � 8 TBs and provides coding gains of up
to 1.2 %. Note that for TBs larger than 8 � 8; and for TBs of inter predicted CUs,
only the diagonal scan is used.

8 Entropy Coding in HEVC 247

Table 8.9 Binarization of coordinate values of the last position

Bins belonging to the bypass coded suffixes are underlined

8.6.4.2 Last Position Coding

As mentioned earlier, there are strong data dependencies between significant
_coeff_flag (SIG) and last_significant_coeff_flag (LAST) in
H.264/AVC due to the fact that they are interleaved. Budagavi and Demircin
[10] proposed grouping several SIG together by transmitting a LAST only once
per N number of SIG. If all of the N SIG are zero, LAST is not transmitted.
Sole et al. [73] avoids interleaving of SIG and LAST altogether. Specifically, the
horizontal (x) and vertical (y) position of the last non-zero SIG in a TB is sent in
advance rather than LAST by using the syntax elements last_sig_coeff_x
and last_sig_coeff_y, respectively. For instance, in the example shown in
Fig. 8.9, last_sig_coeff_x equal to 3 and last_sig_coeff_y equal to 0
are sent before processing the TB rather than signaling LAST for each SIG with
value of 1. Signaling the (x, y) position of the last non-zero SIG for each TB was
adopted into HM3.0. Note that the SIG in the last scan position is inferred to be 1.

The last position, given by its coordinates in both x and y direction, is composed
of a prefix and suffix as shown in Table 8.9. The prefixes last_sig_coeff
_x_prefix and last_sig_coeff_y_prefix are both regular coded using
TrU binarization with cMax D 2 � .log2 TrafoSize/ � 1 [70]. A suffix is present
when the corresponding prefix is composed of more than four bins. In that case, the
suffixes last_sig_coeff_x_suffix and last_sig_coeff_y_suffix
are bypass coded using FL binarization. Some of the contexts are shared across the
chroma TB sizes to reduce context memory, as shown in Table 8.10. To maximize
the impact of fast bypass coding, the bypass coded bins (i.e., the suffix bins) for
both the x and y coordinate of the last position are grouped together for each TB in
HEVC.

248 V. Sze and D. Marpe

Table 8.10 Context selection for regular coded prefix bins of the
coordinates of the last position last_sig_coeff_x_prefix and
last_sig_coeff_y_prefix

Bin Index 0 1 2 3 4 5 6 7 8

4 � 4 luma TB 0 1 2
8 � 8 luma TB 3 3 4 4 5
16 � 16 luma TB 6 6 7 7 8 8 9
32 � 32 luma TB 10 10 11 11 12 12 13 13 14
4 � 4 chroma TB 15 16 17
8 � 8 chroma TB 15 15 16 16 17
16 � 16 chroma TB 15 15 15 15 16 16 16

1 1

1 0

coded_sub_block_flag

inferred
(DC)

inferred
(last)

0
0
0

0
0

0
0
0
0

0
0
0
0

0
0
0
0

0 1 0
0 0 0

1 1 0
1 0 0
0 0 0
0 0 1

0
0

0
0

0
0
0
0

0
1
0
0

0
0

0
0

0
0

0 0 0
0 0 0

0
0

0
0

1

sig_coeff_flag

subblock with all
zeros not signaled

last position
(sig_coeff_flag inferred)

Fig. 8.17 Example of the hierarchical signaling of an 8 � 8 significance map

8.6.4.3 coded_sub_block_flag (CSBF)

As already explained in Sect. 8.3.1, the number of bins to be transmitted for signal-
ing the significance map is considerably reduced by using a hierarchical signaling
scheme of significance flags. Part of this hierarchy is the coded_sub_block
_flag (CSBF) that indicates for each 4 � 4 subblock of a TB whether there are
non-zero coefficients in the subblock [56, 60]. If CSBF is equal to 1, the subblock
contains at least one non-zero transform coefficient level and, consequently, SIGs
within the subblock are signaled. No SIGs are signaled for a 4 � 4 subblock that
contains all vanishing transform coefficients, since this information is signaled by a
CSBF equal to 0. For large TB sizes, a reduction in SIG bins of up to a 30 % can
be achieved by the use of CSBFs, which corresponds to an overall bin reduction of
3–4 % under common test conditions. To avoid signaling of redundant information,
the CSBF for the subblocks containing the DC and the last position are inferred to
be equal to 1. Figure 8.17 shows an example of the hierarchical signaling of an 8�8

significance map.
In HM7.0, the CSBF was additionally used to further reduce dependencies in the

context selection of SIG for 16 � 16 and 32 � 32 TBs. Specifically, the neighboring
subblocks and their corresponding CSBFs (Fig. 8.18) are used for context selection
rather than the individual SIG neighbors, as shown in Fig. 8.13e [41]. This context
selection scheme was extended to 8 � 8 TBs in HM8.0 [77]. According to this

8 Entropy Coding in HEVC 249

CSBFright

CSBFbottom

Fig. 8.18 Neighboring
CSBFs (right, bottom) used
for SIG context selection

2

a b c d
1 1 0

1 1 0 0

1 0 0 0

0 0 0 0

2 2 2 2

1 1 1 1

0 0 0 0

0 0 0 0

2 1 0 0

2 1 0 0

2 1 0 0

2 1 0 0

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

Fig. 8.19 4 � 4 position based mapping for SIG context selection based on CSBF of neighboring
subblocks. (a) Pattern 1, (b) pattern 2, (c) pattern 3 and (d) pattern 4

scheme, the CSBF of the neighboring right and bottom subblocks (CSBFright ,
CSBFbot tom) are used to select one of four patterns shown in Fig. 8.19: (0,0) maps
to pattern 1, (1,0) to pattern 2, (0,1) to pattern 3 and (1,1) to pattern 4. The pattern
maps each position within the 4 � 4 subblock to one of three contexts. As a result,
there are no intrinsic dependencies for context selection of SIG within each 4 � 4

subblock.
Reverse diagonal scanning order is used within the subblocks and for the

processing order of the subblocks themselves, as shown in Fig. 8.20 [76]. Both
significance map and coefficient levels are processed in this order. As an exception
to this rule, for 4 � 4 and 8 � 8 TBs to which MDCS is applied, reverse vertical
and horizontal scanning orders are used within the subblocks as well as for the
processing order of the subblocks themselves. Furthermore, as shown in Table 8.11,
different sets of contexts for coding of SIG are used for diagonal and non-diagonal
(vertical and horizontal) scans in both 4 � 4 luma and chroma TBs, and 8 � 8 luma
TBs [77].

8.6.4.4 Summary of Significance Map Coding in HEVC

Figure 8.21 summarize the steps required to code the significance map. This process
is repeated for every non-zero TB in HEVC. Table 8.11 summarizes the multiple
steps of classification used to assign the 42 contexts of sig_coeff_flag.
Contexts 0 to 26 are used for luma coded TBs, while 27 to 41 used for chroma TBs.
The contexts are further mapped based on the TB size, the scan direction, whether
the subblock is DC or non-DC, CSBF of neighboring subblocks, and position within

250 V. Sze and D. Marpe

0 = diagonal

b

a
1 = horizontal 2 = vertical

diagonal

Fig. 8.20 Subblock scans. Scan for 4 � 4 TB shown in Fig. 8.16. (a) Subblock scan for 8�8 TB.
(b) Subblock scan for 16 � 16 TB. Scan for 32 � 32 TB is also all diagonal

Table 8.11 Context selection of sig_coeff_flag based on component, TB size, scan order
(Table 8.8), position of subblock within the TB (Fig. 8.15), and position based context index within
4 � 4 TB or subblock (SubIdx) (Fig. 8.12 or 8.19, resp.)

8 Entropy Coding in HEVC 251

Last Position X, Y
(last_sig_coeff_x_prefix,
last_sig_coeff_y_prefix)

Truncated Unary binarization (cMax
based on TB size), and bypass coded
[Tab. 8.9 & 8.10]

Select Diagonal, Vertical,
Horizontal Scan

Scan order based on Intra/Inter, intra
prediction mode, TB size, luma/
chroma [Tab. 8.8, Fig. 8.16]

Coded Sub Block Flag
(coded_sub_block_flag)

Inferred for DC or last position.
Otherwise, context depends on 4x4
neighbors (bottom and right) and
luma/chroma [Fig. 8.17]

Significant coefficient flag
(sig_coeff_flag)

Inferred for last position or if all other
sig_coeff_flag non-zero in 4x4
subblock. Otherwise, context depends
on 4x4 neighbors (bottom and right),
luma/chroma, scan, position within
TB, and position within 4x4 subblock
[Tab. 8.11]

Fixed Length binarization, and context
based on TB size, luma/chroma, bin
Index [Tab. 8.9]

Last Position X, Y
(last_sig_coeff_x_suffix,
last_sig_coeff_y_suffix)

If last 4x4, repeat <16x
Otherwise, repeat 16x

Repeat for number of
4x4 subblocks based

on last position

Coefficient Level and Sign Coding
(see Fig. 8.25)

Start Transform Block

End Transform Block

Fig. 8.21 Flow chart for coding the syntax elements of a TB in HEVC

the subblock. Note that context 0 is used to code the sig_coeff_flag of the DC
position of all luma TBs, and context 27 is used for the DC position of all chroma
TBs.

8.6.5 Absolute Coefficient Level and Coefficient Sign

In HEVC, parsing of transform coefficient level information is performed subblock-
by-subblock using up to five scan passes for each subblock. The first scan pass is
devoted to the SIG flags, as already explained in Sects. 8.6.4.1 and 8.6.4.3. In the
second and third pass, the two additional flags coeff_abs_level_greater1
_flag (ALG1) and coeff_abs_level_greater2_flag (ALG2) are con-
ditionally parsed, indicating for each relevant scan position if the corresponding
absolute value of the coefficient level, i.e., the absolute level (AL) is greater than 1
and 2, respectively. However, only up to 8 ALG1 flags and one ALG2 flag are
transmitted for each subblock, as will be explained in more detail below. In the third
scan pass, the sign of each significant level is signaled with the possible exception

252 V. Sze and D. Marpe

Truncated
Unary

k-th order Truncated
Rice

0 ... B0

(B0 + 1) ... B1

(B1 + 1) ...

(k+1)-th order Exp-
Golomb

variable
threshold

variable
threshold

B0

B1

Using SIG, ALG1,
and ALG2 flags

Absolute Level

z

Fig. 8.22 Illustration of the adaptive binarization scheme for absolute levels in HEVC consisting
of a concatenation of the three elementary binarizations TrU, TRk, and EGk, the latter two with
varying order k and k C 1, respectively (0 � k � 4). The two variable thresholds B0 and B1

specify the (variable) transition points between them

of the last non-zero coefficient in the subblock in reverse scanning order, as will be
discussed in more detail in Sect. 8.6.5.2. Finally, in the last and fifth scan pass, the
remaining information of absolute levels in the subblock (if present) is transmitted
by using the syntax element coeff_abs_level_remaining (ALRem), as will
be further detailed in Sect. 8.6.5.1 below.

8.6.5.1 Coding of Absolute Level

Coding of absolute levels requires the choice of suitable binarization schemes
and, for selected bin indices, the choice of suitable context models. According
to the design considerations, as discussed in Sect. 8.3, both aspects of coding
efficiency and throughput have been properly addressed by the revised CABAC
design of HEVC. This is especially true for the coding of absolute levels which
typically contribute the dominant portion to the total number of generated bins.
In the following, we will first elaborate on how the specific binarization scheme
for absolute levels in HEVC has been designed. Then, in the second part of this
subsection, we will present the context selection rules applied to the (few remaining)
regular coded bins of absolute levels, unless not already done so in Sects. 8.6.4.1
and 8.6.4.3.

Conceptually, the binarization of an absolute level, denoted as z in the following,
relies on a concatenated application of three binarization processes [21, 54, 59]:
truncated unary (TrU), k-th order truncated Rice (TRk), and .k C 1/-th order
Exp-Golomb (EGk). Figure 8.22 illustrates this binarization scheme for arbitrary
z along the (discrete) number line. There are two thresholding parameters B0; B1

with B0 < B1 which separate the three regions from one another for application
of each of the three binarization processes and which also determine the truncation
parameters cMax(TrU) D B0 C 1 and cMax(TRk) D B1 � B0. The selection of the
two parameters B0; B1 together with the choice of the parameter k is performed in
a backward-adaptive manner for each subblock in such a way that the resulting bin
strings are already close to a minimum-redundancy prefix code for the collection of

8 Entropy Coding in HEVC 253

Table 8.12 Binarization of the absolute level z for the choice of parameters B0 D 2, B1 D 6, and
k D 0, corresponding to a concatenation of TrU with cMax D 3, zero-order Truncated Rice (TRk)
with cMax D 4, and first-order Exp-Golomb (EGk)

TrU TRk EGk

z
cMaxD3 k D 0; cMaxD4 k C 1 D 1

SIG ALG1 ALG2 0 1 2 3 0 1 2 3 . . .
0 0
1 1 0

B0 D 2 1 1 0
3 1 1 1 0
4 1 1 1 1 0
5 1 1 1 1 1 0

B1 D 6 1 1 1 1 1 1 0
7 1 1 1 1 1 1 1 0 0
8 1 1 1 1 1 1 1 0 1
9 1 1 1 1 1 1 1 1 0 0 0

10 1 1 1 1 1 1 1 1 0 0 1
11 1 1 1 1 1 1 1 1 0 1 0
. .

all absolute levels z in each subblock. As a consequence, the majority of resulting
bins can be simply bypass coded without compromising coding efficiency.

For each subblock, the initialization and adaptation processes for the parameters
B0; B1, and k is performed, as follows. Before starting the processing of an
subblock, the parameter k is set equal to 0, whereas B0 is set equal to 2. The
second thresholding parameter B1 depends on k and B0 by the fixed relation
B1 D 4�2kCB0, which means that B1 is adapted whenever B0 or k are changed. For
each scan position in the subblock processing, the absolute level z is evaluated after
encoding/decoding and B0 is decremented by 1 after the first occurrence of z > 1,
which corresponds to the first scan position in the subblock for which an ALG2 flag
is signaled. A further adaptation of B0 to its minimum value of 0 is performed after
z > 0, i.e., after an ALG1 flag occurs eight times in the subblock. The parameter k

is set to min.k C1; 4/ after each scan position for which the corresponding absolute
level z fulfills the condition z > 3 � 2k. Note that according to this adaptation rule,
k can take integer values from 0 to 4 inclusive. Tables 8.12 and 8.13 show example
binarizations for two different configurations of the parameters B0; B1, and k. Please
note that the result of the binarization for z can also be interpreted as a concatenation
of a unary prefix and, if present, a fixed-length suffix for different ranges of z [21].
Table 8.14 shows the corresponding binarization of ALRem, which has a maximum
bin length of 32 [12].

As already indicated above, the signaling of the absolute level z involves
four different syntax elements, given as sig_coeff_flag (SIG), coeff_abs
_level_greater1_flag (ALG1), coeff_abs_level_greater2_flag
(ALG2), and coeff_abs_level_remaining (ALRem), such that

z D SIG C ALG1 C ALG2 C ALRem;

254 V. Sze and D. Marpe

Table 8.13 Binarization of the absolute level z for the choice of parameters B0 D 1, B1 D 9, and
k D 1, corresponding to a concatenation of TrU with cMax D 2, first-order Truncated Rice (TRk)
with cMax D 8, and second-order Exp-Golomb (EGk)

TrU TRk EGk

z
cMaxD2 k D 1; cMaxD8 k C 1 D 2

SIG ALG1 0 1 2 3 4 0 1 2 . . .
0 0

B0 D 1 1 0
2 1 1 0 0
3 1 1 0 1
4 1 1 1 0 0
5 1 1 1 0 1
6 1 1 1 1 0 0
7 1 1 1 1 0 1
8 1 1 1 1 1 0 0

B1 D 9 1 1 1 1 1 0 1
10 1 1 1 1 1 1 0 0 0
11 1 1 1 1 1 1 0 0 1
. .

Table 8.14 An alternative representation of coeff_abs_level_remaining (ALRem) bina-
rization as a concatenation of a unary prefix and fixed length suffix

The suffix has a length of k bins when the value N of ALRem is less than .3 << k/; otherwise,
it has a length of blog2...N � .3 << k// >> k/ C 1/c C k bins. In this table, the suffix bins
are shown in terms of x and C, where each x represents a bin, and C represents a fixed length bin
string of length k

8 Entropy Coding in HEVC 255

SIG SIG SIG ALG1 ALG1 ALG2 ALRem ALRem ALRems s s s s

regular coded bypass coded

Fig. 8.23 Grouping same regular coded bins and bypass bins to increase throughput.
s Dcoeff_sign_flag

provided that the values of the corresponding syntax elements are inferred to be
equal to 0, when not explicitly signaled. Note that the flags SIG, ALG1, and ALG2
represent the first and the optional second and third bin indices of the TrU part of
z, respectively. ALRem corresponds to the concatenation of the TRk and EGk part
of z with all of its bin values being bypass coded and with a maximum bin string
length of 32 [12]. Only the values of the three flags are regular coded. However,
due to the adaptation rules for B0, ALG2 can occur only once in each subblock,
while the occurrence of ALG1 is restricted to 8 scan positions per subblock at the
maximum [16]. Together with the maximum of 16 SIG flags per subblock, only up
to 25 regular coded bins can occur in each subblock (without accounting for CSBF).
Thus, the maximum number of regular coded bins per 4 � 4 transform (sub-) block
is reduced by a factor of about 9.6 relative to the corresponding maximum number
of 16 � 14 C 15 D 239 regular coded bins for H.264/AVC CABAC (including SIG
bins but without accounting for LAST) [46]. This change provides obviously the
most substantial reduction to the (worst case) number of regular coded bins in the
entire revision of CABAC.

The rationale behind processing SIG, ALG1, ALG2, and ALRem with individual
syntax elements rather than as conventional bin indices of the adaptive binarization
of z is given by the fact that all values of one syntax element in each subblock
are grouped together and signaled in separate scan passes. This grouping provides
essentially three advantages. First, bins in the coefficient level binarization that
use the same context selection logic are grouped together to reduce the amount
of speculative context selection computations, as shown in Fig. 8.23. Second, by
grouping bypass coded bins together, the throughput advantages of bypass bins
are maximized [87]. Third, the storage for (partially reconstructed) coefficient data
during the parsing process at the decoder can be reduced, as further explained
in Sect. 8.6.5.2 below. Note that the reordering of bins has no impact on coding
efficiency.

Context modeling for coding of the regular coded bins of the absolute level is
restricted to the three flags SIG, ALG1, and ALG2. Since context model selection
for the SIG flag has already been introduced in Sects. 8.6.4.1 and 8.6.4.3, we will
focus in the following on the two flags ALG1 and ALG2. For each of both flags, six
sets of context models are provided: four sets for subblocks of the luma component
and two sets for subblocks of the chroma component. Since only up to one ALG2
flag per subblock is encoded/decoded, each of the six ALG2 related sets contains
only one context model. For the ALG1 flag, each set consists of four context models

256 V. Sze and D. Marpe

Start 4x4 subblock

End 4x4 subblock

ctxInc = 0

ctxInc = 1

ctxInc = 2

bi =0bi =1
b1=0

b0=0
b0=1

b1=0

(repeat up to i=7)ctxInc = 3

Any bi
(repeat up to i=7)

Fig. 8.24 Flow chart for
derivation of context
increment (ctxInc) for up to 8
different events bi

.0 � i � 7/ of ALG1 in a
4 � 4 subblock

and the context increment ctxInc(ALG1) for selecting one of this four models within
each set is quite similar to what is specified for the coding of the first bin of
the syntax element coeff_abs_level_minus1 in H.264/AVC (see [46] for
a motivation of this design choice):

ctxInc.ALG1/ D
�

0; if NumG1 > 0

1 C min.2; NumT1/; otherwise
;

where NumT1 denotes the accumulated number of encoded/decoded trailing 1’s,
i.e., absolute levels equal to 1, and NumG1 denotes the accumulated number of
encoded/decoded levels with absolute value greater than 1, both computed along
the reverse scanning pattern of the subblock up to (but not including) the current
scan position. Note that both NumT1 and NumG1 are initialized with the value of 0
at the beginning of the subblock scan of ALG1 flags. After each encoded/decoded
ALG1 flag with the value of 0, NumT1 is incremented by 1, while after each
encoded/decoded ALG1 flag with the value of 1, NumG1 is incremented by 1.
Figure 8.24 shows the flow chart for context increment computation of ALG1.

Since the statistics of trailing 1’s may differ from subblock to subblock as well
as for subblocks belonging to different components or different locations within
the TB, different sets of context models are provided, both for ALG1 and ALG2,
as already mentioned above. For subblocks belonging to the luma component, 2
separate sets are used for subblocks containing the DC of the TB, i.e., for the top
left subblocks in a TB. Another two sets are given for luma subblocks containing
no DC as well as two additional sets for chroma subblocks. Depending on the value
of ctxInc(ALG1) for the last decoded ALG1 flag in the preceding subblock, the two
members of each of the relevant sets related to luma DC, luma non-DC, and chroma
are selected: One for the case of ctxInc(ALG1) D 0 and the other for the case of
ctxInc(ALG1) > 0. Thus, a total number of 30 context models are used for coding
of ALG1 and ALG2: 6 � 4 D 24 for ALG1 and 6 for ALG2. Interestingly enough,
there was a 4� reduction (from 120 to 30) in the total number of contexts used for
coding of the ALG1 and ALG2 flags during the development from HM3.0 to HM6.0
at virtually no loss in coding efficiency.

8 Entropy Coding in HEVC 257

8.6.5.2 Coding of Sign

To reduce storage cost of the coefficients, as already noted above, the trans-
form coefficient data is grouped for every 4 � 4 subblock and the sign bins
are bypass coded and signaled before coeff_abs_level_remaining bins.
Before coeff_abs_level_remaining is added, the partial value of the
coefficient level can be represented with 4 bits. Thus, CABAC in HEVC only
requires storage of 4 � 4�4 bits for each subblock (as compared to 8�8�9 bits for
a 4 � 4 transform block in H.264/AVC), and the reconstructed transform coefficient
level can be immediately written out once coeff_abs_level_remaining is
parsed.

To improve coding efficiency, the optional sign bit hiding (SBH) technique can
be used [24]. SBH is a technique to hide one bit such as, e.g., a sign of a non-zero
coefficient in a group of non-zero coefficients. For this, the encoder quantizes the
coefficients in the group such that the sum of their absolute level values is even or
odd for the sign bit to be hidden having value 0 or 1, respectively. This inherently
lossy coding technique is based on the idea that in a group of quantized coefficients,
it is likely that there is at least one coefficient level for which the value can be
increased or decreased by 1 with only marginally increased rate-distortion cost.
This is, e.g., the case, when the unquantized coefficient was close to a quantization
decision threshold, such that quantizing the coefficient to the next lower or next
higher possible quantized value are both similarly good decisions.

SBH is enabled by sign_data_hiding_enabled_flag in the PPS and
if it is enabled, it applies to each 4 � 4 subblock for which the number of non-
zero coefficients exceeds a certain threshold. This threshold was chosen in HEVC
to be a value of 3 and the sign bit to be hidden is that of the last significant scan
position in the reverse scanning pattern of each subblock. The condition for SBH
can be checked while parsing the significance map and thus, SBH does not have
a significant impact on the entropy decoding throughput. Average bit rate savings
between 0.6 and 0.9 % were reported for SBH at common test conditions [104].

8.6.5.3 Summary of Absolute Level and Sign Coding in HEVC

Figure 8.25 summarizes the last four out of up to five scan passes required for
parsing the absolute levels and signs for every non-zero 4 � 4 subblock in HEVC.

8.6.6 Comparison of HEVC and H.264/AVC

Table 8.15 summarizes the differences in transform coefficient coding between
HEVC and H.264/AVC as well as across different transform block sizes. In terms
of throughput and memory related aspects, HEVC requires 3� fewer contexts
(121 vs. 359) than H.264/AVC for transform coefficient coding. Note, however,

258 V. Sze and D. Marpe

A
bs

ol
ut

e
le

ve
l g

re
at

er
 th

an
 1

(c
o
e
f
f
_
a
b
s
_
l
e
v
e
l
_
g
r
e
a
t
e
r
1
_
f
l
a
g

)

A
bs

ol
ut

e
le

ve
l r

em
ai

ni
ng

(c
o
e
f
f
_
a
b
s
_
l
e
v
e
l
_
r
e
m
a
i
n
i
n
g

)

R
ep

ea
t

m
in

im
u

m
 o

f

(n
u

m
b

er
 o

f
n

o
n

-z
er

o
 s
i
g
_
c
o
e
f
f
_
f
l
a
g

, 8
)

R
ep

ea
t

m
in

im
u

m
 o

f

(n
u

m
b

er
 o

f
n

o
n

-z
er

o
 s
i
g
_
c
o
e
f
f
_
f
l
a
g

 -
 8

 +

 n
u

m
b

er
 o

f
n

o
n

-z
er

o
 c
o
e
f
f
_
a
b
s
_
l
e
v
e
l
_
g
r
e
a
t
e
r
1
_
f
l
a
g

 +
 n

u
m

b
er

 o
f

n
o

n
-z

er
o

 c
o
e
f
f
_
a
b
s
_
l
e
v
e
l
_
g
r
e
a
t
e
r
2
_
f
l
a
g

, 1
6)

A
bs

ol
ut

e
le

ve
l g

re
at

er
 th

an
 2

(c
o
e
f
f
_
a
b
s
_
l
e
v
e
l
_
g
r
e
a
t
e
r
2
_
f
l
a
g

)
R

ep
ea

t
m

in
im

u
m

 o
f

(n

u
m

b
er

 o
f

n
o

n
-z

er
o

 c
o
e
f
f
_
a
b
s
_
l
e
v
e
l
_
g
r
e
a
t
e
r
1
_
f
l
a
g

, 1
)

C
oe

ffi
ci

en
t s

ig
n

(c
o
e
f
f
_
s
i
g
n
_
f
l
a
g

)
R

ep
ea

t
n

u
m

b
er

 o
f

n
o

n
-z

er
o

 s
i
g
_
c
o
e
f
f
_
f
l
a
g

 (
m

in
u

s
o

n
e

if
 s

ig
n

d

at
a

h
id

in
g

 e
n

ab
le

d
)

C
on

te
xt

 d
ep

en
ds

 o
n

lu
m

a/
ch

ro
m

a,

w
he

th
er

 in
 D

C
 s

ub
bl

oc
k,

 n
um

be
r

of

tr
ai

lin
g

on
es

 in
 p

re
vi

ou
s

4x
4

su
bb

lo
ck

[F
ig

. 8
.2

4]

C
on

te
xt

 d
ep

en
ds

 o
n

lu
m

a/
ch

ro
m

a,

w
he

th
er

 in
 D

C
 s

ub
bl

oc
k

If
si

gn
 d

at
a

hi
di

ng
 e

na
bl

ed
, i

nf
er

hi

dd
en

 b
in

 b
as

ed
 o

n
nu

m
be

r
of

no

n-
ze

ro
 c

oe
ffi

ci
en

t b
et

w
ee

n
th

e
fir

st
 a

nd
 la

st
 n

on
-z

er
o

co
ef

fic
ie

nt
s

in

4x
4

su
bb

lo
ck

 is
 g

re
at

er
 th

an
 4

Tr
un

ca
te

d
R

ic
e

bi
na

riz
at

io
n

w
he

re

R
ic

e
pa

ra
m

et
er

 k
 c

an
 in

cr
ea

se

ba
se

d
on

 p
re

vi
ou

s
co

ef
fic

ie
nt

 le
ve

l.
k

re
se

ts
 to

 0
 fo

r
ea

ch
 4

x4
 s

ub
bl

oc
k.

[T

ab
. 8

.1
2,

 8
.1

3,
 8

.1
4]

S
ta

rt
 4

x4
 s

u
b

b
lo

ck

E
n

d
 4

x4
 s

u
b

b
lo

ck

F
ig

.8
.2

5
Fl

ow
ch

ar
tf

or
co

di
ng

th
e

sy
nt

ax
el

em
en

ts
of

ab
so

lu
te

le
ve

lm
in

us
1

an
d

si
gn

fo
r

a
4

�
4

su
bb

lo
ck

in
H

E
V

C

8 Entropy Coding in HEVC 259

that in H.264/AVC CABAC two separate sets of context models are used for
frame-based and field-based coding of SIG and LAST. Furthermore, HEVC has
a 9� lower maximum number of regular coded bins per coefficient (1.9 vs. 17.1)
than H.264/AVC.

8.7 Context Initialization

In HEVC, slices consist of an integer number of CTUs, which collectively form
an independently decodable unit. This implies in particular that at the beginning
of each slice, the parameters of all probability models must be reset to some
predefined values. Typically, without any prior knowledge of the statistical nature of
the source, each probability model would be initialized with the state corresponding
to the uniform distribution (p D 0:5). However, in order to bridge the learning
phase of the adaptive probability models and to enable a kind of preadaptation at
different coding conditions, it was found to be beneficial to provide some more
appropriate initialization value than equi-probable state for each probability model
at the beginning of each slice.

Similar to H.264/AVC, CABAC in HEVC involves a quantization-parameter
dependent initialization process that is invoked at the beginning of each slice. It
generates an initial probability state value representing the LPS probability pLPS

as well as the value of the MPS �MPS depending on the given initial value of the
luma quantization parameter SliceQPY for the slice. For that purpose, a pair of
so-called initialization parameters is stored for each model, from which a linear
relationship between SliceQPY and the model probability p is derived. In contrast
to H.264/AVC, the initialization parameters in HEVC do not directly represent the
slope m and the offset n of the corresponding linear model. Instead, these two
parameters are packed into a single 8 bit table entry in a memory-efficient way,
as will be explained in more detail in the subsequent section.

For each of the three slice types I, P, and B, separate table entries are provided.
However, for P and B slices the encoder can choose between the corresponding two
table entries of initialization parameters and signal its choice to the decoder by use
of the syntax element cabac_init_flag. Note that this mechanism is similar
to that already available in H.264/AVC where, however, the choice between three
instead of two pairs of initialization parameters is given for P and B slices [46, 63].

8.7.1 8-Bit Design

To reduce the memory requirements for context initialization tables, it was proposed
in [52] to use 8-bit values to derive the initialization parameters rather than storing
the pair of 16-bit values .m; n/ of the linear model directly, as in H.264/AVC. From
the high nibble of the 8-bit table entry InitValue, a variable slopeIdx is derived,

260 V. Sze and D. Marpe

T
ab

le
8.

15
D

if
fe

re
nc

es
be

tw
ee

n
C

A
B

A
C

fo
r

di
ff

er
en

t
T

B
si

ze
s

in
H

E
V

C
an

d
H

.2
64

/A
V

C

N
um

be
r

of
co

nt
ex

ts
fo

r
H

.2
64

/A
V

C
in

cl
ud

es
se

pa
ra

te
m

od
el

s
fo

r
bo

th
SI

G
an

d
L

A
ST

in
fr

am
e

an
d

fie
ld

co
di

ng
m

od
e

(d
en

ot
ed

by
“�

2
”

in
th

e
tw

o
ri

gh
tm

os
tc

ol
um

ns
fo

r
th

e
co

rr
es

po
nd

in
g

sy
nt

ax
el

em
en

ts
)

8 Entropy Coding in HEVC 261

while the low nibble of InitValue represents the variable offsetIdx, from which the
slope m and offset n of the linear model are derived using [29]

m D slopeIdx � 5 � 45

n D .offsetIdx << 3/ � 16:

Given the values of m and n, exactly the same initialization procedure as in
H.264/AVC is performed for derivation of the parameters of each probability model
[46,63]. Note that the 8-bit design allows to cut in half the amount of storage needed
for context initialization tables. Further restriction to two instead of three table
entries for P and B slice types reduces the memory requirements for those tables
in HEVC by at least another 12.5–15 % relative to those of an 8-bit equivalent of
H.264/AVC. Since there are 134 contexts for I slices and 154 for each of both slice
types P and B, a total amount of 442 bytes of memory is needed for storage of all
context initialization tables in HEVC.

8.7.2 Context Training

The main purpose of the context initialization tables is to bridge the learning
phase starting from a uniform distribution, i.e., the case of no prior knowledge of
the statistics of the given bin distributions, towards the well-adapted phase of the
probability estimator. Assuming that after processing of a number of N	 bins, the
probability estimator that starts from p D 0:5 reaches such a well-adapted state, the
bins for each probability model were tracked for N	 bins for each test sequence of
a training set at a particular QP and for a particular slice type. As a result, a model
probability p	;QP was estimated from the relative frequency obtained after coding
the first N	 bins for each probability model. This training procedure was performed
separately for each QP and each of the three slice types. To finally determine the
pair of parameters .m; n/ that describe the assumed linear relationship between QP
and model probability p	;QP, a simple linear regression was applied for each slice
type. Note that a choice of N	 D 50 was assumed to be appropriate.

8.7.3 Context Memory for Wavefront Parallel Processing
and Dependent Slices

For improving the parallelization and low-delay capabilities beyond the use of
regular slices, as known from H.264/AVC, a partitioning of pictures into tiles,
wavefronts and dependent slices have been introduced in HEVC. Since the use of
regular slices implies in particular that the corresponding CABAC bitstream must
be independently parsable, re-initialization of the CABAC probability models is
required at the beginning of each regular slice. Although the initialization procedure,

262 V. Sze and D. Marpe

as described above, mitigates the effect of such a rigorous partitioning, the loss in
coding efficiency is still too large to be acceptable for certain applications.

Wavefront parallel processing (WPP) is such a technique for picture partitioning
with the focus on improving the capabilities for parallel processing at virtually
no loss in coding efficiency [27, 34]. According to the WPP scheme, a picture
is partitioned into rows of CTUs with each row being represented by its own
CABAC bitstream which, however, is not fully independently parsable except for
the bitstream belonging to first row of CTUs in a picture. Nevertheless, independent
parsing and decoding of the WPP bitstreams is possible, if the processing from
one CTU row to the next complies with an offset of two consecutive CTUs. This
offset guarantees, on the one hand, that all spatial dependencies for the decoding
process are preserved and, on the other hand, it permits inheritance of the adapted
probability models from the first two CTUs in the preceding row of CTUs. The
latter functionality, however, requires to store the content of all probability models
after decoding the second CTU in a row. As already discussed above, the required
memory depends on the slice type: for I slices 134 bytes and for P and B slices each
154 bytes of memory are needed. Note, however, that by using a proper scheduling
and synchronization at the decoder, only one instance of such an additional context
memory is required in addition to the N! context memories required for parsing and
decoding N! CTU rows in parallel.

The same context memory handling applies also to the concept of dependent
slice segments [69]. In HEVC, slices are composed of one initial independent
slice segment and zero or more dependent slice segments, all of which contains an
integer number of CTUs. Compared to regular slices or independent slice segments,
dependent slice segments do not break the coding dependencies within the picture
area to which the corresponding CTUs belong. Although each dependent slice
segment has its own CABAC bitstream, the parsing of this bitstream cannot start
before the parsing of the preceding dependent or independent slice segment has been
finished. In particular, the content of all adapted probability models after parsing the
last CTU in the preceding slice segment needs to be stored and propagated to the
current dependent slice segment. Therefore, the same amount of additional context
memory is required as in the WPP case. Note, however, that WPP and dependent
slices, even though most often used together, are different concepts. While WPP is
targeting at parallel processing, dependent slices cannot be processed in parallel and
are most useful in applications requiring ultra-low delay, since each dependent slice
segment can be put into a separate transport packet. Please refer to Chap. 3 for more
details.

8.8 Overall Performance

This section analyzes the improvements of CABAC in HEVC relative to CABAC
in H.264/AVC. In the first part of this section, the impact of all relevant CABAC
changes in terms of coding efficiency is experimentally evaluated, while in the

8 Entropy Coding in HEVC 263

second part, an assessment of its throughput implications is performed. Finally, the
reduction in memory requirements is analyzed.

Simulations were performed under common test conditions set by the JCT-VC
[6, 101] as well as corresponding settings for H.264/AVC JM [30]. Note that those
common conditions for the HEVC reference software HM [35] are intended to
reflect the typical bitstreams in applications of HEVC. During standardization of
HEVC, this configuration was also used to evaluate the coding efficiency impact of
proposals.

In [6], four different test cases labeled as Intra, Random Access, Low Delay B,
and Low Delay P are specified. The Intra test case specifies that all pictures are
coded as intra pictures. In the Random Access test case, intra pictures are inserted
in regular intervals of approximately 1.1 s in order to enable random access. As a
temporal coding structure, hierarchical B pictures with groups of eight pictures are
employed. Both the Low Delay B and Low Delay P test case specify that the pictures
are coded in display order, so that the resulting structural encoding-decoding delay is
suitable for low-delay communication applications. The latter two coding conditions
differ only in the used slice type. In the Low Delay B test case, B slices are used,
whereas only P slices are used in the Low Delay P test case. Note that in those low-
delay test cases only one intra picture is used at the beginning of each test sequence.

The same set of test sequences as in the standardization process of HEVC has
been used [6]. The test sequences are categorized into different classes, each with
a particular spatial resolution. As an exception, the class labeled as Screen content
in the following represents a special class that contains test sequences with typical
screen and graphics content, but with varying spatial resolutions.

8.8.1 Coding Efficiency

Evaluation of coding efficiency for CABAC has been restricted to the syntax ele-
ments of transform coefficient coding. For that purpose, an extension of the residual
coding scheme, specified for CABAC in H.264/AVC [46], was implemented into the
HM to also cover residual coding of 16 � 16 and 32 � 32 TBs. This straightforward
extension was realized by increasing the number of successive scan positions
sharing the same context model for both SIG and LAST of those TBs. For the
remaining syntax elements related to transform coefficient level coding, the same
rules as defined for CABAC in H.264/AVC are applied [46].

Table 8.16 shows the so-called Bjøntegaard delta bit rate (BD-rate) for the
luma component [5] as a measure of the gain in coding efficiency obtained for
the transform coefficient level coding in HEVC relative to the aforementioned
straightforward CABAC extension. Overall performance gains of 3.4–4.8 % in terms
of averaged BD-rate savings can be attributed to the improved transform coefficient
coding techniques in HEVC. The largest improvements are achieved for the Intra
test case, which is mainly due to the relatively large energy of the corresponding
residual signals.

264 V. Sze and D. Marpe

Table 8.16 BD-rate performance of CABAC transform coefficient coding in HEVC compared to
the extended CABAC transform coefficient coding of H.264/AVC

Resolution and
class of test sequences Intra Random Access Low Delay B Low Delay P

Class A: 2560 � 1600 �4:08 �2:86 n/a n/a
Class B: 1920 � 1080 �4:18 �3:16 �3:17 �2:89

Class C: 832 � 416 �3:79 �2:82 �3:31 �3:13

Class D: 416 � 240 �4:15 �2:61 �2:43 �2:33

Class E: 1280 � 720 �4:92 n/a �2:94 �2:69

Class F: Screen content �7:74 �6:44 �5:79 �5:65

Average �4:78 �3:56 �3:54 �3:35

Table 8.17 Coding efficiency impact of adopted TU coding tools

Tool HM Benefit BD-rate

Neighbor based context selection for SIG [102] 1.0 coding gain �2:8% to �1:4%
Group bypass sign [9] 1.0 throughput 0.0%
Mode dependent coefficient scanning [106] 2.0 coding gain �1:2% to �0:1%
Reduce neighboring dependency for SIG [18] 2.0 throughput �0:1% to 0.0%
Reduce regular coded level bins [54, 59] 3.0 throughput �0:1% to 0.0%
Last position coding [73] 3.0 throughput �0:1% to 0.0%
Group bypass level [87] 4.0 throughput 0.0%
Diagonal Scan [86] 4.0 throughput �0:1% to 0.0%
CSBF & subblock scan [56, 76] 5.0 throughput �0:1% to 0.1%
Reduce regular coded level bins per 4 � 4 [16] 6.0 throughput �0:1% to 0.1%
Sign Bit Hiding [104] 6.0 coding gain �0:9% to �0:6%
Use CSBF of neighboring subblocks for SIG [41] 7.0 throughput 0.1% to 0.2%

Note that positive BD-rate values indicate coding loss and negative BD-rate values indicate coding
gain

Table 8.17 summarizes the individual coding efficiency impact of various
adopted tools for HEVC. Note, however, that the majority of adopted tools focused
on throughput improvements with minimal coding loss, as will be discussed in the
following.

8.8.2 Throughput Analysis

This section describes throughput of HEVC relative to H.264/AVC. The impact of
the techniques, outlined in Sect. 8.3.3, are discussed. Analysis was also done for the
worst case throughput which is defined as the case with the maximum number of
bins per 16�16 coding tree unit (CTU) or macroblock. The results for both common
conditions and worst case are summarized in Tables 8.18 and 8.19, respectively.

8 Entropy Coding in HEVC 265

Table 8.18 Distribution of regular coded, bypass and termination bins
for CABAC in H.264/AVC (JM-16.2) and HEVC (HM8.0) under
common test conditions [6, 101]

Common condition Context Bypass Term
configurations (%) (%) (%)

H.264/AVC Hierarchical B 80.5 13.6 5.9
Hierarchical P 79.4 12.2 8.4

HEVC Intra 67.9 32.0 0.1
Low Delay P 78.2 20.8 1.0
Low Delay B 78.2 20.8 1.0
Random Access 73.0 26.4 0.6

Table 8.19 Reduction of worst case number of bins and memory in HEVC
over H.264/AVC

Metric H.264/AVC HEVC Reduction

Max regular coded bins 7825 882 9�
Max bypass bins 13056 13417 1�
Max total bins 20882 14301 1:5�
Number of contexts 441 154 3�
Line buffer for 4k�2k 30720 1024 30�
Coefficient storage 8 � 8 � 9-bits 4 � 4 � 3-bits 12�
Initialization Table 1746 � 16-bits 442 � 8-bits 8�
Note max total bins includes termination mode bins, but does
not include impact of bit limit per CTU or macroblock

8.8.2.1 Reduce Regular Coded Bins

As mentioned earlier, bypass coded bins can be processed faster than regular coded
bins, since they don’t have data dependencies due to context selection, and their
interval subdivision can be performed by a simple shift. Table 8.18 shows that the
percentage of regular coded bins under common conditions is lower for HEVC than
H.264/AVC. Table 8.19 also shows that in the worst case conditions, there are 9�
fewer regular coded bins in HEVC than H.264/AVC. The reduction in regular coded
bins is primarily due to the improved binarizations of absolute coefficient levels and
components of the motion vector difference.

Using the implementation found in [103], where up to 2 regular coded bins or 4
bypass coded bins can be processed per cycle, HEVC gives 2� higher throughput
than H.264/AVC under the worst case (this includes the impact of 1:5� fewer total
bins in HEVC). This can also be translated into power saving using voltage scaling
as mentioned earlier.

266 V. Sze and D. Marpe

SIG(i) SIG(i+1) SIG(i+2) SIG(i+3) EOB

Fig. 8.26 No context speculation is required to achieve 5� parallelism when processing the
4 � 4 significance map in HEVC. i = coefficient position; EOB = end of block; SIG =
sig_coeff_flag

8.8.2.2 Group Bypass Coded Bins

Grouping bypass bins together into longer chains increases the number of bins
processed per cycle and reduces the number of cycles required to process a single
bypass bin. This is a technique used in coding of syntax elements related to motion
vector difference, intra mode, last position, and coefficient levels. For instance, for
the Kimono sequence, encoded using the RandomAccess configuration, grouping
bypass bins increases the average bypass bin run length from 2.1 to 6.4. In HEVC,
under common test conditions, up to a 30 % reduction in number of cycles can be
achieved compared to the case of no grouping [89].

The benefit of bypass grouping can also be seen in the example of Figs. 8.8 and
8.9. If bypass grouping was not used, it would take five cycles to process the 5 sign
bypass bins. Assuming the architecture of [103], where 4 bypass bins are processed
per cycle, only two cycles are required to process the 5 sign bins.

8.8.2.3 Group Bins with Same Context

Grouping bins with same context together is done for motion vector difference,
significance map and coefficient level. As a results, fewer speculative calculations
are needed to decode multiple bins per cycle since all bins that use the same logic
for context selection are grouped together.

Figure 8.3 showed the speculation required when significant_coeff
_flag and last_significant_coeff_flag are interleaved in H.264/AVC.
In HEVC, no speculation is required for significance map as shown in Fig. 8.26.
Thus for this example, the number of operations are reduced from 14 to 5.

8.8.2.4 Reduce Context Selection Dependencies

Context selection dependencies were reduced such that coding gains could be
achieved without significant penalty to throughput. For instance, the last significant
coefficient position information is sent before the SIG flag to remove a tight bin
to bin data dependency. Relative to HM1.0, the neighboring dependencies for SIG
were reduced from 10 to 5 neighboring SIG bins, and then further modified to only
depend on neighboring 4 � 4 subblocks. The remaining context selection for SIG
is only based on its position within the block as in H.264/AVC.

8 Entropy Coding in HEVC 267

Table 8.20 Summary of throughput improvement techniques with references to related standard
contributions

Technique PU coding TU coding

Reduce regular coded bins [58] [16, 54, 59]
Group bypass bins [19, 67] [87]
Group bins with same context [58] [9, 10, 73]
Reduce context modeling dependencies [18, 80, 85, 86]
Reduce total number of bins [12, 56]
Reduce memory requirements [58, 82, 90, 91] [3, 15, 20, 62, 66, 81, 82, 93, 99]
Reduce parsing dependencies [107, 108]

8.8.2.5 Reduce Total Number of Bins

When comparing the total number of bins in the worst case, and thus the throughput
requirement, HEVC has 1:5� fewer bins than H.264/AVC. Assuming the same
number of cycles per bin are required, HEVC can run at a 1:5� lower clock rate
at a lower voltage for 50 % power savings assuming linear scaling with voltage and
frequency, or it can process at a bin rate that is 1:5� faster than H.264/AVC.

8.8.2.6 Reduce Parsing Dependencies

Parsing dependencies were removed or reduced such that coding gains could
be achieve without significantly sacrificing throughput. Removing the parsing
dependency for merge and mvp enables parsing to be mostly decoupled from the
reconstruction process, as it is the case for H.264/AVC. HEVC does have parsing
dependencies on intra mode reconstruction, which are not present in H.264/AVC;
however, efforts were made to keep intra mode reconstruction simple to avoid
affecting parsing throughput.

8.8.2.7 Summary of Throughput Improvement Techniques

Table 8.20 contains a summary of the techniques for throughput improvement and
related standard contributions. An HEVC CABAC decoder that leverages several of
these improvements to achieve a throughput of over 2 Gbin/s is described in [17].

8.8.3 Memory Requirement Reduction

This section describes how the size and bandwidth requirements of various memo-
ries in CABAC have been reduced in HEVC in order to increase throughput as well
as lower implementation cost and power consumption.

268 V. Sze and D. Marpe

Table 8.21 Context memory
requirements for H.264/AVC
(4:2:0) and HEVC

H.264/AVC

(w/ interlace) (w/o interlace) HEVC

CTU/CU contexts 25 22 16
PU contexts 26 26 14
TU contexts 390 244 124

Total 441 292 154

8.8.3.1 Context Memory

The motivation for context reduction was first proposed in [81], where the number of
contexts was reduced for coeff_abs_level_greater1_flag and coeff_
abs_level_greater2_flagwithout impacting coding efficiency. Subsequent
proposals [3, 66, 93] were made to reduce the number of contexts for other syntax
elements (e.g., sig_coeff_flag). HEVC uses only 154 contexts as compared
to 441 (or 292 without interlaced) used in H.264/AVC as shown in Table 8.21; thus,
a 3� reduction in context memory size is achieved with HEVC.

8.8.3.2 Line Buffer Memory

The motivation to reduce the size of the line buffer in the CABAC was first proposed
in [90,92], where the line buffer size was reduced by changing the context selection
for motion vector difference. Subsequent proposals [15,20,58,68,82,91] were made
to further reduce neighboring dependencies to reduce the line buffer size. Based on
these optimizations, in the worst case, the line buffer only need to store the CU
depth (2-bits) of the top neighbor for context selection of split_cu_flag for
every 8 � 8 block, and to indicate if the top neighbor is skipped (1-bit) for context
selection of cu_skip_flag for ever 4 � 4 block. Assuming a minimum CU size
of 8 � 8 for a 4k � 2k sequence, HEVC only requires a line buffer size of 1,024 bits
versus 30,720 bits in H.264/AVC, which is a 30 � reduction.

8.8.3.3 Coefficient Storage

Large TB sizes have large hardware cost implications. Compared to H.264/AVC,
the 16 � 16 and 32 � 32 TBs in HEVC have 4� and 16� more coefficients
than an 8 � 8 TB, respectively, and consequently require an increase in storage
cost. Several techniques were used to reduce the coefficient storage cost. First, the
sign information is sent before coeff_abs_level_remaining such that only
3-bits storage is required per coefficient for the partial decoded value (if stored as
a 2-bit number with a range from 0 to 3, and a sign bit). Second, the coefficient
information is interleaved at a 4 � 4 subblock level, such that the fully constructed
coefficient can be achieved for every subblock and be sent out to the next module
[75]. Thus, only a coefficient storage of 4 � 4�3-bits is required in HEVC CABAC

8 Entropy Coding in HEVC 269

(compared with 8 � 8 � 9-bit in H.264/AVC) in order to reconstruct the coefficient
levels.

8.8.3.4 Context Initialization Tables

As already discussed in Sect. 8.7, the memory requirements for storing the context
initialization tables in HEVC have been reduced to a large extent when compared to
those of H.264/AVC. Accounting for the reduction in number of contexts, number
of bits per InitValue and number of InitValue sets, HEVC has an 9� smaller context
initialization table than H.264/AVC.

8.9 Conclusions

Entropy coding was a highly active area of development throughout the HEVC
standardization process with proposals for both coding efficiency and throughput
improvement. The trade-off between the two requirements were carefully evaluated
in multiple Core Experiments and Ad Hoc Groups [8,11,13,37,97]. Beside coding-
efficiency improving technology, many techniques were incorporated to improve
throughput including reducing regular coded bins, grouping bypass bins together,
grouping bins that use the same contexts together, reducing context selection
dependencies, and reducing the total number of signaled bins. CABAC memory
requirements were also significantly reduced. The final design of CABAC in
HEVC shows that by accounting for implementation cost and coding efficiency
when designing entropy coding algorithms results in a design that can maximize
processing speed and minimize area cost, while delivering high coding efficiency in
the latest video coding standard.

References

1. Alshina E, Alshin A (2011) Multi-parameter probability up-date for CABAC, Joint Collabo-
rative Team on Video Coding (JCT-VC), Document JCTVC-F254, Torino, July 2011

2. Amonou I, Cammas N, Clare G, Jung J, Noblet L, Pateux S, Matsuo S, Takamura S, Boon
CS, Bossen F, Fujibayashi S, Kanumuri S, Suzuki Y, Takiue J, Tan TK, Drugeon V, Lim CS,
Narroschke M, Nishi T, Sasai H, Shibahara Y, Uchibayashi K, Wedi T, Wittmann S, Bordes P,
Gomila C, Guillotel P, Guo L, François E, Lu X, Sole J, Vieron J, Xu Q, Yin P, Zheng Y (2010)
Video coding technology proposal by France Telecom, NTT, NTT DoCoMo, Panasonic and
Technicolor, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-A114,
Dresden, Apr. 2010

3. Auyeung C, Xu J, Korodi G, Zan J, He D, Piao Y, Alshina E, Min J, Park J (2011) A combined
proposal from JCTVC-G366, JCTVC-G657, and JCTVC-G768 on context reduction of
significance map coding with CABAC, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-G1015, Geneva, Nov. 2011

270 V. Sze and D. Marpe

4. Belyaev E, Gilmutdinov M, Turlikov A (2006) Binary arithmetic coding system with
adaptive probability estimation by “virtual sliding window”. In: 2006 IEEE tenth international
symposium on consumer electronics (ISCE ’06), pp 1–5

5. Bjøntegaard G (2001) Calculation of average PSNR differences between RD curves, ITU-T
SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-M33, Austin, Apr. 2001

6. Bossen F (2012) HM 8 common test conditions and software reference configurations, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J1100, Stockholm, July
2012

7. Bross B, Jung J (2011) Description of core experiment CE13: motion data parsing robustness
and throughput, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
F913, Torino, July 2011

8. Budagavi M (2010) Tool experiment 8: parallel entropy coding, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-B308, Geneva, July 2010

9. Budagavi M (2010) TE8: TI parallel context processing (PCP) proposal, Joint Collaborative
Team on Video Coding (JCT-VC), Document JCTVC-C062, Guangzhou, Oct. 2010

10. Budagavi M, Demircin MU (2010) Parallel context processing techniques for high coding
efficiency entropy coding in HEVC, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-B088, Geneva, July 2010

11. Budagavi M, Martin-Cocher G, Segall A (2010) JCT-VC AHG report: entropy coding, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-D009, Daegu, Jan. 2010

12. Budagavi M, Sze V (2012) coeff_abs_level_remaining maximum codeword length reduction,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J0142, Stockholm,
July 2012

13. Budagavi M, Segall A (2010) AHG report: parallel entropy coding, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-B009, Geneva, July 2010

14. Chandrakasan A, Sheng S, Brodersen R (1992) Low-power CMOS digital design. IEEE J
Solid-State Circuits 27(4):473–484. doi:10.1109/4.126534

15. Chen C, Lee T (2011) Simplified context model selection for block level syntax coding, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F497, Torino, July 2011

16. Chen J, Chien WJ, Joshi R, Sole J, Karczewicz M (2012) Non-CE1: throughput improvement
on CABAC coefficients level coding, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-H0554, San Jose, Feb. 2012

17. Y. H. Chen, V. Sze, “A 2014 Mbin/s Deeply Pipelined CABAC Decoder For HEVC,” IEEE
International Conference on Image Processing (ICIP), Oct. 2014

18. Cheung A, Lui W (2011) Parallel processing friendly simplified context selection of
significance map, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
D260, Daegu, Jan. 2010

19. Chien WJ, Chen J, Coban M, Karczewicz M (2012) Intra mode coding for INTRA_NxN,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0302, Geneva,
Apr. 2012

20. Chien WJ, Karczewicz M, Wang X (2011) Memory and parsing friendly CABAC context,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F606, Torino, July
2011

21. ChienWJ, Karczewicz M, Sole J, Chen J (2012) On coefficient level remaining coding, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0487, Geneva, Apr.
2012

22. Chono K (2012) BoG report on intra mode coding cleanup and simplification, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H0712, San Jose, Feb.
2012

23. Chono K, Aoki H (2011) Efficient binary representation of cu_qp_delta syntax for CABAC,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F046, Torino, July
2011

24. Clare G, Henry F, Jung J (2011) Sign data hiding, Joint Collaborative Team on Video Coding
(JCT-VC), Document JCTVC-G271, Geneva, Nov. 2011

8 Entropy Coding in HEVC 271

25. Finchelstein D, Sze V, Chandrakasan A (2009) Multicore processing and efficient on-chip
caching for H.264 and future video decoders. IEEE Trans CSVT 19(11):1704–1713

26. Fuldseth A, Bjøntegaard G, Budagavi M, Sze V (2011) CE10: core transform design for
HEVC, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G495,
Geneva, Nov. 2011

27. Gordon C, Henry F, Pateux S (2011) Wavefront parallel processing for HEVC encoding and
decoding, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F274,
Torino, July 2011

28. Guo X, Huang YW, Lei S (2009) Ordered entropy slices for parallel CABAC, ITU-T SG16
Q6 Video Coding Experts Group (VCEG), Document VCEG-AK25, Yokohoma, Apr. 2009

29. Guo L, Sole J, Joshi R, Karczewicz M, Yeo C, Tan Y, Li Z (2012) CE1 B3: 8-bit linear
initialization for CABAC, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-H0535, San Jose, Feb. 2012

30. H.264/AVC Reference Software, JM 16.2. http://iphome.hhi.de/suehring/tml/, 2009
31. He D, Korodi G, Martin-Cocher G, Yang EH, Yu X, Zan J (2010) Video coding technology

proposal by research in motion, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-A120, Dresden, Apr. 2010

32. Helle P, Oudin S, Bross B, Marpe D, Bici M, Ugur K, Jung J, Clare G, Wiegand T
(2012) Block merging for quadtree-based partitioning in HEVC. IEEE Trans CSVT 22(12):
1720–1731

33. Hellman T, Yu Y (2011) Decoder performance restrictions due to merge/MVP index parsing,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F341, Torino, July
2011

34. Henry F, Pateux S (2011) Wavefront parallel processing, Joint Collaborative Team on Video
Coding (JCT-VC), Document JCTVC-E196, Geneva, Mar. 2011

35. HEVC Test Model, HM 8.0. https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/
HM-8.0/, 2012

36. Huang YW, Alshina E (2012) BoG report on integrated text of SAO adoptions on top of
JCTVC-I0030, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
I0602, Geneva, Apr. 2012

37. Joshi R, Alshina E, Sasai H, Kirchhoffer H, Lainema J (2011) Description of core experiment
1: entropy coding, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
F901, Torino, July 2011

38. Jung J, Laroche G (2006) Competition-based scheme for motion vector selection and coding,
ITU-T SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-AC06, Klagenfurt,
July 2006

39. Karczewicz M, Chen P, Joshi R, Wang X, Chien WJ, Panchal R (2010) Video coding
technology proposal by Qualcomm, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-A121, Dresden, Apr. 2001

40. Kim WS, Kwon DK (2011) Non-CE8: method of visual coding artifact removal for SAO,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G0680, Geneva,
Mar. 2011

41. Kumakura T, Fukushima S (2012) Non-CE3: simplified context derivation for significance
map, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0296,
Geneva, Apr. 2012

42. Lan C, Xu J, Sullivan GJ, Wu F (2012) Intra transform skipping, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-I0408, Geneva, Apr. 2012

43. Marpe D, Wiegand T (2003) A highly efficient multiplication-free binary arithmetic coder
and its application in video coding. In: IEEE international conference on image processing,
pp 263–266

44. Marpe D, Blättermann G, Wiegand T (2001) Adaptive codes for H.26L, ITU-T SG16 Q6
Video Coding Experts Group (VCEG), Document VCEG-L13, Eibsee, Jan. 2001

45. Marpe D, Heising G, Blättermann G,Wiegand T (2002) Fast arithmetic coding for CABAC,
Joint Video Team (JVT), Document JVT-C061, Fairfax, Mar. 2002

http://iphome.hhi.de/suehring/tml/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-8.0/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-8.0/

272 V. Sze and D. Marpe

46. Marpe D, Schwarz H, Wiegand T (2003) Context-based adaptive binary arithmetic coding in
the H.264/AVC video compression standard. IEEE Trans CSVT 13(7):620–636

47. Marpe D, Marten G, Cycon HL (2006) A fast renormalization technique for H. 264/MPEG4-
AVC arithmetic coding. In: 51st Internationales Wissenschaftliches Kolloquium Technische
Universität Ilmenau

48. Marpe D, Marten G, Wiegand T (2006) Fast CABAC renormalization for H.264/MPEG4-
AVC. Joint Video Team (JVT), Document JVT-U084, Hangzhou, Oct. 2005

49. Marpe D, Bosse S, Bross B, Helle P, Hinz T, Kirchhoffer H, Lakshman H, Oudin S, Schwarz
H, Siekmann M, Sühring K, Winken M, Wiegand T (2010) Video compression using nested
quadtree structures, leaf merging and improved techniques for motion representation and
entropy coding. IEEE Trans CSVT 20(12):1676–1687

50. Marpe D, Schwarz H, Wiegand T (2010) Entropy coding in video compression using
probability interval partitioning. In: Picture coding symposium (PCS), pp 66–69

51. Marpe D, Schwarz H, Wiegand T (2010) Novel entropy coding concept, Joint Collaborative
Team on Video Coding (JCT-VC), Document JCTVC-A032, Dresden, Apr. 2010

52. Marpe D, Kirchhoffer H, Bross B, George V, Nguyen T, PreißM, Siekmann M, Stegemann J,
Wiegand T (2011) Unified PIPE-based entropy coding for HEVC, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-F268, Torino, July 2011

53. McCann K, Bross B, Sekiguchi S, HanWJ (2010) HEVC test model 1 (HM 1) encoder
description, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-C402,
Guangzhou, Oct. 2010

54. Nguyen T (2011) CE11: coding of transform coefficient levels with Golomb-Rice codes, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E253, Geneva, Mar. 2011

55. Nguyen T, Schwarz H, Kirchhoffer H, Marpe D, Wiegand T (2010) Improved context
modeling for coding quantized transform coefficients in video compression. In: Picture coding
symposium (PCS), pp 378–381

56. Nguyen N, Ji T, He D, Martin-Cocher G, Song L (2011) Multi-level significant maps for large
transform units, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
G644, Geneva, Nov. 2011

57. Nguyen T, Marpe D, Schwarz H, Wiegand T (2011) CE11: evaluation of transform coding
tools in HE configuration, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-D061, Daegu, Jan. 2011

58. Nguyen T, Marpe D, Schwarz H, Wiegand T (2011) Modified binarization and coding of
MVD for PIPE/CABAC, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-F455, Torino, July 2011

59. Nguyen T, Winken M, Marpe D, Schwarz H, Wiegand T (2011) Reduced complexity
entropy coding of transform coefficient levels using a combination of VLC and PIPE, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-D336, Daegu, Jan. 2011

60. Nguyen N, Ji T, He D, Martin-Cocher G (2012) Non-CE1: throughput improvement on
CABAC coefficients level coding, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-H0554, San Jose, Feb. 2012

61. Peng X, Lan C, Xu J, Sullivan GJ (2012) Inter transform skipping, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-J0237, Stockholm, July 2012

62. Piao Y, Min J, Alshina E, Park JT (2011) Reduced chroma contexts for significance map
coding in CABAC, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
G781, Geneva, Nov. 2011

63. ITU-T Rec. H.264 and ISO/IEC 14496-10 (2003) Advanced video coding
64. ITU-T Rec. H.265 and 23008-2 (2013) High efficiency video coding
65. Ryabko BY (1996) Imaginary sliding window as a tool for data compression. Probl Inf

Transm 32(2):156–163
66. Sasai H, Nishi T (2011) CE11: context size reduction for the significance map, Joint

Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E227, Geneva, Mar. 2011
67. Sasai H, Nishi T (2011) Modified MVD coding for CABAC, Joint Collaborative Team on

Video Coding (JCT-VC), Document JCTVC-F423, Torino, July 2011

8 Entropy Coding in HEVC 273

68. Sasai H, Nishi T (2011) Modified context derivation for neighboring dependency reduction,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F429, Torino, July
2011

69. Schierl T, Goerge V, Henkel A, Marpe D (2012) Dependent slices, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-I0229, Geneva, Apr. 2012

70. Seregin V, Kim IK (2011) Binarisation modification for last position coding, Joint Collabora-
tive Team on Video Coding (JCT-VC), Document JCTVC-F375, Torino, July 2011

71. Seregin V, Sole J, Karczewicz M,Wang X, Sze V, Budagavi M (2012) AHG5: bypass bins
for reference index coding, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-J0098, Stockholm, July 2012

72. Shannon CE (1948) A mathematical theory of communications. Bell Syst Tech J 27:379–423
73. Sole J, Joshi R, Karczewicz M (2011) CE11: parallel context processing for the significance

map in high coding efficiency, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-E338, Geneva, Mar. 2011

74. Sole J, Joshi R, Karczewicz M (2011) CE11: unified scans for the significance map and
coefficient level coding in high efficiency, Joint Collaborative Team on Video Coding (JCT-
VC), Document JCTVC-F288, Torino, July 2011

75. Sole J, Joshi R, Karczewicz M (2011) CE11: scanning of residual data in HE, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F552, Torino, July 2011

76. Sole J, Joshi R, Karczewicz M (2011) Non-CE11: diagonal sub-block scan for HE residual
coding, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G323,
Geneva, Nov. 2011

77. Sole J, Joshi R, Karczewicz M (2012) Removal of the 8x2/2x8 coefficient groups, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J0256, Stockholm, July
2012

78. Stegemann J, Kirchhoffer H, Marpe D, Wiegand T (2011) Non-CE1: counterbased probability
model update with adapted arithmetic coding engine, Joint Collaborative Team on Video
Coding (JCT-VC), Document JCTVC-G547, Geneva, Nov. 2011

79. Sugio T, Nishi T (2011) Parsing robustness for Merge/AMVP, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-F470, Torino, July 2011

80. Sze V (2011) Context selection complexity in HEVC CABAC, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-D244, Daegu, Jan. 2011

81. Sze V (2011) Reduction in contexts used for significant_coeff_flag and coefficient level, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F132, Torino, July 2011

82. Sze V (2011) BoG report on context reduction for CABAC, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-F746, Torino, July 2011

83. Sze V, Allen R (2011) BoG report on intra mode coding, Joint Collaborative Team on Video
Coding (JCT-VC), Document JCTVC-G1017, Geneva, Nov. 2011

84. Sze V, Budagavi M (2008) Parallel CABAC, ITU-T SG16 Q6, Document COM-16-C-334-E,
Geneva, Apr. 2008

85. Sze V, Budagavi M (2010) Parallelization of HHI_TRANSFORM_CODING, Joint Collabo-
rative Team on Video Coding (JCT-VC), Document JCTVC-C227, Guangzhou, Oct. 2010

86. Sze V, Budagavi M (2011) CE11: parallelization of HHI_TRANSFORM_CODING fixed
diagonal scan, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
F129, Torino, July 2011

87. Sze V, BudagaviM(2011) Parallel context processing of coefficient level, Joint Collaborative
Team on Video Coding (JCT-VC), Document JCTVC-F130, Torino, July 2011

88. Sze V, Budagavi M (2012) High throughput CABAC entropy coding in HEVC. IEEE Trans
CSVT 22(12):1778–1791. doi:10.1109/TCSVT.2012.2221526

89. Sze V, Budagavi M (2013) A comparison of CABAC throughput for HEVC/H.265 vs.
AVC/H.264. In: IEEE workshop on signal processing systems

90. Sze V, Chandrakasan AP (2011) Joint algorithm-architecture optimization of CABAC, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E324, Geneva, Mar. 2011

274 V. Sze and D. Marpe

91. Sze V, Chandrakasan AP (2011) Simplified MVD context selection (extension of JCTVC-
E324), Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F133,
Torino, July 2011

92. Sze V, Chandrakasan AP (2011) Joint algorithm-architecture optimization of CABAC to
increase speed and reduce area cost. In: IEEE international conference on acoustics, speech
and signal processing, pp 1577–1580

93. Sze V, Sasai H (2011) Modification to JCTVC-E227 in CE11 for reduced dependency with
MDCS, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E489,
Geneva, Mar. 2011

94. Sze V, Budagavi M, Chandrakasan A, Zhou M (2008) Parallel CABAC for low power video
coding. In: IEEE international conference on image processing, pp 2096–2099

95. Sze V, Budagavi M, Demircin MU (2008) CABAC throughput requirements for real-time
decoding, ITU-T SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-AJ31,
San Diego, Oct. 2008

96. Sze V, Budagavi M, Chandrakasan A (2009) Massively parallel CABAC, ITU-T SG16 Q6
Video Coding Experts Group (VCEG), Document VCEG-AL21, Geneva, July 2009

97. Sze V, Panusopone K, Chen J, Nguyen T, Coban M (2010) Description of core experiment 11:
coefficient scanning and coding, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-C511, Guangzhou, Oct. 2010

98. Sze V, Budagavi M, Seregin V, Sole J, Karczewicz M (2012) AHG5: bin reduction for delta
QP coding, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J0089,
Stockholm, July 2012

99. Terada K, Sasai H, Nishi T (2012) Non-CE11: simplification of context selection for
significant_coeff_flag, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-H0290, San Jose, Feb. 2012

100. Ugur K, Saxena A (2012) CE1: summary report of core experiment on intra transform mode
dependency simplifications, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-J0021, Stockholm, July 2012

101. ITU-T SG16 Q6 and ISO/IEC JTC1/SC29/WG11 (2010) Joint call for proposals on
video compression technology. ITU-T SG16 Q6 document VCEG-AM91 and ISO/IEC
JTC1/SC29/WG11 document N11113, Kyoto, 22 Jan. 2010

102. Winken M, Bosse S, Bross B, Helle P, Hinz T, Kirchhoffer H, Lakshman H, Marpe D,
Oudin S, PreißM, Schwarz H, Siekmann M, Sühring K, Wiegand T (2010) Description of
video coding technology proposal by Fraunhofer HHI, Joint Collaborative Team on Video
Coding (JCT-VC), Document JCTVC-A116, Dresden, Apr. 2010

103. Yang YC, Guo JI (2009) High-throughput H.264/AVC high-profile CABAC decoder
for HDTV applications. IEEE Trans CSVT 19(9):1395–1399. doi:10.1109/TCSVT.2009.
2020340

104. Yu X,Wang J, He D, Martin-Cocher G, Campbell S (2012) Multiple sign bits hiding, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H0481, San Jose, 2012

105. Zhao J, Segall A (2008) Entropy slices for parallel entropy decoding, ITU-T SG16 Q6,
Document COM-16-C-405-E, Geneva, Apr. 2008

106. Zheng Y, Coban M, Wang X, Sole J, Joshi R, Karczewicz M (2011) CE11: mode dependent
coefficient scanning, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-D393, Daegu, Jan. 2011

107. Zhou M, Sze V (2011) A study on HM2.0 bitstream parsing and error resiliency issue, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E118, Geneva, Mar. 2011

108. Zhou M, Sze V, Mastuba Y (2011) A study on HEVC parsing throughput issue, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F068, Torino, July 2011

Chapter 9
Compression Performance Analysis in HEVC

Ali Tabatabai, Teruhiko Suzuki, Philippe Hanhart, Pavel Korshunov,
Touradj Ebrahimi, Michael Horowitz, Faouzi Kossentini, and Hassene Tmar

Abstract In this chapter, performance analysis of HEVC (Recommendation ITU-T
H.265 j ISO/IEC 23008-2) in comparison with AVC (Recommendation ITU-T
H.264 j ISO/IEC 14996-10) in terms of both objective as well as subjective quality
assessments are given. Because of the increased flexibility offered by HEVC,
methods to select the best coding parameters, in a rate-distortion sense, are also
described. Special care has been taken to apply a unified approach when conducting
subjective and objective quality evaluation between HEVC and AVC. Our overall
evaluation study results show the coding efficiency of HEVC to be about twice
higher than that of AVC.

9.1 Performance Analysis

Performance analysis of HEVC is in general a complex undertaking since it can
be conducted in number of different ways based on, for example, compression
efficiency, complexity, visual quality, application of rate distortion optimization
(RDO), delay, robustness, etc. The goal of this chapter is to present HEVC compres-
sion efficiency in comparison with AVC both in terms of objective and subjective
quality assessments while taking into account some aspects of complexity, RDO,

A. Tabatabai • T. Suzuki (�)
Sony Corporation, Tokyo, Japan
e-mail: ali.tabatabai@am.sony.com; teruhikos@jp.sony.com

P. Hanhart • P. Korshunov • T. Ebrahimi
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

M. Horowitz • F. Kossentini • H. Tmar
eBrisk Video, Inc., Vancouver, BC, Canada

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__9,
© Springer International Publishing Switzerland 2014

275

mailto:ali.tabatabai@am.sony.com
mailto:teruhikos@jp.sony.com

276 A. Tabatabai et al.

and delay. Note that it is important to include both quality measures; relying solely
on objective quality evaluations could, in cases, underestimate the amount of bit
rate reduction and hence affect our analysis of compression efficiency. Subjective
quality evaluations on the other hand, although difficult to conduct, correlate directly
with perceptual experience of the viewers. This chapter is organized as follows.
Section 9.1 provides the background information and forms the basis for the sections
that will follow. In Sect. 9.2 encoder settings and testing conditions are described
by considering various encoder configurations according to complexity and delay
requirements; moreover, a list of test sequences used, test cases and the description
of non-normative R–D optimization tools that contribute significantly to coding
efficiency improvement are also covered in this section. In Sect. 9.3, objective
quality evaluations of HEVC and AVC reference implementations are investigated.
In Sect. 9.4, we present the results of HEVC subjective quality testing and visual
assessments of HEVC and AVC. Section 9.5 describes an informal subjective video
quality comparison of production–quality HEVC and AVC encoders in the context
of 4K streaming applications. Conclusions appear in Sect. 9.6.

9.2 Encoder Setting

To conduct HEVC and AVC performance evaluations, a well-defined encoder
setting and testing environment need to be established. In this section, we will
describe, the HEVC and AVC reference encoder software (SW) used in our
investigations. In addition, we will also describe various encoder configurations and
prediction structures that are appropriate for different application requirements in
terms of coding efficiency, complexity and delay.

9.2.1 Encoder Software

In the standardization of HEVC, the reference software, which is called HM (HEVC
Test Model, reference software) [15] has been developed as a common SW platform
for further improvement and study. Using SVN servers, the HM reference software
is maintained at two sites [16]: HHI (Heinrich Hertz Institute) maintains the main
SVN server and BBC (British Broadcasting Corporation) maintains the mirroring
repository site.

The reference software for AVC, which is called JM (Joint Test Model), has
been developed, as a common test platform, for AVC performance evaluations. The
JM reference software is maintained at SVN server [6]. In this chapter, in order to
compare the coding performance of HEVC with AVC, HM12.1 and JM18.5 SW are
used for HEVC and AVC encoders, respectively.

9 Compression Performance Analysis in HEVC 277

9.2.2 Test Conditions

During the development of the HEVC specification, establishment of Common
Test Conditions (CTC) provided a well-defined platform on which experiments
for coding tool evaluations are performed [3]. Since HEVC coding performance
evaluations are carried out according to the CTC, a detailed description of CTC key
elements will follow.

9.2.3 Prediction Structure

For performance evaluation, CTC defines the following prediction structures.

1. All Intra (AI)
2. Random Access (RA)
3. Low Delay P picture (LDP)
4. Low Delay B picture (LDB)

In these configurations, QP (Quantization Parameter) value can be modified by
adding to it a “QP offset” value. That is, CTC defines QP of the first picture (QP of
an I picture, QPI, with I picture defined below) and the QP of the following pictures
are derived as QP D (QPI C QP offset), with QP offset being determined according
to the picture type (e.g., P & B pictures, defined below) or a picture temporal ID.
An I (intra) picture refers to a picture that can be decoded independently without
requiring prediction data from other decoded pictures. A P (predicted) picture, in
general, requires picture sample data from one other I, P or B picture to generate
each predicted sample block. A B (bi-predicted), in general, requires picture sample
data from two other I, P or B pictures to generate each predicted sample block.

9.2.3.1 All Intra (AI)

In this configuration, each picture is encoded as an I picture. Because no inter
picture prediction is used, it is thus suitable for low delay and higher bit rate
applications. QP offset in this configuration is 0 since QP is kept constant over the
whole sequence. Figure 9.1 shows an example of this prediction structure.

9.2.3.2 Random Access (RA)

In this configuration, a hierarchical B structure is used [21]. Figure 9.2 shows an
example of this prediction structure. The coding efficiency achieved by the bi-
directional hierarchical prediction structure is higher than the other configurations.
It has however a larger delay due to the reordering of the pictures. To control
possible error propagation and ease of random access, I pictures are inserted
periodically. QP offset values for each picture are summarized in Fig. 9.2.

278 A. Tabatabai et al.

…

All pictures
are IDR picture

0 1 2 3 4 5 6 7 8Coding order

I0 I1 I2 I3 I4 I5 I6 I7 I8

0 0 0 0 0 0 0 0 0QP offset

time

Fig. 9.1 The prediction structure of the intra-only configuration

… …

0 4 3 5 2 7 6 8 1

I0

B1

B2

B3

B4

B5

B6

B7

B8

0 4 3 4 2 4 3 4 1

timeCoding order

QP offset

Fig. 9.2 The prediction structure of the random access configuration

9.2.3.3 Low-Delay P (LDP)

In this configuration, the first picture is encoded as an I picture and the subsequent
pictures are encoded as P pictures. Since reordering of pictures is not allowed and
only past pictures are used for prediction, the coding delay, in this configuration,
may be made small. Figure 9.3 shows an example of this prediction structure. QP
offset values are summarized for each picture in Fig. 9.3.

9.2.3.4 Low-Delay B (LDB)

In this configuration, similar to the previous configuration, reordering of pictures
is not allowed. The first picture is encoded as an I picture and subsequent pictures
are encoded as B pictures. Moreover, since past B pictures are used for prediction,
a low coding delay, similar to LDP, but with higher coding efficiency (because of
bi-prediction) is achieved. QP offset values, for each picture, are summarized in
Fig. 9.3.

9 Compression Performance Analysis in HEVC 279

…

0 1 2 3 4 5 6 7 8

0 3 2 3 1 3 2 3 1

timeCoding order

QP offset

I0

P/B2

P/B3

P/B4

P/B5

P/B6

P/B7

P/B8

P/B1

Fig. 9.3 The prediction structure of low-delay P and B configurations

9.2.4 Test Sequences

Test sequences are defined according to the picture size and applications and they
are classified into six classes (class A to class F). Class A is the set of sequences
with higher resolution than 1080p HDTV. The sequences are used to evaluate the
coding performance of 4K/8K video. To reduce computation time, picture sizes
are cropped to 2,560 � 1,600 pixels. Class B is for coding performance evaluation
of 1080p HDTV and the set contains HDTV sequences, with a picture size of
1,920 � 1,080 pixels. Classes C and D are the set of test sequences with picture sizes
of 832 � 480 pixels and 416 � 240 pixels, respectively. Test sequences in these two
classes are for coding performance evaluation of mobile applications. Class E is the
set of test sequences with a picture size of 1,280 � 720 pixels. It is used to evaluate
coding performance of low-latency applications such as visual communications.
CTC, in addition, defines class F sequences for coding performance evaluation of
non-camera captured content such as video screen content, containing, for example,
text and computer graphic. The test sequences are listed in Table 9.1.

In addition to the test sequences defined in CTC, 4K test sequences listed in
Table 9.2 are used for both objective and subjective quality performance analysis in
this chapter.

9.2.5 Test Cases and Bit Depth

Two test cases Main and Main 10 are defined to evaluate coding performance of
8-bit and 10-bit video. All test cases are summarized in Table 9.3.

In Main10 configuration, an 8-bit video is converted first to a 10-bit video
by a 2-bit left shift, and it is then encoded as 10-bit video. Likewise, in Main
configuration, a 10-bit video is first converted to an 8-bit video by a 2-bit right shift,

280 A. Tabatabai et al.

Table 9.1 Test sequences

Class Sequence name Frame count Frame rate (fps) Bit depth

A Traffic 150 30 8
A PeopleOnStreet 150 30 8
A Nebuta 300 60 10
A SteamLocomotive 300 60 10
B Kimono 240 24 8
B ParkScene 240 24 8
B Cactus 500 50 8
B BQTerrace 600 60 8
B BasketballDrive 500 50 8
C RaceHorses 300 30 8
C BQMall 600 60 8
C PartyScene 500 50 8
C BasketballDrill 500 50 8
D RaceHorses 300 30 8
D BQSquare 600 60 8
D BlowingBubbles 500 50 8
D BasketballPass 500 50 8
E FourPeople 600 60 8
E Johnny 600 60 8
E KristenAndSara 600 60 8
F BaskeballDrillText 500 50 8
F ChinaSpeed 500 30 8
F SlideEditing 300 30 8
F SlideShow 500 20 8

Table 9.2 4K Test sequences

Resolution Sequence name Frame count Frame rate (fps) Bit depth

3,840 � 2,160 Booka 500 50 10
3,840 � 2,160 BT709Birthdayb 500 50 10
3,840 � 2,160 HomelessSleepingc 600 60 10
3,840 � 2,160 Maneged 600 60 8
4,096 � 2,048 Traffic 300 30 8
aBook sequence was created by BBC (British Broadcasting Corporation), Research and Develop-
ment Department
bBT709Birthday sequence was created by Technicolor
cHomelessSleeping sequence was created by Kamerawerk GmbH, Switzerland. The sequence is
an excerpt from the film entitled “No Sleep 4K”
dManege sequence was created by 4EVER consortium

and it is then encoded as an 8-bit video. The word “optional” in Table 9.3 means
that using certain class of sequences (e.g., class F) or certain prediction structures
(e.g., LDP) were not required but recommended, instead. In this chapter, Main
configuration is used to evaluate “optional” cases in Table 9.3.

9 Compression Performance Analysis in HEVC 281

Table 9.3 Summary of test cases in the common test conditions

ClassPrediction
structure A B C D E F

AI Main/Main10 Main/Main10 Main/Main10 Main/Main10 Main/Main10 Optional
RA Main/Main10 Main/Main10 Main/Main10 Main/Main10 N/A Optional
LDB N/A Main/Main10 Main/Main10 Main/Main10 Main/Main10 Optional
LDP N/A Optional Optional Optional Optional Optional

BD-PSNR: measure the
average difference in Y-
axis

Bit rate [kbps]

BD-rate: measure the
average difference in X-
axisQ

ua
lit

y
[d

b]

Evaluate the average difference
of two curves

Fig. 9.4 An example of R–D curve

9.2.6 Rate Distortion Curves

When evaluating the coding performance of a video codec, a graph of R–D curve
(Rate–Distortion Curve) is used. R–D curve is generated by plotting the encoded
results, in terms of bit rate versus the resulting quality, in a graph. The horizontal
axis denotes the bit rate and the vertical axis denotes a measure of distortion or
quality of encoded video. In general, a higher compression ratio results in a lower
bit rate; however, picture quality is generally reduced. Low compression ratio, on
the other hand, improves picture quality but at the cost of an increase in bit rate.
Since a high coding efficiency codec can achieve higher quality at lower bit rates,
the R–D curve moves toward upper left, as shown in Fig. 9.4.

As an objective measurement of picture quality, PSNR (Peak Signal to Noise
Ratio) is widely used. PSNR can be calculated by the following equation.

PSNR D 10log10

�
2bitdepth � 1

�2 � W � HX
i

fOi � Di g2

282 A. Tabatabai et al.

where

bitdepth: Bit depth of each pixel
W: Number of horizontal pixels
H: Number of vertical pixels
Oi: Pixel value of the reference picture
Di: Pixel value of the decoded picture
i: Pixel address

PSNR is calculated for each YCbCr component. In YCbCr domain, human
visual system is more sensitive to luminance (Y) than to chrominance (Cb or Cr);
accordingly, and in practice, PSNR for luminance (PSNR Y) is a more important
metric for objective quality measurements.

In order to compare the coding efficiency of a reference codec vs. the one
being evaluated, the average difference of the two R–D curves is calculated. The
average bit rate difference (difference in horizontal direction) is referred to as BD
(Bjøntegaard’s Delta) Rate and the average PSNR difference (difference in vertical
direction) is referred to as BD PSNR [1].

In order to calculate BD Rate and BD PSNR, the two R–D curves (corresponding
to reference and tested codecs) are approximated by the following cubic polynomial.

PSNR D a C b � .bit rate/ C c � .bit rate/2 C d � .bit rate/3

Parameters a–d in the above equation can be derived by using four data points
(PSNR and bit rate points). This polynomial approximation will then allow us to
derive the BD Rate by integrating the difference of two curves in horizontal direction
and BD PSNR by integrating the difference of two curves in vertical direction (see
Fig. 9.4).

BD Rate and BD PSNR have been widely used to evaluate coding tools, in the
HEVC standardization work. It is however known that such approximation could
sometimes lead to large errors, especially for large pictures (e.g. class A sequences).
To further improve the approximation accuracy, a piece-wise cubic interpolation is
proposed as an alternative [2].

9.2.7 R–D Optimization

HEVC encoder flexibility stems from the fact that it contains an increased number
of coding tools, beyond those provided by earlier video coding standards e.g., AVC.
This added flexibility allows an encoder to adaptively determine block dependent
coding parameters in terms of:

1. Coding unit (CU) quadtree structure, prediction unit (PU) partition modes and
transform unit (TU) quadtree structure;

2. Intra PU prediction mode;

9 Compression Performance Analysis in HEVC 283

3. Inter PU motion parameters and reference list index or indices, for motion
estimation;

4. Rate–distortion optimized quantization (RDOQ), for quantization process.

The key function and differentiation point of a “good” encoder is the selection
of the “best” coding parameters (or so-called syntax element values), for improved
coding efficiency. Finding the “best” coding parameters is traditionally performed in
a rate–distortion (R–D) sense: it enables tradeoffs between the numbers of bits used
to encode a block of the picture vs. the resulting distortion that is produced by using
that number of bits. An R–D optimization problem can in general be formulated as:

min
.coding parameters/

.D/ subject to R
 RT (9.1)

where

D D Distortion;

R D Rate .number of bits required to signal coding parameters/
RT D Target Rate

The above minimization is over a combined set of coding parameters and the dis-
tortion term is used to quantify the fidelity between original and reconstructed block.
In principal, distortion can be measured either by relying on a mathematical distance
or by taking into account perception mechanisms. Perceptual metrics correlate well
with viewers’ perceptual experience but defining them is challenging because of the
complexity of modeling various physiological components involved in human visual
system. Objective quality measures based on mathematical distances, on the other
hand, are easier to derive and under many circumstances they can still provide good
tradeoffs between subjective quality and rate used. They are, moreover, “content-
agnostic”. That is, the same error distribution on different content could yield
similar objective quality metrics. Examples of distance based objective quality
metrics include mean-squared error (MSE), peak-signal-to-noise (PSNR), and sum
of absolute differences (SAD).

Constrained optimization problem in (9.1) can be turned into an unconstrained
optimization problem by the introduction of non-negative Lagrangian multiplier œ

which combines R and D into a so-called Lagrangian cost function [20, 22], namely:

min
.coding parameters/

J D .D C œ � R/ (9.2)

Note that œ acts, in a sense, as a “knob”: changing the value of œ enables
tradeoffs between rate decreases vs. distortion increases. For example, œ D 0, in
(9.2), corresponds to minimizing distortion; conversely, choosing a large value for
œ corresponds to rate minimization. A natural question that arises is what value to
choose for œ? Sullivan and Wiegand [22] and Ohm et al. [19] address this question
by establishing a relationship between œ and quantization step size Q.

œ D c � Q2 (9.3)

284 A. Tabatabai et al.

Fig. 9.5 Typical R–D curve
and cost function J with
slope �œ

In AVC and HEVC, the quantization step size Q is controlled by a quantization
parameter (QP) such that Q is proportional to 2(QP-12)/6 and the constant of
proportionality, c, depends on coding mode decisions.

An example based on a graphical minimization of (9.2) is shown in Fig. 9.5,
where a line denoting Lagrangian cost function is plotted against a typical rate–
distortion curve that is a non-increasing convex function of R [4]. Minimum J can
be achieved by finding the point on the rate–distortion curve which is “hit” first by
the plane wave of slope �œ [20].

There are many alternative methods to performing R–D cost optimization. One,
for example, can minimize a frame level distortion or minimize an average frame
distortion, taken over many video frames. These aforementioned methods are not
computationally practical as they will incur significant amount of complexity and
delay. Instead, and as described in [15, 19], minimization of (9.2) is performed
for each block of samples (e.g., CUs) independently and in four stages: (1) mode
decision; (2) intra prediction mode estimation; (3) motion estimation; and (4)
quantization. Accordingly, for each block an exhaustive pre-calculation of cost
function, associated with each combination of coding parameters, is performed:
the optimal R–D solution for the block is the combination that minimizes the R–
D cost function. Making block independent assumption despite spatial/temporal
dependencies that could exist between blocks (e.g., current block predictor is
based on the past reconstructed block samples) is generally ignored for practical
applicability [19]. We now describe briefly the four R–D optimization stages:

We let SA(i, j) and SB(i, j) denote the (i, j)th sample in blocks A and B, of the
same size, respectively. For measuring distortion, we use the following metrics as
specified in [15]:

9 Compression Performance Analysis in HEVC 285

Sum of Square Error .SSE/ D
X

i;j
.sA .i; j / � sB .i; j //2 (9.4)

Sum of Absolute Difference D
X

i;j
jsA .i; j / � sB .i; j /j (9.5)

Hadamard Transformed SAD .SATD/ D
X

i;j
jHT .i; j /j (9.6)

HT(i, j) in (9.6) is the (i, j)th coefficient of a block that is obtained by applying
Hadamard transform to the block difference between blocks A and B.

JCT-VC [15] specifies also the following œ values:

œmode D ˛ � Wk � 2..QP �12/=3:0/ (9.7)

œpred D
p

œmode (9.8)

¨chroma D 2..QP �QPchroma/=3:0/ (9.9)

˛ D 1.0 � Clip3(0.0, 0.5, 0.05 * number _ of _ B _ frames) for referenced pictures

˛ D 1:0 for non-referenced pictures (9.10)

where

Clip3 .x; y; z/ D
8<
:

xI z < x

yI z > y

zI otherwise

Interested readers are referred to [15] for derivation of Wk as well as œ values for
chroma.

CU level mode decision (intra vs. inter) coding is based on finding coding
parameters that minimize cost function Jmode in (9.11).

Jmode D .SSEluma C !chroma � SSEchroma/ C �mode � Rmode (9.11)

Distortion terms SSEluma and SSEchroma correspond to the SSE between the
original and reconstructed luma and chroma CU blocks respectively. Similarly,
Rmode represents the total number of bits used for CU level intra or inter mode
signaling, PU partition(s) within the CU, PU prediction mode(s) in case of intra
mode or PU motion parameters in case of inter mode, TU quadtree partition(s),
and finally number of bits required for representing quantized residual transform
coefficient levels.

For finding the best inter CU coding cost, Jmode is evaluated for all possible PU
partition modes (e.g., 2N � 2N, N � N, 2N � N, N � 2N, nl � 2N, nR � 2N) and a
partition that gives the minimum coding cost is chosen.

286 A. Tabatabai et al.

Motion estimation for each inter PU partition is done based on the minimization
of inter prediction cost shown in (4.12).

mp� D arg min
mp – MP

Dmp C �pred � Rmp (9.12)

For a given reference picture list, set MP, over which the minimization is
carried out, consists of all possible motion parameters, namely motion vectors
and associated reference indices. The minimization task in (9.12) is broken into
two parts: integer-sample precision and sub-sample precision. For integer-sample
precision, distortion term Dmp corresponds to the SAD between original PU block
and its motion compensated reference block. For sub-sample motion search however
distortion term Dmp represents SATD of the block difference between the original
and sub-sample motion compensated reference block. Rmp term represents an
estimate of the number of coded bits required to transmit mp.

For bi-prediction, cost function minimization in (9.12) becomes a joint optimiza-
tion problem and is solved by the application of an iterative algorithm [5]. The
algorithm is initialized first with the two best motion parameters that are obtained
independently, for each reference list (L0 and L1). Iteration for further refinement
and combined cost minimization is performed by keeping motion parameter of L0
list constant while performing sub-pixel motion search on the complementary list
(L1). Once minimum cost is achieved, motion parameter associated with L1 list
is held constant and motion parameter of the L0 list is adjusted for computing
minimum combined cost. This “ping-pong” like iteration process is continued until
convergence is reached.

For intra PU prediction, a two-stage minimization process is performed:
At the first stage, a fix number1 of candidate intra prediction modes with lowest

prediction cost are chosen according to the minimization of the prediction cost
function in (9.13).

p� D arg min
p–P

Dp C �pred � Rp (9.13)

Distortion term Dp in (9.13) represents the SATD between the original block
and its prediction block using intra prediction mode p and Rp represents number of
coded bits required for signaling mode p. Set P, over which minimization is carried
out, consists of planar, DC and all the 33 angular prediction directions.

In the second stage, the list containing the candidate intra prediction modes from
the first stage is augmented with the three most probable modes if not already
present in the list. The best intra prediction mode is the one that gives the minimum
Jmode among candidate intra prediction modes in this augmented list.

Note that HEVC allows PCM coding of a CU block if the block size is greater
or equal to a signaled minimum PCM coding block size. For PCM Jmode evaluation,

1These fix values are pre-determined and they depend on PU size.

9 Compression Performance Analysis in HEVC 287

distortion terms SSEluma and SSEchroma are set to zero when both input and PCM
coded samples have the same bit depth. Term Rmode includes all the bits required for
signaling PCM mode and PCM coded samples.

Finally, by applying this CU level mode decision at each level of CU recursion
tree a coding tree unit (CTU) level coding mode decision can be obtained.

The goal of Rate distortion optimized quantization (RDOQ), in quantization
process stage, is the adjustment of transform coefficient levels, in R–D sense [17].
For an insight to the general concept of minimization process, assume ck to be the
last non-zero coefficient in a transformed block for a given position k; then, for
each transform coefficient level li, at position i D k � 1, : : : 0, RDOQ tries to find
the optimal transform coefficient level, l*i that minimizes the cost function, Jk(li),
below:

Jk .li / D Dk .li / C � � Rk .li / (9.14)

For computational simplicity, possible values of li are limited to be either zero, or
truncated li, or rounded-up li (i.e., lfloor and lceiling). Distortion term Dk .li/ is due to
the quantization error and is calculated as normalized SSE in transform domain and
Rk .li/ denotes number of bits used for transmitting level li. The optimal solution is
the vector of re-quantized transform levels at position k* with minimum Jk over all
possible positions, k.

9.3 Objective Performance Analysis

This section summarizes the comparison of coding efficiency of HEVC and AVC.
The test conditions are summarized in Table 9.4 and all encoders settings described
in Table 9.3 are used for the comparisons.

The results for the test sequences in Table 9.1 are summarized in Tables 9.5, 9.6,
9.7 and 9.8. In case of Random Access Main, coding efficiency of HEVC is 42.7 %
higher than that of AVC. In case of All Intra Main however the improvement is
21.9 % which indicates that the improvement in Intra picture is lower than that in
predictive pictures (P or B picture).

As an example, R–D curves of the sequence, Four People (Class E, RA Main)
are shown in Figs. 9.6, 9.7, and 9.8.

Table 9.4 Test conditions

Test conditions

Encoder HM12.1 (HEVC) and JM18.5 (AVC)
Test sequences All sequences defined in Table 9.1
Bit depth 8-bit (Main configuration)
Prediction structure AI, RA, LDP and LDB
QPI 22, 27, 32 and 37

288 A. Tabatabai et al.

Table 9.5 Comparison of
coding performance of HEVC
and AVC (All Intra Main)

All Intra Main

Y (%) U (%) V (%)

Class A �23.6 �21.1 �19.9
Class B �22.7 �22.1 �21.7
Class C �19.7 �20.8 �21.1
Class D �16.4 �17.0 �17.7
Class E �28.8 �27.1 �27.1
Overall �21.9 �21.4 �21.2
Class F �28.6 �25.3 �26.2

Table 9.6 Comparison of
coding performance of HEVC
and AVC (Random Access
Main)

Random Access Main

Y (%) U (%) V (%)

Class A �42.6 �42.5 �44.5
Class B �47.7 �43.3 �42.5
Class C �35.5 �34.7 �35.4
Class D �33.9 �36.6 �37.9
Class E �56.0 �54.4 �55.8
Overall �42.7 �41.7 �42.5
Class F �53.1 �52.2 �53.9

Table 9.7 Comparison of
coding performance of HEVC
and AVC (Low Delay
B Main)

Low Delay B Main

Y (%) U (%) V (%)

Class A �38.6 �24.9 �26.7
Class B �42.1 �34.4 �35.3
Class C �32.7 �32.2 �32.9
Class D �29.9 �31.2 �33.0
Class E �44.1 �39.2 �38.8
Overall �36.6 �32.6 �33.6
Class F �33.9 �35.3 �37.8

Table 9.8 Comparison of
coding performance of HEVC
and AVC (Low Delay
P Main)

Low Delay P Main

Y (%) U (%) V (%)

Class A �29.3 �31.4 �33.4
Class B �38.1 �37.3 �39.6
Class C �32.4 �38.2 �38.5
Class D �30.1 �38.2 �38.6
Class E �44.4 �44.9 �44.7
Overall �35.3 �38.0 �38.9
Class F �35.3 �39.5 �40.5

9 Compression Performance Analysis in HEVC 289

33.5

34.5

35.5

36.5

37.5

38.5

39.5

40.5

41.5

42.5

0 500 1000 1500 2000 2500 3000

Y
 P

S
N

R
 (

dB
)

bitrate (kbps)

Y PSNR vs Bitrate

JM18.5 HM12.1

Sequence: FourPeople Coding Conditions: RA-Main

Fig. 9.6 R–D curve of Y (Four People, RA-Main)

40.5

41.5

42.5

43.5

44.5

45.5

46.5

0 500 1000 1500 2000 2500 3000

U
 P

S
N

R
 (

dB
)

bitrate (kbps)

U PSNR vs Bitrate

JM18.5 HM12.1

Sequence: FourPeople Coding Conditions: RA-Main

Fig. 9.7 R–D curve of U (Four People, RA-Main)

The results for 4K test sequences in Table 9.2 are summarized in Table 9.9
(Random Access Main only). We observe a coding efficiency improvement of up
to 76 % for HEVC.

In addition, still picture coding performance of HEVC based intra coding,
relative to JPEG and AVC intra coding is reported in [18]. The results show
that bit rate reductions due to HEVC intra coding are about 44 and 32 %,
respectively. Comparisons of HEVC intra coding to JPEG and JPEG2000 by means
of objective and subjective evaluations are also reported in [9]. The evaluation

290 A. Tabatabai et al.

41.5

42.5

43.5

44.5

45.5

46.5

47.5

48.5

0 500 1000 1500 2000 2500 3000

V
 P

S
N

R
 (

dB
)

bitrate (kbps)

V PSNR vs Bitrate

JM18.5 HM12.1

Sequence: FourPeople Coding Conditions: RA-Main

Fig. 9.8 R–D curve of V (Four People, RA-Main)

Table 9.9 Comparison of
coding performance of HEVC
and AVC (Random Access
Main)

Random Access Main

Y (%) U (%) V (%)

Book �58.8 �55.2 �56.7
BT709Birthday �60.4 �54.3 �57.6
HomelessSleeping �75.9 �79.6 �83.5
Menage �33.3 �34.1 �36.2
Trafftc �41.4 �43.7 �43.6

results demonstrate that HEVC intra coding outperforms encoders for still images
with an average bit rate reduction ranging from 16 % (compared to JPEG 2000
4:4:4) up to 43 % (compared to JPEG).

9.4 Subjective Performance Analysis

Because, subjective evaluation of video content correlates directly with the viewer
perceptual experience, it could very well be considered as a more reliable perfor-
mance measure of a codec. It is therefore important that for conducting subjective
evaluation test, the testing methodology be defined in accordance with the univer-
sally accepted guidelines and practices, such as those described in Recommendation
ITU-R BT.500 [11–14]. In the following sub-sections, we will further elaborate
on the testing methodology and environment together with references to subjective
evaluation test results.

9 Compression Performance Analysis in HEVC 291

Original Coded Vote N

Time

1 sec 1 sec 5 sec10 sec 10 sec

Fig. 9.9 DSIS basic test
cell (BTC)

9.4.1 Test Methodology

First, we provide a brief tutorial about some frequently used subjective quality
assessment methods. In general, there are two broad methods to carry visual
evaluation tests: double stimulus and single stimulus. In double stimulus test
subjects rate either the quality or change in the quality between two video clips
reference (original) vs. impaired (coded). In single stimulus test, subjects rate
the quality of the impaired (coded) video clip, only. We will now describe two
examples of the former, namely, double stimulus impairment scale (DSIS), and
double stimulus continuous quality scale (DSCQS).

9.4.1.1 DSIS (Double Stimulus Impairment Scale)

This method is used when the material to be evaluated shows a wider range of
visual quality covering all quality scales (and not of the impairments). There are
two variants of DSIS: Variant I and Variant II. The structure of the Basic Test Cell
(BTC) of Variant I, is shown in Fig. 9.9. It consists of two consecutive presentations
of video clips. Original (reference) video clip is presented first followed by the
presentation of the impaired (coded) version of the video clip. A message is then
displayed for 5 s requesting viewers to vote.

Viewers are expected to mark their visual quality score on an answer sheet with
quality rating over a defined scale e.g., scale that is made of 5 levels—ranging
from “1” (very annoying) to “5” (imperceptible). In Variant II of DSIS, the pairs
of original (reference) video clip and impaired (coded) version of the video clip are
presented twice before voting. For visual test evaluations conducted in Sect. 9.4.2,
Variant I of DSIS methodology, as described earlier was chosen.

9.4.1.2 DSCQS (Double Stimulus Continuous Quality Scale)

Double Stimulus Continuous Quality Scale (DSCQS) is used in cases when it is
not possible to present the full range of quality scales. In this method, the original
(reference) and the coded (impaired) samples of a video clip are presented twice
and, in random order, for each BTC. At the end of the second presentation, the
viewers are asked to grade each of the two original and the two coded video clips,
separately. It should be noted that because of the random presentation order, viewers
do not have an a priori knowledge of whether a video clip shown belongs to the
original or to the impaired one.

292 A. Tabatabai et al.

A Original Vote N

Time

1 sec 1 sec 5 sec10 sec 10 sec

B Coded A* Original B* Coded

1 sec 10 sec 1 sec 10 sec

Fig. 9.10 DSCQS basic test cell (BTC)

As shown in Fig. 9.10, the BTC structure of the DSCQS method contains two
consecutive pairs of presentations. At first, a mid-grey screen with the letter “A”,
in the middle, is displayed for a second followed by a 10-s presentation of a
video clip—either original or impaired. Then, a mid-grey screen with the letter “B”
appears followed by a 10-s presentation of the second video clip. Similar process is
repeated during the second round of presentation by changing letters A and B to A*
and B*, instead. Finally, a message is displayed for 5 s instructing the viewers to
vote.

9.4.1.3 Training Session

The outcome of the visual tests could be highly dependent on the proper training
of the participants. In order to allow viewers to get familiarized with the testing
procedures, it is important that viewers are briefed about the testing procedures and
participate in a training session before starting subjective evaluation tests. Also, the
video clips shown for the training need to be different from those used during the
actual tests. Coding impairments should resemble those that appear on the tested
materials, though. In the training session, three BTCs (the worst quality, medium
quality and the best quality) should be included allowing viewers to know the quality
range of the test.

9.4.1.4 Viewing Environment

In the laboratory where the viewing session is being held, general internal light has
to be low and a uniform light has to be placed behind the monitor. The intensity of
the light is specified in the ITU-R BT.500 [11, 14]. No light source has to be directed
to the screen or cause reflections. Ceiling, floor and walls of the laboratory have to be
made of non-reflecting material (e.g. carpet or velvet) and should have a color tuned
as close as possible to CIE Standard Illuminant D65 (daylight illuminant, 6500K).
The viewing room must be protected from external visual or audio pollution.

9 Compression Performance Analysis in HEVC 293

9.4.2 Subjective Quality Evaluation Test

This section reports the results of subjective quality evaluation conducted at EPFL’s
MMSPG test laboratory, which fulfills the recommendations for the subjective eval-
uation of visual data issued by ITU-R BT.500 [11, 14]. It is also worth noting that
the testing methodology performed in this section has benefited significantly from
the experience gained while conducting the subjective evaluation tests described
in [8].

9.4.2.1 Test Environment

The test room is equipped with a controlled lighting system with a 6,500 K color
temperature and an ambient luminance at 15 % of the maximum screen luminance,
whereas the color of all the background walls and curtains present in the test area
are in mid grey. The laboratory setup is intended to ensure the reproducibility of the
subjective tests results by avoiding unintended influence of external factors.

To display the test stimuli, two Eizo CG301W LCD monitors with a native
resolution of 2,560 � 1,600 pixels were used. The monitors were calibrated using
an X-Rite i1Display Pro color calibration device according to the following profile:
sRGB gamut, D65 white point, 120 cd/m2 brightness, and minimum black level.

The experiment involved two subjects per monitor assessing the test material.
The subjects were seated in a row perpendicular to the center of the monitor, at a
distance of 2.2 times the picture height, roughly corresponding to a visual angle of
1 arc-minute between two adjacent pixels, as suggested in [13].

9.4.2.2 Test Methodology

The double stimulus impairment scale (DSIS Variant I) methodology as described
earlier was chosen for the testing. A five-grade impairment scale (5: Imperceptible,
4: Perceptible but not annoying, 3: Slightly annoying, 2: Annoying, 1: Very
annoying) was used. The subjects were presented with pairs of video sequences
(i.e., stimuli), where the first sequence was always a reference video (stimulus A)
and the second, the video to be evaluated (stimulus B). After the presentation of
each pair of sequences, a 5-s voting time followed. Subjects were asked to rate the
impairments of the second stimulus in relation to the first stimulus, and to express
these judgments in terms of the wordings used to define the rating scale.

9.4.2.3 Dataset

Five video sequences in Table 9.2 were used in the experiments, with different
visual characteristics, resolutions, and frame rates. All sequences were stored as

294 A. Tabatabai et al.

raw video files, progressively scanned, and with YCbCr 4:2:0 color sampling. The
sequences were compressed with HEVC and AVC. For each sequence and codec,
four quantization parameters were selected, resulting in a total of 40 test stimuli.

Five training samples were generated using the Sintel39 sequence (its resolution
is 3,840 � 1,744) and manually selected by expert viewers so that the quality of
samples were representative of all grades of the rating scale.

The original sequences were cropped to the resolution of the monitor, keeping
only the central part, and the 10-bit sequences were clipped to 8-bit.

9.4.2.4 Training Session

Before the experiment, a consent form was handed to subjects for signature, and oral
instructions were provided to explain their tasks. Additionally, a training session was
organized to allow subjects to familiarize with the assessment procedure.

9.4.2.5 Test Session

Since the total number of test samples was too large for a single test session,
the overall experiment was split into two sessions of approximately 13 min each.
Between the sessions, the subjects took a 10 min break. The test material was
randomly distributed over the two test sessions.

Three dummy pairs (one with high quality, one with low quality, and one of
mid quality), whose scores were not included in the results, were included at
the beginning of each test session to stabilize the subjects’ ratings. To reduce
contextual effects, the stimuli orders of display were randomized applying different
permutation for each group of subjects, whereas the same content was never shown
consecutively.

A total of 18 naive subjects (6 females and 12 males) took part in the experiments.
They were between 18 and 27 years old with an average of 23.4 years of age. All
subjects were screened for correct visual acuity and color vision using Snellen and
Ishihara charts, respectively.

9.4.2.6 Analysis of the Results

The subjective results were processed by first detecting and removing subjects
whose scores appeared to deviate strongly from others. The outlier detection was
performed according to the guidelines described in Section 2.3.1 of Annex 2 of [14].
In this study, one outlier was detected. Then, the mean opinion score (MOS) was
computed for each test stimulus as the mean across the rates of the valid subjects, as
well as associated 95 % confidence interval (CI), assuming a Student’s t-distribution
of the scores.

9 Compression Performance Analysis in HEVC 295

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12

M
O

S

Bit rate [Mbit/s]

Book

AVC HEVC

Fig. 9.11 R–D curve (Book)

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12 14 16

M
O

S

Bit rate [Mbit/s]

BT709Birthday

AVC HEVC

Fig. 9.12 R–D curve (BT709Birthday)

9.4.2.7 Rate Distortion Curves Results

The R–D curves obtained by the subjective quality evaluation are shown in
Figs. 9.11, 9.12, 9.13, 9.14 and 9.15.

From these figures, it can be seen that HEVC shows substantial visual quality
improvements over AVC, especially at lower bit rates.

9.4.2.8 Average Bit Rate Difference

The average bit rate difference for HEVC over AVC was computed using the
model proposed in [7]. This model is an extension of the Bjøntegaard model [1]

296 A. Tabatabai et al.

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30 35 40 45

M
O

S

Bit rate [Mbit/s]

HomelessSleeping

AVC HEVC

Fig. 9.13 R–D curve (HomelessSleeping)

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30 35 40

M
O

S

Bit rate [Mbit/s]

Manege

AVC HEVC

Fig. 9.14 R–D curve (Manege)

for subjective scores: �R is computed from the MOS; [�Rmin, �Rmax] provide
a confidence interval on �R and is determined considering the confidence index
(CI) computed on the subjective scores; the confidence index takes into account the
spreading of the MOS over the rating scale and the goodness of the fit of the values
(Table 9.10).

For visual quality evaluation of CTC test sequences, interested readers are
referred to [19], in which results of subjective tests are reported. The reported results
indicate that a bit rate reduction of 50 % can be achieved for the example video
test set.

9 Compression Performance Analysis in HEVC 297

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12 14

M
O

S

Bit rate [Mbit/s]

Traffic

AVC HEVC

Fig. 9.15 R–D curve (Traffic)

Table 9.10 Bit rate differences of tested bitstreams

Sequence �R (%) [�Rmin, �Rmax]
Confidence
index (%)

Book �62 [�75 %, �51 %] 100
BT709Birthday �71 [�81 %, �60 %] 100
HomelessSleeping �87 [�94 %, �71 %] 100
Manege �43 [�60 %, �17 %] 88
Traffic �55 [�68 %, �39 %] 100
Average �64 [�76 %, �48 %] 98

9.5 Production–Quality Encoder Performance Analysis

This section presents the results of an informal subjective quality comparison
between the eBrisk-UHD and x264 [23] production–quality encoders, which were
configured to be conformant with HEVC Main Profile and AVC High Profile,
respectively. The encoder comparison presented in this section is intended to
complement the subjective quality comparisons discussed earlier in this chapter in
which HEVC and AVC encoder reference software were used.

9.5.1 Test Conditions

In this section, the test conditions, including the encoder configuration and evalu-
ation conditions (e.g., sequence presentation details, viewing equipment, lighting
conditions), and tested video sequences are described.

298 A. Tabatabai et al.

Table 9.11 Video sequences used for the subjective quality comparison in
order of presentation (top to bottom)

Resolution Sequence name
Frame
count

Frame
rate (fps)

Bit
depth

3,840 � 2,160 IntoTrees 400 50 8
3,840 � 2,160 OldTownCross 400 50 8
3,840 � 2,160 ParkJoy 400 50 8
3,840 � 2,160 DucksTakeOff 400 50 8

9.5.1.1 Encoder Settings

The encoders were configured for high coding efficiency operation. More specifi-
cally, the HEVC encoder was configured for Main profile and to use a prediction
structure similar to that described in Sect. 9.2.3.2 with the period of the intra
pictures set to 48 frames. The AVC encoder was configured to use default parameter
values except for those parameters that required an explicit setting (e.g., the
keyint parameter, used to specify the intra frame period, was set to 48). Several
AVC encodings were performed for each video sequence, each with a different
quantization parameter (QP) value. In each case, the encoding that yielded an
average bit rate closest to 2.5 times that of the corresponding HEVC encoding was
selected (i.e., the bit rate of the HEVC encoded sequence was approximately 60 %
lower than that of the AVC encoded sequence).

9.5.1.2 Subjective Evaluation Conditions

Twenty-seven (27) volunteer viewing subjects were used for the subjective experi-
ments. Fifteen (15) of the viewers had little or no previous experience in evaluating
video sequences. The viewing was conducted in a somewhat-darkened room using
a XBR55X900A 5500 UHD Sony Bravia LED monitor. Additional key elements of
the subjective evaluation and video presentation methodology are listed below:

1. Untrained viewers participated one at a time with each viewer seated in a chair
that was positioned approximately 1.5 meters from the monitor and centered.

2. For each of the four test sequences listed in Table 9.11, the HEVC and AVC
encoded video sequences were cropped in the horizontal dimension and spliced
together side-by-side.2 The relative position of the compared encodings was
randomized and the experiments were executed in a double-blind manner.

3. The sequences were displayed at their native spatial resolutions; however, the
display rate was set to 30 frames per second (fps) (i.e., the sequences were
displayed at 60 % of their native 50 fps frame rate).

2The horizontal cropping removed one half of the pixels so as to enable both the HEVC and AVC
encoded sequences to be displayed side-by-side on the 3840 pixel-wide 4K monitor.

9 Compression Performance Analysis in HEVC 299

4. The video sequences were presented to each viewer between one and three times
and the viewers were asked to assess the relative quality of the side-by-side
encodings according to a 5ı scale: left better, left slightly better, no preference,
right slightly better or right better.3 The viewers were provided approximately
30 seconds between the presentation of each of the spliced video sequences to
record their preferences. A total of seven (7) video pairs were presented and each
viewing session had a duration of approximately seven (7) minutes.

9.5.1.3 Test Sequences

The four video sequences described in Table 9.11 were used in the subjective exper-
iments. The YCbCr 4:2:0 8-bit 4K video sequences have a variety of characteristics
typical of what might be encountered in the context of a streaming application, and
they were selected from those that are generally available and used for video coding
test purposes. All the sequences have a native frame rate of 50 fps. The 4K sequences
were displayed at 30 frames per second; the highest frame rate at which the monitor
is capable of displaying 4K content. The order of presentation followed that shown
in Table 9.11, from top to bottom.

9.5.2 Subjective Quality Assessment Results

Table 9.12 shows the results of subjective video quality assessments. For each of the
video sequences, the average bit rates of the HEVC and AVC encoders are shown
along with the viewers’ assessments of the video sequences, according to the 5ı
scale described in Sect. 9.5.1.2. Each video sequence was encoded using a fixed QP.
The QP values for the encodings were selected to yield good, but not especially high
video quality, in order to avoid viewing scenarios where either both encodings would
yield indistinguishably excellent quality or both encodings would yield substantial
coding artifacts.

9.5.3 Results

The subjective results presented in Table 9.12 show that the viewers either had no
preference or favored the HEVC encoded video at a bit rate that was approximately

3A 5ı scale was selected for this study in lieu of more commonly used 7ı and 3ı scales, because
it is known to work well to prioritize video quality improvement work during commercial encoder
development.

300 A. Tabatabai et al.

T
ab

le
9.

12
Su

bj
ec

tiv
e

vi
ew

in
g

co
m

pa
ri

so
n

re
su

lt
s

fo
rs

eq
ue

nc
es

en
co

de
d

us
in

g
th

e
H

E
V

C
an

d
A

V
C

en
co

de
rs

(B
be

tt
er

,S
B

sl
ig

ht
ly

be
tt

er
,N

P
no

pr
ef

er
en

ce
)

Se
qu

en
ce

na
m

e
H

E
V

C
Q

P
H

E
V

C
bi

tr
at

e
A

V
C

Q
P

A
V

C
bi

tr
at

e
H

E
V

C
B

H
E

V
C

SB
N

P
A

V
C

SB
A

V
C

B

In
To

T
re

es
34

4.
5

M
bp

s
35

11
.9

M
bp

s
21

6
0

0
0

O
ld

To
w

nC
ro

ss
32

3.
1

M
bp

s
34

7.
8

M
bp

s
14

3
3

4
3

Pa
rk

Jo
y

38
11

.9
M

bp
s

38
29

.0
M

bp
s

0
2

7
10

8
D

uc
ks

Ta
ke

O
ff

37
15

.4
M

bp
s

39
37

.6
M

bp
s

12
4

3
6

2
Se

le
ct

io
n

co
un

tt
ot

al
s

47
15

13
20

13
Pe

rc
en

tt
ot

al
s

(%
)

43
.5

13
.9

12
.0

18
.5

12
.0

9 Compression Performance Analysis in HEVC 301

60 % lower than that of AVC in 69.4 % of the trials.4 These results are consistent
with the subjective results reported in [8]. In addition, comparing the coding
efficiency gains of HEVC relative to AVC for certain 4K sequences in this study with
those gains reported in earlier studies (e.g., [10]), in which high-quality resampled
(lower-resolution) versions of the same video sequences were used, it can be seen
that the coding efficiency gains of HEVC relative to AVC are larger for the 4K
sequences.5 This comparison suggests that the increased coding efficiency gains for
HEVC compared with AVC observed for 4K sequences cannot be explained solely
by differences in content.

9.6 Conclusions

In this chapter, performance analysis of HEVC in comparison with AVC in terms
of objective as well as subjective quality assessments are given. Because of the
increased flexibility offered by HEVC, methods to select the best coding parameters,
in a rate–distortion sense, are also described. Special care has been taken to apply
a unified approach when conducting subjective and objective quality evaluations
between HEVC and AVC. Both objective and subjective tests results indicate
significant gains in compression efficiency of HEVC over AVC. More specifically,
the bit rate reduction, based on objective evaluation of CTC test sequences, indicates
an overall performance improvement of about 22 % for AI, 43 % for RA, 37 % for
LDB and 35 % for LDP over AVC. Furthermore, by using non-CTC test sequences,
we observe up to 76 % improvement in coding efficiency, as indicated in Table 9.9.
Results of subjective evaluation tests indicate that an even higher bit rate saving in
the ranges of 55–87 % can be achieved. The informal visual quality evaluation test
results also confirm that HEVC yields a substantial improvement in compression
capability beyond that of AVC for video streaming applications. It is also suggested
that the coding performance gains of HEVC over AVC generally increase with
increasing video resolution up to at least 4K resolutions.

Acknowledgments Regarding Sect. 9.4, the authors wish to thank 4EVER consortium, British
Broadcasting Corporation (BBC), Kamerawerk GmbH and Technicolor for providing the original
video test sequences used for visual testing. Our special thanks and gratitude go also to T. K. Tan,
of NTT Docomo, for his help and support in the preparation of coded video test sequences used for
subjective performance evaluations in Sect. 9.4. Subjective evaluations performed at EPFL were
possible thanks to the Swiss National Foundation for Scientific Research (FN 200021-143696-1),
EC funded Network of Excellence VideoSense, and COST Action IC1003 European Network
on Quality of Experience in Multimedia Systems and Services QUALINET. Efforts by Hiromi
Nemoto for set up and conducting subjective evaluations at EPFL are also acknowledged.

4The 69.4 % result was derived by summing the selection counts in the HEVC B, HEVC SB and
NP columns of Table 9.12 and dividing by the total number of selection counts.
5The earlier studies also used earlier versions of the HEVC draft standard and a slightly different
evaluation methodology.

302 A. Tabatabai et al.

References

1. Bjøntegaard G (2001) Calculation of average PSNR differences between RD-curves, ITU-T
SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-M33, Austin, Apr. 2001

2. Bossen F (2011) Excel template for BD-rate calculation based on Piece-wise Cubic Interpola-
tion, JCT-VC Reflector

3. Bossen F (2013) Common test conditions and software reference configurations, Joint Collab-
orative Team on Video Coding (JCT-VC), Document JCTVC-L1110, Geneva, Jan. 2014

4. Cover TM, Thomas JA (1991) Elements of information theory, Chapter 13. Wiley, New York
5. Flierl M, Girod B (2003) Generalized B pictures and the draft H.264/AVC video compression

standard. IEEE Trans Circuits Syst Video Technol 13(7):587–597
6. H.264/MPEG-4 AVC Reference Software, Joint Model 18.5: http://iphome.hhi.de/suehring/

tml/download/jm18.5.zip
7. Hanhart P, Ebrahimi T (2014) Calculation of average coding efficiency based on subjective

quality scores. J Visual Commun Image Represent 25(3):555–564
8. Hanhart P, Rerabek M, De Simone F, Ebrahimi T (2012) Subjective quality evaluation of the

upcoming HEVC video compression standard. In: Proc. SPIE. 8499, Applications of Digital
Image Processing XXXV, no. 84990V, Oct. 2012

9. Hanhart P, Rerabek M, Korshunov P, Ebrahimi T (2013) Subjective evaluation of HEVC intra
coding for still image compression. In: Seventh international workshop on Video Processing
and Quality Metrics for Consumer Electronics (VPQM), Scottsdale, Arizona

10. Horowitz M, Kossentini F, Mahdi N, Xu S, Guermazi H, Tmar H, Li B, Sullivan GJ, Xu J
(2012) Informal subjective quality comparison of video compression performance of the
HEVC and H.264/MPEG-4 AVC standards for low-delay applications. In: Proc. SPIE. 8499,
Applications of Digital Image Processing XXXV, no. 84990W, Oct. 2012

11. ITU-R Rec. BT.500-11 (2006) Methodology for the subjective assessment of the quality of
television pictures

12. ITU-T Rec. P.910 (2008) Subjective video quality assessment methods for multimedia
applications

13. ITU-R BT.2022 (2012) General viewing conditions for subjective assessment of quality of
SDTV and HDTV television pictures on flat panel displays

14. ITU-R BT.500-13 (2012) Methodology for the subjective assessment of the quality of
television pictures

15. McCann K, Bross B, Han WJ, Kim IK, Sugimoto K, Sullivan GJ (2013), High Efficiency Video
Coding (HEVC) Test Model 13 (HM 13) Encoder Description, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-O1002, Geneva, Oct. 2013

16. Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC
JTC 1/SC 29/WG 11. HM12.1 Reference Software: https://hevc.hhi.fraunhofer.de/svn/svn-
HEVCSoftware/(mainsite) and http://hevc.kw.bbc.co.uk/svn/jctvc-a124/(mirrorsite)

17. Karczewicz M, Ye Y, Chong I (2008) Rate distortion optimized quantization, ITU-T SG16 Q6
Video Coding Experts Group (VCEG), Document VCEG-AH21, Antalya, Jan. 2008

18. Nguyen T, Marpe D (2012) Performance analysis of HEVC based Intra coding for still image
compression. In: PCS2012, May 2012, pp 233–236

19. Ohm J-R, Sullivan GJ, Schwarz H, Tan TK, Wiegand T (2012) Comparison of the coding
efficiency of video coding standards –including High Efficiency Video Coding (HEVC). IEEE
Trans Circuits Syst Video Technol 22(12):1669–1684

20. Ortega A, Ramchandran K (1999) Rate-distortion methods for image and video compression:
an overview. IEEE Signal Process J 23–50

21. Schwarz H, Marpe D, Wiegand T (2005) Hierarchical B pictures, Joint Video Team (JVT),
Document JVT-P014, Poznan, July 2005

22. Sullivan GJ, Wiegand T (1999) Rate-distortion optimization for video compression. IEEE
Signal Process J 74 -90

23. VideoLANx264 SW library (2013) http://www.videolan.org/developers/x264.html. Version
core l35 r2345, 30 July 2013

http://iphome.hhi.de/suehring/tml/download/jm18.5.zip
http://iphome.hhi.de/suehring/tml/download/jm18.5.zip
https://hevc.hhi.fraunhofer.de/svn/svn-HEVCSoftware/(main site)
https://hevc.hhi.fraunhofer.de/svn/svn-HEVCSoftware/(main site)
http://hevc.kw.bbc.co.uk/svn/jctvc-a124/(mirror site)
http://www.videolan.org/developers/x264.html

Chapter 10
Decoder Hardware Architecture for HEVC

Mehul Tikekar, Chao-Tsung Huang, Chiraag Juvekar, Vivienne Sze,
and Anantha Chandrakasan

Abstract This chapter provides an overview of the design challenges faced in the
implementation of hardware HEVC decoders. These challenges can be attributed to
the larger and diverse coding block sizes and transform sizes, the larger interpolation
filter for motion compensation, the increased number of steps in intra prediction
and the introduction of a new in-loop filter. Several solutions to address these
implementation challenges are discussed. As a reference, results for an HEVC
decoder test chip are also presented.

10.1 Introduction

HEVC presents several new challenges for a hardware decoder implementation.
HEVC’s decoding complexity is found to be between 1:4� and 2� of H.264/AVC
[22] when measured in terms of cycle count for software. In hardware, however, the
increased complexity of HEVC entails significant increase in hardware cost over
traditional H.264/AVC decoders, both at the top-level of the video decoder, and in
the low-level processing blocks. Some of the challenges are listed below.

• The diverse sizes of Coding Tree Units (CTU), Coding Units (CU), Prediction
Units (PU) and Transform Units (TU) require complex state machines to control
the system pipeline and data paths in the individual processing blocks.

• The largest CTU (64 � 64) is 16� larger than the H.264/AVC macroblock (16 �
16), which means that the memories in pipeline stages need to be proportionately
larger.

M. Tikekar (�) • C. Juvekar • V. Sze • A. Chandrakasan
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
e-mail: mtikekar@mit.edu

C.-T. Huang
National Tsing Hua University, Hsinchu, Taiwan

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__10,
© Springer International Publishing Switzerland 2014

303

mailto:mtikekar@mit.edu

304 M. Tikekar et al.

• The inverse transform block is considerably more complicated due to the large
TU sizes and higher precision of the transform matrix. The largest TU size (32 �
32) requires a 16� larger transpose memory.

• HEVC uses an 8-tap luma interpolation filter for motion compensation as
compared to the 6-tap filter in H.264/AVC. This increases the bandwidth required
from the decoded picture buffer.

The architecture of the video decoder depends strongly on parameters such as
the required throughput (i.e. pixel rate defined by the level limit in the HEVC
specification), technology node, area and power budgets, control and data interface
to the external world and memory technology used for the decoded picture buffer.
In this chapter, we describe the architecture for an HEVC decoder for 4K Ultra
HD decoding at 30 fps designed in 40 nm CMOS technology with external DDR3
memory for the decoded picture buffer. The decoder operates at 200 MHz and is
frequency-scalable for lower resolutions and picture rates. Along with techniques
used in H.264/AVC decoders, such as frame-level parallelism [29] and reference
frame compression [20], and general VLSI techniques such as pipelining and
dynamic voltage and frequency scaling, HEVC decoders can benefit from archi-
tectural techniques like:

• Variable-size pipelining to reduce on-chip SRAM and handle different CTU
sizes.

• Unified processing engines for prediction and transform to manage the large
diversity of PU and TU sizes.

• High-throughput motion compensation (MC) cache to address increased DRAM
requirements for the longer interpolation filters.

10.2 System Pipeline

The granularity of the top-level pipeline is affected by processing dependencies
between pixels. For example, computing the luma residue at any pixel location
requires all transform coefficients in the TU that contains the pixel. Hence, it is
not possible for the inverse transform block to use, say, a 4 � 4 pixel pipeline; the
pipeline granularity must be at least one TU in size. In general, it is desirable to
minimize the pipeline granularity to reduce processing latency and memory sizes.

The largest CTU needs 6 kB to store its luma and chroma pixels with 8-
bit precision. The transform coefficients and residue are computed with higher
precision (16-bit and 9-bit, respectively) and require larger storage accordingly.
Other information such as intra-prediction mode, inter-prediction motion vectors,
etc. needs to be stored at a 4�4 granularity. All of these require large pipeline buffers
in SRAM and several techniques can be used to reduce their size as described in this
chapter.

Line buffers are required to handle data dependencies between CTUs in the
vertical direction. For example, the deblocking filter needs to store four rows of

10 Decoder Hardware Architecture for HEVC 305

Table 10.1 CTU-adaptive
pipeline granularity

Coding Tree Unit Variable-sized Pipeline Block
(CTU) (VPB)

64 � 64 64 � 64

32 � 32 64 � 32

16 � 16 64 � 16

luma pixels and two rows of chroma pixels (per chroma component) due to the
deblocking filter’s support. The size of these buffers is proportional to the width
of the picture. Further, if the picture is split into multiple tile rows, each tile row
needs a separate line buffer if the rows are to be processed in parallel. Tiles also
need column buffers to handle data dependencies between them in the horizontal
direction. Traditionally, line buffers have been implemented using on-chip SRAM.
However, for very large picture sizes, it may be necessary to store them in the denser
off-chip DRAM. This results in an area and power trade-off as communicating to
the off-chip DRAM takes much more power.

Also, off-chip DRAM is used most commonly to store the decoded picture
buffer. The variable latency to the off-chip DRAM must be considered in the system
pipeline. In particular, buffers are needed between processing blocks that talk to the
DRAM to accommodate the variable latency. Motion compensation makes the most
number of accesses to the external DRAM and a motion compensation cache is
typically used to reduce the number of accesses. With a cache, the best-case latency
for a memory access is determined by a cache hit and it can be as low as one cycle.
However, the worse-case latency, determined by a cache miss, remains more or less
unchanged thus increasing the overall variability seen by the prediction block.

To summarize, the top-level system pipeline is affected by:

1. Processing dependencies
2. Large CTU sizes
3. Large line buffers
4. Off-chip DRAM latency

10.2.1 Variable-Sized Pipeline Blocks

Compared to the all-intra or all-inter macroblocks in H.264/AVC, the Coding Tree
Units (CTU) in HEVC may contain a mix of inter and intra-coded Coding Units.
Hence, it is convenient to design the pipeline granularity to be equal to the CTU
size. If the pipeline buffers are implemented as multi-bank SRAM, the decoder
can be made power-scalable for smaller CTU sizes by shutting down the unused
banks. However, it is also possible to use the unused banks and increase the pipeline
granularity beyond the CTU size. For example, a CTU-adaptive pipeline granularity
shown in Table 10.1 is employed by [9].

306 M. Tikekar et al.

Fig. 10.1 System pipelining for HEVC decoder. Coeff buffer saves 20 kB of SRAM by TU
pipelining. Connections to Line Buffers are omitted in the figure for clarity (see Fig. 10.3 for
details)

The Variable-sized Pipeline Block (VPB) is as tall as the CTU but its width is
fixed to 64 for a unified control flow. Also, by making the VPB larger than the
CTU (for CTU 32 � 32 and 16 � 16), motion compensation can predict a larger
block of luma pixels before predicting the chroma pixels. This reduces the number
of switches between luma and chroma memory accesses which, as explained later
in Sect. 10.6, can have benefits on the DRAM latency.

10.2.2 Split System Pipeline

To deal with the variable latency of the cache+DRAM memory system, elastic
pipelining can be used between the entropy decoder, which sends read requests to
the cache, and prediction, which reads data from the cache. As a result, the system
pipeline can be broken into two groups. The first group contains the entropy decoder
while the second contains inverse transform, prediction and the subsequent in-loop
filters. This scheme is shown in Fig. 10.1.

Entropy decoder uses collocated motion vectors from decoded pictures for
motion vector prediction. A separate pipeline stage, ColMV DMA is added prior
to entropy decoder to read collocated motion vectors from the DRAM. This
isolates entropy decoder from the variable DRAM latency. Similarly, an extra stage,
reconstruction DMA, is added after the in-loop filters in the second pipeline group
to write back fully reconstructed pixels to DRAM. Processing engines are pipelined
with VPB granularity within each group as shown in Fig. 10.2. Pipelining across the
groups is explained next.

10 Decoder Hardware Architecture for HEVC 307

0 1 2 3

0
0

0
0

1
1

1

2
2
3

4
3210

0 1 2
G

ro
up

 II
G

ro
up

 I

Fig. 10.2 Split system pipeline to address variable DRAM latency. Within each group, variable-
sized pipeline block-level pipelining is used

The entropy decoder must send residue coefficients and transform information
such as quantization parameter and TU size to the inverse transform block. As
residue coefficients use 16-bit precision, 12 kB of SRAM is needed for luma and
chroma coefficients of one VPB. For full pipelining, storage for two VPBs is
needed so that entropy decoder can write coefficients and inverse transform can
read coefficients of the previous VPB simultaneously. Thus, VPB pipelining would
need 24 kB of SRAM. But this can be avoided by using the fact that the largest TU
size is 32 � 32 (a 64 � 64 CU must split its transform quadtree at least once). Hence,
it is possible to use a 2-TU buffer instead. The entropy decoder writes to one TU
while inverse transform reads from the previous TU. This buffer requires only 4 kB,
thus saving 20 kB of SRAM.

In the first pipeline group, a line buffer is used by entropy decoder for storing
prediction information of upper row VPBs. In the second pipeline group, the 9-
bit residues are passed from inverse transform to prediction using two VPB-sized
SRAMs in ping-pong configuration. (Inverse transform writes one VPB to one
SRAM while prediction reads the previous VPB from the other SRAM. When
both modules are finished processing their respective VPBs, the two SRAMs switch
roles.) Prediction, in-loop filters and reconstruction DMA communicate using three
VPB-sized SRAMs in a rotating buffer configuration as shown in Fig. 10.3. Another
line buffer is used to communicate pixels and parameters across VPB rows. The line
buffer must store:

• four luma and two chroma rows (pre-deblocking) for deblocking filter. Of these,
one luma and one chroma rows are also used as top neighbor pixels for intra
prediction.

• one luma and one chroma rows (post-deblocking) for SAO filter

308 M. Tikekar et al.

16

4 4 44

Fig. 10.3 Memory management in second pipeline group. A 2-VPB ping-pong and a 3-VPB
rotating buffer are used as pipeline buffers. A single-port SRAM is used for pixel linebuffer to
save area and access to it is arbitrated. Marked bus widths denote SRAM data width in pixels

• Prediction and transform parameters such as prediction mode, motion vectors,
reference picture indices, intra-prediction mode and quantization parameter to
determine deblocking filter parameters

• SAO parameters

To reduce the area of the line buffer, a single-port SRAM is used and requests
from prediction, in-loop filters and reconstruction DMA are arbitrated. The access
patterns of the three modules to the SRAM are designed to minimize the amount of
collisions and the arbitration scheme gives higher priority to the deblocking filter as
it has a lower margin in the cycle budget. This minimizes the performance penalty
of the SRAM sharing.

10.3 Entropy Decoding

HEVC uses a form of entropy coding called Context Adaptive Binary Arithmetic
Coding (CABAC) to perform lossless compression on the syntax elements [13].
Figure 10.4 shows the top level architecture of a CABAC entropy decoder. The
arithmetic decoder decompresses the bitstream to generate a sequence of binary
symbols (bins). The context selection finite-state-machine (FSM) determines which

10 Decoder Hardware Architecture for HEVC 309

Context
Memory

Context
Selection

FSM

address

probability Arithmetic
Decoder

bitstream

De-
Binarization

bin syntax elements

bin index

updated probability

Line
Buffer

Top Info

Fig. 10.4 Top-level architecture for CABAC. Memories are shown with grey boxes

probability should be read from the context memory based on the type of the syntax
element being processed, as well as the bin index, neighboring information (top
neighbor is read from a line buffer), and component (i.e., luma or chroma). When
the probability used to decode a bin is read from the context memory, it is referred
to as a regular coded bin; otherwise, a probability of 0.5 is assumed and the bin is
referred to as bypass coded. Bypass coded bins can be decoded much faster than
regular coded bins. After each regular coded bin is decoded, an updated context
with the updated probability estimate is sent back to the context memory. Finally,
the debinarization module maps the sequence of bins to a syntax element.

The CABAC in HEVC was redesigned for higher throughput [17]. Specifically,
the CABAC in HEVC has fewer regular coded bins compared to H.264/AVC. In
addition, the context selection FSM is simplified by reducing dependencies across
consecutive states. Both the line buffer and context memory sizes are reduced. The
number of types of binarization has increased in order to account for the reduction
in regular coded bins, without coding loss. More details on this can be found in
Chap. 8. HEVC uses the same arithmetic decoder as H.264/AVC.

10.3.1 Implementation Challenges

The challenge with CABAC is that it inherently has a different workload than the
rest of the decoder. The workload of the entropy decoder varies based on bit-rate,
while the rest of the decoder varies based on pixel-rate. The workload of CABAC
can vary widely per block of pixels (i.e. CTU). Thus a high throughput CABAC is
needed to order to handle the peaks of the workload variation to prevent stalls in
the decoder pipeline. However, it is difficult to parallelize the CABAC due to its
strong data dependencies. This is particularly true at the decoder where the data
dependencies result in feedback loops. For H.264/AVC CABAC, decoders have
throughput on the order of hundreds of Mbin/s versus up to Gbin/s for encoders.

310 M. Tikekar et al.

10.3.2 Solutions

There are several approaches that have been explored to increase the throughput
of CABAC, which is dictated by the number of binary symbols it can decode per
second (bin-rate). One method is to pipeline the CABAC to reduce the critical path
delay [26]. However, the deeper the pipeline, the more stalls or more speculative
computations/branching required. Alternatively, multiple arithmetic decoders are
concatenated to decode multiple bins per cycle [12, 25]. As the number of bins
per cycle increases, the number of speculative computations increases exponentially
and the critical path delay increases linearly. Finally, another approach is to decode
a variable number of bins per cycle, and assume that the most probable bins are
decoded each cycle [27]. As the number of bins increases, the number of speculative
computations only increases linearly; however, the critical path delay also increases
linearly and the number of bins decoded per cycle increases less than linearly, which
results in lower bin-rate. More discussion on this can be found in [16]. To address
these challenges, the CABAC in HEVC minimizes dependencies across consecutive
bins, particularly for the residual coding, and has fewer regular coded bins in order
to reduce the amount of speculative computation required when using the pipelining
or multiple bins architectures. In addition, it also groups bypass bins to enable the
decoder to fully leverage the fast decoding of bypass coded bins [18].

To address the imbalance in workload between entropy decoding (Group I in
Fig. 10.2) and the rest of the decoder (Group II in Fig. 10.2), a very large buffer
can be inserted after the entropy decoder to average out the workload. Note that
the standard constrains the workload of the entropy decoder at the frame level
(using max BinCountsInNalUnits) and across frames (using max bit-rate in the level
limit); thus using frame level buffering between the entropy decoder and the rest of
the decoder can help to address this imbalance. This is commonly referred to as
entropy decoupling. However, this comes at the cost of an additional frame delay
and increased memory bandwidth. The memory bandwidth cost can be reduced if
the intermediate values are stored as binary symbols of the CABAC rather than
the reconstructed syntax elements [10]. An added advantage of having frame level
buffering is that multiple rows of CTU can be decoded in parallel, since all the
decoded syntax elements for the frame can be read from the buffer [5]. These new
features enable CABAC decoders in HEVC to achieve higher throughput at lower
cost than in H,264.AVC as demonstrated in [31].

If latency cannot be tolerated, HEVC contains high level parallelism tools such
as slices, tiles and wavefront parallel processing, which enable multiple CABAC
decoders to operate in parallel on the same frame. However, there is no guarantee
that these features will be enabled by the encoder.

10.4 Inverse Transform and Dequantization

Dequantization scales up coefficients decoded by the entropy decoder and inverse
transform converts the scaled coefficients to residue pixels using a 2-D Inverse
Discrete Cosine Transform (IDCT) or a 2-D Inverse Discrete Sine Transform

10 Decoder Hardware Architecture for HEVC 311

(IDST). As compared to H.264/AVC, the HEVC inverse transform involves sig-
nificant challenges for hardware implementation. This is the result of the following
factors:

1. HEVC uses Transform Units (TUs) of size 4 � 4, 8 � 8, 16 � 16, and 32 � 32

pixels. This variety of TU sizes complicates the design of control logic as TUs of
different sizes take different number of cycles for processing.

2. Like H.264/AVC, the 2-D transforms in HEVC are separable into 1-D transforms
along the columns and rows. An N �N 2-D transform consists of N 1-D column
transforms and N 1-D row transforms, each of which can be viewed as the prod-
uct of an N �N transform matrix with N �1 input coefficients. The total number
of multiplications is thus, 2N 3 or 2N per coefficient. Hence, the largest IDCT
in HEVC (32 � 32) takes 4� the number of multiplications per coefficient as
compared to the largest IDCT in H.264/AVC (8 � 8). Furthermore, the increased
precision in HEVC transforms doubles the cost of each multiplication. Hence,
HEVC transform logic has 8� the computational complexity of H.264/AVC.

3. An intermediate memory is needed to store the TU between the column and row
transforms operation. This memory must perform a transposition (i.e. columns
are written to it and rows are read out). Previous designs for H.264/AVC used
register arrays due to the small TU sizes. These do not scale very well to
the higher TU sizes of HEVC and one must look to denser memories such as
SRAM to achieve an area-efficient implementation. However, the higher density
of SRAMs comes at the cost of lower memory throughput and less flexibility in
read-write patterns.

A single-cycle 32-pt 1-D IDCT with Booth encoded shift-and-add multipliers
takes about 145 kgate of logic. For comparison, a complete 1080p H.264/AVC
decoder can be built in 160 kgate [11]. Hence, aggressive optimizations that exploit
various properties of the transform matrix are necessary to achieve a reasonable
area. Also, a single-cycle 32-pt IDCT provides much higher throughput than what
is required for real-time operation. It is possible to reduce the area by computing
the DCT over multiple cycles using partial matrix multiplication. A 2 pixel/cycle
throughput at 200 MHz is sufficient for 4K Ultra HD decode at 30 fps. The following
subsections describe such a design.

10.4.1 Top-Level Pipelining

In general, two high-level architectures are possible for a 2 pixel/cycle inverse
transform [4]. The first one, shown in Fig. 10.5a uses separate stages for row
and column transforms. Each one has a throughput of 2 pixel/cycle and operates
concurrently. The dependency between the row and column transforms (all columns
of the TU must be processed before the row transform) means that the two stages
must process different TUs at the same time. The transpose memory must have one

312 M. Tikekar et al.

a

b

Fig. 10.5 Possible high-level architectures for inverse transform with 2 pixel/cycle throughput.
Bus-widths are in pixels. (a) Separate row and column transform stages. (b) 1-D transform stage
shared by row and column transform

read and one write port and hold two TUs—in the worst case, two 32 � 32 TUs.
Also, the two TUs would take different number of cycles to finish processing. For
example, if a 8�8 TU follows a 16�16 TU, the column transform must remain idle
after processing the smaller TU as it waits for the row transform to finish the larger
one. It can begin processing the next TU but managing several TUs in the pipeline
at the same time will require complex control logic to avoid stalls.

With these considerations, the second architecture, shown in Fig. 10.5b is
preferred. This uses a single 4 pixel/cycle 1-D transform for both row and column
transform to achieve the desired 2 pixel/cycle 2-D transform throughput. The 1-D
transform works on a single TU at a time, processing all the columns first and then
all the rows. Hence, the transpose memory needs to hold only one TU and can be
implemented with a single port SRAM since row and column transforms do not
occur concurrently.

10.4.2 Transpose Memory

The transform block uses a 16-bit precision input for both row and column
transforms. The transpose memory must be sized for 32 � 32 TU which means a
total size of 16 � 32 � 32 D 16:4 kbit. In comparison, H.264/AVC decoder designs
require a much smaller transpose memory—16�8�8 D 1 kbit. A 16.4 kbit memory

10 Decoder Hardware Architecture for HEVC 313

Fig. 10.6 Mapping a 32 � 32 TU to four SRAM banks for transpose operation. The color of each
pixel denotes the bank and the number denotes the bank address

with the necessary read circuit for the transpose operation takes up a lot of area
(125 kgate) when implemented with registers and multiplexers. Also, the register-
based transpose memory has a much higher throughput than required. SRAMs are
more area-efficient than registers and have a lower throughput, which makes them
a good choice for an optimized implementation. The main disadvantage of SRAMs
is that they are less flexible than registers. A register array allows reading and
writing to arbitrary number of bits at arbitrary locations, although very complicated
read(write) patterns would lead to a large output(input) mux size. The SRAM read
or write operation is limited by the bit-width of its port. A single-port SRAM allows
only one operation, read or write, every cycle. Adding extra ports is possible at the
expense of significant area increase.

It is possible to implement the 4-pixel/cycle transpose memory using four single-
port banks of 4,096 bits each with a port-width of 1 pixel. The pixels in a 32�32 TU
are mapped to locations in the four banks as shown in Fig. 10.6. By ensuring that
four adjacent pixels in any row or column sit in different SRAM banks, it is possible
to write along columns and read along rows by supplying different addresses to the
four banks.

After a 32-pt column transform is computed, the result is saved in a temporary
register and is written to the transpose SRAM over eight cycles. At the same time,
the 1-D transform module processes the next column. This is shown in cycles 0–7
in Fig. 10.7a, where the result of column 30 is written to the SRAM while the 1-D
transform module works on column 31. However, when the last column in a TU is

314 M. Tikekar et al.

W W

a

b

Fig. 10.7 Eliminate read/write with registers for an SRAM-based transpose memory. (a) Pipeline
stall due to transpose SRAM delay for 32 � 32 TU. (b) Row caching to avoid stall

processed, the transform module must wait for it to be written to the SRAM before
it can begin processing the row. This results in a delay of nine cycles for 32 � 32

TU. In general, for an N�N TU, this delay is equal to N/4 C 1 cycles. This results
in a pipeline stall of 1.75–25 % cycles depending on the TU size. This stall can be
avoided through the use of a row cache that stores the first N C 4 pixels in registers.
As shown in Fig. 10.7b, the row cache is read for the first nine cycles of the row
transforms while the last column is being stored in the SRAM.

This transpose memory design using SRAM scales very well for lower through-
puts. A 2-pixel/cycle transpose memory would need two banks each with 512 entries
(16-bit/entry). For higher throughputs, one needs more banks each with fewer
entries. Such short SRAM banks have a larger area overhead of sense-amplifiers
and other read-out circuitry. For throughputs higher than 32-pixel/cycle, register
based transpose memory [23] is more area-efficient.

10.4.3 Inverse DCT Engine

The IDCT engine can be optimized by observing that the N-pt IDCT matrix has at
most N unique coefficients differing only in sign. This is also true of the matrices
obtained by even-odd decomposition of the IDCT matrix, such as the 16�16 matrix
of the 32-pt IDCT. This 256-element matrix contains 15 unique numbers: 90, 88, 85,
82, 78, 73, 67, 61, 54, 46, 38, 31, 22, 13, 4 (and their additive inverses). The matrix
is multiplied with the odd-indexed coefficients in the 32-pt IDCT. In a 4-pixel/cycle

10 Decoder Hardware Architecture for HEVC 315

a b

Fig. 10.8 4�4 matrix multiplication in Eq. (10.1) without and with unique operations. (a) Generic
implementation. (b) Exploiting unique operations

Table 10.2 Area reduction by exploiting unique operations

Matrix
multiplication

Area for generic
implementation
(kgates)

Area exploiting
unique operations
(kgates)

Area
savings

4 � 4 10.7 7.3 32 %
8 � 8 23.2 13.5 42 %
16 � 16 46.7 34.4 26 %

case, only two of these inputs are available per cycle. So, it is enough to perform
a partial 2 � 16 matrix multiplication every cycle and accumulate the outputs over
eight cycles. In general, this would require 32 full multipliers and 32 lookup tables to
store the matrix. However, knowing that the matrix has only 15 unique numbers, we
can simply instantiate 15 constant multipliers with some negators and multiplexers
to implement the matrix multiplication. This is shown for the 4 � 4 odd matrix
multiplication (Eq. (10.1)) of the 8-pt IDCT in Fig. 10.8b. The area savings are
shown in Table 10.2.

y0 y1 y2 y3

� D

u0 u1 u2 u3

�
2
664

89 75 50 18

75 �18 �89 �50

50 �89 18 75

18 �50 75 �89

3
775 (10.1)

316 M. Tikekar et al.

Table 10.3 Area breakdown
for inverse transform Module

Logic area
(kgates)

Partial transform 71
Accumulator 5
Row cache 4
FIFOs 5
Scaling C Control 19

Total 104

Table 10.4 Area for
different transforms. Partial
32-pt IDCT contains all the
smaller IDCTs

Module
Logic area
(kgates)

4-pt IDCT 3
Partial 8-pt IDCT 10
Partial 16-pt IDCT 24
Partial 32-pt IDCT 57
4-pt IDST C misc. 14

10.4.4 Implementation Results

Breakdown of the post-synthesis logic area at 200 MHz clock frequency in 40 nm
CMOS is given in Table 10.3. The total area is 104 kgate of logic (in terms of 2-input
NAND gates) and 16.4 kbit of SRAM. Table 10.4 shows the combinational logic
area required for 1-D transform operations. Data-gating and zero-column skipping
can provide power reduction of 18% and throughput improvement of 27-66% as
shown in [32].

10.5 Inter Prediction

HEVC inter prediction uses motion vectors pointing to one reference frame (uni-
prediction) or two reference frames (bi-prediction) to predict a block of pixels. The
size of the predicted block, called Prediction Unit (PU), is determined by the Coding
Unit (CU) size and its partitioning mode. For example, a 32 � 32 CU with 2N�N
partitioning is split into two PUs of size 32 � 16, or a 16 � 16 CU with nL�2N
partitioning is split into 4 � 16 and 12 � 16 PUs.

For luma pixels, the motion vectors for each PU have a resolution of 1/4-th pixel.
The predicted pixels at non-integer pixel positions are obtained by interpolating
between the reference pixels using an 8-tap FIR filter, first along the horizontal
direction and then along the vertical as shown in Fig. 10.9. (In Main Profile, the
reverse order, i.e. vertical followed by horizontal also gives the same result). For
chroma, the motion vector is halved and has a 1/8-th pixel resolution computed using
a 4-tap interpolation filter. From Table 10.5, which shows the cost of interpolating

10 Decoder Hardware Architecture for HEVC 317

Fig. 10.9 Interpolation process for a pixel at a fractional location x D 1=4; y D 3=4

Table 10.5 Example costs for interpolating a block of pixels

Block type Generic Y64 � 64 Y16 � 16 U4x4

Parameters Block size w � h 64 � 64 16 � 16 4 � 4

Filter size n C 1 taps 8 taps 8 taps 4 taps
Costs Reference pixels .w C n/ � .h C n/ 71 � 71 (23 %) 23 � 23 (106 %) 7 � 7 (206 %)

Horizontal interps. w � .h C n/ 64 � 71 (11 %) 16 � 23 (43 %) 4 � 7 (75 %)
Vertical interps. w � h 64 � 64 (0 %) 16 � 16 (0 %) 8 � 8 (0 %)

Values in brackets denote overhead over the block size. Costs are for uni-prediction only. For
bi-prediction, all the costs are doubled

a block of pixels, we see that smaller pixel blocks have a proportionately higher
overhead in the number of reference pixels and number of horizontal interpolations.
To reduce the worst case overhead, 4 � 4 PUs are not allowed by the standard and
8 � 4=4 � 8 PUs are allowed to use only uni-prediction.

Compared to H.264/AVC, HEVC uses

1. Larger PUs which require fewer interpolations per pixel but more on-chip SRAM
2. More varied PU sizes which increase complexity of control logic
3. Longer interpolation filters which require more datapath logic and more refer-

ence pixels

Reference frames may be stored in off-chip DRAM for HD and larger picture
sizes, or in on-chip SRAM for smaller sizes. At a PU level, it is observed that
reference pixels of adjacent PUs have significant overlap. Due to this spatial locality,
fetching the reference pixels into a motion-compensation (MC) cache helps reduce
the latency and power required to access external DRAM and large on-chip SRAMs.
Considering this, a top-level architecture (showing only the data-path) for an HEVC
inter-prediction engine would look like Fig. 10.10.

The Dispatch module generates the position and size of the reference pixel block
according to the decoded motion vectors (MVs). The MC Cache will send read
requests to reference frame buffer over the direct-memory-access (DMA) bus for
cache misses. When all the reference pixels are present in the MC cache, the Fetch
module will fetch them from the cache for the 2-D Filter module. Note that it could
take many cycles to get data from DMA bus, due to latencies of bus arbiters, DRAM
controller, and DRAM Precharge/Activate operations.

318 M. Tikekar et al.

Fig. 10.10 System architecture for HEVC inter prediction. Only main data flow is shown

The following subsections describe techniques used to address the important
challenges of implementing HEVC inter prediction in hardware.

1. A fixed pipelining across the Dispatch, Fetch and 2-D Filter modules for simpler
control and reduced on-chip SRAM

2. A PU-adaptive scheduling within each module to handle the variety of PU sizes
3. Time-multiplexed Multiple Constant Multiplication (TMMCM) [21] to reduce

interpolation filter size

Section 10.6 describes the design of a motion compensation cache used to reduce
the memory bandwidth requirement and power consumption of the reference picture
buffer.

10.5.1 Fixed Pipelining Across Modules

In HEVC, it is possible to predict a large block of pixels in smaller pipeline blocks
by treating the smaller blocks as independent PUs with the same motion vector
information. So, to deal with all the variety of PU sizes, one can use a constant
block size of 4 � 4. This drastically reduces the size of pipeline buffers between the
modules in Fig. 10.10. However, as explained previously, the smaller blocks have
a larger overhead in terms of fetching reference pixels and performing horizontal
interpolations.

In [33], 16 � 16 pipeline blocks are used to tradeoff SRAM size and computation
overhead. For chroma, since a block of 16 � 16 luma pixels corresponds to two
8 � 8 chroma pixels in the 4:2:0 format, chroma pixels from two 16 � 16 blocks are
combined and used as a single pipeline block of four 8 � 8 pixels. As compared to
a 64 � 64 CTU granularity, this requires 24� smaller pipeline buffers. The worst
case overhead of this scheme is seen when a 64 � 64 PU is split into 16 � 16

pipeline blocks. For luma pixels, this PU originally requires 64 � 71 D 4;544

horizontal interpolations but processing it in smaller blocks increases that by 30 %
to 16 � .16 � 23/ D 5;888. For PU sizes smaller than 16 � 16, multiple such PUs
are combined into one pipeline block.

10 Decoder Hardware Architecture for HEVC 319

Table 10.6 Number of horizontal interpolations for each PU type

No. of horizontal interpolations No. of vertical interpolations

PU Type
Uni/bi
directional per PU per pixel per PU per pixel

Y16 � 16 Uni/bi 2 � 16 � 23 2.875 2 � 16 � 16 2
Y8 � 8 Uni/bi 2 � 8 � 15 3.75 2 � 8 � 8 2
Y16 � 4 Uni/bi 2 � 16 � 11 5.5 2 � 16 � 4 2
Y4 � 16 Uni/bi 2 � 4 � 23 2.875 2 � 4 � 16 2
Y8 � 4 Uni 8 � 11 2.75 8 � 4 1
Y4 � 8 Uni 4 � 15 1.875 4 � 8 1
UV8 � 8 Uni/bi 2 � 8 � 11 2.75 2 � 8 � 8 2
UV4 � 4 Uni/bi 2 � 4 � 7 3.5 2 � 4 � 4 2
UV8 � 2 Uni/bi 2 � 8 � 5 5 2 � 8 � 2 2
UV2 � 8 Uni/bi 2 � 2 � 11 2.75 2 � 2 � 8 2
UV4 � 2 Uni 4 � 5 2.5 4 � 2 1
UV2 � 4 Uni 2 � 7 1.75 2 � 4 1

Some PU types are restricted to uni-prediction while other types can use either

10.5.2 PU-Adaptive Pipelining in 2-D Filter

The 2-D Filter must handle PUs of size 16 � 16 and smaller for luma and chroma
which require different number of interpolations as shown in Table 10.6. Y16 � 4

PU requires the most number of horizontal interpolations (5.5 per pixel) and so, for
a 2 pixel/cycle throughput, 11 horizontal filters are required. By a similar analysis,
four vertical filters are required. However, this would result in a mismatch between
the peak throughput of the horizontal filters (11 pixel/cycle) and the vertical filters.
The designer can choose to add a buffer after the horizontal filters to handle the
mismatch or match the peak throughput with 11 vertical filters.

10.5.3 TMMCM for Interpolation Filter

The 6-tap interpolation filter in H.264/AVC is easy to optimize due to its symmetry
and simple coefficients [1]. However, HEVC uses longer 8-tap and 4-tap filters
for luma and chroma coefficients respectively, and the filter coefficients are also
more complex. In [6], a 1-D luma filter design with 16 adders and a 2-D filter
reuse scheme for sub-block 4 � 4 are proposed. A 1-D filter design using only
13 adders is also possible by unifying the luma and chroma filters into one single
design and optimizing it with time-multiplexed multiple-constant multiplication
(TMMCM). TMMCM is similar to MCM seen in Sect. 10.4 on Inverse Transform.
However, exactly one of the MCM outputs is needed every clock cycle and this
allows further optimizations by placing multiplexers within the MCM adder tree.
One such TMMCM optimization is explained in some detail next.

320 M. Tikekar et al.

X0 X1 X2 X3 X4 X5 X6 X7

Fig. 10.11 Unified luma and chroma interpolation filters with inputs reordered. The coefficients
for x3 (in dashed box) can be implemented with two adders and three multiplexers as shown in
Fig. 10.12

X3

Fig. 10.12 Time-multiplexed Multiple Constant Multiplication for x3

A reorder of the filter inputs is first applied to reduce complexity based on
symmetry as shown in Fig. 10.11. Note that two sets of the chroma filter coefficients
are placed in x1 and x6, instead of x2 and x5, due to the similarity with the luma
coefficients 4 and 1. There are only seven cases left. The design principle adopted
here is to optimize TMMCM coefficients for each filter input. As an example, the
design for x3 is shown in Fig. 10.12.

In the canonical signed digit representation, the coefficients have at most three
non-zero digits which determines the number of adders to be 2. The non-zero digits
are partitioned into three groups (n, m and r) such that each group has at most
one non-zero digit. Finally, the three partitions are summed with partitions having
similar bitwidths added first.

Compared to algorithmically generated filter designs using [15], this design has
a 5–31 % lower area as shown in Table 10.7.

Combining all the presented techniques, the complete 1-D filter is shown in
Fig. 10.13 using only 13 adders. Regarding the bitwidth increase between the input
and output, the case of luma 1/2-pel position gives the largest values for both

10 Decoder Hardware Architecture for HEVC 321

Table 10.7 Gate counts of the described and reference designs for the x3, x4, and x2jx5

TMMCM in the vertical filter based on 40 nm process synthesis results

Design x3 TMMCM x4 TMMCM x2jx5

Timing 1 ns 2 ns 1 ns 2 ns 1 ns 2 ns

Reference (gates) 1144 547 557 526 2284 845
Proposed (gate) 1036 518 442 361 1578 738
Area reduction 9.4 % 5.4 % 20.6 % 31.4 % 30.9 % 12.6 %

The reference designs for x3 and x4 are generated by [15], and the reference for x2jx5 is
designing x2 and x5 separately

TMMCMTMMCM

Fig. 10.13 HEVC interpolation filter design using 13 adders

unsigned and signed inputs, and the outputs can be magnified at most by 88 and
112 times respectively. So, the 1-D horizontal filter has 8-bit unsigned input and
16-bit signed output, and the vertical one has 16-bit signed input and 23-bit signed
output.

10.5.4 Implementation Results

For supporting 4K Ultra-HD 30 fps videos, this architecture is synthesized at
200 MHz in 40 nm CMOS. The result is shown in Table 10.8. The total gate count is
69.4k, of which 50.0k for the 2-D filter. The Fetch module mainly consists of large
multiplexers and results in 12.0 kgate. The Dispatch module occupies 4.7 kgate for
the block size and position calculation. The total SRAM size is 31 kbit, including
the two-port 2.2 kbit Dispatch Info SRAM and the single-port 28.8 kbit Reference
Data SRAM.

322 M. Tikekar et al.

Table 10.8 Gate count of
inter architecture when
synthesized at 200 MHz in
40 nm CMOS. SRAM sizes
are also summarized

Module
Logic area
(kgates) SRAM (kbit)

Dispatch 4.7 2.2 (two-port)
Fetch 12.0 28.8 (one-port)
2-D Filter 50.0 n/a
Inter Ctrl 2.7 n/a

Total 69.4 31.0

Table 10.9 Gate count
breakdown for the 2-D filter Sub-module

Logic area
(kgates)

Input Mux 4.8
H Filter 12.0
V Filter 21.8
Register Chain 9.4
Bi-Sum 1.2
Ctrl 0.8

Total 50.0

Since most of the gates are for the 2-D filter, its gate count is given in more detail
in Table 10.9. For the 2-D filter, the horizontal and vertical filters occupy the most,
and the area of horizontal ones is nearly one half of that of vertical ones due to their
smaller internal bitwidth. This implementation does not include all PU Types used
in the HEVC standard (Asymmetric Motion Partitions 32 � 8, 8 � 32, 16 � 4, 4 � 16

are not implemented), and so, uses only eight horizontal and eight vertical filters.

10.6 MC Cache and DRAM Mapping

HEVC’s longer interpolation filters cause a significant increase in the required
motion compensation (MC) bandwidth to the reference picture buffer (a.k.a.
decoded picture buffer—DPB) as compared to H.264/AVC. However, there is
significant overlap in the reference pixel data required by neighboring inter PUs
which can be exploited by a cache. Most video codecs use DRAM based memory to
store the DPB since it can be several megabytes large. In such a scenario, in addition
to reducing the bandwidth requirement, the cache also hides the variable latency of
the DRAM. This section describes the design of a read-only MC cache to support
real-time decoding of 4K Ultra-HD HEVC video.

The target DRAM system is intended to store six reference pictures at 4K Ultra-
HD resolution (corresponding to HEVC level 5) in addition to the collocated motion
vector data. The DRAM system is composed of two 64M � 16-bit DDR3 DRAM
modules with a 32 byte minimum access unit (MAU). A single MAU is mapped to
a cache line.

10 Decoder Hardware Architecture for HEVC 323

0 1

2 3

4 5

6 7

0
0 1

2 3

4 5

6 7

0

2 3

0

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x78 0x79 0x7A 0x7B 0x7C 0x7D 0x7E 0x7F
...

Col Addr: 0x17
7b00101 11

Twisting reduces Precharge
and Activate commands

256x128 pixel block

Same row address
in each bank

64x64 pixel block

DRAM Latency Aware
Memory Mapping

8x4 pixel MAU Tiling
7bit Column Address

Last 2bits: Cache Datapath

0 1 2 3 0 1
Cache Datapath Index

2 3

Fig. 10.14 Latency Aware DRAM mapping. 128 8 � 4 MAUs arranged in raster scan order make
up one block. The twisted structure increases the horizontal distance between two rows in the same
bank. Note how the MAU columns are partitioned into four datapaths (based on the last 2 bits of
column address) for the four-parallel cache architecture

10.6.1 DRAM Latency Aware Memory Map

An ideal mapping of pixels to DRAM addresses should minimize the number of
DRAM accesses and the latency experienced by each access. This can be achieved
by minimizing the fetch of unused pixels and the number of row precharge/activate
operations respectively. Note that the above optimization only fixes how the pixels
are stored in DRAM and can be performed even in the absence of an MC cache.
Also, the DRAM addresses should be mapped to cache lines such that conflict
misses are minimized. To enable a coherent presentation, we explain these ideas
with respect to a specific memory map. The underlying principles are quite general
and can be easily reused.

Figure 10.14 shows an example latency aware memory map. The luma color
plane of a picture is tiled by 256 � 128 pixel blocks in raster scan order. Each block
maps to an entire row across all eight banks. These blocks are then broken into
eight 64 � 64 blocks which map to an individual bank in each row. Within each
64�64 block, 32-byte MAUs map to 8�4 pixel blocks that are tiled in a raster scan
order. In Fig. 10.14, the numbered square blocks correspond to 64 � 64 pixels and
the numbers stand for the bank they belong to. Note how the mapping of 128 � 128

pixel blocks within each 256�128 regions alternates from left to right. Figure 10.14
shows this twisting behavior for a 128 � 128 pixel region composed of four 64 � 64

blocks that map to banks 0, 1, 2 and 3.
The chroma color plane is stored in a similar manner in different rows. The

only notable difference is that an 8 � 4 chroma MAU is composed of pixel-level
interleaving of 4 � 4 U and V blocks. This is done to exploit the fact that U and V
have the same reference region.

324 M. Tikekar et al.

40%

50%

60%

70%

64x64 32x32 16x16

MAU 8x4

MAU 4x8

Hit Rate

CTU size

40%

50%

60%

70%

4KB 8KB 16KB 32KB

Hit Rate

Cache size

40%

50%

60%

70%

1-way 2-way 4-way 8-way

Hit Rate

Cache associativity

a

c

b

Fig. 10.15 Cache hit rate as a function of CTU size, (a) cache line geometry, (b) cache-size and
(c) associativity. Experiments averaged over six sequences—Basketball Drive, Park Scene, Tennis,
Crowd Run, Old Town Cross and Park Joy. The first are Full HD (240 pictures each) and the
last three are 4K Ultra HD (120 pictures each). CTU size of 64 is used for the cache-size and
associativity experiments

Minimizing Fetch of Unused Pixels. Since the MAU size is 32 bytes, each access
fetches 32 pixels, some of which may not belong to the current reference region as
seen in Fig. 10.16. These can be minimized by using an 8 � 4 MAU to exploit the
rectangular geometry of the reference region. When compared with a 32 � 1 cache
line this reduces the amount of unused pixels fetched for a given PU by 60 % on
average.

Since the fetched MAU are cached, unused pixels may be reused if they fall
in the reference region of a neighboring PU. Reference MAUs used for prediction at
the right edge of a CTU can be reused when processing CTU to its right. However
the lower CTU gets processed after an entire CTU row in the picture. Due to limited
size of the cache, MAUs fetched at the bottom edge will be ejected and are not
reused when predicting the lower CTU. When compared to 4 � 8 MAUs, 8 � 4

MAUs fetch more reusable pixels on the sides and less unused pixels on the bottom.
As seen in Fig. 10.15a, this leads to a higher hit-rate. This effect is more pronounced
for smaller CTU sizes where hit-rate may increase by up to 12 %.

10 Decoder Hardware Architecture for HEVC 325

16x16 Predicted

7x4 MAUs Fetched

23 x23 Reference Region

0 1 2 3 0 1

Cache Datapath Index

Minimum Access Unit
(MAU) of 8x4 pixels

Fig. 10.16 Example of MC cache dispatch for a 23 � 23 reference region of a 16 � 16 PU. Seven
cycles are required to fetch the 28 MAU at 4 MAU per cycle. Note that the dispatch region and
the four parallel cache datapaths may be misaligned, thus requiring a reordering. For example, the
region in this figure starts from datapath #1

Table 10.10 Comparison of twisted 2D mapping and direct 2D mapping

LD RAEncoding Mode
CTU Size 64 32 16 64 32 16

ACT BW Direct 2D 272 227 232 690 679 648
(MBytes/s) Twisted 2D 219 183 204 667 659 636
Gain 20 % 20 % 12 % 3 % 3 % 2 %

Minimizing Row Precharge and Activation. The Twisted 2D mapping of
Fig. 10.14 ensures that pixels in different DRAM rows in the same bank are at least
64 pixels away in both vertical and horizontal directions. It is unlikely that inter-
prediction of two adjacent pixels will refer to two entries so far apart. Additionally
a single dispatch request issued by the MC engine can at most cover four banks. It
is possible to keep the corresponding rows in the four banks open and then fetch
the required data. These two factors help minimize the number of row changes.
Experiments show that twisting leads to a 20 % saving in bandwidth over a direct
mapping as seen in Table 10.10.

Minimizing Conflict Misses. A conflict miss occurs when two locations in mem-
ory map to the same cache line. To mitigate this, we need to select an appropriate
mapping between the DRAM addresses and the cache line indices. Setting the line
index to the 7 bit column address of the MAU ensures that two conflicting pixel
location in the same picture are at least 64 pixels apart. However, the same pixel
location across two pictures will map to the same cache line. Similarly a luma and
an unrelated chroma address may also map to the same cache line. Using 4-way set
associativity in the cache helps resolve both these conflicts.

326 M. Tikekar et al.

Alternative techniques to tackle conflict misses include having separate luma and
chroma caches. Similarly offsetting the memory map such that the same location in
successive frames maps to different cache lines can also reduce conflicts. For our
chosen configuration, the added complexity for these techniques outweighed the
observed hit-rate increases.

10.6.2 Four-Parallel Cache Architecture

This section describes a four parallel MC cache architecture. Datapath parallelism
and outstanding request queues for hiding the variable DRAM latency ensure a high
throughput. As seen in Fig. 10.17, there are four parallel paths each outputting up to
32 pixels (1 MAU) per cycle.

10.6.2.1 Four-Parallel Data Flow

The parallelism in the cache datapath allows up to 4 MAUs in a row to be
processed simultaneously. The MC cache must fetch at most 23�23 reference region
corresponding to a 16�16 PU, which is the largest PU processed by Inter Prediction
(see Sect. 10.5.1). This may require up to seven cycles as shown in Fig. 10.16. The
address translation unit in Fig. 10.17 reorders the MAUs based on the lowest 2 bits
of the column address. This maps each request to a unique datapath and allows us
to split the tag register file and cache SRAM into four smaller pieces. Note that
this design cannot output 2 MAUs in the same column on the same cycle. Thus our
design trades unused flexibility in addressing for smaller tag-register and SRAM
sizes.

The cache tags for the missed cache lines are immediately updated when the lines
are requested from DRAM. This preemptive update ensures that future reads to the
same cache line do not result in multiple requests to the DRAM. Note that behavior
is similar to a simple non-blocking cache and does not involve any speculation.
Additionally since the MC cache is a read only cache there is no need for write-
back in case of eviction from the cache.

10.6.2.2 Queue Management and Hazard Control

Each datapath has independent read and write queues which help absorb the variable
DRAM latency. The 32 deep read queue stores pending requests to the SRAM. The
eight deep write queue stores pending cache misses which are yet to be resolved by
the DRAM. The write queue is shorter because fewer cache misses are expected.
Thus the cache allows for up to 32 pending requests to the DRAM. At the system
level the latency of fetching the data from the DRAM is hidden by allowing for a
separate motion vector (MV) dispatch stage in the pipeline prior to the Prediction

10 Decoder Hardware Architecture for HEVC 327

Address
Translation

Hit/Miss
Resolution

Read &
Write

Queues Cache
SRAM
Banks

DMA
Control

Tag

Register File

DRAM Interface

Four-Parallel MC Cache

From
Dispatch

To
Prediction

Hazard
Detection
Circuit

WR Queue

RD Queue

...

To SRAM

Hazard
Detected

RD index at
WR queue

head

<i =

RD
Addr

WR
Addr

Hit

AND

Hazard at ith

RD: H

i

Hn H1 H0

Fig. 10.17 Proposed four-parallel MC cache architecture with four independent datapaths.
The hazard detection circuit is shown in detail

stage. Thus, while the reference data of a given block is being fetched, the previous
block is undergoing prediction. Note that the queue sizes here are decided based on
the behavior of the target DMA arbiter and DRAM latency, and for different systems
they should be optimized accordingly.

Since the cache system allows multiple pending reads, write-after-read hazards
are possible. For example, consider two MAUs A and B that are mapped to the same
cache line. Presently, the cache line contains A, the write queue contains a pending
cache miss for B and the read queue contains pending requests for A and B in that
order. If B arrives from the DRAM, it must wait until A has been read from the
cache to avoid evicting A before it has been read. The Hazard Detection Circuit in
Fig. 10.17 detects this situation and stalls the write of B.

10.6.2.3 Cache Parameters

Figures 10.15b, c show the hit-rates observed as a function of the cache size and
associativity respectively. A cache size of 16 kB was chosen since it offered a good
compromise between size and cache hit-rate. The performance of FIFO replacement
is as good as Least Recently Used replacement due to the relatively regular pattern of
reference pixel data access. FIFO was chosen because of its simple implementation.
The cache associativity of 4 is sufficient to accommodate both Random Access GOP
structures and the three component planes (Y, U, V).

328 M. Tikekar et al.

10.6.3 Hit Rate Analysis, DRAM Bandwidth and Power

The rate at which data can be accessed from the DRAM depends on two factors:
the number of bits that the DRAM interface can (theoretically) transfer per unit
time and the precharge latency caused by the interaction between requests. The
precharge latency can be normalized to bandwidth by multiplying with the bitwidth.
This normalized figure (called ACT BW) is the bandwidth lost in the precharge
and activate cycles—the amount of data that could have been transferred in the
cycles when the DRAM was executing row change operation. The other figure,
Data BW, refers to the amount of data that needs to be transferred from the DRAM
to the decoder per unit time for real-time operation. Thus, a better hit-rate reduces
the Data BW and a better memory map reduces the ACT BW. The advantage of
defining Data BW and ACT BW as mentioned above is that (Data BW C ACT BW)
is the minimum bandwidth required at the memory interface to support real-time
operation.

The performance of the cache and the twisted address mapping is compared
with two reference scenarios: raster-scan address mapping with no cache and raster
scan address mapping with the cache. As seen in Fig. 10.18a, using a 16 kB cache
reduces the Data BW by 55 %. The Twisted 2D mapping reduces ACT BW by 71 %.
Thus, the cache results in a 67 % reduction of the total DRAM bandwidth. Using a
simplified power consumption model [14] based on the number of accesses, this
cache is found to save up to 112 mW, a 41 % reduction in DRAM access power as
shown in Fig. 10.18b.

Figure 10.18c compares the DRAM bandwidth across various encoder settings.
Smaller CTU sizes result in a larger bandwidth because of lower hit-rates. Thus,
larger CTU sizes such 64 can provide smaller external bandwidth at the cost of
higher on-chip complexity. Also, Random Access mode typically has lower hit rate
when compared to Low Delay. This behavior is expected because the reference
pictures are switched more frequently in the former.

10.6.4 Implementation Results

This design is synthesized at 200 MHz in 40 nm CMOS. The total area is 90.4 kgate
of logic and 16 kB (or 131.1 kbit) of SRAM. The bulk of the logic area is taken by
the 8,960 bit tag register file and can be replaced by a 2-port SRAM (which is denser
than register file) at the cost of an extra access cycle. Breakdown of the logic area is
presented in Table 10.11.

10 Decoder Hardware Architecture for HEVC 329

a

c

b

Fig. 10.18 Comparison of DDR3 bandwidth and power consumption across three scenarios. RS
mapping maps all the MAUs in a raster scan order. ACT corresponds to the power and band-
width induced by DRAM Precharge/Activate operations. (a) Bandwidth comparison. (b) Power
comparison. (c) BW across sequences

Table 10.11 Breakdown of
logic area for motion
compensation cache

Module
Logic area
(kgate)

Address Translation 1.1
Hit/Miss Resolution 3.9
Queue 20.5
Tag Register File 64.9

Total 90.4

10.7 Intra Prediction

Intra prediction predicts a block of pixels based on neighboring pixels in the same
picture. The neighboring pixels are extrapolated into the block to be predicted
along one of 33 directions or using two other intra modes—DC and Planar. The
neighboring pixels are taken from one row of pixels to the top and one column to
the left.

330 M. Tikekar et al.

a

b

Fig. 10.19 Tight feedback loop in intra prediction due to dependency between neighbors.
(a) Intra-prediction dependency between neighboring pixel blocks. (b) Dependency results in a
tight feedback loop

The key operations in intra-prediction are:

1. Read neighboring pixels and perform padding for unavailable pixels
2. Reference preparation: filter neighboring pixels to obtain intra reference pixels

and extend the top-left reference pixels for angular modes
3. Prediction: bilinear interpolation for angular and planar modes, and pixel copy

for DC, horizontal and vertical modes

When the current block of pixels is predicted, its residues need to be immediately
added so that it can be used as neighboring pixels for the next block. This results
in a tight feedback loop for intra-prediction as shown in Fig. 10.19. As a result of
this feedback loop, it is not possible to pipeline the above three operations, which
increases the throughput requirement from these blocks. It should be noted that the
feedback loop operates at a TU granularity and not a PU granularity. For example,
for a 16 � 16 CU with a 2N � 2N intra partition (i.e. a single 16 � 16 PU) and a
residue quad tree (RQT) of four 8�8 TUs, the 8�8 blocks must be predicted serially
and the intra neighboring pixels must be updated after every block’s prediction and
reconstruction.

This dependency also has implications for the top-level pipelining—in order to
keep inverse transform and prediction decoupled, the inverse transform must be
performed one pipeline granularity before prediction.

The 35 intra prediction modes in HEVC are well designed to reduce com-
plexity. The planar mode is much simpler than the one in H.264/AVC, and the
33 angular modes are also well organized to avoid increasing the complexity
when increasing the angular precision. However, the larger TU sizes increase the
hardware complexity due to larger pipeline and reference buffers. In H.264/AVC,

10 Decoder Hardware Architecture for HEVC 331

one macroblock can contain only one kind of intra block size, which can be used to
design optimized pipeline schedules as in [7,24]. Since a CTU in HEVC can have a
variety of TUs and a mix of intra and inter CUs, such pipeline schedules will be too
complex to optimize for every possible combination.

As the result, designing a data-flow that respects across-TU dependencies and
provides high throughput is a bigger challenge than the pixel computation involved
in reference preparation and prediction. In this chapter, we focus on the data-flow
management used in [8], which uses a hierarchical memory deployment for high
throughput and low area. The intra engine operates on blocks of 32�32 luma pixels
and two 16 � 16 chroma pixels since those are the largest TU sizes. In the complete
decoder pipeline, it communicates with entropy decoder and inverse transform at a
Variable-sized Pipeline Block (VPB) granularity. (The mapping between VPB and
CTU is shown in Table 10.1. For 16 � 16 CTU, four CTUs are combined into one
intra pipeline block.)

10.7.1 Hierarchical Memory Deployment

The bottom row pixels of all VPBs in a row of VPBs needs to be stored since
they are top neighbors for VPBs in the row below. This buffer must be sized
proportional to the picture width and may be implemented in on-chip SRAM or
external DRAM. Storing VPB-level neighboring pixels in registers as previous
designs for H.264/AVC have done can provide the required high-throughput access.
But this will require a lot of area as the VPB can be as large as 64�64. This issue can
be addressed by storing the neighboring pixels in SRAM to save area and storing
them in registers at a TU level for higher throughput. A memory hierarchy is thus
formed:

1. VPB-row-level top neighbors in SRAM or external memory
2. VPB-level neighboring pixels in SRAM
3. TU-level reference pixels in registers

The hierarchical memory deployment is shown in Fig. 10.20 and the memory
elements are explained next:

1. VPB-Row top neighbors: In [9], this buffer is implemented in an on-chip SRAM
that is shared with deblocking filter. The deblocking filter stores four top rows of
which, intra prediction uses one row.

2. VPB top neighbors: This buffer is implemented using a pair of SRAMs in a ping-
pong fashion. One SRAM is used in the intra-prediction of the current VPB. It
is updated every TU with neighboring pixels for the next TU. At the same time,
the other SRAM updates the VPB-Row top SRAM with pixels from the previous
VPB and loads top row pixels for the next VPB. The size of each SRAM is 192
pixels (64 Y top C 32 Y top-right C 64 UV top C 32 UV top-right).

332 M. Tikekar et al.

Fig. 10.20 Hierarchical memory deployment with VPB-Row level SRAM/DRAM and VPB-level
SRAM for neighboring pixels, and TU-level registers for reference pixels

3. VPB left neighbors: This buffer is implemented using one SRAM containing 128
pixels (64 Y C 64 UV). It is updated every TU with neighboring pixels for the
next TU. Because the TUs are processed in z-scan order, at the end of all TUs in
the current VPB, it automatically contains the left neighbors for the next VPB.

4. VPB top-left neighbors: The TU-based update scheme for VPB top and left
neighbors could overwrite some pixels which will be the top-left neighbor of
some following TUs. The VPB top-left neighbor buffer is introduced to solve
this problem. As shown in Fig. 10.20, pixels on the 4 � 4 grid are written to the
VPB top-left neighbor buffer (Table 10.12).

5. Reference pixels: At the start of every TU, neighbors are read from the VPB-level
SRAMs into registers. Padding and preparation operations are then performed on
the registers to obtain reference pixels. Using registers allows for these operations
and the final intra prediction to be performed at a high throughput. A total of
129 reference pixels (32 bottom-left, 32 left, one top-left, 32 top, 32 top-right)
are needed for all angular modes. But since only one angular mode is used at a
given time, the horizontal modes can be treated as vertical modes by swapping x

and y axes to reduce the number of reference pixels to 99. Reference pixels are
read by both preparation and prediction, and a combined read-out circuit shared
between the two operations can reduce the number of multiplexers by exploiting
similarities in their access patterns.

10.7.2 Reference Preparation and Prediction

As mentioned in Sect. 10.7, due to the tight dependency loop in Intra processing
it is hard to pipeline the three pixel processing operations of reference padding,

10 Decoder Hardware Architecture for HEVC 333

Table 10.12 SRAMs for
neighboring pixels

SRAM Bits

VPB top 3072
VPB left 1024
VPB top-left 768

Total 4864

Table 10.13 Gate-count
(in kgates) breakdown for
Intra prediction

Module Logic area

Reference pixel registers
and padding

12.1

Reference pixel preparation 1.3
Prediction 8.1
Control 5.5

Total 27.0

reference preparation and prediction. Another factor is that the three operations
require different amount of computation. For an N � N TU, reference padding
and preparation require O.N / computation while prediction is O.N 2/.

The reference preparation operation in HEVC varies depending on the prediction
mode. DC mode requires the accumulation of the reference pixels in order to
compute the DC value. An angular extension of the reference pixels may be required
before prediction can begin. A mode dependant intra smoothing (MDIS) filter may
be applied to the reference pixels for TU sizes 8, 16 and 32 depending on the intra
mode.

10.7.3 Implementation Results

Table 10.13 shows the synthesis results for the intra prediction architecture in 40 nm
CMOS. Reference pixel registers and their read-out take the most area. The area
for reference preparation, which is a new feature in HEVC, is about 1.3 kgate. The
design is synthesized at 200 MHz and can support 4K Ultra-HD decoding at 30 fps.

10.8 In-Loop Filters

HEVC uses two in-loop filters—deblocking filter and sample adaptive offset
(SAO)—that attempt to reduce compression artifacts and improve coding efficiency.
The deblocking filter in HEVC processes edges on an 8-pixel grid and thus, has
lower computational complexity than H.264/AVC’s deblocking filter which uses
a 4-pixel grid. SAO involves selecting an offset type for each pixel based on its
neighboring pixels and adding the offset. Deblocking and SAO can be implemented
in a single pipeline stage as described in [30].

334 M. Tikekar et al.

In [9], a VPB-based pipelining is used between deblocking filter and prediction
stages. This allows the scheduling within the deblocking filter to be scheduled
independent of the coding tree structure. A smaller granularity can also be used to
save pipeline buffer SRAM at the cost of scheduling complexity. Since the in-loop
filtering process for the current block of pixels depends on blocks to the right and
bottom which have not yet been reconstructed, the entire block cannot be processed
completely. The output of the deblocking filter is shifted from the input by four luma
pixels and two chroma pixels to the left and the top, and the output of SAO is shifted
by another pixel for all color components in both directions.

10.8.1 Deblocking Filter

Compared to H.264/AVC, HEVC’s deblocking filter has several simplifications
related to processing dependencies. The luma deblocking filter operates on edges
lying on an 8 � 8 grid and filter takes 4 pixels on either side of the edge as input
and writes up to 3 pixels on either side. As a result, unlike H.264/AVC, filters on
adjacent edges are completely decoupled and it is possible to filter 8�8 pixel blocks
independently. The key challenge in the deblocking filter architecture is designing
an efficient data flow to handle cross-CTU dependencies.

The bottom four rows and right-most four columns of luma pixels (and two
rows and columns of chroma pixels) in a CTU depend on the CTUs to the bottom,
right and bottom-right for their deblocking. Accordingly, their processing must be
delayed until those CTUs are available and they must be temporarily stored until
then. Along with the pixels, parameters such as prediction mode, motion vectors, TU
and PU boundaries, and quantization parameter which are required for computing
the boundary strength also need temporary storage. The right-most four columns
need a 1-CTU-high buffer (called Last CTU buffer) while the bottom four rows
need a 1-Picture-wide buffer (called Line buffer).

The boundary strength parameters are available at a worst-case granularity of
4 � 4 pixels and take about 78 bits (64 bits for two motion vectors, 4 bits for two
reference list indices, 6 bits for quantization parameter, 2 bits for prediction mode—
intra-prediction, uni-prediction, bi-prediction—and one bit each for TU boundary,
PU boundary). For example, for a 4K Ultra-HD (3;840 � 2;160) picture and 64 � 64

CTU, the Last CTU buffer must hold 64�4 luma pixels, 2�32�2 chroma pixels and
16 boundary strength parameters resulting in a total of 4,320 bits. The Line buffer
must hold 3;840 � 4 luma pixels, 2 � 1;920 � 2 chroma pixels and 960 boundary
strength parameters resulting in a total of 96 kbit. While the Last CTU buffer can
be stored in registers or SRAM, it might be necessary to store the Line buffer in
external DRAM depending on area constraints. However, due to the regular access
pattern on the Line buffer, it is possible to prefetch the data and hide the DRAM
bandwidth (at the cost of on-chip memory for request and response queues to and
from the DRAM).

10 Decoder Hardware Architecture for HEVC 335

Fig. 10.21 Top-level architecture of deblocking filter

The top-level architecture of the deblocking filter is shown in Fig. 10.21. The
transpose memory needs to be only 8 � 8 pixels (as compared to 32 � 32 pixels
for inverse transform). Hence it is possible to implement it using registers. For
a very high throughput design which filters an entire 8 � 8 block in one cycle
[30], it is possible to eliminate the transpose memory completely and have a purely
combinational design.

10.8.2 Sample Adaptive Offset (SAO)

SAO classifies each pixel into one of four bands or one of four edge types and adds
an offset to it. For band offsets, the band of each pixel depends on its value and
the position of the four bands. For edge offsets, the edge of each pixel depends on
the whether its value is larger or smaller than two of its neighbors. The selection
between band offsets and edge offsets, position of bands, choice of neighbors for
edge offsets, and values of the offsets are signaled at the CTU level for luma and
chroma separately. For chroma, the offsets are also signaled for the two components
separately.

SAO has dependencies on neighboring pixels similar to intra prediction and
hence, a similar data-flow management must be used. Like intra prediction, a
picture-width sized top row buffer and a CTU-height sized left column buffer are

336 M. Tikekar et al.

needed. These buffers store pre-SAO pixels and their SAO parameters. However,
unlike intra prediction, the choice of pipeline granularity is very flexible and can be
chosen based on throughput requirements. Unlike deblocking filter which operates
on a edge basis, SAO operates on a per-pixel basis. So, the two in-loop filters have
a comparable computational complexity even though SAO computation involves
mainly comparison and addition.

Zhu et al. [30] describes an architecture for SAO that is capable of 8K Ultra-HD
(7;680 � 4;320) at 120 fps. In spite of such high throughput requirement, the design
takes only 36.7 kgates in 65 nm technology.

10.9 Implementation Results for Decoder Test Chip

A decoder test chip was implemented in [9] with a core size of 1:77 mm2 in 40 nm
CMOS, comprising 715K logic gates and 124 kB of on-chip SRAM. Figure 10.22
shows the micrograph of the test chip. It is compliant to HEVC Test Model
(HM) 4.0, and the supported decoding tools in HEVC Working Draft (WD) 4
are listed in Table 10.14 along with the main specs. The main differences from
the final version of HEVC are that SAO is absent and Context-Adaptive Variable

Fig. 10.22 Chip micrograph

10 Decoder Hardware Architecture for HEVC 337

Table 10.14 Chip specifications

Technology TSMC 40 nm CMOS

Supply Voltage Core: 0.9 V, I/O: 2.5 V
Chip Size 2:18mm � 2:18mm
Core Size 1:33mm � 1:33mm
Gate Count 715K (2-input NAND)
On-Chip SRAM 124 kB
Maximum Throughput 249 Mpixel/s @ 200 MHz
Decoding Tools HEVC WD4 (HM 4.0 low complexity w/o SAO)

CTU size: 64 � 64, 32 � 32, 16 � 16

B-frame: Low Delay(LD)/Random Access(RA)
Symmetric and asymmetric motion partitions: 4 � 4 � 64 � 64

Square and non-square transform units: 4 � 4 � 32 � 32

All intra modes: DC, Planar, 33 Angular, LMChroma
Measured Core Power 76 mW @ 0.9 V 200 MHz, 3840 � 2160 @ 30fps (average)

51 mW @ 0.9 V 100 MHz, 1920 � 1080 @ 60fps (average)
31 mW @ 0.9 V 25 MHz, 1280 � 720 @ 30fps (average)

P
ow

er
 (

m
W

)

Fig. 10.23 Core power is measured for six different combinations—Random Access and Low
Delay encoder configurations each with all three sizes of coding tree units. The core power is more
or less constant due to our unified design

Length Coding (CAVLC) is used in place of CABAC in the Entropy Decoder.
This chip achieves 249 Mpixels/s decoding throughput for 4K Ultra HD videos at
200 MHz with the target DDR3 SDRAM operating at 400 MHz. The core power is
measured for six different configurations as shown in Fig. 10.23. The average core
power consumption for 4K Ultra HD decoding at 30 fps is 76 mW at 0.9 V which
corresponds to 0.31 nJ/pixel. Logic and SRAM breakdown of the chip is shown in
Fig. 10.24. Similar to H.264/AVC decoders, we observe that prediction has the most
significant resource utilization. However, we also observe that inverse transform is
now significant due to the larger transform units while deblocking filter is relatively
small due to simplifications in the standard. Power breakdown from post-layout
power simulations with a bi-prediction bitstream is shown in Fig. 10.25. We observe

338 M. Tikekar et al.

a

b

Fig. 10.24 Logic and SRAM utilization for each processing engine. (a) Logic utilization in kgates
(total 715 kgate). (b) SRAM utilization in kbits (total 1,018 kbit)

Fig. 10.25 Relative power consumption of processing engines and SRAMs from post-layout
simulation with bi-prediction

that the MC cache takes up a significant portion of the total power. However, the
DRAM power saving due to the cache is about six times the cache’s own power
consumption.

Table 10.15 shows the comparison with state-of-the-art video decoders. We
observe that the 2� compression efficiency of HEVC comes at a proportionate cost
in logic area. The SRAM utilization is much higher due to larger coding units and
use of on-chip line-buffers.

10.10 Conclusion

This chapter presented the key challenges in implementing a hardware decoder
for HEVC and techniques to address the challenges. The architecture of a test
chip was described in detail. The test chip uses a variable-sized split system

10 Decoder Hardware Architecture for HEVC 339

T
ab

le
10

.1
5

C
om

pa
ri

so
n

w
it

h
st

at
e-

of
-t

he
-a

rt
vi

de
o

de
co

de
rs

H
E

V
C

te
st

ch
ip

[9
]

A
-S

SC
C

’1
3

[2
0]

IS
SC

C
’1

2
[2

9]
JS

SC
’1

1
[2

8]
IS

SC
C

’1
0

[3
]

JS
SC

’0
9

[1
9]

IS
SC

C
’0

7
[2

]

St
an

da
rd

H
E

V
C

W
D

4
H

E
V

C
H

.2
64

/A
V

C
H

P/
M

V
C

H
.2

64
H

P
H

.2
64

/A
V

C
H

P
SV

C
/M

V
C

H
.2

64
/A

V
C

B
P

JP
E

G
,

M
PE

G
-1

/2
,

M
PE

G
-4

,
H

.2
64

B
P

M
ax

im
um

Sp
ec

ifi
ca

ti
on

3
8
4
0

�2
1
6
0

@
30

fp
s

1
9
2
0

�1
0
8
0

@
35

fp
s

7
8
6
0

�4
3
2
0

@
60

fp
s

4
0
9
6

�2
1
6
0

@
60

fp
s

4
0
9
6

�2
1
6
0

@
24

fp
s

1
2
8
0

�7
2
0

@
30

fp
s

1
9
2
0

�1
0
8
8

@
30

fp
s

G
at

e
co

un
t

71
5K

44
7K

13
38

K
66

2K
41

4K
31

5K
25

2K
O

n-
ch

ip
SR

A
M

12
4K

B
10

K
B

80
K

B
60

K
B

9K
B

17
K

B
5K

B
Te

ch
no

lo
gy

40
nm

/0
.9

V
90

nm
/1

.0
V

65
nm

/1
.2

V
90

nm
/1

.0
V

90
nm

/1
.0

V
65

nm
/0

.7
V

,
0.

85
V

13
0

nm
/1

.2
V

C
or

e
po

w
er

76
m

W
13

9
m

W
41

0
m

W
18

9
m

W
60

m
W

1.
8

m
W

71
m

W
N

or
m

al
iz

ed
co

re
po

w
er

0.
31

nJ
/p

ix
el

1.
92

nJ
/p

ix
el

0.
21

nJ
/p

ix
el

0.
36

nJ
/p

ix
el

0.
28

nJ
/p

ix
el

0.
07

nJ
/p

ix
el

1.
13

nJ
/p

ix
el

N
or

m
al

iz
ed

D
R

A
M

po
w

er
0.

88
nJ

/p
ix

el
N

/A
1.

27
nJ

/p
ix

el
1.

11
nJ

/p
ix

el
N

/A
N

/A
N

/A

N
or

m
al

iz
ed

sy
st

em
po

w
er

1.
19

nJ
/p

ix
el

N
/A

1.
48

nJ
/p

ix
el

1.
47

nJ
/p

ix
el

N
/A

N
/A

N
/A

D
R

A
M

co
nfi

gu
ra

ti
on

32
b

D
D

R
3

N
/A

64
b

D
D

R
2

64
b

D
D

R
N

/A
Z

B
T

SR
A

M
SD

R

340 M. Tikekar et al.

pipeline to process the wide range of Coding Tree Unit sizes and account for
variable DRAM latency. The challenge of large and varied sizes of Transform
Units can be addressed using Multiple Constant Multiplication and an SRAM-
based transpose memory for an area-efficient implementation. Similarly, the use
of Time-Multiplexed Multiple Constant Multiplication to optimize HEVC’s longer
interpolation filter was described. The longer interpolation filter also results in
increased bandwidth requirement from reference picture buffer which is addressed
by a cache and a DRAM-latency aware memory mapping. The design of a
hierarchical memory organization was described to handle the pixel flow for intra-
prediction and the main considerations for designing HEVC’s in-loop filters were
enumerated. Finally, simulated and measured power results for the test chip were
shown.

Acknowledgements The authors gratefully acknowledge the support of Texas Instruments for
sponsoring the HEVC decoder test chip project and Taiwan Semiconductor Manufacturing
Company (TSMC) University Shuttle program for manufacturing the chip.

References

1. Chen J-W, Lin C-C, Guo J-I, Wang J-S (2006) Low complexity architecture design of H.264
predictive pixel compensator for HDTV application. In: IEEE international conference on
acoustics, speech and signal processing, vol 3, pp 932–935

2. Chien CD, Lin CC, Shih YH, Chen HC, Huang CJ, Yu CY, Chen CL, Cheng CH, Guo JI
(2007) A 252kgate/71mW multi-standard multi-channel video decoder for high definition
video applications. In: IEEE international solid-state circuits conference (ISSCC). Digest of
Technical Papers, pp 282–603

3. Chuang T-D, Tsung P-K, Lin P-C, Chang L-M, Ma T-C, Chen Y-H, Chen L-G (2010)
A 59.5mW scalable/multi-view video decoder chip for Quad/3D full HDTV and video
streaming applications. In: IEEE international solid-state circuits conference (ISSCC). Digest
of Technical Papers, pp 330–331

4. Finchelstein DF (2009) Low-power techniques for video decoding. Thesis, Massachusetts
Institute of Technology

5. Finchelstein DF, Sze V, Chandrakasan AP (2009) Multicore processing and efficient on-
chip caching for H.264 and future video decoders. IEEE Trans Circuits Syst Video Technol
19(11):1704–1713

6. Guo Z, Zhou D, Goto S (2012) An optimized MC interpolation architecture for HEVC.
In: IEEE international conference on acoustics, speech and signal processing, pp 1117–1120

7. He X, Zhou D, Zhou J, Goto S (2009) High Profile intra prediction architecture for H.264.
In: IEEE international SoC design conference, pp 57–60

8. Huang C-T, Tikekar M, Chandrakasan AP (2014) Memory-hierarchical and mode-adaptive
HEVC intra prediction architecture for quad full HD video decoding. IEEE Trans VLSI Syst

9. Huang C-T, Tikekar M, Juvekar C, Sze V, Chandrakasan A (2013) A 249Mpixel/s HEVC
video-decoder chip for Quad Full HD applications. In: IEEE international solid-state circuits
conference. Digest of Technical Papers, pp 162–163

10. Kawakami K, Takemura J, Kuroda M, Kawaguchi H, Yoshimoto M (2006) A 50 % power
reduction in H.264/AVC HDTV video decoder LSI by dynamic voltage scaling in elastic
pipeline. IEICE Trans Fundam Electron Commun Comput Sci E89-A(12):3642–3651

10 Decoder Hardware Architecture for HEVC 341

11. Lin CC, Guo JI, Chang HC, Yang YC, Chen JW, Tsai MC, Wang JS (2006) A 160kgate 4.5kB
SRAM H.264 video decoder for HDTV applications. In: IEEE international solid-state circuits
conference (ISSCC). Digest of Technical Papers, pp 1596–1605

12. Lin P-C, Chuang T-D, Chen L-G (2009) A branch selection multi-symbol high throughput
CABAC decoder architecture for H.264/AVC. In: 2009 IEEE international symposium on
circuits and systems, pp 365–368

13. Marpe D, Schwarz H, Wiegand T (2003) Context-based adaptive binary arithmetic coding
in the H.264/AVC video compression standard. IEEE Trans Circuits Syst Video Technol
13(7):620–636

14. Micron. DDR3 SDRAM system-power calculator (2014) Available: http://www.micron.com/
products/support/power-calc

15. Multiplexed Multiplier Block Generator (2014) Available: http://www.spiral.net/hardware/
mmcm.html

16. Sze V (2010) Parallel algorithms and architectures for low power video decoding. PhD thesis,
Massachusetts Institute of Technology

17. Sze V, Budagavi M (2012) High throughput CABAC entropy coding in HEVC. IEEE Trans
Circuits Syst Video Technol 22(12):1778–1791

18. Sze V, Budagavi M (2013) A comparison of CABAC throughput for HEVC/H.265 VS.
AVC/H.264. In: 2013 IEEE workshop on signal processing systems (SiPS), pp 165–170

19. Sze V, Finchelstein DF, Sinangil ME, Chandrakasan AP (2009) A 0.7-V 1.8-mW H.264/AVC
720p video decoder. IEEE J Solid-State Circuits 44(11):2943–2956

20. Tsai C-H, Wang H-T, Liu C-L, Li Y, Lee C-Y (2013) A 446.6k-gates 0.55–1.2v H.265/HEVC
decoder for next generation video applications. In: 2013 IEEE Asian solid-state circuits
conference (A-SSCC), pp 305–308

21. Tummeltshammer P, Hoe JC, Puschel M (2007) Time-multiplexed multiple-constant multipli-
cation. IEEE Trans Comput Aided Des Integr Circuits Syst 26(9):1551–1563

22. Vanne J, Viitanen M, Hamalainen TD, Hallapuro A (2012) Comparative rate-distortion-
complexity analysis of HEVC and AVC video codecs. IEEE Trans Circuits Syst Video Technol
22(12):1885–1898

23. Xanthopoulos T (1999) Low power data-dependent transform video and still image coding.
Thesis, Massachusetts Institute of Technology

24. Xu K, Choy C-S (2008) A power-efficient and self-adaptive prediction engine for H.264/AVC
decoding. IEEE Trans VLSI Syst 16(3):302–313

25. Yang YC, Guo JI (2009) High-throughput H.264/AVC high-profile CABAC decoder for HDTV
applications. IEEE Trans Circuits Syst Video Technol 19(9):1395–1399

26. Yi Y, Park I-C (2007) High-speed H.264/AVC CABAC decoding. IEEE Trans Circuits Syst
Video Technol 17(4):490–494

27. Zhang P, Xie D, Gao W (2009) Variable-bin-rate CABAC engine for H.264/AVC high
definition real-time decoding. IEEE Trans VLSI Syst 17(3):417–426

28. Zhou D, Zhou J, He X, Zhu J, Kong J, Liu P, Goto S (2011) A 530Mpixels/s 4096x2160@60fps
H.264/AVC High Profile video decoder chip. IEEE J Solid-State Circuits 46(4):777–788

29. Zhou D, Zhou J, Zhu J, Liu P, Goto S (2012) A 2Gpixel/s H.264/AVC HP/MVC video decoder
chip for super hi-vision and 3DTV/FTV applications. In: IEEE international solid-state circuits
conference (ISSCC). Digest of Technical Papers, pp 224–226

30. Zhu J, Zhou D, He G, Goto S (2013) A combined SAO and de-blocking filter architecture
for HEVC video decoder. In: 20th IEEE international conference on image processing (ICIP),
pp 1967–1971

31. Chen Y-H, Sze V (2014) A 2014 Mbin/s deeply pipelined CABAC decoder for HEVC. IEEE
international conference on image processing (ICIP)

32. Tikekar M, Huang C-T, Sze V, Chandrakasan A (2014) Energy and area-efficient hardware
implementation of HEVC inverse transform and dequantization. IEEE international conference
on image processing (ICIP)

33. Huang C-T, Juvekar C, Tikekar M, Chandrakasan AP (2013) HEVC interpolation filter
architecture for quad full HD decoding. In Visual Communications and Image Processing
(VCIP), pp 1–5

http://www.micron.com/products/ support/power-calc
http://www.micron.com/products/ support/power-calc
http://www.spiral.net/hardware/mmcm.html
http://www.spiral.net/hardware/mmcm.html

Chapter 11
Encoder Hardware Architecture for HEVC

Sung-Fang Tsai, Cheng-Han Tsai, and Liang-Gee Chen

Abstract In this chapter, an encoder hardware architecture design for HEVC is
described. The system pipeline is first introduced followed by the design details
of the different HEVC encoder modules such as inter prediction, intra prediction,
mode decision, in-loop filters, and entropy coding. Finally, a sample test chip
implementation result is presented as a reference.

11.1 Introduction

High density large-sized displays that provide an immersive display experience
are being widely adopted in multimedia application terminals. The next genera-
tion display panels are expected to be 4K/8K (Ultra High Definition Television
(UHDTV) resolution) or even higher. As a result, the video resolution required is
also becoming higher. To reduce the storage and transmission requirements of large-
sized video, HEVC video encoding, that provides around 50 % better compression
efficiency than H.264/AVC, is recommended. However, real-time high resolution
video encoding in HEVC requires hardware support due to the complexity.

The HEVC Test Model (HM) is the reference software for HEVC developed
during standardization of HEVC. The HM encoder was designed to maximize the
coding gain achievable by HEVC. Real-time performance was not a major objective.
The HM encoder can be used for a wide variety of applications including offline
encoding [30]. However, the encoding methods in HM do not necessarily map to the
most efficient design for a real-time hardware encoder. Hardware consideration is
quite different from software and is very challenging. For H.264/AVC, many state-
of-the-art H.264/AVC encoder architectures [4, 5, 18, 23, 43] have been presented.

S.-F. Tsai (�) • C.-H. Tsai • L.-G. Chen
Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan
e-mail: sftsai@video.ee.ntu.edu.tw; phenom@video.ee.ntu.edu.tw; lgchen@cc.ee.ntu.edu.tw

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__11,
© Springer International Publishing Switzerland 2014

343

mailto:sftsai@video.ee.ntu.edu.tw
mailto:phenom@video.ee.ntu.edu.tw
mailto:lgchen@cc.ee.ntu.edu.tw

344 S.-F. Tsai et al.

However, the new features in HEVC have some impact on system architecture and
have not been well addressed before. For example, HEVC increases the choice of
both intra and inter prediction modes and the ranges of block sizes, which makes
encoder mode decision much more complex than before. In HM, highly complex
full rate-distortion optimization (RDO) is used to choose the final modes. Although
high coding performance is achieved with full RDO, the hardware cost also becomes
very high. For a practical real-time hardware encoder, these issues need to be
addressed. Implementation costs should be in an acceptable range. In this chapter
the coding losses from changes to the encoding algorithm to make it implementation
friendly will be reported for low delay P conditions on 8K UHDTV video sequences
based on HM 4.0.

11.2 System Pipeline

In HEVC, the basic processing block is the Coding Tree Unit (CTU). Similar to
the macroblock pipeline in H.264/AVC encoders, a CTU processing pipeline can
be applied to an HEVC encoder. The pipeline granularity is the largest CTU size,
which can be up to 64 � 64.

Compared to H.264/AVC, HEVC has more complex combinations of prediction
modes and prediction unit (PU) sizes. The HEVC encoder needs to perform a more
precise mode decision, which uses bit rate estimates based the on entropy coding
and distortion estimates based on the sum of squared distance (SSD). Due to the
computation of the full RDO, a high complexity mode decision hardware (HCMD)
that is separate from the prediction stages is needed.

HEVC also has a new in-loop filter called Sample Adaptive Offset (SAO), which
adaptively adds offsets to reconstructed samples after deblocking filter. The encoder
derives the offsets by minimizing the difference between the original input frame
and the reconstructed frame after deblocking. The offsets and other parameters that
control the SAO operation are then transmitted in the bitstream at a CTU level.
Therefore, the encoding pipeline should be changed to ensure that SAO parameter
derivation is finished before entropy coding.

Entropy coding should be parallelized to achieve the high throughput needed for
high resolution video. HEVC provides several ways to parallelize entropy coding.
The bitstream can be divided into multiple sub-streams, with limited dependency
among the sub-streams. However, serial processing nature of entropy coding still
prevails inside each of the sub-streams. Pipeline structure and the CTU processing
order must be considered to perform parallel entropy coding in limited resource (e.g.
memory size and bandwidth).

11 Encoder Hardware Architecture for HEVC 345

System Bus

IME

T/Q

FME
TQRES
SRAM

CABAC
0

CABAC
1RES

SRAM
INTRA

Reference Memory

REC: Reconstruction
CUR: Current Frame Buf.
INTRA: Intra Prediction

T/Q: Transform / Quantization
HCMD: High Complexity Mode Decision Engine
CABAC: Context-Adaptive Binary Arithmetic Coding
IME/FME: Integer / Fractional Motion Estimation

HEVC Encoder System System Controller

RES: Residue Buf.

HCMD

CUR
SRAM

REC
SRAM

DB/SAO
CUR

SRAM

REC

DB: Deblocking SAO: Sample Adaptive Offset

TQRES: Residue Buf. after Transform & Quantization

Reconstruction
Core

Bitstream
Core

Prediction
Core

Fig. 11.1 Encoder system block diagram

11.2.1 Top Level System Diagram

An encoder system block diagram is shown in Fig. 11.1. It is composed of three
major parts: the prediction core, the reconstruction core, and the bitstream core.
Overall, the pipeline is longer than typical H.264/AVC pipelines to account for
the processing dependencies and to increase heterogeneous parallelization between
functional blocks.

The prediction core is the most important and computation-intensive part. It
includes intra prediction, integer/fractional motion estimation (IME/FME) for inter
prediction, transform and quantization, and mode decision hardware. In addition,
a reference memory system is required to support the reference frames access of
motion estimation. In this core, intra prediction and inter prediction are done in
parallel. Dependency in between these two modules are removed as discussed in
Sect. 11.4.2. CTU-sized current block buffer and residue block buffer are shared
between stages with round-robin style buffer multiplexing. The motion estimation
is performed in two levels of accuracy and is separated into two pipeline stages. In
HEVC, the transform is more complex than in H.264/AVC and is put in a separate
stage. If full RDO is used, a standalone HCMD stage will be included.

The reference frames are prepared by the reconstruction core every time a frame
is encoded. The reconstruction core constructs the decoded reference frame as

346 S.-F. Tsai et al.

seen by a decoder. It consists of inverse transform, inverse quantization, intra/inter
prediction reconstruction, and loop filters (deblocking and SAO filters). Note that
the reconstruction core may share the same hardware with the prediction core, or
retrieve the results from the prediction core. It does not need significant additional
cost as a standalone decoder.

Finally, the bitstream core performs entropy coding and writes out the final
bitstream. In HEVC, the entropy coding is Context-Adaptive Binary Arithmetic
Coding (CABAC). Note that SAO parameters should be encoded in the bitstream
and so SAO parameter derivation should be done before CABAC encoding stage.

11.2.2 CTU Processing Order

The CTU processing order in the encoder pipeline will affect the reference data
bandwidth and CABAC throughput. There are primarily two modules that are
impacted by the CTU processing order: CABAC and reference memory subsystem.
Change in CTU processing order will alter the data input order in CABAC. Due
to the probability updates in the CABAC, the encoder and decoder must perform
entropy coding on the CTUs in the same order. Thus the CTUs in the encoder can
only be entropy coded in a defined order as determined by the HEVC specification
(e.g. raster scan in slices or tiles). On the other hand, a change in the CTU processing
order also alters the behavior of the reference memory subsystem. If the CTUs in
the given processing order have better data locality, then the external bandwidth for
reference frames access is lower.

11.2.2.1 Pipeline Granularity

In considering the precedence constraint of CABAC input data, there are two options
for pipeline arrangement of CABAC. The first option is to put CABAC in the
CTU pipeline. The CABAC engine must process the next CTU data generated by
prediction engine strictly in order. The throughput requirement for CABAC with
CTU-level pipelining is peak binary symbol (bin) rate per CTU. If such a throughput
cannot be reached, the whole pipeline is stalled waiting for CABAC to complete
thereby hurting the overall performance. In the second option, the CABAC is placed
in a separate frame-level pipeline. Input data for CABAC is stored externally at
first. After the whole frame passes through prediction and reconstruction, CABAC
starts coding. This enables the prediction engine and the CABAC engine to process
the CTUs in a different order within each frame. The throughput requirement for
CABAC with frame-level pipelining is peak bin rate per frame, or equivalently
average bin rate per CTU for the peak frame. This is generally much lower than the
one with CTU-level pipelining. With this arrangement, the CTU processing orders
in CABAC stage and in the other stages are independent, at the cost of extra external
bandwidth.

11 Encoder Hardware Architecture for HEVC 347

11.2.2.2 Parallel Processing

The HEVC standard requires that the context probability updates in the CABAC
occur in the raster scan order. Raster scan order can be done with a single CABAC
engine or multiple CABAC engines by using multiple slices/tiles within a given
frame. A higher coding efficiency can be achieved with a single CABAC; however
as only a single CTU can be processed at a time, and the throughput is limited.
The CABAC needs to reach the peak bin rate per CTU, which can be quite high.
Alternatively, multiple CTUs can be processed in parallel using slices/tiles. This
comes at a cost of reduced coding efficiency since redundancy cannot be removed
across slices/tiles. If only a few slices/tiles are used, then the coding loss can be quite
low. Note that wavefront parallel processing, a new feature in HEVC, can also be
used by the CABAC to encode multiple CTU lines in parallel, with a lower coding
penalty than slices/tiles.

11.2.2.3 Data Locality

Another CTU scanning order that can be used in the encoder is the zigzag scanning
order wherein the prediction core and the reconstruction core operate on the CTUs in
the zigzag scanning order. However, the CABAC encoding will still need to happen
in the raster scanning order in order to comply with the HEVC standard. For zigzag
scanning order, the data locality among horizontal CTUs and vertical CTUs is better
than raster scan which only has good data locality among horizontal CTUs. Zigzag
scanning order cooperates well with CABAC frame-level pipelining discussed in
Sect. 11.2.2.1. The difference is in the reference memory subsystem. Since data
locality among vertical CTUs is better, zigzag scanning order performs better when
the total on-chip memory size for reference frames is limited. Note that tiles, a new
feature in HEVC, also offers better vertical and horizontal data locality by doing
raster scan order within rectangular regions with widths smaller than the total frame
width.

To summarize, the CTU processing order should be considered along with the
various configurations of the parallel CABAC and the reference memory subsystem.
The best choice is a trade-off among bit rate increase, area cost, throughput, and
bandwidth.

11.3 Inter Prediction

In inter prediction, the temporal redundancy is reduced through motion estimation.
Motion estimation compares the current prediction unit (PU) with the spatially
neighboring PUs in the reference frames, and chooses the one with the least
difference to the current PU. The displacement between the current PU and the
matching PU in the reference frames is signaled using a motion vector. The per-pixel

348 S.-F. Tsai et al.

difference between the current PU and the matching PU in the reference frames
constitutes the prediction error (a.k.a. residue) which is transformed and quantized
and coded in the bitstream.

In comparison with H.264/AVC, inter prediction in HEVC has three major
differences: (1) larger diversity in block size, (2) high complexity mode decision
is needed to achieve sufficient coding gain, and (3) longer sub-pixel interpolation
filter. In HEVC, the PU size may range from 4 � 8/8 � 4 to 64 � 64. Computation
complexity for deciding the best block partition also increases considerably. To
accurately choose the best mode among such high number of possible modes, full
RDO invoking more accurate distortion and bit estimation needs to be applied.
This requires inter predictions to preserve several possible modes for later HCMD
stage. HEVC utilizes 8 or 7-tap interpolation filter for higher interpolation accuracy
compared with 6-tap in H.264/AVC. So the complexity in sub-pixel calculation is
also higher. To cope with these complexity increases, higher parallelism in hardware
is necessary. This should be achieved with moderate cost increase. In addition,
the parallelism in hardware also induces much higher memory access bandwidth.
A memory subsystem that supports high bandwidth requirement is required to make
motion estimation work properly. These issues are covered later in this section.

11.3.1 Motion Estimation

Due to the difference in the processing nature, inter prediction is usually divided
into two major modules, integer motion estimation (IME) and fractional motion
estimation (FME), corresponding to two granularity levels, the integer level and the
fractional level. IME usually performs a coarse search over the whole search region.
In this level, the parallelism requirement is high, while the accuracy requirement
is moderate. After that, FME does a fine search around the IME searched result
in sub-pixel accuracy. 8 or 7-tap interpolation filtering is required to get the pixels
in the fractional positions. Since the distortion costs among neighboring sub-pixel
candidates are similar, higher accuracy in the distortion computation is required in
order to select the best candidate. The reference architecture is shown in Fig. 11.2.

In previous works, various architectures for variable block size motion estimation
have been compared [7, 24]. A fast gradient-based algorithm on a parallel 2D
SAD tree with high data reuse is described in [10]. Exploration in data reuse
for motion estimation is shown in [13]. To increase parallelism, a highly parallel
inter mode decision in HEVC is achieved by dependency removal in [41]. Finally,
[35] describes how throughput requirements can be met by processing multiple
CUs in parallel, but processing the PU within each CU serially to achieve the
same sequential order as in HM. The result shows small block sizes (e.g. 4 � 4,
4 � 8, 8 � 4) impose significantly larger hardware, but provide only modest
improvements in coding efficiency. In addition, a search range strategy centered on
the advanced motion vector predictors (AMVP) with pre-fetch and limited search
range movement is presented.

11 Encoder Hardware Architecture for HEVC 349

ME Reference Prefetch

IME
Control

AMVP Mode
Cost

FME Reference Broadcast

FME
Control

Cur.
Luma
SRAM

Comparing
Best MV

AMVP
Gen.

Ref. L2
SRAM
(EO)

Comparing
Best MV

Intlv. MUX

REC
SRAM

Hadamard

Difference

+

Cur.
Luma
Buf

2D SAD
Trees

Inter PU
Modes

Refine
Range
Control

RES
SRAM

AMVP Mode
Cost

Intp. 0

Ref. L1
SRAM

PU Mode
Pre-decision

Inter PU
Best MVs

Ref. L1
SRAM

Mrg. Intp.

Abs. &
Sum.

Interpolation

Ref. L1
SRAM

Intp. 1

Difference

IME FME

Hadamard

Abs. & Sum.

Fig. 11.2 HEVC inter prediction architecture

64x64 Cur-LCU
Buffer

64x64 Ref-LCU
Systolic Array

4096 PE Array
(Subtract + Absolute)

64 2-D Adder Trees
for 8x8-PU Blocks

Decision Unit
and SAD Buffer

One Merge Split Tree
for Larger Blocks

64 Ref-Pels

2-D SAD
Tree

Fig. 11.3 2D SAD adder tree architecture

In this work, the IME architecture uses a parallel-PU IME architecture based on
2D SAD adder tree to meet the high throughput requirement [10], as illustrated in
Fig. 11.3. In parallel-PU IME, all of the PU blocks inside current CTU are done
in parallel. Instead of looping over all the pixels inside the PU block, the cost for
bigger PU can be simply derived from the cost of the sub-divided PU (i.e. a bottom
up approach). For example, retrieving the SAD cost of 16 � 8 PU can be simply
done by adding the two co-located 8 � 8 PUs. By utilizing the 2D SAD adder tree,
we may retrieve all PU costs for certain motion vectors at once. However, there are
dependencies among PUs, such as reference motion vectors from the neighboring
PUs used to calculate the predictor motion vector to use in motion vector cost
calculation. To enable parallelism, we estimate the motion vector predictors from
the nearest available vectors just outside of the current CTU. For the IME search
algorithm, we need to select one of the two advanced motion vectors predictors

350 S.-F. Tsai et al.

...

C
on

ve
nt

io
na

l Interpolation

Difference

Hadamard

Interpolation

Difference

Hadamard

Interpolation 0

Difference

Hadamard

Interpolation 1

Difference

Hadamard

Interpolation N

Difference

Hadamard

Interpolation N+1

Difference

Hadamard

Interpolation

Difference

Hadamard

Interpolation

Difference

Hadamard

58.9% Distortion Engine Utilization

In
te

rle
av

in
g

In
te

rp
ol

at
io

n

41%
Processing

Cycle
Reduction

99% Distortion Engine
Utilization

Fig. 11.4 The schedule of interleaving interpolation in FME

(AMVP). In hardware, we may use coarse-fine search around both the AMVPs. The
search is performed within a small range, say Œ�16; 15� � Œ�16; 15�, around both
the AMVPs. First, candidates in the search area with even row and even column
start address are searched. After that, a Œ�1; 1� � Œ�1; 1� refinement search will be
performed around the best candidates. The motion vector predictor which leads
to the lowest RD-cost is selected and signaled as the AMVP. In addition, pixel
value bitwidth reduction (pixel truncation) can be used for reducing the cost. Five
most significant bits for each pixel are used for estimating IME cost instead. Also,
2 � 2 � to � 1 (quarter) pixel sub-sampling can be done to further reduce the
hardware cost. For every 2 � 2 pixels in the candidates, only upper-left pixel is
used for estimating IME cost.

For FME, 8 or 7-tap filtering is required in fractional pixel interpolation.
Compared with 6-tap filtering in H.264/AVC, the interpolation latency in HEVC
is longer and causes low utilization for the other engines in FME. The difference
and Hadamard engines are stalled for over 40 % of the cycles as shown in Fig. 11.4.
To balance the pipeline throughput in FME, we apply an interleaving interpolation
scheme. As Fig. 11.4 shows, the interpolation of the second block is started while
the first block is being processed. Interpolation is carefully scheduled. Once the first
block is finished, the first interpolated sample in the second block is ready. With this
scheme, the number of stalls are significantly reduced. For FME, a two-pass fully
utilized and reusable fractional motion estimation is presented in [6]. To improve
throughput of the FME hardware, a one-pass central-quarter FME [9] can be applied
for fractional-pixel estimation. Instead of the original sequential half-then-quarter
refinement algorithm in HM, the one-pass central-quarter FME algorithm searches
25 half-pixel/quarter-pixel candidates around the best integer-pixel candidate at the
same time to facilitate parallel processing and data reuse as indicated in Fig. 11.5.
Twenty five processing units process 25 half-pixel/quarter-pixel candidates in

11 Encoder Hardware Architecture for HEVC 351

a b

Fig. 11.5 Illustration of central-quarter fractional motion estimation algorithm. The white, light-
gray, dark-gray circles are the best integer-pixel candidates, half-pixel candidates, and quarter-
pixel candidates, respectively. The numbers represent the passes. (a) Two-step FME; (b) Central-
quarter one-pass FME. The 25 candidates insides the dark square are processed in parallel

CTU 0

Search
Region 0

CTU 1

Search
Region 1

a
b

SRV+N-1

W+SRH-1

SRH-1

SRv-1

NN

SRH-1

CTU 0

Search Region 0

N

CTU 1

Search Region 1

N

N

Fig. 11.6 The schemes of searching range data reuse (a) Level C (b) Level D

parallel. The interpolation can even be simplified to bilinear interpolation [39] for
further cost reduction. The motion compensation is done after FME is finished. A
total of 6:084 % BD-rate increase or equivalently 0:194 dB BD-PSNR degradation
is observed for the described changes to IME and FME.

11.3.2 Reference Memory Subsystem

The major design challenge in supporting inter frame encoding in HEVC is the
large bandwidth requirement for reference frame access. This issue will be discussed
from both system-level and module-level views. From a system-level view, motion
estimation in high resolution causes excess external bandwidth requirement. The
huge memory bandwidth comes from loading the data of candidate blocks. To
reduce the memory access, data reuse schemes such as Level C, Level D, and Level
CC are proposed [8, 22, 38]. A cache-based scheme to reduce the required SRAM
size with similar external bandwidth as above is proposed in [40], at the cost of
variable latency. For Level C scheme, the data is reused among search range of

352 S.-F. Tsai et al.

m=2a b

n=3
n=4

m=2

Fig. 11.7 Level CC searching range data reuse (a) HF2V3 scan (b) HF2V4 scan

horizontal neighboring CTUs. As indicated in Fig. 11.6a, the light gray region is
the search range of two neighboring CTU. The dark gray region is the overlapped
search range. There is a large overlap region among search ranges of horizontal
neighboring CTUs. The data in the common region is saved on chip in Level C
scheme and thus redundant off-chip bandwidth is saved. The required SRAM size
is the search range size. Level D scheme drives the data reuse even further. Since
there is also overlap among vertical CTUs as indicated in Fig. 11.6b, more redundant
access can be pruned if the vertical overlap data is saved on chip in this case. Thus,
data reuse is driven from CTU level to CTU strip level in the Level D scheme.
However, we need to store multiple CTU-strips owing to frame-level raster scan of
CTU coding order. As a result, the SRAM size should include several rows of CTU
strips, and so SRAM size would be much larger for Level D. Level CC scheme aims
to provide a continuous trade-off between Level C and Level D schemes. Level CC
scheme is based on the Level C scheme with larger SRAM size. The stored range in
Level CC scheme is several CTUs more than that in Level C scheme in both width
and height. A zigzag scan of CTUs can be done in this buffer. Figure 11.7 shows the
possible zigzag scan order without breaking dependency among the CTUs. Since
coding a CTU requires information from the coding results of the upper row CTUs,
several CTUs in the first row (i.e. m CTUs) must be coded first before the first CTU
in the second row is coded. Thus, in the first step we perform a horizontal traversal
for m CTUs. In the second step, the .mC1/th CTU in the first row and the first CTU
in the second row are ready and are traversed. In the third step, the .m C 2/th CTU
in the first row, and the second CTU in the second row are ready and are traversed,
and so on. To limit the traversed range within a limited vertical range in one strip, at
most n rows are traversed. For rows outside the range, they will be covered by next
traversal strip. With the zigzag scan, vertical data reuse can be performed in a limited
range. The zigzag scan size is parameterized by m and n. m and n are decided by
the data dependency among CTU and the data processing latency of CTU pipeline.
If n is more than 1, we need to support zigzag scan order. In this case, the Level
CC SRAM is required to store additional .m � 1/ CTU columns and .n � 1/ CTU
rows compared to the Level C scheme. By adjusting n, we may optimize the design
trade-off between the SRAM size and the external bandwidth. With larger n, more

11 Encoder Hardware Architecture for HEVC 353

Table 11.1 The comparison of different data reuse schemes for ME [8]

Reuse scheme EMB (Pixels/Pixel) On-chip memory size (Pixels)

Level C 1 C SRV =N .SRH C N � 1/ � .SRV C N � 1/

Level CC 1 C SRV =nN .SRH C mN � 1/ � .SRV C nN � 1/

Level D 1 .SRH C W � 1/ � .SRV � 1/

EMB: External Memory Bandwidth of reference frame
SRH : horizontal search range SRV : vertical search range
N : current CTU size n: zigzag stitch number W : frame width

redundant access is saved, while the SRAM buffer will also be larger. By varying
n, the Level CC scheme provides a continuous SRAM and bandwidth trade-off and
can adapt to the design requirements. In Table 11.1, the comparison is listed for the
Level C, the Level CC , and the Level D schemes. Note that cache-based scheme
may also be applied to raster scan order or zigzag scan order in Level CC to save
more SRAM.

To illustrate a practical case, we take 8K UHDTV as an example. Assume motion
estimation supports [�128,C127] search range and totally two reference frames. If
we use the level C data reuse strategy, the bandwidth requirement will be as high
as 11:61 GB/s for reference memory access. The level C strategy will discard the
reference pixels that are out of the search range for the current CTU, and reload them
later on while processing CTUs in the next CTU row, and thus will still consume
high bandwidth in ultra high resolution sequences. The level CC scheme or the
level D scheme use reduced bandwidth. For the level D scheme, the bandwidth can
be reduced to 2:97 GB/s.

From a module-level view, inter prediction in HEVC is very complex and
requires high degree of parallelism. This also imposes significant internal on-chip
memory bandwidth and multi-port access requirement. If high complexity mode
decision is used, there will be multiple refinement levels of CU depth that need
to be searched in fractional motion estimation (FME) stage. For each CU depth,
merge candidates need to be searched and additional memory ports are required.
In addition, if interleaving interpolation is used in FME stage, 2� the number of
ports is required per refinement level. As a result, the required number of ports will
be much higher than that in previous H.264/AVC encoders. For instance, a total 13
ports is required if IME and three-level refinement of FME are operating in parallel.

Considering the system-level and module-level view, a level CC or a level D
search window memory with high number of ports is required. However, highly-
ported and large-sized memory is costly. SRAM banking is an alternatively used
technique for increasing access parallelism. The case for SRAM banking is shown
in Fig. 11.8. Each column is put on a separate SRAM bank. Each row corresponds
to a separate SRAM address. For example, A1 is put on address #1 at bank #A,
and C 4 is put on address #4 in SRAM bank #C . With banking, we may access
any combination that does not have bank conflict. For example, {B3,C 4,D5,E6}
can be read out in one cycle without conflict, while {D5,E5,D6,E6} cannot since
{D5,D6} uses the same bank D, and {E5,E6} uses the same bank E . Each
bank may serve only one read address per cycle. Thus, the read operation must

354 S.-F. Tsai et al.

#A

A1 B1 C1 D1 E1 F1 G1 H1

A2 B2 G2 H2

A3 H3

A4 F4 G4 H4

F5 G5 H5

A6 B6 C6 H6

A7 B7 C7 D7 E7 F7 G7 H7

A8 B8 C8 D8 E8 F8 G8 H8

#B

C2 D2 E2 F2

B3 C3 D3 E3 F3 G3

B4 C4 D4 E4

A5 B5 C5 D5 E5

D6 E6 F6 G6

Bank

1

2

3

4

5

6

7

8

A
dd

re
ss

#H#G#F#E#D#C

Fig. 11.8 Access conflict for
reference memory banking

AMVP Candidates

(64x64 PU)

Ref. L2 SRAM
(Subsampled Pattern)

Ref. L2
SRAM

IME
FME

(32X32 CU)

ME Ref. Prefetch

FME REF Broadcast

FME
(16X16 CU)

FME
(64X64 CU)

L1 SW SRAM x2 L1 SW SRAM x2L1 SW SRAM x2 L1 SW SRAM x2 L1 SW SRAM x2L1 SW SRAM x2 Ref. L1 SRAM x4 Ref. L1 SRAM x4Ref. L1 SRAM x4

Ref.
L3

SRAM

Ref. L1 SRAM
(Subsampled Pattern)

Fig. 11.9 Reference memory hierarchy subsystem architecture

be divided into two parts—{D5,E5} and {D6,E6}. As a result, SRAM output
bandwidth is lowered and causes IME/FME engine to be stalled until all the data
is retrieved, causing performance loss. If this does not happen frequently, it is
acceptable. However, the motion vectors are dependent on the input sequence,
and bank conflicts may happen a lot. For example, IME/FME may need to
read out {C 2,D2,E2,F2}, {B3,C 3,D3,E3}, {D3,E3,F 3,G3}, {B4,C 4,D4,E4},
{A5,B5,C 5,D5}, {B5,C 5,D5,E5}, {D6,E6,F 6,G6} at the same time due to
concurrent operation of multiple parallel engines. Serious bank conflicts will occur
in this case. To make matters worse, the conflict pattern may differ at different times
according to the distribution of motion vectors. It is hard to find a specific pattern
with good performance. Thus, SRAM banking is still not helpful to this issue.
Therefore, a new reference memory strategy that may provide multi-port access
and level D like data reuse is to be designed. The multi-level reference memory
hierarchy subsystem is presented in Fig. 11.9 to fulfill the requirement of external

11 Encoder Hardware Architecture for HEVC 355

Frame Width

F
ra

m
e-

le
ve

l
C

U
-

le
ve

l

Large
L3 SRAM

x1

Search range for
current CU

Search Range for
later use

Search Window Width

Fast
ME

Search

Small
L1/L2
SRAM

xN

Fast
ME

Search

Used search range

AMVP0

AMVP1

(0,0)

Fig. 11.10 Data granularity in reference frame access

bandwidth and internal bandwidth. We can see the data characteristics at various
levels of data granularity as illustrated in Fig. 11.10. For a given CU, IME and FME
that use fast algorithms may not access the whole search window memory. Instead,
only small portions of the search range are accessed. At the module level, IME
and FME do not require data outside the real search region. Larger memory results
in larger area, higher power, and higher area, hence it is not efficient to store the
whole search range for IME and FME use. For this reason, we use a multi-level and
multiple reference memory with each level optimally resized for the best efficiency.
A large L3 reference SRAM is used to enable level CC /level D style buffering for
lowest bandwidth overhead. For every pixel, the reference memory access reaches
one read per frame if deep level CC or level D is used. To support high concurrent
access on the memory ports at the module level, we use L2 and L1 SRAM. The ME
reference prefetch unit would fill the L2 SRAM for IME usage, and the L2 buffer
for FME reference broadcasting unit. For IME that uses subsampling, the SRAM
must be stored in subsampled pattern. The SRAM for IME is filled according to
subsampling order for storing reference pixels. The FME reference broadcasting
unit fills fully sampled L1 SRAM with data from the L2 buffer. With this scheme, all
the concurrent access requirements from IME and FME are supported. The memory
bandwidth is also minimized.

In addition, the architecture can be scaled up if more read ports are required.
The total SRAM size needed for increasing the number of read ports is shown in
Fig. 11.11. As an example, assume one set of IME engines and four sets of FME
engines are used to meet certain design requirements. In this case, the reference
memory hierarchy needs to support a total of 17 ports. We may achieve this simply
by using 16 L1 SRAM with fully sampled pattern and 1 L1 SRAM with subsampled
pattern. As shown in Fig. 11.11, if the number of ports increases by 30 % (i.e. from
13 to 17 ports), the additional reference memory size for supporting four more ports
is only 2:7 % (from 7:14 to 7:33 MB). Thus, this architecture has high read port
scalability.

356 S.-F. Tsai et al.

S
R

A
M

 S
iz

e
(M

B
yt

es
)

Supported Read Ports

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

6 8 10 12 14 16 18

Fig. 11.11 Scalability for
reference memory hierarchy.
The SRAM size is the sum of
all the L3, L2, and L1
reference SRAM size in the
memory hierarchy. The ports
are the supported concurrent
read ports that can provide
data to the processing
engines. More read ports are
supported by increasing the
number of L1 SRAMs

SRAM Size per Ref. Frame (KB)

E
xt

. B
an

dw
id

th
 (G

B
/s

)

Fig. 11.12 Analysis of the
strategy for search window
data reuse

For the top L3 level memory, we did an analysis on the strategy for level C,
level CC, and level D. The analysis result is shown in Fig. 11.12. Note that the level
CC strategy uses a non-raster scan CU order and requires frame-level pipeline at
entropy stage. As can be seen in Fig. 11.12, the bandwidth of level CC strategy
is bigger initially, and drops down quickly below that of Level C strategy as the
SRAM size increases. That is because frame-level pipelining is a must for level
CC strategy, so frame-level I/O overhead dominates at the beginning. However, the
bandwidth gain for level CC strategy quickly overrides the penalty from frame-level
entropy pipelining. Depending on the requirement, level CC or level D strategy is
more suitable for L3 level memory.

The detailed data flow is shown in Fig. 11.13. IME requires the data in subsam-
pled pattern, while FME requires data in fully sampled pattern. To support the two
kinds of data pattern, we have two kinds of data ordering in SRAM. One is able to
support subsampled pattern. The other is able to support fully sampled pattern.

Data exchange among stages is done with round-robin style memory multiplex-
ing. Since the Ref. L2 SRAMs and the Ref. L1 SRAMs are of the same size, we put
one set of L1 SRAM and L2 SRAMs in the multiplexing to save SRAM usage.

11 Encoder Hardware Architecture for HEVC 357

Ref. L1 / L2
SRAMx1

Ref. L1 / L2
SRAMx1

Ref. L1 / L2
SRAMx1

MUX

Ref. L1
SRAMx11

Ref. L1
SRAMx11

M
U

X

Ref. L1 / L2
SRAM

(Subsampled
Pattern)

Ref. L1 / L2
SRAM

(Subsampled
Pattern)

MUX

ME Ref.
Prefetch

FME Ref.
Broadcast

Ref.
L3 SRAM

IME

FME3

MUX MUX

M
U

X

FME2

FME1

Fig. 11.13 Detail data flow for reference memory subsystem

Data scheduling for each stage is explained in the following. Before start,
reference frame data within the maximum supported search range are loaded into
L3 SRAM through system bus. In stage 1, the ME prefetching unit reads the actually
used data from the L3 SRAM and writes them to the L2 SRAMs. There are two
kinds of L2 SRAMs with different data ordering. The ME prefetching unit prepares
the data in both kinds of order and writes them to the corresponding L2 SRAMs.
After that, the connections to the L2 SRAM and the L1 SRAM are exchanged by
altering the multiplexer configuration. The L2 SRAM in stage 1 will act as the L1
SRAM and be connected to the IME engine in stage 2. Thus, the written data in
stage 1 can be accessed by the IME engine in stage 2. In stage 2, the IME engine
reads out the data in the L1 SRAM with subsampled pattern. The FME reference
broadcasting unit reads from the first L1 SRAM in fully sampled pattern and
broadcasts the data to the other 11 L1 SRAMs. In stage 3, all the 12 L1 SRAMs are
filled with reference frame data and are able to support three sets of FME engines
with full sampled access.

11.4 Intra Prediction

Intra prediction reduces spatial redundancy in video by predicting from neighboring
pixels around the current PU. The neighboring pixels used for prediction are the
previously reconstructed pixels. Compared to H.264/AVC, there are primarily two
differences: (1) Increased prediction modes and (2) Hybrid intra/inter prediction
modes inside the same CTU. For the first one, there are a total of 35 possible intra

358 S.-F. Tsai et al.

Table 11.2 Fast intra prediction results. All intra configuration
is used

of candidates 10 12 14 17

�BD-Rate[%] 0.21 0.19 0.06 0.03

modes for each PU size. The PU size may range from 4 � 4 to 64 � 64 depending
on encoder configuration (for the 64 � 64 PU, the intra prediction actually happens
at a 32 � 32 level since the maximum transform size supported is 32 � 32). The
complexity is much higher and results in considerable hardware costs. In addition,
HEVC allows the use of intra/inter CU, and consequently PU, inside the same CTU.
The prediction dependency among PU is quite complex and limits the hardware
parallelism. For hardware implementation of intra prediction, an architecture for
intra 4 � 4 prediction with flexible reference sample selection is proposed in [28].
A full intra architecture is also proposed in [33]. In high throughput applications,
intra prediction performance still needs to be improved. Here we apply two methods.
Firstly, we use reduced mode search to lower the required computation at algorithm
level. Next, hybrid open-closed loop intra prediction removes the dependency of
reconstructed pixels and enables PU-level parallelism.

11.4.1 Reduced Mode Search

Depending on the configuration, intra PU size in HEVC may range from 4 � 4 to
64 � 64. For each size, the prediction directions can be chosen from 35 modes at
most. Due to high number of modes, the search cost is high. To reduce the cost,
we propose fast intra prediction algorithm, which will reduce two thirds of the total
estimated modes per PU size. Only a limited number of modes are searched with
constrained resource and timing budget.

Firstly, we assume the computation budget to be C . We are to find the best
predicted modes within the computation budget of C modes. If the mode search cost
reaches the limit, the search stops. The best result is taken as the predicted mode.
To perform the search with efficiency, we use a two-step fast search algorithm. In
the first step, we perform a coarse search. We search the whole range of directions
but with an angular step size of �=8. The cost for each mode is obtained. In the
second step, refinement search is performed at the unsearched angular neighboring
modes that are just around the best one among the searched ones in the first step.
The best mode is updated after each search. After that, an exhaustive search will
be performed for every remaining mode till the budget limit is reached. Analysis
of the trade-off between the quality and the number of searched modes is shown in
Table 11.2. By using this algorithm, the number of searched modes is reduced to
one third of the full search with negligible BD-rate increase.

11 Encoder Hardware Architecture for HEVC 359

Modes in 64 � 64-sized PU are skipped in fast intra prediction. The main
advantages from large PU size are in inter mode. When the frame size grows larger,
the region in the same object and with the uniform movement can be predicted
well and encoded economically with large block size. However, large-sized PU is
less useful in intra. Practically, 64 � 64-sized PU is rarely chosen (less than 1 %).
Therefore, the 64 � 64-sized intra prediction is not important and can be removed.
With the removal of 64 � 64-sized intra prediction, the additional set of DCT and
SRAM for 64 � 64-sized intra prediction is saved.

11.4.2 Hybrid Open/Closed Loop Intra Prediction

The reference pixels in intra prediction are obtained from the previously recon-
structed neighboring PUs. In the HM software, the selected modes and CTU
partitions are decided serially by full RDO process. However, full RDO process in
hardware results inevitably in high latency because of the serial processing nature
of CABAC. This will become the primary limiting factor of hardware design. It is
hard to process all PUs serially as in HM and achieve enough processing throughput
as well. In this work, we choose to remove the dependency to avoid these problems.
Hybrid open-closed loop intra prediction algorithm [18] is useful in this case. Based
on the fact that original pixels are close to reconstructed ones at low QP, this method
uses the original pixels to replace the reconstructed boundary ones. In other words,
if the reconstructed pixels are not yet ready, the original ones are used instead. In
addition, intra/inter dependency in intra prediction is also removed in this case.
Thus, the dependency does not exist in this algorithm. By hybrid open-closed loop
scheme, intra mode for each block can be calculated in parallel without waiting
for reconstruction. With all the modifications on intra prediction, the cost is 1:03 %
BD-Rate increase in low delay P configuration.

11.5 Transform and Quantization

After the intra and inter prediction with early mode decision, the transform is
performed. The corresponding block of residual samples is obtained from the
difference between the original input samples and the predicted samples. It is then
further processed by DCT-based coding with variable transform sizes. For 4 � 4

luma intra-prediction residual, the DST is used instead of the DCT. After transform,
the residues are quantized and sent to entropy coding. Since the transform is rather
complex in HEVC, quantization is done in a different stage. For transform, the size
can be 4 � 4, 8 � 8, 16 � 16, and 32 � 32. Each transform unit (TU) can use the large
transform size or be further subdivided into smaller transform sizes by a residual
quadtree structure. The main reason for supporting different transform sizes is to
adapt the transform to the varying space frequency characteristics of the residual

360 S.-F. Tsai et al.

signal. To save on the transform decision cost, one of the options in HM is to use the
largest available transform size. Some previous works [15] propose fast transform
decision by early split termination. Owing to the fact that 32�32 TU is less selected
than 8�8 TU and 16�16 TU, Teng [37] proposes a split-and-merge process. While
this method works for software, it is not suitable for hardware implementation with
variable hardware resource requirements and non-predictable computation cycles.
For hardware architecture, a reusable architecture for various TU size is proposed in
[31]. A unified engine for forward and inverse transform architecture for HEVC is
shown in [2,45]. The distribution of transform residuals has strong relationship with
the homogeneity of the predicted results. As a result, we choose to use the largest
possible transform size inside PU boundary. With this fixed decision, the hardware
cost for transform is reduced at the cost of BD-rate increase of 3:02 % in low delay
P configuration.

11.6 Rate Distortion-Optimization

Rate distortion optimization (RDO) is an important method in video coding.
It is based on the Lagrange optimization technique. With the proper choice of
parameters, optimal trade-off between rate and distortion can be achieved. In
HEVC, the combinations of prediction modes are much more complex than that
in H.264/AVC. Low precision fast RDO is used in previous H.264/AVC encoders
based on rough estimation of bit rate and distortion. The decision quality, however,
is quite low. A more precise mode decision is thus required to maximize the coding
gain. In HM, a full RDO method based on CABAC bit rate estimation and SSD
distortion cost is used. However, the cost is very high in real-time video encoder
hardware. In this section, we discuss the design of cost efficient RDO hardware
with high decision quality.

11.6.1 Rate-Distortion Optimized Mode Decision in HM

The mode decision process of HM is shown in Fig. 11.14. HM uses a two-step RDO
algorithm for mode decision. Firstly, fast RDO is used for early termination, and
then full RDO is used for final decision. To have better mode decision quality and
improve coding gain, full RDO is applied among the following aspects:

• The directions and modes chosen by fast RDO.
• The best selected intra directions and inter prediction modes.
• CU depth levels.

11 Encoder Hardware Architecture for HEVC 361

Intra
Prediction

Motion
Estimation

Full RDO Pass

Q
CABAC

Rate

T
Final
Mode

Decision

T/Q: Transform/Quantization IT/IQ: Inverse Transform / Quantization

Fast RDO
(30+ modes)

ITIQ SSD

Fig. 11.14 RDO algorithm flow in HM

Firstly, fast RDO is done. To save computation overhead, fast RDO selects
several candidates among intra prediction directions and inter prediction motion
vectors and modes for each depth level. In fast RDO, the rate is determined by
mode bits and motion vectors, and the distortion is calculated by the sum of absolute
difference (SAD) or the sum of absolute transformed difference (SATD). Although
fast RDO is not accurate, it is still able to prune the less probable cases. Fast RDO
selects totally more than 30 modes depending on encoder configurations. Then, the
full RDO costs are estimated and compared for these modes. In full RDO process, all
the residues are transformed, quantized, inverse quantized, and inverse transformed
to produce the reconstructed differences. Distortion is then calculated by the sum of
squared difference (SSD). The prediction information and residue coefficients will
go through CABAC bit estimator to obtain bit rate if estimated mode is selected.
After that, final decision between the modes is made by Lagrangian cost with SSD
distortion and estimated CABAC bit rate to optimize the trade-off.

11.6.2 Proposed Hardware RDO Mode Decision Pipeline

In hardware, we also use a hardware-oriented two-step RDO algorithm for mode
decision. Figure 11.15 shows the overall RDO mode decision hardware architecture.
RDO mode decision requires several major functional units to cooperate. Thus,
several CU-level pipeline stages are shown. In the first step, mode pruning is
done in intra and IME stages. FME refines all the modes selected by inter motion
estimation. After that, full RDO is performed for each mode. A High Complexity
Mode Decision (HCMD) hardware consisting of a bit rate estimator and a SSD
cost unit is used for each mode that needs full RDO. The final mode is decided
by comparing the resulting costs from HCMD hardware in all selected candidates.
After that, the context state update for bit rate estimator is performed according to
the final modes. More details on the HCMD hardware are provided in Sect. 11.6.4.

362 S.-F. Tsai et al.

Fast Intra Prediction

32x32
DCT

2D-Tree Parallel IME

16x16
DCT

8x8
DCT

FME
(64x64 CU)

32x32
DCT

PU-Mode
Pre-

decision

FME
(32x32 CU)

16x16
DCT

PU-Mode
Pre-

decision

FME
(16x16 CU)

8x8
DCT

PU-Mode
Pre-

decision

High Complexity Mode Decision

PU-Mode
Pre-

decision

PU-Mode
Pre-

decision

PU-Mode
Pre-

decision

Fig. 11.15 HCMD pipeline architecture block diagram

11.6.3 Hardware-Oriented Two-Step RDO Algorithm

In this section, we present a two-step mode decision flow for hardware. In the
literature, various coding tree pruning algorithms are proposed to further reduce
the full RDO numbers for computing CU depth [16, 26, 27, 29]. Instead of a hard
threshold, a fast CU splitting and pruning scheme based on Bayes decision rules and
Gaussian distribution of RD-cost is proposed in [35]. For intra prediction modes,
most probable mode (MPM) is derived from neighboring blocks as alternative
candidates for full RDO to improve the mode decision quality within the limited
number of candidates from rough mode decision [42]. Intra CU depth traversal
can also be early terminated by neighboring CU mode and block size relationship
between TU and PU [14]. With these early termination methods, only candidates
with good enough costs from fast RDO will be selected to go through the full RDO
process. The final mode will be chosen from the full RDO result.

The parallelization cost per computation in CABAC hardware is much higher
than other modules. This is because most of the CABAC cost is from context
memory that changes according to the chosen mode. As a result, it is hardly
sharable. Thus, the parallelization cost required to reach the throughput is rather
high. Many fast algorithms propose to use fast RDO as the final mode decision.
In most of the previous works on H.264/AVC encoder, this method is applied with
various fast RDO algorithms. A previous low power encoder [9] in H.264/AVC

11 Encoder Hardware Architecture for HEVC 363

?

?

F
in

al
 M

od
e

D
ec

is
io

n

CU0

CU1 CU1 CU1 CU1

CU2 CU2 CU2 CU2 CU2 CU2 CU2 CU2

32X32 CU

64X64 CU

16X16 CU

HCMD
Cost

HCMD
Cost

HCMD
Cost

Intra Pred Dirs.

Inter PU Sizes & MVs

PU-Mode Pre-decision CU-Layer High Complexity Mode Decision

Fig. 11.16 Hardware-oriented two-step RDO algorithm flow

also used a mode pre-decision scheme at IME to reduce the computation for FME.
However, the BD rate increase for the fast RDO only method is quite high in HEVC.
If we cancel all the full RDO and use only fast RDO in HM, the BD rate increases
10�15 % in intra frames and may even increase to more than 40 % in inter frames.
Therefore, it seems that it is quite harmful to eliminate the full RDO completely
due to inaccurate prediction of rate-distortion cost. To keep the coding quality
while reducing cost for RDO process, hardware encoder should have a more limited
number of full RDO, but still keep the important decisions to full RDO.

Figure 11.16 shows the proposed two-step RDO algorithm flow. Since it is
expensive to use full RDO for all mode decisions, we use full RDO among the best
selected intra directions and inter prediction modes, and among CU depth levels.
For each CU depth level, the final direction and mode is decided only by fast RDO.
Thus, the number of modes is reduced to one per prediction type and CU depth level.
This mode pruning step occurs at intra prediction stage for intra modes and integer
motion estimation stage for inter modes. In intra prediction, the distortion cost is
SATD, and the rate cost is mode bits. In integer motion estimation, the distortion
cost is SAD, and the rate cost is motion vectors difference bits. In the next step,
more accurate costs for the selected modes are calculated by HCMD hardware,
which performs full RDO. The detail implementation of the HCMD hardware will
be discussed in Sect. 11.6.4. After that, final mode is chosen accordingly. With the
two-step RDO algorithm, the number for full RDO that needs HCMD hardware is
decreased to 6, at the cost of 5:93 % BD-rate increase.

11.6.4 High Complexity Mode Decision

In the previous section, two-step RDO algorithm reduces the number of candidates
that require full RDO to 6. However, full RDO is still required to prevent large
quality drop. As a result, we still need efficient hardware design to take care of

364 S.-F. Tsai et al.

full RDO process. This is done in proposed HCMD hardware. HCMD hardware
consists of SSD unit and CABAC bit rate estimator. The two parts are discussed in
Sects. 11.6.4.1 and 11.6.4.2, respectively.

11.6.4.1 SSD Cost Unit

Since SSD is done only on final mode decision in HCMD and does not require
high throughput as SAD/SATD unit in prediction stage, direct implementation is
feasible. Consider the following case as an example. If PU-level early mode decision
is applied, six modes need to pass through HCMD process. Assume we are encoding
8K UHDTV sequence at 30 fps. The clock rate is set to be 300 MHz. CTU size is
64�64. For each CTU, there will be about 1,200 cycles to process. We may use four
multiplier and sum units per mode, and SSD computation for six modes are done in
parallel. The total cycles required are 1,024 cycle and the throughput is acceptable.

11.6.4.2 CABAC Bit Rate Estimator

CABAC is the only choice for entropy coding in HEVC because of its coding
performance. However, the CABAC has strong sequential dependency and is
difficult to parallelize; it also has high implementation cost. In HCMD, multiple
instances of CABAC are used for bit estimation. Large area is required if bit
estimation is done with CABAC. The major cause of the area is that CABAC
uses high number of contexts to attain accurate probability estimation. Each context
stores one {state, MPS} pair in memory. The huge amount of {state, MPS} memory
results in large cost in state stage. Since each CABAC needs to trace state for each
mode, multiple instances of CABAC state storage is required. State stage occupies
most area in CABAC. This is not efficient for implementation.

There are some other methods that use regression-based or table-based methods
for prediction. The bit rate can be predicted accurately by table lookup [21].
JCTVC-G763 [1] proposes a table-based CABAC bit counting algorithm. Fractional
numbers of bits ranging from 0:008 to 7:497 bits are accumulated according to
current state. However, it still relies on the states of CABAC. Thus, it still needs to
traverse the states of CABAC and requires separate storage for states of each HCMD
mode. The sequential nature of CABAC also poses a limit on the throughput of these
bit counters that require CABAC states.

To reduce the cost from CABAC bit estimation, we need to resolve the state
issue. We show two hardware-oriented algorithms: bypass-based bit estimation and
Context-Fixed Binary Arithmetic Coding (CFBAC) algorithm. For the bypass-based
bit estimation, we do not actually do CABAC. We only sum up the bit count output
by the binarization process (this is equivalent to coding the bins in bypass mode).
Since we do not pass the bitstream to the arithmetic encoder, this technique does
not require the state to be stored. Thus, state memory cost is saved in this case.
For the CFBAC algorithm, we aim to reduce the state memory cost by sharing the

11 Encoder Hardware Architecture for HEVC 365

Table 11.3 Bit estimation algorithm comparison

Algorithm JCTVC-G763(HM) CFBAC Bypass-based
Fast RDO
only

�BD-Rate[%] (vs. CABAC) �0:13 1.14 2.65 48.31

CFBAC

Context
Modeler

Binarization
0/1 Bit
Counter

State Memory
Final Mode

Decision

*

State Updater

*

State Bits
LUT

Fig. 11.17 CFBAC
architecture block diagram

state memory between modes. The issue for sharing state memory is that states are
updated in arithmetic coding process. To eliminate this issue, we use fixed state
memory that is not updated during bit estimation. However, if the states used in
the bit estimation are too different from the actual states, the bit estimation will not
be accurate enough and cause low quality decision in HCMD. Hence, we keep the
context fixed at a CTU-level. bit rate increase for this scheme is limited [17]. The
states are the same in CABAC at the beginning of the CTU. During the bit estimation
process inside CTU, the states are not updated. After the final mode decision is
made, the bits for the selected mode are traversed and the final states are updated.
For more simplification, we also uses bit estimation table in JCTVC-G763 [1] for
bits look-up instead of arithmetic encoder in context-fixed scheme.

For quality comparison, the BD-rate differences vs. CABAC-based bit estimation
are shown in Table 11.3. HM takes JCTVC-G763 as the default fast bit estimator.
As we can see, the quality drop would be high if all the mode decision is done only
by fast RDO. For bypass-based method, the quality loss is moderate and hardware
cost is low. If more accurate result is required, CTU-based CFBAC can be used.

The hardware architecture for CFBAC is shown in Fig. 11.17. Since the states
are fixed, all the MPS and LPS coded using the same type of context share the same
probability. For every ‘1’ bin and ‘0’ bin in the same context, the bits produced is a
fixed number B0 and B1 according to the JCTVC-G763 look-up table, respectively.
So we need only to count the number of ‘1’ bins and ‘0’ bins for bit rate estimation.
We modify the binarization process and produce the 1’s count C1 and 0’s count C0.
The bit rate can be estimated according to Eq. (11.1).

Fbits.input/ D
X

8n2contexts

B0.n/ � C0.n/ C B1.n/ � C1.n/ (11.1)

366 S.-F. Tsai et al.

The corresponding architecture is shown in Fig. 11.17. It does not need true
CABAC architecture. Instead, it only needs binarization and context part. Additional
lookup table is placed for bin-to-bits conversion. The corresponding number of bits
for 1’s and 0’s depend on the CTU-based states, which are shared in the global state
memory. Since the state memory is not changed in the CFBAC, the content of each
instances of CFBAC is the same. So we do not need to keep a separate copy for each
CFBAC instances. Multiple CFBAC may share the same state memory.

With this architecture, most of the cost from state memory are saved with only
1:25 % BD rate increase compared to HM, and has higher throughput. The context
memory for CFBAC can be further saved by sharing the state memory with entropy
encoder if the entropy encoder and mode decision engine operate on the same frame.

11.6.4.3 Final Mode Decision and State Update

After the bit count is estimated, mode decision is performed. However, we still need
to update the context memory according to the chosen mode for the bit estimation
of the next CU. This is done by traversing the final mode bits. Since we only need
to know the final states and do not need to do arithmetic coding, we can simplify the
original CABAC process. We may use an nM1L architecture for fast state transition
as follows. For every MPS, the state is always increased by one until the top state
.63/ is reached, we only need to count the number of MPS for state prediction.
For LPS, a 64 � entry table lookup is required. As such, we may process n MPS
and one LPS at one time by one table lookup. The speedup is n times compared to
CABAC state architecture, where n depends on the bitstream. This process is fast
and can also be cascaded for higher performance.

11.7 In-Loop Filters

For in-loop filters, there are two filters in HEVC, deblocking filter and sample
adaptive offset (SAO) filter. Compared to H.264/AVC, deblocking filter in HEVC is
simplified. Deblocking may be divided into two passes. Each direction (horizontal or
vertical) is done in one pass. On the other hand, the SAO filter is a new coding tool in
HEVC. It collects statistics of pixel distortion and minimizes the difference between
input samples and reconstructed samples by adding an adaptive offset. SAO filter
types can be chosen from Edge Offset (EO), Band Offset (BO), or unchanged (OFF).
EO performs pixel classification based on edge direction/shape. BO is based on
pixel level. If the pixel is not suitable for SAO, it can be marked as unchanged. SAO
encoding is more complex than deblocking. It consists of offset derivation stage,
and filtering stage. Offset derivation stage collects required statistics information
from original and reconstructed CTU. After that, offsets and types are decided
with the statistics information. Then, the filtering stage will perform offset filtering
according to the offsets and types. In HM, the two in-loop filters are processed
in serial. However, this will cause pipeline to be even longer. Since SAO requires

11 Encoder Hardware Architecture for HEVC 367

both the original and reconstructed CTUs, each increased stage would require two
additional CTU-sized buffers. To reduce the required number of stages, we may do
the deblocking filter and SAO filter together. To remove the latency, SAO coefficient
derivation can use the non-deblocked reconstructed CTU in place of the deblocked
one [25]. This causes minimal quality loss since deblocking and SAO target different
artifacts. To combine the dataflow of the two filters, the deblocking first pass is done
along with SAO coefficient derivation in parallel. The reconstructed CTU buffer
supplies data for both modules in parallel. After that, the second deblocking pass
is performed; SAO filtering is done right after the deblocking filter. In this way, the
loop filtering can be performed efficiently.

11.8 Entropy Coding

Entropy coding is used to remove redundancy that is not eliminated by prediction
tools. It uses the probability distribution of the syntax elements. It also plays an
important role in video coding. CABAC is adopted in HEVC as the default entropy
coding tool since it achieves 6.1–7.6 % bit-rate saving over Context-Based Adaptive
Variable Length Coding (CAVLC) [17]. While CABAC provides high coding
efficiency, its process exhibits highly complex bin-to-bin data dependencies. As a
result, CABAC encoder is usually one of the most critical throughput bottlenecks in
the whole video encoder. But compared to H.264/AVC, there are many methods in
HEVC that make parallel processing of CABAC possible. In this section, the high
throughput CABAC design and parallelism design of CABAC are discussed.

For CABAC hardware design, there are two-stage [3], three-stage [32], and
four-stage [12, 19, 20, 34] pipelines. Four-stage is mostly used in recent high
throughput designs. Figure 11.18 shows the four-stage overall CABAC architecture
for H.264/AVC. Syntax finite-state machine (FSM) controls the coding order of the
syntax elements. The data access module prepares the required data for binarizer and
context modeler. Binarizer will convert original syntax elements to binary streams.
Context modeler determines the next context states to be used. After that, binary
arithmetic coding is applied.

Syntax FSM
Binarizer

Context
Modeller

Binary
Arithmetic
Encoder

Data Access

Curr
CTU

Side
Info

CABAC Pipeline

Coeff
RAM

Coeff
RAM

Side Info
RAM

MUX

P
re

di
ct

io
n

C
or

e

Fig. 11.18 Overall CABAC
architecture for H.264/AVC

368 S.-F. Tsai et al.

State

Range

Low

Output

state,
MPS

BO

low

range

ctx Input data bins bypass

state is LPS?

MPS rangeshift

is LPS?

output low

output bits

Fig. 11.19 Basic one-bin
CABAC pipeline scheme

Typical arithmetic coder can be further partitioned into four main stages: State,
Range, Low and Output. State stage will update MPS and state as shown in
Fig. 11.19. Range and Low stage will update the range and low values for arithmetic
encoding. Output stage will be in charge of outputting the bitstream. Normalization
is performed on range and low after encoding each bin so that they can be
represented with a fixed 9-bit precision. We can see data dependencies between the
four blocks. With this architecture, one bin per cycle is achieved. To achieve better
throughput, pre-normalization circuit may be used to reduce normalization critical
path [44]. In HEVC, more than 20 % of the bins are bypass bins. Since the range
update circuit and the context model are not affected in bypass coding, a bypass bin
spitting (BPBS) scheme can be applied to split the process from the bin stream and
remerge into the bitstream before the low update stage [44].

For high resolution applications, the throughput of one-bin CABAC is not
enough. Because of CABAC data dependencies, it is difficult to add more pipeline
stages in CABAC. As a result, techniques to encode more than one bin in a cycle
may be needed. Prior related work includes two-bin [3, 19, 20, 34] and multi-bin
[12, 44] arithmetic encoder. One method of multi-bin CABAC is cascading. By
cascading the State, Range, Low, and Output circuits and by using a state forwarding
circuit in State stage, a CABAC engine with multi-bin per cycle is achieved as shown
in Fig. 11.20a, b. Another method for multi-bin CABAC is the state dual-transition
(SDT) approach [44]. It combines two state transition tables into one at the cost of
a bigger table. Then, each stage may process two bins per cycle. SDT can also be
combined with cascading techniques.

11 Encoder Hardware Architecture for HEVC 369

State (Multi-Symbol)

Range

Low

Output

Range

Low

Output

Range

Low

Output

data1 data2 datam

output1 output2 outputm

a b

Read State

Update

Update

Update

C
tx

 C
om

pa
ra

to
rs

Write State

State Memory

MUX

MUX

ctx1 ctx2 ctxm

Fig. 11.20 Multi-bin (a) overall block diagram (b) state forwarding circuit

M

L

M

L

M

L

M
U

X

M
U

X

M
U

X

Fig. 11.21 Simplified architecture of multi-bin binary arithmetic encoder

M

L L

M M

L

M

L

State Stage Range Stage Low Stage Output Stage

Time

Fig. 11.22 Branch imbalance of four-stage pipeline architecture in H.264/AVC [11]

The effectiveness of cascading technique is still limited because of growing
delay in state forwarding circuit as the number of cascading stages increase. The
operating frequency will be reduced if too many cascading stages are used. For
higher throughput, a ML-decomposed architecture may be applied as follows [11].
We can observe from the CABAC pipeline that the complexity for processing the
MPS and LPS in each stage is different. We can divide the processing into two
parts: M for MPS and L for LPS for timing analysis. A typical multi-bin CABAC
architecture is shown in Fig. 11.21. After analysis, we can observe the imbalance as
indicated in Fig. 11.22. The MPS and LPS have different latencies. To have higher
throughput, we may divide the arithmetic into two separate coders.

370 S.-F. Tsai et al.

M L

Is M? Is ML or L?

M
U

X

M
U

X

M L

a

b

Fig. 11.23 (a) ML cascade
architecture (b) Simplified
representation [11]

M L

L M
M

U
X

M M

L MM

L

M M L

L L

M
U

Xa

bFig. 11.24 Examples of
throughput-selection
architecture with balanced
critical paths [11]

For one MPS encoder and one LPS encoder, the throughput per cycle in
traditional architecture is always one bin only. But it is possible to fully utilize both
encoders to code two bins in one cycle. The corresponding architecture can be easily
configured as in Fig. 11.23a and in a more simplified form as in Fig. 11.23b. Now,
two bins are simultaneously checked in one cycle. If the two bins are MPS and LPS
in order, both M coder and L coder are active. If the two bins are both MPS, only
the M coder is active to encode the first bin, and the second bin will be coded in the
next cycle.

Similarly, when the first bin is LPS, only the L coder is active. Therefore, the
throughput per cycle is improved from one bin to one or two bin. Although the
critical path becomes longer, the overhead is moderate because the original critical
paths of M and L coder are quite unbalanced as shown in Fig. 11.22, and thus com-
plimentary to each other. To make best use of the timing slack, throughput-selection
architecture may be applied to increase the throughput while maintain similar
critical path between different paths. Therefore, the design strategy is to make the
critical paths of all choices balanced. Both {ML,LM} and {MML,MLM,LMM,LL}
in Fig. 11.24 are good examples of throughput-selection architecture with balanced
critical paths. The number of choices can be fine-tuned to fit the target throughput.
If higher throughput is required, throughput-selection architecture can be further
cascaded. In addition, multiple M stages can be shared by forwarding the first M
result to alternative path in the throughput selection circuit [44].

For high bin rate requirement, using a single CABAC engine in some situations
cannot achieve the required bin rate. HEVC in such circumstances has provided
several parallelization schemes at the cost of marginal bit rate increase. HEVC
provides wavefront-parallel CABAC, tiles, and slices with different constraint on

11 Encoder Hardware Architecture for HEVC 371

Table 11.4 Comparison of H.264/AVC and HEVC encoders

ISSCC’09[18] VLSIC’12[43] This work

Resolution 4096x2160@24fps 7680x4320@60fps 8192x4320@30fps
Throughput 212Mpixels/s 1991Mpixels/s 1062Mpixels/s
Standard H.264 High @ Level 5.1 H.264 Intra HEVC
Search range [�255,+255]/[�255,+255] N/A [�512,+511]/[�128,+127]

(Predictor Centered)
Technology TSMC 90nm e-Shuttle 65nm TSMC 28nm HPM
Core size 3.95x2.90mm2 3.95x2.90mm2 5x5mm2

Gate count 1732K 678.8K 8350K
Power 522mW@280MHz 139.9mW@280MHz 708mW@312MHz

Table 11.5 Summary of modifications

Module Modifications �BD-Rate[%] � BD-PSNR[dB]

Intra 1. 12-Candi. Fast Intra Prediction 1.03 �0:03

2. Skip I64
3. Hybrid Open-Close Loop

Inter 1. Parallel-PU IME 6.08 �0:19

2. Two-AMVP Coarse-fine Search
3. 3-bit Pixel Truncation
4. Quarter Sub-sampling
5. 25-Candi. Central Quarter FME

Transform 1. Fixed Transform Size 3.02 �0:08

RDO 1. PU-level Early Mode Decision 7.18 �0:20

2. CFBAC Bit Estimator

CABAC dependency. Multiple parts of frame (i.e. multiple CTUs) can be coded
at the same time if these configurations are enabled. In addition, multiple sets of
CABAC engines can be used to make the utilization even higher.

11.8.1 Implementation Results for Encoder Test Chip

An HEVC encoder test chip capable of encoding 8K UHDTV is implemented
in [36]. The encoder is designed based on HM4. The modifications relative to
HM is summarized in Table 11.5. The primary gate count of the encoder is listed
in Table 11.6. Note that frame-level loop filter in HM4 is implemented in this
encoder; however, as frame-level loop filter is not required in the final standard, the
gate count would be significantly reduced for an HEVC-compliant implementation.
Comparisons to previous AVC encoders is shown in Table 11.4. The total bandwidth
is 6:80 GB/s. Compared to Ding’s previous H.264/AVC encoder in ISSCC’09 [18],
the resolution is four times higher, but the bandwidth usage is only increased by
37 %. To compare with H.264/AVC encoders, the rate-distortion curves for HM4,
JM (H.264 reference software), and the presented hardware encoder in encoding 8K

372 S.-F. Tsai et al.

Table 11.6 Module gate
count Module

Gate count
[kGates]

Intra 1148
Inter 2291
Transform 1135
On-chip buffer for prediction 1404
Others* 2372
� Including HM4 frame-level loop filters, which is
removed from final standards

35

36

37

38

39

40

41

42

43

0 25000 50000 75000 100000 0 150000 300000 450000 600000

HM 4.0
Proposed
JM 18.4-LC
JM 18.4-LC-I

Bitrate (kbps)

P
S

N
R

 (
dB

)

27

29

31

33

35

37

39

41

HM 4.0
Proposed
JM 18.4-LC
JM 18.4-LC-I

Bitrate (kbps)

P
S

N
R

 (
dB

)

a b

Fig. 11.25 RD curve comparison for 8K sequence. Both sequences are cropped to 2;560 � 1;600

and converted to 8 bit per channel. JM results are also included to show the coding gain over the
previous H.264/AVC encoders, where LC stands for low complexity mode decision (i.e. fast RDO
only), and I stands for intra mode only. (a) Steam locomotive train. (b) Nebuta festival

sequences are shown in Fig. 11.25. Both 8K sequences are cropped to 2;560�1;600-
8bit in this test. The test condition is low delay P, with a maximum of two reference
frames and maximum CU depth of three. Numerically, average 22:6 % BD-rate
increase is shown compared to HM4. The BD rate increase is more in low bit rate
region and less in high bit rate region. Encoding quality for JM is significantly lower
than that for HM4. The RD-curve for the presented HEVC encoder hardware, in
comparison, is close to the one for HM4. With proper selection of architecture, a
video encoder can be designed to achieve both high coding efficiency and real-time
high resolution encoding with reasonable hardware cost.

11.9 Conclusion

In this chapter, we have introduced a hardware encoder design for HEVC. Key
design issues in system pipeline, module level design, and high complexity mode
decision that supports full RDO in hardware have been discussed. A test chip which
supports 8K UHDTV real-time encoding in HEVC is also presented. Although
HEVC is a complex standard, we can still achieve efficient implementation with
proper design of algorithm and architecture. With the techniques presented in this
chapter, we show that HEVC can be used for real-time encoding for ultra high
resolution applications.

11 Encoder Hardware Architecture for HEVC 373

References

1. Bossen F (2011) CE1: Table-based bit estimation for CABAC, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-G763, Geneva, Nov. 2011

2. Budagavi M, Sze V (2012) Unified forward+inverse transform architecture for HEVC. In:
IEEE international conference on image processing (ICIP), pp 209–212, 2012

3. Chang YW, Fang HC, Chen LG (2004) High performance two-symbol arithmetic encoder in
JPEG 2000. In: Proceedings of ISCE, 2004

4. Chang HC, Chen JW, Su CL, Yang YC, Li Y, Chang CH, Chen ZM, Yang WS, Lin CC,
Chen CW, Wang JS, Guo JI (2007) A 7mW-to-183mW dynamic quality-scalable H.264 video
encoder chip. In: IEEE international solid-state circuits conference (ISSCC), 2007

5. Chang HC, Chen JW, Su CL, Yang YC, Li Y, Chang CH, Chen ZM, Yang WS, Lin CC, Chen
CW, Wang JS, Guo JI (2008) A 242mW 10mm2 1080p H.264/AVC high-profile encoder chip.
In: IEEE international solid-state circuits conference (ISSCC), 2008

6. Chen TC, Huang YW, Chen LG (2004) Fully utilized and reusable architecture for fractional
motion estimation of H.264/AVC. In: IEEE international conference on acoustics, speech, and
signal processing (ICASSP), 2004

7. Chen C-Y, Chien SY, Huang YW, Chen TC, Wang TC, Chen LG (2006) Analysis and
architecture design of variable block size motion estimation for H.264/AVC. IEEE Trans
Circuits Syst Part I 53(3):578–593

8. Chen CY, Huang CT, Chen LG (2006) Level CC data reuse scheme for motion estimation with
corresponding coding orders. IEEE Trans Circuits Syst Video Technol 16(4):553–558

9. Chen TC, Chen YH, Tsai CY, Tsai SF, Chien SY, Chen LG (2007) 2.8 to 67.2mW low-power
and power-aware H.264 Encoder for Mobile Applications. In: IEEE symposium on VLSI
circuits (VLSIC), 2007

10. Chen TC, Chen YH, Tsai SF, Chien SY, Chen LG (2007) Fast algorithm and architecture
design of low-power integer motion estimation for H.264/AVC. IEEE Trans Circuits Syst Video
Technol 17:568–577

11. Chen YJ, Tsai CH, Chen LG (2007) Novel configurable architecture of ML-decomposed binary
arithmetic encoder for multimedia applications. In: International symposium on VLSI design,
automation and test (VLSI-DAT), 2007

12. Chen YH, Chuang TD, Chen YJ, Li CT, Hsu CJ, Chien SY, Chen LG (2008) An H.264/AVC
scalable extension and high profile HDTV 1080p encoder chip. In: IEEE symposium on VLSI
circuits (VLSIC), 2008

13. Chen YH, Chen TC, Tsai CY, Tsai SF, Chen LG (2008) Data reuse exploration for low power
motion estimation architecture design in H.264 encoder. J Signal Process Syst 50(1):1–17

14. Cho S, Kim M (2013) Fast CU splitting and pruning for suboptimal CU partitioning in HEVC
intra coding. IEEE Trans Circuits Syst Video Technol 23(9):1555–1564

15. Choi K, Jang ES (2012) Early TU decision method for fast video encoding in high efficiency
video coding. Electron Lett 48(12):689–691

16. Correa G, Assuncao P, Agostini L, da Silva Cruz LA (2011) Complexity control of high
efficiency video encoders for power-constrained devices. IEEE Trans Consum Electron
57(4):1866–1874

17. Davies T, Fuldseth A (2011) Entropy coding performance simulations, Joint Collaborative
Team on Video Coding (JCT-VC), Document JCTVC-F162, Torino, July 2011

18. Ding LF, Chen WY, Tsung PK, Chuang TD, Chiu HK, Chen YH, Hsiao PH, Chien SY,
Chen TC, Lin PC, Chang CY, Chen LG (2009) A 212MPixels/s 4096x2160p multiview
video encoder chip for 3D/quad HDTV applications. In: IEEE international solid-state circuits
conference (ISSCC), 2009

19. Dyer M, Taubman D, Nooshabadi S (2004) Improved throughput arithmetic coder for
JPEG2000. In: IEEE international conference on image processing (ICIP), 2004

20. Flordal O, Wu D, Liu D (2006) Accelerating CABAC encoding for multi-standard media with
configurability. In: Proceedings of IPDPS, 2006

374 S.-F. Tsai et al.

21. Hahm J, Kyung CM (2010) Efficient CABAC rate estimation for H.264/AVC mode decision.
IEEE Trans Circuits Syst Video Technol 20(2):310–316

22. Hsu MY, Chang HC, Wang YC, Chen LG (2001) Scalable module-based architecture for
MPEG-4 BMA motion estimation. In: IEEE international symposium on circuits and systems
(ISCAS), 2001

23. Huang YW, Chen TC, Tsai CH, Chen CY, Chen TW, Chen CS, Shen CF, Ma SY, Wang TC,
Hsieh BY, Fang HC, Chen LG (2005) A 1.3TOPS H.264/AVC single-chip encoder for HDTV
applications. In: IEEE international solid-state circuits conference (ISSCC), 2005

24. Huang YW, Chen CY, Tsai CH, Shen CF, Chen LG (2006) Survey on block matching
motion estimation algorithms and architectures with new results. J VLSI Signal Process Syst
42(3):297–320

25. Kim W-S (2012) AhG6: SAO parameter estimation using non-deblocked pixels, Joint Collab-
orative Team on Video Coding (JCT-VC), Document JCTVC-J0139, Stockholm, July 2012

26. Kim J, Yang J, Lee H, Jeon B (2011) Fast intra mode decision of HEVC based on hierarchical
structure. In: International conference on information, communications and signal processing
(ICICS), 2011

27. Kim J, Jeong S, Cho S, Choi JS (2012) Adaptive Coding Unit early termination algorithm for
HEVC. In: IEEE international conference on consumer electronics (ICCE), 2012

28. Li F, Shi G, Wu F (2011) An efficient VLSI architecture for 4x4 intra prediction in the
High Efficiency Video Coding (HEVC) standard. In: IEEE international conference on image
processing (ICIP), pp 373–376, 2011

29. Ma S, Wang S, Wang S, Zhao L, Yu Q, Gao W (2013) Low complexity rate distortion
optimization for HEVC. In: Data compression conference (DCC), 2013

30. McCann K, Bross B, Han WJ, Kim IK, Sugimoto K, Sullivan GJ (2013) High efficiency video
coding (HEVC) test model 12 (HM 12) encoder description, Joint Collaborative Team on Video
Coding (JCT-VC), Document JCTVC-N1002, Vienna, July 2013

31. Meher PK, Park SY, Mohanty BK, Lim KS, Yeo C (2014) Efficient integer DCT architectures
for HEVC. IEEE Trans Circuits Syst Video Technol 24(1):168–178

32. Osorio RR, Bruguera JD (2004) Arithmetic coding architecture for H.264/AVC CABAC
compression system. In: Euromicro symposium on digital system design, 2004

33. Palomino D, Sampaio F, Agostini L, Bampi S, Susin A (2012) A memory aware and
multiplierless VLSI architecture for the complete Intra Prediction of the HEVC emerging
standard. In: IEEE international conference on image processing (ICIP), 2012

34. Pastuszak G (2004) A high-performance architecture of arithmetic coder in JPEG2000. In:
Proceedings of ICME, 2004

35. Sinangil M, Sze V, Zhou M, Chandrakasan A (2013) Cost and coding efficient motion
estimation design considerations for high efficiency video coding (HEVC) standard. IEEE J
Sel Top Signal Process 7(6):1017–1028

36. Tsai SF, Li CT, Chen HH, Tsung PK, Chen KY, Chen LG. A 1062Mpixels/s 8192x4320p high
efficiency video coding (H.265) encoder chip. In: Symposium on VLSI circuits (VLSIC), 2013

37. Teng SW, Hang HM, Chen YF. Fast mode decision algorithm for Residual Quadtree coding in
HEVC. In: IEEE visual communications and image processing (VCIP), 2011

38. Tuan JC, Chang TS, Jen CW (2002) On the data reuse and memory bandwidth analysis for
full-search block-matching VLSI architecture. IEEE Trans Circuits Syst Video Technol 12(1):
61–72

39. Tsung PK, Chen WY, Ding LF, Tsai CY, Chuang TD, Chen LG (2009) Single-iteration
full-search fractional motion estimation for quad full HD H.264/AVC encoding. In: IEEE
international conference on multimedia and expo (ICME), 2009

11 Encoder Hardware Architecture for HEVC 375

40. Tsung PK, Chen WY, Ding LF, Chien SY, Chen LG (2009) Cache-based integer motion/
disparity estimation for quad-HD H.264/AVC and HD multiview video coding. In: IEEE
international conference acoustics, speech, and signal processing (ICASSP), 2009

41. Zhang J, Dai F, Ma Y, Zhang Y (2013) Highly parallel mode decision method for HEVC. In:
Picture coding symposium (PCS), 2013

42. Zhao L, Zhang L, Ma S, Zhao D (2011) Fast mode decision algorithm for intra prediction in
HEVC. In: IEEE visual communications and image processing (VCIP), 2011

43. Zhou D, He G, Fei W, Chen Z, Zhou J, Goto S (2012) A 4320p 60fps H.264/AVC intra-frame
encoder chip with 1.41Gbins/s CABAC. In: IEEE symp. VLSI circuits (VLSIC), 2012

44. Zhou J, Zhou D, Fei W, Goto S (2013) A high-performance CABAC encoder architecture for
HEVC and H.264/AVC. In: International conference on image processing (ICIP), 2013

45. Zhu J, Liu Z, Wang D (2013) Fully pipelined DCT/IDCT/Hadamard unified transform
architecture for HEVC Codec. In: IEEE international symposium on circuits and systems
(ISCAS), 2013

	Preface
	About the Editors
	Contents
	1 Introduction
	1.1 HEVC Background and Development
	1.2 Compression Capability: The Fundamental Need
	1.3 Collaborative Development, Interoperability, and Flexibility
	1.4 Complexity, Parallelism, Hardware, and Economies of Scale
	1.5 Profiles, Levels, Tiers, and Extensibility
	1.6 Patent Rights Licensing
	1.7 Overview of This Book
	References

	2 HEVC High-Level Syntax
	2.1 Introduction
	2.2 The NAL Unit Header and the HEVC Bitstream
	2.2.1 The NAL Unit Header
	2.2.2 VCL NAL Unit Types
	2.2.2.1 IRAP Pictures
	2.2.2.2 Leading and Trailing Pictures
	2.2.2.3 Temporal Sub-layer Access (TSA) Pictures
	2.2.2.4 Step-wise Temporal Sub-layer Access (STSA) Pictures
	2.2.2.5 Ordinary Trailing (TRAIL) Pictures
	2.2.2.6 Instantaneous Decoding Refresh (IDR) Pictures
	2.2.2.7 Clean Random Access (CRA) Pictures
	2.2.2.8 Random Access Decodable Leading (RADL) and Random Access Skipped Leading (RASL) Pictures
	2.2.2.9 Splicing and Broken Link Access (BLA) Pictures
	2.2.2.10 Sub-layer Reference and Sub-layer Non-reference Pictures
	2.2.2.11 Reserved and Unspecified VCL NAL Unit Types

	2.2.3 Coded Video Sequences and Bitstream Conformance
	2.2.4 Non-VCL NAL Unit Types

	2.3 Parameter Sets
	2.3.1 The Video Parameter Set (VPS)
	2.3.2 The Sequence Parameter Set (SPS)
	2.3.3 The Picture Parameter Set (PPS)
	2.3.4 The Slice Segment Header
	2.3.5 System Layer Integration Aspects

	2.4 Picture Buffering Management
	2.4.1 Picture Order Count and the DPB
	2.4.2 Reference Picture Sets
	2.4.3 Reference Picture Set Signaling
	2.4.3.1 RPS Signaling in the Slice Header and SPS

	2.4.4 Reference Picture Lists

	2.5 Video Usability Information (VUI) and Supplemental Enhancement Information (SEI)
	2.6 Hypothetical Reference Decoder (HRD)
	References

	3 Block Structures and Parallelism Features in HEVC
	3.1 Introduction
	3.2 Block Partitioning for Prediction and Transform Coding
	3.2.1 Coding Tree Blocks and Coding Tree Units
	3.2.2 Coding Trees, Coding Blocks, and Coding Units
	3.2.3 Prediction Blocks and Prediction Units
	3.2.4 Residual Quadtree Transform, Transform Blocks, and Transform Units
	3.2.4.1 Residual Quadtree Structure
	3.2.4.2 Parameter Signaling
	3.2.4.3 Fast Encoder Control

	3.2.5 Performance

	3.3 Picture Partitioning for Packetization and Parallel Processing
	3.3.1 Slices and Their Fragmentation into Slice Segments and Slice Segment Subsets
	3.3.1.1 Slice Segments
	3.3.1.2 Slice Segment Subsets
	3.3.1.3 Slice Segment Header

	3.3.2 High-Level Parallelization Features
	3.3.2.1 Tiles
	3.3.2.2 Wavefront Parallel Processing (WPP)
	3.3.2.3 Bitstream Access for Parallel Decoding

	3.3.3 Support for Ultra-Low Delay Applications
	3.3.4 Summary of High-Level Parallelization Tools

	3.4 Conclusions
	References

	4 Intra-Picture Prediction in HEVC
	4.1 Introduction
	4.2 Reference Sample Generation
	4.2.1 Reference Sample Substitution
	4.2.2 Filtering Process of Reference Samples

	4.3 Intra Sample Prediction
	4.3.1 Angular Prediction
	4.3.1.1 Angle Definitions
	4.3.1.2 Reference Row Extension for the Negative Prediction Directions
	4.3.1.3 Sample Prediction for Angular Prediction Modes

	4.3.2 DC Prediction
	4.3.3 Planar Prediction
	4.3.4 Post-processing for Predicted Samples

	4.4 Intra Mode Coding
	4.4.1 Prediction of Luma Intra Mode
	4.4.2 Derived Mode for Chroma Intra Prediction
	4.4.3 Syntax Design for Intra Mode Coding

	4.5 Encoding Algorithms
	4.6 Coding Efficiency and Decoder Complexity
	4.6.1 Coding Efficiency
	4.6.2 Decoder Complexity

	4.7 Main Still Picture Profile and Its Applications
	4.8 Summary of Differences from H.264/AVC
	References

	5 Inter-Picture Prediction in HEVC
	5.1 Introduction
	5.2 Motion Data Coding
	5.2.1 Advanced Motion Vector Prediction
	5.2.1.1 AMVP Candidate List Construction
	5.2.1.2 AMVP Motion Data Signaling

	5.2.2 Inter-picture Prediction Block Merging
	5.2.2.1 Background
	5.2.2.2 Merge Candidate List Construction
	5.2.2.3 Merge Motion Data Signaling and Skip Mode
	5.2.2.4 Coding Efficiency of HEVC Merge and Skip Mode
	5.2.2.5 Merge Estimation Regions for Parallel Merge Mode Estimation

	5.2.3 Motion Data Storage Reduction

	5.3 Fractional Sample Interpolation
	5.3.1 Overview
	5.3.1.1 Redesigned Filters
	5.3.1.2 High Precision Filtering Operations
	5.3.1.3 Other Important Features

	5.3.2 Complexity and Coding Efficiency Characteristics
	5.3.2.1 Complexity of HEVC Interpolation Filter
	5.3.2.2 Coding Efficiency of HEVC Interpolation Filter

	5.4 Weighted Sample Prediction
	5.5 Summary and Conclusions
	References

	6 HEVC Transform and Quantization
	6.1 Introduction
	6.2 HEVC Transform
	6.2.1 Discrete Cosine Transform
	6.2.2 Finite Precision DCT Approximations
	6.2.3 HEVC Core Transform Design Principles
	6.2.4 Basis Vectors of the HEVC Core Transforms
	6.2.5 Intermediate Scaling
	6.2.6 HEVC Alternate 4=4 Transform

	6.3 Quantization and De-quantization
	6.3.1 Quantization Matrix
	6.3.2 QP Parameter Derivation

	6.4 HEVC Special Coding Modes
	6.5 Complexity Analysis
	6.6 Coding Performance
	References

	7 In-Loop Filters in HEVC
	7.1 Introduction
	Deblocking Filter
	7.2.1 Block Artifacts in Video Coding

	7.3 Sample Adaptive Offset (SAO)
	7.3.1 Motivation and Overview of SAO
	7.3.2 Edge Offset
	7.3.3 Band Offset
	7.3.4 SAO Parameters Signaling
	7.3.4.1 SAO Parameters Merging
	7.3.4.2 SAO Type and Offsets Signaling
	7.3.4.3 CABAC Contexts and Bypass Coding

	Implementation and Parallelization Aspects
	7.4.1 Deblocking Filter Complexity and Parallelism
	7.4.1.1 HEVC Deblocking Filter Complexity
	7.4.1.2 Deblocking Filter Parallelization Aspects

	7.4.2 SAO Implementation Aspects and Parameters Estimation
	7.4.2.1 Fast Edge Offset Sample Classification
	7.4.2.2 Fast Band Offset Sample Classification
	7.4.2.3 Distortion Estimation for Encoder
	7.4.2.4 Slice-Level On/Off Control
	7.4.2.5 SAO Parameters Estimation and Interaction with Deblocking

	7.4.3 CTU-Based Processing and Line Buffer
	7.4.4 Error Resilience

	7.5 Coding Efficiency and Subjective Quality Improvements
	7.5.1 Deblocking Coding Efficiency and Subjective Quality Improvements
	7.5.2 SAO Coding Efficiency and Subjective Quality Improvement
	7.5.3 Combined Effect of In-Loop Filters on Coding Efficiency

	7.6 Main Differences between HEVC and H.264/AVC In-Loop Filters
	7.7 Conclusions
	References

	8 Entropy Coding in HEVC
	8.1 Introduction
	8.2 CABAC Overview
	8.2.1 Binarization
	8.2.2 Context Modeling, Probability Estimation and Assignment
	8.2.3 Multiplication-Free Binary Arithmetic Coding: The M Coder
	8.2.3.1 Regular Coding Mode
	8.2.3.2 Bypass Coding Mode
	8.2.3.3 Fast Renormalization
	8.2.3.4 Termination

	8.3 Design Considerations
	8.3.1 Brief Summary of HEVC Block Structures and CABAC Coding Efficiency Improvements
	8.3.1.1 Coefficient Grouping into Subblocks
	8.3.1.2 Hierarchy of Significance Flags
	8.3.1.3 Context Modeling for Coding of Significance Flags

	8.3.2 CABAC Throughput Bottlenecks
	8.3.3 Summary of Techniques for CABAC Throughput Improvements
	8.3.3.1 Reduce Regular Coded Bins
	8.3.3.2 Group Bypass Coded Bins
	8.3.3.3 Group Bins with Same Context
	8.3.3.4 Reduce Context Modeling Dependencies
	8.3.3.5 Reduce Total Number of Bins
	8.3.3.6 Reduce Parsing Dependencies
	8.3.3.7 Reduce Memory Requirements

	8.4 Coding Tree Unit and Coding Unit Syntax Elements
	8.4.1 Coding Block Structure
	8.4.2 Prediction Mode and Prediction Block Structure
	8.4.3 Signaling of Special Coding Modes
	8.4.4 Signaling of Block-Based Quantization Parameter Change
	8.4.5 Signaling of SAO Parameters
	8.4.6 Comparison of HEVC and H.264/AVC

	8.5 Prediction Unit Syntax Elements
	8.5.1 Motion Data Coding
	8.5.1.1 Signaling of Merge Mode
	8.5.1.2 Signaling of Motion Vector Differences, Reference Indices, and Inter-Prediction Direction

	8.5.2 Intra Prediction Mode Coding
	8.5.3 Comparison of HEVC and H.264/AVC

	8.6 Transform Unit Syntax Elements
	8.6.1 Transform Block Structure
	8.6.2 Transform Skip
	8.6.3 Coded Block Flags
	8.6.4 Significance Map
	8.6.4.1 sig_coeff_flag (SIG)
	8.6.4.2 Last Position Coding
	8.6.4.3 coded_sub_block_flag (CSBF)
	8.6.4.4 Summary of Significance Map Coding in HEVC

	8.6.5 Absolute Coefficient Level and Coefficient Sign
	8.6.5.1 Coding of Absolute Level
	8.6.5.2 Coding of Sign
	8.6.5.3 Summary of Absolute Level and Sign Coding in HEVC

	8.6.6 Comparison of HEVC and H.264/AVC

	8.7 Context Initialization
	8.7.1 8-Bit Design
	8.7.2 Context Training
	8.7.3 Context Memory for Wavefront Parallel Processing and Dependent Slices

	8.8 Overall Performance
	8.8.1 Coding Efficiency
	8.8.2 Throughput Analysis
	8.8.2.1 Reduce Regular Coded Bins
	8.8.2.2 Group Bypass Coded Bins
	8.8.2.3 Group Bins with Same Context
	8.8.2.4 Reduce Context Selection Dependencies
	8.8.2.5 Reduce Total Number of Bins
	8.8.2.6 Reduce Parsing Dependencies
	8.8.2.7 Summary of Throughput Improvement Techniques

	8.8.3 Memory Requirement Reduction
	8.8.3.1 Context Memory
	8.8.3.2 Line Buffer Memory
	8.8.3.3 Coefficient Storage
	8.8.3.4 Context Initialization Tables

	8.9 Conclusions
	References

	9 Compression Performance Analysis in HEVC
	9.1 Performance Analysis
	9.2 Encoder Setting
	9.2.1 Encoder Software
	9.2.2 Test Conditions
	9.2.3 Prediction Structure
	9.2.3.1 All Intra (AI)
	9.2.3.2 Random Access (RA)
	9.2.3.3 Low-Delay P (LDP)
	9.2.3.4 Low-Delay B (LDB)

	9.2.4 Test Sequences
	9.2.5 Test Cases and Bit Depth
	9.2.6 Rate Distortion Curves
	9.2.7 R–D Optimization

	9.3 Objective Performance Analysis
	9.4 Subjective Performance Analysis
	9.4.1 Test Methodology
	9.4.1.1 DSIS (Double Stimulus Impairment Scale)
	9.4.1.2 DSCQS (Double Stimulus Continuous Quality Scale)
	9.4.1.3 Training Session
	9.4.1.4 Viewing Environment

	9.4.2 Subjective Quality Evaluation Test
	9.4.2.1 Test Environment
	9.4.2.2 Test Methodology
	9.4.2.3 Dataset
	9.4.2.4 Training Session
	9.4.2.5 Test Session
	9.4.2.6 Analysis of the Results
	9.4.2.7 Rate Distortion Curves Results
	9.4.2.8 Average Bit Rate Difference

	9.5 Production–Quality Encoder Performance Analysis
	9.5.1 Test Conditions
	9.5.1.1 Encoder Settings
	9.5.1.2 Subjective Evaluation Conditions
	9.5.1.3 Test Sequences

	9.5.2 Subjective Quality Assessment Results
	9.5.3 Results

	9.6 Conclusions
	References

	10 Decoder Hardware Architecture for HEVC
	10.1 Introduction
	10.2 System Pipeline
	10.2.1 Variable-Sized Pipeline Blocks
	10.2.2 Split System Pipeline

	10.3 Entropy Decoding
	10.3.1 Implementation Challenges
	10.3.2 Solutions

	10.4 Inverse Transform and Dequantization
	10.4.1 Top-Level Pipelining
	10.4.2 Transpose Memory
	10.4.3 Inverse DCT Engine
	10.4.4 Implementation Results

	10.5 Inter Prediction
	10.5.1 Fixed Pipelining Across Modules
	10.5.2 PU-Adaptive Pipelining in 2-D Filter
	10.5.3 TMMCM for Interpolation Filter
	10.5.4 Implementation Results

	10.6 MC Cache and DRAM Mapping
	10.6.1 DRAM Latency Aware Memory Map
	10.6.2 Four-Parallel Cache Architecture
	10.6.2.1 Four-Parallel Data Flow
	10.6.2.2 Queue Management and Hazard Control
	10.6.2.3 Cache Parameters

	10.6.3 Hit Rate Analysis, DRAM Bandwidth and Power
	10.6.4 Implementation Results

	10.7 Intra Prediction
	10.7.1 Hierarchical Memory Deployment
	10.7.2 Reference Preparation and Prediction
	10.7.3 Implementation Results

	10.8 In-Loop Filters
	10.8.1 Deblocking Filter
	10.8.2 Sample Adaptive Offset (SAO)

	10.9 Implementation Results for Decoder Test Chip
	10.10 Conclusion
	References

	11 Encoder Hardware Architecture for HEVC
	11.1 Introduction
	11.2 System Pipeline
	11.2.1 Top Level System Diagram
	11.2.2 CTU Processing Order
	11.2.2.1 Pipeline Granularity
	11.2.2.2 Parallel Processing
	11.2.2.3 Data Locality

	11.3 Inter Prediction
	11.3.1 Motion Estimation
	11.3.2 Reference Memory Subsystem

	11.4 Intra Prediction
	11.4.1 Reduced Mode Search
	11.4.2 Hybrid Open/Closed Loop Intra Prediction

	11.5 Transform and Quantization
	11.6 Rate Distortion-Optimization
	11.6.1 Rate-Distortion Optimized Mode Decision in HM
	11.6.2 Proposed Hardware RDO Mode Decision Pipeline
	11.6.3 Hardware-Oriented Two-Step RDO Algorithm
	11.6.4 High Complexity Mode Decision
	11.6.4.1 SSD Cost Unit
	11.6.4.2 CABAC Bit Rate Estimator
	11.6.4.3 Final Mode Decision and State Update

	11.7 In-Loop Filters
	11.8 Entropy Coding
	11.8.1 Implementation Results for Encoder Test Chip

	11.9 Conclusion
	References

