

Handbook
of Real-Time

Fast Fourier Transforms

IEEE PRESS Editorial Board
John B. Anderson, Editor in Chief

R. S. Blicq
M. Eden
R. Herrick
G. F. Hoffnagle
R. F. Hoyt

S. Kartalopoulos
P.LaPlante
J. M. F. Moura
R. S. Muller

I. Peden
W. D. Reeve
E. Sanchez-Sinencio
D. J. Wells

Dudley R. Kay, Director ofBook Publishing
Carrie Briggs, Administrative Assistant

Lisa S. Mizrahi, Review and Publicity Coordinator
Susan K. Tatiner, Project Manager

Russ Hall, Senior Acquisitions Editor
Ross A. McClain, Jr., Joanne M. Smith,

and Winthrop W. Smith, Cover Designers

Technical Reviewers

Vito J. Sisto
E-Systems, Inc.

James S. Walker
Mathematics Department

University ofWisconsin, Eau Claire

John C. Russ
Materials Science and Engineering Department

North Carolina University

Handbook
of Real-Time

Fast Fourier Transforms

Algorithms to Product Testing

Winthrop W. Smith
Joanne M. Smith

+IEEE
The Institute of Electrical and Electronics Engineers, Inc., New York

mWILEY
~INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION
New York • Chichester •Weinheim • Brisbane • Singapore • Toronto

94-12936
CIP

2. Fourier
Smith, Joanne M.,

A NOTE TO THE READER
This book has been electronically reproduced from
digital information stored at John Wiley & Sons,
Inc. We are pleased that the use of this new
technology will enable us to keep works of
enduring scholarly value in print as long as there is
reasonable demand for them. The content of this
book is identical to previous printings.

© 1995 THE INSTITUTE OF ELECTRICAL AND ELECTRONICS
ENGINEERS, INC. 3 Park Avenue, 17th Floor, New York, NY 10016-5997
All rights reserved.

No part of this publication maybe reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 and 108of the 1976United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750
4744. Requests to the Publisher for permission should be addressed to the
PermissionsDepartment,John Wiley & Sons, Inc., 605 Third Avenue, New
York, NY 10158-0012. (212) 850-6011, fax (212) 850-6008, E-mail:
PERMREQ@WILEY.COM.

For ordering and customer service, call 1-800-CALL-WILEY.
Wiley-IEEE Press ISBN 0-7803-1091-8

Library of Congress Cataloging-in-Publication Data

Smith, Winthrop W., (date)
Handbook of real-time fast Fourier transforms I Winthrop W. Smith

Joanne M. Smith
p. em.

Includes bibliographical references and index.
ISBN 0-7803-1091-8
1. Signal processing-Digital techniques.

transformations. 3. Integrated circuits I.
(date) . II. Title.
TK5102.9.S58 1995
621.382'2'0285416-dc20

To our family and friends,
who encouraged us

Contents

Preface xxi

1 Overview 1
1.a Introduction 1
1.1 Laying the Foundation 1
1.2 Design Decisions 2

1.2.1 Number of Dimensions 2
1.2.2 Type of Processing 2
1.2.3 Arithmetic Format 2
1.2.4 Weighting Functions 3
1.2.5 Transform Length 3
1.2.6 Algorithm Building Blocks 3
1.2.7 Algorithm Construction 3
1.2.8 DSP Chips 3
1.2.9 Architectures 3
1.2.10 Mapping Algorithms onto Architectures 4
1.2.11 Board Decisions and Selection 4
1.2.12 Test Signals and Procedures 4

1.3 Types of Examples 4
1.3.1 Eight-Point DFT to FFT Example 5
1.3.2 Algorithm Steps and Memory Maps 5
1.3.3 Fifteen-Point or 16-Point

FFT Algorithm Examples 5
1.3.4 Sixteen-Point Radix-4 FFT Algorithm Examples 5
1.3.5 Four-Point FFT and 16-Point Radix-4

FFT Algorithm Examples 5

viii CONTENTS

1.4 Design Examples 6
1.4.1 Doppler Radar 6
1.4~2 Power Spectrum Estimator 6
1.4.3 Speech Recognition 6
1.4.4 Image Deblurring 6

1.5 Conclusions 7

2 The Discrete Fourier Transform 9
2.0 Introduction 9
2.1 Common Uses of the DFf 10
2.2 Equation and Block Diagram 10
2.3 Properties 10

2.3.1 Frequency Limits 10
2.3.2 DFf Filter Spacing/Nulls 12
2.3.3 Linearity 12
2.3.4 Symmetry 12
2.3.5 Inverse DFf 12
2.3.6 Ease of IDFf Computation 12
2.3.7 Time and Frequency Scaling 13
2.3.8 Time and Frequency Shifting 13
2.3.9 Parseval's Theorem 14
2.3.10 Zero Padding 14
2.3.11 Resolution 15
2.3.12 Periodicity 16
2.3.13 Summary of Properties 16

2.4 Real Input Signals 16
2.4.1 Two-Signal Algorithm 17
2.4.2 Double-Length Algorithm 18

2.5 Strengths 20
2.5.1 Periodic Signals 20
2.5.2 Real or Complex Input Data 21
2.5.3 Sets of Data 21
2.5.4 Coherent Integration Gain 22

2.6 Weaknesses 22
2.6.1 Computational Load 22
2.6.2 Quantization Noise Error 23
2.6.3 High Sidelobes 23
2.6.4 Frequency Straddle Loss 23
2.6.5 Transient Signals 23

2.7 Conclusions 24

3 The Fast FourierTransform 27
3.0 Introduction 27
3.1 Improvements to the DFT 27

3.1.1 Computational Load 28
3.1.2 Quantization Noise 28

3.2 FFT-SpecificWeakness 28
3.3 Eight-Point DFT to FFf Example 28

3.3.1 Eight-Point DFT Equations in Matrix Form 29
3.3.2 180° Redundant Computations 30
3.3.3 90° Redundant Computations 30
3.3.4 45° Redundant Computations 31

3.4 Building-Block Construction ofFFf Algorithms 32
3.5 Conclusions 34

4 Weighting Functions 35
4.0 Introduction 35
4.1 Six Performance Measures 35

4.1.1 Highest Sidelobe Level 36
4.1.2 Sidelobe Fall-off Ratio 36
4.1.3 Frequency Straddle Loss 36
4.1.4 Coherent Integration Gain 36
4.1.5 Equivalent Noise Bandwidth 36
4.1.6 Three dB Main-Lobe Bandwidth 37

4.2 Weighting Function Equations and Their FFfs 37
4.2.1 Rectangular 37
4.2.2 Triangular 38
4.2.3 Sine Lobe 39
4.2.4 Hanning 40
4.2.5 Sine Cubed 40
4.2.6 Sine to the Fourth 41
4.2.7 Hamming 42
4.2.8 Blackman 43
4.2.9 Three-Sample Blackman-Harris 43
4.2.10 Four-Sample Blackman-Harris 45
4.2.11 Kaiser-Bessel 46
4.2.12 Gaussian 48
4.2.13 Dolph-Chebyshev 49
4.2.14 Finite Impulse Response Filter Design

Techniques 52
4.3 Weighting Function Comparison Matrix 52
4.4 Conclusions 53

CONTENTS ix

x CONTENTS

5 Frequency Analysis 55
5.0 Introduction 55
5.1 Five Performance Measures 55

5.1.1 Input Sample Overlap 55
5.1.2 Sidelobe Level 56
5.1.3 Frequency Straddle Loss 56
5.1.4 Frequency Resolution 56
5.1.5 Coherent Integration Gain 57

5.2 Computational Techniques 57
5.2.1 Nonoverlapped 57
5.2.2 Overlapped 58
5.2.3 Weighting Functions 58

5.3 Conclusions 59

6 Linear Filtering and Pattern Matching 61
6.0 Introduction 61
6.1 Equations 61
6.2 Three Performance Measures 62

6.2.1 Number of Computations per Data Point 62
6.2.2 Number of Data Memory Locations 62
6.2.3 Computational Latency 63

6.3 Direct Method 63
6.3.1 Complex Input Signal 63
6.3.2 Real Input Signal 63

6.4 Single-Step Frequency Domain Method 64
6.4.1 Complex Input Signal 64
6.4.2 Real Input Signal 64

6.5 Multiple-Step Frequency Domain Method 65
6.6 Overlap-and-Add Frequency Domain Algorithm 65

6.6.1 Introduction 65
6.6.2 Complex Input Signals 65
6.6.3 Real Input Signals 67

6.7 Overlap-and-Save Frequency Domain Algorithm 68
6.7.1 Introduction 68
6.7.2 Complex Input Signals 69
6.7.3 Real Input Signals 70

6.8 Linear Filtering and Pattern Matching
Comparison Matrix 70

6.9 Conclusions 71

CONTENTS xi

7 Multidimensional Processing 73
7.0 Introduction 73
7.1 Frequency Analysis 74

7.1. 1 Two Dimensions 74
7.1.2 Three or More Dimensions 75

7.2 Linear Filtering 75
7.2.1 Separable Two-Dimensional Filter 76
7.2.2 Frequency Domain Approach 76
7.2.3 Three and More Dimensions 77

7.3 Pattern Matching 78
7.3.1 Separable Two-Dimensional Pattern Matching 78
7.3.2 Frequency Domain Approach 79
7.3.3 Three and More Dimensions 80

7.4 Conclusions 80

8 Building-Block Algorithms 81
8.0 Introduction 81
8.1 Four Performance Measures 81

8.1.1 Number of Adds 82
8.1.2 Number of Multiplies 82
8.1.3 Number of Memory Locations for

Multiplier Constants 82
8.1.4 Number of Data Memory Locations 83

8.2 Ten Building-Block Algorithm Constraints 83
8.3 Two-Point FFT 84
8.4 Three-Point FFT 85

8.4.1 Winograd 3-Point FFT 85
8.4.2 Singleton 3-Point FFT 86

8.5 Four-Point FFT 87
8.6 Five-Point FFT 88

8.6.1 Winograd 5-Point FFT 89
8.6.2 Singleton 5-Point FFT 91
8.6.3 Rader 5-Point FFT 93

8.7 Seven-Point FFT 96
8.7.1 Winograd 7-Point FFT 97
8.7.2 Singleton 7-Point FFT 101

8.8 Eight-Point FFT 103
8.8.1 Winograd 8-Point FFT 104
8.8.2 Eight-Point Radix-4 and -2 Algorithm 107
8.8.3 Eight-Point Radix-2 Algorithm 110
8.8.4 PTL 8-Point FFT 113

xii CONTENTS

8.9 Nine-Point FFf 116
8.9.1 Winograd 9-point FFf 116
8.9.2 PTL 9-point FFf 121
8.9.3 Burrus and Eschenbacher 9-point FFf 124

8.10 Sixteen-Point FFf 128
8.10.1 Winograd 16-point FFf 128

8.11 General Algorithms for All Odd Numbers 136
8.11.1 General Rader Algorithm 136
8.11.2 General Singleton Algorithm 138
8.11.3 General SWIFT Odd-Point Algorithm 140

8.12 Building-Block Algorithm Comparison Matrix 142
8.13 Conclusions 142

9 Algorithm Construction 145
9.0 Introduction 145
9.1 Four Performance Measures 145

9.1.1 Number of Adds 146
9.1.2 Number of Multiplies 146
9.1.3 Number of Memory Locations

for Multiplier Constants 146
9.1.4 Number of Data Memory Locations 146

9.2 Nine Algorithm Constraints 146
9.3 Three Construction Approaches 147
9.4 Algorithm Data Mapping Relabeling 148

9.4.1 General Address Relabeling 148
9.4.2 Four-Point FFf Address Relabeling Example 148

9.5 Convolution Approach 149
9.5.1 Bluestein Algorithm Introduction 149
9.5.2 Number of Bluestein Algorithm

Adds and Multiplies 151
9.5.3 Number of Bluestein Algorithm

Memory Locations 151
9.5.4 General Bluestein Algorithm 152
9.5.5 Fifteen-Point Bluestein Example 158
9.5.6 Winograd Algorithm Introduction 167
9.5.7 Number of Winograd Algorithm

Adds and Multiplies 169
9.5.8 General Winograd Algorithm 169
9.5.9 Fifteen-Point Winograd Algorithm Example 173

9.6 Prime Factor Approach 185
9.6.1 Prime Factor Algorithm Introduction 185
9.6.2 Number of Prime Factor Algorithm

Adds and Multiplies 187

CONTENTS xiii

9.6.3 General Prime Factor Algorithm for Two Factors 187
9.6.4 Fifteen-Point Kolba-Parks FFT Example 191
9.6.5 Fifteen-Point SWIFf Example 199

9.7 Mixed-Radix Approach 207
9.7.1 Mixed-Radix Algorithm Introduction 207
9.7.2 Number of Mixed-Radix Algorithm

Adds and Multiplies 210
9.7.3 Categories of the Mixed-Radix Algorithm 211
9.7.4 General Mixed-Radix Algorithm for Two Factors 211
9.7.5 Sixteen-Point Radix-4 Primes-to-a-Power

FFf Example 213
9.7.6 Sixteen-Point Radix-8 and -2,

Mixed Power-of-Primes Example 222
9.7.7 Fifteen-PointSingleton Mixed-Radix

FFf Example 230
9.8 Comparison Matrices 242
9.9 Conclusions 243

10 Arithmetic Building Blocks for Architectures 245
10.0 Introduction 245
10.1 Five Performance Measures 246

10.1.1 Input Data Organization 246
10.1.2 Output Data Organization 246
10.1.3 Internal Data Bus Loading 246
10.1.4 Throughput from Computations 246
10.1.5 Latency from Computations 247

10.2 Bit-Slice Arithmetic 247
10.2.1 Multiplier 248
10.2.2 Multiplier-Accumulator 250

10.3 Integrated Arithmetic 250
10.3.1 Multiplier 250
10.3.2 Multiplier-Accumulator 250

10.4 Special Purpose 251
10.4.1 FFT Data Separation Patterns 251
10.4.2 Decimation-in-Time Building Block 253
10.4.3 Decimation-in-Frequency Building Block 253

10.5 Conclusions 254

11 MUltiprocessor Architectures 255
11.0 Introduction 255
11.1 Two Single Processors 255

11.1.1 Von Neumann Architecture 256
11.1.2 Harvard Architecture 257

xiv CONTENTS

11.2 Three Linear Arrays 258
11.2.1 Pipeline 258
11.2.2 Linear Bus 259
11.2.3 Ring Bus 260

11.3 Three Parallel Arrays 262
11.3.1 Crossbar 262
11.3.2 Massively Parallel 264
11.3.3 Star 267

11.4 Three Multidimensional Arrays 268
11.4.1 Hypercube 269
11.4.2 Massively Parallel 270
11.4.3 Hybrids 270

11.5 Conclusions 272

12 Algorithm and Data Mappings 273
12.0 Introduction 273
12.1 Five Performance Measures 273

12.1.1 Input Data Overhead 274
12.1.2 Intermediate Results Reorganization Overhead 274
12.1.3 Output Data Overhead 274
12.1.4 Computational Throughput 274
12.1.5 Processing Latency 274

12.2 Mappings 274
12.3 Single Processor 275

12.3.1 Data I/O Requirements 276
12.3.2 Memory Requirements 276
12.3.3 Arithmetic Unit Requirements 277
12.3.4 VonNeumann Architecture 277
12.3.5 Harvard Architecture 278
12.3.6 Harvard 16-Point Radix-4 FFf Example 279

12.4 Three Linear Arrays 279
12.4.1 Pipeline 279
12.4.2 Linear Bus 283
12.4.3 Ring Bus 283
12.4.4 Pipeline 16-Point Radix-4 Example 284
12.4.5 Linear and Ring Bus 16-Point Radix-4

FFf Examples 286
12.5 Three Parallel Arrays 287

12.5.1 Crossbar 16-Point Radix-4 FFf Examples 288
12.5.2 Massively Parallel 16-Point Radix-4

FFf Examples 293
12.5.3 Star 16-Point Radix-4 FFf Examples 300

CONTENTS xv

12.6 Three Multidimensional Arrays 304
12.6.1 Hypercube 16-Point Radix-4 FFf Examples 305
12.6.2 Massively Parallel 16-Point Radix-4

FFf Examples 312
12.6.3 Hybrid 16-Point Radix-4 FFf Examples 313

12.7 Algorithm Mapping Examples
Comparison Matrix 313

12.8 Conclusions 313

13 Arithmetic Formats 315
13.0 Introduction 315
13.1 Three Performance Measures 315

13.1.1 Dynamic Range 316
13.1.2 Arithmetic Accuracy 316
13.1.3 Quantization Noise Escalation 316

13.2 Three Arithmetic Formats 316
13.2.1 Fixed-Point 317
13.2.2 Floating-Point 318
13.2.3 Block-Floating-Point 320

13.3 Arithmetic Format Comparison Matrix 321
13.4 Conclusions 322

14 Chips 323
14.0 Introduction 323
14.1 Five FFf Performance Measures 324

14.1.1 1024-Point Complex FFT 324
14.1.2 Data I/O Ports 324
14.1.3 On-Chip Data Memory Words 325
14.1.4 On-Chip Program Memory Words 325
14.1.5 Number of Address Generators 325

14.2 Generic Programmable DSP Chip 325
14.2.1 Block Diagram 326
14.2.2 On-Chip Data Memory 326
14.2.3 On-Chip Program Memory 327
14.2.4 On-Chip Data Buses 327
14.2.5 Off-Chip Data Bus 327
14.2.6 On-Chip Address Buses 328
14.2.7 Off-Chip Address Bus 328
14.2.8 Address Generators 328
14.2.9 Serial I/O Ports 329
14.2.10 Program Control 332

xvi CONTENTS

14.2.11 Multiplier-Accumulator and Arithmetic
Logic Unit 332

14.2.12 Estimating FFf Performance 334
14.3 Programmable Fixed-Point Chip Families 335

14.3.1 Analog Devices ADSP-21xx Family 336
14.3.2 AT&T DSP16 Family 338
14.3.3 AT&T DSP161x Family 339
14.3.4 Motorola DSP56001 Family 341
14.3.5 Motorola DSP561xx Family 343
14.3.6 NEC j.LPD77xxx Family 344
14.3.7 NEC j.LPD7701x Family 346
14.3.8 NEC jlPD77220 Family 347
14.3.9 Texas Instruments TMS320Clx Family 348
14.3.10 Texas Instruments TMS320C2x Family 350
14.3.11 Texas Instruments TMS320C5x Family 351
14.3.12 Zilog Z89Cxx Family 353
14.3.13 Zoran ZR38000 Family 354

14.4 Programmable Fixed-Point Chips
Comparison Matrix 355

14.5 Programmable Floating-Point Chips 357
14.5.1 Analog Devices 21020 Family 357
14.5.2 Analog Devices ADSP-21060 Family 358
14.5.3 AT&T DSP32C Family 359
14.5.4 Intel i860 Family 361
14.5.5 Motorola DSP96002 Family 363
14.5.6 NEC tLPD77240/230A Family 364
14.5.7 Texas Instruments TMS320C3x Family 365
14.5.8 Texas Instruments TMS320C40 Family 367

14.6 Programmable Floating-Point
Chips Comparison Matrix 369

14.7 FFf-Specific Chips and Chip Sets 369
14.7.1 Array Microsystems a66110/66210 Chip Set 370
14.7.2 Sharp LH9124/LH9320 Chip Set 372
14.7.3 Raytheon TMC2310 Chip 373
14.7.4 Plessey Semiconductor PDSP16510 Chip 374

14.8 FFf-Specific Chip and Chip Set
Comparison Matrix 375

14.9 Application-Specific Integrated Circuits 376
14.9.1 DSP Semiconductor Pine/Oak Core Family 376

14.10 ASIC Programmable DSP Chip
Cores Comparison Matrix 377

CONTENTS xvii

14.11 Multiple Processors on a Single Chip 378
14.11.1 Star Semiconductor SPROC-1000 Family 378
14.11.2 Texas Instruments TMS320C8x Family 381

14.12 Multiple-Processor Programmable
DSP Chips Comparison Matrix 382

14.13 Conclusions 383

15 Board Decisions and Selection 387
15.0 Introduction 387
15.1 Five Board Selection Categories 387

15.1.1 Algorithm Performance 388
15.1.2 I/O Performance 388
15.1.3 Software Support 388
15.1.4 Expansion Capability 388
15.1.5 Multiprocessing 388

15.2 Board Selection Questions and Answers 388
15.3 Conclusions 393

16 Test 395
16.0 Introduction 395
16.1 Example 395
16.2 Errors during Algorithm Development 395

16.2.1 Arithmetic Check 397
16.2.2 Memory Map Check 399

16.3 Errors during Code Development 400
16.3.1 Coding the Building-Block Algorithm 400
16.3.2 Coding the Multiplier Constants 401
16.3.3 Coding the Memory Mapping 401
16.3.4 Coding the Relabeled Memory Maps 402

16.4 Errors during Product Operation 402
16.4.1 Arithmetic Unit 402
16.4.2 Address Generator 403
16.4.3 DataMemory 403
16.4.4 Program Memory 404
16.4.5 Data I/O 404

16.5 Test Signal Features 404
16.5.1 UnitPulse 404
16.5.2 Constants 405
16.5.3 Single Sine Waves 406
16.5.4 Pair of Sine Waves 406

xviii CONTENTS

16.6 Test Signal Error Patterns 406
16.6.1 Unit Pulse 407
16.6.2 Constants 408
16.6.3 Single Sine Waves 408
16.6.4 Pair of Sine Waves 409

16.7 Isolating Errors: A 16-Point Example 409
16.7.1 Assumptions 409
16.7.2 Test Signal Strategy 410
16.7.3 Error Isolation 410

16.8 Conclusions 412

17 Design Examples 413
17.0 Introduction 413
17.1 Example 1: Doppler Radar Processor 414

17.1.1 Definition of the Product 414
17.1.2 Specification 414
17.1.3 Description 415
17.1.4 Design Decisions 416
17.1.5 Board Selection Process 422
17.1.6 Test Signals 423
17.1.7 Design Decisions Summary 423

17.2 Example 2: Power Spectrum Estimator 42L
17.2.1 Definition of the Product 424
17.2.2 Specification 424
17.2.3 Description 425
17.2.4 Design Decisions 427
17.2.5 Board Selection Process 430
17.2.6 Test Signals 430
17.2.7 Design Decision Summary 431

17.3 Example 3: Speech Analyzer 431
17.3.1 Definition of the Product 432
17.3.2 Specification 432
17.3.3 Description 432
17.3.4 Design Decisions 435
17.3.5 Board Selection Process 438
17.3.6 Test Signals 439
17.3.7 Design Decision Summary 439

17.4 Example 4: Image Deblurring 440
17.4.1 Definition of the Product 440
17.4.2 Specification 441
17.4.3 Description 441
17.4.4 Design Decisions 443

17.4.5 Board Selection Process 447
17.4.6 Test Signals 447
17.4.7 Design Decision Summary 447

17.5 Conclusions 448

Glossary 449

Appendix: Table of Comparison Matrices 455

Index 457

CONTENTS xix

Preface

This book gives engineers and other technical innovators the foundation and facts they
need to construct and implement fast Fourier transforms (FFfs) that synthesize, recognize,
enhance, compress, modify, or analyze signals. Because of special integrated circuits,
known as digital signal processing (DSP) chips, a wide array of applications is affordably
done, from magnetic resonance imaging (MRI) to Doppler weather radar. Increased demand
for wireless communication, multimedia, and consumer products has created the need for
high-volume, low-cost, multifunction, DSP-based products that use FFfs for their signal
processing or data manipulation.

In 1974, E. Oran Brigham lived and worked in the small East Texas town of Greenville.
He was employed by a little-known aerospace company named E-Systems, Inc. when his
230-page book, The Fast Fourier Transform [1], was published. Over the years it has
helped thousands of engineers learn the fundamentals of that analytical tool. After moving
to Greenville in 1991 for Win to join E-Systems, we decided to write a book that continued
the efforts begun here two decades before-putting practical information about FFfs into
the hands of practicing professionals and engineering students.

The explosion of digital products, ignited by the proliferation of integrated circuits
in the 21 years since Brigham's book came out, marks the coming of age for computing
FFfs. Because of personal computers, with chips or plug-in boards for doing DSP functions,
including FFfs, thousands of engineers, scientists, and students now work with and develop
new FFf techniques and products. The National Information Infrastructure, popularly
called "The Information Superhighway," and other digital-based goods and services now
provide the impetus for sophisticated new products, once driven by the Department of
Defense.

The book addresses the following areas of real-time FFf implementation:

• How to compute an FFf of any length with a wide variety of algorithms

• How to convert algorithms to assembly or high-level language code

• How to map algorithms onto several architectures

xxii PREFACE

• How to select DSP chips and commercial off-the-shelf (COTS) boards for FFf
applications

• How to detect and isolate errors in every phase of development

The goal of the book is to provide a single-source reference for the elements used
in programming real-time FFf algorithms on DSP and special-purpose chips. It uses a
building-block approach to constructing several FFf algorithms. Extensive use is made
of examples and spreadsheet-style comparison charts. With hundreds of figures, tables,
and Algorithm Steps, its practical features are geared to assist design engineers, scientists,
researchers, and students. The book may even open the design of FFf-based products
to innovators with no prior FFf experience, if they have microprocessor programming,
engineering, or mathematics backgrounds. Though useful as a handy reference book by
topic, it is laid out in a logical sequence that can be a textbook for a course on applied FFfs.

Sid Burrus's and Tom Park's book DFT/FFT and Convolution Algorithms [2], writ
ten a decade ago, met the mushrooming hunger of engineers for TMS32010 code, which
would make it easier to use the new Texas Instruments chip for computing FFf algorithms.
Mainstream applications for consumer products incorporating FFTs, precipitated by recent
advances in integrated circuits, especially ASICs, have fostered a need to:

• Create versatile FFT algorithms of any length, to overcome the power-of-two
constraints

• Understand how to map algorithms efficiently onto single and multiprocessor ar
chitectures

• Program in assembly language to optimize [3] code, in order to reduce power
consumption and lower the cost of high-volume consumer products

• Shorten the design cycle and lower development costs to compete in global markets

Unique features include:

• Performance measure Comparison Matrices for selection of weighting functions,
algorithm building blocks, algorithms, algorithm mappings, arithmetic formats,
and DSP chips

• Extensive algorithm examples, with step-by-step instructions for memory mapping
and conversion to high-level or assembly language code

• A"generic" programmable DSP chip block diagram, to which 24 chip vendor block
diagrams are standardized and compared, to illustrate differences that affect FFf
performance

• Unbiased description of the FFf-related features of 51 fixed-point DSP chips,
including ASIC and multiple-processor chips, 13 floating-point DSP chips, and 6
dedicated FFT chips

• Test signals with instructions and examples for detecting and isolating errors dur
ing FFf algorithm development, code development and debugging, and product
operation

• A list of questions and answers for selecting COTS boards

• Four design examples that do frequency analysis, power spectrum estimation, linear
filtering, and two-dimensional processing

PREFACE xxiii

Win's 28-year DSP career in both military and commercial companies, teaching
courses and seminars nationwide, has repeatedly shown him that engineers need to be able
to work easily with any length of FFfs to do real-time signal conversion and analysis.
Joanne's 12 years experience as founder and president of two DSP companies has given
her exposure to the rapidly changing technology, market, and economic realities of this
industry. Coauthoring a book seemed the logical way to combine our diverse talents and
complementary perspectives to comprehensively address the topic of real-time fast Fourier
transform algorithms.

This book is only one of several tools for expanding the knowledge base of the DSP
community. A service called DSP Net provides access to the latest vendor information in this
field through InterNet. DSP and MultimediaTechnology magazine addresses this growing
market, as do two annual applications-oriented conferences-DSPx and the International
Conference on Signal Processing Applications & Technology. The IEEE International
Conference on Acoustics, Speech and Signal Processing holds its 20th annual gathering in
1995. The chip vendors have free bulletin boards for algorithms, code, and other pertinent
information. Additional information on resources available to design engineers should be
sent to the authors, in care of the publisher, for possible inclusion in follow-up publications.

ACKNOWLEDGMENTS

We are pleased to thank Frank J. Thomas, Rosalie Sinnett, Thomas L. Loposer, Randy
Davis, and Wayne Yuhasz, who convinced us we could accomplish this effort; Ross A.
McClain, Jr., Jeffrey W. Marquis, Vito J. Sisto, V. Rex Tanakit, and Joel Morris, Ph.D.,
for their contributions during the editing process; Harold W. Cates, Ph.D., and Robert H.
Whalen, for their mentoring of Win's career; the many friends and colleagues who have
encouraged us throughout our careers; and our daughters Patricia and Paula for not letting
us give up. Most of all we thank God for His inspiration, guidance, and strength throughout
this seemingly impossible task.

REFERENCES

[1] E. Oran Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ,
1974.

[2] C. S. Burrus and T. W. Parks, DFT/FFT and Convolution Algorithms, Wiley, New York,
1985.

[3] John P. Sweeney, "Mainstream Applications Require Optimized Assembly Language
for Fast DSPs," EON, April 28, 1994.

1

Overview

1.0 INTRODUCTION

The increased demand for communication, multimedia, and other consumer products has
created the need for high-volume, low-cost, multifunction DSP-based products that can
use fast Fourier transforms (FFTs) for their signal processing or data manipulation. This
book is the first to cover FFTs from algorithms to product testing, with the information
needed to create and convert to code FFT algorithms of any length on 10 different archi
tectures. It uses a building-block approach for constructing the algorithms. Included are
recommended Memory Maps to streamline assembly and high-level language coding of 17
small-point FFTs, four general algorithms, and seven FFT algorithm examples. To ensure
that the algorithms work properly, a test approach for the detection and isolation of errors,
refined over many years of time consuming searches for mistakes in FFT algorithms, is
detailed.

Spreadsheet-style comparison matrices provide easy to use inventories of the com
prehensive array of key FFT elements and performance measures. Dozens of digital signal
processing (DSP) chips and criteria for selecting DSP boards are covered. Four design
examples at the end of the book show how to apply most of what has been explained.

1.1 LAYING THE FOUNDATION

Chapters 2 and 3 provide the technical foundation and mathematical equations for the al
gorithms in Chapters 8 and 9. The discrete Fourier transform (DFT) is an equation for
converting time domain data into its frequency components. The DFf equation is imple
mented with FFT algorithms because they are computationally efficient ways of calculating
it. All the properties and strengths of the DFT are shared by the wide variety of FFTs that

2 CHAP. 1 OVERVIEW

have beep developed over the years. However, only three of the five weaknesses of the DFf
are also weaknesses of FFT algorithms.

In the beginning of the design process, comparison of the uses and properties of the
DFT with the technical specifications of the application will determine if the DFT is a good
match. If so, then it makes sense to examine the FFT algorithms, hardware architectures,
arithmetic formats, and mappings in this book to decide which combination is best for a
specific design.

1.2 DESIGN DECISIONS

The decisions listed are the ones related to real-time FFf selection and implementation.
They are listed in an order which differs from the sequence of the chapters, because learning
the facts happens more easily in an order that is different from applying them.

• Choosing the number of dimensions (Chapters 5-7)

• Picking a type of processing (Chapters 5-7)

• Selecting the arithmetic format (Chapter 13)

• Deciding on a weighting function (Chapter 4)

• Determining the transform length (Chapter 5)

• Selecting algorithm building blocks (Chapter 8)

• Constructing the algorithm (Chapter 9)

• Choosing a chip (Chapter 14)

• Selecting the architecture (Chapters 10 and 11)

• Mapping the algorithm onto the architecture (Chapter 12)

• Selecting an off-the-shelf board (Chapter 15)

• Creating the test signal and procedures (Chapter 16)

1.2.1 Number of Dimensions

All multidimensional FFfs are done as a sequence of one-dimensional FFTs. The
importance of knowing how many dimensions (one, two, or three, usually) there are de
termines how many FFfs will be needed and how the data must be organized to do the
multiple dimensions. This will affect chip processing load and the choice of architec
ture.

1.2.2 Type of Processing

The type of processing (frequency analysis, convolution, or correlation) will also
affect the chip processing load. Frequency analysis requires one FFT for every group of
samples, while the other two types require an FFT and an inverse FFT for every group
of samples.

1.2.3 Arithmetic Format

The choice of fixed-point, floating-point, or block-floating-point arithmetic format
will affect the numerical accuracy of the results. Fixed-point DSP chips were the first
available and are generally less expensive than floating-point, because this arithmetic takes

SEC. 1.2 DESIGN DECISIONS 3

less silicon area. Floating-point has grown in popularity as semiconductor manufacturers
advanced to smaller micron wafers and high-level language compilers became available.
Block-floating-point is a compromise approach that provides better accuracy than fixed
point and takes less silicon area than floating-point. It is only available in chips designed
specifically for computing FFTs.

1.2.4 Weighting Functions

The selection of one of more than a dozen weighting functions will affect frequency
location accuracy while controlling sidelobe effects. They also modify coherent gain,
bandwidth, and frequency straddle loss. The selection depends on what combination of
these effects matters most in an application.

1.2.5 Transform Length

Choosing a transform length closest to the number of data points to be analyzed will
improve the accuracy of the computation, thereby improving frequency accuracy. The size
of the transform will directly affect frequency resolution, memory requirements, and the
speed at which the computation can be done. A unique feature of this book is the choice of
more than one algorithm to compute an FFf of any length.

1.2.6 Algorithm Building Blocks

The algorithm building blocks used will affect the computational load the algorithm
requires and the complexity of code to implement that algorithm. This chapter provides 17
small-point transform algorithms for constructing larger algorithms. The choice depends
on whether computational load or code complexity is the deciding factor in a specific
design.

1.2.7 Algorithm Construction

The way in which the algorithm building blocks are connected to create a larger al
gorithm will affect the complexity and amount of the code needed to implement it. This
chapter details the Bluestein, Winograd, prime factor, and mixed-radix methods for assem
bling small-point transforms into larger algorithms.

1.2.8 DSP Chips

The selection of which Harvard architecture nspchip to actually compute the algo
rithm is determined by the cost and speed considerations of the application, the number
of chips needed, a suitable architecture (for multiple-processor designs), and available pe
ripheral hardware to handle some of the functions. This chapter covers the FFf-related
features of 51 fixed-point nsp chips, including ASIC and multiple-processor chips, 13
floating-point DSP chips, and 6 dedicated FFf chips.

1.2.9 Architectures

Bit-slice, arithmetic chips were used to construct FFf applications prior to the in
troduction of DSP chips. However, advances in silicon technology have replaced bit-slice
building blocks with nsp chips that include a complete fixed- or floating-point multiplier
and adder, as well as memory and program control logic.

4 CHA~ 1 OVERVIEW

All of the DSP chips in this book use a Harvard architecture for interconnecting
these elements. FFf-specific chips interconnect several arithmetic building blocks into a
small-point FFf to increase performance. Multiprocessor interconnections (pipeline, linear
bus, ring bus, crossbar, two- and three-dimensional massively parallel, star, hypercube, and
hybrid architectures) of DSP chips are used when a single chip is not adequate. In fact, up to
four Harvard processors are now available on a single chip (SPROC 1000 and TMS320C80
families). Chapter 10 describes bit slice, integrated arithmetic and FFf-specific hardware
building blocks. Then Chapter 11 shows how to use them in single and multiprocessor
architectures. These two chapters prepare the reader for mapping the algorithms in Chapter 9
onto these architectures.

1.2.10 Mapping Algorithms onto Architectures

How an algorithm is mapped onto the chosen architecture will affect the throughput
(how many FFfs per second) and the latency (the delay between input and output) of that
algorithm. This chapter explains how to map FFf algorithms onto single and multiprocessor
architectures to attain either maximum throughput or minimum latency performance.

1.2.11 Board Decisions and Selection

A commercial, off-the-shelf (COTS) board can reduce the time and cost of getting
to market with a board-level FFT product. With several dozen manufacturers selling a
wide variety of DSP boards suitable for doing FFTs, board selection is a complex deci
sion. Whether the chip selection process has narrowed the choice to a chip or to multiple
acceptable chips, the following five areas cover the main issues of choosing or developing
a board:

1. Algorithm performance

2. I/O Performance

3. Architecture

4. Software support

5. Expansion capability

1.2.12 Test Signals and Procedures

The design process can bog down in algorithm development and conversion to code
if there are no easy ways to detect and isolate errors. Having an efficient set of test signals
to use as inputs to an FFf algorithm or its code allows quick detection and precise isolation
of errors. In combination with these signals, flow graphs of the algorithm and code are
needed to trace an error back to its source. The same signals can be used to do end-product
and built-in testing.

1.3 TYPES OF EXAMPLES

The extensive use of examples is one of the unique features of the book. In addition to the
four design examples in Chapter 17, six kinds of algorithm examples are used to demonstrate
the wide array of concepts and facts the book contains. The particular lengths were chosen

SEC. 1.3 TYPES OF EXAMPLES 5

because they are large enough to show the pattern of an algorithm yet small enough to easily
follow.

1.3.1 Eight-Point OFTto FFT Example

Section 3.3 explains that all of the FFT algorithms presented in this book are based
on ways to remove redundant computations from the DFT equations without changing the
final result of the equations. While deriving an FFT algorithm from its OFT origins is a
theoretical process, using an example is a practical way of seeing the principle.

1.3.2 Algorithm Steps and Memory Maps

Sections 8.3 through 8.10 contain 17 examples of building-block algorithms that are
most likely to be used to construct larger algorithms. These are the most efficient small
point transforms to implement. For each example every arithmetic operation (Algorithm
Step) is given, with a memory address (Memory Map) beside it, for the results. Instructions
are given for converting these small-point transforms into code. This coding can be in
any of the chip vendors' assembly languages or in a high-level language. To convert to
assembly language, both the Algorithm Steps and their companion Memory Map will be
needed. Conversion to high-level languages, such as versions of C or FORTRAN, only
require use of the Algorithms Steps.

1.3.3 Fifteen-Point or 16-Point FFT Algorithm Examples

In Chapter 9 seven I5-point or 16-point FFf algorithm examples, using the building
blocks from Chapter 8, show how to implement the general types of FFT algorithms. A
technique for relabeling Memory Maps from Chapter 8 is given and illustrated in these
examples. Power-of-two and non-power-of-two examples are used to illustrate the range
of algorithms that cover computing any transform length.

1.3.4 Sixteen-Point Radix-4 FFT Algorithm Examples

In Chapter 12 a 16-point, radix -4 FFf algorithm is used in one single-processor
and nine multiprocessor examples. Maximum throughput and minimum latency examples
are done for mapping the algorithm and its data, for a total of 20 examples. A 16-point
example is used because it is a typical power-of-two length and familiar from Chapter
9. The reader is given all the input, intermediate, and output steps needed to code the
algorithm.

1.3.5 Four-Point FFT and l6-Point Radix-4 FFT Algorithm
Examples

In Chapter 16 the 4-point FFT (a small-point building-block algorithm in Chapter 8)
and 16-point, radix -4 FFT examples are used again to explain how to detect and isolate
errors in FFT algorithm development, code development and debugging, and end-product
operation. Flow graphs are used to show how to track an error through an algorithm.
Equations show how to verify Algorithm Step accuracy. Algorithm Steps and Memory
Maps are used with test signals to show how the results are altered by an error in an
algorithm. The altered results illustrate how to isolate a detected error.

6 CHA~ 1 OVERVIEW

1.4 DESIGN EXAMPLES

In Chapter 17, frequency analysis, power spectrum estimation, linear filtering, and two
dimensional processing examples were chosen to illustrate:

• Three common uses of the DFf from Chapter 2

• Single and multiprocessor architectures from Chapter 11

• Three algorithms from Chapter 9

• Three classes of chips (fixed-point, floating-point, and FFf-specific) from Chap
ter 14

Whether the design will be single or multiple chip on single or multiple boards may not
be determined until far into the design process. In this chapter both multiple-chip and
multiple-board applications are developed to illustrate making those decisions. These are
not intended to be full-scale product designs. They are taken far enough into a design to
show how to use the wide array of information in the book.

1.4.1 Doppler Radar

Example 1 is the Doppler processing portion of a ground-based air surveillance radar.
This can be used for commercial airport air traffic control or for Doppler weather radar, as
well as defense applications. Doppler weather radar has become a household word in the
1990s, through its use in daily weather forecasting and broadcasts. Doppler processing is
a classical use of frequency analysis, the first common use of the DFT.

1.4.2 Power Spectrum Estimator

Example 2 is a power spectrum estimator personal computer (PC) plug-in board.
Commonly used to modify PCs for use as sophisticated instrumentation, plug-in boards
generate hundreds of millions of dollars of business. Earthquake prediction, satellite com
munication, and magnetic fields are areas of intense public interest, where the signals a
board like this can analyze are found. There are countless other applications where rec
ognizing signals and the patterns in them can have a life-saving effect. This is the third
common use of DFTs-frequency domain conversion.

1.4.3 Speech Recognition

Example 3 is the signal processing portion of a voice-activated number recognition
system. Voice dialing of car phones, one of many products for the burgeoning consumer
electronics market, is a use for this. This technique can also be applied to other numerical
data entry situations, where hands are not free to use a keypad; speaker verification for
security systems; and credit card fraud protection. This speech application taps DFT's
ability to provide a numerical shorthand of a signal, its second common use, and its use for
frequency analysis.

1.4.4 Image Deblurring

Example 4 is another PC plug-in board, this one for doing image deblurring. The PC
housing this board could be found at a police station, crime lab, or as instrumentation for

SEC. 1.5 CONCLUSIONS 7

an engineer or researcher. Though deblurring images does not have the widespread uses of
the first three examples, the image processing principles it employs do. Some of them are
CAT scans and MRls, seismic exploration, and multimedia applications. Like Example 2,
this product does frequency domain conversion, the third common use of the OFT.

1.5 CONCLUSIONS

This chapter provides an overview of the contents of the book. From a foundation in the
OFT through design examples, the authors have tried to present a logical, easy to follow
explanation of how to implement real-time FFTs on commercially available processors.
Digital signal processing is a mushrooming field of technology. The FFT is a valuable
technique for synthesizing, recognizing, enhancing, compressing, modifying, or analyzing
digital signals from many sources.

The next chapter, on the Off, lays the foundation for all that is said about the FFf in
subsequent chapters.

2

The Discrete Fourier Transform

2.0 INTRODUCTION

The discrete Fourier transform (Off) is an equation for converting time domain data into
frequency domain data. Discrete means that the signal is sampled in time rather than being
continuous. Therefore, the OFT is an approximation for the continuous Fourier transform
[1]. This approximation works well when the frequencies in the signal are all less than half
the sampling rate (Section 2.3.1) and do not vary more than the filter spacing (Section 2.3.2).

Because of heat-transfer work done by the French mathematician J. B. Fourier in
the early 1800s, many fields of science and engineering have benefited from the use of his
mathematical link between time and frequency domains, called the Fourier transform, This
link is valuable because many natural or man-made signals (waveforms) are periodic and
thus can be expressed in terms of a sum of sine waves. Mathematicians realized that rather
than compute continuous spectra, they could take discrete data points in the time domain and
translate that information into the frequency domain, and so the discrete Fourier transform
came into being.

The Off equation, unlike the continuous Fourier transform, covers a finite time and
frequency span. These data points may be collected from the output of an analog-to-digital
(AID) converter, generated by a digital computer, or output from another signal processing
algorithm. They can be the plotted points of the performance of any numerical data, such
as stock prices. The OFT equation is implemented with FFT algorithms because they are
computationally efficient ways of calculating it. The properties (Section 2.3) and strengths
(Section 2.5) of the OFT also belong to the FFT. However, only three of the weaknesses
(Section 2.6) of the OFT are also weaknesses of FFT algorithms.

Comparison of the uses and properties of the OFT, with the technical specifications
of the application, determines if the OFT will be useful. If so, it makes sense to examine

10 CHAP. 2 THE DISCRETE FOURIER TRANSFORM

the FFT algorithms, hardware architectures, arithmetic formats, and mappings in this book
to decide which combination of them will provide the specified performance. This chapter
lays the technical foundation for the FFf algorithms in Chapters 8 and 9.

2.1 COMMON USES OF THE OFT

The three common uses of the Off are:

1. Frequency analysis, which is determining the size and location of frequencies in
a signal. See Chapter 5 for details.

2. Reduction of adds and multiplies in linear filtering (convolution) and pattern
matching (correlation). See Chapter 6 for details.

3. Numerical shorthand as a way of describing a signal. For example, the power
coming out of an electrical outlet is described as 120 volts at 60 cycles. This is
Fourier transform shorthand using only two numbers to describe a continuously
changing waveform. The same shorthand is used in signal processing to describe
any time domain signal as a sum of sine waves. The speech analyzer example in
Chapter 17 takes advantage of this use of the DFT.

2.2 EQUATION AND BLOCK DIAGRAM

Equation 2-1 is the standard description of the OFf of N complex data points, a (n).

N-l

A(k) = L a(n) * wt*n
n=O

where WN = cos(21l' / N) - j sin(21l'/ N) (2-1)

Before the Off properties are described, it is useful to have a simple picture of the function
that Equation 2-1 is performing.

Since Equation 2-1 takes the same set of N input data points, a(n), and produces
N output signals, A(k), each representing a different frequency, the N-point DFT can be
modeled as an array of N narrowband filters, each providing an output if the input signal has
frequency components in its passband. Since a narrowband filter can be implemented with
a multiplier and a low-pass filter (LPF), Figure 2-1, on page 11, can be used to represent
the DFT. The only difference between the DFT and this array of narrowband filters is that
the DFT only produces an output from each filter every N input samples. A narrowband
filter produces an output for every new input data point.

2.3 PROPERTIES

All FFT algorithms are just faster ways of computing the OFf equations; they are not ap
proximations for the OFTequations. Thus the Off properties described in this section apply
to all FFT algorithms. These properties have been derived in detail in many textbooks [1-4].

2.3.1 Frequency Limits

The first property to be understood about the DFT is the frequencies that it can
unambiguously determine. That range is defined by the sampling theorem [5], also called

a(n)

SEC.2.3

A(O)

A(I)

PROPERTIES 11

•
•
•

•
•
•

A(N-l)

Figure 2-1 Block diagram of the DFf as an array of narrowband filters.

the Nyquist rate [6]. The DFT determines the presence of zero-frequency signals in the input
data points by calculating A(0). The A (1) term in Equation 2-1 determines the presence of
a sine wave that goes through exactly one 3600 cycle during the N data points. Similarly,
the A(k) term determines the presence of sine waves that go through exactly k 3600 cycles
during the N data samples.

The frequencies A (k) in Equation 2-1 are the only ones that the DFf computes. When
the frequency of a signal is higher than the sampling rate, the sampled version of the signal
appears to be at the signal's frequency minus the sampling rate. To illustrate this, consider
a sine-wave signal that goes through exactly N 3600 cycles during the N input data points.
That means it goes through exactly one 3600 cycle between each data point. Therefore,
every time it is sampled it has the same data value. However, a zero-frequency signal also
has the same value each time it is sampled. Therefore, the DFf cannot distinguish between
zero-frequency sine waves and sine waves that go through N 3600 cycles during the N
samples.

The Nyquist rate is a formal mathematical description of this phenomena. For a DFf
to accurately represent frequencies up to F samples per second, a sample rate of at least
2 * F samples per second is required. Further, frequencies that are higher will appear to be
lower-frequency signals (ambiguous), just as the sine waves in the previous paragraph that
had N 3600 cycles in N samples looked the same as the zero-frequency sine wave. A sine
wave with 2 * N 360 0 cycles in N samples also looks the same as a zero-frequency sine
wave.

For real signals, the sampling theorem, as stated above and by Shannon, holds directly.
If the samples are complex, real and imaginary samples are taken at the sampling rate. The
result is two samples at the sampling rate or samples taken at twice the sampling rate. This
implies that, for complex sampling, frequencies are unambiguously analyzed by the DFT
up to the complex sampling rate F.

where WN1 = cos (21l'1 N) + j sin (21l'1N) (2-3)

12 CHAP. 2 THE DISCRETE FOURIER TRANSFORM

2.3.2 OFT Filter Spacing/Nulls

Since there are N equally spaced OFf filters between zero and the sampling rate, the
spacing between the filters is 1I N times the sampling rate. It is important to note that 1I N
times the sampling rate is also the total time period over which the N samples were taken.
Therefore, the filter spacing is equal to l/(total time for data collected for the Off input).
Further, the Off filters are designed so that, if a signal has an input frequency in the center
of one of the filters, the other filters do not respond. Therefore, the spacing between the
center of a DFT filter and its first null response is equal to the 1/(total time for data collected
for the DFf input). In filtering terms, each OFT filter has a null in its response at the input
frequencies of the other filters.

2.3.3 Linearity

Linearity means that the output of the OFT for the sum of two input signals is ex
actly the same as summing the OFf outputs of two individual input signals, as shown in
Equation 2-2.

N-I N-I N-I

C(k) = L[a(n) + b(n)]Wtn = L a(n)Wtn + L b(n)Wtn = A(k) + B(k) (2-2)
n=O n=O n=O

2.3.4 Symmetry

The symmetry property is helpful in understanding the response of a Off to a par
ticular waveform, It states that if A(k) = OFf of a(n), then an input waveform with the
shape of A(n) will have a OFf equal to a(N - k).

2.3.5 Inverse OFT

The inverse discrete Fourier transform (10FT), shown in Equation 2-3, is used to
convert frequency information into time domain data points. This property allows the OFT
to be used to perform linear filtering and pattern matching in the frequency domain. These
frequency domain algorithms are described in Chapter 6 and often require fewer adds and
multiplies than doing linear filtering and pattern matching directly in the time domain.

N-I

a(n) = [liN] L A(k)WNkn

k=O

2.3.6 Ease of IDFT Computation

Notice that the IOFf, Equation 2-3, is similar to Equation 2-1, which describes the
OFT. This similarity makes it possible to use almost the same algorithm to compute the IDFT
as is used for the OFT. This is most simply illustrated by Equations 2-4 and 2-5. Except for
the factor of 1IN, the difference between the 10FT equation and the Off equation is the
sign of the sine terms of Wkn •

wtn = cos(21l'knlN) - j sin(21l'knlN) (2-4)

w;: = cos(21l'knIN) + jsin(21l'knIN) (2-5)

SEC. 2.3 PROPERTIES 13

Therefore, any OFT or FFT algorithm can be converted to its comparable 10FT algorithm
by changing the sign of the coefficient multipliers formed by the sine terms and dividing
the results by N. This becomes important when using the frequency domain algorithms in
Chapter 6 to perform linear filtering and pattern matching. In those algorithms, FFfs and
IFFTs are required. This property allows the same FFT algorithm to be used for both the
FFT and IFFT portions of the computations,

2.3.7 Time and Frequency Scaling

The OFT performs frequency analysis on sequences of digital data points, independent
of the source of these data points or how fast the AIDwas that took the samples. Therefore, it
determines only the presence of frequency components that repeat 0, 1, ... up to N -1 times
during the N data points. This means that, if the same sequence of numbers is collected
from AIDconverters with different sampling rates, the OFT outputs, A(k), will be identical.
However, the output A (1) represents the presence of a higher frequency from the AIDoutput
that was sampled at the higher rate.

Summarizing, if the time between AID samples is scaled (i.e., the sampling rate
is changed), then the frequency represented by each OFT output is also scaled (Le., the
frequency it represents is changed). For example, if the AID rate is doubled, each Off
output A (k) represents the presence of a frequency that is also doubled.

2.3.8 Time and Frequency Shifting

This property of the OFT is most easily illustrated by using a sine wave at frequency
k as the input signal. Then OFT filter k will output the amplitude and phase A(k) of that
sine wave in the input signal. The phase of the sine wave at sample 5 is different than at
sample O. Therefore, if the DFT is performed on samples 5, 6, ... up to N + 4 (i.e., a time
shift of five samples) of the same input signal, the phase in the output of Off filter k will be
changed by the difference in phase between samples 0 and 5. Since the OFT is linear, this
phenomena is true regardless of the number of sine waves that comprise the input signal.

Figure 2-2 shows this phenomena for a signal that is a single sine wave that repeats
once during 16 samples. This signal has one Off output response, in filter A (1). Since the

05

a(n)

-05

-1 '---_'---_'---_L.--~L.---..._______'L..__..____JL...---____JI..______JL...___~L..._______J

o JOO 400 600 sao 1000 1~00 1400 1600 1S00 ~OOO

I~ Samples 0-15 ~I

f.---- Samples 4-19 ~ I
Figure 2-2 Time shift example.

14 CHAP. 2 THE DISCRETE FOURIER TRANSFORM

sine-wave phase for samples 0-15 is zero, the A(I) FFf output has zero phase. Since
the sine-wave phase for samples 4-19 is 90°, the A(I) FFf output has 90° phase.

Similarly, if a frequency component A(k) is shifted to a new frequency A(k - i), then
the IDFT of the shifted frequency is a sine wave at frequency k - i. This sine wave can
also be obtained by multiplying a sine wave at frequency k by a sine wave at frequency i.
This is mathematically described by multiplying the original input signal by a complex sine
wave. Again, since the IDFf is linear, this phenomena is true regardless of the number of
sine waves that comprise the sampled signal.

Time and frequency shifting are represented mathematically by Equations 2-6 and 2-7.

a(n + i) ¢> A(k)e- j21rki/N (2-6)

A(k - i) ¢> a(n)e+j2Trni/N (2-7)

2.3.9 Parseval's Theorem

The power of a sequence of input data points is defined as the sum of squares of
all the values of the data points. Parseval's theorem is a way of computing the signal's
power after it has been converted by an FFf to its frequency components A(k) as shown in
Equation 2-8.

N-l N-l

L a
2(n) = 1/N L IA(k)1 2

n=O k=O

(2-8)

Therefore, except for a factor of 1/N, the sum of the magnitudes of the FFf outputs
is the same as the sum of the magnitudes of the input samples. Therefore, the fOnTIS of the
outputs of an FFf allow the power in a signal to be calculated as easily in the frequency
domain as in the time domain.

2.3.10 Zero Padding

Zero padding is a technique used when a signal does not have as many samples as the
FFf to be used for analyzing the signal. For example, if the application requires analyzing
12 input samples, but the engineer wanted to use a 16-point FFT, four zeros are added
to the 12 samples to produce the 16 samples needed by the FFf. The advantage of zero
padding is that it allows variable data collection lengths to be input to a single FFf algorithm
designed to calculate the FFf of a longer sample length. The disadvantage is that the center
frequencies of the 16-point FFf filters are not at the same frequencies as those of a 12-point
FFf that was matched to the data collection needs of the application.

There is a subtle effect of using zeros, or any other numbers, to fill in uncollected
data samples. From the sampling theorem, the unambiguous frequency range of the 12- or
16-point FFfs can only be from zero to the sampling rate, or half that rate if the input signal
is real rather than complex. However, from Section 2.3.2, the spacing from the center of
each filter to its first null response is equal to l/(total time for data collected for the FFT
input). Since the total collection time for the data in the 12- and 16-point FFfs is the same,
the spacing to each filter's first null response must be the same. For the 12-point FFT this
occurs at the location of the center of the adjacent filter. For the 16-point FFT this is not
true because 16 filters are equally spaced in the same frequency range as the 12 filters. The
result is that each of the 16-point FFf filters will have responses to signals that are at the
centers of the other 16-point FFf filters.

SEC.2.3 PROPERTIES 15

Figures 2-3 and 2-4 illustrate the effects zero padding has on the real and imaginary
parts of the responses of 12- and 16-point FfTs, for a I-kHz sine wave that has been sampled
at 12 kHz. In Figure 2-3 the real part has an amplitude of zero and the imaginary part has
a nonzero amplitude at filters 1 and 11. This is because the sine wave has a 2700 phase.
This particular phase was used so that the real parts would be obviously different between
the 12- and I6-point transforms. In Figure 2-4 the real and imaginary parts have nonzero
responses in most of the filters because four zeros are appended to the 12 actual samples,
and a 16-point FFf is performed.

Real Part Imaginary Part

OJ----------

15105

/-------"

10

5

0 ,/1
-5 \/

-10
015

I

I
10

I

.5

I

Figure 2-3 Twelve-point FFT response to I-kHz input samples.

Real Part Imaginary Part

15

I

I

10

I

I

5

5r-----.,-----r------,

/
/

o ~ f'-. .~----.-.---------..",..•• -}-

1'1,\ t
J

-5~--------'-------'

o15

I

10

I

5

5~--~---"'-----'

Figure 2-4 Sixteen-point FFf response to 12 samples and four zeros
of I-kHz input samples.

The 16 FFf filter outputs in Figure 2-4 only span a 12-kHz frequency range because
12 kHz is the sample rate. With 16 filters to span the 12 kHz, the frequency spacing between
them is smaller. This example shows that appending zeros to the end of the periodic sine
wave, to make it a power-of-two length, alters the real and imaginary responses of the FFf
filters. The weighting functions in Chapter 4 are used to minimize zero-padding effects.

2.3.11 Resolution

The resolution of two sine waves is defined as how close they can be in frequency
before they can no longer be distinguished. If two frequencies are positioned at adjacent
DFT filter outputs, namely A(k) and A(k+ 1), then they are distinguishable. If the frequency
at k + 1 moves closer to frequency k, then it will start to appear as part of the passband of

16 CHA~ 2 THE DISCRETE FOURIER TRANSFORM

A(k), as well as A(k+ 1), and it is no longer clear whether there is one signal at a frequency
between k and k + 1 or two separate signals near k and k + 1.

Therefore, the frequency resolution of the OFf is the separation between adjacent
filters. Since there are N filters that cover the region from zero to the sampling frequency,
the Off resolution is the sampling frequency divided by N. This implies that, for a given
sampling rate, the longer the transform length the better the frequency resolution of the
analysis.

2.3.12 Periodicity

Section 2.3.1 showed that the Off correctly analyzes frequencies from zero to half
the sampling frequency. All other frequencies appear to be frequencies between zero and
half the sampling rate. For complex inputs the real sampling rate is actually twice the
sampling rate for the real or imaginary parts because both are being sampled at the same
time. This leads to the two rules for the way frequencies below zero and above the sampling
rate are analyzed by the OFT, one for complex signals and the other for real signals.

For complex input signals, periodicity means that frequencies that are higher than
the sampling frequency appear at frequencies that are less than the sampling frequency
(A(N + k) => A(k». Similarly, negative frequencies appear as if they are at the sampling
frequency minus their frequency (A(-k) => A(N - k».

For real input signals with frequencies, k, below half the sampling rate, OFT filters
k and N - k respond. Note that these two responding filters are symmetric about half
the sampling rate. If the frequency is less than zero, add twice the sampling rate to the
frequency and then apply the rule in the first sentence of this paragraph.

2.3.13 Summary of Properties

These 12 DFT properties:

• Apply to all of the FFf algorithms in Chapters 8 and 9

• Provide the framework for the capabilities of FFfs described in Chapters 5, 6, and 7

• Allow multiple mapping options for FFfs onto the multiprocessor architectures in
Chapter 12

• Underlie the capabilities of the test signals in Chapter 16

• Provide the basis for using the FFT in the examples in Chapter 17

2.4 REAL INPUT SIGNALS

The OFT (Equation 2-1) produces complex frequency response outputs based on an input
data sequence that is complex. However, many applications that can take advantage of the
DFT have only real input data. The speech analyzer (Example 3) in Chapter 17 is one such
application.

The OFT of a real data sequence can be computed directly by setting the imaginary
part of the input sequence to zero. However, since the OFT is a linear algorithm, and a
complex signal is the sum of a real signal and an imaginary one, it is possible to process a
second real signal by entering it as the imaginary part "ofthe input signal. The Off output
for this combined input is the sum of the output for the real input plus j times the DFf
output for the second real signal [1,2].

(2-10)

SEC. 2.4 REAL INPUT SIGNALS 17

Equations 2-9 to 2-11 define the process of combining real signals a (n) and b(n) to
form a complex input to the DFf. Since both A (k) and B(k) are complex sets of numbers, an
additional step must be performed on the output of the DFf algorithm to separate these two
real input signals. The algorithms in this section show two ways of utilizing the DFT for
frequency analysis of real signals. The first is for the case of two independent real signals.
The second is to more rapidly compute the frequency content in a single real signal.

N-l

A(k) == L a(n) * W
kn

(2-9)
n=O
N-l

B(k) == L ben) * wkn

n=O
N-I

C(k) == A(k) + jB(k) == L[a(n) + jb(n)] * wkn

n=O

2.4.1 Two-Signal Algorithm

(2-11)

If an application has more than one real signal for which the frequency components
need to be computed, an algorithm has been constructed to combine pairs of these signals
into one FFT computation. A vital constraint of this algorithm is that the transform lengths
must be the same for both real input signals. If there are an even number of real signals to
be transformed, the signals can be paired off into FfTs that all operate on artificially created
complex input signals.

The stages of the two-signal algorithm are presented using real input signals a (n) and
b(n) as examples and assuming both a (n) and b(n) have the same number of samples to be
converted. Stage 3 is different for N an odd integer than for N an even integer. The odd
and even versions of the two-signal algorithm are presented as Cases 1 and 2 in Stage 3 of
the algorithm.

Stage 1: Form the Complex Input Signal

For each n == 0,1,2, ... , N - 1, combine a(n) and ben) into the complex input
function c(n):

c(n) == a(n) + j * ben)

Stage 2: Compute an N-Point FFT

Compute the N-point FFT of c(n) to obtain the N frequency components C(k), k ==
0, 1,2, ... , N - 1, and identify the real and imaginary parts of C(k) as R(k) and I (k),

respectively, where R(k) and I (k) are real:

N-l

C (k) == L c (n) * e- j2rrkn / N == R (k) + j * I (k)
n=O

In Equation 2-11, C(k) == A(k) + j * B(k), but both A(k) and B(k) are complex numbers.
This is why Stages 3 and 4 are needed to compute A(k) and B(k) from the outputs of this
stage. The variables RP(k), RP(N -k), RM(k), RM(N -k), I P(k), I peN -k), I M(k),
and I M(N - k) are used to compute the intermediate results necessary to convert R(k) and
I (k) to A (k) and B(k).

18 CHAP.2 THE DISCRETE FOURIER TRANSFORM

Stage 3: Separate Outputs into Real and Imaginary Parts

Case 1: N Is an Odd Integer

If N is odd, then for each k = 1,2, ... , (N - 1)/2, compute

RP(k) = RP(N - k) = 0.5 * [R(k) + R(N - k)]
RM(k) = -RM(N - k) = 0.5 * [R(k) ~ R(N - k)]
I P(k) = I PtN - k) = 0.5 * [/(k) + I(N - k)]
I M(k) = -IM(N - k) = 0.5 * [/(k) - I(N - k)]
RP(O) = R(O)
I P(O) = 1(0)

RM(O) = I M(O) = 0

This requires 2(N - 1) adds and no multiplies because multiplying by 0.5 is just shifting the
binary point to the left 1 bit. Note that this algorithm does require each computed answer to
be stored in two places. This puts an additional burden on the memory address generators
of the nspchips (Chapter 14) used to compute the answers.

Case 2: N Is an Even Integer

If N is even, then for each k = 1,2, ... , (N - 2)/2, compute

RP(k) = RP(N - k) = 0.5 * [R(k) + R(N - k)]
RM(k) = -RM(N - k) = 0.5 * [R(k) - R(N - k)]
I P(k) = I peN - k) = 0.5 * [I(k) + I(N - k)]
I M(k) = -IM(N - k) = 0.5 * [/(k) - I(N - k)]
RP(O) = R(O)
I P(O) = 1(0)

RM(O) = IM(O) = RM(N/2) = IM(N/2) = 0
RP(N/2) = R(N/2)
I peN/2) = I(N/2)

This requires 2(N - 2) adds and no multiplies because multiplying by 0.5 is just shifting the
binary point to the left 1 bit. Note that this algorithm also requires each computed answer to
be stored in two places. This puts an additional burden on the memory address generators
of the nsp chips (Chapter 14) used to compute the answers.

Stage 4: Compute the FFT Outputs for Each Real Input Signal

For each k = 0,1,2, ... , N - 1, identify the FFf output A(k) and B(k) for each of
the real input signals a(n) and ben), respectively, as

A(k) = RP(k) + j * I M(k)
B(k) = I P(k) + j *RM(k)

The total number of computations for the two-signal algorithm is the number of adds and
multiplies required by the FFf algorithm plus the 2*(N - 1) or 2*(N - 2) adds in Stage 3,
depending on whether N is odd or even.

2.4.2 Double-Length Algorithm

If an application requires computing the M frequency components of only one real
signal, then an algorithm has been developed to compute that M -point transform using an

SEC. 2.4 REAL INPUT SIGNALS 19

M /2 == N -point FFf. This algorithm significantly reduces the computational requirements
over simply assuming that the imaginary portion of the signal is zero in Equation 2-1.

The stages of this algorithm are presented for the input data sequence a (n). A vital
constraint of this algorithm is that it is restricted to transform lengths, M, that have a factor
of 2 so that M /2 == N is an integer. Stage 3 is different for N an odd integer than for N
an even integer. The odd and even versions of the double-length algorithm are presented as
Cases 1 and 2 in Stage 3 of the algorithm.

Stage 1: Form Complex Input Signal

For n == 0, 1,2, ... , N - 1, divide the input sequence a(n) into sequences ben) and
c(n), and form the complex FFT input den) by using ben) for the real part and c(n) for the
imaginary part:

ben) == a(2 *n)

c(n)==a(2*n+l)

den) == ben) + j * c(n)

Stage 2: Compute an N-Point FFT

Compute the N -point FFT of den) to obtain the complex frequency components D(k),
and identify the real part of these components as R(k) and the imaginary part as I (k).

N-l

D(k) == L den) * e-j2Jrkn/N

n=O

D(k) == R(k) + j * I(k)

Note that R(k) and I(k) are real numbers equal to the real and imaginary parts of D(k)
respectively. This is why Stages 3 and 4 are needed to compute A(k) from the outputs
of this stage. The variables RP(k), RP(N - k), RM(k), RM(N - k), I P(k), I Pt N

k), I M(k), I M(N - k), AR(k), AR(M - k), AI(k), and AI(M - k) are used to compute
the intermediate results necessary to convert R(k) and I (k) to A(k).

Stage 3: Separate Outputs into Real and Imaginary Parts

Case 1: N Is an Odd Integer

If N is odd, then for each k == 1,2, ... , (N - 1)/2, compute

RP(k) == RP(N - k) == 0.5 * [R(k) + R(N - k)]
RM(k) == -RM(N - k) == 0.5 * [R(k) - R(N - k)]
I P(k) == I PiN - k) = 0.5 * [/(k) + I(N - k)]
I M(k) == -IM(N - k) == 0.5 * [/(k) - I(N - k)]
RP(O) == R(O)
I P(O) == 1(0)

RM(O) == I M(O) == 0

This requires 2(N - 1) adds and no multiplies because multiplying by 0.5 is just shifting the
binary point to the left 1 bit. Note that this algorithm does require each computed answer to
be stored in two places. This puts an additional burden on the memory address generators
of the DSP chips (Chapter 14) used to compute the answers.

20 CHA~ 2 THE DISCRETE FOURIER TRANSFORM

Case 2: N Is an Even Integer

If N is even, then for each k = 1, 2, ... , (N - 2)12, compute

RP(k) = RP(N - k) = 0.5 * [R(k) + R(N - k)]
RM(k) = -RM(N - k) = 0.5 * [R(k) - R(N - k)]
1P(k) = 1P(N - k) = 0.5 * [/(k) + I(N - k)]
1M(k) = -IM(N - k) = 0.5 * [/(k) - I(N - k)]
RP(O) = R(O)
1P(O) = 1(0)

RM(O) = 1M(O) = RM(N12) = 1M(N12) = 0
RP(NI2) = R(NI2)
1P(N12) = I(N12)

This requires 2(N - 2) adds and no multiplies because multiplying by 0.5 is just shifting the
binary point to the left 1 bit. Note that this algorithm also requires each computed answer
to be stored in two places. This also puts an additional burden on the memory address
generators of the DSP chips (Chapter 14) used to compute the answers.

Stage 4: Compute the FFT Outputs for Each Real Input Signal

For each k = 1,2, ... , N - 1, identify the FFT output A(k) as

AR(k) == AR(M - k) = RP(k) + ccstkn]N) *1P(k) - sin(kJrIN) * RM(k)
AI(k) == -AI(M - k) = 1M(k) - cosikn1N) * RM(k) - sin(kJr1N) * I P(k)
AR(O) == RP(O) + I P(O)
AI(O) = IM(O) - RM(O)

AR(N) == R(O) - 1(0)
AI(N) == 0

A(k) = A(M - k) = AR(k) + j * AI(k)

This requires 4 *N - 1 adds and 4 * (N - 1) multiplies. Note that this algorithm requires
each computed answer to be stored in two places. This puts an additional burden on the
memory address generators of the DSP chips (Chapter 14) used to compute the answers.

The total number of computations for the double-length algorithm is the adds and
multiplies required by the FFT algorithm, N F, plus 5 * M - 7 or 5 * M - 9, depending on
whether N is odd or even.

2.5 STRENGTHS

The DFT has four types of strengths. The first two are associated with the types of data
the DFT analyzes. The third is associated with the way data (complex samples) must
be collected and processed by a DFT. The fourth is associated with the signal-to-noise
improvement offered by the DFT.

2.5.1 Periodic Signals

The DFT is an equation for converting time domain data into its frequency compo
nents. However, it only converts the signal to the specific frequency components A (k) in
Equation 2-1. Since the signals associated with these frequency components go through
0, 1, ... , N - 1 3600 cycles during the N input data points, any sum of them must also
repeat itself a whole number of times during the N input data points. Therefore, the DFT

SEC. 2.5 STRENGTHS 21

is ideal for analyzing the sine waves in a signal when the signal repeats an integer number
of times (i.e., is periodic) during the N input data samples.

Even if the data is not periodic during the N samples, the OFT output is still the
amplitude and phase of a set of frequencies that can be used to reconstruct the time domain
signal. However, the OFT's output frequencies are not the actual ones in the signal. The
frequency-shift-keyed (FSK) modem example in Section 2.6.5 is a good illustration of this
phenomena. Therefore, the Off is not particularly well suited for signals that are either
never periodic (random or transient) or are periodic at a rate different from the number of
samples in the transform. Example 2 in Chapter 17 shows how to use the DFT to analyze
random signals. The ability to choose any OFf length allows the OFT to match the period
of the transient input signals.

2.5.2 Real or Complex Input Data

Equation 2-1 shows WN as a complex number. Therefore, even if the input data a (n)

is real, the output frequency data A(k) is complex. In fact, this is how the OFT provides
both amplitude and phase information for the kth frequency component in a signal. This
fact permits the OFT to be used in the analysis of real and complex input signals. Example 3
in Chapter 17 uses real input signals, and Example 1 in Chapter 17 uses complex inputs.

2.5.3 Sets of Data

Equation 2-1 shows that the frequency components, A(k), are computed on the last N
data points. In many applications the Off is computed for multiple sets of N data samples.
These sets of data may be contiguous (i.e., samples 0 through N - 1 followed by samples
N through 2 *N - 1), or they may be overlapped by any number of points (i.e., samples 0
through N - 1 followed by samples N /2 through 3 *N /2 - 1 are overlapped by half of the
samples). Since the OFT equation can be computed for any length N and for any overlap of
the sets, it provides a versatile method for performing and comparing the frequency analysis
of data sequences. Figure 2-5 shows this overlapping of data sets by (N - P)-samples.

600 800 1000 UOO 1400 1600 1800 2000200 400
-lL--.....---'-----'----4----"'--'o<:..L--_--'--_--'--_--L-_~---:.ll_....::.L__ _____J

o

a(n) 0

--os

1...-- N Samples ~I

I~ N Samples ~

I~
Samples

Sample Set 1

SampleSet 2

Figure 2-5 Overlapping data sets by (N - P)-samples.

(2-12)

22 CHAP. 2 THE DISCRETE FOURIER TRANSFORM

2.5.4 Coherent Integration Gain

Equation 2-1 shows that N input samples are summed to obtain each frequency
component value. If the input samples contain a frequency that is in the center of one of
the DFT's narrowband filters (Figure 2-1), then the frequency component at the output of
the appropriate filter will have an amplitude that is N times the amplitude of that input sine
wave. For example, the zero-frequency component A(k) sums the N samples with k = O.
If those samples are all the same, the output of A (0) is N times larger than the amplitude
of the input samples. This is one aspect of coherent integration.

The second aspect of coherent integration exhibited by each DFf output is a reduction
in noise bandwidth by a factor of N over the input signal. This is most easily understood by
using the sampling theorem (Nyquist rate) in Section 2.3.1. Namely, a signal that is properly
prepared for the DFTwill have frequency components that go no higher than the sampling
rate. Therefore, the noise bandwidth into the DFT will be limited to the sampling rate. Since
this allowable bandwidth is divided into N pieces by the N DFT bandpass filters, the output
of anyone of the filters can only have 1/N of the input noise power. Since white noise
is equally distributed across the available bandwidth by definition, the noise bandwidth of
each DFT filter is 1/N of the input bandwidth. The result is an improvement of a factor of
N in the signal-to-noise ratio of a single sine wave plus noise at the output of the DFT.

2.6 WEAKNESSES

The DFT has five weaknesses. The first two are improved through the use ofFFT algorithms.
The second two are improved by applying a weighting function to data before computing
an FFT of it. The fifth, inaccurate identification of frequencies in a transient signal, is not
improved by FFT algorithms. Transforms that do identify transient signals are not addressed
in this book.

2.6.1 Computational Load

Computational load is the number of adds and multiplies that must be performed.
Equation 2-1 shows that N complex multiplies and N - 1 complex adds are required to
compute each of the N DFT outputs. Since a complex multiply requires four real multiplies
and two real adds and a complex add requires two real adds, the total computational load
for an N -point DFT is

Adds = N(2N +2(N - 1)) = 4N2
- 2N

MUltiplies = N(4N) = 4N2

For a 1024-point DFT this is roughly 4 million adds and 4 million multiplies. Even for
audio rates on the order of 20,000 samples per second, twenty 1024-point DFTs per second
corresponds to 80 million adds and 80 million multiplies, a significant computational load.
All of the FFT algorithms presented in this book require computations on the order of
N * log, N computations rather than N 2• For a 1024-point DFf this is a reduction by a
factor of N 2/ (N * 10g2 N) or roughly 100:1. This is the fundamental motivation behind
developing and using FFT algorithms.

2.6.2 Quantization Noise Error

SEC. 2.6 WEAKNESSES 23

In a digital computer all numbers are represented by some number of bits either
as fixed- or floating-point numbers. When these numbers are used in multiplication, the
resulting number has more bits than either of the input numbers. Because the number of
bits used to represent a number must be controlled, to avoid running out of memory to store
the numbers, the outputs from arithmetic computations must be rounded off at some point.

The round-off process introduces an error that changes the results of all of the rest
of the computations that use the rounded-off results. This is called quantization noise
error. The numerous computations required by the OFT result in a lot of quantization noise
error. One of the advantages of FFT algorithms is that the reduced number of computations
reduces quantization noise error. This will be discussed quantitatively in Chapter 13.

2.6.3 High Sidelobes

Sidelobes are a way of describing how a filter responds to signals at frequencies that
are not in its main lobe, commonly called its passband. Specific details on the OFT's
sidelobes are discussed in Section 4.1.1, because weighting functions are used to control
the sidelobe behavior of OFT filters. Each OFT filter's first sidelobe is only 13 dB below the
main lobe (therefore considered high), and subsequent sidelobes fall off very slowly. The
result is that a signal with strong frequency, far away from the center frequency of a OFT
filter, will not be completely removed by that filter and can look like a significant signal at
the output of that filter.

2.6.4 Frequency Straddle Loss

Frequency straddle loss is the reduced output of a OFT filter caused by the input
signal not being at the filter's center frequency. The coherent gain of the Off is N when
the input frequency is located at the center of one of the narrowband filters whose output is
A(k). If the input frequency is halfway between two of the narrowband filters, the coherent
gain is reduced, because half of the signal will appear in one filter and half in the other.
The difference between the full coherent gain of N and this lower gain is called frequency
straddle loss. This subject is explained in more detail in Section 4.1.3.

2.6.5 Transient Signals

In Section 2.5.1 the OFT was shown to be ideal for analyzing signals that are periodic
within the number of samples being analyzed. Transient signals are not well analyzed by the
OFT. This is true regardless of whether the signal is a true transient or a transient sine wave.
An example of a transient sine wave is an FSK modem signal, which changes frequency
during the set of data points being analyzed. An FSK modem signal is a sum of two sine
waves, each of which lasts for a portion of the sequence of input samples. Figures 2-6 and
2-7 show an FSK modem signal and its OFT.

While the time waveform in Figure 2-6 shows just two frequencies, the DFf of the
time waveform in Figure 2-7 suggests there are five prominent frequencies and some smaller
ones. This is a result of the OFT analyzing transient signals as if they were periodic signals.

24 CHA~ 2 THE DISCRETE FOURIER TRANSFORM

a(n)
-

20 40 60 80 100 120 140

DataSamples

Figure 2-6 One hundred twenty-eight samples of an FSK modem
signal.

14001~001000800600400zoe

40

50r--------r-----~---__r_----_r__---_.._----..,.__---_.

~o

30

10

4(k)

Frequency Bins

Figure 2-7 One hundred twenty-eight-point Off of the FSK modem
signal.

2.7 CONCLUSIONS

The Off is a sound computational method, whose characteristics make it useful in ma
nipulating periodic signals and poor at dealing with transient signals, though it is used on
the latter when applied carefully with a thorough understanding of its limitations. Even
though the OFT equation assumes complex input signals, it is frequently used to analyze
real signals by doing input data reorganization and performing additional computations on
the output data.

Because the FFT inherits all the properties and strengths of the Off, a firm foundation
about the Off must be laid in order to see why FFfs are so useful and versatile. Its property
of linearity appears throughout the book in the implementation of many FFT algorithms.

SEC. 2.7 CONCLUSIONS 25

The next two chapters deal with the ways that four of the five weaknesses of the DFT
are minimized. The fifth drawback-being poor at analyzing transient signals-requires
transforms not covered in this book, such as wavelet and joint time frequency.

REFERENCES

[1] E. Oran Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ,
1974.

[2] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Engle
wood Cliffs, NJ, 1975.

[3J L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1975.

[4J E. Oran Brigham, The Fast Fourier Transform and Its Applications, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[5] C. E. Shannon, "A Mathematical Theory of Communication," The Bell System Technical
Journal, Vol. 27, pp. 379-423 (1948).

[6] H. Nyquist, "Certain Topics in Telegraph Transmission Theory," AlEE Transactions,
Vol. 47, pp. 617-644 (1928).

3

The Fast Fourier Transform

3.0 INTRODUCTION

Fast Fourier transforms (FFf) are a group of algorithms for significantly speeding up the
computation of the OFT. The most widely known of these algorithms is attributed to Cooley
and Tukey [1] and is used for a number of points N equal to a power-of-two. A unique
feature of this book is that it provides multiple FFT algorithms for fast computation of any
length DFf. These are found in Chapters 8 and 9. In fact, the article by Cooley and Tukey
presented a non-power-of-two algorithm which has mostly been ignored. Several of the
algorithms in Chapter 9 are spin-offs of that work.

The most important fact about all FFf algorithms is that they are mathematically
equivalent to the Off, not an approximation of it. This means that all of the properties,
strengths, and most of the weaknesses of the DFf apply to the FFf algorithms in this book.
The FFf improves two weaknesses of the Off: high number of adds and multiplies; and
quantization noise.

An example of an 8-point OFT to FFf is used in this chapter to illustrate how FFfs
actually speed up the Off. The chapter concludes with a detailed explanation of how to use
the building-block approach to construct FFfs.

3.1 IMPROVEMENTS TO THE OFT

The FFT improves the DFf by reducing the computational load and quantization noise of
the DFf.

(3-1)

28 CHA~ 3 THE FAST FOURIER TRANSFORM

3.1.1 Computational Load

Section 2.6.4 established that the total computational load for an N -point Off is

Adds = N(2N + 2(N - 1» = 4N2 - 2N

Multiplies = N(4N) = 4N2

Chapter 9 establishes that the number of computations required for FFf algorithms, regard
less of the transform length, can be expressed as a constant times N *log, (N). Therefore, the
computation reduction factor when using an FFf algorithm is a constant times N / log, (N).
The constant is different, but near 5, for each algorithm and nearly always provides a
significant advantage for using the FFT.

3.1.2 Quantization Noise

The other improvement offered by FFT algorithms is a direct result of the reduction
in the number of computations. Namely, the quantization noise generated by the FFT
computations is smaller than if the DFT had been used. The reason is that there are fewer
multiplications performed to compute each of the FFf output frequencies. This means
there are fewer places where the multiplier output must be rounded off.

For example, a 1024-point DFf requires 1024 multiplies and 1023 adds to compute
each frequency output. This presents 1024 places in the computations where results must
be rounded off. The radix-4 1024-point FFf described in Chapter 9, has only four places
in the computations where multiplications are performed. The DFf and FFT quantization
noise generated by these round-off procedures is described in more detail in Chapter 13.

3.2 FFT·SPECIFIC WEAKNESS

In addition to the weakness associated with transient input signals, the reorganization of data
and reduction of computations required by FFf algorithms leads to the need to compute all
of the output frequencies, even if only a few are required. In contrast, Off outputs can be
computed one at a time. However, this is not generally a practical weakness for two reasons.
First, FFfs are usually used for frequency analysis where all of the outputs are needed. The
second reason is that the dramatic reduction in computational load makes the FFT algorithms
more efficient, even when only a few output frequencies of the OFT need to be computed.
For example, consider the radix-2 Cooley-Tukey algorithm. In Chapter 9 this algorithm is
shown to require roughly 3 * N * log2 N adds and 2 * N * log, N multiplies. For a 1024
point FFT this amounts to 30,720 adds and 20,480 multiplies for a total of 51,200 arithmetic
operations. In contrast, each OFT output frequency requires 4 * N = 4096 multiplies and
4 * N - 1 = 4095 adds for a total of 8191 arithmetic operations. Therefore, if more than
51,200/8191 = 6.25 of the 1024 potential Off outputs are needed, it is more efficient to
use an FFf algorithm to compute all 1024 outputs and throwaway the unneeded ones.

3.3 EIGHT-POINT OFTTO FFT EXAMPLE

All of the FFT algorithms in this book are based on ways to remove redundant com
putations from the Off equations without changing their final result. The simplest way

SEC. 3.3 EIGHT-POINT DFT TO FFT EXAMPLE 29

to illustrate these techniques is to show the process for the 8-point DFT. This is the
only place in this book where an FFT algorithm is actually derived from its DFf ori
gins. The rest of the book focuses on choosing and applying the algorithms, not deriv
ing them. The building-block algorithms described in Chapter 8 are the result of using
techniques, such as those in this section, to remove redundant computations from small
OFTs.

3.3.1 Eight-Point OFT Equations in Matrix Form

Equation 3-2 is a simplified matrix representation of the 8-point DFT, based on Equa
tion 2-1. The simplification over the standard OFT equation is easily visualized by drawing
the w;n terms as vectors on a unit circle (Figure 3-1). From Figure 3-1 it is clear that the
»r rotates around the unit circle as k * n increases and the vector returns to the same
location when k * n is increased by multiples of 8.

Ao Wo WO rVo WO WO WO WO WO ao

Al WO WI w2 W3 W4 WS W6 W7
aI

A2 WO W2 W4 W6 WO W2 W 4 W6 a2
A3 WO W~~ W6 fV I W4 W7 W 2 fVS

a3

A4 WO W4 WO W4 WO W4 WO W4 a4 (3-2)

As WO WS W2 W7 W4 WI w6 W3
as

A6 WO W6 W4 W2 WO W6 W 4 W2 a6
A7 WO W7 W6 WS W4 W3 W2 WI a7

Simplified 8-point DFf matrix

W
6

5
W7W

WI

Figure 3-1 Vector representation of fVkn .

30 CHAP. 3 THE FAST FOURIER TRANSFORM

For example,

W4 - W I2 - W20 - W28 - W36
8-8-8-8-8 (3-3)

This cyclic feature of »r plays a primary role in the development of all of the FFT
algorithms in this book. In Equation 3-1 all of the exponents (k *n) of W larger than 8 have
been reduced to the equivalent power that is less than 8 by repeatedly subtracting 8 until the
exponent is less than 8. Using the example in Equation 3-3, the powers of k en = 36, 28, 20,
and 12 have all been replaced by Wi.

3.3.2 1800 Redundant Computations

The first observation from Figure 3-1 is that W~ = - r:'Wi = - »: wl = - W~,

and Wi = - Wl. If these equalities are substituted into Equation 3-2, then it is clear that
ao + a4, ao - a4, at + as, al - as, a2 + a6, a: - a6, a3 + a7, and a3 - a-j are each used
four times in the DFT equations. Therefore, computations can be removed if there is an
efficient way to compute these eight terms once and use the results in each of the other
places they are required rather than recompute them. This can be done, and the result is
matrix Equation 3-4.

Ao 1 0 1 0 1 0 1 0 ao +a4

Al 0 1 0 W 0 -j 0 -jW ao - a4

A2 1 0 -j 0 -1 0 j 0 at +as

A3 0 1 0 -jW 0 j 0 W al -as
=A4 1 0 -1 0 1 0 -1 0 ai +a6 (3-4)

As 0 1 0 -W 0 -j 0 jW a2 - a6

A6 1 0 j 0 -1 0 -j 0 a3 +a7

A7 0 0 }W 0 } 0 -W a3 - a7

Eight-point DFf with 1800 redundancies removed

3.3.3 90° Redundant Computations

The next observation from Figure 3-1 is that Wi ' wi, Wi, and Wi exhibit 90° sym
metry, namely,

Wi = wl * Wi = - j * W8
I

»: = Wi * Wi = (- j) * (- j) * Wi = -Wi (3-5)

Wl = Wi * Wi = - j * (-Wi) = j * Wi

The simplest example of using the property in Equation 3-5 to reduce computations is
in columns 0 and 4 of the matrix in Equation 3-4. Notice that rows 0 and 4 have 1
to multiply the ao + a4 and ai + a6 terms in the right-hand column vector. Similarly,
rows 2 and 6 both subtract the al + as and a3 + a7 terms. In both cases, redundant

SEC. 3.3 EIGHT-POINT OFT TO FFT EXAMPLE 31

computations can be removed by performing the required computations once and us-
ing the results twice. Other symmetries similar to this illustration also exist in Equa-
tion 3-4. When all these are exploited, matrix Equation 3-4 is converted to matrix
Equation 3-6.

Ao 1 0 0 0 1 0 0 0 (ao + a4) + (a2 + a6)

Al 0 0 1 0 0 0 W 0 (aO + a4) - (a2 + a6)

A2 0 I 0 0 0 -j 0 0 (ao - a4) - j(a2 - a6)

A3 0 0 0 I 0 0 0 -jW (ao - a4) + j(a2 - a6)
=

A4 I 0 0 0 -1 0 0 0 (al + as) + (a3 + a7) (3-6)

As 0 0 1 0 0 0 -W 0 (al + as) - (a3 + a7)

A6 0 1 0 0 0 j 0 0 (al - as) - j(a3 - a7)

A7 0 0 0 0 0 0 jW (al - as) + j(a3 - Q7)

Eight-point DFT with 900 and 1800 redundancies removed

In addition to removing redundant computations, the other important feature of this ap
proach is that the required computations are performed in a way that allows them to be
efficiently used later in the algorithm. Specifically, the first step in this version of the 8
point FFT algorithm is to compute the terms found in the right-hand vector in Equation
3-4. The second step is to combine these results as shown in the right-hand vector in
Equation 3-6.

3.3.4 45° Redundant Computations

The final observation in this example is based on noticing columns 0 and 4 of rows 0
and 4 in Equation 3-6. Notice that these terms in the matrix require the sum and difference
of terms in the right-hand vector. This does not reduce the overall computations. However,
it does complete the computational symmetry of the algorithm. The advantage of this is
that this algorithm needs only one computational building block, the sum and difference
calculation of a pair of numbers, which is called a butterfly. Therefore, not only have
this set of observations resulted in butterfly computations at each stage, but the number of
computations has been reduced.

Figure 3-2 is a flowchart of the 8-point FFf. This algorithm's detailed equations are
in Section 8.8.2. Each node in the flowchart represents a complex add, which is two real
adds. There are 24 of these nodes, which corresponds to 48 adds. Similarly, there are
two complex multiplies in the algorithm. Since these multipliers are applied to a complex
number, the algorithm requires eight real multiplies and four additional real adds. Based on
Equation 3-1, the 8-point DFT requires 4 *N2 == 256 multiplies and 4 *N2

- 2 *N = 240
adds. Therefore, this algorithm reduces the total number of arithmetic operations from
256 + 240 == 496 to 48 + 8 + 4 == 60, more than a factor of 8.

To be absolutely fair, the W~ == 1 and Wi == -1 terms in Equation 3-1 do not
require complex multiplications. This reduces the DFf computational load by 16 com-

32 CHAP. 3 THE FAST FOURIER TRANSFORM

ao A O

a4 A 1

a2
-1 A 2

a6 A 3
a 1

-1 -j A 4

as AS
-1

a3 A 6

a7 A7
-1 -j -1 -JW -1

Figure 3-2 Eight-point FFT flow graph.

plex multiplies, which is 64 multiplies and 32 adds. Removing these 96 computations
reduces the DFf arithmetic operations count to 400, which reduces the gain associated with
using the FFT algorithm to a factor of 6.67 (400/60). This is still a significant savings.
Other approaches to making the 8-point OFT fast are in Section 8.8. Most will have the
same number of total computations, even though they are derived by different approaches.

3.4 BUILDING-BLOCK CONSTRUCTION OF FFT
ALGORITHMS

The previous section described how the FFT speeds up the OFT by removing redundant
computations. This section describes the building-block approach to constructing FFT
algorithms. It is useful to have a simple picture of how the OFT is decomposed into sets of
building blocks. One way to understand this is to return to the concept of the DFf being
an array of narrowband filters.

The narrowband filters implemented by the N -point OFT equations are equally spaced
in frequency and divide the frequency spectrum into N equal increments. Suppose that N
is not a prime number so that it can be written as the product of at least two numbers,
N = P * Q. Then, with a P-point OFT, it is possible to decompose the frequency spec
trum into P equal increments (i.e., create P narrowband filters). On the left-hand side of
Figure 3-3 is a block diagram of the P-point Off based on the array of narrowband filters
concept in Chapter 2. On the right-hand side of the figure the rectangle drawn with dotted
lines is all of the narrowband filters inside the dotted lines on the left side of the figure. The
block on the right is used again in Figure 3-4 to show how the P- and Q-point OFTs are
combined to form the N -point OFT.

The outputs of each of these P narrowband filters are also a signal. It just has a
narrower bandwidth than the original input signal. Furthermore, since each narrowband
filter has one output for each P inputs, it has N / P = Q outputs for each N inputs.
Therefore, each of these P output signals can be further analyzed by decomposing its

SEC. 3.4 BUILDING-BLOCK CONSTRUCTION OF FFT ALGORITHMS 33

an er-I
LPF ~AO

er-I
LPF t-- A1 ~AO

Set of P ~Al

• • < > a --~n
Filters

• •
~Ap_l

• •

er-I
LPF t-- Ap _ 1

Set of P Filters

Figure 3-3 Block diagram of the P-point DFf as an array of narrow
band filters.

frequency spectrum into Q equally spaced increments by using a Q-point DFT to implement
Q narrowband filters. The result is Q narrowband filters for each of the P filters as shown
in Figure 3-4. If Figure 3-4 were expanded by using the block diagram in Figure 3-3, there
would be Q narrowband filters for each of the P narrowband filters. Since a narrowband
filter connected to the output of a narrowband filter is also a narrowband filter, Figure 3-4
can be redrawn as P * Q narrowband filters.

Since these N == P * Q narrowband filter outputs are also equally spaced and cover
the same frequency spectrum as an array of N narrowband filters, they must be the same as
the ones implemented by a P * Q-point OFT. This is the strategy used by each of the FFT
algorithms in Chapter 9 to decompose the FFT into the smaller building blocks described
in Chapter 8.

If Figure 3-4 is compared with the prime factor algorithm block diagrams
(Figures 9-17 and 9-18) or the mixed-radix algorithm block diagrams (Figures 9-23, 9
24, and 9-25), two differences are noticed. First, the frequency component outputs are in
different order in each of the figures. The details of the FFT algorithms result in these
different output frequency orders. Second, while Figure 3-4 and all of the FFT algorithms
have P Q-point FFTs, all of the FFT algorithms have QP-point FFTs on the input and Fig
ure 3-4 only has one. This makes it look like Figure 3-4 requires fewer computations than
the FFT algorithms in Chapter 9. The catch is that each of the P narrowband input filters
on the left-hand side of Figure 3-4 must process all N of the input data samples, However,
each of the P-point FFTs on the inputs to the FFT algorithms in Figures 9-17,9-18,9-23,
9-24, and 9-25 only processes Q points. In all cases each of the Q-point output filters and

34 CHA~ 3 THE FAST FOURIER TRANSFORM

First

Set atQ

Filters

Set «r Second

---.. Set of Q
Filters

Filters

•
•
•

P-th

Set of Q

Filters

A(P-l)* Q

A(P-l)* Q +1

Ap*Q_l

Figure 3-4 Block diagram of the N -point DFf as an array of narrow
band filters.

FFTs only processes P intermediate results. Section 3.3 shows how the FFT approach is
used to reduce the total computational load over using the narrowband filter approach.

3.5 CONCLUSIONS

The fast versions of the Off overcome two of its weaknesses. The FFT reduces computa
tionalload (adds and multiplies) by significantly reducing the redundancy that is inherent
in the structure of the DFf equation. Quantization noise is also reduced by using FFTs
because the number of computations is less than with the DFf.

While improving the DFf so dramatically that it is now used in hundreds of applica
tions, the FFT does not add any drawbacks of its own, which cannot be said for the element
covered in the next chapter. Weighting functions get teamed with FfTs to reduce two more
weaknesses of the DfT.

REFERENCES

[1] J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Calculation of Complex
Fourier Series," Mathematics ofComputation, Vol. 19, p. 297 (1965).

4

Weighting Functions

4.0 INTRODUCTION

A weighting function, w (n), is a sequence of numbers that is multiplied times input data
prior to performing a OFT on that data. Weighting (also called window) functions reduce
sidelobes of OFT filters and widen main lobes while, fortunately, not altering the locations
of the centers of the filters. The weighting functions in this chapter provide options to
reduce sidelobes from the -13-dB peak sidelobe of the DFT to as low as -94 dB.

Weighting function selection can be made early in the design process because the
choices of FFT algorithm and weighting function are independent of each other. Choice of
a weighting function to provide the specified sidelobe level is done without concern for the
FFf algorithm that will be used because:

• They work for any length FFT.
• They work the same for any FFf algorithm.

• They do not alter the FFT's ability to distinguish two frequencies (resolution).

Weighting functions are applied three ways:

• As a rectangular function, which does not modify the input data

• By having all the weighting function coefficients stored in memory

• By computing each coefficient when it is needed

4.1 SIX PERFORMANCE MEASURES

The choice of weighting function depends on which of the features of the narrowband
Off filters are most important to the application. Those features are performance measures

36 CHAP. 4 WEIGHTING FUNCTIONS

of the narrowband filters in order to analytically compare weighting functions. All these
measures, except frequency straddle loss, refer to individual filters. Frequency straddle loss
is associated with how filters work together.

4.1.1 Highest Sidelobe Level

Sidelobes are a way of describing how a filter responds to signals at frequencies that
are not in its main lobe, commonly called its passband. Each FFT filter has several sidelobes.
With rare exception, the highest one is closest in frequency to the main lobe and is the one
that is most likely to cause the passband filter to respond when it should not. The higher a
sidelobe level is, the lower is the amplitude of a signal outside the passband of the filter that
produces a significant filter response. This response erroneously indicates the presence of
a signal in the passband.

4.1.2 Sidelobe Fall-off Ratio

Sidelobes have peaks in response as a function of frequency. The peak (amplitude)
of sidelobes decreases or remains level as they get further away in frequency from the
passband. This performance measure describes how fast the sidelobe amplitude is reduced
as a function of frequency. If the sidelobes reduce rapidly, then only signals that are close
in frequency can cause the DFT filters to have erroneous responses. This performance
measure is important for applications with multiple signals that are close in frequency.

4.1.3 Frequency Straddle Loss

Frequency straddle loss is the reduced output of a DFf filter caused by the input
signal not being at the filter's center frequency. Frequencies seldom fall at the center of
any of the filter passbands. When a frequency is halfway between two filters, the response
of the FFT has its lowest amplitude. For a rectangular weighting function the frequency
response halfway between two filters is 4 dB lower than if the frequency were in the center
of a filter. Each of the other weighting functions in this chapter has less frequency straddle
loss than the rectangular one. This performance measure is important in applications where
maximum filter response is needed to detect the frequencies of interest.

4.1.4 Coherent Integration Gain

Coherent integration gain is the ratio of amplitude of the DFT filter output to the
amplitude of the input frequency. N -point FFTs have a coherent gain of N for frequencies
at the centers of the filter passbands. Since most weighting function coefficients are less
than 1, the coherent gain of a weighted FFT is less than N. While weighting functions
reduce the coherent integration gain, the combination of this reduction and the improved
straddle loss results in an overall signal response improvement halfway between two filters.
Like frequency straddle loss, this performance measure is important in applications where
maximum filter response is needed to detect the frequencies of interest.

4.1.5 Equivalent Noise Bandwidth

Equivalent noise bandwidth is the ratio of the input noise power to the noise power in
the output of an FFT filter times the input data sampling rate. Every signal contains some

SEC. 4.2 WEIGHTING FUNCTION EQUATIONS AND THEIR FFTS 37

noise. That noise is generally spread over the frequency spectrum of interest, and each
narrowband filter passes a certain amount of that noise through its main lobe and sidelobes.
White noise is used as the input signal and the noise power out of each filter is compared to
the noise power into the filter to determine the equivalent noise bandwidth of each passband
filter. In other words, equivalent noise bandwidth represents how much noise would come
through the filter if it had an absolutely flat passband gain and no sidelobes.

4.1.6 Three-dB Main-Lobe Bandwidth

The standard definition of a filter's bandwidth is the frequency range over which sine
waves can pass through the filter without being attenuated more than a factor of 2 (3 dB)
relative to the gain of the filter at its center frequency. The narrower the main lobe, the
smaller the range of frequencies that can contribute to the output of any FFT filter. This
means that the accuracy of the FFT filter, in defining the frequencies in a waveform, is
improved by having a narrower main lobe.

4.2 WEIGHTING FUNCTION EQUATIONS AND THEIR FFTS

This section gives the equations for 15 weighting functions and shows the plots of the
frequency responses of their corresponding FFT narrowband filters. It also gives the best
use of each weighting function. More details can be found in References 1 and 2.

4.2.1 Rectangular

For n == 0 to N - 1, w (n) == 1

IIIIII20 r--------r-----.-----~---__y----__r_----__r__---____.

dB

100600500400300200100
-gO-............--...............--'--'-...............~~~~~"--IIo--'~__I.._L..........."....L_L.~_..L._.J_.I..__.&.....!.._~_J.._l.._l_..I._L_L._L.._I_....L...J......L_I.._..I.._I...㨁��ሀ��늅倀�샲ሀ����⣳ሀ⳱ሀ陸唀郼ሀ볼ሀ〲䍖� ___'

o

Tenths of Frequency Bins

Figure 4-1 FFT of rectangular weighting function.

38 CHAP. 4 WEIGHTING FUNCTIONS

The rectangular weighting function is just the plain FFf without modifying the input
data samples. The peak of the highest sidelobe is only 13 dB (a factor of roughly 5) below
the main-lobe response, and the sidelobe peaks do not drop off rapidly. This makes it poor
for signals with multiple frequency components that have amplitudes that are more than 6
dB different from each other.

In contrast to the poor sidelobe performance, the main lobe is narrower and the
coherent gain higher than for any of the other weighting functions. This gives these FFf
filters the highest amplitude response to a frequency in the main lobe (coherent gain) and
the smallest output noise power (3-dB noise bandwidth). The narrow main lobe also causes
these FFf filters to have the poorest response when the frequency is halfway between two
adjacent filters (straddle loss). For these reasons, the rectangular weighting function is used
when maximum signal-to-noise ratios are critical.

4.2.2 Triangular

For n = 0 to N12, w(n) = 2 *nI N

For n = NI2 +1 to N - 1, w(n) = 2 * (N - n)/N

The triangular weighting function is used to provide sidelobes and straddle loss lower
than the rectangular weighting function and can be easily constructed as a sequence of
two straight-line segments. Notice that the sidelobes start off lower than the rectangular
weighting function by 14 dB and fall off faster than the rectangular weighting function.
The outstanding characteristic of this weighting function is the smaller number of sidelobes

20 ,------~----.,.------.----....,-----,-------.----,

dB

700

Tenths of Frequency Bins

Figure 4-2 FFT of triangle weighting function.

SEC. 4.2 WEIGHTING FUNCTION EQUATIONS AND THEIR FFTS 39

than the others in this chapter. It is best used when additional sidelobe reduction, more than
the rectangular weighting function, is required and when the weighting function must be
computed by the processor because there is no room in its memory to store the values of
the weighting function.

4.2.3 Sine Lobe

For n == 0 to N - 1, wen) == sin(nnjN)

The sine-lobe weighting function can be stored in processor memory or determined
by the processor using any of several algorithms for computing the sine function. It
is popular because it provides improved sidelobe performance, more than the rectangu
lar weighting function, while using multiplier constants already required for the complex
multiplications between power-of-two FFT building blocks. The peak sidelobe level and
fall-off rate are roughly the same as the triangular weighting function. Like that one,
the sine lobe is most useful when some additional sidelobe reduction, more than the
rectangular weighting function, is required and the weighting function must be com
puted because there is not room in the processor's memory to store the values. For
power-of-two FFTs, this weighting function has a computational advantage over the tri
angular weighting function, because the coefficients are the same ones used to com
pute the FFf. Therefore, they do not require additional memory locations or computa
tions.

:20 r--------r------,-------,------...,..-----or-------,--------,

700600500400300:200100
~O~.............~~~..a......L...~~~~--'--'-~.-L-..Ioo-A-.-L.-I.L..oL-..J--I-'""--'-"""--I-~L..L-~L.-I......l~.u....L....L....L...L-I......r.....丁��ሀ��늅倀�샲ሀ����⣳ሀ⳱ሀ陸唀郼ሀ볼ሀ〲䍖��촀�᠀�䁈볲ሀ䔭

o

-:20
(\

dB (, (I

~I
P

-40 II
I

-60

Tenthsof Frequency Bins

Figure 4-3 FFf of sine-lobe weighting function.

40 CHAP. 4 WEIGHTING FUNCTIONS

4.2.4 Hanning

For n = 0 to N - 1, w(n) = 0.5 * [1 - cos(nnjN)]

The Hanning weighting function is slightly more complicated to compute than the
sine lobe. However, it provides 9 dB of additional sidelobe attenuation and can be computed
with constants that are already in memory for the complex multiplications between power
of-two FFf building blocks. The peaks of its sidelobes fall off 50% faster than the triangular
and sine lobe weighting functions. This weighting function has better 3-dB bandwidth and
equivalent noise bandwidth than 16 of the 22 weighting functions in this chapter. These
features make it most useful when better than 32-dB sidelobe attenuation is needed, along
with 3-dB bandwidth that is less than 1.5 filter widths.

20 r-------,-------,------.,-------..,.-------r-----..,..-------,

700600500400300200100
-soL..-_~~~..;w.....s.....L..L_~~~L...I_l~...l....L..L.....L.~_.1....1-.&......I..._~__L_L_I.._L..L.....L...............L....S_~~~.::::..::.:a.~ __J

o

0 /,4\

""""20 f \
dB I

"
-40

Tenthsof Frequency Bins

Figure 4-4 FFf of Hanning weighting function.

4.2.5 Sine Cubed

For n = 0 to N - 1, w(n) = sin3(nnjN)

The sine-cubed function is a natural extension to the sine-lobe weighting function,
but with values that are not used for the complex multiplications between power-of-two
FFf building blocks. Therefore, if constant memory is available, the weighting function
constants are stored there. If not, two multiplies are needed to cube values (sin(n1l'j N) *
sin(n1l'j N) *sin(n1l'j N)) from the FFf multiplier constants. Notice that the peak sidelobe
is 39 dB below the main lobe, and the peaks of the other sidelobes drop off twice as fast
as the triangular and sine-lobe weighting functions. This weighting function is most use
ful when better than 39 dB of sidelobe attenuation is needed, and the weighting function must

SEC. 4.2 WEIGHTING FUNCTION EQUATIONS AND THEIR FFTS 41

be utilized without adding to memory allocated for constants but can afford adding to the
computational load for the arithmetic processor.

~o ~-----r-----~-----r-------,--------.------r---------.

700600500400300~OO100

-gO'"-----..........--~~~~L..-L..J"--'--'~.L.---...L.....l.-~L.,."L..lo~~~ ""'___ ___J

o

-40

-:20

dB

Tenths of Frequency Bins

Figure 4-5 FFf of sine-cubed weighting function.

4.2.6 Sine to the Fourth

For n == 0 to N - 1, wen) = sin4 (nrr j N)

~O ,-------,-------r------r--------,-------r-----..,----------,

700600500400300soo100
-gO'-------~--------~-:.:....L.""""--'-...L..-L-.L.-----'--J--L....L_l....L.~~ __L._ ...L__ _'

o

/'\

I
j \
) I

I
I

-:20 l I
dB i !

l
I

-40 I I

-60

Tenths of Frequency Bins

Figure 4-6 FFT of sine to the fourth weighting function.

42 CHAP. 4 WEIGHTING FUNCTIONS

The sine to the fourth, like the sine-cubed weighting function, is one whose values are
not used as multiplier constants between power-of-two FFT building blocks. Therefore, if
constant memory is available, the weighting function constants are stored there. If not, two
multiplies are needed to square values from the multiplier constant values and then square
those results (sin2(nrr j N) *sin2(nrr j N)). Notice that the peak sidelobe is 47 dB below the
main lobe, and the peaks of the other sidelobes drop off 2.5 times as fast as the triangular
and sine-lobe weighting functions. This weighting function is most useful when better than
47 dB of sidelobe attenuation is needed, and the weighting function must be utilized without
adding to memory allocated for constants but can afford adding to the computational load
for the arithmetic processor.

4.2.7 Hamming

For n = 0 to N - 1, w(n) = 0.54 - 0.46 *cos(2j{njN)

The Hamming weighting function is very similar to the Hanning weighting function.
It provides 11 dB of more sidelobe attenuation than the Hanning and can be computed with
constants that are already in memory for the complex multiplications between power-of-two
FFf building blocks. Like the Hanning weighting function, it has better 3-dB bandwidth and
equivalent noise bandwidth than 17 of the 22 weighting functions in this chapter. However,
the peaks of the other sidelobes do not fall off as fast as the Hanning weighting function.
These features make this weighting function most useful when better than 43-dB sidelobe
attenuation is needed along with 3-dB bandwidth that is less than 1.5 filter widths.

IIIIII20 r-------r-----~----r_---__r----_r_----.___---___,

dB

o~

~o-

-

700600500400300200100

-so~L...L._J....L-J....L_L...J..J,.....L.....L.~.t.....L__.lL....L_J......J....L..J_L..J.....I-....L_..L....L..1- ___t.~._L...L.....L.._L.'"""__'_..I....L...~L._L_Io...L_I___'__'_~__........Lo_I__............o_.....a._____.J

o

Tenths of Frequency Bins

Figure 4-7 FFT of Hamming weighting function.

SEC. 4.2 WEIGHTING FUNCTION EQUATIONS AND THEIR FFTS 43

4.2.8 Blackman
For n = 0 to N - 1,

wen) = 0.42 - 0.50 *cos(2rrnjN) + 0.08 *cos(4JrnjN)

The Blackman weighting function is an extension of the Hamming and Hanning
approaches of using multiplier constants that are already in memory for complex multipli
cations between FFf stages. This weighting function also provides the best fall-off ratio
of any of the weighting functions with peak sidelobes below -50 dB. If the FFf multiplier
constants are used, two multiplies and two adds are required to compute each value to be
multiplied times the complex FFf input data. This increases the weighting function com
putationalload from two to six arithmetic operations per complex input data point, if it is
computed rather than stored in memory. This weighting function is most useful when over
50 dB of sidelobe attenuation is needed close to the main lobe and rapid sidelobe fall-off is
required to attenuate frequency components, with large amplitudes, that are separated from
each other by more than three to four FFf filters.

100600500400300200100

20 .-------..------r-----.-------...,.....------r-----r--------.

--'20

-S0L.-..-..-----"-'ClwI:~~~~~:...L_l...L_J..~..J_J......L_.L._L_.__-l-J.....J._L..J...l....J_J...::L....:l_~~~~~-=-_&_..._ ___J

o

-40

dB

Tenths of Frequency Bins

Figure 4-8 FFf of Blackman weighting function.

4.2.9 Three-Sample Blackman-Harris

(a) For n = 0 to N - 1,

wen) = 0.44959 - 0.49364 *cos(2rrnjN) + 0.05677 *cos(4rrnjN)

(b) For n = 0 toN - 1,

w(n) = 0.42323 - 0.49755 * cos(2rrnjN) + 0.07922 * cos(4rrnjN)

The three-sample Blackman-Harris weighting functions can also be computed by
using constants that are already in memory for complex multiplications between FFf
stages. The computation requires two multiplies and two adds for each input data sample.

44 CHA~ 4 WEIGHTING FUNCTIONS

Figures 4-9 and 4-10 show two of these weighting functions. Both provide over 60 dB of
peak sidelobe attenuation. Note one peculiarity of both: there is a dip in the peaks of the
sidelobes near the main lobe and then the sidelobes drop off monotonically. The difference
between (a) and (b) is that (b) provides additional sidelobe attenuation but requires a wider
3-dB main-lobe bandwidth. These weighting functions are most useful when over 60 dB of
attenuation is required and the width of the main lobe (frequency accuracy) is not critical.

20 r-----....,.....----,r------~---___,----~---____,.---___,

0 /'..\
J '\

(~

-20 (\
dB I I-40

-60

700

Tenthsof Frequency Bins

Figure 4-9 FFf of three-sample Blackman-Harris (a) weighting func
tion.

20 ~---~-------,r--------r-------,:-------r-------,-------,

r

/ \I I

-20

I \dE
I \

-40

I
-60

700

Tenthsof Frequency Bins

Figure 4-10 FFT of three-sample Blackman-Harris (b) weighting func
tion.

SEC. 4.2 WEIGHTING FUNCTION EQUATIONS AND THEIR FFTS 45

4.2.10 Four-Sample Blackman-Harris

(a) For n = 0 to N - 1,

w(n) = 0.40217 -0.49703*cos(2;rn j N)+0.09892*cos(4rrn j N)-0.00188*cos(6rrnj N)

(b) For n = 0 to N - 1,
wen)=0.35875 -0.48829*cos(2rrn / N) +0.14128* cos(4rrnj N) -0.01168*cos(6rrnjN)

20 ,.--------,.-------..---------,-----r-------,.--------,.-------,

dB

Tenths of Frequency Bins

Figure 4-11 FFT of four-sample Blackman-Harris (a) weighting func
tion.

100

20 ,...-----,.--------.---------.----__-----r------.oyo-------.

(
r"

f \
"

/ ~
'I

-20 (\,
I

-40

I
\

dB \

I
I

-60 I
I

-so

Tenths of Frequency Bins

Figure 4-12 FFT of four-sample Blackman-Harris (b) weighting func
tion.

700

46 CHAR 4 WEIGHTING FUNCTIONS

Four-sample Blackman-Harris weighting functions can be computed by using con
stants already in memory for complex multiplications between FFT stages. Figures 4-11
and 4-12 show these weightingfunctions. One peculiarityof both is a dip in the peaks of the
sidelobes near the main lobe. These weighting functions are most useful when over 70 dB
of attenuation is requiredand the width of the main lobe (frequencyaccuracy) is not critical.

4.2.11 Kaiser-Bessel

For In/ = 0 to N 12, wen) = lo[na/I.O - (2nl N)2]1 lorna]
00

where lo(x) = L[(xI2)klk!]2
k=O

20 ,..-----~-----y-----___r----~---____..----_r__---__.,

700

(\
I

100 200 300 400 .500 600

Tenths of Frequency Bins

Figure 4-13 FFT of a = 2.0 Kaiser-Bessel weighting function.

o

-eO'------.&...----....I-------&-----....a..------Ioo-------------'
o

dB

20 ,...------..,------r-----___r----~---~----_._---__,

dB

a

.....0

100600500400

-60 ~ !
VWVWVWW\NWVVVllVVVVV'l!"M~

-e0L-----.L.----...L.-.-------L-----L------I.-----------
a 100 200 300

Tenths of Frequency Bins

Figure 4·14 FFT of ex = 2.5 Kaiser-Bessel weighting function.

SEC. 4.2 WEIGHTING FUNCTION EQUATIONS AND THEIR FFTS 47

:20..--------.-------r------r-----r-----~----___r_---______,

700600soo400300

/"

/ \
(\
i 'I

I

200100

-60

-20

-40

-lOOL..-------'-----~----....Io-----.a---------&.--------------'

o

dB

Tenths of Frequency Bins

Figure 4-15 FFf of ex = 3.0 Kaiser-Bessel weighting function.

The Kaiser-Bessel weighting function is the ratio of two zero-order Bessel func
tions of the first kind (/0 (x)). Even though the summation that defines these Bessel func
tions has an infinite number of terms, the functions have finite values [3]. In particular,
these Bessel functions have a value of 1 when x = 0 and they increase as x gets larger.
Figures 4-13 to 4-16 show Kaiser-Bessel weighting functions for different values of ex.
These weighting functions have the most energy in the main lobe for a given peak sidelobe
level. The peaks of the sidelobes only fall-off at 6 dB per octave. Therefore, this set of
weighting functions is most useful when the filters are being used to distinguish multiple
frequencies that have amplitudes that must be attenuated by the filter sidelobes by 46 to 82
dB, depending on which ex is chosen.

20 ...-------r'----~-----r-----....-----___..----__...._---__,

dB

700

Tenths of Frequency Bins

Figure 4-16 FFr of ex = 3.5 Kaiser-Bessel weighting function.

48 CHA~ 4 WEIGHTING FUNCTIONS

4.2.12 Gaussian

For n = 0 to N - 1, w(n) = e- 1/ 2[2an/ N]2

IIIIII20 ,..--------r---,.---,-----,----,...----r------,

dB

-

I

100

I
200

I
300

I

400
I

500

I
600 '100

Tenths of Frequency Bins

Figure 4-17 FFf of ex = 2.5 Gaussian weighting function.

01- (\

-20- I \ -
I \

dB ! \
.......0 -- -,

1Nm~Y~VWY{V~~A~(Yff·i~Y0
I ~

-60

~)I wmV~~N'~J,VVW\,0iYf~Y~V~~~,
~o

I I I I I I

0 100 200 300 400 .500 600 100

Tenths of Frequency Bins

Figure 4-18 FFf of ex = 3.0 Gaussian weighting function.

SEC. 4.2 WElGHT\NG FUNCTiON EQUAT'ONSAND THEtR FFTS 49

IIIJII
20 r-------r-----.....,.------,------,...-----,-----,------,

dB

-

-

I

100

I

200

I

300

I
400

I
500

I

600 '100

Tenths of Frequency Bins

Figure 4-19 FFT of ex == 3.5 Gaussian weighting function.

The next three weighting functions are derived by optimizing the weighting func
tion for the minimum time-bandwidth product for a given sidelobe level. The narrower a
signal in the time domain, the wider it appears in the frequency domain. Likewise, sig
nals that are represented with a narrow set of frequency components do not vary rapidly
in the time domain. For a given narrow signal (i.e., a sine wave that lasts less than the
number of samples in the FFT) in the time domain, the Gaussian windows provide the
tightest concentration of energy in the frequency domain. This means that the Gaus
sian weighting function is most useful in converting transient signals to the frequency
domain. Figures 4-17 to 4-19 show Gaussian weighting functions for different values
of ex.

4.2.13 Dolph-Chebyshev

For k == 0 to N - 1,

W (k) == (_I)k cos{N cos- 1[,8cos(kn / N)]}/ cosh[N cosh- 1(,8)]

where f3 == cosh[(1/N) cosh-1 (100')]

This equation is the FFT of the Dolph-Chebyshev polynomials that form this weight
ing function. Figures 4-20 to 4-23 show Dolph-Chebyshev weighting functions for dif
ferent values of ex. These weighting functions are a result of minimizing the main-lobe
width for a given sidelobe level. The sidelobes do not decrease as they get further away
from the main lobe. This makes these weighting functions most useful when multi
ple frequencies are present and the sidelobes must attenuate each equally while mini
mizing the chance for one frequency contributing to the output of more than one FFT
fi Iter.

50 CHAP. 4 WEIGHTING FUNCTIONS

dB

o

-20

-40

-60 l\~'m~rrlr1)~f~~IN~~ ~o ~nlr)\~(ff~rr~ I

--SOL..-------'-----..&....------L..-------------"----~----'

o 100 200 300 400 500 600 700

Tenthsof Frequency Bins

Figure 4-20 FFf of a = 2.5 Dolph-Chebyshev weighting function.

dB

o

--:20

-40

100 200 300 400 .s00

Tenths of Frequency Bins

Figure 4-21 FFT of ex = 3.0 Dolph-Chebyshev weighting function.

SEC. 4.2 WEIGHTING FUNCTION EQUATIONS AND THEIR FFTS 51

20 ...----~--,..___-_._--r__-_._--..__-___,

/
l 'I.
II \

-AO ! \
dB I)

-40 I

-60

Tenths of Frequency Bins

Figure 4-22 FFT of a == 3.5 Dolph-Chebyshev weighting function.

700

20 '-'---~--r------r----"'------,-----r-------,

-AO

dB --40

400 500 600 700

Tenthsof Frequency Bins

Figure 4-23 FFf of a == 4.0 Dolph-Chebyshev weighting function.

52 CHA~ 4 WEIGHTING FUNCTIONS

4.2.14 Finite Impulse Response Filter Design Techniques

Linear finite impulse response (FIR) filter-based weighting functions are not popular
for two reasons. First, the memory required to store all of the coefficients has only recently
become inexpensive as part ofOSP chips (Chapter 14). Second, for a given set of frequency
response characteristics, the optimal FIR filter is rarely 2N points long. This means that
commercially available filter design software is not well suited for computing weighting
functions for standard power-of-two FFfs. The numerous nonpower-of-two FFf algorithms
in this book remove this barrier and make it practical to use off-the-shelf filter design
software.

Chapter 2 established that the DFT is an array of narrowband filters implemented as
multipliers followed by low-pass FIR filters. The coefficients of the low-pass filter are the
same as the weighting function multiplier coefficients used in the Off to control sidelobes.
Therefore, the design techniques used to develop optimal low-pass FIR filters can be used
to develop optimal weighting functions for specific applications of the Off.

The two approaches to designing coefficients of an FIR filter, based on the required
frequency characteristics of the resulting filter are direct construction and iterative optimiza
tion. In the first [4], the designer defines the desired frequency response of the low-pass
filter and then samples that response at equally spaced points in the frequency domain.
By applying the IFFT to the sequence of frequency samples, one computes the unit pulse
response of the equivalent filter. If the computed unit pulse response decays rapidly; it can
be accurately represented by an FIR filter by truncating the unit pulse response and using
the nonzero terms as the weighting function sequence.

In the second approach the designer also starts by defining the desired frequency
response of the equivalent low-pass filter. The definition consists of the

• Passband width

• Width of the transition between the passband and sidelobes

• Stopband maximum sidelobe level

• Ripple in the filter's gain across the passband

Algorithms have been developed to construct an FIR filter with a frequency response
with the least-mean-squared error relative to these desired frequency response requirements.
The problem with this optimization approach is that it produces filters with gain that peaks
up at the edges of the filter passbands. This is called the Gibbs effect. The Gibbs effect
is reduced by designing the filter with an optimization criterion that minimizes the maxi
mum, rather than mean-squared, error. Chebychev polynomial-based filter design uses this
approach. Filters that exhibit this property also have equiripple behavior in the sidelobes.
The most popular of these optimization algorithms was published by Parks and McClellan
and has been named for them [5].

4.3 WEIGHTING FUNCTION COMPARISON MATRIX

Coherent integration gain is normalized to the gain of the rectangular weighting function.
Equivalent noise and 3-dB bandwidths are expressed as number of frequency bins. Table
4-1 compares characteristics of various weighting functions.

Table 4-1 Weighting Function Comparison Matrix

SEC. 4.4 CONCLUSIONS 53

Highest Sidelobe Frequency Coherent Equivalent
Weighting sidelobe fall-off straddle integration noise 3-dB

function level (dB) ratio loss (dB) gain bandwidth bandwidth

Rectangular -13 -6 3.92 1.00 1.00 0.89

Triangle -27 -12 1.82 0.50 1.33 1.28

Sine lobe -23 -12 2.10 0.64 1.23 1.20

Hanning -32 -18 1.42 0.50 1.50 1.44

Sine cubed -39 -24 1.08 0.42 1.73 1.66

Sine to the fourth -47 -30 0.86 0.38 1.94 1.86

Hamming -43 -6 1.78 0.54 1.36 1.30

Blackman -58 -18 1.10 0.42 1.73 1.68

Three-sample
Blackman-Harris (a) -61 -6 1.27 0.45 1.61 1.56

Three-sample
Blackman-Harris (b) -67 -6 1.13 0.42 1.71 1.66

Four-sarnple
Blackman-Harris (a) -74 -6 1.03 0.40 1.79 1.74

Four-sample I
I

Blackman-Harris (b) -92 -6 0.83 0.36 2.00 1.90

Kaiser- Bessel
(a) a = 2.0 -46 -6 1.46 0.49 1.50 1.43

(b) a = 2.5 -57 -6 1.20 0.44 1.65 1.57

(c) a = 3.0 -69
I

-6 1.02 0.40 1.80 1.71

(d) a = 3.5 -82 -6 0.89 0.37 1.93 1.83

Gaussian
(a) a = 2.5 -42 -6 1.69 0.51 1.39 1.33

(b) o = 3.0 I -55 -6 1.25 0.43 1.64 1.55

(c) a = 3.5 -69 -6 0.94 0.37 1.90 1.79

Dolph-Cheb.
(a) a = 2.5 -50 0 1.70 0.53 1.39 1.33

(b) Q' = 3.0 -60 0 1.44 0.48 1.51 1.44

(c) o = 3.5 -70 0 1.55 0.45 1.62 1.55

i
(d) a = 4.0 j -80 0 1.65 0.42 1.73 1.65

4.4 CONCLUSIONS

Because of the third and fourth weaknesses of the OFT, weight functions are applied before
data is processed with FFTs to lower high sidelobes and reduce frequency straddle loss. The
trade-off for those improvements to the OFT is the introduction of coherent gain reduction
and increasing the 3-dB bandwidth of each FFT filter. Fortunately, a wide selection of
weighting functions allows users to choose one that offers the balance between benefits
and drawbacks needed in a specific application. Chapters 2-4 cover fundamentals of FFfs.
The next three chapters address what can be done well with them.

54 CHA~ 4 WEIGHTING FUNCTIONS

REFERENCES

[1] F. J. Harris, "On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform," Proceedings of the IEEE, Vol. 66, No.1 (1978).

[2] A. H. Nuttal, "Some Windows with Very Good Sidelobe Behavior," IEEETransactions
on Acoustics,Speech, and Signal Processing, Vol. ASSP-29, No.1 (1981).

[3] A. N. Lowan, Table of BesselFunctionsfor ComplexArguments, Columbia University
Press, New York, pp. 362-381, 1943.

[4] T. W. Parks and C. S. Burrus, Digital FilterDesign,Wiley, New York, 1987.

[5] T. W. Parks and J. H. McClellan, "Chebyshev Approximation for Nonrecursive Dig
ital Filters with Linear Phase," IEEE Transactions on Circuit Theory, Vol. CT-20,
pp. 697-701 (1973).

5

Frequency Analysis

5.0 INTRODUCTION

Frequency analysis is the process of determining the amplitude and phase of the frequencies
that comprise a real or complex sequence of data samples in one and more dimensions. Based
on the Nyquist (also called Shannon) sampling theorem (Chapter 2), those frequencies span
from zero to half the sampling rate for real signals and from zero to the sampling rate
for complex signals. The span of frequencies detected by an FFf is called the frequency
spectrum of the data samples. If the output of the FFf is used to catalogue the frequencies
in a signal, it is performing the first of the common uses of the DFTs listed in Section 2.1. If
the output is used as a shorthand way of describing the signal, because of its small number
of frequencies, the FFr is performing the second common use of the OFf. This chapter
presents the steps required for one-dimensional frequency analysis. Chapter 7 presents the
additional steps required for multidimensional frequency analysis.

5.1 FIVE PERFORMANCE MEASURES

Frequency analysis can be done with overlapped or nonoverlapped data sets. In either case
the computations can be performed with or without a weighting function. For each of the
four possible cases, five measures can be used to describe the performance of the FFT
algorithm.

5.1.1 Input Sample Overlap

When frequency analysis is performed on data sequences larger than the chosen trans
form length, the sequence gets divided into smaller segments and transforms are computed

56 CHA~ 5 FREQUENCY ANALYSIS

on each segment. If the FFT is being used to detect the presence of a frequency that is not
alwayspresent, the FFf length is chosen to match the expectedduration of the frequencyof
interest. If the frequency of interest is present and aligned with a segment of data samples,
the maximum improvement in signal-to-noise ratio is provided by the FFf because the
frequency is amplifiedby a factor of the transformlength and the noise by the square root of
the transform length. The maximum signal-to-noise ratio provides the highest probability
of signal detection.

If the frequency appears in two segments, the signal-to-noise improvement is not
as great in either of the two segments, hence a lower probability of detection. The worst
case is when the frequency appears half the time in each of the two segments. Segments
are overlapped to increase the probability of detecting a frequency of interest. For ex
ample, if the segments are overlapped 50%, the frequency of interest lines up with the
straddling segment when it is half in each of the two contiguous segments. When segments
are overlapped, some of the data points in the sequence are the input to more than one
transform, In the example, if the data segments overlap 50%, each data sample is used
twice, except for the first and last segments. The larger the overlap, the larger the num
ber of computations; the more complex data addressing; and the larger the data memory
required.

5.1.2 Sidelobe Level

Sidelobe level is the ratio of the amplitude response of a filter to a frequency in one of
its sidelobes to the response it would have if the frequency were in the center of the filter. A
filterhas a sidelobe level for every frequencyoutside its main lobe. It is important to ensure
that the sidelobe response is attenuated far enough by the filter sidelobes that the filteronly
gets a significant output when a frequency in its passband is present. These requirements
change radically from application to application.

5.1.3 Frequency Straddle Loss

Frequency straddle loss is the reduced output of a filtercaused by the input signal not
being at the filter's center frequency but still in its main lobe. Frequencies to be detected
in an application seldom fall at the center of any of the filter passbands. When a frequency
is halfway between two filters, the response of the FFf has its lowest amplitude. For a
rectangular weighting function the frequency response halfway between two filters is 4 dB
lowerthan if thefrequencywerein thecenterof a filter. Eachof theother weightingfunctions
in this chapter has less frequency straddle loss than the rectangular one. This performance
measure is important in applications where maximum filter response is needed to detect the
frequency of interest.

5.1.4 Frequency Resolution

Frequency resolution is the measure of how close two frequencies can be before they
can no longer be distinguished by the FFT.Frequencies closer than the separation between
filtercenter frequencies are generally considered unresolvable. Weightingfunctions do not
change the separation between the centers of the FFf filters.

5.1.5 Coherent Integration Gain

SEC. 5.2 COMPUTATIONAL TECHNIQUES 57

Coherent integration gain is the ratio of amplitude of the filter output to the amplitude
of the input frequency. N -point FFTs have a coherent gain of N for frequencies at the
centers of the filter passbands. Since most of weighting function coefficients are less than
1, the coherent gain of a weighted FFf is less than N. Like frequency straddle loss, this
performance measure is important in applications where maximum filter response is needed
to detect the frequency of interest.

5.2 COMPUTATIONAL TECHNIQUES

There are four basic ways that the N -point OFT, in any of its fast implementation forms
(FFTs), is used. The first two are associated with the spacing between the starting samples
in the computation of N -point FFTson data sequences that are longer than N samples. The
third and fourth are modifications that can be made to the input data prior to using either of
the first two techniques. Each of these is described in this section.

5.2.1 Nonoverlapped

Nonoverlapped frequency analysis is generally performed for two types of input
sequences. The first is where there are only N points in the data sequence to be analyzed
by the N -point FFf. In this case one N -point FFT is performed. The second case is the
analysis of a data sequence that is longer than N points where the frequency components
are assumed not to change or to change very slowly over the entire data sequence. In this
case, the starting sample for the N -point FFT computations can be separated by N or more
samples without losing frequency content information.

A practical reason for nonoverlapped processing is the inability of the processor to
compute the FFT of the most recent set of N points before the next set of N points is
collected. If the data cannot be recorded and processed later, then one common approach
is to ignore some number of samples while the present set of N points is being processed.
Figure 5-1 is an example of the nonoverlapped method where there are M samples ignored
between N -point transforms.

N Samples

Samples

N Samples
~I

Figure 5-1 Nonoverlapped frequency analysis.

58 CHAP. 5 FREQUENCY ANALYSIS

5.2.2 Overlapped

Chapter 2 discusses the weakness of using the DFr to analyze transient signals.
However, there are applications where the frequency content of the data sequence is known
to be constant, but only for a specific number of samples. If the goal of the application is to
detect when this signal is present in a long data sequence, then the best DFf approach is to
use an FFT that matches the expected number of signal samples at the frequency of interest.

However, choosing the correct transform length is not sufficient. If the N -point FFT
does not start when the transient sequence starts, then two effects occur. First, the coherent
gain will not be N because some of the samples integrated by the FFT are noise not signal.
Second, the transient that is caused when the signal appears will distort the FFT's ability
to recognize the signal. When the N -point FFf matches up with the signal, all N samples
are integrated and the FFf does not see the transient of the signal turning on and off and
therefore performs the analysis without artifacts. An example is a Doppler radar where the
antenna beam is scanning at a constant rate to find a target. Since the antenna beamwidth
is fixed, the radar receives returns from the target for a fixed period of time as the beam
passes by. Until the target is detected, there is no way to know when this time period starts.
The theoretically best, but computationally most costly, solution is the start a new N -point
FFf every time a new sample arrives.

If the FFT is not overlapped, the worst-case situation is to have half of the returns
in one set of samples and half in the other. The loss of coherent gain associated with this
case is reduced by starting a new N -point FFT every N12 samples. Figure 5-2 illustrates
this process with an overlap of P samples. With a 2:1 overlap each input data point is used
in two FFf computations. This increases the required computational load by a factor of 2.
For an overlap of P out of N samples, the increase in computational load is N I(N - P).

I~ NSamples

p
I- -I
Samples

N Samples
~ 1

Figure 5-2 Overlapped frequency analysis.

5.2.3 Weighting Functions

Weighting functions were presented in Chapter 4. The primary value of weighting
functions in frequency analysis is to reduce the effects of sidelobes and frequency straddle
losses described in Section 5.1. Weighting functions can be used in either the overlapped

SEC.5.3 CONCLUSIONS 59

or nonoverlapped processing approaches. For a slowly varying signal the FFT provides the
sidelobe and straddle loss improvements described in Chapter 4.

However, for transient signals the weighting function only improves the performance
of the FFf if the FFf is aligned with the signal. In that case the FFT calculates as if the signal
is always present and processes it just like slowly varying signals. When input samples to
an FFT do not align with the time when the transient signal is present, the transient occurs
somewhere in the middle of the set of samples. Then the FFf thinks there is a transient at
that point and also one at the end of the data set. The effect of the transient at the end of
the data set is minimized by the weighting function, but the effects of the transient in the
middle of the data set are virtually unaffected because the transients are not attenuated (see
Chapter 4 for more details).

Figure 5-3 shows an example of a transient signal. The first and third sets of N
data samples match the transient signals exactly. In the first set there is a transient at the
beginning of the data set because the first sample is not zero. For this set of samples a
weighting function will reduce the sidelobe effects associated with this transient.

N Samples -I I-
N Samples

N Samples

Figure 5-3 Effect of weighting functions on frequency analysis of tran
sient signals.

In the third set of samples the first and last samples are zero. Therefore, adding a
weighting function to the FFT computations provides no improvement because there are
no transient conditions to reduce at the ends of the data set. In fact, the weighting function
has a detrimental effect in this case because the coherent gain of the FFT is reduced by the
weighting function, and the main lobe of each FFf filter is widened.

The second set of samples has transient effects at both ends of the data set and straddles
the two transient signals. Therefore, a weighting function will reduce the transient effects
at the ends of the data set. However, the FFT will provide little useful data about either of
the transients because it straddles them.

5.3 CONCLUSIONS

This chapter covers one of the two functions where FFfs are primarily used. As can be
seen in the Doppler radar and speech processing design examples in Chapter 17, frequency
analysis and the use of FFTs to create a shorthand version of a signal have wide application
in aviation and consumer products. Frequency analysis and the functions explained in the

60 CHA~ 5 FREQUENCY ANALYSIS

next chapter get used separately or together in almost every place an FFf is used. This
chapter contains no algorithms because frequency analysis is performed with the algorithms
in Chapters 8 and 9.

6

Linear Filtering
and Pattern Matching

6.0 INTRODUCTION

Linear filtering and pattern matching are techniques for determining the presence of specific
waveforms in a signal of one or more dimensions. Generally, linear filtering is used to pass
certain bands of frequencies and block others. Pattern matching is the process of finding
a pattern in a signal, whether it is a sine-wave frequency or an arbitrary sequence of data
samples that do not resemble any easily defined function.

While neither a linear filter nor a pattern matcher is the same as an FFT, FFf al
gorithms are often able to speed up their computation. The purpose of this chapter is to
present algorithms for using an FFT to perform one-dimensional linear filtering and pattern
matching. It also shows how to determine when using an FFf requires fewer adds and mul
tiplies than performing those functions in the time domain. The additional steps required
to perform multidimensional versions of this processing are in Chapter 7.

6.1 EQUATIONS

Linear filtering and pattern matching, also known as convolution and correlation, respec
tively, are defined by Equations 6-1 and 6-2. For linear filtering applications, x(k - i) is
the input sequence to the filter and h (i) is the unit pulse response of the filter. For pattern
matching applications, x (k + i) is still the input signal and h(i) is the pattern to be found
in the signal. This chapter presents two FFT-based approaches for computing these two

62 CHAP.6 LINEAR FILTERING AND PATTERN MATCHING

equations because there are many instances when the FFf approach is more efficient than
computing the equations directly. Both approaches can be implemented with any of the
FFf algorithms in Chapters 8 and 9.

M-l

y(k) = L x(k - i) *h(i)
;=0

M-l

y(k) = L x(k + i) *h(i)
;=0

(6-1)

(6-2)

Figure 6-1 shows the steps needed to implement Equations 6-1 and 6-2 in the frequency
domain. Derivations of this approach can be found in several DSP textbooks [1-4].

x (i) FFT

he})

IFFT
Combine
Results

y(k)

Figure 6-1 General frequency domain processing block diagram.

6.2 THREE PERFORMANCE MEASURES

These three performance measures provide a way to compare the one direct and two fre
quency domain methods for computing Equations 6-1 and 6-2 (linear filtering and pattern
matching).

6.2.1 Number of Computations per Data Point

The direct method for computing Equations 6-1 and 6-2 requires M complex mul
tiplies and M - 1 complex adds for each complex input data point. For each frequency
domain method the number of computations per input data point is shown in Sections 6.4
and 6.5 to be

Compo = 2 *NF + 6 *N - 2 * (N - L)

6.2.2 Number of Data Memory Locations

For the direct method the required data memory is the total of twice the number
of stages, M, plus two for the next complex input sample and two for the most recent
complex output. For the frequency domain methods the memory required is larger than
twice the FFT length, N, depending on the algorithm. The Comparison Matrices in
Chapters 8 and 9 give the amount of data memory locations for every algorithm in the
matrix.

6.2.3 Computational Latency

SEC. 6.3 DIRECT METHOD 63

Computational latency is the time between the start of computations and when output
of results begins. Computational latency is considerably different for frequency domain
methods of computing Equations 6-1 and 6-2 than for the direct method. For the direct
method a new output is computed for each new input by performing M multiplies and M - 1
adds. This is a latency of one input sample. In the frequency domain methods, M new
pieces of data are collected and less than M new output values are produced because of the
required input data overlapping. Therefore, the latency is at least M data samples.

6.3 DIRECT METHOD

To determine when the approach in Figure 6-1 is computationally advantageous, equations
must be developed for the number of computations required by Equations 6-1 and 6-2
for the direct and frequency domain approaches. When xCi) is an input sequence that is
much larger than M, Equations 6-1 and 6-2 require M multiplies and M - 1 adds for each
new output y(k). Since a new output occurs every time a new input xCi) is processed, M
multiplies and M - 1 adds are needed to process each new input sample.

6.3.1 Complex Input Signal

For a finite input sequence of length L, Equation 6-1 does not require M complex
multiplies and M - 1 adds for each value of k. In particular:

• For k == 0, the only term in the summation is i == 0, so there are one multiply and
no adds.

• For k == 1, there are two terms to compute and add in Equation 6-1. Namely, a
multiply is required for i == °and 1, and an add is required to combine these two
multiplications.

• Each time k increases by 1, the number of adds (k adds) and multiplies (k + 1
multiplies) increases by I until k == M - 1.

This totals M * (M - 1)/2 complex adds and M * (M + 1)/2 complex multiplies.
For k == M to L - 1, Equation 6-1 requires M multiplies and M - 1 adds for each

value of k. This is a total of (L - M) * M multiplies and (L - M) * (M - 1) adds.
From k == L through k == L + M - 1, a similar phenomenon occurs for k ==

0,1, ... , M-l. ThesetennsalsorequireM*(M-l)/2addsandM*(M+l)/2multiplies.
Adding all of these computational requirements shows that Equation 6-1 requires L *(M - 1)
half-complex adds and (L + 1) *M half-complex multiplies to compute all N == L + M - 1
outputs y(k) if the input data is complex and the filter is real. Since each half-complex
add requires one real add and each complex multiply requires two real multiplies, this case
requires 2 * (L + 1) * M real multiplies and L * (M - 1) real adds.

6.3.2 Real Input Signal

If the input data is real and the unit pulse response remains real, the basic logic for
determining the number of computations remains unchanged. The only difference is that the
half-complex adds and multiplies are replaced with real adds and real multiplies. Adding

64 CHA~ 6 LINEAR FILTERING AND PATTERNMATCHING

all of these computational requirements, Equation 6-1 requires L * (M - 1) real adds and
(L + 1) * M real multiplies to compute all N = L + M - 1 outputs y(k) if the input data
is complex and the filter is real.

6.4 SINGLE-STEP FREQUENCY DOMAIN METHOD

If the input sequence, x (i), and the unit pulse response, h(j), are finite, then one frequency
domain solution is to compute an FFf whose length is large enough to encompass the
entire response of the linear filter. If the input sequence is length L, (Le., x(l) exists
for I = 0, 1, 2, ... , L - 1) and the unit pulse response is length M (i.e., h(m) exists for
m = 0, 1,2, ... , M - 1), then Equation 6-1 shows that y(k) will have an output starting
at k = °and ending after k = L + M - 1. Therefore, if the FFf in Figure 6-1 is at least
L + M - 1 points, only one is required to convert all of the needed data to the frequency
domain. The number of computations for the FFT is determined from the Comparison
Matrices in Chapters 8 and 9.

6.4.1 Complex Input Signal

The complex multiplications (four multiplies and two adds per complex multiply)
required after each N -point FFf total 6 * N computations. Finally, the IFFf takes the
same number of computations as the FFT. If the number of computations for an N -point
FFf is NF, the frequency domain approach requires fewer computations for complex input
sequences when

2 * {L * (M - 1) + (L + 1) *M} > 2 *NF + 6 * N

6.4.2 Real Input Signal

If the input signal is real, then all of the FFT computations are reduced by using
the double-length algorithm from Section 2.4. If N /2 is odd, this reduces the input FFf
computations to

Compo = N F + 5 * N - 7

Likewise, if N /2 is even, Chapter 2 shows the total input FFf computations are:

Compo = NF + 5 * N - 9

Then the outputs of the input FFT are multiplied by complex numbers to provide the filter
shaping. Since the FFf input and the unit pulse response are real, the FFf outputs of
both are symmetric around the center filter. This means the only complex multiplies to be
performed are those below the center filter.

Case 1: Real InputSignalwithN/2 an Even Number
If N /2 is even, this is N /2 complex multiplies, which is 2 *N real multiplies and N

real adds. If N /2 is odd, the total number of filters to be multiplied is the (N - 1)/2 below
the center filter and the center filter. This is (N - 1)/2 complex multiplies plus one real
multiply for the center filter (see the symmetry properties of DPTs in Chapter 2). This is a
total of 2 * N - 1 real multiplies and N - 1 real adds.

SEC. 6.5 OVERLAP-AND-ADD FREQUENCY DOMAIN ALGORITHM 65

The output of the complex multiplication step is then fed into an N -point IFFT
that requires 2 * NF computations. Therefore, the equation to determine when the total
computations for N /2 even is less in the frequency domain for real input signals is

3 * NF + 8 * N - 9 < L * (M - 1) + (L + 1) * M

Case 2: Rea/Input Signals with N/2 an Odd Integer

For N/2 odd,

3 * NF + 8 * N - 5 < L * (M - 1) + (L + 1) * M

6.5 MULTIPLE-STEP FREQUENCY DOMAIN METHOD

If the length of the input sequence L is too long to practically compute as a single transform
length, a means must be found to segment the input sequence into manageable lengths and
perform the functions in Figure 6-1 several times. Once these several sets of operations are
performed, the results must be recombined to form the complete output sequence. There
are two algorithms for performing the frequency domain method on long sequences of input
data. These algorithms are described, and the total number of computations determined
and compared with the time domain approach for real and complex input sequences.

6.6 QVERLAP-AND-ADD FREQUENCY DOMAIN ALGORITHM

6.6.1 Introduction

The overlap-and-add approach to filtering in the frequency domain requires additions
to combine the results from consecutive data sequence computations to reconstruct the
output sequence y(k) in Equation 6-1. In this approach, perfect finite convolutions as
described in Section 6.4 are obtained by choosing L samples of the input sequence and
appending N - L zeros so that the M nonzero values of he;) do not overlap using an N
point FFT. Then the N -point FFT frequency domain processing provides all valid outputs.
The next step is to move over and use the next L samples and append N - L zeros. When
the frequency domain processing of this second set of data is complete, all of its results are
also correct (Figure 6-2). Since the two input sample sequences add to form the actual input
sequence, the linearity property of FFfs guarantees that adding the N overlapped outputs
provides the actual y(k) results. If this process is continued, the correct outputs continue
to be obtained for y(k).

6.6.2 Complex Input Signals

For complex input signals, the specific overlap-and-add algorithm stages are as
follows.

Stage 1: Choose a Transform Length N

Stage 2: Compute N-Point FFT of the Unit Pulse Response h(i) One Time

66 CHAP.6 LINEAR FILTERING AND PATTERN MATCHING

L Samples -I
,. L Samples .,

f •

L Samples
• f L Samples

Figure 6-2 Sample sequence for the overlap-and-add algorithm.

Compute the N -point FFf of the M members of the sequence for h(i), after N - M
zeros are appended to the end and label the results H(k).

N-l

H(k) = L h(i) * W;}
;=0

This computation only happens once, and the results are stored in memory for use in
multiplying all of the transformed data sets as shown in Figure 6-1.

Stage 3: Set t =0

Stage 4: Load and Augment the Next Set of Input Data Points for Processing

Collect L data points, x[i + t * L], and store in the input data memory along with
N - L zeros to occupy the last N - L samples in the sequence of N data points, Xt(i).

x, (i) = xU + t *L]

Xt(i) = 0

for i = 0,1,2, ... , (L - 1)

for i = L, L + 1, ... , (N - 1)

Stage 5: Transform the Next Set of Data Points to the Frequency Domain

Compute the N-point FFT of x.ti), using one of the appropriate algorithms from
Chapters 8 and 9.

N-I

Xt(k) = L Xt(i) * W;}
;=0

This stage requires Np arithmetic computations. However, the first stage in all of the
algorithms in Chapters 8 and 9 is the sums and differences of the input samples. Therefore,
2 * (N - L) of the input complex adds can be removed from the FFf algorithm because
N - L of the input data points are known to be zero. Therefore, the first time these samples
need to be added to other samples the addition can be omitted. This reduces the total to
Np - 4 * (N - L) computations.

SEC. 6.6 OVERLAP-AND-ADD FREQUENCY DOMAIN ALGORITHM 67

Stage 6: Perform Frequency Domain Filtering

For each k == 0,1,2, ... , (N - 1), compute the product P(k). This requires 4 * N
multiplies and 2 * N adds since both numbers are complex.

P(k) == H(k) * Xt(k)

Stage 7: Transform the Results Back to the Time Domain

Compute the IFFf of P(k) and divide each result by N to obtain Yt(n) for n =
0,1,2, ... , (N - 1) and store the results in N complex memory locations. Use the appro
priate algorithms from Chapters 8 and 9 with the sign of the imaginary multiplier terms
reversed as described in Chapter 2.

N-l

Yt(n) == liN * L P(k) * WNkn

k==O

This stage requires NF arithmetic computations because the IFFf takes the same number
of computations as the FFT.

Stage 8: Perform Output Adds

1. If t == 0, then for i == 0,1,2, , (L - 1), set y(i) = Yt(i).

2. 1ft> 0, then for i == 0,1,2, , (N-L-1),sety[i+t*L] = Yt-l[i+L]+Yt(i),
and for i == (N - L), (N - L + 1), ... , (N - 1) set y[i + t * L] = Yt(i).

This requires 2 * (N - L) adds if the input data sequence is complex.

Stage 9: Set t = t + 1 and Repeat Stages 4 through 8

If the computations from Stages 5-8 are added, the total number of arithmetic com
putations for a complex input signal is:

Compo == 2 * NF + 4 *N + 2 * L

Since these computations are performed every time L new data samples are used, the number
of computations per complex input data sample is

Compo == {2 * N F + 4 * N + 2 * L}I L

6.6.3 Real Input Signals

If the input signal to the overlap-and-add algorithm is real, then all of the FFT compu
tations are reduced by using the double-length algorithm from Chapter 2. The exact answer
depends on whether N12 is odd or even. If N 12 is odd, the input FFT computations per
data point are

Compo = {N F2 + 5 * N - 7}/ L

where NF2 is the number of computations for the N 12-point FFT algorithm chosen from
Chapters 8 and 9. If N 12 is even, the input FFT computations per data point are

#Comp. == {NF2 + 5 * N - 9}IL

68 CHAP. 6 LINEAR FILTERINGAND PATIERN MATCHING

Then the outputs of the input FFf are multiplied by complex numbers to provide the filter
shaping. Since the FFf input and the unit pulse response are real, the FFf outputs of
both are symmetric around the center filter. This means the only complex multiplies to be
performed are those below the center filter. If N /2 is even, this is N /2 complex multiplies,
which is 2 *N real multiplies and N real adds. If N /2 is odd, the total number of filters to
be multiplied is the (N -1)/2 below the center filter and the center filter. This is (N - 1)/2
complex multiplies plus one real multiply for the center filter (see the symmetry properties
of DFfs in Chapter 2). This is a total of 2 *N - 1 real multiplies and N - 1 real adds. The
output of the complex multiplication stage is then fed into an N -point IFFf that requires
NF2 computations.

The total number of computations per data point is:

Compo = 2 *NF2 + 13 *N - 18

6.7 OVERLAP·AND·SAVE FREQUENCY DOMAIN ALGORITHM

6.7.1 Introduction

The overlap-and-save algorithm overlaps the data sequences into the FFf rather than
artificially creating the overlap by adding zeros (Figure 6-3). The process starts by taking
the first N samples in the sequence x t (i) and computing its FFf. These results are multiplied
by the N-point FFf of hi j), and the result is transformed back to the time domain by an
IFFf. The result is only accurate starting at the first sample in the sequence until the unit
pulse response ht j) of M samples no longer completely overlaps the data sequence x.ii),
Therefore, each set of computations generates (N - M + 1) new valid outputs. To cover the
last M - 1 outputs, the next input sequence overlaps the previous one by M - 1 samples.
If this process is continued, the correct outputs are always obtained for y(k).

~
M-I

I~
M-l

I~I

M -1

I ~ N Samples. I
N Samples

I~ -I
N Samples

I~ -I
N Samples

14 -I
N Samples

I ~ -I

I~
M-I

Figure 6-3 Sample sequence for the overlap-and-save algorithm.

SEC. 6.7 QVERLAP-AND-SAVE FREQUENCY DOMAIN ALGORITHM 69

6.7.2 Complex Input Signals

For complex input signals, the specific overlap-and-add algorithm stages are:

Stage 1: Choose a Transform Length N

Stage 2: Compute N-Point FFT of the Unit Pulse Response h(i) One Time

Compute the N -point FFT of the M members of the sequence for h(i) after N - M
zeros are appended to the end, and label the results H (k).

N-I

H(k) == L h(i) * w~
;=0

This computation only happens once, and the results are stored in memory for use in
multiplying all of the transformed data sets.

Stage 3: Set t =0

Stage 4: Load and Augment the Next Set of Input Data Points for Processing

Collect N data points, x [i + t * (N - M + 1)], and store in the input data memory,
x, (i). Note that this means this algorithm will use M - 1 of every N input data points twice.
This makes the input data addressing nonsequential.

x, (i) == xU + t * (N - M + 1)] for i == 0, 1,2, ... , (N - 1)

Stage 5: Transform the Next Set of Data Points to the Frequency Domain

Compute the N -point FFT of x, (i), using one of the appropriate algorithms from
Chapters 8 and 9.

N-l

Xt(k) == LXt(i) * W;}
;=0

This stage requires NF arithmetic computations, where NF is computed based on the algo
rithm chosen from Chapters 8 and 9.

Stage 6: Perform Frequency Domain Filtering

For each k == O. 1,2, ... , (N - 1), compute the product P(k):

P(k) == H(k) * Xt(k)

This requires 4 * N multiplies and 2 * N adds since both numbers are complex.

Stage 7: Transform the Results Back to the Time Domain

Compute the IFFT of P(k) to obtain YI(n) for n == 0, 1, 2, ... , (N - 1) and store the
results in N complex memory locations.

N-I

YI(n) == [1/N] * L P(k) * WN
kn

k=O

This stage requires NF arithmetic computations.

70 CHAP. 6 LINEAR FILTERING AND PATTERN MATCHING

Stage 8: Append the First N- M + 1 Outputsto the Output Sequence

Keep the first N - M + 1 of these outputs and append them to the previous valid
outputs. Namely, for i = 0, 1,2, ... , (N - M + 1):

y[i + t * (N - M + 1)] = Yt(i)

This means that M - 1 of the final adds in the Stage 7 IFFf need not be computed. This is
a total of Z» (M -1) adds. If N is chosen such that N = L +M -1, then M -1 = N - L.

Stage 9: Set t =t + 1 and RepeatStages 4 through 8

Totaling the arithmetic computations from Stages 5 to 7 and dividing by the N - M +1
new output samples yield the same number of arithmetic computations per complex input
data point as the overlap-and-add algorithm:

Compo = {2*NF+6*N -2*(N-L)}/(N-M+l) = {2*NF+4*N+2*L}/(N -M+1)

If N = L + M - 1, then N - M + 1 = L, and this is the same number of computations
required for the overlap-and-add algorithm in Section 6.6.

6.7.3 Real Input Signals

If the input signal is real, then all of the FFT computations are reduced by using the
double-length algorithm from Chapter 2. The exact answer depends on whether N /2 is
even or odd. If N /2 is odd, this reduces the input FFT computations per data point to

Camp. = {NF 2 + 5 * N - 7}/(N - M + 1)

where N F2 is the number of computations required for the N/2-point algorithm chosen
from Chapters 8 and 9. If N /2 is even, the input FFT computations per data point are

Compo = {NF2 + 5 * N - 9}/(N - M + 1)

Then the outputs of the input FFf are multiplied by complex numbers to provide the filter
shaping. Since the FFf input and the unit pulse response are real, the FFf outputs of
both are symmetric around the center filter. This means the only complex multiplies to be
performed are those below the center filter.

If N /2 is even, this is N /2 complex multiplies, which is 2 *N real multiplies and N
real adds. If N /2 is odd, the total number of filters to be multiplied is the (N - 1)/2 below
the center filter and the center filter. This is (N - 1)/2 complex multiplies plus one real
multiply for the center filter (see the symmetry properties of DFfs in Chapter 2). This is a
total of 2 *N - 1 real multiplies and N - 1 real adds.

The output of the complex multiplication stage is then fed into an M -point IFFT that
requires NF2 computations. The total number of computations for real input data is

Camp. = 2 * N F2 + 13 * N - 18

6.8 LINEAR FILTERING AND PATTERN MATCHING
COMPARISON MATRIX

The Comparison Matrix of Table 6-1 summarizes the key performance measures that can
be used to determine the best way to implement Equations 6-1 and 6-2. The important

SEC. 6.9 CONCLUSIONS 71

point to note is that the performance measures for both frequency domain methods are the
same. Therefore, this matrix is only useful in determining if Equations 6-1 and 6-2 should
be implemented directly in the time domain or in the frequency domain.

Table 6-1 Linear Filtering and Pattern Matching Comparison Matrix

of data Compo

Algorithm # of computations per data point locations latency

Real Input Data

Direct 2*M -1 M+2 1

Overlap-and-add (N /2 odd) (2 * NF2 + 13 * N - 16)/L N 3* N
Overlap-and-save (N /2 odd) (2 * NF2 + 13* N - 16)/ (N - M + 1) N 3*N
Overlap-and-add (N /2 even) (2 * NF2 + 13 * N - 18)/ L N 3* N
Overlap-and-save (N /2 even) (2 * NF2 + 13* N - 18)/(N - M + 1) N 3*N
Complex Input Data

Direct 4*M-2 2*M+4 2

Overlap-and-add (2 * NF + 4 * N + 2 * L) / L 2*N 6*N
Overlap-and-save (2* NF +4* N +2* L)/(N - M + 1) 2*N 6*N

Key to Variables

N == FFf length

M == number of stages in direct implementation

L == number of new outputs per set of computational stages

NF2 == number of computations in the N /2-point FFf chosen from Chapters 8 and 9
NF == number of computations in the N -point FFf chosen from Chapters 8 and 9

6.9 CONCLUSIONS

While linear filtering and pattern matching can be done in the time domain, and often are,
frequency domain implementation using FFTs often requires fewer adds and multiplies.
The algorithms in this chapter, in combination with the FFT algorithms in Chapters 8 and
9, provide all the steps necessary to implement linear filtering and pattern matching in the
frequency domain.

The next chapter describes how to perform these functions and those from Chapter 5
in more than one dimension by simply converting the multidimensional processing to a
sequence of one-dimensional processes.

REFERENCES

[1] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1975.

[2] A. V.Oppenheim and R. W. Schafer, Digital SignalProcessing, Prentice-Hall, Engle
wood Cliffs, NJ, 1975.

[3] E. Oran Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ,
1974.

[4] E. Oran Brigham, The Fast Fourier Transform and Its Applications, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

7

Multidimensional Processing

7.0 INTRODUCTION

To this point the book has only addressed the use of the OFT and its fast versions (FPTs)
to convert one-dimensional signals to their frequency components. Signals such as music,
speech, radar, and sonar are waveforms that change as a function of one variable, time.
They are usually analyzed with one-dimensional FFfs. However, some signals have more
than one dimension or can be turned into waveforms with more than one dimension. The
most obvious example is an image, a two-dimensional waveform, which is analyzed with
two-dimensional FFTs. Video is described in three-dimensional terms, some number of
two-dimensional pictures per second, with time as the third dimension.

The most important fact about multidimensional OPTs is that they can be decomposed
into a sequence of one-dimensional DFfs. The results of this fact are twofold:

• Understanding how to choose and implement one-dimensional FFTs is most of the
work in implementing an N-dimensional FFT.

• Any of the one-dimensional FFTs can be used to compute multidimensional FFTs.

Mathematically, the multidimensional OFT is called a separable function because its
implementation can be separated into multiple, one-dimensional DPTs. There are three
properties of multidimensional OFT processing:

• Each dimension of a multidimensional OFT has all the properties of a one-dimen
sionalOFT.

• Any of the one-dimensional FFTs can be used to compute multidimensional FFTs.

• Each dimension of a multidimensional DFT can be a transform of any length.

74 CHAP. 7 MULTIDIMENSIONAL PROCESSING

These three separable function properties significantly reduce the number of computations
required for multidimensional OPTs. This, combined with FFf algorithms that provide fast
computation of one-dimensional OPTs, has led to uses of two- and three-dimensional FFTs
for applications such as image formation (synthetic aperture radar and magnetic resonance
imaging) and image analysis (deblurring).

7.1 FREQUENCY ANALYSIS

This section starts by giving the algorithm for using one-dimensional DFTs to compute two
dimensional OPTs [1, 2, 3]. It then expands the algorithm to more than two dimensions so
that any dimension of a DFf can be computed by just using the algorithms in this chapter.

7.1.1 Two Dimensions

At first glance, frequency analysis in more than one dimension seems a bit strange
because the common definition of frequency is associated with a signal, like electric power,
that changes over time. However, if the concept of dimension is expanded to include space,
then images certainly change as a function of the x and y positions in the image. The
result is the concept of spatial frequency. Therefore, two-dimensional frequency analysis
measures the spatial frequency content of an image. The equation for frequency analysis in
two dimensions is

Nt-1 N2- t
A(kt , k2) = L L a(nt, n2)e-j2Jr[ntkt/Nt+n2k2/N2]

nt=O n2=O

(7-1)

The conversion of this equation to a sequence of two one-dimensional OFfs is accomplished
by noting that the exponential term can be factored into two terms, each with its own
subscripted set of n, k, and N variables that are independent of each other:

(7-2)

Once the exponential is factored, it can be separated between the two summation signs to
produce

Nt-t N2- tL L a(nt, n2) * e-j2Jr[ntkt/Nt+nzk2/N2]

nt=O n2=O
(7-3)

The inner summation is the N2-point one-dimensional DFT of a(nl, n2). Since a(nt, n2)
is different for each value of nt, this OFT must be computed for each nt = 0,1,2, ... ,
tN, -1). Those results become the terms used to compute the second set of one-dimensional
DFfs described by the outer summation to the right of the equals sign in Equation 7-3. To
summarize, if this two-dimensional image described by a(nl' n2) is to be transformed,
then:

1. For each row: nl = 0,1,2, ... , tN, - 1), compute its N2-point OFT and place
the results back in the same row.

SEC. 7.2 LINEAR FILTERING 75

2. For each column of the results from 1): n: = 0,1,2, ... , (N2 - 1), in this interim
two-dimensional set of numbers, compute its Nt-point OFf and place the results
back in the same column.

Each of these N} * N2 one-dimensional OFTs can be computed using any of the FFT
algorithms in Chapters 8 and 9 to improve the computation time. If the input data is
complex, the complex version of the algorithms is most efficient. If the input is real, then
the overlap-and-add or overlap-and-save approaches from Chapter 6 can also be applied to
the chosen FFT algorithm to further reduce the computational load.

7.1.2 Three or More Dimensions

The technique in Section 7.1.1 can be extended to any number of dimensions by
using the same strategy. For three dimensions, factor the exponential and then separate
one of the dimensions as shown in Equation 7-4. Then the three-dimensional Off is a
sequence of two-dimensional OFTs on the results of the one-dimensional transform that
has been separated. Then the two-dimensional DFf can be decomposed as described in
Section 7.1.1. The same logic follows to convert an N-dimensional OFT into a sequence
of one-dimensional OPTs and (N - I)-dimensional DPTs:

N1-l N2-1 N3-1L L L ain-, n». n3) * e-j2rr[nlkt/Nl+n2k2/N2+n3k3/N3]

nl =0 n2=0 n3=0

7.2 LINEAR FILTERING

(7-4)

One-dimensional linear filtering is defined in Chapter 6 by using Equation 6-1. Just as
one-dimensional filtering, two-dimensional filtering (spatial filtering) can be performed in
the spatial frequency domain as well as the spatial domain [1, 2, 3]. For example, the
sharp edges in an image can be softened by passing the image through a two-dimensional
low-pass filter, just as the sharp edges of a square wave are smoothed by passing it through
a low-pass filter. Further, a two-dimensional low-pass filter can be implemented in the
frequency domain, just as for one-dimensional filters by using a generalized version of one
of the two techniques in Chapter 6.

If h (), i) is the two-dimensional equivalent of the unit pulse response of the linear
filter and x (), i) is the two-dimensional array of data points in the image, the equation for
two-dimensional linear filtering is

N1-l N2- 1

y(k1, k2) = L L xtk, - }, k2 - i) *he}, i)
j=O ;=0

(7-5)

For a general unit pulse response this equation requires an enormous number of computa
tions. Suppose the image has P rows and Q columns of pixels, and the two-dimensional
unit pulse response has N, rows and N2 columns. Generally, N} and N2 are much smaller
than P and Q.

(7-6)

76 CHAP. 7 MULTIDIMENSIONAL PROCESSING

Equation 7-5 is computed for each value of kl = 0, 1, 2, ... , (P - 1) and k2 =
0,1,2, ... , (Q - 1). Since P » N1 and Q » N2, almost all of the P * Q computations
of Equation 7-5 require the full (N1 * N2) multiplies and (N1 * N2 - 1) adds. Therefore,
P * Q * {2 * N l * N2 - I} computations is a good estimate for real input sequences and
unit pulse responses. If the input sequence is complex and the unit pulse response remains
real, these numbers double.

7.2.1 Separable Two-Dimensional Filter

One of the most popular techniques to reduce the computational requirements of the
two-dimensional linear filter is to require the two-dimensional unit pulse response to be
the product of two one-dimensional unit pulse responses. This dramatically reduces the
computational load because it allows Equation 7-5 to be rewritten as

NI-1IN2-1 Iy(kJ, k2) = ~ t; xtk, - j, k2 - i) * h(i) *h(j)

The inner summation is a one-dimensional linear filter that is computed for each value
of j = 0,1,2, ... , (N, - 1) in each row k, = 0,1,2, ... , (P - 1). Since each one
dimensional linear filter requires N2 multiplies and (N2 - 1) adds, the inner summation
requires N1 * P * [2 *N2 - 1] arithmetic computations and produces the signal used by the
outer summation which is now also only a one-dimensional linear filter. Similarly, the outer
summation requires N2*Q*[2 *N1 - 1] arithmetic computations. The total computations
for Equation 7-6 are then reduced to N1 * P * [2 * N2 - 1] + N2* Q* [2 *N l - 1]. This
total can be roughly approximated as 2 * N1 * N2 * (P + Q). The ratio of the number of
computations required for the two-dimensional approach to the separable one-dimensional
approach is roughly

(P + Q)/(P * Q) (7-7)

For a 512 x 512 image this ratio is (512 + 512)/(512 * 512) == 1/256, which is why this
approach to the unit pulse response is commonly found in image processing. Note that
Equation 7-7 is not dependent on the size of the unit pulse response. There actually is a
weak dependence that has been lost in the equation because of the approximations made on
the number of computations near the edge of the image.

7.2.2 Frequency Domain Approach

The frequency domain linear filtering algorithms in Chapter 6 can be used on Equation
7-6 to further reduce the computational requirements. Namely, each linear filter can be
replaced by the three-step process in Chapter 6 for computing linear filters in the frequency
domain. The frequency domain algorithm stages for computing the two-dimensional linear
filter are as follows.

Stage1: Choose InnerFilterTransform Length

Choose a transform length M2 for the inner summation in Equation 7-6 based on the
criteria in Chapter 6. Using a larger number than M2 = N2+ Q - 1 requires adding zeros
(zero padding), which is equivalent to adding a border of zeros at the ends of the rows of
the image.

SEC. 7.2 LINEAR FILTERING 77

Stage 2: Perform Inner Filter Frequency Domain Processing

For each row k} == 0, 1, 2, ... , (P - 1), compute either the overlap-and-add or
overlap-and-save algorithm from Chapter 6 and replace the x (j, i) with the results X (j, k2) .

This approach requires

Compo == P * {2 * NAI 2 + 13 * M2 - 16}

for real input sequences x (j, i) and M2/2 odd. If M2/2 is even, this portion of the algorithm
requires

Compo == P * {2 * NM2 + 13 * M2 - I8}

In both cases, NNf2 == number of computations in the M2/2-point FFT.

Stage 3: Choose Outer Filter Transform Length

Choose a transform length M1 for the outer summation in Equation 7-6 based on the
criteria in Chapter 6. Using a larger number than M1 == N1 + P - 1 requires adding zeros
(zero padding), which is equivalent to adding a border of zeros at the ends of the columns
of the image.

Stage 4: Perform Outer Filter Frequency Domain Processing

For each row k, == 0, 1, 2, ... , (P - 1), compute either the overlap-and-add or
overlap-and-save algorithm from Chapter 6 and replace the X(j, k2) with the results yik, , k2) .

This requires

Compo == Q* {2 * NM 1 + 13 * M1 - 16}

for real input sequences x (j, i) and M I /2 odd. If M1/2 is even, this portion of the algorithm
requires

Compo == Q * {2 * NAl I + 13 * M I - I8}

In both cases, NAIl == number of computations in the M I /2-point FFT. The total number of
computations using the frequency domain approach is

Compo == Q * {2 * NM I + 13 * M 1 - 16} + P * {2 * NM 2 + 13 * M2 - I6}

for M /2 odd, and for M /2 even

Compo == Q* {2 * NAIl + 13 * M I - I8} + P * {2 * Nu: + 13 * M2 - I8}

7.2.3 Three and More Dimensions

Just as frequency analysis can be extended into more than two dimensions, the linear
filtering equation can also be written in more than two dimensions. Again, the most common
technique for reducing the computational load from multidimensional linear filtering is to
restrict the unit pulse response to one that can be factored into functions of the individual
dimensions, and then use frequency domain filtering on the resulting one-dimensional linear
filters.

78 CHAP. 7 MULTIDIMENSIONAL PROCESSING

7.3 PATTERN MATCHING

One-dimensional pattern matching is defined in Chapter 6. Just as one-dimensional pattern
matching can be performed in the time or frequency domain to find a pattern in a waveform,
two-dimensional pattern matching can be performed in the spatial or frequency domain to
find two-dimensional patterns in an image [1, 2, 3]. If h(j, i) is the pattern to be located
in an image x(j, i), then the best match to that pattern is found when y(k l , k2) is largest in
the equation

Nt- l Nz-I

y(k}, k2) = L L x(k l + j, k2 + i) *h(j, i)
j=O ;=0

(7-8)

(7-9)

For a general unit pulse response this equation requires an enormous number of computa
tions. Suppose the image has P rows and Q columns of pixels, and the two-dimensional
unit pulse response has N1 rows and N2 columns. Generally, N1 and N2 are much smaller
than P and Q.

Equation 7-8 is computed for each value of kl = 0, 1,2, ... , (P - 1) and k2 =
0,1,2, ... , (Q - 1). Since P » N1and Q» N2, almost all of the P * Q computations
of Equation 7-5 require the full (N1 * N2) multiplies and (N1 * N2 - 1) adds. Therefore,
P * Q* {2 * N1 * N2 - I} computations is a good estimate for real input sequences and
unit pulse responses -. If the input sequence is complex and the unit pulse response remains
real, these numbers double.

7.3.1 Separable Two-Dimensional Pattern Matching

One of the most popular techniques to reduce the computational requirements of the
two-dimensional pattern matching is to require the two-dimensional unit pulse response to
be the product of two one-dimensional unit pulse responses. This dramatically reduces the
computational load because it allows Equation 7-8 to be rewritten as

Nt-11NZ-1 I
yik«, k2) = ~ ~ xtk, + i. k2 + i) * h(i) *h(j)

The inner summation is a one-dimensional pattern matcher that is computed for each value
of j = 0,1,2, ... , (N1 - 1) in each row k l = 0,1,2, ... , (P - 1). Since each one
dimensional pattern matcher requires N2 multiplies and (N2 - 1) adds, the inner summa
tion requires N1 * P * [2 * N2 - 1] arithmetic computations and produces the signal used
by the outer summation which is now also only a one-dimensional pattern matcher. Simi
larly, the outer summation requires N2 *Q*[2*N, - 1] arithmetic computations. The total
computations for Equation 7-9 are then reduced to N, *P*[2*N2 -1]+ N2*Q*[2*Nl -1].
This total can be roughly approximated as 2*N, *N2 *(P + Q). The ratio of the number of
computations required for the two-dimensional approach to the separable one-dimensional
approach is roughly

(P + Q)/(P * Q) (7-10)

For a 512 x 512 image, this ratio is (512 + 512)/(512 * 512) = 1/256, which is why this
approach to the unit pulse response is commonly found in image processing. Note that
Equation 7-10 is not dependent on the size of the unit pulse response. There actually is a

SEC. 7.3 PATIERN MATCHING 79

weak dependence that has been lost in the equation because of the approximations made on
the number of computations near the edge of the image.

7.3.2 Frequency Domain Approach

The frequency domain pattern matching algorithms in Chapter 6 can be used on
Equation 7-9 to further reduce the computational requirements. Namely, each pattern
matcher can be replaced by the three-step process in Chapter 6 for computing pattern
matchers in the frequency domain. The frequency domain algorithm stages for computing
the two-dimensional pattern matcher are as follows:

Stage 1: Choose Inner Pattern Matcher Transform Length

Choose a transform length M2 for the inner summation in Equation 7-9 based on the
criteria in Chapter 6. Using a number larger than M2 = N2 + Q - 1 requires adding zeros
(zero padding), which is equivalent to adding a border of zeros at the ends of the rows of
the image.

Stage 2: Perform Inner Pattern Matcher Frequency Domain Processing

For each row kl = 0, 1, 2, ... , (P - 1), compute either the overlap-and-add or
overlap-and-save algorithm from Chapter 6 and replace the x(j, i) with the results X(j, k2) .

This approach requires

Compo = P * {2* NM2+ 13 * M2 - 16}

for real input sequences x(j, i) and M2/2 odd. If M2/2 is even, this portion of the algorithm
requires

Compo = P * {2 * NM2 + 13 * M2 - 18}

Stage 3: Choose Outer Pattern Matcher Transform Length

Choose a transform length M, for the outer summation in Equation 7-9 based on the
criteria in Chapter 6. Using a number larger than M, = N, + P - 1 requires adding zeros
(zero padding), which is equivalent to adding a border of zeros at the ends of the columns
of the image.

Stage 4: Perform Outer Pattern Matcher Frequency Domain Processing

For each row kl = 0, 1,2, ... , (P - 1), compute either the overlap-and-add or
overlap-and-save algorithm from Chapter 6 and replace the X (j, k2) with the results y(k1 , k2) .

This requires roughly

Compo = Q * {2 * NM 1 + 13 * M1 - 16}

for real input sequences x (j, i) and M 1/2 odd. If M1/2 is even, this portion of the algorithm
requires

Compo = Q* {2 *NM 1 + 13 *M 1 - 18}

The total number of computations with the frequency domain approach is roughly

Compo = Q* {2* NM 1 + 13 * M1 - 16}+ P * {2* NM2 + 13 * M2 - 16}

80 CHA~ 7 MULTIDIMENSIONAL PROCESSING

for M /2 odd, and for M /2 even

Compo = Q * {2 * NM 1 + 13 * M1 - 18}+ P * {2* NM2 + 13 * M2 - 18}

7.3.3 Threeand MoreDimensions

Just as frequency analysis can be extended to more than two dimensions, the pattern
matching equation can also be written in more than two dimensions. Again, the most
common technique for reducing the computational load from multidimensional pattern
matching is to restrict the unit pulse response to one that can be factored into functions of
the individual dimensions, and then use frequency domain pattern matching on the resulting
one-dimensional pattern matchers.

7.4 CONCLUSIONS

Having learned in this chapter how to break down multidimensional processing to more
easily performed sequences of one-dimensional processing, we conclude the foundation
portion of the book. Design Example 4 in Chapter 17, an image deblurrer, demonstrates
two-dimensional processing. Now that what FFfs are and what they can do have been
covered, the next two chapters show how to construct an FFf of any length.

REFERENCES

(1] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1975.

[2] A. V.Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Engle
wood Cliffs, NJ, 1975.

[3] E. Oran Brigham, The Fast Fourier Transform and Its Applications, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

8

Building-Block Algorithms

8.0 INTRODUCTION

In this chapter the 2-, 3-, 4-, 5-, 7-, 8-, 9-, and 16-point FFf algorithms are presented
because they are the most efficient and widely used FFT algorithm building blocks. The
general-purpose FFT algorithms (Rader and Singleton) are included to provide the addi
tional building blocks necessary to compute any transform length. This is because not all
numbers have only 2, 3, 4, 5, 7, 8, 9, or 16 as factors, for example, 119 = 7 * 17. More than
one algorithm for computing a particular building block, except for 2 and 4, is given because
each has different features that make it better suited to some applications than others. A
unique feature of the book is the format in which they are all presented, with input adds,
multiplies, and then output adds, so that all can be used with the Winograd algorithm in
Chapter 9.

All of the building-block algorithms are FITs, sometimes called small-point trans
forms. Since they are FFTs, they have all of the same properties, strengths, and weaknesses
of the DFT described in Chapter 2.

8.1 FOUR PERFORMANCE MEASURES

The most common way to evaluate FFf algorithms is in terms of the number of computations
and amount of memory required to compute them. The performance measures in this section
quantify those computations and memory needs. The same four measures are used again
in Chapter 9.

82 CHAP. 8 BUILDING-BLOCK ALGORITHMS

8.1.1 Number of Adds

This is the total number of real adds used for each building-block algorithm. It
includes the two adds required as part of each of the complex multiplies.

8.1.2 Number of MUltiplies

This is the total number of real multiplies for each building-block algorithm. Each
complex multiply takes four real multiplies and two real adds (counted in the number of
adds). The standard way of computing complex multiplies is as a sequence of four real
multiplies and two real adds, as shown in Equation 8-1.

(a + jb) * (c + jd) = (ac - bd) + j(bc + ad) (8-1)

However, it is possible to rewrite Equation 8-1 so that it is computed as three multiplies and
three adds (Equation 8-2).

(a + jb) * (c + jd) = (a + b) * c - b * (c + d) + j[(a - b) *d + b * (c + d)] (8-2)

This technique is not used in any of the building-block algorithms in this chapter. How
ever, it could be used to modify the add and multiply count for a particular building block
to satisfy the requirements of a particular application or arithmetic format. The draw
back of this technique is that it introduces additional quantization noise into the FFf
results, because of the way identical terms are added and then subtracted to form the
results.

To understand how Equation 8-2 only requires three multiplies and three adds, con
sider a + jb, the FFf multiplier constant. Then a + b and a - b are constants that can be
computed ahead of time and stored in memory. The sequence of computations is:

(a) Add c and d to form (c + d).

(b) Multiply (c + d) by b to form b * (c + d).
(c) Multiply (a + b) by c to form (a + b) * c.

(d) Multiply (a - b) by d to form (a - b) *d.

(e) Subtract the results of band c to form the real part of the result.

(I) Add the results of d and b to form the imaginary part of the result.

Steps a, e, and fare additions (in one case a subtraction which is generally implemented
as an addition of a negative number), and steps b-d are real multiplications.

8.1.3 Number of Memory Locations for Multiplier Constants

Each building-block algorithm requires a different number of multiplier constants.
Each constant must be stored in data or program memory or computed as needed. The
latter is seldom done any more because memory costs have been dramatically lowered. The
number for this performance measure in the Comparison Matrix in Table 8-1 is the total
of the different constants required by each algorithm. These include multiplication by 2
and 1/2, which can also be done by moving the binary point of fixed-point numbers or by
changing the exponent of floating-point numbers.

SEC. 8.2 TEN BUILDING-BLOCKALGORITHM CONSTRAINTS 83

8.1.4 Number of Data Memory Locations

Each algorithm begins and ends by using exactly 2 * N data memory locations to
store the input data and output results, respectively. However, if no temporary registers are
available for intermediate results, most of the algorithms in this chapter require additional
data memory locations during the computations. In this chapter, Algorithm Steps and a
Memory Map are given for each algorithm, and total data memory location requirements
are listed in the Comparison Matrix, assuming the processor has no temporary registers.
The difference between those numbers and 2 * N is the number of temporary registers
needed to avoid using extra data memory locations for intermediate results.

8.2 TEN BUILDING-BLOCK ALGORITHM CONSTRAINTS

The following are the constraints the authors have used for the small-point transforms in
this chapter:

1. The real and imaginary parts of the i-th input sample are aR(i) and al(i). AR(i)

and A I (i) are the real and imaginary parts of the i-th output frequency component.

2. All of the algorithms have been segmented to have all of the multiplications in
the center so that they can be used by any of the FFf algorithms in Chapter 9 to
form longer transform lengths. Chapter 9 explains the reasons for this constraint.

3. Intermediate results are labeled with sequential lowercase letters of the alphabet
to indicate where they are located relative to other computational outputs. For ex
ample, the first set of intermediate computational results in each of the algorithm
building blocks is labeled bRei) and b[(i).

4. The sum and difference computations are performed by taking two pieces of
data from data memory, perfonriing the required computations, and returning the
results to available data memory locations.

5. The multiply-accumulates are performed by sequentially pulling a data value
from data memory, performing the multiplication, and adding the results to the
processor's accumulator (Section 14.2.11). When the multiply-accumulate func
tion is complete, the result is stored in a memory location, overwriting data that
is no longer needed.

6. The sequence of computations shown for the first stage in each algorithm has
been left the same as in its referenced article. The data labels have been changed
to make them consistent for all the algorithms in the book.

7. The memory location (Memory Map) for intermediate results or output frequency
components is shown next to each Algorithm Step.

8. For an N -point algorithm building block, the real input data, aR(i), is located in
data memory locations M(i), and the imaginary input data, al(i), is located in
data memory locations M(N + i), where i = 0,1,2, ... , (N - 1).

9. All of the multiplier constants are presented in their sine and cosine forms so that
they may be computed in the arithmetic format (see Chapter 13) appropriate for
the application.

84 CHAR 8 BUILDING-BLOCK ALGORITHMS

10. All of the intermediate results and output frequency components are stored di
rectly in data memory, rather than temporary storage locations, to ensure that the
algorithm will work on all processors.

8.3 TWO-POINT FFT

The 2-point OFT is defined for k = 0 and 1 as

1

A(k) = La(n) * e-j2rrkn/2

n=O
(8-3)

This simplest of OPTs and its FFT are the same. This algorithm requires four adds and no
multiplies and its execution is straightforward. The strategy for converting these equations
to code is to start at the top (compute A R (0» and identify the pair of inputs to be used
first (in this case aR(O) and aR(l». Then look down the list to find the second (compute
AR(l» place where these two inputs are used. Pull aR(O)and aR(l) from memory, compute
AR (0) and A R (1), and store the results in data memory locations M (0) and M (1) previously
occupied by aR(O) and aR(l). Next, repeat the same set of steps for A/(O) and A/(l).

Algorithm Steps

AR(O) = aR(O) + aR(I)

A/(O) = a/(O) + a/(l)

AR(l) = aR(O) - aR(l)

AJ(I) = a/(O) - aIel)

Memory Map

AR(O) => M(O)

A/(O) => M(2)

AR(l) => M(l)

A/(l) => M(3)

Since each set of results can be placed in the same data memory locations that the inputs
were taken from, this algorithm requires only four data memory locations. The flowchart
for the 2-point FFT is shown in Figure 8-1. Two inputs and two outputs are used to indicate
that the same computational building block is used twice to compute the real and imaginary
portions of the 2-point FFT output.

-1

Figure 8-1 Two-point FFT algorithm flow graph.

Note that Figure 8-1 looks similar to the 2-point decimation-in-time (DIT) and
decimation-in-frequency (DIF) figures in Section 10.4. The difference is the multiplier
in the DIT and OIF flowcharts. When the 2-point transform is used in a larger power-of
two algorithm, it requires data reorganization as well as the complex multiplier to prepare
the data for each succeeding stage of the algorithm. However, in the prime factor algorithm
(Section 9.6), only data reorganization is required. Therefore, the universal building block
is the 2-point FFT in Figure 8- l , Chapter 9 deals with how these algorithm building blocks
are combined in different ways to form larger transform lengths, including power-of-two
and prime factor algorithms.

SEC. 8.4 THREE-POINT FFT 85

8.4 THREE-POINT FFT

The 3-point OFT is defined for k == 0, l , and 2 as

2

A (k) == L a(n) *«: j21Tkn/3

n=O

(8-4)

If the 3-point OFT is calculated directly from Equation 8-4, it requires four complex mul
tiplies and six complex adds. Since a complex multiply uses 4 real multiplies and 2 real
adds, and a complex add uses 2 real adds, the 3-point OFT requires 16 real multiplies and
20 real adds. The number of adds and multiplies for the two fast algorithms is significantly
less than required for computing the OFf directly. However, if only a subset of the out
put frequency components is required, it may be more cost effective to compute the OFT
equation directly for those terms. For example, if A (0) is the only term needed, it can be
computed with four adds and no multiplies by using the OFT directly. Each of the other
two output frequencies requires two complex multiplies and two complex adds for a total
of eight real adds and eight real multiplies. With this in mind the crossover point between
using the OFT directly and one of the 3-point FFT algorithms can be determined based on
the number of output frequency components that must be computed.

Since all of the input data is required for each of the output frequency component
calculations, the direct OFT computations require six data memory locations for the input
data and six more for the output frequency components. This is a total of 12 data memory
locations, since the input and output are complex. Similarly, the OFT data addressing is
sequential (i.e., 0 through 2 for each output frequency component), and the computational
architecture is simple since they can all be performed by using a complex multiply ac
cumulator (see Chapter 10 for details). Addressing the complex multiplier coefficients is
sequential in two orders (1 and 2 or 2 and 1) or requires that the addresses be stored in
program memory.

There are two common 3-point FFT algorithms. Both require 12 adds, 4 multiplies,
and 2 memory locations for multiplier constants. The Winograd [1] algorithm is based
on circular convolution properties and requires six data memory locations. The Singleton
[2] algorithm is based on complex conjugate symmetry properties of the 3-point OFf and
requires seven data memory locations.

8.4.1 Winograd 3-Point FFT

The strategy for converting these equations into code is to start at the top (com
pute bR (I) and identify the pair of inputs to be used first (in this case aR (1) and aR (2».
Then look down the list to find the second (compute bR (2» place where these two in
puts are used. Pull aR(l) and aR(2) from memory, compute bR(I) and bR(2) , and store
the results in data memory locations M (1) and M (2) previously occupied by aR (1) and
aR(2).

Next, look for the computation for bI (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. Note that the algorithm steps for AR(O) and A/(O)
only relabel the data values to their output labels once they have been used as required by
other portions of the algorithm.

86 CHA~ 8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

bR(I) = aR(I) + aR(2)

bR(2) = aR(I) - aR(2)

bI(I) = aIel) + aI(2)

b/(2) = aIel) - a/(2)

bR(O) = aR(O) + bR(I)

b/(O) = a/CO) + b/(I)

cR(I) = bR(I) * [cos(2rr/3) - I]

cR(2) = b/(2) * sin(2rr /3)

c/(I) = b/(I) * [cos(2rr/3) - I]

c/(2) = bR(2) * sin(2rr /3)

dR(O) = bR(O) + cR(I)

d/(O) = bI(O) + c/(I)

AR(O) = bR(O)

A/(O) = bI(O)

AR(I) = dR(O) + cR(2)

AI(I) = d/(O) - c/(2)

AR(2) = dR(O) - cR(2)

A/(2) = d/(O) + c/(2)

Memory Map

bR(I) => M(I)

bR(2) => M(2)

b/(I) => M(4)

b/(2) => M(5)

bR(O) => M(O)

b/(O) => M(3)

cR(I) => M(I)

cR(2) => M(5)

c/(I) =} M(4)

c/(2) => M(2)

dR(O) => M(I)

d/(O) => M(4)

AR(O) => M(O)

A/(O) =} M(3)

AR(I) => M(I)

AI(I) => M(4)

A R(2) => M(5)

A/(2) => M(2)

This set of equations is shown pictorially with the flow graph in Figure 8-2.

a(O) A(O)

a(l) Z ~ A(l)

a(2)X cos(21T/3)-1 X A(2)

-I j sin(21T/3) -1

Figure 8-2 Winograd 3-point FFf flow graph.

8.4.2 Singleton 3-Point FFT

The strategy for converting these equations into code is to start at the top (compute
bR(I» and identify the pair of inputs to be used first (in this case aR(l) and aR(2». Then
look down the list to find the second (compute bR (2» place where these two inputs are
used. Pull aR(I) and aR(2) from memory, compute bR(I) and bR(2), and store the results
in data memory locations M(I) and M(2) previously occupied by aR(I) and aR(2).

Next, look for the computation for b/ (I) on the list and repeat the same set of the
steps. Continue this process until all the Algorithm Steps have been computed and their
results stored in the Memory Map addresses.

Algorithm Steps

bR(I) = aR(I) + aR(2)

bR(2) = aR(I) - aR(2)

Memory Map

bR(I) => M(l)

bR(2) => M(2)

Algorithm Steps

bl(I) == al(I) + al(2)

bl(2) == a/(l) - a/(2)

cR(I) == bR(I) * cos(2n /3) + aR(O)

AR(O) == aR(O) + bR(I)

cR (2) == b1(2) * sin(2n /3)

C I (1) == bI (1) * cos(2n /3) + al (0)

A/(O) == al(O) + b/(l)

C/ (2) == -bR (2) * sin(2n /3)

AR(I) == eR(I) + cR(2)

AI(I) == c/(I) + c/(2)

A R(2) == cR(I) - cR(2)

A/(2) == c/(I) - c/(2)

Figure 8-3 is a flow graph of these equations.

SEC. 8.5 FOUR-POINT FFT 87

Memory Map

b/(I) => M(4)

b/(2) => M(5)

cR(I) => M(6)

AR(O) => M(O)

cR(2) => M(5)

c[(I) => M(l)

A/(O) => M(3)

CI (2) => M (2)

A R(!) => M(5)

AI(I) => M(2)

A R(2) ::::} M(4)

A1(2) => M (1)

a(O) A(O)

a(1) X A(t)

a(2) XCOS(21T/3)X A(2)

-1 j sin(21T/3) -1

Figure 8-3 Singleton 3-point FFT flow graph.

8.5 FOUR-POINT FFT

The 4-point OFT is defined for k == 0, 1, 2, and 3 as

3

A (k) == L a(n) *«: j2rrkn/4

n=O

(8-5)

If the 4-point OFT is computed directly from Equation 8-5, it requires no complex multiplies
and 12complex adds for a total of 24 real adds. The circular convolution, complex conjugate
symmetry, and 90° and 180° symmetry approaches to a 4-point FFT all result in the same
set of Algorithm Steps. The algorithm requires 16 adds, no multiplications, 8 data memory
locations, and no memory locations for multiplier constants.

Since all of the input data is required for each output frequency component calculation,
the direct OFT computations require eight data memory locations for the input data and
eight more for the output frequency components. This is a total of 16data memory locations,
since the input and output are complex. Similarly, the OFT data addressing is sequential
(i.e., 0 through 3 for each output frequency component), and the computational architecture
is simple, since they can all be performed with additions.

The strategy for converting these equations into code is to start at the top (compute
bR (0)) and identify the pair of inputs to be used first (in this case as (0) and aR(2)). Then
look down the list to find the second (compute bR (1)) place where these two inputs are

88 CHA~ 8 BUILDING-BLOCK ALGORITHMS

used. Pull aR(O) and aR(2) from memory, compute bR(O) and bR(I), and store the results
in data memory locations M(O) and M(2) previously occupied by aR(O) and aR(2).

Next, look for the computation for b/ (0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

8.6 FIVE-POINT FFT

Algorithm Steps

bR(O) = aR(O) + aR(2)

bR(I) = aR(O) - aR(2)

b/(O) = a/CO) + a/(2)

b/(I) = a/CO) - a/(2)

bR(2) = aR(I) + aR(3)

bR(3) = aR(I) - aR(3)

b/(2) = aIel) + a/(3)

b/(3) = aIel) - a/(3)

AR(O) = bR(O) + bR(2)

A/(O) = b/(O) + b/(2)

AR(2) = bR(O) - bR(2)

A/(2) = b/(O) - b/(2)

AR(I) = bR(I) + b/(3)

AR(3) = bR(I) - b/(3)

A/(l) = h/(l) - bR(3)

A/(3) = b/(l) + bR(3)

Memory Map

bR(O) =} M(O)

bR(I) =} M(2)

b/(O) =} M(4)

b/(l) =} M(6)

bR(2) =} M(l)

bR(3) =} M(3)

b/(2) =} M(5)

b/(3) =} M(7)

AR (0) :::} M (0)

A/(O) :::} M(4)

A R(2) =} M(l)

A/(2) =} M(5)

AR(I) =} M(2)

AR(3) =} M(7)

A/(l) => M(3)

A/(3) => M(6)

The 5-point DFT is defined for k = 0, 1, 2, 3, and 4 as

4

A(k) = La(n) * e-j2rrkn/5

n=O

(8-6)

Three fast versions of the 5-point DFf are presented. The Winograd and Rader algo
rithms were developed by using a decomposition based on circular convolution properties.
The Singleton algorithm was developed by using a decomposition based on the complex
conjugate symmetry properties of the 5-point transform.

If the 5-point DFT is calculated directly from Equation 8-6, it requires 16 complex
multiplies and 20 complex adds. Since a complex multiply uses 4 real multiplies and 2 real
adds, and a complex add uses 2 real adds, the 5-point DFT requires 64 real multiplies and
72 real adds. The number of adds and multiplies for each of the building-block algorithms
is significantly less than required for computing the DFf directly. However, if only a subset
of the output frequency components is required, it may be more cost effective to compute
the DFf equation directly for those terms. For example, if A (0) is the only term needed, it
can be computed with eight adds and no multiplies by using the DFf directly. Each of the
other 4 output frequencies requires 4 complex multiplies and 4 complex adds for a total of

SEC.8.6 FIVE-POINT FFT 89

16 real adds and 16 real multiplies. With this in mind the crossover point between using
the Off directly and one of the 5-point FFf algorithms can be determined based on the
number of output frequency components that must be computed.

Since all of the input data is required for each output frequency component calcu
lation, the direct OFT computations require 10 data memory locations for the input data
and 10 more for the output frequency components. This is a total of 20 data memory
locations, since the input and output are complex. Similarly, the OFf data addressing is
sequential (i.e., 0 through 4 for each output frequency component), and the computational
architecture is simple, since they can all be performed with a complex multiply accumu
lator (see Chapter 10 for details). Addressing the complex multiplier coefficients requires
either a modulo arithmetic scheme (k *n mod 5) or that the addresses be stored in program
memory.

Each of the three fast algorithms is presented, characterized, and summarized in
the Comparison Matrix in Table 8-1. For example, the Rader algorithm has the simplest
computational structure but requires the largest number of adds. The Singleton algorithm
has the simplest memory mapping for the multiplier constants but requires more constants
than the Winograd algorithm.

8.6.1 Winograd 5-Point FFT

The Winograd [1] 5-point FFf requires 10 multiplies, 34 adds, 12 data memory
locations, and 5 multiplier constant memory locations. The four stages are as follows.

Stage 1: Input Adds

This stage requires additional data memory locations to store intermediate results
that reduce the total number of multiplications in the next stage. However, this stage does
not require accessing any of the multiplier constants. The strategy for converting these
equations to code is to start at the top (compute bR(1» and identify the pair of inputs to be
used first(in this case aR(1) and aR(4». Then look down the list to find the second (compute
bR (2» place where these two inputs are used. Pull aR (1) and aR (4) from memory, compute
bR (1) and bR (2), and store the results in data memory locations M (1) and M (4) previously
occupied by a R (1) and aR (4).

Next, look for the computation for b I (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. The computation of all the b R(j) and bI (j) terms
are performed in-place by using the add-subtract butterfly algorithm. The computations of
cR(I), cR(3), c/(I), and c/(3) use this same approach. However, the computations of cR(5)
and c/(5) require additional data memory locations because bR(2) , bR(4), bl (2) , and bl(4)
are also required in Stage 2.

Algorithm Steps

bR(I) == aR(I) + aR(4)

bl(l) == a/(l) +aI(4)

bR(2) == aR(I) - aR(4)

b1(2) == a I (1) - a1 (4)

bR(3) == aR(2) +aR(3)

Memory Map

bR(I) => M(l)

bI(l) => M(6)

bR(2) => M(4)

b1(2) => M(9)

bR(3) =} M(2)

90 CHA~ 8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

bj(3) = aj(2) + aj(3)

bR(4) = aR(3) - aR(2)

bj (4) = aj(3) - aj(2)

cR(l) = bR(l) + bR(3)

cj(l) = bj(l) + bj(3)

cR(3) = bR(I) - bR(3)

cj(3) = bj(l) - bj(3)

CR(S) = bR(2) + bR(4)

Cj(S) = bj (2) + bj(4)

dR(O) = cR(l) + aR(O)

dj(O) = Cj(l) + aj(O)

Stage 2: Multiplications

Memory Map

bj(3) :::::} M(?)

bR(4) :::::} M(3)

b j(4) :::::} M(8)

cR(l) :::::} M(l)

cj(l) :::::} M(6)

cR(3) =} M(2)

cj(3) :::::} M(?)

cR(5) :::::} M(lO)

Cj(S) => M(l!)

dR(O) => M(O)

dj(O) => M(5)

This stage contains all of the multiplications and requires additional data memory
locations to store intermediate results. In all steps the multiplication is perfonned by
pulling a data value from memory, multiplying it by the appropriate constant, and returning
the result to the same data memory location. All these computations are performed in
place.

Algorithm Steps

dR(l) = cR(l) * [0.5 *cos(2rr/5) + 0.5 *cos(4rrIS) - 1]

dj(l) = cj(l) * [0.5 * cos(2rr IS) + O.S *cos(4rr15) - 1]

eR(3) = cR(3) * [0.5 *cos(2rr/5) - 0.5 *cos(4rr/5)]

e/(3) = c/(3) * [0.5 * cos(2n15) - 0.5 * cos(4n15)]

eR(5) = cR(5) * sin(4rr IS)

ej(5) = cj(5) * sin(4rr/5)

dR(2) = b j (2) * [sin(2rr/5) + sin(4rrIS)]

d j(2) = -bR(2) * [sin(2rr/5) + sin(4rr/5)]

dR(4) = -b j(4) * [sin(2rr/5) - sin(4rr/5)]

dj (4) = bR(4) * [sin(2rr15) - sin(4rr15)]

Stage 3: Postmultiply Adds

Memory Map

dR(l) => M(l)

dj(l) => M(6)

eR(3) => M(2)

e/(3) =} M(?)

eR(5) => M(lO)

ej(5) :::::} M(l!)

dR(2) => M(9)

d j(2) :::::} M(4)

dR(4) :::::} M(8)

d j(4) :::::} M(3)

The output of this stage does not require additional data memory locations. The
strategy for converting these equations to code is to start at the top (compute eR (I)
and identify the pair of inputs to be used first (in this case dR(l) and dR(O». Pull
dR(I) and dR(O) from memory, compute eR(l), and store the results in memory loca
tion M (1) previously occupied by dR (l). This process is repeated until all the Algo
rithm Steps have been computed and their results stored in the Memory Map ad
dresses.

Algorithm Steps

eR(I) == dR(I) + dR(O)

e/(l) == dl(l) + dl(O)

fR(I) == eR(I) + eR(3)

[t (I) == eI (I) + eI (3)

fR(2) == dR(2) - el(5)

!/(2) == dl(2) + eR(5)

!R(3) == eR(I) - eR(3)

!/(3) == el(l) - e/(3)

!R(4) == d R(4) - el(5)

!1(4) == dl(4) + eR(5)

Stage 4: Output Adds

SEC. 8.6 FIVE-POINTFFT 91

Memory Map

eR(I) :::} M(l)

e/(l) :::} M(6)

fR(l) :::} M(l)

fl(l) :::} M(6)

IR(2) :::} M(9)

!1(2) :::} M(4)

!R(3) :::} M(2)

!1(3) :::} M(?)

IR(4) :::} M(8)

11(4) => M(3)

The strategy for converting these equations to code is to start at the top (compute
AR(l» and identify the pair of inputs to be used first (in this case fR(I) and fR(2». Then
look down the list to find the second (compute AR (4» place where these two inputs are
used. Pull IR(I) and fR(2) from memory, compute AR(I) and A R(4), and store the results
in data memory locations M(l) and M(9) previously occupied by fR(I) and fR(2).

Next, look for the computation for AI(I) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. Note that the Algorithm Steps for AR(O) and AI(O)
only relabel the data values to their output labels once they have been used as required by
other portions of the algorithm.

Algorithm Steps

AR(O) == dR(O)

A1(0) == dl (0)

A R(I) == !R(l) + fR(2)

AI(I) == /1(1) + 11(2)

A R(4) == IR(I) - IR(2)

A I(4) == /1(1) - /1(2)

A R(3) == .fR(3) + IR(4)

A 1(3) == fl(3) + II (4)

A R(2) == IR(3) - IR(4)

A I(2) == 11(3) - II (4)

8.6.2 Singleton 5-Point FFT

Memory Map

AR(O) => M(O)

AI(O) => M(5)

AR(I) => M(l)

AI(I) => M(4)

A R(4) => M(9)

A I(4) => M(6)

A R (3) => M(2)

A I (3) => M(3)

A R(2) => M(8)

A I(2) => M(?)

The Singleton [2] 5-point FFf requires 32 adds, 16 multiplies, 12 data memory
locations, and 4 multiplier constant memory locations. The method of computing the
multiplier outputs in Stage 2 requires additional data memory locations. The three stages
are as follows.

92 CHA~ 8 BUILDING-BLOCK ALGORITHMS

Stage 1: Input Adds

This stage does not require additional data memory locations for accessing any of
the multiplier constants. The strategy for converting these equations to code is to start at
the top (compute bR(I) and identify the pair of inputs to be used first (in this case OR (1)
and oR(4». Then look down the list to find the second (compute bR(2» place where these
two inputs are used. Pull OR(!) and oR(4) from memory, compute bR(I) and bR(2), and
store the results in data memory locations M (1) and M (4) previously occupied by OR (1)
and oR(4).

Next, look for the computation for b/ (l) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

bR(I) = aR(I) +aR(4)

b/(I) = 0/(1) + a/(4)

bR(2) = aR(I) - aR(4)

b/(2) = a/(I) - a/(4)

bR(3) =oR(2) + oR(3)

b/(3) = 0/(2) + 0/(3)

bR(4) = oR(2) - aR(3)

b/(4) =0/(2) - ol(3)

Stage 2: Multiply-Accumulates

Memory Map

bR(I) => M(l)

b/(l) => M(6)

bR(2) => M(4)

b/(2) => M(9)

bR(3) => M(2)

b/(3) => M(?)

bR(4) => M(3)

b/(4) => M(8)

This stage contains all of the multiplications and requires additional data memory
locations to perform the sets of multiply-accumulate operations and store the intermediate
results. The strategy for converting these steps into code is explained in Constraint 5 of
Section 8.2.

Algorithm Steps

cR(2) = bR(2) * sin(21T/5) + bR(4) * sin(4Jl'/5)

c/(2) = b/(2) * sin(21T/5) + b/(4) * sin(41Tj5)

cR(4) = bR(2) * sin(41Tj5) - bR(4) * sin(2Jl'j5)

c/(4) = b/(2) * sin(4Jl'j5) - b/(4) * sin(21T j5)

cR(I) = bR(I) *COS(21Tj5) + bR(3) *COS(41Tj5) + aR(O)

c/(l) = b/(l) *COS(21Tj5) + b/(3) *COS(41Tj5) + 0/(0)

cR(3) = bR(I) *COS(41Tj5) +bR (3) *COS(21Tj5) + aR(O)

c/(3) = b/(I) *COS(41Tj5) +b/(3) *COS(21Tj5) + 0/(0)

AR(O) = OR (0) + bR(I) + bR(3)

Al(O) = 0/(0) + b/(!) + b/(3)

Stage 3: Output Adds

Memory Map

cR(2) => M(IO)

c/(2) => M(3)

cR(4) => M(ll)

c/(4) => M(4)

cR(I) => M(9)

c/(I) => M(l)

cR(3) => M(8)

c/(3) => M(2)

AR(O) => M(O)

A/(O) => M(5)

The strategy for converting these equations to code is to start at the top (compute
A R (I» and identify the pair of inputs to be used first (in this case cR (1) and C1(2». Then

SEC. 8.6 FIVE-POINT FFT 93

look down the list to find the second (compute A R(4» place where these two inputs are
used. Pull cR(I) and c,(2) from memory, compute AR(I) and AR(4), and store the results
in data memory locations M(9) and M(3) previously occupied by eR(I) and c/(2).

Next, look for the computation for A I (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

A R (I) == C R (1) + c, (2)

AI(l) == c,(I) - cR(2)

A R(2) == cR(3) + c/(4)

A,(2) == c,(3) - cR(4)

A R(3) == cR(3) - c,(4)

A/(3) == c/(3) + cR(4)

A R(4) == cR(I) - c/(2)

A,(4) == c/(I) + cR(2)

8.6.3 Rader 5-Point FFT

Memory Map

ARCI) ==} M(9)

A,(l) ::::} M(6)

A R(2) ==} M(8)

A,(2) ::::> M(2)

A R(3) ::::> M(4)

A j(3) ::::> M(l)

A R(4) ==} M(3)

A/(4) ::::> M(7)

The Rader [3] 5-point FFf requires 42 adds, 12 multiplies, 12 data memory locations,
and 4 multiplier constant memory locations. The structure of this algorithm is very similar
to the 4-point transform because the 4-point transform is used twice in the computations.
The first time is Stages 1 and 2. After these stages, complex multiplications are required
to prepare the data for the output computations. Finally, the three stages after the multipli
cations are an inverse 4-point transform plus the computations required to include the fifth
input data point in the output frequency components. Stage 4 is the first stage of a 4-point
IFFT. Stage 5 is where the fifth input data point is added, and the final stage is the second
stage of a 4-point IFFT. Section 8.11.1 provides more detail on the Rader algorithm, and
Section 2.3 gives additional information on how the 4-point FFT algorithm is converted to
a 4-point IFFf. The six stages are as follows.

Stage 1: Input Adds

This stage does not require additional data memory locations or accessing of multiplier
constants. The strategy for converting these equations to code is to start at the top (compute
bR(I» and identify the pair of inputs to be used first (in this case aR(3) and aR(2». Then
look down the list to find the second (compute bR (2» place where these two inputs are
used. Pull aR(3) and (lR(2) from memory, compute bR(I) and bR(2) , and store the results
in data memory locations M(2) and M(3) previously occupied by aR(3) and aR(2).

Next, look for the computation for bI (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

bR(I) == aR(3) + aR(2)

b / (I) == a1(3) + a, (2)

hR (2) == (lR(3) - ClR(2)

Memory Map

bR (1) :::} M (2)

b I (1) :::} M (7)

b R(2) :::} M(3)

94 CHAP. 8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

bj(2) = aj(3) - aj(2)

bR(3) = aR(4) +aR(l)

bj (3) = aj(4) + aj(l)

bR(4) = aR(4) - aR(I)

bj (4) = a/(4) - aj(l)

Stage 2: Second Set of Input Adds

Memory Map

b j(2) => M(8)

bR(3) => M(l)

b j(3) => M(6)

bR(4) => M(4)

b j(4) => M(9)

Memory Map

cR(I) => M(l)

cj(l) => M(6)

cR(2) => M(3)

c](2) => M(8)

cR(3) => M(2)

c](3) => M(7)

cR(4) => M(9)

cj(4) => M(4)

This stage also does not require additional data memory locations or accessing of
multiplier constants. The strategy for converting these equations to code is to start at the
top (compute CR (1» and identify the pair of inputs to be used first (in this case bR (1) and
bR(3» . Then look down the list to find the second (compute cR(3» place where these two
inputs are used. Pull bR(1) and bR(3) from memory, compute CR(1) and CR (3), and store the
results in data memory locations M(l) and M(2) previously occupied by bR(l) and bR(3).

Next, look for the computation for cj(l) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

cR(l) = bR(l) + bR(3)

cj(l) = bj(l) + bj (3)

cR(2) = bR(2) + bj (4)

cj(2) = b](2) - bR(4)

cR(3) = bR(I) - bR (3)

c/(3) = b](l) - b](3)

cR(4) = bR(2) - b/(4)

cj(4) = b j (2) + bR(4)

Stage 3: MUltiplies

This stage contains all of the multiplications and also requires additional data memory
locations to store intermediate results. In Steps 1 through 4, multiply accumulation requires
additional data memory locations because the input data is multiplied by two different con
stants as part of two different outputs. In Steps 5 through 8, multiplication is performed by
pulling a data value from memory, multiplying it by the appropriate constant, and returning
the result to the same data memory location (in-place).

Algorithm Steps

dR(3) = (1/2) * [cR(2) * sin(2nI5) +c](2) * sin(4nI5)]

d](3) = (1/2) * [-cR(2) * sin(4nj5) + c](2) * sin(2nj5)]

dR(4) = (1/2) * [-cR(4) * sin(2n IS) + cj(4) * sin(4n15)]

dj(4) = (1/2) * [-cR(4) * sin(4nj5) - c[(4) * sin(2Jr/5)]

dR(l) = (1/2) * [cos(2Jr IS) + cos(4Jr IS)] * cR(l)

d[(l) = (1/2) * [cos(2Jr/5) + cos(4Jrj5)] * c/(l)

dR(2) = (1/2) * [- cos(2Jr/5) + cos(4;rj5)] * cR(3)

d/(2) = (1/2) * [- cos(2Jr15) + cos(4;r /5)] * c/(3)

Memory Map

dR(3) => M(IO)

d](3) => M(8)

dR(4) :::} M(3)

d[(4) =} M(9)

dR(l) =} M(ll)

d/(l) =} M(4)

dR(2) =} M(2)

d/(2) =} M(?)

SEC. 8.6 FIVE-POINT FFT 95

Stage 4: First Stage of Postmultiply Adds

The strategy for converting these equations to code is to start at the top (compute
eR(l» and identify the pair of inputs to be used first (in this case dR(l) and dR(2» . Then
look down the list to find the second (compute eR(2» place where these two inputs are used.
Pull dR(l) and dR(2) from memory, compute eR(l) and eR(2), and store the results in data
memory locations M(l) and M(2) previously occupied by dR(l) and dR(2).

Next, look for the computation for ej(l) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

eR(l) == dR(I) + dR(2)

ej(l) == dj(l) + df(2)

eR(2) == dR(l) - dR(2)

ej(2) == dJ(l) - d j(2)

eR (3) == d n(3) + ds (4)

ej(3) == d r(3) + d j(4)

eR(4) == dR(3) - dR (4)

e/(4) == d,(3) - d[(4)

Memory Map

eR(l) => M(l)

ef(l) => M(6)

eR(2) => M(2)

ef(2) => M(7)

eR(3) => M(3)

e/(3) => M(8)

eR(4) => M(4)

el(4) => M(9)

Stage 5: Second Stage of Postmultiply Adds

Since a R (0) and a j (0) are each used in three of the computational steps, their data
memory locations cannot be modified until the last time they are used. Since each other
input to this stage is used only once, and is not needed again, the results are placed back in
their data memory locations.

The strategy for converting these equations to code is to start at the top (compute
IR(l») and identify the pair of inputs to be used first (in this case eRe!) and aR(O». Pull
eR(l) andaR(O) from memory, compute IR(l), and store the results in data memory location
M(l) previously occupied by eR(l).

Next, look for the computation for [t (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

fRet) == eR(l) + aR(G)

.f/(l) == er(!) + a/(O)

IR(2) == eR(2) + aR(O)

.fl (2) == e / (2) + al (0)

AR(O) == eR(I) + aR(O)

A I (0) == C / (1) + a1(0)

Stage 6: Output Adds

Memory Map

fRet) => M(l)

fl(l) => M(6)

IR (2) => M (2)

1/(2) => M(7)

AR(O) => M(O)

AI(O) => M(5)

The strategy for converting these equations to code is to start at the top (compute
AR(l» and identify the pair of inputs to be used first (in this case IR(l) and eR(3». Then

96 CHA~ 8 BUILDING-BLOCK ALGORITHMS

look down the list to find the second (compute A R (4» place where these two inputs are
used. Pull fR(l) and eR(3) from memory, compute A R(I) and A R(4), and store the results
in data memory locations M(3) and M(l) previously occupied by fR(I) and eR(3).

Next, look for the computation for AI(l) and repeat the same set of steps. Continue
this process until all the Algorithm Steps have been computed and all of the results are
returned to the data memory locations.

8.7 SEVEN-POINT FFT

Algorithm Steps

AR(l) == fR(l) - eR(3)

AI(l) == fl(l) - el(3)

A R(2) == fR(2) + el(4)

A I (2) == fl(2) - eR(4)

A R(3) == fR(2) - el(4)

A[(3) == f[(2) + eR(4)

A R(4) == fR(l) + eR(3)

A[(4) == f[(I) + e[(3)

Memory Map

AR(I) ==> M(3)

A[(l) => M(8)

A R(2) ==> M(2)

A[(2) ==> M(7)

A R(3) ==> M(9)

A[(3) ==> M(6)

A R(4) ==> M(l)

A[(4) ==> M(4)

The 7-point DFT is defined for k == 0, 1,2,3,4,5, and 6 as

6

A(k) = La(n) * e-j27fkn/7

n=O

(8-7)

If the 7-point DFf is calculated directly from Equation 8-7, it requires 36 complex multiplies
and 42 complex adds. Since a complex multiply uses 4 real multiplies and 2 real adds, and
a complex add uses 2 real adds, the 7-point OFT requires 144 real multiplies and 156
real adds. The number of adds and multiplies shown for each of the fast algorithms is
significantly less than required for computing the DFT directly. However, if only a subset
of the output frequency components is required, it may be more cost effective to compute
the OFT equation directly for those terms. For example, if A (0) is the only term needed,
it can be computed with 12 adds and no multiplies by using the DFf directly. Each of the
other six output frequencies requires 5 complex multiplies and 5 complex adds for a total
of 20 real adds and 20 real multiplies. With this in mind the crossover point between using
the DFT directly and one of the 7-point FFT algorithms can be determined based on the
number of output frequency components that must be computed.

Since all of the input data is required for each output frequency component calculation,
the direct OFT computations require 14 data memory locations for the input data and 14
more for the output frequency components. This is a total of 28 data memory locations,
since the input and output are complex. Similarly, the OFT data addressing is sequential
(i.e., 0 through 6 for each output frequency component), and the computational architecture
is simple, since they can all be performed by using a complex multiply accumulator (see
Chapter 10 for details). Addressing the complex multiplier coefficients requires either a
modulo arithmetic scheme (k *n mod 7) or that the addresses be stored in program memory.

Two fast versions of the 7-point OFT are presented. The Winograd [1] algorithm
was developed by using a decomposition based on circular convolution properties. The

SEC. 8.7 SEVEN-POINT FFT 97

Singleton [2] algorithm was developed by using a decomposition based on the complex
conjugate symmetry properties of the 7-point transform.

8.7.1 Winograd 7-Point FFT

The 7-point Winograd [1] transform algorithm requires 16 multiplies, 72 adds, 22
data memory locations, and 8 multiplier constant memory locations. The eight stages are
as follows.

Stage 1: Input Adds

This stage does not require additional data memory locations or accessing any of
the multiplier constants. Further, the add/subtract process is the same for all of the real
and imaginary pairs. The strategy for converting these equations to code is to start at the
top (compute bR (1)) and identify the pair of inputs to be used first (in this case a R (1) and
aR(6». Then look down the list to find the second (compute bR(2» place where these two
inputs are used. Pull aRCI) and aR(6) from memory, compute bR(I) and bR(2), and store
the results in data memory locations M(l) and M(6) previously occupied by aRC!) and
aR(6).

Next, look for the computation for b/ (I) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

bR (1) == a R (I) + a R (6)

b/(!) == a/(l) + a/(6)

bR(2) == aR(I) - aR(6)

b/(2) == a/(l) - a/(6)

bR(3) == aR(4) + aR(3)

b/(3) == a/(4) + al(3)

bR(4) == aR(4) - aR(3)

b/(4) == a/(4) - a/(3)

bR(5) == aR(2) +aR(5)

b/(5) == a/(2) + a/(5)

bR(6) == aR(2) - aR(5)

h/(6) == a/(2) - a/(5)

Stage 2: Second Set of Input Adds

Memory Map

bR(l) => M(l)

b/(!) => M(8)

bR(2) => M(6)

b/(2) => M(13)

bR(3) => M(3)

bl(3) => M(IO)

bR(4) => M(4)

b/(4) => M(l!)

bR(5) => M(2)

b/(5) ::::} M(9)

bR(6) => M(5)

b/(6) ::::} M(12)

This stage requires additional data memory locations to store intermediate results.
The strategy for converting these equations to code is to start at the top (compute CR (I»
and identify the pair of inputs to be used first (in this case bR (I) and bR(3». Then look
down the list to find the second (compute CR (3» place where these two inputs are used.
Pull bR(1) and bR(3) from memory, compute CR(1) and CR(3), and store the results in
data memory locations M (14) and M (15) different than previously occupied by bR (1) and
bR (3). Different data memory locations are required because bR (1) and bR (3) are also used
in computing c R (4) and CR (2), respectively.

98 CHAP.8 BUILDING-BLOCK ALGORITHMS

Next, look for the computation for c[(l) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. Note that bR(5), b[(5), bR(6), and b[(6) are also
used in Stage 3.

Algorithm Steps

cR(l) = bR(I) + bR(3)

c[(l) = b[(l) + b/(3)

cR(2) = bR(3) - bR(5)

c[(2) = b[(3) - b[(5)

cR(3) = bR(I) - bR(3)

c[(3) = b[(l) - b[(3)

cR(4) = bR(5) - bR(I)

c[(4) = b[(5) - b/(l)

cR(5) = bR(2) + bR(4)

c[(5) = b[(2) + b[(4)

cR(6) = bR(2) - bR(4)

c[(6) = b[(2) - b[(4)

cR(7) = bR(4) - bR(6)

c[(7) = b/(4) - b[(6)

cR(8) = bR(6) - bR(2)

c[(8) = b/(6) - b/(2)

Stage 3: Third Set of Input Adds

Memory Map

cR(l) => M(14)

c/(l) => M(18)

cR(2) => M(3)

c[(2) => M(IO)

cR(3) => M(15)

c/(3) => M(19)

cR(4) => M(l)

c[(4) => M(8)

cR(5) => M(16)

c[(5) => M(20)

cR(6) => M(17)

c[(6) => M(2!)

cR(7) => M(4)

c/(7) => M(ll)

cR(8) => M(6)

c/(8) => M(13)

The strategy for converting these equations to code is to start at the top (compute
dR(I» and identify the pair of inputs to be used first (in this case bR(5) and CR(!»' In this
case there is only one result associated with these two input data values. Pull bR (5) and
cR(I) from memory, compute dR (!) , and store the result in data memory location M(2)
previously occupied by bR (5).

Next, look for the computation for d[(l) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

dR(I) = bR(5) + cR(I)

d[(l) = b[(5) + c[(l)

dR(2) = bR(6) + cR(5)

d[(2) = b[(6) + c[(5)

eR(O) = aR(O) + dR(l)

e[(O) = a[(O) +d[(!)

Memory Map

dR(I) => M(2)

d[(l) => M(9)

dR(2) => M(5)

d[(2) => M(12)

eR(O) => M(O)

e[(O) => M(7)

SEC. 8.7 SEVEN-POINTFFT 99

Stage 4: MUltiplications

This stage contains all of the multiplications and also requires additional data memory
locations to store intermediate results. In all cases the multiplication is performed by pulling
a data value from memory, multiplying it by the appropriate constant, and returning the result
to the same data memory location.

Algorithm Steps

eR(l) == {-I + [cos(2n/7) + cos(4n/7) + cos(6rr/7)]/3} *dR(l)

e/(l) == {-I + [cos(2n 17) + cos(4n17) + cos(6rr17)]/3} *dI(l)

eR(2) == {(2* cos(2Jr17) - cos(4rr 17) - cos(6rr 17)]/3} *cR(3)

eI(2) == {[2 *cos(2Jr17) - cos(4rr 17) - cos(6rr17)]/3} *c/(3)

eR(3) == {[cos(2rr/7) - 2 *cos(4n/7) + cos(6rr/7)]/3} *cR(2)

e/(3) == {[cos(2rr17) - 2 *cos(4rr 17) + cos(6rr 17)]/3} *c/(2)

eR(4) == {[cos(2Jr17) + cos(4rr 17) - 2 *cos(6rr17)]/3} *cR(4)

eI(4) == {[cos(2rr17) + cos(4rr 17) - 2 *cos(6rr 17)]/3} *c/(4)

eR(5) == -{[sin(2rr17) + sin(4rr17) - sin(6rr17)]/3} *d/(2)

e/(5) == {[sin(2rr/7) + sin(4rr/7) - sin(6rr/7)]/3} *dR(2)

eR(6) == -{[2 * sin(2n/7) - sin(4rr/7) + sin(6rr/7)]/3} *c/(6)

el(6) == {[2 * sin(2n17) - sin(4rr17) + sin(6n17)]/3} * cR(6)

eR(7) == -{[sin(2Jr17) - 2 * sin(4Jr17) - sin(6rr17)]/3} *cI(7)

el(7) == {[sin(2n/7) - 2 * sin(4n/7) - sin(6n/7)]j3} * cR(7)

eR(8) == -{[sin(2n/7) + sin(4Jr17) + 2 * sin(6rr 17)]j3} * cI(8)

el(8) == {[sin(2rr17) + sin(4rr /7) + 2 * sin(6n17)]/3} * cR(8)

Stage 5: First Postmultiply Adds

Memory Map

eR(l) => M(2)

e](l) => M(9)

eR(2) => M(l5)

eI(2) => M(19)

eR(3) => M(3)

e/(3) => M(IO)

eR(4) => M(l)

e/(4) => M(8)

eR(5) => M(l2)

eI(5) => M(5)

eR(6) => M(2l)

eI(6) => M(17)

eR(7) => M(ll)

e/(7) => M(4)

eR(8) => M(13)

eI(8) => M(6)

The strategy for converting these equations to code is to start at the top (compute
fR (l) and identify the pair of inputs to be used first (in this case eR (0) and eR (I». In this
case there is only one result associated with these two input data values. Pull eR(0) and
eR(1) from memory, compute [s (1), and store the result in data memory location M (2)
previously occupied by eR (1).

Next, look for the computation for II (I) on the list and repeat the same set of steps.
The remaining adds and subtracts require additional data memory locations because eR (5)
is used in three places. Therefore, its data memory location cannot be used for results until
the last time it is used as the input to a set of computations. Continue this process until
all the Algorithm Steps have been computed and their results stored in the Memory Map
addresses.

Algorithm Steps

fRet) == eR(O) + eR(I)

fl(l) = e/(O) + e/(l)

fR(2) == eR(5) + eR(6)

Memory Map

fRet) => M(2)

fI(I) => M(9)

fR (2) :::} M (20)

100 CHAR 8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

1/(2) = e/(5) + e/(6)

IR(3) = eR(5) - eR(6)

1/(3) = e/(5) - e/(6)

IR(4) = eR(5) - eR(7)

1/(4) = e/(5) - e/(7)

Stage 6: Second Postmultiply Adds

Memory Map

1/(2) =} M(l6)

IR(3) =} M(2l)

1/(3) =} M(l7)

IR(4) =} M(l2)

1/(4) =} M(5)

The strategy for converting these equations to code is to start at the top (compute
gR(l» and identify the pair of inputs to be used first (in this case IR(l) and eR(2». Notice
that the same set of inputs is used to compute gR(2). However, IR (l) is also used to compute
gR(3). Its memory location cannot be used to store gR(l) or gR(2), but can be used to store
gR(3). Therefore, the strategy is to pull fR(l) and eR(2) from memory, compute gR(l)

and gR(2), and store the results in data memory locations M(14) and M(l5) previously
occupied by eR(l) and eR(2).

Next, look for the computation for g/ (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and all of the results
are returned to the data memory locations.

Algorithm Steps

gR(l) = IR(l) + eR(2)

g/(l) = f/(1) + eI(2)

gR(2) = IR(1) - eR(2)

gI(2) = fI(1) - e/(2)

gR(3) = IR(l) - eR(3)

gI(3) = II(1) - e/(3)

gR(4) = IR(2) + eR(7)

g/(4) = II(2) + e/(7)

gR(5) = IR(3) - eR(8)

g/(5) = f/(3) - e/(8)

gR(6) = fR(4) + eR(8)

g/(6) = fI(4) + e/(8)

Stage 7: Third Postmultiply Ad~s

Memory Map

gR(1) => M(l4)

g/(1) =} M(l8)

gR(2) => M(15)

gI(2) => M(19)

gR(3) => M(2)

gI(3) :::} M(9)

gR(4) => M(l1)

gI(4) =} M(4)

gR(5) => M(2l)

gI(5) => M(17)

gR(6) => M(l3)

gI(6) => M(6)

The strategy for converting these equations to code is to start at the top (compute
hR(l» and identify the pair of inputs to be used first (in this case gR(l) and eR(3». For this
set of computations only eR(4) and eI(4) are used more than once. Therefore, pull gR(l)

and eR (3) from memory, compute hR (l), and store the result in data memory location M (3)
previously occupied by eR (3).

Next, look for the computation for hI (l) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and all of the results
are returned to the data memory locations.

Algorithm Steps

h R(1) == gR(1) + eR(3)

h / (1) == g/ (1) + e/ (3)

hR(2) == gR(2) - eR(4)

h/(2) == g/(2) - e/(4)

hR(3) == gR(3) + eR(4)

h /(3) == g/(3) + e/(4)

Stage 8: Output Adds

SEC. 8.7 SEVEN-POINT FFT 101

Memory Map

h R(I) =} M (3)

h / (1) =} M (10)

h R(2) =} M(15)

h/(2) ::::} M(19)

h R(3) ::::} M(l)

h/(3) ::::} M(8)

The strategy for converting these equations to code is to start at the top (compute
A R (1» and identify the pair of inputs to be used first (in this case h R(1) and gR (4». Next
identify the other computation, A R(6), in the list that uses these same two inputs. Therefore,
pull h R (1) and gR (4) from memory, compute A R (1) and A R (6), and store the result in data
memory lccationsAf(3) and M (11) previously occupied by hR (1) and gR (4). Next, look
for the computation for A / (1) on the list and repeat the same set of steps.

The output of this stage requires only 14 data memory locations. Therefore, the results
of computing A R (2) and A R (5), using intermediate results located in the extra data memory
locations, are placed in available locations within the original M(O) to M(13). Continue
this process until all the Algorithm Steps have been computed and all of the results are
returned to the data memory locations.

Algorithm Steps

AR(O) == eR(O)

A/(O) == e,(O)

A R(I) == h R (I) - gR(4)

A /(l) == h/(1) - g/(4)

A R(2) == hR(2) - gR(5)

A,(2) == h,(2) - g,(5)

A R(3) == h R(3) + gR(6)

A/(3) == h/(3) + g/(6)

A R(4) == h R (3) - gR(6)

A1(4) == h/(3) - g/(6)

A R(5) == hR(2) + gR(5)

A,(5) == h,(2) + g/(5)

A R(6) == hR(l) + gR(4)

A,(6) == h/(l) + g/(4)

8.7.2 Singleton 7-Point FFT

Memory Map

AR(O) =} M(O)

A,(O) =} M(7)

A R (!) ::::} M(3)

A,(l) ::::} M(IO)

A R(2) ::::} M(2)

A ,(2) ::::} M(9)

A R(3) =} M(l)

A/(3) =} M(8)

A R(4) =} M(13)

A /(4) =} M(6)

A R(5) ::::} M(5)

A/(5) ::::} M(12)

A R(6) ::::} M(ll)

A,(6) => M(4)

The Singleton [2] 7-point FFT requires 60 adds, 36 multiplies, 17 data memory
locations, and 6 multiplier constant memory locations. The three stages are as follows.

102 CHAR 8 BUILDING-BLOCK ALGORITHMS

Stage 1: Input Adds

This stage does not require additional data memory locations or accessing any of
the multiplier constants. Further, the add/subtract process is the same for all of the real
and imaginary pairs. The strategy for converting these equations to code is to start at the
top (compute bR (I» and identify the pair of inputs to be used first (in this case aR (I) and
aR(6». Then look down the list to find the second (compute bR(2» place where these two
inputs are used. Pull aR(I) and aR(6) from memory, compute bR(I) and bR(2), and store
the results in data memory locations M(I) and M(6) previously occupied by aR(I) and
aR(6).

Next, look for the computation for bI(l) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

bR(I) = aR(I) + aR(6)

b[(I) = a[(I) + a[(6)

bR(2) = aR(I) - aR(6)

b[(2) = a[(I) - a[(6)

bR(3) = aR(2) + aRCS)

bI(3) = a[(2) + a[(5)

bR(4) = aR(2) - aR(5)

b[(4) = a[(2) - aI(5)

bR(5) = aR(3) + aR(4)

b[(5) = a[(3) + aI(4)

bR(6) = aR(3) - aR(4)

b/(6) = a/(3) - a/(4)

Stage 2: Multiply-Accumulates

Memory Map

bR(I) =} M(I)

bI(I) =} M(8)

bR(2) =} M(6)

b[(2) =} M(13)

bR(3) =} M(2)

b[(3) =} M(9)

bR (4) => M(5)

bI(4) => M(12)

bR(5) => M(3)

bI(5) =} M(IO)

bR(6) =} M(4)

b/(6) ==} M(I!)

This stage contains all of the multiplications and also requires additional data memory
locations to store intermediate results because of multiple multiply-accumulate operations
requiring the same input data. The terms with the sine multipliers are computed first to
minimize required memory. The Memory Map is based on Constraint 5 of Section 8.2.

Algorithm Steps

cR(2) = bR(2) * sin(2nj7) + bR (4) * sin(4Jl'j7) + bR(6) * sin(6nj7)

cR(4) = bR(2) * sin(4nj7) - bR(4) * sin(6Jrj7) - bR(6) * sin(2Jl'j7)

cR(6) = bR(2) * sin(6nj7) - bR (4) * sin(2Jl'/7) + bR(6) * sin(4Jl'/7)

cR(I) = aR(O)+ bR(I) * cos(2rrj7) + bR(3) *cos(4Jl'j7) + bR(5) *cos(6rrj7)

cR(3) = aR(O)+ bR(I) *cos(4rr/7) + bR(3) *cos(6Jl'/7) + bR(5) *cos(2Jl'j7)

cR(5) = aR(O)+ bR(I) *cos(6rr/7) + bR(3) *cos(2Jr/7) + bR(5) *cos(4rrj7)

AR(O) = aR(O)+ bR(I) + bR(3) + bR(5)

cI(2) = bI (2) * sin(2rr j7) + b[(4) * sin(4n17) + b/(6) * sin(6Jl'/7)

Memory Map

cR(2) => M(14)

cR(4) => M(I5)

cR(6) => M(16)

cR(l) => M(4)

cR(3) => M(5)

cR(5) => M(6)

AR(O) => M(O)

c[(2) => M(I)

SEC. 8.8 EIGHT-POINT FFT 103

Algorithm Steps

c[(4) = b[(2) * sin(4Jrj7) - b[(4) * sin(6Jrj7) - b[(6) * sin(2Jrj7)

c[(6) = b[(2) * sin(6Jrj7) - b[(4) * sin(2Jrj7) + b[(6) * sin(4Jrj7)

c[(l) == a[(O) + b[(l) *cos(2Jrj7) + bl(3) *cos(4Jrj7) + b[(5) *cos(6Jrj7)

c[(3) == al(O) + bl(l) *cos(4Jrj7) + bl(3) *cos(6Jrj7) + b[(5) *cos(2Jrj7)

cl(5) == al(O) + bI(l) *cos(6Jrj7) + bl(3) *cos(2Jrj7) + bl (5) *cos(4Jrj7)

At(O) == al(O) + hl(l) + hl (3) + h j (5)

Stage 3: Output Adds

Memory Map

c[(4) => M(2)

c[(6) => M(3)

cj(l) => M(ll)

c[(3) => M(12)

c[(5) => M(13)

A[(O) => M(7)

The strategy for converting these equations to code is to start at the top (compute
AR (I» and identify the pair of inputs to be used first (in this case CR (1) and C[(2». Next
identify the other computation, A R(6), in the list that uses these same two inputs. Therefore,
pull CR (I) and Cl (2) from memory, compute AR (1) and AR (6), and store the result in data
memory locations M(l) and M(6) previously occupied by cR(l) and c[(2).

Next, look for the computation for A l (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and all of the results
are returned to the data memory locations.

8.8 EIGHT-POINT FFT

Algorithm Steps

AR(I) = cR(I) + c[(2)

Al(l) == cl(l) - cR(2)

AR(6) = cR(I) - cj(2)

A l (6) == Ct(l) + cR(2)

AR(2) == cR(3) + c[(4)

A j(2) = c[(3) - cR(4)

AR(5) == cR(3) - c[(4)

A l(5) = cl(3) + cR(4)

AR(3) == cR(5) + c[(6)

A j(3) = cl(5) - cR(6)

AR(4) == cR(5) - cl(6)

A t(4) == cj(5) + cR(6)

Memory Map

AR(l) => M(l)

A[(l) => M(8)

A R(6) => M(4)

A[(6) => M(ll)

A R(2) => M(2)

A[(2) => M(9)

AR(5) => M(5)

A[(5) => M(12)

AR(3) => M(3)

A[(3) => M(lO)

AR(4) ::::} M(6)

A[(4) => M(13)

The 8-point DFf is defined for k = 0, 1,2,3,4,5,6, and 7, as
7

A(k) == La(n) *e-j2Jrkn/8

n=O

(8-8)

Four fast versions of the 8-point DFf are presented. The Winograd [1] algorithm was
developed by using a decomposition based on circular convolution properties. The radix-4
and -2 [4] and radix-2 [5] algorithms were developed based on 90° and 180° symmetries.
The Practical Transform Length (PTL) [6] algorithm was developed using a decomposition
based on complex conjugate symmetry properties.

104 CHA~ 8 BUILDING-BLOCK ALGORITHMS

If the 8-point DFT is calculated directly using Equation 8-8, it would require 16
complex multiplies and 56 complex adds. The number of complex multiplies is lower
than expected (seven for each of seven output frequency components) because many of the
multiplier constants are ±l or ±j (see Figure 3-1). Since a complex multiply uses 4 real
multiplies and 2 real adds, and a complex add uses 2 real adds, the 8-point DFT would
require 64 real multiplies and 144 real adds. The number of adds and multiplies shown
for each of the fast algorithms is significantly less than required for computing the DFf
directly. However, if only a subset of the output frequency components is required, it may
be more cost effective to compute the DFT equation directly for those terms. For example,
if A (0) is the only term needed, it can be computed with 14 adds and no multiplies using
the DFT directly. Each of the other 7 output frequencies requires 6 complex multiplies and
6 complex adds for a total of 24 real adds and 24 real multiplies. With this in mind the
crossover point between using the DFf directly and one of the 8-point FFT algorithms can
be determined based on the number of output frequency components that must be computed.

Since all of the input data is required for each output frequency component calculation,
the direct DFf computations require 16 memory locations for the input data and 16 more
for the output frequency components. This is a total of 32 data memory locations, since
the input and output are complex. Similarly, the DFT data addressing is sequential (i.e.,
othrough 7 for each output 'frequency component), and the computational architecture is
simple since they can all be performed with a complex multiply accumulator (see Chapter
10 for details). Addressing the complex multiplier coefficients requires either a modulo
arithmetic scheme (k *n mod 8) or that the addresses be stored in program memory.

8.8.1 Winograd 8-Point FFT

The Winograd [1] 8-point FFf requires 52 adds, 4 multiplies, 16 data memory loca
tions, and one multiplier constant memory location. The four stages are as follows.

Stage 1: Input Adds

This stage does not require any of the multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting these
equations to code is to start at the top (compute bR (0)) and identify the pair of inputs to be
used first (in this case aR (0) and a R (4)). Then look down the list to find the second (compute
bR(I) place where these two inputs are used. Pull aR(O)and aR(4) from memory, compute
bR(O)and bR(l), and store the results in data memory locations M(O) and M(4) previously
occupied by aR(O) and aR(4).

Next, look for the computation for b/ (0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

bR(O) = aR(O)+ aR(4)

bR(I) = aR(O) - aR(4)

b/(O) = a/CO) + a/(4)

b/(l) = a/CO) - a/(4)

bR(2) = aRC!) + aR(5)

Memory Map

bR(O) =} M(O)

bR(I) =} M(4)

b/(D) =} M(8)

b/(I) => M(12)

bR(2) => M(l)

Algorithm Steps

hR(3) == aR(l) - aR(5)

h,(2) == at(l) + a/(5)

h,(3) == al(l) - al(5)

hR(4) == aR(2) + aR(6)

bR(5) == aR(2) - aR(6)

b/(4) == a/(2) + a/(6)

h/(5) == a/(2) - a/(6)

bR(6) == aR(3) + aR(7)

bR(7) == aR(3) - aR(7)

b/(6) == a/(3) + a/(7)

b,(7) == a/(3) - ale?)

CR(O) == bR(O) + bR(4)

cR(I) == bR(O) - bR(4)

c/(O) == b/(O) + b/(4)

c/(l) == b/(O) - b/(4)

cR(2) == bR(2) + bR(6)

cR(3) == bR(2) - bR(6)

c/(2) == b/(2) + b/(6)

c/(3) == b/(2) - b/(6)

cR(4) == bR(3) + bR(7)

cR(5) == bR(3) - b R(7)

C / (4) == b / (3) + b / (7)

c/(5) == b,(3) - b/(7)

Stage 2: MUltiplies

SEC. 8.8 EIGHT-POINTFFT 105

Memory Map

bR(3) => M(5)

b/(2) => M(9)

h/(3) => M(13)

bR(4) => M(2)

bR(5) => M(6)

b/(4) => M(IO)

b/(5) => M(14)

bR(6) => M(3)

bR(7) => M(7)

b/(6) => M(11)

b/(7) => M(15)

CR(O) => M(O)

cR(I) => M(2)

C/(O) => M(8)

c/(I) => M(ID)

cR(2) => M(l)

cR(3) => M(3)

c/(2) => M(9)

c/(3) => M(II)

cR(4) => M(5)

cR(5) => M(7)

c/(4) => M(13)

c/(5) => M(15)

This stage contains all of the multiplications. In all cases the multiplication is per
formed by pulling a data value from memory, multiplying it by the appropriate constant,
and returning the result to the same data memory location. Note that only one multiplier
constant is required.

Algorithm Steps

C R (4) == CR (4) * cos (JT /4)

C R (5) == C R (5) * cos (JT /4)

c/ (4) == C I (4) * cos (rr/4)

c/(5) == c/(5) * cosor /4)

Stage 3: Pcstmultlply Adds

Memory Map

cR(4) => M(5)

cR(5) =} M(7)

c/(4) =} M(13)

c/(5) ::::} M(15)

This stage also does not require any of the multiplier constants. Further, the add/sub
tract process is the same for all of the real and imaginary pairs. The strategy for converting
these equations to code is to start at the top (compute dR(0) and identify the pair of inputs

106 CHAP. 8 BUILDING-BLOCK ALGORITHMS

to be used first (in this case CR (0) and CR (2)). Then look down the list to find the second
(compute dR(4)) place where these two inputs are used. Pull CR(O) and cR(2) from memory,
compute dR(O) and dR(4), and store the results in data memory locations M(O) and M(l)
previously occupied by CR (0) and CR (2).

Next, look for the computation for b[(0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. Notice that some of these additions require one
imaginary input and one real input. This approach to these additions implements the required
multiplication by j = R, which converts real parts of data to imaginary parts and
imaginary parts to real parts (with a sign change).

Algorithm Steps

dR(O) = CR(O) + cR(2)

dR(4) = CR(O) - cR(2)

d[(O) = c[(O) + cI(2)

d[(4) = c[(O) - cI(2)

dR(2) = cR(I) +cI(3)

dI(2) = cI(I) - cR(3)

dR(6) = cR(I) - c[(3)

d[(6) = cI(I) + cR(3)

dR(I) = bR(I) + cR(5)

dR(5) = bR(I) - cR(5)

d[(l) = b[(l) + cI(5)

dI(5) = bI(I) - cI(5)

dR(3) = bI(5) + c[(4)

dR(7) = -bI(5) + cI(4)

dI(3) = bR(5) + cR(4)

dIe?) = bR(5) - cR(4)

Stage 4: Output Adds

Memory Map

dR(O) =} M(O)

dR (4) =} M(l)

d[(O) =} M(8)

dI(4) =} M(9)

dR(2) =} M(2)

dI(2) =} M(3)

dR(6) =} M(ll)

d[(6) =} M(IO)

dR(I) =} M(4)

dR(5) :::} M(?)

dI(I) :::} M(12)

dI(5) :::} M(15)

dR(3) =} M(13)

dR(7) =} M(14)

dI(3) :::} M(5)

dIe?) =} M(6)

This stage also does not require any multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting
these equations to code is to start at the top (compute AR (I)) and identify the pair of inputs
to be used first (in this case dR(I) and dR(3)). Then look down the list to find the second
(compute AR (7)) place where these two inputs are used. Pull dR (I) and dR (3) from memory,
compute AR(l) and AR (?), and store the results in data memory locations M(4) and M(13)
previously occupied by dR(l) and dR(3).

Next, look for the computation for A I (I) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

AR(O) = dR(O)

AI(O) = dI(O)

Memory Map

AR(O) =* M(O)

A/(O) =* M(8)

Algorithm Steps

AR(4) = d R(4)
A[(4) = d[(4)

A R(2) = dR(2)

A[(2) = d/(2)

A R(6) = dR(6)

A[(6) = d/(6)

AR(l) = dR(l) + dR(3)
A[(l) = d/(l) - d/(3)

A R(3) = dR(5) + dR(7)

A[(3) = d/(5) + d/(7)

A R(5) = -dR(7) + dR(5)

A/(5) = -d/(7) + dl(5)

A R(7) = dR(l) - dR(3)

AI(7) = d/(l) + d/(3)

8.8.2 Eight-Point Radix-4 and -2 Algorithm

SEC.8.8 EIGHT-POINT FFT 107

Memory Map

A R(4) => M(l)

A[(4) => M(9)

AR(2) => M(2)

A/(2) => M(3)

AR(6) => M(ll)

A/(6) => M(lO)

AR(I) => M(4)

A/(l) => M(5)

A R(3) => M(14)

A/(3) => M(15)

AR(5) => M(7)

A/(5) => M(6)

A R(7) => M(13)

A/(?) => M(12)

The radix-4 and -2 [4] 8-point FFf requires 52 adds, 4 multiplies, 16 data memory
locations, and one location for the multiplier constant. The four stages are as follows:

Stage 1: Input Adds

This stage does not require any of the multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting these
equations to code is to start at the top (compute bR (0» and identify the pair of inputs to be
used first (in this case aR(O)and aR(4». Then look down the list to find the second (compute
bR(I)) place where these two inputs are used. Pull aR(0) and aR(4) from memory, compute
bR (0) and bR (I), and store the results in data memory locations M (0) and M (4) previously
occupied by aR(O) and aR(4).

Next, look for the computation for b/ (0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

bR(O) = aR(O) + aR(4)

b[(O) = al(O) + a/(4)

bR(l) = aR(O) - aR(4)

b[(l) = a/CO) - a/(4)

bR(2) = aR(2) + aR(6)

b/(2) = a[(2) + a/(6)

bR(3) = aR(2) - aR(6)

b[(3) = a/(2) - a/(6)

bR(4) = aRC!) + aR(5)

Memory Map

bR(O) => M(O)

b/(O) => M(8)

bR(l) => M(4)

b[(l) => M(12)

bR(2) => M(2)

b/(2) => M(IO)

bR (3) => M(6)

b/(3) => M(14)

bR (4) => M(l)

108 CHA~ 8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

b/(4) = a/(l) + a/(5)

bR(5) = aR(l) - aR(5)

b/(5) = a/(l) - a/(5)

bR(6) = aR(3) + aR(7)

b/(6) = a/(3) + a/(7)

bR(7) = aR(3) - aR(7)

b/(7) = a/(3) - a/(7)

Stage 2: Second Set of Input Adds

Memory Map

b/(4) => M(9)

bR(5) => M(5)

b/(5) => M(13)

bR(6) => M(3)

b/(6) => M(ll)

bR(7) => M(7)

b/(7) => M(15)

This stage also does not require any multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting these
equations to code is to start at the top (compute C R (0» and identify the pair of inputs to be
used first (in this case bR (0) and bR (2». Then look down the list to find the second (compute
CR(2» place where these two inputs are used. Pull bR(0) and bR(2) from memory, compute
CR (0) and CR (2), and store the results in data memory locations M(0) and M (2) previously
occupied by bR(O) and bR(2).

Next, look for the computation for C/ (0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

CR(O) = bR(O)+ bR(2)
c/(O) = bj(O) + bj(2)

cR(2) = bR(O) - bR(2)
c/(2) = b/(O) - b/(2)

cR(l) = bR(l) + bj(3)

cj(l) = b/(l) - bR(3)
cR(3) = bR(l) - b/(3)

c/(3) = bj(l) + bR(3)
cR(4) = bR(4) + bR(6)
cj(4) = b/(4) + bj(6)

cR(6) = bR(4) - bR(6)

c/(6) = b/(4) - b/(6)

cR(5) = bR(5) + b/(7)

c/(5) = b/(5) - bR(7)
cR(7) = bR(5) - b/(7)

c/(7) = b/(5) + bR(7)

Stage 3: Multiplies

Memory Map

CR(O) => M(O)

Cj(O) => M(8)

cR(2) => M(2)

c/(2) => M(lO)

cR(l) => M(4)

cj(l) => M(6)

cR(3) => M(14)

cj(3) => M(12)

cR(4) => M(l)

c/(4) => M(9)

cR(6) => M(3)

c/(6) => M(ll)

cR(5) => M(5)

c/(5) => M(7)

cR(7) => M(15)

c/(7) => M(13)

This stage contains all of the multiplications. In all cases, multiplication is performed
by pulling a data value from memory, multiplying it by the appropriate constant, and re
turning the result to the same data memory location. Note that only one multiplier constant
is required because cos(2rr /8) = sin(2rr /8).

Algorithm Steps

dR (5) == cR(5) * cos(2Jr /8)

d / (5) == C/ (5) * sin(2Jr /8)

d R (7) == C R (7) * cos(Zz' /8)

d / (7) == C1(7) * sin(2Jr /8)

Stage 4: Output Adds

SEC. 8.8 EIGHT-POINT FFT 109

Memory Map

d R(5) => M(5)

d, (5) => M(7)

d R(7) => M(15)

d/(7) => M(13)

This stage also does not require any multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting these
equations to code is to start at the top (compute A R (0» and identify the pair of inputs to be
used first (in this case C R (0) and C R (4». Then look down the list to find the second (compute
AR(4» place where these two inputs are used. Pull CR(O) and cR(4) from memory, compute
AR (0) and A R(4), and store the results in data memory locations M (0) and M (I) previously
occupied by CR(O) and cR(4).

Next, look for the computation for A/ (0) on the list and repeat the same set of
steps. Continue this process until all the Algorithm Steps have been computed and their
results stored in the Memory Map addresses. Notice that some of these additions require
one imaginary input and one real input. This approach to these additions implements the
required multiplication by j == yCl, which converts real parts of data to imaginary parts
and imaginary parts to real parts (with a sign change).

Algorithm Steps

AR(O) == CR(O) + cR(4)

A/(O) == c/(O) + c/(4)

eR(5) == dR(5) + d/(5)

e / (5) == - d R (5) + d/ (5)

eR(7) == -dR(7) + d/(7)

e/(7) == -dR (7) - dl (7)

AR(l) == eR(l) + eR(5)

A/(l) == C/(}) + e/(5)

A R(2) == cR(2) + c/(6)

A I(2) == c/(2) - cR(6)

AR(3) == cR(3) + eR(7)

A/(3) == c/(3) + el(7)

AR(4) == CR(O) - cR(4)

AI(4) == C/(O) - c/(4)

A R(5) == cR(l) - eR(5)

A I(5) == C/(l) - el(5)

AR(6) == cR(2) - c/(6)

A/(6) == c/(2) + cR(6)

AR(7) == cR(3) - eR(7)

AI(7) == c/(3) - el(7)

Memory Map

A R(O) => M(O)

A/(O) ::::} M(8)

eR(5) ::::} M(5)

e/(5) ::::} M(7)

eR(7) ::::} M(l5)

el(7) => M(13)

A R (!) ==} M(4)

A/(l) ==> M(6)

A R(2) ::::} M(2)

A/(2) => M(3)

AR(3) ==> M(14)

A I(3) => M(12)

A R(4) => M(l)

A/(4) => M(9)

AR(5) => M(5)

A I(5) => M(7)

A R(6) => M(lt)

A/(6) => M(IO)

A R(7) => M(15)

A I(7) => M(13)

110 CHA~ 8 BUILDING-BLOCK ALGORITHMS

8.8.3 Eight-Point Radix-2 Algorithm

The radix-2 [5] 8-point FFT requires 52 adds, 4 multiplies, 16 data memory locations,
and one location for the multiplier constant. The six stages are as follows:

Stage 1: Input Adds

This stage does not require any multiplier constants. Further, the add/subtract process
is the same for all of the real and imaginary pairs. The strategy for converting these equations
to code is to start at the top (compute bR (0» and identify the pair of inputs to be used first (in
this case QR(0) and QR(4». Then look down the list to find the second (compute bR(1» place
where these two inputs are used. Pull QR(O) and QR(4) from memory, compute bR(O) and
bR(l), and store the results in data memory locations M(O) and M(4) previously occupied
by aR(O) and aR(4).

Next, look for the computation for b/ (0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

bR(O) = aR(O) + aR(4)

b[(O) = Q[(O) + a/(4)

bR(l) = aR(O) - aR(4)

b[(l) = Q[(O) - Q[(4)

bR(2) = QR(2) + QR(6)

b[(2) = Q/(2) + Q/(6)

bR(3) = QR(2) - QR(6)

b[(3) = Q[(2) - Q[(6)

bR(4) = QR(l) + QR(5)

b[(4) = Q[(l) + Q/(5)

bR(5) = QR(l) - QR(5)

b[(5) = Q[(I) - Q[(5)

bR(6) = QR(3) + QR(7)

b/(6) = Q[(3) + Q[(7)

bR(7) = QR(3) - QR(7)

b/(7) =Q/(3) - Q[(7)

Stage 2: Second Set of Input Adds

Memory Map

bR(O) :::} M(O)

b[(O) :::} M(8)

bR(l) => M(4)

b[(I) => M(12)

bR(2) => M(2)

b/(2) => M(lO)

bR(3) => M(6)

b/(3) => M(14)

bR(4) => M(I)

b[(4) => M(9)

bR(5) => M(5)

b[(5) => M(13)

bR(6) => M(3)

b/(6) => M(ll)

bR(7) => M(7)

b/(7) => M(15)

This stage also does not require any multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting these
equations to code is to start at the top (compute dR (0» and identify the pair of inputs to be
used first (in this case bR (0) and bR (2». Then look down the list to find the second (compute
dR (2» place where these two inputs are used. Pull bR(0) and bR(2) from memory, compute
dR(O) and dR(2), and store the results in data memory locations M(O) and M(2) previously
occupied by bR(O) and bR(2).

SEC. 8.8 EIGHT-POINT FFT 111

Next, look for the computation for dI (0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. Notice that some of these additions require one
imaginary input and one real input. This approach to these additions implements the required
multiplication by j == J=T, which converts real parts of data to imaginary parts and
imaginary parts to real parts (with a sign change).

Algorithm Steps

dR(O) = bR(O)+ bR(2)

d[(O) = bl(O) + b[(2)

dR(2) = bR(O) - bR(2)

d[(2) = b/(O) - b/ (2)

dR(I) = bR(I) + bl (3)

dl(l) = b[(l) - bR(3)

dR(3) = bR(I) - bI (3)

dl(3) = bI(I) + bR (3)

d R(4) = bR(4) + bR(6)

d[(4) = bI(4) + bI(6)

dR(6) = bR(4) - bR(6)

dI(6) = bI(4) - bl(6)

Stage 3: Third Set of Input Adds

Memory Map

dR(O) => M(O)

dl(O) => M(8)

dR(2) => M(2)

dl(2) => M(IO)

dR(I) => M(4)

dl(l) => M(6)

dR(3) => M(14)

dI(3) => M(12)

dR (4) => M(l)

dl(4) => M(9)

dR(6) => M(3)

dl(6) => M(l!)

This stage also does not require any of the multiplier constants. Further, the add/sub
tract process is the same for all of the real and imaginary pairs. The strategy for converting
these equations into code is to start at the top (compute bR (5)) and identify the pair of inputs
to be used first (in this case bR(5) and hI(5». Then look down the list to find the second
(compute bI(5)) place where these two inputs are used. Pull bR(5) and bl(5) from memory,
use them to compute new values for bR(5) and b/(5), and store the results in data memory
locations M(5) and M(13) previously occupied by the original values of bR(5) and hl(5).
Repeat the same set of steps for bR (7) and b1(7). The inputs and outputs of this stage have
the same labels, so all the terms in Stage 6 have the same label.

Algorithm Steps

bR(5) = bR(5) + b/(5)

b I (5) == -bR(5) + b/(5)

b R(7) == b R(7) + b/(7)

b l(7) == -bR(7) + b/(7)

Stage4: Multiplies

Memory Map

bR (5) => M(5)

b/(5) ::::} M(13)

bR(7) ::::} M(7)

bl(7) => M(15)

This stage contains all of the multiplications. In all cases the multiplication is per
formed by pulling a data value from memory, multiplying it by the appropriate constant,
and returning the result to the same data memory location. Note that only one multiplier
constant is required because cos(21l' /8) = sin(21l' /8).

112 CHA~ 8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

cR(5) = bR(5) *cos(2Jr18)

c/(S) = b/(S) *sin(21l'18)

cR(7) = bR(7) *cos(2Jr/8)

c/(7) = h/(7) * sin(21l'j8)

Stage 5: Postmultiply Adds

Memory Map

CR(S) ==} M(5)

c/(S) ==} M(l3)

cR(7) =::} M(7)

c/(7) ==> M(15)

This stage also does not require any of the multiplier constants. Further, the add/sub
tract process is the same for all of the real and imaginary pairs. The strategy for converting
these equations to code is to start at the top (compute dR(5» and identify the pair of inputs
to be used first (in this case CR (5) and C/ (7». Then look down the list to find the second
(compute dR(7» place where these two inputs are used. Pull cR(5) and c/(7) from memory,
compute dR(5) and dR(7), and store the results in data memory locations M(5) and M(l5)
previously occupied by cR(5) and c/(7).

Next, look for the computation for dieS) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. Notice that all of these additions require one imag
inary input and one real input. This approach to these additions implements the required
multiplication by j = H, which converts real parts of data to imaginary parts and
imaginary parts to real parts (with a sign change).

Algorithm Steps

dR(5) = CR(S) + c/(7)

d/(5) = c/(5) - cR(7)

dR(7) = cR(5) - c/(7)

d/(7) = c/(5) + cR(7)

Stage 6: Output Adds

Memory Map

dR(5) => M(5)

d/(5) => M(7)

dR(7) => M(l5)

d/(7) => M(l3)

This stage also does not require any multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting these
equations to code is to start at the top (compute AR (0» and identify the pair of inputs to be
used first (in this case dR (0) and dR (4». Then look down the list to find the second (compute
A R (4» place where these two inputs are used. Pull dR (0) and dR (4) from memory, compute
AR(O) and AR(4), and store the results in data memory locations M(O) and M(l) previously
occupied by dR(O) and dR(4).

Next, look for the computation for A/ (0) on the list and repeat the same set of
steps. Continue this process until all the Algorithm Steps have been computed and their
results stored in the Memory Map addresses. Notice that some of these additions require
one imaginary input and one real input. This approach to these additions implements the
required multiplication by j = H, which converts real parts of data to imaginary parts
and imaginary parts to real parts (with a sign change).

Algorithm Steps

AR(O) = dR(O)+ dR(4)
A/(O) = d/(O) + d/(4)

Memory Map

AR(O) => M(O)

A/(O) => M(8)

Algorithm Steps

AR(I) == dR(I) + dR(5)

A/(l) == dlel) + dl (5)

A R(2) == dR(2) + dl(6)

A/(2) == d/(2) - dR(6)

A R(3) == dR(3) + d I(7)

A/(3) == d/(3) - dR(7)

AR(4) == dR(O) - dR(4)

A /(4) == d/(O) - d/(4)

A R(5) == dR(I) - dR(5)

A/(5) == dl(l) - d/(5)

A R(6) == d R (2) - d/(6)

A/(6) == d /(2) + dR(6)

A R (7) == dR (3) - d/ (7)

A J(7) == dl(3) + dR(7)

8.8.4 PTL 8-Point FFT

SEC. 8.8 EIGHT-POINT FFT 113

Memory Map

AR(I) => M(4)

Al(l) => M(6)

A R(2) => M(2)

A/(2) => M(3)

A R(3) => M(13)

A/(3) => M(12)

A R(4) =} M(l)

A/(4) => M(9)

A R(5) => M(5)

A I(5) => M(7)

A R(6) => M(ll)

A/(6) => M(lO)

A R(7) => M(l4)

A l(7) => M(15)

The PTL [6] 8-point FFT is a four-stage process with 52 adds, 4 multiplies, 16 data
memory locations, and one multiplier constant memory location. The five stages are as
follows.

Stage 1: Input Adds

This stage does not require any multiplier constants. Further, the add/subtract process
is the same for all of the real and imaginary pairs. The strategy for converting these equations
to code is to start at the top (compute bR(0» and identify the pair of inputs to be used first (in
this case a R (0) and a R (4». Then look down the list to find the second (compute bR (1» place
where these two inputs are used. Pull aR(O) and aR(4) from memory, compute bR(O) and
bR (1), and store the results in data memory locations M (0) and M (4) previously occupied
by aR(O) and aR(4).

Next, look for the computation for bI (0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

bR(O) == aR(O) + aR(4)

bR(I) == aR(O) - aR(4)

bJ(O) == a/CO) + aJ(4)

bJ(I) == a/CO) - aI(4)

bR(2) == aRC 1) + aR(5)

bR(3) == aR(I) - aR(5)

h/(2) == aIel) + a/(5)

h l(3) == al(l) - a/(5)

bR(4) == aR(2) + aR(6)

Memory Map

bR(O) => M(O)

bR(I) => M(4)

b/(O) => M(8)

bJ(l) => M(12)

b R(2) => M(I)

bR(3) => M(5)

b J(2) => M(9)

b/(3) => M(13)

bR(4) ::::} M(2)

114 CHAR 8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

bR(5) = aR(2) - aR(6)

b/(4) = a/(2) + a/(6)

b/(5) = a/(2) - a/(6)

bR(6) = aR(3) + aR(7)

bR(7) = aR(3) - aR(7)

b/(6) = a/(3) + a/(7)

b/(7) = a/(3) - a/(7)

Stage 2: Second Set of Input Adds

Memory Map

bR(5) => M(6)

b/(4) => M(ID)

b/(5) => M(14)

bR(6) => M(3)

bR(7) => M(7)

b/(6) => M(ll)

b/(7) => M(15)

This stage also does not require any multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting these
equations to code is to start at the top (compute CR (D» and identify the pair of inputs to be
used first (in this case bR (D) and bR (4». Then look down the list to find the second (compute
cR(2» place where these two inputs are used. Pull bR(D)and bR(4) from memory, compute
cR(D) and cR(2), and store the results in data memory locations M(D) and M(2) previously
occupied by bR(O) and bR(4).

Next, look for the computation for c/(O) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

cR(D) = bR(D)+ bR(4)
c/(D) = bl(D) + bl(4)
cR(I) = bR(I) + bl(5)

c/(l) = bl(l) + bR(5)
cR(2) = bR(D) - bR(4)

c/(2) = bl(D) - bl(4)
cR(3) = bR(I) - b/(5)

c/(3) = bl(l) - bR(5)
cR(4) = bR(2) + bR(6)
c/(4) = b/(2) + b/(6)

cR(5) = bR(3) + bR(7)

c/(5) = b/(3) + b/(7)

cR(6) = bR(2) - bR (6)

c/(6) = b/(2) - b/(6)

cR(7) = bR(3) - bR(7)

c/(7) = b/(3) - b/(7)

Stage 3: Third Stage of Input Adds

Memory Map

cR(D) => M(D)

C/(O) => M(8)

cR(I) =} M(4)

cI(I) =} M(12)

cR(2) => M(2)

c/(2) =} M(ID)

cR(3) => M(14)

c/(3) =} M(6)

cR(4) =} M(l)

c/(4) :::} M(9)

cR(5) =} M(5)

c/(5) => M(13)

cR(6) => M(3)

c/(6) => M(ll)

cR(7) => M(7)

c/(7) => M(15)

The strategy for converting these equations to code is to start at the top (compute
dR(5) and d/(5» and identify the pair of inputs to be used (in this case cR(5) and c/(7».

SEC. 8.8 EIGHT-POINT FFT 115

Pull CR(S) and c/(7) from memory, compute dR(5) and dI(5), and store the results in data
memory locations M(5) and M(13) previously occupied by cR(5) and cI(7). Perform the
same set of steps for dR (7) and d / (7).

Algorithm Steps

dR(5) == cR(5) + c/(7)

d/(5) == c/(5) + cR(7)

dR(7) == cR(5) - c/(7)

d/(7) == c/(5) - cR(7)

Stage 4: Multiplies

Memory Map

dR(5) =} M(5)

d/(S) =} M(l3)

dR(7) =} M(l5)

d/(7) =} M(7)

This stage contains all of the multiplications. In all cases the multiplication is per
formed by pulling a data value from memory, multiplying it by the appropriate constant,
and returning the result to the same data memory location. Note that only one multiplier
constant is required.

Algorithm Steps

dR (5) == dR (5) *cos(2Jl'/8)

d/(5) == dI(5) *cos(2Jl'/8)

dR(7) == dR(7) *cos(2Jl'/8)

d/ (7) == d / (7) *cos(2Jl'/8)

Stage 5: Output Adds

Memory Map

dR(5) =} M(5)

d/(5) ::::} M(l3)

dR(7) =} M(l5)

d/(7) => M(7)

This stage also does not require any multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting these
equations to code is to start at the top (compute AR(O» and identify the pair of inputs to be
used first (in this case C R (0) and C R (4». Then look down the list to find the second (compute
A R(4» place where these two inputs are used. Pull CR(O) and cR(4) from memory, compute
AR(O) and A R(4), and store the results in data memory locations M(O) and M(l) previously
occupied by CR(O) and cR(4).

Next, look for the computation for A/(O) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

AR(O) == CR(O) + cR(4)

A/(O) == c/(O) + c/(4)

AR(I) == cR(I) + dl(5)

A/(l) == c/(3) - dR(7)

AR(2) == cR(2) + c/(6)

A/(2) == c/(2) - cR(6)

A R (3) == cR(3) - d/(7)

A/(3) == c/(l) - dR(5)

AR(4) == CR(O) - cR(4)

Memory Map

AR(O) ::::} M(O)

A/(O) ::::} M(8)

AR(l) ::::} M(4)

AI(l) => M(6)

AR(2) => M(2)

A/(2) ::::} M(lO)

A R(3) =} M(l4)

A I(3) => M(l2)

A R(4) =} M(l)

116 CHA~ 8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

A[(4) = c[(O) - c[(4)

AR(5) = cR(1) - d[(5)

A[(5) = c[(3) + dR(7)

AR(6) = cR(2) - c[(6)

A[(6) = c[(2) + cR(6)

A R(7) = cR(3) +d[(7)

A[(7) = c[(1) + dR(5)

8.9 NINE-POINT FFT

Memory Map

A[(4) =} M(9)

A R(5) =} M(13)

A[(5) =} M(15)

A R(6) =} M(11)

A[(6) =} M(3)

A R(7) =} M(7)

A[(7) =} M(5)

The 9-point OFT is defined for k = 0, 1, 2, 3, 4, 5, 6, 7, and 8, as

8

A(k) = La(n) * e-j2Jrkn/9

n=O
(8-9)

If the 9-point DFT is calculated directly from Equation 8-9, it requires 64 complex multiplies
and 72 complex adds. Since a complex multiply uses 4 real multiplies and 2 real adds, and a
complex add uses 2 real adds, the 9-point OFT requires 256 real multiplies and 272 real adds.
The number of adds and multiplies for each of the fast algorithms is significantly less than
required for computing the DFf directly. However, if only a subset of the output frequency
components is required, it may be more cost effective to compute the Off equation directly
for those terms. For example, if A (0) is the only term needed, it can be computed with 16
adds and no multiplies by using the DFT directly. Each of the other eight output frequencies
requires 8 complex multiplies and 8 complex adds for a total of 32 real adds and 32 real
multiplies. With this in mind the crossover point between using the DFf directly and one
of the 9-point FFf algorithms can be determined based on the number of output frequency
components that must be computed.

Since all of the input data is required for each output frequency component calculation,
the direct DFf computations require 18 data memory locations for the input data and 18
more for the output frequency components. This is a total of 36 data memory locations,
since the input and output are complex. Similarly, the DFT data addressing is sequential
(i.e., 0 through 8 for each output frequency component), and the computational architecture
is simple, since they can all be performed by using a complex multiply accumulator (see
Chapter 10 for details). Addressing the complex multiplier coefficients requires either a
modulo arithmetic scheme (k *n mod 9) or that the addresses be stored in program memory.

There have been a number of variations on the 9-point FFf, each having a different
number of adds and multiplies. The reason for many algorithms is that the 9-point transform
has the special property that it is 3 x 3 points. This results in some additional symmetries
in the multiplier coefficients that have been exploited in various ways. Three variations are
presented, characterized, and then summarized in the Comparison Matrix in Table 8-1.

8.9.1 Winograd 9-point FFT

The Winograd [1] 9-point FFf requires 90 adds, 20 multiplies, 26 data memory
locations, and 10 multiplier constant memory locations (assuming the multiply by 0.5 is
counted as one of the coefficients). The five stages are as follows.

SEC. 8.9 NINE-POINT FFT 117

Stage 1: Input Adds

This stage does not require additional data memory or accessing any of the multiplier
constants. Further, the add/subtract process is the same for all of the real and imaginary
pairs. The strategy for converting these equations to code is to start at the top (compute
bR (I» and identify the pair of inputs to be used first (in this case aR (I) and aR (8)). Then
look down the list to find the second (compute bR (2» place where these two inputs are
used. Pull aR(I) and aR(8) from memory, compute bR(I) and bR(2), and store the results
in data memory locations M(l) and M(8) previously occupied by aR(l) and aR(8).

Next, look for the computation for bI (I) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

bR(I) == aR(I) + aR(8)

bl(l) == al(l) + al(8)

hR(2) == aR(I) - aR(8)

h l (2) == a/(l) - al(8)

bR(3) == aR (7) + aR (2)

h/ (3) == a/(7) + al(2)

bR(4) == aR(7) - aR(2)

bl (4) == al(7) - al(2)

bR(5) == aR(3) + aR(6)

b/(5) == al(3) + al(6)

bR(6) == aR(3) - aR(6)

h/(6) == a,(3) - a/(6)

bR(7) == aR(4) + aR(5)

h/(7) == a,(4) +a/(5)

hR(8) == aR(4) - aR(5)

h l(8) == QI(4) - a/(5)

Stage 2: Second Set of Input Adds

Memory Map

bR(I) =} M(l)

b/(l) =} M(ID)

bR(2) =} M(8)

b/(2) =} M(17)

bR(3) => M(2)

bl(3) =} M(ll)

bR(4) =} M(7)

b l(4) => M(16)

bR(5) => M(3)

bl(5) =} M(12)

bR(6) =} M(6)

b l (6) => M(l5)

bR(7) => M(4)

bl(7) =} M(13)

bR(8) =} M(5)

h/(8) => M(14)

This is the first stage that requires additional data memory locations to store compu
tational results. The computational strategy is still the same as for the input adds. Start with
the first computation on the list (c R (1» and find all of the other computations that involve
the two input values bR (1) and bR (3). In this case there are two other computations that use
bR (I), and two others that use bR (3). Therefore, when c R (l) and cR (2) are computed, their
results must be placed in additional data memory locations M (18) and M (19) so that bR (1)
and bR (3) are still available for the additional computations where they are used (c R (5) and
cR(6»).

This strategy is continued until all of the computations in this algorithm stage are
completed. One caution is that some of the inputs to this stage are also needed in Stage 3.
Therefore, all of the places where a data value is used in the algorithm must be taken into
account.

118 CHA~ 8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

cR(I) = bR(I) + bR(3)

c/(I) = bl(I) + bl (3)

cR(2) = bR(I) - bR(3)

c/(2) = bl(I) - bl (3)

cR(3) = bR(2) + bR(4)

c/(3) = bl(2) + bl(4)

cR(4) = bR(2) - bR(4)

c/(4) = bl(2) - bl(4)

cR(5) = bR(3) - bR(7)

c/(5) = bl(3) - bl(7)

cR(6) = bR(7) - bR(I)

c/(6) = bl(7) - bl(I)

cR(7) = bR(4) - bR(8)

c/(7) = bl(4) - bl(8)

cR(8) = bR(8) - bR(2)
c/(8) = bl(8) - bl(2)

dR(I) = cR(I) + bR(7)

dl(I) = c/(I) + bl(7)

dR(2) = cR(3) + bR(8)

dl(2) = c/(3) + bl(8)

eR(I) = dR(I) + bR(5)

el(I) = dl(I) + bl(5)

IR(O) = eR(l) + aR(O)

fl(O) = el(l) + al(O)

Stage 3: Multiplies

Memory Map

cR(I) => M(I8)

c/(l) => M(22)

cR(2) => M(19)

C1(2) :::} M (23)

cR(3) => M(20)

c/(3) :::} M(24)

cR(4) :::} M(2I)

c/(4) :::} M(25)

cR(5) => M(2)

c/(5) => M(ll)

cR(6) => M(l)

c/(6) => M(10)

cR(7) => M(7)

c/(7) => M(16)

cR(8) => M(8)

c/(8) => M(17)

dR(l) => M(4)

dl(l) => M(l3)

dR(2) => M(5)

dl(2) => M(14)

eR(I) ==> M(l8)

el(l) => M(22)

IR(O) ==> M(O)

fl(O) => M(9)

This stage contains all of the multiplications. In all cases except CR (8) and C1(8),
the multiplication is performed by pulling a data value from memory, multiplying it by the
appropriate constant, and returning the result to the same data memory location. Since CR (8)
and CI (8) are multiplied during this stage as well as used in the next stage, the multiplied
values fl(lO) and fR(lO), respectively, are stored in two of the additional data memory
locations M(20) and M(24) used earlier.

Algorithm Steps

IR(l) = -0.5 *dR(l)

fl(l) = -0.5 *dl(l)

IR(2) = sin(6Jr/9) *dl (2)

11(2) = - sin(6Jr/9) *dR(2)

fR(3) = [cos(6Jr/9) - 1] *bR(5)

11(3) = [cos(6Jr/9) - 1] *b l (5)

Memory Map

IR(l) => M(4)

/1(1) => M(13)

IR(2) => M(14)

11(2) => M(5)

IR(3) => M(3)

11(3) => M(12)

SEC. 8.9

Algorithm Steps

IR (4) == sin(6n /9) *b1(6)

11(4) == - sin(6n/9) * bR(6)

IR (5) == (1/3) * [2 * cos(2n /9) - cos(4n /9) - cos(8n /9)] * CR(2)

11(5) == (1/3) * [2 * cos(2n /9) - cos(4n /9) - cos(8n /9)] * c/(2)

IR(6) == (1/3) * [cos(2n /9) + cos(4n /9) - 2 * cos(8n /9)] * cR(5)

11(6) == (1/3) * [cos(2n /9) + cos(4n /9) - 2 * cos(8n /9)] * c/(5)

IR(7) == (1/3) * [cos(2n /9) - 2 * cos(4n /9) + cos(8n /9)] * cR(6)

11(7) == (1/3) * [cos(2n/9) - 2 * cos(4n/9) + cos(8n/9)] * c/(6)

IR(8) == (1/3) * [2 * sin(2n/9) + sin(4n /9) - sin(8n/9)] * c/(4)

11(8) == -(1/3) * [2 * sin(2n /9) + sin(4n/9) - sin(8Jl'/9)] * cR(4)

IR(9) == (1/3) * [sin(2n /9) - sin(4Jl'/9) - 2 * sin(8Jl'/9)] *c/(7)

11(9) == -(1/3) * [sin(2n /9) - sin(4Jl'/9) - 2 * sin(8Jl'/9)] *cR(7)

IR(lO) == (1/3) * [sin(2n /9) + 2 * sin(4n /9) + sin(8n /9)] * c/(8)

11(10) == -(1/3) * [sin(2n /9) + 2 * sin(4n /9) + sin(8n /9)] * cR(8)

Stage 4: Postmultiply Adds

NINE-POINT FFT 119

Memory Map

IR(4) ==> M(I5)

11(4) ==> M(6)

IR(5) => M(l9)

/1(5) => M(23)

IR(6) => M(2)

/1(6) => M(ll)

IR(7) => M(l)

/1(7) =} M(lO)

IR(8) => M(25)

11(8) =} M(21)

IR(9) =} M(16)

/1(9) =} M(7)

IR(lO) => M(24)

11(10) => M(20)

Some of the computational results in this stage are given two labels (i.e., hR (1) =
mR(5». The first is the one in the derivation [1] of the algorithm, and the second is used
to show the commonality of the output computations in all of the 9-point algorithms. The
strategy for converting these equations to code is to start at the top (compute gR(1» and
identify the pair of inputs to be used first (for the first Algorithm Step IR (1) is used for
both inputs). Then look down the list to find the second (compute gR(2» place where this
input is used. That Algorithm Step also uses dR(1). Pull IR (1) and dR(1) from memory,
compute gR(I) and gR(2), and store the results in data memory locations M(18) and M(8)
previously occupied by eR (1) and C R (8).

Next, look for the computation for bI (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. Note that the Algorithm Steps for mR(6) and ml(6)
only relabel the data values once they have been used as required by other portions of the
algorithm.

Algorithm Steps

gR(I) == IR(I) + IR(I)

gl(I) == 11(1) + 11(1)

gR(2) == -dR(I) + IR(I)

g/(2) == -dl(l) + /1(1)

gR(3) == IR(O) + IR(3)

gl(3) == 11(0) + 11(3)

gR(4) == IR(4) + IR(8)

g/(4) == 11(4) + 11(8)

gR(5) == IR(4) - IR(9)

Memory Map

gR(I) => M(18)

g/(l) => M(22)

gR(2) => M(8)

gl(2) =} M(17)

gR(3) => M(3)

g/(3) => M(12)

gR(4) => M(22)

g/(4) => M(18)

gR(5) => M(15)

120 CHA~ 8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

g/(5) = 1/(4) - 1/(9)

gR(6) = IR(4) - IR(8)

g/(6) = 1/(4) - 1/(8)

hR(l) = IR(O) + gR(2) = mR(5)

h/(l) = 1/(0) + g/(2) = m/(5)

h R(2) = gR(l) + gR(3)

h/(2) = g/(l) + g/(3)

h R(3) = gR(4) + IR(9) = nZR(2)

h/(3) = g/(4) + 1/(9) = -m/(2)

h R(4) = gR(6) - IR(lO) = mR(8)

h/(4) = g/(6) - 1/(10) = -m/(8)

h R(5) = gR(5) + IR(lO) = -mR(4)

h/(5) = g/(5) + 1/(10) = m/(4)

kR(l) = h R(2) + IR(5)

k/(l) = h/(2) + 1/(5)

k R(2) = h R(2) - IR(6)

k/(2) = h/(2) - 1/(6)

kR(3) = h R(2) - IR(5)

k/(3) = h/(2) - 1/(5)

IR(l) = kR(l) + IR(6) = m R(l)

1/(1) = k/(l) + 1/(6) = m /(1)

IR(2) = kR(2) + IR(7) = mR(3)

//(2) = k/(2) + 11(7) = ml(3)

lR(3) = kR(3) - !R(7) = mR(7)

1/(3) = k/(3) - 1/(7) = m/(7)

mR(6) = IR(2)

m/(6) = - 1/(2)

Stage 5: Output Adds

Memory Map

g/(5) => M(6)

gR(6) ::::} M(25)

g/(6) ::::} M(21)

h R(l) = mR(5) => M(8)

h/(l) = m/(5) => M(17)

h R(2) => M(3)

h/(2) => M(12)

h R(3) = mR(2) => M(16)

h/(3) = -m/(2) ::::} M(7)

h R(4) = mR(8) => M(25)

h/(4) = -ml(8) ::::} M(2l)

h R(5) = -mR(4) => M(15)

h/(5) = m/(4) ::::} M(6)

kR(l) => M(19)

k/(l) => M(23)

kR(2) => M(3)

k/(2) => M(12)

kR(3) => M(4)

k/(3) ::::} M(13)

IR(l) = mR(l) => M(2)

1/(1) = ml(l) => M(ll)

IR(2) = mR(3) => M(3)

/1(2) = ml(3) ::::} M(12)
lR(3) = mR(7) =} M(4)

1/(3) = m /(7) ::::} M(13)

mR(6) = IR(2) => M(14)

m/(6) = - 1/(2) => M(5)

This stage also does not require any multiplier constants. The strategy for converting
these equations to code is to start at the top (compute A R (1» and identify the pair of inputs
to be used first (in this case m R (1) and m R (2». Then look down the column to find the
second (compute A R(8» place where these two inputs are used. Pull mR(l) and mR(2)

from memory, compute AR (1) and A R (8), and store the results in data memory locations
M(2) and M(16) previously occupied by mR(l) and mR(2).

Next, look for the computation for A I (1) in the column and repeat the same set of
steps. Continue this process until all of the computations are performed and all of the
results are returned to the data memory locations. The A R (5) and AI (5) computations are
placed in data memory locations different from where the inputs were taken. This is to
meet the requirement that the output frequency components use the same locations as the
input data sequence. Note that the Algorithm Steps for A R (0) and A/ (0) only relabel the

SEC. 8.9 NINE-POINT FFT 121

data values to their output labels once they have been used as required by other portions of

the algorithm.
Algorithm Steps

A R (0) == fR (0)

A/(O) == fICO)
A R(I) == m R(I) + m R(2)

A, (I) == m , (1) - In / (2)

A R(2) == nlR(3) + mR(4)

A/(2) == In ,(3) - ",/(4)

AR(3) == mR(5) + nlR(6)

A , (3) == m , (5) - m , (6)

AR(4) == In R(7) + mR(8)

A I (4) == m / (7) - In I (8)

A R(5) == m R(7) - m R(8)

A I (5) == m I (7) + m , (8)

A R(6) == m R(5) - InR(6)

A I (6) == 111/(5) + nl/(6)

A R(7) == 111R(3) - nlR(4)

A/(7) == m/(3) + m/(4)

A R(8) == 111R(1) - InR(2)

A I (8) == m I (1) + m , (2)

8.9.2 PTL 9-point FFT

Memory Map

AR(O) =} M(O)

A/(O) =} M(9)

AR(I) =} M(2)

A/(l) =} M(7)

A R(2) =} M(3)

A/(2) =} M(6)

A R(3) =} M(8)

AI (3) =} M(5)

A R(4) =} M(4)

A/(4) =} M(13)

A R(5) =} M(l)

AI(5) =} M(IO)

A R(6) =} M(14)

A/(6) =} M(17)

A R(7) =} M(15)

A I(7) =} M(12)

A R(8) =} M(16)

A/(8) =} M(ll)

The PTL [6] 9-point FFT requires 94 adds, 52 multiplies, 22 data memory locations,
and 8 multiplier constant locations. The three stages are as follows.

Stage 1: Input Adds

This stage does not require additional data memory or accessing any of the multiplier
constants. Further, the add/subtract process is the same for all of the real and imaginary
pairs. The strategy for converting these equations to code is to start at the top (com
pute bR (1» and identify the pair of inputs to be used first (in this case a R (I) and a R (8».
Then look down the list to find the second (compute bR (2» place where these two in
puts are used. Pull aR(I) and aR(8) from memory, compute bR(1) and bR (2), and store
the results in data memory locations M (1) and M (8) previously occupied by a R (I) and
aR(8).

Next, look for the computation for bI (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

bR(I) == aRC 1) + aR(8)

bI(}) == aIel) + a/(8)

hR(2) == aR(l) - aR(8)

Memory Map

bR(I) =} M(l)

b/(l) =} M(IO)

bR(2) =} M(8)

122 CHAP.8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

b[(2) = a[(l) - a[(8)

bR(3) = aR(7) + aR(2)

b[(3) = a[(7) + a[(2)

bR(4) = aR(7) - aR(2)

b[(4) = a[(7) - a[(2)

bR(5) = aR(3) + aR(6)

b[(5) = a[(3) + a[(6)

bR(6) = aR(3) - aR(6)

b[(6) = a[(3) - a[(6)

bR(7) = aR(4) + aR(5)

b[(7) = a[(4) + a[(5)

bR(8) = aR(4) - aR(5)

bj(8) = a[(4) - aj(5)

Stage 2: MUltiply-Accumulates

Memory Map

bj(2) =} M(l7)

bR(3) =} M(2)

bj(3) =} M(ll)

bR(4) =} M(7)

b[(4) =} M(16)

bR(5) =} M(3)

bj(5) =} M(12)

bR(6) =} M(6)

bj(6) =} M(15)

bR(7) =} M(4)

b j (7) =} M(13)

bR(8) =} M(5)

bj(8) =} M(14)

This algorithm stage contains all of the multiplications and requires additional data
memory locations to store the results because the input data is used for sets of computa
tions. The data memory mapping assumes the multiply-accumulation process described as
Constraint 5 in Section 8.2.

For example, consider the computation of mR(l), mR(3), mR(5), mR(7), and fR(O),
which requires bR(I), bR(3), bR(5), bR(7), and aR(O). Because of the need for all five
inputs to compute all five outputs, the first four outputs, say mR(I), mR(3), mR(5), and
mR(7) are stored in additional data memory locations M(21), M(20), M(19), and M(18).
Finally, fR (0) may be stored in one of the input data memory locations, say data memory
location M(O) occupied by aR(O). This leaves the four data memory locations M(l), M(2),
M(3), and M(4), the ones used by bR(I), bR(3), bR(5), and bR(7), to be used for the extra
locations required by other sets of multiply-accumulate operations. The extra locations
are used for the imaginary equivalent of the real computations. This process is continued,
always using leftover data memory locations, until all of the computations are performed.

Algorithm Steps

mR(I) = bR(I) *cos(2rc/9) + bR(3) *cos(4rc/9) + bR(5) *cos(6rc/9) + bR(7) *cos(8rc/9) + aR(O)

mR(3) = bR(l) *cos(4rc/9) + bR(3) *cos(8rc/9) + bR(5) *cos(6rc/9) + bR(7) *cos(2rc/9) + aR(O)

mR(5) = [bR(l) + b/«3) + bR(7)] *cos(6rc/9) + bR(5) + aR(O)

mR(7) = bR(l) *cos(8rc/9) + bR(3) *cos(2rc/9) + bR(5) *cos(6rc/9) + bR(7) *cos(4rc/9) + aR(O)

fR(O) = bR(l) + bR(3) +bR(5) + bR(7) +aR(O)

m/(l) = b/(!) *cos(2rc/9) + b/(3) *cos(4rcj9) + bI(5) *cos(6rc/9) + b/(7) *cos(8rcj9) + a/CO)

m/(3) = b/(l) *cos(4rc/9) + b/(3) *cos(8rc/9) +bI(5) *cos(6rc/9) + bI(7) *cos(2rc/9) + aI(O)

m/(5) = [bI(l) + bI(3) + bI(7)] *cos(6rc/9) + bI(5) + aI(O)

m/(7) = bI(l) *cos(8rc/9) + bI(3) *cos(2rc/9) + bI(5) *cos(6rc/9) + bI(7) *cos(4rc/9) + aI(O)

fICO) = bI(l) + bI(3) + bI(5) + bI(7) + aI(O)

mR(2) = bI(2) * sin(27l"j9) - bI(4) * sin(47l"j9)+ bI(6) * sin(67l"j9)+ bI(8) * sin(87l"j9)

Memory Map

mR (1) => M(21)

mR(3) => M(20)

mR(5) => M(l9)

m R (7) => M(l8)

fR (0) => M (0)

mI(l) => M(4)

mI(3) => M(3)

mI(5) => M(2)

mI (7) => M(l)

fICO) => M(9)

mR(2) => M(ll)

SEC. 8.9

Algorithm Steps

mR(4) = b/(2) * sin(4rrj9) - b/(4) * sin(8rrj9) - b/(6) * sin(6rrj9) - b/(8) * sin(2rrj9)

mR(6) = [b/(2) + b/(4) + b/(8)] * sin(6rrj9)

mR(8) = b/(2) * sin(8rrj9) + b/(4) * sin(2rrj9) + b/(6) * sin(6rrj9) - b/(8) * sin(4rrj9)

m/(2) = bR(2) * sin(2rrj9) - bR(4) * sin(4rrj9) + bR(6) * sin(6:rrj9) + bR(8) * sin(8rrj9)

m[(4) = bR(2) * sin(4:rrj9) - bR(4) * sin(8:rrj9) - bR(6) * sin(6rrj9) - bR(8) * sin(2:rrj9)

m/(6) = [bR(2) + bR(4) + bR(8)] * sin(6:rrj9)

m/(8) = bR(2) * sin(8:rrj9) + bR(4) * sin(2:rrj9) + bR(6) * sin(6:rrj9) - bR(8) * sin(4:rrj9)

NINE-POINTFFT 123

Memory Map

mR(4) =} M(12)

mR(6) =} M(l3)

mR(8) =} M(l4)

m[(2) =} M(l?)

m/(4) =} M(l6)

m/(6) =} M(l5)

m/(8) =} M(5)

Stage 3: Output Adds

This stage also does not require any of the multiplier constants. The strategy for
converting these equations to code is to start at the top (compute A R (I» and identify the
pair of inputs to be used first (in this case m R (I) and m R (2». Then look down the column
to find the second (compute AR (8» place where these two inputs are used. Pull m R (I)
and mR(2) from memory, compute AR(I) and AR(8), and store the results in data memory
locations M(ll) and M(6) previously occupied by mR(I) and mR(2).

Next, look for the computation for A/ (I) in the column and repeat the same set of
steps. Continue this process until all of the computations are performed and all of the
results are returned to the data memory locations. The AR(5), AR(6), AR(7), and A R(8)
computations are placed in data memory locations different from where the inputs were
taken. This is to meet the requirement that the output frequency components use the same
locations as the input data sequence. Note that the Algorithm Steps for AR(O) and A/(O)
only relabel the data values to their output labels once they have been used as required by
other portions of the algorithm.

Algorithm Steps

AR(O) == fR(O)

A/(O) == fl(O)

AR(I) == mR(I) + mR(2)

Al(l) == ml(l) - m/(2)

A R(2) == mR(3) + mR(4)

A/(2) = m/(3) - m/(4)

AR(3) == mR(5) + mR(6)

A/(3) == ml(5) - ml(6)

AR(4) == mR(7) + mR(8)

A/(4) == ml(7) - m/(8)

AR(5) == mR(7) - mR(8)

Al(5) == ml(7) + m/(8)

AR(6) == mR(5) - mR(6)

Al (6) == ml(5) + m/(6)

AR(7) == mR(3) - mR(4)

A/(7) == m/(3) + ml(4)

AR(8) = mR(I) - mR(2)

Al(8) == ml(l) + ml(2)

Memory Map

AR(O) =} M(O)

A/(O) =} M(9)

AR(I) =} M(ll)

Al(l) =} M(4)

A R(2) =} M(12)

A/(2) =} M(3)

A R(3) =} M(13)

A/(3) =} M(2)

A R(4) =} M(14)

A/(4) =} M(l)

AR(5) =} M(IO)

A/(5) =} M(5)

AR(6) =} M(8)

Al(6) =} M(15)

A R(7) =} M(7)

A l(7) =} M(16)

AR(8) =} M(6)

A/(8) =} M(17)

124 CHAP. 8 BUILDING-BLOCK ALGORITHMS

8.9.3 Burrus and Eschenbacher 9-point FFT

The Burrus and Eschenbacher [7] 9-point FFf requires 84 adds, 20 multiplies, 26
data memory locations, and 8 multiplier constant memory locations. The five stages are as
follows.

Stage 1: Input Adds

This stage does not require additional data memory or accessing any of the multiplier
constants. Further, the add/subtract process is the same for all of the real and imaginary
pairs. The strategy for converting these equations to code is to start at the top (compute
bR(I» and identify the pair of inputs to be used first (in this case aR(I) and aR(8». Look
down the list for the second (compute bR (2» place where these two inputs are used. Pull
aR(I) and aR(8) from memory, compute bR(I) and bR(2), and store the results in data
memory locations M(l) and M(8) previously occupied by aR(I) and aR(8).

Next, look for the computation for bI (I) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

bR(I) = aR(I) + aR(8)

bl(l) = al(l) +al(8)

bR(2) = aR(I) - aR(8)

bl(2) = al(l) - al(8)

bR(3) = aR(7) + aR(2)

b/(3) = a/(7) +a/(2)

bR(4) = aR(7) - aR(2)

bl(4) = aj(7) - aj(2)

bR(5) = aR(3) + aR(6)

bl(5) = aj(3) + aj(6)

bR(6) = aR(3) - aR(6)

b j(6) = al(3) - a/(6)

bR(7) = aR(4) + aR(5)

b/(?) = aj(4) + a/(5)

bR(8) = aR(4) - aR(5)

bl (8) = a/(4) - al(5)

Stage 2: Second Set of Input Adds

Memory Map

bR(I) =} M(l)

bl(I) =} M(IO)

bR(2) =} M(8)

b/(2) =} M(l?)

bR(3) =} M(2)

bl(3) =} M(ll)

b R(4) =} M(?)

bl(4) =} M(16)

bR(5) =} M(3)

b j(5) =} M(12)

bR(6) =} M(6)

b j(6) =} M(15)

bR(7) =} M(4)

bl (?) =} M(13)

bR(8) =} M(5)

bl(8) =} M(14)

This is the first stage that requires additional data memory locations to store compu
tational results. The computational strategy is still the same as for the input adds. Start with
the first computation on the list (cR(I». In this case there are two other computations that
use aR(O) and two others that use bR(5). Therefore, when cR(I) is computed, the result
must be placed in the additional data memory location M(18) so that aR(O) and bR(5) are
still available for the additional computations.

SEC. 8.9 NINE-POINT FFT 125

This strategy is continued until all of the computations and all the results are stored in

the data memory locations. One caution is that some of the inputs to this stage are needed
in Stage 3.

Algorithm Steps

cR(l) == aR(O) + b R(5)

c/(I) == a/CO) + b,(5)

cR(2) == bR(I) + b R(3) + bR(7)

C / (2) == b/ (I) + b, (3) + b, (7)

cR(3) == bR(3) - bR(7)

c,(3) == bl(3) - bl (7)

cR(4) == bR(I) - bR(7)

c,(4) == b/(l) - b,(7)

cR(5) == bR(I) - b R(3)

c,(5) == b/(I) - b,(3)

cR(6) == bR (2) + bR(4) + bR(8)

C / (6) == b/ (2) + bl (4) + b, (8)

cR(7) == bR(4) - bR(8)

c,(7) == b,(4) - b/(8)

cR(8) == bR(8) - bR (2)

cl(8) == b,(8) - bl(2)

cR(9) == bR(4) - bR(2)

C1(9) == bI (4) - b[(2)

.Ii? (0) == CR (1) + CR (2)

.//(0) == c/(I) + c/(2)

Stage 3: Multiplies

Memory Map

cR(I) =} M(I8)

c,(I) => M(22)

cR(2) => M(I9)

c/(2) =} M(23)

cR(3) => M(20)

c/(3) => M(24)

cR(4) =} M(4)

c,(4) =} M(13)

cR(5) =} M(I)

c/(5) =} M(IO)

cR(6) => M(2)

c,(6) =} M(II)

cR(7) =} M(2I)

c/(7) =} M(25)

cR(8) =} M(5)

cl(8) => M(I4)

cR(9) =} M(8)

c,(9) =} M(17)

.fR(O) => M(7)

[t (0) =} M (16)

This stage contains all of the multiplications. The individual data values are pulled
from memory, multiplied by the appropriate constant, and stored in the same data memory
location.

Algorithm Steps

dR (1) == -bR(6) * sin(6Jr /9)

d/(I) == -b,(6) * sin(6Jr/9)

dR(2) == bR(5) * cos(6Jr /9)

d/(2) == b,(5) * cos(6JT/9)

d R(3) == -cR(3) * cos(8JT/9)

d/(3) == -c/(3) * cos(8Jr/9)

dR(4) == -cR(4) * cos(4JT/9)

d,(4) == -c/(4) *cos(4JT/9)

d R(5) == CR(S) * cos(2JT /9)

Memory Map

d R (1) => M(6)

d/(I) => M(15)

dR(2) => M(3)

d/(2) => M(12)

dR(3) =} M(20)

d,(3) => M(24)

dR (4) =} M(4)

d/(4) => M(13)

dR(5) => M(l)

126 CHAP. 8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

d/(5) = c/(5) *cos(2rc/9)

dR(6) = -cR(6) * sin(6rc/9)

d/(6) = -c/(6) * sin(6rc /9)

dR(7) = cR(7) * sin(8rc/9)

d/(7) = c/(7) * sin(8rc/9)

dR(8) = cR(8) * sin(4rc/9)

d/(8) = c/(8) * sin(4rc /9)

dR (9) = CR (9) * sin(2rc/9)

dj(9) = cj(9) * sin(2rc/9)

dR(lO) = cR(2) *cos(6rc/9)

d/(IO) = c/(2) *cos(6rc/9)

Stage 4: Postmultiply Adds

Memory Map

d j(5) => M(IO)

dR(6) => M(2)

d/(6) => M(ll)

dR(7) => M(21)

d j(7) => M(25)

dR(8) => M(5)

d/(8) => M(14)

dR(9) => M(8)

d j(9) => M(17)

dR(lO) => M(19)

d/(IO) =} M(23)

This stage also requires additional data memory locations to store computational
results. The strategy for converting these equations to code is to start at the top (compute
eR (2)) and identify the pair of inputs to be used first (in this case dR (2) and aR (0». Then
look down the list to find the second (for this Algorithm Step there is none) place where
these two inputs are used. Pull dR (2) and aR(O) from memory, compute eR(2), and store
the results in data memory location M (0) previously occupied by aR (0).

Next, look for the computation for ej(2) on the list and repeat the same set of steps.
The calculations for eR (2) and ej (2) use inputs that are not used elsewhere. However,
computing mR(l), mR(3), and mR(7) all require eR(2). This forces additional data memory
locations to be used to ensure that eR (2) is not overwritten prior to using it all three places.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. Note that the Algorithm Steps for mR(6) and m/(6)

only relabel the data values once they have been used as required by other portions of the
algorithm.

Algorithm Steps

eR(2) = dR(2) + aR(O)

ej(2) = d/(2) + a/CO)

mR(l) = eR(2) + dR(3) + dR(5)

m/(l) = e/(2) + d/(3) + d/(5)

mR(3) = eR(2) - dR(3) - dR(4)

m /(3) = e/(2) - d/(3) - di (4)

mR(7) = eR(2) + dR(4) - dR(5)

m/(7) = e/(2) + d/(4) - d/(5)

mR(2) = -d/(l) - d/(7) - d/(9)

m/(2) = -dR(I) - dR(7) - dR(9)

rn R(4) = d/(l) - d/(7) - d/(8)

nl/(4) = dR(l) - dR(7) - dR(8)

Memory Map

eR(2) => M(O)

e/(2) => M(9)

mR(l) => M(3)

mj(l) =} M(12)

mR(3) =} M(20)

mj(3) =} M(24)

mR(7) =} M(l)

m/(7) =} M(IO)

mR(2) =} M(9)

m/(2) =} M(O)

mR(4) :::} M(25)

nl/(4) :::} M(21)

Algorithm Steps

mR(8) == -d/(l) - d/(8) + d/(9)

m/(8) == -dR(l) - dR(8) + dR(9)

mR(5) == dR(lO) + cR(l)

m/(5) == d/(lO) + c/(l)

mR(6) == -d/(6)

m/(6) == -dR(6)

Stage 5: Output Adds

SEC. 8.9 NINE-POINT FFT 127

Memory Map

mR(8) => M(14)

m/(8) => M(5)

mR(5) => M(18)

nl/(5) => M(22)

mR(6) => M(ll)

m/(6) => M(2)

This stage also does not require any multiplier constants. The strategy for converting
these equations to code is to start at the top (compute A R(1)) and identify the pair of inputs
to be used first (in this case m R (1) and m R (2). Then look down the column to find the
second (compute AR(8» place where these two inputs are used. Pull mR(l) and mR(2)
from memory, compute AR(l) and A R(8), and store the results in data memory locations
M(3) and M(9) previously occupied by mR(l) and mR(2).

Next, look for the computation for A/ (1) in the column and repeat the same set of
steps. Continue this process until all of the computations are performed and all of the re
sults are returned to the data memory locations. Note that the AR(2), A R(6), AR(?) , A/(2),
A/(6), and A/(7) computations are placed in data memory locations different from where
the inputs were taken. This is to satisfy the constraint that the output frequency components
are stored in the same locations as the input data sequence. Note that the Algorithm Steps
for AR (0) and A I (0) only relabel the data values to their output labels once they have been
used as required by other portions of the algorithm.

Algorithm Steps

AR(O) == fR(O)

AJ (0) == fICO)

AR(l) == nIR(l) + mR(2)

A[(l) == m[(l) - m/(2)

A R(2) == nlR(3) + mR(4)

AI(2) == InJ(3) - m[(4)

A R(3) == mR(5) + mR(6)

A[(3) == m[(5) - ml(6)

AR(4) == mR(7) + mR(8)

A[(4) == m[(7) - m[(8)

A R(5) == mR(7) - mR(8)

A[(5) == m[(7) + ml(8)

AR(6) == mR(5) - mR(6)

AJ(6) == ml(5) + m[(6)

AR(7) == mR(3) - mR(4)

AJ(7) == mJ(3) + m[(4)

A R(8) == mR(I) - mR(2)

AJ(8) == mJ(l) + m[(2)

Memory Map

AR(O) => M(7)

A[(O) => M(l6)

AR(I) => M(3)

A/(l) => M(O)

A R(2) => M(6)

Al(2) => M(8)

A R(3) => M(ll)

Al(3) => M(2)

A R(4) => M(l)

A l(4) => M(5)

A R(5) => M(14)

A l(5) => M(lO)

A R(6) => M(13)

A J(6) => M(l?)

A R(7) => M(4)

A[(?) => M(l5)

A R (8) => M(9)

A J(8) => M(12)

128 CHAP. 8 BUILDING-BLOCK ALGORITHMS

8.10 SIXTEEN-POINT FFT

The 16-point OFT is defined for k = 0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, and 15 as

15

A(k) = La(n) *e- j 2rrk*n/ 16

n=O
(8-10)

The Winograd [1] 16-point OFT was developed by using a decomposition based on circular
convolution properties. Other popular 16-point FFfs are based on mixed-radix combina
tions of the 2-, 4-, and 8-point building-block algorithms and are presented in Chapter 9.

If the 16-point OFT is calculated directly from Equation 8-10, it requires 225 complex
multiplies and 240 complex adds. Since a complex multiply uses 4 real multiplies and 2
real adds, and a complex add uses 2 real adds, the 16-point OFT requires 900 real multiplies
and 930 real adds. The number of adds and multiplies for the fast algorithm is significantly
less than required for computing the OFT directly. However, if only a subset of the output
frequency components is required, it may be more cost effective to compute the OFT
equation directly for those terms. For example, if A (0) is the only term needed, it can be
computed with 30 adds and no multiplies by using the OFT directly. Each of the other 15
output frequencies requires 15 complex multiplies and 15 complex adds for a total of 60
real adds and 60 real multiplies. With this in mind, the crossover point between using the
OFT directly and the 16-point FFT algorithm can be determined based on the number of
output frequency components that must be computed.

Since all of the input data is required for each output frequency component calculation,
the direct OFT computations require 32 data memory locations for the input data and 32
more for the output frequency components. This is a total of 64 data memory locations,
since the input and output are complex. Similarly, the OFT data addressing is sequential
(i.e., 0 through 15for each output frequency component), and the computational architecture
is simple, since they can all be performed by using a complex multiply accumulator (see
Chapter 10 for details). Addressing the complex multiplier coefficients requires either
a modulo arithmetic scheme (k * n mode16» or that the addresses be stored in program
memory. The Winograd algorithm is presented, characterized, and then summarized in the
Comparison Matrix in Table 8-10.

8.10.1 Winograd 16-point FFT

The Winograd [1] 16-point FFT requires 148 adds, 20 multiplies, 36 data memory
locations, and 6 multiplier constant memory locations. The seven stages are as follows.

Stage 1: Input Adds

This stage does not require additional data memory or accessing any of the multiplier
constants. Further, the add/subtract process is the same for all of the real and imaginary
pairs. The strategy for converting these equations to code is to start at the top (compute
bR(I») and identify the pair of inputs to be used first (in this case aR(O) and aR(8». Then
look down the list to find the second (compute bR (2)) place where these two inputs are
used. Pull aR(1) and aR(8) from memory, compute bR(1) and bR(2), and store the results
in data memory locations M(O) and M(8) previously occupied by aR(O) and aR(8).

SEC. 8.10 SIXTEEN-POINT FFT 129

Next, look for the computation for b/ (1) on the list and repeat the same set of steps.
Continue this process until all of the computations are performed and all of the results
returned to the data memory locations.

Algorithm Steps

bR(I) = aR(O) + aR(8)

h/(I) = a/CO) + a/(8)

hR(2) = aR(O) - aR(8)

h/(2) = al(O) - a/(8)

bR(3) = aR(4) + aR(12)

h/(3) = a,(4) + a,(12)

bR(4) = aR(4) - aR(12)

b,(4) = a,(4) - a/(12)

bR(5) = aR(2) + aR(IO)

b/(5) = a/(2) + a/flO)

bR(6) = aR(2) - aR(IO)

b/(6) = a/(2) - a/flO)

bR(7) = aR(6) + aR(14)

b / (7) = Q, (6) + a/ (14)

hR(8) = aR(6) - QR(14)

h/(8) == a,(6) - a/(l4)

bR(9) = aRC 1) + aR(9)

b,(9) = a,(l) + a/(9)

bR(lO) = aR(l) - aR(9)

b/(IO) = ale 1) - a/(9)

bR(ll) = aRCS) + aR(I3)

h/(II) = aleS) +a/(13)
bR(12) = aRCS) - aR(13)

b/(12) = Q/(5) - a/(13)

bR(13) = aR(3) + aR(II)

h/(13) = a/(3) +a/(Il)

hR(14) = aR(3) - aR(II)

b/(14) = a/(3) - a/ell)

bR(I 5) = aR(7) + aR(15)

h/(15) = a,(7) + a/(IS)

bR(16) = aR(7) - aR(15)

h,(16) = (l,(7) - a/(15)

Stage 2: Second Set of Input Adds

Memory Map

bR(I) =} M(O)

b,(l) =} M(16)

bR(2) =} M(8)

b/(2) =} M(24)

bR(3) =} M(4)

b/ (3) =} M(20)

bR(4) =} M(I2)

b j(4) =} M(28)

bR(S) =} M(2)

b/(5) =} M(18)

bR(6) =} M(IO)

bl(6) =} M(26)

bR(7) =} M(6)

b/(7) =} M(22)

bR(8) =} M(14)

b/(8) =} M(30)

bR(9) =} M(l)

b/(9) ::::} M(17)

bR(IO) =} M(9)

b/(IO) ::::} M(25)

bR (I l) ::::} M(5)

bj (l l) =} M(2l)

bR(l 2) ::::} M(13)

b/(12) ::::} M(29)

bR(13) =} M(3)

b/(13) ::::} M(19)

bR (14) =} M(ll)

b[(14) =} M(27)

bR (I 5) =} M(7)

b/(15) =} M(23)

bR (16) =} M(15)

b/(16) =} M(31)

This stage also does not require additional data memory or accessing any multiplier
constants. Further, the add/subtract process is the same for all of the real and imaginary

130 CHA~ 8 BUILDING-BLOCK ALGORITHMS

pairs. The strategy for converting these equations to code is to start at the top (compute
cR(I» and identify the pair of inputs to be used first (in this case bR(I) and bR(3». Then
look down the list to find the second (compute CR (2» place where these two inputs are used.
Pull bR(I) and bR(3) from memory, compute cR(I) and cR(2), and store the results in data
memory locations M(O) and M(4) previously occupied by bR(I) and bR(3).

Next, look for the computation for cj(l) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps

cR(I) = bR(I) + bR(3)
cj(l) = bj(l) + bj(3)

cR(2) = bR(I) - bR(3)
cj(2) = b[(l) - b[(3)

cR(3) = bR(5) + bR(7)

cj(3) = b[(5) +b[(7)

cR(4) = bR(5) - bR(7)
cj(4) = b[(5) - b[(7)

cR(5) = bR(9) + bR(II)

c[(5) = bj(9) + b[(ll)

cR(6) = bR(9) - bR(II)

c[(6) = b[(9) - b[(ll)

cR(7) = bR(13) + bR(15)
c[(7) = bj(13) + b[(15)

cR(8) = bR(13) - bR(15)
cj(8) = b/(13) - b[(15)

cR(9) = bR(6) + bR(8)
c/(9) = b[(6) + b[(8)

cR(IO) = bR(6) - bR(8)
c/(IO) = b[(6) - bj(8)

cR(II) = bR(IO) + bR(16)
c[(ll) = b/(IO) + bj (16)

cR(12) = bR(IO) - bR(16)
c[(12) = bj(IO) - bj(16)

cR(13) = bR(12) + bR(14)
cj(13) = bj(12) + bj(14)

cR(14) = bR(12) - bR(14)
c[(14) = b j (12) - b j (14)

Stage 3: Third Set of Input Adds

Memory Map

cR(I) => M(O)

c[(l) => M(16)

cR(2) => M(4)

c[(2) => M(20)

cR(3) => M(2)

cj(3) => M(18)

cR(4) => M(6)

c[(4) => M(22)

cR(5) => M(l)

c[(5) => M(17)

cR(6) => M(5)

c[(6) => M(21)

cR(7) => M(3)

c[(7) => M(19)

cR(8) => M(7)

c/(8) => M(23)

cR(9) => M(IO)

cj(9) => M(26)

cR(IO) => M(14)

cj(IO) => M(30)

cR(II) => M(9)

Cj(ll) => M(25)

cR(12) => M(15)

c[(12) => M(31)

cR(13) => M(ll)

c[(13) => M(27)

cR(14) => M(13)

Cj(14) => M(29)

This stage requires additional data memory locations but not accessing any multiplier
constants. Further, the add/subtract process is the same for all of the real and imaginary

SEC. 8.10 SIXTEEN-POINT FFT 131

pairs. The strategy for converting these equations to code is to start at the top (compute
dR(l» and identify the pair of inputs to be used first (in this case cR(l) and cR(3». Then
look down the list to find the second (compute dR (2» place where these two inputs are
used. Pull cR(l) and cR(3) from memory, compute dR(l) and dR(2), and store the results
in data memory locations M(O) and M(2) previously occupied by cR(l) and cR(3).

Next, look for the computation for dl(l) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. The additional data memory locations M (32), M (33),
M(34), and M(35) are requiredfor aef'Z),dR(8), dl(?), anddl(8) because their input values,
cR(ll) through cR(l4) and c/(ll) through c/(l4), are also needed in Stage 4.

Algorithm Steps

dR(l) = cR(l) + cR(3)

dl(l) = c/(l) + c/(3)

dR(2) = eR(l) - cR(3)

d l(2) = c/(l) - c/(3)

dR(3) = cR(5) +CR(?)

d j(3) = c/(5) + C/(?)

dR(4) = cR(5) - CR(?)

d j(4) = c/(5) - C/(?)

dR(5) = cR(6) + cR(8)

dl(5) = c/(6) + c/(8)

dR(6) = cR(6) - cR(8)

dl(6) = cj(6) - cj(8)

dR(?) = cR(ll) + cR(l3)

dl(?) = c/(ll) + c/(13)

dR(8) = cR(12) + cR(l4)

dl(8) = cj(l2) + cj(l4)

eR(l) = dR(l) +dR(3)
e[(l) = d[(l) + d[(3)

eR(2) = dRCl) - d R(3)

e[(2) = d[(!) - dl(3)

Stage 4: MUltiplies

Memory Map

dR(l) =} M(O)

dj(l) =} M(l6)

dR(2) =} M(2)

dl(2) =} M(l8)

dR(3) =} M(l)

dl(3) =} M(l?)

dR(4) =} M(3)

d j(4) =} M(l9)

dR(5) =} M(5)

d l(5) =} M(2l)

dR(6) =} M(?)

dl(6) =} M(23)

dR (?) =} M(32)

d j (?) :::} M(34)

d R(8) :::} M(33)

dl(8) =} M(35)

eR(l) =} M(O)

e[(l) =} M(l6)

eR(2) =} M(l)

ej(2) =} M(l?)

This stage contains all of the multiplications. In all cases the multiplication is per
formed by pulling a data value from memory, multiplying it by the appropriate constant,
and returning the result to the same data memory location. In some of the multiplica
tions the real part of a complex data value is the input and the output has an imaginary
label. This process provides the required multiplications by j = R. Also note that
sin(4p/l6) = cos(4p/16), which reduces the number of constants to be stored to 6. Note
that several of the Algorithm Steps, such as eR(3) and ej(3), just relabel the data values.
This is to make intermediate results from several stages have the same small letter label
prior to proceeding with Stage 5.

132 CHA~ 8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

eR(3) = dR(2)
e/(3) = d/(2)

eR(4) = d/(4)

e/(4) = -dR(4)
eR(5) = cR(2)

e/(5) = c/(2)

eR(6) = c/(4)

e/(6) = -cR(4)

eR(7) = sin(4rr/16) *d/(5)

e/(7) = - sin(4rr /16) *dR(5)

eR(8) = cos(4rr /16) *dR(6)
e/(8) = cos(4rr/16) *d/(6)

eR(9) = bR(2)

e/(9) = b/(2)

eR(10) = b/(4)

e/(10) = -bR(4)

eR(11) = sin(4rr /16) * cj(9)

ej(11) = - sin(4rr /16) *cR(9)

eR(12) = cos(4rr /16) *cR(10)

ej(12) = cos(4rr /16) * c/(10)

eR(13) = sin(6rr/16) *d/(7)

ej(13) = - sin(6rr /16) *dR(7)
eR(14) = [sin(2Jr/16) - sin(6Jrj16)] * c/(11)

e/(14) = -[sin(2Jrj16) - sin(6Jrj16)] * cR(ll)

eR(15) = [sin(2rrj16) + sin(6JrjI6)] *c/(13)

e/(15) = -[sin(2JrjI6) + sin(6rrj16)] *cR(13)

eR(16) = cos(6rrj16) *dR(8)
e/(16) = cos(6rr/16) *d/(8)

eR(17) = [cos(2rr/16) + cos(6rr/16)] *cR(12)

e[(17) = [cos(2rr/16) + cos(61l'/16)] * c/(12)

eR(18) = -[cos(21l' /16) - cos(61l' /16)] *cR(14)

e[(18) = -[cos(2rr /16) - cos(6rr /16)] * c/(14)

Stage 5: Postmultiplies

Memory Map

eR(3) => M(2)

e/(3) => M(18)

eR(4) => M(19)

e/(4) => M(3)

eR(5) => M(4)

e/(5) => M(20)

eR(6) => M(22)

e/(6) => M(6)

eR(7) => M(21)

e/(7) => M(5)

eR(8) => M(7)

e[(8) => M(23)

eR(9) => M(8)

e/(9) => M(24)

eR(10) => M(28)

e/(10) => M(12)

eR(ll) => M(26)

e/(II) => M(10)

eR(12) => M(14)

e/(12) => M(30)

eR(13) => M(34)

e/(13) => M(32)

eR(14) =} M(25)

e/(14) =} M(9)

eR(15) => M(27)

e/(15) =} M(11)

eR(16) => M(33)

e/(16) => M(35)

eR(17) =} M(15)

e[(17) => M(31)

eR(18) => M(13)

e/(18) => M(29)

This stage also does not require accessing any multiplier constants. The strategy for
converting these equations to code is to start at the top (compute [« (1» and identify the
pair of inputs to be used first (in this case eR (3) and eR (4». Then look down the list to find
the second (compute fR(2» place where these two inputs are used. Pull eR(3) and eR(4)
from memory, compute fR(I) and fR(2), and store the results in data memory locations
M(2) and M(19) previously occupied by eR(3) and eR(4).

Memory Map

IR(l) =} M(2)

/[(1) => M(I8)

!R(2) =} M(19)

ii (2) => M(3)

iR(3) => M(4)

.f/(3) =} M(20)

IR(4) =} M(21)

1/(4) =} M(5)

IR(5) =} M(22)

//(5) =} M(6)

IR(6) =} M(7)

1/(6) =} M(23)

IR(7) =} M(8)

/1(7) =} M(24)

!R(8) => M(14)

i, (8) => M (30)

!R(9) =} M(28)

.f/ (9) =} M(12)

.fR (10) =} M(26)

//(10) =} M(IO)

fR(11) => M(25)

fi(II) =} M(9)

!R(12) =} M(34)

//(12) => M(32)

.fR(13) => M (15)

fi(13) => M(3l)

IR(14) => M(33)

.f,(14) => M (35)

SEC. 8.10 SIXTEEN-POINT FFT 133

Next, look for the computation for /1 (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. This stage does not require additional data memory
locations. However, all four additional data memory locations required for this algorithm
are used during this stage to simplify the data addressing. This leaves input data memory
locations M(ll), M(13), M(27), and M(29) unused. They will be reused in Stage 7 to end
the algorithm with the results in the same data memory locations that were occupied by the
input data.

Additionally, note that this stage has data (eRCI3), eR(16), e/(13), and e/(16» that
are independently used to compute two results. The Memory Map strategy in this case is to
use eR(13), eR(16), e,(13), and el(16) data memory locations for the output of the second
computation that required these data values. If those data memory locations were used for
the output of the first computations, their values would be destroyed before being able to
use them for the second computation.

Algorithm Steps

[« (I) == eR (3) + eR (4)

./1 (1) == e I (3) + e I (4)

fR(2) == eR(3) - eR(4)

./'(2) == el(3) - e/(4)

fR(3) == eR(5) + eR(7)

,II(3) == e1(5) + e1(7)

./R(4) == eR(5) - eR(7)

,Ii (4) == e I (5) - e I (7)

./R(5) == eR(6) + eR(8)

li(5) == e/(6) + e,(8)

.fR(6) == eR(6) - eR(8)

./, (6) == e[(6) - el(8)

fR(7) == eR(9) + eR(12)

./1(7) == e/(9) + el(12)

fl? (8) == e R (9) - eR (12)

ff (8) == e / (9) - e / (12)

fR (9) == eR (10) + eR (11)

.II(9) == e I (10) + e I (11)

[« (10) == eR (10) - e R (11)

II (10) == e/ (10) - e / (11)

./R (11) == eR (13) + eR (14)

fi(ll) == e/(I3) +e/(14)

}I< (12) == eR (13) - e R (15)

./~(12) == e/(13) - e[(15)
fR(13) == eRe 17) - eRe16)

.// (13) == e, (17) - e / (16)

iR(14) == eR(18) - eR(16)

f,(14) == el(lS) - e/(16)

134 CHAR 8 BUILDING-BLOCK ALGORITHMS

Stage 6: Second Set of Postmultiply Adds

The strategy for converting these equations to code is to start at the top (compute
gR(l» and identify the pair of inputs to be used first (in this case IR(3) and IR(5». Then
look down the list to find the second (compute gR(2» place where these two inputs are
used. Pull IR(3) and IR(5) from memory, compute gR(l) and gR(2), and store the results
in data memory locations M(4) and M(22) previously occupied by IR(3) and IR(5).

Next, look for the computation for gI(l) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. This stage does not require additional data memory
locations. However, all four additional data memory locations required for this algorithm
are also used during this stage to simplify the data addressing. This continues to leave input
data memory locations M(ll), M(13), M(27), and M(29) unused.

Algorithm Steps

gR(l) = IR(3) + IR(5)

gI(I) = II(3) + II(5)

gR(2) = IR(3) - IR(5)

gI(2) = II(3) - II(5)

gR(3) = IR(4) + IR(6)

gI(3) = II(4) + II(6)

gR(4) = IR(4) - IR(6)

gI(4) = II(4) - II(6)

gR(5) = IR(7) + IR(ll)

gI(5) = II(7) + II(11)

gR(6) = fR(7) - fR(ll)

g/(6) = fI(7) - II(ll)

gR(7) = IR(8) + IR(12)

gI(7) = II(8) + II(12)

gR(8) = IR(8) - IR(12)

gI(8) = II(8) - II(12)

gR(9) = IR(9) + fR(13)

gI(9) = 1/(9) + II(13)

gR(10) = fR(9) - IR(13)

g/(10) = II(9) - //(13)

gR(11) = fR(10) + IR(14)

g/(II) = f/(10) + //(14)

gR(12) = [R(10) - IR(14)

gI(12) = [/(10) - [I(14)

Stage 7: Output Adds

Memory Map

gR(I) => M(4)

g/(I) => M(20)

gR(2) => M(22)

g/(2) => M(6)

gR(3) => M(21)

g/(3) => M(5)

gR(4) => M(7)

g/(4) => M(23)

gR(5) => M(8)

g/(5) => M(24)

gR(6) => M(25)

g/(6) => M(9)

gR(7) => M(14)

g/ (7) => M (30)

gR(8) => M(34)

g/(8) => M(32)

gR(9) => M(28)

g/(9) => M(12)

gR(IO) => M(15)

gI(10) => M(31)

gR(11) => M(26)

g/(11) => M(10)

gR(12) => M(33)

g/(12) => M(35)

This stage does not require additional data memory or accessing any multiplier con
stants. Further, the add/subtract process is the same for all of the real and imaginary pairs.

SEC. 8.10 SIXTEEN-POINT FFT 135

The strategy for converting these equations to code is to start at the top (compute A R (I»
and identify the pair of inputs to be used first (in this case gR(5) and gR(9». Then look
down the list to find the second (compute A R (7» place where these two inputs are used.
Pull gR(5) and gR(9) from memory, compute AR(I) and AR(7), and store the results in
data memory locations M(8) and M(28) previously occupied by gR(5) and gR(9).

Next, look for the computation for AI(I) on the list and repeat the same set of
steps. Continue this process until all the Algorithm Steps have been computed and their
results stored in the Memory Map addresses. The only variation in the standard pattern
of data addressing is for computing AR(II), AI(II), A R(13), and A/(13). The inputs
for these computations come from the additional data memory locations needed earlier in
the algorithm. Since the additional data memory locations are no longer needed, these
computed results for AR(11), AI(II), A R(13), and A/(13) are stored in M(13), M(29),
M (27), and M (11) respectively. The final result is the output frequencies being located in
the same data memory locations used for the input data. Note that several of the Algorithm
Steps, such as AR (0) and A/ (0), only relabel the data values to their output labels once they
have been used as required by other portions of the algorithm.

Algorithm Steps

AR(O) == eRe})

A/(O) == e/(l)

AR(l) == gR(5) + gR(9)

A,(l) == g/(5) + gI(9)

A R(2) = gR(l)

A,(2) = g/(l)

A R(3) = gR(7) - gR(ll)

A,(3) = g,(7) - g/(ll)

AR(4) = IR(l)

A,(4) == /,(1)

AR(5) = gR(7) +gR(II)

A,(5) == gI(7) + gI(II)

A R (6) = gR(2)

A,(6) = g,(2)

A R(7) = gR(5) - gR(9)

A,(7) = g,(5) - gI(9)

AR(8) == eR(2)

A,(8) = e,(2)

AR(9) = gR(6) + gR(IO)

A I(9) = g/(6) + gI(10)

AR(lO) == gR(3)

A,(IO) = g,(3)

A R (1l) == gR(8) - gR(12)

AI(lI) = gI(8) - gI(12)

A R(12) == IR(2)

Memory Map

AR(O) => M(O)

AI(O) => M(16)

A R(I) => M(8)

AI(I) => M(24)

A R(2) => M(4)

A I(2) => M(20)

AR(3) => M(14)

AI(3) => M(30)

A R(4) => M(2)

A I(4) => M(18)

A R (5) :::} M(26)

AI(5) => M(IO)
A R(6) => M(22)

A,(6) :::} M(6)

A R(7) => M(28)

A I(7) => M(12)

A R(8) => M(l)

A,(8) => M(17)

A R (9) => M(25)

A I(9) => M(9)

AR(IO) => M(21)

A/(IO) => M(5)

AR(II) => M(13)

A/(ll) => M(29)

A R(12) => M(19)

136 CHAR 8 BUILDING-BLOCK ALGORITHMS

Algorithm Steps

A/(12) = //(2)

A R(13) = gR(8) + gR(12)

A/(13) = g/(8) + g/(12)

AR(14) = gR(4)

A/(14) = g/(4)

A R(15) = gR(6) - gR(10)

A/(15) = g/(6) - g/(10)

Memory Map

A/(12) ::::} M(3)

A R(13) ::::} M(27)

A/(13) ::::} M(II)

AR(14) ::::} M(7)

A/(14) ::::} M(23)

AR(15) ::::} M(15)

A/(15) ::=> M(31)

8.11 GENERAL ALGORITHMS FOR ALL 000 NUMBERS

The preceding sections describe specific algorithm building blocks for 2-, 3-, 4-, 5-, 7-,8-,
9-, and 16-point FFTs. Chapter 9 shows how these can be combined to form any transform
length that can befactored into the product of these numbers. However, transform lengths
such as 13, 143 = 13 x 11, and 117 = 9 x 19 are not the product of these building
block lengths. To compute all transform lengths efficiently, a fast algorithm must exist for
computing all prime number (p) length building blocks. The Rader [3] algorithm provides
this capability by converting the p-point FFf to a series of (p - Ij-point FFTs. The 5-point
Rader FFT given in Section 8.6.3 is a special case of this algorithm.

Since all prime numbers except 2 are odd (all even numbers have at least one factor
of 2), (p - 1) is always even and therefore has at least one factor of 2. For example, if
p = 67, then (p - 1) = 66 = 11 x 2 x 3. If all of the factors of 2 are grouped (in this
case just one factor of 2), the remaining factors are now all odd (in this case 11 and 3). If
the factors of (p - 1) are 2, 3, 4, 5, 7, 8, 9, or 16, the algorithms in this chapter, combined
with those in Chapter 9, can be used to compute the p-point FFf.

If some of the factors are not among the building-block algorithms provided, they
must be obtained from some other source. The power-of-primes algorithm from Chapter
9 can be used for factors of 2 larger than 16. The Singleton [2] or general SWIFf [8]
odd-point algorithms can be used for any odd-numbered factor. Therefore, coupled with
the building blocks presented in this chapter and the algorithms presented in Chapter 9, the
Singleton and general SWIFT odd-point algorithms can be used to compute an FFT of any
length.

8.11.1 General Rader Algorithm

The general Rader [3] algorithm uses the circular convolution properties of prime
number DFfs, much like the Winograd algorithm [1]. The eight stages are as follows.

Stage 1: Remove a(O)

Separate the first input sample, a (0), from the others and prepare to compute the
output frequency components minus a(O), A(i) - a(O), for i == 0, 1,2, ... , (N - 1). This
stage requires no computations or data manipulation.

SEC. 8.11 GENERAL ALGORITHMS FOR ALL ODD NUMBERS 137

Stage 2: Reorganize the Input Data

For all prime numbers N there is at least one factor, called a primitive root [9], that
can be used to reorganize the numbers from 1 to N - 1 to take advantage of the circular
convolution properties of the prime OFT. If g is that primitive root, then the way to find the
reorganized sequence pi is to compute

Pi == g modulo N

for i == 1, 2, ... , (N - 1) where "modulo N" means to take the number g and subtract N
from it until the number is less than N but greater than zero.

For example, 3 and 5 are the primitive roots of 7. Therefore, either can be used
to reorganize the input data to a 7-point OFf to prepare it for the Rader computational
algorithm. Namely, the sequences for g = 3 and g == 5 are

g = 3 sequence: 3,2,6,4,5, and 1

g == 5 sequence: 5,4,6,2,3, and 1

The result is new input data sequences:

g = 3 input data sequence: a(3), a(2), a(6), a(4), a(5), and a(l)

g = 5 input data sequence: a(5), a(4), a(6), a(2), a(3), and a(l)

With the use of the table of primitive roots, this process can be performed for any prime
number up to 5003 [10].

This stage requires no computation or data manipulation during FFT computations.
For a givenN-point prime number OFT, this reorganized data sequence can be computed
ahead of time and stored in data or program memory.

Stage 3: Compute an (N - 1)-Point FFT

Compute an (N - I)-point FFf of this new sequence. In all cases, (N - 1) is an even
number and therefore has at least one factor. For the 5-point Rader transform, (N - 1) = 4.
For the 7-point example, (N - 1) == 6. Therefore, the (N - I)-point FFT can be computed
by combining building blocks with one of the algorithms in Chapter 9. This stage requires
the number of computations associated with the (N - I)-point FFT algorithm chosen from
Chapter 9 with the building blocks from this chapter.

Stage 4: Reorganize the Complex Multiplier Coefficients

For every primitive root there is another primitive root so that the product of the
two is 1 modulo N. For the 7-point example, 5 plays this role for the primitive root 3,
and 3 plays this role for the primitive root 5 (3 x 5 = 15 == 1 modulo 7). This stage
reorganizes the complex multiplier coefficients using this other factor. Namely, for the
7-point transform and the generator g = 3, reorganize the complex multiplier coefficients,
using the g == 5 sequence for the exponents, to Wi, Wi, wr, Wi, Wi, W7

1
• This stage

requires no computation or data manipulation during FFf computations. For a given N
point prime number OFT, this reorganized complex multiplier coefficient sequence can be
computed ahead of time and stored in data or program memory.

138 CHAF'. 8 BUILDING-BLOCK ALGORITHMS

Stage 5: Compute an {N-1)-Point FFT of the Reorganized W7 Sequence

Pretending that the new sequence of complex multiplier coefficients are the in-order
data input to an (N - Ij-point FFf, compute that FFf. Again, that FFf can be computed
using the building blocks in this chapter and the algorithms in Chapter 9. This stage requires
the number of computations associated with the (N - I)-point FFf algorithm chosen from
Chapter 9 with the building blocks from this chapter. However, all of these computations
can be performed ahead of time and stored as multiplier coefficients in data or program
memory.

Stage 6: Perform Complex MUltiplications of the Outputs of Stages 3 and 5

Take the in-order (N - 1) output data values of Stages 3 and 5 and multiply them
to obtain a new sequence of data values. This stage requires (N - 1) complex multiplies.
Since a complex multiply uses four real multiplies and two real adds, this stage requires
4 * (N - 1) real multiplies and 2 * (N - 1) real adds.

Stage 7: Compute IFFT

Compute the (N - I)-point IFIT of the output sequence from Stage 7. Again, this
IFFI' can be computed using the building blocks in this chapter, the algorithms in Chapter
9, and the facts from Section 2.3. The result is the required A(i) - a(O) for the N-point
FFf, reordered by using the same generator that was used to reorder the complex multiplier
coefficients. For the 7-point FFf, the output of this stage is:

[A(5)-a(O)], [A(4)-a(O)], [A(6)-a(O)], [A(2)-a(O)], [A(3)-a(O)], and [A(I)-a(O)]

From Chapters 2 and 3, the IFFT requires the same number of computations as the com
parable FFT. In fact, it uses the same algorithm, with some of the multiplier coefficients
changed. Therefore, this stage requires the number of computations associated with the
(N - Ij-point FFf algorithm chosen from Chapter 9 with the building blocks from this
chapter.

Stage 8: Compute the Output Frequency Components

This stage has two steps. First, a(O) is added to each of the (N - 1) outputs from
Stage 7. Then all of the input data is added to form A(O). This stage requires, at worst,
2 * (N - 1) complex adds.

8.11.2 General Singleton Algorithm

The general Singleton [2] algorithm uses the complex conjugate symmetry of the wtn

multipliers in the DFf (Equation 8-11) and works for all odd numbers.

The three stages are as follows.

N-I

a(k) = L a(n) * wtn
n=O

(8-11)

SEC. 8.11 GENERAL ALGORITHMS FOR ALL ODD NUMBERS 139

Stage 1: Input Adds

For i = 1,2, ... , (N - 1)/2, compute

bR(2i - 1) = aR(i) + aR(N - i)

bR(2i) = aR(i) - aR(N - i)

b/(2i - 1) = a/(i) + a/eN - i)

b/(2i) = a/(i) - a/eN - i)

For i = 1,2, ... , (N - 1)/2:

(a) Pull aR(i) and aR(N - i) from their data memory locations, perform the add
and subtract operations, and return the results, bR (2i - 1) and bR(2i), to the data
memory locations previously occupied by aR(i) and aR(N - i).

(b) Pull a/ (i) and a/ (N - i) from their data memory locations, perform the add
and subtract operations, and return the results, b/ (2i - 1) and b/ (2i) to the data
memory locations previously occupied by a/(i) and a/eN - i).

Since all of these computations can be performed in-place, no additional data memory is
required.

Stage 2: Multiply-Accumulates

For i = 1,2, ... , (N - 1)/2, compute:

(N-l)j2

cR(2i - 1) = L bR(2n - 1) *cos(2rrni/N) + aR(O)
n=l

(N-l)j2

c/(2i - 1) = L b/C2n - 1) *cos(2rrni/N) + a/CO)
n=l

(N-l)j2

c/(2i) = L bR (2n) * sin(2rrni/N)
n=l

(N-l)/2

cR(2i) = L b/(2n) * sin(2rrni/N)
n=l

(N-l)j2

AR(O) = L bR(2n - 1) + aR(O)
n=l

(N-l)j2

A/(O) = L b/(2n - 1) + a/CO)
n=l

This is a total of (N - 1) * (N - 1) additions and (N - 1) *(N - 1) multiplications. Since
the computations are all multiply accumulations and the input values are used by all of the
computed results, the most efficient use of data memory is to:

140 CHA~ 8 BUILDING-BLOCK ALGORITHMS

(a) Compute the (N - 1)/2 different cR(2i - 1) terms and store them in (N - 1)/2
new data memory locations.

(b) Compute AR (0) and store its result in the location previously occupied by
aR(O).

(c) Compute the (N - 1)/2 different C/ (2i - 1) terms and store them in (N - 1)/2 data
memory locations previously occupied by the (N - 1)/2 different bR(2n - 1).

(d) Compute A/ (0) and store its result in the location previously occupied by
a/(O).

(e) Compute the (N - 1)/2 different c/(2i) terms and store them in (N - 1)/2 data
memory locations previously occupied by the (N - 1)/2 different b/(2n - 1).

(I) Compute the (N - 1)/2 different cR(2i) terms and store them in (N - 1)/2 data
memory locations previously occupied by the (N - 1)/2 different bR (2n) .

The result is the need for (N - 1)/2 additional data memory locations.

Stage 3: Output Adds

For i = 1,2, ... , (N - 1)/2, compute:

AR(i) = cR(2i - 1) + c/(2i)

AR(N - i) = cR(2i - 1) - c/(2i)

A/(i) = c/(2i - 1) - cR(2i)

A/(N - i) = c/(2i - 1) + cR(2i)

This is a total of 2 * (N - 1) adds. These computations are performed in pairs. For
i = 1,2·, ... ,(N-l)/2:

(a) Pull cR(2i - 1) and cj(2i) from their data memory locations, perform the add
and subtract operations, and return the results, AR(i) and AR(N - i), to the data
memory locations previously occupied by CR(2i - 1) and C j (2i).

(b) Pull c/(2i - 1) and cR(2i) from their data memory locations, perform the add
and subtract operations, and return the results, A[(i) and A/(N - i), to the data
memory locations previously occupied by C/ (2i - 1) and CR(2i).

The total number of computations is (N + 3) * (N - 1) adds and (N - 1) * (N - 1)
multiplies. The algorithm requires 2 *N + (N - 1)/2 data memory locations.

8.11.3 General SWIFT Odd-Point Algorithm

The general SWIFT odd-point algorithm also uses the complex conjugate symmetry
of the wtn multipliers in the DFT (Equation 8-11). The only difference is how the first
input sample and first output frequency component are treated. Depending on the approach,
half of the multipliers are changed. The three stages are as follows.

Stage 1: Input Adds

SEC. 8.11 GENERAL ALGORITHMS FOR ALL ODD NUMBERS 141

For i == 1,2, (N - 1)/2, compute

bR(2i - 1) == aR(i) + aR(N - i)

bR(2i) == aR(i) - aR(N - i)

b/(2i - 1) == a/(i) + a/eN - i)

b/(2i) == a/(i) - (l/(N - i)

(N-l)j2

AR(O) == L bR(2i - 1) + aR(O)
i=l

(N-l)j2

A/(O) == L b/(2i - 1) + aI(O)
i=l

This is a total of 3 * (N - 1) additions. Since all of these computations can be performed
in-place, no additional data memory is required. These computations are performed in
pairs. For i == 1.2, ... , (N - 1)/2:

(a) Pull aR(i) and aR(N - i) from their data memory locations, perform the add
and subtract operations, and return the results, bR(2i - 1) and bR (2i) , to the data
memory locations previously occupied by QR(i) and aI(N - i).

(b) Pull aI(i) and aI(N - i) from their data memory locations, perform the add
and subtract operations, and return the results, bI(2i - 1) and b/(2i), to the data
memory locations previously occupied by al(i) and a/eN - i).

Finally, A R (0) and Al (0) are computed and the results stored in the locations previously
occupied by a R(0) and a I (0).

Stage 2: MUltiply-Accumulates

For i == 1,2, ... , (N - 1)/2, compute:

(N -1)/2

cR(2i - l) == L b R(2n - 1) * [cos(2nnij N) - 1] + AR(O)
n=l

(N-l)j2

c/(2i - 1) == L b/(2n - 1) * [cos(2nni/N) - 1] + A/(O)
n=l

(N-l)/2

ct (Zi) == L bR(Zn) * sin(Z;rni / N)
n=l

(N-l)/2

cR(Zi)== L b/(2n)*sin(Z;rni/N)
n=l

This is a total of (N - 2) * (N - 1) additions and (N - 1) * (N - 1) multiplications. Just
as in the Singleton algorithm case, the most efficient use of data memory is to:

142 CHAP. 8 BUILDING-BLOCK ALGORITHMS

(a) Compute the (N - 1)/2 different cR(2i - 1) terms and store them in (N - 1)/2
new data memory locations.

(b) Compute the (N -1)/2 different c/(2i -1) terms and store them in (N -1)/2 data
memory locations previously occupied by the (N - 1)/2 different bR(2n - 1).

(c) Compute the (N - 1)/2 different c[(2i) terms and store them in (N - 1)/2 data
memory locations previously occupied by the (N - 1)/2 different b/(2n - 1).

(d) Compute the (N - 1)/2 different cR(2i) terms and store them in (N - 1)/2 data
memory locations previously occupied by the (N - 1)/2 different bR(2n) .

The result is the need for (N - 1)/2 additional data memory locations, and all of the
computations are performed for the same multiply-accumulate structure, not in-place.

Stage 3: Output Adds

For i = 1,2, ... , (N - 1)/2, compute:

AR(i) = cR(2i - 1) + c/(2i)

AR(N - i) = cR(2i - 1) - c/(2i)

A/(i) = c/(2i - 1) - cR(2i)

A/(N - i) = c/(2i - 1) + cR(2i)

This is a total of 2 * (N - 1) adds. These computations are performed in pairs. For
i = 1,2, ... , (N - 1)/2:

(a) Pull cR(2i - 1) and c/(2i) from their data memory locations, perform the add
and subtract operations, and return the results, AR(i) and AR(N - i), to the data
memory locations previously occupied by CR(2i - 1) and C/ (2i).

(b) Pull CI (2i - 1) and CR (2;) from their data memory locations, perform the add
and subtract operations, and return the results, A/(;) and A/(N - i), to the data
memory locations previously occupied by c/ (2i - 1) and CR(2i).

The combination of all of the computations requires (N + 3) * (N - 1) adds and (N - 1) *
(N - 1) multiplies. The algorithm requires 2 *N + (N - 1)/2 data memory locations.

8.12 BUILDING-BLOCK ALGORITHM COMPARISON MATRIX

The performance measures of the three general algorithms at the bottom of the Compar
ison Matrix in Table 8-1 (see page 143) are described as formulas, so the specific values
can be computed for any building-block length. The last two columns refer to memory
locations.

8.13 CONCLUSIONS

A lot of space is spent on examples in this chapter because they provide the clearest picture
and instruction on how to implement the familiar and not so familiar small-point transforms.
Multiple algorithms for each length, except 2 and 4, prove the versatility and flexibility of

SEC. 8.13

Table 8-1 Building-Block Algorithm Comparison Matrix

CONCLUSIONS 143

of data # of const.
Algorithm # of adds # of multiplies locations locations

2-Point 4 0 4 0
3-Point
Winograd 12 4 6 2
Singleton 12 4 7 2
4-Point 16 0 8 0
5-Point
Winograd 34 10 12 5
Singleton 32 16 12 4
Rader 42 12 12 4

'-Point
Winograd 72 16 22 8
Singleton 60 36 17 6
8-Point
Winograd 52 4 16 1
Split-Radix 52 4 16 1
Radix-2 52 4 16 1
PTL 52 4 16 1
9-Point
Winograd 90 20 26 10
PTL 94 52 22 8
Burrus-Eschenbacher 84 20 26 8
16-Point
Winograd 148 20 36 6
General N-Point
Rader 2*AN-I+6*(N-1) 2 * MN-I + 4 * (N - 1) CN-I + 2 DN-l +2
Singleton (N + 3) * (N - 1) . (N - 1)2 (5*N-l)/2 (N -1)
SWIFT (N + 3) * (N - 1) (N - 1)2 (5 * N - 1)/2 (N - 1)

Key to Variables
N = Number of complex points in building-block algorithm

AN-l = Number of adds required for (N - l j-point FFf
MN-I = Number of multiplies required for (N - lj-point FFT
DN -I = Number of memory locations used for data in (N - l)-point FFf
C» -1 = Number of memory locations used for constants in N -point FFf

FFfs to provide optimized and customized products. With the building-block algorithms
here an FFT of any length can be created by using the algorithms in the next chapter.

Another unique feature of the book-mapping-was introduced in this chapter and is
done on two higher levels in Chapters 9 and 12. Here, mapping the result of each algorithm
step into a data memory location is the first step toward converting FFf algorithms to
optimized assembly language code. The next chapter shows how to do the necessary
relabeling of the mappings in this chapter, so these building blocks can be used in larger
algorithms. In Chapter 12 the third level of mapping shows how to distribute data and
algorithms among multiple processors.

If an application only needs a small-point transform on a single processor, the methods
and steps detailed in the next four chapters are not needed. The reader can proceed to
Chapter 13 to see how to select an arithmetic fonnat for implementing the algorithm on one
of the chips in Chapter 14.

144 CHA~ 8 BUILDING-BLOCK ALGORITHMS

REFERENCES

[1] S. Winograd, "On Computing the Discrete Fourier Transform," Mathematics ofCom
putation, Vol. 32, No. 141, pp. 175-199 (1978).

[2] R. C. Singleton, "An Algorithm for Computing the Mixed Radix Fast Fourier Trans
form," IEEE Transactions on Audio and Electroacoustics, Vol. AU-17, pp. 93-103
(1969).

[3] C. M. Rader, "Discrete Fourier Transforms When the Number of Data Samples Is
Prime," Proceedings ofthe IEEE, Vol. 56, pp. 1107-1108 (1968).

[4] J. W. Cooley, "The Structure ofFFf Algorithms," IEEE International Conference on
Acoustics, Speech and Signal Processing Tutorial Session, pp. 12-14 (1990).

[5] J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Calculation of Complex
Fourier Series," Mathematics ofComputation, Vol. 19, p. 297 (1965).

[6] J. Smith, "Next-Generation FFf Quickly Calculates Odd Sample Sizes," Personal
Engineering & Instrumentation News, pp. 21-24 (1984).

[7] C. S. Burrus and P. W. Eschenbacher, "An In-Place In-Order Prime Factor FFT Algo
rithm," Acoustic Speech and Signal Processing, Vol. 29, No.4, pp. 806-817 (1981).

[8] Patent No. 4,293,921, October 6, 1981, Method and Signal Processor for Frequency
Analysis ofTime Domain Signals, Winthrop W. Smith, Jr.

[9] CRe Standard Mathematical Tables and Formulae, cac Press, Boca Raton, FL,
pp. 96-101, 1991.

9

Algorithm Construction

9.0 INTRODUCTION

An FFT algorithm is a sequence of computational steps used to compute the DFT efficiently.
The most popular of these algorithms work only for transform lengths that are powers-of-two
(i.e., 2, 4,8, 16, 32,64, ... points). However, there are FFT algorithms for any number (N)
of data points. This chapter describes the computational stages and lists the computational
steps for seven FFT algorithms, including the memory maps for storing the intermediate
and final results of each.

The answers to the following questions help determine which FFT algorithm to use:

• How many adds and multiplies are required?

• How much data and program memory are required?

The seven algorithms in this chapter are:

• Presented with a general two-block algorithm and then with a 15- or 16-point
example

• Constructed in a uniform format

• Able to use any of the building-block algorithms from Chapter 8

• Able to be combined to form even larger FFf algorithms

9.1 FOUR PERFORMANCE MEASURES

The most common way to evaluate FFT algorithms is in terms of the number ofcomputations
and amount of memory required to compute them. The performance measures in this section
quantify those computations and memory needs. The same four measures were used in
Chapter 8.

146 CHA~ 9 ALGORITHM CONSTRUCTION

9.1.1 Number of Adds

The number of adds is the total number of real adds used for each of the algorithms.
It includes the two adds required as part of each of the complex multiplies.

9.1.2 Number of MUltiplies

The number of multiplies is the total number of real multiplies for each algorithm.
Each complex multiply takes four real multiplies and two real adds (counted in the number
of adds).

9.1.3 Number of Memory Locations for Multiplier Constants

Each building-block algorithm requires a different number of multiplier constants.
Each constant must be stored in data or program memory or computed as needed. The
latter is seldom done any more because memory costs have been dramatically lowered.
The number for this performance measure in the Comparison Matrix is the total number of
different constants required by each algorithm. These include multiplication by 2 and 1/2,
which can also be done by moving the binary point of fixed point numbers or by changing
the exponent of floating-point numbers.

9.1.4 Number of Data Memory Locations

Each algorithm begins and ends by using exactly 2 * N data memory locations to
store the input data and output results, respectively. However, if no temporary regis
ters are available for intermediate results, most of the algorithms in this chapter require
additional data memory locations during the computations. In this chapter, Algorithm
Steps and a Memory Map are given for each algorithm, and total data memory location
requirements are listed in the Comparison Matrix, assuming the processor has no tem
porary registers. The difference between those numbers and 2 * N is the number of
temporary registers needed to avoid using extra data memory locations for intermediate
results.

9.2 NINE ALGORITHM CONSTRAINTS

The following are the constraints the authors have used for the transforms in this chapter:

1. The real and imaginary parts of the i-th input sample are aR(i) and al(i); AR(i)
and AI (i) are the real and imaginary parts of the i-th output frequency component.

2. Intermediate results are labeled with subsequent lowercase letters of the alphabet
to indicate where they are located relative to other computational outputs. For
example, the first set of intermediate computational results in each of the algorithm
building blocks is labeled bR(i) and bl (i).

3. The sum and difference computations are performed by taking two pieces of data
from data memory, performing the required computations, and returning the results
to available memory locations.

4. The multiply-accumulates are performed by sequentially pulling a data value from
data memory, performing the multiplication, and adding the results to the proces-

SEC. 9.3 THREE CONSTRUCTION APPROACHES 147

sor's accumulator (Section 14.2.11). When the multiply-accumulate function is
complete, the result is stored in a memory location, overwriting data that is no
longer needed.

5. The sequence of computations shown for the first stage in each of the algorithms
has been left the same as in its referenced article. The data labels have been
changed to make them consistent for all the algorithms in the book.

6. The memory location (Memory Map) for intermediate results or output frequency
components is shown next to each Algorithm Step.

7. For an N -point algorithm, the real input data, aR(i), is located in memory locations
M (i), and the imaginary input data, aJ (i), is located in memory locations M (N+i),

where i == 0, I, 2, ... , N - 1.

8. All of the intermediate results and output frequency components are stored directly
in data memory, rather than temporary storage locations, to ensure the algorithm
will work on all processors.

9. All of the multiplier constants are presented in their sine and cosine form so that
they may be computed in the arithmetic format (see Chapter 13) appropriate for
the application.

9.3 THREE CONSTRUCTION APPROACHES

The seven FFT algorithms presented in this chapter are divided into three approaches: con
volution, prime factor, and mixed-radix. For each algorithm, the general form is presented
and discussed first. Then a specific example is presented to illustrate the features of each
of the seven algorithms more clearly. These examples are chosen to be 15- and 16-point
transforms. These lengths are large enough to show the characteristics of the algorithms
and yet small enough to be reasonably presented. Keeping the lengths of the different
examples close to each other also allows the algorithms in the different approaches to be
compared.

The first approach is convolution-based algorithms. The mathematical technique for
obtaining these FFT algorithms is based on converting the Off into a set of convolution
equations that have special properties to reduce the number of computations. Two prime
factor-based algorithms, due to Bluestein and Winograd, are presented in general and
then illustrated with I5-point examples. Performance measures are used to describe the
properties and limitations of the algorithms.

The second approach ofFFT algorithms is commonly called prime factor algorithms.
The mathematics for obtaining these algorithms is based on modulo arithmetic theory. Two
prime factor-based algorithms are presented in general and then illustrated with 15-point
examples. Performance measures are used to describe the properties and limitations of the
algorithms.

The third approach ofFFf algorithms is called mixed-radix algorithms. This approach
can be used for all transform lengths and includes the power-of-two algorithms which have
been the most popular, yet most restrictive. The algorithm takes advantage of the complex
conjugate symmetry properties of the OFT. The general algorithm is presented first and is
followed by three examples, two of 16 points and one of 15 points. Performance measures
are used to describe the properties and limitations of the algorithms.

148 CHA~ 9 ALGORITHM CONSTRUCTION

9.4 ALGORITHM DATA MAPPING RELABELING

The memory mappings in the algorithm examples in Chapters 8 and 9 only work directly
if these exact transforms are being computed and memory locations 0 through 2N - 1 are
available. In general, the building blocks in Chapter 8 will be combined in different ways
than the examples in Chapter 9 in order to implement different transform lengths. This
leads to the need to use different memory locations than in the examples.

Rather than having to construct a new memory mapping, this section provides a
straightforward set of steps for converting the memory mappings in the Chapters 8 and 9
examples to any random ordering of the input data that occurred because of where the data
was stored from prior computations. Section 9.4.1 defines the relabeling steps in general,
and Section 9.4.2 provides a specific example.

9.4.1 General Address Relabeling

Step 1: For all of the stages in the N -point FFf, relabel the input addresses for real
data with letters. Start with M(AR) for M(O), proceed to use M(B R) for M(l), and
so forth, until all of the real data is relabeled.

Step 2: Label all real parts of all intermediate and output results in the algorithm that
correspond with the "letter pair" address from Step 1.

Step 3: Repeat Step 1 for the imaginary data, labeling the input address with the
letter corresponding to its real-part equivalent. For example, the real part of the zero-th
input sample is in location zero. In Step 1 this was assigned memory location
M(AR).

Step 4: Label all imaginary parts of all intermediate and output results in the algorithm
that correspond with the "letter pair" address from Step 3.

Step 5: For each input address pair M(A R), M(AI), set the A R and AI equal to the
actual data location of the data that will be input to the algorithm.

Step 6: For each place in the N -point FFf that has letter labels (constructed in Steps
1 through 4), replace the labels with the actual data location assigned it in Step 5.

9.4.2 Four-Point FFT Address Relabeling Example

The 4-point FFf from Chapter 8 can be used as a simple example to illustrate Steps
1 through 6. The columns in Table 9-1 show the mapping steps, as follows:

1. The first eight entries in column 1are the 4-point building-block input data mapping
from Chapter 8.

2. The second eight entries in column 1 are a random ordering of the input data
memory locations that might be required because of previous computations.

3. The first eight entries in column 2 are the result of performing Steps 1 and 3 of
Section 9.4.1.

4. The second eight entries in column 2 are the result of performing Step 5 of Section
9.4.1.

5. The entries in column 3 are the result of performing Steps 2 and 4 of Section 9.4.1.

6. The entries in column 4 are the result of performing Step 6 of Section 9.4.1.

SEC. 9.5 CONVOLUTION APPROACH 149

Once this is accomplished, the modified building blocks from Chapter 8 can be used to
construct the needed building block computations with the new input data ordering.

Table 9-1 Four-Point Algorithm Example Memory Map Relabeling

Column 1 Column 2 Column 3 Column 4

GR(O) =} M(O) aR(O) =} M(AR) bR(O) =} M(A R) bR(O) :::::} M(O)
(lR(l) =} N/(1) aR(I) =} M(BR) bR(I) =} M(C R) bR(I) =} M(6)
a/CO) =} M(4) (l/(O) =} M(AI) b[(O) =} M(AI) b/(O) :::::} M(3)
(l/(l) :::} M(5) aIel) =} M(Bl) hI(l) =} M(CI) bI(l) =} M(5)
(lR(2) =} M(2) (lR(2) =} M(C R) bR(2) =} M(BR) bR(2) =} M(l)

aR(3) =} M(3) aR(3) =} M(DR) bR(3) =} M(DR) bR(3) =} M(4)
(1/(2) =} M(6) a/(2) =} M(C I) b/(2) =} M(Bl) b/(2) :::::} M(?)
a/(3) =} M(7) a/(3) =} M(D/) b/(3) =} M(Dl) b/(3) :::::} M(2)

(lR(O) =} M(O) M(O) =} lv/(A R) AR(O) =} M(AR) AR(O) :::::} M(O)
aR(I) =} M(I) M(l) =? M(BR) A/(O) =} M(Al) A/(O) :::::} M(3)
a/CO) =} M(3) M(3) =} M(Al) A R(2) :::} M(BR) A R(2) :::::} M(l)
a/(l) :::::} M(7) M(?) :::} M(BI) A/(2) :::} M(BI) A/(2) :::} M(?)
aR(2) :::::} M(6) M(6) =} M(C R) AR(I) =} M(CR) AR(I) :::} M(6)
aR(3) :::} M(4) M(4) =} M(DR) AR(3) =} M(DI) AR(3) =} M(2)
al(2) =} M(S) M(5) :::} M(C I) A/(l) :::} M(DR) Al(l) :::} M(4)
al(3) :::} M(2) M(2) =} M(Dl) A l(3) :::} M(C/) A l(3) :::} M(5)

9.5 CONVOLUTION APPROACH

9.5.1 Bluestein Algorithm Introduction

In Chapter 2 the analogy was made between the OFf and a bank of narrowband
filters. The Bluestein [1] algorithm takes advantage of this fact to implement a fast version
of the DFT using a linear filter in combination with pre- and postmultiplications as shown
in Figure 9- 1.

Input
Data

t
Input Complex

Multipliers

N-Stage
Linear
Filter

Output Complex
Multipliers

Output
Results

Figure 9-1 Bluestein algorithm block diagram.

In general, this algorithm only provides a speedup of N1.5 rather than the N *10g2(N)
computational speedup of other FFT algorithms. However, if the N -stage linear filter is
implemented with the FFT techniques in Chapter 6, the Bluestein algorithm can provide
computational performance that varies as N * log2(N). Figure 9-2 shows the Bluestein
algorithm with the N -stage linear filter replaced with its frequency domain processing

150 CHA~ 9 ALGORITHM CONSTRUCTION

equivalent from Chapter 6 (Figure 6-1). The M-point FFT that operates on the N-stage
linear filter coefficients is used just once since the filter coefficients stay constant for a given
transform length N.

Input
Data

InputComplex
Multipliers

M-Point
FFT

M-Point
FFT

N-Stage
LinearFilter
Coefficients

M-Point
IFFT

Combine
Results

OutputComplex
Multipliers

Output
Results

Figure 9-2 Frequency domain block diagram of Bluestein algorithm.

It seems logical that if an FFT is going to be used to compute the Bluestein algorithm
for FFTs, the FFf might as well be used directly. The reason for the attractiveness of the
Bluestein algorithm is that a standard power-of-two algorithm can be used to compute a
non-power-of-two FFT. However, for the same non-power-of-two FFf length, the prime
factor and Winograd implementations will require fewer multiplications than the Bluestein
algorithm.

Once it has been decided that power-of-two algorithms provide the best approach for
the M -point FFf needed in the Bluestein algorithm, the mixed-radix section of this chapter
(Section 9.7) should be examined to see if other advantages can be taken to simplify the
computations. The most useful simplification comes because of additional constraints the
Bluestein algorithm puts on M. Namely, the algorithm requires that M, the FFT length, be
at least twice N, the number of stages in the linear filter in Figure 9-1. This means that, for
N input samples, M - N zeros (Section 2.3.10) are added to obtain the M samples needed
by the M-point FFT. Since M ~ 2 *N, it follows that M - N ~ N. Therefore, at least the
second half of the inputs to the M -point FFf are zeros.

In Sections 9.7.5 and 9.7.6 the first input data samples are combined such that one
comes from the first half of the data and one from the second half. This is the decimation
in-time decomposition in Section 10.4.1. In Stage 1 of the general mixed-radix algorithm
in Section 9.7.4, if P = 2 and Q = M12, then the samples (k = 0 and k = 1) that are
combined in the n-th 2-point input building block are aR(k* N12+ n) and aR(k *N12+n).
This always puts one input (k = 0) in the first half of the data samples and the other (k = 1)
in the second half. This means that if the first building block for the M-point FFT is two
points (P = 2), one input to each 2-point FFT is always zero. Therefore, the 2-point
FFTs require no computations. This replaces the single M -point mixed-radix FFT with two
M f2-point FFTs, one of which requires a complex multiplier because of the details of the
mixed-radix algorithm shown in Stage 2 of Section 9.7.4.

Since less than half of the outputs, N to be exact, of the M-point IFFI' are used,
only half of its M outputs need be computed. Similar to the input M-point FFT, if the

SEC. 9.5 CONVOLUTION APPROACH 151

2-point IFFT is used as Q rather than P, the output 2-point FFT is reduced to its subtract
computation. Combining all of these facts to reduce the Bluestein computations results
in converting the block diagram in Figure 9-2 to the one in Figure 9-3. Following the
description of the general algorithm, a 15-point example is provided to concretely illustrate
the algorithm and provide a direct comparison with the 15- and 16-point examples presented
later in this chapter for other FFT algorithms.

Linear
Filter

Complex
Multipliers

j

M/2-Pt
IFFTtl----'~tA(i)

Linear IFFT Output
Filter Complex Complex

Complex Multipliers Multipliers
Multipliers

x

1
FFT

Complex
Multipliers

Input
Complex
Multipliers

g(i)

Figure 9-3 General Bluestein algorithm block diagram.

9.5.2 Number of Bluestein Algorithm Adds and Multiplies

The 10 stages required to implement the general Bluestein algorithm are presented
and summarized in Figure 9-3. The total number of real adds required is 10 *N + 2 * M
plus the number of real adds required for four M j2-point FFTs. Similarly, the required
number of real multiplies is 4 *M + 16 *N plus the number of real multiplies required for
four M j2-point FFTs.

9.5.3 Number of Bluestein Algorithm Memory Locations

Complex multipliers require two additional memory locations for temporary storage,
and each M j2-point FFT requires some number of memory locations over and above the
input and output data requirements. Since the FFT almost always requires at least two
additional data memory locations, the data memory requirements are determined by the
chosen M j2-point FFT. If the M j2-point FFTs are computed in sequence, not both at the
same time, then the additional data memory required for the intermediate results of the first
M j2-point FFT algorithm can also be used for the second M/2-point FFT. Therefore, the
data memory requirement is M (for the second M /2-point FFr) plus the requirements for
the chosen M /2-point FFT.

152 CHAR 9 ALGORITHM CONSTRUCTION

There are N complex multiplier constants on the input and the output, and M complex
multiplier constants in the center for the unit pulse response of the Bluestein filter. Addi
tionally, there are M 12 complex constants at the input to the lower M /2-point FFT and at
the output from the lower M 12-point IFFf. The M /2-point IFFf uses the same constants
as the FFf with the sign of the imaginary parts changed. This is a total of (4 *N + 3 * M)
memory locations plus those required for the chosen M /2-point FFT.

9.5.4 General Bluestein Algorithm

This sequence of stages assumes that the linear filter complex multipliers have been
computed and stored in memory using the techniques in Chapter 6. The stages of the general
Bluestein algorithm are as follows.

Stage1: Transform Length Selection

To perform an N-point FFf, select an M-point power-of-two algorithm, where Mis
the smallest power-of-two greater than or equal to (2 * N - 1). For example, if N = 15,
M ~ 29, which implies M = 32. For the first and second stages in this algorithm, it makes
no difference how the input data is stored in data memory. However, a strategy that will
simplify subsequent stages is to store the real inputs in data memory locations 0 through
(N - 1) and the imaginary inputs in locations M through (M + N - 1).

Stage2: Multiplication by the InputComplex Multipliers

Modify the N -point complex input data sequence, g(n) = gR(n) + j * g/ (n) by
multiplying it by exp(- j * n * n2/ N) = cosor * n2/ N) - j * sin(rr * n2/ N) to obtain
a(n) = aR(n) + j *a/en). This requires N complex multiplies, which is a total of 4 * N
real multiplies and 2 *N real adds. The equations for n = 0, 1,2, ... , (N - 1) are:

aR(n) = gR(n) * cosor *n21N) + glen) * sin(n *n2/ N)

a/en) = glen) * cos(n *n2/ N) - gR(n) * sin(n *n2/ N)

The complex data results are stored in the same locations from which the inputs were pulled.
If no temporary registers are available, two additional memory locations, M (2 * M) and
M(2 * M + 1), are used to store the values computed from multiplying the sine constants
by the input data, and the original data locations are used to store the values computed
by multiplying the cosine constants by the input data. Those intermediate values are then
pulled from the original and additional data memory locations and added to form the output
values a(n) = aR(n) + j *a/en).

Stage3: Zero Padding

Append the N input data points, a(n) = aR(n) + j *a/en), with (M - N) zeros to
obtain an M-point input sequence for the M-point FFT. The (M - N) zeros are appended
to the end of the actual data. The real zeros are stored in data memory locations N through
(M - 1), and the imaginary zeros in locations (N + M) through (2 * M - 1). The result
is having all of the real input data to the M -point FFT stored in contiguous data memory
locations 0 through (M - 1), and the imaginary data stored in data memory locations M
through (2 * M - 1).

SEC. 9.5 CONVOLUTION APPROACH 153

Stage 4: FFT Input Stage Computation

Step 1: Simulating the 2-Point Building-Block Computations

Following the instructions in Step 1 of Stage 1 of the general mixed-radix algorithm
in Section 9.7.4, the input data point groupings to the n-th 2-point building block are

aR(k * MI2 + n) and a it]: * MI2 + n) (where k == 0,1 and n == 0,1, ... , «MI2) - 1)).
All of the inputs where k == 1 are zeros. Using the 2-point building-block equations from
Chapter 8:

AR(O) == aR(O) + aR(l)

A/(O) == a/CO) + a[(l)

A R(l) == aR(O) - aR(l)

A/(l) == a[(O) - a/(l)

The aR(1) and a[(1) inputs to all M 12 of the required 2-point building blocks
(n == 0, 1, ... , «M12) - 1» are zero. Therefore, the outputs of all of those 2-point
building blocks are just the input data:

AR(O) == aR(O)

A/(O) == a/CO)

AR(I) == aR(O)

A/(l) == a/CO)

If the labels from Step 2 of Stage 1 of the general mixed-radix algorithm in Section 9.7.4
are used, the k-th output (k == 0, 1) of the n-th 2-point building block (n == 0, I, ... ,
«MI2) - l»should be labeled BR(k * MI2 + n) and BI(k * MI2 + n) in preparation
for input to the complex multiply portion of the mixed-radix algorithm. Specifically, the
equations and their data memory map are:

BR(k * MI2 + n) == GR(n)

Bitk * MI2 + n) == a/en)

BR(k * MI2 + n) ==> M(k * M/2 + n)

BI(k * M12 + n) ==> M (k * M12 + n + M)

The right column shows the resulting memory mapping, based on the locations of the input
data and taking advantage of the initial data mapping that saved room for the added zeros.

Step 2: Multiplication by FFT Complex Multipliers

Each of the BR(k * M12 + n) and B/ (k * M12 + n) needs to be multiplied by the
specific complex number required by the general mixed-radix algorithm prior to entering the
M 12-point portion of the M -point algorithm. The equations for this complex multiplication
for k == 0, 1 and n == 0, 1, ... , (M 12 - 1) are:

DR(k * MI2 + n) == BR(k * MI2 + n) * cos(2n * kn t M)

+ B/ (k * M12 + n) * sin(2n * kn1M)

DI(k * MI2 + n) == B/(k * MI2 + n) * cos(2n * kn]M)

- BR(k * MI2 + n) * sin(2l[* kn]M)

If no temporary registers are assumed, each complex multiply required two additional data
memory locations to store the results of multiplying each input value by two different
constants prior to forming and storing the output results. Since the complex multiplica
tions are computed sequentially, the same two additional memory locations can be used
for each. The DR(k * M12 + n) and DI (k * M12 + n) are stored in the locations from
which the BR(k * M12 + n) and BI(k * M12 + n) were pulled to perform the compu
tations, specifically, in memory locations M(k * MI2 + n) and M(k * MI2 + n + M),
respectively.

154 CHA~ 9 ALGORITHM CONSTRUCTION

For k = 0, cos(2 * rr * k * n]N) = 1 and sin(2 * n * k * n]N) = O. Further,
BR(k* MI2+n) = BI(k* MI2+n) = 0 for n = N, N +1, ... , (MI2) -1. This reduces
the number of complex multiplies to N, which is 4 *N real multiplies and 2 *N real adds.
Figure 9-4 shows the locations of each of the results of the complex multiplies.

Contents Location
DR(0) 0

• •
• •
• •

DR(M12 - 1) M12-1
DR(MI2) MI2

• •
• •
• •

DR(M - 1) M-l
DI(O) M

• •
• •
• •

DI(MI2 - 1) 3 *MI2 - 1
DI(MI2) 3*M12

• •
• •
• •

DI(M - 1) 2*M -1
Temporary Data 2 *Mplus

Figure 9-4 Data memory map prior to the M 12-pointFFf.

Stage5: Two M/2-Point FFT Computations

Again following the instructions in Step 1of Stage 4 of the general mixed-radix algo
rithm, the n-th input to the k-th Ml2-point algorithm is DR(k * MI2 + n) and
DI(k * MI2 + n) (where k = 0,1 and n = 0, 1, ... , «MI2) - 1».

For the first of the M12-point FFTs (k = 0 is the top M12-point FFf in Fig
ure 9-3), the real data is located in the same place that was assumed in Chapter 8, namely, in
locations M(O) through M(MI2 -1), as shown in Figure 9-4. However, the corresponding
imaginary data is offset in memory by M locations rather than the M12 locations from
Chapter 8. Further, the addresses for the additional memory locations needed in the center
of the computation must start after the end of the M complex input data points, not after
M12 complex data points. For example, the first extra memory location in Chapter 8 comes
at memory location M(M). It must now be at M(2 * M). Figure 9-4 summarizes these
facts.

For the second M12-pointFFf (k = 1 is the bottom M12-pointFFT in Figure 9-3),
the real input data addresses start at M(M12) and end at M(MI2 + M12 - 1). This makes

SEC. 9.5 CONVOLUTIONAPPROACH 155

them M /2 addresses higher than in the Chapter 8 building block. Similarly, the imaginary
data addresses start at M(M/2+ M) and end at M(M/2+M/2-1 +M). This makes them
M addresses higher than in the Chapter 8 building block. This offset of the data locations
makes it easy to directly use both the equations from Chapter 8 and their data memory map.

Step 1: First M/2-point FFT Computations

The assumptions for the first M /2-point FFT (k = 0) are the following:

1. Use the M j2-point algorithm steps directly from Chapter 8 or from one of the
mixed-radix algorithms in Section 9.7.

2. Use the memory addresses directly for all real data, except the additional memory
locations required in the middle of the computations.

3. For the imaginary data, add M/2 to all of the memory locations, except for the
additional memory locations required in the middle of the computations.

4. For the additional memory locations required in the middle of the computations,
add M to the memory location.

5. Relabel the output frequency components from AR(n) and A/(n) to A R(2 *n) and
A/(2 *n).

Step 2: Second M/2-Point FFT Computations

Similarly, the assumptions for the second M j2-point FFT (k = 1) are the following:

1. Use the M/2-point algorithm steps directly from Chapter 8 or Chapter 9, except
modify all of the data labels by adding M /2 to them.

2. Add M /2 to the memory addresses for all real data, except the additional memory
locations required in the middle of the computations.

3. Add M to the memory addresses for all imaginary data, except for the additional
memory locations required in the middle of the computations.

4. For the additional memory locations required in the middle of the computations,
add M to the memory location.

5. Relabel the output frequency components from A R(n) and AI (n) to AR(2 *n + 1)
and A/(2 * n + 1).

The total number of computations required for this stage is twice the number of
computations needed for the chosen M /2-point transform.

Stage 6: MUltiplication by Linear Filter Complex Multipliers

Multiply the M relabeled complex outputs (AR(i), A/(i» of the two M/2-point
FFfs by the M complex outputs (HR(i), H/(i» of the unit pulse response FFT to obtain
C (n) = CR (n) + j * C/ (n). In general, this requires M complex multiplications, which is
4 * M real multiplies and 2 * M real adds. The equations are:

CR(n) = AR(n) * BR(n) - A/(n) * BI(n)

C/(n) = A/(n) * HR(n) + AR(n) * BI(n)

If no temporary registers are assumed, each complex multiply requires two additional
data memory locations to store the results of multiplying each input value by two different

156 CHAR 9 ALGORITHM CONSTRUCTION

constants prior to forming and storing the output results. Since the complex multiplies are
computed sequentially, the same two additional memory locations can be used for each.
The CR (n) and C I (n) are stored in the locations from which the A R (n) and A I (n) were
pulled to perform the computations.

Some of the building-block algorithms in Chapter 8 and algorithms in Chapter 9 do
not have all of their real outputs in the same data locations as the real inputs. Addressing
convenience has resulted in some of the imaginary outputs being interspersed. It is conve
nient to correct this inconsistency during the complex multiply computations in this stage.
Specifically, if the imaginary part of one of the A R (n) and A I (n) is stored in the lower
portion of the data memory, change this when the complex multiply outputs are stored so
that the real parts of all of the terms are stored together in the lower portion of the memory
used for CR(n) and C/(n).

Stage 7: Two M/2-Point IFFT Computations

Following the instructions in Step 1 of Stage 1of the general mixed-radix algorithm,
the input data point groupings to the n-th M12-point algorithm are CR (k * 2 + n) and
C/(k * 2 + n) (where n = 0, 1 and k = 0, 1, ... , ((MI2) - 1)).

The inputs to the first M12-point IFFf (upper IFFf in Figure 9-3) are CR (k * 2)
and C/(k * 2) (where k = 0,1, ... , ((MI2) - 1)), and the inputs to the second M12
point IFFf (lower IFFf in Figure 9-3) are CR(k * 2 + 1) and Citk * 2 + 1) (where k =
0,1, ... , ((MI2) - 1)). These are the outputs of the two Ml2-point FfTs, modified by
complex multipliers. Therefore, these inputs occupy the same memory locations as the
outputs of the M12-point FFfs. In general, the Chapter 8 and Chapter 9 algorithms do
not have their outputs in sequential memory addresses. Therefore, the inputs to the inverse
Ml2-point FFT will not be in sequential addresses, as was assumed in Chapters 8 and 9.

However, the first M12-point IFFf does have all of its real inputs in the first
M 12 memory locations and all of its imaginary inputs in memory locations M through
(3 *M /2 - 1) because they were put in these locations as part of Stage 6 of this algorithm.
Likewise, the second M /2-point IFFY's real inputs are in memory locations M12 through
(M - 1), and imaginary inputs are in memory locations (3 *M 12) through (2 *M - 1). The
address relabeling in Section 9.4 is used to convert the memory mapping for the algorithms
from Chapters 8 and 9 to a form that can be directly used here.

Each of the eR(k*2+n) and el(k*2+n) needs to be multiplied by a specific complex
number prior to entering the 2-point portion of the M -point algorithm. The equations for
this complex multiplication for each n = 0, 1 and k = 0, 1, ... , M /2 - 1 are as follows:

!R(k *2 + n) = eR(k * 2 + n) * cos(21l' *kn] M) - eitk *2 + n) * sin(2Jl' *kn] M)

!I(k * 2 + n) = eit]: * 2 + n) *cos(2Jl' * kn] M) + eR(k *2 + n) * sin(2Jl' *kn] M)

If no temporary registers are assumed, each complex multiply required two additional
data memory locations to store the results of multiplying each input value by two different
constants prior to forming and storing the output results. However, if the complex multiplies
are performed sequentially, the same two additional memory locations can be reused for all
of the complex multiplies. The result is the need for only two additional memory locations.
Store the results of the complex multiplies in the same locations from which the inputs to
the complex multiplies were taken. For n = 0, these complex multiplies are just multiplies

SEC. 9.5 CONVOLUTION APPROACH 157

by 1. Therefore, one of the two M12-point IFFTs does not have its outputs modified prior to
computing the 2-point IFFTs. Since only M 12 - 1 of these M 12 complex outputs represent
the needed result in Stage 8, only M /2 - 1 of the complex multiplies need be performed.
The total number of computations for these M /2 - 1 complex multiplies is 4 * (M/2 - 1)
real multiplies and 2 * (M12 - 1) real adds.

Stage 8: Computing the Output 2-Point Building Blocks

This stage has two steps. The first is to properly group the input data for each of the
M /2 two-point algorithms. The second is to compute the appropriate part of each of
the M12 two-point algorithms.

Step 1: Grouping the Input Data Points to the 2-Point Building Blocks

For the n-th input to the k-th 2-point building block, choose .fR(k * 2 + n) and
Jj tk * 2 + n) (where k == 0, 1, M12 - 1 and n == 0, 1) from the input data sequence.
In terms of the input labels, a R (n) and a/ (n), shown in Chapter 8, the inputs for the k-th
2-point building blocks are:

a R (0) == [« (2 * k) a R (1) == .IR (2 * k + 1)

a/CO) == //(2 * k) a/(l) == //(2 * k + 1)

Step 2: Computing a Portion of the Output 2-Point Building Blocks

Using the 2-point building block from Chapter 8 gives:

A R(O) == aR(O) + aRC!)

A/(O) == a/CO) + a/(l)

AR(I) == aR(O) - aR(I)

A/(l) == a/CO) - aIel)

The outputs of interest are the second pair of equations. Therefore, if the output frequency
components of the M-point IFFT are YR(n * MI2 + k) and y/(n * MI2 + k), for the n-th
output of the k-th 2-point building block, the outputs of interest are for n == 1. In terms of
the output labels, AR(n) and A/(n), shown for the M 12-point radix-4 FFT, the outputs for
the k-th 2-point building block are equated to the complete outputs, using the equations:

YR(M/2 + k) == .fR(2 * k) - JR(2 * k + 1)

y,(M/2 + k) == .(,(2 * k) - /,(2 * k + 1)

Since only (M/2 - 1) of these M /2 complex outputs represent the needed result in Stage
10, only (M/2 - 1) of the complex adds need be performed. The (M/2 - 1) partial 2-point
building block requires 30 real adds.

Stage 9: Adjusting the Output Data

This stage has two steps:

1. For n == N, (N + 1), ... , (2 * N - 1), multiply yen) == YR(n) + j * YI(n) by
exp(- j * n * n 2

/ N) == cosor * n 2
/ N) - j * sin(n *n 2IN) to obtain zen).

2. For n == N, (N + 1), ... , (2 * N - 1), multiply zen) by exp(- j * n * N) ==
cosor * N) - j * sin(n * N) to obtain q (n).

These steps can be combined into a single complex multiplyfor each of the N outputs.
This is a total of N complex multiplies, which is a total of 4 * N real multiplies and 2 * N

158 CHAP. 9 ALGORITHM CONSTRUCTION

real adds. If there are no temporary registers in the processor, then two additional memory
locations are required to perform the complex computations. The outputs from this step are
placed in the same locations from which the inputs to the step were pulled for each n. The
equations are

qR(n) = YR(n) * cosor * N + n *n
2

/ N) + y/(n) * sinor * N + n *n2
/ N)

q/(n) = y/(n) *cosor * N + n *n
2

/ N) - YR(n) * sinur * N + n *n2
/ N)

Stage 10: Extracting the N-Point FFT

The N-point FFf outputs, G(n) = GR(n) + j * G fen), are q(N +n) = qR(N +n)+

j *q/(N + n) where n = 0,1, ... , (N - 1).

9.5.5 Fifteen-Point Bluestein Example

This I5-point example follows the general Bluestein algorithm for M = 32 = 2 *
16. It uses the mixed-radix algorithm for the 32-point transform and the 16-point radix-4
example from Section 9.7.4. Figure 9-5 is a block diagram of this example. Any of the
mixed-radix 16-point examples in this chapter, or the 16-point Winograd building block
from Chapter 8, could also have been used rather than the 16-point radix-4 algorithm.
Following Section 9.4.4, the 15 complex input data samples are stored with the real parts
in data memory locations 0 through 14, and the imaginary parts in data memory locations
32 through 46.

Linear
Filter

Complex
Multipliers

16-Pt ~x
FFT L..--__--J

A(i)

Output
Complex
Multipliers

IFFT
Complex
Multipliers

16-Pt
IFFT-~+

Linear
Filter

Complex
Multipliers

FFT
Complex
Multipliers

Input
Complex
Multipliers

aU)

Figure 9-5 Fifteen-point Bluestein algorithm block diagram.

This example requires 790 real adds and 464 real multiplies. This is about five
times the number of computations needed for the other IS-point examples in this chapter.
However, it can be computed using only power-of-two algorithms. This removes the need
to develop special code or hardware and allows the application to take advantage of hardware

SEC. 9.5 CONVOLUTION APPROACH 159

and software refinements developed for the standard power-of-two FFTs. Further, the
computational difference is not as great when unusual FFf lengths, such as prime numbers,
are required.

The data memory required for this algorithm is the same as that required for two
16-point radix-4 mixed-radix algorithms. From the example in Section 9.7.5, this is 40
locations. Since the 16-point algorithms are computed sequentially, the additional eight
(40 - 32) locations can be reused for the second 16-point FFT. The same is true for the
IFFTs. Therefore, the total data memory required is 32 + 32 + 8 = 72. The memory
required for data constants is the sum of the requirements for the 16-point FFT plus those
for each of the complex multiplies. For this example that is 4 * 15 + 3 * 32 + 6 == 162.
The complex multiply algorithm used here is the one used in the Singleton example in
Section 9.7.7.

Stage 1: Transform Length Selection

The 32-point FFT is chosen to execute the IS-point FFT because it is the smallest
power-of-two greater than 2 * 15 == 30 points.

Stage 2: Modifying the Input Data

Modify the I5-point complex input data sequence, g(n) == gR(n) + j * glen), by
multiplying it by exp(- j * T(* n2/ I 5) == cosor * n2/ 15) - j * sin(n * n2/ 15) to obtain
a(n) == aR(n) + j » ajtn), This requires d « 15 == 60realmultipliesand2* 15 == 30 real
adds. The equations are (for n == 0, 1, ... , 15):

aR(n) == gR(n) * cosor * n2/ 15) + glen) * sin(n *n2/ 15)

al(n) == glen) * cosor * n2/ 15) - gR(n) * sinor * n2/ 15)

The complex data results are stored in the same locations from which the inputs were
pulled. If no temporary registers are available, two additional memory locations, M(64)
and M (65) (Figure 9-4), are used to store the values computed from multiplying the sine
term by the input data, and the original data locations are used to store the values computed
by multiplying the cosine term by the input data. Those values are then pulled from memory
and added to form the output values a(n) == aR(n) + j * a/en).

Stage 3: Zero Padding

Append the 15 input data points, a(n) == aR(n) + j * a/en), with 17 complex zeros to
obtain a 32-point input sequence for the 32-point FFT. The 17 complex zeros are appended
to the end of the actual data (i.e., n == 15, 16, ... ,31). The real zeros are stored in data
memory locations 15 through 31, and the imaginary zeros in locations 47 through 63.

Stage 4: FFT Input Stage Computation

Step 1: Simulating the Input 2-Point Building-Block Computations

If the instructions in Step 1 of Stage 1 of the general mixed-radix algorithm in Section
9.7.4 are followed, the input data point groupings to the n-th 2-point building block are
aR(k * 16+n) and a it]: * 16+n) (where k == 0, 1, and n == 0, 1, ... , 15). All of the inputs

160 CHA~ 9 ALGORITHM CONSTRUCTION

where k = 1 are zeros. Using the 2-point building block from Chapter 8 gives:

AR(O) = aR(O) + aR(l)

A/(O) = a/CO) + aIel)

AR(l) = aR(O) - aR(l)

A/(l) = a/CO) - aIel)

TheaR(l) andcjt l) inputs to all 16of the required 2-point building blocks (n = 0, 1, ... , 15)
are zero. Therefore, the outputs of all of those 2-point building blocks are just the input
data:

AR(O) = aR(O)

A/(O) = a/CO)

AR(l) = aR(O)

A/(l) = a/CO)

Using the labels from Step 2 of Stage 1 of the general mixed-radix algorithm, the k-th
output (k = 0, 1) of the n-th 2-point building block (n = 0, 1, ... , 15) should be labeled
BR (k * 16 +n) and B/ (k * 16+ n) in preparation for input to the complex multiply portion
of the mixed-radix algorithm. Specifically,

BR(k * 16 + n) = aR(n)

B/(k * 16 + n) = a/en)

BR(k* l6+n) => Mtk » l6+n)

Biik » 16+n) => Mtk « 16+n +32)

The right column shows the corresponding memory mapping, based on the locations of
the input data and taking advantage of the initial data mapping that saved room for the
added zeros. Each aR (n) and a/ (n) is stored in two memory locations in preparation for
subsequent steps.

Step 2: Multiplication by FFT Complex Multipliers
Each BR(k* 16+n) and Bitk» 16+n) needs to be multiplied by the specific complex

number required by the general mixed-radix algorithm prior to entering the 16-point portion
of the 32-point algorithm. The equations for this complex multiplication for each k = 0, 1
and n = 0, 1, ... , 15 are:

DR(k * 16 + n) = BR(n) * cos(2rr * kn/32) + B/(n) * sin(2rr * kn/32)

Djt]: * 16 + n) = Bjtn) * cos(2rr *kn/32) - BR(n) * sin(2rr *kn/32)

If no temporary registers are assumed, each complex multiply required two additional
data memory locations to store the results of multiplying each input value by two different
constants prior to forming and storing the output results. However, if the complex multiplies
are performed sequentially, the same two additional memory locations can be reused for
all of the complex multiplies. The result is the need for only two additional memory
locations. The DR(k * 16 + n) and Djtk * 16 + n) are stored in the locations from which
the BR(k * 16 + n) and BI(k * 16 + n) were pulled to perform the computations. This step
requires 15 complex multiplies, which is 60 real multiplies and 30 real adds.

Stage 5: Two 16-Point FFT Computations

For the n-th input to the k-th 16-point algorithm, choose DR(k * 16 + n) and DI(k *
16 + n) (where k = 0, 1 and n = 0, 1, ... , 15) from the input data sequence. In terms of
the input data labels, aR(n) and a/en), shown in Chapter 8 for the 16-point radix-4 FFT,the
inputs for the first 16-point FFTs and their data memory addresses are:

aR(n) = DR(n)

a/en) = D/(n)

aR(n) => M(n)

a/en) => M(n + 32)

For the second 16-point FFT they are:

a R(n) == DR(16 + n)

a/(n) == D /(16 + n)

SEC. 9.5 CONVOLUTION APPROACH 161

aR(n) =} M(16 + n)

a/en) =} M(48 + n)

Use the complex input data points, aR(n) and al(n), defined in Step 1 to compute each of
the two 16-point Fl-Ts. The n -th output of the first 16-point FFf should be labeled A R(n *2)
and A/(n * 2). Similarly, the n-th output of the second 16-point FFf should be labeled
AR(n *2 + 1) and AI(n *2 + 1). The AR(nz) and AI(m), where m == 0,1, ... ,31, are the
final outputs of the 32-point FFT.

Step 1: Computing the First of Two 16-Point Radix-4 FFTs
The approach for using the Algorithm Steps and Memory Map from Section 9.7.5 to

compute the first of the two 16-point FFTs is as follows.

1. Use the 16-point radix -4 equations directly from Section 9.7.5.

2. Use the memory addresses in Section 9.7.5 for all real data, except the additional
memory locations required in the middle of the computations.

3. For imaginary data, add 16 to all locations in Section 9.7.5, except for the additional
memory locations required in the middle of the computations.

4. For the additional memory locations required in the middle of the computations
in Section 9.7.5, add 32 to the memory location.

5. Relabel the output frequency components in Section 9.7.5 from A R (n) and A/ (n)

to A R(2 * n) and A1(2 *n).

Step 2: Computing the Second of Two 16-Point Radix-4 FFTs
Similarly, the approach for using the Algorithm Steps and Memory Map in Section

9.7.5 for the second 16-point FFT is as follows.

1. Use the 16-point equations directly from Section 9.7.5, except modify all of the data
labels aR(n) and a/en) by adding 16 to them to obtain aR(n + 16) and a/en + 16).

2. Add 16 to the memory addresses from Section 9.7.5 for all real data, except the
additional memory locations required in the middle of the computations.

3. Add 32 to the memory addresses for all imaginary data in Section 9.7.5, except
for the additional memory locations required in the middle of the computations.

4. For the additional memory locations in the middle of the computations in Section
9.7.5, add 32 to the memory location.

5. Relabel the output frequency components from Section 9.7.5 from AR(n) and
A I (n) to A R (2 * n + 1) and A1(2 * n + 1).

Table 9-2 shows the output data addresses for the 16-point radix-4 FFT in Section 9.7.5 in
column 1 and the offset addresses for the first and second 16-point FFTs in columns 2 and
3, based on following Steps 2 and 3 of this stage. The two 16-point FFfs require 288 real
adds and 48 real multiplies.

Stage 6: Multiplication by Linear Filter Complex MUltipliers

Multiply the 32 complex outputs of the data FFT (AR(i), AI(i)) by the 32 complex
outputs of the unit pulse response FFT (HR (i), H/ (i)) to obtain C (n) == C R(n) + j *C I (n).

162 CHA~ 9 ALGORITHM CONSTRUCTION

Table 9-2 Memory Maps for I5-Point Bluestein Algorithm Example

Column I Column 2 Column 3

AR(O) =} M(O) AR(O) =} M(O) AR(I) =} M(16)
A/(O) =} M(16) A/(O) =} M(32) A/(l) =} M(48)
A R(}) =} M(8) A R(2) =} M(8) AR(3) =} M(24)

A/(l) =} M(24) A[(2) =} M(40) A/(3) =} M(56)

A R(2) => M(4) A R(4) => M(4) A R(5) =} M(20)

A[(2) => M(20) A[(4) => M(36) A I(5) => M(52)

A R(3) => M(28) A R(6) =} M(44) A R(7) =} M(60)

A/(3) =} M(12) A/(6) => M(12) A/(7) => M(28)

A R(4) => M(2) A R(8) =} M(2) A R(9) =} M(18)

A I(4) => M(18) A/(8) => M(34) A[(9) => M(50)

A R(5) => M(IO) AR(lO) ::} M(IO) AR(II) => M(26)

A/(5) => M(26) A/(IO) =} M(42) A/(ll) =} M(58)

A R(6) => M(22) A R(12) =} M(38) AR(13) =} M(38)

A/(6) => M(6) A/(12) => M(6) A/(13) => M(6)

A R(?) => M(14) A R(14) ::} M(14) A R(15) => M(30)

A/(7) => M(30) A/(14) => M(46) A/(15) => M(62)

A R(8) => M(l) A R(16) => M(l) AR(I?) => M(l?)

A/(8) => M(17) A/(16) => M(33) A/(l?) =} M(49)

A R(9) => M(9) A R(18) => M(9) A R(19) => M(25)

A/(9) => M(25) A/(18) => M(41) A I(19) => M(5?)

AR(IO) => M(5) A R(20) =} M(5) AR(21) => M(21)

A/(IO) => M(21) A/(20) => M(37) A I(21) =} M(53)

AR(II) => M(29) A R(22) => M(45) A R(23) =} M(61)

A/(ll) => M(13) A/(22) => M(13) A/ (23) =} M (29)

A R(12) => M(19) A R(24) => M(35) AR(25) ::} M(51)

A[(12) =} M(3) A/(24) => M(3) A[(25) => M(19)

A R(13) => M(27) A R(26) => M(43) A R(27) => M(59)

A[(13) => M(ll) A/(26) => M(ll) A/ (27) =} M (27)

A R(14) => M(23) A R(28) => M(39) A R(29) => M(55)

A/(14) => M(7) A/(28) => M(7) A/(29) => M(39)

A R(15) => M(15) A R(30) => M(15) A R(31) => M(31)

A/(I5) => M(31) A/(30) => M(47) A/(31) => M(63)

In general, this requires 32 complex multiplications, which is 4 * 32 = 128 real multiplies
and 2 * 32 = 64 real adds. The equations are (for n = 0, 1, ... ,31):

CR(n) = AR(n) * HR(n) - A/(n) * H/(n)

C[(n) = A[(n) * HR(n) + AR(n) * H[(n)

If no temporary registers are assumed, each complex multiply required two additional data
memory locations to store the results of multiplying each input value by two different
constants prior to forming and storing the output results. The CR (n) and C/ (n) are stored
in the locations the AR(n) and A[(n) were pulled from to perform the computations.

SEC. 9.5 CONVOLUTION APPROACH 163

Addressing convenience has resulted in imaginary parts A/(6), A/(7), A/(12), A/(13),
A/(22), A/(23), A/(24), A/(25), A/(26), A/(27), A/(28), and A/(29) being stored in the
lower half of allotted data memory and their corresponding real parts stored in the upper
half. It is convenient to correct this inconsistency during the complex multiply computa
tions. Specifically, if the imaginary part of one of the A R (n) and A/ (n) is stored in the lower
portion of the data memory, change this when the complex multiply outputs are stored so
that the real parts of all of the results are stored together in the lower portion of the memory
used for CR(n) and Citn). These 32 complex multiplies require 128 real multiplies and 64
real adds.

Stage 7: Two 16-Point IFFT Computations

Step 1: Organizing the Data for the 16-Point IFFTs

Following the instructions in Step 1 of Stage 1 of the general mixed-radix algorithm
presented in Section 9.7.4, the k-th input data points to the n-th 16-point algorithm are
CR(k * 2 + n) and Cit]: * 2 + n) (where n = 0, 1 and k = 0, 1, ... ,15). In terms of the
input labels, aR(n) and a/en), for the 16-point FFT, the inputs for the first 16-point FFT
are:

and for the second 16-point FFT are:

aR(k) = CR(2 *k + 1)

The inputs to the first 16-point IFFT are the outputs of the first 16-point FFT, modified
by complex multipliers. Therefore, these inputs occupy the same memory locations as the
outputs of the 16-point FFT. In general, the building-block algorithms do not have their
outputs in sequential memory addresses. Therefore, the inputs to the inverse 16-point FFT
will not be in sequential addresses, as was assumed in Chapter 8. However, the inputs to
the first 16-point IFFf do have all of its real inputs in the first 16 memory locations and all
of its imaginary outputs in memory locations 32 through 47. Likewise, the inputs to the
second 16-point IFFf are in memory locations 16 through 31, and imaginary outputs are in
memory locations 48 through 63. With this in mind, data address relabeling from Section
9.4 is applied to the 16-point radix-4 memory mapping in Section 9.7.5.

Step 2: Computing the Two 16-Point IFFTs

If the labels from Step 2 of Stage 1 of the general mixed-radix algorithm are used, the
k-th output (k == 0, 1.... , 15) of the n-th 16-point transform (n = 0, 1) should be labeled
eR (k * 2 + n) and e / (k * 2 + n) in preparation for input to the complex multiply portion
of the 32-point mixed-radix algorithm. In terms of the output labels, AR(n) and A/(n), for
the 16-point radix-4 FFf in Section 9.7.5, the outputs for the first 16-point FFf are:

and for the second 16-point FFT are:

The four columns in Table 9-3 are the remapping process for the first of the two 16-point
radix-4 IFFTs.

164 CHA~ 9 ALGORITHM CONSTRUCTION

Table 9-3 Memory Maps for I5-Point Bluestein Algorithm Example

Column I Column 2 Column 3 Column 4

AR(O) =} M(O) CR(O) =} M(O) aR(O) =} M(O) AR(O) = eR(O) =} M(O)
AI(O) =} M(32) C/(O) =} M(32) a/CO) =} M(32) A/(O) = e/(O) =} M(32)
AR(2) =} M(8) CR(2) =} M(8) aR(l) =} M(8) AR(l) = eR(2) =} M(l)
AI(2) =} M(40) C/(2) =} M(40) a/O) =} M(40) A/(l) = eI(2) =} M(33)
AR(4) =} M(4) CR(4) =} M(4) aR(2) =} M(4) AR(2) == eR(4) =} M(2)
A/(4) =} M(36) C/(4) =} M(36) a/(2) =} M(36) AI(2) == e/(4) =} M(34)
AR(6) =} M(44) CR(6) =} M(l2) aR(3) =} M(l2) AR(3) == eR(6) =} M(35)
A/(6) =} M(l2) C/(6) =} M(44) a/(3) =} M(44) A/(3) == e/(6) =} M(3)
AR(8) =} M(2) CR(8) =} M(2) aR(4) =} M(2) AR(4) == eR(8) =} M(4)
A/(8) =} M·(34) C/(8) =} M(34) a/(4) =} M(34) A/(4) == e/(8) =} M(36)

AR(lO) =} M(IO) CR(lO) =} M(lO) aR(5) =} M(IO) AR(5) == eR(lO) =} M(5)
A/(IO) =} M(42) C/(IO) =} M(42) a/(5) =} M(42) A/(5) = e/(lO) =} M(37)
AR(12) =} M(38) CR(l2) =} M(6) aR(6) =} M(6) AR(6) == eR(l2) =} M(38)
AI(l2) =} M(6) C/(l2) =} M(38) a/(6) =} M(38) A/(6) = e/(l2) =} M(6)
AR(14) =} M(l4) CR(l4) =} M(14) aR(7) =} M(l4) AR(7) == eR(14) =} M(7)
A/(l4) =} M(46) C/(l4) =} M(46) a/(7) =} M(46) A/(7) = e/(14) =} M(39)
AR(16) =} M(l) CR(l6) =} M(l) aR(8) =} M(l) AR(8) = eR(l6) =} M(8)
AI(16) =} M(33) C/(l6) =} M(33) a/(8) =} M(33) A/(8) = e/(16) =} M(40)
AR(18) =} M(9) CR(18) =} M(9) aR(9) =} M(9) AR(9) = eR(18) =} M(9)
A/(I8) =} M(4l) C/(l8) =} M(4l) a/(9) =} M(41) AI(9) == e/(l8) =} M(4l)
AR(20) =} M(5) CR(20) =} M(5) aR(lO) =} M(5) AR(10) = eR(20) =} M(lO)
A/ (20) =} M (37) C/(20) =} M(37) aIOO) =} M(3?) A/(IO) = e/(20) =} M(42)
AR(22) =} M(45) CR(22) =} M(13) aR(II) =} M(13) AR(II) = eR(22) =} M(43)
A/(22) =} M(13) C/(22) =} M(45) a/(1l) =} M(45) A/(ll) = eI(22) =} M(ll)
AR(24) =} M(35) CR(24) =} M(3) as (12) =} M(3) AR(12) = eR(24) =} M(44)
A/(24) =} M(3) C/(24) =} M(35) a/(l2) =} M(35) A/(l2) = e/(24) =} M(l2)
AR(26) =} M(43) CR(26) =} M(II) aR(l3) =} M(ll) AR(l3) = eR(26) =} M(45)
A/(26) =} M(ll) C/(26) =} M(43) a/(l3) =} M(43) A/(13) == eI(26) =} M(13)
AR(28) =} M(39) CR(28) =} M(7) aR(14) =} M(?) AR(14) = eR(28) => M(46)
A/(28) =} M(7) C/(28) =} M(39) aI(l4) =} M(39) A/(l4) = eI(28) =} M(l4)
AR(30) =} M(15) CR(30) =} M(15) aR(15) =} M(l5) AR(15) = eR(30) =} M(15)
A/(30) =} M(47) C/(30) => M(47) a/(l5) =} M(47) A/(l5) = eI(30) =} M(47)

• Column I shows the data mapping out of the first 16-point input FFf.

• Column 2 shows the data mapping after the linear filter complex multiplications.
The data addresses are identical to those in column I except for the terms where
column I had the imaginary part at a lower address than the real part. In those cases,
the real and imaginary addresses were swapped during the complex multiplication
process.

• Column 3 shows the new memory addresses for each of the inputs to the first
I6-point IFFf in terms of the data labeling found in Section 9.7.5.

• Column 4 shows the memory address for each of the first I6-point FFf's outputs,
based on the memory relabeling technique, and the definition of how they are
related to the actual output of the first stage of the required 32-point IFFf.

The four columns in Table 9-4 are the remapping process for the second of the two
16-point IFFfs.

SEC. 9.5 CONVOLUTION APPROACH 165

Table 9-4 Output Memory Maps for I5-Point Bluestein Algorithm Example

Column I Column 2 Column 3 Column 4

AR(1) :::} M(l6) CR(l) => M(l6) aR(O) ::::> M(l6) AR(O) == eR(l) =} M(l6)

A /(1) => M(48) C/O) => M(48) a[(O) =} M(48) A/(O) == e/O) => M(48)

A R(3) => M(24) CR(3) =} M(24) aRO) => M(24) AR(I) == eR(3) =} M(33)

A[(3) =} M(56) C/(3) =} M(56) a/(l) => M(56) A/(l) == e/(3) => M(49)

AR(5) =} M(20) CR(5) => M(20) aR(2) => M(20) AR(2) == eR(5) => M(8)
A [(5) =} M(52) C/(5) => M(52) a/(2) ::::> M(52) AI(2) == e/(5) =} M(50)

AR(7) => A1(60) CR(7) ::::> M(28) aR(3) => M(28) AR(3) == eR(7) =} M(51)
A [(7) =} M(28) C / (7) ==> M(60) a/ (3) ==> M (60) AI(3) == e/(7) =} M(l9)

AR(9) => M(18) CR(9) => M(l8) GR(4) =} M(8) AR(4) == eR(9) =} M(20)

A/(9) => A1(50) CI(9) => M(50) a/(4) => M(50) A/(4) == eI(9) =} M(52)

AR(1l) =} M(26) CR(ll) ==> M(26) aR(5) =} M(26) AR(5) == eR(ll) =} M(2l)

A J(ll) => M(58) CI(lI) => M(58) a[(5) =} M(58) AI(5) == eI(ll) => M(53)

AR(13) =} M(54) CR(l3) => M(22) aR(6) => M(22) AR(6) == eR(l3) =} M(54)

AI(l3) :::} M(22) CI(l3) => M(54) aI(6) :::} M(54) A/(6) == eI(3) =} M(22)

AR(l5) :::} M(30) CR(l5) => M(30) aR(7) => M(30) AR(7) == eR(5) :::} M(23)

A/(15) ::::> M(62) CI(l5) => M(62) a/(7) => M(62) AI(7) == e/(l5) => M(55)

AR(l7):::} M(17) CR(l7) => M(l7) aR(8) :::} M(l7) AR (8) == eR(l7) :::} M(24)

A/(l7) ::::> M(49) C/(17) => M(49) a/(8) :::} M(49) A/(8) == e/(l7) => M(56)

AR(19) :::} M(25) C R(9) => M(25) aR(9) ::::> M(25) AR(9) == eR(19) :::} M(25)

A/(19) => M(57) C/(19) => M(57) a[(9) => M(57) A/(9) == e1(9) :::} M(57)

AR(2l):::} M(2l) CR(2l) => M(2!) aR(10) =} M(2l) AR(lO) == eR(21) =} M(26)

A/(2l) :::} M(53) C/(21) =>M(53) a/(10) => M(53) AI(lO) == e/(21) => M(58)

AR(23) => M(61) CR(23) => M(29) a» (11) => M(29) AR(1l) == eR(23) :::} M(59)

A/(23) => M(29) C/(23) => M(61) a/(1) => M(6l) A[Ol) == e[(23) => M(27)

AR(25) :::} M(51) CR(25) => M(9) aR(l2) =} M(l9) AR(12) == eR(25) :::} M(60)

A J{25) :::} M(l9) C[(25) => M(5l) a/(12) :::} M(51) A/(l2) == e/(25) :::} M(28)

A R(27) => M(59) CR(27) => M(27) aR(13) :::} M(27) AR(13) == eR(27) => M(61)

AI(27) => M(27) C / (27) => M (59) a/(13) => M(59) A/(l3) == e/(27) => M(29)

AR(29) => M(55) CR(29) => M(23) aR(14) ::::> M(23) AR(14) == eR(29) => M(62)

A/(29) =} M(23) CI(29) => M(55) a[(l4) => M(55) A[(l4) == e/(29) => M(30)

AR(3!)::::> M(3l) CR(31) => M(3!) GR(l5) => M(3}) AR(l5) == eR(3!) => M(3!)

A/(31):::} M(63) C/(31) => M(63) a/(15) => M(63) A/(5) == e/(31) => M(63)

• Column 1 shows the data mapping out of the second I6-point input FFT.

• Column 2 shows the data mapping after the linear filter complex multiplications.
The data addresses are identical to those in column 1 except for the terms where
column 1had the imaginary part at a lower address than the real part. In those cases,
the real and imaginary addresses were swapped during the complex multiplication
process.

• Column 3 shows the new memory addresses for each of the inputs to the second
16-point IFFT, in terms of the data labeling found in Section 9.7.5.

• Column 4 shows the memory address for each of the second 16-point FFT's outputs,
based on the memory relabeling technique, and the definition of how they are related
to the actual output of the first stage of the required 32-point IFFT.

166 CHAP. 9 ALGORITHM CONSTRUCTION

These two 16-point IFFTs require exactly the same number of computations as the 16-point
FFTs in Stage 5. Therefore, Stage 7 requires 288 real adds and 48 real multiplies.

Step 3: Performing Complex Multiplications

Each of the eR (k *2+n) and e/ (k *2+n) needs to be multiplied by a specific complex
number prior to entering the 2-point portion of the 32-point algorithm. The equations for
this complex multiplication for each n = 0, 1 and k == 0, 1, ... , 15 are:

!R(k *2 + n) = eR(k *2 + n) * cos(2n * knJ32) - ejt]: *2 + n) * sin(2n *knJ32)

lICk * 2 + n) = erik *2 + n) * cos(2n * knJ32) + eR(k * 2 + n) * sin(2n * knJ32)

If no temporary registers are assumed, each complex multiply required two additional
data memory locations to store the results of multiplying each input value by two different
constants prior to forming and storing the output results. However, if the complex multiplies
are performed sequentially, the same two additional memory locations can be reused for all
of the complex multiplies. The result is the need for only two additional memory locations.
Store the results of the complex multiplies back in the same locations that the inputs to the
complex multiplies were taken from. For n = 0, these complex multiplies are just multiplies
by 1. Therefore, one of the two 16-point IFFTs does not have its outputs modified prior
to computing the 2-point IFFfs. Since only 15 of these 16 complex outputs represent the
needed result in Stage 8, only 15 of the complex multiplies need to be performed. The total
number of computations for these 15 complex multiplies is 60 real multiplies and 30 real
adds.

Stage 8: Computing the Output 2-Point Building Blocks

This stage has two steps. The first is to properly group the input data for each of
the 16 2-point building blocks. The second is to compute the appropriate part of each
of the 16 2-point building blocks, based on the discussion in Stage 8 of the general Bluestein
algorithm.

Step 1: Grouping the Input Data Points to the 2-Point Building Blocks

For the n-th input to the k-th 2-point building block, choose !R(k * 2 + n) and
lICk * 2 +n) (where k = 0, 1, ... , 15 and n = 0, 1) from the input data sequence. In terms
of the input labels, aR(n) and a/en), shown in Chapter 8, the inputs for the k-th 2-point
building blocks are:

aR(O) = !R(2 * k) aR(I) == !R(2 * k + 1)

a/CO) == !/(2 *k) a/(I) == !/(2 * k + 1)

Step 2: Computing a Portion of the Output 2-Point Building Blocks

Using the 2-point building block from Chapter 8 yields:

AR(O) = aR(O) + aR(1)

A/(O) = a/CO) + al(l)

AR(l) = aR(O) - aR(1)

A/(l) = a/CO) - a/(l)

The outputs of interest are the second pair of equations. Therefore, if the output frequency
components of the 32-point IFFT are YR(n * 16 + k) and y/(n * 16 + k), for the n-th
output of the k-th 2-point transform, the outputs of interest are for n = 1. In terms of the
output labels, AR(n) and A/(n), shown for the 16-point radix-4 FFT, the outputs for the
k-th 2-point building block are equated to the complete outputs by the equations:

SEC. 9.5 CONVOLUTION APPROACH 167

YR(16+k) = !R(2*k) - !R(2*k+ 1)

y/(16 + k) = !/(2 * k) - 1/(2 * k + 1)

Since only 15 of these 16 complex outputs represent the needed result in Stage 10,
only 15 of the complex adds need to be performed. The 15 partial2-point transform requires
30 real adds.

Stage 9: Adjusting the Output Data

This stage has the following steps:

1. For n = 15, 16, ... , 31, multiply y(n) = YR(n) + j * y/(n) by exp(- j * 11 *
n2/ 15) = cos(n * n2/ 15) - j * sin(11 *n2/ 15) to obtain z(n).

2. For n = 15, 16, ... , 31, multiply z(n) by exp(- j * 11 * 15) = -1 to obtain q(n).

These two steps can be combined into a single complex multiply by multiplying the first
complex multiplier by -1 to obtain:

qR(n) = - YR(n) * cos(n *n2 / 15) - y/(n) * sinor *n2 / 15)

q/(n) = - y/(n) * cos(n * n2/ 15) + YR(n) * sinor *n2/ 15)

Again, if there are no temporary registers in the processor, then two additional memory
locations are required to perform the complex computations. However, if the complex
multiplies are performed sequentially, the same two additional memory locations can be
reused for all of the complex multiplies. The result is the need for only two additional
memory locations. Store the results of the complex multiplies back in the same locations
that the inputs to the complex multiplies were taken from.

Since only 15 of these 16 complex outputs represent the needed result in Stage 10,
only 15 of the complex multiplies need be performed. This is a total of 60 real multiplies
and 30 real adds.

Stage 10: Extracting the 15-Point FFT

The IS-point FFT outputs, G(n) = GR(n) + j * G/(n), are q(15 + n) =
qR(15 + n) + j *q/(15 + n) where n = 0,1, ... ,15.

9.5.6 Winograd Algorithm Introduction

This algorithm was developed by mathematician Schmuel Winograd and originally
published in 1976 [2]. The motivation for the development of this algorithm was that
multiplication was extremely expensive in computation time, board area, and power. Thus
the algorithm was designed to minimize the number of multiplications required to implement
FFTs.

While Winograd succeeded in minimizing the number of multiplications, he also
succeeded in complicating the computational building blocks and data memory mappings
for his algorithm. The result was that the algorithm did not significantly decrease the
cost of performing FFfs. In fact, in some cases the cost was increased over comparable
power-of-two or Singleton algorithms presented in Section 9.7.

While advances in integrated circuit technology have lowered the cost of multiplica
tion and complex data addressing, it has not improved the value of the Winograd transform,

168 CHA~ 9 ALGORITHM CONSTRUCTION

except when dedicated building blocks have been developed. The primary reason for this
is that the multiply-accumulators (Chapter 10) used in DSP chips (Chapter 14) are all
based on an architecture that does not allow the multiplier and accumulator to be used
independently. Since the Winograd algorithm separates adds from multiplies, it is diffi
cult to make efficient use of these computational building blocks to compute the Winograd
algorithm.

The available Winograd building blocks (Chapter 8) are 2, 3, 4, 5, 7, 8, 9, and
16 points. Combining relatively prime sets of these allows the following 58 transform
lengths:

lV=2,3,4,5,6, 7,8,9,10,12,14,15, 16, 18,20,21,24,28,30,35,36,40,42,45,48,

56,60,63,70,72,80,84,90,105,112,120,126,140,144, 168, 180,210,240,252,

280,315,336,360,420,504,560,630,840,1008, 1260, 1680,2520,5040

In the original derivation of the Winograd algorithm, the Winograd building blocks from
Chapter 8 were combined to form these 58 different transform lengths. However, the
technique can be extended to combining any building blocks that have all of their multiplies
in the center and just adds and subtracts for the input and output computations. This is why
the building blocks in Chapter 8 were configured in this format.

The general algorithm steps for computing the Winograd transform can be described
completely with just two building blocks. The result is a larger transform that still has all
of its multiplies in the center and only adds and subtracts on the input and output. The
larger transform can now be combined into a larger transform with a third building block
with the same technique for combining them that was used for the first two. This process
can be continued as long as the add-multiply-add architecture is followed and all of the
building blocks are relatively prime numbers. This process, using the general odd-number
algorithms in Section 8.11, increases the number of transform lengths for the Winograd
algorithm beyond the 58 listed. The only catch is that, since the non-Winograd building
blocks do not have the minimum number of multiplies, their combination into larger FFTs
does not result in a minimum number of multiplications.

Figure 9-6 is a Winograd algorithm block diagram for two factors, P and Q. Since
all of the N input data points are processed by the P- and Q-point stages, the N data points
must be separated into sets of P data points for the first input addition stage. There are
N / P = Qof these sets. Then the results from the first input addition stage must be divided
into sets of Q data points for processing by the second input addition stage.

P-Point Q-Point Central Q-Point P-Point-----.
InputAdds

--...
InputAdds

---.
Multiplies

~

OutputAdds
~

OutputAdds
~

Figure 9-6 Top-level block diagram of two-factor Winograd algorithm.

In general, there are more outputs of the input adds than there are inputs. The result
is that there are more than N / Q = P sets of Q-point input adds to perform. If the order
of P and Q is reversed, there are P sets of Q-point input adds performed first, followed by
more than Q sets of P-point input adds. This implies that the total number of input adds
(all of the P and Q-point sets combined) changes as a function of which building block is
implemented first.

SEC. 9.5 CONVOLUTION APPROACH 169

9.5.7 Number of Winograd Algorithm Adds and Multiplies

The number of real adds is dependent on the order in which the building blocks are
combined to form the larger transform. The equation for the number of real adds for a
two-stage N := P * Q-point Winograd FFT in the order shown in Figure 9-6 is:

adds := 2 * [Q * A p + (M p + 1) * A Q]

multiplies e- 2 * (M p + 1) * (MQ + 1) - 1

where: A p := number of real adds in P-point algorithm building block
A Q := number of real adds in Q-point algorithm building block
Mp := number of real multiplies in P-point algorithm building block
MQ := number of real multiplies in Q-point algorithm building block

9.5.8 General Winograd Algorithm

The stages for combining two building blocks using the general Winograd [2] algo
rithm are as follows.

Stage 1: Input Data Organization

If the complex input data sequence is (aR(n), Q/ (n», the expression for the k-th
input data value for the m-th P-point building block is aR«Q * k + P * m) mod N),

a/«Q * k + P * m) mod N), where k := 0, 1, ... , (P - 1) and m := 0, 1, ... , (Q - 1).
Specifically, the input samples to the first (m := O)P-point input adds stage are aR(Q *
k mod N) and a/ (Q * k mod N)~ where k := 0, 1,2, ... , (P - 1). The input samples to
the last (m := Q - l)P-point input adds stage are aR(Q * k + P * (P - 1) mod N) and
a.t Q * k + P * (P - 1) mod N), where k:= 0,1,2, ... , (P - 1).

Stage 2: P·Point Building-Block Input Add Computations

Since there are N / P == Q of the P-point input adds blocks, this stage requires
Q*(number of P-point building block input adds) additions. There are (M p + 1) outputs
from each of the Q sets of input adds, for a total of Q * (M p + I) outputs. Call the k-th

a(O) ----. b(O)

a(Q mod N)----. b(Q mod N)

a(2*Q mod N)----. P-Point b(2*Q mod N)

• Input •
• Adds •
• •

a«P-l)*Q mod N)--. b(Mp*Q mod N)

Figure 9-7 P-point input adds data configuration for m == O.

170 CHAR 9 ALGORITHM CONSTRUCTION

complex output of the m-th P-point input adds building block bR«Q *k + P *m) mod N),

b/«Q * k + P * m) mod N), where k = 0,1, ... , (Mp) and m = 0,1, ... , (Q - 1).
Specifically, the outputs from the first (m = 0) P -point input adds are bR(Q * k mod N)
and b/(Q *k mod N), where k = 0, 1,2, ... , M», The outputs from the last (m = Q - 1)
P-point input adds are bR(Q «k +P *(Q -1) mod N) and b/(Q *k+ P *(Q -1) mod N),
where k = 0,1,2, ... , (P - 1). Figure 9-7 shows the the input adds data ordering for the
first (m = 0) of these P -point input adds.

Stage 3: o-Point Building-Block Input Add Data Organization

The outputs from Stage 2 are now regrouped to become input data for (Mp + 1)
replications of the Q-point building-block input add algorithm. With the labeling scheme
from Stage 2, the m-th input to the k-th Q-point input adds is bR«Q *k + P *m) mod N),
b/«Q * k + P * m) mod N), where k = 0,1, ... , (Mp) and m = 0,1, ... , (Q - 1).
Specifically, the inputs to the first (k = 0) Q-point input adds stage are bR (P *m mod N)

and b/(P *m mod N), where m = 0,1,2, ... , (Q - 1). In Stage 3 these inputs are the
first (k = 0) output of each of the P-point input adds. Similarly, the inputs to the k-th
Q-point input adds are the k-th outputs of all of the P -point input adds. The arrow between
blocks 1 and 2 in Figure 9-6 represents this data reorganization. This addressing is usually
determined ahead of time and stored as a sequence of addresses or an addressing algorithm
in program memory.

Stage 4: o-Point Building-Block Input Add Computations

Each group of Q complex data points in Stage 3 becomes the input to a Q-point
building-block's input adds. Since there are (Mp + 1) of the Q-point input adds blocks,
this stage requires (Mp + 1) * (number of Q-point building-block input adds) additions.
There are (MQ+1) outputs from each Q-point input add, for a total of (MQ+ 1)*(Mp + 1)
outputs from the second block in Figure 9-6. Call the m-th complex output of the k-th Q
point transform cR(k * (MQ + 1) + m), erik * (MQ + 1) + m), where k = 0,1, ... , (Mp)

and m = 0, 1, ... , (MQ). Figure 9-8 shows the input adds data ordering for the first (k = 0)
of these Q-point input add stages.

b(O) c(O)

b(P mod N) c(l)

b(2*P mod N) Q-Point c(2)

• Input •
• Adds •
• •

b«Q-l)*Q mod N) c(MQ)

Figure 9-8 Q-point input adds data configuration for k = o.

SEC. 9.5 CONVOLUTION APPROACH 171

Stage 5: Central MUltiplications

This stage contains all of the multiplications required for the Winograd transform. If
the k-th multiplier constant for the P-point Winograd algorithm building block is M P(k),
and the m-th multiplier constant for the Q-point building block is M Q(m), then the required
multiplications are:

dR(k * (M Q + 1) + m) = M P(k) * MQ(m) * cR(k * (MQ + 1) + m)

d it]: * (M Q + 1) + m) = M P(k) * MQ(m) *ciik * (M Q + 1) + m)

where k = 0, 1, ... , (M p) andm = 0, 1, ... , (MQ). Generally, the M P(k)*MQ(m) mul
tiplication is computed ahead of time and the constants stored in program or data memory.
This requires 2 *(Mp *M Q - 1) multiplications. This set of computations is represented in
Figure 9-6 by the third block from the left. No data reorganization is required between the
Q-point input adds and the central multiplications or between the central multiplications and
the Q-point output adds as shown in Figure 9-9 for the first set (k = 0) of multiplications.

e (0) d(O)

e(l) del)

c(2)
Multiplier

d(2)

• Array •
• •
• •

c(MQ) d(MQ)

Figure 9-9 Central multiplication data configuration for k = O.

Stage 6: o-Point Building-Block Output Add Data Organization

The outputs from Stage 5 become input data for Mp + 1 replications of the Q-point
building-block output add algorithm. For the labeling scheme from Stage 5, the m-th input
to the k-th Q-point output adds is dR(k * (MQ + 1) +m), ditk * (MQ + 1) + m), where
k = 0,1, ... , (M p) and m = 0,1, ... , (MQ). This set of operations is represented by
the arrow between the third and fourth blocks from the left in Figure 9-6 and shown more
explicitly for the first (k = 0) of the Q-point output adds in Figure 9-10 (on page 172).

Stage 7: o-Point Building-Block Output Add Computations

Since there are (Mp + 1) of the Q-point output adds blocks, this step requires
(Mp + 1)*(number of Q-point building-block output adds) additions. There are Q outputs
from each of the Q-point output adds, for a total of Q* tM» + 1) outputs. Call the m-th
complex output of the k-th Q-point building block eR(k * Q + m), eI (k * Q + m), where
k = 0, 1, ... , (M p) and m = 0, 1, ... , (Q - 1). This set of computations is represented

172 CHA~ 9 ALGORITHM CONSTRUCTION

d(O) e(O)

d(l) e(l)

d(2) Q-Point e(2)

• Output •
• Adds •
• •

d(MQ) e(Q-l)

Figure 9-10 Q-point output adds data configuration for k = O.

by the fourth block from the left in Figure 9-6 and shown in more detail in Figure 9-10 for
the first (k = 0) of the Q-point output adds.

Stage 8: P-Point Building-Block Output Add Data Organization

The outputs from Stage 7 are now regrouped to become input data for Q replica
tions of the P-point building-block output add algorithm. Using the labeling scheme from
Stage 7, the k-th input to the m-th P-point output adds is eR(k * Q+ m), e.t]: * Q+ m),
where k = 0, 1, ... , (P - 1) and m = 0, 1, ... , (Q - 1). The arrow between blocks
4 and 5 in Figure 9-6 represents this operation. This addressing is determined ahead
of time and stored as a sequence of addresses or an addressing algorithm in program
memory. Specifically, the first (m = 0) P-point output adds stage are eR (k * Q) and
eitk * Q), where k = 0,1, ... , (P - 1). The inputs to the last (m = Q - 1) P
point output adds stage are eR(k * Q + Q - 1) and eitk * Q + Q - 1), where k =
0, 1, ... , (P - 1). Figure 9-11 shows this explictly for the first (m = 0) P-point output
adds stage.

e(O) A(O)

e(Q) A(Q modN)

e(2*Q) P-Point A(2*Q modN)

•
Output •

• Adds •
• •

e«P-l)*Q) A«P-l)*Q mod N)

Figure 9-11 P-point output adds data configuration for In = O.

SEC. 9.5 CONVOLUTION APPROACH 173

Stage 9: P-Point Building-Block Output Add Computations

Since there are Q of the P-point output adds blocks, this step requires Q * (number
of P-point building-block output adds) additions. There are P outputs from each of the
Q P-point output adds, for a total of Q * P outputs. The m-th output of the k-th P-point
building block is labeled AR[(Q *m + P *k) mod N] and A/[(Q *m + P * k) mod N],
where k == 0,1, ... , (Q - 1) and m == 0,1, ... , (P - 1). This set of computations is
represented by the fifth block from the left in Figure 9-6, and the results are shown more
explicitly in Figure 9-11 for the first (k == 0) P -point output adds stage.

9.5.9 Fifteen-Point Winograd Algorithm Example

The IS-point Winograd [2] algorithm can be implemented with either the 3-point
or the S-point building blocks first. Like the prime factor and mixed-radix algorithms
in Sections 9.6 and 9.7, the order of the building blocks does not affect the number of
multiplications. However, unlike the prime factor and mixed-radix algorithms, the order
does affect the number of additions.

This example uses the Winograd 3- and 5-point building blocks. However, any of
the 3- and 5-point building blocks from Chapter 8 can be used because they were designed
to have an input add section, a central multiply section, and an output add section. From
the Comparison Matrix in Chapter 8, the 3-point Winograd building block has six input
adds, six output adds, and uses 3 for the number of multiply paths. The 5-point Winograd
building block has 16 input adds, 18 output adds, and uses 6 for the number of multiply
paths. Substituting these numbers into the equation for the number of computations gives
that the total number of real multiplications is 34 and the total number of real adds is
174 if the input portion of the S-point Winograd building block is computed first. The total
number of real adds is 162 if the input add portion of the 3-point building block is computed
first.

Figure 9-12 shows how the various portions of the 3- and 5-point Winograd building
blocks are nested to form the I5-point Winograd FFT. The various 3- and 5-point input and
output add blocks are labeled as they are below. The three distinct multiplier blocks are also
shown explicitly in Figure 9-12. This I5-point example requires 36 data memory locations
and 17 memory locations for multiplier constants.

The bR (i), b / (i), C R (i), C I (i), d R (i), d I (i), and eR (i), e / (i) used to label intermediate
results in the description of the general Winograd algorithm in Section 9.5.8 are different
from the intermediate result labels in this example. However, the computations and data
reorganization are identical. The labels in Section 9.5.8 were chosen to show the intercon
nection pattern of the individual building blocks. The labels in this example were chosen to
identify as closely as possible with the 3-point and 5-point Winograd building block labels
in Chapter 8. The nonmodular nature of the different Winograd building blocks makes
complete commonality between these descriptions impossible.

Stage 1: Three-Point Input Adds

The 15 input data points must first be divided into five sets of 3 points to serve as
inputs to each of the 3-point algorithms. Following the addressing in Section 9.5.8, this is
done by starting with complex input data point QR(O), Q/(O), and grouping it with complex

174 CHA~ 9 ALGORITHM CONSTRUCTION

A(O)
A(5)
A(IO)

A(6)
A(11)
A(l)

A(3)
A(8)
A(13)

A(9)
A(14)
A(4)

A(12)

A(2)
A(7)

*M3(0)
roo-- I ~ I .---- I - I r---

-.... 0 0 M5(0) 0
o~

I 2 I M5~1~ I 1 I-.... 1 0 M52 o 1~
--.. 2 40 I

M5(3) I 0 2
2~I I I I- 1 3 -I I M5(4) I I

3 M5(5) 4- ~

-+- 0 I ---- I - I ""'----

I- .. o
-+- 1 1 I I I I I 1
-+- 2 I I

-*M3(1)
I I

2
- ~ roo------ -

0 M5(0) 0
I M5(1) ~I- I I r---

"""'-
-~ 2 M5(2) 1 ~~-.... 0 ~

I 4 1 I I I 2 I
-.. O~

-+- 1 2 M5(3) 2 1~
I I I

-.... 2 1 I M5(4) I 3 2 --+-3 M5(5) 4---- I -- I - I "'---- I
,..---

I I I I
r---

--.. 0 - ~ O~

-.. 1 3 - I I I I ---.. 3 1~*M3(2)-.. 2 I ~o- I - I r-- I 2~- I M5(O) I 01-
~

I
......... 2 I M5(1) I l~ I~ M5(2) ~

--.. 0 ~ ,---.. 42 2 2~I
---.. O~

-.. 1 4 I M5(3) I 4 1~ 1 3 --.... ~

-.... I I
M5(4)

I I2 3 ~ 4 2 --+-- ---- ""'---- -----'

a(O)
a(5)
z(10)

a(3)
a(8)
r(13)

a(9)
r(14)
a(4)

a(6)
z(11)
a(l)

1(12)
a(2)
a(7)

3-Point
InputAdds

5-Point
InputAdds

15-Point
Multiplies

5-Point
OutputAdds

3-Point
OutputAdds

Figure 9-12 Fifteen-point Winograd FFf block diagram.

input data point pairs aR(5), al(5) and aR(lO), al(lO). These provide the input to the top
one of the five 3-point building blocks. This is followed by grouping the input data point
pairs aR(I), aIel), aR(6), a/(6), and aR(II), a/(ll) to provide the input for the second of
the five 3-point building blocks. The next grouping is data point pairs aR(2), al(2), aR(7),
a/(7), and aR(12), a/(12) for input into the third of the five 3-point building blocks. The
next grouping is data point pairs aR(3), a/(3), aR(8), al(8), and aR(13), al(13) to provide
input for the fourth of the five 3-point building blocks. The final grouping is data point
pairs aR(4), a/(4), aR(9), a/(9), and aR(14), a/(14) for input into the fifth 3-point building
block. The addressing inSection 9.5.8 determines the order in which these data points enter
the 3-point input adds.

The strategy for converting these equations to code is to start at the top (compute
bR(I)) and identify the pair of inputs to be used first (in this case aR(5) and aR(10)). Then
look down the list to find the second (compute bR (2») place where these two inputs are
used. Pull aR(5) and aR(10) from memory, compute bR(I) and bR(2), and store the results
in memory locations M(5) and M(IO), previously occupied by aR(5) and aR(lO). The next
step is to look at the next computation bI (1) on the list and repeat the same set of steps.

SEC. 9.5 CONVOLUTION APPROACH 175

Continue this process until all the Algorithm Steps in Stage 1 have been computed and their
results stored in the Memory Map addresses.

First of Five 3-Point Algorithm Building-Block Input Adds

The inputs to these 3-point input adds are aR«5 *k +3 *m) mod 15), al«5 *k + 3 *
m) mod 15) where m = O. Performing the modulo arithmetic computations to determine
the inputs results in the inputs being aR(O), al(O), aR(5), al(5), aR(IO), and al(lO) for
k == 0, 1, and 2. These input adds are represented in Figure 9-12 by the 3-point input adds
block labeled 0. Further, the labels on the left of this input add block correspond to the
input labels in the 3-point Winograd building block in Chapter 8.

Algorithm Steps

bR(I) = aR(5) + aR(IO)

bR(2) = aR(5) - aR(lO)

b/(l) = a/(5) + al(lO)

b/(2) = a/(S) - al(lO)

bR(O) = aR(O)+ bR(l)

b/(O) = a/CO) + bl(l)

Memory Map

bR(I) => M(5)

bR(2) => M(IO)

bl(l) => M(20)

b/(2) => M(25)

bR(O) => M(O)

b/(O) => M(15)

Second of Five 3-Point Algorithm Building-Block Input Adds

The inputs to these 3-point input adds are aR«5 *k + 3 *m) mod 15), a[«5 *k + 3 *
m) mod 15) where m = 2. Performing the modulo arithmetic computations to determine
the inputs results in the inputs being aR(6), al(6), aR(ll), al(ll), aR(I), and al(l) for
k == 0, 1, and 2. These input adds are represented in Figure 9-12 by the 3-point input adds
block labeled 1. Further, the labels on the left of this input add block correspond to the
input labels in the 3-point Winograd building block in Chapter 8.

Algorithm Steps

bR(4) = aR(ll) + aR(l)

bR(5) = aR(ll) - aR(I)

b/(4) = a[(ll) + aiel)

b/(5) = a[(ll) - aiel)

bR(3) = aR(6) + bR(4)

b/(3) = a/(6) + b[(4)

Memory Map

bR(4) => M(ll)

bR(5) => M(l)

b/(4) => M(26)

b[(5) => M(16)

bR(3) => M(6)

b/(3) => M(2l)

Third of Five 3-Point Algorithm Building-Block Input Adds

The inputs to these 3-point input adds are aR«5 *k + 3 *m) mod 15), al«5 *k + 3 *
m) mod 15) where m = 4. Performing the modulo arithmetic computations to determine
the inputs results in the inputs being aR(12), al(12), aR(2), a[(2), aRC?), and a[(?) for
k == 0, 1, and 2. These input adds are represented in Figure 9-12 by the 3-point input adds
block labeled 2. Further, the labels on the left of this input add block correspond to the
input labels in the 3-point Winograd building block in Chapter 8.

176 CHA~ 9 ALGORITHM CONSTRUCTION

Algorithm Steps

bR(7) == aR(2) + aR(7)

bR(8) == aR(2) - aR(7)

b, (7) == a, (2) + a, (7)

b, (8) == a, (2) - a, (7)

bR(6) = aR(12) + bR(7)

b,(6) = a,(12) + b,(7)

Memory Map

bR(7) => M(2)

bR(8) => M(7)

b,(7) => M(17)

b/(8) => M(22)

bR(6) => M(12)

b,(6) => M(27)

Fourth of Five 3-Point Algorithm Building-Block Input Adds

The inputs to these 3-point input adds are aR«5 *k + 3 *m) mod 15), Q, «5 *k + 3 *
m) mod 15) where m == I. Performing the modulo arithmetic computations to determine
the inputs results in the inputs being aR(3), aI(3), aR(8), a,(8), aR(13), and a,(13) for
k = 0, 1, and 2. These input adds are represented in Figure 9-12 by the 3-point input adds
block labeled 3. Further, the labels on the left of this input add block correspond to the
input labels in the 3-point Winograd building block in Chapter 8.

Algorithm Steps

bR(10) = aR(8) + aR(13)

bR(Il) = aR(8) - aR(I3)

b/(IO) = a/(8) + a/(13)
b/(ll) = a/(8) - a/(13)

bR(9) = aR(3) + bR(IO)

b/ (9) = a/ (3) + b/ (10)

Memory Map

bR(lO) => M(8)

bR(II) => M(13)

b/(lO) => M(23)

b/(11) => M(28)

bR(9) => M(18)

bI(9) => M(I8)

Fifth of Five 3-Point Algorithm Building-Block Input Adds

The inputs to these 3-point input adds are aR«5 *k + 3 *m) mod 15), a/ «5 *k + 3 *
m) mod 15) where m = 3. Performing the modulo arithmetic computations to determine
the inputs results in the inputs being aR(9), a/(9), aR(14), a/(14), aR(4), and a/(4) for
k == 0, 1, and 2. These input adds are represented in Figure 9-12 by the 3-point input adds
block labeled 4. Further, the labels on the left of this input add block correspond to the
input labels in the 3-point Winograd building block in Chapter 8.

Algorithm Steps

bR(13) = aR(14) + QR(4)

bR(14) = aR(14) - QR(4)

b/(13) = a/(l4) + Q/(4)

b/(14) = a/(14) - Q/(4)

bR(12) = aR(9) +bR(13)

b/ (12) = Q/ (9) + bI (13)

Stage 2: Five-Point Input Adds

Memory Map

bR (13) => M(14)

bR (14) => M(4)

b/(13) => M(29)

b/(14) => M(19)

bR (12) => M(9)

b/(12) => M(24)

The outputs from the five sets of 3-point input adds must now be combined by using
the input adds from the 5-point Winograd building block. The 5-point input adds are used
three times (15/5 = 3), each using an input from the output of each of the 3-point input

SEC. 9.5 CONVOLUTION APPROACH 177

adds. The input combinations and their resulting outputs are listed below and are based on
the addressing in Section 9.5.8.

The strategy for converting these equations to code is to start at the top (compute
tReI» and identify the pair of inputs to be used first (in this case bR(9) and bR(6». Then
look down the list to find the second (compute BR (2» place where these two inputs are
used. Pull bR(9) and bR(6) from memory, compute tR(1) and BR(2), and store the results
in memory locations M(12) and M(3), previously occupied by bR(9) and bR(6). The next
step is to look at the next computation t I (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps in Stage 2 have been computed and their
results stored in the Memory Map addresses.

First of Three 5-Point Winograd Building-Block Input Adds

The inputs are bR(O), b/(O), bR (6) , b j (6), bR (12), b/(12), bR(3), bl(3), bR(9), and
bj (9). They produce six complex outputs. There are many ways to allocate the additional
memory locations, tR(i), tl(i) required to store this additional complex output data value.
For this example they are located at M (30) and M (31). These input adds are represented
in Figure 9-12 by the 5-point input adds block labeled O. Further, the labels on the left of
this input add block correspond to the input labels in the 5-point Winograd building block
in Chapter 8.

Algorithm Steps

tR(I) == bR(9) + bR(6)
tj(I) == h/(9) + h,(6)

B R(2) == bR(9) - bR(6)

B j(2) == h/(9) - b/(6)

tR(3) == bR(12) + bR(3)

t[(3) == b/(12) + b j(3)

BR(4) == bR (12) - bR(3)

8,(4) == b,(12) - b/(3)

CR (1) == t R (1) + tR (3)

c[(I) = tj(l) + t/(3)

cR(3) == tR(I) - tR(3)

c/(3) == tl(I) - t/(3)

cR(5) == BR(2) + BR (4)

c/(5) == B j(2) + Bj(4)

dR (0) == CR (I) + bR (0)

d/(O) == cl(l) + bj(O)

Memory Map

IR(I) => M(12)

t/(l) => M(27)

BR(2) => M(3)

B/(2) => M(18)

tR(3) => M(6)

1/(3) => M(2I)

B R(4) => M(9)

B1(4) => M(24)

cR(I) => M(I2)

c/(I) => M(27)

cR(3) => M(16)

c/(3) => M(2t)

cR(5) => M(30)

c/(5) => M(31)

dR(O) => M(O)

d/(O) => M(15)

Second of Three 5-Point Winograd Building-Block Input Adds

The inputs are bR(IO), b/CIO), bR(I), bl(l), bR(7), b/(7), bR(I3), bI(13), bR(4), and
b/ (4). They produce six complex outputs. There are many ways to allocate the additional
memory locations required to store this additional complex output data value. For this
example, they are located at M (34) and M (35). These input adds are represented in Figure
9-12 by the 5-point input adds block labeled 1. Further, the labels on the left of this input add
block correspond to the input labels in the S-point Winograd building block in Chapter 8.

178 CHA~ 9 ALGORITHM CONSTRUCTION

Algorithm Steps

tR(6) = bR(IO) + bR(7)

t/(6) = b/(IO) + b/(7)

BR(7) = bR(IO) - bR(7)
B/(7) = b/(lO) - b/(7)

tR(8) = bR(13) + bR(4)
t/(8) = b/(13) + b/(4)

BR(9) = bR (13) - bR(4)

B/(9) = b[(I3) - b[(4)

cR(6) = tR(6) + tR(8)

c[(6) = t[(6) + t[(8)

cR(8) = tR(6) - tR(8)

c[(8) = t[(6) - t[(8)

cR(lO) = BR(7) + BR(9)
CICIO) = B[(7) + B[(9)

dR(5) = cR(6) + bR(I)

d[(5) = c[(6) + b[(I)

Memory Map

tR(6) => M(8)

t/(6) => M(23)

BR(7) => M(2)

B/(7) => M(I7)

tR(8) => M(I4)

t[(8) => M(29)

B R(9) => M(II)

B/(9) => M(26)

cR(6) => M(8)

cJ(6) => M(23)

cR(8) => M(I4)

cJ(8) => M(29)

cR(IO) => M(34)

CICIO) => AI(35)

dR(5) => AI(5)

dJ(5) => M(20)

Thirdof Three 5-Point Winograd Building-Block InputAdds
The inputs are bR(5), b[(5), bR(II), b[(Il), bR(2), b[(2), bR(8), b[(8), bR(14), and

b[(I4). They produce six complex outputs. There are many ways to allocate the additional
memory locations required to store this additional complex output data value. For this
example, they are located at M(32) and M(33). These input adds are represented in Figure
9-12 by the 5-point input adds block labeled 2. Further, the labels on the left of this input add
block correspond to the input labels in the 5-point Winograd building block in Chapter 8.

Algorithm Steps

tR(II) = bR(II) + bR(8)
t[(II) = b[(II) + b[(8)

BR(I2) = bR(Il) - bR(8)
B[(I2) = b[(II) - b[(8)

tR(I3) = bR(I4) + bR(5)

t[(I3) = b[(I4) + b[(5)

BR(14) = bR(14) - bR(5)
B[(14) = b[(14) - b[(5)

cR(II) = tR(Il) + tR(13)

c[(Il) = tJ(II) + t[(I3)

cR(I3) = tR(II) - tR(I3)

c[(I3) = t[(II) - tJ(I3)

cR(l5) = BR(l 2) + BR(14)
c/(I5) = B/(I2) + B/(I4)

dR(lO) = cR(Il) + bR(2)

d/(lO) = c[(ll) + b[(2)

Memory Map

tR(lI) :::} M(7)

tJ(ll) =} M(22)

BR(12) :::} M(13)

B[(12) :::} M(28)

tR(13) => M(l)

tJ(I3) =} M(16)

BR(14) =} M(4)

B[(14) =} M(I9)

CR (11) :::} M (7)

c[(I1) =} M(22)

cR(13) =} M(I)

cJ(l3) => M(16)

cR(l5) => M(32)

c/(I5) => M(33)

dR(IO) => M(IO)

d[(lO) =} M(25)

SEC. 9.5 CONVOLUTIONAPPROACH 179

Stage 3: Nested Multiplications

This stage performs all of the multiplications in the 15-point transform. It is composed
of the product of multiplications from the 3- and 5-point building blocks as described in
Section 9.5.8. The output from the first of the 5-point input add building blocks uses the
normalS-point transform multiplication constants. The outputs of the second of the 5
point building blocks also use these multiplication constants. However, these constants are
multiplied by the 3-point building-block constant of cos(2 *n 13) - 1. Likewise, the output
of the third of the 5-point building blocks also uses the 5-point multiplication constants,
multiplied by the 3-point building-block constant of sin(2 *n 13).

Since all of these computations are simple multiplications, the data addressing for this
stage is to pull each of the data values from memory, perform the required multiplication, and
return the results to the memory location occupied by the input data for the multiplication.
The first set of multiplies requires 5 constants. Each of the other two sets of multiplications
requires 6 constants for a total of 17constants that are assumed to be stored in memory and
17 total multiplications.

Multiplications for the Outputs of the First Set of 5-Point Building-Block Input Adds

These multiplications are represented in Figure 9-12 by the top multiply block.

Algorithm Steps Memory Map

MR(O) = dR(O) * 1 MR(O) :::} M(O)

M/(O) = d[(O) * 1 M/(O) :::} M(15)

M R(l) = CR(!) * [0.5 *cos(2n15) + 0.5 * cos(41l'15) - 1] M R(I) :::} M(12)

M[(l) = c[(l) * [0.5 *cos(21l'15) + 0.5 *cos(4nIS) - 1] M/(I) :::} M(27)

M R(3) = cR(3) * [0.5 *cos(21l'15) - 0.5 *cos(41l'15)] M R(3) :::} M(6)

M[(3) = c[(3) * [0.5 * cos(21l'15) - 0.5 *cos(4Jr IS)] M[(3) :::} M(21)

MR(l 5) = cR(5) * sin(4n15) MR(15) :::} M(30)

M/(15) = c[(5) * sin(4n15) M[(15) :::} M(31)

M R(2) = B[(2) * [sin(21l'15) + sin(4n15)] MR(2) :::} M(18)

M[(2) = -BR(2) * [sin(21l'15) + sin(4nI5)] M/(2) :::} M(3)

MR(4) = -B[(4) * [sin(2nI5) - sin(4nI5)] MR(4) :::} M(24)

M,(4) = BR(4) * [sin(2Jr/5) - sin(4rr/5)] M/(4) =} M(9)

Multiplications for the Outputs of the Second Set of 5-Point Building-Block
Input Adds

These multiplications are represented in Figure 9-12 by the center multiply block.

Algorithm Steps

M R(5) = dR(5) * [cos(2Jr13) - 1]

M[(5) = d[(5) * [cos(2n13) - 1]

MR (6) = cR(6) * [0.5 * cos(2rr IS) + 0.5 *cos(4nIS) - 1] * [cos(2n13) - 1]

M[(6) = c[(6) * [0.5 * cos(2rr IS) + 0.5 * cos(4n15) - 1] * [cos(2Jr13) - 1]
MR (8) = cR(8) * [0.5 *cos(2rr/5) - 0.5 * cos(4nI5)] * [cos(2nI3) - 1]

M[(8) = c[(8) * [0.5 *cos(2rr 15) - 0.5 * cos(4n IS)] * [cos(2n13) - 1]
M R(16) = cR(lO) * sin(4rr/5) * [cos(2nI3) - 1]

M[(16) = cICIO) * sin(4nI5) * [cos(2nI3) - 1]

Memory Map

M R(5) =} M(5)

M[(5) :::} M(20)

M R(6) => M(8)

M[(6) => M(23)

M R(8) => M(I4)

M j(8) => M(29)

MR (16) => M(34)

M j (16) :::} M(35)

180 CHA~ 9 ALGORITHM CONSTRUCTION

Algorithm Steps

MR(7) = B/(7) * [sin(21l'15) + sin(41l'15)] * [cos(2Jr/3) - 1]

M/(7) = -BR(7) * [sin(2nI5) + sin(41l'15)] * [cos(21l'13) - 1]

MR(9) = -B/(9) * [sin(2nI5) - sin(4nI5)] * [cos(21l'13) - 1]

M/(9) = BR(9) * [sin(2JrI5) - sin(4JrI5)] * [cos(21l'13) - 1]

Memory Map

M R(7) => M(17)

M/(7) => M(2)

MR (9) => M(26)

M[(9) => M(11)

Multiplications for theOutputs of the Third Setof 5-Point Building-Block InputAdds

These multiplications are represented in Figure 9-12 by the bottom multiply block.

Algorithm Steps

MR(lO) = -d/(lO) * sin(21l'13)

M/(lO) = -dR(lO) * sin(2n13)

MR(ll) = -cj(ll) * [0.5 *cos(2Jl'15) + 0.5 * cos(4nIS) - 1] * sin(2Jl'13)

Mj(ll) = -eR(ll) * [0.5 *cos(2Jl'15) + 0.5 * cos(4Jl'15) - 1] * sin(2Jr13)

MR(13) = -cj(13) * [0.5 *cos(2n15) - 0.5 *cos(4Jl'15)] * sin(2n13)

M/(13) = -cR(13) * [0.5 *cos(2Jl'15) - 0.5 *cos(4nIS)] * sin(2n13)

M R(17) = c[(15) * sin(4n15) * sin(21l'13)

M/(17) = cR(15) * sin(4nIS) * sin(2n13)

MR(12) = BR(12) * [sin(2nIS) + sin(4nIS)] * sin(2n13)

M/(12) = -B/(12) * [sin(2Jl'15) + sin(4Jl'15)]* sin(21l'13)

M R(14) = -BR(14) * [sin(21l'15) - sin(4Jl'15)]*sin(2n/3)

M[(14) = B/(14) * [sin(21l'15) - sin(4nIS)] * sin(21l'13)

Stage 4: Output 5-Point Adds

Memory Map

MR(lO) => M(25)

M[(IO) => M(IO)

M R (11) => M(22)

Mj(ll) => M(7)

M R(13) => M(16)

M[(13) => M(l)

M R (17) => M(33)

M/(17) => M(32)

MR (12) => M(13)

M[(12) => M(28)

MR (14) => M(4)

M/(14) => M19)

This stage takes the outputs of each of the groups of multiplies in Stage 3 and performs
adds and subtracts using the 5-point building block's output adds. The result is five complex
outputs for each of the three sets of 5-point output adds. The inputs to each of these sets
of computations is the outputs from the multiplications in Stage 3. Six complex input data
values yields five complex output data values for each set of computations.

The strategy for converting these equations to code is to start at the top (compute
eR(I» and identify the pair of inputs to be used first (in this case MR(l) and MR(O». Then
look down the list to find the second place where these two inputs are used. In this case,
MR(l) is not used again and MR(O) is only relabeled to become one of this stage's outputs.
Therefore, pull MR(l) and MR(O) from memory, compute eR(I), relabel MR(O) as NR(O),
and store the results in memory locations M(12) and M(O), previously occupied by MR(I)
and MR(0). The next step is to look at the next computation e/ (1) on the list and repeat the
same set of steps. Continue this process until all the Algorithm Steps in Stage 4 have been
computed and their results stored in the Memory Map addresses.

Firstof Three Setsof 5-Point Building-Block OutputAdds
These output adds are represented in Figure 9-12 by the 5-point output adds block

labeled O. Further, the labels on the right of this output adds block correspond to the output
labels in the 5-point Winograd building block in Chapter 8.

SEC. 9.5 CONVOLUTION APPROACH 181

Algorithm Steps

eR(l) == MR(l) + MR(O)

e,(l) == MI(l) + MI(O)

.IR (1) == e R (1) + M R (3)

.Ii (1) == e / (1) + M I (3)

.fR(2) == MR (2) - MI(15)

.Ii (2) == MI (2) + MR (15)

.If< (3) == e R (1) - M R (3)

.Ii (3) == e I (1) - M1(3)

.Ii«4) == M R(4) - M I(IS)

.Ii(4) == M j(4) + M R(lS)

NR(O) == MR(O)

NICO) == MI(O)

NR (1) == .fR(I) + iR(2)

N I (1) == .Ii (1) + 11(2)

N R (4) == I« (1) - [« (2)

N/(4) == [i'. 1) - .f/(2)

NR(3) == IReJ) + fR(4)

N/(3) == fi(3) + 1/(4)

NR(2) == .fR(3) - IR(4)

N/(2) == .(/(3) - .f/(4)

Memory Map

eR(l) ~ M(12)

e,(l) ~ M(27)

fR(l) ~ M(6)

.Ii(1) ~ M(2l)

fR(2) ~ M(18)

.f/(2) ~ M(3)

.fR(3) ~ M(12)

.f/(3) ~ M(27)

.fR(4) ~ M(24)

.Ii(4) ~ M(9)

NR(O) ~ M(O)

NI(O) ~ M(lS)

N R(I) ~ M(6)

N/(l) ~ M(2l)

N R(4) ~ M(18)

N,(4) ~ M(3)

N R(3) ~ M(l2)

N I(3) ~ M(27)

N R(2) ~ M(24)

N,(2) ~ M(9)

Second of Three Sets of 5-Point Building-Block Output Adds

These output adds are represented in Figure 9-12 by the 5-point output adds block
labeled 1. Further, the labels on the right of this output add block correspond to the output
labels in the 5-point Winograd building block in Chapter 8.

Algorithm Steps

eR(6) == MR(6) + MR(5)

e/(6) == M/(6) + M,(5)

.Ii< (6) == eR (6) + M R (8)

.Ii(6) == e, (6) + M1 (8)

.fR(7) == M R (7) - M I (16)

.1/(7) == M,(7) + M R(16)

fR(8) == eR(6) - M R(8)

.f/ (8) == e/ (6) - M, (8)

.IR(9) == M R (9) - M/(16)

.11(9) == M/(9) + M R(16)

N R(5) == MR (5)

N I(5) ==M/(S)

Memory Map

eR(6) ~ M(8)

e,(6) ~ M(23)

!R(6) ~ M(14)

!1(6) ~ M(29)

fR(7) ~ M(17)

f/(7) ~ M(2)

iR(8) ~ M(8)

.f,(8) ~ M(23)

.fR(9) ~ M(26)

1,(9) ~ M(ll)

N R(5) ~ M(5)

N,(5) ~ M(20)

182 CHAR 9 ALGORITHM CONSTRUCTION

Algorithm Steps

N R(6) = [R(6) + [R(7)

N/(6) = [/(6) + [/(7)

NR(9) = IR(6) - IR(7)

N/(9) = 1/(6) - 1/(7)

N R(8) = IR(8) + IR(9)

N I(8) = 11(8) + [1(9)

NR(7) = IR(8) - IR(9)

NI(7) = 11(8) - 1/(9)

Memory Map

N R(6) :::} M(14)

N/(6) :::} M(29)

NR(9) :::} M(17)

N/ (9) :::} M (2)

N R(8) =} M(8)

NI (8) => M(23)

NR(7) => M(26)

N/(7) => M(ll)

Thirdof Three Sets of 5-PointBuilding-Block OutputAdds
These output adds are represented in Figure 9-12 by the 5-point output adds block

labeled 2. Further, the labels on the right of this output add block correspond to the output
labels in the 5-point Winograd building block in Chapter 8.

Algorithm Steps

eR(ll) = MR(ll) + MR(lO)

e/(ll) = M/(ll) + M/(10)

IR(II) = eR(ll) + MR(13)

fi(ll) = el(ll) + M/(13)

IR(12) = MR(12) - M/(17)

Ji(12) = M/(12) + MR(17)
[R(13) = eR(ll) - MR(13)

//(13) = el(ll) - M I(13)
IR(14) = MR(14) - M/(17)

/1(14) = M/(14) + MR(17)
NR(lO) = MR(lO)

N/(lO) = M/(lO)

NR(ll) = IR(ll) + [R(12)

N/(ll) = /1(11) + /1(12)

NR(14) = IR(ll) - IR(12)

N/(14) = //(11) - Ji(12)

NR(!3) = IR(13) + IR(14)

N/(13) = [/(13) + /1(14)

NR(12) = IR(13) - !R(14)

N I(12) = /1(13) - /1(14)

Memory Map

eR(ll) => M(22)

el(11) :::} M(7)

IR (11) :::} M(16)

//(11) :::} M(l)

IR(12) :::} M(13)

Ji(12) => M(28)

IR(13) :::} M(22)

/1(13) => M(7)

IR(14) :::} M(4)

/1(14) => M(19)

NR(lO) => M(25)
NI(lO) =} M(lO)

NR(ll) =} M(16)

N/(ll) =} M(I)

N R(14) =} M(13)

N/(14) =} M(28)

NR (13) =} M(22)

N/(13) :::} M(7)

NR (12) => M(4)

NI(12) => M(19)

Stage 5: Three-Point BUilding-Block Output Adds

This is the final stage in the 15-point Winograd transform example. This stage per
forms five sets of 3-point building-block output adds, each using an input from each of the
three 5-point output add computations in the previous stage. The m-th output of the k-th 3
pointoutputaddbuildingblockisAR«3*k+5*m) mod 15)andA/«3*k+5*m) mod 15).

SEC. 9.5 CONVOLUTION APPROACH 183

The strategy for converting these equations into code is to start at the top (compute
dR(I» and identify the pair of inputs to be used first (in this case NR(O) and N R (5» .
Then look down the list to find the second place where these two inputs are used. In
this case, N R(5) is not used again and NR(O) is relabeled to become AR(O), one of the
outputs. Therefore, pull NR (0) and NR (5) from memory, compute dR (I), relabel NR (0)
as AR (0), and store the results in memory locations M (5) and M (0), previously occu
pied by NR(5) and NR(O). The next step is to look at the next computation d/(l) on
the list and repeat the same set of steps. Continue this process until all the Algorithm
Steps in Stage 5 have been computed and their results stored in the Memory Map ad
dresses.

First of Five 3-Point Building-Block Output Adds

These output adds are represented in Figure 9-12 by the 3-point output adds block
labeled O. Further, the labels on the right of this output add block correspond to the output
labels in the 3-point Winograd building block in Chapter 8, for k = O.

Algorithm Steps

dR(I) == NR(O) + NR(5)

d[(l) = N[(O) + N[(5)

A R (0) == N R (0)

A[(O) = N[(O)

A R(5) = dR(l) + NR(lO)

A[(S) = d[(l) - N[(IO)

AR(IO) == dR(I) - NR(IO)

A[(lO) == d[(t) + N[(IO)

Memory Map

dR(l) ::::} M(5)

d[(l) ::::} M(20)

AR(O) ::::} M(O)

A/(O) ::::} M(15)

AR(5) ::::} M(5)

A[(5) ::::} M(20)

AR(lO) ::::} M(25)

A/(IO) ::::} M(IO)

Second of Five 3-Point Building-Block Output Adds

These output adds are represented in Figure 9-12 by the 3-point output adds block
labeled 1. Further, the labels on the right of this output add block correspond to the output
labels in the 3-point Winograd building block in Chapter 8, for k = 2.

Algorithm Steps

dR(4) == N R(l) + N R(6)

d/(4) == N/(l) + N/(6)

A R(6) == NR(I)

A/(6) == N/(l)

A R ('11) == d R (4) + N R (11)

A[(II) == d/(4) - N[(II)

AR(l) = dR(4) - NR(ll)

A/(l) = d/(4) + N/(II)

Memory Map

dR(4) ::::} M(14)

d[(4) =} M(29)

A R(6) =} M(6)

A/(6) =} M(2I)

AR(II) =} M(I4)

A/(ll) =} M(29)

AR(l) =} M(16)

A/(l) =} M(l)

Third of Five 3-Point Building-Block Output Adds

These output adds are represented in Figure 9-12 by the 3-point output adds block
labeled 2. Further, the labels on the right of this output add block correspond to the output
labels in the 3-point Winograd building block in Chapter 8, for k = 4.

184 CHA~ 9 ALGORITHM CONSTRUCTION

Algorithm Steps

dR(7) = NR(2) + NR(?)

d/(7) = N/(2) + N/(?)

A R (12) = N R(2)

A/(12) = N/(2)

AR(2) = dR(?) + NR(12)

A/(2) = d/(7) - N/(12)

AR (?) = dR (?) - NR (12)

A/(7) =dIe?) + N/(12)

Memory Map

dR(7) => M(26)

d/(7) => M(ll)

A R (12) => M(24)

A/(12) => M(9)

AR(2) => M(26)

A/(2) => M(ll)

AR(7) => M(4)

A/(7) => M(19)

Fourthof Five3-PointBuilding-Block OutputAdds

These output adds are represented in Figure 9-12 by the 3-point output adds block
labeled 3. Further, the labels on the right of this output add block correspond to the output
labels in the 3-point Winograd building block in Chapter 8, for k = 1.

Algorithm Steps

dR(lO) = NR(3) + NR(8)

dI(lO) = N/(3) + N/(8)

A R(3) = N R(3)

A/(3) = N I(3)

AR(8) = dR(IO) + NR(13)

A/(8) = d/(lO) - NI(13)

A R(13) = dR(IO) - NR(13)

A I (13) = d/(lO) + Nj(13)

Memory Map

dR(lO) => M(8)

d/(IO) => M(23)

AR(3) ::::} M(12)

AI(3) ::::} M(2?)

AR(8) ::::} M(8)

A/(8) => M(23)

AR (13) => M(22)

A I (13) ==> M(?)

Fifth of Five3-PointBuilding-Block OutputAdds

These output adds are represented in Figure 9-12 by the 3-point output adds block
labeled 4. Further, the labels on the right of this output add block correspond to the output
labels in the 3-point Winograd building block in Chapter 8, for k = 3.

Algorithm Steps

dR (13) = N R(4) + N R(9)

dI (13) = N j(4) + Nj(9)

A R (9) = N R(4)

A J(9) = N j(4)

A R (I4) = dR(13) + NR(14)

A/(14) = dj(13) - N/(14)

A R(4) = dR(13) - NR(14)

A j(4) = d/(13) + N/(14)

Memory Map

dR(13) => M(17)

d/(I3) => M(2)

AR (9) =} M(18)

A J(9) ::::} M(3)

AR (14) :::} M(l?)

A/(14) :::} M(2)

A R(4) => M(13)

Aj(4) :::} M(28)

SEC.9.6

9.6 PRIME FACTOR APPROACH

9.6.1 Prime Factor Algorithm Introduction

PRIME FACTOR APPROACH 185

The prime factor [3] algorithm is a special form of the mixed-radix algorithm presented
in Section 9.7. The major constraint on this algorithm is that the small-point building blocks
must be relatively prime. This means that they cannot have any factors in common. For
example, a 72-point transform can be implemented by using the prime factor algorithms
because it can be decomposed into 8- and 9-point building blocks. While neither 8 nor 9 is
a prime number, they have no factors in common and are therefore called relatively prime.

The drawback to this algorithm is that the relatively prime factors can get large and,
therefore, cumbersome to implement. As an extreme example, the 256-point transform
(256 == 28) cannot be factored and implemented using relatively prime factors. Transform
lengths like 72 can only be implemented as 8 * 9, not as 4 * 2 * 3 * 3 or any of the other
potential combinations of the factors of 72.

In exchange for these drawbacks, the prime number transform does not require any
multiplications between the small-point transforms such as the mixed-radix algorithms in
Section 9.7. These multiplications are replaced by reordering of the data, which can be
performed at the beginning and end of the algorithm. This reduces the number of required
computations and the corresponding quantization noise. It also reduces the number of
multiplier constants required in the algorithm because the only ones to be stored are for the
small-point building blocks themselves. Therefore, these algorithms are most likely to be
used when quantization noise is critical, where data addressing is easier than multiplication,
or where storage locations for multiplier constants are at a premium. Another important
feature of this algorithm is that it can use any of the small-point building blocks from
Chapter 8.

General Prime Factor Algorithm. Prime factor [3] algorithms are characterized
by a sequence of small-point building blocks, from Chapter 8, without complex multipliers
between. This sequence of building blocks is developed by factoring the transform length,
N, into two numbers, N = P * Q, and computing the N -point transform based on P- and
Q-point FFTs (Figure 9-13). Chapter 3 describes why that process works. If P or Q can
be further factored, say Q == R * S, then the Q-point transform can be constructed from
two building blocks (R- and S-point building blocks) with Figure 9-13 as a guide.

Data
Reorder

P-Point
FFT

Data
Reorder

Q-Point
FFT

Figure 9-13 Top-level two-factor prime factor algorithm block dia
gram.

The result of factoring N into P * R * S is a block diagram that has a series of
three building blocks without complex multipliers between them (Figure 9-14). The prime
factor algorithm allows this factoring process to continue as long as the set of factors
is relatively prime (i.e., they have no common factors). The extreme case is to factor N
until the building blocks are only primes and powers-of-primes. Even if N is factored to this

186 CHA~ 9 ALGORITHM CONSTRUCTION

extreme, there are numerous orders in which those primes can be combined to form the
complete transform. The order of the building blocks determines the data reordering used
between the stages but does not affect the number of adds and multiplies.

Data
Reorder

P-Point
FFT

Data
Reorder

R-Point
FFT

Data
Reorder

S-Point
FFT

Figure 9-14 Top-level three-factor prime factor algorithm block dia
gram.

Thirty-Point Example. There are three ways to factor 30 into two numbers (2 *15,
3 * 10, 5 * 6). Therefore, the 3D-point transform can be implemented, using the block
diagram in Figure 9-13, as anyone of these sequences of two building blocks. In fact, each
of these choices can be implemented in two ways. The 2 * 15 option can be implemented
with either the 2- or 15-point transform first in Figure 9-13. However, in each case, one of
the two factors can be factored further into two factors. The result in all three cases is three
building blocks (2, 3, and 5 points). There are six ways of ordering these three numbers to
implement the 3D-point FFT. To summarize, there are 12 ways to implement the 3D-point
FFf independent of which algorithm is used for each building block. These are shown in
Table 9-5. The first six sequence choices only have two building blocks, indicated by N/A in
column S. The choice of building blocks from Chapter 8 for all but the 6-, 10-, and IS-point
FFTs provides additional options to optimize the implementation for an application.

Table 9-5 Thirty-Point Prime Factor
Building-Block Sequences

Sequence choices P R S

1 2 15 N/A
2 15 2 N/A
3 5 6 N/A
4 6 5 N/A
5 3 10 N/A
6 10 3 N/A
7 2 3 5
8 2 5 3
9 3 2 5

10 3 5 2

11 5 2 3
12 5 3 2

Section 9.6.2 describes how to determine the number of adds and multiplies for the
prime factor algorithm. Section 9.6.3 describes the general prime factor algorithm for two
factors. Then the next two sections give two prime factor algorithms, Kolba-Parks and
SWIFT, using I5-point transforms, so that their features can be most easily compared. The
primary difference between the two algorithms is the strategy for organizing the data and
then reorganizing it between the building blocks. The number of adds and multiplies, data

SEC. 9.6 PRIME FACTORAPPROACH 187

memory locations, and locations for multiplier constants is the same for both prime factor
algorithms.

9.6.2 Number of Prime Factor Algorithm Adds and Multiplies

The number of real adds and multiplies is the sum of those required for the algorithm
building blocks. Since there are (N / Pi) Pi -point transforms, the number of adds and mul
tiplies contributed by these building blocks is just (N / Pi) times the number of real adds
and multiplies required by these algorithm building blocks. These numbers are listed in the
Comparison Matrix in Chapter 8. If N is factored into n relatively prime factors, Pi, then:

n

adds = L(N/Pi) * Ai
;=1

n

multiplies = L(N/ Pi) * M;
;=1

where: Ai = number of real adds in Pi-point algorithm building block
M, = number of real multiplies in Pi -point algorithm building block

9.6.3 General Prime Factor Algorithm for Two Factors

(9-1)

Since the prime factor algorithm is constructed by repeatedly factoring an integer into
two other integers, it is completely described by the equations required to factor N into two
factors as depicted in Figure 9-13. To construct a prime factor algorithm for three factors
(P, R, S, where Q = R *S), first follow the two-step decomposition. Then for each of the
P Q-point transforms relabel its inputs as if they were Q consecutive complex data points
and reapply the two-step decomposition to split it into two factors. Each of those can be
further subdivided by using the same approach if Rand S can be factored.

The algorithm starts by properly grouping the complex data points from the total
N -point input sequence for input to a set of Q P-point algorithms. Once each of
these P-point transforms is computed, their outputs are reorganized to provide the inputs to
the P Q-point algorithms. The Q-point algorithms are then computed and their outputs
stored as the N complex output frequency components.

Stage 1: Input P·Point Building Blocks

This stage has two steps. The first is to properly group the input data for each of
the Q P-point building blocks. The second is to compute each of the Q P-point building
blocks. The number of adds and multiplies required for this stage is Q times the number of
adds and multiplies required for the chosen P-point algorithm. Since the P-point building
blocks are computed sequentially, any additional memory required for the P-point building
block is only needed once. This is because each P-point algorithm uses these additional
locations, in sequence, not all at once. Therefore, the total memory required for this portion
of the algorithm is 2 * N for the data plus the additional locations needed for one P-point
building block.

Step 1: Grouping the InputData Points for the P-PointBuilding Blocks
There are two strategies for grouping the input data to the P-point building blocks.

Both result in the same groups of input data points. However, the order in which they are

188 CHA~ 9 ALGORITHM CONSTRUCTION

used as the P-point building block inputs is different for nearly all transform lengths. The
equations for both input orderings are given. It is important to notice that the IS-point
examples actually use the same ordering of the input data. This is an exception to the
general rule.

For the Kolba-Parks [3] algorithm, the k-th input to the n-th P-point algorithm is

aR«k * Q + P *n) mod N) and a/«k *Q + P *n) mod N), (where k = 0, 1, ... , (P - 1)
and n = 0, 1, ... , Q-1) from the input data sequence. Therefore, the zero-th (k = 0) input
tothen-th P-pointbuilding block is aR(P*n) anda/(P*n), wheren = 0,1, ... , (Q-l).
Additionally, the subsequent inputs to the same P-point transform are separated by Q
samples because k is incremented to determine the sample. Figure 9-15 shows the inputs
for the second (n = 1) P-point building block.

a(P modN) B(P modN)

a«Q+P) mod N) B«Q+P) mod N)

a«2*Q+P) mod N) P..Point B«2*Q+P) mod N)

• Building •
• Block •
• •

a«(P-l)*Q+P) mod N) B«(P-l)*Q+P) mod N)

Figure 9-15 Kolba-Parks P-point building-block data configuration for

n = 1.

For the SWIFf [4] algorithm, the k-th input to the n-th P-point building block is

aR«k* Q + (Q »d + 1) *n) mod N) anda/«k * Q + (Q *d + 1) *n) mod N), where c
and d are determined as the solution to the equation:

(9-2)

and define the output sequence for the SWIFT algorithm. For the I5-point SWIFf example
(P = 3 and Q = 5), the solution of Equation 9-2 is c = -2 and d = 1. Figure 9-16 shows
these inputs for the second (n = 1) P-point building block.

Step2: Computing the Q P-PointBuilding Blocks
Use the complex input data points defined in Step 1 to compute each of the Q P-point

building blocks. Again, the two prime factor algorithms have different output data labeling.
The simplest approach to output labeling is to use the same modulo arithmetic scheme as
on the input. Therefore, for the Kolba-Parks algorithm, the k-th output of the n-th P-point

building block is labeled BR«k* Q+ P*n) mod N) and B/«k* Q+ P*n) mod N), (where
k = 0, 1, ... , (P - 1) and n = 0, 1, ... , (Q - 1». Similarly, for the SWIFf algorithm,
the k-th output of the n-th P-point building block is BR«k * Q + (Q *d + 1) *n) mod N)
and B/«k * Q + (Q * d + 1) * n) mod N), where d is defined by Equation 9-2. Figures
9-15 and 9-16 show this labeling for the Kolba-Parks and SWIFT algorithms, respectively.

SEC. 9.6 PRIME FACTOR APPROACH 189

a«Q*d+ 1) mod N) B«Q*d+l) mod N)

a«Q+Q*d+ 1) mod N) B«Q+Q*d+l) mod N)

a«2*Q+Q*d+ 1) mod N) P-Point B«2*Q+Q*d+l) mod N)

• Building •Block
• •
• •

a«(P-l)*Q+Q*d+l) mod N) ----. B«(P-l)*Q+Q*d+l) mod N)

Figure 9-16 SWIFf P-point building-block data configuration for
n==l.

Stage 2: Output o-Point Building Blocks

This stage also has two steps. The first is to properly group the input data for each of
the P Q-point building blocks. The second is to compute each of the P Q-point building
blocks. The number of adds and multiplies required for this stage is P times the number
of adds and multiplies required for the chosen Q-point building block. Since the Q-point
building blocks are performed sequentially, any additional memory required for the
Q-point building block is only needed once. This is because each Q-point building block
uses these additional locations, in sequence, not all at once. Therefore, the total memory
required for this portion of the algorithm is 2 * N for the data plus the additional locations
needed for one Q-point building block.

Step 1: Grouping the Input Data Points to the Q-Point Building Blocks

Again, the data ordering for this stage of the computations is different for the two
prime factor algorithms. For the Kolba-Parks algorithm, the n-th input to the k-th Q- point
building block is:

BR«k * Q + P *n) mod (N»

B/((k * Q+ P * n) mod (N»

(9-3)

(9-4)

wherek == 0,1, ... , (P-l)andn == 0,1, ... , (Q-I). Similarly,fortheSWIFfalgorithm,
the n-th input to the k-th Q-point building block is BR«k * Q + (Q *d + 1) * n) mod N)
and B / «k *Q + (Q *d + 1)*n) mod N), where d is defined by Equation 9-2. Figures 9-17
and 9-18 show this labeling for the first (k == 0) Q-point building block for the Kolba-Parks
and SWIFf algorithms, respectively. In both algorithms, the inputs to the first (k == 0)
Q-point building block are the first outputs of each of the P-point building blocks. This
pattern holds for each Q-point building block. Specifically, the inputs to the k-th Q-point
building block are the k-th outputs of all of the P-point building blocks.

Each input data value to a Q-point building block comes from a different P-point
building-block output. Therefore, the data memory locations where the required input
data reside are not in the order assumed by the building-block Q-point building blocks
in Chapter 8. To further complicate this, the output data memory map order for the

190 CHA~ 9 ALGORITHM CONSTRUCTION

B(O) A(O)

B(P modN) A(S modN)

B(2*P mod N) Q-Point A(2*S modN)

• Building •
• Block •
• •

B«Q-I)*P mod N) A«Q-I)*S mod N)

Figure 9-17 Kolba-Parks Q-point building-block data configuration for
k=O.

B(O) ~ A(O)

B«Q*d+ 1) mod N) ~ A(P*(l mod Q»

B(2*(Q*d+1) mod N) ~ Q-Point A(P*(2 mod Q»

•
Building

•
• Block •
• •

B«Q-l)*(Q*d+l) mod N) ~ A(P*«Q-l) mod Q»

Figure 9-18 SWIFf Q-point building-block data configuration for
k=O.

P-point building blocks in Chapter 8 is not in sequence. Therefore, to use the building
block algorithms from Chapter 8, the specified data memory locations must be relabeled.
This process is straightforward and is completely described in Section 9.4.

Step2: Computing the P Q-PointBuildingBlocks
Use the complex input data points defined in Step 1 to compute each of the P Q-point

building blocks. The output labeling is again different for the two prime factor algorithms.
For the Kolba-Parks algorithm, the n-th output of the k-th Q-point building block should
be labeled AR[(S *n + u *k) mod N] and A/[(S *n + u *k) mod N], where Sand u are
determined as solutions to the equations

S =. 1 mod(Q) u == 1 mod(P)

S=.O mod(P) u == 0 mod(Q)

For the l S-point Kolba-Parks example, S = 6 and u = 10. Figure 9-17 shows this labeling
for the first (k = 0) Q-point building block.

Similarly, for the SWIFT algorithm, the n-th output of the k-th Q-point building
block is AR(P * [en + c *k) mod Q]+ k) and A/(P * [en + c *k) mod Q]+ k), where c

SEC. 9.1 FOUR PERFORMANCE MEASURES 191

is defined by Equation 9-2, n == 0,1, ... , (Q - 1), and k == 0,1, ... , (P -1). Figure 9-18
shows this labeling for the first (k == 0) Q-point building block.

9.6.4 Fifteen-Point Kolba-Parks FFT Example

The IS-point Kolba-Parks [3] algorithm can be implemented with either the 3-point
or the 5-point building blocks first. If the 3-point transform is first, the 15 pieces of com
plex input data are divided into five sets of three complex points, one for each of the
15/3 == 53-point building blocks. Following the 3-point transforms, the intermediate
results are reorganized into three sets of five pieces of complex data needed for input to
the 15/5 == 3 5-point building-block computations. The order does not affect how many
computations are required. This example uses the Singleton 3- and 5-point building blocks.
A smaller number of adds and multiplies is required if the Winograd building blocks were
used.

If the Comparison Matrix in Chapter 8 and Equation 9-1 are used, the total number
of real adds required is 5 * 12 + 3 * 32 == 156 and the total number of real multiplies
is 5 * 4 + 3 * 16 == 68. The total amount of data memory required is driven by the 5
point building block and is 32 locations. Explicitly, 30 locations are required for the 15
complex data points, plus 2 additional locations for the intermediate computations in the
5-point Singleton building block. Similarly, the 3-point Singleton building block has two
multiplier constants and the 5-point Singleton building block has four for a total of six
memory locations for multiplier constants. Figure 9-19 is a block diagram of this example.
The stages are as follows.

Stage 1: Three-Point Building Blocks

The 15 data points are divided into five sets of 3 points to serve as inputs to each
of the 3-point building blocks. This is done by using the addressing from Section 9.6.3,
starting with complex input data point pair au(0), a/ (0), and grouping it with complex
input data point pairs aR(5), a/(5) and aR(IO), a/(IO). These provide the input to the top
one of the five 3-point building blocks in Figure 9-19. This is followed by grouping the
input data point pairs aR(3), a/(3), aR(8), a/(8), and aR(13), a/(13) to provide the input
for the second of the five 3-point building blocks. The next grouping is data point pairs
aR(6), a/(6), aR(11), a/(I1), and aR(I), a/(l) for input into the third of the five 3-point
building blocks. The next grouping is data point pairs aR(9), a/(9), aR(14), a/(14), and
aR (4), aI (4) to provide input for the fourth of the five 3-point building blocks. The final
grouping is data point pairs aR(12), a/(12), aR(2), a/(2), and aRC?), ale?) for input into
the fifth 3-point building block.

The order in which this data is used for inputs to the 3-point building blocks is the key
point in removing the need for complex multipliers between the 3- and 5-point algorithms.
From Section 9.6.3, the complex input data for the k-th input to the m-th 3-point building

block is aR«5 * k + 3 *m) mod 15), a/«5 * k + 3 *m) mod 15), where k == 0,1, and 2,
and m == 0,1,2,3, and 4.

The five groups of computations, listed as (a) through (e), each perform the 3-point
building block. In this example, the Singleton 3-point algorithm building block from Chap
ter 8 is used. All of these 3-point building blocks could also have been the Winograd 3-point
algorithm building block from Chapter 8. In fact, the five 3-point building blocks can be
any combination of these two 3-point algorithm building blocks. The outputs of each of the

192 CHAR 9 ALGORITHM CONSTRUCTION

a(O)

a(5)

a(10)

a(3)

a(8)

a(13)

a(6)

a(ll)

a(l)

a(9)

a(14)

a(4)

a(12)

a(2)

a(7)

-·0 0 0 or--.
0

I I I~-·1 1

-.2 2
I

2 0 2~
I

I
3 3~

--'0 0 ----.4 4~

1
I

--'1 1
--.2 2

I

I

I
0 O~

1 1~-+-0 0
I

-+-1 2 1
I

2 I 2~

-+- 2 2
I

3 3~

4~4
I-"0 O~

I
-"1 3 1

I
-..2 2 0 O~

I 1 1~

I 2 2 2~-+-0 0
I 3 3 ----..

-'1 4 1
I

-.2 2 4 4 ----..

A(O)

A(6)

A(12)

A(3)

A(9)

A(10)
A(l)

A(7)

A(l3)
A(4)

A(5)

A(ll)
A(2)

A(8)

A(l4)

3-PointFFTs 5-PointFFTs

Figure 9-19 Fifteen-point Kolba-Parks prime factor algorithm block
diagram.

3-point building blocks, labeled BR(i) and B/(i) for i = 0,5, 10, are the equivalent of the
AR(i) and A/(i) in the 3-point algorithm building block in Chapter 8.

The strategy for converting these equations to code is to start at the top (compute
bR(5» and identify the pair of inputs to be used first (in this case aR(5) and aR(10». Then
look down the list to find the second (compute bR (10» place where these two inputs are
used. Pull aR(5) and aR(lO) from memory, compute bR(5) and bR(lO), and store the results
in memory locations M(5) and M(lO), previously occupied by aR(5) and aR(lO). The next
step is to look at the next computation b/ (5) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps in Stage 1 have been computed and their
results stored in the Memory Map addresses.

First of Five3-PointAlgorithmBuilding Blocks
The inputs to this 3-point building block are aR«5 *k + 3 *m) mod 15), a/«5 *k +

3 *m) mod 15) where m = O. Performing the modulo arithmetic computations results in
the inputs being aR(O), a/CO), aR(5), a/(5), aR(10), and a/(10) for k = 0, 1, and 2. This
set of computations is represented in Figure 9-19 by 3-point building block o. Further, the
labels on the left and right of this building block correspond to the input and output labels
in the 3-point Singleton building block in Chapter 8.

SEC. 9.6

Algorithm Steps

bR(5) == aR(5) + aR(lO)

bR(lO) == aRCS) - aR(IO)

b l(5) == al(5) +al(IO)

bl(lO) == al(5) - a/(IO)

cR(5) == bR(5) * cos(2Jl'13) + aR(O)

BR(O) == aR(O) + bR(5)

cR(IO) == bl(lO) * sin(2Jl'13)

C/ (5) == b, (5) * cos(2Jl'13) + a1(0)

B,(O) == a/CO) + b/(5)

cICIO) == -bR(IO) * sin(2Jrj3)

BR(5) == cR(5) + cR(lO)

B,(5) == c,(5) + cICIO)

BR(IO) == cR(5) - cR(IO)

B,(IO) == c,(5) - c/(lO)

PRIME FACTOR APPROACH 193

Memory Map

bR(5) => M(5)

bR(IO) => M(IO)

b,(5) => M(2D)

bl(IO) => M(25)

cR(5) => M(30)

BR(O) => M(O)

cR(IO) => M(25)

c/(5) => M(5)

B/(O) => M(15)

cICIO) => M(lO)

BR(5) => M(25)

B/(5) => M(IO)

BR(IO) => M(20)

B/(lO) => M(5)

Second of Five 3-Point Algorithm Building Blocks

The inputs to this 3-point building block are aR«5 *k +3 *m) mod 15), a/«5 *k +
3 *m) mod IS) where r1'1 == 1. Performing the modulo arithmetic computations results in
the inputs being aR(3), al(3), aR(8), a/(8), aR(13), and al(13) for k = 0,1, and 2. This
set of computations is represented in Figure 9-19 by 3-point building block 1. Further, the
labels on the left and right of this building block correspond to the input and output labels
in the 3-point Singleton building block in Chapter 8.

Algorithm Steps

bR(8) == aR(8) + aR(13)

bR(13) == aR(8) - aR(13)

bI(8) == al(8) + al(13)

bl(13) == al(8) - a/(13)

cR(8) == bR(8) * cos(2Jr 13) + aR(3)

BR(3) == aR(3) + bR(8)

cR(I3) == b/(13) * sin(2Jl'13)

c/(8) == b/(8) * cos(2Jl'13) + al(3)

B l(3) == a/(3) + b/(8)

c,(13) == -bR(I3) * sin(2Jr/3)

BR(8) == cR(8) + cR(I3)

B/(8) == c,(8) + cj(13)

BR(I 3) == cR(8) - cR(I3)

B,(13) == cl(8) - c'/(I3)

Memory Map

bR(8) => M(8)

bR(13) => M(13)

b/(8) => M(23)

b/(I3) => M(28)

cR(8) => M(30)

ER(3) => M(3)

cR(I3) => M(28)

c/(8) => M(8)

B/(3) => M(18)

c/(13) => M(13)

BR (8) => M(28)

B/(8) => M(13)

BR (13) => M(23)

B/(13) => M(8)

Third of Five 3-Point Algorithm Building Blocks

The inputs to this 3-point building block are a R«5 * k + 3 * m) mod 15),
ale (5 *k +3 *m) mod 15) where m == 2. Performing the modulo arithmetic computations

194 CHAR 9 ALGORITHM CONSTRUCTION

results in the inputs being aR(6), a[(6), aR(II), a[(II), aR(I), and aIel) for k = 0, 1,
and 2. This set of computations is represented in Figure 9-19 by 3-point building block 2.
Further, the labels on the left and right of this building block correspond to the input and
output labels in the 3-point Singleton building block in Chapter 8.

Algorithm Steps

bR(6) = QR(ll) of- QR(l)

bR(II) = aR(ll) - QR(l)

b[(6) = Q[(ll) + Q[(l)

b[(Il) = a[(ll) - Q[(l)

cR(6) = bR(6) *cos(2rr/3) + QR(6)

BR(6) = QR(6)+ bR(6)
cR(ll) = b[(ll) * sin(2rr13)

cj(6) = b[(6) *cos(2rr13) +Q[(6)

B[(6) = Qj(6) + bj(6)

c[(ll) = -bR(ll) * sin(2rr13)

BR(II) = cR(6) + cR(ll)

Bj(Il) = cj(6) + c[(ll)

BR(1) = CR(6) - CR(11)

Bj(l) = cj(6) - cj(ll)

Memory Map

bR(6) =} M(lI)

bR(ll) =} M(l)

b[(6) =} M(26)

b[(lI) =} M(16)

cR(6) =} M(30)

BR(6) =} M(6)

cR(II) => M(16)

cj(6) => M(II)

B j(6) :::} M(21)

cj(ll) => M(l)

BR(ll) :::} M(16)

Bj(II) :::} M(l)

BR(I) => M(26)

B[(l) => M(ll)

Fourth of Five 3-Point Algorithm Building Blocks

The inputs to this 3-point building block are QR«5 *k + 3 *m) mod 15), Qj«5 *k +
3 *m) mod 15) where m = 3. Performing the modulo arithmetic computations results in
the inputs being QR(9), Q[(9), QR(14), Qj(14), QR(4), and Q[(4) for k = 0, 1, and 2. This
set of computations is represented in Figure 9-19 by 3-point building block 3. Further, the
labels on the left and right of this building block correspond to the input and output labels
in the 3-point Singleton building block in Chapter 8.

Algorithm Steps

bR(9) = aR(14) + aR(4)

bR(14) = QR(14) - QR(4)

bj(9) = Qj(14) + Qj(4)

bj(14) = Qj(14) - Qj(4)

cR(9) = bR(9) *cos(2Jl'13) + QR(9)

BR(9) = QR(9) + bR(9)
cR(14) = b[(14) * sin(2rr/3)

C j (9) = bj (9) *cos(2Jl'13) + Q[(9)

Bj(9) = Qj(9) + b[(9)

cj(14) = -bR(14) * sin(2rr13)

BR(14) = cR(9) + cR(14)

Bj (14) = cj(9) + cj(14)

BR(4) = cR(9) - cR(I4)

B[(4) = c[(9) - cj(I4)

Memory Map

bR(9) => M(14)

bR (14) => M(4)

bj(9) => M(29)

bj (14) => M(I9)

cR(9) => M(30)

BR(9) => M(9)

cR(14) => M(19)

cj(9) => M(14)

B/(9) => M(24)

cj(I4) => M(4)

BR (14) => M(19)

B j (14) => M(4)

BR(4) => M(29)

B j(4) => M(14)

Memory Map

bR(7) ::::} M(2)

bR (12) ::::} M(7)

b1(7) ::::} M(17)

bl(12) ::::} M(22)

cR(7) => M(30)

BR(12) ::::} M(12)

cR(12) ::::} M(22)

c/(7) => M(2)

B/(12) => M(27)

c/(12) => M(7)

BR(2) => M(22)

B/(2) => M(7)

BR(7) => M(17)

BI(7) => M(2)

SEC. 9.6 PRIME FACTOR APPROACH 195

Fifth of Five 3-Point Algorithm Building Blocks

The inputs to this 3-point building block are aR«5 *k + 3 *m) mod 15), aI«5 *k +
3 * m) mod 15) where m = 4. Performing the modulo arithmetic computations results in
the inputs being aR(12), a/(12), aR(2), aI(2), aR(7), and al(7) for k = 0, 1, and 2. This
set of computations is represented in Figure 9-19 by 3-point building block 4. Further, the
labels on the left and right of this building block correspond to the input and output labels
in the 3-point Singleton building block in Chapter 8.

Algorithm Steps

bR(7) == aR(2) + aR(7)

bR(12) == aR(2) - aR(7)

b[(7) == a[(2) + al(7)

b/(12) == a[(2) - al(7)

cR(7) == bR(7) * cos(2nI3) + aR(12)

BR(12) == aR(12) + bR(7)
cR(12) == b/(12) * sin(2nI3)

C / (7) == b/ (7) *cos(2n 13) + a/ (12)

B[(12) == a[(12) + b/(7)

c[(12) == -bR(12) * sin(2nI3)

BR(2) == cR(7) + cR(12)

B[(2) == c/(7) + c[(12)

BR(7) == cR(7) - cR(12)

B[(7) == c[(7) - c/(12)

Stage 2: Output 5-Point Building Blocks

For this example, the Singleton 5-point building block from Chapter 8 is used. Either
of the two other 5-point building blocks could have been used without changing the rest
of the structure of the algorithm. If the number of adds and multiplies is the overriding
criterion, then the Winograd algorithm building block should be used in-place of the 5-point
Singleton building block.

The three sets of 5-point algorithm building-block steps from Chapter 8 are listed
as (a) through (c). In Chapter 8 the 5-point algorithm building block was presented as
three stages. Since the individual stages of the 5-point building block are discussed in
Chapter 8, they are not discussed again. The m-th input to the k-th 5-point building block
is BR«5 *k + 3 * m) mod 15) and B/«5 * k + 3 * m) mod 15) from Stage 2, based on the
addressing defined in Section 9.6.3.

The multiply stage of the 5-point Singleton algorithm required additional data memory
locations. If the 15-point computations are performed in the order shown, the additional
memory locations used by the first of the three 5-point building blocks can be reused by
each of the other two 5-point building blocks.

The strategy for converting these equations to code is to start at the top (compute
bR (1» and identify the pair of inputs to be used first (in this case BR (3) and BR (12». Then
look down the list to find the second (compute bR (2» place where these two inputs are
used. Pull BR(3) and ER(12) from memory, compute bR(l) and bR(2) , and store the results
in memory locations M(3) and M(12), previously occupied by BR(3) and BR(12). The next

196 CHAR 9 ALGORITHM CONSTRUCTION

step is to look at the next computation b/ (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps in Stage 2 have been computed and their
results stored in the Memory Map addresses.

First of Three 5-PointBuilding Blocks
This 5-point building block (k = 0) has BR«5 *k + 3 *m) mod 15) and B/«5 *k +

3 * m) mod 15) (m = 0,1,2,3, and 4) as inputs and AR«10 * k + 6 * m) mod 15) and
A/«10 * k +6 *m) mod 15) (m = 0, 1,2,3, and 4) as its output frequency components.
Performing the modulo arithmetic computations results in the inputs being BR (0), B/ (0),
BR(3), B/(3), BR(6), B/ (6), BR(9), B/(9), BR(12), and B/(12).

The multiplication portion of the algorithm requires two additional data memory lo
cations because no temporary registers are assumed. The variables used for the intermediate
computations were chosen to be the same as those used for the 5-point Singleton building
block in Chapter 8 to make it easier to associate the computational steps with the discussion
in Chapter 8. This set of computations is represented in Figure 9-19 by 5-point building
block O. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 5-point Singleton building block in Chapter 8.

Algorithm Steps

bR(I) = BR(3) + BR (12)

b/(I) = B/(3) + B/(12)

bR(2) = BR(3) - BR(12)

b/(2) = B/(3) - B/(12)

bR(3) = BR(6) + B R(9)

b/(3) = B/(6) + B/(9)

bR(4) = BR(6) - BR(9)

b/(4) = B/(6) - B/(9)

cR(2) = bR(2) * sin(2Jrj5) + bR(4) * sin(4Jrj5)
c/(2) = b/(2) * sin(21rj5) + b/(4) * sin(41rj5)
cR(4) = bR(2) * sin(41rj5) - bR(4) * sin(21rj5)

c/(4) = b/(2) * sin(41rj5) - b/(4) * sin(21rj5)

cR(I) = bR(I) *cos(2rr 15) + bR(3) * cos(4rr15) + BR(O)

c/(l) = b/(l) * cos(2rrj5) + b/(3) * cos(41r/5) + B/(O)

cR(3) = bR(I) *cos(4rr/5) + bR(3) *cos(21r/5) + BR(O)

c/(3) = b/(l) *cos(41r/5) + b/(3) *cos(2rr/5) + B/(O)

AR(O) = BR(O) + bR(I) + bR(3)

A/(O) = B/(O) + b/(l) + b/(3)

AR(6) = cR(I) + c/(2)

A/(6) = c/(l) - cR(2)

AR(12) = cR(3) + c/(4)

A/(12) = c/(3) - cR(4)

AR(3) = cR(3) - c/(4)

A/(3) = c/(3) + cR(4)

AR(9) = cR(I) - c/(2)

A/(9) = c/(I) + cR(2)

Memory Map
bR(I) => M(3)

b/(I) => M(18)

bR(2) => M(12)

b/(2) => M(27)

bR(3) => M(6)

b/(3) => M(21)

bR(4) => M(9)

b/(4) => M(24)

cR(2) => M(30)

c/(2) => M(9)

cR(4) => M(31)

c/(4) => M(12)

cR(I) => M(27)

c/(I) => M(3)

cR(3) => M(24)

c/(3) => M(6)

AR(O) => M(O)

A/(O) => M(15)

AR(6) => M(27)

A/(6) => M(18)

AR(12) => M(24)

A/(12) => M(6)

AR(3) => M(12)

A/(3) => M(3)

A R(9) => M(9)

A/(9) => M(21)

SEC. 9.6 PRIME FACTOR APPROACH 197

Second of Three 5-Point Building Blocks

This 5-point building block (k == 1) has BR«5 * k + 3 * m) mod 15) and B/«5 *
k + 3 * m) mod 15)(m == 0,1,2,3, and 4) as inputs and A R«10 * k + 6 *m) mod 15) and
A 1« 10 * k + 6 * 111) mod 15)(In = 0, 1, 2, 3, and 4) as its output frequency components.
Performing the modulo arithmetic computations results in the inputs being B R(5), B/(5),

BR(8), BI (8), BR(11), BI (11), BR(14), B/ (14), BR(2), and B / (2) .
The multiplication portion of the algorithm requires two additional data memory lo

cations because no temporary registers are assumed. The variables used for the intermediate
computations were chosen to be the same as those used for the 5-point Singleton building
block in Chapter 8 to make it easier to associate the computational steps with the discussion
in Chapter 8. This set of computations is represented in Figure 9-19 by 5-point building
block 1. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 5-point Singleton building block in Chapter 8.

Algorithm Steps Memory Map

bR(6) == BR(8) + BR(2) bR(6) =} M(28)

bl (6) == B/(8) + 8/(2) b/(6) =} M(13)

bR(7) == BR (8) - BR(2) bR(7) =} M(22)

bl(7) == B/(8) - B,(2) b/(7) =} M(7)

bR (8) == BR (11) + BR (14) bR (8) =} M (16)

b1(8) == B/ (11) + BI (14) b/ (8) =} M (1)

bR(9) == BR(Il) - BR(14) bR(9) => M(19)

b l(9) == B/(11) - 8 I (14) b/(9) => M(4)

cR(7) == bR(7) * sin(2JTI5) + bR(9) * sin(4JTI5) cR(7) =} M(30)

cI(7) == b l (7) * sin(2JTI5) + b/(9) * sin(4JTI5) c/(7) => M(19)

cR(9) == bR(7) * sin(4JTI5) - bR(9) * sin(2JTI5) cR(9) => M(31)

cI(9) == b/(7) * sin(4JTI5) - b/(9) * sin(2JTI5) c/(9) =} M(22)

cR(6) == bR(6) * cos(2JTI5) + bR(8) * cos(4JTI5) + BR (5) cR(6) => M(7)

c/(6) == b/(6) * cos(2JTI5) + b/(8) * cos(4JTI5) + B/(5) cI(6) => M(28)

cR(8) == bR(6) * cos(4JT15) + bR(8) * cos(2JT15) + BR(5) cR(8) => M(4)

cf(8) == bf(6) * cos(4rr/5) + bI (8) * cos(2rr/5) + B I (5) cI(8) ==> M(16)

AR(10) == BR(5) + bR(6) + bR(8) AR(lO) =} M(25)

AI(IO) == B/(5) + bl(6) + b l (8) A/(IO) =} M(IO)

AR (1) == C R (6) + CI (7) A R (1) => M (7)
A,(l) == cI(6) - cR(7) A l (l) =} M(13)

A R(7) == cR(8) + c,(9) A R(7) =} M(4)

A I(7) == cI(8) - cR(9) A l(7) =} M(16)

A R (l 3) == cR(8) - ('/(9) A R(13) =} M(22)

AI(13) == c/(8) + ('R(9) A/(13) => M(28)

A R(4) == cR(6) - ('I(7) AR(4) => M(19)

AJ(4) == ('/(6) + cR(7) A/(4) ~ M(I)

Third of Three 5-Point Building Blocks

This 5-point building block (k == 2) has BR « 5 * k + 3 * m) mod 15) and B/«5 *
k + 3 * 111) mod 15)(nl == 0,1,2,3, and 4) as inputs and AR«lO * k + 6 * m) mod 15) and

198 CHAP. 9 ALGORITHM CONSTRUCTION

A/«IO * k + 6 *m) mod 15)(m = 0, 1,2,3, and 4) as its output frequency components.
Performing the modulo arithmetic computations results in the inputs being BR (10), B/ (10),
BR(13), B/(13), BR(I), B/(l), BR(4), B/(4), BR(7), and B/(7).

The multiplication portion of the algorithm requires two additional data memory lo
cations because no temporary registers are assumed. The variables used for the intermediate
computations were chosen to be the same as those used for the 5-point Singleton building
block in Chapter 8 to make it easier to associate the computational steps with the discussion
in Chapter 8. This set of computations is represented in Figure 9-19 by 5-point building
block 2. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 5-point Singleton building block in Chapter 8.

Algorithm Steps Memory Map

bR(I I) = BR(13) + BR (7) bR(II) => M(23)

b/(ll) = B/(13) + B/(7) b/(11) => M(8)

bR (12) = BR (13) - ER(7) bR(12) => M(17)

b/(12) = B/(I3) - B/(7) b/(12) => M(2)

bR(13) = BR(l) + BR(4) bR(13) => M(26)

b/(I3) = B/(l) + B/(4) b/(13) => M(ll)

bR(14) = BR(l) - BR(4) bR(14) => M(29)

b/(14) = B/(l) - B/(4) b/(14) => M(14)

cR(12) = bR(12) *sin(2Jl'j5) + bR(14) * sin(4Jl'j5) cR(12) => M(30)

c/(12) = b/(12) * sin(2Jl'j5) + b/(14) * sin(4Jl'j5) c/(12) => M(29)

cR(14) = bR(12) * sin(4Jl'j5) - bR(14) * sin(2Jl'j5) cR(14) => M(3l)

c/(14) = b/(12) * sin(4Jl'j5) - b/(14) * sin(2Jl'j5) c/(14) => M(l?)

cR(ll) = bR(ll) *cos(2Jl'j5) + bR(13) *cos(4Jl'j5) + BR(IO) cR(ll) => M(2)

c/(11) = b/(11) * cos(2nj5) + b/(13) *cos(4rrj5) + B/(IO) c/(II) => M(23)

cR(13) = bR(ll) * cos(4Jrj5) + bR(13) * cos(2Jrj5) + BR(IO) cR(13) => M(14)

c/(13) = b/(II) * cos(4Jrj5) + b/(13) * cos(2Jrj5) + B/(IO) c/(13) => M(26)

AR(5) = BR(IO) + bR(II) + bR(13) AR(5) => M(20)

A/(5) = B/(IO) + b/(ll) + h/(13) A/(5) => M(5)

AR(II) = cR(II) + c/(12) AR(ll) => M(2)

A/(ll) = c/(ll) - cR(12) A/(ll) => M(8)

AR(2) = cR(13) + c/(14) AR(2) => M(14)

A/(2) = c/(13) - cR(14) A/(2) => M(26)

AR(8) = cR(13) - c/(14) AR(8) => M(17)

A/(8) = c/(13) + cR(14) A/(8) => M(23)

AR(14) = cR(ll) - c/(12) AR(14) => M(29)

A/(14) = c/(ll) + cR(12) A/(14) => M(ll)

SEC. 9.6 PRIME FACTORAPPROACH 199

9.6.5 Fifteen-Point SWIFT Example

The IS-point SWIFf [4] algorithm can be implemented with either the 3-point or the
5-point building blocks first. If the 3-point building block is first, the 15 pieces of complex
input data are divided into five sets of three complex points, one for each of the 15/3 = 5
3-point building blocks. Following the 3-point building blocks, the intermediate results are
divided into three sets of fivepieces of complex data needed for input to the 15/5 = 3 5-point
building-block computations. This algorithm is similar to the Kolba-Parks algorithm but
uses a different data mapping strategy. The order does not affect how many computations
are required.

A(5)
A(8)

A(I!)

A(14)

A(2)

A(O)
A(3)

A(6)

A(9)
A(12)

A(10)
A(13)

A(I)

A(4)
A(7)

5-Point FFTs

--+0 0 0 o r----.
I 1 1~--+ 1 0 1
I

-..2 2
I

2 0 2~
I
I

I
3 3 r----.

--+0 0
I

r----+- 4 4~

--+ 1 1 1
I

---.2 2
I

I 0 O~

1 1~--+0 0 I
-"1 2 1 I 2 1 2~

--+ 2 2 I 3 3~

I
4 4 ~

0 0-
I

1 3 1 I
I

2 2 I 0 o ----..I

1 1 ----..i
2 2 2 ---..

0 0

1 4 1 !
3 3 ----..

2 2 I 4 4 ----..

a(O)

a(5)

a(IO)

a(12)

a(2)

a(7)

a(9) ~

a(14) ~

a(4) ~

3-Point FFTs

a(6)

a(11)

a(I)

a(3) ~

a(8) ~

a(13) ~

Figure 9·20 Fifteen-point SWIFT prime factor algorithm block dia
gram.

This example uses the Singleton 3- and 5-point building blocks. A smaller number
of adds and multiplies would be needed if the Winograd building blocks were used. If
the Comparison Matrix in Chapter 8 and the equation presented in the discussion of the

200 CHAR 9 ALGORITHM CONSTRUCTION

performance features for the prime factor algorithm are used, the total number of real adds
required is 5* 12+3*32 = 156, and the total number of real multiplies is 5*4+3* 16 = 68.
The total amount of data memory required is driven by the 5-point algorithm and is 32
locations. Explicitly, 30 locations are required for the 15 complex data points, plus 2
additional locations for the intermediate computations in the 5-point Singleton building
block. Similarly, the 3-point Singleton building block has two multiplier constants and the
5-point Singleton building block has four, for a total of six memory locations for multiplier
constants. The stages are as follows.

Stage1: Three-Point Building Blocks

The 15 data points must first be divided into five sets of 3 points to serve as inputs to
each of the 3-point building blocks. This is done by starting with complex input data point
pair aR(O), a/CO), and grouping it with complex input data point pairs aR(5), a/(5) and
aR(IO), a/(10). These provide the input to the top one of the five 3-point transforms. This
is followed by grouping the input data point pairs aR(I), aiel), aR(6), a/(6), and aR(II),
a/(II) to provide the input for the second of the five 3-point building blocks. The next
grouping is data point pairs aR(2), a/(2), aR(7), a/(7), and aR(12), a/(12) for input into
the third of the five 3-point building blocks. The next grouping is data point pairs aR(3),
a/(3), aR(8), a/(8), and aR(13), a/(13) to provide input for the fourth of the five 3-point
transforms. The final grouping is data point pairs aR(4), a/(4), aR(9), a/(9), and aR(I4),
a/ (14) for input into the fifth 3-point building block.

The order in which this data is used for inputs to the 3-point building blocks is
the key point in removing the need for complex multipliers between the 3- and 5-point
building blocks. For the I5-point transform, the SWIFf algorithm requires the complex
input data for the k-th input to the m-th 3-point transform to be aR«5 * k +6 * In) mod 15),
a/«5 * k + 6 * m) mod 15) where k = 0,1, and 2, and m = 0,1,2,3, and 4.

The five groups of computations, listed as (a) through (e), each perform a 3-point
building block. In this example, the Singleton 3-point algorithm building block from Chap
ter 8 is used. All of these 3-point transforms could also have been the Winograd 3-point
algorithm building block from Chapter 8. In fact, the five 3-point building blocks can be
any combination of the two 3-point algorithm building blocks. The outputs of each of the
3-point building blocks, labeled BR(i) and B/(i) for i = 0, 5, 10, are the equivalent of the
AR (i) and A / (i) in the 3-point algorithm building block in Chapter 8.

The strategy for converting these equations to code is to start at the top (compute
bR (5» and identify the pair of inputs to be used first (in this case a R (5) and aR (10». Then
look down the list to find the second (compute bR (10» place where these two inputs are
used. Pull aR(5) and aR(10) from memory, compute bR(5) and bR(lO), and store the results
in memory locations M(5) and M(IO), previously occupied by aRCS) and a s (10). The next
step is to look at the next computation b/ (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps in Stage I have been computed and their
results stored in the Memory Map addresses.

Firstof Five 3-Point Building Blocks

The inputs to this 3-point building block are aR«5 * k + 6 * m) mod 15),
a/«5 * k + 6 * m) mod 15) where m = O. Performing the modulo arithmetic compu
tations to determine the inputs results in the inputs of aR(O), a/CO), aR(5), 0/(5), oR(IO),

SEC. 9.6 PRIME FACTOR APPROACH 201

and a, (10) for k == 0, 1, and 2. This set of computations is represented in Figure 9-20 by
3-point building block O. Further, the labels on the left and right of this building block cor
respond to the input and output labels in the 3-point Singleton building block in Chapter 8.

Algorithm Steps

bR(5) == aR(5) + aR(lO)

bR(10) == aR(5) - aR(10)

bl(5) == al(S) + a[(10)

b/(10) == al(5) - a/(10)

cR(5) == bR(5) * cos(2rrj3) + aR(O)

BR(O) == aR(O) + bR(5)

cR(IO) == b/ (10) * sin(2rrj3)

c/(5) == h/(5) * cos(2rrj3) + a/CO)

Br(O) == a,(O) + b/(5)

c/(10) == -bR(lO) * sin(2rrj3)

B R(5) == cR(5) + cR(IO)

B I(5) == c/(5) +c/(10)

BR(IO) == CR(S) - cR(IO)

BI(lO) == ('/(5) - c/(lO)

Memory Map

bR(5) :::=} M(5)

bR(10) :::=} M(IO)

bl(5) :::=} M(20)

b/(10) :::=} M(25)

CR(S) :::=} M(30)

BR(O) :::=} M(O)

cR(10) ==> M(25)

c/(5) ::::} M(5)

B/(O) ::::} M(15)

c/(10) ==> M(lO)

BR(5) ::::} M(25)

B/(5) ::::} M(lO)

BR (10) ==> M(20)

B[(lO) ::::} M(5)

Second of Five 3-Point Building Blocks

The inputs to this 3-point building block are aR«5 * k + 6 * m) mod 15),
a/«5 * k + 6 * /1z) mod 15) where m == 1. Performing the modulo arithmetic compu
tations to determine the inputs results in the inputs being aR(6), a/ (6), aR(ll), a/(ll),
aR (1), and a 1 (1) for k == 0, 1, and 2. This set of computations is represented in Figure
9-20 by 3-point building block 1. Further, the labels on the left and right of this building
block correspond to the input and output labels in the 3-point Singleton building block in
Chapter 8.

Algorithm Steps

bR(6) == aR(II) + aRCl)

bR(Il) == aR(ll) - aR(I)

b1(6) == a [(11) + a J (1)

b/(II) == a/ell) - (1/(1)

cR(6) == bR (6) * cos(2Jr13) + aR(6)

BR(6) == (lR(6) + hR(6)

CR (11) == b/ (11) * sin(2Jr13)
c/(6) == h/(6) * cos(2rr/3) + al(6)

B,(6) == a/(6) + b/(6)

c/(11) == -bR(I1) * sin(2rr/3)

BR (11) == CR (6) + CR (11)

B[(11) == C] (6) + c, (I 1)

BR(I) == cR(6) - cR(II)

B/(1) == c,(6) - c,(11)

Memory Map

b R(6) =} M(ll)

bR(l!) => M(l)

bl(6) => M(26)

bl(ll) => M(16)
cR(6) =} M(30)

B R(6) => M(6)

eR(ll) => M(16)
c[(6) => M(ll)

B/(6) => M(2l)

c,(ll) :::} M(l)

BR(II) ::::} M(16)

B/(II) ==> M(l)

BR(l) ==> M(26)

B[(l) => M(ll)

202 CHAP. 9 ALGORITHM CONSTRUCTION

Third of Five 3-Point Building Blocks

The inputs to this 3-point building block are aR«5 * k + 6 * m) mod 15),
a/«5 * k + 6 * m) mod 15) where m = 2. Performing the modulo arithmetic compu
tations to determine the inputs results in the inputs being aR(12), a/(12), aR(2), a/(2),
a R (7), and a/ (7) for k = 0, 1, and 2. This set of computations is represented in Figure
9-20 by 3-point building block 2. Further, the labels on the left and right of this building
block correspond to the input and output labels in the 3-point Singleton building block in
Chapter 8.

Algorithm Steps

bR(7) = aR(2) + aR(7)

bR(12) = aR(2) - aR(7)

b/(7) = a/(2) + a/(7)

b/(12) = a/(2) - a/(7)

cR(7) = bR(7) *cos(2rr/3) + aR(12)

BR(12) = aR(12) +bR(7)

cR(12) = bj(12) * sin(2rr /3)

cj(7) = b/(7) *cos(2rr/3) + aj(12)

B/(12) = a/(12) + b/(7)

cj(12) = -bR(12) * sin(2rr /3)

BR(2) = cR(7) + cR(12)

Bj(2) = c/(7) + c/(12)

BR(7) = cR(7) - cR(12)

B/(7) = c/(7) - c/(12)

Memory Map

bR(7) => M(2)

bR (12) => M(7)

bj(7) => M(17)

bj(12) => M(22)

cR(7) => M(30)

BR(12) :::} M(12)

cR(12) :::} M(22)

cj(7) =} M(2)

B/(12) => M(27)

c/(12) =} M(7)

BR(2) => M(22)

B/(2) => M(7)

BR(7) => M(17)

B/(7) => M(2)

Fourth of Five 3-Point Building Blocks

The inputs to this 3-point building block are aR«5 * k + 6 * m) mod 15),
aj«5 *6 + 3 *m) mod 15) where m = 3. Performing the modulo arithmetic computations
to determine the inputs results in the inputs being aR(3), a/(3), aR(8), a/(8), aR(13), and
a/(13) for k = 0, 1, and 2. This set of computations is represented in Figure 9-20 by 3-point
building block 3. Further, the labels on the left and right of this building block correspond
to the input and output labels in the 3-point Singleton building block in Chapter 8.

Algorithm Steps

bR(8) = aR(8) + aR(13)

bR(13) = aR(8) - aR(13)

b/(8) = aj(8) + aj(13)

bj(13) = aj(8) - aj(13)

cR(8) = bR(8) *cos(2rr/3) + aR(3)

BR(3) = aR(3) + bR(8)

Memory Map

bR(8) =} M(8)

bR(13) => M(13)

b/(8) => M(23)

bj(13) => M(28)

cR(8) => M(30)

BR(3) => M(3)

SEC. 9.6

Algorithm Steps

cR(13) == b1(13) * sin(21l'13)

c/(8) == bl (8) * cos(21l'13) + al(3)

B I(3) == a/(3) + b l (8)

C1(13) == -bR (13) * sin(21l'13)

BR(8) == cR(8) + cR(13)

B I(8) == cI(8) + cI(13)

BR(13) == cR(8) - cR(13)

BI(13) == cI(8) - c[(13)

PRIME FACTOR APPROACH 203

Memory Map

cR(13) ::::} M(28)

cI(8) :::::} M(8)

BI(3) ::::} M(18)

cI(13) ::::} M(13)

BR(8) ::::} M(28)

BI(8) ::::} M(13)

BR(13) ::::} M(23)

BI (13) ::::} M(8)

Fifth of Five3-PointBuildingBlocks
The inputs to this 3-point building block are aR«5 * k + 6 * m) mod 15),

aI«5 * k + 6 * m) mod 15) where m = 4. Performing the modulo arithmetic compu
tations to determine the inputs results in the inputs being aR(9), aI(9), aR(14), aI(14),

aR(4), and aI(4) for k = 0, 1, and 2. This set of computations is represented in Figure
9-20 by 3-point building block 4. Further, the labels on the left and right of this building
block correspond to the input and output labels in the 3-point Singleton building block in
Chapter 8.

Algorithm Steps

bR(9) == aR(14) + aR(4)

bR(14) == aR(14) - aR(4)

bI (9) == aI(14) + aI(4)

bI (14) == a[(14) - aI(4)

CR(9) == bR(9) * cos(21l'13) + aR(9)

BR(9) == aR(9) + bR(9)

cR(14) == bI(14) * sin(21l'13)

cI(9) = b/(9) *cos(2rr/3) + a[(9)

BI(9) == al(9) + b/(9)

cI(14) == -bR(14) * sin(2rr/3)

BR(14) == cR(9) + cR(14)

BI(14) == c/(9) + cI(14)

BR(4) == cR(9) - cR(14)

BI(4) == cI(9) - c[(14)

Stage 2: Output 5-Point Building Blocks

Memory Map

bR(9) ::::} M(14)

bR (14) => M(4)

bI (9) => M(29)

bI (14) => M(19)

cR(9) => M(30)

BR(9) => M(9)

cR(14) => M(19)

c/(9) => M(14)

B/(9) :::::} M(24)

cI(14) => M(4)

BR (14) => M(19)

BI(14) => M(4)

BR(4) ::::} M(29)

BI(4) ::::} M(14)

For this example the Singleton 5-point building block from Chapter 8 is used. How
ever, either of the two other 5-point building blocks could have been used without changing
the rest of the structure of the building block. If the number of adds and multiplies is

204 CHA~ 9 ALGORITHM CONSTRUCTION

the overriding criterion, then the Winograd algorithm building block should be used in place
of the 5-point Singleton building block.

Three sets of 5-point algorithm building-block Algorithm Steps from Chapter 8 are
presented. In Chapter 8 the 5-point algorithm building block was presented as three stages.
Since the features of the individual stages of the 5-point algorithm block are discussed
in Chapter 8, they are not discussed again. The m-th input to the k-th 5-point building

block is BR«5 * k + 6 *m) mod 15) and B/«5 * k + 6 *m) mod 15) from the previous
stage.

The multiply stage of the 5-point Singleton building block required additional data
memory locations under the set of constraints used in Chapter 8. If the I5-point computa
tions are performed in the order shown, the additional memory locations used by the first
of the three 5-point building blocks can be reused by each of the other two 5-point building
blocks.

The strategy for converting these equations to code is to start at the top (compute
bR(I» and identify the pair of inputs to be used first (in this case BR(6) and BR(9». Then
look down the list to find the second (compute bR(2» place where these two inputs are
used. Pull BR(6) and B R (9) from memory, compute bR(I) and bR(2) , and store the results
in memory locations M(6) and M(9), previously occupied by BR(6) and BR(9). The next
step is to look at the next computation b/ (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps in Stage 2 have been computed and their
results stored in the Memory Map addresses.

First of Three 5-PointBuilding Blocks

This 5-point building block (k = 0) has BR « 5 * k + 6 * m) mod 15) and
B/«5*k+6*m) mod I5)(m = 0,1,2,3, and 4) as inputs and AR « IO*k + 3*m) mod 15)
and A/«IO * k + 3 *m) mod 15)(m = 0,1,2,3, and 4) as its output frequency compo
nents. Performing the modulo arithmetic computations to determine the inputs results in
the inputs being BR(O), Bj(O), B R(6), B j(6), B R(12), Bj(12), B R(3), B j(3), B R(9) , and
B/(9).

The multiplication portion of the building block requires two additional data memory
locations because no temporary registers are assumed. The variables used for the inter
mediate computations were chosen to be the same as those used for the 5-point Singleton
building block in Chapter 8 to make it easier to associate the computational steps with the
discussion of its features and memory mappings in Chapter 8. This set of computations is
represented in Figure 9-20 by 5-point building block O. Further, the labels on the left and
right of this building block correspond to the input and output labels in the 5-point Singleton
building block in Chapter 8.

Algorithm Steps

bR(I) = BR(6) + BR(9)

b/(l) = B/(6) + B/(9)

b R(2) = B R(6) - B R(9)

b j(2) = B/(6) - B/(9)

Memory Map

bR(I) => M(6)

b/(I) => M(2I)

b R(2) => M(9)

b/(2) ==> M(24)

SEC. 9.6 PRIME FACTOR APPROACH 205

Algorithm Steps

bR(3) == BR(12) + BR(3)

b{(3) == B/(12) + B{(3)

bR(4) == BR(12) - BR(3)

b,(4) == B{(12) - R,(3)

cR(2) == bR(2) * sin(2nI5) + bR(4) * sin(4nI5)

('/(2) == b/(2) * sin(2n15) + b/(4) * sin(4rr 15)

cR(4) == bR(2) * sin(4n15) - bR(4) * sin(2rr15)

c{(4) == b/(2) * sin(4rr/5) - h/(4) * sin(2rr/5)

('R(I) == bR(I) * cos(2rr/5) + bR(3) * cos(4nI5) + BR(D)

c/(l) == b/(l) * cos(2nI5) + b/(3) * cos(4rr/5) + B/(O)

cR(3) == bR(I) * cos(4nI5) + bR(3) *cos(2nI5) + BR(O)

c/(3) == b/(I) * cos(4nI5) + b/(3) * cos(2rr/5) + B/(O)

AR(O) == BR(O) + bR(I) + bR(3)

A/(O) == B/(O) + h/(l) + b/(3)

A R(3) == cR(I) + c/(2)

A[(3) == c/(I) - cR(2)

A R(6) == eR(3) + c/(4)

A/(6) == c/(3) - cR(4)

AR(9) == cR(3) - c[(4)

A/(9) == c,(3) + cR(4)

A R(12) == cR(I) - c/(2)

A/(12) == c/(I) + cR(2)

Memory Map

bR(3) :::} M(12)

b1(3) :::} M (27)

bR(4) :::} M(3)

b/(4) => M(18)

cR(2) => M(30)

c/(2) => M(3)

cR(4) => M(31)

c/(4) => M(9)

cR(I) => M(24)

c/(I) => M(6)

cR(3) => M(18)

c/(3) => M(12)

AR(O) => M(O)

A/(O) => M(15)

AR(3) => M(24)

A/(3) => M(21)

A R(6) => M(18)

A/(6) =} M(12)

A R(9) =} M(9)

A/(9) => M(6)

AR(12) => M(3)

A/(12) =} M(2?)

Second of Three 5-Point Building Blocks

This 5-point building block (k == 1) has B R « 5 * k + 6 * m) mod 15) and
B/«5*k+6*m) mod 15)(m == 0,1,2,3, and 4) as inputs and A R«10*k+3*nl) mod 15)
and A,«10 * k + 3 * m) mod 15)(m == 0,1,2,3, and 4) as its output frequency compo
nents. Performing the modulo arithmetic computations to determine the inputs results in
the inputs being BR(5), B/(5), BR(ll), B/(11), BR(2), 8,(2), BR(8), B/(8), BR(14), and
B /(14).

The multiplication portion of the building block requires two additional data memory
locations because no temporary registers are assumed. The variables used for the inter
mediate computations were chosen to be the same as those used for the 5-point Singleton
building block in Chapter 8 to make it easier to associate the computational steps with the
discussion of its features and memory mappings in Chapter 8. This set of computations is
represented in Figure 9-20 by 5-point building block 1. Further, the labels on the left and
right of this building block correspond to the input and output labels in the 5-point Singleton
building block in Chapter 8.

206 CHAP. 9 ALGORITHM CONSTRUCTION

Algorithm Steps

bR(6) = BR(ll) + BR(14)
b/(6) = B/(ll) + B/(14)

bR(7) = BR(ll) - BR(14)
b/(7) = B/(ll) - B/(14)

bR(8) = BR(2) + BR(8)

b/(8) = B/(2) + B/(8)

bR(9) = BR(2) - BR(8)
b/(9) = B/(2) - B/(8)

cR(7) = bR(7) *sin(21l'15) + bR(9) *sin(41l'15)

c/(7) = b/(7) *sin(21l'15) + b/(9) * sin(41l'15)

cR(9) = bR(7) *sin(41l'15) - bR(9) *sin(21l'15)

c/(9) = b/(7) *sin(41l'15) - b/(9) *sin(21l'15)

cR(6) = bR(6) *cos(21l'15) + bR(8) *cos(41l'15) + BR(5)

c/(6) = b/(6) *cos(21l'15) + b/(8) *cos(41l'15) + B/(5)

cR(8) = bR(6) *cos(41l'15) + bR(8) *cos(21l'15) + BR(5)
c/(8) = b/(6) *cos(41l'15) + b/(8) *cos(21l'15) + B/(5)

AR(lO) = BR(5) + bR(6) + bR(8)
A/(10) = B/(5) + b/(6) + b/(8)

AR(13) = cR(6) + c/(7)

A/(13) = c/(6) - cR(7)

AR(l) = cR(8) + c/(9)

A/(l) = c/(8) - cR(9)

AR(4) = cR(8) - c/(9)

A/(4) = c/(8) + cR(9)

AR(7) = cR(6) - c/(7)

A/(7) = c/(6) + cR(7)

Memory Map

bR(6) => M(16)

b/(6) => M(l)

bR(7) => M(19)

b/(7) => M(4)

bR(8) => M(22)

b/(8) => M(7)

bR(9) => M(28)

b/(9) => M(13)

cR(7) => M(30)

c/(7) ::::} M(28)

cR(9) => M(3l)

c/(9) => M(19)

cR(6) => M(4)

c/(6) => M(16)

cR(8) => M(13)

c/(8) => M(22)

AR(lO) => M(25)

A/(lO) => M(10)

AR(13) => M(4)

A/(13) => M(l)

AR(l) => M(13)

A/(l) => M(22)

A R(4) => M(19)

A/(4) => M(16)

AR(7) => M(28)

A/(7) => M(7)

.Third of Three 5-Point Building Blocks
This 5-point building block (k = 2) has BR«5 * k + 6 * m) mod 15) and

B/«5*k+6*m) mod 15)(m = 0,1,2,3, and 4) as inputs and AR«lO*k+3*m) mod 15)
andA/«10*k+3*m) mod l5)(m = 0,1,2, 3,and4)asitsoutputfrequencycomponents.
Performing the modulo arithmetic computations to determine the inputs results in the inputs
being BR(lO), B/(10), BR(l), B/(l), BR(7), B/(7), BR(13), B/(13), BR(4), and B/(4).

The multiplication portion of the building block requires two additional data memory
locations because no temporary registers are assumed. The variables used for the inter
mediate computations were chosen to be the same as those used for the 5-point Singleton
building block in Chapter 8 to make it easier to associate the computational steps with the
discussion of its features and memory mappings in Chapter 8. This set of computations is
represented in Figure 9-20 by 5-point building block 2. Further, the labels on the left and
right of this building block correspond to the input and output labels in the 5-point Singleton
building block in Chapter 8.

SEC. 9.7 MIXED-RADIX APPROACH 207

Algorithm Steps

bR(ll) == BR(l) + BR(4)

bJ(ll) == BJ(I) + BJ(4)

bR(12) == BR(I) - BR(4)

bJ(I2) == BJ(I) - BJ(4)

bR(I3) == BR(7) + BR(I3)

bJ (I 3) == BI(7) + RJ (13)

bR(14) == BR(7) - BR(13)

bJ(14) == B[(7) - BJ (13)

cR(12) == bR(12) * sin(2Jl'15) + bR(14) * sin(4Jl'15)

cI(12) == bI(12) * sin(2Jl'15) + b[(I4) * sin(4Jl'15)

cR(14) == bR(12) * sin(4Jl'15) - bR(14) * sin(2Jl'j5)

cJ(14) == bJ(12) * sin(4Jl'j5) - bI(14) * sin(2Jl'15)

cR(lI) == bR(II) *cos(2Jl'15) + bR(I3) *cos(4Jl'15) + BR(lO)

cI(II) == bI(ll) *cos(2Jl'15) + b[(13) *cos(4Jl'15) + BI(lO)

cR(13) == bR(II) * cos(47l'15)+ bR(13) * cos(2Jl'15) + BR(lO)

c[(13) == bJ(ll) *cos(4Jl'j5) + b[(13) *cos(2Jl'j5) + B/(lO)

AR(5) == BR(IO) + bR(ll) + bR(13)

A[(5) == B/(lO) + b[(ll) + bI (13)

AR(8) == cR(II) + c[(12)

A J(8) == cJ(ll) - cR(12)

AR(ll) == cR(13) + cJ(14)

AI(ll) == c[(13) - cR(14)

A R(14) == cR(13) - cJ(14)

A J(14) == cI(13) + cR(14)

AR(2) == cR(II) - cJ(12)

AJ(2) == cI(ll) + cR(12)

9.7 MIXED-RADIX APPROACH

9.7.1 Mixed-Radix Algorithm Introduction

Memory Map

bR(ll) ::::} M(26)

b[(ll) =} A/(ll)

bR(l2) =} A/(29)

bI(12) =} M(14)

bR(13) ::::} M(17)

b/(13) ::::} M(2)

bR (14) =} M(23)

bI(14) ::::} M(8)

cR(12) ::::} M(30)

c/(12) ::::} M(23)

cR(14) ::::} A/(3l)

c/(14) ::::} M(29)

cR(ll) =} A/(14)

c/(ll) ::::} M(26)

cR(13) ::::} M(8)

c/(13) ::::} M(l?)

AR(5) ::::} M(20)

A/(5) ::::} M(5)

A R(8) ::::} M(14)

A/(8) ::::} M(ll)

AR(ll) ::::} M(8)

A/(ll) =} M(17)

A R(14) ::::} A/(29)

AI(14) =} M(26)

AR(2) =} A/(23)

A I(2) =} M(2)

Mixed-radix [5, 6] algorithms are characterized by a sequence of small-point build
ing blocks, from Chapter 8, with complex multipliers between. This sequence of building
blocks is developed by factoring the transform length, N, into two numbers, N = P * Q,
and computing the N-point transform based on P- and Q-point building blocks (See
Figure 9-21). A description of why that process works can be found in Chapter 3. If
P or Q can be further factored, say Q == R * S, then the Q-point transform can be con
structed from two building blocks (R- and S-point building blocks) using Figure 9-21 as a
guide.

208 CHA~ 9 ALGORITHM CONSTRUCTION

1
Complex
Multipliers

Figure 9-21 Top-level two-factor mixed-radix algorithm block dia
gram.

The result of factoring N into P*R*S is an algorithm that has a series of three building
blocks with complex multipliers between (Figure 9-22). The mixed-radix algorithm allows
this factoring process to stop at any point. The extreme case is to factor N until the building
blocks are only prime numbers. Even if N is factored to all prime numbers, there are
numerous orders in which those primes can be combined to form the complete transform.
The order of the building blocks determines the multiplier constants used between the stages
but does not affect the number of adds and multiplies.

Complex
Multipliers

Complex
Multipliers

Figure 9-22 Top-level three-factor mixed-radix algorithm block dia
gram.

Forty-five-Point Example. There are two ways to factor 45 into two numbers
(3 * 15 and 5 * 9). Therefore, the 45-point transform can be implemented by using the
block diagram in Figure 9-21. The 3 * 15 option can be implemented with either the 3- or
15-point transform first in Figure 9-21. However, for either the 3 * 15 or 5 *9 cases, the
second factor can be factored further. The result in all three cases is three building blocks
(3, 3, and 5 points). There are three ways of ordering these three numbers to implement the
45-point FFf. To summarize, there are seven ways to implement the 45-point FFf using the
mixed-radix algorithm, without having to choose which algorithm to use for each building
block. These are shown in Table 9-6.

Table 9-6 Forty-five-Point Mixed-Radix
Building-Block Sequences

Sequence choices P R S

1 3 15 N/A
2 15 3 N/A
3 5 9 N/A
4 9 5 N/A
5 3 3 5
6 3 5 3
7 5 3 3

SEC. 9.7 MIXED-RADIX APPROACH 209

The first four sequence choices only have two building blocks, indicated by NIA under
column S. The choice of algorithm building blocks from Chapter 8, for all but the 15-point
FFT, provides additional options to optimize the implementation for the application. The
IS-point FFf can be implemented with any of the algorithms in this chapter.

A derivation of the mixed-radix algorithm shows that the complex multipliers between
the P - and Q-point building blocks have a predictable pattern. If the complex multipliers
are viewed as connected to the output of the P-point building block, then:

I. The zeroth P-point building block has all I 's as output multipliers.

2. The outputs of the other (Q - 1) P-point building blocks have complex multipliers
for all but their top output D(n), which has 1 as the multiplier, for a total of P - 1
complex multiplies.

3. The complex multiplier at the k-th output, Bik * Q + n), of the n-th P-point

building block is cos(2 * T(* k * n / N) - j * sin(2 * T(* k * n / N), as shown in
Figure 9-23.

4. After multiplication, the k-th output, D(k * Q+ n), of the n-th P-point building
block is connected to the n-th input of the k-th Q-point building block shown in
Figure 9-24.

a(n)~

a(Q+n)~

•
•
•

a«P-l)*Q+n) ----.

nth

P-Point

Building

Block

D(Q+n)

cos(2*n*nlN) -j*sin(2*n* 111N)

•
•

"t------. D«P-l)*Q+n)

cos(2*n*(P-l)*nlN) -}*sin(2*1t*(P-l)*nlN)

B«P-I)*Q+n)

Figure 9-23 n-th P-point building-block output's complex multipliers.

Comments 1 and 2, combined with Figure 9-23, show that there are Q - 1 of the
P -point building blocks that each have P - 1 complex multiplies on the output for a total
of (Q - I) * (P - I) complex multiplies.

If the N -point transform is further decomposed into three or more factors, say by
factoring Q, these same four facts determine the number of building blocks and complex
multiplier constants needed for each of the decomposed Q-point transforms. The only
change is to replace N with Q and to replace Q with Rand S, where Q = R * S. With this
information and the algorithm building blocks from Chapter 8, a complete block diagram
can be constructed for a transform of any length with several combinations of building
blocks.

210 CHA~ 9 ALGORITHM CONSTRUCTION

D(k*Q+O) A(O*P+k)

D(k*Q+I) A(I*P+k)
kth

D(k*Q+2) A(2*P+k)
Q-Point

• •Building
• •

Block
• •

D(k*Q+Q-I) A((Q-I)*P+k)

Figure 9-24 k-th Q-point building-block input's origins.

9.7.2 Number of Mixed-Radix Algorithm Adds and Multiplies

The number of real adds and multiplies is the sum of those required for the algorithm
building blocks and those required by the complex multiplies between the building blocks.
This subsection develops these equations for the number of adds and multiplies for N -point
transforms that have been decomposed into two or three algorithm building blocks. It also
describes a straightforward procedure to use to determine the number of adds and multiplies
for an N -point transform comprising any number of algorithm building blocks.

Since there are (N/ P;) of the p;-point building blocks, the number of adds and
multiplies contributed by these building blocks is just (N/ P;) times the number of real adds
and multiplies required by the Pi -point algorithm building block. These numbers are listed
explicitly in the Comparison Matrix in Chapter 8 for P; = 2, 3, 4, 5, 7, 8, 9, and 16. An
equation is also provided in that Comparison Matrix for computing the number of adds and
multiplies for all other prime numbers.

To determine the number of complex multiplies required between the building blocks,
start with the two building blocks P and Q. From Section 9.7.1, the number of complex
multiplies is (Q - I) * (P - 1), regardless of whether P or Q is first. Since each complex
multiply has real and imaginary parts, they each require two memory locations for storing
multiplier constants and 4 * (P - 1) * (Q - 1) real multiplies and 2 * (P - 1) * (Q - 1)
real adds. In practice, this can be reduced because some of these constants will be the
same. However, taking advantage of these symmetries usually requires a more complex
memory mapping. Therefore, for the algorithms presented, assume this worst-case number
of memory locations for constants and a simple memory mapping. The specific examples
for each algorithm illustrate some of the symmetries of the complex multiplier coefficients
that can be used to advantage.

If the Q-point building block is further decomposed into R- and 8-point building
blocks, then (8 - 1) * (R - I) additional complex multiplies are required for each Q-point
building block. Since there are P of these Q-point building blocks, P * (8 - 1) * (R - 1)
additional complex multiplies are required. There are N / P P-point, N / R R-point, and
N / S S-point building blocks to compute. This fact allows the number ofcomplex multiplies
to be easily determined if one of these three factors is further decomposed into two factors.

SEC. 9.7 MIXED-RADIX APPROACH 211

For P, R, and S, the total number of complex multiplies is 2 * P * R * S - R *
S - p * S - P * R + 1. This total does not change as the sequence of using P, R, and S
changes. Since the number of P-, R-, and S-point building blocks also does not depend on
the order in which they are used, the total number of adds and multiplies does not depend
on the order of the factors in the algorithm.

The add and multiply totals for the 2-,3-,4-,5-, 7-, 8-, 9-, and 16-point building blocks
are in the Chapter 8 Comparison Matrix. Together with four multiplies and two adds for each
complex multiply between the building blocks, the total number of real adds and multiplies
for an N-point transform, where N is factored into two building blocks, P and Q, is:

adds == P * A Q + Q* A p + 2 * (P - 1) * (Q - 1)

multiplies == P * MQ + Q *M» + 4 * (P - 1) * (Q - 1)

where: AQ == number of real adds in Q-point algorithm building block
A p == number of real adds in P-point algorithm building block
M Q == number of real multiplies in Q-point algorithm building block
M» == number of real multiplies in P-point algorithm building block

If N is factored into three building blocks (P, R, and S), the total number of real adds
and multiplies for an N -point transform is:

adds == (N / P) * A p + (N / R) * A R + (N / S) * As

+ 2 * (2 * N - R * S - P *S - P * R + 1)

multiplies = (N / P) *M» + (N / R) *M R + (N / S) * Ms
+4 * (2 * N - R * S - P *S - P * R + 1)

where: A p == number of real adds in P-point algorithm building block
AR = number of real adds in R-point algorithm building block
As = number of real adds in S-point algorithm building block

M» = number of real multiplies in P-point algorithm building block
MR = number of real multiplies in R-point algorithm building block
Ms == number of real multiplies in the S-point algorithm building block

9.7.3 Categories of the Mixed-Radix Algorithm

The mixed-radix algorithms fall into three categories but can all be described by the
general mixed-radix algorithm in Section 9.7.4. The first has the same algorithm building
block in each block in Figures 9-21 and 9-22. This is illustrated in Section 9.7.5 with a
16-point (4 *4) power-of-primes example. The second category of mixed-radix algorithms
has different powers of the same prime in the various building blocks. This category is
illustrated in Section 9.7.6 with a 16-point (8 * 2) power-of-primes example. The third
mixed-radix category allows any of the algorithm building blocks from Chapter 8 to be
used. In Section 9.7.7, a I5-point example is used to illustrate this category.

9.7.4 General Mixed-Radix Algorithm for Two Factors

Since the mixed-radix algorithm is constructed by repeatedly factoring an integer
into two other integers, the general mixed-radix algorithm is completely described by the
equations required to factor N into two factors as depicted in Figure 9-21. To construct a
mixed-radix algorithm for three factors (P, R, S, where Q == R * S), follow the algorithm

212 CHA~ 9 ALGORITHM CONSTRUCTION

in Stages 1 through 6 to form a two-factor decomposition. Then, for each of the P Q-point
building blocks, relabel its inputs as if they were Q consecutive complex data points and
reapply the two-factor decomposition algorithm to split the Q-point building block into two
factors. Each of those can be further subdivided with the same approach. The relabeling
scheme is given in Section 9.4.

The algorithm starts by grouping the input data points for each of the Q P-point
building blocks (Stage 1, Step 1) and computing the Q P-point building blocks with these
data subsets as inputs (Stage 1, Step 2). Then the outputs of the P-point building blocks
are multiplied by the proper complex numbers (Stage 2 and as shown in Figure 9-23). To
complete the algorithm, the outputs of the complex multiplications are reorganized and fed
to the P Q-point building blocks (Stage 3, Step 1 as shown in Figure 9-24). Finally, the P
Q-point building blocks convert their input data to the output frequency components (Stage
3, Step 2).

Stage 1: Input P.Point Building Blocks

This stage has two steps. The first is to properly group the input data for each of
the Q P-point building blocks. The second is to compute each of the Q P-point building
blocks. The number of adds and multiplies required for this stage is Q times the number
of adds and multiplies required for the chosen P-point building block. Since the P-point
building blocks are performed sequentially, any additional memory required for the
P -point building block is only needed once. The reason is that each P -point building
block uses these additional locations in sequence, not all at once. Therefore, the total
memory required for this portion of the algorithm is 2 * N for the data plus the additional
locations needed for one P-point building block.

Step 1: Grouping the Input Data Points for the P-PointBuilding Blocks
For the k-th input to the n-th P-point building block, choose aR(k * Q + n) and

a/(k * Q + n) (where k = 0, 1, ... , (P - 1) and n = 0,1, ... , (Q - 1)) from the input
data sequence as shown in Figure 9-23.

Step2: Computing the Q P-PointBuilding Blocks
Use the complex input data points defined in Step 1 to compute the outputs of each of

the Q P-point building blocks. The k-th output of the n-th P-point building block should
be labeled BR (k *Q+n) and B/ (k *Q +n) in preparation for input to the complex multiply
portion of the algorithm.

Stage 2: Complex Multiplications

Each output from the P -point building blocks is multiplied by a specific complex
number prior to entering the Q-point portion of the overall algorithm. The equations for
this complex multiplication for each k = 0, 1, ... , (P - 1) and n = 0, 1, ... , (Q - 1) are:

DR(k * Q+ n) = BR(k * Q+ n) *cos(2Jl' *kn]N) + B/(k * Q+ n) * sin(2Jl' *kn]N)

Drtk * Q + n) = Bjtk * Q+ n) *cos(2Jl' *kn]N) - BR(k * Q+ n) * sin(2Jl' *kn] N)

If no temporary registers are assumed in the processor performing the algorithm, each
complex multiply required two additional data memory locations to store the results of
multiplying each input value by two different constants prior to forming and storing the
output results. Figure 9-23 illustrates this stage of the algorithm for the n-th P-point build-

SEC. 9.7 MIXED-RADIX APPROACH 213

ing block. Since the complex multiplies are performed one at a time, only two additional
memory locations are required. In the 16-point radix-4 example (Section 9.7.5), the mul
tiplies are all grouped together. This requires two additional memory locations for each
of the complex multiplies. The 16-point radix-8 and -2 example (Section 9.7.6) and the
IS-point Singleton example (Section 9.7.7) reduce the added memory locations required
at the expense of interweaving adds with the multiplies. Details of the architectures in
Chapters 11 and 12 determine which approach is best for an application.

Stage 3: Output o-Point BUilding Blocks

This stage has two steps. The first is to properly group the input data for each of
the P Q-point building blocks. The second is to compute each of the P Q-point building
blocks. The number of adds and multiplies required for this stage is P times the number
of adds and multiplies required for the chosen Q-point building block. Since the Q-point
building blocks are performed sequentially, any additional memory required for the Q-point
building block is only needed once. This is because each Q-point building block uses these
additional locations in sequence, not all at once. Therefore, the total memory required for
this portion of the algorithm is 2 * N for the data plus the additional locations needed for
one Q-point building block.

Step 1: Grouping the Input Data Points to the Q-Point Building Blocks

For the n-th input to the k-th Q-point building block, choose DR(k * Q + n) and
DI(k * Q+ n) (where k := 0,1, ... , (P - 1) and n == 0,1, ... , (Q - 1)) from the input
data sequence. Each input to a Q-point building block comes from a different P-point
building-block output. Therefore, the data memory locations where the required input data
reside are not in the order assumed by the Q-point building blocks in Chapter 8. To further
complicate this, the output data memory address order for the P-point building blocks in
Chapter 8 is not in order. Therefore, to use the building-block algorithms from Chapter 8,
the specified data memory locations must be relabeled. This process is straightforward and
completely described in Section 9.4.

Step 2: Computing the P Q-Point Building Blocks

Use the complex input data points defined in Step 1 to compute each of the P Q
point building blocks. The n -th output of the k-th Q-point building block should be labeled
A R (n * P + k) and A I (n * P + k). These are the final outputs of the N -point FFT.

9.7.5 Sixteen-Point Radix-4 Primes-to-a-Power FFT Example

The primes-to-a-power [5, 6] algorithm requires each FFT building block in Figures
9-21 or 9-22 to have the same algorithm building block. The power-of-two algorithms,
made popular by the 1965 Cooley and Tukey paper [6], are in this class. They are a set of
algorithms for computing an N -point DFT, where N == 2P, and P is any positive integer.
For example, N == 64 (26) , N == 256 (28) , and N == 1024 (210). Since 4,8, and 16 are
also powers-of-two, the 2-, 4-, 8-, or 16-point building blocks can be inserted into Figures
9-21 and 9-22 to produce a transform from this category. However, any of the other prime
algorithm building blocks could also have been used. For example, an 81-point transform
can be implemented by using four blocks with 3-point building blocks or two blocks with
9-point building blocks.

214 CHAR 9 ALGORITHM CONSTRUCTION

In Figure 9-21, the radix-4 16-point FFf has 4-point building blocks in each of two
stages (P = Q = 4). It is a five-stage process with 144 adds and 24 multiplications.
The equations for adds and multiplies in Section 9.7.2 imply the need for 146 real adds
and 36 real multiplies, based on the 4-point building block having 16 real adds and no
real multiplies. The actual numbers are reduced by taking advantage of some special
case multiplier constants. Specifically, multiplication by cos(8Jl' /16) + j *sin(8Jl'/16) = j
requires no multiplication or addition, and multiplication by cos(4Jl'/16) + j *sine4Jl'/16) =
(J2) * (1 + j) requires only two multiplications.

The storage requirements are 40 locations for data memory and 6 locations for mul
tiplier constants. This is larger than required by the other mixed-radix algorithms, because
a different approach to complex multiplication was used in this example to illustrate the
difference in storage requirements. Namely, the approach used in this example computed
all of the multiplications required for the complex multiplies between the stages and stored
the results. Then the adds needed to complete the complex multiplies were performed, It
is the multiplies that cause the need for additional data memory locations. Each complex
multiply only requires two additional memory locations. Therefore, if each complex mul
tiply is completed before proceeding to the next one, only two additional memory locations
are required, making the total 34 rather than 40 locations.

The data mapping shown next to the algorithm steps is an example. Specifically,
Stage 1 is the four 4-point building blocks that must be performed on the input. The next
two stages provide all of the complex multiplications required between Stages 1 and 3, and
the final stage performs the four 4-point output building blocks.

Figure 9-25 is a block diagram of this example that shows the data memory mapping
implemented in the detailed algorithm steps. Each 4-point building block is labeled to
identify it with the steps of each stage of computation. The numbers inside the left and
right edges of the 4-point building blocks are the corresponding input and output labels as
defined in Chapter 8. For example, a(12) is the complex input for the terms labeled aR(3)
and a/(3) in the 4-point building-block description in Chapter 8.

The radix-4 power-of-primes algorithm stages for a 16-point radix-4 FFT are as
follows.

Stage 1: Input 4-Point Building Blocks

This stage does not require additional data memory or accessing any of the multiplier
constants. Further, the add/subtract process is the same for all of the real and imaginary
pairs. The strategy for converting these equations to code is to start at the top (compute
bR(O» and identify the pair of inputs to be used first (in this case aRCO) and aR(8». Then
look down the list to find the second (compute bR(1» place where these two inputs are
used. Pull aRCl) and aR(8) from memory, compute bRCO) and bRCI), and store the results
in memory locations M(O) and M(8), previously occupied by aRCO) and aR(8). The next
step is to look at the next computation b/ (0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps in Stage I have been computed and their
results stored in the Memory Map addresses.

First of Four4-PointBuildingBlocks
This set of computations is represented in Figure 9-25 by input 4-point building

block O. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 4-point building block in Chapter 8.

SEC.9.7 MIXED-RADIX APPROACH 215

a(O)
a(8)

a(4)
a(l2)

a(2)
a(10)

a(6)
a(I4)

a(l)
a(9)
a(5)

a(l3)

a(3)

a(ll)
a(7)

a(l5)

I--.. 0 0
1 I

0 o~

--.. 2 1
1

2 l~

0 I 0--. 1 2
1

1 2~

--.. 3 3 I ~ 3 3~

II1
--.. 0 0 I 0 0 -..

W2 I

--.. 2 1 -j I
2 1 -..

1 -~l 1
-+- 1 2 _jW2 2 -..

-+- 3 3 I
• 3 3 -..

I
I

I
I o --.-.. 0 0 W 0

-.. 2 1 W2 I 2 1 ---.
2 2-.. 1 2 W3 I 1 2 ---.

-.. 3 3
I

3 3~

II1 I -.--..- 0 0 0 0W3
\ 1 -.--..- 2 1 -jW2 2

--..- 1 3 2
I

1 3 2 .--.
-W I I

-.. 3 3
I

3 3 .--.

A(O)
A(4)

A(8)

A(12)

A(I)
A(5)
A(9)
A(13)

A(2)
A(6)

A(IO)
A(14)

A(3)
A(7)

A(l!)

A(15)

4-Point FFTs 4-Point FFTs

Figure 9-25 Sixteen-point radix-4 primes-to-a-power block diagram.

Algorithm Steps

bR(O) = aR(O) + aR(8)

bl(O) = al(O) + al(8)

bR(I) = aR(O) - aR(8)

bl (l) = al(O) - al(8)

bR(2) = aR(4) + QR(12)

bl(2) = al(4) + Ql(12)

bR(3) = QR(4) - QR(12)

bl(3) = Ql(4) - al(12)

CR(O) = bR(O) + bR(2)

Cl(O) = bl(O) + bl(2)

cR(I) = bR(I) + bl(3)

cJ(I) = bJ(l) - bR(3)

cR(2) = bR(O) - bR(2)

cl(2) = bl(O) - bl(2)

cR(3) = bR(I) - bl(3)

cl(3) = bl(1) + bR(3)

Memory Map

bR(O) => M(O)

bJ(O) => M(16)

bR(I) => M(8)

bJ(I) => M(24)

bR(2) => M(4)

bJ(2) => M(20)

bR(3) => M(12)

bJ(3) => M(28)

CR(O) => M(O)

CJ(O) => M(16)

cR(I) => M(8)

cJ(I) => M(24)

cR(2) => M(4)

cJ(2) => M(20)

cR(3) => M(28)

cI(3) => M(12)

216 CHA~ 9 ALGORITHM CONSTRUCTION

Secondof Four4-Point Building Blocks
This set of computations is represented in Figure 9-25 by input 4-point building block

I. Further, the labels on the left and right of this building block correspond to the input and
output labels in the 4-point building block in Chapter 8.

Algorithm Steps

bR(4) = aR(2) + aR(IO)

b/(4) = a/(2) + a/(IO)

bR(5) = aR(2) - aR(IO)

b/(5) = a/(2) - a/(IO)

bR(6) = aR(6) + aR(14)

b/(6) = a/(6) + a/(14)

bR(7) = aR(6) - aR(14)

b/(7) = a/(6) - a/(14)

cR(4) = bR(4) + bR(6)
c/(4) = b/(4) + b/(6)

cR(5) = bR(5) + b/(7)

c/(5) = b/(5) - bR(7)
cR(6) = bR(4) - bR(6)
c/(6) = b/(4) - b/(6)

cR(7) = bR(5) - b/(7)

c/(7) = b/(5) + bR(7)

Memory Map

bR(4) :::} M(2)

b/(4) => M(18)
bR(5) :::} M(IO)

b/(5) => M(26)

bR(6) => M(6)

b/(6) => M(22)

bR(7) :::} M(14)

b/(7) :::} M(30)

cR(4) => M(2)

c/(4) => M(18)

cR(5) => M(IO)

c/(5) => M(26)

cR(6) =} M(6)

c/(6) =} M(22)

cR(7) =} M(30)

c/(7) =} M(14)

Thirdof Four4-PointBuilding Blocks
This set of computations is represented in Figure 9-25 by input 4-point building

block 2. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 4-point building block in Chapter 8.

Algorithm Steps

bR(8) = aR(I) + aR(9)

b/(8) = a/(l) + a/(9)

bR(9) = aR(I) - aR(9)

b/(9) = a/(l) - a/(9)

bR(IO) = aR(5) + aR(13)

b/(IO) = a/(5) + a/(13)

bR(II) = aR(5) - aR(13)

bI(11) = a/(5) - a/(13)

cR(8) = bR(8) + bR(IO)

c/(8) = b/(8) + b/(IO)

cR(9) = bR(9) + b/(ll)

c/(9) = b/(9) - bR(II)

cR(IO) = bR(8) - bR(lO)

cICIO) = b/(8) - b/(IO)

cR(II) = bR(9) - b/(ll)

c/(11) = b/(9) + bR(II)

Memory Map

b R(8) :::} M(l)

b/(8) =} M(17)

b R(9) :::} M(9)

b/ (9) :::} M (25)

bR(IO) =} M(5)

b/(lO) =} M(21)

bR(ll) =} M(13)

b/(11) =} M(29)

cR(8) => M(l)

c/(8) => M(17)

cR(9) => M(9)

c/(9) :::} M(25)

cR(IO) :::} M(5)

c/(IO) :::} M(21)

eR(II) =} M(29)

c/(ll) => M(13)

Memory Map

bR(12) => M(3)

hl(12) => M(19)
bR(13) => M(ll)
b,(13) =} M(27)

bR (14) =} M(7)

b/(14) =} M(23)

bR (I 5) =} M(15)
bl (15) =} M(31)
cR(12) =} M(3)

c/(12) => M(19)
cR(l3) =} M(ll)
c/(I3) =} M(27)
cR(14) =} M(7)

c,(14) =} M(23)
cR(I5) =} M(3l)

c/(15) =} M(15)

SEC. 9.7 MIXED-RADIX APPROACH 217

Fourth of Four 4-PointBuildingBlocks
This set of computations is represented in Figure 9-25 by input 4-point building block

3. Further, the labels on the left and right of this building block correspond to the input and
output labels in the 4-point building block in Chapter 8.

Algorithm Steps

bR(12) == aR(3) + aR(ll)

b/(12) == a/(3) +al(11)
bR(I3) == aR(3) - aR(II)

b/ (13) == a1 (3) - a1(11)
bR (14) == aR(7) + aR(I5)

b/ (14) == a/ (7) + a1 (15)

bR(15) == aR(7) - uR(I5)

b/(15) == a/(7) -a/(15)
cR(12) == bR(12) + bR(14)
c/(12) == bJ (12) +b/(14)
cR(13) == bR(13) + bJ(15)
c/(13) == b/(13) - bR (I 5)

c R (14) == bR (12) - bR (14)

c/(14) == b,(12) - h/(14)
cR(15) == bR (13) - b/(I5)
c,(15) == b/(13) +hR(15)

Stage 2: Complex MUltiplies

This stage contains all of the multiplications. In all cases the multiplication is per
formed by pulling a data value from memory, multiplying it by the appropriate constant, and
returning the result to data memory. The required multiplications are complex and therefore
require four real multiplies. Therefore, each input data value gets multiplied twice. Since
this algorithm assumes no temporary data locations, additional data memory locations are re
quired. The complex multiplier to be applied to the k-th output of the 111-th 4-point algorithm
building block, B R(4*k+nz)+ B I (4*k+m), is cos(2*Jr «kem /16)+ J*sin(2*Jr *k*m/16).

In general, additional data locations are required for each of the complex multiplies.
However, in the case of the complex multiplies for cR(5), eRe?), cR(10), CR(14), c/(5),

c1 (7), c / (10), and c I (14), the real and imaginary parts of the complex multiplier are equal
(sin(rr /16) == cos(4rr /16)). This allows half the number of multiplications to be performed
and removes the need for additional data storage locations. In some of the multiplications,
the real part of a complex data value is the input and the output is the imaginary part of an
intermediate result. This process provides the required multiplications by j == R. Also,
sine4rr /16) equals cos(4rr /16), which reduces the total number ofconstants to be stored to 6.

The approach used in this example is to perform all of the required multiplies and
then combine these results with additions to complete the computation of the complex
multiplies. This approach requires the most additional memory locations but does segregate
the adds and multiplies. The approach used in the 16-point radix-8 and -2 and the 15-point
Singleton examples completes each complex multiply before proceeding to the next to
reduce the additional memory locations required to two. Hardware architectures, discussed
in Chapters 11 and 12, will determine which of these two approaches is preferable.

218 CHA~ 9 ALGORITHM CONSTRUCTION

Complex Multiply Multiplications

Algorithm Steps

dR(5) = cos(4Jr/16) *cR(5)

dI (5) = sin(4Jr/16) * cI(5)

dR (7) = cos(4Jr/16) *cR(7)

dI (7) = sin(4Jr/16) * c/(7)

dR(17) = sin(2Jr/16) *cR(9)

dR(9) = cos(2Jr/16) *cR(9)

dl (17) = cos(2Jr/16) * c/(9)

dI (9) = sin(2Jr/16) * c/(9)

dR(10) = cos(4Jr/16) *cR(lO)

dI(lO) = cos(4Jr/16) *cI(10)

dR (18) = sin(6Jr/16) * cR(11)

dI (18) = sin(6Jr/16) *cI(11)

dR(l l) = cos(6Jt/16) * cR(11)

dl(11) = cos(6Jt/16) * c/(11)

dR(19) = sin(6Jt/16) * cR(13)

dI (19) = sin(6Jt/16) *cI(13)

dR(13) = cos(6Jr/16) *cR(13)

d l (13) = cos(6Jr/16) * cI(13)

dR(14) = cos(4Jr/16) *cR(14)

dI (14) = cos(4Jt/16) *cI(14)

dR(2D) = sin(2Jr/16) * cR(15)

d/(20) = sin(2Jt/16) * c/(15)

dR(15) = cos(2Jr/16) * cR(15)

dI (1S) = cos(2Jt/16) *c/(15)

Memory Map

dR(5) :::} M(lD)

dl(5) :::} M(26)

dR(7) :::} M(30)

dI(7) :::} M(14)

dR(17) => M(32)

dR (9) :::} M (9)

dI (17) :::} M(36)

dI(9) => M(25)

dR(lD) :::} M(5)

dI (10) => M(21)

dR(18) => M(33)

dI (18) => M(37)

dR (11) => M(29)

dl (l l) => M(13)

dR(19) => M(34)

d I (19) => M(38)

dR(13) =} M(ll)

d I (13) =} M(27)

dR (14) =} M(7)

d I (14) =} M(23)

dR (20) =} M(35)

dI(20) =} M(39)

dR (15) => M(31)

dI(15) =} M(15)

Complex Multiply Additions

These steps combine the multiplications to form the complex multiplies required
between the two sets of4-point building blocks. Once these are combined there is no further
need to usc the additional data memory locations. Therefore, the addressing example for
this step finishes with the output data being stored in the original 32 data memory locations.

Again, the strategy for converting these equations to code is to start at the top (compute
eR(5» and identify the pair of inputs to be used first (in this case dR (5) and dI(5». Then
look down the list to find the second (compute ei(5» place where these two inputs are
used. Pull dR (5) and dl(5) from memory, compute eR(5) and eI(5), and store the results
in memory locations M(ID) and M(26), previously occupied by dR (5) and dl(5).

The next step is to swap the data memory locations for CR (6) and CI (6). This is
accomplished by loading CR (6) and CI (6) into the computational unit and then storing them
in the opposite memory locations from the ones they were taken from. Clearly this is not a

SEC. 9.7 MIXED-RADIX APPROACH 219

requirement. It was done in this algorithm so that the output of each of the computational
steps has the real part in the lower portion of data memory, and the imaginary part is in the
upper portion of data memory. Continue this process until all the Algorithm Steps in Stage
2 have been computed and their results stored in the Memory Map addresses.

Algorithm Steps

eR(5) = dR(5) + d/(5)

el(5) = -dR(5) + d/(5)

eR(6) = c/(6)

el(6) = -cR(6)

eR(7) = -dR(7) + d/(7)

e/(7) = -dR(7) - d/(7)

eR(9) = dR(9) + d/(9)

e/(9) = -dR(17) + dl(17)

eR(IO) = dR(IO) + d/(lO)

e/(IO) = -dR(IO) + d/(IO)

eR(ll) = dR(II) + d/(l8)

el(ll) = -dR(18) + dI(II)

eR(l3) = dR(13) + d/(19)

e[(13) = -dR (19) + dI(l3)

eR(14) = -dR(l4) + dI(14)

e/(14) = -dR(14) - d/(14)

eR(15) = -dR(15) - dI(20)
eI(15) = dR(20) - dI(15)

Stage 3: Output 4-Point Building Blocks

Memory Map

eR(5) => M(IO)

e/(5) => M(26)

eR(6) => M(6)

e/(6) => M(22)

eRe?) => M(14)

e/(?) => M(30)

eR(9) => M(9)

e/(9) => M(25)

eR(IO) =} M(5)

e/(IO) =} M(21)

eR(II) =} M(29)

eI(II) =} M(13)

eR(13) => M(11)

e/(13) =} M(2?)

eR(14) =} M(?)

e/(14) =} M(23)

eR(15) =} M(31)

e/(15) =} M(15)

This stage does not require additional memory locations. However, IR(8), IR(9),
1/(8), and 1/(9) use real and imaginary inputs to simulate multiplication by j = R.
The result is that the real part of the output is stored in the upper half of the allotted data
memory, and the imaginary part in the lower half.

The strategy for converting the equations to code is to start at the top (compute IR (0»
and identify the pair of inputs to be used first (in this case CR(O) and cR(4». Then look
down the list to find the second (compute IR (l) place where these two inputs are used. Pull
cR(D) and cR(4) from memory, compute IR(D) and IR(l), and store the results in memory
locations M(O) and M(2), previously occupied by CR(O) and cR(4). The next step is to
look at the next computation II (0) on the list and repeat the same set of steps. Continue
this process until all the Algorithm Steps in Stage 3 have been computed and their results
stored in the Memory Map addresses.

First of Four 4-PointBuildingBlocks
This set of computations is represented in Figure 9-25 by output 4-point building

block O. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 4-point building block in Chapter 8.

220 CHA~ 9 ALGORITHM CONSTRUCTION

Algorithm Steps

IR(O) = CR(O) + cR(4)

1/(0) = c/(O) + c/(4)

IR(I) = CR(O) - cR(4)

//(1) = c/(O) - c/(4)

IR(2) = cR(8) + cR(12)

1/(2) = c/(8) + c/(12)

IR(3) = cR(8) - cR(12)

1/(3) = c/(8) - c/(12)

AR(O) = IR(O) + IR(2)

A/(O) = 1/(0) + 1/(2)

A R(8) = IR(O) - IR(2)

AI(8) = /1(0) - /1(2)

A R(4) = IR(l) + 1/(3)

AI (4) = IR(l) - 11(3)

AR(12) = IR(l) - /1(3)

AI (12) = /1(1) + /R(3)

Memory Map

IR(O) =} M(O)

fiCO) =} M(16)

IR(I) =} M(2)

//(1) => M(18)

IR(2) => M(l)

/1(2) => M(17)

IR(3) => M(3)

fi(3) => M(19)

AR(O) => M(O)

A/(O) => M(16)

A R(8) => M(l)

AI(8) => M(17)

A R(4) => M(2)

A I(4) => M(18)

AR(12) => M(19)

A[(12) => M(3)

Second of Four 4-Point Building Blocks

This set of computations is represented in Figure 9-25 by output 4-point building
block I. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 4-point building block in Chapter 8.

Algorithm Steps

IR(4) = cR(l) + eR(5)

1/(4) = c/(I) + e/(5)

IR(5) = cR(I) - eR(5)

fi(5) = c/(I) - e/(5)

IR(6) = eR(9) + eR(13)

1/(6) = e/(9) + e/(13)

IR(7) = eR(9) - eR(13)

11(7) = e/(9) - e/(13)

AR(l) = IR(4) + IR(6)

AI(I) = 11(4) + 11(6)

AR(5) = IR(5) + 11(7)

AI(5) = 11(5) - IR(7)

A R(9) = IR(4) - IR(6)

A/(9) = 11(4) - 1/(6)

A R(13) = IR(5) - fi(7)

A/(13) = fi(5) + IR(7)

Memory Map

IR(4) => M(8)

1[(4) => M(24)

IR(5) => M(IO)

1/(5) => M(26)

IR(6) => M(9)

1/(6) => M(25)

IR(7) => M(ll)

II (7) => M (27)

AR(I) => M(8)

AI(I) => M(24)

AR(5) => M(IO)

A/(5) => M(26)

A R(9) => M(9)

A/(9) => M(25)

AR(13) => M(27)

A/(13) => M(ll)

SEC.9.7 MIXED-RADIX APPROACH 221

Third of Four 4-Point Building Blocks

This set of computations is represented in Figure 9-25 by output 4-point building
block 2. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 4-point building block in Chapter 8.

Algorithm Steps

.lR(8) == cR(2) + c/(6)

.li(8) == cl(2) - cR(6)

fR (9) == C R (2) - C I (6)

fi(9) == c/(2) + cR(6)

fR(10) == eR(IO) + eR(14)

fi(10) == el(IO) + eI(I4)

fR(11) == eR(IO) - eR(14)

fi(ll) == eI(IO) - el(14)

A R (2) == .rR (8) + .fR(10)

A I (2) == .fI (8) + fi (10)

A R(6) == /R(9) + //(11)

A I(6) == 11(9) - IR(ll)

AR(IO) == IR(8) - IR(lO)

Al(10) == .fl(8) - 11(10)

A R (14) == ~fR (9) - [t (11)

A / (14) == .f/ (9) + .rR(1 1)

Memory Map

.fR(8) =} M(4)

fi(8) =} M(20)

.(R(9) =} M(22)

/1(9) =} M(6)

IR(10) =} M(5)

.fl(IO) =:} M(2l)

.fR(II) =} M(?)

.(/ (11) =} M(23)

A R(2) =} M(4)

A/(2) =} M(20)

A R(6) =} M(22)

A/(6) =} M(6)

AR(lO) =} M(5)

Al(lO) =} M(21)

A R (14) =} M(23)

A/ (14) =} M(7)

Fourth of Four 4-Point Building Blocks

This set of computations is represented in Figure 9-25 by output 4-point building
block 3. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 4-point building block in Chapter 8.

Algorithm Steps

[,R (12) == CR (3) + eR(7)

.f/ (12) == C l (3) + e / (7)

.lR(13) == cR(3) - eR(7)

.Ii(13) == C / (3) - e, (7)

fR(14) == eR(ll) + eR(15)

.li(14) == e,(lI) +e/(15)

fR(IS) == eR(ll) - eR(15)

.Ii(15) == e,(11) - e,(15)

A R(3) == .(R(I2) + IR(14)

A / (3) == II (12) + .(/ (14)

A R (7) == .rR(13) + 1/ (15)

A / (7) == .fl (13) - .fR (15)

Memory Map

.rR(12) =} M(28)

.f/ (12) =} M (12)

fR(13) =} M(14)

/,(13) =} M(30)

.fR(14) =} M(29)

.f,(14) =} M (13)

IR(lS) =} M(3l)

fi(15) =} M(I5)

A R(3) =} M(28)

A/(3) =} M(12)

A R (?) =} M(14)

Al(7) =} M(30)

222 CHAR 9 ALGORITHM CONSTRUCTION

Algorithm Steps

AR(ll) = IR(12) - IR(14)

A/(11) = //(12) - //(14)

A R(15) = IR(13) - //(15)

A/(15) = //(13) + IR(15)

Memory Map

AR(ll) ::::} M(29)

A/(ll) ::::} M(13)

AR(15) ::::} M(15)

A/(15) => M(31)

9.7.6 Sixteen-Point Radix-a and -2, Mixed Power-ol-Primes Example

The mixed powers-of-primes [7] algorithm computes a transform length that can be
written as one prime number raised to a power, but uses different algorithm building blocks
in the blocks in Figure 9-21, as long as they are all powers of the same prime number. For
example, an 81-point transform has five mixed power-of-primes implementations, namely

3 * 3 * 9,3 *9 *3,9 *3 *3,3 *27, and 27 *3. The 16-point FFf can be implemented using
8-point and 2-point building blocks. Either the 2- or 8-point building blocks can be first,
and any of the 8-point building blocks can be used. This example has the 8-point building
blocks first.

The mixed power-of-primes 16-point FFT is a three-stage process with 148 adds and
28 multiplications. The reason these are lower than the general mixed-radix equation is that
some of the complex multiplies can be performed with fewer computations because of their
specific numerical values. Specifically, multiplication by cos(8Jr/16) + j *sin(81l'/16) = j
requires no multiplication or addition, and multiplication by cos(4Jr/16) + j *sin(4Jr/16) =
(.J2) * (1 + j) requires only two multiplications.

The storage requirements are 34 locations for data memory and 6 locations for mul
tiplier constants. The input stage implements the 8-point radix-4 and -2 building block
from Section 8.8.2. Stage 2 implements the complex multiplications between Stages 1
and 3, and the output stage implements the eight 2-point building blocks from Section
8.3.

Figure 9-26 is a block diagram of this example. Each of the 8- and 2-point building
blocks is labeled to identify it with the steps of each stage of computations. The numbers
inside the left and right edges of the 8- and 2-point building blocks are the corresponding
input and output labels as defined in Chapter 8. For example, a (12) is the complex input for
the terms labeled aR(6) and a/(6) in the 8-point radix-4 and -2 building-block description
in Chapter 8.

The stages are described below.

Stage 1: Input a-Point Building Blocks

The strategy for converting these equations to code is to start at the top (compute
bR(O» and identify the pair of inputs to be used first (in this case aR(O) and aR(8». Then
look down the list to find the second (compute bR (1» place where these two inputs are
used. Pull aR (0) and aR (8) from memory, compute bR (0) and bR (1), and store the results
in memory locations M(O) and M(8), previously occupied by aR(O) and aR(8). The next
step is to look at the next computation b/ (0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps in Stage 1 have been computed and their
results stored in the Memory Map addresses.

SEC. 9.7 MIXED-RADIX APPROACH 223

a(O)

a(8)

a(4)

a(12)

a(2)

a(IO)

a(6)

a(14)

a(l)

a(9)

a(5)
a(13)

a(3)

a(ll)

a(7)

a(15)

I
--. 0 0 0 o~

I 0--. 4 1

I

1 1~
I--. 2 2 r----

I 0 ~~--+ 6 3
0 1 1

--. 1 4 1 l~

1
--. 5 5

1 0 o~
--. 3 6 2

1 1 1~--. 7 7

0 o~

3
1 1 t--+-

G1 1

.L,
~ 0 0 [J=W
~ 4 1

W 2 1 1
~ 2 2

W 3
I--+- G6 3

1 -}
.-1 1 6 1~l 4

-jW
--+- 5 5

'W2
~

-J G3 6
_jW 3 I

~ 7 7 1 1

A(O)

A(8)

A(l)

A(9)

A(2)

A(lO)

A(3)

A(11)

A(4)

A(12)

A(5)

A(l3)

A(6)

A(14)

A(7)

A(15)

8-PointFFTs

Figure 9-26

2-PointFFTs

Sixteen-point radix-8 and -2 mixed power-of-primes block
diagram.

First of Two 8-Point Building Blocks
This set of computations is represented in Figure 9-26 by input 8-point radix-4 and-2

building block O. Further, the labels on the left and right of this building block correspond
to the input and output labels in the 8-point building block in Section 8.8.2.

Algorithm Steps

bR(O) == aR(O) + aR(8)

b/(O) == a/CO) + a/(8)
bR(I) == aR(O) - aR(8)
b/(l) == al(O) - a/(8)

bR (2) == aR(4) + aR(l2)

bl(2) == al(4) + a/(12)
bR(3) == aR(4) - aR(12)

Memory Map

bR (0) :::} M (0)
bl(O) :::} M(16)
bR(I) :::} M(8)
bl(l) :::} M(24)

bR (2) => M(4)
bl(2) => M(20)

b R(3) => M(12)

224 CHAR 9 ALGORITHM CONSTRUCTION

Algorithm Steps

b/(3) = a/(4) - a/(12)

bR(4) = aR(2) + aR(lO)

b/(4) = a/(2) + a/(IO)

bR(5) = aR(2) - aR(lO)

b/(5) = a/(2) - a/(IO)

bR(6) = aR(6) + aR(14)

b/(6) = a/(6) + a/(14)

bR(7) = aR(6) - aR(14)

b/(7) = a/(6) - a/(14)

cR(D) = bR(D) + bR(2)

c/(O) = b/(O) + b/(2)

cR(I) = bR(I) + b/(3)

c/(l) = b/(!) - bR(3)

cR(2) = bR(O) - bR(2)

c/(2) = b/(O) - b/(2)

cR(3) = bR(I) - b/(3)

c/(3) = b/(l) + bR(3)

cR(4) = bR(4) + bR(6)

c/(4) = b/(4) + b/(6)

cR(5) = bR(5) + b/(7)

c/(5) = b/(5) - bR(7)

cR(6) = bR(4) - bR(6)

c/(6) = b[(4) - b/(6)

cR(7) = bR(5) - b/(7)

c/(7) = b[(5) + bR(7)

dR(5) = COS (4Jrj 16) * cR(5)

d[(5) = cos(4Jrj16) *c[(5)

dR(7) = cos (4Jrj 16) * CR(?)

d/(7) = cos (41l' j 16) *c/(7)

eR(5) = dR(5) + d/(5)

e/(5) = -dR(5) + dI(5)

eR(6) = c[(6)

e[(6) = -cR(6)

eR(7) = -dR(7) + dI (7)

e/(7) = -dR(7) - d/(7)

fR(O) = CR(O) + cR(4)

fICO) = c/(O) + c/(4)

fRet) = CR(!) + eR(5)

Memory Map

b j(3) => M(28)

bR(4) => M(2)

b/(4) => M(18)

bR(5) => M(IO)

b j(5) => M(26)

bR(6) => M(6)

b/(6) => M(22)

bR(7) => M(14)

b/(7) => M(3D)

CR(O) => M(O)

c/(O) => M(16)

CR(}) => M(8)

c/(l) => M(24)

cR(2) => M(4)

c/(2) => M(2D)

cR(3) => M(28)

Cj(3) => M(12)

cR(4) => M(2)

c/(4) => M(18)

cR(5) => M(IO)

Cj(5) => M(26)

cR(6) => M(6)

c[(6) => M(22)

CR(?) => M(30)

c/(7) => M(I4)

d R(5) => M(IO)

d/(5) => M(26)

dR(7) => M(30)

d/(7) => M(14)

eR(5) => M(ID)

e/(5) => M(26)

eR(6) => M(22)

e/(6) => M(6)

eR(7) => M(14)

ej(7) => M(30)

fR(O) => M(O)

fICO) =} M(16)

IR(I) =} M(8)

Algorithm Steps

il (I) == C I (1) + e I (5)

.fR(2) == cR(2) + eR(6)

ti(2) == c/(2) + e/(6)

iR(3) == cR(3) + eR(7)

.fl (3) == C / (3) + eI (7)

fR(4) == CR(O) - cR(4)

i/(4) == C/(O) - cI(4)

iR(5) == cR(I) - eR(5)

.f/(5) == c/(l) - e/(5)

fR(6) == cR(2) - eR(6)

f1 (6) == C I (2) - e I (6)

fi? (7) == C R (3) - e R (7)

fi(7) == c/(3) - el(7)

SEC. 9.7 MIXED-RADIX APPROACH 225

Memory Map

,fI(1) => M(24)

fR(2) => M(4)

11(2) => M(20)

IR(3) => M(28)

11(3) => M(12)

IR(4) => M(2)

1/(4) => M(18)

IR(5) => M(IO)

11(5) => M(26)

IR(6) => M(22)

11(6) => M(6)

.fR(7) => M(14)

11(7) => M(30)

Second of Two 8-Point Building Blocks

This set of computations is represented in Figure 9-26 by input 8-point radix-4 and-2
building block 1. Further, the labels on the left and right of this building block correspond
to the input and output labels in the 8-point building block in Section 8.8.2.

Algorithm Steps

bR(8) == aR(l) + aR(9)

h l (8) == aI(l) + a/(9)

bR (9) == aR (1) - a R (9)

bI(9) == aI(I) - aj(9)

bR(IO) == aR(5) + aR(13)

b,(IO) == a/(S) + aI(13)

bR(11) == aRCS) - aR(13)

hl(1l) = a/(5) -a/(13)

b R (12) == aR(3) + aR(II)

h,(12) == a/(3) + aI(II)

bR(I3) == aR(3) - aR(II)

b/(l3) == a,(3) - a/(II)

bR (14) == a R (7) + a R (15)

b/(14) == a/(7) +aI(15)

bR(I5) == aR(7) - aR(15)

b,(15) == aj(7) -a/(15)

cR(8) == bR(8) + bR(IO)

c,(8) == b/(8) + bj(IO)

cR(9) == bR(9) + bI(ll)

c/(9) == h,(9) - bR(II)

Memory Map

bR(8) => M(l)

bl(8) :::} M(17)

b R(9) =} M(9)

b/(9) => M(25)

bR(lO) =} M(5)

b/(IO) => M(2I)

bR(II) =} M(13)

hl(11) =} A1(29)
bR(12) => M(3)

b/(12) =} M(19)

b R (I 3) =} M(ll)

b/(13) => M(27)

bR(14) => M(7)

b/(14) => M(23)

bR(I5) => M(15)

b,(15) :::} M(3I)

cR(8) :::} M(l)

c,(8) => M(17)

cR(9) => M(9)

c,(9) => M(25)

226 CHA~ 9 ALGORITHM CONSTRUCTION

Algorithm Steps

cR(lO) = bR(8) - bR(lO)

c[(IO) = b[(8) - b[(IO)

cR(II) = bR(9) - b[(ll)

c[(ll) = b[(9) + bR(II)

cR(12) = bR(12) + bR(14)

c[(12) = b j (l 2) + b j (14)

cR(13) = bR(13) + b[(15)

cj(13) = b j(13) - bR(15)

cR(14) = bR(12) - bR(14)

c[(l4) = b[(l2) - b[(14)

cR(15) = bR(13) - b[(15)

c[(15) = b j(13) + bR(15)

dR(13) = cos(4n/16) *cR(13)

d[(13) = cos(4n/16) *cI(13)

dR(15) = cos(4n/16) *cR(15)

dI (15) = cos(4n/16) *cI(15)

eR(13) = dR(13) + d[(13)

e[(13) = -dR(13) + d[(13)

eR(14) = cj(14)

e[(14) = -cR(14)

eR(15) = -dR(15) + d[(15)

e[(15) = -dR(15) - d[(15)

IR(8) = cR(8) + cR(12)

//(8) = c/(8) + c[(12)

IR(9) = cR(9) + eR(13)

1/(9) = c/(9) + e[(13)

IR(lO) = cR(10) + eR(14)

h(lO) = c/(IO) + el(14)

IR(ll) = cR(11) + eR(15)

fi(ll) = c[(II) + el(15)

IR(12) = cR(8) - cR(12)

/[(12) = c/(8) - c[(12)

IR(13) = cR(9) - eR(13)

/1(13) = c/(9) - e[(13)

IR(14) = cR(IO) - eR(14)

/1(14) = c/(10) - e[(14)

IR(15) = cR(ll) - eR(15)

/1(15) = c/(11) - e/(15)

Memory Map

cR(lO) =} M(5)

c/(IO) =} A1(21)

cR(11) =} M(29)

c[(ll) =} M(13)

cR(12) =* M(3)

c[(12) =* M(19)

cR(13) =} M(ll)

cI(13) =} M(27)

cR(14) =* M(7)

cI(14) =} M(23)

cR(15) =} AI(31)

c/(15) =} M(15)

dR(13) => AI(11)

d[(13) => AI(27)

dR(15) => AI(31)

dI(15) => AI(15)

eR(13) =} M(11)

e/(13) => AI(27)

eR(14) =} M(23)

e/(l4) =} M(7)

eR(l5) => M(l5)

el(15) => M(31)

IR(8) => M(l)

/1(8) => M(17)

[« (9) => M (9)

1/(9) => M(25)

IR(lO) =} M(5)

/1(10) =} M(21)

IR(11) =} M(29)

/[(11) =} M(13)

IR(12) =} M(3)

//(12) =} M(19)

IR(13) =} M(ll)

/1(13) =} M(27)

!R(14) => M(23)

/1(14) =} M(?)

fR(15) =} M(15)

//(15) => M(31)

SEC. 9.7 MIXED-RADIX APPROACH 227

Stage 2: Interstage Complex MUltiplies

This stage computes the complex multiplications required between the 8- and 2-point
building-block stages. Since a complex multiplication requires four multiplies and two adds,
each input data value is multiplied by two constants, and then these results are combined.
Therefore, additional data memory locations are required to store the intermediate results
of the multiplication portion of the complex multiplies. There is one exception to that in
this example-the multiplication by sin(41l'/16) and cos(41l'/16), because these numbers
are the same. Therefore, only one of the multiplications is required, and no additional data
memory locations are needed to store the intermediate results.

The complex multiply computations are grouped to make them easier to see. For
example, the first six computations are a complex multiply that requires two additional
memory locations, M (32) and M (33). Each of the subsequent four sets of six computations
is also a complex multiplication. In each case, M (32) and M (33) can be used for the required
temporary results. After these computations, the next two sets of four computations are the
multiplication by association with sine41l'/16) and cos(41l'/16). Since these two constants
are the same, the computations do not require additional memory locations. The last two
lines simulate multiplication by j.

Algorithm Steps

gR(9) = IR (9) *cos(21l'1 16)

gR(17) = IR(9) * sin(2rr/16)

gI (9) = II (9) * sin(2rr 116)

gI(17) = II(9) *cos(2rr116)

h I(9) = gI(17) - gR(17)

h R(9) = gR(9) + gI(9)

gR(II) = fR(11) * cos(61l'/16)

gR(18) = IR(11) * sin(61l'116)

gI (11) = II (11) * sin (6Jr116)

gI(18) = II(11) * cos(61l' /16)

hI(II) = gI(I8) - gR(I8)

h R(1I) = gR(II) + gI(ll)

gR(13) = fR(13) * cos(21l'/16)

gR(I9) = fR(13) * sin(2n/16)

gI(I3) = fI(13) * sin(21f116)

S! (19) = fI (13) * cos(2n /16)

h R(13) = -gR(19) + gI(13)

h I(13) = -gI(13) - gR(13)

gR(15) = fR(15) * cos (61l'116)

gR(20) = fR(15) * sin(61l'/16)

gI(15) = 1/(15) * sin(61l'/16)

gI(20) = f/(15) *cos(61l' /16)

Memory Map

gR(9) => M(32)

gR(17) => M(9)

gI(9) => M(33)

g/(17) => M(25)

h/(9) => M(25)

hR(9) => M(9)

gR(11) => M(32)

gR(18) => M(29)

g/(11) => M(33)

g/(18) => M(13)

hI(II) =} M(13)

hR(II) => M(29)

gR(13) => M(32)

gR(19) => M(ll)

gI(13) => M(33)

gI(19) => M(27)

hR (13) => M(ll)

h/(13) => M(27)

gR(15) => M(32)

gR(20) => M(15)

g/(15) => M(33)

g/ (20) :::} M(31)

228 CHAR 9 ALGORITHM CONSTRUCTION

Algorithm Steps

h R(15) = -gR(20) + g/(20)

h/(15) = -g/(15) - gR(15)

gR(10) = fR(10) *cos(4rr /16)

g/(10) = f/(10) * cos(4rr/16)

h R(10) = gR(lO) + g/(IO)

h/(lO) = -gR(lO) + g/(lO)

gR(14) = fR(14) *cos(4rr /16)

g/(14) = f/(14) * cos(4rr/16)

h R(14) = -gR(14) + g/(14)

h/(14) = -gR(14) - g/(14)

gR(12) = //(12)

g/(12) = - IR(12)

Stage 3: Output 2-Point Building Blocks

Memory Map

h R(15) => M(15)

h/(15) => M(31)

gR(10) => M(5)

g/(10) :::::} M(21)

hR(lO) => M(5)

h/(lO) => M(21)

gR(14) :::::} M(23)

g/(14) :::::} M(?)

hR(14) => M(23)

h/(14) :::::} M(?)

gR(12) => M(19)

g/(12) =} M(3)

This step is a sequence of eight 2-point algorithm building blocks and does not re
quire additional data memory or accessing any of the multiplier constants. Further, the
add/subtract process is the same for all of the real and imaginary pairs.

The strategy for converting these equations to code is to start at the top (compute
AR(O» and identify the pair of inputs to be used first (in this case fR(O) and IR(8». Then
look down the list to find the second (compute AR (8» place where these two inputs are
used. Pull fR(O) and fR(8) from memory, compute AR(O) and A R(8), and store the results
in memory locations M(O) and M(l), previously occupied by IR(O) and IR(8). The next
step is to look at the next computation A/ (0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps in Stage 3 have been computed and their
results stored in the Memory Map addresses.

First of Eight 2-Point Building Blocks

This set of computations is represented in Figure 9-26 by output 2-point building
block O. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 2-point building block in Section 8.3.

Algorithm Steps

AR(O) = IR(O) + IR(8)

A/(O) = 1/(0) + f/(8)

A R(8) = fR(D) - IR(8)

Al(8) = fl(O) - 1/(8)

Memory Map

AR(O) =} M(O)

A/(O) =} M(16)

AR(8) => M(l)

A l(8) :::::} M(l?)

Second of Eight2-PointBuilding Blocks
This set of computations is represented in Figure 9-26 by output 2-point building

block 1. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 2-point building block in Section 8.3.

Algorithm Steps

A R (1) == .(R (1) + h R (9)

A I (1) == .f/ (I) + h / (9)

A R (9) == fR (1) - h R (9)

A / (9) == fi (I) - ht (9)

SEC. 9.7 MIXED-RADIX APPROACH 229

Memory Map

AR(l) =} M(8)

AI(l) =} M(24)

A R(9) =} M(9)

A /(9) =} M(25)

Third of Eight 2-Point Building Blocks

This set of computations is represented in Figure 9-26 by output 2-point building
block 2. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 2-point building block in Section 8.3.

Algorithm Steps

AR(2) == .lR(2) + hR(lO)

A I (2) == !/ (2) + h / (10)

AR (10) == [.R (2) - hR (10)

A I (10) == .II(2) - h / (10)

Memory Map

A R(2) => M(4)

A I (2) => M(20)

AR(lO) => M(S)

A/(IO) => M(2l)

Fourth of Eight 2-Point Building Blocks

This set of computations is represented in Figure 9-26 by output 2-point building
block 3. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 2-point building block in Section 8.3.

Algorithm Steps

A R (3) == !R (3) + h R (11)

AI(3) == !/(3) + h/(lI)

AR(ll) == !R(3) - hR(II)

A/ (11) == !/ (3) - hi (11)

Memory Map

AR(3) => M(28)

A/(3) =} M(12)

AR(ll) =} M(29)

AI(II) => M(13)

Fifth of Eight 2-Point Building Blocks

This set of computations is represented in Figure 9-26 by output 2-point building
block S. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 2-point building block in Section 8.3.

Algorithm Steps

A R(4) == !R(4) + gR(12)

A [(4) == !I (4) + g I (12)

A R (12) == .fR (4) - gR (12)

A I (12) == [t (4) - g I (12)

Memory Map

AR(4) => M(2)

A/(4) => M(18)

A R (12) =} M(19)

A/(12) =} M(3)

Sixth of Eight 2-Point Building Blocks

This set of computations is represented in Figure 9-26 by output 2-point building
block S. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 2-point building block in Section 8.3.

230 CHAP. 9 ALGORITHM CONSTRUCTION

Algorithm Steps

AR(5) = IR(5) + hR(13)

A I(5) = 11(5) + h l (13)

A R(13) = IR(5) - hR(13)

AI(13) = 11(5) - hl(13)

Memory Map

AR(5) => M(lO)

AI(5) => M(26)

AR (13) => M(ll)

A I (13) => M(27)

Seventh of Eight2-PointBuilding Blocks

This set of computations is represented in Figure 9-26 by output 2-point building
block 6. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 2-point building block in Section 8.3.

Algorithm Steps

AR(6) = !R(6) + hR(14)

AI(6) = !1(6) + h/(14)

AR(14) = !R(6) - hR(14)

A/(14) = !/(6) - h/(14)

Memory Map

A R(6) => M(22)

A/(6) => M(6)

AR (14) => M(23)

A/(14) => M(7)

Eighth of Eight2-PointBuilding Blocks

This set of computations is represented in Figure 9-26 by output 2-point building
block 2. Further, the labels on the left and right of this building block correspond to the
input and output labels in the 2-point building block in Section 8.3.

Algorithm Steps

A R(7) = IR(7) + hR(15)

A/(7) = !/(7) + h/(15)

AR(15) = IR(7) - hR(15)

A/(15) = 11(7) - h l (15)

Memory Map

A R(7) => M(14)

AI(7) => M(30)

AR(15) => M(15)

A/(I5) => M(31)

9.7.7 Fifteen-Point Singleton Mixed-Radix FFT Example

The Singleton mixed-radix [5] algorithm is the most general one. In Figure 9-21, any
of the algorithm building blocks from Chapter 8 can be placed in the FFT stages.

The I5-point Singleton mixed-radix algorithm can be implemented with either the
3-point or the 5-point building blocks first. If the 3-point building block is first, the 15
pieces of complex input data are divided into five sets of three complex points, one for each
of the 15/3 = 53-point transforms. Following the 3-point building blocks and complex
multiplies, the intermediate results are divided into three sets of five pieces of complex data
needed for input to the 15/5 = 3 5-point building-block computations. The order does not
affect the number of computations required.

Figure 9-27 is a detailed block diagram of this example. At the block diagram level,
any of the 3- and 5-point building blocks from Chapter 8 can be used. This example uses the
Singleton 3-and5-point building blocks. A smaller number of adds and multiplies would
be needed if the Winograd building blocks were used.

SEC.9.7 MIXED-RADIX APPROACH 231

a(4)

a(9)

a(14)

a(3)

a(8)

a(13)

a(O)

a(5)

a(10)

a(l)

a(6)

a(11)

a(2)

a(7)

a(12)

1
--. 0 0

I
0 0~

1 1~
--.. 1 0 1 1

1 I

--.. 2 2 I 2 0 2~

I 3 3~
1

~o 0
I ---+- 4 4~

WI
I

I--. 1 1 1

W 2
-..2 \2

I 0 o~

1 I 1 1~
--+- 0 0

W 2
I 1--+- 1 2 1

W 4
2 2~

I
j

--+- 2 2 3 3~

I 4 4~

1 I
--+ 0 o~

W 3 I
--. 1 3 1

W 6 I
--. 2 2

I 0 O~

I

1 1 --..

1 2 2 2~
--+- 0 0

W 4 I

--+- 1 4 1 I
3 3 f----.

--+- 2
W 8

I
4~2 4

A(O)
A(3)

A(6)

A(9)

A(12)

A(I)
A(4)

A(7)

A(lO)
A(13)

A(2)
A(5)

A(8)

A(II)

A(14)

3-Point FFTs 5-Point FFTs

Figure 9-27 Fifteen-point Singleton mixed-radix algorithm block
diagram.

If the Comparison Matrix in Chapter 8 and the equation presented in Section 9.7.2
are used, the total number of real adds required is 5 * 12 + 3 * 32 + 2 * 2 *4 = 172, and
the total number of real multiplies is 5 *4 + 3 * 16 + 4 *2 *4 = 100. The total amount of
data memory required is driven by the 5-point building block and is 3 * 10 basic complex
data locations plus 2 temporary locations, for a total of 32 memory locations.

The 3-point Singleton building block has two multiplier constants (cos(2rr 13) and
sin(2rr13)), the 5-point Singleton building block has four (cos(2rr /5), sin(2rr IS), cos(4rr IS),
and sin(4Jl'15»), and the complex multiplies between the stages require eight constants that
are not already required by the 3- and 5-point building blocks (cos(2rr115), sin(2Jl'115),
cos(41l'/15), sin(4rr/15), cos(8rr/15), sin(8rr/15), cos(161l'/15), and sin(16rr/15». This
is a total of 14 memory locations for multiplier constants.

Stage 1: Three-Point Building Blocks

The 15 data points must first be divided into five sets of 3 points to serve as inputs
to each of the 3-point building blocks. This is done by starting with complex input data

232 CHAR 9 ALGORITHMCONSTRUCTION

point pair aR(O), a/CO) and grouping it with complex input data point pairs aR(5), a/(5)
and aR(IO), a/(IO). These provide the input to the top one of the five 3-point building
blocks. This is followed by grouping the input data point pairs aR(I), aj (1), aR(6), ai (6),
and aR(II), a/(II) to provide the input for the second of the five 3-point building blocks.
The next grouping is data point pairs aR(2), a/(2), aR(7), a/(7), and aR(I2), aj(I2) for
input into the third of the five 3-point building blocks. The next grouping is data point
pairs aR(3), a/(3), aR(8), al(8), and aR(I3), a/(I3) to provide input for the fourth of the
five 3-point building blocks. The final grouping is data point pairs a R (4), a/ (4), a R (9),
a/ (9), and aR (14), a/ (14) for input into the fifth 3-point building block. In general, the
complex input data for the k-th input to the m-th 3-point building block are aRCS *k + m),

a/(5 *k + m) where k = 0,1, and 2, and m = 0,1,2,3, and 4.
The five groups of computations, listed as (a) through (e), each perform the 3-point

building block. In this example, the Singleton 3-point algorithm building block from Section
8.4.2 is used. All of these 3-point transforms could also have been the Winograd 3-point
algorithm building block from Chapter 8. In fact, the five 3-point transforms can be any
combination of the two 3-point algorithm building blocks. The outputs of each of the 3
point building blocks, labeled BR(i) and B/(i) for i = 0,5, 10, are the equivalent of the
AR(i) and A/(i) in the 3-point building block in Chapter 8. To translate these data addresses
and data labels to each of the next four 3-point building blocks, add 1, 2, 3, and 4 to the
addresses and data labels.

The strategy for converting these equations to code is to start at the top (compute
bR(5» and identify the pair of inputs to be used first (in this case aR(5) and aR(10». Then
look down the list to find the second (compute bR (10» place where these two inputs are
used. Pull aR(O)and aR(IO) from memory, compute bR(5) and bR(IO) and store the results
in memory locations M(5) and M(IO), previously occupied by aR(5) and aR(IO). The next
step is to look at the next computation bI (5) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps in Stage 1 have been computed and their
results stored in the Memory Map addresses.

First of Five 3-PointBuilding Blocks
This set of computations is represented in Figure 9-27 by 3-point building block O.

Further, the labels on the left and right of this building block correspond to the input and
output labels in the 3-point Singleton building block in Section 8.4.2.

Algorithm Steps

bR(5) = aR(5) + aR(IO)

bR(IO) = aR(5) - aR(IO)

b/(5) = a/(5) + a/(IO)

bl(IO) = al(5) - a/(IO)

cR(5) = bR(5) * cos(2rr /3) + aR(O)

BR(O) = aR(O)+ bR(5)
cR(10) = b/(10) * sin(2rr/3)

c/(5) = b/(5) * cos(2rr /3) + a/CO)

BI(O) = a/CO) + bI(5)

cICIO) = -bR(ID) * sin(2rr /3)
BR(5) = cR(5) + cR(IO)

Memory Map

bR(5) => M(5)

bR(IO) => M(IO)

bl(5) => M(20)

bl(IO) => M(25)
cR(5) =} M(30)

BR(O) => M(O)

cR(lO) => M(25)

c/(5) => M(5)

B/(O) => M(15)
cICIO) =} M(ID)
B R(5) => M(25)

Algorithm Steps

B/(5) == c/(5) + c/(lO)

BR(lO) == cR(5) - cR(lO)

B,(lO) == c/(5) - c/(lO)

SEC. 9.7 MIXED-RADIX APPROACH 233

Memory Map

B/(5) ::::} M(lO)

BR(lO) ::::} M(20)

B/(lO) => M(5)

Second of Five 3-Point Building Blocks

This set of computations is represented in Figure 9-27 by 3-point building block 1.
Further, the labels on the left and right of this building block correspond to the input and
output labels in the 3-point Singleton building block in Section 8.4.2.

Algorithm Steps

bR(6) =: aR(6) +aRCl1)

bR (11) =: aR (6) - aR (11)

b/(6) =: a/(6) + a/(11)

b/(ll) =: a/(6) -a/(ll)

cR(6) == bR (6) * cos(2Jr13) + aR(l)

BR(I) =: aR(l) + bR(6)

C R(11) == b/ (11) * sin(2Jr13)

c/(6) == bl(6) * cos(2Jr13) + a[(l)

Bl(l) == al(l) + b/(6)

c[(ll) == -bR(I!) * sin(2n13)

BR (6) == cR(6) + cR(Il)

Bl(6) == c/(6) + cl(ll)

BR(ll) == cR(6) - cR(II)

Bl(ll) == c/(6) - c/(ll)

Memory Map

bR(6) ::::} M(6)

bR(II) ::::} M(lI)

b[(6) ::::} M(2l)

b[(lI) ::::} M(26)

cR(6) ::::} M(30)

BR(l) ::::} M(l)

cR(ll) ::::} M(26)

cl(6) ::::} M(6)

B[(l) ::::} M(I6)

c[(Il) ::::} M(II)

BR (6) ::::} M(26)

B[(6) ::::} M(ll)

BR(ll) ::::} M(2I)

B/ (l l) ::::} M(6)

Third of Five 3-Point Building Blocks

This set of computations is represented in Figure 9-27 by 3-point building block 2.
Further, the labels on the left and right of this building block correspond to the input and
output labels in the 3-point Singleton building block in Section 8.4.2.

Algorithm Steps

bR(7) == aR(7) + aR(12)

bR(12) == aR(7) - aR(12)

b/(7) == a/(7) + a/(12)

bl (12) == a/(7) - a/(12)

c R (7) == bR (7) * cos(2n13) + aR (2)

BR(2) =: aR(2) + bR (7)

cR(12) == b/(12) * sin(2nI3)

c/(7) == b/(7) * cos(2nI3) + al(2)

B/(2) == a/(2) + b/(7)

c/(12) == -bR(12) * sin(2nI3)

Memory Map

bR (7) => M(7)

bR (12) ::::} M(12)

bl(7) => M(22)

b/(12) => M(27)

cR(7) => M(30)

B R(2) => M(2)

cR(12) => M(27)

c/(7) => M(7)

B/(2) => M(17)

c[(12) => M(12)

234 CHA~ 9 ALGORITHM CONSTRUCTION

Algorithm Steps

BR(7) = cR(7) + cR(12)

Bj (7) = cj(7) + cj(12)

BR(12) = cR(7) - cR(12)

Bj(12) = cj(7) - cj(I2)

Memory Map

BR(7) =} M(27)

BI(7) =} M(12)

BR (12) =} M(22)

B j (12) =} M(7)

Fourth of Five 3-PointBUilding Blocks
This set of computations is represented in Figure 9-27 by 3-point building block 3.

Further, the labels on the left and right of this building block correspond to the input and
output labels in the 3-point Singleton building block in Section 8.4.2.

Algorithm Steps

bR(8) = aR(8) + aR(13)

bR(13) = aR(8) - aR(13)

bj (8) = aj(8) + aj(13)

b j (13) = al(8) - al(I3)

cR(8) = bR(8) *cos(21l'13) + aR(3)

BR(3) =aR(3) + bR(8)

CR (13) = bj(13) * sin(21l'13)

cI(8) = bl(8) *cos(21l'13) + aj(3)

B[(3) = a[(3) + b[(8)

c[(13) = -bR (I 3) * sin(2Jr13)

BR(8) = cR(8) + cR(13)

BI(8) = c/(8) + c/(13)

BR(I3) = cR(8) - cR(13)

B[(13) = c[(8) - c[(13)

Memory Map

bR(8) => M(8)

bR (13) => M(13)

bl(8) => M(23)

b j (13) => M(28)

cR(8) :::} M(30)

BR(3) => M(3)

cR(I3) =} M(28)

cj(8) :::} M(8)

B/(3) => M(I8)

c/(I3) => M(l3)

BR (8) :::} M (28)

B/(8) => M(13)

BR(I3) =} M(23)

R[(13) =} M(8)

Fifth of Five 3-PointBuilding Blocks
This set of computations is represented in Figure 9-27 by 3-point building block 4.

Further, the labels on the left and right of this building block correspond to the input and
output labels in the 3-point Singleton building block in Section 8.4.2.

Algorithm Steps

bR(9) = aR(9) + aR(14)

bR(14) = aR(9) - aR(I4)

b j (9) = aj(9) + a/(14)

b j (14) = a[(9) - al(14)

cR(9) = bR(9) *cos(2Jr/3) + aR(4)

BR(4) = aR(4) + bR(9)

cR(14) = b j (14) * sin(2n13)

c[(9) = bj(9) * cos(2Jr/3) + Qj(4)

Bj(4) = Q[(4) + b[(9)

Memory Map

bR(9) => M(9)

bR(14) => M(14)

b[(9) => M(24)

b[(14) => M(29)

cR(9) => M(6)

BR(4) => M(4)

cR(14) => M(29)

c/(9) => M(9)

B[(4) => M(19)

SEC.9.7

Algorithm Steps

cj(14) == -bR(14) * sin(2rr13)

BR(9) == cR(9) + cR(14)

B/(9) == cj(9) + cj(14)

BR(14) == cR(9) - cR(14)

B/(14) == c/(9) - c/(14)

Stage 2: Complex MUltiplies

MIXED-RADIX APPROACH 235

Memory Map

cj(14) =} M(14)

BR(9) => M(29)

BI(9) =} M(14)

BR(14) =} M(24)

B/(14) => M(9)

The complex multiplier to be applied to the k-th output of the m-th 3-point building
block, BR(5*k +m) + j *BI(5 *k + m), is cos(2 *x *k* m/15) - j *sin(2 *n *k em /15)
as shown in Figure 9-23. Assuming no temporary storage registers, the complex multiply
requires two additional data memory locations (M(30) and M(31» if the results are to be
placed back in the same memory locations where the BR (5*k+m) and B1(5 *k +m) were
accessed. The reason is that the real and imaginary parts, BR(5*k+m) and BI(5 *k +m),
are multiplied by different constants and both results are used twice. Once one complex
multiply is performed, the two additional data memory locations (M(30) and M(31» are
free to be used as the extra memory locations for the next complex multiply. Therefore,
only two additional data memory locations are required.

Many of the Algorithm Steps in this stage are just renaming the intermediate results.
This is done to make all of the intermediate results labels into the next stage have the same
letter, D. For those Algorithm Steps that perform multiplication, the data is pulled from
memory, the computation performed, and the results stored back in the same location. This
stage's computations are as follows.

First 3-PointBuilding-Block OutputComplex Multiplies

When m == 0, the complex multiplier is 1, which requires no multiplication. The
first four lines are a redefinition of the data variables so that the inputs to the output 5-point
building blocks all use the same variable names. The final three lines are used to reverse
the data memory locations of the real and imaginary parts of the last output of the zero-th
3-point building block. This rearrangement is not required. However, for this example,
all of the real and imaginary parts that will be inputs to the 5-point building blocks are
reordered so that the real part appears in the lower half of data memory and the imaginary
parts appear in the upper half of data memory.

Algorithm Steps

DR(O) == BR(O)

D/(O) == B/(O)

D R(5) == BR(5)

D I(5) == B/(5)

TR == BI(IO)

DR(lO) == BR(lO)

D/(lO) == TR

Memory Map

DR(O) => M(O)

D/(O) => M(15)

D R(5) => M(25)

D/(5) => M(lO)

TR => M(30)

DR(lO) => M(20)

D/(10) => M(5)

236 CHA~ 9 ALGORITHM CONSTRUCTION

Second3-PointBuilding-Block OutputComplex Multiplies

The computations in this set perform the complex multiplies required at the output of
the second of the five 3-point building blocks (m = 1). Additionally, the first two lines are
used to redefine the data variables so that the inputs to the output 5-point building blocks
all use the same variable names.

Algorithm Steps

DR(I) = BR(I)

D/(I) = B/(l)

TR = BR(6) * cos (21l'1 15)

T[= B/(6) * sin(2rr lIS)

CR(6) = BR(6) * sin(2rr/15)

C/(6) = B/(6) *cos(2rr/15)

D/(6) = -CR(6) + C/(6)

D R(6) = TR + T/

TR = BR(l l) *cos (41l' I 15)

T/ = B/(Il) * sin(4rr /15)

CR(ll) = BR (11) * sin(4Jr lIS)

C/(ll) = B/(ll) *cos(4Jr lIS)

D[(ll) = -CR(ll) + C/(ll)

DR(ll) = TR + T/

Memory Map

DR(l) => M(l)

D/(l) => M(16)

TR => M(30)

T[=> M(3l)

CR(6) => M(26)

C/(6) => M(ll)

D/(6) => M(26)

DR(6) => M(ll)

TR => M(30)

T/ => M(31)

CR (l l) ==> M(2l)

C[(ll) ==> M(6)

D/(ll) => M(21)

DR(ll) => M(6)

Third3-PointBuilding-Block OutputComplex Multiplies
The computations in this set perform the complex multiplies required at the output

of the third set of the five 3-point building blocks (m = 2). Again, all of the real and
imaginary parts have been reordered after multiplication so that the inputs to the 5-point
building blocks have their real part appearing in the bottom half of data memory, and the
imaginary parts appear in the upper half of data memory. Additionally, the first two lines
are used to redefine the data variables so that the inputs to the output 5-point building blocks
all use the same variable names.

Algorithm Steps

DR(2) = BR(2)

D/(2) = B/(2)

TR = B R(7) *cos(4Jr lIS)

T/ = H/(7) * sin(4Jr/15)

C R(7) = HR(7) * sin(4Jrjl5)

C/(7) = B/(7) *cos (4JrI 15)

D/(7) = -CR(7) + C/(7)

D R(7) = TR + T[

Memory Map

DR (2) => M(2)

D/(2) => M(17)

TR => M(30)

T/ => M(31)

CR(7) => M(27)

C/(7) => M(12)

D/(7) => M(27)

D R(7) => M(12)

SEC. 9.7

Algorithm Steps

TR == BR(12) * cos(8rr/15)

TI == B I (12) * sin(8rr 115)

CR(12) == BR (12) * sin(8rr/15)

C / (12) == BI (12) * cos(8rr/15)

D / (12) == -CR(12) + C/ (12)

DR (12) == TR + T,

MIXED-RADIX APPROACH 237

Memory Map

TR => M(30)

T1 => M(31)

CR(12) => M(22)

C/ (12) => M(7)

D I (12) =} M(22)

D R(12) =} M(7)

Fourth 3-Point Building-Block Output Complex Multiplies

The computations in this set perform the complex multiplies required at the output
of the fourth set of the five 3-point building blocks (m = 3). Again, all of the real and
imaginary parts have been reordered after multiplication so that the inputs to the 5-point
building blocks have their real part appearing in the bottom half of data memory, and the
imaginary parts appear in the upper half of data memory. Additionally, the first two lines
are used to redefine the data variables so that the inputs to the output 5-point building blocks
all use the same variable names.

Algorithm Steps

D R(3) == B R(3)

D /(3) = B I(3)

TR == B R(8) *cos(61l'/15)

TI = B1(8) * sin(6rr 115)

CR(8) == BR (8) * sin(6rr /15)

C/(8) == B/(8) * cos(6rrlIS)

D/(8) == -CR(8) + C/(8)

D R(8) == TR + TI

TR == BR (13) *cos (12rrI 15)

TI == B / (13) * sin(12rr/ 15)

CR (13) == BR (13) * sin (12rr/15)

CI (13) == B1(13) * cos(12rr /15)

D I(13) == -CRe!3) + C /(13)

D R(13) == TR + T1

Memory Map

DR(3) =} M(3)

D I(3) =} M(18)

TR =} M(30)

T/ => M(31)

C R(8) =} M(28)

C/(8) => M(13)

D/(8) =} M(28)

D R(8) =} M(13)

TR =} M(30)

T/ =} M(31)

eR (13) :::} M(23)

C/(13) =} M(8)

D I(13) =} M(23)

DR (13) => M(8)

Fifth 3-Point Building-Block Output Complex Multiplies

The computations in this set perform the complex multiplies required at the output
of the fifth set of the five 3-point building blocks (m == 4). Again, all of the real and
imaginary parts have been reordered after multiplication so that the inputs to the 5-point
building blocks have their real part appearing in the bottom half of data memory, and the
imaginary parts appear in the upper half of data memory. Additionally, the first two lines
are used to redefine the data variables so that the inputs to the output 5-point building blocks
all use the same variable names.

238 CHA~ 9 ALGORITHM CONSTRUCTION

Algorithm Steps

D R(4) = BR(4)

D[(4) = B[(4)

TR = BR(9) *cos(81r/15)

T[= B[(9) * sin(8rr 115)

CR(9) = BR(9) * sin(8rr/15)

C[(9) = B[(9) * cos(8rr/15)

D[(9) = -CR(9) + C[(9)

DR(9) = TR+ T[

TR = BR(14) * cos(16rr115)

T[= B](14) * sin(161l'/15)

CR(14) = BR(14) * sin(161l'/15)

C/(14) = B/(14) * cos(161l' /15)

D/(14) = -CR(14) + C[(14)

DR(14) = TR + T[

Stage 3: Output 5-Point Building Blocks

Memory Map

D R(4) => M(4)

D[(4) => M(19)

TR => M(30)

T[=> M(31)

CR(9) => M(29)

C[(9) => M(14)

D[(9) => M(29)

D R(9) => M(14)

TR => M(30)

T[=> M(31)

CR(14) => M(24)

C/(14) => M(9)

D[(14) => M(24)

DR(14) => M(9)

For this example, the Singleton 5-point building block from Chapter 8 is used. How
ever, either of the two other 5-point building blocks could have been used without changing
the rest of the structure of the algorithm. If the number of adds and multiplies is the over
riding criterion, then the Winograd algorithm building block should be used in place of the
5-point Singleton algorithm.

The three sets of 5-point algorithm building-block algorithm steps from Section 8.6.2
are listed as (a) through (c). In Chapter 8 this 5-point algorithm building block is presented
as three stages. Since the features of the individual stages of the 5-point algorithm block
are discussed in Chapter 8, they are not discussed again. The input data into the m -th input
port of the k-th 5-point building block are the DR(5 * k + m) and D[(5 * k + m) from
Stage 2.

The multiply stage of the 5-point Singleton building block requires additional data
memory locations under the set of constraints used in Chapter 8. If the I5-point computa
tions are performed in the order shown, the additional memory locations used by the first
of the three 5-point building blocks can be reused by each of the other two 5-point building
blocks.

The strategy for converting these equations into code is to start at the top (compute
bR(l» and identify the pair of inputs to be used first (in this case DR(I) and DR(4». Then
look down the list to find the second (compute bR(2» place where these two inputs are
used. Pull DR(1) and DR(4) from memory, compute bR(1) and bR(2), and store the results
in memory locations M(I) and M(4), previously occupied by D R(l) and D R(4). The next
step is to look at the next computation b[(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps in Stage 3 have been computed and their
results stored in the Memory Map addresses.

SEC. 9.7 MIXED-RADIX APPROACH 239

First of Three 5-Point Building Blocks

This 5-point building block (k = 0) has D R(5 * k + m) and D/(5 * k + m)(m =
0, 1,2,3, and 4) as inputs and A R(3 * m + k) and A/(3 * m + k)(m = 0,1,2,3, and
4) as its output frequency components. The multiplication portion of the building block
requires two additional data memory locations because no temporary registers are assumed.
The variables used for the intermediate computations were chosen to be the same as those
used for the 5-point Singleton building block in Chapter 8 to make it easier to associate the
computational steps with the discussion of its features and memory mappings in Chapter 8.
This set of computations is represented in Figure 9-27 by 5-point building block O. Further,
the labels on the left and right of this building block correspond to the input and output
labels in the 5-point Singleton building block in Section 8.6.2.

Algorithm Steps

bR(I) = D R(I) + D R(4)

b/(l) = D/(I) + D/(4)

bR(2) = DR(I) - D R(4)

b/(2) = D/(I) - D/(4)

bR(3) = DR(2) + D R(3)

b/(3) = D/(2) + D/(3)

bR(4) = DR(2) - D R(3)

b/(4) = D/(2) - D/(3)

cR(2) = bR(2) * sin(2Jl'15) + bR(4) * sin(4Jl'15)

c/(2) = b/(2) * sin(2Jl'15) + b/(4) * sin(41f/5)

CR(4) = bR(2) * sin(4n15) - bR (4) * sin (2Jl'15)

c/(4) = b/(2) * sin(4JrI5) - b/(4) *sin(2JrI5)

cR(l) = bR(I) * cos(27115) + bR(3) *cos(47115) + DR(O)

c/(l) = b/(l) *cox(ZzrIS) + b/(3) *cos(4Jr15) + D/(O)

cR(3) = bR(I) *COS(47115) + bR (3) *cos(21f15) + DR(O)

c/(3) = b/(l) * cos(41t15) + b/(3) * cos(2rrj5) + D/(O)

AR(O) = DR(O) + bR(I) + bR(3)

A/(O) = DI(O) + b[(l) + bl(3)

AR(3) = cR(I) + c[(2)

A/(3) = c/(l) - cR(2)

A R(6) = cR(3) + c/(4)

A/(6) = c/(3) - cR(4)

AR (9) = cR(3) - c[(4)

A/(9) = c/(3) + cR(4)

A R (12) = cR(I) - c[(2)

A/(12) = c/(l) + cR(2)

Memory Map

bR(I) :::} M(l)

b/(l) =} M(16)

bR(2) =} M(4)

b/(2) =} M(19)

bR(3) => M(2)

b/(3) => M(17)

bR(4) =} M(3)

b/(4) => M(18)

cR(2) => M(30)

c/(2) => M(3)

cR(4) => M(31)

c/(4) => M(4)

cR(I) => M(19)

c/(l) => M(l)

cR(3) => M(18)

c/(3) => M(2)

AR(O) => M(O)

A/(O) :::} M(15)

A R(3) => M(19)

A/(3) :::} M(16)

AR(6) => M(18)

A/(6) :::} M(2)

AR(9) =} M(4)

A/(9) =} M(l)

AR(12) => M(3)

A/(12) => M(17)

240 CHA~ 9 ALGORITHM CONSTRUCTION

Secondof Three 5-Point Building Blocks
This 5-point building block (k = 1) has D R(5 * k + m) and D/(5 * k + m)(m =

0, 1,2,3, and 4) as inputs and AR(3 *m + k) and A/(3 *m + k)(m = 0, 1,2,3, and 4) as
its output frequency components. The multiplication portion of the algorithm requires two
additional data memory locations because no temporary registers are assumed. This set of
computations is represented in Figure 9-27 by 5-point building block 1. Further, the labels
on the left and right of this building block correspond to the input and output labels in the
5-point Singleton building block in Section 8.6.2.

Algorithm Steps

bR(6) = DR(6) + DR(9)

b/(6) = D/(6) + D/(9)

bR(7) = D R(6) - D R(9)

b/(7) = D/(6) - D/(9)

bR(8) = D R(7) + DR(8)

b/(8) = D/(7) + D/(8)

bR(9) = D R(7) - DR(8)

b/(9) = D/(7) - D/(8)

cR(7) = bR(7) * sin(2rr/5) + bR(9) * sin(41l'15)

c/(7) = b/(7) * sin(21l'15) + b/(9) * sin(41l'15)

cR(9) = bR(7) * sin(41l'15) - bR(9) * sin(21l'15)

c/(9) = b/(7) * sin(4rr/5) - b/(9) * sin(21l'15)

cR(6) = bR(6) * cos(2rr15) + bR(8) *cos(41l'15) + DR(5)

c/(6) = b/(6) *cos(21l'15) + b[(8) * cos(41l'15) + D/(5)

cR(8) = bR(6) * cos(41l'15) + bR(8) * cos(21l'15) + D R(5)

c[(8) = b[(6) *cos(4rr/5) + b[(8) *cos(2rr/5) + D[(5)

AR(I) = DR(5) + bR(6) + bR(8)

A/(I) = D/(5) + b/(6) + b/(8)

AR(4) = cR(6) + c/(7)

A/(4) = c[(6) - cR(7)

AR(7) = cR(8) + c/(9)

A/(7) = c/(8) - cR(9)

AR(10) = cR(8) - c/(9)

A/(10) = c[(8) + cR(9)

AR(13) = cR(6) - c/(7)

A/(13) = c/(6) + cR(7)

Memory Map

bR(6) =} M(11)

b/(6) =} M(26)

bR(7) ==> M(14)

b/(7) ==> M(29)

bR(8) =} M(12)

b/(8) ==> M(27)

bR(9) ==> M(13)

b/(9) ==> M(28)

cR(7) =} M(30)

c/(7) ==> M(13)

cR(9) =} M(31)

c/(9) =} M(14)

cR(6) =} M(29)

c[(6) =} M(ll)

cR(8) =} M(28)

c/(8) =} M(12)

AR(I) =} M(25)

A/(l) ==> M(lO)

AR(4) ==> M(29)

A[(4) =} M(26)

A R(7) =} M(28)

A/(7) =} M(12)

AR(lO) =} M(l4)

A/(10) ==> M(II)

A R (13) ==> M(l3)

A/(13) =} M(27)

SEC. 9.7 MIXED-RADIX APPROACH 241

Third of Three 5-Point Building Blocks

This 5-point building block (k == 2) has D R(5 * k + m) and D/(5 * k + m)(m =
0,1,2,3, and 4) as inputs and AR(3 *m + k) and A/(3 *m + k)(m == 0,1,2,3, and 4) as
its output frequency components. The multiplication portion of the algorithm requires two
additional data memory locations because no temporary registers are assumed. This set of
computations is represented in Figure 9-27 by 5-point building block 2. Further, the labels
on the left and right of this building block correspond to the input and output labels in the
5-point Singleton building block in Section 8.6.2.

Algorithm Steps

bR(II) == DR(II) + D R(I4)

bl(II) == Dl(II) + D l(14)

bR (12) == D R(II) - D R (14)

b/(12) == Dl (I 1) - Dl (I 4)

bR(I3) == DR(I 2) + D R(I3)

b/(13) == D l(I2) + D l(13)

bR(I4) == D R(12) - D R(13)

b/(14) == D/(I2) - D/(13)

cR(12) == bR(12) * sin(2nI5) + bR(I4) * sin(4nI5)

C l (12) == b/ (12) * sin (2n 15) + bl (14) * sin (4n 15)

cR(14) == bR(I2) * sin(4n/5) - bR(I4) * sin(2n/5)

cl(I4) == bl(12) * sin(4n15) - bl(I4) * sin(2n15)

cR(II) == bR(II) * cos(2n/5) + bR(13) * cos(4n/5) + DR(IO)

cl(ll) == bl(II) * cos(2nI5) + b/(13) * cos(4nI5) + D/(IO)

cR(I3) == bR(II) * cos(4nI5) + bR(I3) * cos(2nI5) + DR(IO)

c/(13) == bl (l I) * cos(4n/5) + bl(13) *cos(2nI5) + D/(IO)

A R(2) == DR(lO) + bR(ll) + b R(13)

A/(2) == DlCIO)+ h/(II) + b/(13)

A R (5) == cR(II) + c/(12)

A/(5) == c/(11) - cR(I2)

A R(8) == cR(I3) + c/(14)

A l (8) == c/(I3) - cR(14)

A R (11) == cR (13) - c l (14)

Al(II) == cl(I3) + cR(14)

A R(I 4) == cRCll) - c/(12)

Al (14) == C l (11) + c R (12)

Memory Map

bR(II):::} M(6)

b/(Il) :::} M(2I)

bR(12) ~ M(9)

b/(12) :::} M(24)

bR (13) :::} M(7)

b/(I3) :::} M(22)

bR(I 4) :::} M(8)

b/(I4) =} M(23)

cR(I2) =} M(30)

cl(I2) :::} M(8)

cR(I4) :::} M(3I)

c/(I4) => M(9)

cR(Il) => M(24)

c/(II) => M(6)

cR(I3) => M(23)

c/(I3) => M(7)

A R(2) => M(20)

A I(2) => M(5)

A R(5) => M(24)

A/(5) => M(21)

AR(8) => M(23)

A/(8) => M(7)

A R(11) => M(9)

A/(I1) => M(6)

A R(14) => M(8)

A I(14) => M(22)

242 CHA~ 9 ALGORITHM CONSTRUCTION

9.8 COMPARISON MATRICES

Table 9-7 Two-Building-BlockFFf AlgorithmsComparisonMatrix

of const.

Algorithm # of adds # of multiplies # of data locations locations

Convolution

Bluestein 2* M + 10* N 4 * M + 16 * N M + DM/2 4 * N + 3 * M + CM/2

+4 * AM/2 +4 * MM/2
Winograd Q*Ap -1+(Mp+l)* o; *DQ (Mp + 1) * (MQ + 1) - 1

+(Mp + 1) * AQ (MQ + 1)

Prime Factor Q * Ap + P * AQ Q*Mp+P*MQ 2 * P * Q + greatest Cp+CQ

of DQ - 2 * Q and

Dp - 2 * P

Mixed-Radix

Primes-to-a-power 2 * (P - 1) * (P - 1) 4 * (P - 1) * (P - 1) 2 * P * P+ greatest (P-l)*P+Cp

+2 * P * Ap +2 * P * M» of Dp - 2 * P and 2

Mixed power-of 2 * (P - 1) * (Q - 1) 4*(P-l)*(Q-l) 2 * P * Q + greatest (P - 1) * (2 * Q - P)
primes +Q * Ap + P * AQ +Q*Mp+P*MQ of DQ - 2 * Q and +Cp + CQ

D» - 2 * P and 2

Singleton 2 * (P - 1) * (Q - 1) 4 * (P - 1) * (Q - 1) 2 * P * Q+ greatest (P - 1) * (2 * Q - P)

+Q * Ap + P * AQ +Q*Mp+P*MQ of DQ - 2 * Q and +Cp +CQ

Dp - 2 * P and 2

Key to Variables

N = number of points in an FFf

M = number of FFT and IFFT points used to implement an N -point Bluestein algorithm

AM/2 = number of adds in M /2-point FFf used for N -point Bluestein algorithm

MM /2 = number of multiplies in M /2-point FFT used for N -point Bluestein algorithm
DM /2 = number of memory locations used for data in M /2-point FFf used for N -point Bluestein algorithm
CM /2 = number of memory locations used for constants in M /2-point FFT used for N -point Bluestein algorithm

P = number of points in the first building block of an N = P * Q-point FFT

Mp = number of multiplies required for P-point building block of N = P * Q-point FFf

Ap = number of adds required for P-point building block of N = P * Q-point FFT

D» = number of memory locations used for data in P-point building block of N = P * Q-point FFT

C p = number of memory locations used for constants in P-point building block of N -point Bluestein algorithm

Q = number of points in the second building block of an N = P * Q-point FFT

MQ = number of multiplies required for Q-point building block of N = P * Q-point FFT

AQ = number of adds required for Q-point building block of N = P * Q-point FFf

DQ = number of memory locations used for data in Q-point building block of N = P * Q-point FFT

CQ = number of memory locations used for constants in Q-point building block of N -point Bluestein algorithm

CHA~ 9

Table 9-8 FFf Algorithm Examples Comparison Matrix

REFERENCES 243

of const.

Algorithm # of adds # of multiplies # of data locations locations

Convolution

15-point Bluestein 790 464 72 162

15-point Winograd 162 34 36 17

Prime Factor

15-point Kolba-Parks 156 68 32 6

15-point SWIFf 156 68 32 6

Mixed-Radix

16-point radix 4 144 24 40* 6

16-point radix 8 and 2 148 28 34 6

15-point Singleton 172 100 32 14**

* See Section 9.7.5 for why this does not match the formula in the Comparison Matrix in Table 9-7.

** See Section 9~7.7 for why this does not match the formula in the Comparison Matrix in Table 9-7.

9.9 CONCLUSIONS

The algorithms detailed here have memory map relabeling instructions that will work for
every algorithm building block in Chapter 8. Seven examples give detailed memory maps,
with the relabeling incorporated, for each algorithm step. They have accompanying block
diagrams to illustrate the data reorganization needed to combine small-point transforms in
the examples and four general algorithms. These block diagrams help to see how to distribute
data and algorithms on multiprocessor architectures that are explained in Chapter 12.

The next three chapters can be skipped if it is clear that a single processor will ade
quately compute the algorithm. However, if multiple processors are required, the next three
chapters provide the information needed to learn how to map algorithms on multiprocessor
architectures.

REFERENCES

[1] L. I. Bluestein, "A Linear Filtering Approach to the Computation of Discrete
Fourier Transform," IEEE Transactions on Audio and Electroacoustics, Vol. AU-I8,
pp. 451-455 (1970).

[2] S. Winograd, "On Computing the Discrete Fourier Transform," Mathematics ofCom
putation, Vol. 32, No. 141, pp. 175-199 (1978).

244 CHA~ 9 ALGORITHM CONSTRUCTION

[3] D. P. Kolba and T. W. Parks, "A Prime Factor FFT Algorithm Using High-Speed
Convolution", IEEE Transactions Acoustics, Speech, and Signal Processing, Vol.
ASSP-25, No.4, pp. 281-294 (1977).

[4] Patent number 4,293,921, October 6, 1981, Method and Signal Processor for Fre
quency Analysis ofTime Domain Signals, Winthrop W. Smith, Jr.

[5] R. C. Singleton, "An Algorithm for Computing the Mixed Radix Fast Fourier Trans
form," IEEE Transactions on Audio and Electroacoustics, Vol. AU-17, pp. 93-103
(1969).

[6] J. W. Cooley and J. W.Tukey, "An Algorithm for the Machine Calculation of Complex
Fourier Series," Mathematics ofComputation, Vol. 19, p. 297 (1965).

[7] J. W. Cooley, "The Structure ofFFT Algorithms," IEEE International Conference on
Acoustics, Speech and Signal Processing Tutorial Session, pp. 12-14 (1990).

10

Arithmetic Building Blocks
for Architectures

10.0 INTRODUCTION

Arithmetic building blocks are adders and multipliers combined in different ways that affect
their cost and speed. This chapter does not contain a Comparison Matrix because these
building blocks will already be imbedded in the processors by their vendors. Their memory
and bus configurations are explained in Chapter 11. Arithmetic building blocks fall into
three categories:

• Bit slice

• Integrated arithmetic

• Special purpose

The first two categories are known as general-purpose building blocks. Because most
applications require more than just the computation of FFTs, general-purpose arithmetic
architectures are typically used to allow the non-FFf functions to be computed on the same
processor.

As a rule-of-thumb, if a DSP application requires more than four programmable DSP
chips, and the FFT portion of the computations can be separated onto a dedicated processor,
then a special-purpose arithmetic architecture, such as a hardware implementation of a 2
point FFT, is used for the dedicated processing. Once the special-purpose FFT architecture
is part of an application, two things often happen. First, the number of programmable
DSP chips can be reduced. Second, other functions being done on the programmable DSP
chip, such as linear filtering and pattern matching, are often performed in the frequency
domain (Chapter 6) using the special-purpose hardware, further reducing the number of
programmable DSP chips needed.

246 CHA~ 10 ARITHMETIC BUILDING BLOCKS FOR ARCHITECTURES

10.1 FIVE PERFORMANCE MEASURES

All FFT algorithms have addition and multiplication steps. Sections 10.1.1 through 10.1.5
define five performance measures that can be used to characterize the following:

• How the data enters and leaves the arithmetic building block

• How the adder and multiplier are connected inside the building block

• How long it takes to perform adds and multiplies once the data is inside the building
block

10.1.1 Input Data Organization

Since adders and multipliers each have two inputs, it is also vital to know whether two
pieces ofdata to be added or multiplied can be entered into the building block simultaneously.
If entry must be done sequentially, knowing the order of the sequence is important. Input
data organization is described for each of the arithmetic building-block architectures and
explained for each nsp chip in Chapter 14.

10.1.2 Output Data Organization

When a building block has both an adder and a multiplier, there are two potential
outputs. It is important to know whether the building block has separate outputs for the
adder and multiplier, a single output for both, or a single output that can be multiplexed
between the adder and multiplier. This performance measure has a significant affect on
how flexible the building block is for computing FFT algorithms. Output data organization
is described for each of the arithmetic building-block architectures and explained for each
DSP chip in Chapter 14.

10.1.3 Internal Data Bus Loading

How the adder and multiplier are connected by a bus, within an arithmetic building
block, affects how much an algorithm loads the bus. The most common internal data bus
configuration is a multiplier-accumulator (Figure 10-4). In that configuration the input data
goes to the multiplier and the output comes from the adder. The output of the multiplier
and the delayed adder output are the two inputs to the adder. Internal data bus loading is
described for each arithmetic building-block architecture and explained for each DSP chip
in Chapter 14.

10.1.4 Throughput from Computations

Throughput is the number of adds and multiplies per second that the arithmetic build
ing block can perform if input data is supplied as fast as the building block can process it.
Since the number of required adds and multiplies is a key performance measure of FFT al
gorithms, the ability to execute those arithmetic computations is an important performance
measure. Throughput is described for each of the arithmetic building blocks and explained
in more detail in Chapter 12 for algorithm mappings.

(10-1)

(10-2)

SEC. 10.2 BIT-SLICE ARITHMETIC 247

10.1.5 latency from Computations

Latency is entirely different from throughput. Latency is the delay between when
data enters the arithmetic building block and when answers are ready to be output. Latency
becomes important in applications where the time it takes a system to respond to input data
is critical. In a radar altimeter, if the plane is flying close to the ground, short latency is
important in order to know rapidly any substantial loss of altitude. Latency is described
for each of the arithmetic building-block architectures and explained in Chapter 12 for
algorithm mappings.

10.2 BIT-SLICE ARITHMETIC

Addition and multiplication are linear operations. Just as linear operations allow multiple
signals to be processed at one time (Section 2.3.3), a single signal can be decomposed
into multiple signals, processed separately, and then recombined. One way of decompos
ing a single signal into two is to make the least significant digits one signal and the most
significant digits another. For example, 21 = 20 + 01 in decimal representation. Since
213 == (128 +64+ 16+4+ 1) = 11010101 in fixed-point binary arithmetic format (Section
13.2.1), it can be decomposed into (208 + 5) == 11010000 + 00000101 by separating the
4 least significant bits from the 4 most significant bits.

Addition is then performed by adding the corresponding 4 bit numbers and then
recombining the results. For example:

(213 + 113) == (208 + 5) + (112 + 1)

== (208 + 112) + (5 + 1) = 320 + 6 == 326

where: 213 = 128 + 64 + 16 + 4 + 1 = 11010101 = 11010000 + 00000101
113 = 64 + 32 + 16 + 1 = 01110001 = 01110000 + 00000001

A similar effect occurs with multiplication. Equation 10-2 shows the operations required
for multiplication in a bit-slice arithmetic architecture.

A * B == (au *2M + a/) * (bu *2M + b/)

== au *b, *2
2M + (al *bu + au *b/) *2M + a/ *hi

where: au == upper bits of A

a/ == lower M bits of A
b., == upper bits of B
hi == lower M bits of B

Multiplying rather than adding the numbers in Equation 10-1 gives:

(213) * (113) == (208 + 5) * (112 + 1)
== (208 * 112) + (208 * 1 + 5 * 112) + (5 * 1)
== 23,296 + 208 + 560 + 5

where: 23,296 == 1011011000000000
768 ==0000011000000000

5 ~0000000000000101

(10-3)

248 CHAP. 10 ARITHMETIC BUILDING BLOCKS FOR ARCHITECTURES

The results of the second and third multiplies and their sum have nonzero digits that are
in the same locations as nonzero digits from the result of the first multiply. This approach
requires four 4-bit multiplies and three 8-bit adds to obtain the results. This replaces doing
one 16-bit multiply in order to reduce hardware. However, it increases computation time
because of the sequence of operations that replace one 16-bit multiply.

The advantage of this architecture is that the multipliers and adders do not handle as
many bits simultaneously. This was very important in the past, but is less important now
because low-power full multipliers are commonly available. However, the technique can
still be used to provide ultrafast arithmetic computations.

10.2.1 Multiplier

Equation 10-2 describes the functions that must be performed by the simplest bit-slice
multiplier. For example, an 8-bit multiply can be performed by this equation using two 4-bit
(M = 4), bit-slice multipliers. Similarly, a 16-bit multiply requires two 8-bit (M = 8)
bit-slice multipliers using Equation 10-2.

Clearly, the technique can be extended to combining any number of bit-slice' multi
pliers to form a larger multiplier. The algorithm is defined by writing the individual data
words as their bit-slice components and then performing all of the required multiplies and
adds. Equation 10-4 is an example for combining four 4-bit (M = 4) bit-slice multipliers
into one large 16-bit multiply.

(ao+ al * 2
4 + a2 *2

8 + a3* 2
12

) * (bo+ b, * 2
4 + b2 *2

8 + b3* 2
12

= aobo+ aObi *24 + aOb2 *28 + aob3*212

+ albo * 24 + aib, * 28 + alb 2 * 212 + aib, * 216 (10-4)

+ a2bo *28 + asb, *212 + a2b2 *216 + a2b3 *220

+ a3bO *212 + a-b, *216 + asb: *220 + a3b3 *224

This set of equations can be implemented in several ways. At one extreme, 16 multipliers
and 15 adders can be connected (Figure 10-1). At the other extreme, one bit-slice multiplier
can be connected to an accumulator. In this case, control logic is required to sequentially
feed the 16 pairs of a, 's and bj's to the multiplier and properly shift the multiplier outputs
into the adder by the number of bits equal to the exponent on the corresponding factor of 2
(Figure 10-2). For example, the a-b, term must be shifted by 16 bits to properly contribute
to the answer.

Between these two extremes are several choices. For example, Figure 10-3 shows
the case of two multipliers and two adders. In this configuration, eight arithmetic cycles
are required to accumulate all of the terms in Equation 10-4. During each of those eight
cycles, two multiplies from Equation 10-4 are performed. The results of each pair of
multiplies are shifted, added together, then sent to the accumulator. When all eight have
been accumulated, the total is the hybrid bit-slice multiplier output. The design trade-off
is speed versus hardware. If speed is more important than hardware, Figure 10-1 provides
the best solution. If hardware is of paramount importance, Figure 10-2 provides the best
solution. Figure 10-3 is a compromise between the speed of the implementation in Figure
10-1 and the minimal amount of hardware required in Figure 10-2.

SEC. 10.2 BIT-SLICE ARITHMETIC 249

+ + + +

+ I~ --.J

L.-- ~ +- ---'

Figure 10-1 Full parallel 16-bit bit-slice multiplier.

Figure 10-2 Sequential 16-bit bit-slice multiplication.

Figure 10-3 Hybrid (parallel/sequential) bit-slice multiplier.

250 CHA~ 10 ARITHMETIC BUILDING BLOCKS FOR ARCHITECTURES

10.2.2 MUltiplier-Accumulator

There are two types of bit-slice multiplier-accumulators. The first was shown in Fig
ure 10-2 as a way of implementing a bit-slice multiply algorithm sequentially. The second
type is used to compute the sums of products of numbers. The core of this second type
of architectural building block is the bit-slice multiplier. To it is added a bit-slice adder.
Equations 10-5 and 10-6 are the bit-slice adder equivalents of Equations 10-2 and 10-4.
Notice that the algorithm for implementing bit-slice addition is considerably simpler than
bit-slice multiplication.

(au *2M + a/) + (bu *2M + b,) = (au + bu) *2M + (a/ + b/) (10-5)

(ao + at *24 + a2 *28 + a3 *212
) + (bo + b, *24 + b2 *28 + b3*212

) =
(ao + bo) + (al + b1) *24 + (a2 + b2) *28 + (a3 + b3) * 212

10.3 INTEGRATED ARITHMETIC

(10-6)

Integrated circuit technology has progressed to the point that 16-bit fixed-point and 32-bit
floating-point multipliers are commonly available on DSP chips. Generally, the output
of these multipliers feeds one side of an adder because so many DSP functions involve
multiply-accumulate operations. The drawback to this approach is in algorithms, such
as the Winograd transform in Chapter 9, that require sequences of adds and sequences
of multiplies, as well as multiply-accumulates. Then, during the addition sequences, the
multiplier cannot be used, and during the multiply sequences the adder cannot be used.

10.3.1 Multiplier

At one point in the development of DSP technology, integrated 16-bit multiplier
chips played a significant role in application development. However, with the advent of
programmable DSP chips, multiplier chips have lost their popularity because so much of the
computations in nsp algorithms involves multiplier-accumulator computations. However,
for applications that just require multiplication, such as the weighting function multiplica
tion prior to FFf algorithms, a multiplier provides the most computationally efficient use
of hardware real estate.

10.3.2 MUltiplier-Accumulator

The multiplier-accumulator is the most common arithmetic building block in pro
grammable DSPchips. They are also available without all of the additional features built in
to programmable DSP chips. However, because of the broad acceptance of programmable
DSP chips in high-volume applications such as telecommunications, it is often more cost
effective to buy the programmable DSPchip and only use its multiplier-accumulator feature.

The key advantage over bit-slice multiplier-accumulators is that the whole function
is in one device. There is no added hardware to combine chips to perform the algorithms
in Equation 10-6. The disadvantage is that the hardware cannot be tailored for specific
applications. For example, a low-cost application that does not require high-speed multi
plication but does require low power can use an adder to perform the multiplications and
additions to save power and cost.

SEC. 10.4 SPECIAL PURPOSE 251

Figure 10-4 Multiplier-accumulator.

Figure 10-4 shows the most common multiplier-accumulator block diagram. All ofthe
programmable DSP chips in Chapter 14 use this basic architecture with varying degrees of
bells and whistles to enhance performance for a particular manufacturer's perceived market.
One example is the number of bits in the accumulator, depending on the anticipated number
of multiply-accumulates required to compute results for particular algorithms. To ensure
that a fixed-point accumulator does not overflow, it needs to have at least log2 N bits more
than the multiplier output that feeds it, if N multiplies must be accumulated prior to storing
results.

10.4 SPECIAL PURPOSE

In applications that require more than four programmable DSP chips to perform the power
of-two FFT computations, hardware that has an architecture dedicated to FFf computations,
special-purpose chips, should be used. The special-purpose FFf chips in Section 14.7 do
power-of-two FFTs much faster than programmable DSP chips, because the common build
ing blocks of FFT algorithms are imbedded in the hardware. For the power-of-two FFT
algorithms in Section 9.7, the common arithmetic building block is the 2-point-building
block algorithm. Building blocks for non-power-of-two algorithms have not become pop
ular because these algorithms are not common and because they require several building
blocks, not a single one. Section 14.7 describes chips that have been built to implement the
2-,4-, and 8-point building blocks from Chapter 8.

Since FFf equations assume complex inputs, the 2-point building block assumes
complex input data. The 2-point building block can be implemented in full parallel form with
two complex input signals entering the hardware simultaneously, or it can be implemented
in half-complex form, where the real portion of the two input signals enters the arithmetic
building block first, followed by the imaginary part. The linearity of FFfs allows this
sequential computation, followed by a recombination of the results (Section 2.3.3).

Two forms of the 2-point FFf building block have been developed to implement
the two approaches to decomposing the DFf to form the power-of-two FFf. The data
separation pattern for each of these approaches is presented in Section 10.4.1. Then the
2-point building-block hardware for each approach is presented in Sections 10.4.2 and
10.4.3.

10.4.1 FFT Data Separation Patterns

The first FFf data separation approach is called decimation in time (DIT). In the
DIT algorithm, which is used in Chapters 8 and 9, the input samples are first reordered
into two subsets of input samples, one containing the odd-numbered samples and the other
the even-numbered ones, shown in Figure 10-5 as the 1st decimation in time. Then each

252 CHAR 10 ARITHMETIC BUILDING BLOCKS FOR ARCHITECTURES

of these subsets is further reordered by taking every other one of its members and putting
it into a new subset, shown in Figure 10-5 as the 2nd decimation in time. Once the data
reordering is complete, the paired input data samples are used as the inputs to the 2-point
FFf building block from Section 8.3. Since the input data sequences are usually thought
of as sequences in time, they are being decimated in time by this reordering process.

The second approach, decimation in frequency (DIF), also starts by segmenting the
input sequence into two subsets of data. The difference is that this algorithm puts the first
half of the samples in the first subset and the second half in the second subset, shown in
Figure 10-6 as the 1st decimation in frequency. The next step in the algorithm segments
each of these subsets into new subsets, again by putting the first half of its members in the
first subset and the rest in the other subset. This process is shown in Figure 10-6 as the
2nd decimation in frequency. These four subsets are the inputs to the first set of 2-point
FFTs from Section 8.3. The outputs of the first set of 2-point FFfs are reordered following
this same strategy. This process continues until the output frequencies are reached. At
the output, the output frequency components are in subsets of even- and odd-numbered
frequencies. Therefore, the output frequencies have been decimated, which led to calling
this approach decimation in frequency.

a(O)
a(O) a(O)

2-Point

a(l)
a(2) a(4)

FFT
I

a(2) I
a(2) 2-Point

a(3)
a(6)

FFT

I

a(4)
a(l) I

2-Point

a(5)
a(3) I

FFT
I

I

a(6)
a(5)

2-Point

a(7)
a(7)

FFT

Input 1stDecimation 2nd Decimation 1st2-Point
Order in Time in Time FFTStage

Figure 10-5 Eight-point FFT decimation-in-time input data organiza-
tion.

SEC. 10.4 SPECIAL PURPOSE 253

I

a(O)
: I 2-:;~nt Ia(l)

L - - -- -1-----

a(2) I I

I
2-Point

I
a(3) I I

FFT
I I,- - - -- -1- - - -- T-----

a(4)
: I 2-:;~nt Ia(5)

1- - - -- -1----

a(6) I I

I I
2-Point

a(7) I ,

I I
FFT

Input 1st Decimation I 2nd Decimation I 1st2-Point
Order in Frequency I in Frequency I FFT Stage

Figure 10-6 Eight-point FFT decimation-in-frequency input data orga
nization.

10.4.2 Decimation-in-Time Building Block

The flow graph for the DIT 2-point hardware building block is shown in Figure 10-7
(on page 254). One advantage of this algorithm over the decimation-in-frequency algo
rithm is that it is organized to work easily with multiplier-accumulator arithmetic building
blocks.

10.4.3 Decimation-in-Frequency Building Block

The flow graph for the DIF 2-point hardware building block is shown in Figure
10-8. The primary difference between this and the DIT flow graph is the multiplier on the
output rather than the input. While this appears to cause problems with using multiplier
accumulator building blocks, it does not. The reason is that most FFf applications require a
weighting function prior to the FFT. This weighting function multiplier is then added to the
front end of the flow graph in Figure 10-8 for the first stage and then the back-end multiplier
is moved to the front end of the next 2-point building block of the FFf algorithm.

254 CHAP. 10 ARITHMETIC BUILDING BLOCKS FOR ARCHITECTURES

a(O)----~----_ A(O)

:Jo---~----~ A(l)
-1

Figure 10-7 Decimation-in-time 2-point FFf flow graph.

a(O) _~~ ,....- _

a(l) --.--..:;-----~--~:
-1

A(O)

A(l)

Figure 10-8 Decimation-in-frequency 2-point FFf flow graph.

10.5 CONCLUSIONS

Prior to the introduction of programmable DSP chips, a detailed understanding of arith
metic building blocks was crucial in the creation of DSP processors on boards. This was
because the number of processor clock cycles required to perform multiplies was signif
icantly higher than for additions. Arithmetic building blocks are now imbedded in nsp
chips. Understanding the nuances of how chip manufacturers connect the multipliers and
accumulators helps in the selection of an algorithm from Chapters 8 and 9.

11

Multiprocessor Architectures

11.0 INTRODUCTION

A single-processor architecture is the interconnection of arithmetic building blocks with
memory, data I/O, and control logic. A multiprocessor architecture is an interconnection
of two or more single processors. Several single and multiprocessor architectures are used
to perform FFTs. This chapter explains how a single-processor architecture is created and
then shows nine ways in which they are combined into multiprocessor architectures.

DSP architectures are composed of:

• Memory for storing data

• Memory for storing constants

• Memory for storing algorithm code

• Arithmetic units for doing adds and multiplies on the data

• Arithmetic units for generating data addressing sequences

• Bus for moving program instructions

• Bus for moving instruction addresses

• Bus or buses for moving data and control information

• Bus or buses for moving data addresses

• Bus or buses for moving data I/O

11.1 TWO SINGLE PROCESSORS

There are two popular single-processor architectures. The first, called Von Neumann [1],
has only one bus and uses it to interconnect the arithmetic unit to the rest of the processor.
The arithmetic unit is used for all algorithm computations and data address generation. The
single bus and arithmetic unit are shared at each step for FFT arithmetic computations and

256 CHA~ 11 MULTIPROCESSOR ARCHITECTURES

data addressing. This "Von Neumann bottleneck" stimulated development of the second
type of single processor, called Harvard. This architecture has separate arithmetic and
addressing hardware and buses to alleviate the bottleneck. All the chips in Chapter 14 are
Harvard architectures. Section 11.1.1 presents the Von Neumann architecture to illustrate
specifically the inefficiencies associated with using it for signal processing applications.

11.1.1 Von Neumann Architecture

The Von Neumann architecture (Figure 11-1), has been the most popular approach to
standard computers for many years because of its simplicity. This architecture has:

• One arithmetic unit shared between address generation and arithmetic computations

• One memory shared between data, constants, and program instructions
• One bus used for moving data addresses and instructions

The arithmetic unit includes not only the adder and multiplier for data computations but
the "next instruction address," "present instruction," and "present data address" registers,
as well as the logic for executing instructions.

Arithmetic

Unit

Figure 11-1 Von Neumann architecture block diagram.

The simplicity of this architecture allows it to run at high clock speeds and to be used
for a general class of applications. For example, applications that access data sequentially
do not require address generation algorithms, and applications that perform large numbers
of computations on each new data sample use the arithmetic unit for data addressing infre
quently. A simple example that illustrates both of these is converting an input data sequence
into the logarithm of that sequence using the Taylor series expansion. In this algorithm, a
data value is accessed from memory, followed by a long sequence of adds and multiplies
on that data, to form the logarithm. The result is then stored in the same memory location.
The processor then steps to the next memory location and repeats the process,

The two major disadvantages of this architecture for FFT algorithms are that it has a
single bus for handling data I/O, data movement, and instruction movement, and it needs
the arithmetic unit to perform the data reordering between algorithm steps as well as to
perform the algorithm computations. A simple example is a single multiply accumulation
of data values stored in nonsequential locations of memory. The arithmetic unit steps are
as follows:

1. Use the next instruction address in the arithmetic unit register to access the next
instruction from memory and store it in the present instruction register.

SEC. 11.1 TWO SINGLE PROCESSORS 257

2. Decode the present instruction register to determine the computation to perform
and the data memory address offset to the next piece of input data for the multiply
accumulate function.

3. Add the data memory address offset to the present address and store the result in
the present data address register.

4. Use the present data address to access the next piece of data from memory.

5. Decode the present instruction register to determine the multiplier constant mem
ory address offset.

6. Add the multiplier constant memory address offset to the present multiplier con
stant memory address and store in the present multiplier constant memory address
register.

7. Use the present multiplier constant address to access the next multiplier constant
from memory.

8. Perform the multiply function.

9. Store the result in the present data address.

10. Decode the present instruction register to determine the program memory offset
to the next instruction, add that value to the next instruction address register and
store the result in the next instruction address register.

Steps 3, 6, 8, and lOuse the arithmetic unit, steps 1, 4, 7, and 9 make use of the bus between
arithmetic unit and memory, and steps 2, 5, and 10 use the instruction decoding logic. Steps
4 and 5 can be performed in parallel by the Von Neumann architecture. The result is a
sequence of nine steps to perform the multiply-and-store function that is common to FFf
algorithms. Note that step lOuses the arithmetic unit as well as the instruction decoding
logic. This is the most obvious example of reduced computation time that is obtained if the
instruction and computational functions of the processor are separated. This separation is
the basis of the Harvard architecture described in the next section.

11.1.2 Harvard Architecture

The Harvard [2] architecture (Figure 11-2) is the most popular single arithmetic unit
processor for DSP applications. All of the programmable DSP chips in Chapter 14 use a
variant of this architecture. Its main feature is that it physically separates the algorithm
computations from the data and instruction memory addressing (control) functions. It also
uses separate buses to interconnect the building blocks associated with the computational
and control functions. This provides significant improvements in throughput and latency
for FFT algorithms because it removes the Von Neumann bus bottleneck and allows the
arithmetic unit to be used only for algorithm computations,

The multiply-accumulate steps in Section 11.1.1 are identical to those used by the
Harvard architecture. However, they can be overlapped in the Harvard architecture to
speed up the computations. The most recent generations of programmable DSP chips have
two data memory to arithmetic unit buses, two data memories, and two address genera
tors. This allows the data and multiplier constant address generation and memory accesses
to be accomplished in parallel. For those chips, steps 2, 3, and 4 can be performed in parallel

258 CHAR 11 MULTIPROCESSOR ARCHITECTURES

Data Address Program
Memory Generator Memory

~ Data I/O

Arithmetic Program

Unit Counter

Figure 11-2 Harvard architecture block diagram.

with steps 5, 6, and 7. Similarly, steps 8 and 9 can be performed in parallel with steps 10
and 1. The result is that the 10 steps can be performed as if they were 5, rather than having
to do the 9 required by the Von Neumann architecture. Thus, the Harvard architecture can
compute FFTs nearly twice as fast as the Von Neumann. That is why all the commercial
DSP chips are based on this more efficient architecture.

11.2 THREE LINEAR ARRAYS

Linear array architectures, the simplest form of multiprocessor systems, fall into three
classes:

• Pipeline, where the output of each processor provides the input for the next

• Linear bus, where all processors are connected to a common communication bus

• Ring bus, an extension of the linear bus with the ends of the common communica
tion bus connected

Any of the arithmetic building blocks from Chapter 10 can be used as the processors in
these three bus architectures. Further, either of the single processors described in Section
11.1 can be used. Because of this, the key differences between the linear array architectures
are how their interconnections affect their ability to perform FFf algorithms. This section
describes those three architectures, and Section 12.4 shows how they are used to compute
the FFT algorithms from Chapter 9.

11.2.1 Pipeline

The pipeline [1, 3] architecture interconnects processors such that the output of one
becomes the input to the next. The three-block version of the pipeline in Figure 11-3
can be used to illustrate the key features of this architecture. The most important design
consideration is matching the data output rate from one processor to the input data rate of
the next so that it keeps the next processor busy without overloading. If each processor is
kept busy, then the performance of the overall architecture is the sum of the performances
of each processor.

A multiplier-accumulator is a common example of a two-processor pipeline that is
found in nearly all modem programmable DSP chips and is explained in more detail in
Chapter 14. Processor 0 would be the multiplier and Processor 1 the accumulator, as

SEC. 11.2 THREE LINEAR ARRAYS 259

Processor-..
o

Processor
1

Processor
2

Figure 11-3 A pipeline architecture block diagram.

shown in Figure 10-4. The input to Processor 0 is the next data sample to be multiplied
and its multiplier constant. Each time Processor 0 produces a multiplication result, it
sends that result to Processor 1 to add to the accumulator. Processor 1 then performs the
addition and stores the result in its accumulator register while Processor 0 is performing
the next multiplication. At some point, the multiply-accumulation process is complete, and
Processor 1 outputs its result to data memory.

Therefore, if the input data rate to Processor 0 is R samples per second, the overall
input rate to Processor 0 is 2 * R per second because it must also receive the multiplier
constants. The output data rate from Processor 0 is R per second, which then becomes the
input data rate to Processor 1. If Processor 1 can perform R adds and accumulator register
stores per second, then the data rate between the two processors is ideal. Finally, notice that
the output data rate from Processor 1 is lower than its input rate. If M multiply-accumulates
are performed before an output is produced, then Processor 1's output data rate is RjM per
second.

If further computations are needed on these results, then Processor 2 should be chosen
to perform its portion of those computations at an input data rate of R/M per second. A
well-designed pipeline architecture uses processors at each stage that match the required
data rates of the previous processor outputs.

11.2.2 Linear Bus

A linear bus [1] (Figure 11-4) is an architecture where a single bus is used to provide
the path for all of the data communications among two or more processors. Overloading
of the bus can occur because it handles all the interprocessor data transfers as well as the
data I/O. If the bus can handle enough data so that each processor is kept busy, then the
performance of the overall architecture is the sum of the performances of each processor.

t t t
Processor Processor Processor

0 1 2

Figure 11-4 Linear bus architecture block diagram.

Some programmable DSP chips use this bus architecture when they have multi
ple arithmetic processors. These are described in more detail in Chapter 14. Again, the
multiply-accumulate example can be used to illustrate the issues associated with using this
architecture. Assume Processor 0 is the multiplier, Processor 1 is the accumulator, and
Processor 2 is the data and multiplier constant memory. To keep the multiplier busy, it must
have a new data word and multiplier constant each computation cycle. Since both of these

260 CHA~ 11 MULTIPROCESSOR ARCHITECTURES

come across the bus from Processor 2, this forces Processor 2 to handle two data accesses
per computation cycle and puts a two-word-per-computation cycle load on the bus.

The multiplier also produces a new result each computation cycle, and this answer
must be passed to the accumulator (Processor 1) to allow Processor 0 to continue perform
ing multiplications and to allow Processor 1 to remain busy performing accumulations.
This adds another word per computation cycle to the bus requirements. Finally, after M
accumulations the accumulator has an output that it must pass back to the data memory
(Processor 2). This adds load on the bus of 1/M words per computations cycle.

In addition to these computational loads, data must be coming into the processor and
be stored in the data memory so that data is available for multiply-accumulation. Assuming
the new data must enter at the multiplier computation rate, this adds another data word per
computation cycle to the bus requirements. Eventually, results must also exit the processor
to be used elsewhere. If this is assumed to occur at the 1/M rate of the accumulator outputs,
then the output function increases the total bus loading to (4+2/M) words per computation
cycle. If the computation rate is R multiplies per second, then the data rate that must be
sustained on the bus is at least [R* (4+2/M)] words per second. A well-designed linear bus
architecture uses processors and buses that match the required performance of the chosen
algorithm.

11.2.3 Ring Bus

The ring bus [3] (Figure 11-5) is a special case of the linear bus, in which the ends
of the linear bus are connected. Generally, algorithms are implemented on this type of bus
using a combination of pipeline and linear bus techniques. Any arithmetic building block
from Chapter 10 or processor from Section 11.1 can be one of the processor blocks in this
architecture, and the number of processors can be as small as two or rather large.

RingBus

Figure 11-5 Ring bus architecture block diagram.

At first glance, this architecture does not appear to differ from the linear bus. In fact,
it can be used in that manner. In this case it has the same properties as the linear bus.
However, this architecture allows another type of processing, namely the input data can be
thought of as being sequentially passed from one building block to the next along with a
codeword that tells whether that processor is supposed to perform a function on that piece

(11-1)

SEC. 11.2 THREELINEAR ARRAYS 261

of data. The codeword also can tell the processor what function to perform if the processor
is programmable. This allows multiple words to be on the bus at one time because each is
stored in a data register at the input to one of the processors. This makes the architecture
look like a series of linear buses between processors.

For example, consider the multiply-accumulation example again. However, this time
consider Processor 0 to be one of the bit-slice multiplier building blocks described in
Chapter 10. Chapter 10 showed that a complete multiplication can be performed with bit
slice building blocks by passing the various "slices" of the input data word and multiplier
constant through the bit-slice multiplier, properly scaling the output and adding it to the
accumulator.

Further, assume Processor 1 is a bit-slice adder, Processor 2 is a data memory, and the
data words are bit-sliced into two pieces. From Chapter 10 the multiply process requires four
bit-slice multiplies and three bit-slice adds, as shown in Equation 11-1. The accumulation
portion of the multiply-accumulate can now be integrated with the addition portion of the
bit-slice multiply.

A * B == (au *2M + al) * (bu * 2M + bl)

== au *b; * 2
2M + (al * b; + au * bl) * 2

M + a, *hi *2°

The first step is to load the data (A) and multiplier constant (B) words from data memory
(Processor 2) onto the bus along with a control code that tells the bit-slice multiplier (Pro
cessor 0) to multiply the two lower halves of the word. When A and B reach the bit-slice
multiplier, it loads the lower portion of both words, performs the multiplication, and changes
the codeword to indicate it has performed that portion of the task. While the multiplication
is being performed, the two data words move along to Processor 1. However, the codeword
accompanying these words tells that processor not to perform any computations. The same
thing happens on the next clock when the data words are at the input register to Processor 2.
Another clock later, the two data words are back at Processor 0, and this time the codeword,
altered by Processor 0, tells Processor °to take the lower half of the multiplier constant
and the upper half of the data constant and perform the multiplication. The two input data
words make two more cycles around the ring bus to allow all four bit-slice multiplications
to be performed.

Meanwhile, once the first bit-slice multiplication is complete, the result (al * bl) is
moved from Processor 0 to Processor 1 to perform the addition part of the multiplication
and accumulation processes. Again, this partial result is accompanied with a codeword
generated by Processor 0 that tells the bit-slice adder the scale factor of the word (in this
case the factor is 2° == 1). The codeword that accompanies this partial result also tells
Processor 1 to remove the word from the ring bus. In other applications the word might
stay on the ring bus and be used in a different way by one of the other processors. This
feature is used in FFT algorithms because they generally use each computational result in
two or more places.

The other three intermediate results, along with their codewords, are also put on the
bus by Processor 0 to go to Processor 1 to be accumulated. After the input data has passed
by Processor 0 four times and Processor O's results fed to Processor 1, the multiplication and
accumulation is complete and new data and multiplier words must be accessed to continue
the multiply-accumulation process. Finally, the M multiply-accumulations are complete,

262 CHAP. 11 MULTIPROCESSOR ARCHITECTURES

and the result is put on the bus by Processor 1 to return to data memory in Processor 2. The
data memory processor not only stores the result but removes it from the bus.

The key concern with this architecture is bus contention, just as for the linear bus.
Only this architecture has a more demanding requirement because data passes around the
ring several times before the algorithm computations are complete. When bus contention
occurs, the transmission of processor outputs must be delayed. This results in a reduction
in throughput and an increase in latency.

One solution to bus contention is to allocate specific time slots to each processor
connected to the ring. This completely removes the contention problem. However, the
contention problem is then replaced with the need to design algorithms so that the processors
finish their computations close to their ring bus time slot. Otherwise, the processors have
the overhead of waiting for their turn to output results and input the next set of data. For
FFT algorithms this approach can be efficient because the algorithms are highly modular.
Section 14.11 shows a product family that uses this time-slot technique to remove bus
contention.

11.3 THREE PARALLEL ARRAYS

Parallel arrays have two-dimensional interconnectivity that fit the following three classes:

• Crossbar, which is the most general and allows processors to be directly connected
as needed to a large number of others in the array.

• Massively parallel, where the processors are generally connected to just their near
est neighbors and communications beyond the nearest neighbor requires passing
information through other processors.

• Star, which has all processors connected to a central one. The central processor
may use the connected processors as coprocessors, or it may be a central memory
that is used by the surrounding processors. When the central processor is replaced
with memory, this is called a shared-memory architecture.

11.3.1 Crossbar

A crossbar [1, 3] switch is a device that allows each of its inputs to be directly in
terconnected to any other one. For example, consider a crossbar switch to interconnect
four processors that each have one I/O port. Table 11-1 shows the number of simultaneous
interconnections available. If the number of processors is larger, or the processors have
additional I/O ports, the number of different interconnection combinations grows exponen
tially.

Figure 11-6 is a block diagram of a crossbar architecture where the individual cross
bar elements control the routing of four processors in an overall array of 16. Each cross
bar switch can arbitrarily connect any of its four processors to any other one. The
crossbar switch used in Figure 11-6 has an additional output that can be connected to
any of the four inputs. This increases the number of combinations shown in Table 11-1
from 3 to 12 because for each combination any of the four processors can also be connected
to the additional output to feed the larger network. Further, the central crossbar switch in
Figure 11-6 can connect any of the four crossbar switches to another. The result is that with

SEC. 11.3 THREEPARALLEL ARRAYS 263

Table 11-1 Four-Way Crossbar Interconnection Options

Interconnect option

1
2
3

Set 1

Processors 0 and 1
Processors 0 and 2
Processors 0 and 3

Set 2

Processors 2 and 3
Processors 1 and 3
Processors 1 and 2

these two levels ofcrossbar switching, any of the 16 processors can be directly connected
to one of the others without going through another processor.

There are numerous variations to this architecture, depending on the vendor. For
example, the crossbar switch described in Table 11-1 can also be designed to allow a
processor's I/O to connect to more than one of the other processors. Table 11-2 shows the
combinations available under these design constraints. Note that for this set of design rules
(each processor only having one I/O port), if three processors are connected the fourth has
nowhere to be connected. This architecture's interprocessor data I/O rate is not limited by the
buses themselves, but by scheduling the processing tasks so that two or more processors do
not have to feed data to the same one simultaneously. This is more accurately characterized
as processor I/Ocontention, rather than bus contention.

Processor Processor Processor ... Processor
0 t t 2 8 + + 10

Crossbar Crossbar
Switch Switch

Processor t t Processor Processor t t Processor
1 3 9 11

Crossbar --
Switch

Processor Processor Processor Processor
4 t t 6 12 t t 14

Crossbar Crossbar
Switch Switch

Processor t t Processor Processor t t Processor
5 7 13 15

Figure 11-6 Crossbar switch architecture block diagram.

The multiply-accumulation example is again used to illustrate the processor I/O con
tention issues. Forexample, assume that the upper-left-hand crossbar switch in Figure 11-6
has Processor 0 containing the data memory and multiplier constants, Processor 1 contain-

264 CHA~ 11 MULTIPROCESSOR ARCHITECTURES

Table 11-2 Four-Way + Broadcast Crossbar Switch Options

Interconnect option

1
2
3
4
5
6
7
8

Set 1

Processors °and 1
Processors °and 2
Processors °and 3
Processors 0, 1, and 2
Processors 0, 1, and 3
Processors 0, 2, and 3
Processors 1, 2, and 3
Processors 0, 1,2, and 3

Set 2

Processors 2 and 3
Processors 1 and 3
Processors 1 and 2
N/A
N/A
N/A
N/A
N/A

ing the multiplier, Processor 2 containing the accumulator, and Processor 3 being the data
I/O. Since data must be input as fast as it is being operated on by the multiply-accumulator,
a single multiply-accumulate cycle will be assumed to also include receiving a new input
data sample.

The first step is to connect Processor 0 to Processor 1 for two cycles to move a data
word and multiplier constant from memory into the multiplier. During the next cycle the
multiplier performs its computation and sends the result to the accumulator in Processor 2.
This requires the crossbar to connect Processors 1 and 2. This is the perfect time to bring in
a new data sample using the data I/O in Processor 3 and connecting it through the crossbar
switch to Processor 0 to store the data.

During the next cycle, the accumulator in Processor 2 performs its task, and the data
memory in Processor 0 is connected, by the crossbar, to Processor 1 to move additional
data into the multiplier. This is a rather simplistic example that does not illustrate all of
the power and flexibility of the crossbar network. This is addressed in conjunction with the
FFf algorithm mappings in Section 12.5.1.

11.3.2 Massively Parallel

A massively parallel [1, 3] processor is defined as having more than 1000 smaller
processors. Most often, the processors are connected in a two-dimensional array with only
nearest-neighbor connections. If the array is rectangular, then the processors are connected
either to four or all eight of their neighbors, as shown in Figures 11-7 and 11-8. There are
a number of variations depending on the manufacturer.

A fundamental assumption of this architecture is that the individual processors have
multiple I/O ports. Figures 11-7 and 11-8 show four and eight I/O ports, respectively.
The result is that there is no data I/O bottleneck between nearest neighbors. However, if
data must be passed to processors beyond nearest-neighbor locations, the nearest neighbors
must participate in the data transfer. This I/O requirement occupies the I/O ports of multiple
processors, thus reducing a processor's capability to pass its own data to another processor.

Another key characteristic of this architecture is whether all of the processors are
controlled by one program or whether each one can implement its own. If all the processors
must execute the same program, the architecture is called single-instruction, multiple-data
(SIMD). If each processor can have its own program to execute, then it is called multiple
instruction, multiple-data (MIMD).

SEC. 11 .3 THREE PARALLEL ARRAYS 265

N N N
W E W E W E

S S S

N N N

W E W E W E
S S S

N N N
W E W E W E

S S s

t t t
Figure 11-7 North-east-west-south connected massively parallel array

architecture block diagram.

/
E~

E~

~X
E~

Figure 11-8 Completely connected nearest-neighbor array architecture
block diagram.

Most massively parallel processors have been SIMD architectures. There are two
primary reasons for this and one significant drawback. The first reason is that technology
has not allowed it to be cost efficient to implement a control processor for each of the
1000 or more processors. Second, it is much more difficult to think through how to control
1000 programs working at the same time. The drawback is that it is very difficult to map

266 CHA~ 11 MULTIPROCESSOR ARCHITECTURES

individual algorithms onto an array of 1000 or more processors and have them execute it
efficiently.

More recently, programmable signal processor chips have been designed to be inter
connected in larger arrays. Since each of these has its own program control, they are likely
to be used in an MIMD configuration. While thousands of these devices are not likely to
be connected in the near future, a trend is developing in that direction. Examples of this
are shown in Section 14.11.

Massively parallel array architectures generally have their own special-purpose I/O
subsystem that converts the input data from a sequential stream into data vectors that can
be passed into the processing array along one of its edges. Figure 11-9 shows a specific
example of this I/O strategy for the north-east-west-south (NEWS) connected massively
parallel array in Figure 11-7. When the computations are complete, the results can be
shifted down to the output data reorganizer and converted back to a sequential stream of
data.

Input Data Reorganizer

Output Data Reorganizer

s

N
E w

s

N

s
E w

s

N

s
E~

Figure 11-9 Data I/O for a massively parallel array architecture block
diagram.

These more sophisticated architectures provide more opportunity for variation in
the wayan algorithm is implemented. The simple multiply-accumulation algorithm is no
exception. A 2 x 2 NEWS array of processors is used to illustrate the two extremes of
using a massively parallel processor for multiply-accumulate functions.

In the first approach assume that each processor is a single Harvard architecture pro
cessor and store the multiplier constants in each of these processors. Then as data arrives to
the processors, store the data associated with particular multiplier constants in that proces-

SEC. 11.3 THREE PARALLEL ARRAYS 267

sor's data memory. Every time M data samples have been stored in each processor, all the
processors can be told to perform the M-step multiply-accumulate process on its set of data.
All the processors then execute the same instruction set and finish at the same time. When
they are finished, multiply-accumulates have been performed on four sets ofdata. If during
that computation period, M new data samples can be loaded into each of thefour processor's
data memory, then the four processors can begin the multiply-accumulation process on the
next set of data as soon as they have finished the present set and have output the results.

In the second approach each set of M inputs is divided equally among the four proces
sors. Then each of the four processors computes M/4 of the multiply -accumulates, and these
four partial results are combined by adding. In more detail, one-quarter of the multiplier
constants are stored in each of the four processors. Then the input data interface separates
the input data words so that one-quarter of them go to each processor. Theneach processor
performs multiply-accumulation on its M /4 data words, using its M /4 multiplier constants.

Once these partial results are obtained, they must be added to form thefinal M sample
multiply-accumulation. One way to do this is to send the partial answers from the left two
processors to memory locations in the right two processors, using the "E" output of the
left-hand processors and the "W" input of the right-hand processors. Then the right two
processors can add their partial results to those computed by the processor to their left.
Finally, the top right processor can send its partial result to the bottom right processor for
the final addition needed to produce the desired output.

The second approach takes longer to compute because of the data passing required
and because all of the processors are not active during the final additions usedto combine the
partial results. However, the computation has less latency to produce its result. Namely, a
new multiply accumulation starts every M samples with the second approach, and therefore
answers are output every M samples. In the first approach the processor only starts a new
multiply-accumulate computation every 4*M data samples. Therefore, it canonly produce
results every 4 *M data samples. Hence, even though the individual multiply-accumulate
is produced faster, it takes longer for the answers to be available for further computations.

11.3.3 Star

The star [1] architecture is most often used when one function or processdominates the
application. It consists of one central processor with interconnections to numerous others,
as shown in Figure 11-10. The star architecture does not have to have four processors
surrounding the central one. It can have more or less, depending on the application.

The interprocessor communications in this architecture all occur via the central unit.
This requires it to have the capability to handle multiple data streams simultaneously or
the architecture will not be efficient. The most likely uses for this architecture are for
applications where either:

1. The central block does the general computations and the surrounding ones are
used as coprocessors to perform specific functions, such as nonlinear operations
or database searching, or

2. The central processor is data memory (shared memory) that needs to be accessed
by multiple processors at the same time, like a simultaneous database search from
multiple remote locations.

268 CHA~ 11 MULTIPROCESSOR ARCHITECTURES

Figure 11·10 The star architecture block diagram.

Just like the massively parallel architecture, there are many ways to use a star archi
tecture to implement a set of algorithms. Using the multiply-accumulate as an example,
assume five processors connected to the central processor. In this case let four of the
outlying processors be 8-bit bit-slice multipliers, and let the central processor be the data
memory and an accumulator. Let the fifth outlying processor handle the data I/O func
tions.

The first step is to move 16-bit input data through the data I/O processor and store
it in the data memory in the central processor. The next step is to have the central pro
cessor slice the 16-bit input words into 8-bit slices and pass the slices to each of the
four bit-slice multipliers. The next step is for each of the bit-slice multipliers to per
form one of the multiplications shown in Equation 11-1. Once the computations are
complete, each bit-slice multiplier passes its result back to the central processor. The
central processor is then responsible for performing the scaled additions shown in Equa
tion 11-1. The final result for the first multiplication now resides in the central processor,
and it can be added to the other multiplied data to form the M -step multiply-accumu
lation.

11.4 THREE MULTIDIMENSIONAL ARRAYS

Multidimensional arrays are one step beyond parallel arrays because they exhibit intercon
nectivity that has three or more dimensions. The three presented in this section are:

• Hypercube, which is the most common and is configured to minimize interprocessor
communications distances.

• Three-dimensional massively parallel arrays, which have been built for special
problems, suchas fluid dynamics calculations, but are very difficult to program for
problems that are not easily described in the same number of dimensions as the
architecture.

• Hybrid, whereeach element in the array is itself at least a two-dimensional architec
ture of a different type than the high-level architecture. Again, these architectures
are most useful for solving specific types of problems.

SEC. 11.4 THREEMULTIDIMENSIONAL ARRAYS 269

This type of architecture has been included because there are multidimensional FFT
applications and because even one-dimensional applications can be conveniently written as
a multidimensional FFT computation.

11.4.1 Hypercube

In mathematics a cube is a three-dimensional object with equal sides. The mathe
matical generalization of this equal-sided object to more than three dimensions is called a
hypercube. A hypercube [1,3] processing architecture is an organization of connections be
tween processing elements that form cubes. Joining two hypercubes of the same dimension
forms a hypercube of the next higher dimension. A single processor is a zero-dimensional
hypercube. Connecting two of those forms a one-dimensional hypercube. Connecting
two of these forms a square, which is a two-dimensional hypercube. Connecting two
squares forms a cube, called a three-dimensional hypercube. It becomes difficult to envi
sion higher-dimensional hypercubes. Figure 11-11 shows the four-dimensional hypercube.
Note that it is composed of two interconnected (one inside the other), three-dimensional
hypercubes.

Figure II-II Four-dimensional hypercube architecture.

An N-dimensional hypercube has 2N processing elements. For example, the four
dimensional hypercube in Figure 11-11 has 24 = 16 processing elements. The most unique
feature of the hypercube architecture is the efficiency of its interconnectivity. Namely,
in an N-dimensional hypercube, data can be passed from one processor to any other in
the architecture by passing through no more than N -lather processing elements. In Fig
ure 11-11 data can be passed from a processor to any other by passing through no more
than three processors. This contrasts with a 16-processor NEWS connected architecture
where passing data from one comer to the opposite one requires passing data through five
other processors, (N - 1) + (N - 2) in general. For larger arrays, such as 1024 elements,
the difference is even more dramatic. This makes the hypercube architecture attractive for
high-performance problems that require large amounts of data passing between arbitrary
pairs of processing elements.

The biggest drawback to the hypercube is that, in order to obtain the data-passing
efficiency with numerous processing elements, the array is very difficult to visualize. In

270 CHA~ 11 MULTIPROCESSOR ARCHITECTURES

fact, going beyond the four dimensions shown in Figure 11-11 (16 processor elements)
is difficult to visualize. Processor arrays with large numbers of processing elements are
also difficult to program efficiently. Once the visualization of the processor architecture is
removed, it becomes even more difficult to program.

11.4.2 Massively Parallel

The simplest form of three-dimensional massively parallel [1] processing is multiple
two-dimensional arrays (Figure 11-12) that lay on top of each other and are interconnected by
giving each processor an "up" and "down" connection in addition to its NEWS connections.

Up

North

PO

P3

P6

West

P1

P4

P7

Down

East

P2

P5

P8

Layer 1

South

Layer 2

Layer 3

Figure 11-12 Three-dimensional massively parallel-array block dia
gram

Figure 11-12 is a simplified block diagram of such an interconnection. The top three
processors (PO, PI, and P2) represent one row of the two-dimensional array in Figure 11-7.
The middle (P3, P4, and P5) and bottom (P6, P7, and P8) sets of processors also represent
a row of another two-dimensional array. The vertical interconnections are the up and down
connections between these two-dimensional arrays. The six basic interconnections, north,
east, west, south, up, and down, are labeled in Figure 11-12.

11.4.3 Hybrids

By definition a hybrid architecture is a combination of two or more of the architectures
described in previous sections. The example is a high-level crossbar [1, 3] architecture
(Figure 11-13) where half of the processors (2, 3, 6, 7, 10, 11, 14, and 15) are 3 x 3 arrays
of Harvard [2] architecture processing elements connected in a massively parallel [1, 3]
NEWS architecture for a total of 72 processors. The other half of the high-level crossbar
processors is split between data memory (1, 5, 9, and 13) and data input/output (0,4, 8,
and 12). Therefore, this is a combination of Harvard, massively parallel, and crossbar
architectures.

SEC. 11.4 THREE MULTIDIMENSIONAL ARRAYS 271

Figure 11-14 shows the 3 x 3 parallel processor array that exists at each of the
processors 2, 3, 6, 7, 10, 11, 14, and 15 in Figure 11-13, and Figure 11-15 shows the

Data I/O

t
Data Data I/O Processor Data I/O Processor
I/O 0 2 8 10

Memory Processor Memory Processor
1 3 9 11

«------~ Crossbar-------'
Switch

Data I/O

Data
I/O

Memory

5

Processor
6

Processor
7

Data I/O
12

I Memory I
13

Processor
14

Processor
15

Figure 11-13 High-level crossbar architecture block diagram.

N

Input Data Reorganizer

N N

Data

Interface

To

..-.-... Crossbar

Switch

w
s s

Output Data Reorganizer

s

Figure 11-14 3 x 3 parallel processor array block diagram.

272 CHA~ 11 MULTIPROCESSOR ARCHITECTURES

Harvard processor at each node of each of these 3 x 3 parallel processor arrays. Multiply
accumulate functions would be performed with the 72 Harvard processors. This means
that 72 multiply-accumulations can be done at the same time and the answers combined
at whatever level is necessary by using the NEWS and crossbar interconnections. The
strength of this architecture is its processing power. However, the drawback, like all MIMD
architectures, is the difficulty in programming the 72 processors to work efficiently on
complex algorithms. Chapter 12 addresses the complexity of mapping the algorithms from
Chapter 9 onto these architectures.

E

W

N

s

Data
Memory

Arithmetic
Unit

Address
Generator

Program
Memory

Program
Counter

11.5 CONCLUSIONS

Figure 11-15 Harvard processor block diagram.

More than a dozen block diagrams illustrate the variety of ways processors are combined
to offer enonnous selection for computing FFf algorithms. Seeing the interconnection of
the processors allows data movement overhead to be estimated. This helps to narrow the
choices of how to map an algorithm onto an architecture, which is shown in the next chapter
for minimum latency and maximum throughput examples.

REFERENCES

[1] T. Fountain, Processor Arrays Architecture and Applications, Academic Press, London,
1987.

[2] S. K. Mitra, J. F. Kaiser, Handbook/or Digital Signal Processing, Wiley, New York,
1993.

[3] R. W. Hockney and C. R. Jesshope, Parallel Computers, Adam Hilger, Bristol, England,

1981.

12

Algorithm and Data Mappings

12.0 INTRODUCTION

The method used to distribute and redistribute data and an algorithm in a single or multi
processor hardware architecture is called algorithm mapping. The process of choosing an
algorithm mapping for a particular application is often complex. The data I/O requirements,
processor interconnections and building-block algorithms must all be considered to reach
an optimal approach for a particular application.

This chapter uses minimum latency and maximum throughput examples to illustrate
how to map the algorithms from Chapter 9 onto the hardware architectures from Chapter
11. It is assumed that each processor takes one instruction cycle for each add, multiply, or
data move. The measures of how well an architecture performs an FFf algorithm are:

• How much delay does the architecture introduce while obtaining the results (la
tency)?

• How many FFTs per second can be computed (throughput)?

12.1 FIVE PERFORMANCE MEASURES

The two major issues of an algorithm mapping's efficiency are the:

• Time to move data into, out of, and between processors

• Computational efficiency of the algorithm (latency and throughput combined) on
the processor or processors

The first three performance measures apply to the first issue and the last two to the
second.

274 CHA~ 12 ALGORITHM AND DATA MAPPINGS

12.1.1 Input Data Overhead

Input data overhead is the number of clock cycles to move the data into the hardware
architecture and store it in the processor that will use it first.

12.1.2 Intermediate Results Reorganization Overhead

Intermediate results reorganization overhead is the number of clock cycles needed
to reorganize intermediate results among processors prior to performing the next stage of
algorithm computations.

12.1.3 Output Data Overhead

Output data overhead is a count of the number of clock cycles to organize and move
the FFT algorithm results out of the hardware architecture.

12.1.4 Computational Throughput

Computational throughput is the average number of clock cycles per FFf for the
hardware architecture to perform the arithmetic.

12.1.5 Processing Latency

Processing latency is the number of clock cycles from the time an input data sequence
starts going into the hardware architecture until the results are output from that hardware
architecture.

12.2 MAPPINGS

Algorithms and architectures are interesting to study. However, it is the efficiency with
which an architecture can execute an FFf algorithm that is of paramount importance in
making choices in the development of an application. The following sections use the
performance measures to characterize how each algorithm from Chapter 9 will work on
each architecture from Chapter 11.

In general, the best mapping of an algorithm onto processors is to allocate a processor
to each algorithm building block. If a transform length is factored into P smaller numbers,
then:

1. The Bluestein algorithm needs 2P + 3 hardware blocks. Three are used for the
complex multiplies at the beginning, middle, and end of the algorithm. The other
2P are needed to implement the forward and inverse transforms, where P is the
number of building blocks needed to implement the FFf.

2. The Winograd algorithm needs three hardware building blocks to implement the
two sets of adds and one set of multiplies.

3. The prime factor algorithms need P hardware building blocks to compute the P
building-block algorithms.

4. The mixed-radix algorithms need P hardware building blocks to compute the
P building-block algorithms and P - 1 more to implement the complex multipli
cations between the stages.

SEC. 12.3 SINGLE PROCESSOR 275

To allow the mapping comparisons to be as close to apples to apples as possible,
the Harvard architecture described in Section 12.3 is used as the processor at all of the
nodes of the multiprocessing architectures. The pipeline linear array architecture is used to
illustrate how the various algorithms from Chapter 9 can be mapped onto a multiprocessor
architecture. Then, for each architecture, mapping the 16-point radix-4 FFT algorithm
example from Chapter 9 is described in detail, by providing the data movement steps and
using the computational algorithm steps in Chapter 9. This provides a means for each of the
architectures within a class to be compared as well as the same algorithm across architecture
classes. Similar results would be obtained if anyone of the other FFT examples from Chapter
9 were used.

12.3 SINGLE PROCESSOR

Single processors are the simplest form of hardware architecture used for computing FFfs.
The memory holds the FFT algorithm steps, the multiplier constants, and the data being
processed. For real-time processing the memory must include space for three sets. While
the present set of complex samples is being operated on by the FFT algorithm, a new set
of complex samples is entering for the FFT computations, and the results of the last FFT
computations must be output. Table 12-1 shows how sets of complex samples are distributed
among these three portions of the memory, starting with the present set flowing into the
processor through the data I/O (input set) until it flows out of the processor via the data I/O
(output results).

Table 12-1 Single-Processor Real-Time Data Mapping

Data RAM Data RAM Data RAM
Time slot Input set section 1 section 2 section 3 Output results

1 1 1 N/A N/A N/A
2 2 1 2 N/A N/A
3 3 1 2 3 1
4 4 4 2 3 2
5 5 4 5 3 3
6 6 4 5 6 4
7 7 7 5 6 5
8 8 7 8 6 6

Table 12-1 shows input set 1 flowing through the data I/O portion of the processor
during time slot 1 and being stored in data RAM section 1. After one time slot for compu
tation, the FFf outputs from input set 1 are passed out of the processor during time slot 3.
This process is repeated for each set of complex samples. The only difference is the section
of memory used for each set. Therefore, the processor's real-time computational require
ment is to perform the entire FFf algorithm during the time slot for inputting one set of
complex samples. This includes algorithm arithmetic and memory address calculations. If
the processor is fast enough to perform all of these functions in real-time, a single processor
is sufficient for the application and the throughput is an FFT per time slot. If it is not,
multiple processors are needed, leading to one of the other architectures from Chapter 11.

276 CHA~ 12 ALGORITHM AND DATAMAPPINGS

The latency of this processing architecture is two time slots because the data goes into
the processor during time slot 1 and the results exit the processor during time slot 3. This
performance must also be adequate for the application in order for a single processor to be
sufficient. If the latency must be less than two sets of complex samples, multiple processors
must be used.

12.3.1 Data I/O Requirements

For a given transform length the data I/O rates are the same for all of the algorithms
because all N -point FFfs use N input complex samples and produce N output frequency
components. However, if data I/O is marginal, it is important to find the smallest transform
length that meets the performance goals of the application. Generally, the smallest transform
length is not a power-of-two.

The other factor affecting data I/O is the data sequence reordering needed to com
pute the algorithm. On the input, the data is almost always in time sequence order be
cause it came from an AID converter or out of some linear filtering function. However,
all of the algorithms in Chapter 9 needed the data to be reorganized to be ready for the
first building-block algorithm computations. This can be performed as the data enters the
processor by the way it is stored in memory. Or it can be performed at the beginning
of the first building-block computations by the way data is initially accessed from mem
ory.

The FFf results are not in sequential order either. Since the next computational stage
generally needs the frequency components in sequential order, another data reorganization
is required. Since the addresses used for the last-stage computational outputs are based on
the building-block addressing, this data reorganization is performed as the data moves from
the data memory through the data I/O hardware.

The algorithms for performing these two reorganizations are given in Chapter 9, and
all use multiplies, adds, and modulo arithmetic. Therefore, there is no significant advantage
of one algorithm over another for this portion of the computations.

12.3.2 Memory Requirements

Memory requirements are the sum of the data memory, multiplier constant memory,
and program memory. The Comparison Matrix in Table 9-8 shows that the amount of
data memory needed for the different algorithms is nearly equal. Further, the number
of multiplier constants is small compared to data memory, except for the mixed-radix
algorithms.

The largest program memory requirement occurs when every required instruction is
explicitly written out for an algorithm, rather than using the algorithm building-block code
as subroutines that get called by the main program. This is called straight-line or in-line
code and is the fastest possible code because no subroutine calls must be made and no
data memory addresses computed during the execution of the code. However, the program
memory is significantly larger than if subroutines are used and addresses are computed as
needed. For the I5-point examples in Chapter 9, the building-block subroutine approach
requires memory for the 3- and 5-point transforms and for memory addressing algorithms.
Since the I5-point algorithm uses the 3-point transform five times and the 5-point transform
three times, all with different input and output data addresses, program memory must store

SEC. 12.3 SINGLE PROCESSOR 277

five copies of the 3-point algorithm and three copies of the 5-point algorithm in the straight
line approach. For the 16-point radix -4 FFT example in Chapter 9, eight copies of the
4-point building block are used in the straight-line approach, rather than the one copy for
the building-block subroutine code approach.

12.3.3 Arithmetic Unit Requirements

The arithmetic unit is responsible for algorithm and data addressing computations.
The algorithm computations are different for each algorithm. The I/O addressing is ex
plained in Section 12.3.1. The other data addressing computations are to reorganize the
data between each building-block algorithm stage. Each algorithm from Chapter 9 requires
this data reorganization and uses multiplies, adds, and modulo arithmetic. Therefore, there
is no significant advantage of one algorithm over another for this portion of the computa
tions.

The arithmetic unit must be capable of computing all of these tasks in the time
slot allotted by the real-time requirements of the application. Millions of instructions per
second (MIPS) and millions of operations per second (MOPS) are only crude measures of a
processor's ability to execute the needed FFT algorithm in real time, because no hardware
architecture is 100% efficient at computing FFTs.

The chip Comparison Matrices in Chapter 14 show 1024-point complex FFT timings
for most DSP chips on the market. Section 14.1.1 describes how to estimate timings for
other FFT lengths, based on the l024-point benchmark. This is a better measure of chip
performance than MIPS and MOPS because it incorporates internal overhead of the chip.
When processors are connected into larger arrays, additional overhead is incurred when
data must be passed between processors. That additional overhead is explained for each
algorithm mapped in this chapter.

12.3.4 Von Neumann Architecture

The straightforward approach to implementing all of the algorithms from Chapter 9
on the Von Neumann [1] architecture is to have a subroutine for each building-block al
gorithm and its data addressing. Then input and output data addressing algorithms can
be programmed for each stage in the Chapter 9 algorithm. To perform these algorithms
for sets of complex samples that are in the three different sections of memory, an address
"offset" is used to move each starting address to the necessary location. Then the FFT
algorithm is performed by sequencing through the various subroutines for computations,
data addressing, and address offsets.

If the algorithm can be performed in real-time using one arithmetic unit, then the
Von Neumann architecture (Figure 12-1) provides the simplest solution. If not, there are
four options. The first is to change to a different algorithm that may have less arithmetic
or address computations. The second is to change to the Harvard architecture where the
addressing is performed by different hardware. The third is to change from a subroutine
based program to straight-line code that has all of the addresses precalculated and built
into the code. Finally, multiple-processor architectures can be used. Options 2 and 4 are
described in other sections of this chapter. Option 3 is explained next. This chapter's
performance measures, in conjunction with those from Chapters 9 and 14, can be used to
assess the difference in performance of the various algorithms.

278 CHA~ 12 ALGORITHM AND DATA MAPPINGS

Memory

Multiplier
Constants

DataSection
1

Data Section
2

DataSection
3

Program

~ Data I/O t
~

Arithmetic
Unit

Figure 12-1 Von Neumann architecture block diagram.

12.3.5 Harvard Architecture

The Harvard [2] architecture is the most popular for programmable DSP chips and
DSP applications in general, because DSP functions generally have numerous computations
as well as complex data addressing. The FFT algorithms in Chapter 9 are no exception, and
the programmable DSP chips in Chapter 14 all use the Harvard architecture. Figure 12-2
shows the basic Harvard architecture with the data memory separated into three sections
for real-time operation.

Memory

Data Section
1

Data Section
2

Data Section
3

Multiplier Address Program
....--

Constants Generator Memory

~ Data I/O

Arithmetic Program

Unit Counter

Figure 12-2 Basic Harvard architecture block diagram.

SEC. 12.4 THREE LINEAR ARRAYS 279

Since additional hardware is used to compute memory addresses and sequence through
the program, this architecture coupled with building-block subroutine code generally has
better performance than a VonNeumann architecture using straight-line code. Additionally,
the larger memory needed for straight-line code is replaced with a small amount of control
logic in the Harvard architecture.

The extent of the performance improvement over the Von Neumann architecture
depends on the sophistication of the address generators. In the more recent generations
of DSP chips, the address generators, often multiple ones, allow the complex memory
address sequences to be generated at the same speed as the arithmetic computations are
performed. In the early generations of DSP chips, the address generator was nothing more
than a counter. For these less sophisticated address generators, straight-line coding provided
additional performance gain over using building-block subroutines. All of the other data
I/O, memory, and arithmetic unit considerations are virtually the same for the Harvard and
Von Neumann architectures.

12.3.6 Harvard 16-Point Radix-4 FFT Example

Because only one processor is being used, any of the FFf examples from Chapter 9
can be used to illustrate the mapping process. If the 16-point, radix-4 FFf is used and it is
assumed that (1) the data addressing is all accomplished by an address generator, in parallel
with the computations, and (2) the arithmetic unit performs either an add or a multiply in
a clock cycle, then 232 clock cycles are required because there are 144 real adds, 24 real
multiplies, and 64 data I/O operations (32 to input 16 complex data samples and 32 to output
16 complex frequency components) to execute. Therefore, the throughput is one 16-point
radix-4 FFf every 232 clock cycles with a processing latency that is also 232 clock cycles.
If the arithmetic unit allows multiplies and adds on the same clock cycle, the clock cycle
total is reduced as a function of how many places in the algorithm adds and multiplies can
be done in parallel.

12.4 THREE LINEAR ARRAYS

Linear arrays were early architectures for increasing the performance of an FFT algorithm
beyond the capability of a single processor. The primary difference between the various
algorithms on this architecture is the number of processors that are efficient for decomposing
the algorithm into smaller pieces. Table 12-2 shows how each of the FFf examples from
Chapter 9 can be mapped onto a three-processor linear-array architecture. These mappings
are then described in more detail for each linear-array architecture from Chapter 11. Finally,
the 16-point radix-4 FFT example is described in more detail. Throughout this section, when
the k-th input data sample is written as a(k), it means both the real and imaginary parts of
the sample. Specifically, a(k) = aR(k) + j *aj(k). This same shorthand notation is also
used for intermediate results and output frequency components.

12.4.1 Pipeline

The pipeline [1, 3] architecture was one of the first real-time architectures used to
implement the power-of-two FFT. It interconnects processors such that the output of each
one becomes the input to the next. Then an FFf algorithm is implemented by segmenting

280 CHA~ 12 ALGORITHM AND DATA MAPPINGS

Table 12-2 Chapter 9 Example Algorithms Mapped onto a Three-Processor Linear Array

Chapter 9 FFf examples

I5-point Bluestein
I5-point Winograd
I5-point prime factor
16-point radix-4
16-point radix-8 and -2
IS-point Singleton

Processor 0

I6-point FFT
I5-point input adds
3-point FFT
4-point FFf
8-point FFT
3-point FFf

Processor I

Complex multiplier
Multiplier
Not used
Complex multiplier
Complex multiplier
Complex multiplier

Processor 2

16-point IFFT
I5-point output adds
5-point FFf
4-point FFT
2-point FFT
5-point FFT

it into a sequence of smaller building-block algorithms and performing each algorithm on
one of the processors. Figure 12-3 is a pipeline architecture with three processors.

--I pro~ssor H pro~essor ~ proc;ssor

Figure 12-3 Pipeline architecture block diagram.

Each FFf algorithm in Chapter 9 requires the input samples, intermediate results, and
output results to be reorganized. These reorganizations are implemented by the sequence
in which data is read into each processor in Figure 12-3 or by the address pattern used to
store the data in the processor. Therefore, the time for data reorganization is similar for all
algorithms.

In terms of algorithm computational efficiency, the key is to provide enough com
putational capability in each processor so that it can process the outputs from the previous
processor as fast as provided and can provide inputs for the next processor as fast as needed.
If each processor meets these criteria, the P -stage pipeline processor can process P times
as much data as a single processor. The pipeline approach allows each processor to be
tailored to execute the computations in that portion of the algorithm.

There are three contributors to processing latency in a pipeline architecture. The first
is the individual latencies of each of the processors, once they have received the necessary
data to perform the computations. The second is added latency due to one processor not
working fast enough to feed results to the next one. Then the next processor must wait for
data prior to performing its computations.

The final contributor to pipeline processor latency is whether a processor waits until
it has an entire set of complex samples before it begins processing. If it does, the processing
latency of each processor is as described in Section 12.3. However, it is possible to start
processing data prior to the entire set of complex samples being present. This can be
observed by looking at the algorithm steps in Chapter 9 for the 15- and 16-point examples.
In all of the 15-point examples the first computations can be performed once the complex
a (0), a (5), and a (10) samples are received. For the 16-point radix-4 example, computations
can start once complex samples a (0), a (4), a (8), and a (12) are received. The 16-point mixed
power-of-primes example must wait until sample a(14) is received.

For algorithms where a 2-point transform is computed first, computations can start
after receiving the first sample in the second half of the data. This technique was used

SEC. 12.4 THREE LINEAR ARRAYS 281

extensively in early pipeline implementations of power-of-two (power-of-primes algorithm
with the "prime" being 2) FFf algorithms to reduce processing latency.

Figures 12-4 through 12-9 are examples of how each of the example algorithms from
Chapter 9 can be implemented with the pipeline architecture. At the inputs to each processor
the data addressing portion of the algorithms must also be implemented.

16-Point

FFTs

Complex

Multiplies

16-Point

IFFTs

Figure 12-4 Pipeline architecture block diagram for the 15-point
Bluestein algorithm.

The Bluestein algorithm requires much more processing power for the first and third
blocks than for the second block. This can be accommodated by using blocks with different
processing power or by subdividing the computations for the 16-point algorithm into smaller
blocks. For example, the first and/or third blocks in Figure 12-4 can be replaced with the
three blocks in Figure 12-7, resulting in a pipeline with five or seven blocks with more
comparable amounts of computations. The advantage of this is the possibility of having all
the computational blocks be the same hardware architecture, or at least fill the same amount
of board space. The disadvantage of this approach is that it adds processing latency to the
algorithm, even though it does not decrease the system input data rate.

The Winograd algorithm provides the best chance for optimizing the hardware to the
algorithm because it segregates adds and multiplies. This allows the first and third processors
to be constructed using only adders. Only the center processor needs the multiplication
capability. For the I5-point FFf this algorithm also allows the first and third processors to
be decomposed into a sequence of 3- and 5-point add processors. However, with the cost
of programmable DSP chips decreasing rapidly, it may still be most cost effective to use
those chips for each of the three blocks needed for the 3- and 5-point FFTs.

15-Point 15-Point 15-Point------. ---..
Input Adds Multiplies OutputAdds

Figure 12-5 Pipeline architecture block diagram for the I5-point Wino
grad algorithm.

The prime factor algorithm (Figure 12-6) has two potentially attractive features be
cause multipliers are not needed between the stages. The first is that a two-stage algorithm
can be implemented with processors that are much closer to having the same computational
requirements than if the multiply stage were in the middle. The second is the potential for
a smaller processing latency because of the lack of the multiplier processor.

Figure 12-6 Pipeline architecture block diagram for the I5-point prime
factor algorithm.

282 CHAR 12 ALGORITHM AND DATAMAPPINGS

Additionally, these two blocks can be further decomposed into smaller building blocks
to meet the computational requirements. For example, the Winograd building blocks from
Chapter 8 allow each block in Figure 12-6 to be divided into three blocks. In that case,
each processor can be optimized as described for the adds and multiplies required by the
Winograd algorithm.

The power-of-primes algorithm in Figure 12-7 has the special feature that the first
and third blocks are the same. Further, when they are 4-point FFfs, they do not have
multiplications. Therefore, they can be implemented by using only adder blocks for the
arithmetic unit. Again, the 4-point FFf requires more computations than the complex
multiplies. This means more processing power is needed in the first and third blocks than in
the second block. If the processor latency requirements allow, the 4-point algorithm can be
computed with a pair of 2-point FFfs. This increases processor latency by turning a three
block process into a five-block process. However, it makes the processing requirements of
each block similar.

4-Point

FFTs
Complex
Multiplies

4-Point

FFTs

Figure 12-7 Pipeline architecture block diagram for the 16-point
powers-of-primes algorithm.

The mixed powers-of-primes algorithm in Figure 12-8 has the worst mismatch of
computational tasks of any of the examples because all three blocks have different require
ments. Again, this can be improved by decomposing the 8-point FFf into three 2-point or
4- and 2-point mixed-radix FFf algorithms. The three 2-point FFT algorithms offer the
best computational match because the 2-point FFT requires four adds and each complex
multiply consists of four multiplies and two adds.

a-Point----..
FFTs

Complex
Multiplies

2-Point

FFTs

Figure 12-8 Pipeline architecture block diagram for the 16-point mixed
powers-of-primes algorithm.

A third option for decomposing the 8-point FFf is to use the Winograd 8-point
algorithm. Then it can be decomposed into a sequence of adds, then multiplies, and then adds
again. Since the 2-point FFT is also just adds, it can be implemented with the same hardware
architecture as the Winograd input and output adds. Further, the Winograd multiplies and
the complex multiplies can be implemented with the same hardware architecture.

The block diagram in Figure 12-9 is very similar to the prime factor algorithm in
Figure 12-6. The two drawbacks to this algorithm, over the prime factor algorithm, are
that the processing latency is one more set of complex samples because of the complex
multiplies, and the complex multiplies need a simpler computational architecture than the
3- and 5-point FFTs. The second issue can be resolved by decomposing the 3- and 5-point
FFTs into smaller building blocks. However, this decomposition results in added processing
latency.

SEC. 12.4 THREE LINEAR ARRAYS 283

3-Point
FFTs

Complex
Multiplies

5-Point
FFTs

Figure 12-9 Pipeline architecture block diagram for the I5-point Sin
gleton mixed-radix algorithm.

12.4.2 Linear Bus

A linear [1] bus is an architecture where a single bus is used to provide the path for
all of the data communications among the arithmetic processors. Figure 12-10 is a block
diagram of the linear bus architecture. There are numerous ways each of the examples
from Chapter 9 can be executed on this architecture. One is to allocate functions to each
processor in the same way as allocated in the pipeline architecture (Table 12-2). Then
the only difference between this architecture and the pipeline is that only one set of data
can move on the bus at one time. In the pipeline architecture the input and output of all
processors can work simultaneously.

Figure 12-10 Linear bus architecture block diagram.

12.4.3 Ring Bus

The ring [3] bus is a special case of the linear bus where the ends of the linear bus are
connected. Figure 12-11 shows a three-hardware-processor ring bus architecture. Table
12-2 shows how each of the example FFTs from Chapter 9 can be implemented on this
architecture. The key issue with this architecture is bus contention, just as for the linear
bus. However, this architecture has a more demanding requirement because data may pass
around the ring several times before the algorithm computations are complete. When bus
contention occurs, the transmission of processor outputs must be delayed. This results in
both a reduction in throughput and an increase in latency.

Ring Bus

Figure 12-11 Ring bus block diagram.

284 CHA~ 12 ALGORITHM AND DATA MAPPINGS

As explained in Chapter 11, data in this architecture flow along the bus from one
processor to the next, accompanied by a codeword. The codeword tells the next processor
if it has computations to perform on the next set of data and what those computations are.
Additionally, just as in the pipeline section, each processor can be further decomposed so
that there are more smaller processors connected to the ring.

12.4.4 Pipeline 16-Point Radix-4 Example

There are two extremes for processing in this class of architectures. One extreme
distributes the algorithm across all of the processors (Option 1), and the other uses each
processor to compute an entire transform (Option 2). For these architectures and this FFf
length, Option 1 provides maximum throughput and minimum latency. This is not usually
the case, as is seen for the parallel array and multidimensional array architectures.

Option 1: All Processors Used to Compute One 16-Point Radix-4 FFT

Assuming one of the Harvard processors is used at each processor location in Figure
12-7, the 4-point computations will need more time than the complex multiplies. From
Chapter 8 each 4-point FFf takes 16 real adds. The four 4-point FFTs are computed by
Processor 0 in 4 *16 = 64 clock cycles plus the 32 for data input (clock cycles 0-95). Then
32 clock cycles are used to move these partial results to Processor 1 to perform the complex
multiplies (clock cycles 96-127). Once this has occurred, another 96 clock cycles (clock
cycles 128-223) are used to move the next set of data into Processor 0 and perform the four
4-point input FFfs. Then the second set of results is ready for input to Processor 1 at clock
224.

Even though the 12 complex multiplications use 24 real multiplies, 16 real adds, and
32 data output clock cycles (72 clock cycles), 96 clock cycles are allotted because no new
data is available until then. Therefore, the first set of complex multiply results is output
from clock cycles 192 to 223 in preparation for receiving the next set of data. Therefore,
at clock 224, Processor 2 has data for computing the four 4-point output FFTs. Since this
takes 64 clock cycles to compute and 32 to output the results (the same time as Processor 0),
the results are completely output from Processor 2 at clock 320. Therefore, the processing
latency for the pipeline architecture and 16-point radix-4 algorithm is 320 clock cycles.
Meanwhile, the second set of complex samples moves to Processor 1 from clock cycles
224 to 255. Therefore, this set of complex samples is 128 clock cycles behind the first set
of complex samples. This means that a new set of answers is output from this architecture
every 128 clock cycles for the 16-point radix-4 algorithm. Therefore, the computational
throughput of this architecture is 128 clock cycles per FFf, and the latency is 320 clock
cycles.

This process can be summarized in stages:

Stage 1: Input set 1 of complex samples to Processor 0 and compute input 4-point
FFfs.

Stage 2: Transfer Processor D's set 1 results to Processor 1.

Stage 3: Compute complex multiplications on set 1 in Processor 1 and input set 2 to
Processor 0 and compute input 4-point FFTs.

Stage 4: Transfer Processor 0 set 2 results to Processor 1; transfer Processor 1 set 1
results to Processor 2.

SEC. 12.4 THREE LINEAR ARRAYS 285

Stage 5: Compute complex multiplications on set 2 in Processor 1, compute the set
1 output 4-point FFTs in Processor 2, and input set 3 to Processor 0 and
compute input 4-point FFTs.

This process is repeated for multiple sets of complex samples. Table 12-3 summarizes
these events as a function of clock cycles from the beginning of the process.

Table 12-3 Timing for 16-Point Radix-4 FFT on a Three-Processor Pipeline

Clock cycle

0-95
96-127

128-223
128-191
192-223
224-319
224-255
256-341

Task

Input 1st set into Processor 0 and compute four input 4-point FFfs.
Move Processor 0 results from 1st set to Processor 1.
Input 2nd set into Processor 0 and compute four input 4-point FFfs.
Compute complex multiplies on 1st set in Processor 1.
Move Processor 1 results from the 1st set into Processor 2.
Compute four output 4-point FF'Ts on 1st set and output results.
Move Processor 0 results from 2nd set to Processor 1.
Input 3rd set into Processor 0 and compute four input 4-point FFfs.

Option 2: Each Processor Computes One 16-Point Radix-4 FFT

Stage 1: Distribute One Set of Complex Samples to Each Processor

In the pipeline architecture the input data samples that are to be processed by the
second processor are passed through the first processor. Similarly, the input data samples
to be processed by the third processor are passed through the first and second processors.
Assuming this step takes one clock cycle for each input data word, the first set is moved
into the first processor in 32 clock cycles. As 32 clock cycles are used to move the second
set of complex samples into the first processor, the first processor passes the first set into
the second processor. As 32 more clock cycles are used to move the third set of data into
the first processor, the first set is moved from the second to the third processor, and the
second set of data samples is moved from the first to the second processor. Therefore,
these three sets of 16 complex input data samples take 96 clock cycles to input to the
pipeline.

Stage 2: Compute Three 16-Point Radix-4 FFTs

It takes 168 clock cycles to compute the 16-point radix-4 FFT using the Harvard
architecture assumptions from Section 12.3.5. Since all three processors are computing the
algorithm, it takes only 168 clock cycles to compute all three 16-point radix-4 FFfs.

Stage 3: Collect the Results of the Three 16-Point Radix-4 FFT Computations

Assuming this step takes two clock cycles to output each complex frequency com
ponent, the first set of output frequency components is moved out of the third processor
in 32 clock cycles. At the same time, the second set of complex frequency components is
moved from the second processor to the third processor. Also, these same 32 additional
clock cycles are used to move the third set of output frequency components from the first

286 CHAR 12 ALGORITHM AND DATA MAPPINGS

processor to the second processor. During the next set of 32 clock cycles, the second set of
output frequency components is moved out of the third processor and the third set of output
frequency components is moved from the second to the third processors. Finally, during
the last set of 32 clock cycles, the third set of output frequency components is moved out of
the third processor. Therefore, the three sets of 16 complex output frequencies are output
in 96 clock cycles. Therefore, this option takes a total of 360 clock cycles, which is the
latency and defines the throughput rate of 360/3 = 120 clock cycles per FFT.

12.4.5 Linear and Ring Bus 16-Point Radix-4 FFT Examples

There are two extremes for processing in linear and ring bus architectures. One
extreme distributes the algorithm across all of the processors (Option 1), and the other uses
each processor to compute an entire transform (Option 2). For these architectures and this
FFT length, Option 1 provides maximum throughput and minimum latency. This is not
usually so, as is seen for the parallel-array and multidimensional-array architectures.

Option 1: All Processors Usedto Compute One 16-Point Radix-4FFT

Assuming one of the Harvard processors is used at each processor location, the 4
point computations will need more time than the complex multiplies. From Chapter 8 each
4-point FFf takes 16 real adds. The four 4-point FFfs are computed by Processor 0 in
4*16 = 64 clock cycles plus the 32 for data input (clock cycles 0-95). Then 32 clock cycles
are used to move these partial results to Processor 1 to perform the complex multiplies (clock
cycles 96-127). Once this has occurred, another 96 clock cycles (clock cycles 128-223)
are used to move the next set of data into Processor 0 and perform the four 4-point input
FFfs. Then the second set of results is ready for input to Processor 1 at clock 224.

Even though the 12 complex multiplications use 24 multiplies, 16 adds, and 32 data
output clock cycles (72 clock cycles), 96 clock cycles are used because no new data is
available until then. Therefore, the first set of complex multiply results is output from clock
cycles 192 to 223 in preparation for receiving the next set of data. Therefore, at clock 224,
Processor 2 has data for computing the four 4-point output FFfs. Since this takes 64 clock
cycles to compute and 32 to output the results (the same time as Processor 0), the results
are completely output at clock 320. Therefore, the processing latency for the linear array
architecture and 16-point radix-4 algorithm is 320 clock cycles. Meanwhile, the second set
of complex samples moves to Processor 1 from clock cycles 224 to 255. Therefore, this set
of complex samples is 128 clock cycles behind the first set of complex samples. This means
that a new set of answers is output from this architecture every 128 clock cycles for the
16-point radix-4 algorithm. Therefore, the computational throughput of this architecture is
128 clock cycles per FFf and the latency is 320 clock cycles.

To summarize this process in stages:

Stage 1: Input set 1 of complex samples to Processor 0 and compute input 4-point
FFfs.

Stage 2: Transfer Processor O's set 1 results to Processor 1.

Stage 3: Compute complex multiplications on set 1 in Processor 1, and input set 2 to
Processor 0 and compute input 4-point FFTs.

Stage 4: Transfer Processor 0 set 2 results to Processor 1; transfer Processor 1 set 1
results to Processor 2.

SEC. 12.5 THREE PARALLEL ARRAYS 287

Stage 5: Compute complex multiplications on set 2 in Processor 1, compute the set
1 output 4-point FFfs in Processor 2, and input set 3 to Processor 0 and
compute input 4-point FFfs.

This process is repeated for multiple sets of complex samples. Table 12-4 summarizes
these events as a function of clock cycles from the beginning of the process.

Table 12-4 Timing for 16-Point Radix-4 FFT on a Linear Array

Clock cycle
----------- ------

Task

0-95
96-127

128-223
128-191
192-223
224-319
224-255
256-341

Input 1st set into Processor 0 and compute four input 4-point FFfs.
Move Processor 0 results from 1st set to Processor 1.
Input 2nd set into Processor 0 and compute four input 4-point FFTs.
Compute complex multiplies on 1st set in Processor 1.
Move Processor 1 results from the 1st set into Processor 2.
Compute four output 4-point FFfs on 1st set and output results.
Move Processor 0 results from 2nd set to Processor 1"
Input 3rd set into Processor 0 and compute four input 4-point FFTs.

Option 2: Each Processor Computes One 16-Point Radix-4 FFT

Stage 1: Distribute One Set of Complex Samples to Each Processor

Assuming this step takes one clock cycle for each input data word, the three sets of
16 complex input data points take 96 clock cycles to be distributed to the three processors.

Stage 2: Compute Three 16-Point Radix-4 FFTs

It takes 168 clock cycles to compute the 16-point radix-4 FFT by using the Harvard
architecture assumptions from Section 12.3.5. Since all three processors are computing the
algorithm, it takes only 168 clock cycles to compute all three 16-point radix-4 FFfs.

Stage 3: Collect the Results of theThree16·Point Radix·4 FFTComputations

Assuming this step takes one clock cycle for each output result, the three sets of 16
complex output frequencies take 96 clock cycles. Therefore, this option takes a total of 360
clock cycles, which is the latency and defines the throughput rate of 360/3 = 120 clock
cycles per FFf.

12.5 THREE PARALLEL ARRAYS

Processors can be combined into parallel arrays in numerous ways, and there are many ways
to use the array to compute each of the algorithms in Chapter 9. At the two data mapping
extremes are:

1. One set of complex samples is distributed among all of the processors in the array
and then computed in one FFT. This approach usually results in minimum latency
processing.

288 CHA~ 12 ALGORITHM AND DATAMAPPINGS

2. A set ofcomplex samples is distributed to each of the processors and then a number
of FFfs are performed in parallel. This usually results in maximum throughput
but has more latency than the first approach.

Each extreme is described by mapping the 16-point radix-4 FFf onto each of the three
parallel arrays from Chapter 11. Throughout this section, when the k-th input data sample
is written as a(k), it means both the real and imaginary parts of the sample. Specifically,
a(k) =aR(k) + j *aI (k). This same shorthand notation is also used for intermediate results
and output frequency components.

12.5.1 Crossbar 16-Point Radix-4 FFT Examples

Fast Fourier transforms can be computed on the crossbar [1, 3] architecture in many
ways. At one extreme all processors are used to compute one transform (Option 1); at
the other each processor is used to compute an entire transform (Option 2). In each case a
common way to handle the data I/O is to have one of the processors, say Processor 0, receive
the input data and output the FFT results. Options 1 and 2 are described with the 16-point
radix-4 FFf from Chapter 9 mapped onto the crossbar architecture in Figure 12-12.

Data
I/O

Processor
o

Processor
1

Processor
2

Processor
3

Processor
8

Processor
9

Processor
10

Processor
11

Crossbar
Switch

Processor
4

Processor
5

Processor
6

Processor
7

Processor
12

Processor
13

Processor
14

Processor
15

Figure 12-12 Crossbar switch architecture.

Option 1: All Processors Used to Compute One 16-Point Radix-4 FFT

The strategy is to use the four-processor clusters in Figure 12-12 (Processors 0-3, Pro
cessors 4-7, Processors 8-11, Processors 12-15) to compute the 4-point building blocks.
Therefore, the input data is mapped so that the sets of four complex samples needed for
each of the four 4-point building blocks from Chapter 8 are each located in a processor
cluster. Once the input 4-point building-block algorithms are computed, the complex mul
tiplies can be performed. Then the data can be reorganized so that the intermediate results,
needed as inputs to each of the second set of 4-point building blocks, are in a processor

SEC. 12.5 THREE PARALLEL ARRAYS 289

cluster. The output 4-point building blocks are then computed and the final results sent
out of the architecture. The data mapping in each of the processors is the same as used in
Section 8.5, because the computations in an individual processor are only 4-point building
blocks.

Stage1: Distribute the Input Dataonto the Processors

Use Processor 0 to load the 16 complex samples and use the crossbar network to
distribute one of the data points to each of the other 16 processors. Group the data points
such that a(O), a(4), a(8), and a(12) are in Processors 4,5,6, and 7, respectively. Similarly,
group a(1), a(5), a(9), and a(13) in Processors 8, 9,10, and 11, respectively; a(2), a(6),
a(IO), and a(14) in Processors 12, 13, 14, and 15, respectively; and a(3), a(7), a(11), and
a (15) in Processors 0, 1, 2, and 3, respectively. It takes two clock cycles to input and store
each complex data sample in the processor, if no additional clock cycles are assumed for
passing data through the crossbar switches. This is a total of 32 clock cycles. Figure 12-13
shows which of the 16 processors has each of the 16 complex samples, intermediate results,
and output results after each stage of the 16-point radix-4 algorithm by listing them in their
processor on the same line as the label on the left side of the figure that defines the stage of
the algorithm.

Stage 2: Compute Input 4-Point FFTs

Compute 4-point FFTs in each processor cluster. Use Stage 1 of the 16-point radix-4
FFT example in Chapter 9 as the guideline, along with the memory mapping scheme in
Chapter 8, and each processor cluster's crossbar switch to move data between processors.
Specifically, processor cluster 0-3 is used to compute the fourth of four input 4-point build
ing blocks in Stage 1 of Section 9.7.5. Similarly, processor cluster 4-7 is used to compute
the first of four input 4-point building blocks. Processor cluster 8-11 is used to compute
the third of the four input 4-point building blocks. Finally, processor cluster 12-15 is used
to compute the second of the four input 4-point building blocks in Stage 1 of Section 9.7.5.

To illustrate how a processor cluster can be used to compute these input 4-point
building blocks, consider processor cluster 4-7. One approach for this cluster is to use
the crossbar switch to connect Processor 4 to Processor 6 and to connect Processor 5 to
Processor 7. Then:

Step 1: Copy a (0) from Processor 4 into Processor 6 and copy a (4) from Processor
5 into Processor 7, simultaneously.
Step 2: Copy a(8) from Processor 6 into Processor 4 and copy a(12) from Processor
7 into Processor 5, simultaneously.

Step 3: Use the equations from the 16-point radix-4 example in Section 9.7.5 to
compute

b(O) = a(O) + a(8) in Processor 4

b(2) = a(4) + a(12) in Processor 5

bel) = a(O) - a(8) in Processor 6

b(3) = a(4) - a(12) in Processor 7 simultaneously

Use the crossbar switch to connect Processor 4 to Processor 5 and to connect Processor
6 to Processor 7. Then:

290 CHA~ 12 ALGORITHM AND DATA MAPPINGS

Results of Stage 1

Results of Stage2
Results of Stage3
Results of Stage4

Results of Stage5

Results of Stage 1
Results of Stage2
Results of Stage3
Results of Stage4
Results of Stage5

Results of Stage 1
Results of Stage2
Results of Stage3
Results of Stage4
Results of Stage5

Results of Stage 1
Results of Stage2
Results of Stage3
Results of Stage4
Results of Stage5

a(3)

e(12)

e(12)
e(3)

A(3)

Processor 0

a(7)
e(14)
e(14)

e(7)
A(ll)

Processor 1

a(O)

e(O)
e(O)
e(O)
A(O)

Processor 4

a(4)

e(2)
e(2)
e(4)
A(4)

Processor 5

a(ll)
e(13)

e(13)

e(ll)

A(7)

Processor 2

a(15)
e(15)

e(15)
e(15)
A(15)

Processor 3

a(8)
e(l)
e(l)
e(8)
A(8)

Processor 6

a(12)

e(3)

e(3)

e(12)
A(12)

Processor 7

a(l)

e(8)
e(8)
e(l)
A(l)

Processor 8

a(5)
e(IO)
e(IO)

e(5)
A(9)

Processor 9

a(2)

e(4)

e(4)

e(2)
A(2)

Processor 12

a(6)
e(6)
e(6)
e(6)
A(IO)

Processor 13

a(9)
e(9)
e(9)
e(9)
A(5)

Processor 10

a(13)

e(ll)
e(l!)

e(13)
A(13)

Processor 11

a(IO)

e(5)
e(5)
e(IO)
A(6)

Processor 14

a(14)

e(7)

e(7)
e(14)
A(14)

Processor 15

Figure 12-13 Data map for crossbar implementation of 16-point radix
4FFT.

Step 4: Copy b(D) from Processor 4 into Processor 5 and copy bel) from Processor
6 into Processor 7 simultaneously.
Step 5: Copy b(2) from Processor 5 into Processor 4 and copy b(3) from Processor
7 into Processor 6 simultaneously.
Step 6: Use the equations from the lfi-point, radix-4 example in Section 9.7.5 to
compute

e(O) = b(O) +b(2) in Processor 4
e(l) = bel) - jb(3) in Processor 6
e(2) = b(O) - b(2) in Processor 5
e(3) = bel) + jb(3) in Processor 7 simultaneously.

SEC. 12.5 THREE PARALLEL ARRAYS 291

At the same time these computations and data movements are taking place, perform the
equivalent functions in the other three processor clusters, using the data in their processors
and the equations from Section 9.7.5. The data movements and adds each take a clock
cycle, for a total of 12 clock cycles. Figure 12-13 shows the locations of the results of these
computations as the second entry in each of the 16 processor blocks.

Stage 3: Compute Complex Multiplications

Compute the complex multiplications in Stage 2 of the 16-point radix-4 FFT example
in Section 9.7.5. Since one complex pair, c(k), is in each processor, these can be performed,
in parallel, in each of the 16 processors and will take a maximum of six clock cycles (four
multiplications and two additions). The maximum occurs in Processors 2, 3, 10, and 11.
At this point, c(O), c(l), c(2), and c(3) are in Processors 4, 6, 5, and 7, respectively; c(4),
e(6), e(5), and e(7) are in Processors 12, 13, 14, and 15, respectively; c(8), e(10), e(9), and
e(11) are in Processors 8,9, 10, and 11, respectively; and, c(12), e(14), e(13), and e(15) are
in Processors 0, 1,2, and 3, respectively. Figure 12-13 shows the locations of the results of
these computations as the third entry in each of the 16 processor blocks.

Stage 4: Reorganize Intermediate Results

Use the crossbar switches to move data among processors so that c(O), c(4), c(8),
and e(12) are in Processors 4, 5, 6, and 7, respectively; e(I), e(5), e(9), and e(13) are in
Processors 8,9, 10, and 11, respectively; e(2), e(6), e(lO), and e(14) are in Processors 12,
13, 14, and 15, respectively; and c(3), e(7), e(11), and e(15) are in Processors 0, 1, 2, and
3, respectively. Twelve of the 16 intermediate results must be moved. They can be moved
in pairs by using the following steps.

Step 1: First use crossbar switches 1, 2, and 5 to connect Processor 0 to Processor 7
and crossbar switches 3,4, and 5 to connect Processor 9 to Processor 14. Then move

(a) e(I2) from Processor 0 to Processor 7 and
(b) c(10) from Processor 9 to Processor 14, simultaneously

Step 2: Using the same crossbar interconnections, move
(a) e(3) from Processor 7 to Processor 0 and
(b) e(5) from Processor 14 to Processor 9, simultaneously

Step 3: Use crossbar switches 1, 3, and 5 to connect Processor 2 to Processor 11 and
crossbar switches 2, 4, and 5 to connect Processor 5 to Processor 12. Then move

(a) e(3) from Processor 2 to Processor 11 and
(b) e(2) from Processor 5 to Processor 12, simultaneously

Step 4: Using the same crossbar interconnections, move
(a) e(II) from Processor 11 to Processor 2 and
(b) c(4) from Processor 12 to Processor 5, simultaneously

Step 5: Use crossbar switches 1, 4, and 5 to connect Processor 1 to Processor 15 and
crossbar switches 2,3, and 5 to connect Processor 6 to Processor 8. Then move

(a) e(14) from Processor 1 to Processor 15 and
(b) c(1) from Processor 6 to Processor 8, simultaneously

Step 6: Using the same crossbar interconnections, move
(a) e(7) from Processor 15 to Processor 1 and
(b) c(8) from Processor 8 to Processor 6, simultaneously

292 CHA~ 12 ALGORITHM AND DATA MAPPINGS

Since only the real or imaginary part of one sample can move on a crossbar connection
during any clock cycle, these data moves take 12 clock cycles. Figure 12-13 shows the
locations of the results of this reorganization of intermediate results as the fourth entry in
each of the 16 processor blocks.

Stage 5: Compute the Output 4-Point FFTs

Compute 4-point FFTs in each processor cluster, using Stage 3 of the radix-4 16-point
example as the guideline. This uses each processor cluster's crossbar switch to move data
between processors. Specifically, processor cluster 0-3 is used to compute the fourth of
four output 4-point building blocks in Stage 3 of Section 9.7.5. Similarly, processor cluster
4-7 is used to compute the first of four output 4-point building blocks. Processor cluster
8-11 is used to compute the second of the four output 4-point building blocks. Finally,
processor cluster 12-15 is used to compute the third of the four 4-point output building
blocks in Stage 3 of Section 9.7.5.

To illustrate how a processor cluster can be used to compute these output 4-point
building blocks, consider processor cluster 4-7. One approach for this processor cluster
uses crossbar switch 2 to connect Processor 4 and Processor 5 and to connect Processor 6
to Processor 7. Then:

Step 1: Copy c(O) from Processor 4 into Processor 5 and copy c(8) from Processor
6 into Processor 7 simultaneously.

Step 2: Copy c(4) from Processor 5 into Processor 4 and copy c(12) from Processor
7 into Processor 6 simultaneously.

Step 3: Use the equations from the radix-4 16-point example to compute

/(0) = c(O) + c(4) in Processor 4

/(2) = c(8) + c(12) in Processor 6

/(1) = c(O) - c(4) in Processor 5

/(3) = c(8) - c(12) in Processor 7 simultaneously

Use crossbar switch 2 to connect Processor 4 to Processor 6 and to connect Processor
5 to Processor 7. Then:

Step 4: Copy /(0) from Processor 4 into Processor 6 and copy /(1) from Processor
5 into Processor 7 simultaneously.

Step 5: Copy /(2) from Processor 6 into Processor 4 and copy /(3) from Processor
7 into Processor 5 simultaneously.

Step 6: Use the equations from the radix-4 16-point example to compute

A(O) = /(0) + /(2) in Processor 4

A(4) = f(l) - j/(3) in Processor 5

A(8) = /(0) - /(2) in Processor 6

A(12) = [(I) + j/(3) in Processor 7 simultaneously

At the same time these computations and data movements are taking place, perform the
equivalent functions in the other three-processor clusters, using the data in their processors
and the algorithm steps in Section 9.7.5. This stage also takes 12 clock cycles.

SEC. 12.5 THREE PARALLEL ARRAYS 293

Stage 6: Output the Results Using 32 Clock Cycles

The total is 104 clock cycles for throughput and 104 clock cycles for processing
latency.

Option 2: Each Processor Computes One 16·Point Radix·4 FFT

If computational throughput is the most important criterion, then the 16 processors
should all be used to compute complete algorithms. This provides the best throughput
because no interprocessor communications are used during the algorithm. However, it has
the worst processing latency because 16 sets of complex samples are needed to fill up the
array for processing. The stages are as follows.

Stage 1: Distribute One of the 16 Sets of Complex Samples to Each of the 16
Processors

In this case the crossbar switches are used to distribute sets of complex samples from
the input processor to the other 15 processors. It takes 32 clock cycles for data input (2
clock cycles for each complex data sample) for each of the 16 sets of complex samples, for
a total of 32 * 16 == 512 clock cycles.

Stage 2: Compute the Sixteen 16·Point Radix-4 FFTs

It takes 168 clock cycles to compute the 16-point radix-4 FFf using the Harvard
architecture assumptions from Section 12.3. Since all 16 processors are computing the
algorithm, it takes only 168 clock cycles to compute all sixteen 16-point radix-4 FFfs.
During these computations, the crossbar interconnections are not used. This simplifies the
routing of data but makes poor use of the crossbar interconnection capability.

Stage 3: Collect the Results of the Sixteen 16-Point Radix-4 FFT
Computations

This stage collects the results for output to the next portion of the application via
Processor O. It takes 32 clock cycles for data output (2 clock cycles for each complex data
sample) for each of the 16 sets of complex samples, for a total of 512 clock cycles.

The total number of clock cycles for this approach is the number of clock cycles to
perform the 16-point radix-4 FFT plus the data I/O time for 16 sets of complex samples.
The result is a total of 1192 clock cycles for the 16 FFfs. This is an average of 74.5 clock
cycles per FFT in data throughput load and 1192 latency clock cycles.

12.5.2 Massively Parallel 16-Point Radix-4 FFT Examples

The FFT algorithms from Chapter 9 can be implemented in multiple ways on a
massively parallel [1, 3] architecture. In fact, the two extremes are the same as for the
crossbar architecture. A single set of complex samples can be distributed across all of
the processors (Option 1), or each processor can be provided a full set of data to compute
(Option 2). The stages for each option are presented below.

Because of the restricted interconnection structure in a massively parallel array, FFT
data I/O is generally performed differently than on a crossbar array. Specifically, using one
processor for data input imposes a severe restriction on latency and throughput because of
the long time needed to pass data across the entire array via intermediate processors. As
a result these architectures generally have their own special-purpose I/O subsystem that

294 CHA~ 12 ALGORITHM AND DATA MAPPINGS

converts the input data from a sequential stream into data vectors that can be passed into
the processing array along one of its edges. Additionally, the outputs are passed out of
the array along another, usually opposite, edge and converted back to a sequential set of
passband filter outputs for further processing. Figure 12-14 shows a specific example of this
I/O strategy for the 4 x 4 NEWS connected massively parallel array described in Section
11.3.2 and used later in the implementation example.

Row 1

Row 2

Row 3

Row 4

Input Data Reorganizer

t t t ~
N 0 N 1 N 2 N 3

~ W E W E - W E W E -- ...
S S S s

t t t t
N 4 N 5 N 6 N 7

~ W E W E - W E W E -- ...

S S S s

t t t t
N 8 N 9 N 10 N 11

~ W E W E ... W E W E
S S S s

t t t t
N 12 N 13 N 14 N 15

~ W E W E W E W E -
S S S s

t t t t
Output Data Reorganizer ...

Column 1 Column 2 Column 3 Column 4

Figure 12-14 4 x 4 massively parallel array.

The details of the I/O data reorganizers depend on whether the computational portion
of the FFT algorithm is distributed across all of the processors (minimal latency) or whether
each processor computes an entire FFT (maximum throughput).

Option 1: All Processors Used to Compute One 16-Point Radix-4 FFT

For minimal latency the input data reorganizer is just a shift register, and one set of
complex samples is processed at a time. For the 16-point radix-4 example and the hardware
architecture in Figure 12-14, a data processing sequence has the following stages.

Stage 1: Distribute the Input Data onto the Processors

Load a set of complex input data using the following steps:

SEC. 12.5 THREE PARALLEL ARRAYS 295

Step I: Load complex samples a(O), a(I), a(2), and a(3) into the input shift register
so that sample a (0) is above Processor 3 (8 clock cycles because the samples are
complex). Then shift this set of four complex samples into the top four processors.
This takes 2 clock cycles because the data is complex, for a total of 10 clock cycles.

Step 2: Load complex samples a(4), a(5), a(6), and a(7) into the input shift register
so that sample a (4) is above Processor 3. This takes 8 clock cycles. Then shift this
set of four complex samples into the top four processors. At the same time, shift
the first four complex samples from the top row of processors to the second row of
processors. This takes 2 clock cycles, for a total of 10 clock cycles. Figure 12-15
shows which of the 16 processors has each of the 16 complex samples, intermediate
and output results at the end of each stage of this algorithm by listing them in their
processor on the same line as the label on the left side of the figure that defines the
stage of the algorithm.

Results of Stage 1

Results of Stage 2

Results of Stage 3

ResuIts of Stage 4

Results of Stage 1

Results of Stage 2

Results of Stage 3

Results of Stage 4

Results of Stage 1

Results of Stage 2

Results of Stage 3

Results of Stage 4

Results of Stage 1

Results of Stage 2

ResuIts of Stage 3

Results of Stage 4

a(15)

e(15)
e(l5)
A(t5)

Processor 0

a(ll)

e(13)
e(13)

A(13)

Processor 1

a(7)

c(14)

e(14)

A(14)

Processor 4

a(3)

c(12)

c(12)

A(12)

Processor 5

a(l4)

e(7)
e(7)
A(7)

Processor 2

a(10)

c(5)

e(5)
A(5)

Processor 3

a(6)

e(6)

e(6)

A(6)

Processor 6

a(2)

e(4)

c(4)

A(4)

Processor 7

a(13)

c(ll)

e(ll)
A(2)

Processor 8

a(9)
e(9)

e(9)
A(9)

Processor 9

a(5)

c(lO)

e(lO)

A(IO)

Processor 12

a(l)

e(8)

e(8)

A(8)

Processor 13

a(12)
c(3)

e(3)

A(3)

Processor 10

a(8)
e(l)

e(l)

A(l)

Processor 11

a(4)

c(2)

e(2)

A(2)

Processor 14

a(O)

e(O)

e(O)

A(O)

Processor 15

Figure 12-15 Data map for massively parallel implementation of 16
point radix-4 FFf.

296 CHA~ 12 ALGORITHM AND DATAMAPPINGS

Step 3: Load complex samples a(8), a(9), a(10), and a(ll) into the input shift
register so that sample a(8) is above Processor 3. This takes 8 clock cycles. Then
shift this set of four complex samples into the top four processors. At the same time,
shift the second four complex samples from the top row of processors to the second
row and the first set of complex samples from the second row to the third. This takes
2 clock cycles, for a total of 10 clock cycles.

Step 4: Load complex samples a(12), a(13), a(14), and a(I5) into the input shift
register so that sample a(12) is above Processor 3. This takes 8 clock cycles. Then
shift this set of four complex samples into the top four processors. At the same time,
shift the first four complex samples from the third to fourth rows, the second set from
the second row to the third, and the third set from the first row to the second. This
takes 2 clock cycles, for a total of 10 clock cycles.

Stage 1 takes a total of 40 clock cycles. The results are:

(i) Complex samples a(O), a(l), a(2), and a(3) in Processors 15, 14, 13, and 12
(row 4)

(ii) Complex samples a(4), a(5), a(6), and a(7) in Processors 11, 10, 9, and 8
(row 3)

(iii) Complex samples a(8), a(9), a(IO), and a(Il) in Processors 7, 6, 5, and 4
(row 2)

(iv) Complex samples a(12), a(13), a(I4), and a(I5) in Processors 3, 2, 1, and 0
(row 1)

Figure 12-15 shows the locations of the input data samples in the first row of each
processor block.

Stage 2: Compute the Input4-Point FFTs

To do this, notice that the complex samples in the columns are the ones that must be
combined. Therefore, whatever processing steps are used for one column can be performed
on all four columns at once to compute the four 4-point input FFfs. The steps are as follows:

Step 1: Move the complex samples a(4), a(5), a(6), and a(7) in row 3 to row 2 and
the complex samples a(8), a(9), a(10), and a(11) in row 2 to row 3. This step takes
4 clock cycles because each data point is complex.

Step 2: Copy the complex samples a(4), a(5), a(6), and a(7) in row 2 into row 1
and copy the complex samples a(12), a(13), a(14), and a(I5) from row 1 into row 2
so that rows 1 and 2 both have the same complex samples. At the same time do the
same copy function in rows 3 and 4. This step takes 4 clock cycles.

Step 3: In rows 2 and 4 add the two sets of complex samples. At the same time
subtract the complex samples in rows 1 and 3, following the equations in Section
9.7.5. This step takes 2 clock cycles. At the end of this step:

(i) Intermediate results b(O), b(8), b(4), and b(12) are in Processors 15, 14,
13, and 12 (row 4).

(ii) Intermediate results b(I), b(9), b(5), and b(13) are in Processors 11, 10,
9, and 8 (row 3).

SEC. 12.5 THREE PARALLEL ARRAYS 297

(iii) Intermediate results b(2), b(lO), b(6), and b(14) are in Processors 7,6,5,
and 4 (row 2).

(iv) Intermediate results b(3), bell), b(7), and b(15) are in Processors 3, 2,1,
and 0 (row 1).

Step 4: Move the intermediate results b(2), b(IO), b(6), and b(14) in row 2 to row 3
and the intermediate results bel), b(9), b(5), and b(13) in row 3 to row 2. This step
takes 4 clock cycles.

Step 5: Copy the intermediate results bel), b(9), b(5), and b(13), in row 2 into row
1 and copy the intermediate results b(3), bell), b(7), and b(lS) from row 1 into row
2 so that rows 1 and 2 both have the same intermediate results. At the same time do
the same copy function in rows 3 and 4. This step takes 4 clock cycles.

Step 6: In rows 2 and 4 add the two sets of intermediate results. In rows 1 and 3
subtract the intermediate results, using the equations in Section 9.7.5. This step takes
2 clock cycles.

This stage takes a total of 20 clock cycles and:

(i) Intermediate results e(O), e(8), c(4), and e(12) are in Processors 15, 14, 13, and
12 (row 4).

(ii) Intermediate results eel), e(9), e(5), and e(13) are in Processors 7, 6, 5, and 4
(row 3).

(iii) Intermediate results e(2), e(IO), e(6), and e(14) are in Processors 11, 10,9, and
8 (row 2).

(iv) Intermediate results c(3), e(ll), e(7), and e(l5) are in Processors 3, 2, 1, and 0
(row I).

Figure 12-15 shows the locations of these intermediate results in the second row of
each processor block.

Stage 3: Compute Complex Multiplications

Perform the complex multiplications in each individual processor. Since a complex
multiply uses four real multiplies and two real adds, the Harvard architecture defined in
Section 12.3.5 takes 6 clock cycles for this computation. At the end of this stage:

(i) Intermediate results c(O), c(8), e(4), and c(12) are in Processors 15, 14, 13, and
12 (row 4).

(ii) Intermediate results e(l), e(9), e(5), and e(13) are in Processors 7,6,5, and 4
(row 3).

(iii) Intermediate results e(2), e(IO), e(6), and e(l4) are in Processors 11, 10,9, and
R (row 2).

(iv) Intermediate results e(3), e(ll), e(7), and e(15) are in Processors 3,2, 1, and 0
(row 1).

Figure 12-15shows the locations of these intermediate results in the third row of each
processor block.

298 CHAP. 12 ALGORITHM AND DATA MAPPINGS

Stage 4: Compute the Output 4-Point FFTs

Compute the four 4-point output FFTs by using the intermediate results that are now
located in the rows of the array. The steps are similar to those used in the columns to
compute the 4-point input FFfs. The columns are defined as numbered from left to right.
The steps are:

Step 1: Move the intermediate results in column 2 to column 3 and the intermediate
results in column 3 to column 2. This step takes 4 clock cycles.

Step 2: Copy the intermediate results in column 2 into column 1 and the intermediate
results from column 1 into column 2 so that columns 1 and 2 both have the same
intermediate results. At the same time do the same function in columns 3 and 4. This
step takes 4 clock cycles.

Step 3: In columns 2 and 4 add the two sets of intermediate results. At the same time
subtract the intermediate results in columns 1 and 3, following the Algorithm Steps
in Section 9.7.5. This step takes 2 clock cycles. At the end of this step

(i) Intermediate results 1(0), 1(8), 1(4), and 1(12) are in Processors 15, 11,
7, and 3 (column 4).

(ii) Intermediate results 1(1), 1(9), 1(5), and 1(13) are in Processors 14, 10,
6, and 2 (column 3).

(iii) Intermediate results 1(2), 1(10), 1(6), and 1(14) are in Processors 13, 9,
5, and 1 (column 2).

(iv) Intermediate results 1(3), 1(11), 1(7), and 1(15) are in Processors 12, 8,
4, and 0 (column 1).

Step 4: Move the intermediate results in column 2 to column 3 and the intermediate
results in column 3 to column 2. This step takes 4 clock cycles.

Step 5: Copy the intermediate results in column 2 into column 1 and the intermediate
results from column 1 into column 2 so that columns 1 and 2 both have the same
intermediate results. At the same time do the same function in columns 3 and 4. This
step takes 4 clock cycles.

Step 6: Follow the 16-point radix-4 equations to add orsubtract the pairs of inter
mediate results in columns 2 and 4 and in columns 1 and 3. This step takes 2 clock
cycles and the output frequency components:

(i) A(O), A(2), A(I), and A(3) are in Processors 15, 11,7, and 3 (column 4).

(ii) A(8), A(IO), A(9), and A(II) are in Processors 14, 10, 6, and 2 (col
umn 3).

(iii) A(4), A(6), A(5), and A(7) are in Processors 13,9,5, and 1 (column 2).

(iv) A(12), A(14), A(13), and A(15) are in Processors 12, 8, 4, and 0 (col
umn 1).

SEC. 12.5 THREE PARALLEL ARRAYS 299

This stage takes 20 clock cycles, and Figure 12-15 shows the locations of these output
frequency components in the fourth row of each processor block.

Stage 5: Output the Results

When the computations are complete, the results can be shifted down to the output
data reorganizer and converted back to a sequential stream of data. Again, this can be
accomplished by using the shift register I/O concept for converting the input data, and it
also takes 40 clock cycles to move the data to the output data reorganizer.

The total number ofclock cycles for this algorithm mapping is 122, and the processing
latency is 122 clock cycles.

Option 2: Each Processor Computes One 16-Point Radix-4 FFT

At the other extreme, 16 sets of complex samples can be loaded into the processor
array and then each processor can compute a 16-point radix-4 FFf and output the results.

Stage 1: Distribute One of the 16 Sets of Complex Samples to Each of the 16
Processors

Option 1 showed that it takes 40 clock cycles for the data input for one set of complex
samples, so it takes 16 *40 = 640 clock cycles for 16 sets of complex samples. However,
the input data reorganizer must be configured differently because the goal is to have all of
the data from one set of complex samples in one processor. The simplest way to implement
the input data reorganizer for this option is to have memory for four sets of 16 complex
words at the top of each column, rather than the single pair of memory locations needed in
this architecture's Option 1.

If all 16 sets of complex samples are lined up in sequence to input to the input data
reorganizer, it will take 16 * 32 = 512 clock cycles to move it all in as described. Now,
the shifting process into the array takes one-fourth as long (128 clock cycles) because four
words move into the array at once, one into each column of processors. Therefore, moving
16 sets of 16 complex samples into the array takes 640 clock cycles. When the input process
is complete, all of the data is in the proper processor for performing the 16 FFfs.

Stage 2: Compute the Sixteen 16-Point Radix-4 FFTs

It takes 168 clock cycles to compute the 16-point radix-4 FFf using the Harvard
architecture assumptions from Section 12.3. Since all 16 processors are computing the
algorithm, it takes only 168 clock cycles to compute all sixteen 16-point radix-4 FFTs.

Stage 3: Collect the Results of the Sixteen 16-Point Radix-4 FFT
Computations

Option 1 showed that it takes 40 clock cycles for the data input for one set of complex
samples. Therefore, it takes 16 *40 = 640 clock cycles for 16 sets of complex samples.

The total number of clock cycles for this approach is the number of clock cycles to
perform the 16-point radix-4 FFT plus the data I/O time for 16 sets of complex samples.

300 CHA~ 12 ALGORITHM AND DATA MAPPINGS

The result is a total of 1448 clock cycles, which is the processing latency. The processing
throughput is an average of 1448/16 = 90.5 clock cycles per FFf. Notice that the data I/O
clock cycle total is much larger (1280) than the computational clock cycles (168). This
time can be improved to 1280 clock cycles by requiring each processor to perform data I/O
and computations simultaneously.

12.5.3 Star 16-Point Radix-4 FFT Examples

The star [1] architecture is most often used when one function or process dominates
the application. It consists of one central processor with interconnections to numerous
others as shown in Figure 12-16. The number of processing elements depends on the FFf
algorithm to be computed. Figure 12-16 is a natural configuration for the 16-point radix-4
FFf because of the four 4-point FFTs computed on the input and output. For this example,
Processor 0 is the data I/O processor and global memory. The other four processors have
the Harvard architecture from Section 12.3.5.

Data
I/O

Processor 0

Figure 12-16 Star architecture for 16-point radix-4 FFf example.

This architecture can also be used in the two extremes of minimum processing latency
(Option 1) and maximum processing throughput (Option 2) described for the crossbar and
massively parallel architectures. Both are described.

Option 1: All Processors Used to Compute One 16-Point Radix-4 FFT

The strategy for this option is to use Processor 0 as the data I/O processor and to
use Processors 1-4 to perform all the computations. Between the input and output 4
point building blocks, the data must be reorganized. In this example this is accomplished
by moving all the intermediate results from Processors 1-4 back to Processor 0 and then
redistributing the intermediate results to Processors 1-4 based on which ones are grouped
for an output 4-point building-block computation in the algorithm steps in Section 9.7.5.

Since Processors 1-4 only perform 4-point building-block computations, the memory
mapping in Chapter 8 for the 4-point building block can be used for all four processors.
Figure 12-17 shows which of the four processors has each of the 16 complex samples,
intermediate results, and output frequency components at the end of each stage by listing
them in their processor on the same line as the label to the left of the figure that defines the
stage of the algorithm.

R
es

u
Its

of
S

ta
ge

1
R

es
ul

ts
of

S
ta

ge
2

R
es

ul
ts

of
S

ta
ge

3

R
es

ul
ts

of
S

ta
ge

4

R
es

ul
ts

of
S

ta
ge

5
R

es
ul

ts
of

S
ta

ge
6

R
es

ul
ts

of
S

ta
ge

7

a(
O

),
a

(4
),

a
(8

),
a

(1
2

)

c(
O

),
c
(l

),
e

(2
),

c(
3

)

c(
O

),
c(

1)
,

e
(2

),
c(

3
)

N
o

D
at

a

c(
O

),
c(

4
),

c(
8

),
e(

12
)

A
(O

),
A

(4
),

A
(8

),
A

(I
2

)

N
o

D
at

a

P
ro

ce
ss

or
1

R
es

ul
ts

of
S

ta
ge

1
R

es
ul

ts
of

S
ta

ge
2

R
es

ul
ts

of
S

ta
ge

3

R
es

ul
ts

of
S

ta
ge

4

R
es

u
Its

of
S

ta
ge

5
R

es
ul

ts
of

S
ta

ge
6

R
es

ul
ts

of
S

ta
ge

7

a
(I

),
a

(5
),

a
(9

),
a

(1
3

)

e
(8

),
c(

9
),

c(
1

0
),

e
(I

l)
e

(8
),

e
(9

),
e

(I
O

),
e

(I
I)

N
o

D
at

a
e(

I)
,

e
(5

),
e

(9
),

e(
13

)

A
(I

),
A

(9
),

A
(9

),
A

(1
3)

N
o

D
at

a

P
ro

ce
ss

or
2

R
es

ul
ts

of
S

ta
ge

1
R

es
ul

ts
of

S
ta

ge
2

R
es

ul
ts

of
S

ta
ge

3

R
es

ul
ts

of
S

ta
ge

4

R
es

ul
ts

of
S

ta
ge

5
R

es
ul

ts
of

S
ta

ge
6

R
es

ul
ts

of
S

ta
ge

7

N
o

D
at

a
N

o
D

at
a

N
o

D
at

a

A
ll

In
te

rm
ed

ia
te

R
es

ul
ts

N
o

D
at

a

N
o

D
at

a
A

ll
O

u
tp

u
t

R
es

ul
ts

P
ro

ce
ss

o
r

0

a
(2

),
a

(6
),

a(
IO

),
a

(I
4

)

c(
4

),
c(

5
),

c(
6

),
c(

7
)

c(
4

),
e

(5
),

e
(6

),
e

(7
)

N
o

D
at

a

c(
2

),
e

(6
),

e
(I

O
),

e
(1

4
)

A
(2

),
A

(6
),

A
(I

O
),

A
(1

4
)

N
o

D
at

a

a
(3

),
a

(7
),

a
(l

I)
,

a
(I

5
)

e(
12

),
c(

13
),

c(
14

),
c(

15
)

c(
1

2
),

e
(I

3
),

e
(1

4
),

e(
15

)
N

o
D

at
a

c
(3

),
e

(7
),

e
(l

l)
,

e
(1

5
)

A
(3

),
A

(7
),

A
(1

1)
,

A
(1

5)

N
o

D
at

a

P
ro

ce
ss

o
r

4

w o

P
ro

ce
ss

or
3

F
ig

ur
e

12
-1

7
D

at
a

m
ap

fo
r

st
ar

im
pl

em
en

ta
ti

on
o

f1
6-

po
in

tr
ad

ix
-4

FF
T

.

302 CHA~ 12 ALGORITHM AND DATA MAPPINGS

The stages are as follows:

Stage 1: Distribute the Input Data onto the Processors

Step 1: Load the input data into Processor O. This step takes 32 clock cycles.

Step 2: Move complex samples a(O), a(4), a(8), and a(12) to Processor 1 using 8
clock cycles.

Step 3: Move complex samples a(I), a(5), a(9), and a(13) to Processor 2 using 8
clock cycles.

Step 4: Move complex samples a(2), a(6), a(10), and a(14) to Processor 3 using 8
clock cycles.

Step 5: Move complex samples a(3), a(7), a(II), and a(15) to Processor 4 using 8
clock cycles.

If Processor 0 were a memory that could move data from all four processors at once
(four-port memory), the data transfers in Steps 2-5 could occur simultaneously. The total
is 64 clock cycles to load data into Processor 0 and then distribute it among Processors
1-4. Figure 12-17 shows the locations of these input data samples in the first row of each
processor block.

Stage 2: Compute the Input 4-Point FFTs

This requires eight complex adds for a total of 16 clock cycles in each of the four
processors. However, they are all computed in parallel for a total of 16 clock cycles of
latency. Specifically, Processor 1 computes the first of four input 4-point building blocks
from Stage 1 in Section 9.7.5. Processor 2 computes the third of four input 4-point building
blocks from Stage 1 in Section 9.7.5. Processor 3 computes the second of four input 4-point
building blocks from Stage 1 in Section 9.7.5. Finally, Processor 4 computes the fourth
of four input 4-point building blocks from Stage 1 in Section 9.7.5. At the end of this
stage:

(i) Intermediate results c(O), c(I), c(2), and c(3) are in Processor 1.

(ii) Intermediate results c(8), c(9), c(10), and c(ll) are in Processor 2.

(iii) Intermediate results c(4), c(5), c(6), and c(7) are in Processor 3.

(iv) Intermediate results c(12), c(13), c(14), and c(15) are in Processor 4.

Figure 12-17 shows the locations of these intermediate results in the second row of
each processor block.

Stage 3: Compute Complex Multiplications

Since Processors 2 and 4 contain three intermediate results that must be multiplied by
a complex constant, and each complex multiply takes 6 clock cycles, this stage takes a total
of 18 clock cycles and is performed in the processors prior to reorganizing the intermediate
results, using equations in Section 9.7.5. At the end of this stage:

(i) Intermediate results c(O), c(I), c(2), and c(3) are in Processor 1.

(ii) Intermediate results c(8), e(9), e(10), and e(11) are in Processor 2.

SEC. 12.5 THREE PARALLEL ARRAYS 303

(iii) Intermediate results c(4), e(5), e(6), and e(7) are in Processor 3.

(iv) Intermediate results e(12), e(13), e(14), and e(15) are in Processor 4.

Figure 12-17 shows the locations of these intermediate results in the third row of each
processor block.

Stage 4: Move Intermediate Results Back to Processor 0

Move the results of these calculations from Processors 1 and 4 back to Processor O.
This step takes 32 clock cycles (2 clock cycles for each of the 16 complex results) unless
Processor 0 is a four-port memory. If Processor 0 can send and receive data from all four
processors at once (work as a four-port memory), this stage only requires 8 clock cycles.
Figure 12-17 shows the locations of all the data to be in Processor 0 in the fourth row of
each processor block.

Stage 5: Redistribute Intermediate Results for Output 4-Point FFT
Computations

This process takes 32 clock cycles using the following steps to move intermediate
results from Processor 0 to the appropriate processor for computing the output 4-point FFfs.

Step 1: Move intermediate results e(O), e(4), e(8), and e(12) to Processor 1, using 8
clock cycles.

Step 2: Move intermediate results e(l), e(5), e(9), and e(13) to Processor 2, using 8
clock cycles.

Step 3: Move intermediate results e(2), e(6), e(10), and e(14) to Processor 3, using
8 clock cycles.

Step 4: Move intermediate results c(3), e(7), e(11), and e(15) to Processor 4, using
8 clock cycles.

Stages 4 and 5 can be done with 16 fewer clock cycles because one of the four results
from each processor output of Stage 3 ends up back in the same processor for the output
4-point FFr computations. This means it does not have to be moved from its location at the
end of Stage 3 into Processor 0 and then back out to the same location in the same processor.
Moving these four complex intermediate results twice takes 16 clock cycles. Therefore,
Stages 4 and 5 can be performed with 48, not 64, clock cycles. Figure 12-17 shows the
locations of the intermediate results in the fifth row of each processor block.

Stage 6: Compute the Output 4-Point FFTs

This requires eight complex adds for a total of 16 clock cycles in each of the four
processors. Each processor computes one set of the output 4-point building-block algorithm
steps from Section 9.7.5. However, they are all computed in parallel, for a total of 16 clock
cycles of latency. Specifically, Processor 1computes the first of four output 4-point building
blocks from Stage 3 in Section 9.7.5. Processor 2 computes the second of four output 4
point building blocks from Stage 3 in Section 9.7.5. Processor 3 computes the third of four
output 4-point building blocks from Stage 3 in Section 9.7.5. Finally, Processor 4 computes
the fourth of four output 4-point building blocks from Stage 3 in Section 9.7.5. At the end
of this stage the output frequency components:

304 CHAR 12 ALGORITHM AND DATA MAPPINGS

(i) A(O), A(4), A(8), and A(I2) are in Processor 1.

(ii) A(I), A(5), A(9), and A(13) are in Processor 2.

(iii) A(2), A(6), A(IO), and A(I4) are in Processor 3.

(iv) A(3), A (7), A(11), and A (15) are in Processor 4.

Figure 12-17 shows the locations of these output frequency components in the sixth
row of each processor block.

Stage 7: Move the Output Results Back to Processor 0

Move the results of these calculations from the processors back to Processor O. This
step takes 32 clock cycles unless Processor 0 is a four-port memory. In that case it would
only take 8 clock cycles. Figure 12-17 shows in row 7 of each processor that all of the
output frequency components are in Processor 0 awaiting output through the data I/O path.

Stage 8: Output the Results from Processor 0

This step takes 32 clock cycles. The total for this algorithm mapping is 226 clock
cycles, and the processing latency is also 226 clock cycles. The largest contributor to these
clock cycles is the data I/O and movement to the computational processors.

Option 2: Each Processor Computes One 16-Point Radix-4 FFT

Stage 1: Distribute One of the 16 Sets of Complex Samples to Each of the 16
Processors

The data input is for four sets of 16 complex samples, which takes 128 clock cycles
to move to Processor 0 and another 128 clock cycles to move out to the four processors.

Stage 2: Compute the Four 16-Point Radix-4 FFTs

It takes 168 clock cycles to compute the 16-point radix-4 FFf using the Harvard
architecture from Section 12.3.5. Since all four processors are computing the algorithm at
the same time, it takes only 168 clock cycles to compute all four 16-point radix-4 FFfs.

Stage 3: Collect the Results of the Four 16-Point Radix-4 FFT Computations

It takes 128 clock cycles to move the four sets of 16-point complex results from the
four processors to Processor 0 and another 128 clock cycles to move it out of the processor
array.

The total number of clock cycles for this option is the number of clock cycles to per
form the 16-point radix-4 FFT plus the data I/O time for four sets of complex samples. This
is a total of 680 clock cycles, which is the processing latency. The processing throughput
is an average of 680/4 = 170 clock cycles per FFT.

12.6 THREE MULTIDIMENSIONAL ARRAYS

Processors can be combined into multidimensional arrays in numerous ways, and there are
many ways to use the array to compute each of the algorithms in Chapter 9. At the two data
mapping extremes are:

SEC. 12.6 THREE MULTIDIMENSIONALARRAYS 305

1. One set of complex samples is mapped onto all of the processors in the array
and then one FFT is computed. This option usually results in minimum latency
processing.

2. A set of complex samples is mapped onto each of the processors and then a number
of FFfs are performed in parallel. This usually results in the maximum throughput
but has more latency than the first option.

Each extreme is described for mapping the 16-point radix-4 FFf onto the four
dimensional hypercube architecture from Section 11.4.1. Mapping onto the massively
parallel and hybrid arrays from Chapter 11 is described in general terms, but a detailed
example is not presented because these complex architectures are not suited to implement
ing the 16-point radix-4 FFf efficiently. Throughout this section, when the k-th input data
sample is written as a(k), it means both the real and imaginary parts of the sample. Specifi
cally, a (k) == aR (k) + j *aI (k). This same shorthand notation is also used for intermediate
results and output frequency components.

12.6.1 Hypercube 16-Point Radix-4 FFT Examples

The four-dimensional hypercube [1, 3] in Figure 12-18 has 16 processing nodes. For
the 16-point radix -4 FFT, the two extremes for algorithm mapping are to distribute one set
of complex samples among all the processors (Option 1) or to load a set of complex samples
into each processor (Option 2). Option 1 requires more computational power than Option
2 to meet a fixed throughput requirement, but has the lowest processing latency. Option
2 reduces the computational costs because no data interchanges are required to perform
the FFT algorithm. However, the processing latency is large because 16 sets of complex
samples are loaded before any computations are performed.

__------.15

Figure 12-18 Four-dimensional hypercube.

Option 1: All Processors Usedto Compute One 16-Point Radix-4 FFT

One logical data distribution for this option is based on noting that there are four
square arrays of four processors in this four-dimensional hypercube. The processors in
each of these squares are 0-3, 4-7, 8-11, and 12-15. Each square array of processors can
be used to compute one of the input 4-point FFTs, followed by complex multiplications

306 CHA~ 12 ALGORITHM AND DATA MAPPINGS

within the processors and a reordering of the data so that the same squares or another set of
squares can be used to compute the output 4-point FFTs. Figure 12-19 shows which of the
16 processors has each of the 16 complex samples, intermediate results, and output results
at the end of each stage by listing them in their processor on the same line as the label to
the left of the figure that defines the stage of the algorithm.

Results of Stage 1

Results of Stage 2

Results of Stage 3

Results of Stage 4

Results of Stage 1

Results of Stage 2

Resultsof Stage 3

Resultsof Stage 4

Results of Stage 1

Results of Stage 2

Resultsof Stage 3

Results of Stage 4

Results of Stage 1

Results of Stage 2

Results of Stage 3

Results of Stage 4

a(O)

c(O)

c(O)

A(O)

Processor 0

a(l)

c(8)

c(8)

A(9)

Processor 4

a(2)

e(4)

e(4)

A(12)

Processor 8

a(3)

c(12)

e(12)

A(4)

Processor 12

a(8)

e(l)

e(l)

A(l)

Processor 1

a(9)

e(9)

e(9)

A(9)

Processor 5

a(lO)

e(5)

e(5)

A(13)

Processor 9

a(ll)

e(13)

e(13)

A(5)

Processor 13

a(4)

e(3)

e(3)

A(3)

Processor 2

a(5)

e(ll)

e(ll)

A(11)

Processor 6

a(6)

e(7)

e(7)

A(15)

Processor 10

a(7)

e(15)

e(15)

A(7)

Processor 14

a(12)

e(2)

e(2)

A(2)

Processor3

a(13)

e(lO)

e(lO)

A(lO)

Processor7

a(14)

e(6)

e(6)

A(14)

Processor 11

a(15)

e(14)

e(14)

A(6)

Processor 15

Figure 12-19 Data map for four-dimensional hypercube implementa
tion of 16-point radix-4 FFT.

The stages for implementing this option are as follows.

Stage 1: Distribute the Input Data onto the Processors

Any of the processors can be used as the data I/O path. For this example, Processor
ois used. Data is moved from Processor 0 to another processor by stepping it through the

SEC. 12.6 THREE MULTIDIMENSIONAL ARRAYS 307

hypercube architecture. Table 12-5 shows the number of clock cycles required to move a
data word from Processor 0 to one of the other processors in the architecture, assuming one
clock cycle to move a data word between any two processors. Notice that, as mentioned in
Chapter 11, the longest path length for a four-dimensional hypercube is 4. In this example
the path from Processor 0 to Processor lOis longest. Since each of the input samples is
complex, the numbers in Table 12-5 must be doubled to determine the actual number of
clock cycles used for each complex data input. This stage takes 42 clock cycles.

Table 12-5 Data I/O Transfer Clock Costs

Processor #

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

The specific steps for this stage are:

Clock cycles

o
1
2
1
1
2
3
2
2
3
4
3
1
2
3
2

Step 1: Load complex samples a(O), a(4), a(8), and a(12) into Processors 0,2, 1,
and 3, using 8 clock cycles.

Step 2: Load complex samples a(I), a(5), a(9), and a(13) into Processors 4,6, 5,
and 7 by first loading them into Processors 0, 2, 1, and 3 and then moving them to
Processors 4, 6, 5, and 7 in parallel in 2 additional clock cycles. This step takes 10
clock cycles.

Step 3: Load complex samples a(2), a(6), a(10), and a(14) into Processors 8, 10,
9, and 11 by first loading them into Processors 0, 2, 1, and 3 and then moving them
through Processors 4, 6, 5, and 7 in parallel to Processors 8, 10, 9, and 11 in 4
additional clock cycles. This step takes 14 clock cycles.

Step 4: Load complex samples a(3), a(7), a(11), and a(15) into Processors 12, 14,
13, and 15 by first loading them into Processors 0,2, 1, and 3 and then moving them
to Processors 12, 14, 13, and 15 in parallel in 2 additional clock cycles. This step
takes 10 clock cycles.

Figure 12-19 shows the locations of the complex input samples in the first row of
each processor block.

308 CHA~ 12 ALGORITHM AND DATA MAPPINGS

Stage 2: Compute the Input 4-Point FFTs

The steps are:

Step 1: Copy the complexsamplea (0) fromProcessor0 into Processor 1andcopy the
complex sample a (8) from Processor 1 into Processor O. At the same time, perform
this same copy of complex samples operation between Processors 2 and 3, 4 and 5, 6
and 7, 8 and 9, 10 and 11, 12 and 13, and 14 and 15. This step takes 4 clock cycles
because all of the pairs of complex sample moves can be done in parallel.

Step 2: In Processors0,3,4,7,8,11,12, and 15add the two complex samples, using
two clock cycles. For example, Processor 0 computes b(O) = a(O) + a(8), which is
part of the first of four input 4-point building blocks in Stage 1 of the algorithm in
Section 9.7.5.

Step 3: In Processors 1,2,5,6,9, 10, 13, and 14 subtract the two complex samples
at the same time as Step 2. For example, Processor 1 computes b(l) = a(O) - a(8),
whichispartof the firstof four input4-pointbuildingblocksin Stage 1of thealgorithm
in Section 9.7.5. At the end of these computations:

(i) intermediate results b(O), b(l), b(2), and b(3) are in Processors 0, 1, 3,
and 2.

(ii) intermediate results b(8), b(9), b(10), and b(ll) are in Processors 4, 5, 7,
and 6.

(iii) intermediate results b(4), b(5), b(6), and b(7) are in Processors 8, 9, 11,
and 10.

(iv) intermediate results b(12), b(13), b(14), and b(15) are in Processors 12,
13, 15, and 14.

Step 4: Copy the intermediate results from Processor 0, b(O), into Processor 3 and
copy the intermediate results from Processor 3, b(2), into Processor O. At the same
time, perform this same copying of the intermediate results between Processors 1 and
2,4 and 7,5 and 6,8 and 11,9 and 10,12 and 15, and 13 and 14. This step takes 4
clock cycles because all of the pairs of complex sample movescan be done in parallel.

Step 5: In Processors 0, 1, 4, 5, 8, 9, 12, and 13, add the two complex intermediate
results. This step takes two clock cycles. For example, Processor 0 computes c(O) =
b(O)+ b(2), which is part of the first of four input 4-point building blocks in Stage 1
of the algorithm in Section 9.7.5.

Step6: InProcessors3, 2, 7, 6, 11, 10, 15,and 14,subtractthe twocomplexnumbersat
the same time as Step 5 because these processors are not performing other functions
during the time Step 5 is being performed. For example, Processor 3 computes
c(2) = b(O) - b(2), which is part of the first of four input 4-point building blocks in
Stage 1 of the algorithm in Section 9.7.5. At the end of these computations:

(i) intermediate results c(O), c(3), c(I), and c(2) are in Processors 0, 2, 1,
and 3.

(ii) intermediate results c(8), c(11), c(9), and c(10) are in Processors 4, 6, 5,
and 7.

(iii) intermediate results c(4), c(7), c(5), and c(6) are in Processors 8, 10, 9,
and 11.

SEC. 12.6 THREE MULTIDIMENSIONAL ARRAYS 309

(iv) intermediate results e(12), e(lS), e(13), and c(14) are in Processors 12,
14, 13, and 15.

Figure 12-19 shows the locations of these intermediate results in the second row of
each processor block.

Stage 3: Compute Complex Multiplications

These can be computed within the individual processors. Since each takes four
multiplies and two adds, the complex multiplies use 6 clock cycles. At this point:

(i) Intermediate results c(O), c(3), c(l), and e(2) are in Processors 0, 2,1, and 3.

(ii) Intermediate results c(8), e(ll), e(9), and e(10) are in Processors 4,6,5, and 7.

(iii) Intermediate results c(4), e(7), e(5), and e(6) are in Processors 8,10,9, and 11,

(iv) Intermediate results c(12), e(lS), e(13), and e(14) are in Processors 12,14,13,
and 15.

Figure 12-19 shows the locations of these intermediate results in the third row of each
processor block.

Stage 4: Compute the Output 4-Point FFTs

Following the algorithm steps in Section 9.7.5, the steps are:

Step 1: Reorganize the intermediate results in Processors 8 through 15 of the hyper
cube in preparation for computing the output 4-point FFTs. To do this:

(i) Move intermediate result c(4) from Processor 8 to Processor 12, using 2
clock cycles.

(ii) Move intermediate result c(I2) from Processor 12 to Processor 8, using 2
clock cycles.

(iii) Move intermediate result e(5) from Processor 9 to Processor 13, using 2
clock cycles.

(iv) Move intermediate result e(13) from Processor 13 to Processor 9, using 2
clock cycles.

(v) Move intermediate result e(6) from Processor 11 to Processor 15, using 2
clock cycles.

(vi) Move intermediate result e(14) from Processor 15 to Processor 11, using
2 clock cycles.

(vii) Move intermediate result e(7) from Processor 10 to Processor 14, using 2
clock cycles.

(viii) Move intermediate result e(15) from Processor 14 to Processor 10, using
2 clock cycles.

Step 2: Copy the intermediate results, c(O), from Processor 0 into Processor 12 and
copy the intermediate results, c(4), from Processor 12 into Processor O. At the same
time, perform this operation between Processors 4 and 8,5 and 9, 1 and 13,7 and 11,
6 and 10, 3 and 15, and 2 and 14. This step takes 4 clock cycles because all of the
pairs of complex sample moves can be done in parallel.

310 CHA~ 12 ALGORITHM AND DATA MAPPINGS

Step 3: In Processors 0, 1, 2, 3,4, 5, 6, and 7, add the two complex intermediate
results. This step takes two clock cycles. For example, Processor 0 computes 1(0) =
c(O) + c(4), which is part of the first of four output 4-point building blocks in Stage
3 of the algorithm in Section 9.7.5.

Step 4: In Processors 8, 9,10,11,12,13,14, and 15, subtract the two intermediate
results, following the algorithm steps in Section 9.7.5 and using 2 clock cycles. For
example, Processor 8 computes 1(2) = c(8) +c(12), which is part of the first of four
output 4-point building blocks in Stage 3 of the algorithm in Section 9.7.5. At the
end of these computations:

(i) Intermediate results 1(0), 1(1), 1(2), and 1(3) are in Processors 0, 12,4,
and 8.

(ii) Intermediate results 1(8), f(9), 1(10), and 1(11) are in Processors 3, 15,
7, and 11.

(iii) Intermediate results 1(4), 1(5), 1(6), and 1(7) are in Processors 1, 13, 5,
and 9.

(iv) Intermediate results 1(12), 1(13), 1(14), and 1(15) are in Processors 2,
14, 6, and 10.

Step 5: Load the intermediate results, 1(0), from Processor 0 into Processor 4 and
load the intermediate results, 1(2), from Processor 4 into Processor O. At the same
time, perform this operation between Processors 3 and 7,1 and 5, 2 and 6,8 and 12,
9 and 13, 10 and 14, and 11 and 15. This only takes 4 clock cycles because all of
these operations can be done in parallel.

Step 6: In Processors 0, 1, 2, 3, 12, 13, 14, and 15, add the two intermediate results,
using two clock cycles. For example, Processor 0 computes A(O) = 1(0) + f(2),
which is part of the first of four output 4-point building blocks in Stage 3 of the
algorithm in Section 9.7.5.

Step 7: In Processors 4, 5, 6, 7, 8, 9, 10, and 11, subtract the two intermediate
results, using two clock cycles, using the equations in Section 9.7.5. For example,
Processor 4 computes A (8) = 1(0) - 1(2), which is part of the first of four output
4-point building blocks in Stage 3 of the algorithm in Section 9.7.5. Then the output
frequency components:

(i) A(O), A(I), A(2), and A(3) are in Processors 0, 1,3, and 2,

(ii) A(8), A(9), A(10), and A(II) are in Processors 4, 5, 7, and 6.

(iii) A(4), A(5), A(6), and A(7) are in Processors 12, 13, 15, and 14.

(iv) A(12), A(13), A(14), and A(15) are in Processors 8, 9, 11, and 10.

Figure 12-19 shows the locations of the output frequency components in the fourth
row of each processor block.

Stage5: Output the Results Using Processor 0

Since all of the outputs are available at one time, the steps are based on the same logic
for inputting data and Table 12-4.

SEC. 12.6 THREE MULTIDIMENSIONAL ARRAYS 311

Step 1: Move output frequency components A(O), A(l), A(2), and A(3) out of the
hypercube first. This step takes 8 clock cycles based on adding the number of clock
cycles in Processors 0, 1, 2, and 3 in Table 12-4 and multiplying by 2 to account for
complex data.

Step 2: Move the answers in Processors 12, 13, 14, and 15 (A(4), A(5), A(7), and
A(6), respectively) into Processors 0,1,2, and 3, respectively. This step takes 2 clock
cycles because all four moves can be done at once.

Step 3: Move A(4), A(5), A(6), and A(7) out of the hypercube. Since A(4), A(5),

A (6), and A (7) are now in Processors 0, 1, 3, and 2, this step takes 8 clock cycles. As
in Step 1 of this stage, this is based on adding the number of clock cycles in Processors
0, 1, 2, and 3 in Table 12-4 and multiplying by 2 to account for complex data.

Step 4: Move the answers in Processors 4,5,6, and 7 (A(8), A(9), A(ll), and
A (10), respectively) into Processors 0, 1, 2, and 3, respectively. At the same time,
the answers in Processors 8, 9, 10, and 11 (A(12), A(13), A(15), and A(14), re
spectively) can be moved into Processors 4, 5, 6, and 7. This step takes 2 clock
cycles.

Step 5: Move A(8), A(9), A(10), and A(II) out. Since they are now in Processors
0, 1, 3, and 2, this step takes 8 clock cycles. As in Step 1 of this stage, this is based
on adding the number of clock cycles in Processors 0, 1,2, and 3 in Table 12-4 and
multiplying by 2 to account for complex data.

Step 6: Move the answers in Processors 4, 5, 6, and 7 (now A(12), A(13), A(15),

and A(14) from Step 3 of this stage) into Processors 0,1,2, and 3, respectively. This
step takes 2 clock cycles because all four moves can be done at once, each by one
pair of processors.

Step 7: Move A (12), A (13), A (14), and A(15) out. Since they are now in Processors
0, 1, 3, and 2, this step takes 8 clock cycles. As in Step 1 of this stage, this is based
on adding the number of clock cycles in Processors 0, 1, 2, and 3 in Table 12-4 and
multiplying by 2 to account for complex data.

The total is 134 clock cycles of processing load and processing latency.

Option 2: Each Processor Computes One 16-Point Radix-4 FFT

The four-dimensional hypercube is used to compute sixteen, 16-point radix-4 FFTs
in parallel. The stages for doing that are as follows.

Stage 1: Distribute the 16 Sets of Complex Samples onto the Processors

These complex sample moves take 16 times as many clock cycles as used to move
one set of complex samples into the 16 processors in Stage 1 of Option 1, in this section.
This is a total of 42 * 16 = 672 clock cycles.

Stage 2: Compute the Sixteen, 16-Point Radix-4 FFTs

Using a Harvard architecture processor at each node, this takes 168 clock cycles,
based on the assumptions in Section 12.3.5.

312 CHA~ 12 ALGORITHM AND DATA MAPPINGS

Stage 3: Output the Results of the Sixteen, 16-Point Radix-4 FFTs

This takes 16 times as long as it takes to move the answers from one set of data out
through Processor O. Based on the results in Stage 5 of Option 1, in this section, this is a
total of 38 * 16 = 608 clock cycles.

The total for this approach is 1448 clock cycles. Therefore, the processing latency
is 1448 clock cycles, and the average processing load per FFf is 1448/16 = 90.5 clock
cycles.

12.6.2 Massively Parallel 16-Point Radix-4 FFT Examples

The simplest form of three-dimensional massively parallel [1] processing is multiple
two-dimensional arrays, as shown in Figure 12-20, that lay atop each other and are intercon
nected using "up" and "down" links in addition to the standard, two-dimensional NEWS
connections.

Up

---.--+--------1 ---.--+-------1 - - - .--+---
PO P1 P2

Layer 1

East

--+-------1 - _- ._-+--__ South Layer 2

--+-------1- - - .--+---

North
P3

---.--+--------f

West

P6
---.--+--------1

P4

P7

P5

P8
Layer 3

Down

Figure 12·20 Three-dimensional massively parallel processor.

The top three processors represent one row of the massively parallel processor array
in Section 11.4.2. The middle and bottom sets of processors each represent a row of an
additional two-dimensional array. The vertical interconnections are the "up" and "down"
connections between these two-dimensional arrays that makes the resulting array three di
mensional. This is a very complex architecture to efficiently use to compute the small FFf
examples from Chapter 9. In all likelihood, if this architecture had to compute the 16-point
radix-4 FFT, it would use one of the two approaches described for the two-dimensional mas
sively parallel processor in Section 12.5.2. The two additional layers of two-dimensional
processors would process more sets of data, but the interconnections between vertical layers
would not be used. The result is that the computational throughput and latency would be
multiplied by how many layers of two-dimensional processors were in the array.

SEC. 12.7 ALGORITHM MAPPING EXAMPLES COMPARISON MATRIX 313

12.6.3 Hybrid 16-Point Radix-4 FFT Examples

A hybrid architecture is a combination of two or more of the architectures described
in previous sections. This example is an array of 16 programmable DSP chips intercon
nected as a NEWS parallel processing architecture (Figure 12-14). Each processor is then
a programmable DSP chip using a Harvard architecture (Figure 12-2). Inside the DSP chip
are multiple arithmetic processing units interconnected on a linear bus (Figure 12-10). Fi
nally, the multiplier-accumulator arithmetic processing unit is a pipeline combination of the
multiplier and accumulator (Figure 10-4). Figure 12-21 shows the additional interconnects
needed to interface the conventional Harvard architecture in Figure 12-2 into a NEWS archi
tecture. Note that this hybrid example is exactly the same as the two-dimensional massively
parallel processing architecture described in Section 12.5.2. Therefore, its computational
performance and processing latency are also the same.

E

W

N

s

Data

Memory

Arithmetic

Unit

Address

Generator

Program

Memory

Program

Counter

Figure 12-21 Harvard architecture block from parallel array.

12.7 ALGORITHM MAPPING EXAMPLES COMPARISON
MATRIX

All entries are in clock cycles per FFT (see Table 12-6 on page 314).

12.8 CONCLUSIONS

Algorithms and data are distributed and redistributed among the processors in the course of
computing the entire algorithm. The data map figures for four parallel and multidimensional
arrays depict where the data resides at the end of each stage of computing an algorithm.
This awareness makes it easier to understand how the reorganization of the data among
the processors was done in the examples. This chapter concludes the portion of the book
on architectures and algorithms. The next four chapters deal with selecting hardware and
testing it.

314 CHA~ 12 ALGORITHM AND DATA MAPPINGS

Table 12-6 Algorithm Mapping Examples Comparison Matrix

Architecture Input Reorgan. Output Comp. Process.
examples mappings overhead overhead overhead thruput latency

Single Processors
Harvard 32 0 32 232 232
Linear Arrays (Option 1)
3-processor pipeline 32 64 32 128 320
3-processor linear bus 32 64 32 128 320
3-processor ring bus 32 64 32 128 320
Linear Arrays (Option 2)
3-processor pipeline 96 0 96 120 360
3-processor linear bus 96 0 96 120 360
3-processor ring bus 96 0 96 120 360
Parallel Arrays (Option 1)
16-processor crossbar 32 12 32 106 106
16-processor 2-D massively par. 40 0 40 122 122
5-processor star 64 48 64 226 226
Parallel Arrays (Option 2)
16-processor crossbar 512 0 512 74.5 1192
16-processor 2-D massively par. 640 0 640 90.5 1448
5-processor star 128 0 128 170 680
Multidimensional Arrays (Option 1)
16-processor 4-D hypercube 64 0 38 134 134
3-D massively parallel array 64 0 38 134 134
Hybrid 64 0 38 134 134

Multidimensional Arrays (Option 2)
16-processor 4-D hypercube 672 0 608 90.5 1448
3-D massively parallel array 672 0 608 90.5 1448
Hybrid 672 0 608 90.5 1448

REFERENCES

[1] T. Fountain, Processor Arrays Architecture andApplications, Academic Press, London,
1987.

[2] S. K. Mitra and J.F. Kaiser, Handbookfor Digital Signal Processing, Wiley, New York,
1993.

[3] R. W. Hockney and C. R. Jesshope, Parallel Computers, Adam Hilger, Bristol, England,
1981.

13

Arithmetic Formats

13.0 INTRODUCTION

After the hardware architecture selection is made, the exact chip can only be chosen by
deciding what arithmetic format will best meet the specification. The primary effect of
the format choice is in the accuracy of the results. Three arithmetic formats are used for
computing FFfs:

• Fixed-point, which uses integer arithmetic

• Floating-point, which has the binary point in a fixed place and an exponent for each
number

• Block-floating-point, which is fixed-point arithmetic with one exponent for all the
data

Prior to the development of DSP chips, the choice of fixed-point arithmetic resulted in
faster and smaller hardware architectures than floating-point or block-floating-point arith
metic. However, the opposite is generally true today, as can be seen in the Comparison
Matrices of Chapter 14.

13.1 THREE PERFORMANCE MEASURES

Since the primary effect of choosing the arithmetic format is the accuracy of the results,
the performance measures here are those that quantify the computational accuracy of FFT
algorithms.

316 CHA~ 13 ARITHMETIC FORMATS

13.1.1 Dynamic Range

Dynamic range is the ratio of the largest-magnitude number to the smallest-magnitude
number that can be represented in an arithmetic format. Arithmetic formats where the
smallest-magnitude number is 10-m and the largest-magnitude number is 10+P have a
dynamic range of 10+P -;- 10-m = 10P+m , regardless of what p and m are. For example, if
m = 0 and p = 16, the dynamic range is 1016. If m = 8 and p = 8, the dynamic range is
still 1016, even though the numbers that can be represented are quite different.

13.1.2 Arithmetic Accuracy

Arithmetic accuracy is the precision with which an arithmetic format can represent
numbers. In the example in Section 13.1.1 if m = 0, the smallest numbers that can be
represented are integers, because 10° = 1. The arithmetic accuracy is then 0.5 because it
is the largest error that can occur by rounding off a number to the nearest integer. If m = 8,
then the smallest numbers that can be represented are 10-8, much smaller than an integer.
The arithmetic accuracy is then 0.5 * 10-8 because it is the largest error that can occur by
rounding off a number to the nearest 10-8. The arithmetic accuracies of these two examples
are very different, but their dynamic ranges are the same.

13.1.3 Quantization NoiseEscalation

Quantization noise is the error in digital computations caused by the need for digital
computers to round off numbers. These errors are caused by two effects. First, when
analog data is digitized, to allow it to enter a digital computer, digital numbers are assigned
to the continuous analog voltages. Since there are only a finite number of possible digital
numbers, each analog data sample is represented by the closest digital number to its analog
voltage. The result is that the digital signal is the real analog signal minus an error signal.
This error signal is called quantization noise. Since the FFT is a linear function (Section
2.2.3), its output is the FFf of the actual analog signal minus the FFT of the error signal.

The second type of quantization error is round-off in the digital computer to control
the number of bits used to represent a number. For example, when two 16-bit numbers are
multiplied, the result has 32 bits. To represent this output as a 16-bit result, the bottom
16 bits must be removed. Usually this is accomplished by rounding the 32-bit number to
the closest 16-bit number. The result is a quantization noise error. Each of these errors is
processed by the remaining step in the FFT algorithm and appears as errors in the amplitude
of the output frequency components.

Quantization noise is difficult to describe theoretically because it is a nonlinear pro
cess. Simulation studies have shown rules-of-thumb for how quantization noise increases
(escalates) as the FFf algorithm increases in transform length by factors of two. This
escalation factor is presented for each arithmetic format.

13.2 THREE ARITHMETIC FORMATS

This section explains each of the three arithmetic formats in terms of the three performance
measures. While the Comparison Matrix provides the first level of decision between arith
metic formats, there are often several choices within the format. The explanation here can

SEC. 13.2 THREE ARITHMETIC FORMATS 317

be used to further refine the arithmetic format decision to specific bit lengths. For example,
16-,20-, and 24-bit fixed-point programmable DSP chips are commercially available and
described in Chapter 14.

13.2.1 Fixed-Point

Fixed-point [1] numbers are like working with integers. The format has a specific
number of bits, say 16, to represent the numbers, and the binary point (comparable to the
decimal point for base 10 numbers) is located at a fixed position among the bits. It might
be to the right of all the bits. In this case all of the numbers are represented as integers. It
might be to the left of all the bits. In this case all the numbers are less than 1,(i.e., fractions).

The other feature of fixed-point arithmetic formats is that one of the bits is used to
represent the sign of the numerical value. Generally, the sign bit is the most significant bit
with 0 representing positive numbers and 1 representing negative numbers. For an n-bit
format where all of the numbers are represented as fractions, the binary point is between
the sign bit and the other n - 1 bits. All of the fixed-point DSP chips in Chapter 14
have a multiplier-accumulator block diagram similar to that in Figure 13-1 to implement
fixed-point arithmetic.

Figure 13-1 Fixed-point arithmetic multiplier-accumulator block
diagram.

Dynamic Range. The dynamic range of a fixed-point format is independent of
the location of the binary point. It is controlled completely by the number of bits. For an
n-bit fixed-point format, (n - 1) bits are used to provide dynamic range. With the binary
point to the right of all n bits, the smallest number is 2° == 1 and the largest is 2(n-l) - 1
(1 's in all (n - 1) bits). The dynamic range is the ratio of these two numbers, which is
2(n -1) - 1. Moving the binary point anywhere from the right to the sign bit only changes
the numbers that can be represented. The ratio of the largest to smallest number does not
change. Therefore, once the dynamic range of the input data and the FFT computations
is determined to be D, it is easy to compute the number of bits required of a fixed-point
format as:

n == 1 + log2[D + 1] (13-1)

Arithmetic Accuracy. The binary point in a fixed-point format controls its arith
metic accuracy. If the binary point is all the way to the right, numbers are all represented
as integers. Therefore, the numbers are only accurate to 1/2. If the binary point in an n-bit
format is just to the right of the sign bit, then there are (n - 1) fractional bits. This makes
the largest fractional bit 2- 1 and the smallest fractional bit 2-(n-l), which translates into
numbers being represented to an accuracy of 2-n

• For example, in a 16-bit format with the
binary point just to the right of the sign bit, the least significant bit is 2- 15 , which means

318 CHAP. 13 ARITHMETIC FORMATS

numbers are accurate to 2- 16
• Therefore, the location of the binary point depends on the

required accuracy of the computations.

Quantization Noise Escalation. Fixed-point quantization noise is a nonlinear
phenomena that depends on the data and the sequence of computations. Analysis of quanti
zation noise for power-of-two FFTs has determined a rule-of-thumb for growth of the noise
relative to the signal as a function of the transform length of roughly 1/2 bit per power-of
two [1]. For example, a 1024-point FFT has twice the quantization noise, relative to the
signal level, as a 256-point FFT has. The actual levels depend on the signal being analyzed.

The drawback of the fixed-point format is that this quantization noise is relatively
independent of the size of the frequency component. Therefore, the signal-to-noise level
for strong frequency components is large and for small-frequency components is small. This
sometimes causes small-frequency components to be masked by the quantization noise.

Quantization noise for fixed-point FFTs has also been analyzed for the Winograd [2]
algorithm. The growth trend is roughly the same as for power-of-two algorithms, and the
actual amount of quantization noise is slightly larger than for power-of-two algorithms.

13.2.2 Floating-Point

Floating-point [3] numbers are like performing computations in scientific notation.
The allotted digits that represent each number are divided between the exponent and the
mantissa of the number. In a decimal floating-point format, numbers such as 536 are
represented as 5.36 * 102• In a binary floating-point format, 536 would be represented
based on decomposing it by powers-of-two. Namely, 536 == 512 + 16 + 8. Just as for
decimal scientific notation, this number can be written as 1000011000, or normalized as
1.000011000 x 28. Therefore, a binary floating-point number has a certain number of
digits to represent the mantissa (1.000011000 in the example) and to represent the exponent
(8 = 01000 in the example). Notice that to represent numbers with magnitudes less than 1,
the exponent is negative. In those cases one of the bits in the exponent must be used as a
sign bit. Figure 13-2 is a functional block diagram for floating-point addition, and Figure
13-3 is a functional block diagram for floating-point multiplication, as they are typically
implemented by the floating-point DSP chips in Chapter 14.

Input #1

Input #2

Scale
Results

Output

Data

Figure 13-2 Floating-point addition block diagram.

SEC. 13.2 THREE ARITHMETIC FORMATS 319

Input #1 Input #2

Add

Exponents

1
Scale

Results

t
Multiply

Mantissas

Output

Results

Figure 13-3 Floating-point multiplication block diagram.

If the sign bit is inserted to the left of the mantissa, then the bits to the left of the binary
point are always 01 for positive numbers because the binary point is always set after the
first nonzero digit. Similarly for negative numbers, the digits to the left of the binary point
are always 10. Therefore, there is no need to have two digits to the left of the binary point.
The sign bit implies the next bit. This allows an extra bit in the mantissa to be used for
representing fractional numbers. For 32-bit floating-point numbers, the IEEE has defined
a standard, called IEEE-754, that allocates the lowest 23 bits to mantissa, the next 8 bits to
exponent, and the most significant bit to the sign of the number.

Dynamic Range. The dynamic range of a floating-point arithmetic format is con
trolled by the number of bits allocated for the exponent. Suppose that "e bits" are allocated
for the exponent and one of these is a sign bit. If e = 8, then the exponent covers num
bers from roughly 2127 to 2- 128

. This is a dynamic range of roughly 2255 = 5.79 * 1076 .

Therefore, a very small number of bits allocated to the exponent provides huge amounts of
dynamic range.

Arithmetic Accuracy. Arithmetic accuracy is variable for floating-point numbers
since the mantissa bits are multiplied by the exponent. This becomes important when an
alyzing signals where there is a significant difference between the signal strengths of the
various frequencies. As the FFT algorithm progresses from stage to stage, it is collecting the
information associated with each frequency into smaller and smaller numbers of interme
diate data values. Since floating-point arithmetic adjusts numbers at each step to keep the
most significant bit of the data in the most significant bit of the mantissa, the small numbers
associated with noise and small-frequency components continue to have the accuracy of the
full set of mantissa bits. The result is that each frequency component has the accuracy of the
mantissa, regardless of the size of the signal. This is in contrast to fixed-point arithmetic,
where the largest frequency component controls the most significant bit and does not allow
the smaller frequency components the full advantage of all the fixed-point bits.

Quantization Noise Escalation. Floating-point quantization noise is a nonlinear
phenomenon that depends on the data and the sequence of computations. Analysis of
quantization noise for power-of-two FFTs [3] has determined a rule-of-thumb for growth

320 CHAP. 13 ARITHMETIC FORMATS

of the noise relative to the signal as a function of the transform length of roughly log2(N)
bits for an N -point power-of-two FFT. For example, a 1024-point FFT has 10/8 = 1.25 the
amount of quantization noise, relative to the signal level, than does a 256-point FFT. The
actual levels depend on the signal being analyzed and are controlled by the number of bits in
the mantissa: the larger the number of mantissa bits, the smaller the quantization noise level.

Quantization noise for floating-point FFTs has also been analyzed for the prime factor
[4] algorithm. The growth trend is roughly the same, and the actual amount of quantization
noise is slightly larger than for power-of-two algorithms.

13.2.3 Block-Floating-Point

Block-floating-point [5] numbers were developed to provide a compromise between
the accuracy of fixed-point numbers and the dynamic range of floating-point numbers,
without the full complexity or speed penalty associated with full complex floating-point
arithmetic computations. Figure 13-4 shows the generic functions required for block
floating-point arithmetic. The only current DSP chips using block-floating-point arithmetic
are dedicated to computing FFTs or linear filtering and pattern matching in the frequency
domain (Chapter 6). Current block-floating-point DSP chips are 5-10 times faster for
FFTs than fixed or floating-point chips because they are dedicated to computing FFTs (see
Section 14.7).

Output Data
to Memory

t ntsons a
~

----. Data Scaler 1-----+
Building-Block

ry Algorithm

Magnitude
Detection

Scale Factor
Accumulator

MultiplierC

Input Data
from Memo

Figure 13-4 Block-floating-point arithmetic block diagram.

The arithmetic in each building block of the FFT algorithm is performed as fixed
point arithmetic. However, from stage to stage, the intermediate answers are evaluated to
ensure that the full dynamic range of the fixed-point numbers is being utilized. If not, all
of the intermediate values are scaled enough so that the largest value uses roughly half
of the full dynamic range. Then the next stage of computations is performed and the
results reevaluated. The processor keeps track of the net scaling that has occurred from

SEC. 13.3 ARITHMETIC FORMAT COMPARISON MATRIX 321

stage to stage as an exponent that effectively increases the dynamic range of the processor.
The scaling only uses half the dynamic range because the next stage of a power-of-two FFT
algorithm will have a gain of 2 for sine-wave inputs. This keeps the fixed-point computation
from overflowing.

Dynamic Range. The dynamic range of a block-floating-point FFT processor is
controlled by the number of bits allocated to keeping track of the shifts between stages.
Suppose that e bits are allocated for the exponent and one of these is a sign bit. If e = 8,
then the exponent covers numbers from roughly 2127to 2- 128 . This is a dynamic range of
roughly 2255

:=: 5.79 *1076 . Therefore, a very small number of bits allocated to the exponent
provides huge amounts of dynamic range.

Arithmetic Accuracy. The arithmetic accuracy of a block-floating-point format
is between that for fixed- and floating-point formats. It has an advantage over fixed-point
formats because the scaling between stages keeps more of the bits active in the computations
for any input signal. However, the exponent is not changed for each intermediate value,
only on the block of values out of each computational stage. Therefore, for small-frequency
components in noise it does not keep as many of the bits active as a floating-point format
does.

A comparison between block-floating-point and floating-point is data dependent. The
only consistent feature is that block-floating-point arithmetic accuracy degrades at roughly
the same rate as floating-point arithmetic accuracy as the length of the FFf increases.

Quantization Noise Escalation. Block-floating-point quantization noise effects
have better characteristics than fixed-point and worse ones than floating-point for the same
reasons as arithmetic accuracy does. A direct comparison between block-floating-point
and floating-point is data dependent. The only consistent feature is that block-floating
point arithmetic accuracy degrades at roughly the same rate as floating-point arithmetic
accuracy as the length of the FFf increases.

13.3 ARITHMETIC FORMAT COMPARISON MATRIX

Table 13-1 Arithmetic Format Comparison Matrix

Dynamic Arithmetic Quantization
Arithmetic format range accuracy noise escalation

Fixed-point 2,,--1 - 1 0.5*(LSB) Add 0.5 bit
Floating-point 2P 0.5*(mantissa LSB) Multiply by log2(2 * N)/ log2(N)
Block-floating-point 2P 0.5*(mantissa LSB) Between fixed and floating point

Key to Variables
11 = number of bits in a fixed-point arithmetic format

LSB = numerical value of least significant bit of fixed-point arithmetic format
p = 21.', where e is number of bits used to represent the exponent

Mantissa LSB = numerical value of least significant bit of floating-point mantissa
N = number of points in FFT

322 CHA~ 13 ARITHMETIC FORMATS

13.4 CONCLUSIONS

An application usually has a specification for dynamic range and/or arithmetic accuracy.
This chapter shows how to determine which arithmetic format best meets the product speci
fication. If a format cannot meet the specifications, the chips in the next chapter that use that
format are automatically eliminated from consideration. This is usually the first decision
in selecting a chip.

REFERENCES

[1] P.D. Welch, "A Fixed-Point Fast Fourier Transform Error Analysis," IEEETransactions
on Audio and Electroacoustics, Vol. AU-17, pp. 151-157 (1969).

[2] R. W. Patterson and J. H. McClellan, "Fixed-Point Error Analysis Winograd Fourier
Transform Algorithms," IEEETransactions on Acoustics, Speech, and SignalProcess
ing, Vol. ASSP-26, No.4, pp. 447-455 (1978).

[3] C.J. Weinstein, "Roundoff Noise in Floating Point Fast Fourier Transform Compu
tation," IEEE Transactions on Audio and Electroacoustics, Vol. AU-17, pp. 209-215
(1969).

[4] D. C. Munson, Jr. and B. Liu, "Floating Point Roundoff Error in the Prime Factor FFT,"
IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No.
4, pp. 877-882 (1981).

[5] A. V. Oppenheim and C. J. Weinstein, "Effects of Finite Register Length in Digital
Filtering and the Fast Fourier Transform," Proceedings of IEEE, Vol. 60, No.8, pp.
957-976 (1972).

14

Chips

14.0 INTRODUCTION

This chapter gives an objective description of commonly available nsp chips for executing
FFf algorithms. A unique feature is the "generic" nsp chip block diagram, to which
all the commercial DSP chips are standardized and compared, to simplify understanding
their differences. Making the decision about which chip to use depends on the arithmetic
format, algorithm and data mapping process (Chapter 12), and the architecture's efficiency
at performing that algorithm. FFf code can be written for any programmable processor
chip; however, Harvard architectures are specifically designed to execute FFfs efficiently
and thus are the only type used in this chapter.

Programmable DSP chips fall into four categories:

• General purpose, both fixed-point and floating-point

• Special purpose

• Application-specific integrated circuits (ASICs)

• Multiple processors on a single chip

The most popular category is general-purpose programmable chips. These chips are
designed to efficiently execute FFf and FIR filter algorithms. However, they also have
enough general-purpose instructions to be used in a variety of non-DSP functions, partic
ularly when the functions can utilize the on-chip multipliers. Motor controllers, modems,
and matrix arithmetic are good examples of these more general-purpose applications. The
earliest of these chips used fixed-point arithmetic because the more complex floating-point
computations and buses required too much integrated circuit area to be practical. More re
cent generations are available in fixed- and floating-point arithmetic formats (Chapter 13).

324 CHAP. 14 CHIPS

The second category is special-purpose programmable chips, designed to implement
just FFT algorithms. Their programmability is limited to choosing the transform length
or to configuring the chip to perform linear filtering or pattern matching in the frequency
domain (Chapter 6). These chips only implement standard power-of-two FFT algorithms.
Their advantage is that they perform power-of-two FFT algorithms 5-10 times faster than
general-purpose programmable DSP chips. The disadvantage is that they are limited to FFT
computations. Block-floating-point arithmetic has been adopted by the manufacturers of
these chips because FFT algorithms are particularly well suited for that arithmetic format,
and it provides considerably more dynamic range than fixed point without the complexity
of floating-point (Chapter 13).

A recent addition to the DSP chip marketplace is application-specific integrated cir
cuits (ASICs), with DSP processors as building blocks. Once a programmable DSP pro
cessor is provided as an ASIC building block, the data I/O, control, and synchronization
functions can be added to develop efficient DSP applications on a single chip. The front
end design of these chips generally costs more than designing a board with the equivalent
functions. However, the resulting product will require less power and board area and often
run faster because the I/O from the DSP building blocks to peripheral devices is often inside
the chip.

Another new trend in programmable DSP chips is to have multiple processors on a
single chip. Choosing one of these chips implies not only understanding the performance
of the individual processors but also their interconnection architecture. Each of the two
presented in this chapter uses a fixed-point processor. One uses a ring bus with 24-bit
fixed-point processors, and the other a crossbar switch to interconnect 16-bit fixed-point
processors.

Each chip manufacturer has its own programming languages, development systems,
and support libraries. Those development tools can be found in the referenced vendor
material. The algorithms in Chapters 8 and 9 have been given in a form that is easily
converted into either chip-specific assembly language or high-level languages.

14.1 FIVE FFT PERFORMANCE MEASURES

The following performance measures are the keys to characterizing the ability of a pro
grammable DSP chip to efficiently compute FFT algorithms.

14.1.1 1024-Point Complex FFT

The 1024-point complex FFf performance measure is the time, in milliseconds, it
takes a chip to perform a 1024-point complex FFT. Chip manufacturers often quote this
time as a measure of FFT performance.

14.1.2 Data I/O Ports

The data I/O ports performance measure is the number of serial and parallel ports that
can be used to move data and program instructions in and out of the chip. Serial ports are
often used to initially move data into the chip and to move results off of the chip. Parallel
ports may also be used for these data I/O functions. For complex input data it takes 2 * N

SEC. 14.2 GENERIC PROGRAMMABLE DSP CHIP 325

input cycles and 2 * N output cycles to move data on and off the chip. The parallel ports are
also used to move data and program instructions into the chip from off-chip memory. If the
data and program fit in the on-chip memory, these parallel port functions are not needed.

14.1.3 On-Chip Data Memory Words

The on-chip data memory words performance measure is the total number of words
of RAM available on a DSP chip for storing the FFT input, output, and intermediate data
values. This is important because it defines how large an FFT can be computed, with
all of the data in the on-chip memory. An N -point complex FFT requires at least 2 * N
data memory locations on the chip for the entire algorithm to be performed on-chip. The
Comparison Matrices in Chapters 8 and 9 show the data memory required to compute each
algorithm, and the Comparison Matrices in this chapter show the data memory available
in each chip. All chips in this chapter have temporary registers. If these registers are not
being used when they are needed by the algorithms in Chapters 8 and 9, they may be used
to reduce the data memory required for intermediate computational results.

14.1.4 On-Chip Program Memory Words

The on-chip program memory words performance measure is the total number of
words of memory available on a DSP chip for the FFT program. This is important because
it defines how large the FFT program can be without using off-chip program memory.
When off-chip program memory is required, it reduces the efficiency of the chip because
accessing instructions from off-chip memory is usually slower than accessing them from
on-chip memory.

14.1.5 Number of Address Generators

Address generators are used to compute where to get the data for the next computation
and where to store the results of the present computation (the Memory Map), so that the
arithmetic units can spend all of their time computing the Algorithm Steps. There is usually
one address generator for each on-chip data memory block. The address generators that are
capable of stepping multiple, as well as single, address locations can be used by all of the
FFT algorithms given in Chapters 8 and 9.

14.2 GENERIC PROGRAMMABLE DSP CHIP

This section describes the function that each block in Figure 14-1 performs in computing
FFTs. This "generic" block diagram of a programmable DSP chip is a unique feature of the
book. All the vendor block diagrams have been standardized to this generic one to make
it easy to compare them and to see where and how they differ. The following methods are
used to identify how a specific chip varies from the generic diagram: bold lines indicate
where a new connection exists; double bold lines indicate where one or more buses are
added to an existing one; dotted lines show where a connection does not exist; shaded
blocks are modified functions; diagonal shaded blocks are new functions; and dotted line
blocks are ones that do not exist. Differences that do not affect FFT performance are not
covered.

326 CHA~14 CHIPS

On-Chip Program

Parallel

Address Data

Buses

Address

Gen.

Program

Memory

Data

Memory

Off-Chip

MUX ~ Parallel
Address
Bus

On-Chip
Parallel

Data

Buses

Program

Data

,

t

Off·Chip

MUX ~ Parallel
Data

Bus

Program

Control

Multiplier
Accum.

&

ALU

Serial
I/O

Serial
Bus

Figure 14-1 Generic programmable DSP chip block diagram.

14.2.1 Block Diagram

Figure 14-1 is a generic block diagram of the Harvard architecture used for pro
grammable DSP chips. These chips are complex devices designed to accomplish a variety
of computationally intensive tasks. All of the chips in this chapter have temporary registers.
If these registers are not being used when they are needed by the algorithms in Chapters 8
and 9, they may be used to reduce the data memory required for intermediate computational
results.

14.2.2 On-Chip Data Memory

The role of on-chip data memory was explained in Section 14.1.3. The only am
plification to that description is that weighting function coefficients and FFf multiplier
coefficients may also be stored in data memory. Since weighting function coefficients are
symmetric about the center data sample as described in Chapter 4, N /2 (for N even) and
(N + 1)/2 (for N odd) data memory locations are required to store them. The number
of FFT multiplier coefficients varies widely with the FFT algorithm. The largest number
of coefficients is for radix-2 mixed-radix algorithms, and the smallest number is for the
Winograd algorithm. The Comparison Matrices at the end of Chapters 8 and 9 list the
number of memory locations for each algorithm's constants (coefficients).

Some DSP chips have one bank of data memory, and others have two. The advantage
of two banks is that one is used for multiplier constants and weighting functions and the other
for data. Then, at each multiplication step in the algorithm, both inputs to the multiplier

SEC. 14.2 GENERIC PROGRAMMABLE DSP CHIP 327

(data value and multiplier constant) can be accessed from memory in one clock cycle rather
than sequentially addressing them in one data memory bank.

14.2.3 On-Chip Program Memory

The role of on-chip program memory was explained in Section 14.1.4. The algorithms
that require the least amount of program memory are the ones with simple computational
building blocks and the simplest memory maps. The power-of-primes algorithms from
Chapter 9 fit this description if the multiplier coefficients are stored in data memory. If these
coefficients are stored in program memory, then the prime factor algorithms can result in
the smallest program memory because they only require a few multiplier coefficients and
are also computed with simple building blocks. The exact length of program memory can
only be determined by writing the code.

14.2.4 On-Chip Data Buses

All of the DSP chips in this chapter have at least one on-chip bus dedicated to data
movement. Some chips have two data buses, each connected to a data memory. For
FFf algorithms these dual buses make it convenient to store FFf or weighting function
constants in one memory and data in the second. FFfalgorithms that are structured for the
maximum use of the multiply-accumulate function have an advantage on the multiple-data
bus architectures because both multiplier and multiplicand can be pulled from data memory
in one instruction cycle. The SWIFf, Singleton, and PTL algorithms from Chapters 8 and
9 are the best examples of multiply-accumulate-intensive FFT algorithms.

14.2.5 Off-Chip Data Bus

The purpose of the off-chip data bus is to access data blocks that are too large to
store on-chip. Because of pin limitations, there is generally only one off-chip data bus.
There are exceptions, and they are explained under the appropriate chip family. Ideally, the
time required to access off-chip data memory should be the same as for on-chip memory.
However, DSP chip I/O limitations, off-chip data memory speed, or cost factors often result
in the off-chip data access time being larger than the access time for internal data. This
causes FFT performance to degrade when off-chip data memory is required.

Even if off-chip data memory accesses are at the same speed as internal ones, the chip
will be slower executing from off-chip data memory if there are two internal data buses.
The reason is that the external data inputs to the multiplier or adder must be accessed one
at a time rather than in parallel. This adds clock cycles to the computation, which results
in longer FFT execution times.

If off-chip program memory is used, this bus is also used to carry program memory
instructions to the chip. This reduces the data I/O rate that can be supported. Accessing
externally stored program instructions is generally implemented by moving substantial
chunks of program code to the chip's internal program RAM and then executing that code
until another set of code is required. The building-block formulation of the FFT algorithms
in Chapters 8 and 9 is ideal for this approach because each building block's code can be
moved into the chip and executed on the entire data set. Then code for the next building block
is moved into the chip and the process repeated. This implies that mixed-radix algorithms
with identical small building blocks, power-of-primes, are ideal in this situation. Of these,

328 CHAR 14 CHIPS

the power-of-two algorithms are the best because they require the smallest amount of code
to be transferred into the chip.

14.2.6 On-Chip Address Buses

On-chip address buses have two functions. The first is to provide the address needed
to point to the next program memory location. Second, they are used for providing the
addresses to data memory to access input and intermediate data values and multiplier con
stants. Figure 14-1 shows a program address bus and a data address bus. DSP chips have
the same number of data buses as they have data memories and the same number of address
buses as they have program and data memory. This makes the address buses extensions of
data and program memory in terms of their affect on FFT algorithms.

14.2.7 Off-Chip Address Bus

For most DSP chips, the off-chip address bus plays a dual role. If data must be stored
off-chip, this bus provides the addresses to access the off-chip data for processing and for
returning answers to the off-chip data memory. If the FFT program is too large to store
in the DSP chip, this bus supplies the address sequence to the off-chip program memory.
DSP chip I/O limitations, off-chip data memory speed, or cost factors often result in the
off-chip access time being larger than the access time for internal memory. This causes
FFT performance to degrade.

However, FFf performance can also degrade when the off-chip memory accesses
work at the full internal rates. This happens when there are independent address buses
inside the chip for program and data memory. Outside the chip, pin limitations usually
result in those buses being multiplexed (MUX) as shown in Figure 14-1. Additionally, if
there are multiple internal data address buses, the off-chip address bus is further shared,
resulting in additional performance decreases.

14.2.8 Address Generators

The building-block architecture of FFf algorithms allows FFf code to be written with
building-block subroutines and nested loops. Chapters 8 and 9 show that the input data to
these building-block algorithms is not sequential and therefore requires addressing with
non-unit-step sizes. Likewise, the required data mapping relabeling explained in Section
9.4 also needs nonsequential addressing of data memory. All of the DSP chips in this
book have dedicated hardware to perform some form of these types of addressing. In
earlier generations it was preprogrammed to provide the reverse binary sequence required
for power-of-two FFTs. In more recent generations the address generators are capable of
arbitrary step size addressing as well as reverse binary operations for power-of-two FFTs.

Figure 14-2 is a generic block diagram of an address generator. Specific chip fam
ilies have added bells and whistles to enhance their address generators for specific appli
cations. The most important feature for FFT computations is the ability to change the
data memory address in arbitrary step sizes. This is controlled by the register connected
to the address increment control in Figure 14-2. If the address generator can perform
that function, any of the algorithms in Chapters 8 and 9 can be implemented efficiently.
For example, for the 16-point radix-4 FFf in Section 9.7.5, the sequence of data input
addresses is shown next to the algorithm steps for the first stage of additions and sub-

SEC. 14.2 GENERIC PROGRAMMABLE DSPCHIP 329

tractions. In the second and third columns are the initial address and address increment
to accomplish this addressing. The fourth column lists the data memory addressing se
quence for each group of input data values that resulted from the inputs to the address
generator.

Initial
Address

Current
Address

Address
Increment

Buffer
Length

Register

,

~4Register - Register f4---

Modulo

Logic

[

Figure 14-2 Generic address generator block diagram.

14.2.9 Serial I/O Ports

The role of the serial I/O ports was explained in Section 14.1.2. Figure 14-3 is a
typical block diagram for a serial I/O interface in a programmable DSP chip. Some chips
have one serial port and some have as many as six. These appear to have been originally
provided to allow a convenient data interface with inexpensive voice bandwidth AID and
0/A converters for modem applications. However, more recent generations of DSP chips
also use them for interchip communications in multiprocessor architectures. The value of
this interface is that it requires few pins and reduces the interrupt overhead to the main
processing circuitry to one clock cycle per input or output word.

In Figure 14-3, data is input to the receive shift register one bit at a time. Once an
entire word is loaded, it is shifted in parallel to the receive buffer used to load it into the main
processor. The main processor then uses one instruction cycle to move the data from the
receive buffer to its data memory. The receive buffer allows the main processor to load the
new data word asynchronously with the reception of the word through the serial port. The
reverse sequence of operations is used to output parallel data words through the serial port.
For FFT applications the reduction of interrupt overhead to one instruction cycle makes it
less likely for the data I/O rate to become the system bottleneck.

330 CHAP. 14 CHIPS

Table 14-1 Address Generator Sequences for the 16-Point Radix-4 FFT Example

Algorithm steps Initial address Address increment Address sequence

bR(O) = aR(O) + aR(8) 0 8 0,8,16,24

b/(O) = a/CO) + a/(8)
bR(l) = aR(O) - aR(8)

b/(l) = a/CO) - a/(8)

bR(2) = aR(4) +aR(12) 4 8 4,12,20,28

b/(2) = a/(4) +a/(12)
bR(3) = aR(4) - aR(12)
b/(3) = a/(4) - a/(12)

bR(4) = aR(2) + aR(IO) 2 8 2,10,18,26

b/(4) = a/(2) +a/(lO)
bR(5) = aR(2) - aR(lO)
b/(5) = a/(2) - a/(10)

bR(6) = aR(6) + aR(14) 6 8 6,14,22,30

b/(6) = a/(6) +a/(14)
bR(7) = aR(6) - aR(14)

b/(7) = a/(6) - a/(14)

bR(8) = aR(I) + aR(9) 1 8 1,9,17,25

b/(8) = a/(l) +a/(9)
bR(9) = aR(l) - aR(9)
b/(9) = a/(l) - a/(9)

bR(lO) = aR(5) + aR(13) 5 8 5,13,21,29

b/(10) = a/(5) + a/(13)
bR(I!) = aR(5) - aR(13)
b/(1l) = a/(5) - a/(13)

bR(12) = aR(3) +aR(ll) 3 8 3,11,19,27

b/(12) = a/(3) + a/ell)
bR(13) = aR(3) - aR(II)
b/(13) = a/(3) - aI(II)

bR(14) = aR(7) + aR(15) 7 8 7,15,23,31

b/(14) = a/(7) + aI(15)
bR(15) = aR(7) - aR(15)
b/(15) = a/(7) - aI(I5)

Multiple serial ports also provide a way to interconnect multiple nsp chips into the
architectures defined in Chapter 11, without significant overhead. The programmable nsp
chips described in this chapter have one, two, four, or six serial ports. Figure 14-4 is an
example of how to form a pipeline multiprocessor architecture using two serial ports. Figure
14-5 shows how to form a 2-D array massively parallel architecture using four serial ports.
Figure 14-6 shows how to form a 3-D massively parallel multiprocessor architecture using
six serial ports. The ports that go to the adjacent layers are labeled. Refer to Chapter 12
for details on the features of each of these architectures for the various FFf algorithms in
Chapters 8 and 9.

Internal Parallel Data Bus

! t
Transmit Receive

Data Buffer Buffer

~ t
Transmit Serial I---+-- Receive

Shift
Control

Shift
Register t---- r--+' Register

Serial Output Serial Input

Data
Interface

Control

Data

Figure 14-3 Generic serial interface block diagram.

DSP Chip 0 DSP Chip 1

51 52 S1 52

t l t I
Figure 14-4 Two serial ports to form a bus/pipeline architecture.

51 51

84

S3 DSP 0 S2 1....---......... 53 DSP 1 S2---'

54

81 81

53 D5P 2 82 I~--~ 53 D5P 3 52

54 54

Figure 14-5 Four serial ports used to form a two-dimensional massively
parallel architecture.

331

332 CHA~ 14 CHIPS

868485858486

81 81

83 D8P 0 82 ...---~ 83 D8P 1 82

Down One Layer Up One Layer Down One Layer

)
86 51 55 85 51 86

83 D8P 2 82 83 DSP3 82

84 54

Figure 14-6 Six serial ports used to form a three-dimensional massively
parallel architecture.

14.2.10 Program Control

Zero-overhead looping is a powerful tool for reusing building-block code, written as
a subroutine, for multiple input data sets without paying the price to test for the end of a
loop. For example, for a radix-2, 1024-point FFT, each time the 2-point FFT is called, only
four adds are performed. In a dual-data-bus architecture, this only requires four instruction
cycles. However, if the loop counter logic adds as much as one extra instruction cycle per
2-point subroutine call, it has added 25% to the execution time. Therefore, for chips without
the zero-overhead looping feature, larger building-block algorithms provide more efficient
algorithm performance because the looping overhead is a smaller portion of the total code
execution time.

Figure 14-7 shows the overhead looping process for the radix-2, 1024-point example.
The end-of-loop process (Line Y) at the end of each access of the 2-point subroutine (Line
X+1) can be performed in hardware or software. For a 1024-point FFr each of the 10
stages uses the 2-point FFf 512 times. Therefore, the inner loop in Figure 14-7 is executed
10 *512 = 5120 times.

14.2.11 Multiplier-Accumulator and Arithmetic Logic Unit

The multiplier-accumulator (MAC) provides single-instruction-cycle multiplication
and multiplication coupled to an accumulator and has the basic functional form shown
in Figure 14-8. In n-bit fixed-point chips, the multiplier inputs are n bits wide and the
multiplier output is 2 * n bits wide. Multiplier results can be rounded off to N bits and
returned to data memory or fed into an accumulator that is at least 2 * n bits wide. The

LineX

SEC. 14.2 GENERIC PROGRAMMABLE DSP CHIP 333

FFT Stage Loop (j = 0 to 9)

Line X+1 Building-Block Loop (i =0 to 511)

2-Point FFT

Subroutine

Line Y Test for End of Building-Block Loop

Line Y+1 Test for End of FFT Stage Loop

Figure 14-7 End of loop testing process.

accumulator output can also be rounded off to n bits and the results returned to data memory.
Several bells and whistles have been added by the individual vendors to optimize the MAC
for specific tasks. The most visible one is shifting logic that aligns the binary point for the
add and multiply processes. This function is not included in Figure 14-8 because it occurs
in different places for different chip families and its location has little effect on the overall
computation time for an FFT algorithm.

~
Input Data

Register

~
Input Data

Register

'------.I X \~---'

!
Accumulator &

Round-off ALU

Output Results

Figure 14-8 Generic multiplier-accumulator block diagram.

(14-1)

334 CHA~ 14 CHIPS

In n-bit floating-point chips, multiplication and addition require additional functions
over fixed-point arithmetic. Block diagrams for these functions are presented in Chapters 10
and 13. The fundamental difference is that the multiplier requires an adder for the floating
point exponents, and a shifter is needed to align the mantissa of the floating-point words prior
to addition. However, Figure 14-8 still represents the generic functions performed by the
floating-point MAC. The details of the implementation have little effect on the performance
of the FFf algorithms.

14.2.12 Estimating FFT Performance

Chip vendors usually provide some FFf benchmark for how long it takes its chip
to perform some power-of-two-length FFf. Often the 1024-point FFf is used. From the
given benchmark the performance of any power-of-two FFf length N can be estimated by
using one of two techniques, depending on whether the chip can perform the FFf entirely
on-chip or needs external data memory. The estimated 1024-point FFT benchmarks in the
Comparison Matrices of this chapter are based on the techniques described below.

Case1: Benchmark and DesiredFFTBothUseOn-Chip or Off-Chip DataMemory
In this case, the following equation can be used:

N-point FFf time = (1024-point FFT time)

*5 * N * 10g(N)/[5 * 1024 * 10g(1024)]

For example, to estimate the time it takes to perform a 256-point complex FFf, compute
5 * 256 * log(256)/[5 * 1024 * log(1024)] = 0.2 times the 1024-point FFf time.

Case 2: Benchmark Uses On-Chip Data Memoryand the DesiredFFT Uses Off
Chip Memory

The only place Equation 14-1 fails to provide accurate estimates is when the FFf
length gets too long for the FFfs to be computed with on-chip data memory. When off-chip
data memory is required, the efficiency of the chip is reduced because accessing off-chip
memory is slower than accessing on-chip memory. When this occurs, understanding the
building-block approach to the FFf algorithm becomes the key to estimating the perfor
mance of the chip for the needed FFf length. The steps to estimating the chip's performance
are as follows:

Step 1: Dividethe FFT Length into Building-block Lengths with Known FFT
Performance

Chapter 9 presents three categories .of FFf algorithms. All three use the building
block approach. In each case, if the N -point FFf can be factored into P-point and Q-point
building blocks (N = P * Q), then the FFf algorithm requires P Q-point building-block
computations, followed by Q P-point building-block computations. For those computa
tions, some algorithms need some complex multiplications. Factor N such that the chips
can perform the P- and Q-point FFfs using only on-chip memory. Further, choose P and
Q such that their on-chip performance is known. If it is not known, choose P and Q so
that their performance can be calculated by using Equation 14-1.

Step 2: Compute the Time Requiredto Compute All the P- and Q-point FFTs
This is done by computing:

FFf Time = P * (Q-point FFf's time) +Q * (P-point FFT's time) (14-2)

SEC. 14.3 PROGRAMMABLE FIXED-POINTCHIP FAMILIES 335

Step3: Compute the Time for Moving Data On and Off the Chip
Assume all data is stored in off-chip data memory. To compute a P-pointFFf, move

P data samples onto the chip, perform the P-point FFT, and return the answers to off-chip
memory. Since this is done Q times, all of the data is moved onto the chip and the answers
back off again once for the P-point FFTs and once for the Q-pointFFfs. Therefore, the
data transfer time is:

Data transfer time = (Data word transfer time) * (2 words) * (2 for on and off) *N (14-3)

Step4: Compute the Time for Complex Multiplies
DSP chips usually specify the time required to perform a multiply. Determine the

number, X, of complex multiplies required for the desired algorithm and FFf length. Then
compute

Complex multiply time = X* (complex multiply time) (14-4)

Step5: Add All Times that Contribute
The total FFf performance time estimate is:

Total time estimate = FFf time + data transfer time + complex multiply time (14-5)

If all of the data can be stored on-chip, the data transfer time is not part of the total time
estimate. The effect of this on the chip's FFT performance depends on the data I/O speed
of the chip and the speed of the off-chip memory. Table 14-2 illustrates that Equation 14-1
works and also illustrates the performance degradation suffered by using off-chip memory,
with two generations of fixed-point DSP chips from Texas Instruments. In moving from
64 to 256 points, the computation time is expected to increase by roughly a factor of
5 * 256 * 10g(256)/[5 * 64 * log(64)] = 5.333. Similarly, moving from 256 to 1024
points should increase the computation time by roughly a factor of 5 * 1024 * log(1024)/
[5 * 256 * log(256)] = 5. The TMS320C5x series follows these ratios closely because this
generation of chips has enough on-chip RAM to compute any of these three FFf lengths.
The TMS320C2x series follows closely for the transition from 64 to 256 points because it
has enough RAM for the 256-point FFf. However, the ratio for moving from 256 to 1024
points is larger than expected because off-chip data memory is required.

Table 14-2 On- versus Off-Chip FFT Performance Comparison

TI chip family 64-pt clock cycles

T~S320C2x 3088
T~S320C5x 1515

256-pt clock cycles

17,602 (5.7 : 1)
8131 (5.36: 1)

1024-pt clock cycles

109,755 (6.2: 1)
41,665 (5.12: 1)

14.3 PROGRAMMABLE FIXED-POINT CHIP FAMILIES

The first programmable DSP chip to become popular was introduced by Texas Instruments in
1982. This chip, the TMS32010, was a 16-bit fixed-point chip designed primarily for speech
processing and data communications applications. Since that time others, such as Analog
Devices, Motorola, AT&T,NEC, DSP Semiconductor, SGS-Thomson, Star Semiconductor,
Zilog, and Zoran have introduced production fixed-point DSP chips. Traditionally, the

336 CHA~ 14 CHIPS

biggestmarket for these chips has been telecommunications applications such as modems
and fax. However, today thesechips are used for a broad rangeof applications that require
high-speedarithmeticcomputations andcan toleratethedynamicrangeconstraintsof fixed
point arithmeticexplainedin Chapter 13.

14.3.1 Analog Devices ADSP·21xx Family

The ADSP-2Ixx familyis a seriesof 16-pointDSPchips thatoffers a varietyof bells
and whistlesto meet specific application needs. However, fewof thesehavea dramaticim
pactonFFTperformance. Theprimaryimpactis in thedataI/Ocapabilityforanapplication.
The members of this family are ADSP-2100A, ADSP-2101, ADSP-2103, ADSP-2105,
ADSP-2111, ADSP-2115, ADSP-216x, ADSP-2171, ADSP-2175, and ADSP-21msp5xx,
where the "x" means that there are severalsubfamily membersof that family member(see
Figure 14.9)[1-4].

On-Chip
Parallel
Address
Buses

On-Chip
Parallel
Data
Buses

Pro ram

Data

Pro ram

Data

Program
Control

Program
Memory

Multiplier
Accum.

&
ALU

MUX

MUX

Off-Chip
Parallel
Address
Bus

Off-Chip
Parallel
Data
Bus

Serial
Bus

Analog
I/O

Figure 14-9 Analog DevicesADSP-2Ixx family block diagram.

Serial I/O. All of this family, except the ADSP-2105, have dual serial ports with
hardware companding circuitry. This additional serialport providesthe capability to inter-

SEC. 14.3 PROGRAMMABLE FIXED-POINT CHIP FAMILIES 337

face these devices into linear- bus, pipeline, and ring bus architectures for multiprocessor
applications (Section 14.2.9) without having to use the parallel bus that may be addressing
off-chip data or program memory.

The companding hardware is an advantage in applications where the FFT is obtaining
its data from an AID converter or sending its results to a 0/A converter. If the AID and
D/A converters are connected to networks such as the telephone system, the voltages they
convert may be logarithmically compressed by using either the A-law (European standard)
or JL-law (U.S. standard). Since the FFT is assuming linear data, the input data must be
converted to linear form. This function is called companding. If companding is performed
in software, it takes several instruction cycles. If the process takes 10 instruction cycles, the

total data I/O time for an N -point complex FFf increases from 4 *N to at least 10 *4 *N
instruction cycles. Since the FFf takes roughly 5 * N * log2(N) instructions, an FFT

becomes I/O limited when 10 *4 * N > 5 *N * log2(N). This occurs for N < 256 points.
The companding hardware removes the need for these 10 cycles and allows the data I/O
overhead to return to one cycle per word so that I/O limiting only occurs for 2-point FFTs,
based on the inequality.

Other Data 110. The ADSP-2Imsp50 and ADSP-21msp51 provide a full voice
band analog interface which includes 16-bit Sigma-Delta AID and D/A converters, an
tialiasing and antiimaging filters, and automatic gain control (AGe). Voice applications,
such as speech recognition, that use FFTs (see the example in Chapter 17) can use this
feature to reduce the cost of development and production.

Data Memory. Only the ADSP-2171 and ADSP-2175 have enough on-chip data
RAM to perform a 1024-point FFT, and the ADSP-2171 is marginal since it has just 2048
data memory words. It would require all of the weighting function and multiplier constants
to be in program memory. Therefore, the 1024-point FFT benchmarks for the other chips
in this family already reflect the slowdown incurred by having to store data off-chip. This
means that Equation 14-1, the FFT performance estimator, will work for FFT performance
above 1024 points but gives answers that are too large for smaller transform lengths. The
Programmable Fixed-Point Chips Comparison Matrix (Section 14.4) shows that the ADSP
2171 and ADSP-2175 have significantly better l024-point FFT computation times than the
other devices in this family because of the additional on-chip data memory.

Address Generators. All of the members of this family have dual address gener
ators. This maximizes the ability to address both data and multiplier constants to feed to
the MAC unit on each instruction cycle. The flexibility of the address step sizes for these
generators also allows them to be easily used to execute non-power-of-two algorithms as
well as standard FFTs. Address generator 1 also has bit-reverse logic to accommodate
standard power-of-two algorithms.

Program Boot. This is additional logic to allow the on-chip program RAM to be
loaded during the power-up phase of the application's operation from a low-speed 24-bit
wide EPROM to lower the cost of the overall application. It also allows multiple programs
to be swapped in and out of the chip's on-chip program memory without having to store
them in high-speed off-chip program RAM.

338 CHAP. 14 CHIPS

14.3.2 AT&T DSP16 Family

Unlike other DSP chip manufacturers, AT&T introduced the DSP 16line offixed-point
chips after having a floating-point chip (DSP32) in the market. The most characteristically
different feature of this fixed-point family is the instruction cache provided to run inner-loop
computations rapidly. The members of this family are DSP16 and DSP16A (see Figure
14-10) [5,6].

Off-Chip
Parallel
Address
Bus

Off-Chip
Parallel
Data
Bus

r------lf-----f----+-----...., .

Program

Data

-~:~~]--~~---~~~---~-----~-~

On-Chip
Parallel
Address
Buses

On-Chip
Parallel
Data
Buses

Program
Control

Multiplier
Accum.

&
ALU

Serial
Bus

Figure 14-10 The AT&T DSP16 family block diagram.

Cache RAM. The 15 instructions of on-chip cache RAM can execute a set of
repetitive operations up to 127 times to increase the throughput and coding efficiency.
This is particularly valuable for power-of-prime FFf algorithms where the same building
block is used throughout the computations. In particular, the 2-point building block would
easily fit into this RAM. The 4-point building block is a series of four 2-point building-block
computations, and the 3-point building block uses two complete 2-point building blocks and
two partial ones (just the add). Therefore, it may also be possible to efficiently implement
3- and 4-point building blocks with this cache memory.

MUXlParaliel I/O. The MUX/parallel I/O chip does not use multiplexers (MUX)
for interfacing the on-chip address bus to outside the chip because there is only one on-chip
address bus. Even though there are two on-chip data buses, they are not interfaced to a single
bus outside the chip because there are two off-chip parallel bus interfaces. This additional
off-chip bus allows additional freedom in the internal organization of the chip and a way

SEC. 14.3 PROGRAMMABLE FIXED-POINT CHIP FAMILIES 339

for data to be input to the on-chip data memory while off-chip data memory is being used
to provide data to the MAC and ALU to perform computations.

If the FFf is small enough to execute entirely on-chip, then this architecture works
best if all data is in the data RAM and all multiplier coefficients are in on-chip program
memory ROM. If the FFT must be executed with off-chip memory, storing the data in
off-chip memory and the multiplier coefficients in on-chip data RAM is the easiest way to
program the algorithm. However, if the off-chip memory is slow, it may be more efficient to
load portions of the data from off-chip to on-chip memory through the parallel I/O port and
execute the FFf internally, in steps, using multiplier coefficients stored in on-chip program
ROM. The manufacturer provides detailed data books to help make those decisions.

AddressGenerators. Both members of this family have dual address generators.
This maximizes the ability to address both data and multiplier constants to feed to the MAC
unit on each instruction cycle. The flexibility of the address step sizes for these generators
allows them to be easily used to execute non-power-of-two algorithms as well as standard
FFTs.

Program Memory. All on-chip program memory in this family is in ROM, and the
programming strategy is to use this memory for programs and multiplier coefficients. The
architecture does allow off-chip program RAM up to 64K words.

Data Memory. The DSP16 has 512 words and the DSP16A has 2048 words of on
chip RAM. Therefore, the maximum on-chip complex FFf that can be performed by the
DSP16 is 256 points and by the DSP16A is 1024 points. This assumes all of the multiplier
constants and weighting function constants are stored in program memory. This means that
the FFf performance formula will work for FFf performance above 1024 points (256 points
for the DSPI6A) but gives answers that are too large for smaller transform lengths. The
Programmable Fixed-Point Chip Comparison Matrix (Section 14.4) shows that the DSP
16A has significantly better 1024-point FFT computation times than the DSP16 because of
this additional internal data RAM.

14.3.3 AT&T DSP161x Family

This series of 16-bit fixed-point chips is focused on the digital cellular marketplace.
However, they are general-purpose programmable DSP chips that can be used to execute
FFT algorithms. In addition to the specific market focus, the primary difference between
this family and the DSP16 family is on-chip RAM for programs. The members of this
family are DSP1610, DSP1616, DSP1617, and DSP1618 (see Figure 14-11) [7-10].

Cache RAM. The 15 instructions of on-chip cache memory can execute a set of
repetitive operations up to 127 times to increase the throughput and coding efficiency. This
is particularly valuable for power-of-prime FFf algorithms where the same building block
is used throughout the computations. In particular, the 2-point building block would easily
fit into this RAM. The 4-point building block is a series of four 2-point building-block
computations and the 3-point building block uses two complete 2-point building blocks and
two partial ones (just the add). Therefore, it may also be possible to efficiently implement
3- and 4-point building blocks using this cache memory.

340 CHAR 14 CHIPS

On-Chip
Parallel
Address
Buses

Program

Data MUX

Off-Chip
Parallel
Address

Bus

On-Chip Program/Data

Parallel
Address Data
Buses

Program
Control

Multiplier
Accum.

&
ALU

Off-Chip
Parallel

Data
Bus

Serial
Bus

Parallel
Bus

Figure 14-11 The AT&T DSP161x family block diagram.

Serial Ports. All members of this family have dual serial ports. This additional
serial port provides the capability to interrace these devices into linear bus, pipeline, and
ring bus architectures for multiprocessor applications (Section 14.2.9) without having to
use the parallel bus that may be addressing off-chip data or program memory.

Parallel I/O/Interface Bus. In addition to the two on-chip data buses that are in
terfaced off-chip by using multiplexers, there is an additional parallel interrace, just like
the one in the DSP16 family. The difference is that it is multiplexed onto a bus that is then
interfaced with one of the on-chip data buses.

DataMemory. All of the devices in this family, except the DSP1618, have at least
2048 words of data RAM with two access ports. Therefore, the 1024-point FFf can be
performed on-chip if the weighting function and multiplier coefficients are stored in program
memory. The DSP1617 and DSP1618 have 4096 words of dual-ported data RAM, so they
can compute up to 2048-point complex FFTs without going off the chip. The DSP 1610 has
8192 words of data RAM. It can compute up to 4096-point complex FFfs without going
off the chip.

Read-Only Memory (ROM). All of the devices in this family have on-chip pro
gram ROM. The DSP1610 has 512 words, the DSP1616 has 12K words, the DSP1617 has

SEC. 14.3 PROGRAMMABLE FIXED-POINT CHIP FAMILIES 341

24K words, and the DSP1618 has 16K words. For high-volume applications, this ROM
can be used to store FFf algorithms. Otherwise, the on-chip RAM can be used to store
the program. However, storing the program in data RAM reduces the location available for
data, which results in a smaller FFT length that is computable with only on-chip memory.

14.3.4 Motorola DSP56001 Family

The DSP56001 was the first programmable DSP chip family from Motorola. Its most
characteristically different feature is that it is a 24-bit fixed-point processor. The members
of this family are DSP56001, DSP56002, DSP56L002, and DSP56004 (see Figure 14-12)
[11-13].

On-Chip
Parallel
Address
Buses

Program

Data MUX
Off-Chip
Parallel
Address

Bus

On-Chip
Parallel

Data
Buses

Program

Data

Program
Control

Program
Memory

Multiplier
Accum.

&
ALU

MUX

Off-Chip
Parallel

Data
Bus

Figure 14-12 Motorola DSP56001 family block diagram.

Serial Ports. All members of this family have dual serial ports. This additional
serial port provides the capability to interface these devices into linear bus, pipeline, and
ring bus architectures for multiprocessor applications (Section 14.2.9) without having to
use the parallel bus that may be addressing off-chip data or program memory.

In conjunction with these ports, the X-data memory has a built-in table of A-law
and Jl-Iaw companding coefficients to simplify the interface with companded data sources.
Since the FFT is assuming linear data, the companded input data must be converted to
linear form. If companding is performed in software, it takes several instruction cycles. If
the process takes 10 instruction cycles, the total data I/O time becomes at least 10 * 4 * N
instruction cycles. Since the FIT takes roughly 5 * N * log2(N) instructions, an FFT will
be I/O limited when 10 * 4 * N > 5 * N * log, (N). This occurs for N < 256 points. The

342 CHA~ 14 CHIPS

companding table removes the need for these 10 cycles and allows the data I/O overhead to
return to one cycle per word. At one cycle per data I/O word, the device is only I/O limited
for 2-point FFTs.

Data Memory. All members of this family have 512 words of data RAM on-chip.
Therefore, the largest FFf that can be computed with only on-chip memory is 256 points.
Therefore, the performance numbers in the Programmable Fixed-Point Chips Comparison
Matrix (Section 14.4) already reflect the penalty paid for having to access off-chip data
memory. Further, the data RAM is divided into two 256-word memories called X-data
memory and Y-data memory.

The other nonstandard fact about this family is that it is 24-bit fixed point. This allows
it to be used for digital compact disc (CD) products that require roughly 20 bits of dynamic
range and accuracy. This was the first family of fixed-point DSP processors to offer more
than 16 bits. The advantage for FFT algorithms is that it has less quantization noise than
16-bit fixed-point chips by a factor of 24 dB. See the explanation of quantization error in
Chapter 13 for details.

Data ROM. All of the members in this family have on-chip data ROM. The X-data
memory ROM is programmed with A-law and JL-Iaw companding functions to simplify
interfaces with companded data sources such as telephone lines. The V-data memory ROM
is programmed with a full, four-quadrant sine table that can be used for the multiplier
coefficients for power-of-two FFfs. This removes the need to store these coefficients in
program memory. This table can also be used for non-power-of-two FFTs with the help
of an interpolation algorithm. For example, to use the table for the 504-point mixed-radix
algorithm, 3600 must be divided into 504 pieces, not 512. Therefore, the table entries cannot
be used directly. However, for each needed value, the two surrounding phase angle values
and a linear interpolation algorithm can be used to accurately compute the correct value.

The coefficients in the V-data ROM can also be used to compute the sine lobe, Han
ning, sine cubed, sine to the fourth, Hamming, Blackman, 3-sample Blackman-Harris, and
4-sample Blackman-Harris weighting functions in Sections 4.2.3 through 4.2.10. This re
moves the need to store weighting function coefficients if the chip's computational power
allows the weighting function coefficients to be computed as needed within the required
FFT computation time.

There are two drawbacks to the V-data memory ROM having the sine table. This
table is specifically designed for power-of-two algorithms. Therefore, it does not contain
the multiplier constants needed for non-power-of-two algorithms. Further, the table is fixed
in the V-data memory ROM. Therefore, to pull a multiplier coefficient and data value during
the same instruction cycle, the data must be in the X-data memory. For radix-2 algorithms
this is not a problem because the data can always be partitioned so that the values that
require the multiplications are in the X-memory, because only half of the data in the radix-2
building block ever gets multiplied by other than 1. In general, mixed-radix algorithms
require N - 1 of the N -point building-block inputs to be multiplied by a complex number.
For full-speed operation this requires that the data must be modified prior to being input
to the N -point building block to be stored in the X-memory. If that data is stored in the
V-memory, two memory access clock cycles are required to get the data and multiplier
constant. This slows FFT performance,

SEC. 14.3 PROGRAMMABLE FIXED-POINT CHIP FAMILIES 343

Address Generators. All of the members of this family have dual address gener
ators. This maximizes the ability to address both data and multiplier constants to feed to
the MAC unit on each instruction cycle. The flexibility of the address step sizes for these
generators also allows them to be easily used to generate non-power-of-two algorithms as
well as standard FFTs. Both address generators also have bit-reverse logic to accommodate
standard power-of-two algorithms.

Data Address and Data Buses. To accommodate the extra data memories, there
is an extra data memory bus and an extra data memory address bus. This provides a simpler
way of thinking about programming the devices, because the natural thought process of
pulling two data values from data memory can be programmed.

Boot ROM. Boot ROM is additional memory to allow the on-chip program RAM
to be loaded during the power-up phase of the application's operation from a low-speed
24-bit-wide EPROM to lower the cost of the overall application. It also allows multiple
programs to be swapped in and out of the chip's on-chip program memory without having
to store them in high-speed off-chip program RAM.

14.3.5 Motorola DSP561xx Family

The DSP561xx family of 16-bit fixed-point chips is based on the 24-bit fixed-point
DSP560xx series from Motorola. The members of this family are DSP56156,
DSP56156ROM, DSP56166, and DSP56166ROM (see Figure 14-13) [14-17].

Serial I/O and AJD-D/A I/O. All members of this family have dual serial ports.
This additional serial port provides the capability to interface these devices into linear bus,
pipeline, and ring bus architectures for multiprocessor applications (Section 14.2.9) without
having to use the parallel bus that may be addressing off-chip data or program memory.

All members of the family also provide 14-bit Sigma Delta AID and D/A conversion
to simplify the application of these devices to telecommunications and digital cellular ap
plications. Example 3 of Chapter 17 uses these on-chip AIDand 0/A converters to simplify
doing the pitch detection portion of speech recognition algorithms.

Data Memory. Both DSP56156 devices have 2048 words of data RAM, and both
DSP56166 devices have 4096 words of data RAM. Therefore, the 1024-point FFT can be
performed on-chip if the weighting function and multiplier coefficients are stored off-chip
or in program memory for the DSP56166 devices and even without that constraint for the
DSP56166 devices.

Busesand Multiplexers. This family has dual data address buses and an additional
data bus for moving the serial and analog I/O port data on and off the chip. The result is that
the multiplexers for combining on-chip buses to one off-chip bus are both 3:1 rather than
the more standard 2:1 found in other chip families. The additional data bus enhances the
chip's capability to input data in parallel while performing computations. This improves
its FFT performance.

Address Generators. Unlike the DSP5600x family, this family only has one ad
dress generator. However, its logic is fast enough to compute two addresses per instruction

344 CHA~ 14 CHIPS

On-Chip
Parallel
Address
Buses

On-Chip
Parallel

Data
Buses

Program

Data

Program

Data

Global

Program
Control

Multiplier
Accum.

&
ALU

MUX

MUX

Off-Chip
Parallel
Address

Bus

Off-Chip
Parallel

Data
Bus

Serial
Bus

Analog
I/O

Figure 14-13 Motorola DSP56156/166 family block diagram.

cycle. Thus, it functions like two address generators and still provides the FFf performance
advantages described for dual-generator architectures.

Program Memory. A set of addresses in program memory is used to allow the on
chip program RAM to be loaded during the power-up phase of the application's operation
from a low-speed 24-bit-wide EPROM to lower the cost of the overall application. It also
allows multiple programs to be swapped in and out of the chip's on-chip program memory
without having to store them in high-speed off-chip program RAM. Both the DSP56156
and DSP56166 have 2048 additional words of on-chip program ROM. The DSP56156ROM
and DSP56166ROM devices have 12K and 8K of on-chip program ROM, respectively.

14.3.6 NEe IlPD77xxx Family

The distinguishing feature of this family is that it only has one on-chip bus. However,
the on-chip circuitry runs fast enough to move two data words to the MAC and the next
instruction cycle to its register during an instruction cycle. The members of this family are
jLPD77C20A, jlPD7720A, jlPD77P20, j.LPD77C25 , and j.LPD77P25 (see Figure 14-14)
[18, 19].

On-Chip
Parallel
Address
Buses

Program

Data

SEC. 14.3 PROGRAMMABLE FIXED-POINT CHIP FAMILIES 345

Off-Chip
Parallel

MUX ~ ..~ Address

Bus

Program
Memory

On-Chip
Parallel

Data
Buses

Program

Data

Off-Chip

MUX ~ Parallel
Data
Bus

Program
Control

Multiplier
Accum.

&
ALU

Serial
Bus

Figure 14-14 NEC jlPD77xxx family block diagram.

Busesand Multiplexers. The distinguishing feature of the jlPD77xxx is its single
bus to carry data and program words. However, this does not slow down the processor's
ability to perform single-cycle multiply-accumulate operations because it can access two
data words for the multiplier and the next instruction, all during one instruction cycle.
Notice in the block diagram that there is an independent path from data memory to the
multiplier that is used for one of the data words per instruction cycle.

Address Generator. The simplicity of this device's address generator is perhaps
the biggest drawback for FFT computations. The address generator is a program counter
with four registers to hold return addresses for up to four levels of nested looping. This
makes this architecture inefficient for data addressing that has non-unit-step sizes. The
offset addressing required for FFf algorithms is accommodated using values programmed
as part of the instruction ROM.

Data Memory. This device has two on-chip data memories. One is a ROM (1024 x
16 for the ttPD77C25 and 512 x 23 for the jlPD77C20) for storing multiplier and weighting
function coefficients. The other is a RAM (256 x 16 for the jlPD77C25 and 128 x 16 for
the I1PD77C20). This means that the best case is being able to compute 128-point FFTs
(j1,PD77C25) and 64-point FFTs (jlPD77C20) using only on-chip memory. Therefore,
the I024-point performance numbers in the Programmable Fixed-Point Chips Comparison
Matrix (Section 14.4)assume off-chip data memory,

346 CHA~ 14 CHIPS

For FFfs larger than 128 points, FFf performance will lose efficiency because the
off-chip data interface is only 8 bits wide. Therefore, two accesses are required to move
one 16-bit word into and out of the chip. However, since the 16-bit word is stored in a
buffer register prior to becoming two 8-bit words, it only takes one instruction cycle away
from the processor to move data onto and off the chip. Furthermore, the buffer register is
controlled from off-chip timing signals. Therefore, if the off-chip logic can operate at twice
the on-chip instruction speed, the 8-bit I/O inefficiency is removed. Read the detailed timing
information in the manufacturer's data book to determine the effect of the 8-bit interface.

The 8-bit interface is used because the family was designed to interface to 8-bit
microprocessor hosts. The 8-bit interface also slows the data I/O before and after the FFf
algorithm. However, the degree to which this affects overall FFf performance depends
on the speed of the off-chip data transfer, just as it was for off-chip data memory accesses
during the FFT computations.

14.3.7 NEe p,PD7701x Family

The 16-bit fixed-point NEC jlPD7701x family was developed for the digital cellular
and modem/fax telecommunications markets. However, the Programmable Fixed-Point
Chips Comparison Matrix (Section 14.4) shows it has good performance for FFf compu
tations. The members of this family are the jlPD77016 and jlPD77017 (see Figure 14-15)
[20].

On-Chip
Parallel
Address
Buses

Program

Data............_..•...........!-.._---_.

Off-Chip
Parallel
Address

Bus

On-Chip

Parallel
Data

Buses

Program

Data

Off-Chip
Parallel

Data
Bus

Program
Control

Multiplier
Accum.

&
ALU

Serial
Bus

Figure 14-15 NEC jlPD770lx family block diagram.

SEC. 14.3 PROGRAMMABLE FIXED-POINT CHIP FAMILIES 347

Serial Ports. Both the /LPD77016 and j1,PD77017 have dual serial ports. This
additional serial port provides the capability to interface these devices into linear bus,
pipeline, and ring bus architectures for multiprocessor applications (Section 14.2.9) without
having to use the parallel bus that may be addressing off-chip data or program memory.

Address Generators. Both devices have dual address generators that are very sim
ilar to Figure 14-2. However, they are directly connected to the two data RAM blocks rather
than to dual address buses because there is only one bus used for carrying address infor
mation' and it carries program memory addresses and other control data. The flexibility of
these address generators makes them useful for computing all of the algorithms in Chapters
8 and 9. For the standard power-of-two algorithms, both address generators have hardware
for performing bit-reversed addressing arithmetic.

Busesand Multiplexers. Both of the on-chip data memory buses are also available
outside the chip. This eliminates the need for the multiplexers shown in the block diagram.
Furthermore, the reduced number of on-chip buses (two for data and one for program
addressing) and multiple-address generators results in the address generators providing
their output directly to their respective memories.

Data Memory. Both devices have two data memories. Each data memory has
2048 sixteen-bit words of RAM. The j1,PD77017 also has 4096 words of data ROM in each
data memory. Therefore, both devices can compute a 1024-point FFT on-chip if all of the
multiplier and weighting function coefficients are stored in program memory. Even though
the on-chip data buses are not multiplexed to the outside of the chip, going off-chip for
data does slow down the computations. This is because the two off-chip data buses must be
used for both data and addressing. Therefore, only one data memory value can be accessed
during an instruction cycle, not two as can happen when the data is internal to the chip.

14.3.8 NEe J-LPD77220 Family

The key distinguishing characteristics of this family are that it uses 24-bit fixed-point
arithmetic rather than the 16 bits used by most fixed-point DSP chip families, and it has a
single main bus. The members of this family are jLPD77220 and j1,PD77P220 (see Figure
14-16) [18, 21]. This family is very similar to the /LPD77230 family of 32-bit floating-point
devices described in Section 14.5.6.

Buses and Multiplexers. The reduction to one main bus removes the need for
multiplexers on the data and address buses to go off-chip. Further, this bus reduction forces
several direct connections between functional blocks. Each of these is described below.
These connections offset the degradation in FFf performance associated with only having
one main bus.

DataMemory. This device has two 256-word data RAM blocks and one 1024-word
data ROM for storing multiplier constants and weighting function coefficients. Externally,
the device supports a 12-bit address word which corresponds to addressing 4096 data words.
This limits this device to performing 2048-point FFfs, even using off-chip memory. Using
on-chip memory with real and imaginary components in respective 256-word blocks of data
memory provides the capability to perform 256-point complex FFfs.

348 CHA~ 14 CHIPS

Off-Chip
Parallel

Data
Bus

Off-Chip
Parallel

~ Address
Bus

Program
Memory

Data

Program

Data
····_···_···_··4-·······_··~_···

Program ;
., - -··i···· --.·-t·· .-- "_ - j , -"-1On-Chip

Parallel
Data

Buses

On-Chip
Parallel
Address
Buses

Program
Control

Multiplier
Accum.

&
ALU

Serial
Bus

Figure 14-16 NEe j,tPD77220 family block diagram.

Data memory does not use the main bus to transfer data to the multiplier. Each data
RAM has its own direct path to the multiplier. However, the results from the multiplier or
accumulator are stored in data RAM using the main bus.

Address Generators. This device has an address generator for each of the data
RAMs to avoid having to use the main bus. These generators are simple base address
plus offset calculators that require the offset to be programmed into the instructions for
nonunit values. Therefore, they are not ideally suited for computing non-power-of-two
FFT algorithms.

14.3.9 Texas Instruments TMS320C1 x Family

The TMS320Clx is TI's first family of CMOS programmable DSP chips and is still
used for low-cost applications. It is a follow-on to the NMOS TMS3201 0 series intro
duced in 1982. The members of this family are TMS320CIO, TMS320C14, TMS320P14,
TMS320E14, TMS320C15, TMS320P15, TMS320E15, TMS320C16, TMS32OC17,
TMS320P17, and TMS320E17 (see Figure 14-17) [22]. The "E" indicates the presence of
on-chip EPROM for program memory, and the "P" indicates 3.3-V versions of the chip.

Serial I/O. The TMS320C14, TMS320P14, TMS320E14, TMS320C17,
TMS320P17, and TMS320E17 have one serial port, but the other members of this fam
ily do not have serial ports. This means that the only input path for data and output path
for results are through the parallel port. This is not a problem for applications where the

SEC. 14.3 PROGRAMMABLE FIXED-POINT CHIP FAMILIES 349

On-Chip
Parallel
Address
Buses

Program

Data
-! -.

Program
Memory

Off-Chip
Parallel
Address

Bus

On-Chip
Parallel

Data
Buses

Program

Data

Program
Control

Multiplier
Accum.

&
ALU

MUX

Off-Chip
Parallel

Data
Bus

Serial
Bus

Figure 14-17 Texas Instruments TMS320Clx family block diagram.

input comes from a data buffer and the outputs go to a data buffer. For applications where
the data I/O is asynchronous, overhead cycles are required to synchronize these DSP chips
with the source of data or destination of results. These overhead cycles reduce the effective
throughput rate of the chip.

The conversion of data to a linear form (frequency analysis with FFfs requires the
data to be in linear form) is called companding. The TMS320C17 and TMS320E17 have
companding hardware, which is an advantage in applications where the FFT is obtaining
its data from an AID converter or sending its results to a D/A converter. If the AID and
0/A converters are connected to networks such as the telephone system, the voltages they
convert may be logarithmically compressed by using either the A-law (European standard)
or fL-Iaw (U.S. standard).

If companding is performed in software, it takes several instruction cycles. If the
process takes 10 instruction cycles, the total data I/O time for an N -point complex FFT
increases from 4 *N to at least 10 *4 * N instruction cycles. Since the FFf takes roughly
5 *N *log, (N) instructions, an FFf will be I/O limited when 10*4 *N > 5*N *log, (N).
This occurs for N < 256 points. The companding hardware removes the need for these 10
cycles and allows the data I/O overhead to return to 1 cycle per word so that I/O limiting
only occurs for 2-point FFTs, based on the inequality.

Buses and Multiplexers. The data address bus is highlighted because it does not
exist in this family. This eliminates the need for the I/O multiplexer for on-chip address
buses. Additionally, the MAC is only connected to the data bus. To multiply numbers,

350 CHA~ 14 CHIPS

one cycle is used to load one number, the second cycle to load the other and perform the
multiplication. This two-cycle process, as opposed to one cycle for multiple-bus architec
tures, results in the significantly higher 1024-point FFT times shown in the Programmable
Fixed-Point Chips Comparison Matrix in Section 14.4.

Data Memory. There are only 256 words of data RAM in this family of devices.
Actually, the TMS320CI0 only has 144 data words. This limits the complex FFTs that can
be performed on-chip to 128 and 64 points, respectively. Therefore, the I024-point FFT
performance numbers in the Programmable Fixed-Point Chips Comparison Matrix (Section
14.4) already reflect the penalty paid for addressing off-chip data memory.

Address Generators. There are no special address generators for data memory in
this family. Nonsequential addressing is done by coding the instructions to perform indirect
addressing. This includes loading auxiliary registers with address offsets and loading data
page pointers because the data memory is partitioned into 128-word pages. Each of these
adds to the time required to perform an FFT.

14.3.10 Texas Instruments TMS320C2x Family

The TMS320C2x, a second generation of 16-bit fixed-point DSP chips, was intro
duced by TI in 1986 with the TMS32020. This device has subsequently been discontinued.
The members of this family are TMS320C25, TMS320E25, TMS320C26, and TMS320C28
(see Figure 14-18) [23]. The "E" indicates the presence of on-chip EPROM for program
memory.

On-Chip
Parallel
Address
Buses

Program

Data

Off-Chip
Parallel

MUX ...Address
Bus

On-Chip
Parallel

Data
Buses

Program

Data

Program
Control

Multiplier
Accum.

&
ALU

MUX
Off-Chip
Parallel

Data
Bus

Serial
Bus

Figure 14-18 Texas Instruments TMS320C2x family block diagram.

SEC. 14.3 PROGRAMMABLE FIXED-POINT CHIP FAMILIES 351

Address Generator. Like the TMS320CI0 family, this family has an increment
ing counter for program memory addressing and auxiliary registers to offset data memory
addresses. Data memory address generation operates by loading an offset into an auxil
iary register and moving the auxiliary register pointer to the correct register. Then indirect
address instructions address the offset data location. For power-of-two FFTs there is re
verse binary addressing supported in hardware to alleviate the problems associated with
nonsequential memory addressing. However, this support does not help the nonsequential
addressing needed for non-power-of-two algorithms. Therefore, they are less efficient on
this chip family than comparable power-of-two algorithms.

Data Memory. The TMS320C25/E25 and TMS320C28 members of this family
have 544 words of on-chip RAM that can be used for data. This means that the maximum
complex FFT that can be implemented on-chip is 256 points, assuming the multiplier coef
ficients and weighting function coefficients are stored in ROM/EPROM program memory.

The TMS320C26 has 1568 words of RAM. Of that, 32 words are dedicated to data
and the other 1536 words are in three 512-word blocks that can be used for either data or
program memory. This allows a 512-point complex power-of-two algorithm and roughly
a 768-point complex FFT if all weighting function and multiplier coefficients are stored in
program memory. Since 768 == 256 * 3, this FFT can be computed with existing mixed
radix 256-point code with the 3-point building block from Chapter 8 added to the front end
or back end of the algorithm.

In all cases, the l024-point FFT performance numbers in the Programmable Fixed
Point Chips Comparison Matrix (Section 14.4) reflect the data being in off-chip memory.
If multiplier and/or weighting function coefficients are stored in data memory, this further
reduces the maximum FFT length, depending on the required number of multiplier coeffi
cients. In this case, larger FFTs can be implemented using the Winograd and prime factor
algorithms from Chapters 8 and 9 because they require fewer multiplier coefficients and
have FFT lengths between 128 and the maximum on-chip FFT length of 256 points.

Program Memory. The TMS320C25/E25 family members have 4096 words of
ROM/EPROM dedicated to programs. Additionally, a 256-word block of RAM can be
used for either data or program memory. If it is used for program memory, the maximum
allowable on-chip FFT length is reduced. This leads to a complex trade because the Wino
grad and prime factor algorithms from Chapters 8 and 9 require fewer multiplier coefficients
but more program memory. Only detailed implementation can be used to determine the
maximum length in this situation. In the TMS320C26, the program ROM is a 256-word
boot program, and in the TMS320C28 the program memory is 8192 words.

14.3.11 Texas Instruments TMS320C5x Family

The TMS320C5x is the fifth family of programmable DSP chips introduced by TI
and the third 16-bit fixed-point family. The members of this family are TMS320C50,
TMS320C51, TMS320C52, and TMS320C53 (see Figure 14-19) [24]. For FFf computa
tions the primary differences between this family and the TMS320C2x family are instruction
cycle speed and more on-chip data and program memory to avoid off-chip accesses.

Address Generator. Like the TMS320CI0 family, this family has an increment
ing counter for program memory addressing and auxiliary registers to offset data memory

352 CHAR 14 CHIPS

On-Chip
Parallel
Address
Buses

On-Chip
Parallel

Data
Buses

Program

Data

Program

Data

Program
Control

Multiplier
Accum.

&
ALU

MUX

MUX

Off-Chip
Parallel
Address

Bus

Off-Chip
Parallel
Data
Bus

Serial
Bus

Figure 14-19 Texas Instruments TMS320C5x family block diagram.

addresses. Data memory address generation operates by loading an offset into an auxil
iary register and moving the auxiliary register pointer to the correct register. Then indirect
address instructions address the offset data location. For power-of-two FFfs there is re
verse binary addressing supported in hardware to alleviate the problems associated with
nonsequential memory addressing. However, this support does not help the nonsequential
addressing needed for non-power-of-two algorithms. Therefore, they are less efficient on
this chip family than comparable power-of-two algorithms.

Data Memory. All members of this family have 1056 words of on-chip RAM
dedicated to data. Additionally, the TMS320C50/51/52/53 have 9K/IK/IK/3K of on-chip
RAM, respectively, that can be used for either data or programs. As a result, all mem
bers of this family have the ability to compute 1024-point complex FFfs on-chip. The
TMS320C51 and TMS320C52 require the complex multiplier coefficients to be stored in
program memory to allow enough room for all 2048 data words. This, combined with the
faster instruction cycle times (35 and 50 ns versus 80 and 100 ns for the TMS320C2x fam
ily), are the reasons for the improved 1024-point FFf performance in the Programmable
Fixed-Point Comparison Matrix (Section 14.4).

Program Memory. The TMS320C50/51/52/53 have 2K/8K/4K/16K of on-chip
program ROM as well as 9K/IK/IK/3K of on-chip RAM that can be used for either data
or programs. If some of the RAM is used for program memory, the maximum allowable

SEC. 14.3 PROGRAMMABLE FIXED-POINT CHIP FAMILIES 353

on-chip FFT is reduced. This results in a complex trade because the Winograd and prime
factor algorithms from Chapters 8 and 9 require fewer multiplier coefficients but more
program memory. Only detailed implementation can used to determine the maximum
length in this situation.

Serial Ports. The TMS320C50/51/53 have dual serial ports. This additional serial
port provides the capability to interface these devices into linear bus, pipeline, and ring
bus architectures for multiprocessor applications (Section 14.2.9) without having to use the
parallel bus that may be addressing off-chip data or program memory. The TMS320C52
only has one serial port.

14.3.12 Zilog Z89Cxx Family

The Zilog Z89Cxx is a family of bare-bones 16-bit fixed-point processors. The most
distinguishing feature of this processor is that the accumulator holds only 24 bits out of
the 16 x 16 multiplier. This means that multiplier outputs are rounded from 32 bits to 24
bits prior to entering the accumulator. This introduces more quantization noise in the FFT
outputs than accumulators that hold 32 bits or more. The only general-purpose member of
this family is the Z89COO (see Figure 14-20) [25]. Other members are customized to audio
and multimedia applications.

Multiplexers and Serial I/O. This processor does not have a serial I/O function.
Additionally, the device has an off-chip program memory port and off-chip I/O port. Data

On-Chip
Parallel
Address
Buses

Program

Data

Off-Chip
Parallel
Address

Bus

On-Chip
Parallel

Data
Buses

Program

Data

Program
Control

Off-Chip
Parallel

Data
Bus

Serial
Bus

Figure 14-20 Zilog Z89Cxx family block diagram.

354 CHAP. 14 CHIPS

is input through the I/O port and no multiplexer exists because the program data bus is only
used to connect the program memory with the program control function. Likewise, there
is no multiplexer needed for the address buses because there is only one external address
bus. Data memory addresses are generated and directly connected to each of the two data
memories as shown in Figure 14-20.

Data Memory. The Z89COO has two 256-word data memories. Assuming all the
multiplier coefficients and weighting function coefficients can be stored in program memory,
this device can execute up to a 128-point FFT on-chip. Moving data from data memory to
the multiplier is simplified by having it directly connected to the two data memory blocks
as shown in Figure 14-20. This eliminates the need for two data buses in order to feed two
data words to the multiplier during one instruction.

Program Memory. This device has a 4K ROM internal program memory, but no
internal RAM for program memory.

Address Generators. Each data RAM has its own dedicated address generator that
is based on programming offset address pointers rather than having an ALU to compute the
offset address. This makes this device's address generation scheme similar to the first two
generations ofTI chips, the TMS320C1x and TMS320C2x.

Multiplier-Accumulator. The 16 x 16 multiplier output is 24 bits and is fed to an
ALU before going to the 24-bit accumulator. The output of the multiplier can also return
to data memory. The multiplier and ALU outputs are returned to data memory through the
chips' bus.

14.3.13 Zoran ZR38000 Family

This is the first family of fixed-point DSP chips to compute the 1024-point complex
FFf in less than 1 ms. A second distinguishing feature for FFf computations is that it
performs 20-bit, not 16-bit, integer arithmetic. These additional 4 bits reduce the algorithm
generated quantization noise by 12 dB and increase the dynamic range by 24 dB. Another
distinguishing feature for these fixed-point processors is the six half-duplex (three two
way) serial ports. The only member of this family is the ZR38000 (see Figure 14-21)
[26].

Data/Program Memory. This chip has 2048 twenty-bit words of data memory
and 8192 thirty-two-bit words of program/data ROM. Assuming all multiplier coefficients
and weighting function coefficients are stored in program/data ROM, a l024-point FFT
can be computed on-chip. Therefore, Equation 14-1 works for FFTs less than 1024 points
but not for those above 1024 points. However, the standard product only uses the ROM
for bootstrapping the loading of the main operating program. Therefore, the standard
product can only perform 512-point complex FFTs with on-chip data memory because
it needs the rest of the data memory to store multiplier and weighting function coeffi
cients.

Address Generator. This chip has only one address generator, and its output is
connected to the data memory address bus. However, this generator and the data memory

SEC. 14.4 PROGRAMMABLE FIXED-POINT CHIPSCOMPARISON MATRIX 355

On-Chip
Parallel
Address
Buses

On-Chip
Parallel

Data
Buses

Program

Data

Program

Data

Program
Control

Multiplier
Accum.

&
ALU

MUX

MUX

Off-Chip
Parallel
Address

Bus

Off-Chip
Parallel
Data
Bus

Serial
Bus

Figure 14-21 Zoran ZR38000 family block diagram.

are able to support the update of two data memory address locations per instruction cycle
and two accesses of data memory per instruction cycle. The address generator also has built
in hardware that supports bit-reversed addressing for the power-of-two FFI' algorithms in
Chapter 9. The generator also supports modulo addressing, which is useful in implementing
the non-power-of-two FFf algorithms in Chapter 9.

Serial I/O. This device has six half-duplex serial ports. Therefore, it has the capa
bility of moving data in and out of the processor as if there were three full-duplex serial
ports.

14.4 PROGRAMMABLE FIXED-POINT CHIPS COMPARISON
MATRIX

The data in the Comparison Matrix in Table 14-3, on page 354, comes from the referenced
vendor material. In the case of the 1024-point complex FFf performance, this is the fastest
number available in the material. Different versions of a l024-point FFI' may produce
slightly different performance numbers. Versions of the chips that run at slower speeds will
have times that are slower. Conversely, newer versions of these chips, which run faster, will
have faster times. Performance numbers with asterisks are estimated because times for the
I024-point FFT were not available from the vendor.

356 CHA~ 14 CHIPS

Table 14-3 Programmable Fixed-Point Chips Comparison Matrix

Fixed-point 1024-point Data I/O On-chip data On-chip prog. # of address
chip complex FFf (MS) ports memory words memory words generators

Analog Devices
ADSP-2100A 2.77 Os/lp 0 16384 2
ADSP-2101 1.73 2s/lp 1024 2048 2
ADSP-2103 3.40 2s/lp 1024 2048 2
ADSP-2105 2.49 ls/Ip 512 1024 2
ADSP-2111 1.73 2s/lp 1024 2048 2
ADSP-2115 1.73 2s/lp 512 1024 2
ADSP-216x 2.08 2s/lp 512 0 2
ADSP-2171 1.04 2s/lp 2048 2048 2
ADSP-2175 1.04 2s/1p 16384 16384 2
ADSP-21msp5xx 2.67 2s/lp 1024 2048 2
AT&T
DSP16 6.54* ls/2p 512 2048 2
DSP16A 2.97 Is/2p 2048 2048 2
DSP1610 2.97 2s/2p 8192 4096 2
DSP1616 2.38 2s/2p 2048 12288 2
DSP1617 2.38 2s/2p 4096 24576 2
DSP1618 2.38 2s/2p 4096 16384 2
Motorola
DSP56156 1.53 2s/1p 2048 2048 2
DSP56166 1.53 2s/lp 4096 2048 2
DSP56001 1.797 2s/1p 512 512 2
DSP56002 0.908 2s/1p 512 512 2
DSP56LOO2 1.497 2s/1p 512 512 2
DSP56004 1.497 2s/1p 512 512 2
NEe
ttPD77C20A 48.5* Is/Ip 256 2048 1
ttPD7720A 48.5* Is/lp 256 2048 I
ttPD77P20 48.5* Is/lp 256 2048 I
ttPD77C25 24.3* Is/lp 256 2048 1
ttPD77P25 24.3* Is/Ip 256 2048 1
ttPD77016 0.95 2s/1p 4096 1536 2
ttPD77220 8.5* Islip 512 2048 2
ttPD77P220 8.5* Is/Ip 512 2048 2
TI
TMS32OCIO 66.2 Os/lp 144 1536 1
TMS320C14 53.0 l s/Ip 256 4096 1
TMS32OCl5 66.2 Os/Ip 256 4096 I
TMS320C16 37.7 Os/Ip 256 8192 1
TMS32OC17 66.2 Islip 256 4096 I
TMS320C25 4.54 Is/Ip 544 4096 1
TMS32OC26 4.54 l s/Ip 1568 256 1
TMS320C28 5.67 Islip 544 8192 I
TMS320C50 2.40 2s/1p 10240 2048 I
TMS32OC51 2.40 2s/1p 2048 8192 I
TMS320C52 2.60* Islip 1024 4096 I
TMS32OC53 2.40 2s/lp 4096 16384 1
Zilog
Z89COO 3.16* Os/lp 512 4096 2
Zoran
ZR38000 0.88 6s/lp 2048 8192 1

* = estimated time; s = serial ports; p = parallel ports.

SEC. 14.5 PROGRAMMABLE FLOATING-POINT CHIPS 357

14.5 PROGRAMMABLE FLOATING-POINT CHIPS

All of the general-purpose floating-point DSP chips in this chapter use 32-bit arithmetic
with 8 bits of exponent and 24 bits of mantissa. In addition to these chips, the Intel i860 has
also been included. While this chip was initially developed for graphics applications, its
FFT performance is so good that it has been used by many DSP board manufacturers. The
i860 uses the same configuration of 32-bit floating-point numbers described above. The
way the different vendors treat the smallest and largest number varies slightly but has no
effect on the computational performance, except in rare instances when the top or bottom
numbers in the dynamic range are reached.

14.5.1 Analog Devices 21020 Family

The 21020 is Analog Devices first family of 32-bit floating-point processors. Its
most distinguishing feature is that it has no on-chip program or data memory. However,
the on-chip buses are designed to work at full speed with off-chip memory to produce
high-performance computing that does not depend on the inability to get large amounts of
memory on-chip. The only member of this family is the ADSP-21020 (see Figure 14-22)
[27].

On-Chip
Parallel
Address
Buses

On-Chip
Parallel

Data
Buses

Program

Data

Program

Data

Program
Control

Multiplier
Accum.

&
ALU

Off-Chip
Parallel
Address

Bus

Off-Chip
Parallel

Data
Bus

Serial
Bus

Figure 14-22 Analog Devices 21020 family block diagram.

Serial I/O. This device does not have a serial I/O port.

Multiplexers. This device does not use the MUX hardware because it provides I/O
pins for all four on-chip data and address buses.

358 CHAR 14 CHIPS

Data and Program Memory. This device does not have anyon-chip data or pro
gram memory. It is all accessed directly using off-chip memory. As a result, the FFf
performance numbers in the Programmable Floating-Point Chips Comparison Matrix (Sec
tion 14.7) can be scaled to estimate larger or smaller FFf computation times using Equation
14-1.

Address Generators. The ADSP-21020 has dual address generators. This max
imizes the ability to address both data and multiplier constants to feed to the MAC unit
on each instruction cycle. The flexibility of the address step sizes for these generators
also allows them to be easily used to generate non-power-of-two algorithms as well as
standard FFfs. Address generator 1 also has bit-reverse logic to accommodate standard
power-of-two algorithms.

Cache Memory. This device has a 48-word instruction cache memory to run fre
quently used instruction sequences without having to access off-chip program memory.
Building-block FFf algorithms can be executed from this memory. Because of the small
size, it is likely that only 2-, 3-, and possibly 4-point building blocks from Chapter 8 can be
programmed to fit in the cache.

14.5.2 Analog Devices ADSP·21060 Family

The ADSP-21060 is the second generation of Analog Devices programmable floating
point DSP chips. Its most distinguishing feature is its FFf performance, large on-chip RAM,
and six link ports for interfacing it into multiprocessor networks (see Figure 14-23). The
members of this family are ADSP-21060 and ADSP-21062 [28].

Program/Data Memory. The ADSP-21060 has 4 Mbits of dual-ported RAM, or
ganized as two 2-Mbit blocks for different combinations of data and program instructions.
Configured as 32-bit words, each block holds 65,536 words. This allows a 32,768-point
FFf to be performed using on-chip memory if all the multiplier coefficients and weighting
function coefficients are stored in one block and the data in the other. The multiple-bus
architecture allows both memories to be accessed in a single cycle for FFf arithmetic.

Address Generators. The ADSP-21060 has dual address generators. This max
imizes the ability to address both data and multiplier constants to feed to the MAC unit
on each instruction cycle. The flexibility of the address step sizes for these generators
also allows them to be easily used to generate non-power-of-two algorithms as well as
standard FFfs. Address generator 1 also has bit-reverse logic to accommodate standard
power-of-two algorithms.

Cache Memory. This device has a 48-word instruction cache memory to run fre
quently used instruction sequences without having to access off-chip program memory,
Building-block FFT algorithms can be executed from this memory. Because of the small
size, it is likely that only 2-, 3-, and possibly 4-point building blocks from Chapter 8 can be
programmed to fit in the cache.

Link and Serial Ports. The ADSP-21060 has two serial ports and six serial link
ports designed for interfacing to other ADSP-21060s to form multiprocessor architectures.
All eight of these inputs are interfaced to the main processor using I/O port (lOP) registers
and a DMA controller. The DMA controller allows data to move in through the link ports

SEC. 14.5 PROGRAMMABLE FLOATING-POINT CHIPS 359

On-Chip Program
Parallel -------~-r-------,----------__f

Address Data
Buses -----,.....--...,----+--+---+-------i~-_r_----__i

MUX

Off-Chip
Parallel
Address

Bus

On-Chip Program

Parallel
Data Data

Buses

MUX
Off-Chip
Parallel

Data
Bus

Program
Control

Multiplier
Accum.

&
ALU

•
•
•

Serial
Bus

Figure 14-23 Analog Devices 21060 family block diagram.

and to be stored either in on-chip RAM or in off-chip RAM via the interface multiplexers.
These six communications ports allow this device to be connected into a variety of one-,
two-, and three-dimensional architectures. The three-dimensional massively parallel pro
cessor example in Figure 14-6 is one example. Others are described in Chapter 11.

14.5.3 AT&T DSP32C Family

The DSP32C is AT&T's first CMOS family of 32-bit floating-point processors and
is a follow-on to their DSP32 introduced in 1984. The most distinguishing feature of this
family is that it operates like a Harvard architecture even though it is actually a VonNeumann
architecture. This is accomplished by allowing multiple uses of the data and program buses
during one instruction cycle. The members of this family are DSP32C, DSP3210, and
DSP3207 (see Figure 14-24) [29,30].

360 CHAR 14 CHIPS

On-Chip
Parallel
Address
Buses

On-Chip
Parallel
Data

Buses

Program

Data
" '.' .. " .. '~"."'.' .. '.'.' .. --" .. , .. , -_ .

~ ,

Program j
..__ -- - _-_ ..

Data

Program
Control

Off-Chip
Parallel
Address

Bus

Off-Chip
Parallel

Data
Bus

Serial
Bus

Figure 14-24 AT&TDSP32C family block diagram.

Buses and Multiplexers. This family's architecture uses only one data bus and
one address bus. Therefore, all functions must be connected to these, and there is no need
to multiplex multiple buses to access off-chip data and program memory. This high-speed
bus allows the device to access two 32-bit operands from memory, perform multiplication
and accumulation operations on a previous pair of operands, and write a previous result
to an I/O port or memory in one instruction cycle. Therefore, from the outside the device
appears to function like a Harvard architecture.

Address Generator. With only one address bus, there is only need for one ad
dress generator if it can produce the multiple addresses supportable by the address bus
during an instruction cycle. The address generator in this device family is capable of
that. Additionally, the address generator has an ALU that can be used to perform ad
dressing in nonunit increments. This makes it useful for implementing any of the FFf
algorithms in Chapter 9. However, the devices are more efficient for power-of-two FFf
algorithms because bit-reversed addressing is directly supported for reorganizing data for
these FFTs.

Data/Program Memory. The DSP32C supports one of two on-chip memory con
figurations that can be used for data or program. The first is 1024 words of RAM and
4096 words of ROM. The second is 1536 words of RAM. Therefore, the largest power
of-two complex FFf that can be executed on-chip is 512 points. The limit on the largest
non-power-of-two FFT is more difficult to calculate without getting an estimate on the com
plexity of the code that must be stored in on-chip memory. It is likely that code will need

SEC. 14.5 PROGRAMMABLE FLOATING-POINT CHIPS 361

to be written to determine the largest allowable FFT. For the 4096-word ROM option, the
answer is clearly 512 points, assuming all multiplier coefficients and weighting function
coefficients are stored in ROM.

The primary difference between the DSP32C and the DSP3210 for executing FFf
algorithms is the larger on-chip memory space. The DSP321 0 has two banks of 1024 words
of RAM and a small 256-word boot ROM. Program instructions and data can reside in any
of the 2048 RAM locations, and the boot ROM is preprogrammed to load the on-chip RAM
from off-chip EPROM for lower-cost operation. Again, the largest FFf depends on the
size of the FFT algorithm code, but will not be larger than 512 points for power-of-two
algorithms because the next largest size (1024 points) would not leave any room for the
FFT program code. The largest non-power-of-two algorithm depends on the size of its
code.

Serial I/O. All members of the device family, except the DSP3207 have one serial
I/O port. The DSP3207 has no serial ports.

Multiplier-Accumulator and ALU. Because there is only one data bus in this chip
family, all data must be moved sequentially. Since the data bus can support two of those
data accesses per instruction cycle, the MAC and ALU function can also support two inputs
during an instruction cycle. This makes the MAC/ALU unit appear as if it has two ports.

14.5.4 Intel i860 Family

This family of programmable 32-bit floating-point processors is not usually consid
ered a DSP chip. The family was initially targeted for engineering and three-dimensional
graphics workstations as well as numerical accelerators. However, DSP board manufactur
ers discovered that the devices had superior performance for FFT algorithms. The result
has been the widespread use of this chip family in high-speed DSP applications. The most
significant feature of this family for FFT algorithms is the multiple instruction and compu
tational functions that are pipelined for speed. While this increases the speed of the i860,
it makes it much more difficult to program in assembly language to take advantage of that
speed. The members of this family are i860XR and i860XP (see Figure 14-25) [31].

On-Chip Buses/Off-Chip Buses. The on-chip bus structure for the i860 family
is different from standard DSP chips. There are three data buses to and from the floating
point multiplier and adder units, rather than the one or two for more standard nsp chips.
Conversely, there is only one data bus from on-chip data memory to the floating-point
control unit. The off-chip address bus is highlighted because the i860 family only has this
as a unidirectional bus for addressing off-chip memory.

Bus Control Unit. Intel calls its interface to off-chip data memory the bus control
unit. The i860 family's single on-chip data bus architecture removes the need for the bus
control unit to perform the data bus MUX function found in conventional DSP chips for
off-chip data access.

Memory Management Unit/Address Generators. The memory management
unit performs the functions usually accomplished by the address generators in a conven
tional DS}' chip. This includes the addressing of external memory which removes the need
for the address bus MUX found in conventional chips.

362 CHAP. 14 CHIPS

On-Chip
Parallel
Address
Buses

Program

Data

Address
Gen.

Off-Chip
Parallel
Address

Bus

Serial
Bus

Program
Control

On-Chip Program
r---·····-·······,

Off-Chip
Parallel Parallel
Data Data

MUX :-----
Data

Buses Bus

Figure 14-25 Intel i860 family block diagram.

Floating-Point Control Unit, The floating-point control unit is also a different
feature of the i860 family. It provides an interface between the instruction and data memories
and the computational units. Conventional DSP chips directly connect the memories to the
computational units, as is shown in Figure 14-1.

Program/Data Memory. Both members of this family have on-chip data and pro
gram memory, called cache memory by Intel. Stored as 32-bit floating-point words, the
i860XR has 1024 words of data memory and the i860XP has 2048 words. Similarly, there
are 512 sixty-four-bit instructions that can be stored in the i860XR's on-chip instruction
cache and 1024 sixty-four-bit words in the i860XP. Assuming all multiplier and weighting
function coefficients can be stored in program memory, the i860XR can perform up to a
512-point complex FFT on-chip, and the i860XP can execute a 1024-point complex FFf
on-chip.

Serial I/O. This family does not have a serial I/O port.

SEC. 14.5 PROGRAMMABLE FLOATING-POINT CHIPS 363

Multiply Accumulator and ALU. The i860 family has a separate multiplier and
adder. Both are pipelined for maximum computation rate. This means that multiple cycles
are used to perform each arithmetic computation. Conventional DSP chips perform these
functions in one instruction cycle.

Graphics Unit. The i860 chip family was designed with built-in support for high
speed graphics. While this feature does not modify its capability to compute FFf algorithms,
it is a unique feature worth mentioning. Specifically, this hardware performs the integer
operations necessary for shading and hidden line removal. The 4 x 4 transforms needed
for orienting points are performed by the floating-point hardware.

14.5.5 Motorola DSP96002 Family

The DSP96002 is Motorola's first 32-bit floating-point family and is aimed at the
multimedia market. It is basically a 32-bit floating-point extension of the 24-bit fixed-point
DSP5600x family. Its most distinguishing features are the large number of on-chip buses,
dual parallel interfaces off the chip, and an arithmetic unit that has Newton-Raphson-based
square root and l/(square root) functions. The only member of this family is the 96002 (see
Figure 14-26) [32].

On-Chip Program
Parallel
Address Data--....- ...---....---..--.....*Buses

MUX

Off-Chip
Parallel
Address

Bus

Serial
Bus

Off-Chip
Parallel

Data
Bus

MUX

~
second

Parallel
Address Bus

~
second

Parallel
..----~- Data Bus

Program
Control

On-Chip Program
Parallel

Data Data
Buses

Figure 14-26 Motorola 96002 family block diagram.

Buses and Multiplexers. In addition to the buses in the Motorola DSP5600x ar
chitecture (three address and four data), the DSP96002 provides a DMA data bus. Another
feature of the DSP96002 is the dual parallel interfaces off the chip. This additional off-chip

364 CHAP. 14 CHIPS

parallel interface allows these devices to be connected into linear bus, pipeline, and ring
bus architectures for multiprocessor applications (Section 14.2.9) without having to use the
parallel bus that may be addressing off-chip data or program memory.

Data RAM and ROM. The DSP96002 has 1024 words of data RAM on-chip.
Therefore, the largest FFf that can be computed with on-chip memory is 512 points. The
performance numbers in the Programmable Floating-Point Chips Comparison Matrix (Sec
tion 14.7) already reflect the penalty paid for having to access off-chip data memory. Further,
the data RAM is divided into two 512-word memories called X-data memory and Y-data
memory. To accommodate these extra memories, there is an extra data memory bus and
extra data memory address bus.

Grouped with each of these 512-word RAMs is a 512-word ROM. The X-data
ROM contains a full cycle of the "cosine" function, and the Y-data ROM contains a
full cycle of the "sine" function to be used by power-of-two FFr algorithms directly as
the multiplier constants. Specifically, the 3600 phase angle is divided into 512 pieces.
These tables can also be used for non-power-of-two FFTs with the help of an interpola
tion algorithm. For example, to use the table for the 504-point mixed-radix algorithm,
3600 must be divided into 504 pieces, not 512. Therefore, the table entries cannot be
used directly. However, for each needed value, the two surrounding phase angle val
ues and a linear interpolation algorithm can be used to accurately compute the correct
value.

The coefficients in the X- and Y-dataROMs can also be used to compute the sine lobe,
Hanning, sine cubed, sine to the fourth, Hamming, Blackman, three-sample Blackman
Harris, and four-sample Blackman-Harris weighting functions in Sections 4.2.3 through
4.2.10. This removes the need to store weighting function coefficients if the chip's compu
tational power allows the weighting function coefficients to be computed as needed within
the required FFT computation time.

Address Generators. All of the members of this family have dual address gener
ators. This maximizes the ability to address both data and multiplier constants to feed to
the MAC unit on each instruction cycle. The flexibility of the address step sizes for these
generators also allows them to be easily used to generate non-power-of-two algorithms as
well as standard FFTs. Both address generators also have bit-reverse logic to accommodate
standard power-of-two algorithms.

Multiply Accumulator andALU. The ALU has a "divide and square root" unit that
uses the Newton-Raphson algorithm to compute the square root(x) and 1/(square root(x))
in 12 and 11 instruction cycles, respectively. This is not critical for FFT algorithms but can
accelerate an overall application.

14.5.6 NEe /LPD77240/230A Family

The JLPD77240/230A family of 32-bit floating-point chips from NEe has nearly the
same architecture as the JLPD77220 24-bit fixed-point series. The members of this family
are JLPD77240 and JLPD77230A (see Figure 14-27) [18].

Buses and Multiplexers. The reduction to one main bus removes the need for
multiplexers on the data and address buses in the standard DSP chip approach. Further, this
bus reduction forces several direct connections between functional blocks. Each of these is

SEC. 14.5 PROGRAMMABLE FLOATING-POINT CHIPS 365

On-Chip
Parallel
Address
Buses

Program

Data
i

Program
Memory

Off-Chip
Parallel
Address

Bus

On-Chip
Parallel

Data
Buses

Program

Data

Program
Control

Multiplier
Accum.

&
ALU

Off-Chip
Parallel

Data
Bus

Serial
Bus

Figure 14-27 NEe /-lPD77240/230A family block diagram.

described below. These connections offset the degradation in FFT performance associated
with having only one main bus.

Data Memory. Both devices have two 512-word data RAM blocks and the
/-lPD77230A has 1024- and 2048-word data ROMs for storing multiplier constants and
weighting function coefficients. Externally, both devices support a 12-bit address word
which corresponds to addressing 4096 data words. This limits them to performing 2048
point FFTs, even using off-chip memory. Using on-chip memory with real and imaginary
components in respective 512-word blocks of data memory provides the capability to per
form 512-point complex FFTs.

Data memory does not use the main bus to transfer data to the multiplier. Each data
RAM has its own direct path to the multiplier. However, the results from the multiplier or
accumulator are stored in data RAM using the main bus.

Address Generators. Both devices have an address generator for each of the data
RAMs to avoid having to use the main bus. These generators are simple base address
plus offset calculators that require the offset to be programmed into the instructions for
nonunit values. Therefore, they are not ideally suited for computing non-power-of-two
FFT algorithms.

14.5.7 Texas Instruments TMS320C3x Family

The TMS320C3x is TI's first generation of programmable 32-bit floating-point DSP
chips. The architecture of this chip family is more efficient for computing FFTs than the

366 CHA~ 14 CHIPS

earlier fixed-point generations primarily because of the additional buses that allow multiple
tasks to occur during the same instruction cycle. The primary distinguishing feature of
this device family is the multiple data and address ports. The members of this family are
TMS320C30 and TMS320C31 (see Figure 14-28) [33].

Expansion
~ Parallel

Address Bus

Expansion
Parallel
DataBus

Off-Chip
Parallel
Address

Bus

Off-Chip
Parallel

Data
Bus

Data

Data

Program

Program

On-Chip
Parallel
Address
Buses

On-Chip
Parallel

Data
Buses

Program
Control

Multiplier
Accum.

&
ALU

Serial
Bus

Figure 14-28 Texas Instruments TMS320C3x family block diagram.

Buses and Multiplexers. The large number of on-chip buses is a primary charac
teristic of this family. There are four on-chip data buses and three on-chip address buses,
which make it possible to access multiple pieces of data during one instruction cycle. This
improves the perfonnance of this TI family over the TMS320Clx and TMS320C2x fixed
point families, which only access one data word per instruction cycle. Additionally, the
on-chip buses are multiplexed off the chip twice. The additional off-chip parallel interface
allows these devices to be connected into linear bus, pipeline, and ring bus architectures for
multiprocessor applications without having to use the parallel bus that may be addressing
off-chip data or program memory.

Data/Program Memory. This family has two 1024-word RAMs and one 4096
word ROM. Each RAM and ROM can support two memory accesses each instruction
cycle, and the multiple buses allow for parallel program fetches, data reads/writes, and
DMA operations. Additionally, a 64-word instruction cache is provided to store often used
pieces of code so that they need not be stored off-chip to slow down execution. If all
multiplier constants and weighting function coefficients are stored in program ROM, this
chip family can be used to compute up to a 1024-point complex FFT on-chip.

SEC. 14.5 PROGRAMMABLE FLOATING-POINT CHIPS 367

Address Generators. This is the first generation of TI DSP chips to have a full
function address generator. This family has two that can do addressing in nonunit steps to
support non-power-of-two FFf algorithms. They can compute two addresses per instruction
cycle to address two pieces of data using two of the four data buses. The address generators
also support bit-reversed addressing for power-of-two FFf algorithms.

Serial I/O. The TMS320C30 has two serial I/O ports. This additional serial port
provides the capability to interface these devices into linear bus, pipeline, and ring bus
architectures for multiprocessor applications (Section 14.2.9) without having to use the
parallel bus that may be addressing off-chip data or program memory. The TMS320C31
only has one serial port.

Another fundamental difference of this family architecture is that the serial ports
interface to the expansion I/O buses rather than directly to the on-chip buses. The advantage
of this is allowing the serial data port to interface directly to all of the on-chip data buses.
The disadvantage of this is that the serial port data cannot beinput to the on-chip data buses
while the expansion I/O bus is active to some other peripheral. If the serial port were tied to
one of the on-chip data buses, it could be active while the expansion I/O bus was connected
to one of the other on-chip data buses.

14.5.8 Texas Instruments TMS320C40 Family

The TMS320C40 is the second generation of 32-bit floating-point chips from TI.
The primary distinguishing feature of this family is the six serial ports designed to support
using this device in large multiprocessor arrays without significant overhead penalties for
the central processing unit. The first member of this family is the TMS320C40 (see Figure
14-29) [34].

Busesand Multiplexers. The large number of on-chip buses is a primary charac
teristic of this device. There are four on-chip data buses and three on-chip address buses,
which make it possible to access multiple pieces of data during one instruction cycle. This
improves the performance of this TI family over the previous TI fixed-point families that
could only access one data word per instruction cycle. Additionally, the on-chip buses
are multiplexed off the chip twice. The additional off-chip parallel interface allows these
devices to be connected into linear bus, pipeline, and ring bus architectures for multipro
cessor applications without having to use the parallel bus that may be addressing off-chip
data or program memory. However, the intent is to interface to additional peripheral de
vices and let the communication (Comm) ports interface into the larger array of similar
processors.

The multiplexer that connects the six communications ports to the on-chip address
buses also includes a DMA controller to move data directly into on-chip memory. The
connection from that MUX to the data address bus provides the addressing information,
and the connection to the data bus provides the data bus interface.

Data/Program Memory. This family has two 1024-word RAMs and one 4096
word ROM. Each RAM and ROM can support two memory accesses each instruction cy
cle, and the multiple buses allow for parallel program fetches, data reads/writes, and DMA
operations. Additionally, a 64-word instruction cache is provided to store often used pieces
of code so that they need not be stored off-chip to slow down execution. If all multiplier

368 CHA~ 14 CHIPS

On-Chip Program
Parallel

Data Data
Buses

On-Chip
Parallel
Address
Buses

Program

Data

Program
Control

Multiplier
Accum.

&
ALU

Off-Chip
Parallel
Address

Bus

Expansion
Parallel

Address Bus

Expansion
Parallel

Data Bus

Off-Chip
Parallel

Data
Bus

Serial
Bus #1

Serial
Bus #6

Figure 14-29 Texas Instruments TMS320C40 family block diagram.

constants and weighting function coefficients are stored in program ROM, this chip family
can be used to compute up to a l024-point complex FFT on-chip.

Address Generators. This is the second generation of TI DSP chips to have a
full-function address generator. This family has two that can do addressing in nonunit
steps to support non-power-of-two FFT algorithms. They can compute two addresses per
instruction cycle to address two pieces of data using two of the four data buses. The address
generators also support bit-reversed addressing.

Serial I/O (Comm Ports 1-6). .The TMS320C40 has six serial I/O ports, which
are called communications ports. These ports are independently multiplexed into the on
chip buses to provide full bus utilization flexibility. These six communications ports allow
this device to beconnected into one-, two-, and three-dimensional architectures. The three
dimensional architecture in Section 12.6.2 shows one option.

SEC. 14.7 FFT-SPECIFIC CHIPS AND CHIP SETS 369

14.6 PROGRAMMABLE FLOATING-POINT CHIPS
COMPARISON MATRIX

The data in the Comparison Matrix in Table 14-4 comes from the referenced vendor material.
For the 1024-point complex FFT performance, this is the fastest number available in the
referenced material. Different versions of a 1024-point FFT may produce slightly different
performance numbers. Versions of the chips that run at slower speeds will have times that
are slower. Conversely, newer versions of these chips, which run faster, will have faster
times. Finally, some of the entries in the on-chip memory columns have two numbers. This
means there are two versions of the chip available.

Table 14-4 Programmable Floating-Point Chips Comparison Matrix

Floating-point 1024-point Data I/O On-chip data On-chip prog. # of address

chip complex FFf (MS) ports memory words memory words generators

Analog Devices

ADSP-21020 0.58 Os/2p 0 0 2

ADSP-21060 0.46 8s/1p 65,536 65,536 2

AT&T

DSP32C 3.2 ls/Ip 1024/1536 4096/0 1
DSP3210 2.4 islip 1024/2048 1024/256 I

DSP3207 1.9 Os/Ip 1024/2048 1024/256 1

Intel

i860XR 0.74 Os/lp 1024 256 1

i860XP 0.55 Os/lp 2048 1024 1

Motorola

DSP96002 1.04 Os/2p 1024 1024 2

NEe
IlPD77240 7.07 ls/Ip 1024 0 2

IlPD77230A 11.78 Is/lp 1024 1024/2048 2

TI

TMS320C30 1.97 2s/2p 2048 4096 2

TMS320C31 1.97 Is/2p 2048 4096 2
TMS320C40 1.54 6s/2p 2048 4096 2

s = serial ports; p = parallel ports

14.7 FFT-SPECIFIC CHIPS AND CHIP SETS

Several dedicated chips and chip sets have been developed to compute power-of-two FFTs.
These chips also can be programmed to perform linear filtering and pattern matching in
the frequency domain using the algorithms described in Chapter 6. Because these chips
are dedicated to computing FFTs, they are 5 to 10 times faster at computing FFTs than
are programmable DSP chips. Additionally, they can be combined, using the architectural
approaches described in Chapter 11, to perform FFTs at even higher rates.

The primary features of these chip sets are their raw FFT computation performance,
the building blocks they offer, and the largest FFT that can be performed by a single chip/chip

370 CHA~ 14 CHIPS

set. Since these chips are designed to perform FFfs, it is more relevant to show block
diagrams of how the chips are connected to off-chip memory and address controllers than
to show the internal block diagram of the chip. These block diagrams can then be combined
to form the multiprocessor architectures in Chapter 11. Refer to the manufacturer's data
books and application notes for details on the limitations of each chip for multiprocessor
operation.

The primary disadvantage of these chips is they are not designed to perform general
purpose functions, such as user interface and decision making, often required to complete
an application. A second disadvantage is that these chips can only perform power-of-two
FFfs. However, for the Bluestein algorithm in Section 9.5, these chip/chip sets can be
used to perform non-power-of-two algorithms by customizing the complex multiplications
to the transform length of interest by using the Bluestein approach. While this approach
is less efficient than power-of-two algorithms with these chips, they do perform those
algorithms 5 to 10 times faster than programmable DSP chips. Therefore, even a factor
of 2 or 3 inefficiency still results in higher-speed computations than can be obtained from
programmable DSP chips. For some applications this can be the difference in success or
failure.

Because these chips are specifically designed to perform FFfs, their performance can
be measured by using more FFT specific items. These are:

1. 1024-point complex FFT performance (J,Ls)
This is the same as the first performance measure for the programmable DSP chips.

2. Programmed FFT building blocks
This performance measure is the list of FFf building blocks that have code built
into the chip.

3. Largest complex FFf size
This is the largest complex FFT length that can be programmed into the chip.

4. Number of block-floating-point mantissa bits
This is the number of mantissa bits built-in to the arithmetic units of each chip.
All of these chips use the block-floating-point arithmetic format (Chapter 13).

14.7.1 Array Microsystems a66110/66210 Chip Set

The array Microsystems a66110/66210 chip set [35] is designed to perform real and
complex FFfs, IFFfs, as well as linear filtering and pattern matching in the time and
frequency domains. The chip has radix-2 and -4 FFf building-block instructions that are
connected using the mixed power-of-primes algorithm from Chapter 9 to implement up to
a 65,536-point complex FFf. The chip uses both the Two-Signal Algorithm and Double
Length Algorithm from Chapter 2 to compute FFTs of real input data. It uses the Overlap
and-Add Algorithm from Chapter 6 for performing linear filtering and pattern matching in
the frequency domain. All arithmetic is 16-bit mantissa block-floating-point.

Figure 14-30 is a block diagram of one of several ways to interface this chip set with
data memory and algorithm control logic. In addition to the a66110 (269 pins), the address
generator function is also provided as a chip and is called the a66210 (180 pins). Array
Microsystems also provides a reduced pinout version of this chip set (a66111/a66211), each
having 144 pins. The primary distinguishing feature of this chip set is that it performs FFfs
up to 65,536 points.

SEC. 14.7 FFT-SPECIFIC CHIPS AND CHIP SETS 371

Re~~ R~M r a66110

Real
01 03 .,

Input ~ OutputRAM
~

2

FFT Processor

Imagi~
RAM

~3
Imaginary

02 04 •
Input ~ RAM

~
Output

4 X01 X02

To
RAMs
1&3

To
RAMs

2&4

RAM
#9

Cosine Terms

RAM
#10

SineTerms

To
RAMs
5&7

To
RAMs
6&8

AORB

ADRA

ADRX

FFTController

ADRC

ADRD

a6621 0

Figure 14-30 Array Microsystems a66110/66210 chip set block dia
gram.

The operational strategy for the configuration in Figure 14-30 is to start by loading
a set of data into RAMs 1 and 3. Then, that set of data is moved through the processor to
output RAMs 5 and 7 while the first stage of FFf computations is performed. Then, these
intermediate results are passed back through the processor to RAMs 1 and 3 to perform the
second stage of the algorithm. This process continues until the final computations result in
the output frequency components being in RAMs 5 and 7.

During each pass, the appropriate complex multiplier coefficients are addressed from
RAMs 9 and 10 to satisfy the mixed-radix algorithm. During the first stage, these coeffi
cients can be the weighting function. This capability is also used during frequency-domain
filtering/pattern matching to input the needed complex filter coefficients between the input
FFf and output inverse FFf. The chip supports both 25% and 50% overlapped data sets, as
explained in Chapter 6.

372 CHA~ 14 CHIPS

While the first FFf is being computed, the next set of data to be transformed is being
loaded into RAMs 2 and 4. After the first set of data is transformed, RAMs 2 and 4 become
the input, and RAMs 6 and 8 work with those RAMs to produce the next set of outputs. At
the same time, the controller addresses RAMs 5 and 7 to output the results of the previous
FFf. This architecture allows data to be continuously input and the results to be output
while computations are performed. It also allows the input and output data clocks to work
at a different rate than the processing clock, as long as the data is loaded and output before
the end of the present FFf computation.

For computing Fl-Ts of real data, the processor has instructions that support both
types of data reorganization described in Chapter 6. However, the data must be input in
the proper form for the transform to work. Once that has occurred, an output instruction
performs the necessary unraveling of the data.

A subtle point with this chip set is that an odd number of FFf stages is required to
have the output in the memories on the right side of Figure 14-30 (RAMs 5-8). This means
that if 2-point stages are being used, 128-, 512-, 2048- ... point transforms have the best
performance. To get a 1024-point FFf to the output RAMs requires an extra pass of data
through the processor if 2-point stages are used. Since 4-point stages are also available,
they should be used for 64-, 1024-, and 4096-point FFfs to have an odd number of stages.

14.7.2 Sharp LH9124/LH9320 Chip Set

The Sharp chip set [36] is designed to perform real and complex FFTs, and IFFfs, as
well as linear filtering and pattern matching in the time and frequency domains. The chip
has radix-2, -4, and -16 FFf building-block instructions that are connected by using the
mixed power-of-two algorithm from Chapter 9 to implement up to a 4096-point complex
FFf. The chip uses the Two-Signal Algorithm from Chapter 2 to compute FFfs of real
input data and the Overlap-and-Add Algorithm from Chapter 6 (called overlap and discard
in the Sharp application notes) for performing linear filtering and pattern matching in the
frequency domain.

Figure 14-31 is a block diagram of how to interface this chip set with data memory and
algorithm control logic for the most efficient execution of FFT algorithms. In addition to
the LH9124, the address generator function is also provided as a chip by Sharp and is called
their LH9320. The primary distinguishing feature of this chip set is that it performs FFTs
using 24-bit block-floating-point arithmetic. This makes the random quantization noise
at the output of the FFf computation 8 bits less than using a 16-bit block-floating-point
processor. This allows frequency components that are 24 dB lower to become visible above
quantization noise.

In Figure 14-31, the Q-port is used to input data and to output results from the
processor. The C-port is used to provide weighting function coefficients, complex multiplier
coefficients, and frequency-domain linear filter/pattern matching coefficients. This allows
any weighting function or filter coefficients to be used by the processor.

The A- and B-ports are used to store intermediate results during the various stages of
the computations. If data is stored in the RAM connected to data port A, then the next step
is to pass that data into the processor to execute the next stage of the FFT algorithm and
store the results in the data RAM connected to port B. The opposite process occurs at the
next stage of computations.

SEC. 14.7 FFT-SPECIFIC CHIPS AND CHIP SETS 373

Address

Generator

RAM RAM
Real 110

Data Data
~ Imaginary I/O

OR 01
Data

AR BR
Data

RAM RAM

Address Address

Generator
LH9124

Generator

Data
AI BI

Data

RAM RAM
CR CI

Data Data

RAM RAM

Address

Generator

Figure 14-31 Full-speed single LH9124 FFT implementation block di
agram.

Unlike the array Microsystems chip set, either intermediate RAM can feed data to
the output. However, the same data RAM is used for both input and output data, as shown
in Figure 14-31. This requires more coordination between the input of data and the output
of results than is required by the array Microsystems chip set.

14.7.3 Raytheon TMC2310 Chip

The Raytheon TMC2310 chip [37J is designed to perform real and complex FFTs,
and IFFTs, and linear filtering and pattern matching in the time domain. The chip has
radix-2 FFT building-block instructions that are connected using the primes-to-a-power
algorithm from Chapter 9 to implement 16-, 32-, 64-, 128-, 256-, 512-, and 1024-point

374 CHA~ 14 CHIPS

real or complex FFTs. The chip does not support sequencing for executing real FFfs or
linear filtering in the frequency domain. However, both real FFT algorithms from Chap
ter 2 and frequency-domain filtering/pattern matching algorithms from Chapter 6 can be
implemented with off-chip logic because the chip does support complex and real multipli
cation.

Figure 14-32 is a block diagram of how to interface this FFf chip with data memory
and algorithm control logic. The primary distinguishing features of this chip is that it can
compute all power-of-two FFfs from 16 to 1024 points and has the complex multiplier
coefficients for these algorithms stored in an on-chip ROM. Its 16-bit block-Boating-point
arithmetic provides better quantization noise performance than 16-bit fixed-point proces
sors, and its off-chip weighting function RAM allows any weighting function or complex
filter coefficients to be implemented.

Real
Data
I/O

Real Weighting Imaginary
Data ..- Function Data ~
RAM RAM RAM

!
RE WIN 1M

TMC2310 RIW

Address

Imaginary
Data
I/O

Figure 14-32 Hardware block diagram for computing FFfs using the
TMC2310.

14.7.4 Plessey Semiconductor PDSP16510Chip

The Plessey PDSP16510 [38] performs the radix-4 mixed-radix FFf and IFFf algo
rithms on real or complex data of 256 or 1024 points. The device can also compute sixteen
16-point or four 64-point FFfs. All of the computations are performed with block-Boating
point arithmetic with 16-bit mantissas. The internal organization of the chip allows it to
simultaneously input new data, transform the previous input data set, and output the results
from the data set prior to the one being transformed.

Figure 14-33 is a block diagram of how to interface this FFf chip with data memory
and algorithm control logic. The primary distinguishing features of this chip are that it
has the complex multipliers for up to a 256-point FFf stored in on-chip ROM and either
Hamming or Blackman-Harris (67-dB version) weighting functions (Sections 4.2.7 and
4.2.9b) can be applied to the input data by the chip because they are also stored inside.

SEC. 14.8 FFT-SPECIFIC CHIP AND CHIP SET COMPARISON MATRIX 375

Real
Input

Imaginary
Input

----.... Aux Rout~
Complex

PDSP16510Multiplier
-----.. D lout~

~

Weighting
Function Control
Memory Counter

Real
Output

Imaginary
Output

Figure 14-33 Arbitrary weighting or frequency-domain filtering/
pattern matching block diagram.

If another weighting function is required, it must be applied before inputting the data
to the chip. Similarly, if the device is to be used to perform linear filtering or pattern
matching in the frequency domain, an off-chip complex multiplier must be connected as
shown in Figure 14-33. No off-chip data memory is needed up to 256-point FFfs. Figure
14-34 shows the configuration required for 1024-point FFTs. Plessey makes a companion
chip (PDSP16540) to perform the needed data memory addressing function, including the
address and clock timing interfaces.

Real
Input

Imaginary
Input

Aux Rout r--.
Complex

PDSP16510
Data Memory

D lout ~

Real
Output

Imaginary
Output

Figure 14-34 Off-chip buffer configuration for 1024-point FFTs.

14.8 FFT-SPECIFIC CHIP AND CHIP SET COMPARISON
MATRIX

The data in the Comparison Matrix in Table 14-5 comes from the referenced vendor material.
For the 1024-point complex FFT performance, this is the fastest number available in the
referenced material. Different versions of a 1024-point FFI' may produce slightly different
performance numbers. Versions of the chips that run at slower speeds will have times that
are slower. Conversely, newer versions of these chips, which run faster, will have faster
times.

376 CHAR 14 CHIPS

Table 14-5 FFT-Specific Chip and Chip Set Comparison Matrix

1024-point # of block
FFT-specific complex FFT Programmed FFT Largest floating-point

chip/set JLS building blocks complex FFT mantissa bits

array Microsystems
a66110/a6621 0 131 2 and 4 points 65,536 16
a66111/a66211 131 2 and 4 points 65,536 16

Sharp Electronics
LH9124/LH9320 87 2, 4, and 16 points 4,096 24

LH9124L/LH9320 129 2, 4 and 16 points 4,096 24

Raytheon
TMC2310 514 2 point 1,024 16

PIessey
PDSP16510 96 4 point 1,024 16

14.9 APPLICATION-SPECIFIC INTEGRATED CIRCUITS

Application-specific integrated circuits (ASICs), with programmable DSP processors as
building blocks, are a recent addition to the DSP market. Once these processors are pro
vided as an ASIC building block, the data I/O, control, and synchronization functions
can be added to develop efficient DSP applications on a single chip. The front-end de
sign of these chips generally costs more than designing a board with the equivalent func
tions. However, the resulting product will require less power and board area and often
run faster because the I/O from the DSP building block to peripheral devices is inside the
chip.

14.9.1 DSP Semiconductor Pine/Oak Core Family

DSP Semiconductor is a DSP system design house that licenses its own fixed-point
DSP core for ASIC products. The members of this family are Pine DSP core and Oak nsp
core (see Figure 14-35) [39].

Serial Ports. This family contains the basic nsp core without serial ports because
it is a core for an ASIC chip.

Multiplexer. This family does not multiplex its on-chip data and address buses off
the chip because these devices are nsp core designs to be integrated into a larger device on
a single chip.

Address Generators. All of the members of this family have dual address gener
ators. This maximizes the ability to address both data and multiplier constants to feed to
the MAC unit on each instruction cycle. The flexibility of the address step sizes for these
generators also allows them to be easily used to generate non-power-of-two algorithms as
well as standard FFTs.

Data Memory. Both of the members of this family have from a minimum of 144
words up to 2048 words of data RAM. This allows them to compute up to a 1024-point

SEC. 14.10 ASIC PROGRAMMABLE DSP CHIP CORES COMPARISON MATRIX 377

On-Chip
Parallel
Address
Buses

On-Chip
Parallel

Data
Buses

Program

Data

Program

Data

Program
Control

Program
Memory

Multiplier
Accum.

&
ALU

Off-Chip
Parallel
Address

Bus

Off-Chip
Parallel

Data
Bus

Serial
Bus

Figure 14-35 DSP Semiconductor pine core family block diagram.

complex FFT without adding data memory to the ASIC design. Program memory must be
added to store the algorithm code and the multiplier constants.

14.10 ASIC PROGRAMMABLE DSP CHIP CORES
COMPARISON MATRIX

The data in the Comparison Matrix in Table 14-6 comes from the referenced vendor material.
For the 1024-point complex FFT performance, this is the fastest number available in the
referenced material. Different versions of a l024-point FFf may produce slightly different
performance numbers. Versions of the chips that run at slower speeds will have times that
are slower. Conversely, newer versions of these chips, which run faster, will have faster
times.

Table 14-6 ASIC Programmable DSP Chip Cores Comparison Matrix

ASIC programmable lO24-point Data I/O On-chip data On-chip prog. # of address

DSP chip core complex FFf (MS) ports memory words memory words generators

DSP Semiconductor

Pine core 2.2 Os/Op 2048 0 2

Oak core 2.2 Os/Op 2048 0 2

s == serial port; p == parallel port.

378 CHA~ 14 CHIPS

14.11 MULTIPLE PROCESSORS ON A SINGLE CHIP

Another new trend in programmable DSP chips is to have multiple processors on a single
chip. Choosing one of these chips implies understanding not only the performance of the
individual processors but also their interconnection architecture. For this reason this section
first presents the top-level processor interconnection architecture for each chip family and
describes its operation. This is followed by a block diagram of the individual processors
that are integrated onto the chip. In each case these processors are Harvard architectures
that work much like the generic DSP chip block diagram in Figure 14-1.

14.11.1 Star Semiconductor SPROC-1000 Family

The SPROC-IOOO family [40] of 24-bit fixed-point DSP chips has a multiprocessor
architecture fed by a single program RAM and a single data RAM. The members of this
family are SPROC1400, SPROC1200, and SPROC1210. Figure 14-36 is a block diagram
of the SPROC1400. The SPROC1200/1210 chips have the same block diagram except
they have two, rather than four, general signal processors. A block diagram of the general
signal processors is shown in Figure 14-37. The overall chip architecture is described first,
followed by a description of the general-purpose DSP.

Program Memory Bus

General
Signal

Processor 1

General
Signal

Processor 2

General
Signal

Processor 3

General
Signal

Processor 4

DataMemoryBus

Data

Address

Data I/O

Program
1/0

Figure 14-36 Star Semiconductor SPROC-1400 family block diagram.

SEC. 14.11

FromfTo
DataBus

MULTIPLE PROCESSORS ON A SINGLE CHIP 379

To Program
Address Bus

FromfTo To Data
DataBus Address Bus

Figure 14-37 Star Semiconductor general signal processor block dia
gram.

The multiprocessor architecture is similar to the linear bus described in Section 11.2.2
with multiple processors and data memory on the bus. Star Semiconductor has devised a
unique time-division-multiplexing scheme to remove the complexity of the four (two for
the SPROCI200/1210) processors trying to access the data memory from the same bus. For
example, the program memory bus has a five-cycle sequence. Each of the four processors
is assigned to use the bus during one of the five cycles, and the fifth cycle is for data I/O.
The same is true of the data memory bus.

Each of the four general-purpose DSPs has a five-stage pipeline processing cycle to
match the five-cycle bus multiplexing scheme. By time-multiplexing the program and data
accesses of each processor, all five can be kept busy without causing bus contention. Each
processor has its own 24-bit fixed-point MAC (multiply-accumulator; Figure 14-37).

The building-block form of FFf algorithms matches well with this architecture. At a
top level, consider the implementation of a 256-point radix-4 FFf algorithm. The algorithm
has four stages, and at each stage it requires 64 four-point FFf computations. One strategy
for performing this algorithm on the SPROC 1400 is to allocate 16 of the 64 four-point FFrs
at each stage to one of the four processors. Since each 4-point building block is identical,
each processor has the exact same code to execute and therefore finishes its portion of each
stage at the same time.

This approach also makes this architecture good for computing the Winograd, prime
factor, or mixed-radix algorithms from Chapter 9. For example, consider the 3*5 *8 = 120
point prime factor algorithm. The 3-point stage requires computing 120/3 = 40 three-point

380 CHAP. 14 CHIPS

building blocks. For the SPROC1400 this means each processor performs 10 three-point
FFfs. The 5-point stage requires computing 120/5 = 24 five-point building blocks. For
the SPROC1400 this means each processor performs 6 five-point FFTs. Finally, the eight
point stage requires 120/8 = 15 eight-point building-block computations. For this stage,
three of the four processors compute 4 eight-point FFfs and one only computes three. The
single central data RAM makes accessing the proper inputs for each of these building-block
computations straightforward.

At first glance, having all the processors repeat the same algorithm causes lost cycles,
while each processor waits for its turn to obtain input data and output results. In reality, the
solution is simple. At the end of the first time the processors finish a block of algorithm
code, the processors send results out in sequence and receive new data in sequence. From
that point on, the processors are out of synchronization by one, two, three, and four clocks
and therefore have outputs available, in time sequence, so that processor cycles are not
lost.

Serial I/O. All members of this family have two serial input ports and two serial
output ports. This additional serial port provides capability to interface these devices into
linear bus, pipeline, and ring bus architectures for multiprocessor applications (Section
14.2.9) without having to use the parallel bus that may be addressing off-chip data or
program memory.

Program RAM. The SPROC1200 and SPROC1210 have 512 words of program
RAM, and the SPROC1400 has 1024 words of program RAM.

Data RAM. The SPROC1200 and SPROC1210 have 512 twenty-four-bit words
of data RAM, and the SPROC1400 has 1024 twenty-four-bit words of data RAM. This
limits the complex FFfs that can be performed on-chip to 256 and 512 points, respec
tively. Therefore, the 1024-point FFT performance numbers in the Multiple Processor
Programmable DSP Chips Comparison Matrix (Section 14.12) already reflect the penalty
paid for addressing off-chip data memory.

BootROM. Boot ROM is additional on-chip memory to allow the on-chip program
RAM to be loaded during the power-up phase of the application's operation from a low-speed
24-bit-wide EPROM to lower the cost of the overall application. It also allows multiple
programs to be swapped in and out of the on-chip program memory without having to store
them in high-speed off-chip program RAM.

Multiply-Accumulator (MAC) andArithmetic LogicUnit (ALU). Unlike the gen
eric programmable DSP chip block diagram (Figure 14-1), the MAC and ALU in this
architecture have only one bus to input data and output results. This is not a problem
for computing FFTs because the multiply-accumulate function takes three clock cycles to
implement, not one cycle like the generic programmable DSP chip, and a data interface
with the main chip architecture can only occur every five cycles.

Address Generators. Each general signal processor has two address generators.
One handles program memory addressing and one handles data memory addressing. These
generators are capable of direct and indexed addressing needed to implement the FFf
algorithms in Chapters 8 and 9.

SEC. 14.11 MULTIPLE PROCESSORS ON A SINGLE CHIP 381

Program Control. Program control logic controls the sequencing of the various
functions in the general signal processor, such as address generation and the three steps in
each multiply computation.

14.11.2 Texas Instruments TMS320C8x Family

The TMS320C8x is the first programmable DSP chip to have four DSP blocks con
nected by a crossbar switch and controlled by a RISC floating-point processor. The first
block diagram, Figure 14-38, shows how the four processors are interconnected with each
other and on-chip memory. The second block diagram, Figure 14-39, shows the internal
architecture of the programmable DSP blocks. The only member of this family is the
TMS320C80 [41].

Fixed-Point
DSP 1

Fixed-Point
DSP 2

Fixed-Point
DSP 3

Fixed-Point
DSP 4

CrossbarSwitch

• • • • •
Figure 14-38 High-level block diagram ofTMS320C80 family.

Each fixed-point DSP has a 16 x 16 fixed-point multiplier, so it is a 16-bit fixed-point
processor, and the processor to memory buses are configured as 16 bits. Section 12.5.1
provides a detailed look at the pros and cons of implementing FFT algorithms on a crossbar
architecture. The building-block form of FFTs matches well with this architecture. At a top
level consider the implementation of a 256-point radix-4 FFT algorithm. The algorithm has
four stages, and at each stage it requires 64 four-point FFT computations. One strategy for
performing this algorithm on the TMS320C80 is to allocate 16 of the 64 four-point FFTs at
each stage to one of the four processors. Since each four-point building block is identical,
each processor has the exact same code to execute and therefore finishes its portion of each
stage at the same time.

This approach also makes this architecture good for computing the Winograd, prime
factor, or mixed-radix algorithms from Chapter 9. For example, consider the 3*5*8 = 120
point prime factor algorithm. The 3-point stage requires computing 120/3 = 40 three-point
building blocks. For the TMS320C80 this means each processor performs 10 three
point FFTs. The five-point stage requires computing 120/5 = 24 five-point building
blocks. For the TMS320C80 this means each processor performs 6 five-point FFTs. Fi
nally, the eight-point stage requires 120/8 == 15 eight-point building-block computations.
For this stage, three of the four processors compute 4 eight-point FFTs and one only com-

382 CHA~ 14 CHIPS

On-Chip
Parallel
Address
Buses

Global/Instruction

Local

Off-Chip
Parallel
Address

Bus

On-Chip
Parallel

Data
Buses

Address
Gen.

Program
Control

Multiplier
Accum.

&
ALU

Off-Chip
Parallel

Data
Bus

Serial
Bus

Figure 14-39 Texas Instruments TMS320C8x family processor block
diagram.

putes three. The crossbar switch interface to data RAM makes accessing the proper inputs
for each of these building-block computations straightforward.

The architecture of the individual fixed-point DSPs is shown in Figure 14-39. Each
has two address generators and no data or program memory or multiplexers to combine the
data and program buses. Additionally, there is a third address and data bus pair, called the
global bus. The serial I/O is also missing from the DSPs because it is not needed in this
highly integrated internal chip architecture.

14.12 MULTIPLE-PROCESSOR PROGRAMMABLE DSP
CHIPS COMPARISON MATRIX

The data in the Comparison Matrix in Table 14-7 comes from the referenced vendor material.
In the case of the 1024-point complex FFf performance, this is the fastest number available
in the referenced material. Different versions of a 1024-point FFT may produce slightly
different performance numbers. Versions of the chips that run at slower speeds will have
times that are slower. Conversely, newer versions of these chips, which run faster, will have
faster times. Performance numbers with an asterisk behind them are estimated because
times for the 1024-point FFT were not available from the vendor.

CHAP. 14 REFERENCES 383

Table 14-7 Multiple-Processor Programmable DSP Chips Comparison Matrix

Multiple-processor 1024-point Data I/O On-chip data On-chip prog. # of address
programmable chip complex FFf (MS) ports memory words memory words generators

Star Semiconductor
SPROC1400 2.4 2s/1p 1024 1024 1
SPROC1200 4.8* 2s/1p 512 512 1
SPROC1210 4.8* 2s/1p 512 1024 1
TI
TMS320C80 0.163* Os/Ip 50K total 50K total 8

* = estimate; s = serial port, p = parallel port.

14.13 CONCLUSIONS

Choices, choices, and more choices! Few engineers have the time to keep abreast of the
rapid changes and hundreds of options available for creating DSP products in general and
FFT products in particular. This comprehensive inventory would be hard to choose from
without the guidelines given with a "standardized" approach to block diagrams for each
chip family. At this stage of the book, the reader is ready to select a chip or multiples of it
for processing the algorithm chosen from the information in Chapters 8, 9, and 12.

The number of board-level companies and products for FFf applications is many
times higher than at the chip level. Therefore, only guidelines for selecting off-the-shelf
boards are provided in the next chapter.

REFERENCES

[1] ADSP-2101 and ADSP-2102 User's Manual-Architecture, Analog Devices, Inc.,
Norwood, MA, 1990.

[2] ADSP-2111 User's Manual-Architecture, Analog Devices, Inc., Norwood, MA,
1990.

[3] Mixed-SignalProcessorwith Host Interface Port-ADSP-21msp50A/55A/56A,Analog
Devices, Inc., Norwood, MA.

[4] ADSP-2171 DSP Microcomputer, Analog Devices, Inc., Norwood, MA, 1993.

[5] WE DSP16 and DSP16A Digital Signal Processors Information Manual, AT&T Mi
croelectronics, Allentown, PA, 1989.

[6] WE DSP16C Digital Signal Processor/Codec, AT&T Microelectronics, Allentown,
PA, 1991.

[7] DSP1610 Signal Coding Processor, AT&T Microelectronics, Allentown, PA, 1993.

[8] DSP1616-x11 Digital Signal Processor, AT&T Microelectronics, Allentown, PA,
1993.

[9] PiranhaDigitalSignal Processor, DSP1616-x30, AT&T Microelectronics, Allentown,
PA,1993.

[10] DSP1617 Digital Signal Processor, AT&T Microelectronics, Allentown, PA, 1993.

384 CHA~ 14 CHIPS

[11] DSP56000lDSP56001 Digital Signal Processor User's Manual, Motorola, Inc.,
Phoenix, AZ, 1990.

[12] DSP56002 Digital Signal Processor User's Manual, Motorola, Inc., Phoenix, AZ,
1993.

[13] Motorola Semiconductor Technical Data, DSP560004 Rev 1, 24-Bit GeneralPurpose
Digital Signal Processor, Motorola, Inc., Phoenix, AZ, 1993.

[14] DSP56116 Digital Signal Processor User's Manual, Motorola, Inc., Phoenix, AZ,
1990.

[15] Motorola Semiconductor Product Information, DSP56156and DSP56156ROM, 16
bit Digital Signal Processor, Motorola, Inc., Phoenix, AZ, 1994.

[16] Motorola Semiconductor Product Information, DSP56156and DSP56156ROM, 16
bit Digital Signal Processor, Motorola, Inc., Phoenix, AZ, 1994.

[17] Motorola Semiconductor Product Information, DSP56166and DSP56166ROM, 16
bit Digital Signal Processor, Motorola, Inc., Phoenix, AZ, 1994.

[18] Digital Signal Processor (DSP) and Speech Processor Products Data Book, NEe
Electronics, Inc., Mountain View, CA, 1992.

[19] jLPD77C251P25 16-Bit FixedPointCMOS Digital Signal ProcessorUser's Manual,
NEC Electronics, Inc., Mountain View, CA, 1991.

[20] jLPD77016 (SPRX), 16-Bit Fixed-Point Digital Signal Processor, NEC Electronics,
Inc., Mountain View, CA, 1993.

[21] jLPD77220 DigitalSignalProcessorUser'sManual, NEC Electronics, Inc., Mountain
View, CA, 1991.

[22] First-Generation TMS320 User's Guide, Digital Signal Processing Products, Texas
Instruments, Inc., Dallas, TX, 1989.

[23] TMS320C2x User's Guide, Digital Signal Processing Products, Texas Instruments,
Inc., Dallas, TX, 1993.

[24] TMS320C5x User's Guide, Digital Signal Processing Products, Texas Instruments,
Inc., Dallas, TX, 1993.

[25] Z89COO Digital Signal ProcessorUser's Manual, Zilog, Inc. Campbell, CA, 1993.

[26] ZR38000Programmable DigitalSignalProcessor, ZORAN Corporation, Santa Clara,
CA,1994.

[27] ADSP-21020andADSP-21010 User'sManual, Analog Devices, Inc., Norwood, MA,
1993.

[28] ADSP-21060SHARC Super HarvardArchitecture Computer, Analog Devices, Inc.,
Norwood, MA, 1993.

[29] WEDSP32CDigitalSignalProcessor, AT&T Microelectronics, Allentown, PA, 1990.

[30] DSP3210Digital Signal Processor, The Multimedia Solution, AT&T Microelectron
ics, Allentown, PA, 1991.

[31] Intel, i860 Microprocessor Architecture, Osborne McGraw-Hill, Berkeley, CA, 1994.

[32] DSP96002IEEE Floating-Point Dual-PortProcessor User's Manual,Motorola, Inc.,
Phoenix, AZ, 1989.

[33] TMS320C3x User's Guide, Digital Signal Processor Products, Texas Instruments,
Inc., Dallas, TX, 1990.

CHAP. 14 REFERENCES 385

[34] TMS320C4x Technical Brief, Digital Signal Processing Products, Texas Instruments,
Inc., Dallas, TX, 1991.

[35] Digital Signal Processing a66540 FDaP User's Guide, Revision a66540IG/2.0, array
Microsystems, Inc., Colorado Springs, CO, 1992.

[36] Application Notes, Integrated Circuits, Liquid Crystal Displays, RF Components,
Optoelectronics, Sharp Electronics Corporation, Portland, OR, 1993.

[37] 1994 Data Book, ASSP, Standard Products, ASIC Arrays & Standard Cells, Raytheon
Semiconductor, Mountain View, CA, 1993.

[38] Digital Video & Digital Signal Processing IC Handbook, GEC Plessy Semiconductors,
Scotts Valley, CA, 1993.

[39] S. Berger, "An Application Specific DSP for Personal Communications Applications,"
Proceedings ofthe 1994 DSPx Exposition & Symposium, pp. 63-69 (June 1994).

[40] SPROC-1400 Programmable Signal Processor Data Sheet, STAR Semiconductor
Corp., San Jose, CA, 1993.

[41] TMS320C80, "TI's First Multiprocessor DSP, Product Overview," Arrow Electronics,
Inc., Carrollton, TX, 1994.

15

Board Decisions and Selection

15.0 INTRODUCTION

Getting to market with an FFf product is usually less expensive and faster if commercial
off-the-shelf (COTS) hardware is available to run the algorithm efficiently. Even if the end
product will not be at the board level, a commercial board can be an inexpensive way to
develop and demonstrate the proof of concept. With several dozen manufacturers selling a
wide variety of DSP boards for PC, VME, SBus, and embedded applications, it is unrealistic
to describe and evaluate them in this chapter. That endeavor is surely an entire book by
itself. This chapter provides guidelines that engineers, managers, and students can use to
make their own decisions about appropriate COTS boards or the need to design one.

The key board specifications are:

• Processor

• Off-chip memory

• Analog I/O ports

• Instruction cycle time

• Parallel and serial I/O ports (buses)

• Host interface

15.1 FIVE BOARD SELECTION CATEGORIES

Though each application has its own specifications that affect board selection, issues can
be grouped in five categories that are used to narrow board choices after the chip has been
selected.

388 CHA~ 15 BOARD DECISIONS AND SELECTION

15.1.1 Algorithm Performance

Besides the FFf algorithm that will be computed with the DSP chip or chips on a
board, data I/O, data reorganization, and additional signal processing algorithms are often
part of the total processing. Knowing the FFf performance of the DSP chip does not mean
that it will perform at that speed on a given board. Two factors that slow chip performance
are the clock rate of the board being slower than the maximum instruction cycle time of the
chip, and the on-board memory not being fast enough to send data or program instructions
to the chip at the maximum rate it can receive them.

15.1.2 1/0 Performance

The DSP chip or chips on a board may be capable of computing FFTs faster than data
can move on and off the board. This makes it important to compare the board's data I/O
rate with the chip's FFT benchmark. When the chip can perform FFTs faster than the I/O
rate, it will be limited to that rate. The preferable situation is when the I/O rate is faster
than the chip performs the FFf.

15.1.3 Software Support

Software support tools include assemblers, linkers, and compilers for writing code;
simulators and debuggers to remove programming errors; and algorithm libraries to reduce
the amount of code that must be written. The caliber of these tools affects the time required
to develop a product.

15.1.4 Expansion Capability

Since boards are marketed to a broad customer base, a board may not meet all of the
needs of an application. Daughter-card connectors and/or prototyping area are sometimes
provided to allow user modifications to boards. A daughter card is a small board that
connects to a main board. A prototyping area is space left empty on a board to allow
a designer to add components to the board to enhance its capabilities. Both options are
less expensive than designing a board from scratch. Sometimes board manufacturers offer
daughter boards that provide the most common extra features, such as memory and I/O
interface. For low-volume and custom designs, these options offer the ability to upgrade
the product to meet changing customer requirements.

15.1.5 MUltiprocessing

In a multiprocessor application, a COTS solution can be a single board with more than
one chip connected in the selected architecture, or multiple boards, with one or more chips,
that can be connected in the selected architecture. Chapters 11 and 12 provide extensive
information on how to select multiprocessor architectures. When boards are connected in
one of those architectures, performance is reduced if data I/O between the processors is
slower than the processor's I/O instruction rate.

15.2 BOARD SELECTION QUESTIONS AND ANSWERS

This section deals with issues designers face when selecting or designing a board. If a
single-chip solution meets the specifications, the last three questions do not apply.

SEC. 15.2 BOARD SELECTION QUESTIONS AND ANSWERS 389

Question

1. Which boards have the selected DSP chip?

Answer

The fastest way to narrow the number of board candidates is by eliminating those
that do not have the chip already chosen. If two or more chips would meet product
specifications, all of the boards without those are eliminated.

Question

2. Does the board slow the FFT performance of the chip?

Answer

The timing on the chip does not always translate to the same timing on the board
because of slower board instruction cycle time and/or memory speed. Board vendors
list instruction cycle time or clock rate (which can be the same or a multiple of the
instruction cycle time) in the board specifications. Memory speed is listed by vendors
in terms of the number of ws (wait state). If the off-chip memory runs at the same
speed as the chip can access it, this is called 0 ws. If it runs at half the speed the chip
can access it, the ws is 1, because the chip must wait one instruction cycle after it
requests data.

Question

3. What digital I/O ports does the board have?

Answer

There are three types of digital interfaces found on COTS boards. The first is the
standard bus interface such as PC, VME, or SBus. These are always parallel and
generally slower than a DSP chip is capable of transferring data, which slows the
chip's performance. The second is a serial interface, such as RS-232C. Most of the
general-purpose DSP chips in Sections 14.3 and 14.5 have serial interfaces that work
with an RS-232C.

The third and most preferable type of interface is a dedicated parallel interface,
designed to run at the DSP chip's parallel I/O instruction rate. Not all boards have this
feature because it requires adding a special-purpose connector and interface logic to
the board. However, when this is available, the board's DSP chip is able to function at
its maximum rate. This is a key element of a multiprocessor hardware architecture's
ability to perform at peak efficiency.

Question

4. Does the board have analog I/O ports?

Answer
Not every board has analog I/O ports because some are designed to only receive and
send digital data. The analog I/O port or ports use AID and D/A functions in the DSP

390 CHA~ 15 BOARD DECISIONS ANDSELECTION

chip or on the board to convert analog signals to digital ones that the chip can process.
The performance measures for AIDand D/A are the number of bits per sample and
the number of samples per second that they convert.

Question

5. Does the board have enough off-chip data and program memory?

Answer

The amount of memory an application needs is determined by the FFf algorithm and
transform length. The portion of that memory that will be off-chip is a function of the
chip selected. Some may even be off-board, depending on which board is used. The
on-chip memory is subtracted from the total memory to see how much the board needs
to have. If there is too much remaining for a board to handle, an external source such
as host processor RAM or hard disk, or a separate memory board, must be available.

Question

6. Which boards work with the selected high-level language?

Answer

Various versions of C and FORTRAN are common programming languages for en
gineers and scientists. In recent years, graphical user interface (GUI) software has
become a popular way to go from block diagram design to C code. If the manufacturer
of the board, or the DSP chip on it, supports application software, including library
routine calls, in one of these languages, development time is reduced. The price paid
for faster software development is the inefficiency of cross compilers when converting
C and FORTRAN code to nsp chip code. Code converted from high-level languages
can take two to five times longer to execute than nsp chip assembly language.

Question

7. Does the algorithm library provide the needed FFf length?

Answer
If the chip's algorithm library does not have the needed FFf length, maybe the board's
library will. The more code an algorithm library provides, the less must be written
in high-level or assembly languages. This reduces development time and speeds up
processing because the algorithm library routines are usually written in assembly
language. Even if entire algorithms are not available in the algorithm library, decom
posing the needed algorithms into building blocks that are available speeds execution
of the algorithm and shortens development time. If code is not available in a chip or
board algorithm library, it may be available from a third-party supplier.

Question

8. Do the algorithm library routines have a common I/O format?

Answer
Ideally, an application can be constructed by using a sequence of routines from the
algorithm library. However, if the data I/O formats for these routines are not the

SEC. 15.2 BOARD SELECTION QUESTIONS AND ANSWERS 391

same, additional algorithms must be executed between the algorithm library routines
to allow the data to flow from one routine to the next.

For-example, suppose the application requires an FIR filter followed by an FFT.
The input to and output from the FIR filter library routine is likely to be in sequential
order, simply because that is how FIR filters are implemented. Then the filter routine
will perform all the multiplies and adds to produce a new output each time a new
input data value enters the routine.

On the other hand, the N -point FFT routine needs a set of N samples at one
time. Therefore, a buffer must be set up between the FIR filter routine and the N -point
FFf routine to accumulate N FIR outputs to use for the next N -point FFT input set
(Figure 15-1). The output of the FFT library routine provides N answers at one time.
To convert this block of data back to a sequence of results requires another data buffer
routine. All of this adds to the application execution time and to the development
time and cost.

Sequential
Input
Data

FIR Filter
Library
Routine

FFTAlgorithm
Library
Routine

Sequential
Output
Data

Figure 15-1 Connecting algorithm library routines.

Question

9. Does the board support real-time operating systems (RTOS)?

Answer

In real-time applications, a common but complex portion of the design is the code that
controls the interface between the nsp chip and the data I/O interface hardware. Real
time operating systems (RTOS) are software subroutines that reduce the programming
necessary to accomplish this portion of the design.

Question

10. What control, data I/O, and graphical display software are available?

Answer

Board manufacturers provide algorithm library software to reduce the time required
for the application developer to implement required functions. Most applications also
require software to control the operation of the board, control the movement of data

392 CHA~ 15 BOARD DECISIONS AND SELECTION

on and off the board once the RTOS has synchronized the data interface, and interface
to graphical display software and hardware. If basic algorithms are also provided by
the board manufacturer for these functions, the time to market is reduced. This is
because not only are these functions usually required by the application, but they
can also be used to enter data and view results as part of the algorithm debugging
process. Therefore, it is important to identify which of these functions are relevant
for the application and determine if they are available from the board manufacturer,
chip manufacturer, or a third-party supplier.

Question

11. Can the board be expanded with a daughter card?

Answer
One way to expand the capability of a board is by connecting a smaller board (daughter
card) to it. This has two advantages over adding more boards. The first is cost. The
small boards are generally less expensive than large ones and add little space to the
volume required by the application. The second is performance. The connections
to the daughter cards are much shorter, and therefore faster, than those between full
cards.

Question
12. Does the board have prototyping area?

Answer
Some boards may meet the majority of the needs of an application but be missing
something vital. For example, suppose a board can perform all of the computations
in the required time but does not have the AID and D/A converters needed. If the
board vendor provides a prototyping area, then the application developer can put
these functions in the prototyping area. The resulting product only requires one
board rather than an additional AID and D/A interface board. This reduces the cost,
size, and weight of the product.

Question
13. Does the board have the selected architecture?

Answer
The fastest way to narrow the number of board candidates is by eliminating those that
do not have the chip and architecture which have already been selected. If more than
one board meets those specifications, the issues dealt with in the preceding questions
and answers are used to further narrow the choice. If no single board is suitable, the
answer to Question 14 must be used.

Question

14. Can the board be connected to one or more copies of itself, using the selected
architecture?

Answer
The digital I/O ports on the board determine what kinds of multiprocessor architec
tures can be implemented. The text and figures in Section 14.2.9 show how to use

SEC. 15.3 CONCLUSIONS 393

chip serial I/O ports to form multiprocessor architectures. These same concepts can
be applied to board interconnections by replacing the DSP chips in those figures with
DSP boards, whether the I/O ports are parallel or serial. If no board exists that can
be configured into the selected architecture, a custom board must be designed or the
architecture decision must be revised.

Question

15. Can the board move data at the processor's I/O instruction rate?

Answer

An architecture was chosen because of its throughput and/or latency performance with
a particular algorithm. Chapters 11 and 12 dealt with how efficiently architectures
compared, assuming each processor takes one instruction cycle for each add, multiply,
or data move. If the data input, intermediate, or output results overhead (which
comprise total I/O instruction time) take more than one cycle, that portion of the
architectures's throughput or latency will be slowed. It is important to be aware of
this possible slowdown and what causes it. This is most likely to occur when a board
uses a standard bus, and is least likely to happen when a board has a dedicated parallel
interface.

15.3 CONCLUSIONS

Many factors must be carefully evaluated to be certain that a COTS board will do the job that
meets the specifications of a product. Designers should know how to answer these questions
for their application before purchasing a board or when deciding on the specifications for
a custom-designed board. The next chapter gives the test signals and methods needed to
detect and isolate errors that occur during software development on the board chosen using
these guidelines.

16

Test

16.0 INTRODUCTION

The book would not be complete without explaining how to test the performance of the FFf
algorithms it shows how to construct and implement. This chapter provides test signals and
shows how to use them to detect and isolate the errors that occur during development of
FFf algorithms, conversion of them to code, and operation of them in a product. Each area
is explained separately. A recommended set of test signals is described, and its ability to
detect and isolate errors is illustrated, using the 4-point FFf example from Section 8.5 and
the 16-point radix-4 FFf example from Section 9.7.5.

16.1 EXAMPLE

This chapter uses the 16-point radix-4 FFf example to illustrate the test signals and methods
explained here. This algorithm is a mixed-radix technique from Chapter 9 and uses the 4
point building block from Chapter 8. Figure 16-1 is a flow graph of the 4-point building
block, and Figure 16-2 is a flow graph of the 16-point radix-4 FFf. Unlike Chapters 8 and 9,
where Memory Maps are more useful than flow graphs, flow graphs are the most powerful
way to understand the test process, because it is so easy to see the path from the error to the
FFf outputs. This allows the output error patterns to be easily understood.

16.2 ERRORS DURING ALGORITHM DEVELOPMENT

Algorithm developrnent includes the Algorithm Steps and Memory Maps for the needed
building-block algorithms as well as for combining them into the complete N -point FFf.
The building blocks from Chapter 8 and algorithms in Chapter 9 have been checked, using
the techniques described in this section, to ensure there are no algorithm errors. If another

A(2)

See Sections 16.2.1
16.3.1
16.4.1

....- ...~---.. A(O) 16.4.3

-1

-1

L--.--~____::__--a.-_-.. A(3)

'----~------....~----...A(t)

a(O)

a(l)

a(3)

a(2)

See Section 16.3.2

Figure 16-1 Four-point FFr flow graph.

See Sections 16.2.1
16.2.1

A(O)
A(4)

A(8)
A(l2)

A(2)

A(6)

A(lO)
A(14)

A(t)
A(5)
A(9)
A(13)

A(3)
A(7)

A(l!)
A(l5)

a(3) ~ 0 0 1-----40------'

a(l!)~ 2 1 t--....u..----.......

a(7) ~ 1 4 2-~---...., '------+---,...
a(l5)~ 3 3

a(2)
a(IO)

a(6)
a(l4)

a(l)

a(9)
a(5) 1 3
a(l3)~ 3

4-point FFTs 4-point FFTs

Figure 16-2 Sixteen-point radix-4 FFf flow graph.

396

SEC. 16.2 ERRORS DURING ALGORITHM DEVELOPMENT 397

building block or algorithm is going to be used, it is recommended that test signals be used
to verify the Algorithm Steps and Memory Maps prior to implementing the algorithm in
code.

16.2.1 Arithmetic Check

Algorithm Step (arithmetic) errors can occur at the building-block level or in defining
the complex multipliers between the stages. The most complete method for ensuring the
correctness of the arithmetic is to start from each complex output frequency term, A(i), and
write the Algorithm Step for the terms with the Algorithm Step that is used to calculate it.
Then continue to move back through the algorithm and replace each term that makes up
those terms, This process continues until the equation is in terms of the complex input data,
a (i). Then compare that equation with the corresponding OFT equation to ensure they are
the same.

The 4-point FFT, shown in Figure 16-1, provides a simple example that illustrates
this approach. The Algorithm Steps for each of the output frequency telTI1S (Equation 16-1)
are listed first, followed by the corresponding 4-point OFT (Equation 16-2).

where

AR(O) == bR(O) + bR(2) == [aR(O) + aR(2)] + [aR(I) + aR(3)]

A/(O) == b/(O) + b/(2) == [a/CO) + al(2)] + [al(l) +al(3)]

AR(l) == bR(l) + bl(3) == [aR(O) - aR(2)] + [aIel) - a/(3)]

A/(l) == b,(l) - bR(3) == [a/CO) - a/(2)] - [aR(l) - aR(3)]

A R(2) == bR(O) - bR(2) == [aR(O) + aR(2)] - [aR(I) + aR(3)]

A/(2) == b/(O) - b,(2) == [a/CO) + a/(2)] - [aIel) + a/(3)]

A R(3) == bR(I) - bI(3) == [aRCO) - aR(2)] - [aIel) - a/(3)]

A/(3) == b/(l) + bR(3) == [a/CO) - a/(2)] + [aR(l) - aR(3)]

3

A(O) == L a(n) * e-j2nOn/4 == a(O) + a(l) + a(2) + a(3)
n=O

3

A(l) == L a(n) * e j2nn/4 == a(O) - j * a(l) - a(2) + j * a(3)
n=O

3

A(2) == L a(n) * e" jtt n == a(O) - a(l) + a(2) - a(3)
n=O

3

A(3) == L a(n) * e-j3nn/2 == a(O) + j * a(l) - a(2) - j * a(3)
n=O

a(n) == aR(n) + j *a/en)

j *a(n) == -al(n) + j *aR(n)

(16-1)

(16-2)

398 CHA~ 16 TEST

If the real and imaginary parts of input data, a(n), are substituted in Equation 16-2, the
result is

AR(O) = aR(O) + aR(I) + aR(2) + aR(3)

A[(O) = a[(O) + 0[(1) + a[(2) +a[(3)

AR(I) = aR(O) + 0[(1) - OR (2) - 0/(3)

A[(I) = a/(O) - oR(I) - 0/(2) + aR(3)

AR(2) = aR(O) - aR(I) + aR(2) - aR(3)

A[(2) = a[(O) - 0[(1) + a/(2) - a[(3)

AR(3) = aR(O) - a[(I) - aR(2) + a[(3)

A[(3) = a/(O) + aR(I) - a[(2) - aR(3)

(16-3)

The final step is to compare Equations 16-1 and 16-3 to see that they are mathe
matically identical. Notice that the order of the a(i) terms in the two sets of equations
is different. This is caused by the sequence of Algorithm Steps used to reduce the to
tal computations. However, the equations all have the same terms. Therefore, all of the
building-block arithmetic is correct.

If there is an error, the flow graph in Figure 16-1 is invaluable in tracing the source
of that error. For example, suppose the node in Figure 16-1 that adds a(O) to a(2) is a
subtract instead of an add. Then, using Figure 16-1, that error affects A (0) and A (2) but
not A(l) and A(3). Therefore, if a(2) has the wrong sign in A(O) and A(2), it must have
been subtracted from, not added to, a (0). Each arithmetic error in the algorithm has its own
pattern that can be easily discerned by looking at how the error propagates to the output of
the flow graph.

This same process can be used at the complete algorithm level to verify the accuracy
of the complex multiplications between the building blocks and that the output of the first
stage building blocks is input to the proper places in the second-stage building blocks. At
first this looks like a very large set of computations to perform. Fortunately, the regularity
of the building-block interconnection algorithms and the fact the building blocks have been
checked can be used to simplify these checks significantly.

The 16-point radix-4 FFf, shown in Figure 16-2 and used later as an example, illus
trates these features. The input to each of the four output 4-point FFTs is 4 of the 16 in
put building-block outputs, modified by the appropriate complex multipliers. Since the
4-point building-block arithmetic is known to be correct, checking anyone of its four 4
point outputs verifies that the correct data has been sent to it. Therefore, only four output
frequency terms must be checked to verify the algorithm, one from each of the four output
4-point FFTs.

For example, suppose the third output of the second input 4-point FFT is multiplied
by +j, not - j. Then the error propagates into the third output 4-point FFT and affects
frequency outputs A(2), A(6), A(10), and A(14). All of the other outputs will be correct.
Since all four of the outputs of this 4-point FFT are affected by the error, it is immaterial
which is chosen to check the algorithm arithmetic.

SEC. 16.2 ERRORS DURING ALGORITHM DEVELOPMENT 399

16.2.2 Memory Map Check

Memory mapping errors can occur at the building-block level or when combining
the building blocks to form the complete FFf. The most complete method for avoiding
these errors is to follow an approach similar to the steps used to detect arithmetic errors
in Section 16.2.1. The Memory Map verification process is primarily looking for places
where a memory location's data is modified before its present results have been used by
all of the subsequent Algorithm Steps. The most efficient way to perform these checks
is to start with the input Memory Map and work through to the Memory Map for the
output frequency components. Because of the building-block nature ofFFr algorithms, the
memory mapping checks must be performed at two levels. First the memory mapping is
checked at the building-block level. Then the building blocks are combined and the overall
algorithm memory mapping is checked.

The 4-point FFr in Figure 16-1 is again used as an example. The Algorithm Steps and
Memory Map in the first list below are from Chapter 8. The second list shows the sequence
of values stored in each data memory location as the algorithm is executed. For the 4-point
FFT all of the computations are performed by pulling two pieces of data from memory,
doing the arithmetic, and storing the results in the same locations used by the two pieces
of input data. For most of the building blocks, additional memory locations are needed to
avoid writing over a data value needed later in the computations. The Comparison Matrix
at the end of Chapter 8 shows the number of additional memory locations used by each of
the building-block algorithms.

Four-Point FFT Algorithm Steps and Memory Map

Algorithm Steps

bR(O) = aR(O) + aR(2)

bR(I) = aR(O) - aR(2)

b/(O) = a/CO) + a/(2)

b/(l) = a/CO) - a/(2)

bR(2) = aR(I) + aR(3)

bR(3) = aR(l) - aR(3)

b/(2) = aIel) + a/(3)

b/(3) = aIel) - a/(3)

AR(O) = bR(O) + bR(2)

A/(O) = b/(O) + b/(2)

AR(2) = bR(O) - bR(2)

A/(2) = b/(O) - bI(2)

AR(I) = bR(I) + b/(3)

A R(3) = bR(I) - b/(3)

Al(l) = bl(l) - bR(3)

A/(3) = b/(l) + bR(3)

Memory Map

bR(O) ::::} M(O)

bR(I) ::::} M(2)

bl(O) ::::} M(4)

bI(I) ::::} M(6)

bR(2) ::::} M(l)

bR(3) ::::} M(3)

bl(2) ::::} M(5)

b/(3) => M(?)

AR(O) => M(O)

Al(O) ::::} M(4)

A R(2) ::::} M(I)

AI(2) ==> M(5)

AR(I) ==> M(2)

AR(3) ==> M(?)

AI(I) => M(3)

AI(3) => M(6)

400 CHA~ 16 TEST

Four-Point FFT Memory Map History

M(O): aR(O)::::} bR(O) =} AR(O)

M(l): aR(I) => bR(2) => AR(2)

M(2): aR(2)::::} bR(I) => AR(I)

M(3): aR(3):::} bR(3) => A/(l)

M(4): a/CO) :::} bleD) => Al(O)

M(5): a/(l) => b/(2) => A/(2)

M(6): al(2) => b/(l) => A/(3)

M(7): a/(3) => b/(3) => A R(3)

Once the individual building-block memory mapping schemes have been checked
and used to form the complete FFT, it must also be checked. For a P * Q = N -point
FFT, there are Q P-point FFfs performed as the input computations and P Q-point FFfs
performed as the output computations. This leads to a two-stage memory mapping check
of the complete algorithm. First the input P-point FFf memory mapping is checked. If
the memory mapping strategy from Section 9.4 is used for the input building blocks, this
check is simple. In that strategy, the Memory Map of the input data to each of the input FFf
building blocks is different and follows the pattern of the building-block Memory Maps
from Chapter 8.

The only exception to this is the additional data memory locations that most of the
building blocks require in the center of their computations. The simplest answer to the
additional memory location problem is to allocate those locations to a separate area of
memory not used by any of the building blocks. As mentioned in Chapter 9, only one set
of extra memory locations is required for most applications. This means that, since the
building-block memory mapping is already checked before combining the building blocks
into a larger transform, the only thing to check is that the data memory areas for each building
block do not overlap. The algorithms in Chapter 9 were checked using this approach. A
similar argument ensures that the output Q-point FFfs do not interfere with each other.

16.3 ERRORS DURING CODE DEVELOPMENT

Once the algorithms have been verified, the next step is to convert the Algorithm Steps and
Memory Map into the code used by the chosen programmable DSP hardware. If the code
is written in a high-level language, such as C or FORTRAN, the language will allocate
the data memory locations when variables are chosen. Therefore, the only errors to be
introduced are in coding the Algorithm Steps. However, for many product applications,
the code must be written in assembly language to obtain optimized computational speed to
minimize the cost of the processor used. In this case, Algorithm Step and Memory Map
errors can be introduced by the code conversion process. These can occur in the building
blocks, the complex multiplier constants, the data reorganization memory mapping, and the
data relabeling required by the available data memory locations.

16.3.1 Coding the BUilding-Block Algorithm

Any error in coding the Algorithm Steps of a building block propagates to the output
of the building block and to the output of the complete FFT when the code is combined

SEC. 16.3 ERRORS DURING CODE DEVELOPMENT 401

by using the algorithms in Chapter 9. Debugging the FFT code during development is
simplified by debugging the individual building blocks before they are combined into the
complete FFT. For example, with the 4-point FFT building-block algorithm in Table 16-1,
if the computation of bR (0) = aR (0) +aR (2) is incorrectly programmed, AR (0) and AR (2)
will be incorrect because bR(0) is used to compute these two outputs. Figure 16-1 shows
the same thing, where bR (0) is the real part of the node that combines a(0) and a(2). Other
arithmetic errors can also cause the same two outputs to be incorrect.

These errors can be checked with the sequence of steps described in Section 16.2 for
the algorithm development stage. However, because the code is in a computer at this point
and has been verified at the algorithm level, test input signals provide the most efficient
means for finding coding errors. The test signals described in Section 16.5 are specifically
designed to isolate errors based on the patterns they exhibit at the building block and
complete FFT outputs. In both cases, the flow graph of the building block makes it easier
to trace and isolate errors.

16.3.2 Coding the Multiplier Constants

There are three ways that the multiplier constants, both in building blocks and complex
constants between building blocks, can be incorrectly converted to code. In all three cases,
the error propagates to the building block and complete FFT outputs to cause errors in the
answers.

The first incorrect conversion is to use the wrong equation for computing the constant.
The arguments of the sines and cosines or the way they are combined to form a constant
can be wrong. This causes incorrect numerical values for the constants or a sign error.
For example, in the 4-point FFT, the - j multiplier in Figure 16-1 is - j * sin(900). If the
argument of the sine term were -900

, then the multiplier would have been +j and an error
would have occurred in A (1) and A (3).

The second incorrect conversion is to use the wrong round-off technique for the
arithmetic format chosen for the application. For this reason all the multiplier constants for
the algorithms in Chapters 8 and 9 are in equation form rather than just numerical values.
Generally, standard round-off to the nearest least significant bit is the correct approach. If
the constants are truncated instead, small errors are introduced into all of the outputs. The
characteristics of these quantization errors are explained in Chapter 13.

The third incorrect conversion is the result of storing the multiplier constants in the
wrong locations. Then, when the multiplier constants are accessed, completely uncontrolled
numbers are used. These errors propagate to the output frequency components and have
the same error patterns as incorrect arithmetic computations.

16.3.3 Coding the Memory Mapping

Data reorganization occurs at the input and between the building-block stages of an
FFT. Additionally, the complete FFT requires the building blocks to memory-map blocks of
data located in multiple locations in data memory. If either of these two memory mapping
schemes is incorrectly converted to code, the FFT outputs will be dramatically altered.

If the equation for input data reorganization is incorrectly implemented, it reorders the
input data sequence and causes the FFT to analyze a shuffled input signal. If the equation
for data reorganization between the building-block stages is incorrect, the partial patterns

402 CHA~ 16 TEST

computed by the input building-block FFTs are destroyed and the output is also drastically
altered. Finally, if the incorrect memory map conversion results in using locations that do
not contain data, then a portion of the input sequence is altered. The result is a substantial
change in the output of the FFf. All three of these errors can be isolated by using the test
sequences in Section 16.5.

16.3.4 Coding the Relabeled Memory Maps

Relabeling of the memory mapping scheme developed for each building block is
required for mostFFf algorithms because the data does not exit the first building-block
algorithms in order. When a relabeling technique, like the one recommended in Section
9.4 is needed, it is possible to make a mistake in the relabeling process. When this occurs,
the algorithm memory mapping uses incorrect data for some portion of the computations.
Once the error is made, it generally propagates to several output frequencies. The error
pattern that occurs when each of the test signals is applied can be used to isolate this error.

16.4 ERRORS DURING PRODUCT OPERATION

At some point in the life of all products, a portion of its hardware fails. At that time
the product can be thrown away or fixed, depending on cost and other considerations. If
the decision is to fix the product, a technique must be available for isolating the failed
component. If the entire product is implemented on a single DSP chip, the decision is
simple. Replace the DSP chip. However, in many cases the data I/O, program memory, and
data memory are external to the DSP chip. When the product is implemented with discrete
circuits, rather than DSP chips, each function in Figure 16-3 may be a different piece of
hardware.

The following sections describe the kinds of errors that appear when each of the
functional blocks in Figure 16-3 fails and the methods for using test signals to isolate the
errors. Figure 16-3 is assumed to represent the entire hardware functional block diagram
for the product, and the FFf algorithm is assumed to be stored in program memory.

Data Address Program
Memory

..-
Generator Memory

I~ Data I/O

Arithmetic Program
Unit Counter

Figure 16-3 Harvard architecture product functional block diagram.

16.4.1 Arithmetic Unit

The arithmetic unit has a multiplier, adder, and accumulator register connected as
shown in Figure 16-4. If one of these fails, the output of most of the arithmetic operations
will be wrong. For the 16-point radix-4 FFf in Figure 16-2 and the 4-point building block

SEC. 16.4 ERRORS DURING PRODUCT OPERATION 403

Accumulator

Figure 16-4 Multiply-accumulator.

in Figure 16-1, these arithmetic errors propagate to the output and generally cause all of the
results to be wrong. Because this is a catastrophic arithmetic failure, any test signal is also
likely to have all of its outputs wrong.

One exception is the zero test signal. In most cases a zero input sequence will result
in zero outputs. The exception is if one of the bits of the multiplier, adder, or accumulator
outputs is stuck high. However, these bits represent a very small portion of the total transistor
count in the arithmetic unit. If this occurs, the zero input sequence is likely to produce the
same nonzero outputs for all of the frequency components. The reason for this is that the
only thing generating the nonzero numbers is the failed bit. Therefore, regardless of the
arithmetic to be performed, the answer is likely to look the same.

16.4.2 Address Generator

The address generator is generally composed of an adder, a counter, and offset address
register. If any of these fails, the address generator will produce incorrect memory maps
to use to access data from memory and store results. This also causes catastrophic failure
because the data to be operated on by the algorithm is not the actual input data or intermediate
computational results. The failed address generator will access data in other portions of the
data memory that have no relationship to the real data.

This catastrophic failure is also not able to be isolated using the test sequences de
scribed below. However, the zero test sequence can again be used to distinguish the failure.
Since the output bears no relationship to the data, the output for the zero input sequence is
likely to be a random sequence of numbers. This separates this failure from the arithmetic
unit failure. The exception to this is when the address generator ends up accessing data
from a portion of memory that has all zeros in it. However, in this case, the results of the
computations will be all zeros, regardless of the input test signal used.

16.4.3 Data Memory

The likely failure in data memory is a bit in a memory location failing. If this occurs,
one of the input data values or intermediate results changes value. With the building-block
flow graph in Figure 16-1, the algorithm flow graph in Figure 16-2, and the memory map
history in Table 16-2, an error in a data memory location can be propagated forward to the
output frequency components. The result is failure of all of the outputs. However, this
failure is detectable by using the right kind of input sequence.

For example, consider the 4-point FFI' in Figure 16-1 and data memory location M (0)
failing by having one of its bits short to zero all the time. If the input test sequence had the
a(O) term equal to zero, the first set of computations would be correct because the short
would not modify the input data value. However, when the answer for b(O) was placed
back in data memory location M(O), it mayor may not be in error depending on the specific

404 CHA~ 16 TEST

value of a(2). From Figure 16-1 this means that the error can propagate to A(O) and A(2)
but not to A (1) and A (3). In fact, depending on the specific values of the other inputs, none
of the outputs may be incorrect. One input sequence that can be used to catch this type of
error in any of the memory locations is one that has a nonzero value for only one location.
This is called the unit pulse when it is described in Section 16.5.1.

16.4.4 Program Memory

A failure in a program memory address results in a failure in one of the Algorithm
Steps to be properly executed. If the error is in a memory address, the result will look much
like the errors described for the address generator, except they will have a more localized
pattern at the output. If the error is in a computational instruction, the errors will look much
like those from the arithmetic unit, except they will not proliferate throughout the frequency
outputs. They will produce a pattern of errors that can be traced back to the source using
the test signals described in Section 16.5.

The most catastrophic error in program memory is in an instruction branching oper
ation or program address offset. If this occurs, the program is likely to go off into another
area of program memory and completely hang up the application.

16.4.5 Data 1/0

There are three likely data I/O failures. The first is with the interrupt control logic that
synchronizes the input of data to the processor and the output of results from the processor.
When this occurs, the input data sequence is no longer correct, which results in incorrect
FFf outputs.

The second and third likely failures are associated with the input and output con
nections for the data itself. If one of these fails, on either side of the data I/O circuitry in
Figure 16-3, the signal is modified. Since the FFf is a linear computation, the resulting
FFf provides answers as if there are two signals present, the actual signal and the signal
which represents the data modification.

16.5 TEST SIGNAL FEATURES

This section describes the basic features of each of the four types of test signals recom
mended for debugging FFf algorithms. Many other combinations of signals can also be
used. These recommendations are based on many years of FFf development experience
coupled with a practical need to minimize the work required to ensure that FFT algorithms
work. These same signals can be used during algorithm development, when the algorithm
is being converted to nsp chip code, and to find failures after the product is operating. The
columns in Table 16-1 show examples of each of these test signals for a 4-point complex
test sequence. Table 16-2 shows the responses to those test signals as they go through the
4-point FFf in Figure 16-1.

16.5.1 Unit Pulse

The unit pulse is a digital signal where one of the complex values is nonzero and the
others are all zero. In Table 16-1 the a (0) term is chosen as the nonzero entry. However,

SEC. 16.5 TEST SIGNAL FEATURES 405

Table 16-1 Examples of Test Signals for the 4-Point FFf

Sine wave 1
Unit pulse Constant Sine wave 1 + constant

a «(0) == 100 aR(O)= 100 aR(O) == 100 aR(O)= 200
aI(O) ==50 aI(O) ==50 aI(O) ==0 aI(0)=50
aR(l)==() aR(I) = 100 aR(I) ==0 aR(l) = 100
aI(I)==O aI(I) =50 (II (1) == 100 aI(l) == 150
aR(2)==() aR(2) = 100 QR (2) == -100 aR(2) =0
a/(2)==0 a[(2) = 50 aI(2) ==0 a[(2) =50
aR(3)==0 QR(3)= 100 QR(3)=O aR(3) = 100
al(3)==0 aI(3) =50 a, (3) == -100 (I] (3) == -50

Table 16-2 Four-Point FFT Algorithm Responses to the Test Signals

Responses Responses Responses Responses to
to the to the to sine wave I

unit pulse constant sine wave 1 + constant

bR(O) == 100 bR(O) == 200 bR(O)==0 bR(O)==200
bI(O) ==50 bl(O) == 100 bl(O) =0 bI(O) = 100
bR(I) == 100 bR(I)=O bR(I) =200 bR(I) =200
hI(l) == 50 hI(}) =0 bI(l)=O bI(l)=O
bR(2) ==0 bR(2) == 200 bR(2) ==0 bR(2) =200
b, (2) == 0 bl (2) = 100 b/ (2) ==0 bI (2) = 100
bR(3) == 0 bR(3) =0 bR(3)==0 bR(3)=0
bI(3) ==0 bI (3) =0 bI(3) == 200 bI(3) =200

A R(0) == I00 AR(O) =400 AR(O)=O AR(O) == 400
AI(O) ==50 A[(O) = 200 AI(O)=O AI(O) =200
AR(l) = 100 AR(l)==O AR(l) == 400 AR(l) == 400
A I (I) == 50 A/(l)=O AI(I) =0 AI(I) =0
A R(2) == 100 A R(2) ==0 A R(2) == 0 A R(2)==0
A I(2)==50 AJ{2) =0 A[(2) =0 A I (2) = 0
ARC~) == 100 AR (3) == 0 AR(3) ==0 AR(3) == a
A 1(3) == 50 A/(3) ==0 A t(3) ==0 A/(3)==0

any of the four positions in the sequence can have the nonzero term. The key feature of
this signal is that it only activates one input to the FFT. Therefore, it shows how each input
signal contributes to the output. One test approach is to apply this signal at each of the FFT
inputs and ensure that the output is correct. Then, because the FFf is linear, it must work
for any arbitrary input signal. The drawback to this approach is that it requires many input
signals. For a 1024-point FFT, 1024 different test signals are required.

16.5.2 Constants

The constant signal is one where all of the complex values are the same. The key
features of this input signal are that it is easy to generate and that incorrect input data
reorganization does not cause errors in the output. It therefore becomes a good first test

406 CHA~ 16 TEST

signal to verify that much of the arithmetic in an algorithm is working, independent of the
input memory mapping. The biggest drawback is that the input add-subtract arithmetic
common to all of the building-block FFfs has zero as the output of all of the subtractions.
The b(l) terms in Table 16-2 are examples of this affect. Therefore, roughly half of the
algorithm's multipliers and the output arithmetic are not checked.

16.5.3 SingleSine Waves

The single sine wave, centered at the first nonzero output frequency of the FFT, is a
signal that has exactly one cycle during the set of N data values input to the FFf. In general,
this test signal requires all of the multiplier constants to work to provide the correct answers.
Additionally, the data reorganization memory mapping must be correct or the signal will be
scrambled into another signal. This signal is best applied after the constant signal verifies
most of the arithmetic. Table 16-3 shows an example of this signal for the 4-point FFf.
One disadvantage of this signal is that it can also cause some intermediate points in the
computations to be zero. Once that happens, subsequent computations are not checked.
The b(O) terms in Table 16-2 are examples of this phenomena.

16.5.4 Pairof Sine Waves

An input signal that is the sum of two sine waves is used to remove the problems
of zeroed-out intermediate results generated by the constant and single sine-wave signals.
However, since these signals are more complicated to generate and to use to decipher errors,
they are best applied after the constant and single sine-wave signals have eliminated most
errors. The right-hand column in Table 16-1 shows a pair of these signals for the 4-point
FFf. Each entry is just the sum of the entries for the constant and single sine-wave signals.
The linearity properties of the FFf ensure that this occurs all the way through the algorithm.
In general, the best characteristics for these two sine waves are that they are centered at FFf
output frequencies and that the frequencies are at output filter numbers that are relatively
prime to each other and to the length of the FFf. The example in Table 16-1 is an exception
to this approach. This is because the 4-point FFf is too small to be able to choose a pair of
frequencies that meet the criteria.

16.6 TESTSIGNAL ERROR PATTERNS

The simplest way to illustrate the types of patterns that errors produce is with an example.
Most algorithm errors produce errors with specific patterns, regardless of the input signal.
However, the test signals are specifically designed to produce specific error patterns that can
be easily traced to the source of the error in the algorithm. Figure 16-5 shows the 4-point
FFf from Figure 16-1 with an arithmetic error in adding a (0) to a(2). Bold flow graph lines
are the paths taken by the error as a result of the Algorithm Steps on page 402. The error
is that they are subtracted rather than added. Table 16-3 shows the responses generated by
each of the corresponding signals in Table 16-1 as it goes through those Algorithm Steps.
Comparing Tables 16-3 and 16-2 allows the error patterns to be easily identified for each
test signal.

SEC. 16.6 TEST SIGNAL ERROR PATTERNS 407

A(3)

A(l)

-1

Sign Error - Minus Sign Added to Change Addition

to Subtraction

-}

~-"'---"A(O)

-1

-1

---------'--~~~ A(2)a(l)

a(2)

a(3)

a(O)

Figure 16-5 Four-point FFf with arithmetic error in first stage.

Table 16-3 Response to the Test Signals with an Error in the 4-Point FFT

Responses Responses Responses Responses to
to the to the to sine wave 1

unit pulse constant sine wave 1 +constant

bR(D)= 100 bR(D)= 0* bR(D)= 200* bReD) = 200
bl(O) = 50 bl(O) =0* bl(O)=O bl(O) =0*
bR(I) = 100 bR(l) =0 bR(I) =200 bR(I} =200
bl(l) = 50 bl(l) =0 bl(l)=O b/(}) =0
bR(2) =0 bR(2) = 200 bR(2) = 0 bR(2) =200
bI (2) = 0 b/(2) = 100 b/(2)=0 b/(2) = 100
bR(3) =0 bR(3) = 0 bR(3) = 0 bR(3) =0
bl(3)=0 b/(3)=0 bI(3) =200 b/(3) =200

AR(O)= 100 AR(O)= 200* AR(O)= 200* AR(O)=400
A/CO) = 50 A/CO) = 100* A/CO) = 0 A/CO) = 100
ARC!) = 100 ARCl) =0 ARC!) =400 ARCI) =400
AICI) = 50 A/Cl) = 0 AICI) = 0 A/(l) =0*
AR(2) = 100 AR(2) = -200* AR(2) = 200* AR(2) =0
A[(2) = 50 AI(2) = -100* Al(2) =0 A/(2) = -100*
AR(3) = 100 AR(3) =0 AR(3)=0 AR(3) = 0
A[(3) = 50 AI(3) = 0 AI(3) =0 A/(3) =0

*Indicates incorrect intermediate or output values.

16.6.1 Unit Pulse

For the error in Figure 16-5 and unit pulse signal in Table 16-3, there are no errors in
the computations because the error was in the way a(2) is used in the algorithm. Since the
chosen unit pulse has a(2) = 0, the error had no effect on any of the outputs or intermediate

408 CHAR 16 TEST

results. In fact, the only version of the unit pulse that would catch this error is one with
a (2) i= O. This is an illustration of the drawback of using the unit pulse test signal first.
Namely, all of the possible versions of the unit pulse must be used to detect the error. For
a 4-point FFf this is not a significant problem. However, for a 1024-point FFT it is. The
best use of the unit pulse test signal is after the constant, single sine wave, and pair of sine
waves tests have been used. If these tests do not pinpoint the error, but only localize it, then
the appropriate unit pulse test signal can be used to positively identify the error.

16.6.2 Constants

Constant input signals exercise a significant portion of the algorithm arithmetic with
out the need for the input data organization to work properly. With the error shown in
Figure 16-5 and the test signal responses in Table 16-5, the constant signal finds the error.
The only output frequency components affected by the error (different in Tables 16-4 and
16-5) are the A(0) and A(2) terms. A reasonable assumption is that all of the computations
associated with A(l) and A(3) are correct. For the flow graph in Figure 16-5, this means
that the error must be associated with the top addition of one of the two input add-subtracts
(a(O) ± a(2) or a(l) ± a(3».

To determine which of the two input add computations (a(O) + a(2) or a(l) + a(3»
is incorrect, start with Table 16-5, which shows that the real parts of A(O) and A(2) are
reduced by 200 and the imaginary parts by 100. This implies that the error occurred in such
a way that it affected A(O) and A(2) in the same way. Again for the flow graph in Figure
16-5, the top input add (a(O) + a(2» is added to A(O) and A(2), and the bottom input add
(a(l) + a(3» is added to A(O) but subtracted from A(2). Therefore, it must be the top
input add. In Table 16-1 this is the computation that forms the complex intermediate values
bR(O) and b/(O).

16.6.3 Single SineWaves

There are errors that the constant test signal does not find. In particular, these errors are
associated with the follow-on computations to the subtraction side of the input computations.
In Table 16-1 these are the computations that use the bR(I), b/(I), bR(3), and b/(3) terms.
Since bR(I), b/(I), bR(3), and b/(3) are all zero for any constant input signal, any error
in computations using them will remain undetected. All of the building-block algorithms
in Chapter 8 have these input add-subtract computations and therefore exhibit the same
behavior for constant input signals.

The simplest test signal to remove the problems associated with the constant test
signal is a sine wave that has exactly one cycle during the sequence of input samples. If
the FFf is working properly, the only output that will respond to this input is A (1). Again,
Table 16-5 is a simple illustration of this for the 4-point FFf. This fact is true for all of
the building blocks in Chapter 8 and for all combinations of building blocks used to form
larger FFTs in Chapter 9. For the error in Figure 16-5, the complex A (1) term still has the
correct output. This implies that all of the computations used to form it must be correct.
Similarly, A(0) and A(2) have also been modified by the same amount, which suggests
that the top input add (a (0) + a (2» is in error, just as for the case of the constant test
signal.

SEC. 16.7 ISOLATING ERRORS: A 16-POINT EXAMPLE 409

Notice that the real part of b(l) (bR(I) and the imaginary part of b(3) (b/(3)) are
nonzero. In this example, the phase of the sine wave is set to zero. If the sine wave had
nonzero phase, the real and imaginary parts of b(1) and b(3) would be nonzero. This
eliminates the possibilities of error that cannot be tested by the constant signal.

16.6.4 Pair of Sine Waves

From the discussion of the constant and single sine-wave input signals and the data
values in Tables 16-3 and 16-4, it is clear that b(l) and b(3) are always zero for the constant
signal, regardless of the phase. Similarly, b(O) and b(2) are always zero for the single sine
wave. Therefore, each test signal has its own class of errors it can detect. If the signals are
combined, the resulting test input can be made to have nonzero outputs for all of the b(i).
The pair of sine waves recommended to catch errors that the others miss is two that are in
the center of output filters that have relatively prime numbers and are relatively prime to the
FFT length. This set of conditions removes these "always zero" conditions and picks up
remaining algorithm errors. However, this signal should be used after the constant and single
sine-wave tests because the patterns are more complex and the error combinations more
vast than for the simpler signals. Use the simpler signals to remove most of the potential
errors and then rely on this more complex waveform to ferret out the remaining problems.

16.7 ISOLATING ERRORS: A 16-POINT EXAMPLE

16.7.1 Assumptions

The 16-point radix-4 FFT, shown in flow graph form in Figure 16-6 and completely
described in Section 9.7.5, is used to illustrate the error isolation approaches explained in
this chapter. A single programmable DSP chip, with external data and program memory, is
used as the implementation architecture because it represents the most common DSP board
configuration and the majority of product applications. Further, the 4-point building-block
code (blocks 1 through 4 on the left and right of Figure 16-6) will be written once and
used each of the eight times it is required by the relabeling techniques in Section 9.4 to
memory-map the data for each building block to different portions of data memory.

In multiprocessor applications it is prudent to test the FFf algorithms at the single
processor level first to simplify the overall testing process. Additional assumptions are
that the error is found after the algorithms have been developed, in this case using ones in
Chapters 8 and 9, and after the 4-point building-block coding is checked.

The bold line between the multiplier error third output 4-point building block shows
that the outputs of that building block are the only ones affected by the error. Therefore,
any test signal that has an incorrect output will only be incorrect in the A (6), A (6), A(10),
and A (14) terms, An error in one of these terms is the initial indication of an error in the
algorithm. The four bold lines on the input of the third output 4-point building block show
which intermediate results can possibly be in error. The goal of the test signal sequence is
to isolate the error to the correct place in the algorithm. The error introduced is a sign error
in the multiplier used to modify the third output of the second input 4-point building block
between the building-block stages.

410 CHAP. 16 TEST

A (0)

A (4)

A (8)

A (12)

A (1)
A (5)
A (9)

A (13)

A (2)

A (6)

A (10)

A (14)

A (3)

A (7)
A (11)

A (15)

Sign Error- MinusSign Missingfrom the Multiplier

ot--------t--------------+-I
It-------+----------
2t-- -------...
3..- --1-------..

o
2

1

3

o 0 ..--000+:--------'
2 1

1 2 2

3 3 1---"'--------.

o 0 ..-J

2 1-----------'

1 3 2 1--.-..- - - - - --+------....,.,

3 3 ..-~------

o 0 t----""-------J

2 1

1 4 2 1--........----.......------+---~

3 31'-----'-'--------------....

a (0)

a (8)
a (4)

a (12)

a (2)
a (10)

a (6)
a (14)

a (1)
a (9)
a (5)

a (13)

a (3)
a (11)
a (7)
a (15)

4-point FFTs 4-point FFTs

Figure 16-6 Sixteen-point radix-4 FFf error isolation example.

16.7.2 Test Signal Strategy

The test signal strategy is to find the error using the least number ofsignals. Therefore,
the constant signal is applied first, followed by the single sine wave. If needed, the pair of
relatively prime sine waves is used, and the 16 unit pulses are a last resort. Even if the unit
pulses are needed, hopefully the error will have been isolated far enough so that only a few
of the 16 choices are required.

Since the 4-point building block is known to be correct, the error must be in the
multiplier constants between the building-block stages or in the reorganization of data at
the algorithm input or between the algorithm stages. Therefore, the results of applying the
test signals are used to isolate the error to one of those three portions of the algorithm.

16.7.3 Error tsotatlon

Applying the ConstantTestSignal. According to Figure 16-5 and Section 16.6.2,
the constant test signal does not find the error because a correct 4-point building block al
ways has zero at the third output when the input signal is a constant. While this does not

SEC. 16.7 ISOLATING ERRORS: A 16-POINT EXAMPLE 411

locate the error, it does eliminate certain portions of the algorithm. Namely, since all of the
top outputs of the input 4-point FFfs are nonzero for the constant test signal and they are
all inputs to the top output 4-point FFT, the four associated multipliers are correct and that
portion of the data reorganization between stages is correct.

Applying the Single Sine Wave at Frequency 1 Test Signal. The single sine
wave at frequency 1 also does not provide useful information for isolating the error, because
of how the input data is reorganized before entering the input FFf building blocks. From
Figures 16-5 and 16-6 the input data points combined by the add-subtract computations are
eight samples apart. For a sine wave that has only one cycle during the 16 samples, the
samples that are eight apart are the negatives of each other, independent of the phase of the
sine wave. Therefore, the add output of the 4-point FFf input computations are always zero.
Since it is these two add outputs that are used to form the zero and second outputs of the
4-point FFT, the signal that feeds the incorrect multiplier value is always zero. Therefore,
that multiplier value can be anything, and the 16-point FFT outputs are unaffected.

While this also does not locate the error, it also eliminates other portions of the
algorithm. Specifically, all of the first and third outputs of the input 4-point FFfs are
nonzero, and they feed the second and fourth output 4-point FFTs. Since these output
4-point building blocks have the correct results, it is likely that they are getting the correct
inputs. Therefore, the respective multiplier constants on the input of those output 4-point
building blocks should be correct and the data reorganizations at the algorithm input and
between the stages must be correct. This leaves the third output from the input 4-point FFTs
or their corresponding multipliers and mappings into the third output 4-point FFf.

Applying the Pair of Relatively Primed Frequency Sine Waves. The choice
of frequency pairs has been aided considerably by the two previous test signals. Namely,
the conclusion to this point is that the error is somewhere in the path between the second
input FFT outputs and the outputs of the third output 4-point FFT. Since that 4-point FFf
produces output frequencies A (2), A(6), A (10), and A (14), the pair of frequencies chosen
must come from that set of four if it is to isolate the error. These sine waves have the feature
that the samples that are eight apart are the same. Therefore, the second output from each
of the 4-point input FFfs will be nonzero, regardless of the phase of those sine waves. As
a result, all of the inputs to the third output 4-point FFT will be nonzero.

Tosee how this test signal, with any combination of the pairs of frequencies mentioned,
can isolate the error, use Figure 16-5. If the top signal to that 4-point FFT (a(O)) is incorrect,
all of its outputs are modified by the same amount. If the next input signal (a (2)) is in error,
the error is added to its zero and second A (0) and A (2) outputs and subtracted from its
other A(l) and A(3) outputs. If the third input signal (a(l)) is incorrect, the error is added
to the first and subtracted from the second A (0) and A (2) outputs and - j times the error
is added to the second and subtracted from the third A(I) and A(3) outputs. Finally, if the
fourth input (a (3)) is incorrect, its error is added to the first and subtracted from the second
A (0) and A (2) outputs and - j times the error is subtracted from the first and added to the
third A (1) and A (3) outputs.

Therefore, the strategy is to apply the pair of sine-wave signals and compare the
outputs of the third 4-point output FFf with the correct ones. The errors must follow one

412 CHA~ 16 TEST

of the four patterns described in the last paragraph. Once the error pattern is identified, it
immediately points to which multiplier output is wrong. In this case, the second input to
the third output 4-point FFf has the wrong multiplier. Thus A(2) and A(lO) will have the
same error, and A(6) and A(14) will have the negative of that error.

Applying the UnitPulse Test Signals. In this example, the unit pulse signals are
not needed because the other three test signals were sufficient to isolate the error. If this
were not the case, then the results of the previous three test signals would have narrowed
the error to one of a few places. The unit pulse is then used to test for those few remaining
error locations sequentially until one of them had the wrong answer. However, a unit pulse
signal at a(2) or a(6) can be used to verify the results found by using the other sequence of
inputs.

16.8 CONCLUSIONS

This chapter details an orderly, efficient way to detect and isolate errors in FFTs , from
algorithm development through product operation. Carefully chosen test signals and the
sequence in which they are applied save time in error detection and isolation. Taking the
time to draw a flow graph is one of the best investments for saving time when isolating
errors. Examples have been used to illustrate these techniques, which are the final step in
the design process of an FFf-based product.

The final chapter integrates the concepts, facts, and tools of this and all the preceding
chapters, using four design examples.

17

Design Examples

17.0 INTRODUCTION

How to make the FFT decisions in a design is not easily explained in general because each
application has its own specific requirements. Therefore, four real-time design examples
are developed in this chapter to illustrate the concepts, elements, and tools given throughout
the book. These were chosen to cover:

• Three common uses of the OFT

• Two primary functions of the FFT

• Three applications of weighting functions

• Single and multidimensional processing

• Single and multiprocessor architectures

• Mixed-radix, convolutional, and prime factor algorithms

• Fixed-point, floating-point, and FFT-specific chips

• Single- and multiple-board implementations

The keyboard specifications from Section 15.0 are given for each example, but an actual
board will not be picked or designed because the information needed to illustrate that
selection process is beyond the scope of this book. The design decisions from Section
1.2 appear at the end of each example, with the choices for that example and a text that
summarizes those decisions. The sequence in which these decisions get made vary from
example to example.

Issues such as heat dissipation, temperature range, and vibration levels are not covered
in the book or in these examples. While these are important product design decisions, they

414 CHA~ 17 DESIGN EXAMPLES

are normally related to the specific environment where the product will operate and do not
affect choice ofFFf length, algorithm, or architecture. Issues such as package type (ceramic
versus plastic and pin-grid array versus surface mount) are also not covered because these
options are available from most chip and board vendors and are unlikely to affect FFf-related
decisions.

17.1 EXAMPLE 1: DOPPLER RADAR PROCESSOR

Processing in early Doppler radars was performed with an array of analog bandpass fil
ters. The capacitors, resistors, and inductors used to create these filters were sensitive to
temperature changes and aging, making the filters' center frequencies and bandwidths hard
to control. The advent of digital integrated circuits in the early 1970s stimulated a rapid
transition of Doppler radar processing from analog filtering to digital filtering, using FFf
algorithms (Section 2.2) [1]. Initially, FFf-based Doppler processors could only be afforded
for military applications. However, the proliferation of the DSP chips listed in Chapter 14
reduced implementation costs to the point where FFT processing is now common in both
military and commercial Doppler radars.

17.1.1 Definition of the Product

The Doppler processing portion of a ground-based air surveillance radar, which might
be used for commercial airport air traffic control or for Doppler weather radar, is de
signed in this example. In this class of radar applications, Doppler processing is used for
three reasons. First, aircraft targets and storms are moving relative to the ground, which
means their return frequency is different than the ground's. Therefore, Doppler processing
can be used to separate those returns from ground returns. Second, Doppler processing
determines how fast each target aircraft is moving toward the radar. This, in conjunc
tion with angle and range measurements, can be used by the radar to track aircraft and
storms,

Finally, Doppler processing is also used to improve the signal-to-noise (S/N) per
formance of the radar. Since radar system noise is random in time, its value in any target's
range interval is reduced by the number of range intervals, M, within the interpulse period
(time between radio frequency (RF) pulse transmissions). Further, within a particular range
interval, the radar system's noise is also random in frequency. Since the return energy from
a target is concentrated at a particular frequency, S/ N is improved by a factor of N when
the Doppler processor divides the frequency range into N smaller passbands. The result is
an overall S/ N improvement of a factor of M * N by performing Doppler processing at
each range interval of interest.

17.1.2 Specification

Table 17-1 shows the fundamental system parameters and the values they have for this
example. Range resolution is the width of the transmitted pulse. Because RF energy travels
at the speed of light (300,000,000 m/s), it has a round-trip time to the target and back of 150
tnlu» (492 ftl/1s). This means that 50-ft resolution translates into roughly 0.1-/1s pulses.
Azimuth resolution is defined as the 3-dB azimuth beamwidth of the radar antenna, and

SEC. 17.1 EXAMPLE 1: DOPPLER RADAR PROCESSOR 415

radial speed resolution is defined as the spacing between Doppler filters. The conversion
between speed (lJ) and Doppler frequency (I) is

/=2*1)/)..

where A is the wavelength of the transmitted RF energy. For an X-band radar, A ~ 0.1
ft. Therefore, a 2-ft/s speed resolution requirement converts to a 40-Hz spacing between
Doppler filters (~I == 2 * 2 ft/s/(O.1 ft) == 40 Hz).

Table 17-1 Doppler Processor Technical Specifications

System parameter

Range resolution
Antenna scan rate
Maximum detection range
Azimuth resolution
Radial speed resolution

Product volume
Time to market

Required value

50 ft
6 RPM
80 nautical miles
1°
2 ft/s
100 systems
1 year

Normally these types of radars are designed so that the return from the longest-range
target reaches the receiver before the next pulse is transmitted. For an 80-nautical-mile
maximum range the RF energy must travel 160 nautical miles, which is roughly 296,000
m. Since RF energy travels at 300,000,000 tul«, it takes the RF energy 0.987 ms to make
the maximum round-trip excursion. Therefore, a pulse repetition interval of 1 ms (1000
transmissions per second) satisfies the maximum-range requirements. If the entire time
between transmitted pulses is divided into O.I-J-Ls pulse widths, 10,000 pulse widths are
required.

17.1.3 Description

Doppler radars periodically transmit pulses of RF energy and collect the radar returns
and "noise" as a function of time. Given that RF energy travels at the speed of light, the
time delay between pulse transmission and the reception of energy that has bounced off the
target is directly related to the target's distance from the radar antenna [1].

Because a target's radial speed (motion away from or toward the radar) causes a
change in the frequency of the transmitted pulse (the Doppler effect), frequency analysis
of the return samples is used to aid in detecting targets and determining their radial speed.
The FFT is the most widely used algorithm for determining this frequency shift.

Radar antenna scan rates and beam widths determine how many times the transmitted
radar energy hits the target each time the antenna beam scans by it. The available number
of return samples is rarely a power of two. However, Doppler radar processor transform
lengths (number of samples at a particular range) are usually powers of two because of avail
ability of power-of-two FFT algorithms. In these radars, the zero-padding technique dis
cussed in Section 2.3.10 is used to obtain enough data points for a power-of-two algorithm.
The alternative approach is to use one of the non-power-of-two algorithms in Chapters 8

416 CHA~ 17 DESIGN EXAMPLES

and 9. This alternative may produce a more accurate analysis of the Doppler shift and
use fewer computations and data memory. However, the high-speed FFf-specific chips in
Section 14.7 only perform power-of-two algorithms. This means that non-power-of-two
algorithms require either the Bluestein algorithm (Section 9.5.1) or the programmable DSP
chips from Sections 14.3 and 14.5. Both reduce the throughput possible.

17.1.4 Design Decisions

FFTAlgorithm. Since the azimuth scan rate is 36°/s (6 RPM) and the azimuth beam
is 1° wide, the radar beam hits a point target for roughly 1/36 s during each revolution. In
1/36 s the radar transmits 1000/36 = 27.7 pulses that will bounce off of the target and
return to the radar for processing. Therefore, 27- or 28-point FFf algorithms are the natural
Doppler processing choice. Chapters 8 and 9 show that 30- and 32-point FFT algorithms are
also good candidates, based on the computations required, and require little zero padding.
Therefore, the likely FFT length is between 27 and 32.

The sampling theorem, described in Section 2.3.1, limits the frequency spectrum by
the complex sampling rate, in this case 1000 Hz. Chapter 2 also states that this sampling
interval is divided into N equally spaced frequency intervals by the FFf (Section 2.3.2).
Therefore, processing the radar returns using a 27- to 32-point FFf produces (1000 Hz)/32
= 31.25 Hz to 1000/27 = 37 Hz spacing between the frequency bins. All of these satisfy
the 40-Hz requirement. In fact, a 25-point FFf is the smallest that will satisfy the speed
resolution requirement. This expands the choices for FFf lengths to include 25 and 26
points. Table 17-2 summarizes the factors of these candidate transform lengths.

Table 17-2 Transform Length Factors

Transform lengths

25
26
27
28
29
30
31
32

Factors

5,5
2, 13
3,3,3
2,2,7
29
2,3,5
31
2,4,8,16

Since the 27-point FFf can be computed by using either three stages of 3-point
building blocks or a 3-point and a 9-point building block, the factors in Table 17-2 include
all of the building blocks in Chapter 8. Additionally, the 29- and 31-point FFTs can be
computed by using any of the three general algorithms for all odd numbers. The Winograd
(26-, 28-, and 3D-point FFTs), prime factor (26-, 28-, and 30-point FFTs), and mixed-radix
(25-, 26-, 27-, 28-, 30-, and 32-point FFTs) algorithms from Chapter 9 can be used to
implement the listed transform length choices.

From the Comparison Matrices in Chapter 9 (Tables 9-7 and 9-8), the most likely non
power-of-two FFT is one of the 28- or 30-point prime factor algorithms (Kolba-Parks or

SEC. 17.1 EXAMPLE 1: DOPPLER RADAR PROCESSOR 417

SWIFT) using the Winograd building-block algorithms from Chapter 8 because they require
the fewest adds and multiplies. The algorithms can be compared by using the Comparison
Matrices from Chapters 8 (Table 8-1) and 9 (Tables 9-7 and 9-8). However, the 32-point
FFT must also be considered because this is a high-computation-rate application which may
result in the use of an FFT-specific chip from Chapter 14.

From the Comparison Matrix in Table 9-8, the 16-point radix-4 FFT algorithm takes
144 adds and 24 multiplies. The mixed-radix algorithm in Chapter 9 can be used to combine
the 16-point FFT with a 2-point building block to form the 32-point FFf. This requires:

• Two 16-point FFTs (288 adds, 48 multiplies)

• Sixteen 2-point FFTs (64 adds, 0 multiplies)

• Fifteen complex multiplies (30 adds, 60 multiplies) (between the 16- and 2-point
FFTs)

• Thirty-two half-complex multiplies (0 adds, 64 multiplies) (weighting function
multiplies)

The total is 382 adds and 172 multiplies.
If the prime factor algorithm in Chapter 9 is used with the 7-point Winograd and

4-point building blocks from Chapter 8, the 28-point FFT uses:

• Seven 4-point FFTs (112 adds, 0 multiplies)

• Four 7-point FFTs (288 adds, 64 multiplies)

• Twenty-eight half-complex multiplies (0 adds, 56 multiplies) (weighting function
multiplies)

This is a total of 400 adds and 120 multiplies.
If the prime factor algorithm in Chapter 9 is used with the 3- and 5-point Winograd

and 2-point building blocks from Chapter 8, the 30-point FFT uses:

• Fifteen 2-point FFfs (60 adds, 0 multiplies)

• Six 5-point FFTs (204 adds, 60 multiplies)

• Thirty half-complex multiplies (0 adds, 60 multiplies) (weighting function multi
plies)

• Ten 3-point FFTs (120 adds, 40 multiples)

This is a total of 384 adds and 160 multiplies.
Memory locations for data and constants must also be considered when choosing an

algorithm. The numbers in the Comparison Matrices in Chapters 8 (Table 8-1) and 9 (Tables
9-7 and 9-8) show additional memory locations are required for the 28-, 30-, and 32-point
FITs. The 16-point FFT only has six multiplier coefficients to store. However, the 15
complex multiplications required between the 16- and 2-point FFTs require an additional
30 constant locations. One of the key advantages of the prime factor algorithm is the few
multiplier constants that must be stored. The 28- and 30-point FFTs are good illustrations
of that fact. Eight constants are needed for the 7-point FFf, two for the 3-point FFf, and five
for the 5-point FFf. The 2- and 4-point building blocks have no multiplier constants, and no
complex multiplies are required between stages. All of the algorithms must store weighting

418 CHAP. 17 DESIGN EXAMPLES

function coefficients. Assuming all these are stored, the number of memory locations for
the weighting function coefficients is equal to the FFf length.

Table 17-3 summarizes the performance measures for each of the three most likely
FFf algorithms. If the choice of processor is limited to the programmable processors in
Chapter 14, Table 17-3 can be used to choose the 28-point prime factor algorithm be
cause of the smaller numbers in columns 2, 3, and 4. However, the 32-point FFf can
also be implemented with the FFT-specific chips in Chapter 14. Therefore, the FFf al
gorithm decision must be postponed until the chip and architecture choices are exam
ined.

Table 17-3 Doppler Radar Processor FFf Algorithm Comparison Matrix

of data # of const.

Algorithm # of adds # of multiplies locations locations

32-point mixed-radix 382 172 64 68

28-point prime factor 400 120 56 36

30-point prime factor 384 160 60 65

Weighting Functions. In addition to FFf length requirements, constraints are
placed on the radar based on ground clutter returns. Since these are not germane to
this example, they are given as input dynamic range to the FFr processor of 80 dB and
peak frequency filter sidelobe level of -60 dB. The 60-dB filter sidelobe requirement im
plies using a weighting function. Table 17-4 summarizes the performance measures of the
weighting functions from the Comparison Matrix in Chapter 4 (Table 4-1) that meet the
-60-dB highest sidelobe level requirement. The tx = 3.0 Dolph-Chebychev weighting
function is chosen from Table 17-4 because it has the best performance in columns 5, 6,
and 7.

Table 17-4 Doppler Radar Processor Weighting Function Comparison Matrix

Highest Sidelobe Frequency Coherent Equivalent

sidelobe fall-off straddle integration noise 3-dB

Weighting function level (dB) ratio loss (dB) gain bandwidth bandwidth

Three-sample Blackman-Harris (a) -61 -6 1.27 0.45 1.61 1.56

Three-sample Blackman-Harris (b) -67 -6 1.13 0.42 1.71 1.66

Four-sample Blackman-Harris (a) -74 -6 1.03 0.40 1.79 1.74

Four-sample Blackman-Harris (b) -92 -6 0.83 0.36 2.00 1.90

Kaiser-Bessel (c) ex = 3.0 -69 -6 1.02 0.40 1.80 1.71

(d) ex = 3.5 -82 -6 0.89 0.37 1.93 1.83

Gaussian (c) a = 3.5 -69 -6 0.94 0.37 1.90 1.79

Dolph-Cheb. (b) a = 3.0 -60 0 1.44 0.48 1.51 1.44

(c) a = 3.5 -70 0 1.55 0.45 1.62 1.55

(d) ex = 4.0 -80 0 1.65 0.42 1.73 1.65

SEC. 17.1 EXAMPLE 1: DOPPLER RADAR PROCESSOR 419

Arithmetic Format. In the Comparison Matrix in Chapter 13 (Table 13-1), the
dynamic range requirement of 80 dB (14 bits) at the input restricts the arithmetic format to
floating-point, block-floating-point, or larger-than-16-bit fixed-point.

Architectures and Chips. The potential architectural options are determined pri
marily by the number of FFfs that must be performed per second and how many FFfs can
be performed by a single chip. The number of FFfs per second is determined by multiplying
the FFf rate per second for a single range interval by the total number of range intervals.
The single range interval processing requirement is one 25- to 32-point FFf during the 28
ms the antenna beam is on the target. Since there are 10,000 range locations within the
interpulse period, the total FFf computation requirement is one 25- to 32-point FFT every
2.8 JLS.

The chip Comparison Matrices in Chapter 14 (Tables 14-3 to 14-7) only provide
computational performance for 1024-point transforms. For chips that perform a 1024-point
FFT on-chip, the scaling formula from Chapter 14 can be used to approximate the required
computation time for 32-point FFTs, namely (1024/32) * [log2(1024)/log2(32)] = 64
times faster. Conversely, the 2.8-JLs time for the 32-point FFf can be multiplied by 64
(179.2 JLs) and compared to the 1024-point complex FFf times. Table 17-5 summarizes
the chips that have floating-point, block-floating-point, or 20/24-bit fixed-point arithmetic
(to match the arithmetic format requirements) and the rough number of them needed to meet
the FFf computation requirement. The number-of-chips estimate is based on applying the
equation in this paragraph.

Based on Table 17-3, the Analog Devices 21060 is technically the best programmable
fixed-point or floating-point choice because it provides the most performance per chip and
is designed to be implemented in multiprocessing architectures (Section 14.5.2). Assuming
that the FFf processing represents roughly half of the total signal processing, at least six
of these chips will be needed in the processor architecture. To provide some cushion for
future growth, assume eight ADSP-21060 chips will be used. Since the FFT processing is
executed independently for each of the 10,000 range intervals, the best data organization
is to distribute 1250 of the range intervals to each of the eight floating-point DSPs. To
distribute the I/O load on each of these DSPs, sequential range cells should be sent to
different processors. The result is that each DSP's input memory will need an area for 1250
of the 28-, 30-, or 32-point sets of complex input data; 1250 sets of data being processed;
and 1250 sets of frequency results being output for subsequent processing. For the worst
case of using the 32-point algorithm, this is a total of 3 * 1250 *64 = 240,000 thirty-two
bit data words (960,000 bytes) in each processor's local memory. Since this is less than a
megabyte, there is no reason to use the 25- to 31-point algorithms to save memory space.

Table 17-5 shows that all but two of the block-floating-point FFf chips can execute
the required processing load using the 32-point FFf, but none of these chips is capable
of implementing the 25- to 31-point FFf choices without the Bluestein algorithm. Be
fore going to a processor architecture block diagram, check the manufacturer's Application
Notes to verify the 32-point FFf timing estimates. The Sharp FFT chip takes 3.75 JLS
(table on page lA-2 of Application Notes, Reference 36 from Chapter 14) to perform a
32-point complex FFT. Similarly, the array Microsystems FFf processor takes 5.6 JLS,
using their formula (Table 1.4 of a66110 User's Guide, Reference 35 from Chapter 14)

420 CHAP. 17 DESIGN EXAMPLES

Table 17-5 Doppler Radar Processor DSP Chip Comparison Matrix

Chip IK FFf time (MS) # bits # chips

Fixed-Point

DSP56001 1.797 24 II
DSP56002 0.908 24 6
DSP56L002 1.497 24 9
DSP56004 1.497 24 9
jlPD77220 8.5 24 48
jlPD77P220 8.5 24 48
SPROCI400 2.4 24 14
SPROCI200 4.8 24 28
SPROCI210 4.8 24 28
ZR38000 0.88 20 5

Floating-Point

ADSP-21020 0.58 32 4
ADSP-2 1060 0.46 32 3
DSP32C 3.2 32 18
DSP3210 2.4 32 14
DSP3207 1.9 32 11
i860XR 0.74 32 5
i860XP 0.55 32 4
DSP96002 1.04 32 6
jlPD77240 7.07 32 40
jlPD77230A 11.78 32 66
TMS320C30 1.97 32 II

TMS320C31 1.97 32 II

TMS320C40 1.54 32 6

Block-Floating-Pt.

a66110/a6621 0 0.131 16 1

a66111/a66211 0.131 16 1
LH9124/LH9320 0.087 24 1

LH9124L/LH9320 0.129 24 1
TMC2310 0.514 16 3
PDSP16510/16540 0.096 16 Cannot do

Time (ns) = (M + K + 1) * (N + 24) * 25 (17-1)

where N = 32 = 2 * (4)M and K = 1 because of the need of a weighting function.
Therefore, two of the array Microsystems FFT processors are only marginally able to
perform the 32-point FITs at the required 2.8-J.ls rate. This suggests that the Sharp FIT
chip is technically the best of the dedicated chip solutions and requires two chips. The
reason for the discrepancy with the formula is that the 1024-point FFfs are computed
in these chips using a radix-4 algorithm which takes only five passes of data through the

SEC. 17.1 EXAMPLE 1: DOPPLER RADAR PROCESSOR 421

processor. The 32-point FFT takes three passes because it needs two radix-4 and one radix-2
passes.

Based on these observations, two processor architectures are shown in Figures 17-1
and 17-2. To ensure there is plenty of processing power for the non-signal-processing
portions of the radar functions, and to account for inefficiencies encountered with combining
algorithms into an application, four floating-point DSP chips are used for the other radar
processing in both processor architectures.

100.--------Pl.1 RAM
! &
I Control
I

t

Doppler Processing

Output

Working I
RAM I FFT

& ~I Processor
Control

I

Input

Data

Working
RAM

&
Control

FFT
Processor

t
Coeff.
RAM

&
Control

110
RAM

&
Control

t

Working
RAM

&
Control

Doppler Processing

Output

Working
RAM- &

Control

Local Local
RAM RAM

I I

Floating- Floating-
Point - - Point
DSP DSP

Output
[Crossbar Switch 1 to

Display

Floating- Floating-
Point r- '-- Point
DSP DSP

I I
Local Local
RAM RAM

Coeff.
RAM

&
Control

Figure 17-1 Radar processor architecture 1.

422 CHAP. 17 DESIGN EXAMPLES

Local Local
RAM RAM

I I

Floating- Floating-
Point f-- Point
DSP DSP

~ CrossbarSwitch }

Local Local
Floating- Floating- RAM RAM

Point r-- --- Point I I
DSP DSP Floating- Floating-

I I Point i-- r-- Point

Local Local DSP DSP

Input RAM RAM DopplerProcessing f 1- o l CrossbarSwitch J

Data utput

Local Local Floating- Floating-
RAM RAM Point i-- "- Point

I I DSP DSP

Floating- Floating- I I
Point i-- r- Point Local Local
DSP DSP RAM RAM

f CrossbarSwitch }

Floating- Floating-
Point f- - Point
DSP DSP

I I
Local Local
RAM RAM

Output
to

Display

Figure 17-2 Radar processor architecture 2.

17.1.5 Board Selection Process

To select a board, the FFT length and radar processor architecture decisions still need
to be made. In Table 17-3 the 28- and 3D-point FFf algorithms require fewer computations
and less memory than does the 32-point FFf algorithm. In Table 17-5 both processor
architectures are capable of meeting the processing requirements by using any of the three
FFT lengths. However, 32-point FFT code exists in algorithm libraries for the Analog
Devices ADSP-21060 chip. Therefore, since memory storage requirements for the three

SEC. 17.1 EXAMPLE 1: DOPPLER RADAR PROCESSOR 423

different FFT lengths all need more than 512-kbyte and less than 1-mbyte memory chips,
the 32-point FFT is also the best choice for architecture 2.

Now a direct comparison can be made between the two architecture options. The only
discernible difference is that the FFf-specific architecture already has the 32-point algorithm
and the associated memory management built-in to the operation of the Sharp chip set. Be
cause of the benefit of reduced development time and effort for architecture 1, it is the better
choice (time-to-market requirement from Table 17-1). Table 17-6 summarizes the specifi
cations needed to choose a COTS board that will be used twice for this multiboard design.

Table 17-6 Example 1, Board Selection Specifications

Category

Processor
Off-chip memory
Analog I/O ports
Instruction cycle time
Parallel and serial I/O ports (buses)
Host interface

17.1.6 Test Signals

Specification

Sharp LH9124/LH9320
256K of 32-bit words
None required
25 ns
32-bit words at 20 million per second rate
None required

Section 16.5 introduces four types of test signal in an order of increasing complexity.
It also gives the guidelines that were followed to create the specific parameters of each
signal in Table 17-7. They are reordered to match the strategy in Section 16.7.2 that lists
them in an order that allows testing with the least number of signals. The pair of sine waves
can be any pair of relatively prime numbers up to the length of the transform (32 points)
and were arbitrarily selected.

Table 17-7 Example 1, Test Signals

Signal

Constant
Single sine wave
Pair of sine waves
Unit pulses

Parameters

Amplitude = 1000 for real and imaginary parts
1 cycle per 32 data samples
5 and 11 cycles per 32 data samples
As needed

17.1.7 Design Decisions Summary

A pair of the Sharp FFf-specific chip sets is chosen to implement a 32-point FFT.
They are arranged in parallel because of the independence of the 10,000 range cells to be
processed. A pipeline architecture, which has a crossbar interconnection of four Analog
Devices 21060s for the remainder of the radar processing, is used for the overall processing
architecture. The -60-dB sidelobe Dolph-Chebychev weighting function is chosen because
it meets the sidelobe requirements and has the best performance of the applicable weighting

424 CHAR 17 DESIGN EXAMPLES

functions in coherent gain, equivalent noise bandwidth, and 3-dB bandwidth. Table 17-8
summarizes all of the key element design decisions made for this example.

Table 17-8 Example 1, Design Decisions

Key element

Number of dimensions
Type of processing
Arithmetic fonnat
Weighting function
Transform length
Algorithm building blocks
Algorithm
DSP chip
Architecture
Mapping the algorithm onto the architecture

Selection

1
Frequency analysis
Block-floating-point and 32-bit floating-point
Dolph-Chebychev
32-point
2- and 16-point
Powers-of-primes mixed-radix
Sharp FFT-specific and Analog Devices 21060
Pipeline and crossbar
Maximum throughput

17.2 EXAMPLE 2: POWER SPECTRUM ESTIMATOR

Power spectrum estimation is a technique for measuring the power in a noisy signal as a
function of frequency. The image deblurring example in Section 17.4 uses power spec
trum estimation as a key factor in deconvolving the real signal from the distortions of the
measurement system. Other power spectrum estimation applications occur in analysis of
geophysical data in oil and other mineral exploration [1], linear predictive coding models
for speech synthesis and compression [1], and sonar signal processing [1].

17.2.1 Definition of the Product

The product is to be a plug-in board, for an IBM-compatible PC, to compute the
power spectrum estimate, for sequences of noisy signals, in excess of 2000 data samples.
The data is prestored on the hard disk. The user can access any portion of the data file,
perform the power spectrum estimation on those samples, and display the results within
lOs of the data being downloaded from hard disk.

The user is anyone who employs a PC to analyze noisy signals for the purpose of
finding patterns, which might be used to predict future values of a waveform. Two examples
of the kind of signal this board can analyze are seismic data, to predict earthquakes, or sonar
data, gathered to track whales.

17.2.2 Specification

Table 17-9 summarizes the specification of the product. Throughput is defined as the
rate at which data sets can be fed to the product without the product getting behind. Latency
is the time from when a data set enters the product until the analyzed version is sent back
to the hard disk. The assumption is that the computational board is not used to display the
results, just to compute them. The results are returned to hard disk, and a standard software
package is used to display the results.

SEC. 17.2 EXAMPLE2: POWER SPECTRUM ESTIMATOR 425

Table 17-9 Power Spectrum Estimator System Requirements

System parameter

Data set size == 1
Number of bits per data point

Throughput rate

Latency

Hardware

Input source

Output
Number of data sets on board at one time

17.2.3 Description

Requirement

From 32 to 8192 real data points

16
1 power spectrum estimate per 5 s

10 s

IBM PC compatible plug-in board

IBM PC hard disk
IBM PC hard disk

1

The modified periodogram method [2] of spectral estimation is based on dividing the
sampled signal into subsequences of a manageable length, computing the power spectrum
of those subsequences, and combining the result to estimate the power spectrum of the
complete signal sequence. This strategy allows the sequence length to be controlled to
fit within the memory capabilities of a computer and does not require the entire set of
computations to be redone every time new samples are added to the signal. The power
spectrum estimator uses the FFT in the center of its computations. Therefore, the example
must include the other portions of the algorithm to obtain a realistic design. Since the
modified periodogram method algorithm is not discussed in this book, it is summarized
below. The details can be obtained from other sources [2].

The power spectrum of a data sequence of L samples, a(m) for m == 0, ... , L - 1,
with the modified periodogram method, is computed from the following steps.

Step 1: Sectioning the Input Data Sequence

Section the input data sequence into P overlapping subsequences of length N such
that the combined subsequences span the entire data sequence. Figure 17-3 illustrates this
process with an overlap of M samples and P == 5.5.

Step 2: Apply the Weighting Function and Compute the FFT of Each Section

For each segment of length N, select the same weighting function (W F(n», multiply
it by the segment data samples, and compute the N -point FFT of the result. Specifically,
compute

N-l

Ap(k) == L W F(n) * a[n + (p - 1)(N - M + 1)] * w~*n
n=O

(17-2)

where, WN == cos(2rr/N)-j*sin(2rr/N),k == O,l, ... ,N-l,andp == 1, ... ,P.
This is a total ofP N -point FFTs. The triangular weighting function (Section 4.2.2) and
an overlap of M == N /2 are often used for this process because of improved performance
in the convergence of the variance of the power spectrum [2]. In this case, P == (2 *
L / N) N -point FFfs are required to compute the power spectrum estimate for all P sets of
samples.

L Samples

426 CHA~ 17 DESIGN EXAMPLES

I• N Samples
'II _I

I .. N Samples .1

1__M__
1

N Samples
~ I- ~I

~ I.. NSamples ~I

~ I.. NSamples ~I

~

Figure 17-3 Modified periodogram sequence segmentation example.

Step3: Compute the Periodograms
For each of the P sets ofFFf coefficients, Ap(k) with k = 0, 1, ... , N -1, compute

the modified periodograms:

(17-3)

(17-4)

where U = E~:Ol[WF(n)]2 is computed ahead of time. For each set of NFFfcoefficients,
N complex multiplies are required. Since there are P of these sets, this step requires N *P
complex multiplies. Since each complex multiply uses four real multiplies and two real
adds, this is a total of 4 *N *P real multiplies and 2 *N *P real adds. For the 2:1 overlap
case described in Step 2, P = 2 * L / N. Therefore, the number of real multiplies required
is 8 *L, and the required number of real adds is 4 *L, independent of the FFf length.

Step4: Compute the Power Spectral Density
Compute the power spectral density of the input data samples a (n) by computing the

average of the modified periodograms from Step 3:

p

PSDp(k) = [1/P] *L Ip(k)
p=l

For each of the N periodogram frequency components (k = 0, 1, ... , N - 1), P - 1 adds
are required, followed by one divide. This is a total of N * (P - 1) real adds and one real
divide. For the 2:1 overlap case described in Step 2, P = 2 *L / N. In this case the number
of real adds required in this step is 2 * L - N.

SEC. 17.2 EXAMPLE 2: POWER SPECTRUM ESTIMATOR 427

Step 5: Update the Power Spectral Density for Each New Section of Input Data
Samples

To modify the power spectral density in Step 4 when additional data is collected,
another periodogram is computed for the new data and then the average in Step 4 is recom
puted. There is even a trick to simplify the computation of the new average, namely rather
than computing P - 1 adds and a divide for each of the N frequency components, compute

PSD(p+l)(k) = [P * PSDp(k) + Ip(k)]j(P + 1) (17-5)

which requires only one multiply, one add, and one divide for each of the N frequency
components, k = 0, 1, ... , N - 1.

17.2.4 Design Decisions

FFTAlgorithm. This is the area where most of the flexibility exists since the large
data set is to be segmented into logical subsequences, overlapped by 2:1, and used to cover
all of the potential data set lengths. The only requirement that will simplify the 2:1 overlap
process is that the data sets to be analyzed have an even number of data points. This allows
2:1 overlap without having to zero-pad the last subsequence and makes L = 2 * R, where
R can be any number.

The other constraint on transform length is that 2 * L j N, the number of FFfs to
compute, be an integer. Combined with the requirement on L, this leads to a product
requirement of 4 * RjN being an integer with R any number up to 4096. If N is larger
than 4, it must always have factors that are in R. Therefore, to meet the desired system
performance, N must be able to be as large as prime numbers up to 4096. The only FFf
algorithm in Chapter 9 that can reasonably reach these goals is the Bluestein algorithm.
Figure 17-4 is a block diagram of this algorithm. The implementation of the algorithm
is discussed below. Assuming it is reasonable to implement it, all of the data set length
requirements can be met.

Complex
Multipliers

1
X

a(i)

Complex
Multipliers

Complex
Multipliers

Complex
Multipliers

Complex
MUltipliers

+

Complex
Multipliers

A(i)

Figure 17-4 Bluestein FFT algorithm block diagram.

428 CHAR 17 DESIGN EXAMPLES

The block diagram in Figure 17-4 is for performing an N -point complex FFf. Since
the data sets for this product are real, the Double-Length Algorithm from Section 2.4.2
can be used to more efficiently implement the complex algorithm. Therefore, the estimates
made on FFf performance are based on complex data lengths that are half of the real data
lengths.

To simplify the Bluestein algorithm development process, power-of-two algorithms
will be used for the V/2-point FFfs. These algorithms are available for all of the candidate
DSP chips.

Weighting Functions. The theoretical development of the power spectrum esti
mation algorithm [2] uses the triangular weighting function from Section 4.2.2. Rather
than store all of the weighting function constants in program memory, it can be easily
computed.

Arithmetic Formats. Nothing in the algorithm explicitly defines the arithmetic
format requirement. However, since the process is looking for small patterns in a noisy
signal, it makes sense to use floating-point arithmetic to minimize the algorithm-induced
quantization noise, based on the Comparison Matrix in Chapter 13 (Table 13-1).

Architecture and Chips. The worst-case processing load is when the required
FFf is largest because the FFT computation load increases as N * log2(N). The largest
prime number less than 4096 is 4093, making 4093 the largest value of N. Based on
V being a power of two and the input data being real, V only has to be 4096 points,
which means the largest complex FFf to compute is 2048 points. Since the system re
quires four of these, it requires a total of sixteen 2048-point FFTs, as well as 4 * (4 * V +
10 * N) adds and 4 * (8 * V + 16 * N) multiplies, based on the Comparison Matrix in
Table 9-7.

Table 17-10 is a list of the floating-point FFT chips from Chapter 14. For the chips
that have less than 2048 locations of on-chip data RAM, the 1024-point FFT performance
number already reflects going off-chip for data. Therefore, the performance numbers for
these chips can be extrapolated to estimate performance for 2048-point FFTs by multiplying
by a factor of 2 * 11/10 = 2.2 (Section 14.1.1). It is easy to see that, even for the slowest
1024-point FFf time, all of the chips can execute the required computations in less than a
second.

Based on the preliminary options available for chips in Table 17.7, the product
should work as a single DSP chip solution with off-chip program and data memory (Figure
17-5). The data and program memory interfaces are shown for the same DSP chip pins,
because the added speed of having separate buses is not required. Therefore, the com
bined bus approach can be used to choose a DSP chip with fewer pins. This will re
duce the cost of the product. If all the devices with over 144 pins are eliminated, the list
shrinks to the DSP32xx family, the jtPD77240 and TMS320C3x families with 132-pin
packages, and the jtPD77230A with a 68-pin package, which are summarized in Table
17-11. The package pin counts were obtained from the respective chip family references in
Chapter 14.

SEC. 17.2 EXAMPLE 2: POWER SPECTRUM ESTIMATOR 429

Table 17-10 Power Spectrum Estimator Chip Preliminary Comparison Matrix

lO24-point Data I/O On-chip data On-chip prog. # of address
Floating-point chip complex FFT (MS) ports memory words memory words generators

Analog Devices
ADSP-21020 0.58 Os/2p 0 0 2
ADSP-21060 0.46 8s/1p 65,536 65,536 2
AT&T
DSP32C 3.2 ls/Ip 1024/1536 4096/0 1
DSP3210 2.4 l s/Ip 1024/2048 1024/256 1
DSP3207 1.9 Os/lp 1024/2048 1024/256 1
Intel
i860XR 0.74 Os/lp 1024 256 1
i860XP 0.55 Os/lp 2048 1024 1
Motorola
DSP96002 1.04 Os/2p 1024 1024 2
NEe
jlPD77240 7.07 1s/Ip 1024 0 2
jlPD77230A 11.78 Is/lp 1024 1024/2048 2
TI
TMS320C30 1.97 2s/2p 2048 4096 2
TMS320C31 1.97 ls/2p 2048 4096 2
TMS320C40 1.54 6s/2p 2048 4096 2

s == serial port; p == parallel port.

I
PC Bus To
Interface PC B

Address

Floating-Point Data
DSP RAM
Chip Data

EPROM
Program
Memory

us

Figure 17-S DSP architecture for the power spectrum estimator.

430 CHAR 17 DESIGN EXAMPLES

Table 17-11 Power Spectrum Estimator Chip Comparison Matrix

Floating-point 1024-point Data I/O On-chipdata On-chipprog. # of address
chip complexFFT (MS) ports memory words memory words generators

DSP3210 2.4 Is/Ip 1024/2048 1024/256 1
DSP3207 1.9 Os/lp 1024/2048 1024/256 1
j.tPD77240 7.07 ls/Ip 1024 0 2
j.tPD77230A 11.78 Is/Ip 1024 1024/2048 2
TMS320C30 1.97 2s/2p 2048 4096 2
TMS320C31 1.97 Is/2p 2048 4096 2

s = serial port; p = parallelport.

17.2.5 Board Selection Process

Of the six chips that meet the specifications, the best choice is the one that has the
largest number of COTS boards on the market that will plug into a PC bus, because the
competition of multiple boards in the market tends to reduce their cost. Multiple boards
in the market also provide for second sources in case one board manufacturer goes out of
business or decides to no longer make that board. There are far more TMS320C30 PC plug
in boards available than for any of the other chips in Table 17-11. Therefore, a TMS320C30
based board is the best choice to meet the specifications summarized in Table 17-12.

Table 17-12 Example 2, Board Selection Specifications

Category

Processor
Off-chipmemory
Analog lID ports
Instructioncycle time
Paralleland serial I/O ports (buses)
Host interface

17.2.6 Test Signals

Specification

TMS320C30
8192 of 32-bit words
None required
60 ns
PC bus
PC compatible

Testing this application presents a unique challenge because the Bluestein algorithm
is used here to implement all the FFf lengths between 32 and 8192 points on real input data.
The block diagram in Figure 17-4 shows that a 2048-point FFf is used as the intermediate
step for all of the FFf lengths in this example. Therefore, the test signals are chosen to test
the 2048-point FFf. Once it is fully tested, any remaining errors must be associated with
the complex multipliers. Since they are computed based on the formulas in Section 9.5.4,
they are checked by comparing the values in the application code with the values of those
formulas,

Section 16.5 introduces four types of test signal in order of increasing complexity. It
also gives the guidelines that were followed to create the specific parameters of each signal
in Table 17-13. They are reordered to match the strategy in Section 16.7.2 that lists them
in an order that allows testing with the least number of signals. The pair of sine waves can

SEC. 17.3 EXAMPLE 3: SPEECH ANALYZER 431

be any pair of relatively prime numbers up to the length of the transform (2048 points) and
were arbitrarily selected.

Table 17-13 Example 2, Test Signals

Signal

Constant

Single sine wave

Pair of sine waves

Unit pulses

Parameters

Amplitude = 1000 for 8192 samples

1 cycle per 2048 data samples

7 and 13 cycles per 2048 data samples

As needed

17.2.7 Design Decision Summary

This application uses the Bluestein algorithm to meet the requirement to compute any
transform length. Power-of-two FFTs are used to implement the Bluestein algorithm, to
reduce the algorithm development cost. The triangular weighting function is used because
the derivation of power spectrum estimation [2] reveals that as the best technical approach.
A single floating-point DSP chip, which will need external program and data memory
chips, provides the needed processing power and computational accuracy. The jLPD77230A
floating-point DSP chip would be used for a custom-designed board, and a TMS320C30
based board for an off-the-shelf design. Table 17-14 summarizes all of the key element
design decisions made for this example.

Table 17-14 Example 2, Design Decisions

Key element

Number of dimensions

Type of processing

Arithmetic format
Weighting function
Transform length
Algorithm building blocks
Algorithm
DSP chip
Architecture
Mapping the algorithm onto the architecture

17.3 EXAMPLE 3: SPEECH ANALYZER

Selection

1

Frequency analysis

32-bit floating-point

Triangular
Any up to 2048
2-,4-, 18-, and 16-points
Bluestein convolutional

ILPD77230A or TMS320C30
One Harvard processor & external memory
Maximum throughput

Speech processing can be divided into three main categories:

1. Speech analysis for products that use speech recognition or speaker recognition

2. Speech synthesis for products that talk to the user from either stored or real-time
input

432 CHAR 17 DESIGN EXAMPLES

3. Speech analysis followed by speech synthesis for products that compress speech
to reduce storage space and/or communication bandwidth

17.3.1 Definition of the Product

The product is defined as the number recognition portion of a system for hands-off
numerical data entry, voice car phone dialing, speaker verification for security, or fraud
applications. FFT-based algorithms are not the only way to perform these tasks, but they
may be more cost efficient for high-volume, low-cost products.

17.3.2 Specification

Table 17-15 shows the system requirements. The bottom four requirements are quali
tative rather than quantitative because their quantitative values will change with the evolution
of technology. The point is that, for a high-volume portable product, the lower the cost,
weight, volume, and power the more likely it is to sell.

Table 17-15 Speech Analyzer System Requirements

System parameter

Real input data rate
Number of input bits
Production volume
Product size
Power
Cost
Weight
Input
Output

17.3.3 Description

Requirement

10kHz
Greater than 8
10,000 per year
Small
Low
Low
Light
Analog from microphone
Digital to main computer

Speech scientists have determined that the human speech generation system (lungs,
vocal cords, trachea, mouth, and nose) can be modeled by the block diagram in Figure
17-6. Voiced sounds, such as vowels, can be modeled as the output of a time-varying
linear filter response to a periodic impulse train. The period of the impulse train (pitch
period) is determined by the dimensions of the vocal cords and trachea. Unvoiced signals,
such as consonants, can be modeled as the response of the time-varying linear filter to a
random number generator. The loudness (amplitude) of the resulting sound is modeled
by the multiplier in front of the time-varying linear filter. The time-varying linear filter
represents the way the human vocal tract and mouth modify the sources of the sound. The
linear filter coefficients change slowly over time to produce different voiced and unvoiced
sounds from the same signal generators. This suggests it should be possible to describe
the speech samples by knowing the pitch period and the time-varying linear filter coeffi
cients.

Figure 17-7 is a block diagram of the algorithm to be used in this example [3]. The
reason it works is that the impulse train generator waveform has a periodic structure in the

SEC. 17.3 EXAMPLE 3: SPEECH ANALYZER 433

Pitch Period

Impulse
Train

Generator

Linear Filter
Coefficients

Time- Varying
X ~-...., Linear Filter

Speech
Samples

Random
Number

Generator Amplitude

Figure 17-6 DSP vocal tract model.

frequency domain that repeats at roughly the pitch frequency of 50 to 100 Hz. Over the 5
kHz bandwidth of speech, this results in 50 to 100 peaks. Figure 17-8 shows what that pitch
spectrum might look like. On the other hand, the frequency response of the time-varying
linear filter varies smoothly and decreases with increasing frequency. The filter's response
does have peaks in it, generally at three or four frequencies. These peaks are called the
formants of the filter, and their locations can be used to characterize the filter's coefficients.
Thus, in the frequency domain, the pitch and the linear filter have significantly different
structures.

Cepstrum
Window

FFT-1_Speech
Samples

Pitch
Detection

Period
Filter

Coefficient
Detection

To Data
Storage

Figure 17-7 Number recognition algorithm block diagram.

If the composite waveform out of the log function in Figure 17-7 is linearly filtered
to remove the high-frequency components, the remaining signal is the slowly varying fre-

434 CHAR 17 DESIGN EXAMPLES

IIIIII10.-----.-----,-----r------r------,--------.----

dB
1 ~

II

~

-

I

10

I

20

I

30

I

40

I

50

I

ISO

Frequency Bins

Figure 17-8 Representative FFf of pitch unit pulse train.

where WN = cos(2Jr/ N) + j * sin(2Jr/ N) (17-6)

quency response of the time-varying linear filter. The three blocks following the log function
are the equivalent of the linear filtering in the frequency domain described in Chapter 6.
The only difference is the exchanged roles of the FFT and IFFf because the waveform
has started out in the frequency domain, not the time domain. Therefore, the output of the
second FFf is the slowly varying frequency response of the time-varying linear filter.

Similarly, since the input to the IFFf is the sum of two waveforms, its output is the
inverse transform of the sum of those two signals because the IFFT is a linear function.
The slowly varying portion of the IFFT output ends up close to zero. In fact, if the slowly
varying function did not fluctuate at all, all of it would be at the zero sample, because the
FFT of the unit pulse at zero time is the same for all frequency components. This fact is
computed from Equation 2-1. If the n = 0 sample is 1 and the rest of the samples are zeros
(unit pulse at sample zero), then Equation 17-6 (Equation 2-1) simplifies to Equation 17-7.

N-I

A(k) = L a(n) *wt*n
n=O

A(k) = a(O) (17-7)

At the same time, the periodic nature of the pitch unit pulse train results in a peak in
the IFFT output at roughly the period of that pulse train. Therefore, the output of the IFFI'
can be searched to find the pitch frequency by finding the first substantial peak away from
zero. This is the function of the pitch period detection block in Figure 17-7. Similarly, the
filter coefficient detection function in Figure 17-7 finds the peaks in the time-varying linear
filter's frequency response. These are directly related to the time-varying filter's coefficients
[3]. The time-varying filter coefficients and pitch are then combined and used to search

SEC. 17.3 EXAMPLE 3: SPEECHANALYZER 435

a database to determine the best match. The best match is the pattern for the number
that was verbalized. The number on the database that is the best match to the computed
parameters of the input data is then stored in the computer rather than as a sequence of
speech samples.

17.3.4 Design Decisions

FFT Algorithm. The unit pulse response of the human vocal tract is known to have
a response of roughly 20 to 30 ms. Therefore, it makes sense to divide the speech sample
periods into somewhat larger intervals, for example 40 ms. This time period also allows
multiple-pitch periods to be present in the waveform because a 50- to 1OO-Hz pitch frequency
corresponds to a period of 10 to 20 ms. The presence of multiple-pitch periods is important
because the algorithm uses the periodic nature of the pitch signal to detect it. With a 10-kHz
sampling rate, the number of samples in a 40-ms period is 400. Restricting the analysis to
power-of-two FFTs would immediately suggest 512-point transforms because a 256-point
transform would only cover 25.6 ms, which can be too short for accurate analysis. For this
design assume the transform length must be greater than 400 points but less than 512 points
to try to avoid exceeding internal DSP chip memory on inexpensive earlier generations.
Table 17-16 lists the transform lengths between 400 and 512 points that can be computed
by using the building-block algorithms in Chapter 8 and the algorithm categories from
Chapter 9, listed in the third column.

Table 17..16 Transform Length Factors and Algorithms

Transform lengths

400
405
420
432
441
448
450
480
486
490
500
504
512

Factors

4,4,5,5
3,3,3,3,5
2,2,3,5,7
2,2,2,2,3,3,3
3,3,7,7
2,2,2,2,2,2,7
2,3,3,5,5
2,2,2,2,2,3,5
2, 3, 3, 3, 3, 3
2,5,7,7
2,2,5,5,5
2,2,2,3,3,7
2,2,2,2,2,2,2,2,2

Algorithm category

Mixed-radix
Mixed-radix
Prime factor
Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix
Prime factor
Mixed-radix

With the exception of the S12-point transform, the Comparison Matrix in Table
9-8 shows that the prime factor algorithms require the fewest computations and smallest
multiplier constant memory. The Comparison Matrix in Table 8-1 shows that the smaller
FFT building blocks are the more efficient. These two facts suggest limiting the FFf lengths
to 420 = 3 * 4 * 5 * 7,504 = 7 * 8 * 9, and 512 = 8 * 8 * 8. Further decisions on the
FFT algorithm to choose are deferred to the architecture and chip paragraphs below because
other factors will affect the best choice.

436 CHA~ 17 DESIGN EXAMPLES

Weighting Functions. Since the speech waveform is not expected to be repetitive
over multiples of the 40-ms sampling time, a weighting function helps reduce the discon
tinuities at the edges of the sampled signal to provide better frequency domain data. The
trigonometric-based weighting functions (Sections 4.3 to 4.7) are probably the best option
for a low-cost application. The reason is that there are numerous look-up-table techniques
for computing these functions so that memory does not have to be used to store them.
However, this does require additional computational power, which implies a more pow
erful, more expensive, more power-consuming nspchip. The weighting functions from
the Comparison Matrix in Table 4-1 that fit these requirements, along with their perfor
mance measures, are listed in Table 17-17. Since accurate frequency domain data is a
priority, the weighting function with the smallest peak sidelobes is preferable. This is the
sine-to-the-fourth weighting function.

Table 17-17 Speech Analyzer Weighting Function Comparison Matrix

Highest Sidelobe Frequency Coherent Equivalent
Weighting sidelobe fall-off straddle integration noise 3-dB
function level (dB) ratio loss (dB) gain bandwidth bandwidth

Sine lobe -23 -12 2.10 0.64 1.23 1.20
Hanning -32 -18 1.42 0.50 1.50 1.44
Sine cubed -39 -24 1.08 0.42 1.73 1.66
Sine to the fourth -47 -30 0.86 0.38 1.94 1.86
Hamming -43 -6 1.78 0.54 1.36 1.30

Arithmetic Format. With only 8 bits needed at the input and peak detection being
the final parameter detection process, 16-bit fixed-point numbers are likely to be sufficient.
This means that the arithmetic format does not limit the chip choices because the floating
and block-floating-point arithmetic formats just provide less quantization noise based on
the Comparison Matrix in Table 13-1.

Architecture and Chips. The desired architecture is a single chip with all the
necessary program and data memory on-chip. Since the input is voice samples, the data
must go through an AID converter somewhere. Therefore, a plus in the design is to have
an AID converter on-chip. Table 17-18 shows the FFT performance and on-chip memory
capacities of nspchips with on-chip AIDconverters (Sections 14.3.1 and 14.3.5).

Table 17-18 Speech Analyzer DSP Chip Comparison Matrix

1024-point Data I/O On-chip data On-chip prog. # of address
Fixed-point chip complex FFT (MS) ports memory words memory words generators

DSP56156 1.53 2s/1p 2k 2k 2
DSP56166 1.53 2s/1p 4k 2k 2
ADSP-21msp5xx 2.86* 2s/1p lk 2k 2

* = estimate (see Section 14.4).

SEC. 17.3 EXAMPLE 3: SPEECH ANALYZER 437

According to the references in Chapter 14 for each of these three devices, the imme
diate drawback is that their AfD converters work at 8 kHz, not the 10-kHz sampling rate
assumed earlier. In the interest of taking advantage of the integrated AfD to reduce the over
all cost of the product, it makes sense to reevaluate the need for sampling at 10kHz. The
higher sampling rate is actually a luxury. The telephone system has a 4-kHz bandwidth and
voice is easily discernible. Based on the sampling theorem (Section 2.3.1), 8 kHz should
be a sufficient rate. To keep the 40-ms sampling period means that the number of 8-kHz
samples should be at least 320, rather than the 400 calculated for the 10-kHz sampling rate.
This means that the 336 == (3 *7 *16)- and 360 == (5 *8 *9)-point prime factor algorithms,
using the building blocks in Chapter 8, should be added to Table 17-16.

All of the functions in Figure 17-7 must be performed each time a new set of 40 ms
of data is collected. Since all of the chips in Table 17-18 perform 1024-point FFTs in less
than 3 ms, it is clear that they will have no problem completing three FFTs in the range of
336 to 512 points and all of the other computations in the allotted time of 40 ms. Therefore,
the processor architecture block diagram can be as shown in Figure 17-9.

! I
Data Bus

Analog Address EPROM

hone I/O
Program
Memory

Serial
I/O

1

From
Microp

To Main
Computer

Figure 17-9 Speech analyzer processor architecture block diagram.

Note that the output interface to the main computer is through the serial link to reduce
the number of wires and, therefore, the system cost and to improve its reliability. All of
the chips in Table 17-18 have on-chip boot ROM that allows external, inexpensive EPROM
to load the program to on-chip program RAM at power-up. If the product becomes a big
enough seller, the progranl can be put into on-chip program ROM and the external EPROM
can then be eliminated.

For the product to work in real-time, it must be collecting a new data set while
processing the present one. In high-speed real-time applications it would also have to output
results from the previous computations while processing the present data set. However,
it appears there will be enough processing time so that the answers can be output after
computations and before the next set of data is available for computation. Therefore, there
must be at least enough RAM for two full sets of data. Additionally, the database, as well
as the pitch and formant data used to access the database, must be stored.

438 CHAP. 17 DESIGN EXAMPLES

The key issue is the two sets of data for the FFT. Since the data is real, the Double
Length Algorithm from Section 2.4.2 can be used to efficiently utilize the FFf algorithm.
This allows N real data samples to be processed by an N 12-point FFf. Therefore, the chosen
transform length will require storing from 2 * 336 = 672 to 2 * 512 = 1024 data words.
All of the DSP chips in Table 17-16 have sufficient data memory to meet this goal, but the
ADSP-21msp5xx series is marginal because of the need to store the database. Based on
this, the Motorola DSP56166 is selected because it has the largest data RAM.

FFT Algorithm Revisited. Now that the DSP chip has been chosen, the FFf al
gorithm can be chosen based on the specific characteristics of the chip. Equation 14-1,
for estimating the computation time, will work for the Motorola DSP56166 because it has
enough memory on-chip to execute the 1024-point complex FFT. Based on the formula,
the worst-case 512-point FFf should take about 1.53 * 0.5 *9/10 = 0.69 ms. Therefore,
three of them should take just over 2 ms out of the 40 ms available. This means that the
differences in the number of adds and multiplies for the different potential FFf lengths is
insignificant in deciding which length to use. Furthermore, there is plenty of time to com
pute the weighting function with a small look-up table and interpolation formulas. This
saves program memory locations. The formulas in the Comparison Matrices in Chapter 9
(Tables 9-7 and 9-8) and with the building-block algorithm performance measures from the
Comparison Matrix in Chapter 8 (Table 8-1) are used to compute the performance measures
for the candidate FFf algorithms. They are summarized in Table 17-19.

Table 17-19 Speech Analyzer Algorithm Comparison Matrix

of data # of const.
Algorithm # of adds # of multiplies locations locations

336 = 3 *7 * 16 Prime factor 7,332 2,596 672 14

360 = 5 *8 *9 Prime factor 8,404 3,412 720 13

420 = 3 *4 * 5 *7 Prime factor 9,648 4,064 840 12

504 = 7 * 8 * 9 Prime factor 12,860 5,756 1,008 15

512 = 8 *8 *8 Mixed-radix 11,776 4,352 1,024 128

Because the most critical issue appears to be data and program memory, not com
putation time, columns 4 and 5 of Table 17-19 are most important as selection criteria. In
these two columns, the entry showing the most dramatic difference between the algorithms
is the total number of multiplier constants required for the 512-point FFT. Therefore, the
first decision is to eliminate the 512-point FFf.

Once the 512-point FFT is eliminated, the fifth column no longer is important in the
decision process because all the other transform lengths are so close to each other. Columns
2, 3, and 4 of Table 17-19 show 336 and 360 as the best technical choices. The 336-point
FFT is selected because it has the smallest entries in these columns.

17.3.5 Board Selection Process

One of the primary specifications for this product is that it be a high-volume portable
product, with low cost, weight, volume, and power. A single DSP chip (DSP56166) with

SEC. 17.3 EXAMPLE 3: SPEECHANALYZER ·439

no external memory is the best chip choice in this application. Since weight and volume are
primary specifications for the product, a custom board should be designed to take advantage
of how well the DSP56166 fits the application. Table 17-20 summarizes the specifications
for that board.

Table 17·20 Example 3, Board Selection Specifications

Category

Processor

Off-chip memory

Analog I/O ports
Instruction cycle time

Parallel and serial I/O ports (buses)

Host interface

17.3.6 Test Signals

Specification

DSP56166
None required

8-kHz sample rate AIDbuilt-in to DSP56166

33 ns

RS-232C serial port

Any that are RS-232C compatible

Section 16.5 introduces four types of test signal in an order of increasing complexity.
It also gives the guidelines that were followed to create the specific parameters of each
signal in Table 17-21. They are reordered to match the strategy in Section 16.7.2 that lists
them in an order that allows testing with the least number of signals. The pair of sine waves
can be any pair of relatively prime numbers up to the length of the transform (336 points)
and were arbitrarily selected.

Table 17-21 Example 17-3, Test Signals

Signal Parameters

Constant

Single sine wave

Pair of sine waves
Unit pulses

Amplitude = 1000
1 cycle per 336 data samples

17 and 41 cycles per 336 data samples
As needed

17.3.7 Design Decision Summary

The 336-point FFT algorithm is chosen because it has the smallest number of adds,
multiplies, and memory locations of the choices in Table 17-19. Many of the single pro
cessors provided sufficient computational power. This allows the weighting function to be
computed rather than stored. This led to choosing the sine-to-the-fourth weighting function.
Any of the arithmetic formats provide the required accuracy and dynamic range. This al
lowed the freedom to choose a chip based on other performance measures. The DSP56166
is picked because it has a combination of an on-chip AIDconverter and sufficient on-chip
data memory to remove the need for external data RAM chips. Table 17-22 summarizes all
of the key element design decisions made for this example.

440 CHAP. 17 DESIGN EXAMPLES

Table 17-22 Example 3, Design Decisions

Key element

Number of dimensions

Type of processing

Arithmetic format
Weighting function

Transform length
Algorithm building blocks

Algorithm

DSP chip
Architecture

Mapping the algorithm onto the architecture

17.4 EXAMPLE 4: IMAGE DEBLURRING

Selection

1
Frequency analysis and correlation
16-bit fixed-point
Sine-to-the-fourth
336 points
3-, 7-, and 16-points

Prime factor

DSP56166

One Harvard processor & no external memo
Maximum throughput

The evolution of DSP technology moved image processing out of non-real-time laboratory
and government-funded applications, such as enhancing images from outer space by NASA,
into mainstream products. Examples include magnetic resonance imaging and ultrasound;
image compression for teleconferencing, videophones, and multimedia data storage; image
analysis for defect detection in countless applications; and image pattern matching for doing
two-dimensional bar code reading or guiding cruise missiles to their Gulf War targets.

One of the fundamental problems with images, whether they are collected photo
graphically, with a video camera, a ceo infrared system, or synthetic aperture radar is that
the collection device may be out of proper focus or in motion during the image collection
process. The result is blurred images that have reduced value. Image deblurring is the
process of reducing this distortion.

Numerous image deblurring techniques have been developed and studied over the
years, and each has its good and bad points. Many of these techniques use two-dimensional
linear filtering techniques performed in the frequency domain because of the large number
of pixels in an image. The two fundamental problems with most blurred images is that
the distortion is nonlinear and noise has been added by the collection process. The non
linear effects make unraveling the blurring process extremely complicated. The added noise
makes many of the developed techniques unstable.

Since the purpose of this example is to illustrate the use of FFT algorithms to solve
two-dimensional signal processing problems, the algorithms for deblurring an image are not
derived, just presented and implemented. Derivations of these and other image processing
algorithms can be found in image and digital signal processing texts [1].

17.4.1 Definition of the Product

The product is a general-purpose board that plugs into IBM PC-compatible hardware
and is used for deblurring images that are downloaded to it from the PC's hard disk. The de
blurred results are to be restored in the PC's hard disk before the next image is downloaded.
The product is to be as inexpensive as possible so that it can be sold to law enforcement

SEC. 17.4 EXAMPLE 4: IMAGE DEBLURRING 441

agencies for use with images stored from digital cameras, videophones, and other image
input devices. Applications include license plate identification from an image taken in a
moving police car and in crime labs for identification of suspects in video surveillance
imagery.

17.4.2 Specification

Table 17-23 summarizes the specification of the product. Throughput is defined as
the rate at which images can be fed to the product without the product getting behind.
Latency is the time from when the image enters the product until the deblurred version
exits. Notice that the throughput is three times more than the latency. This is to account
for the image being loaded onto the board and for the deblurred image to be sent back to
the hard disk.

Table 17-23 Image Deblurring Product Specification

System parameter

Image processing
Image size
Number of bits per pixel
Throughput rate
Latency
Hardware
Input source
Output
Number of images on board

17.4.3 Description

Requirement

Deblurring
1024 x 768 pixels
8
1 per 60 s
20 s
IBM PC-compatible plug-in board
IBM PC hard disk
IBM PC hard disk
1

Figure 17-10 shows a simplified block diagram of an image recording process. The
simplest example of this process is a camera, where the image formation device is the
lens system and the image recording device is photographic film. If the lens system is not
properly focused, the image will be blurred. The photographic film recording process is
nonlinear as well as grainy. If the camera moves during the collection process, another
blur is introduced because the same portion of the input image energy will be recorded in
multiple locations on the film.

Input
Image
Energy

- Image
Formation

Image
Recording

Image
Noise

Received
Image

Figure 17-10 Image collection and recording block diagram.

442 CHAP. 17 DESIGN EXAMPLES

The approach illustrated in this example is called power spectrum equalization [1].
More can be learned about the power spectrum of a signal in Section 17.2. Its basic definition
is the FFf of the autocorrelation of the signal, where the autocorrelation of the signal is
pattern matching of the signal with itself using the techniques given in Chapter 6. The
computational approach is to find an estimate for the actual image that has the same power
spectrum as the recorded image and can be represented by that recorded image after passing
through a two-dimensional linear operator.

The algorithm for computing the deblurred N x M pixel image has the following
steps:

Step 1: Transform the Image to the Two-Dimensional Frequency Domain
Compute the (2 * N x 2 * M)-point, two-dimensional FFT of the received image,

where the outside of the array is filled with zeros as shown in Figure 17-11. Chapter 7
shows that the two-dimensional FFf of a 2 *N x 2 *M array of real data can be computed
as a sequence of 2 * Mane-dimensional 2 * N -point FFTs of real data and 2 * N one
dimensional 2 *M -point FFTs of real symmetric complex data. Further, Chapter 2 shows
that a 2 *N -point FFT of real data can be computed by using an N -point FFf algorithm for
complex data. Therefore, the computational requirement for this step is to compute 2 * N
M-point FFTs and 2 * M N-point FFTs of complex data. Actually, the first dimension of
FFf computations, say the row FFTs, only requires N M-point FFfs because the other N
would be computing the FFI' of all zeros (Figure 17-11).

2 N X2 M Pixels

M Total
Columns of Zeros

N12 Rowsof Zeros

NI2 Rowsof Zeros

Figure 17-11 Two-dimensional zero padding for frequency domain
processing.

Step2: Perform Two-Dimensional Frequency Domain Filtering
On an element-by-element basis, multiply the two-dimensional output of Step 1 by

its complex conjugate to obtain the magnitude squared of the FFT of the two-dimensional
image. This requires 4 * N * M complex multiplies.

SEC. 17.4 EXAMPLE 4: IMAGE DEBLURRING 443

Step3: Apply the Two-Dimensional Inverse Filter in the Frequency Domain
On an element-by-element basis, divide the output of Step 2 by the power spectral

estimate of the inverse filter. Some DSP chips perform this process better by computing
1/(each power spectral estimate) for each element and then performing a multiplication.
This requires a total of 4N * M divide operations.

Step4: Convert the Deblurred Image Backto the SpatialDomain
Compute the 2 * N x 2 * M IFFT of the result of Step 3. Chapter 2 shows that the

IFFf has the same properties as the FFf. Therefore, this computation also requires 2 * N
M-point FFTs and 2 * M N -point FFfs of complex data. Again, as in Step 1, the second
dimension of IFFf computations, say the columns, only requires M of the N -point FFTs
because the output of interest is the image which is known to reside in a N x M array.

17.4.4 Design Decisions

FFT Algorithm. The product needs to perform FFTs that are at least 1024 points
for the rows of the image and at least 768 points for the columns of the image, using the
Double-Length Algorithm from Section 2.4.2 on real data sets that are at least 2048 pixel
rows and 1536 pixel columns. Therefore, efficient algorithms near 1024 and 768 points, with
common factors to reduce the number of building-block algorithms, are the best choices.
Since 1024 = 4 *4 *4 *4 *4 and 768 = 4 *4 * 4 *4 * 3, they are excellent candidates
because only 3- and 4-point building blocks are needed. The Comparison Matrix in Table
8-1 shows that these building blocks are computationally efficient. Since Chapter 9 offers
other choices near 768 and 1024, these should be examined to determine any advantages they
may have. Other lengths between 768 and 1100 that use the building blocks from Chapter
8 are listed in Table 17-24, along with their factors and the algorithms from Chapter 9 that
can be used to implement them.

The disadvantage of the 768- and 1024-point mixed-radix algorithms over the prime
factor algorithms for 840 and 1008 points is all the between-stage multiplier constants
required by the mixed-radix approach. The other mixed-radix choices in Table 17-24
have similar numbers of multiplies and require the number of multipliers between stages
based on the equations in the Comparison Matrices in Tables 9-7 and 9-8. Therefore, it
is realistic to limit the choice of FFT lengths to 768 and 1024 or 840 and 1008. The one
disadvantage to 1008 points is that it does not meet the 1024-point criteria. However,
shortening the length by this small amount will have little effect on the quality of the
deblurred image.

Because the 1024-point and 768-point FFTs have only two building blocks (3 and
4 points), and these are both efficient, it is unlikely to make sense to further consider the
840- and 1008-point FFfs. Further, the 1024-point code is likely to be available for free,
and the 768-point FFf can be computed by using a 256-point FFf followed by a 3-point
FFT. The 256-point code is likely to be available for free also, and Chapter 8 shows the
3-point algorithm in detail. Further, combining the 256- and 3-point FFfs to form the
768-point FFf is described in Chapter 9. In fact, a more pragmatic approach is to use 1024
point FFfs in both dimensions. The theory in Chapters 6 and 7 for using two-dimensional
FFfs to perform pattern matching requires that the FFf length be at least the sum of

444 CHA~ 17 DESIGN EXAMPLES

Table 17-24 Transform Lengths, Factors, and Algorithms

FFf length

768
784
800
810
840
864
875
882
896
900
945
960
972
980

1000
1008
1024
1029
1050
1080

Factors

4,4,4,4,3
4,4,7,7
2,4,4,5,5
2,5,9,9
3,5,7,8
2,4,4,3,3,3
5,5,5,7
2,7,7,9
2,7,8,8
4,5,5,9
3,5,7,9
3,4,4,4,5
3,4,9,9
4,5,7,7
5,5,5,8
7,9,16
4,4,4,4,4
3, 7, 7, 7
2,3,5,5,7
3,5,8,9

FFT algorithms

Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix
Prime factor
Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix
Prime factor
Mixed-radix
Mixed-radix
Mixed-radix
Mixed-radix

the lengths of the functions being correlated. The 1024-point FFT certainly meets that
criterion.

Weighting Function. The defined algorithm does not use weighting functions, so
the Comparison Matrix in Table 4-1 does not playa role in the development of this product.

Arithmetic Formats. The deblurring algorithm used here is sensitive to system
noise. Therefore, it is also sensitive to quantization noise. This suggests that 32-bit floating
point arithmetic be used to minimize quantization errors.

Architecture and Chips. The arithmetic format requirement immediately elimi
nates all but the floating-point DSP chip families in Chapter 14. These are listed in Table
17-25. The processing starts with loading the 1024 x 768 image onto the board, then con
tinues with the deblurring algorithm, followed by outputting the results to the hard disk.
Therefore, the board needs data memory to store all of the input pixels, but not additional
memories to collect the next image while processing the present one.

Since the processing will be performed in floating-point arithmetic, the on-board data
memory must hold 1024 *768 = 786,432 thirty-two-bit complex words, or 1008 * 840 =
846,720 thirty-two-bit complex words, depending on the chosen FFT lengths. This amount
of data memory can be cut in half by taking advantage of the symmetries in the FFT outputs
as a result of the input data being real rather than complex. However, this only happens by
increasing the complexity of the memory addressing scheme. The cost of developing and
debugging the more complex addressing scheme is not worth the effort, except for a very
high volume application.

SEC. 17.4 EXAMPLE 4: IMAGE DEBLURRING 445

Table 17-25 Floating-Point DSP Chips Comparison Matrix

Floating-point 1024-point Data I/O On-chip data On-chip prog. # of address
chip complex FFT (MS) ports memory words memory words generators

Analog Devices
ADSP-21020 0.58 Os/2p 0 0 2
ADSP-21060 0.46 8s/ip 65,536 65,536 2

AT&T
DSP32C 3.2 ls/Ip 1024/1536 4096/0 1
DSP3210 2.4 Is/Ip 1024/2048 1024/256 I
DSP3207 1.9 Os/Ip 1024/2048 1024/256 1

Intel
i860XR 0.74 Os/Ip 1024 256 I
i860XP 0.55 Os/ip 2048 1024 1
Motorola
DSP96002 1.04 Os/2p 1024 1024 2
NEe I

jlPD77240 7.07 ls/Ip 1024 0 2
jlPD77230A 11.78 ls/Ip 1024 1024/2048 2
TI
TMS320C30 1.97 2s/2p 2048 4096 2
TMS320C31 1.97 Is/2p 2048 4096 2
TMS320C40 1.54 6s/2p 2048 4096 2

s = serial ports; p == parallel ports.

The crucial step is to estimate how many DSP chips will be required. This defines the
architecture choices. The two key contributors are the FFf computations and the divides.
As a conservative estimate, assume all the FFTs are 1024 points. This will help account for
the fact that the double-length algorithm requires an extra stage after the FFT to compute
the needed outputs. Therefore, Steps 1 and 4 in Section 17.4.1 require 6 * 1024 == 6144
FFTs of 1024-points. If these took 1 ms each, all 6144 of them would take 6.144 s. At
2 ms per FFf, the tirne required for this portion of the processing is roughly 12.3 s. Using
2 ms is preferable because it allows more of the floating-point chips in Table 17-25 to be
included and is still well within the 20-s throughput requirement.

To these computations must be added the 4 * N * M complex multiplies, which is
16 * N * M real multiplies, and 8 * N * M real adds. Assuming these are performed in
series, rather than making use of the multiplier-accumulator architecture of the DSP chips
to perform these functions in parallel, this is 24 *N *M == 18.87 or 20.3 million arithmetic
computations. These computations can be accomplished in less than 2 s on any of the
floating-point DSP chips in Table 17-25.

To the FFTs and complex multiplies must be added the 4 * N * M == 3.15 or 3.39
million divides, depending on the FFT lengths chosen. To perform the divides in the
remaining 20 - 12.3 - 2 == 5.7 s requires a computation rate of 0.55 or 0.59 million divides
per second. This translates into 1.81 or 1.68 J1-S per divide. Modeling the divide function
as an inverse followed by multiplication takes 35 cycles for the inverse and another for the
multiply in the TI series of floating-point chips (Reference 33 from Chapter 14). At the

446 CHA~ 17 DESIGN EXAMPLES

40-ns clock rate of the TMS320C40, the divide will take.roughly 1.44 J.Ls. The Analog
Devices and Intel chip families also use software techniques to implement division. The
Motorola DSP96002 floating-point chip has hardware support for division.

It appears there is a single DSP chip solution and that 2 ms is marginal for 1024-point
FFf performance, if the divides are performed in software. Table 17-26 summarizes the
candidate DSP chip choices from Table 17-16 that should not be marginal, based on all the
computational estimates.

Table 17-26 Image Deblurring Candidate DSP Chip Comparison Matrix

Floating-point 1024-point Data I/O On-chipdata On-chipprog. # of address
chip complexFFf (MS) ports memorywords memorywords generators

ADSP-21020 0.58 Os/2p 0 0 2
ADSP-21060 0.46 8s/1p 65,536 65,536 2
i860XR 0.74 Os/lp 1024 256 1
i860XP 0.55 Os/lp 2048 1024 1
DSP96002 1.04 Os/2p 1024 1024 2
TMS320C40 1.54 6s/2p 2048 4096 2

s =serialports; p =parallelports.

Therefore, the product can be built with a single DSP chip with off-chip program and
data memory. The off-chip data memory is required to hold the nearly 2 million 32-bit data
words needed for the intermediate frequency domain computations on the image. Figure
17-12 shows the proposed processor architecture block diagram. The data and program
memory interfaces are shown with separate DSP chip pins to optimize performance. Based
on Table 17-26, the separate parallel memory interfaces assumption reduces the DSP chip
choices to the ADSP-21020, DSP96002, and TMS320C40.

PC Bus To

Interface PC Bus

Address Floating-Point
Address

Program Data

DSP

Memory Data Data RAM
Chip

Figure 17-12 Image deblurring processor architecture block diagram.

SEC. 17.4 EXAMPLE 4: IMAGE DEBLURRING 447

17.4.5 Board Selection Process

Of the three chips that meet the specifications, the best choice is the one that has the
largest number of COTS boards on the market that will plug into a PC bus, because the com
petition of multiple boards in the market tends to reduce their cost. Multiple boards in the
market also provide for second sources in case one board manufacturer goes out of business
or decides to no longer make that board. There are far more TMS320C40 PC plug-in boards
available than ones for the ADSP-21020 and DSP96002 chips. Therefore, a TMS32OC40
based board should be chosen to meet the specifications summarized in Table 17-27.

Table 17-27 Example 4, Board Selection Specifications

Category

Processor
Off-chip memory
Analog I/O ports
Instruction cycle time
Parallel and serial I/O ports (buses)
Host interface

17.4.6 Test Signals

Specification

TMS320C40
256K of 32-bit words
None required
40 ns
PC bus
PC compatible

Section 16.5 introduces four types of test signal in an order of increasing complexity.
It also gives the guidelines that were followed to create the specific parameters of each
signal in Table 17-28. They are reordered to match the strategy in Section 16.7.2 that lists
them in an order that allows testing with the least number of signals. The pair of sine waves
can be any pair of relatively prime numbers up to the length of the transform (1024 points)
and were arbitrarily selected.

Table 17-28 Example 4, Test Signals

Signal

Constant
Single sine wave
Pair of sine saves
Unit pulses

Parameters

Amplitude = 1000 for the real and imaginary parts
1 cycle per 1024 data samples
13 and 29 cycles per 1024 data points
As needed

17.4.7 Design Decision Summary

The 1024-point FFf is used because it meets the performance requirements, the can
didate DSP chips have enough computational power to compute this length in the allotted
time, and code for implementing the 1024-point FFT is available in algorithm libraries from
vendors. The deblurring algorithm [1] did not use a weighting function, so none is used
in the example. A single TMS320C40 floating-point DSP chip, which will need external

448 CHAR 17 DESIGN EXAMPLES

program and data memory chips to accommodate the complex algorithm and huge amount
of data, is selected. Table 17-29 summarizes all of the key element design decisions made
for this example.

Table 17-29 Example 4, Design Decisions

Key element

Number of dimensions
Type of processing
Arithmetic format
Weighting function
Transform length
Algorithm building blocks
Algorithm
DSPchip
Architecture
Mapping the algorithm onto the architecture

17.5 CONCLUSIONS

Selection

2
Convolution
32-bit floating-point
None
1024 points
2-, 4-, 8-, and 16-point
Power-of-primes mixed-radix
TMS320C40
One Harvard processor with external memory
Maximum throughput

The use ofFFfs in ever-increasing numbers ofindustrial and mainstream consumer products
will be driven by the ability of design engineers to optimize code for computing this flexible
class of algorithms. The examples in this chapter, which serve as an applied summary of the
information in the preceding chapters, are just a taste of the astounding number of products
that are possible because of constantly evolving improvements to the work begun by J. B.
Fourier nearly two centuries ago.

It is our fervent hope that insights gained through the use of this book will help
readers invent the FFf-based products that will transform the fields of telecommunication,
medicine, seismology, oceanography, environmental protection, and consumer products
well into the 21st century.

REFERENCES

[1] A. V.Oppenheim, ApplicationsofDigitalSignalProcessing, Prentice Hall, Englewood
Cliffs, NJ, 1978.

[2] P. D. Welsh, "The Use of the Fast Fourier Transform for the Estimation of Power
Spectra: A Method Based on Time Averaging over Short, Modified Periodograms,"
IEEE Transactions on Audio and Acoustics, Vol. AU-IS, pp. 70-73 (1967).

[3] L. R. Rabiner and R. W. Schafer, DigitalProcessing ofSpeechSignals, Prentice Hall,
Englewood Cliffs, NJ, 1978.

Glossary

Algorithm
A series of steps to compute a set of equations.

Architecture
A hardware organization of adders, multipliers, control logic, and memory for im
plernenting algorithms.

Assembler
Software that converts assembly language code into machine language 1's and O's for
a specific processor.

Assembly language
A programming language for controlling a microprocessor or DSP chip at the register
level.

Bandwidth
The measure of the spread of frequencies that pass through a filter or are contained
in a signal.

Bit slice
A method of dividing a number into smaller pieces so that arithmetic can be performed
with less-complex chips.

Block diagram
A drawing to depict the electronic interconnections of hardware components.

Block-floating-point
A floating-point number system that uses only one exponent for an entire set of data.

Bluestein algorithm
An algorithm developed to compute FFTs using convolution.

Bus
The communication network in or between processors or other devices.

Bus interface
Hardware that links a processor or other device to a bus.

450 GLOSSARY

Butterfly
The fundamental building block of the 2-point FFT.

Coefficients
The numerical constants in an equation or filter.

Complex arithmetic
Arithmetic with numbers that have real and imaginary parts.

Computational latency
The time between the start of computations and when output of results begins.

Computational load
The amount of computations a processor is required to do, expressed as opera
tions/second.

Convolution
A method of modifying the amplitude and/or phase of the frequency components of
a signal; also known as linear filtering.

Cooley-Tukey algorithm
The most common power-of-two FFf.

Correlation
The operation of comparing or measuring the similarity of two waveforms: also known
as pattern matching.

Cross bar
A bus architecture that allows any processor to directly connect to any other processor.

dB
The abbreviation for decibel, a measure of the power level of a signal relative to 1
watt.

Debugger
Software for removing errors from code.

Decimation in frequency (DIF)
A method of computing a power-of-two FFf that has the multiplier on the butterfly
output.

Decimation in time (DIT)
A method of computing a power-of-two FFf that has the multiplier on the butterfly
input.

Discrete Fourier transform (DFT)
A sine-wave-based set of equations to convert sampled time-domain data into
frequency-domain data that has equally spaced frequencies; an array of pattern match
ers where the patterns being matched are sine waves.

Dolph-Chebyshev weighting function
A weighting function with a spectrum characterized by uniform sidelobes.

Doppler radar
A radar that directly measures the radial velocity of a target.

Dynamic range
The ratio of largest to the smallest number that can be represented by any arithmetic
format,

GLOSSARY 451

Emulator
A hardware model for a processor chip that allows access to all the functions of the
chip for program development or debugging.

Equivalent noise bandwidth
The ratio of the input noise power to the noise power in the output of an FFf filter
times the input data sampling rate.

Fast Fourier transform (FFT)
An algorithm for fast DFT computation.

Filter
An analog or digital device that reshapes the spectrum of a signal, typically to enhance
desirable frequencies and attenuate undesirable frequencies.

Fixed point
A number system based on the numbers being represented by a fixed number of digits
relative to the decimal point.

Floating point
A number system based on the numbers being represented by both a fixed number of
digits and an exponential multiplier.

Flowchart
A drawing to depict the sequence for executing the steps ofan algorithm or progression
of information through a system.

Fourier transform
A sine-wave-based set of equations to convert continuous time-domain data into
continuous frequency-domain data.

Frequency analysis
Finding the amplitude and phase of the sine waves that comprise any waveform.

Frequency domain
A coordinate system for representing the frequency components of a signal.

Frequency resolution
How close the frequency of two sine waves can be and still be separately distinguished
by a measurement system.

Frequency straddle loss
The reduced output of a filter caused by the input signal not being at the filter's center
frequency.

Harvard architecture
A computer architecture with separate data and program memory buses.

High-level language
A programming language for controlling a microprocessor or DSP chip only at the
function level.

Hybrid architecture
A combination of features from two or more standard architectures.

Hypercube
A parallel processing architecture where the processors are connected in a multidi
mensional cube configuration.

452 GLOSSARY

In-place and in-order
A prime factor FFf algorithm that does not require reordering of input and output
data or extra memory for data storage.

Inverse DFT
A transform that converts frequency-domain data into time-domain data.

Kolba-Parks algorithm
A prime factor algorithm that uses small size FFfs.

Latency
The time between data entering a processor and the processed results exiting.

Linear array
A one-dimensional connection of processors.

Linear filter
A linear analog or digital device that reshapes the spectrum of a signal, typically to
enhance desirable frequencies and attenuate undesirable frequencies.

Linear filtering
The act of processing a signal through a linear filter.

Linker
Software that combines assembly language subroutines into a larger program.

Mapping
A method of distributing an algorithm or data among multiple processors.

Massively parallel
A multidimensional connection of hundreds or thousands of processors.

Mixed-radix
An FFf where the number of data points or computed frequencies is the product of
at least two integers.

Multiplier-accumulator (MAC)
Hardware that computes sums of products.

Narrowband filter
A filter that attenuates all but a narrow range of frequencies.

Nesting algorithm
A portion of the Winograd FFf algorithm.

Non-real-time
Processing that is not completed as fast as the data comes in.

Nyquist rate
The sampling rate must be at least twice as fast as the highest-frequency component
in the signal; also known as the sampling theorem.

Overflow control
Logic that detects when a computed answer is larger than the allowed dynamic range.

Parallel array
A two-dimensional or more connection of processors.

Parseval's theorem
The energy in the time-domain representation of a signal is the same as the energy in
its frequency domain representation.

GLOSSARY 453

Passband
The range of frequencies that are not attenuated by a filter.

Pipeline
An architecture where data is sequentially passed from one processor to the next to
execute an algorithm.

Power-of-two
An FFT algorithm where the number of data points or computed frequencies is 2
raised to a power.

Power spectrum estimation
Technique for estimating the power in the frequency components of a signal.

Practical transform length (PTL)
The acronym for a non-power-of-two FFT algorithm using multidimensional decom
position and complex conjugate math, developed by Win Smith.

Prime factor
An FFT algorithm where the factors are relatively prime and there are no twiddle
factors.

Prime number
Any number that has no factors other than itself and 1.

Primes-to-a-power
An FFT algorithm where the number of data points or computed frequencies is a
prime number raised to a power.

Quantization noise
The error signal caused by rounding-off numbers and coefficients in a digital proces
sor.

Rader algorithm
A prime number FFT using circular convolution.

Real-time operating system
Software that helps a processor control real-time algorithms.

Real-time operation
Processing of data that keeps up with the input data rate rather than storing it and
performing the processing later.

Relatively prime
Any two numbers with no common factors.

Ring bus
A circular bus architecture that allows data to pass from one processor to another and
end up where it started.

Sampled data
A sequence of data values collected at regular or irregular intervals.

Sampling theorem
The sampling rate must be at least twice as fast as the highest-frequency component
in the signal; also known as the Nyquist rate.

Sidelobes
Unwanted frequency components that are reduced but not removed by a filter.

454 GLOSSARY

Simulator
A software model of a processor that is used to develop and debug code prior to
hardware implementation.

Sine wave
A continuous, smooth, periodic signal defined by the mathematical function sin(kt).

Singleton algorithm
Computes non-power of two FFfs using multidimensional decomposition.

Small-point transform
A small FFT, usually 16or fewer points.

Split-radix algorithm
An FFT composed of a mixture of power-of-two small-point transforms,

Star bus
A bus architecture with a central processor with additional processors connected like
spokes of a wheel.

SWIFT
The acronym for a non-power-of-two FFf algorithm using multidimensional decom
position and complex conjugate math, developed by Winthrop W. Smith.

Throughput
The number of times per second that a processor can compute an algorithm.

Time domain
A coordinate system that describes signals as a sequence of values at different points
in time.

Twiddle factor
A standard, complex multiplication operation between small-point transforms of an
FFf.

Unit pulse
A signal with a value of 1 for one time sample and zero for all other time samples.

Versa module eurocard (VME)
A standard hardware interface and software communications protocol for connecting
boards onto a VME system's bus.

Von Neumann
An architecture with a single bus for data and program memory.

Weighting functions
Functions that multiply FFf input data to reduce sidelobes.

Winograd algorithm
An algorithm developed to compute FFTs using a minimum number of multiplica
tions.

Appendix

Comparison Matrices

Table number

4-1
6-1
8-1
9-7
9-8

12-6
13-1
14-3
14-4
14-5
14-6
14-7
17-3
17-4
17-5
17-10
17-11
17-17
17-18
17-19
17-25
17-26

Title

Weighting Function Comparison Matrix
Linear Filtering and Pattern Matching Comparison Matrix
Building-Block Algorithm Comparison Matrix
Two-Building-Block FFf Algorithms Comparison Matrix
FFf Algorithm Examples Comparison Matrix
Algorithm Mapping Examples Comparison Matrix
Arithmetic Format Comparison Matrix
Programmable Fixed-Point Chips Comparison Matrix
Programmable Floating-Point Chips Comparison Matrix
FFT-Specific Chip and Chip Set Comparison Matrix
ASIC Programmable DSP Chip Cores Comparison Matrix
Multiple-Processor Programmable DSP Chips Comparison Matrix
Doppler Radar Processor FFf Algorithm Comparison Matrix
Doppler Radar Processor Weighting Function Comparison Matrix
Doppler Radar Processor DSP Chip Comparison Matrix
Power Spectrum Estimator Chip Preliminary Comparison Matrix
Power Spectrum Estimator Chip Final Comparison Matrix
Speech Analyzer Weighting Function Comparison Matrix
Speech Analyzer DSP Chip Comparison Matrix
Speech Analyzer Algorithm Comparison Matrix
Floating-Point DSP Chips Comparison Matrix
Image Deblurring Candidate DSP Chip Comparison Matrix

Page

53
71

143
242
243
314
321
356
369
376
377
383
418
418
420
429
430
436
436
438
445
446

Index

Note: Bold page numbers indicate tables and illustrations.

A
Accuracy. See Arithmetic accuracy
Adders, arithmetic building blocks as, 245
Address bus, on and off DSP chip, 328
Address generator

on DSP chip, 325, 328-329, 337-83
sequences of for 16-point radix-4 FFT, 330
as source of error, 403

Address relabeling
in algorithm construction, 148
4-point FFT relabeling example, 148-149

Adds
in Bluestein algorithm, 151
in building-block algorithm, 82
computational load of, for Off, 22
connection of to multipliers, 246
in FFT, 27
in mixed-radix algorithm, 210-11
in multiprocessor architectures, 255
in prime factor algorithm, 187
requirements for, 145, 146
in Winograd algorithm, 169

Algorithm construction, 3, 145-244
building-block construction, 3, 5, 32-35,

81-143
convolution approach, 147-84
prime factor approach, 147,185-207

Algorithm data mapping relabeling, in
algorithm construction, 148-49

Algorithrn library, for use with boards, 390-391

Algorithm mapping, 273-314
Comparison Matrix, 314
defined, 273
performance measures, 273-74
single processor function, 275-79
See a/so Mapping

Algorithms
for all odd numbers, 136-42
Bluestein, 149-58, 150, 242, 272, 427
Bluestein, IS-point, 158-67, 162, 164, 165,

281
building-block, 81-143
Burrus and Eschenbacher 9-point FFf,

124-27
construction of, 145-244
convolution-based, 147
double-length, 18-20
8-point DFT to FFT, 5, 28-29
8-point FFT, 103-04
8-point radix-2, 110-13
8-point radix-4 and -2, 107-09
15-point Bluestein, 158-67, 162, 164,

165
15-point or 16-point FFf, 5
5-point FFf, 88-89
4-point FFf, 87-88, 148-149
4-point FFT and 16-point radix-4 FFf, 5
general-purpose, 81
mapping of onto architectures, 4
mixed power-of-primes, 242
mixed-radix, 147,207-242

458 INDEX

Algorithms (Cont.)
for multidimensional processing, 74-75
9-point FFf, 116
overlap-and-add frequency domain, 65-68,

66
overlap-and-save frequency domain, 68-70
performance of as selection factor, 388
prime factor, 147,185-207,242,281,416-17
prime-to-a-power, 242
PTL 8-point FFT, 113-16, 327
PTL 9-point FFT, 121-23, 327
Rader, 81, 88, 136-38
Rader 5-point FFf, 93-96
7-point FFf, 96-97
Singleton, 81, 88, 138-40, 242, 327
Singleton 5-point FFT, 91-93
Singleton 7-point FFT, 101-03
Singleton 3-point FFf flow graph, 86-87
16-point FFf, 128, 160-61, 163-66
16-point radix-4 FFf, 5
SWIFT, 140-42, 327, 417
3-point FFf, 85
2-building-block FFT Comparison Matrix,

242
2-point flow graph, 84
2-signal, 17-18
Winograd, 81,88, 167-73,168,242
Winograd 8-point FFT, 104-07
Winograd 15-point, 173-84, 281
Winograd 5-point FFT, 89-91
Winograd 9-point FFf, 116-21
Winograd 7-point FFT, 97-101
Winograd 16-point FFf, 128-36
Winograd 3-point FFf, 85-86
See also Algorithm construction

ALD. See Arithmetic logic unit
Application-specific integrated circuit (ASIC),

323,324,376-377
Application-specific integrated circuit (ASIC)

chips
Comparison Matrix, 377
DSP Semiconductor Pine/Oak core family,

376-377
Architectures

arithmetic building blocks for, 245-54
as board selection factor, 392-93
completely connected nearest-neighbor array,

265
consideration of in FFf design, 3-4
crossbar, 262-264, 263, 271

for Doppler radar processor, 419
DSP, 429
Harvard, 3-4, 256,257-258,272,323,326,

402
hybrid, 270-72, 271
hypercube, 269-70
linear bus, 259-60, 283
mapping of algorithms onto, 4
massively parallel, 262, 264--67, 265, 270,

271,331,332
multiprocessor, 255-72, 258, 409
pipeline, 258-259, 331
ring bus, 258, 260-62
SIMD, 265
single-processor, 255-258
star, 267-268
Von Neumann, 255-57, 256
See also specific architectures

Arithmetic accuracy, in arithmetic formats,
316,317-18,319

Arithmetic building blocks for architectures,
245-54

bit-slice arithmetic, 247-50, 249
integrated arithmetic, 250-251
performance measures for, 246-47
single/multiprocessor, 255
special purpose, 251-254, 252, 253

Arithmetic check
for algorithm error, 397-98
arithmetic error in 4-point FFT, 407

Arithmetic formats, 315-22, 323
block-floating-point, 315,320-21,324
Comparison Matrix, 321
consideration of in FFT design, 2-3
fixed-point, 315,317-18
floating-point, 315, 318-20, 319
performance measures for, 315-16

Arithmetic logic unit (ALU), in DSP chip,
332-34,333

Arithmetic unit
in single-processor architecture, 277
as source of error, 402-03

ASIC. See Application-specific integrated
circuit

B
Bandwidth, definition of, 37
Bit-slice arithmetic, 247-50

full parallel 16-bit bit-slice multiplier, 249
hybrid (parallel/sequential) bit-slice

multiplier, 249

multiplier-accumulator, 250
multiplier for, 248
sequential 16-bit bit-slice multiplication, 249

Block-floating-point arithmetic format, 315,
326-21,324

See also Arithmetic formats
Bluestein algorithm, 149-58, 150, 242, 272,

427
block diagram, 427
Comparison Matrix, 242
15-point, 158--67, 162, 164, 165, 281

Board decisions and selection, 4,387-93
for Doppler radar processor, 422-23
for image deblurring, 447
for power spectrum estimator, 430
questions and answers, 388-91
selection criteria, 387-88
for speech analyzer, 438-439

Building-block algorithms, 3, 32-35, 81-143
coding, 400-401
Comparison Matrix, 142-143
constraints, 83-84
described, 81
performance measures, 81-83
See also Algorithms

Burrus and Eschenbacher 9-point FFf, 124-27

c
Cache RAM

on DSP chips, 338, 339
See also Memory

CAT scan, 7
Chips

for Doppler radar processor, 419, 420
FFT-specific chips and chip sets, 367-373
for power spectrum estimator, 429
See also Digital signal processing (DSP)

chips; Programmable fixed-point DSP
chips; Programmable floating-point
chips

Code
conversion of equations into, 85
storage of in multiprocessor architectures,

255
Code development, error formation in,

400-402
Coherent integration gain

ofDFf,22
in frequency analysis, 56
in relation to weighting function, 36

INDEX 459

Commercial off-the-shelf (COTS) board
digital interfaces on, 389
use of in FFf design, 4, 387
See also Board decisions

Communication, 1, 335
Comparison Matrix

for algorithm mapping, 314
for application-specific integrated circuit

(ASIC) chips, 377
for arithmetic format, 321
for Doppler radar processor, 418
for Doppler radar processor chips, 420
for FFT-specific chips and chip sets, 375-376
for floating-point DSP chips, 445
for linear filtering and pattern matching, 71
for multiple-processor programmable DSP

chips, 382-383
for power spectrum estimator chips, 429, 430
for programmable fixed-point DSP chips,

355-356
for programmable floating-point DSP chips,

369
for speech analyzer algorithms, 438
for speech analyzer weighting functions, 436
table of, 455
for 2-building block algorithms, 242
for weighting function, 52-53

Computational efficiency, as performance
measure, 273-74

Computational latency, 63,247
See also Latency

computational load
defined, for OFf, 22
defined, for FFf, 28

Computations
errors in, 316
45-degree redundant, 31-32
latency from with arithmetic building blocks,

247
measurement of for FFT evaluation, 81, 145
90-degree redundant, 30-31
nonoverlapped,57
overlapped,58
throughput from, in arithmetic building

blocks, 246
Computations per data point, as performance

measure, 62
Convolution approach

for algorithm construction, 147
for Bluestein algorithm, 149-58, 150
for Bluestein I5-point algorithm, 158-67

460 INDEX

Convolutionapproach (Cont.)
for Winograd algorithm, 167-73, 168
for Winograd 15-pointalgorithm, 173-84,

174
See also Linear filtering

Correlation. See Pattern matching
COTS. See Commercial off-the-shelf (COTS)

board
Crossbar architecture, 262-264, 263, 271

crossbar switch architecture, 288
16-point radix-4 FFf, 288-93, 290

D
Data

overlapping data sets by (N-P)-samples, 21
real or complex, 21

Data bus, on and off DSP chip, 327-28
Data I/O ports. See Input/output; Serial I/O

ports
DATA I/O requirements, for single processor,

276
Data I/O transfer clock costs, 307
Data map

for crossbar implementationof 16-point
radix-4 FFf, 290

for 4-dimensional hypercube implementation
of 16-point radix-4 FFf, 306

for massively parallel implementationof
16-point radix-4 FFf, 295

for star implementationof 16-point radix-4
FFf,301

Data mapping, 273-314
performance measures, 273-74
See also Algorithm mapping

Data mapping relabeling
in algorithm construction, 148-49
See also Mapping

Data memory
consideration of in board selection, 390
on DSP chip, 337-83
requirements for, 145
as source of error, 403-04
See also Memory

Data memory locations
in building-block algorithm, 83
as performance measure, 62
requirements for, 146
See also Memory

Data memory map, prior to M/2-point FFf,
154

Data read-only memory (ROM)
on DSP chip, 340-41, 342
See also Memory

Data separation
decimation in frequency (DIP) approach,

252-253
decimation in time (DIT) approach, 251-252

Decimation in frequency (DIF) approach
for data separation, 252-253
2-point flowgraph, 254

Decimation in time (DIT) approach
for FFT data separation, 251-252
2-point FFf flow graph, 253, 254

Design examples, 413-48
Doppler radar processor, 414-24
image deblurring, 440-48
power spectrum estimator, 424-31
speech analyzer,431--440

OFT filter spacing/nulls, 12
OFT. See Discrete Fourier transform (Off)
DIF.See Decimation in frequency (DIF)

approach
Digital I/O ports

on COTS boards, 389
See also Input/output; Serial I/O ports

Digital signal processing (DSP) chips
for FFf algorithms, 3, 323-85
generic block diagram for, 323
performance measures for, 324-25
selection criteria, 1, 245
special purpose, 251-54
See also Board decisions and selection;

specific DSP chip types
Dimensions

consideration of in FFf design, 2
See also Multidimensionalprocessing

Discrete Fourier transform (DFf), 9-25
defined, 1,9,20
equation and block diagram for, 10,11
in multidimensionalprocessing, 73-80
properties of, 10-16
real input signals for, 16-20
relation to fast Fourier transform, 1-2, 9, 10,

24
strengths of, 20-22
weaknesses of, 22-24

DIT.See Decimation in time (DIT) approach
Doppler radar

architecture, 421-422
board selection process, 422-23
Comparison Matrix, 418

defined, 414
description and design, 415-422
processor, 414-24
specification, 414-415
use of OFf in, 6

DSP chip. See Digital signal processing (OSP)
chips; Programmable fixed-point OSP
chips; Programmable floating-point DSP
chips

Dynamic range, in arithmetic formats, 316,
317,319

E
8-point DFT with 90-degree and 180-degree

redundancies removed, 31
8-point OFT with I 80-degree redundancies

removed, 30
8-point OFT equations in matrix form, 29-32
8-point OFT flow graph, 32
8-point DFT matrix, 29
8-point OFT to FFT, 5, 28-29
8-point FFT decimation-in-frequency input

data organization, 253
8-point FFf decimation-in-time input data

organization, 252
End of loop testing process, 333
Equations, conversion of into code, 85
Equivalent noise bandwidth, in relation to

weighting function, 36-37
Error

in algorithm development, 395-400
arithmetic check for, 397-98
during code development, 400-402
during product operation, 402-04
isolation of, 409-12, 410
memory map check for, 399-400
test signal patterns of, 406-07
See also Quantization noise error

Expansion capability, as board selection factor,
386, 390

F
Fast Fourier transform (FFT)

algorithm construction, 144-245
algorithm construction, with building blocks,

32-35
compared to linear filtering and pattern

matching, 61
defined, 27
design decisions, 2-4

INDEX 461

8-point OFT equations in matrix form, 29-32
8-point Off to FFf example, 28-29
improvements to, 27-28
N -point OFT as narrowband filter array, 34
P-point OFT as narrowband filter array, 33
relation of to discrete Fourier transform, 1-2,

9,10,24,27
2-point algorithm flow graph, 84
use of in OSP-based products, 1
weaknesses of, 28

FFT. See Fast Fourier transform (FFT)
FFT-specific chips and chip sets, 367-373

array Microsystems a66110/6621 0, 370-72,
371

Comparison Matrix, 375-376
Plessey Semiconductor POSP16510, 374-375
Raytheon TMC2310, 373-374
Sharp LH9124/LH9320, 372-373

I5-point or 16-point FFT algorithm, 5
Filters

bandwidth definition, 37
bandwidth definition for, 37
linear finite impulse response (FIR)

filter-based, 52, 323
overlap-and-add approach for, 65
separable 2-dimensional, 76
See also Narrowband filters

Finite impulse response (FIR) weighting
functions, 52

FIR filter. See Filters
Fixed-point arithmetic format, 315,317-18,

323
See also Arithmetic formats

Floating-point arithmetic format, 315, 318-20,
319,323

Addition block diagram, 318
Multiplication block diagram, 319
See also Arithmetic formats

Floating-point OSP chips, Comparison Matrix,
445

4-point FFT
and 16-point radix-4 FFT, 5
flow graph, 396
relabeling example, 148-149

45-degree redundant computations, 31-32
Fourier, 1. B., 9
Frequency analysis, 55-60

computational techniques for, 57-59
described, 55
in multidimensional processing, 74-75
nonoverlapped,57
overlapped, 58
performance measures for, 55-57
weighting functions value in, 58-59

462 INDEX

Frequency domain algorithm
overlap-and-add, 65-68, 66
overlap-and-save, 68-70

Frequency domain approach
for linear filtering, 76--77
multiple-step method, 65
for pattern matching, 79-80
single-step method, 64-65
2-dimensional zero padding for, 442

Frequency domain block diagram of Bluestein
algorithm, 150

Frequency domain conversion, use of DFT for,
1,6,7

Frequency domain processing block diagram,
62

Frequency limits, for DFT, 10-11
Frequency resolution, in frequency analysis, 56
Frequency scaling, DFT properties for, 13
Frequency shifting, 13
Frequency-shift-keyed (FSK) modem sample,

21,23-24
Frequency straddle loss

for DFT, 23
in frequency analysis, 56
in relation to weighting function, 36

FSK. See Frequency-shift-keyed (FSK) modem
sample

Full parallel 16-bit bit-slice multiplier, 249

G
General address relabeling, in algorithm

construction, 148

H
Harvard architecture, 3-4, 323

basic, 278
for DSP chips, 326
from parallel array, 313
Harvard processor, 272, 284
for mapping requirements, 273
product functional diagram, 402
16-point radix-4 FFT, 277

High-level language, for use with boards, 390
Hybrid architecture, 270-72

Harvard processor, 272
high-level crossbar, 271
3 x 3 parallel processor, 271

Hybrid (parallel/sequential) bit-slice multiplier,
249

Hypercube architecture, 269-70
16-point radix-4 FFT, 305-12

IDFT. See Inverse DFT (IDFf)
Image collection and recording block diagram,

441
Image deblurring, 440-48

architecture, 446
board selection, 447
definition of product, 440-41
description, 441-43
design, 443--46, 447-448
DSP chips for, 445, 446
specification, 441
test signals, 447
use of DFf for, 6--7

Input data organization, for arithmetic building
blocks, 246

Input data overhead, as performance measure,
274

Input/output (I/O)
for algorithm and data mappings, 276
in COTS boards, 389-90
in massively parallel architectures, 266
performance of as selection factor, 388
as source of error, 404
transfer clock costs, 307

Input sample overlap, in frequency analysis,
55-56

Input signals
in linear filtering/pattern matching, 63-65
in overlap-and-add frequency domain

algorithm, 65-68
in overlap-and-save frequency domain

algorithm, 69-70
Integrated arithmetic, 250-251

multiplier-accumulator for, 250-251
multiplier for, 250

Internal data bus loading, for arithmetic
building blocks, 246

Inverse DFT (IDFf)
computation with, 12-13
defined, 12

K
Kolba-Parks

15-point example, 191
P-point building block, 188
Q-point building block, 190

L
Latency

computational, 63, 247
in pipeline processor, 280
in single-processor architecture, 276

Linear array architectures, 258-62
linear bus, 258, 259-60
pipeline, 258-259, 284
ring bus, 258, 260-62, 283-84

Linear bus architecture, 259-60, 283
16-point radix-4 FFf, 286-287

Linear filtering
compared to FFT, 61
Comparison Matrix, 70-71
described, 61
direct method computations, 63-64
equations, 61-62
frequency domain approach, 76-77
in multidimensional processing, 75-77
multiple-step frequency domain method, 65
overlap-and-add frequency domain

algorithm, 65-68, 66
performance measures, 62-63
separable 2-dimensional filter, 76
single-step frequency domain method, 64-65
in 3 and more dimensions, 77

Linearity, as property of DFT, 12

M
MAC. See Multiplier-accumulator
Mapping

of algorithms onto architectures, 4
of algorithms onto processors, 274-75, 280
for building-block algorithms, 143
of multiple algorithms, 265-66
See also Algorithm mapping; Data mapping

Massively parallel architectures, 262, 264-67
data I/O for, 266
4 x 4 massively parallel array, 294
north-east-west-south connected, 265
serial ports used for, 331, 332
16-point radix-4 FFT, 293-300, 294, 295, 312
3-dimensional, 270
3-dimensional massively parallel processor,

312
See also Parallel arrays

Memory
determination of requirements for, 145
in multiprocessor architectures, 255

INDEX 463

requirements for algorithm and data
mappings, 276-77

requirements for in FFT evaluation, 81
as source of error, 404

Memory locations
in Bluestein algorithm, 151-52
for multiplier constants, 82
requirements for, 146
See also Data memory locations

Memory maps
in algorithm development, 395
checking for algorithm error, 399-400
coding, 401-02
consideration of in FFT design, 5
for 15-point Bluestein algorithm, 162,

164,165
4-point FFT relabeling example, 148-149
recommendations for, I
See also Data memory map

Mixed-power-of-primes algorithm,
Comparison Matrix, 242

Mixed-radix algorithm, Comparison Matrix,
242

Mixed-radix approach
for algorithm construction, 147, 207-42
categories of, 211
I5-point Singleton FFf, 230-41, 231
45-point building-block sequences, 208
k-th Q-point building block, 210
n-th P-point building block, 209
16-point radix-4, 213-22, 215
16-point radix-8 and -2,222-30,223
top-level 3-factor algorithm, 208
top-level 2-factor algorithm, 208
for 2 factors, 211-13

Modulo arithmetic theory, 147
M /2-point FFT computations, 154-55, 156-57
Multiprocessing, as board selection factor, 386
Multidimensional arrays, 304-314

hybrid, 268
hybrid 16-point radix-4 FFf, 313
hypercube, 268,269-70
hypercube 16-point radix-4 FFT, 305-12
massively parallel, 268, 270
massively parallel 16-point radix-4 FFf, 312
in multiprocessor architectures, 268-72

Multidimensional processing, 73-80
described, 73-74
frequency analysis in, 74-75
linear filtering in, 75-77
pattern matching in, 78-80

464 INDEX

Multimedia, 1, 7
Multiple-processor programmable OSP chips,

378-82
Comparison Matrix, 382-383
Star Semiconductor SPROC-l000 family,

378-81,379
Texas Instruments TMS320C8x family,

381-382
Multiplication, sequential 16-bit bit-slice, 249
Multiplication data configuration for k = 0,

171
Multiplier

arithmetic building block as, 245
for bit-slice arithmetic, 248
full parallel 16-bit bit-slice, 249
hybrid (parallel/sequential) bit-slice, 249
for integrated arithmetic, 250

Multiplier-accumulator (MAC)
for bit-slice arithmetic, 250
in OSP chip, 332-34, 333, 403
fixed-point arithmetic, 317
for integrated arithmetic, 250-251

Multiplier constants
coding of, 401
memory locations for, 82, 146

Multiplies
in Bluestein algorithm, 151
in building-block algorithm, 82
connection of to adds, 246
determination of requirements for, 145, 146
in OFT, 22, 27
in mixed-radix algorithm, 210-11
in multiprocessor architectures, 255
in prime factor algorithm, 187
in Winograd algorithm, 169

Multiprocessing, as a board selection factor,
388

Multiprocessor architectures, 255-72, 409
linear arrays, 258-62
multidimensional arrays, 268-72
parallel arrays, 262-68
single processors, 255-258

Music, as changing signal, 73

N
Narrowband filters

implementation of in Off, 10, 11
N -point DFT as array of, 34
P-pointOff as array of, 32,33
in relation to weighting function, 35-36

90-degree redundant computations, 30-31
Noise. See Quantization noise error
N -point OFf as narrowband filter array, 34
Number recognition algorithm building block,

433
Nyquist rate, defined, 11

o
On-chip data bus, in OSP chip, 327
On-chip data memory, in OSP chip, 325,

326-27
On-chip program memory, in DSP chip, 325,

327
128-point OFT ofFSK modem signal, 24
180-degree redundant computations, for FFf,

30
1024-point FFf

as OSP chip performance measure, 324
off-chip buffer configuration for, 375

Output data organization, for arithmetic
building blocks, 246

Output data overhead, as performance measure,
274

p

Parallel arrays
crossbar, 262-264, 263, 271
crossbar 16-point radix-4 FFf, 288-93
4 x 4 massively parallel array, 294
Harvard architecture from, 313
massively parallel 16-point radix-4 FFf,

293-300,294,295
in multiprocessor architectures, 262-68,

287-88
star 16-point radix-4 FFT, 306-304, 301
3 x 3 parallel processor, 271
See also Massively parallel architectures

Parallel interface, dedicated, on COTS board,
389

Parseval's theorem, use of with OFf, 14
Pattern matching

arbitrary weighting block diagram, 375
compared to FFT, 61
described, 61
direct method computations, 63-64
equations, 61-62
frequency domain approach for, 79-80
in multidimensional processing, 78-80
multiple-step frequency domain method, 65

overlap-and-add frequency domain
algorithm, 65-68, 66

performance measures for, 62-63
separable 2-dimensional, 78-79
single-step frequency domain method, 64-65

Performance
effect on of board type, 389
tests for, 395-412

Performance measures
for algorithm construction, 145-46
for algorithm and data mappings, 273-314
for arithmetic building blocks, 246--47
for arithmetic formats, 315-16
for building-block algorithms, 81-83
computations per data point as, 62
for DSP chips, 324-25
for frequency analysis, 55-60
for linear filtering and pattern matching,

62-63
for weighting functions, 35-37

Periodicity
ofDFf, 16,20-21
of waveforms, 9

Periodic signals, 20-21
See also Signals

Pipeline architecture, 258-259
for I5-point Bluestein algorithm, 281
for I5-point prime factor algorithm, 281
for I5-point Singleton mixed-radix algorithm,

283
for I5-point Winograd algorithm, 281
serial ports used for, 331
for 16-point mixed powers-of-primes

algorithm, 282
for 16-point power-of-primes algorithm, 282
for 16-point radix-4 algorithm, 284, 285

Pitch unit pulse train, representative FFT of,
434

Power spectrum estimator, 424-31
board selection process, 430
Comparison Matrix of chips for, 429, 430
definition of product, 424
description and design, 425-431
OSP architecture for, 429
specification, 424-425
test signals, 430-431
use of OFT in, 6

P-point building blocks, input of, 187-189
P-point OFT as array of narrowband filters, 33
P-point OFT as narrowband filter array, 33

INDEX 465

P -point input adds data configuration for
m == 0,169

P -point output adds data configuration for
m==D,172

Prime factor algorithm
Comparison Matrix, 242
for Doppler processing, 416-17
15-point, pipeline architecture for, 281
mapping requirements, 272

Prime factor approach
for algorithm construction, 147, 185-207
15-point Kolba-Parks FFT, 191-98, 192
15-point SWIFT, 199-207
3D-point building-block sequences, 186
top-level 3-factor algorithm, 186
top-level 2-factor algorithm, 185
for 2 factors, 187-91

Primes-to-a-power algorithm, Comparison
Matrix, 242

Processing latency. See Latency
Processing type, consideration of in FFT

design, 2
Processor, determination of, for DSP

application, 245
See also Multiprocessor architectures

Program control, for generic programmable
OSP chip, 332

Programmable fixed-point DSP chips, 323-82
Analog Devices ADSP-21xx family, 336-37
AT&T DSP16 family, 336-37
AT&T OSP161x family, 339-41,340
Comparison Matrix, 355-356
fixed-point chip families, 335-55
generic, 325-35,326
Motorola DSP56] xx family, 343-344
Motorola DSP56001 family, 341-43
NEC jlPD77xxx family, 344-46, 345
NEC /-LPD7701x family, 346-47
NEC jlP077220 family, 347-348
performance estimation for, 334-335
performance measures for, 324-25
Texas Instruments TMS320C5x family,

351-53,352
Texas Instruments TMS320Clx family,

346--48,347
Texas Instruments TMS320C2x family, 350
Zilog Z89Cxx family, 353-54
Zoran ZR38000 family, 354-355
See also Digital signal processing (DSP)

chips

466 INDEX

Programmable floating-point DSP chips,
357-68

Analog Devices 21020 family, 357-58
Analog Devices ADSP-21060 family,

358-359
AT&T DSP32C family, 359-61, 360
Comparison Matrix, 369
Intel i860 family, 361-63,362
Motorola DSP96002 family, 363-64
NEC j.tPD77240/230A family, 364-365
Texas Instruments TMS320C3x family,

365-67,366
Texas Instruments TMS320C40 family,

365-366
Program memory

as source of error, 404
See also Data memory; Memory

Prototyping area, as board selection factor, 392
PTL 8-point FFT, 113
PTL 9-point FFT, 121

Q

Q-point building blocks, output of, 189-91,
190

Q-point input adds data configuration for
k = 0,170

Q-point output adds data configuration for
k = 0, 172

Quantization noise error
for DFT, defined, 23
for FFf, defined, 27, 28
See also Error

Quantization noise escalation, in arithmetic
formats, 316, 318, 319-20

R
Radar

as changing signal, 73
See also Doppler radar

Rader algorithms, 81, 88,136-38
5-point FFf, 93-96

Real data sequence, DFT of, 16
Real input signals

for DFfs, 16--20
double-length algorithm, 18-20
2-signal algorithm, 17-18
See also Input signals

Real-time operating systems (RTOS), support
for by board, 391

Resolution of two sine waves, defined, 15-16
Ring bus architecture, 258, 260--62, 283-84

16-point radix-4 FFf, 286--287
ROM. See Data read-only memory (ROM)
Round-off process, error introduction with, 23,

28,314
RS-232C interface, 389
RTOS. See Real-time operating systems

(RTOS)

s
Sampling theorem, for real signals, 11
Sequential 16-bit bit-slice multiplication, 249
Serial I/O ports

on DSP chip, 324-25, 329-332, 337-83, 389
See also Digital I/O ports

Sidelobe, for DFT, defined, 23
Sidelobe fall-off ratio, in relation to weighting

function, 36
Sidelobe level

in frequency analysis, 56
in relation to weighting function, 36

Signals
periodic, 20-21
as waveforms, 73
See also Transient signals

Signal-to-noise ratio
improvement of with OFf, 20
improvement of in Doppler processing, 414

Sine waves
resolution of, 15-16
in test signals, 406, 408-09

Single- processor architectures
in algorithm and data mapping, 275-79
defined, 255
See also Multiprocessor architectures

Singleton algorithms, 81, 88, 138-40, 242, 327
Comparison Matrix, 242
I5-point mixed-radix, 283
7-point FFf, 101--03
3-point FFf flow graph, 86-87

16-point FFf, response to 12 samples and four
zeros of I-kHz input, 15

16-point radix-4 FFf
address generator sequences, 330
crossbar architecture, 288-93, 290
in Doppler processing, 417
error isolation in, 409-12, 410
example, 5

flow graph, 396
4-dimensional hypercube implementation,

306
Harvard architecture, 277
hybrid,313
hypercube architecture, 305-12
massively parallel architectures, 293-300,

294,295,312
mixed-radix approach, 213-22, 215
pipeline architecture, 284, 285
star implementation, 300-304, 301
to illustrate test signals and methods, 395-412

Software support, as board selection factor,
386,389-90

Sonar, as changing signal, 73
Speech analyzer, 431-440

algorithm Comparison Matrix, 438
board selection process, 438-439
description, 432-35, 433
design, 435-38, 437, 439-440
DSP chip Comparison Matrix, 436
product definition, 432
specification, 432
test signals, 439
weighting functions Comparison Matrix, 436

Speech recognition, 73, 335
Star architecture, 267-268

for 16-point radix-4 FFT, 300-304
SWIFT algorithms, 140-42, 327, 417
SWIFT P-point building-block data

configuration for n == 1, 189
SWIFT Q-point building-block data

configuration for k == 0, 190
Symmetry, as property of DFT, 12

T
Telecommunications, 250
Test, of FFf performance, 395-412
Test signal

consideration of in FFf design, 4
constants, 405-06, 408
error patterns, 406-407
features of, 404-06
for 4-point FFf, 405
sine waves, 406, 408-09
for speech analyzer, 439
unit pulse, 404--405, 407-08

3 dB main-lobe bandwidth, in relation to
weighting function, 37

INDEX 467

3-dimensional massively parallel processor,
312

3 dimensions
frequency analysis in, 75
linear filtering in, 77
pattern matching in, 80

Throughput from computations, for arithmetic
building blocks, 246

Time, effect of on changing waveform, 73
Time-domain data, conversion of into

frequency domain data, 1, 9
Time scaling, OFf properties for, 13-14
Time shifting, 13
Transform length

for Bluestein algorithm, 152, 159
design considerations for, 3
for Doppler radar, 416
for image deblurring, 444
relation of to algorithm points, 145
for speech analyzer, 435

Transient signals
analysis of by OFT, 23-24
effect of weighting functions on frequency

analysis of, 59
See also Signals

12-point FFf response to I-kHz input, 15
2-building-block FFf algorithm Comparison

Matrix, 242
2 dimensions

frequency analysis in, 74-75
pattern matching in, 78-79
separable 2-dimensional filter, 76

2-point FFf, defined, 84

u
Unit pulse, in test signals, 404--405

v
Video, as changing signal, 73
Von Neumann architecture, 255-57, 256

in single processor function, 277-278

w
Waveforms

periodic nature of, 9
signals as, 73

468 INDEX

Weaknesses
of OFf, 22-24
ofFFf, 28

Weighting function
Blackman, 43
Comparison Matrix, 52-53
for control of sidelobe level, 23
described, 35
design considerations for, 3
Dolph-Chebyshev, 49, SO-51
for Doppler radar, Comparison Matrix, 418
equations and FFTs for, 37-52
4-sample Blackman-Harris, 45-46
in frequency analysis, 58-59
Gaussian, 48-49
hamming, 42
hanning, 40
Kaiser-Bessel, 46--47
linear finite impulse response (FIR)

filter-based, 52
performance measures for, 35-37
rectangular, 37-38
sine cubed, 40-41
sine lobe, 39

sine to the fourth, 41-42
for speech analyzer 436
3-sample Blackman-Harris, 43-44
triangular, 38-39

Winograd algorithm, 81, 88,167-73
Comparison Matrix, 242
8-point FFf, 104-07
15-point, 173-84, 174
I5-point, pipeline architecture for, 279
5-point FFf, 89-91
9-point FFf, 116-21
7-point FFT, 97-101
16-point FFf, 128-36
3-point FFf flow graph, 85-86
Winograd algorithm, top-level block diagram,

168

z
Zero padding

in Bluestein algorithm, 152, 159
for frequency domain processing, 442
use of with OFf, 14-15

	Handbook of Real-Time Fast Fourier Transforms: Algorithms to Product Testing
	Contents
	Preface
	1 Overview
	2 The Discrete Fourier Transform
	3 The Fast Fourier Transform
	4 Weighting Functions
	5 Frequency Analysis
	6 Linear Filtering and Pattern Matching
	7 Multidimensional Processing
	8 BuildingBlock Algorithms
	9 Algorithm Construction
	10 Arithmetic Building Blocks for Architectures
	11 Multiprocessor Architectures
	12 Algorithm and Data Mappings
	13 Arithmetic Formats
	14 Chips
	15 Board Decisions and Selection
	16 Test
	17 Design Examples
	Glossary
	Appendix
	Index

