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Preface

This book gives engineers and other technical innovators the foundation and facts they
need to construct and implement fast Fourier transforms (FFTs) that synthesize, recognize,
enhance, compress, modify, or analyze signals. Because of special integrated circuits,
known as digital signal processing (DSP) chips, a wide array of applications is affordably
done, from magnetic resonance imaging (MRI) to Doppler weather radar. Increased demand
for wireless communication, multimedia, and consumer products has created the need for
high-volume, low-cost, multifunction, DSP-based products that use FFTs for their signal
processing or data manipulation.

In 1974, E. Oran Brigham lived and worked in the small East Texas town of Greenville.
He was employed by a little-known aerospace company named E-Systems, Inc. when his
230-page book, The Fast Fourier Transform [1], was published. Over the years it has
helped thousands of engineers learn the fundamentals of that analytical tool. After moving
to Greenville in 1991 for Win to join E-Systems, we decided to write a book that continued
the efforts begun here two decades before—putting practical information about FFTs into
the hands of practicing professionals and engineering students.

The explosion of digital products, ignited by the proliferation of integrated circuits
in the 21 years since Brigham’s book came out, marks the coming of age for computing
FFTs. Because of personal computers, with chips or plug-in boards for doing DSP functions,
including FFTs, thousands of engineers, scientists, and students now work with and develop
new FFT techniques and products. The National Information Infrastructure, popularly
called “The Information Superhighway,” and other digital-based goods and services now
provide the impetus for sophisticated new products, once driven by the Department of
Defense.

The book addresses the following areas of real-time FFT implementation:

¢ How to compute an FFT of any length with a wide variety of algorithms
* How to convert algorithms to assembly or high-level language code
® How to map algorithms onto several architectures
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¢ How to select DSP chips and commercial off-the-shelf (COTS) boards for FFT
applications

¢ How to detect and isolate errors in every phase of development

The goal of the book is to provide a single-source reference for the elements used
in programming real-time FFT algorithms on DSP and special-purpose chips. It uses a
building-block approach to constructing several FFT algorithms. Extensive use is made
of examples and spreadsheet-style comparison charts. With hundreds of figures, tables,
and Algorithm Steps, its practical features are geared to assist design engineers, scientists,
researchers, and students. The book may even open the design of FFT-based products
to innovators with no prior FFT experience, if they have microprocessor programming,
engineering, or mathematics backgrounds. Though useful as a handy reference book by
topic, it is laid out in a logical sequence that can be a textbook for a course on applied FFTs.

Sid Burrus’s and Tom Park’s book DFT/FFT and Convolution Algorithms [2], writ-
ten a decade ago, met the mushrooming hunger of engineers for TMS32010 code, which
would make it easier to use the new Texas Instruments chip for computing FFT algorithms.
Mainstream applications for consumer products incorporating FFTs, precipitated by recent
advances in integrated circuits, especially ASICs, have fostered a need to:

o Create versatile FFT algorithms of any length, to overcome the power-of-two
constraints

o Understand how to map algorithms efficiently onto single and multiprocessor ar-
chitectures

¢ Program in assembly language to optimize [3] code, in order to reduce power
consumption and lower the cost of high-volume consumer products

o Shorten the design cycle and lower development costs to compete in global markets

Unique features include:

o Performance measure Comparison Matrices for selection of weighting functions,
algorithm building blocks, algorithms, algorithm mappings, arithmetic formats,
and DSP chips

¢ Extensive algorithm examples, with step-by-step instructions for memory mapping
and conversion to high-level or assembly language code

o A“generic” programmable DSP chip block diagram, to which 24 chip vendor block
diagrams are standardized and compared, to illustrate differences that affect FFT
performance

e Unbiased description of the FFT-related features of 51 fixed-point DSP chips,
including ASIC and multiple-processor chips, 13 floating-point DSP chips, and 6
dedicated FFT chips

o Test signals with instructions and examples for detecting and isolating errors dur-
ing FFT algorithm development, code development and debugging, and product
operation

o A list of questions and answers for selecting COTS boards

o Four design examples that do frequency analysis, power spectrum estimation, linear
filtering, and two-dimensional processing
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Win’s 28-year DSP career in both military and commercial companies, teaching
courses and seminars nationwide, has repeatedly shown him that engineers need to be able
to work easily with any length of FFTs to do real-time signal conversion and analysis.
Joanne’s 12 years experience as founder and president of two DSP companies has given
her exposure to the rapidly changing technology, market, and economic realities of this
industry. Coauthoring a book seemed the logical way to combine our diverse talents and
complementary perspectives to comprehensively address the topic of real-time fast Fourier
transform algorithms.

This book is only one of several tools for expanding the knowledge base of the DSP
community. A service called DSP Net provides access to the latest vendor information in this
field through InterNet. DSP and Multimedia Technology magazine addresses this growing
market, as do two annual applications-oriented conferences—DSPx and the International
Conference on Signal Processing Applications & Technology. The IEEE International
Conference on Acoustics, Speech and Signal Processing holds its 20th annual gathering in
1995. The chip vendors have free bulletin boards for algorithms, code, and other pertinent
information. Additional information on resources available to design engineers should be
sent to the authors, in care of the publisher, for possible inclusion in follow-up publications.
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Overview

1.0 INTRODUCTION

The increased demand for communication, multimedia, and other consumer products has
created the need for high-volume, low-cost, multifunction DSP-based products that can
use fast Fourier transforms (FFTs) for their signal processing or data manipulation. This
book is the first to cover FFTs from algorithms to product testing, with the information
needed to create and convert to code FFT algorithms of any length on 10 different archi-
tectures. It uses a building-block approach for constructing the algorithms. Included are
recommended Memory Maps to streamline assembly and high-level language coding of 17
small-point FFTs, four general algorithms, and seven FFT algorithm examples. To ensure
that the algorithms work properly, a test approach for the detection and isolation of errors,
refined over many years of time consuming searches for mistakes in FFT algorithms, is
detailed.

Spreadsheet-style comparison matrices provide easy to use inventories of the com-
prehensive array of key FFT elements and performance measures. Dozens of digital signal
processing (DSP) chips and criteria for selecting DSP boards are covered. Four design
examples at the end of the book show how to apply most of what has been explained.

1.1 LAYING THE FOUNDATION

Chapters 2 and 3 provide the technical foundation and mathematical equations for the al-
gorithms in Chapters 8 and 9. The discrete Fourier transform (DFT) is an equation for
converting time domain data into its frequency components. The DFT equation is imple-
mented with FFT algorithms because they are computationally efficient ways of calculating
it. All the properties and strengths of the DFT are shared by the wide variety of FFTs that
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have been developed over the years. However, only three of the five weaknesses of the DFT
are also weaknesses of FFT algorithms.

In the beginning of the design process, comparison of the uses and properties of the
DFT with the technical specifications of the application will determine if the DFT is a good
match. If so, then it makes sense to examine the FFT algorithms, hardware architectures,
arithmetic formats, and mappings in this book to decide which combination is best for a
specific design.

1.2 DESIGN DECISIONS

The decisions listed are the ones related to real-time FFT selection and implementation.
They are listed in an order which differs from the sequence of the chapters, because learning
the facts happens more easily in an order that is different from applying them.

¢ Choosing the number of dimensions (Chapters 5-7)
¢ Picking a type of processing (Chapters 5-7)

o Selecting the arithmetic format (Chapter 13)

¢ Deciding on a weighting function (Chapter 4)

e Determining the transform length (Chapter 5)

o Selecting algorithm building blocks (Chapter 8)

e Constructing the algorithm (Chapter 9)

¢ Choosing a chip (Chapter 14)

e Selecting the architecture (Chapters 10 and 11)

e Mapping the algorithm onto the architecture (Chapter 12)
e Selecting an off-the-shelf board (Chapter 15)

o Creating the test signal and procedures (Chapter 16)

1.2.1 Number of Dimensions

All multidimensional FFTs are done as a sequence of one-dimensional FFTs. The
importance of knowing how many dimensions (one, two, or three, usually) there are de-
termines how many FFTs will be needed and how the data must be organized to do the
multiple dimensions. This will affect chip processing load and the choice of architec-
ture.

1.2.2 Type of Processing

The type of processing (frequency analysis, convolution, or correlation) will also
affect the chip processing load. Frequency analysis requires one FFT for every group of
samples, while the other two types require an FFT and an inverse FFT for every group
of samples.

1.2.3 Arithmetic Format

The choice of fixed-point, floating-point, or block-floating-point arithmetic format
will affect the numerical accuracy of the results. Fixed-point DSP chips were the first
available and are generally less expensive than floating-point, because this arithmetic takes
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less silicon area. Floating-point has grown in popularity as semiconductor manufacturers
advanced to smaller micron wafers and high-level language compilers became available.
Block-floating-point is a compromise approach that provides better accuracy than fixed-
point and takes less silicon area than floating-point. It is only available in chips designed
specifically for computing FFTs.

1.2.4 Weighting Functions

The selection of one of more than a dozen weighting functions will affect frequency
location accuracy while controlling sidelobe effects. They also modify coherent gain,
bandwidth, and frequency straddle loss. The selection depends on what combination of
these effects matters most in an application.

1.2.5 Transform Length

Choosing a transform length closest to the number of data points to be analyzed will
improve the accuracy of the computation, thereby improving frequency accuracy. The size
of the transform will directly affect frequency resolution, memory requirements, and the
speed at which the computation can be done. A unique feature of this book is the choice of
more than one algorithm to compute an FFT of any length.

1.2.6 Algorithm Building Blocks

The algorithm building blocks used will affect the computational load the algorithm
requires and the complexity of code to implement that algorithm. This chapter provides 17
small-point transform algorithms for constructing larger algorithms. The choice depends
on whether computational load or code complexity is the deciding factor in a specific
design.

1.2.7 Algorithm Construction

The way in which the algorithm building blocks are connected to create a larger al-
gorithm will affect the complexity and amount of the code needed to implement it. This
chapter details the Bluestein, Winograd, prime factor, and mixed-radix methods for assem-
bling small-point transforms into larger algorithms.

1.2.8 DSP Chips

The selection of which Harvard architecture DSP chip to actually compute the algo-
rithm is determined by the cost and speed considerations of the application, the number
of chips needed, a suitable architecture (for multiple-processor designs), and available pe-
ripheral hardware to handle some of the functions. This chapter covers the FFT-related
features of 51 fixed-point DSP chips, including ASIC and multiple-processor chips, 13
floating-point DSP chips, and 6 dedicated FFT chips.

1.2.9 Architectures

Bit-slice, arithmetic chips were used to construct FFT applications prior to the in-
troduction of DSP chips. However, advances in silicon technology have replaced bit-slice
building blocks with DSP chips that include a complete fixed- or floating-point multiplier
and adder, as well as memory and program control logic.
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All of the DSP chips in this book use a Harvard architecture for interconnecting
these elements. FFT-specific chips interconnect several arithmetic building blocks into a
small-point FFT to increase performance. Multiprocessor interconnections (pipeline, linear
bus, ring bus, crossbar, two- and three-dimensional massively parallel, star, hypercube, and
hybrid architectures) of DSP chips are used when a single chip is not adequate. In fact, up to
four Harvard processors are now available on a single chip (SPROC 1000 and TMS320C80
families). Chapter 10 describes bit slice, integrated arithmetic and FFT-specific hardware
building blocks. Then Chapter 11 shows how to use them in single and multiprocessor
architectures. These two chapters prepare the reader for mapping the algorithms in Chapter 9
onto these architectures.

1.2.10 Mapping Algorithms onto Architectures

How an algorithm is mapped onto the chosen architecture will affect the throughput
(how many FFTs per second) and the latency (the delay between input and output) of that
algorithm. This chapter explains how to map FFT algorithms onto single and multiprocessor
architectures to attain either maximum throughput or minimum latency performance.

1.2.11 Board Decisions and Selection

A commercial, off-the-shelf (COTS) board can reduce the time and cost of getting
to market with a board-level FFT product. With several dozen manufacturers selling a
wide variety of DSP boards suitable for doing FFTs, board selection is a complex deci-
sion. Whether the chip selection process has narrowed the choice to a chip or to multiple
acceptable chips, the following five areas cover the main issues of choosing or developing
a board:

. Algorithm performance
. 1/O Performance

. Architecture

. Software support

5. Expansion capability

HW N -

1.2.12 Test Signals and Procedures

The design process can bog down in algorithm development and conversion to code
if there are no easy ways to detect and isolate errors. Having an efficient set of test signals
to use as inputs to an FFT algorithm or its code allows quick detection and precise isolation
of errors. In combination with these signals, flow graphs of the algorithm and code are
needed to trace an error back to its source. The same signals can be used to do end-product
and built-in testing.

1.3 TYPES OF EXAMPLES

The extensive use of examples is one of the unique features of the book. In addition to the
four design examples in Chapter 17, six kinds of algorithm examples are used to demonstrate
the wide array of concepts and facts the book contains. The particular lengths were chosen
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because they are large enough to show the pattern of an algorithm yet small enough to easily
follow.

1.3.1 Eight-Point DFT to FFT Example

Section 3.3 explains that all of the FFT algorithms presented in this book are based
on ways to remove redundant computations from the DFT equations without changing the
final result of the equations. While deriving an FFT algorithm from its DFT origins is a
theoretical process, using an example is a practical way of seeing the principle.

1.3.2 Algorithm Steps and Memory Maps

Sections 8.3 through 8.10 contain 17 examples of building-block algorithms that are
most likely to be used to construct larger algorithms. These are the most efficient small-
point transforms to implement. For each example every arithmetic operation (Algorithm
Step) is given, with a memory address (Memory Map) beside it, for the results. Instructions
are given for converting these small-point transforms into code. This coding can be in
any of the chip vendors’ assembly languages or in a high-level language. To convert to
assembly language, both the Algorithm Steps and their companion Memory Map will be
needed. Conversion to high-level languages, such as versions of C or FORTRAN, only
require use of the Algorithms Steps.

1.3.3 Fifteen-Point or 16-Point FFT Algorithm Examples

In Chapter 9 seven 15-point or 16-point FFT algorithm examples, using the building
blocks from Chapter 8, show how to implement the general types of FFT algorithms. A
technique for relabeling Memory Maps from Chapter 8 is given and illustrated in these
examples. Power-of-two and non-power-of-two examples are used to illustrate the range
of algorithms that cover computing any transform length.

1.3.4 Sixteen-Point Radix-4 FFT Algorithm Examples

In Chapter 12 a 16-point, radix-4 FFT algorithm is used in one single-processor
and nine multiprocessor examples. Maximum throughput and minimum latency examples
are done for mapping the algorithm and its data, for a total of 20 examples. A 16-point
example is used because it is a typical power-of-two length and familiar from Chapter
9. The reader is given all the input, intermediate, and output steps needed to code the
algorithm.

1.3.5 Four-Point FFT and 16-Point Radix-4 FFT Algorithm
Examples

In Chapter 16 the 4-point FFT (a small-point building-block algorithm in Chapter 8)
and 16-point, radix-4 FFT examples are used again to explain how to detect and isolate
errors in FFT algorithm development, code development and debugging, and end-product
operation. Flow graphs are used to show how to track an error through an algorithm.
Equations show how to verify Algorithm Step accuracy. Algorithm Steps and Memory
Maps are used with test signals to show how the results are altered by an error in an
algorithm. The altered results illustrate how to isolate a detected error.
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1.4 DESIGN EXAMPLES

In Chapter 17, frequency analysis, power spectrum estimation, linear filtering, and two-
dimensional processing examples were chosen to illustrate:

o Three common uses of the DFT from Chapter 2
e Single and multiprocessor architectures from Chapter 11
e Three algorithms from Chapter 9

o Three classes of chips (fixed-point, floating-point, and FFT-specific) from Chap-
ter 14

Whether the design will be single or multiple chip on single or multiple boards may not
be determined until far into the design process. In this chapter both multiple-chip and
multiple-board applications are developed to illustrate making those decisions. These are
not intended to be full-scale product designs. They are taken far enough into a design to
show how to use the wide array of information in the book.

1.4.1 Doppler Radar

Example 1 is the Doppler processing portion of a ground-based air surveillance radar.
This can be used for commercial airport air traffic control or for Doppler weather radar, as
well as defense applications. Doppler weather radar has become a household word in the
1990s, through its use in daily weather forecasting and broadcasts. Doppler processing is
a classical use of frequency analysis, the first common use of the DFT.

1.4.2 Power Spectrum Estimator

Example 2 is a power spectrum estimator personal computer (PC) plug-in board.
Commonly used to modify PCs for use as sophisticated instrumentation, plug-in boards
generate hundreds of millions of dollars of business. Earthquake prediction, satellite com-
munication, and magnetic fields are areas of intense public interest, where the signals a
board like this can analyze are found. There are countless other applications where rec-
ognizing signals and the patterns in them can have a life-saving effect. This is the third
common use of DFTs—frequency domain conversion.

1.4.3 Speech Recognition

Example 3 is the signal processing portion of a voice-activated number recognition
system. Voice dialing of car phones, one of many products for the burgeoning consumer
electronics market, is a use for this. This technique can also be applied to other numerical
data entry situations, where hands are not free to use a keypad; speaker verification for
security systems; and credit card fraud protection. This speech application taps DFT’s
ability to provide a numerical shorthand of a signal, its second common use, and its use for
frequency analysis.

1.4.4 Image Deblurring

Example 4 is another PC plug-in board, this one for doing image deblurring. The PC
housing this board could be found at a police station, crime lab, or as instrumentation for
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an engineer or researcher. Though deblurring images does not have the widespread uses of
the first three examples, the image processing principles it employs do. Some of them are
CAT scans and MRISs, seismic exploration, and multimedia applications. Like Example 2,
this product does frequency domain conversion, the third common use of the DFT.

1.5 CONCLUSIONS

This chapter provides an overview of the contents of the book. From a foundation in the
DFT through design examples, the authors have tried to present a logical, easy to follow
explanation of how to implement real-time FFTs on commercially available processors.
Digital signal processing is a mushrooming field of technology. The FFT is a valuable
technique for synthesizing, recognizing, enhancing, compressing, modifying, or analyzing
digital signals from many sources.

The next chapter, on the DFT, lays the foundation for all that is said about the FFT in
subsequent chapters.
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The Discrete Fourier Transform

2.0 INTRODUCTION

The discrete Fourier transform (DFT) is an equation for converting time domain data into
frequency domain data. Discrete means that the signal is sampled in time rather than being
continuous. Therefore, the DFT is an approximation for the continuous Fourier transform
[1]. This approximation works well when the frequencies in the signal are all less than half
the sampling rate (Section 2.3.1) and do not vary more than the filter spacing (Section 2.3.2).

Because of heat-transfer work done by the French mathematician J. B. Fourier in
the early 1800s, many fields of science and engineering have benefited from the use of his
mathematical link between time and frequency domains, called the Fourier transform. This
link is valuable because many natural or man-made signals (waveforms) are periodic and
thus can be expressed in terms of a sum of sine waves. Mathematicians realized that rather
than compute continuous spectra, they could take discrete data points in the time domain and
translate that information into the frequency domain, and so the discrete Fourier transform
came into being.

The DFT equation, unlike the continuous Fourier transform, covers a finite time and
frequency span. These data points may be collected from the output of an analog-to-digital
(A/D) converter, generated by a digital computer, or output from another signal processing
algorithm. They can be the plotted points of the performance of any numerical data, such
as stock prices. The DFT equation is implemented with FFT algorithms because they are
computationally efficient ways of calculating it. The properties (Section 2.3) and strengths
(Section 2.5) of the DFT also belong to the FFT. However, only three of the weaknesses
(Section 2.6) of the DFT are also weaknesses of FFT algorithms.

Comparison of the uses and properties of the DFT, with the technical specifications
of the application, determines if the DFT will be useful. If so, it makes sense to examine
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the FFT algorithms, hardware architectures, arithmetic formats, and mappings in this book
to decide which combination of them will provide the specified performance. This chapter
lays the technical foundation for the FFT algorithms in Chapters 8 and 9.

2.1 COMMON USES OF THE DFT
The three common uses of the DFT are:

1. Frequency analysis, which is determining the size and location of frequencies in
a signal. See Chapter 5 for details.

2. Reduction of adds and multiplies in linear filtering (convolution) and pattern
matching (correlation). See Chapter 6 for details.

3. Numerical shorthand as a way of describing a signal. For example, the power
coming out of an electrical outlet is described as 120 volts at 60 cycles. This is
Fourier transform shorthand using only two numbers to describe a continuously
changing waveform. The same shorthand is used in signal processing to describe
any time domain signal as a sum of sine waves. The speech analyzer example in
Chapter 17 takes advantage of this use of the DFT.

2.2 EQUATION AND BLOCK DIAGRAM

Equation 2-1 is the standard description of the DFT of N complex data points, a(n).

N-1
Ak) = Za(n) * W,"V*" where Wy = cos(2n/N) — jsin(2w/N) 2-1)
n=0

Before the DFT properties are described, it is useful to have a simple picture of the function
that Equation 2-1 is performing.

Since Equation 2-1 takes the same set of N input data points, a(n), and produces
N output signals, 4(k), each representing a different frequency, the N-point DFT can be
modeled as an array of N narrowband filters, each providing an output if the input signal has
frequency components in its passband. Since a narrowband filter can be implemented with
a multiplier and a low-pass filter (LPF), Figure 2-1, on page 11, can be used to represent
the DFT. The only difference between the DFT and this array of narrowband filters is that
the DFT only produces an output from each filter every N input samples. A narrowband
filter produces an output for every new input data point.

2.3 PROPERTIES

All FFT algorithms are just faster ways of computing the DFT equations; they are not ap-
proximations for the DFT equations. Thus the DFT properties described in this section apply
to all FFT algorithms. These properties have been derived in detail in many textbooks [1-4].

2.3.1 Frequency Limits

The first property to be understood about the DFT is the frequencies that it can
unambiguously determine. That range is defined by the sampling theorem [5], also called
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Figure 2-1 Block diagram of the DFT as an array of narrowband filters.

the Nyquist rate [6]. The DFT determines the presence of zero-frequency signals in the input
data points by calculating 4(0). The 4 (1) term in Equation 2-1 determines the presence of
a sine wave that goes through exactly one 360° cycle during the N data points. Similarly,
the A(k) term determines the presence of sine waves that go through exactly k& 360° cycles
during the N data samples.

The frequencies 4 (k) in Equation 2-1 are the only ones that the DFT computes. When
the frequency of a signal is higher than the sampling rate, the sampled version of the signal
appears to be at the signal’s frequency minus the sampling rate. To illustrate this, consider
a sine-wave signal that goes through exactly N 360° cycles during the N input data points.
That means it goes through exactly one 360° cycle between each data point. Therefore,
every time it is sampled it has the same data value. However, a zero-frequency signal also
has the same value each time it is sampled. Therefore, the DFT cannot distinguish between
zero-frequency sine waves and sine waves that go through N 360° cycles during the N
samples.

The Nyquist rate is a formal mathematical description of this phenomena. For a DFT
to accurately represent frequencies up to F samples per second, a sample rate of at least
2 x F samples per second is required. Further, frequencies that are higher will appear to be
lower-frequency signals (ambiguous), just as the sine waves in the previous paragraph that
had N 360° cycles in N samples looked the same as the zero-frequency sine wave. A sine
wave with 2 x N 360° cycles in N samples also looks the same as a zero-frequency sine
wave.

For real signals, the sampling theorem, as stated above and by Shannon, holds directly.
If the samples are complex, real and imaginary samples are taken at the sampling rate. The
result is two samples at the sampling rate or samples taken at twice the sampling rate. This
implies that, for complex sampling, frequencies are unambiguously analyzed by the DFT
up to the complex sampling rate F'.
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2.3.2 DFT Filter Spacing/Nulls

Since there are N equally spaced DFT filters between zero and the sampling rate, the
spacing between the filters is 1/N times the sampling rate. It is important to note that 1 /N
times the sampling rate is also the total time period over which the N samples were taken.
Therefore, the filter spacing is equal to 1/(total time for data collected for the DFT input).
Further, the DFT filters are designed so that, if a signal has an input frequency in the center
of one of the filters, the other filters do not respond. Therefore, the spacing between the
center of a DFT filter and its first null response is equal to the 1/(total time for data collected
for the DFT input). In filtering terms, each DFT filter has a null in its response at the input
frequencies of the other filters.

2.3.3 Linearity

Linearity means that the output of the DFT for the sum of two input signals is ex-
actly the same as summing the DFT outputs of two individual input signals, as shown in
Equation 2-2.

N-1
bm)WE = A(k) + B(k) (2-2)

n=0

N-1 N-1
Cly =Y la(m) + bW =Y amWf +
n=0 n=0

2.3.4 Symmetry

The symmetry property is helpful in understanding the response of a DFT to a par-
ticular waveform. It states that if 4(k) = DFT of a(n), then an input waveform with the
shape of 4(n) will have a DFT equal to a(N — k).

2.3.5 Inverse DFT

The inverse discrete Fourier transform (IDFT), shown in Equation 2-3, is used to
convert frequency information into time domain data points. This property allows the DFT
to be used to perform linear filtering and pattern matching in the frequency domain. These
frequency domain algorithms are described in Chapter 6 and often require fewer adds and
multiplies than doing linear filtering and pattern matching directly in the time domain.

N-1
a(n) =[1/N] Z A(k)W,;"" where W,;l =cos2n/N) + jsin(2n/N) (2-3)
k=0

2.3.6 Ease of IDFT Computation

Notice that the IDFT, Equation 2-3, is similar to Equation 2-1, which describes the
DFT. This similarity makes it possible to use almost the same algorithm to compute the IDFT
as is used for the DFT. This is most simply illustrated by Equations 2-4 and 2-5. Except for
the factor of 1/N, the difference between the IDFT equation and the DFT equation is the
sign of the sine terms of W*".

kn
WN

cos(2rkn/N) — jsin2Qrnkn/N) (2-4)

Wy = cos2wkn/N) + jsin(2mkn/N) (2-5)
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Therefore, any DFT or FFT algorithm can be converted to its comparable IDFT algorithm
by changing the sign of the coefficient multipliers formed by the sine terms and dividing
the results by N. This becomes important when using the frequency domain algorithms in
Chapter 6 to perform linear filtering and pattern matching. In those algorithms, FFTs and
IFFTs are required. This property allows the same FFT algorithm to be used for both the
FFT and IFFT portions of the computations.

2.3.7 Time and Frequency Scaling

The DFT performs frequency analysis on sequences of digital data points, independent
of the source of these data points or how fast the A/D was that took the samples. Therefore, it
determines only the presence of frequency components that repeat 0, 1, ... up to N-1 times
during the N data points. This means that, if the same sequence of numbers is collected
from A/D converters with different sampling rates, the DFT outputs, A(k), will be identical.
However, the output A(1) represents the presence of a higher frequency from the A/D output
that was sampled at the higher rate.

Summarizing, if the time between A/D samples is scaled (i.e., the sampling rate
is changed), then the frequency represented by each DFT output is also scaled (i.e., the
frequency it represents is changed). For example, if the A/D rate is doubled, each DFT
output A (k) represents the presence of a frequency that is also doubled.

2.3.8 Time and Frequency Shifting

This property of the DFT is most easily illustrated by using a sine wave at frequency
k as the input signal. Then DFT filter k£ will output the amplitude and phase A(k) of that
sine wave in the input signal. The phase of the sine wave at sample 5 is different than at
sample 0. Therefore, if the DFT is performed on samples 5, 6, ... up to N + 4 (i.e., a time
shift of five samples) of the same input signal, the phase in the output of DFT filter k will be
changed by the difference in phase between samples 0 and 5. Since the DFT is linear, this
phenomena is true regardless of the number of sine waves that comprise the input signal.

Figure 2-2 shows this phenomena for a signal that is a single sine wave that repeats
once during 16 samples. This signal has one DFT output response, in filter 4(1). Since the
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Figure 2-2 Time shift example.



14 CHAP.2  THE DISCRETE FOURIER TRANSFORM

sine-wave phase for samples 0-15 is zero, the 4(1) FFT output has zero phase. Since
the sine-wave phase for samples 419 is 90°, the A4(1) FFT output has 90° phase.

Similarly, if a frequency component A4 (k) is shifted to a new frequency 4 (k —i), then
the IDFT of the shifted frequency is a sine wave at frequency k£ — i. This sine wave can
also be obtained by multiplying a sine wave at frequency k by a sine wave at frequency i.
This is mathematically described by multiplying the original input signal by a complex sine
wave. Again, since the IDFT is linear, this phenomena is true regardless of the number of
sine waves that comprise the sampled signal.

Time and frequency shifting are represented mathematically by Equations 2-6 and 2-7.

a(n +1i) & A(k)e /¥HIN (2-6)
Ak — i) & a(n)et/ZmmilN 2-7

2.3.9 Parseval’s Theorem

The power of a sequence of input data points is defined as the sum of squares of
all the values of the data points. Parseval’s theorem is a way of computing the signal’s
power after it has been converted by an FFT to its frequency components 4 (k) as shown in
Equation 2-8.

N-1 N-1
Y dm =1/NY_ 14K} (2-8)
n=0 k=0
Therefore, except for a factor of 1/ N, the sum of the magnitudes of the FFT outputs
is the same as the sum of the magnitudes of the input samples. Therefore, the forms of the
outputs of an FFT allow the power in a signal to be calculated as easily in the frequency
domain as in the time domain.

2.3.10 Zero Padding

Zero padding is a technique used when a signal does not have as many samples as the
FFT to be used for analyzing the signal. For example, if the application requires analyzing
12 input samples, but the engineer wanted to use a 16-point FFT, four zeros are added
to the 12 samples to produce the 16 samples needed by the FFT. The advantage of zero
padding is that it allows variable data collection lengths to be input to a single FFT algorithm
designed to calculate the FFT of a longer sample length. The disadvantage is that the center
frequencies of the 16-point FFT filters are not at the same frequencies as those of a 12-point
FFT that was matched to the data collection needs of the application.

There is a subtle effect of using zeros, or any other numbers, to fill in uncollected
data samples. From the sampling theorem, the unambiguous frequency range of the 12- or
16-point FFTs can only be from zero to the sampling rate, or half that rate if the input signal
is real rather than complex. However, from Section 2.3.2, the spacing from the center of
each filter to its first null response is equal to 1/(total time for data collected for the FFT
input). Since the total collection time for the data in the 12- and 16-point FFTs is the same,
the spacing to each filter’s first null response must be the same. For the 12-point FFT this
occurs at the location of the center of the adjacent filter. For the 16-point FFT this is not
true because 16 filters are equally spaced in the same frequency range as the 12 filters. The
result is that each of the 16-point FFT filters will have responses to signals that are at the
centers of the other 16-point FFT filters.
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Figures 2-3 and 2-4 illustrate the effects zero padding has on the real and imaginary
parts of the responses of 12- and 16-point FFTs, for a 1-kHz sine wave that has been sampled
at 12 kHz. In Figure 2-3 the real part has an amplitude of zero and the imaginary part has
a nonzero amplitude at filters 1 and 11. This is because the sine wave has a 270° phase.
This particular phase was used so that the real parts would be obviously different between
the 12- and 16-point transforms. In Figure 2-4 the real and imaginary parts have nonzero
responses in most of the filters because four zeros are appended to the 12 actual samples,
and a 16-point FFT is performed.
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Figure 2-3 Twelve-point FFT response to 1-kHz input samples.
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Figure 2-4 Sixteen-point FFT response to 12 samples and four zeros
of 1-kHz input samples.

The 16 FFT filter outputs in Figure 2-4 only span a 12-kHz frequency range because
12 kHz is the sample rate. With 16 filters to span the 12 kHz, the frequency spacing between
them is smaller. This example shows that appending zeros to the end of the periodic sine
wave, to make it a power-of-two length, alters the real and imaginary responses of the FFT
filters. The weighting functions in Chapter 4 are used to minimize zero-padding effects.

2.3.11 Resolution

The resolution of two sine waves is defined as how close they can be in frequency
before they can no longer be distinguished. If two frequencies are positioned at adjacent
DFT filter outputs, namely A (k) and A4 (k+1), then they are distinguishable. If the frequency
at k + 1 moves closer to frequency k, then it will start to appear as part of the passband of
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A(k), as well as A(k+ 1), and it is no longer clear whether there is one signal at a frequency
between k and k + 1 or two separate signals near £ and &k + 1.

Therefore, the frequency resolution of the DFT is the separation between adjacent
filters. Since there are N filters that cover the region from zero to the sampling frequency,
the DFT resolution is the sampling frequency divided by N. This implies that, for a given
sampling rate, the longer the transform length the better the frequency resolution of the
analysis.

2.3.12 Periodicity

Section 2.3.1 showed that the DFT correctly analyzes frequencies from zero to half
the sampling frequency. All other frequencies appear to be frequencies between zero and
half the sampling rate. For complex inputs the real sampling rate is actually twice the
sampling rate for the real or imaginary parts because both are being sampled at the same
time. This leads to the two rules for the way frequencies below zero and above the sampling
rate are analyzed by the DFT, one for complex signals and the other for real signals.

For complex input signals, periodicity means that frequencies that are higher than
the sampling frequency appear at frequencies that are less than the sampling frequency
(A(N + k) = A(k)). Similarly, negative frequencies appear as if they are at the sampling
frequency minus their frequency (4(—k) = A(N —k)).

For real input signals with frequencies, &, below half the sampling rate, DFT filters
k and N — k respond. Note that these two responding filters are symmetric about half
the sampling rate. If the frequency is less than zero, add twice the sampling rate to the
frequency and then apply the rule in the first sentence of this paragraph.

2.3.13 Summary of Properties
These 12 DFT properties:

Apply to all of the FFT algorithms in Chapters 8 and 9

Provide the framework for the capabilities of FFTs described in Chapters 5, 6, and 7
Allow multiple mapping options for FFTs onto the multiprocessor architectures in
Chapter 12

Underlie the capabilities of the test signals in Chapter 16

Provide the basis for using the FFT in the examples in Chapter 17

2.4 REAL INPUT SIGNALS

The DFT (Equation 2-1) produces complex frequency response outputs based on an input
data sequence that is complex. However, many applications that can take advantage of the
DFT have only real input data. The speech analyzer (Example 3) in Chapter 17 is one such
application.

The DFT of a real data sequence can be computed directly by setting the imaginary
part of the input sequence to zero. However, since the DFT is a linear algorithm, and a
complex signal is the sum of a real signal and an imaginary one, it is possible to process a
second real signal by entering it as the imaginary part of the input signal. The DFT output
for this combined input is the sum of the output for the real input plus j times the DFT
output for the second real signal [1,2].
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Equations 2-9 to 2-11 define the process of combining real signals a(n) and b(n) to
form a complex input to the DFT. Since both 4 (k) and B(k) are complex sets of numbers, an
additional step must be performed on the output of the DFT algorithm to separate these two
real input signals. The algorithms in this section show two ways of utilizing the DFT for
frequency analysis of real signals. The first is for the case of two independent real signals.
The second is to more rapidly compute the frequency content in a single real signal.

N-1
Alk) = Z a(n) * wkn (2-9)
n=0
N-1
Bk) = Y bn)xwh (2-10)
n=0
N—-1
C(k) = A(k)+ jBK) =) la(n) + jb(n)] + W*" @-11)
n=0

2.4.1 Two-Signal Algorithm

If an application has more than one real signal for which the frequency components
need to be computed, an algorithm has been constructed to combine pairs of these signals
into one FFT computation. A vital constraint of this algorithm is that the transform lengths
must be the same for both real input signals. If there are an even number of real signals to
be transformed, the signals can be paired off into FFTs that all operate on artificially created
complex input signals.

The stages of the two-signal algorithm are presented using real input signals a (n) and
b(n) as examples and assuming both a(n) and b(n) have the same number of samples to be
converted. Stage 3 is different for N an odd integer than for N an even integer. The odd
and even versions of the two-signal algorithm are presented as Cases 1 and 2 in Stage 3 of
the algorithm.

Stage 1: Form the Complex Input Signal

For eachn = 0.1,2,..., N — 1, combine a(n) and b(n) into the complex input
function ¢(n):

c(n)y =a(n) + j*xbn)

Stage 2: Compute an N-Point FFT

Compute the N-point FFT of c¢(n) to obtain the N frequency components C(k), k =
0,1,2,..., N — 1, and identify the real and imaginary parts of C(k) as R(k) and I(k),
respectively, where R(k) and / (k) are real:

N-1

Cly =" cn) e ™V = Rk) + j x I(k)

n=0
In Equation 2-11, C(k) = A(k) + j * B(k), but both A(k) and B(k) are complex numbers.
This is why Stages 3 and 4 are needed to compute 4(k) and B(k) from the outputs of this
stage. The variables R P(k), RP(N —k), RM(k), RM(N —k), I P(k), IP(N=k), IM(k),
and / M (N — k) are used to compute the intermediate results necessary to convert R (k) and
I (k) to A(k) and B(k).
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Stage 3: Separate Outputs into Real and Imaginary Parts

Case 1: N Is an Odd Integer
If N is odd, then foreachk = 1,2, ..., (N — 1)/2, compute

RP(k) = RP(N — k) = 0.5 % [R(k) + R(N — k)]
RM(k) = —RM(N — k) = 0.5 [R(k) = R(N — k)]
IP(k) = IP(N = k) = 0.5 [I(k) + I(N — k)]
IM(k) = —IM(N —k) = 05 % [I(k) — [(N — k)]
RP(0) = R(0)
IP(0) = 1(0)
RM(0) = IM(©0) =0

This requires 2(N — 1) adds and no multiplies because multiplying by 0.5 is just shifting the
binary point to the left 1 bit. Note that this algorithm does require each computed answer to
be stored in two places. This puts an additional burden on the memory address generators
of the DSP chips (Chapter 14) used to compute the answers.

Case 2: N Is an Even Integer

If N is even, then foreachk = 1,2, ..., (N — 2)/2, compute

RP(k) = RP(N —k) =0.5%[R(k) + R(N — k)]
RM(k) = —RM(N — k) = 0.5 [R(k) — R(N — k)]
IP(k) =IP(N —k)=05x[I(k)+ I(N - k)]
IM(k) = —IMN —k) =05 [I(k) — I(N - k)]
RP(0) = R(0)
IP(0) = I(0)
RM©) =IM@0) = RM(N/2)=IM(N/2)=0
RP(N/2) = R(N/2)
IP(N/2)=1(N/2)
This requires 2(N — 2) adds and no multiplies because multiplying by 0.5 is just shifting the
binary point to the left 1 bit. Note that this algorithm also requires each computed answer to

be stored in two places. This puts an additional burden on the memory address generators
of the DSP chips (Chapter 14) used to compute the answers.

Stage 4: Compute the FFT Outputs for Each Real Input Signal

Foreachk =0,1,2,..., N — 1, identify the FFT output A(k) and B(k) for each of
the real input signals a(n) and b(n), respectively, as
A(k) = RP(k) + jx IM(k)
B(k) = IP(k) + j» RM(k)
The total number of computations for the two-signal algorithm is the number of adds and

multiplies required by the FFT algorithm plus the 2% (N — 1) or 2 (N — 2) adds in Stage 3,
depending on whether N is odd or even.

2.4.2 Double-Length Algorithm

If an application requires computing the M frequency components of only one real
signal, then an algorithm has been developed to compute that M-point transform using an
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M /2 = N-point FFT. This algorithm significantly reduces the computational requirements
over simply assuming that the imaginary portion of the signal is zero in Equation 2-1.

The stages of this algorithm are presented for the input data sequence a(n). A vital
constraint of this algorithm is that it is restricted to transform lengths, M, that have a factor
of 2 so that M/2 = N is an integer. Stage 3 is different for N an odd integer than for N
an even integer. The odd and even versions of the double-length algorithm are presented as
Cases 1 and 2 in Stage 3 of the algorithm.

Stage 1: Form Complex Input Signal

Forn =0,1,2,..., N — 1, divide the input sequence a(n) into sequences b(n) and
¢(n), and form the complex FFT input d(n) by using b(n) for the real part and c(n) for the
imaginary part:

b(n) = a2 *n)
cny=a*n+1)
d(n) = b(n) + j*c(n)

Stage 2: Compute an N-Point FFT

Compute the N-point FFT of d (n) to obtain the complex frequency components D(k),
and identify the real part of these components as R(k) and the imaginary part as I (k).

N-1
D(k) = Z d(n) % e~ J2mkn/N
n=0

D(k) = R(k) + j * I (k)

Note that R(k) and /(k) are real numbers equal to the real and imaginary parts of D(k)
respectively. This is why Stages 3 and 4 are needed to compute 4 (k) from the outputs
of this stage. The variables R P(k), RP(N — k), RM(k), RM(N — k), IP(k), IP(N —
k), IM(k), IM(N — k), AR(k), AR(M — k), AI(k), and AI(M — k) are used to compute
the intermediate results necessary to convert R(k) and I (k) to A(k).

Stage 3: Separate Outputs into Real and Imaginary Parts

Case 1: N Is an Odd Integer
If N is odd, then foreach k = 1,2, ..., (N — 1)/2, compute

RP(k) = RP(N —k) = 0.5 [R(k) + R(N — k)]
RM(k) = —RM(N — k) = 0.5 % [R(k) — R(N — k)]
IP(k)=IP(N —k) = 0.5 [I(k) + (N — k)]
IM(k) = —IM(N —k) = 0.5% [I(k) — [(N — k)]
RP(0) = R(0)
[P(0) = 1(0)
RM(0) = IM(0) =0

This requires 2(N — 1) adds and no multiplies because multiplying by 0.5 is just shifting the
binary point to the left 1 bit. Note that this algorithm does require each computed answer to
be stored in two places. This puts an additional burden on the memory address generators
of the DSP chips (Chapter 14) used to compute the answers.



20 CHAP.2  THE DISCRETE FOURIER TRANSFORM

Case 2: N Is an Even Integer
If N is even, thenforeachk = 1,2, ..., (N — 2)/2, compute

RP(k) = RP(N — k) = 0.5 % [R(k) + R(N — k)]
RM(k) = —RM(N — k) = 0.5 % [R(k) — R(N — k)]
[P(k) = IP(N — k) =0.5% [I(k) + I(N — k)]
IM(k) = —IM(N — k) = 0.5 [I(k) — [(N — k)]
RP(0) = R(0)
[P(0) = 1(0)
RM(0) = IM(0) = RM(N/2) = IM(N/2) =0
RP(N/2) = R(N/2)
IP(N/2) = I(N/2)

This requires 2(N —2) adds and no multiplies because multiplying by 0.5 is just shifting the
binary point to the left 1 bit. Note that this algorithm also requires each computed answer
to be stored in two places. This also puts an additional burden on the memory address
generators of the DSP chips (Chapter 14) used to compute the answers.

Stage 4: Compute the FFT Outputs for Each Real Input Signal
Foreachk =1,2,..., N — 1, identify the FFT output A (k) as

AR(k) = AR(M — k) = RP(k) + cos(kn/N) x I P(k) — sin(krr/N) * RM (k)
AI(k) = —AI(M — k) = IM(k) — cos(km/N) * RM(k) — sin(kn/N) I P(k)
AR(0) = RP(0) + 1 P(0)
AI(0) = IM(0) — RM(0)
AR(N) = R(0) — 1(0)
AI(N) =0
A(k) = AM — k) = ARk) + j * AI(k)

This requires 4 x N — 1 adds and 4 * (N — 1) multiplies. Note that this algorithm requires
each computed answer to be stored in two places. This puts an additional burden on the
memory address generators of the DSP chips (Chapter 14) used to compute the answers.

The total number of computations for the double-length algorithm is the adds and
multiplies required by the FFT algorithm, Ng, plus 5« M — 7 or 5 * M — 9, depending on
whether N is odd or even.

2.5 STRENGTHS

The DFT has four types of strengths. The first two are associated with the types of data
the DFT analyzes. The third is associated with the way data (complex samples) must
be collected and processed by a DFT. The fourth is associated with the signal-to-noise
improvement offered by the DFT.

2.5.1 Periodic Signals

The DFT is an equation for converting time domain data into its frequency compo-
nents. However, it only converts the signal to the specific frequency components A(k) in
Equation 2-1. Since the signals associated with these frequency components go through
0,1,..., N — 1 360° cycles during the N input data points, any sum of them must also
repeat itself a whole number of times during the N input data points. Therefore, the DFT
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is ideal for analyzing the sine waves in a signal when the signal repeats an integer number
of times (i.e., is periodic) during the N input data samples.

Even if the data is not periodic during the N samples, the DFT output is still the
amplitude and phase of a set of frequencies that can be used to reconstruct the time domain
signal. However, the DFT’s output frequencies are not the actual ones in the signal. The
frequency-shift-keyed (FSK) modem example in Section 2.6.5 is a good illustration of this
phenomena. Therefore, the DFT is not particularly well suited for signals that are either
never periodic (random or transient) or are periodic at a rate different from the number of
samples in the transform. Example 2 in Chapter 17 shows how to use the DFT to analyze
random signals. The ability to choose any DFT length allows the DFT to match the period
of the transient input signals.

2.5.2 Real or Complex Input Data

Equation 2-1 shows Wy as a complex number. Therefore, even if the input data a(n)
is real, the output frequency data A4 (k) is complex. In fact, this is how the DFT provides
both amplitude and phase information for the kth frequency component in a signal. This
fact permits the DFT to be used in the analysis of real and complex input signals. Example 3
in Chapter 17 uses real input signals, and Example 1 in Chapter 17 uses complex inputs.

2.5.3 Sets of Data

Equation 2-1 shows that the frequency components, 4 (k), are computed on the last N
data points. In many applications the DFT is computed for multiple sets of N' data samples.
These sets of data may be contiguous (i.e., samples 0 through N — 1 followed by samples
N through 2% N — 1), or they may be overlapped by any number of points (i.e., samples 0
through N — 1 followed by samples N /2 through 3 x N /2 — 1 are overlapped by half of the
samples). Since the DFT equation can be computed for any length N and for any overlap of
the sets, it provides a versatile method for performing and comparing the frequency analysis
of data sequences. Figure 2-5 shows this overlapping of data sets by (N — P)-samples.
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Figure 2-5 Overlapping data sets by (N — P)-samples.
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2.5.4 Coherent Integration Gain

Equation 2-1 shows that N input samples are summed to obtain each frequency
component value. If the input samples contain a frequency that is in the center of one of
the DFT’s narrowband filters (Figure 2-1), then the frequency component at the output of
the appropriate filter will have an amplitude that is N times the amplitude of that input sine
wave. For example, the zero-frequency component 4 (k) sums the N samples with k = 0.
If those samples are all the same, the output of 4(0) is N times larger than the amplitude
of the input samples. This is one aspect of coherent integration.

The second aspect of coherent integration exhibited by each DFT output is a reduction
in noise bandwidth by a factor of N over the input signal. This is most easily understood by
using the sampling theorem (Nyquist rate) in Section 2.3.1. Namely, a signal that is properly
prepared for the DFT will have frequency components that go no higher than the sampling
rate. Therefore, the noise bandwidth into the DFT will be limited to the sampling rate. Since
this allowable bandwidth is divided into N pieces by the N DFT bandpass filters, the output
of any one of the filters can only have 1/N of the input noise power. Since white noise
is equally distributed across the available bandwidth by definition, the noise bandwidth of
each DFT filter is 1/N of the input bandwidth. The result is an improvement of a factor of
N in the signal-to-noise ratio of a single sine wave plus noise at the output of the DFT.

2.6 WEAKNESSES

The DFT has five weaknesses. The first two are improved through the use of FFT algorithms.
The second two are improved by applying a weighting function to data before computing
an FFT of it. The fifth, inaccurate identification of frequencies in a transient signal, is not
improved by FFT algorithms. Transforms that do identify transient signals are not addressed
in this book.

2.6.1 Computational Load

Computational load is the number of adds and multiplies that must be performed.
Equation 2-1 shows that N complex multiplies and N — 1 complex adds are required to
compute each of the N DFT outputs. Since a complex multiply requires four real multiplies
and two real adds and a complex add requires two real adds, the total computational load
for an N-point DFT is

# Adds = NN +2(N — 1)) = 4N? - 2N
# Multiplies = N(4N) = 4N?

For a 1024-point DFT this is roughly 4 million adds and 4 million multiplies. Even for
audio rates on the order of 20,000 samples per second, twenty 1024-point DFTs per second
corresponds to 80 million adds and 80 million multiplies, a significant computational load.
All of the FFT algorithms presented in this book require computations on the order of
N xlog, N computations rather than N2. For a 1024-point DFT this is a reduction by a
factor of N2/(N x log, N) or roughly 100:1. This is the fundamental motivation behind
developing and using FFT algorithms.

(2-12)
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2.6.2 Quantization Noise Error

In a digital computer all numbers are represented by some number of bits either
as fixed- or floating-point numbers. When these numbers are used in multiplication, the
resulting number has more bits than either of the input numbers. Because the number of
bits used to represent a number must be controlled, to avoid running out of memory to store
the numbers, the outputs from arithmetic computations must be rounded off at some point.

The round-off process introduces an error that changes the results of all of the rest
of the computations that use the rounded-off results. This is called quantization noise
error. The numerous computations required by the DFT result in a lot of quantization noise
error. One of the advantages of FFT algorithms is that the reduced number of computations
reduces quantization noise error. This will be discussed quantitatively in Chapter 13.

2.6.3 High Sidelobes

Sidelobes are a way of describing how a filter responds to signals at frequencies that
are not in its main lobe, commonly called its passband. Specific details on the DFT’s
sidelobes are discussed in Section 4.1.1, because weighting functions are used to control
the sidelobe behavior of DFT filters. Each DFT filter’s first sidelobe is only 13 dB below the
main lobe (therefore considered high), and subsequent sidelobes fall off very slowly. The
result is that a signal with strong frequency, far away from the center frequency of a DFT
filter, will not be completely removed by that filter and can look like a significant signal at
the output of that filter.

2.6.4 Frequency Straddle Loss

Frequency straddle loss is the reduced output of a DFT filter caused by the input
signal not being at the filter’s center frequency. The coherent gain of the DFT is N when
the input frequency is located at the center of one of the narrowband filters whose output is
A(k). If the input frequency is halfway between two of the narrowband filters, the coherent
gain is reduced, because half of the signal will appear in one filter and half in the other.
The difference between the full coherent gain of N and this lower gain is called frequency
straddle loss. This subject is explained in more detail in Section 4.1.3.

2.6.5 Transient Signals

In Section 2.5.1 the DFT was shown to be ideal for analyzing signals that are periodic
within the number of samples being analyzed. Transient signals are not well analyzed by the
DFT. This is true regardless of whether the signal is a true transient or a transient sine wave.
An example of a transient sine wave is an FSK modem signal, which changes frequency
during the set of data points being analyzed. An FSK modem signal is a sum of two sine
waves, each of which lasts for a portion of the sequence of input samples. Figures 2-6 and
2-7 show an FSK modem signal and its DFT.

While the time waveform in Figure 2-6 shows just two frequencies, the DFT of the
time waveform in Figure 2-7 suggests there are five prominent frequencies and some smaller
ones. This is a result of the DFT analyzing transient signals as if they were periodic signals.
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Figure 2-6 One hundred twenty-eight samples of an FSK modem
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2.7 CONCLUSIONS

The DFT is a sound computational method, whose characteristics make it useful in ma-
nipulating periodic signals and poor at dealing with transient signals, though it is used on
the latter when applied carefully with a thorough understanding of its limitations. Even
though the DFT equation assumes complex input signals, it is frequently used to analyze
real signals by doing input data reorganization and performing additional computations on
the output data.

Because the FFT inherits all the properties and strengths of the DFT, a firm foundation
about the DFT must be laid in order to see why FFTs are so useful and versatile. Its property
of linearity appears throughout the book in the implementation of many FFT algorithms.
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The next two chapters deal with the ways that four of the five weaknesses of the DFT
are minimized. The fifth drawback—being poor at analyzing transient signals—requires
transforms not covered in this book, such as wavelet and joint time frequency.
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The Fast Fourier Transform

3.0 INTRODUCTION

Fast Fourier transforms (FFT) are a group of algorithms for significantly speeding up the
computation of the DFT. The most widely known of these algorithms is attributed to Cooley
and Tukey [1] and is used for a number of points N equal to a power-of-two. A unique
feature of this book is that it provides multiple FFT algorithms for fast computation of any
length DFT. These are found in Chapters 8 and 9. In fact, the article by Cooley and Tukey
presented a non-power-of-two algorithm which has mostly been ignored. Several of the
algorithms in Chapter 9 are spin-offs of that work.

The most important fact about all FFT algorithms is that they are mathematically
equivalent to the DFT, not an approximation of it. This means that all of the properties,
strengths, and most of the weaknesses of the DFT apply to the FFT algorithms in this book.
The FFT improves two weaknesses of the DFT: high number of adds and multiplies; and
quantization noise.

An example of an 8-point DFT to FFT is used in this chapter to illustrate how FFTs
actually speed up the DFT. The chapter concludes with a detailed explanation of how to use
the building-block approach to construct FFTs.

3.1 IMPROVEMENTS TO THE DFT

The FFT improves the DFT by reducing the computational load and quantization noise of
the DFT.
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3.1.1 Computational Load

Section 2.6.4 established that the total computational load for an N-point DFT is

#Adds = NQN +2(N — 1)) = 4N? - 2N

# Multiplies = N(4N) = 4N? -1

Chapter 9 establishes that the number of computations required for FFT algorithms, regard-
less of the transform length, can be expressed as a constant times N xlog, (V). Therefore, the
computation reduction factor when using an FFT algorithm is a constant times N/ log, (N).
The constant is different, but near 5, for each algorithm and nearly always provides a
significant advantage for using the FFT.

3.1.2 Quantization Noise

The other improvement offered by FFT algorithms is a direct result of the reduction
in the number of computations. Namely, the quantization noise generated by the FFT
computations is smaller than if the DFT had been used. The reason is that there are fewer
multiplications performed to compute each of the FFT output frequencies. This means
there are fewer places where the multiplier output must be rounded off.

For example, a 1024-point DFT requires 1024 multiplies and 1023 adds to compute
each frequency output. This presents 1024 places in the computations where results must
be rounded off. The radix-4 1024-point FFT described in Chapter 9, has only four places
in the computations where multiplications are performed. The DFT and FFT quantization
noise generated by these round-off procedures is described in more detail in Chapter 13.

3.2 FFT-SPECIFIC WEAKNESS

In addition to the weakness associated with transient input signals, the reorganization of data
and reduction of computations required by FFT algorithms leads to the need to compute all
of the output frequencies, even if only a few are required. In contrast, DFT outputs can be
computed one at a time. However, this is not generally a practical weakness for two reasons.
First, FFTs are usually used for frequency analysis where all of the outputs are needed. The
second reason is that the dramatic reduction in computational load makes the FFT algorithms
more efficient, even when only a few output frequencies of the DFT need to be computed.
For example, consider the radix-2 Cooley-Tukey algorithm. In Chapter 9 this algorithm is
shown to require roughly 3 * N % log, N adds and 2 * N * log, N multiplies. For a 1024-
point FFT this amounts to 30,720 adds and 20,480 multiplies for a total of 51,200 arithmetic
operations. In contrast, each DFT output frequency requires 4 * N = 4096 multiplies and
4 x N — 1 = 4095 adds for a total of 8191 arithmetic operations. Therefore, if more than
51,200/8191 = 6.25 of the 1024 potential DFT outputs are needed, it is more efficient to
use an FFT algorithm to compute all 1024 outputs and throw away the unneeded ones.

3.3 EIGHT-POINT DFT TO FFT EXAMPLE

All of the FFT algorithms in this book are based on ways to remove redundant com-
putations from the DFT equations without changing their final result. The simplest way



SEC.3.3 EIGHT-POINT DFT TO FFT EXAMPLE 29

to illustrate these techniques is to show the process for the 8-point DFT. This is the
only place in this book where an FFT algorithm is actually derived from its DFT ori-
gins. The rest of the book focuses on choosing and applying the algorithms, not deriv-
ing them. The building-block algorithms described in Chapter 8 are the result of using
techniques, such as those in this section, to remove redundant computations from small
DFTs.

3.3.1 Eight-Point DFT Equations in Matrix Form

Equation 3-2 is a simplified matrix representation of the 8-point DFT, based on Equa-
tion 2-1. The simplification over the standard DFT equation is easily visualized by drawing
the W& terms as vectors on a unit circle (Figure 3-1). From Figure 3-1 it is clear that the
W rotates around the unit circle as k * n increases and the vector returns to the same
location when £ * n is increased by multiples of 8.

(Ao ] [wo owt owo owoow w® W WO ag ]
A, wo wt o owr owd owrt owd owe W’ a
A wo w: owt owe w' o wr owt we a
As wo wr o owe w' owt wl owr owd as
Ao | T weowh e s owe ot ow wt ||a | @)
As wo ws ow?r owl owt ow' o we w3 as
As wo o we wt ow?r wo owé wt w3 ag
LA | LweowTows ows o wt o wow ot || ey |

Simplified 8-point DFT matrix

W6

y
w2

Figure 3-1  Vector representation of W*".
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For example,
Wg =Wgt =W =wk =ws (3-3)

This cyclic feature of ng" plays a primary role in the development of all of the FFT
algorithms in this book. In Equation 3-1 all of the exponents (k n) of W larger than 8 have
been reduced to the equivalent power that is less than 8 by repeatedly subtracting 8 until the
exponent is less than 8. Using the example in Equation 3-3, the powers of kxn = 36, 28, 20,
and 12 have all been replaced by Wg‘ .

3.3.2 180° Redundant Computations

The first observation from Figure 3-1 is that W{ = —Wg, Wi = — w3, W2 = —w§,
and W83 = —W,. If these equalities are substituted into Equation 3-2, then it is clear that
ag + a4, a9 — aq, a1 + as, a, — as, ay + ag, ay — ag, az + a7, and a3 — a; are each used
four times in the DFT equations. Therefore, computations can be removed if there is an
efficient way to compute these eight terms once and use the results in each of the other
places they are required rather than recompute them. This can be done, and the result is
matrix Equation 3-4.

C 4] [1 0 1 0 1 0 1 0 [ ao+as
A 01 0 w 0 —-j 0 —jw ay— as
A, 10 - 0 -1 0 0 ai +as
A3 01 0 -—-jw 0 j 0 ay —as
Ay 110 -1 0 1 0 -1 0 a + ag (3-4)
As o1 0o -w 0 —-j 0 W a; — ag
Ag 1 0 0 -1 0 —-j O a3 +ay
| 4| o1 0 jw o0 j 0 -w || a-a ]

Eight-point DFT with 180° redundancies removed

3.3.3 90° Redundant Computations

The next observation from Figure 3-1 is that W3, W3, W;, and W{ exhibit 90° sym-
metry, namely,
We=WExWg=—jxW;
We=W2xWg = (=j)*(—j)*Wg =W, (3-5)
Wi =WexWg=—j*(-=Wg)=jxW;
The simplest example of using the property in Equation 3-5 to reduce computations is
in columns O and 4 of the matrix in Equation 3-4. Notice that rows 0 and 4 have 1

to multiply the ag + a4 and a, + ag terms in the right-hand column vector. Similarly,
rows 2 and 6 both subtract the a; + as and asz + a7 terms. In both cases, redundant
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computations can be removed by performing the required computations once and us-
ing the results twice. Other symmetries similar to this illustration also exist in Equa-
tion 3-4. When all these are exploited, matrix Equation 3-4 is converted to matrix
Equation 3-6.

— — — -

Ao 1000 1 0 O [ (a0 + as) + (a2 +as) |

4, 0010 0 0 W (a0 + as) — (a2 + ag)

A, 01ro0o0 0 —; O 0 (ap — aq) — j(ap — ag)

Aj 0001 0 O 0 —jw (ap — aq) + j(az — ag)

4| 100010 0 o0 @ +as)+@+a) | (3.6
As o010 0 0 -W (a1 + as) — (a3 + a7)

As 0100 j 0 (a1 —as) — j(az —a7)

47| Looo1 0 0 0 w || (a-as)+ja—a)

Eight-point DFT with 90° and 180° redundancies removed

In addition to removing redundant computations, the other important feature of this ap-
proach is that the required computations are performed in a way that allows them to be
efficiently used later in the algorithm. Specifically, the first step in this version of the 8-
point FFT algorithm is to compute the terms found in the right-hand vector in Equation
3-4. The second step is to combine these results as shown in the right-hand vector in
Equation 3-6.

3.3.4 45° Redundant Computations

The final observation in this example is based on noticing columns 0 and 4 of rows 0
and 4 in Equation 3-6. Notice that these terms in the matrix require the sum and difference
of terms in the right-hand vector. This does not reduce the overall computations. However,
it does complete the computational symmetry of the algorithm. The advantage of this is
that this algorithm needs only one computational building block, the sum and difference
calculation of a pair of numbers, which is called a butterfly. Therefore, not only have
this set of observations resulted in butterfly computations at each stage, but the number of
computations has been reduced.

Figure 3-2 is a flowchart of the 8-point FFT. This algorithm’s detailed equations are
in Section 8.8.2. Each node in the flowchart represents a complex add, which is two real
adds. There are 24 of these nodes, which corresponds to 48 adds. Similarly, there are
two complex multiplies in the algorithm. Since these multipliers are applied to a complex
number, the algorithm requires eight real multiplies and four additional real adds. Based on
Equation 3-1, the 8-point DFT requires 4 x N2 = 256 multiplies and 4 * N> —2x N = 240
adds. Therefore, this algorithm reduces the total number of arithmetic operations from
256 + 240 = 496 to 48 + 8 + 4 = 60, more than a factor of 8.

To be absolutely fair, the W = 1 and W = —1 terms in Equation 3-1 do not
require complex multiplications. This reduces the DFT computational load by 16 com-
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Figure 3-2 Eight-point FFT flow graph.

plex multiplies, which is 64 multiplies and 32 adds. Removing these 96 computations
reduces the DFT arithmetic operations count to 400, which reduces the gain associated with
using the FFT algorithm to a factor of 6.67 (400/60). This is still a significant savings.
Other approaches to making the 8-point DFT fast are in Section 8.8. Most will have the
same number of total computations, even though they are derived by different approaches.

3.4 BUILDING-BLOCK CONSTRUCTION OF FFT
ALGORITHMS

The previous section described how the FFT speeds up the DFT by removing redundant
computations. This section describes the building-block approach to constructing FFT
algorithms. It is useful to have a simple picture of how the DFT is decomposed into sets of
building blocks. One way to understand this is to return to the concept of the DFT being
an array of narrowband filters.

The narrowband filters implemented by the N-point DFT equations are equally spaced
in frequency and divide the frequency spectrum into N equal increments. Suppose that N
is not a prime number so that it can be written as the product of at least two numbers,
N = P x Q. Then, with a P-point DFT, it is possible to decompose the frequency spec-
trum into P equal increments (i.e., create P narrowband filters). On the left-hand side of
Figure 3-3 is a block diagram of the P-point DFT based on the array of narrowband filters
concept in Chapter 2. On the right-hand side of the figure the rectangle drawn with dotted
lines is all of the narrowband filters inside the dotted lines on the left side of the figure. The
block on the right is used again in Figure 3-4 to show how the P- and Q-point DFTs are
combined to form the N-point DFT.

The outputs of each of these P narrowband filters are also a signal. It just has a
narrower bandwidth than the original input signal. Furthermore, since each narrowband
filter has one output for each P inputs, it has N/P = Q outputs for each N inputs.
Therefore, each of these P output signals can be further analyzed by decomposing its



SEC.3.4  BUILDING-BLOCK CONSTRUCTION OF FFT ALGORITHMS 33

LPF -—-——> Ap_|

5»%9_‘ ey oy
LPF : 1 ;——>A0
. 5

Figure 3-3 Block diagram of the P-point DFT as an array of narrow-
band filters.

frequency spectrum into Q equally spaced increments by using a Q-point DFT to implement
Q narrowband filters. The result is O narrowband filters for each of the P filters as shown
in Figure 3-4. If Figure 3-4 were expanded by using the block diagram in Figure 3-3, there
would be Q narrowband filters for each of the P narrowband filters. Since a narrowband
filter connected to the output of a narrowband filter is also a narrowband filter, Figure 3-4
can be redrawn as P * () narrowband filters.

Since these N = P * Q narrowband filter outputs are also equally spaced and cover
the same frequency spectrum as an array of N narrowband filters, they must be the same as
the ones implemented by a P % Q-point DFT. This is the strategy used by each of the FFT
algorithms in Chapter 9 to decompose the FFT into the smaller building blocks described
in Chapter 8.

If Figure 3-4 is compared with the prime factor algorithm block diagrams
(Figures 9-17 and 9-18) or the mixed-radix algorithm block diagrams (Figures 9-23, 9-
24, and 9-25), two differences are noticed. First, the frequency component outputs are in
different order in each of the figures. The details of the FFT algorithms result in these
different output frequency orders. Second, while Figure 3-4 and all of the FFT algorithms
have P Q-point FFTs, all of the FFT algorithms have Q P-point FFTs on the input and Fig-
ure 3-4 only has one. This makes it look like Figure 3-4 requires fewer computations than
the FFT algorithms in Chapter 9. The catch is that each of the P narrowband input filters
on the left-hand side of Figure 3-4 must process all N of the input data samples. However,
each of the P-point FFTs on the inputs to the FFT algorithms in Figures 9-17, 9-18, 9-23,
9-24, and 9-25 only processes Q points. In all cases each of the Q-point output filters and
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Figure 3-4 Block diagram of the N-point DFT as an array of narrow-
band filters.

FFTs only processes P intermediate results. Section 3.3 shows how the FFT approach is
used to reduce the total computational load over using the narrowband filter approach.

3.5 CONCLUSIONS

The fast versions of the DFT overcome two of its weaknesses. The FFT reduces computa-
tional load (adds and multiplies) by significantly reducing the redundancy that is inherent
in the structure of the DFT equation. Quantization noise is also reduced by using FFTs
because the number of computations is less than with the DFT.

While improving the DFT so dramatically that it is now used in hundreds of applica-
tions, the FFT does not add any drawbacks of its own, which cannot be said for the element
covered in the next chapter. Weighting functions get teamed with FFTs to reduce two more
weaknesses of the DFT.

REFERENCES

[1] J. W. Cooley and J. W. Tukey, ”An Algorithm for the Machine Calculation of Complex
Fourier Series,” Mathematics of Computation, Vol. 19, p. 297 (1965).
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Weighting Functions

4.0 INTRODUCTION

A weighting function, w(n), is a sequence of numbers that is multiplied times input data
prior to performing a DFT on that data. Weighting (also called window) functions reduce
sidelobes of DFT filters and widen main lobes while, fortunately, not altering the locations
of the centers of the filters. The weighting functions in this chapter provide options to
reduce sidelobes from the —13-dB peak sidelobe of the DFT to as low as —94 dB.

Weighting function selection can be made early in the design process because the
choices of FFT algorithm and weighting function are independent of each other. Choice of
a weighting function to provide the specified sidelobe level is done without concern for the
FFT algorithm that will be used because:

¢ They work for any length FFT.
¢ They work the same for any FFT algorithm.
¢ They do not alter the FFT’s ability to distinguish two frequencies (resolution).

Weighting functions are applied three ways:

® As arectangular function, which does not modify the input data
¢ By having all the weighting function coefficients stored in memory
¢ By computing each coefficient when it is needed

4.1 SIX PERFORMANCE MEASURES

The choice of weighting function depends on which of the features of the narrowband
DFT filters are most important to the application. Those features are performance measures
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of the narrowband filters in order to analytically compare weighting functions. All these
measures, except frequency straddle loss, refer to individual filters. Frequency straddle loss
is associated with how filters work together.

4.1.1 Highest Sidelobe Level

Sidelobes are a way of describing how a filter responds to signals at frequencies that
are not in its main lobe, commonly called its passband. Each FFT filter has several sidelobes.
With rare exception, the highest one is closest in frequency to the main lobe and is the one
that is most likely to cause the passband filter to respond when it should not. The higher a
sidelobe level is, the lower is the amplitude of a signal outside the passband of the filter that
produces a significant filter response. This response erroneously indicates the presence of
a signal in the passband.

4.1.2 Sidelobe Fall-off Ratio

Sidelobes have peaks in response as a function of frequency. The peak (amplitude)
of sidelobes decreases or remains level as they get further away in frequency from the
passband. This performance measure describes how fast the sidelobe amplitude is reduced
as a function of frequency. If the sidelobes reduce rapidly, then only signals that are close
in frequency can cause the DFT filters to have erroneous responses. This performance
measure is important for applications with multiple signals that are close in frequency.

4.1.3 Frequency Straddle Loss

Frequency straddle loss is the reduced output of a DFT filter caused by the input
signal not being at the filter’s center frequency. Frequencies seldom fall at the center of
any of the filter passbands. When a frequency is halfway between two filters, the response
of the FFT has its lowest amplitude. For a rectangular weighting function the frequency
response halfway between two filters is 4 dB lower than if the frequency were in the center
of a filter. Each of the other weighting functions in this chapter has less frequency straddle
loss than the rectangular one. This performance measure is important in applications where
maximum filter response is needed to detect the frequencies of interest.

4.1.4 Coherent Integration Gain

Coherent integration gain is the ratio of amplitude of the DFT filter output to the
amplitude of the input frequency. N-point FFTs have a coherent gain of N for frequencies
at the centers of the filter passbands. Since most weighting function coefficients are less
than 1, the coherent gain of a weighted FFT is less than N. While weighting functions
reduce the coherent integration gain, the combination of this reduction and the improved
straddle loss results in an overall signal response improvement halfway between two filters.
Like frequency straddle loss, this performance measure is important in applications where
maximum filter response is needed to detect the frequencies of interest.

4.1.5 Equivalent Noise Bandwidth

Equivalent noise bandwidth is the ratio of the input noise power to the noise power in
the output of an FFT filter times the input data sampling rate. Every signal contains some
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noise. That noise is generally spread over the frequency spectrum of interest, and each
narrowband filter passes a certain amount of that noise through its main lobe and sidelobes.
White noise is used as the input signal and the noise power out of each filter is compared to
the noise power into the filter to determine the equivalent noise bandwidth of each passband
filter. In other words, equivalent noise bandwidth represents how much noise would come
through the filter if it had an absolutely flat passband gain and no sidelobes.

4.1.6 Three-dB Main-Lobe Bandwidth

The standard definition of a filter’s bandwidth is the frequency range over which sine
waves can pass through the filter without being attenuated more than a factor of 2 (3 dB)
relative to the gain of the filter at its center frequency. The narrower the main lobe, the
smaller the range of frequencies that can contribute to the output of any FFT filter. This
means that the accuracy of the FFT filter, in defining the frequencies in a waveform, is
improved by having a narrower main lobe.

4.2 WEIGHTING FUNCTION EQUATIONS AND THEIR FFTS

dB

20

—60

This section gives the equations for 15 weighting functions and shows the plots of the
frequency responses of their corresponding FFT narrowband filters. It also gives the best
use of each weighting function. More details can be found in References 1 and 2.

4.2.1 Rectangular

Forn =0to N — 1, wn) =1
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Figure 4-1 FFT of rectangular weighting function.
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The rectangular weighting function is just the plain FFT without modifying the input
data samples. The peak of the highest sidelobe is only 13 dB (a factor of roughly 5) below
the main-lobe response, and the sidelobe peaks do not drop off rapidly. This makes it poor
for signals with multiple frequency components that have amplitudes that are more than 6
dB different from each other.

In contrast to the poor sidelobe performance, the main lobe is narrower and the
coherent gain higher than for any of the other weighting functions. This gives these FFT
filters the highest amplitude response to a frequency in the main lobe (coherent gain) and
the smallest output noise power (3-dB noise bandwidth). The narrow main lobe also causes
these FFT filters to have the poorest response when the frequency is halfway between two
adjacent filters (straddle loss). For these reasons, the rectangular weighting function is used
when maximum signal-to-noise ratios are critical.

4.2.2 Triangular
Forn=0to N/2, w(n) =2*n/N
Forn=N/2+1toN -1, wn) =2 (N —n)/N

The triangular weighting function is used to provide sidelobes and straddle loss lower
than the rectangular weighting function and can be easily constructed as a sequence of
two straight-line segments. Notice that the sidelobes start off lower than the rectangular
weighting function by 14 dB and fall off faster than the rectangular weighting function.
The outstanding characteristic of this weighting function is the smaller number of sidelobes

oF ) |
ol *'{ 1“ |
1o ﬂ\‘ [T |
Jupyey i) O

Tenths of Frequency Bins

Figure 4-2 FFT of triangle weighting function.



SEC.4.2  WEIGHTING FUNCTION EQUATIONS AND THEIR FFTS 39

than the others in this chapter. It is best used when additional sidelobe reduction, more than
the rectangular weighting function, is required and when the weighting function must be
computed by the processor because there is no room in its memory to store the values of
the weighting function.

4.2.3 Sine Lobe

Forn =0to N — 1, w(n) = sin(rn/N)

The sine-lobe weighting function can be stored in processor memory or determined
by the processor using any of several algorithms for computing the sine function. It
is popular because it provides improved sidelobe performance, more than the rectangu-
lar weighting function, while using multiplier constants already required for the complex
multiplications between power-of-two FFT building blocks. The peak sidelobe level and
fall-off rate are roughly the same as the triangular weighting function. Like that one,
the sine lobe is most useful when some additional sidelobe reduction, more than the
rectangular weighting function, is required and the weighting function must be com-
puted because there is not room in the processor’s memory to store the values. For
power-of-two FFTs, this weighting function has a computational advantage over the tri-
angular weighting function, because the coefficients are the same ones used to com-
pute the FFT. Therefore, they do not require additional memory locations or computa-
tions.
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Figure 4-3 FFT of sine-lobe weighting function.
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4.2.4 Hanning

Forn =0to N — 1, w(n) = 0.5 % [1 — cos(nm/N)]

The Hanning weighting function is slightly more complicated to compute than the
sine lobe. However, it provides 9 dB of additional sidelobe attenuation and can be computed
with constants that are already in memory for the complex multiplications between power-
of-two FFT building blocks. The peaks of its sidelobes fall off 50% faster than the triangular
and sine lobe weighting functions. This weighting function has better 3-dB bandwidth and
equivalent noise bandwidth than 16 of the 22 weighting functions in this chapter. These
features make it most useful when better than 32-dB sidelobe attenuation is needed, along
with 3-dB bandwidth that is less than 1.5 filter widths.
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Figure 4-4 FFT of Hanning weighting function.

4.2.5 Sine Cubed

Forn=0to N — 1, w(n) = sin*(nn/N)

The sine-cubed function is a natural extension to the sine-lobe weighting function,
but with values that are not used for the complex multiplications between power-of-two
FFT building blocks. Therefore, if constant memory is available, the weighting function
constants are stored there. If not, two multiplies are needed to cube values (sin(nm/N) *
sin(nmr/N) * sin(nr /N)) from the FFT multiplier constants. Notice that the peak sidelobe
is 39 dB below the main lobe, and the peaks of the other sidelobes drop off twice as fast
as the triangular and sine-lobe weighting functions. This weighting function is most use-
ful when better than 39 dB of sidelobe attenuation is needed, and the weighting function must
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be utilized without adding to memory allocated for constants but can afford adding to the

computational load for the arithmetic processor.
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Figure 4-5 FFT of sine-cubed weighting function.
4.2.6 Sine to the Fourth
Forn =0to N — I, w(n) = sin4(n7r/N)
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Figure 4-6 FFT of sine to the fourth weighting function.
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20

The sine to the fourth, like the sine-cubed weighting function, is one whose values are
not used as multiplier constants between power-of-two FFT building blocks. Therefore, if
constant memory is available, the weighting function constants are stored there. If not, two
multiplies are needed to square values from the multiplier constant values and then square
those results (sin®(n7r/N) * sin?(n7r/ N)). Notice that the peak sidelobe is 47 dB below the
main lobe, and the peaks of the other sidelobes drop off 2.5 times as fast as the triangular
and sine-lobe weighting functions. This weighting function is most useful when better than
47 dB of sidelobe attenuation is needed, and the weighting function must be utilized without
adding to memory allocated for constants but can afford adding to the computational load
for the arithmetic processor.

4.2.7 Hamming

Forn =0to N — 1, w(n) = 0.54 — 0.46 x cos(2rn/N)

The Hamming weighting function is very similar to the Hanning weighting function.
It provides 11 dB of more sidelobe attenuation than the Hanning and can be computed with
constants that are already in memory for the complex multiplications between power-of-two
FFT building blocks. Like the Hanning weighting function, it has better 3-dB bandwidth and
equivalent noise bandwidth than 17 of the 22 weighting functions in this chapter. However,
the peaks of the other sidelobes do not fall off as fast as the Hanning weighting function.
These features make this weighting function most useful when better than 43-dB sidelobe
attenuation is needed along with 3-dB bandwidth that is less than 1.5 filter widths.
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Figure 4-7 FFT of Hamming weighting function.
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4.2.8 Blackman

20

=60

Forn =0to N — 1,
w(n) = 0.42 — 0.50 * cos(2mwn/N) + 0.08 x cos(d4nn/N)

The Blackman weighting function is an extension of the Hamming and Hanning
approaches of using multiplier constants that are already in memory for complex multipli-
cations between FFT stages. This weighting function also provides the best fall-off ratio
of any of the weighting functions with peak sidelobes below —50 dB. If the FFT multiplier
constants are used, two multiplies and two adds are required to compute each value to be
multiplied times the complex FFT input data. This increases the weighting function com-
putational load from two to six arithmetic operations per complex input data point, if it is
computed rather than stored in memory. This weighting function is most useful when over
50 dB of sidelobe attenuation is needed close to the main lobe and rapid sidelobe fall-off is
required to attenuate frequency components, with large amplitudes, that are separated from
each other by more than three to four FFT filters.
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Figure 4-8 FFT of Blackman weighting function.
4.2.9 Three-Sample Blackman-Harris
(@QForn=0to N — 1,
w(n) = 0.44959 — 0.49364 x cos(2rn/N) + 0.05677 * cos(4nn/N)
(b)Forn =0to N — 1,
w(n) = 0.42323 — 0.49755 * cos(2nn/N) + 0.07922 * cos(4rrn/N)

The three-sample Blackman-Harris weighting functions can also be computed by
using constants that are already in memory for complex multiplications between FFT
stages. The computation requires two multiplies and two adds for each input data sample.

700
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20

Figures 4-9 and 4-10 show two of these weighting functions. Both provide over 60 dB of
peak sidelobe attenuation. Note one peculiarity of both: there is a dip in the peaks of the
sidelobes near the main lobe and then the sidelobes drop off monotonically. The difference
between (a) and (b) is that (b) provides additional sidelobe attenuation but requires a wider
3-dB main-lobe bandwidth. These weighting functions are most useful when over 60 dB of
attenuation is required and the width of the main lobe (frequency accuracy) is not critical.
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Figure4-10 FFT of three-sample Blackman-Harris (b) weighting func-
tion.
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4.2.10 Four-Sample Blackman-Harris
(a@)Forn =0to N — 1,
w(n) = 0.40217—-0.49703*cos(2wn/N)+0.09892xcos(drn/N)—0.00188xcos(6rn/N)

(b) Forn =0to N — 1,
w(n)=0.35875—-0.48829xcos(2nn/N)+0.14128 % cos(4mwrn/N)—0.01168 xcos(6rn/N)
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Figure 4-11 FFT of four-sample Blackman-Harris (a) weighting func-
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Figure 4-12  FFT of four-sample Blackman-Harris (b) weighting func-
tion.
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Four-sample Blackman-Harris weighting functions can be computed by using con-
stants already in memory for complex multiplications between FFT stages. Figures 4-11
and 4-12 show these weighting functions. One peculiarity of both is a dip in the peaks of the
sidelobes near the main lobe. These weighting functions are most useful when over 70 dB
of attenuation is required and the width of the main lobe (frequency accuracy) is not critical.

4.2.11 Kaiser-Bessel

For /n/ =0to N/2, w(n) = Ih[nay/1.0 — 2rn/N)2}/Ih[ra]
where Io(x) = Y [(x/2)¥/k!)?
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Figure 4-13 FFT of @ = 2.0 Kaiser-Bessel weighting function.
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Figure 4-14 FFT of « = 2.5 Kaiser-Bessel weighting function.



dB

dB

SEC.4.2  WEIGHTING FUNCTION EQUATIONS AND THEIR FFTS 47

20

801~

Irun

|
ALOASINIV, ;-l;mg\,fy-\;\l\f“lfvlvl\"wgw WN) l\ lm;m\ﬂ!\ﬁ.ﬂvﬂw\ APADSSULAAN
| 1

T T I T T T

| 1 1 |

—100
0

100 200 300 400 500 600 700
Tenths of Frequency Bins

Figure 4-15 FFT of « = 3.0 Kaiser-Bessel weighting function.

The Kaiser-Bessel weighting function is the ratio of two zero-order Bessel func-

tions of the first kind (Io(x)). Even though the summation that defines these Bessel func-
tions has an infinite number of terms, the functions have finite values [3]. In particular,
these Bessel functions have a value of 1 when x = 0 and they increase as x gets larger.
Figures 4-13 to 4-16 show Kaiser-Bessel weighting functions for different values of «.
These weighting functions have the most energy in the main lobe for a given peak sidelobe
level. The peaks of the sidelobes only fall-off at 6 dB per octave. Therefore, this set of
weighting functions is most useful when the filters are being used to distinguish multiple
frequencies that have amplitudes that must be attenuated by the filter sidelobes by 46 to 82
dB, depending on which « is chosen.
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Figure 4-16 FFT of « = 3.5 Kaiser-Bessel weighting function.
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4.2.12 Gaussian

Forn =0to N — 1, w(n) = e~ !/2(2an/N}’
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Figure 4-19 FFT of o = 3.5 Gaussian weighting function.

The next three weighting functions are derived by optimizing the weighting func-
tion for the minimum time-bandwidth product for a given sidelobe level. The narrower a
signal in the time domain, the wider it appears in the frequency domain. Likewise, sig-
nals that are represented with a narrow set of frequency components do not vary rapidly
in the time domain. For a given narrow signal (i.e., a sine wave that lasts less than the
number of samples in the FFT) in the time domain, the Gaussian windows provide the
tightest concentration of energy in the frequency domain. This means that the Gaus-
sian weighting function is most useful in converting transient signals to the frequency
domain. Figures 4-17 to 4-19 show Gaussian weighting functions for different values
of o.

4.2.13 Dolph-Chebyshev

Fork=0to N — 1,
W (k) = (=1)* cos{N cos™'[8 cos(kr/N)1}/ cosh[N cosh™' (8)]
where B = cosh[(1/N) cosh™ ' (10%)]

This equation is the FFT of the Dolph-Chebyshev polynomials that form this weight-
ing function. Figures 4-20 to 4-23 show Dolph-Chebyshev weighting functions for dif-
ferent values of @. These weighting functions are a result of minimizing the main-lobe
width for a given sidelobe level. The sidelobes do not decrease as they get further away
from the main lobe. This makes these weighting functions most useful when multi-
ple frequencies are present and the sidelobes must attenuate each equally while mini-
mizing the chance for one frequency contributing to the output of more than one FFT
filter.
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4.2.14 Finite Impulse Response Filter Design Techniques

Linear finite impulse response (FIR) filter-based weighting functions are not popular
for two reasons. First, the memory required to store all of the coefficients has only recently
become inexpensive as part of DSP chips (Chapter 14). Second, for a given set of frequency
response characteristics, the optimal FIR filter is rarely 2" points long. This means that
commercially available filter design software is not well suited for computing weighting
functions for standard power-of-two FFTs. The numerous nonpower-of-two FFT algorithms
in this book remove this barrier and make it practical to use off-the-shelf filter design

software.
Chapter 2 established that the DFT is an array of narrowband filters implemented as

multipliers followed by low-pass FIR filters. The coefficients of the low-pass filter are the
same as the weighting function multiplier coefficients used in the DFT to control sidelobes.
Therefore, the design techniques used to develop optimal low-pass FIR filters can be used

to develop optimal weighting functions for specific applications of the DFT.
The two approaches to designing coefficients of an FIR filter, based on the required

frequency characteristics of the resulting filter are direct construction and iterative optimiza-
tion. In the first [4], the designer defines the desired frequency response of the low-pass
filter and then samples that response at equally spaced points in the frequency domain.
By applying the IFFT to the sequence of frequency samples, one computes the unit pulse
response of the equivalent filter. If the computed unit pulse response decays rapidly, it can
be accurately represented by an FIR filter by truncating the unit pulse response and using

the nonzero terms as the weighting function sequence.
In the second approach the designer also starts by defining the desired frequency

response of the equivalent low-pass filter. The definition consists of the

Passband width
Width of the transition between the passband and sidelobes
Stopband maximum sidelobe level

¢ Ripple in the filter’s gain across the passband

Algorithms have been developed to construct an FIR filter with a frequency response
with the least-mean-squared error relative to these desired frequency response requirements.
The problem with this optimization approach is that it produces filters with gain that peaks
up at the edges of the filter passbands. This is called the Gibbs effect. The Gibbs effect
is reduced by designing the filter with an optimization criterion that minimizes the maxi-
mum, rather than mean-squared, error. Chebychev polynomial-based filter design uses this
approach. Filters that exhibit this property also have equiripple behavior in the sidelobes.
The most popular of these optimization algorithms was published by Parks and McClellan
and has been named for them [5].

4.3 WEIGHTING FUNCTION COMPARISON MATRIX

Coherent integration gain is normalized to the gain of the rectangular weighting function.
Equivalent noise and 3-dB bandwidths are expressed as number of frequency bins. Table
4-1 compares characteristics of various weighting functions.
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Table 4-1 Weighting Function Comparison Matrix

Highest | Sidelobe | Frequency | Coherent | Equivalent
Weighting sidelobe fall-off straddle integration noise 3-dB
function level (dB) ratio loss (dB) gain bandwidth | bandwidth

Rectangular -13 -6 3.92 1.00 1.00 0.89
Triangle -27 -12 1.82 0.50 1.33 1.28
Sine lobe —23 -12 2.10 0.64 1.23 1.20
Hanning -32 —18 1.42 0.50 1.50 1.44
Sine cubed -39 -24 1.08 0.42 1.73 1.66
Sine to the fourth —47 -30 0.86 0.38 1.94 1.86
Hamming —~43 -6 1.78 0.54 1.36 1.30
Blackman —58 —18 1.10 0.42 1.73 1.68
Three-sample

Blackman-Harris (a) | —61 -6 1.27 0.45 1.61 1.56
Three-sample

Blackman-Harris (b) —67 -6 1.13 0.42 1.71 1.66
Four-sample

Blackman-Harris (a) ~74 -6 1.03 0.40 1.79 1.74
Four-sample

Blackman-Harris (b) -92 -6 0.83 0.36 2.00 1.90
Kaiser-Bessel

(a)a =2.0 —46 -6 1.46 0.49 1.50 1.43

(b)a =25 -57 -6 1.20 0.44 1.65 1.57

(©)a=3.0 —69 -6 1.02 0.40 1.80 1.71

(d)a =35 -82 -6 0.89 0.37 1.93 1.83
Gaussian

(Ao =2.5 —42 -6 1.69 0.51 1.39 1.33

(bya =3.0 —55 -6 25 0.43 1.64 1.55

©a=35 —69 —6 0.94 0.37 1.90 1.79
Dolph-Cheb.

(@)a =25 -50 | 0 1.70 0.53 1.39 1.33

(b)o = 3.0 —60 0 1.44 0.48 1.51 1.44

(©la =35 {70 0 1.55 0.45 1.62 1.55

(d)a =4.0 | —80 0 1.65 0.42 1.73 1.65

4.4 CONCLUSIONS

Because of the third and fourth weaknesses of the DFT, weight functions are applied before
data is processed with FFTs to lower high sidelobes and reduce frequency straddle loss. The
trade-off for those improvements to the DFT is the introduction of coherent gain reduction
and increasing the 3-dB bandwidth of each FFT filter. Fortunately, a wide selection of
weighting functions allows users to choose one that offers the balance between benefits
and drawbacks needed in a specific application. Chapters 2—4 cover fundamentals of FFTs.
The next three chapters address what can be done well with them.
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Frequency Analysis

5.0 INTRODUCTION

Frequency analysis is the process of determining the amplitude and phase of the frequencies
that comprise areal or complex sequence of data samples in one and more dimensions. Based
on the Nyquist (also called Shannon) sampling theorem (Chapter 2), those frequencies span
from zero to half the sampling rate for real signals and from zero to the sampling rate
for complex signals. The span of frequencies detected by an FFT is called the frequency
spectrum of the data samples. If the output of the FFT is used to catalogue the frequencies
in a signal, it is performing the first of the common uses of the DFTs listed in Section 2.1. If
the output is used as a shorthand way of describing the signal, because of its small number
of frequencies, the FFT is performing the second common use of the DFT. This chapter
presents the steps required for one-dimensional frequency analysis. Chapter 7 presents the
additional steps required for multidimensional frequency analysis.

5.1 FIVE PERFORMANCE MEASURES

Frequency analysis can be done with overlapped or nonoverlapped data sets. In either case
the computations can be performed with or without a weighting function. For each of the
four possible cases, five measures can be used to describe the performance of the FFT
algorithm.

5.1.1 Input Sample Overlap

When frequency analysis is performed on data sequences larger than the chosen trans-
form length, the sequence gets divided into smaller segments and transforms are computed
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on each segment. If the FFT is being used to detect the presence of a frequency that is not
always present, the FFT length is chosen to match the expected duration of the frequency of
interest. If the frequency of interest is present and aligned with a segment of data samples,
the maximum improvement in signal-to-noise ratio is provided by the FFT because the
frequency is amplified by a factor of the transform length and the noise by the square root of
the transform length. The maximum signal-to-noise ratio provides the highest probability
of signal detection.

If the frequency appears in two segments, the signal-to-noise improvement is not
as great in either of the two segments, hence a lower probability of detection. The worst
case is when the frequency appears half the time in each of the two segments. Segments
are overlapped to increase the probability of detecting a frequency of interest. For ex-
ample, if the segments are overlapped 50%, the frequency of interest lines up with the
straddling segment when it is half in each of the two contiguous segments. When segments
are overlapped, some of the data points in the sequence are the input to more than one
transform. In the example, if the data segments overlap 50%, each data sample is used
twice, except for the first and last segments. The larger the overlap, the larger the num-
ber of computations; the more complex data addressing; and the larger the data memory
required.

5.1.2 Sidelobe Level

Sidelobe level is the ratio of the amplitude response of a filter to a frequency in one of
its sidelobes to the response it would have if the frequency were in the center of the filter. A
filter has a sidelobe level for every frequency outside its main lobe. It is important to ensure
that the sidelobe response is attenuated far enough by the filter sidelobes that the filter only
gets a significant output when a frequency in its passband is present. These requirements
change radically from application to application.

5.1.3 Frequency Straddle Loss

Frequency straddle loss is the reduced output of a filter caused by the input signal not
being at the filter’s center frequency but still in its main lobe. Frequencies to be detected
in an application seldom fall at the center of any of the filter passbands. When a frequency
is halfway between two filters, the response of the FFT has its lowest amplitude. For a
rectangular weighting function the frequency response halfway between two filters is 4 dB
lower than if the frequency were in the center of a filter. Each of the other weighting functions
in this chapter has less frequency straddle loss than the rectangular one. This performance
measure is important in applications where maximum filter response is needed to detect the
frequency of interest.

5.1.4 Frequency Resolution

Frequency resolution is the measure of how close two frequencies can be before they
can no longer be distinguished by the FFT. Frequencies closer than the separation between
filter center frequencies are generally considered unresolvable. Weighting functions do not
change the separation between the centers of the FFT filters.
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5.1.5 Coherent Integration Gain

Coherent integration gain is the ratio of amplitude of the filter output to the amplitude
of the input frequency. N-point FFTs have a coherent gain of N for frequencies at the
centers of the filter passbands. Since most of weighting function coefficients are less than
1, the coherent gain of a weighted FFT is less than N. Like frequency straddle loss, this
performance measure is important in applications where maximum filter response is needed
to detect the frequency of interest.

5.2 COMPUTATIONAL TECHNIQUES

There are four basic ways that the N-point DFT, in any of its fast implementation forms
(FFTs), is used. The first two are associated with the spacing between the starting samples
in the computation of N-point FFTs on data sequences that are longer than N samples. The
third and fourth are modifications that can be made to the input data prior to using either of
the first two techniques. Each of these is described in this section.

5.2.1 Nonoverlapped

Nonoverlapped frequency analysis is generally performed for two types of input
sequences. The first is where there are only N points in the data sequence to be analyzed
by the N-point FFT. In this case one N-point FFT is performed. The second case is the
analysis of a data sequence that is longer than N points where the frequency components
are assumed not to change or to change very slowly over the entire data sequence. In this
case, the starting sample for the N-point FFT computations can be separated by N or more
samples without losing frequency content information.

A practical reason for nonoverlapped processing is the inability of the processor to
compute the FFT of the most recent set of N points before the next set of N points is
collected. If the data cannot be recorded and processed later, then one common approach
is to ignore some number of samples while the present set of N points is being processed.
Figure 5-1 is an example of the nonoverlapped method where there are M samples ignored
between N-point transforms.

( N Samples M N Samples

' Samples

Figure 5-1 Nonoverlapped frequency analysis.
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5.2.2 Overlapped

Chapter 2 discusses the weakness of using the DFT to analyze transient signals.
However, there are applications where the frequency content of the data sequence is known
to be constant, but only for a specific number of samples. If the goal of the application is to
detect when this signal is present in a long data sequence, then the best DFT approach is to
use an FFT that matches the expected number of signal samples at the frequency of interest.

Howeyer, choosing the correct transform length is not sufficient. If the N-point FFT
does not start when the transient sequence starts, then two effects occur. First, the coherent
gain will not be N because some of the samples integrated by the FFT are noise not signal.
Second, the transient that is caused when the signal appears will distort the FFT’s ability
to recognize the signal. When the N-point FFT matches up with the signal, all N samples
are integrated and the FFT does not see the transient of the signal turning on and off and
therefore performs the analysis without artifacts. An example is a Doppler radar where the
antenna beam is scanning at a constant rate to find a target. Since the antenna beamwidth
is fixed, the radar receives returns from the target for a fixed period of time as the beam
passes by. Until the target is detected, there is no way to know when this time period starts.
The theoretically best, but computationally most costly, solution is the start a new N-point
FFT every time a new sample arrives.

If the FFT is not overlapped, the worst-case situation is to have half of the returns
in one set of samples and half in the other. The loss of coherent gain associated with this
case is reduced by starting a new N-point FFT every N/2 samples. Figure 5-2 illustrates
this process with an overlap of P samples. With a 2:1 overlap each input data point is used
in two FFT computations. This increases the required computational load by a factor of 2.
For an overlap of P out of N samples, the increase in computational load is N /(N — P).

VAN

» N Samples ol

» N Samples o

P

e—s

Samples

Figure 5-2 Overlapped frequency analysis.

5.2.3 Weighting Functions

Weighting functions were presented in Chapter 4. The primary value of weighting
functions in frequency analysis is to reduce the effects of sidelobes and frequency straddle
losses described in Section 5.1. Weighting functions can be used in either the overlapped
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or nonoverlapped processing approaches. For a slowly varying signal the FFT provides the
sidelobe and straddle loss improvements described in Chapter 4.

However, for transient signals the weighting function only improves the performance
of the FFT if the FFT is aligned with the signal. In that case the FFT calculates as if the signal
is always present and processes it just like slowly varying signals. When input samples to
an FFT do not align with the time when the transient signal is present, the transient occurs
somewhere in the middle of the set of samples. Then the FFT thinks there is a transient at
that point and also one at the end of the data set. The effect of the transient at the end of
the data set is minimized by the weighting function, but the effects of the transient in the
middle of the data set are virtually unaffected because the transients are not attenuated (see
Chapter 4 for more details).

Figure 5-3 shows an example of a transient signal. The first and third sets of N
data samples match the transient signals exactly. In the first set there is a transient at the
beginning of the data set because the first sample is not zero. For this set of samples a
weighting function will reduce the sidelobe effects associated with this transient.

VRN

}‘ N Samples }

L N Samples

X

} N Samples ;!

Figure 5-3  Effect of weighting functions on frequency analysis of tran-
sient signals.

In the third set of samples the first and last samples are zero. Therefore, adding a
weighting function to the FFT computations provides no improvement because there are
no transient conditions to reduce at the ends of the data set. In fact, the weighting function
has a detrimental effect in this case because the coherent gain of the FFT is reduced by the
weighting function, and the main lobe of each FFT filter is widened.

The second set of samples has transient effects at both ends of the data set and straddles
the two transient signals. Therefore, a weighting function will reduce the transient effects
at the ends of the data set. However, the FFT will provide little useful data about either of
the transients because it straddles them.

5.3 CONCLUSIONS

This chapter covers one of the two functions where FFTs are primarily used. As can be
seen in the Doppler radar and speech processing design examples in Chapter 17, frequency
analysis and the use of FFTs to create a shorthand version of a signal have wide application
in aviation and consumer products. Frequency analysis and the functions explained in the
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next chapter get used separately or together in almost every place an FFT is used. This
chapter contains no algorithms because frequency analysis is performed with the algorithms
in Chapters 8 and 9.



6

Linear Filtering
and Pattern Matching

6.0 INTRODUCTION

Linear filtering and pattern matching are techniques for determining the presence of specific
waveforms in a signal of one or more dimensions. Generally, linear filtering is used to pass
certain bands of frequencies and block others. Pattern matching is the process of finding
a pattern in a signal, whether it is a sine-wave frequency or an arbitrary sequence of data
samples that do not resemble any easily defined function.

While neither a linear filter nor a pattern matcher is the same as an FFT, FFT al-
gorithms are often able to speed up their computation. The purpose of this chapter is to
present algorithms for using an FFT to perform one-dimensional linear filtering and pattern
matching. It also shows how to determine when using an FFT requires fewer adds and mul-
tiplies than performing those functions in the time domain. The additional steps required
to perform multidimensional versions of this processing are in Chapter 7.

6.1 EQUATIONS

Linear filtering and pattern matching, also known as convolution and correlation, respec-
tively, are defined by Equations 6-1 and 6-2. For linear filtering applications, x (k — i) is
the input sequence to the filter and A (i) is the unit pulse response of the filter. For pattern
matching applications, x (k + 7) is still the input signal and /(i) is the pattern to be found
in the signal. This chapter presents two FFT-based approaches for computing these two
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equations because there are many instances when the FFT approach is more efficient than
computing the equations directly. Both approaches can be implemented with any of the
FFT algorithms in Chapters 8 and 9.

M-1

yk) =3 x(k—i)xh() (6-1)
i=0
M-1

yk) = > x(k+1i)*h(i) (6-2)

i=0
Figure 6-1 shows the steps needed to implement Equations 6-1 and 6-2 in the frequency
domain. Derivations of this approach can be found in several DSP textbooks [1-4].

x(i) —  FFT IFET Combine | k)
Results

FFT

!
h(j)

Figure 6-1 General frequency domain processing block diagram.

6.2 THREE PERFORMANCE MEASURES

These three performance measures provide a way to compare the one direct and two fre-
quency domain methods for computing Equations 6-1 and 6-2 (linear filtering and pattern
matching).

6.2.1 Number of Computations per Data Point

The direct method for computing Equations 6-1 and 6-2 requires M complex mul-
tiplies and M — 1 complex adds for each complex input data point. For each frequency
domain method the number of computations per input data point is shown in Sections 6.4
and 6.5 to be

#Comp. =2« Np+6%xN —-2x(N—-1L)
6.2.2 Number of Data Memory Locations

For the direct method the required data memory is the total of twice the number
of stages, M, plus two for the next complex input sample and two for the most recent
complex output. For the frequency domain methods the memory required is larger than
twice the FFT length, N, depending on the algorithm. The Comparison Matrices in
Chapters 8 and 9 give the amount of data memory locations for every algorithm in the
matrix.



SEC. 6.3 DIRECT METHOD 63

6.2.3 Computational Latency

Computational latency is the time between the start of computations and when output
of results begins. Computational latency is considerably different for frequency domain
methods of computing Equations 6-1 and 6-2 than for the direct method. For the direct
method a new output is computed for each new input by performing M multiplies and M — 1
adds. This is a latency of one input sample. In the frequency domain methods, M new
pieces of data are collected and less than M new output values are produced because of the
required input data overlapping. Therefore, the latency is at least M data samples.

6.3 DIRECT METHOD

To determine when the approach in Figure 6-1 is computationally advantageous, equations
must be developed for the number of computations required by Equations 6-1 and 6-2
for the direct and frequency domain approaches. When x (i) is an input sequence that is
much larger than M, Equations 6-1 and 6-2 require M multiplies and M — 1 adds for each
new output y(k). Since a new output occurs every time a new input x (i) is processed, M
multiplies and A — 1 adds are needed to process each new input sample.

6.3.1 Complex Input Signal

For a finite input sequence of length L, Equation 6-1 does not require M complex
multiplies and M — 1 adds for each value of k. In particular:

¢ For k = 0, the only term in the summation is i = 0, so there are one multiply and
no adds.

® For k = 1, there are two terms to compute and add in Equation 6-1. Namely, a
multiply is required for i = 0 and 1, and an add is required to combine these two
multiplications.

¢ Each time k increases by 1, the number of adds (k adds) and multiplies (k + 1
multiplies) increases by 1 until k = M — 1.

This totals M * (M — 1)/2 complex adds and M *x (M + 1)/2 complex multiplies.

For k = M to L — 1, Equation 6-1 requires M multiplies and M — 1 adds for each
value of k. This is a total of (L — M) x M multiplies and (L — M) * (M — 1) adds.

From k = L through k¥ = L + M — 1, a similar phenomenon occurs for k£ =
0,1,..., M—1. These terms also require M (M —1)/2 adds and M *(M+1)/2 multiplies.
Adding all of these computational requirements shows that Equation 6-1 requires L*(M —1)
half-complex adds and (L + 1) * M half-complex multiplies to compute all N = L+ M — 1
outputs y(k) if the input data is complex and the filter is real. Since each half-complex
add requires one real add and each complex multiply requires two real multiplies, this case
requires 2 % (L + 1) x M real multiplies and L * (M — 1) real adds.

6.3.2 Real Input Signal

If the input data is real and the unit pulse response remains real, the basic logic for
determining the number of computations remains unchanged. The only difference is that the
half-complex adds and multiplies are replaced with real adds and real multiplies. Adding



64 CHAP.6  LINEAR FILTERING AND PATTERN MATCHING

all of these computational requirements, Equation 6-1 requires L * (M — 1) real adds and
(L + 1) * M real multiplies to compute all N = L + M — 1 outputs y(k) if the input data
is complex and the filter is real.

6.4 SINGLE-STEP FREQUENCY DOMAIN METHOD

If the input sequence, x (i), and the unit pulse response, 4 (), are finite, then one frequency
domain solution is to compute an FFT whose length is large enough to encompass the
entire response of the linear filter. If the input sequence is length L, (i.e., x(/) exists
for/ =0,1,2,..., L — 1) and the unit pulse response is length M (i.e., h(m) exists for
m=0,1,2,..., M — 1), then Equation 6-1 shows that y(k) will have an output starting
at k = 0 and ending after k = L + M — 1. Therefore, if the FFT in Figure 6-1 is at least
L + M — 1 points, only one is required to convert all of the needed data to the frequency
domain. The number of computations for the FFT is determined from the Comparison
Matrices in Chapters 8 and 9.

6.4.1 Complex Input Signal

The complex multiplications (four multiplies and two adds per complex multiply)
required after each N-point FFT total 6 * N computations. Finally, the IFFT takes the
same number of computations as the FFT. If the number of computations for an N-point
FFT is N, the frequency domain approach requires fewer computations for complex input
sequences when

2x{LxM-D+L+1D)*xM}>2xNp+6xN
6.4.2 Real Input Signal

If the input signal is real, then all of the FFT computations are reduced by using
the double-length algorithm from Section 2.4. If N/2 is odd, this reduces the input FFT
computations to

#Comp. = Np+5+«N =17
Likewise, if N/2 is even, Chapter 2 shows the total input FFT computations are:
#Comp. = Np+5%N -9

Then the outputs of the input FFT are multiplied by complex numbers to provide the filter
shaping. Since the FFT input and the unit pulse response are real, the FFT outputs of
both are symmetric around the center filter. This means the only complex multiplies to be
performed are those below the center filter.
Case 1: Real Input Signal with N/2 an Even Number

If N/2 is even, this is N/2 complex multiplies, which is 2 * N real multiplies and N
real adds. If N/2 is odd, the total number of filters to be multiplied is the (N — 1)/2 below
the center filter and the center filter. This is (N — 1)/2 complex multiplies plus one real
multiply for the center filter (see the symmetry properties of DFTs in Chapter 2). This is a
total of 2 * N — 1 real multiplies and N — 1 real adds.
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The output of the complex multiplication step is then fed into an N-point IFFT
that requires 2 x Nz computations. Therefore, the equation to determine when the total
computations for N /2 even is less in the frequency domain for real input signals is

3x Np+8«xN-9<Lx(M-D+(L+1DxM

Case 2: Real Input Signals with N/2 an Odd Integer
For N/2 odd,

3« Np+8*xN—-S<LxM-D+(L+1Dx*xM

6.5 MULTIPLE-STEP FREQUENCY DOMAIN METHOD

If the length of the input sequence L is too long to practically compute as a single transform
length, a means must be found to segment the input sequence into manageable lengths and
perform the functions in Figure 6-1 several times. Once these several sets of operations are
performed, the results must be recombined to form the complete output sequence. There
are two algorithms for performing the frequency domain method on long sequences of input
data. These algorithms are described, and the total number of computations determined
and compared with the time domain approach for real and complex input sequences.

6.6 OVERLAP-AND-ADD FREQUENCY DOMAIN ALGORITHM

6.6.1 Introduction

The overlap-and-add approach to filtering in the frequency domain requires additions
to combine the results from consecutive data sequence computations to reconstruct the
output sequence y(k) in Equation 6-1. In this approach, perfect finite convolutions as
described in Section 6.4 are obtained by choosing L samples of the input sequence and
appending N — L zeros so that the M nonzero values of /(i) do not overlap using an N-
point FFT. Then the N-point FFT frequency domain processing provides all valid outputs.
The next step is to move over and use the next L samples and append N — L zeros. When
the frequency domain processing of this second set of data is complete, all of its results are
also correct (Figure 6-2). Since the two input sample sequences add to form the actual input
sequence, the linearity property of FFTs guarantees that adding the N overlapped outputs
provides the actual y(k) results. If this process is continued, the correct outputs continue
to be obtained for y(k).

6.6.2 Complex Input Signals

For complex input signals, the specific overlap-and-add algorithm stages are as
follows.

Stage 1: Choose a Transform Length N

Stage 2: Compute N-Point FFT of the Unit Pulse Response h(i) One Time
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| L Samples

L Samples

L Samples ,

|L L Samples |
Figure 6-2 Sample sequence for the overlap-and-add algorithm.

Compute the N-point FFT of the M members of the sequence for A (i), after N — M
zeros are appended to the end and label the results H (k).

N-1
H(y =Y h@) =Wy
i=0

This computation only happens once, and the results are stored in memory for use in
multiplying all of the transformed data sets as shown in Figure 6-1.

Stage 3: Sett=0
Stage 4: Load and Augment the Next Set of Input Data Points for Processing

Collect L data points, x[i + ¢ * L], and store in the input data memory along with
N — L zeros to occupy the last N — L samples in the sequence of N data points, x; (7).
x (i) =x[i +t*L] fori =0,1,2,...,(L—-1)
x@)=0 fori=L,L+1,...,(N=1)
Stage 5: Transform the Next Set of Data Points to the Frequency Domain

Compute the N-point FFT of x,(i), using one of the appropriate algorithms from
Chapters 8 and 9.

N-1
Xy =Y x (i) x W
i=0

This stage requires N arithmetic computations. However, the first stage in all of the
algorithms in Chapters 8 and 9 is the sums and differences of the input samples. Therefore,
2 % (N — L) of the input complex adds can be removed from the FFT algorithm because
N — L of the input data points are known to be zero. Therefore, the first time these samples
need to be added to other samples the addition can be omitted. This reduces the total to
Ng — 4 x (N — L) computations.
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Stage 6: Perform Frequency Domain Filtering

Foreachk =0, 1,2,..., (N — 1), compute the product P(k). This requires 4 * N
multiplies and 2 * N adds since both numbers are complex.

P(k) = H(k) * X, (k)
Stage 7: Transform the Results Back to the Time Domain

Compute the IFFT of P(k) and divide each result by N to obtain y,(n) for n =
0,1,2,...,(N — 1) and store the results in N complex memory locations. Use the appro-
priate algorithms from Chapters 8 and 9 with the sign of the imaginary multiplier terms
reversed as described in Chapter 2.

N-1

W) =1/Nx Y Plh)* W3t
k=0

This stage requires Ny arithmetic computations because the IFFT takes the same number
of computations as the FFT.

Stage 8: Perform Output Adds

1. Ift =0, thenfori =0,1,2,..., (L — 1), set y(i) = y(@i).
2. Ift > O,thenfori =0,1,2,...,(N—=L—-1),set y[i+t*L] = y,_1[i + L1+ (i),
andfori =(N—-L),(N—-L+1),....,(N—=1setyli +¢t L] = »@).

This requires 2 * (N — L) adds if the input data sequence is complex.
Stage 9: Set t= t + 1 and Repeat Stages 4 through 8

If the computations from Stages 5~8 are added, the total number of arithmetic com-
putations for a complex input signal is:

#Comp. =2+« Np+4xN+2x%xL

Since these computations are performed every time L new data samples are used, the number
of computations per complex input data sample is

#Comp. = {2« Np+4*«N+2x%L}/L
6.6.3 Real Input Signals

If the input signal to the overlap-and-add algorithm is real, then all of the FFT compu-
tations are reduced by using the double-length algorithm from Chapter 2. The exact answer
depends on whether N /2 is odd or even. If N/2 is odd, the input FFT computations per
data point are

#Comp. = (Npp +5%x N —7}/L

where Np; is the number of computations for the N/2-point FFT algorithm chosen from
Chapters 8 and 9. If N/2 is even, the input FFT computations per data point are

#Comp. = (Np + 5% N —9}/L
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Then the outputs of the input FFT are multiplied by complex numbers to provide the filter
shaping. Since the FFT input and the unit pulse response are real, the FFT outputs of
both are symmetric around the center filter. This means the only complex multiplies to be
performed are those below the center filter. If N/2 is even, this is N/2 complex multiplies,
which is 2 % N real multiplies and N real adds. If N/2 is odd, the total number of filters to
be multiplied is the (N — 1)/2 below the center filter and the center filter. Thisis (N —1)/2
complex multiplies plus one real multiply for the center filter (see the symmetry properties
of DFTs in Chapter 2). This is a total of 2% N — 1 real multiplies and N — 1 real adds. The
output of the complex multiplication stage is then fed into an N-point IFFT that requires
Np computations.
The total number of computations per data point is:

#Comp. =2% Npp + 13%x N — 18

6.7 OVERLAP-AND-SAVE FREQUENCY DOMAIN ALGORITHM

6.7.1 Introduction

The overlap-and-save algorithm overlaps the data sequences into the FFT rather than
artificially creating the overlap by adding zeros (Figure 6-3). The process starts by taking
the first N samples in the sequence x¢ (i) and computing its FFT. These results are multiplied
by the N-point FFT of (), and the result is transformed back to the time domain by an
IFFT. The result is only accurate starting at the first sample in the sequence until the unit
pulse response A (j) of M samples no longer completely overlaps the data sequence x; (i).
Therefore, each set of computations generates (N — M + 1) new valid outputs. To cover the
last M — 1 outputs, the next input sequence overlaps the previous one by M — 1 samples.
If this process is continued, the correct outputs are always obtained for y(k).

< N Samples .
. N Samples
[ |
N Samples
e e e
M -1 N Samples
e
M-1
N Samples
e P
M-1
=+
M-1

Figure 6-3 Sample sequence for the overlap-and-save algorithm.
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6.7.2 Complex Input Signals

For complex input signals, the specific overlap-and-add algorithm stages are:
Stage 1: Choose a Transform Length N
Stage 2: Compute N-Point FFT of the Unit Pulse Response h(i) One Time

Compute the N-point FFT of the M members of the sequence for /(i) after N — M
zeros are appended to the end, and label the results H (k).

N-1
Hiky =Y h(i)x Wy
(=0
This computation only happens once, and the results are stored in memory for use in
multiplying all of the transformed data sets.
Stage 3: Set t=0

Stage 4: Load and Augment the Next Set of Input Data Points for Processing

Collect N data points, x[i 4+ ¢ * (N — M + 1)], and store in the input data memory,
x,(7). Note that this means this algorithm will use M — 1 of every N input data points twice.
This makes the input data addressing nonsequential.

x () =xli+tx(N-M+1)] fori =0,1,2,...,(N=1)
Stage 5: Transform the Next Set of Data Points to the Frequency Domain

Compute the N-point FFT of x,(i), using one of the appropriate algorithms from
Chapters 8 and 9.

X, (k) = Nz:lx,(i) « W
i=0

This stage requires N arithmetic computations, where N is computed based on the algo-
rithm chosen from Chapters 8 and 9.
Stage 6: Perform Frequency Domain Filtering

Foreachk =0.1,2,...,(N — 1), compute the product P(k):

P(k) = H(k) * X,(k)

This requires 4 * N multiplies and 2 * N adds since both numbers are complex.
Stage 7: Transform the Results Back to the Time Domain

Compute the IFFT of P(k) to obtain y,(n) forn =0, 1,2,..., (N — 1) and store the
results in N complex memory locations.

N-1

viln) = [1/NTx Y Pk« Wi
k=0

This stage requires N arithmetic computations.



70 CHAP.6 LINEAR FILTERING AND PATTERN MATCHING

Stage 8: Append the First N— M + 1 Outputs to the Output Sequence

Keep the first N — M + 1 of these outputs and append them to the previous valid
outputs. Namely, fori =0,1,2,...,(N-M+1):

yi+tx(N-M+1]=y0G)

This means that M — 1 of the final adds in the Stage 7 IFFT need not be computed. This is
atotal of 2% (M — 1) adds. If N ischosensuchthat N =L+ M —1,then M—1=N—L.

Stage 9: Set t = t + 1 and Repeat Stages 4 through 8

Totaling the arithmetic computations from Stages 5 to 7 and dividing by the N — M 41
new output samples yield the same number of arithmetic computations per complex input
data point as the overlap-and-add algorithm:

# Comp. = (2% Np+6xN—=2%x(N—L)}/(N-M+1) = {2xNp+4xN+2xL}/(N—-M+1)

If N=L+ M- 1,then N - M + 1 = L, and this is the same number of computations
required for the overlap-and-add algorithm in Section 6.6.

6.7.3 Real Input Signals

If the input signal is real, then all of the FFT computations are reduced by using the
double-length algorithm from Chapter 2. The exact answer depends on whether N/2 is
even or odd. If N/2 is odd, this reduces the input FFT computations per data point to

#Comp. = (Npy + 5« N =T}/(N-M+1)

where N, is the number of computations required for the N /2-point algorithm chosen
from Chapters 8 and 9. If N/2 is even, the input FFT computations per data point are

#Comp. ={Npm +5x N —-9}/(N-M+1)

Then the outputs of the input FFT are multiplied by complex numbers to provide the filter
shaping. Since the FFT input and the unit pulse response are real, the FFT outputs of
both are symmetric around the center filter. This means the only complex multiplies to be
performed are those below the center filter.

If N/2 is even, this is N/2 complex multiplies, which is 2 * N real multiplies and N
real adds. If N/2 is odd, the total number of filters to be multiplied is the (N — 1)/2 below
the center filter and the center filter. This is (N — 1)/2 complex multiplies plus one real
multiply for the center filter (see the symmetry properties of DFTs in Chapter 2). This is a
total of 2 x N — 1 real multiplies and N — 1 real adds.

The output of the complex multiplication stage is then fed into an M-point IFFT that
requires Np, computations. The total number of computations for real input data is

#Comp. =2+« Npp +13x N — 18

6.8 LINEAR FILTERING AND PATTERN MATCHING
COMPARISON MATRIX

The Comparison Matrix of Table 6-1 summarizes the key performance measures that can
be used to determine the best way to implement Equations 6-1 and 6-2. The important
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point to note is that the performance measures for both frequency domain methods are the

same. Therefore, this matrix is only useful in determining if Equations 6-1 and 6-2 should
be implemented directly in the time domain or in the frequency domain.

Table 6-1 Linear Filtering and Pattern Matching Comparison Matrix

# of data Comp.
Algorithm # of computations per data point locations latency
Real Input Data
Direct 2xM-—1 M+2 1
Overlap-and-add (N/2 odd) 2xNp2+13x N —-16)/L N 3xN
Overlap-and-save (N/2 odd) Q2*xNpa+13xN—-16)/(N-M+1) N 3xN
Overlap-and-add (N /2 even) Q2% Np2+13xN - 18)/L N 3xN
Overlap-and-save (N /2 even) Q*Npp +13xN—-18)/(N-M+1) N 3xN
Complex Input Data
Direct 4xM-2 2xM+4 2
Overlap-and-add Q2xNp+4xN+2xL)/L 2xN 6xN
Overlap-and-save Q2*Np+4xN+2xL)/(N—-M+1) 2xN 6xN

Key to Variables
N = FFT length
M = number of stages in direct implementation
L = number of new outputs per set of computational stages
N2 = number of computations in the N /2-point FFT chosen from Chapters 8 and 9
NFr = number of computations in the N-point FFT chosen from Chapters 8 and 9

6.9 CONCLUSIONS

While linear filtering and pattern matching can be done in the time domain, and often are,
frequency domain implementation using FFTs often requires fewer adds and multiplies.
The algorithms in this chapter, in combination with the FFT algorithms in Chapters 8 and
9, provide all the steps necessary to implement linear filtering and pattern matching in the
frequency domain.

The next chapter describes how to perform these functions and those from Chapter 5
in more than one dimension by simply converting the multidimensional processing to a
sequence of one-dimensional processes.
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5

Multidimensional Processing

7.0 INTRODUCTION

To this point the book has only addressed the use of the DFT and its fast versions (FFTs)
to convert one-dimensional signals to their frequency components. Signals such as music,
speech, radar, and sonar are waveforms that change as a function of one variable, time.
They are usually analyzed with one-dimensional FFTs. However, some signals have more
than one dimension or can be turned into waveforms with more than one dimension. The
most obvious example is an image, a two-dimensional waveform, which is analyzed with
two-dimensional FFTs. Video is described in three-dimensional terms, some number of
two-dimensional pictures per second, with time as the third dimension.

The most important fact about multidimensional DFTs is that they can be decomposed
into a sequence of one-dimensional DFTs. The results of this fact are twofold:

¢ Understanding how to choose and implement one-dimensional FFTs is most of the
work in implementing an N-dimensional FFT.

¢ Any of the one-dimensional FFTs can be used to compute multidimensional FFTs.

Mathematically, the multidimensional DFT is called a separable function because its
implementation can be separated into multiple, one-dimensional DFTs. There are three
properties of multidimensional DFT processing:

o Each dimension of a multidimensional DFT has all the properties of a one-dimen-
stonal DFT.

¢ Any of the one-dimensional FFTs can be used to compute multidimensional FFTs.

¢ Each dimension of a multidimensional DFT can be a transform of any length.
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These three separable function properties significantly reduce the number of computations
required for multidimensional DFTs. This, combined with FFT algorithms that provide fast
computation of one-dimensional DFTs, has led to uses of two- and three-dimensional FFTs
for applications such as image formation (synthetic aperture radar and magnetic resonance
imaging) and image analysis (deblurring).

7.1 FREQUENCY ANALYSIS

This section starts by giving the algorithm for using one-dimensional DFT's to compute two-
dimensional DFTs [1, 2, 3]. It then expands the algorithm to more than two dimensions so
that any dimension of a DFT can be computed by just using the algorithms in this chapter.

7.1.1 Two Dimensions

At first glance, frequency analysis in more than one dimension seems a bit strange
because the common definition of frequency is associated with a signal, like electric power,
that changes over time. However, if the concept of dimension is expanded to include space,
then images certainly change as a function of the x and y positions in the image. The
result is the concept of spatial frequency. Therefore, two-dimensional frequency analysis
measures the spatial frequency content of an image. The equation for frequency analysis in
two dimensions is

Ni=1 Np=1

Atk k) = ) ) alny, np)e /2rinhi/Nistnaka/la) -1

n1=0 ny=0
The conversion of this equation to a sequence of two one-dimensional DFTs is accomplished
by noting that the exponential term can be factored into two terms, each with its own
subscripted set of n, k, and N variables that are independent of each other:
e—j27'[n|k|/N|+n2k2/Nz] - e_j2”(nlkl/Nl) * e—ﬂ"(nzkz/Nz) (7-2)

Once the exponential is factored, it can be separated between the two summation signs to
produce

Ni—1 Np—1
Z Z a(ny, ny) * e“lzn["lkl/Nl+"2k2/N2]

n1=0 nz=0 (7-3)
Ni—1 [ Ny—1

— Z Z a(ny, ny) * e~ itk [N o = j2m(nik/N1)

n;=0 nz=0

The inner summation is the N,-point one-dimensional DFT of a(n,, ny). Since a(ny, n2)
is different for each value of ny, this DFT must be computed for each n; = 0,1,2,...,
(N; —1). Those results become the terms used to compute the second set of one-dimensional
DFTs described by the outer summation to the right of the equals sign in Equation 7-3. To
summarize, if this two-dimensional image described by a(n, n2) is to be transformed,
then:

1. Foreachrow: n; =0,1,2,...,(N; — 1), compute its N,-point DFT and place
the results back in the same row.
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2. For each column of the results from 1): n, =0, 1,2, ..., (N; — 1), in this interim
two-dimensional set of numbers, compute its N;-point DFT and place the results
back in the same column.

Each of these N; * N, one-dimensional DFTs can be computed using any of the FFT
algorithms in Chapters 8 and 9 to improve the computation time. If the input data is
complex, the complex version of the algorithms is most efficient. If the input is real, then
the overlap-and-add or overlap-and-save approaches from Chapter 6 can also be applied to
the chosen FFT algorithm to further reduce the computational load.

7.1.2 Three or More Dimensions

The technique in Section 7.1.1 can be extended to any number of dimensions by
using the same strategy. For three dimensions, factor the exponential and then separate
one of the dimensions as shown in Equation 7-4. Then the three-dimensional DFT is a
sequence of two-dimensional DFTs on the results of the one-dimensional transform that
has been separated. Then the two-dimensional DFT can be decomposed as described in
Section 7.1.1. The same logic follows to convert an N-dimensional DFT into a sequence
of one-dimensional DFTs and (N — 1)-dimensional DFTs:

Ni—1 Ny—1 N3—1
Z Z Z a(ny, ny, n3) * e~ J2rImbki/Ni+naky/Natnsks /N3]
n1=0 ny=0 n3=0

Ni—1 Np—1 [ N3—1
— Z Z Z a(ny, ny, n3) * e J2Insks/Ns) U o = j2mniki [ Nitnaka/ V]

(7-4)
n|=0 nz:O n3=0

7.2 LINEAR FILTERING

One-dimensional linear filtering is defined in Chapter 6 by using Equation 6-1. Just as
one-dimensional filtering, two-dimensional filtering (spatial filtering) can be performed in
the spatial frequency domain as well as the spatial domain [1, 2, 3]. For example, the
sharp edges in an image can be softened by passing the image through a two-dimensional
low-pass filter, just as the sharp edges of a square wave are smoothed by passing it through
a low-pass filter. Further, a two-dimensional low-pass filter can be implemented in the
frequency domain, just as for one-dimensional filters by using a generalized version of one
of the two techniques in Chapter 6.

If h(j, i) is the two-dimensional equivalent of the unit pulse response of the linear
filter and x (, i) is the two-dimensional array of data points in the image, the equation for
two-dimensional linear filtering is

Ni—1 Ny—1
ylhki ko) =Y " xtky — jo ko = i) % h(j, i) (7-5)

j=0 i=0
For a general unit pulse response this equation requires an enormous number of computa-
tions. Suppose the image has P rows and Q columns of pixels, and the two-dimensional

unit pulse response has Ny rows and N, columns. Generally, N| and N, are much smaller
than P and Q.
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Equation 7-5 is computed for each value of k; = 0,1,2,...,(P — 1) and k, =
0,1,2,...,(@ —1). Since P >» N; and Q > N,, almost all of the P x O computations
of Equation 7-5 require the full (N; * N;) multiplies and (N; * N, — 1) adds. Therefore,
P x Q% {2x Ny x N — 1} computations is a good estimate for real input sequences and
unit pulse responses. If the input sequence is complex and the unit pulse response remains
real, these numbers double.

7.2.1 Separable Two-Dimensional Filter

One of the most popular techniques to reduce the computational requirements of the
two-dimensional linear filter is to require the two-dimensional unit pulse response to be
the product of two one-dimensional unit pulse responses. This dramatically reduces the
computational load because it allows Equation 7-5 to be rewritten as

Ni—1 [ Ny—1
ylhki k) =" 1D xtki — ko — i) % h(Q) | xh()) (7-6)
Jj=0 i=0

The inner summation is a one-dimensional linear filter that is computed for each value
of j =0,1,2,...,(Ny — 1) ineachrow k; = 0,1,2,..., (P — 1). Since each one-
dimensional linear filter requires N, multiplies and (N, — 1) adds, the inner summation
requires N; * P x [2 % N, — 1] arithmetic computations and produces the signal used by the
outer summation which is now also only a one-dimensional linear filter. Similarly, the outer
summation requires N, * Q % [2x N; — 1] arithmetic computations. The total computations
for Equation 7-6 are then reduced to Ny * P * [2x Ny — 1]+ Np * O % [2 % N; — 1]. This
total can be roughly approximated as 2 x Ny * N, x (P + Q). The ratio of the number of
computations required for the two-dimensional approach to the separable one-dimensional
approach is roughly

(P+Q)/(PxQ) -7

For a 512 x 512 image this ratio is (512 + 512)/(512 % 512) = 1/256, which is why this
approach to the unit pulse response is commonly found in image processing. Note that
Equation 7-7 is not dependent on the size of the unit pulse response. There actually is a
weak dependence that has been lost in the equation because of the approximations made on
the number of computations near the edge of the image.

7.2.2 Frequency Domain Approach

The frequency domain linear filtering algorithms in Chapter 6 can be used on Equation
7-6 to further reduce the computational requirements. Namely, each linear filter can be
replaced by the three-step process in Chapter 6 for computing linear filters in the frequency
domain. The frequency domain algorithm stages for computing the two-dimensional linear
filter are as follows.

Stage 1: Choose Inner Filter Transform Length

Choose a transform length M, for the inner summation in Equation 7-6 based on the
criteria in Chapter 6. Using a larger number than M, = N, + Q — 1 requires adding zeros
(zero padding), which is equivalent to adding a border of zeros at the ends of the rows of
the image.



SEC.7.2 LINEAR FILTERING 77

Stage 2: Perform Inner Filter Frequency Domain Processing

For each row k; = 0,1,2,..., (P — 1), compute either the overlap-and-add or
overlap-and-save algorithm from Chapter 6 and replace the x (j, /) with the results X (, k2).
This approach requires

#Comp.:P*{2*NMQ+I3*M2——I6}

for real input sequences x (/, /) and M, /2 odd. If M,/2 is even, this portion of the algorithm
requires

#Comp. = P {2 Ny + 13 % M — 18}
In both cases, Ny, = number of computations in the M, /2-point FFT.
Stage 3: Choose Outer Filter Transform Length

Choose a transform length M, for the outer summation in Equation 7-6 based on the
criteria in Chapter 6. Using a larger number than M; = N; + P — 1 requires adding zeros
(zero padding), which is equivalent to adding a border of zeros at the ends of the columns
of the image.

Stage 4: Perform Outer Filter Frequency Domain Processing

For each row k; = 0,1,2,..., (P — 1), compute either the overlap-and-add or
overlap-and-save algorithm from Chapter 6 and replace the X(J, k,) with the results y(k, k5).
This requires

#Comp. = Q * {2 % Ny + 13 % My — 16}

for real input sequences x (j, i) and M, /2 odd. If M, /2 is even, this portion of the algorithm
requires

#Comp. = O *{2% Ny + 13 x My — 18}

In both cases, Ny;; = number of computations in the M, /2-point FFT. The total number of
computations using the frequency domain approach is

#Comp. = Ox{2%x Npsy + 13 %« My — 16} + P x (2% Nypp + 13 % M, — 16}
for M /2 odd, and for M /2 even

#Comp. = O {2% Npyyy + 13« My — 18} + Px {24 Nppp + 13 %« M, — 18)
7.2.3 Three and More Dimensions

Just as frequency analysis can be extended into more than two dimensions, the linear
filtering equation can also be written in more than two dimensions. Again, the most common
technique for reducing the computational load from multidimensional linear filtering is to
restrict the unit pulse response to one that can be factored into functions of the individual
dimensions, and then use frequency domain filtering on the resulting one-dimensional linear
filters.
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7.3 PATTERN MATCHING

One-dimensional pattern matching is defined in Chapter 6. Just as one-dimensional pattern
matching can be performed in the time or frequency domain to find a pattern in a waveform,
two-dimensional pattern matching can be performed in the spatial or frequency domain to
find two-dimensional patterns in an image [1, 2, 3]. If £(J, i) is the pattern to be located
in an image x (j, i), then the best match to that pattern is found when y(ky, k) is largest in
the equation

Ni—1N,—1

yl ko) =" Y " x(ky + j, ko + i) % h(j, 0) (7-8)
=0 i=0

For a general unit pulse response this equation requires an enormous number of computa-
tions. Suppose the image has P rows and Q columns of pixels, and the two-dimensional
unit pulse response has N; rows and N, columns. Generally, Ny and N are much smaller
than P and Q.

Equation 7-8 is computed for each value of k; = 0,1,2,...,(P —1) and k, =
0,1,2,...,(Q —1). Since P 3> Ny and Q > N,, almost all of the P % Q computations
of Equation 7-5 require the full (N; * N;) multiplies and (N; * N, — 1) adds. Therefore,
P x Q x {2 % Ny * N — 1} computations is a good estimate for real input sequences and
unit pulse responses. If the input sequence is complex and the unit pulse response remains
real, these numbers double.

7.3.1 Separable Two-Dimensional Pattern Matching

One of the most popular techniques to reduce the computational requirements of the
two-dimensional pattern matching is to require the two-dimensional unit pulse response to
be the product of two one-dimensional unit pulse responses. This dramatically reduces the
computational load because it allows Equation 7-8 to be rewritten as

Ni—1 [ Np—1
yhki k) =Y 1> x(ki +, kz+i)*h(i)} *h(j) (7-9)
Jj=0 i=0

The inner summation is a one-dimensional pattern matcher that is computed for each value
of j =0,1,2,...,(Ny — 1) ineach row k; = 0,1,2,..., (P — 1). Since each one-
dimensional pattern matcher requires N, multiplies and (N, — 1) adds, the inner summa-
tion requires Nj * P * [2 x N, — 1] arithmetic computations and produces the signal used
by the outer summation which is now also only a one-dimensional pattern matcher. Simi-
larly, the outer summation requires N * Q * [2x Ny — 1] arithmetic computations. The total
computations for Equation 7-9 are then reduced to Ny * P#[2x Ny — 1]+ Nox O*[2x Ny —1].
This total can be roughly approximated as 2 Ny % N, * (P + Q). The ratio of the number of
computations required for the two-dimensional approach to the separable one-dimensional
approach is roughly

(P+Q)/(PxQ) (7-10)

For a 512 x 512 image, this ratio is (512 + 512)/(512 % 512) = 1/256, which is why this
approach to the unit pulse response is commonly found in image processing. Note that
Equation 7-10 is not dependent on the size of the unit pulse response. There actually is a
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weak dependence that has been lost in the equation because of the approximations made on
the number of computations near the edge of the image.

7.3.2 Frequency Domain Approach

The frequency domain pattern matching algorithms in Chapter 6 can be used on
Equation 7-9 to further reduce the computational requirements. Namely, each pattern
matcher can be replaced by the three-step process in Chapter 6 for computing pattern
matchers in the frequency domain. The frequency domain algorithm stages for computing
the two-dimensional pattern matcher are as follows:

Stage 1: Choose Inner Pattern Matcher Transform Length

Choose a transform length M, for the inner summation in Equation 7-9 based on the
criteria in Chapter 6. Using a number larger than M; = N, + Q — 1 requires adding zeros
(zero padding), which is equivalent to adding a border of zeros at the ends of the rows of
the image.

Stage 2: Perform Inner Pattern Matcher Frequency Domain Processing

For each row k; = 0,1,2,..., (P — 1), compute either the overlap-and-add or
overlap-and-save algorithm from Chapter 6 and replace the x (/, i) with the results X(J, k).
This approach requires

# Comp. = P % {2 % Ny + 13 % M, — 16}

for real input sequences x (j, i) and M, /2 odd. If M, /2 is even, this portion of the algorithm
requires

# Comp. = P * {2 % Npyp + 13 ¥ M, — 18)
Stage 3: Choose Outer Pattern Matcher Transform Length

Choose a transform length M, for the outer summation in Equation 7-9 based on the
criteria in Chapter 6. Using a number larger than M; = Ny + P — 1 requires adding zeros
(zero padding), which is equivalent to adding a border of zeros at the ends of the columns
of the image.

Stage 4: Perform Outer Pattern Matcher Frequency Domain Processing

For each row k; = 0,1,2,..., (P — 1), compute either the overlap-and-add or
overlap-and-save algorithm from Chapter 6 and replace the X (j, k,) with the results y(k;, k).
This requires roughly

# Comp. = Q x {2 % Ny + 13 % M} — 16}

for real input sequences x (j, i) and M; /2 odd. If M /2 is even, this portion of the algorithm
requires

# Comp. = Q % {2 % Ny + 13 % My — 18}
The total number of computations with the frequency domain approach is roughly

#Comp. = Q*{2% Ny + 13 % M; — 16} + P % {2 x Nppp + 13 x M, — 16}
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for M/2 odd, and for M/2 even
#Comp. = Q*{2% Nppg + 13 % M; — 18} + P+ {2 % Nppo + 13 % M, — 18}

7.3.3 Three and More Dimensions

Just as frequency analysis can be extended to more than two dimensions, the pattern
matching equation can also be written in more than two dimensions. Again, the most
common technique for reducing the computational load from multidimensional pattern
matching is to restrict the unit pulse response to one that can be factored into functions of
the individual dimensions, and then use frequency domain pattern matching on the resulting
one-dimensional pattern matchers.

7.4 CONCLUSIONS

Having learned in this chapter how to break down multidimensional processing to more
easily performed sequences of one-dimensional processing, we conclude the foundation
portion of the book. Design Example 4 in Chapter 17, an image deblurrer, demonstrates
two-dimensional processing. Now that what FFTs are and what they can do have been
covered, the next two chapters show how to construct an FFT of any length.
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8

Building-Block Algorithms

8.0 INTRODUCTION

In this chapter the 2-, 3-, 4-, 5-, 7-, 8-, 9-, and 16-point FFT algorithms are presented
because they are the most efficient and widely used FFT algorithm building blocks. The
general-purpose FFT algorithms (Rader and Singleton) are included to provide the addi-
tional building blocks necessary to compute any transform length. This is because not all
numbers have only 2, 3,4, 5,7, 8,9, or 16 as factors, for example, 119 = 7% 17. More than
one algorithm for computing a particular building block, except for 2 and 4, is given because
each has different features that make it better suited to some applications than others. A
unique feature of the book is the format in which they are all presented, with input adds,
multiplies, and then output adds, so that all can be used with the Winograd algorithm in
Chapter 9.

All of the building-block algorithms are FFTs, sometimes called small-point trans-
forms. Since they are FFTs, they have all of the same properties, strengths, and weaknesses
of the DFT described in Chapter 2.

8.1 FOUR PERFORMANCE MEASURES

The most common way to evaluate FFT algorithms is in terms of the number of computations
and amount of memory required to compute them. The performance measures in this section
quantify those computations and memory needs. The same four measures are used again
in Chapter 9.
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8.1.1 Number of Adds

This is the total number of real adds used for each building-block algorithm. It
includes the two adds required as part of each of the complex multiplies.

8.1.2 Number of Multiplies

This is the total number of real multiplies for each building-block algorithm. Each
complex multiply takes four real multiplies and two real adds (counted in the number of
adds). The standard way of computing complex multiplies is as a sequence of four real
multiplies and two real adds, as shown in Equation 8-1.

(@ + jb) * (c + jd) = (ac — bd) + j(bc + ad) (8-1)

However, it is possible to rewrite Equation 8-1 so that it is computed as three multiplies and
three adds (Equation 8-2).

@+ jb)yx(c+jd)y=(a+b)xc—bx(c+d)+ jlla—-b)yxd+bx(c+d)] (8-2)

This technique is not used in any of the building-block algorithms in this chapter. How-
ever, it could be used to modify the add and multiply count for a particular building block
to satisfy the requirements of a particular application or arithmetic format. The draw-
back of this technique is that it introduces additional quantization noise into the FFT
results, because of the way identical terms are added and then subtracted to form the
results.

To understand how Equation 8-2 only requires three multiplies and three adds, con-
sider a + jb, the FFT multiplier constant. Then a + b and a — b are constants that can be
computed ahead of time and stored in memory. The sequence of computations is:

(a) Add ¢ and d to form (¢ + d).

(b) Multiply (¢ + d) by b to form b * (c + d).

(¢c) Multiply (a + b) by c to form (a + b) * c.

(d) Multiply (a — b) by d to form (@ — b) *x d.

(e) Subtract the results of b and c to form the real part of the result.
(f) Add the results of d and b to form the imaginary part of the result.

Steps a, e, and f are additions (in one case a subtraction which is generally implemented
as an addition of a negative number), and steps b—d are real multiplications.

8.1.3 Number of Memory Locations for Multiplier Constants

Each building-block algorithm requires a different number of multiplier constants.
Each constant must be stored in data or program memory or computed as needed. The
latter is seldom done any more because memory costs have been dramatically lowered. The
number for this performance measure in the Comparison Matrix in Table 8-1 is the total
of the different constants required by each algorithm. These include multiplication by 2
and 1/2, which can also be done by moving the binary point of fixed-point numbers or by
changing the exponent of floating-point numbers.
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8.1.4 Number of Data Memory Locations

Each algorithm begins and ends by using exactly 2 x N data memory locations to
store the input data and output results, respectively. However, if no temporary registers are
available for intermediate results, most of the algorithms in this chapter require additional
data memory locations during the computations. In this chapter, Algorithm Steps and a
Memory Map are given for each algorithm, and total data memory location requirements
are listed in the Comparison Matrix, assuming the processor has no temporary registers.
The difference between those numbers and 2 x N is the number of temporary registers
needed to avoid using extra data memory locations for intermediate results.

8.2 TEN BUILDING-BLOCK ALGORITHM CONSTRAINTS

The following are the constraints the authors have used for the small-point transforms in
this chapter:

1.

The real and imaginary parts of the i-th input sample are ag(i) and a; (i). Ag(i)
and A, (i) are the real and imaginary parts of the i-th output frequency component.

. All of the algorithms have been segmented to have all of the multiplications in

the center so that they can be used by any of the FFT algorithms in Chapter 9 to
form longer transform lengths. Chapter 9 explains the reasons for this constraint.

. Intermediate results are labeled with sequential lowercase letters of the alphabet

to indicate where they are located relative to other computational outputs. For ex-
ample, the first set of intermediate computational results in each of the algorithm
building blocks is labeled bg (i) and b, (i).

. The sum and difference computations are performed by taking two pieces of

data from data memory, performing the required computations, and returning the
results to available data memory locations.

. The multiply-accumulates are performed by sequentially pulling a data value

from data memory, performing the multiplication, and adding the results to the
processor’s accumulator (Section 14.2.11). When the multiply-accumulate func-
tion is complete, the result is stored in a memory location, overwriting data that
is no longer needed.

. The sequence of computations shown for the first stage in each algorithm has

been left the same as in its referenced article. The data labels have been changed
to make them consistent for all the algorithms in the book.

The memory location (Memory Map) for intermediate results or output frequency
components is shown next to each Algorithm Step.

For an N-point algorithm building block, the real input data, ax (i), is located in
data memory locations M (i), and the imaginary input data, a; (i), is located in
data memory locations M(N + i), wherei =0,1,2,..., (N - 1).

All of the multiplier constants are presented in their sine and cosine forms so that
they may be computed in the arithmetic format (see Chapter 13) appropriate for
the application.
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10. All of the intermediate results and output frequency components are stored di-
rectly in data memory, rather than temporary storage locations, to ensure that the
algorithm will work on all processors.

8.3 TWO-POINT FFT
The 2-point DFT is defined for k = O and 1 as

1
Ak) = Z a(n) x e~ 12kn/2 (8-3)
=0

This simplest of DFTs and its FFT are the same. This algorithm requires four adds and no
multiplies and its execution is straightforward. The strategy for converting these equations
to code is to start at the top (compute Ag(0)) and identify the pair of inputs to be used
first (in this case ag(0) and ag(1)). Then look down the list to find the second (compute
Ag(1)) place where these two inputs are used. Pull agx(0) and ag(1) from memory, compute
Ar(0) and Ag(1), and store the results in data memory locations M (0) and M (1) previously
occupied by ag(0) and ag(1). Next, repeat the same set of steps for A;(0) and A, (1).

Algorithm Steps Memory Map
Ag(0) = ag(0) +agr(l) Ar(0) = M(0)
A1(0) =a;(0) +a;(1) A(0) => M(2)
Ar(1) = ag(0) — ar(l) Ar(l) = M(1)
A1) =a;(0) —a;(1) A1) = M@3)

Since each set of results can be placed in the same data memory locations that the inputs
were taken from, this algorithm requires only four data memory locations. The flowchart
for the 2-point FFT is shown in Figure 8-1. Two inputs and two outputs are used to indicate
that the same computational building block is used twice to compute the real and imaginary
portions of the 2-point FFT output.

a, (1), a; (1) X Ap(), A, (1)

-1
Figure 8-1 Two-point FFT algorithm flow graph.

Note that Figure 8-1 looks similar to the 2-point decimation-in-time (DIT) and
decimation-in-frequency (DIF) figures in Section 10.4. The difference is the multiplier
in the DIT and DIF flowcharts. When the 2-point transform is used in a larger power-of-
two algorithm, it requires data reorganization as well as the complex multiplier to prepare
the data for each succeeding stage of the algorithm. However, in the prime factor algorithm
(Section 9.6), only data reorganization is required. Therefore, the universal building block
is the 2-point FFT in Figure 8-1. Chapter 9 deals with how these algorithm building blocks
are combined in different ways to form larger transform lengths, including power-of-two
and prime factor algorithms.
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8.4 THREE-POINT FFT
The 3-point DFT is defined for k = 0, 1, and 2 as

2
Alk) = Za(n) * ¢~ /Tkn/3 (8-4)
i

If the 3-point DFT is calculated directly from Equation 8-4, it requires four complex mul-
tiplies and six complex adds. Since a complex multiply uses 4 real multiplies and 2 real
adds, and a complex add uses 2 real adds, the 3-point DFT requires 16 real multiplies and
20 real adds. The number of adds and multiplies for the two fast algorithms is significantly
less than required for computing the DFT directly. However, if only a subset of the out-
put frequency components is required, it may be more cost effective to compute the DFT
equation directly for those terms. For example, if 4(0) is the only term needed, it can be
computed with four adds and no multiplies by using the DFT directly. Each of the other
two output frequencies requires two complex multiplies and two complex adds for a total
of eight real adds and eight real multiplies. With this in mind the crossover point between
using the DFT directly and one of the 3-point FFT algorithms can be determined based on
the number of output frequency components that must be computed.

Since all of the input data is required for each of the output frequency component
calculations, the direct DFT computations require six data memory locations for the input
data and six more for the output frequency components. This is a total of 12 data memory
locations, since the input and output are complex. Similarly, the DFT data addressing is
sequential (i.e., O through 2 for each output frequency component), and the computational
architecture is simple since they can all be performed by using a complex multiply ac-
cumulator (see Chapter 10 for details). Addressing the complex multiplier coefficients is
sequential in two orders (1 and 2 or 2 and 1) or requires that the addresses be stored in
program memory.

There are two common 3-point FFT algorithms. Both require 12 adds, 4 multiplies,
and 2 memory locations for multiplier constants. The Winograd [1] algorithm is based
on circular convolution properties and requires six data memory locations. The Singleton
[2] algorithm is based on complex conjugate symmetry properties of the 3-point DFT and
requires seven data memory locations.

8.4.1 Winograd 3-Point FFT

The strategy for converting these equations into code is to start at the top (com-
pute bz(1)) and identify the pair of inputs to be used first (in this case ag(1) and az(2)).
Then look down the list to find the second (compute bg(2)) place where these two in-
puts are used. Pull ag(1) and ag(2) from memory, compute bg(1) and bz(2), and store
the results in data memory locations M(1) and M (2) previously occupied by ag(1) and
apr (2)

Next, look for the computation for b;(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. Note that the algorithm steps for 4 z(0) and 4,(0)
only relabel the data values to their output labels once they have been used as required by
other portions of the algorithm.
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Algorithm Steps

br(1) = ar(1) +azr(2)

br(2) = ag(l) — ar(2)

br(1) = a;(1) +a;(2)

b;(2) = a;(1) —as(2)

br(0) = ar(0) + bg(1)

b1(0) = a;(0) + b;(1)

cr(1) = bgr(1) * [cos(2n/3) — 1]
cr(2) = b;(2) * sin(2m/3)

cr(1) = by(1) * [cos(2/3) — 1]

Memory Map
br(1) = M(1)
br(2) = M(2)
bi(1) = M4)
br(2)y = M(5)
br(0) = M(0)
b1(0) = M(3)
cr(l) = M(1)
cr(2) = M(5)
cr(l) = M@)

c1(2) = br(2) * sin(2/3)
dr(0) = bg(0) +cr(1)
d1(0) = b;(0) + ¢;(1)
Ar(0) = br(0)

A1(0) = b,(0)

Ar(1) = dg(0) + cr(2)
A1) = di(0) —c;(2)
AR(2) = dr(0) — cr(2)
A1(2) =d;(0) +¢1(2)

cr(2) = MQ)
dr(0) = M(1)
d;(0) = M@4)
Ar(0) = M(0)
4:(0) = M(3)
Ar(1) = M(1)
Ar(1) = M®4)
Ar(2) = M(5)
A1(2) = M(Q2)

This set of equations is shown pictorially with the flow graph in Figure 8-2.

a(0) A(0)

a(l) \ A1)
a(2)>< cos@m/3) -1 > AQR)

Jj sin(21/3) ~1

Figure 8-2 Winograd 3-point FFT flow graph.

8.4.2 Singleton 3-Point FFT

The strategy for converting these equations into code is to start at the top (compute
br(1)) and identify the pair of inputs to be used first (in this case ag(1) and ag(2)). Then
look down the list to find the second (compute bg(2)) place where these two inputs are
used. Pull ag(1) and ag(2) from memory, compute bz (1) and bz (2), and store the results
in data memory locations M(1) and M (2) previously occupied by ar(1) and ar(2).

Next, look for the computation for b;(1) on the list and repeat the same set of the
steps. Continue this process until all the Algorithm Steps have been computed and their
results stored in the Memory Map addresses.

Memory Map
br(1) = M)
br(2) = M(2)

Algorithm Steps
br(1l) = ar(l) +ar(2)
br(2) = ar(1) —ar(2)
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Algorithm Steps Memory Map
bi(1) =a;(1) +a;(2) bi(1) = M(4)
br(2) =a;(1) —a;2) b1 (2) = M(5)
cr(l) = br(1) * cos(2m /3) + ag(0) cr(l) = M(6)
Ar(0) = ag(0) + be(1) Ar(0) = M(0)
cr(2) = b;(2) xsin(21 /3) cr(2) = M(5)
cr(1) = by(1) x cos(2m /3) + a; (0) cr(l)y = M(1)
Ar(0) =a;(0) +b,(1) Ar(0) = M(@3)
c;(2) = —br(2) * sin(2m/3) Q)= M(Q2)
Ar(l) = cr(1) +cr(2) Ar(l) = M(5)
Ar(D) =c;(1) +¢,(2) A1) = M(2)
AR(2) = cr(1) = cr(2) ARr(2) = M(4)
A(2) =c/(1) —¢;(2) Ar(2) = M(1)

Figure 8-3 is a flow graph of these equations.

a(0) A(0)

a(l) >< A(l)
@ cos(21r/3)>< A2)

“1 jsin@m/3) -1

Figure 8-3 Singleton 3-point FFT flow graph.

8.5 FOUR-POINT FFT

The 4-point DFT is defined for k =0, 1,2, and 3 as

3
Alk) =" a(n) x e~ /2kn/t (8-5)
n=0

If the 4-point DFT is computed directly from Equation 8-5, it requires no complex multiplies
and 12 complex adds for a total of 24 real adds. The circular convolution, complex conjugate
symmetry, and 90° and 180° symmetry approaches to a 4-point FFT all result in the same
set of Algorithm Steps. The algorithm requires 16 adds, no multiplications, 8 data memory

locations, and no memory locations for multiplier constants.

Since all of the input data is required for each output frequency component calculation,
the direct DFT computations require eight data memory locations for the input data and
eight more for the output frequency components. This is a total of 16 data memory locations,
since the input and output are complex. Similarly, the DFT data addressing is sequential
(i.e., O through 3 for each output frequency component), and the computational architecture
is simple, since they can all be performed with additions.

The strategy for converting these equations into code is to start at the top (compute
bg(0)) and identify the pair of inputs to be used first (in this case ag(0) and ag(2)). Then
look down the list to find the second (compute bg(1)) place where these two inputs are



88 CHAP. 8 BUILDING-BLOCK ALGORITHMS
used. Pull ag(0) and ax(2) from memory, compute bg(0) and bg(1), and store the results
in data memory locations M(0) and M (2) previously occupied by az(0) and az(2).

Next, look for the computation for b;(0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

8.6 FIVE-POINT FFT

Algorithm Steps
br(0) = ag(0) +ar(2)
br(1) = ar(0) —ar(2)
b1(0) =a;(0) +a;(2)
bi(1) = a;(0) —a;(2)
br(2) = ag(1) +ar(3)
br(3) = ar(1) —ar(3)
br(2) = a;(1) +a;(3)
b;(3) = a;(1) —a;(3)

 AR(0) = br(0) + br(2)

A1(0) = b;(0) + b,(2)
AR(2) = br(0) — br(2)
A1(2) = b;(0) — b/(2)
Ar(1) = br(1) + b;(3)
Ar(3) = br(1) — b;(3)
A1) = b(1) — br(3)
A;(3) = bi(1) + br(3)

Memory Map
br(0) = M(0)
br(1) = M(2)
bi(0) = M@4)
bi(1) = M(6)
br(2) = M(1)
br(3) = M(@3)
b;(2) = M(5)
bi(3) = M)
Ar(0) = M(0)
A;00) = M@)
Ar(2) = M)
A;(2) = M(5)
Ar(l) = M(2)
Ar(3) = M)
A1) => M@3)
A;(3) = M(6)

The 5-point DFT is defined for k = 0, 1, 2, 3, and 4 as

4
Ak =" a(n) x g™/

n=0

Three fast versions of the 5-point DFT are presented. The Winograd and Rader algo-
rithms were developed by using a decomposition based on circular convolution properties.
The Singleton algorithm was developed by using a decomposition based on the complex
conjugate symmetry properties of the 5-point transform.

If the 5-point DFT is calculated directly from Equation 8-6, it requires 16 complex
multiplies and 20 complex adds. Since a complex multiply uses 4 real multiplies and 2 real
adds, and a complex add uses 2 real adds, the 5-point DFT requires 64 real multiplies and
72 real adds. The number of adds and multiplies for each of the building-block algorithms
is significantly less than required for computing the DFT directly. However, if only a subset
of the output frequency components is required, it may be more cost effective to compute
the DFT equation directly for those terms. For example, if 4(0) is the only term needed, it
can be computed with eight adds and no multiplies by using the DFT directly. Each of the
other 4 output frequencies requires 4 complex multiplies and 4 complex adds for a total of
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16 real adds and 16 real multiplies. With this in mind the crossover point between using
the DFT directly and one of the 5-point FFT algorithms can be determined based on the
number of output frequency components that must be computed.

Since all of the input data is required for each output frequency component calcu-
lation, the direct DFT computations require 10 data memory locations for the input data
and 10 more for the output frequency components. This is a total of 20 data memory
locations, since the input and output are complex. Similarly, the DFT data addressing is
sequential (i.e., O through 4 for each output frequency component), and the computational
architecture is simple, since they can all be performed with a complex multiply accumu-
lator (see Chapter 10 for details). Addressing the complex multiplier coefficients requires
either a modulo arithmetic scheme (k *x n mod 5) or that the addresses be stored in program
memory.

Each of the three fast algorithms is presented, characterized, and summarized in
the Comparison Matrix in Table 8-1. For example, the Rader algorithm has the simplest
computational structure but requires the largest number of adds. The Singleton algorithm
has the simplest memory mapping for the multiplier constants but requires more constants
than the Winograd algorithm.

8.6.1 Winograd 5-Point FFT

The Winograd [1] 5-point FFT requires 10 multiplies, 34 adds, 12 data memory
locations, and 5 multiplier constant memory locations. The four stages are as follows.

Stage 1: Input Adds

This stage requires additional data memory locations to store intermediate results
that reduce the total number of multiplications in the next stage. However, this stage does
not require accessing any of the multiplier constants. The strategy for converting these
equations to code is to start at the top (compute bg(1)) and identify the pair of inputs to be
used first (in this case ag (1) and ag(4)). Then look down the list to find the second (compute
br(2)) place where these two inputs are used. Pull ag(1) and ag(4) from memory, compute
bgr(1) and bg(2), and store the results in data memory locations M (1) and M (4) previously
occupied by ag(1) and ag(4).

Next, look for the computation for b; (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. The computation of all the bg(j) and b;(j) terms
are performed in-place by using the add-subtract butterfly algorithm. The computations of
cr(1),cr(3),c;(1), and c;(3) use this same approach. However, the computations of ¢z (5)
and ¢, (5) require additional data memory locations because bz (2), bg(4), b;(2), and b;(4)
are also required in Stage 2.

Algorithm Steps Memory Map
br(1) = ag(l) + ar(4) br(l) = M(1)
bi(1) =a;(1) +a;4) b;(1) = M{6)
br(2) = agr(l) —ar4@) br(2) = M@4)
bi(2)y =a;(l) —a;4) bi(2) = M(9)

br(3) = ar(2) + ar(3) br(3) = M(2)
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Algorithm Steps Memory Map
bi(3) =a;(2) +a;(3) bi(3) = M)
br(4) = ar(3) —ar(2) br(4) = M(3)
br4) =a;(3) —as(2) bi(4) = M)
cr(1) = br(1) + br(3) cr(l) = M(1)
cr(l) =b;(1) + b;(3) cr(l) = M(6)
cr(3) = br(l) — br(3) cr(3) = M(2)
cr(3) = b,(1) — b;(3) cr(3) = M(7)
cr(5) = br(2) + br(4) cr(5) = M(10)
c1(5) =b;(2) + b;(4) cr(5) = M(11)
dr(0) = cr(1) + ar(0) dr(0) = M(0)
dr(0) = ¢;(1) +a;(0) di(0) = M(5)

Stage 2: Multiplications

This stage contains all of the multiplications and requires additional data memory
locations to store intermediate results. In all steps the multiplication is performed by
pulling a data value from memory, multiplying it by the appropriate constant, and returning
the result to the same data memory location. All these computations are performed in-
place.

Algorithm Steps Memory Map

dr(1) = cg(1) % [0.5 * cos(2m/5) + 0.5 * cos(4n/5) — 1] dr(1) => M)
dr(1) = ¢;(1) * [0.5 x cos(2rr/5) + 0.5 * cos(d4m/5) — 1] di(l) = M(©6)

er(3) = cg(3) *[0.5 x cos(2m/5) — 0.5 * cos(4m/5)] er(3) = M(Q2)
er(3) = c;(3) % [0.5 x cos(2n/5) — 0.5 * cos(4m/5)] er(3) = M)
er(5) = cgr(5) xsin(4m/5) er(5) = M10)
e;(5) = cy(5) xsin(4x/5) er(5) = M(11)
dr(2) = by(2) * [sin(27/5) + sin(4m/5)] dr(2) = M)
d;(2) = —br(2) * [sin(27r/5) + sin(47/5)] di2)y = M®#)
dr(4) = —b;(4) x [sin(27 /5) — sin(4x /5)] dr(4) = M(8)
d;(4) = bgr(4) x [sin(27/5) — sin(4r/5)] dr(4) = M@3)

Stage 3: Postmultiply Adds

The output of this stage does not require additional data memory locations. The
strategy for converting these equations to code is to start at the top (compute er(1))
and identify the pair of inputs to be used first (in this case dg(1) and dr(0)). Pull
dgr(1) and dr(0) from memory, compute eg(1), and store the results in memory loca-
tion M(1) previously occupied by dg(l). This process is repeated until all the Algo-
rithm Steps have been computed and their results stored in the Memory Map ad-
dresses.



Algorithm Steps
er(l) = dgr(1) + dgr(0)
er(1) =d;(1) +d,(0)
Sfr(1) = er(1) + er(3)
S1(1) = e;(1) +e;(3)
fr(2) = dr(2) —e/(5)
f1(2) =d;(2) + er(5)
Sr(B3) = er(l) — er(3)
S13) = es(1) — es(3)
fr(4) =dr(4) —e;(5)
f1(4) = d;(4) + er(5)

Stage 4: Output Adds

SEC. 8.6

Memory Map
er(l) > M(1)
er(1) = M(6)
Sr(l) = M(1)
Si(1) = M(6)
Sr(2) = M©9)
f12) = M4)
fr(3) = M)
f13) = M)
Sr(4) = M(3)
J1(4) = M(3)
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The strategy for converting these equations to code is to start at the top (compute
A (1)) and identify the pair of inputs to be used first (in this case fz(1) and fz(2)). Then
look down the list to find the second (compute A(4)) place where these two inputs are
used. Pull fz(1) and fz(2) from memory, compute 4z (1) and A z(4), and store the results
in data memory locations M (1) and M(9) previously occupied by fz(1) and fz(2).

Next, look for the computation for 4;(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. Note that the Algorithm Steps for 4z(0) and 4,(0)
only relabel the data values to their output labels once they have been used as required by
other portions of the algorithm.

Algorithm Steps

Ar(0) = dgr(0)

A1(0) =d,(0)

Ar(1) = fr(1) + fr(2)
A() = 1)+ f1(2)
Ar(@) = fr(1) = fr(2)
A/® = fi(1) = f1(2)
Ar(3) = fr(3) + fr(4)
A413) = f13) + f1(4)
Ar(2) = fr(3) — fr(4)
412 = f1(3) - f1(4)

8.6.2 Singleton 5-Point FFT

Memory Map
Ar(0) = M(0)
A1(0) = M(5)
Ar(1l) = M(1)
A(1) = M4)
Ar(4) = M(9)
A1(4) = M(6)
Ar(3) = M(2)
A4;3) = M@3)
ARr(2) = M)
Ar2) = M)

The Singleton [2] 5-point FFT requires 32 adds, 16 multiplies, 12 data memory
locations, and 4 multiplier constant memory locations. The method of computing the
multiplier outputs in Stage 2 requires additional data memory locations. The three stages

are as follows.
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Stage 1: Input Adds

This stage does not require additional data memory locations for accessing any of
the multiplier constants. The strategy for converting these equations to code is to start at
the top (compute bg (1)) and identify the pair of inputs to be used first (in this case ag(1)
and ag(4)). Then look down the list to find the second (compute bg(2)) place where these
two inputs are used. Pull az(1) and ag(4) from memory, compute bg(1) and bg(2), and
store the results in data memory locations M (1) and M (4) previously occupied by ag(1)

and agr(4).

Next, look for the computation for b;(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results

stored in the Memory Map addresses.

Algorithm Steps
br(1) = ag(1) +ar(4)
by(1) =a;(1) +a;(4)
br(2) = ar(l) —ar(4)
br(2) =a;(1) —a;4)
br(3) = ar(2) +ar(3)
br(3) =ar(2) +a;(3)
br(4) = ar(2) —ar(3)
b;(4) =a;(2) —a;(3)

Stage 2: Multiply-Accumulates

This stage contains all of the multiplications and requires additional data memory
locations to perform the sets of multiply-accumulate operations and store the intermediate
results. The strategy for converting these steps into code is explained in Constraint 5 of

Section 8.2.

Algorithm Steps
cr(2) = br(2) * sin(2w/S5) + br(4) * sin(4x /5
c1(2) = b;(2) * sin(2r /5) + b;(4) x sin(4n/5)
cr(4) = br(2) * sin(4m/S) — br(4) * sin(2rw /5
c;(4) = b;(2) x sin(4r/5) — b;(4) * sin(2w /5)

Memory Map
br(1) = M(1)
b (1) = M(6)
br(2) => M4)
b;(2) = M)
br(3) = M(2)
br3) = M()
br4) = M(3)
b;(4) = M(8)

)

)

cr(1) = br(1) x cos(2m/5) + bg(3) x cos(4m/5) + ar(0)

c;(1) = b;(1) x cos(2r/S) + b;(3) * cos(4n /S

) +a;i(0)

cr(3) = br(1) * cos(4m/5) + br(3) * cos(2r/5) + ar(0)

¢;(3) = b;(1) x cos(4r/5) + b;(3) * cos(2m /S
AR(0) = ag(0) + br(1) + br(3)
A1(0) = a;(0) + b;(1) + b;(3)

Stage 3: Output Adds

The strategy for converting these equations to code is to start at the top (compute
Ag(1)) and identify the pair of inputs to be used first (in this case cg(1) and ¢,(2)). Then

) +a;(0)

Memory Map
cr(2) = M(10)
c;1(2) = M@3)
cr(4) = M(11)
c;(4)=> M®@4)
cr(l) = M(9)
c(l) = M)
cr(3) => M(8)
c;(3) = M(2)
Ar(0) = M(0)
4;(00) = M(5)
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look down the list to find the second (compute A4 r(4)) place where these two inputs are
used. Pull cp(1) and ¢,;(2) from memory, compute Ag(1) and A (4), and store the results
in data memory locations M (9) and M (3) previously occupied by cz (1) and ¢;(2).

Next, look for the computation for 4,(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps Memory Map
Ar(l) = cr(l) +¢1(2) Ar(l) = M)
A1) = ¢/ (1) — cr(2) A1(1) = M(6)
Ar(2) = cpr(3) +¢;(4) ARr(2) = M(8)
A1(2) = ¢1(3) — cr(4) A4:12) = M(2)
AR(3) = cr(3) —c;(4) Ar(3) = M(4)
A1(3) =c¢;(3) +cr4) A;3) = M(1)
Ar(@4) = cr(l) —¢;(2) Ar(4) = M(3)
A4) = ci(D) +cr(2) A1(4) = M(7)

8.6.3 Rader 5-Point FFT

The Rader [3] 5-point FFT requires 42 adds, 12 multiplies, 12 data memory locations,
and 4 multiplier constant memory locations. The structure of this algorithm is very similar
to the 4-point transform because the 4-point transform is used twice in the computations.
The first time is Stages 1 and 2. After these stages, complex multiplications are required
to prepare the data for the output computations. Finally, the three stages after the multipli-
cations are an inverse 4-point transform plus the computations required to include the fifth
input data point in the output frequency components. Stage 4 is the first stage of a 4-point
IFFT. Stage 5 is where the fifth input data point is added, and the final stage is the second
stage of a 4-point IFFT. Section 8.11.1 provides more detail on the Rader algorithm, and
Section 2.3 gives additional information on how the 4-point FFT algorithm is converted to
a 4-point IFFT. The six stages are as follows.

Stage 1: Input Adds

This stage does not require additional data memory locations or accessing of multiplier
constants. The strategy for converting these equations to code is to start at the top (compute
bg(1)) and identify the pair of inputs to be used first (in this case az(3) and az(2)). Then
look down the list to find the second (compute bg(2)) place where these two inputs are
used. Pull ag(3) and ax(2) from memory, compute bg(1) and bg(2), and store the results
in data memory locations M (2) and M (3) previously occupied by ax(3) and az(2).

Next, look for the computation for b, (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps Memory Map
br(l) = ag(3) +ag(2) br(l) = M(2)
bi(l) =a;(3) +a;(2) bi(1) = M(7)

br(2) = ap(3) —ap(2) br(2) = M)
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Algorithm Steps Memory Map
bi(2) =a;(3) —a(2) b;(2) = M(8)
br(3) = ar(4) +ar(l) br(3) = M(1)
b;(3)=a;(4) +a;(1) b;(3) = M(6)
br(4) = ar(4) —ar(l) br(4) = M(4)
br(4) =a;4) —a;(1) bi(4) = M(©9)
Stage 2: Second Set of Input Adds

This stage also does not require additional data memory locations or accessing of
multiplier constants. The strategy for converting these equations to code is to start at the
top (compute cg(1)) and identify the pair of inputs to be used first (in this case bg(1) and
br(3)). Then look down the list to find the second (compute cg(3)) place where these two
inputs are used. Pull bg(1) and b (3) from memory, compute cg(1) and cg(3), and store the
results in data memory locations M (1) and M (2) previously occupied by bg(1) and bg(3).

Next, look for the computation for ¢;(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps Memory Map
cr(1) = br(1) + br(3) cr(l) = M(1)
cr(1) = b;(1) + b,(3) cr(l) = M(6)
cr(2) = br(2) + b;(4) cr(2) = M(3)
c1(2) =b1(2) — br(4) c1(2) = M@®)
cr(3) = br(1) — br(3) cr() = M(2)
cr(3)y =b,(1) = b;(3) cr(3) = M(7)
cr(4) =br(2) — b;(4) cr(4) = M©9)
cr(4) = b;(2) + br(4) crd) = M@)

Stage 3: Multiplies

This stage contains all of the multiplications and also requires additional data memory
locations to store intermediate results. In Steps 1 through 4, multiply accumulation requires
additional data memory locations because the input data is multiplied by two different con-
stants as part of two different outputs. In Steps S through 8, multiplication is performed by
pulling a data value from memory, multiplying it by the appropriate constant, and returning
the result to the same data memory location (in-place).

Algorithm Steps Memory Map
dr(3) = (1/2) x [cr(2) * sin(27/5) + ¢;(2) * sin(4m/5)] dr(3) = M(0)
d;(3) = (1/2) * [—cg(2) * sin(4n/5) + ¢;(2) * sin(2w/5)] d;(3) = M(8)
dr(4) = (1/2) x [—cr (@) x sin(27/5) + c;(4) * sin(4x/5)] dr(4) = M(3)
di(4) = (1/2) x [—cg(4) * sin(4r/5) — ¢;(4) * sin(2n /5)] di(4) = M©O)

dr(1) = (1/2) * [cos(2m/5) + cos(4r/5)] * cr(1) dr(1) = M(11)
dr(1) = (1/2) * [cos(2/5) + cos(4m/5)] * ¢/ (1) di(l) = M@4)
dr(2) = (1/2) * [—cos(2m/S) + cos(4m/5)] * cr(3) dr(2) = M)

d;(2) = (1/2) * [— cos(2m /5) + cos(4m /5)] * c; (3) dr(2) = M)
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Stage 4: First Stage of Postmulitiply Adds

The strategy for converting these equations to code is to start at the top (compute
er(1)) and identify the pair of inputs to be used first (in this case dg(1) and dg(2)). Then
look down the list to find the second (compute e (2)) place where these two inputs are used.
Pull dz(1) and d(2) from memory, compute ez (1) and eg(2), and store the results in data
memory locations M(1) and M (2) previously occupied by dg(1) and dg(2).

Next, look for the computation for e; (1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps Memeory Map
er(l) = dg(1) +dr(2) er(l) = M(1)
er(1) =d;(1) +4d;(2) e/(1) = M(6)
er(2) = dg(l) — dr(2) er(2) = M(Q2)

e/(2) =d;(1) - d;(2) er(2) = M(7)
er(3) = dr(3) + dr(4) er(3) = M(3)
er(3) =d;(3) +d;(4) er(3) = M(8)
er(4) =dr(3) —dr(4) er(4) = M(4)
e;(4) =d;(3) —d;4) er(4) = M)

Stage 5: Second Stage of Postmultiply Adds

Since ar(0) and a;(0) are each used in three of the computational steps, their data
memory locations cannot be modified until the last time they are used. Since each other
input to this stage is used only once, and is not needed again, the results are placed back in
their data memory locations.

The strategy for converting these equations to code is to start at the top (compute
/fr(1)) and identify the pair of inputs to be used first (in this case ez (1) and az(0)). Pull
egr(1) and ag(0) from memory, compute fx(1), and store the results in data memory location
M (1) previously occupied by ez (1).

Next, look for the computation for f;(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps Memory Map
Sr(1) = er(1) +ar(0) Sr(1) = M(1)
Si(1) = ¢e;(1) +a;(0) Ji(1) = M(6)
Sr(2) = er(2) +ag(0) Jr(2) = M(Q2)
f1(2) = e;1(2) + a;(0) J1(2) = M()
AR(0) = cr(1) +ar(0) Ag(0) = M(0)
A1(0) = ¢;(1) + a;(0) A;(0) = M(5)

Stage 6: Output Adds

The strategy for converting these equations to code is to start at the top (compute
Ar(1)) and identify the pair of inputs to be used first (in this case fz(1) and ez(3)). Then



96 CHAP.8  BUILDING-BLOCK ALGORITHMS

look down the list to find the second (compute Ag(4)) place where these two inputs are
used. Pull fz(1) and eg(3) from memory, compute Az (1) and A z(4), and store the results
in data memory locations M(3) and M(1) previously occupied by fz(1) and eg(3).

Next, look for the computation for 4,(1) and repeat the same set of steps. Continue
this process until all the Algorithm Steps have been computed and all of the results are
returned to the data memory locations.

Algorithm Steps Memory Map
Ar(l) = fr(1) — er(3) Ar(l) = M(@3)
Ar(1) = fi(1) — e;(3) A4,(1) = M)
Ar(2) = fr(2) +e/(4) Ar(2) = M(2)
A1(2) = f1(2) — er(®) A1(2) = M)
Ar(3) = fr(2) —e;(4) Ar(3) = M)
A413) = f1(2) + er(4) A4;(3) = M(6)
Ar(4) = fr(1) +er(3) Ar(4) = M(1)
A4 = fi(1) +;3) 4;(4) = M4)

8.7 SEVEN-POINT FFT
The 7-point DFT is defined for k =0, 1,2, 3,4, 5, and 6 as

6
Alk) = Z a(n) * e~ /2mknl1 (8-7)
=0

If the 7-point DFT is calculated directly from Equation 8-7, it requires 36 complex multiplies
and 42 complex adds. Since a complex multiply uses 4 real multiplies and 2 real adds, and
a complex add uses 2 real adds, the 7-point DFT requires 144 real multiplies and 156
real adds. The number of adds and multiplies shown for each of the fast algorithms is
significantly less than required for computing the DFT directly. However, if only a subset
of the output frequency components is required, it may be more cost effective to compute
the DFT equation directly for those terms. For example, if 4(0) is the only term needed,
it can be computed with 12 adds and no multiplies by using the DFT directly. Each of the
other six output frequencies requires 5 complex multiplies and 5 complex adds for a total
of 20 real adds and 20 real multiplies. With this in mind the crossover point between using
the DFT directly and one of the 7-point FFT algorithms can be determined based on the
number of output frequency components that must be computed.

Since all of the input data is required for each output frequency component calculation,
the direct DFT computations require 14 data memory locations for the input data and 14
more for the output frequency components. This is a total of 28 data memory locations,
since the input and output are complex. Similarly, the DFT data addressing is sequential
(i.e., 0 through 6 for each output frequency component), and the computational architecture
is simple, since they can all be performed by using a complex multiply accumulator (see
Chapter 10 for details). Addressing the complex multiplier coefficients requires either a
modulo arithmetic scheme (k *n mod 7) or that the addresses be stored in program memory.

Two fast versions of the 7-point DFT are presented. The Winograd [1] algorithm
was developed by using a decomposition based on circular convolution properties. The
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Singleton [2] algorithm was developed by using a decomposition based on the complex
conjugate symmetry properties of the 7-point transform.

8.7.1 Winograd 7-Point FFT

The 7-point Winograd [1] transform algorithm requires 16 multiplies, 72 adds, 22
data memory locations, and 8 multiplier constant memory locations. The eight stages are
as follows.

Stage 1: Input Adds

This stage does not require additional data memory locations or accessing any of
the multiplier constants. Further, the add/subtract process is the same for all of the real
and imaginary pairs. The strategy for converting these equations to code is to start at the
top (compute bg(1)) and identify the pair of inputs to be used first (in this case ag (1) and
ag(6)). Then look down the list to find the second (compute bg(2)) place where these two
inputs are used. Pull ag(1) and a(6) from memory, compute bz (1) and bg(2), and store
the results in data memory locations M (1) and M (6) previously occupied by ag(1) and
ag(6).

Next, look for the computation for b;(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps Memory Map
br(1) = ar(l) + ag(6) br(1) = M(1)
br(1) =a;(1) 4 a;(6) bi(1) = M(@®)
br(2) = ar(l) — ar(6) br(2) = M(6)
b1(2) = a;(1) —a;(6) b;(2) = M(13)
br(3) = ar(4) +ar(3) br(3) = M(3)
b;(3) =a;(4) +a;(3) b;(3) = M(10)
br(4) = ar(4) —ar(3) br(4) = M)
bi(4) =a;4) —a;(3) bi(4) = M(11)
br(5) = ar(2) + ag(s) br(5) = M)
bi(5) = a;(2) +as(5) bi(5) = M(9)
br(6) = ar(2) —ar(5) br(6) = M(5)
bi(6) =a;(2) —a;(5) bi(6) = M(12)

Stage 2: Second Set of Input Adds

This stage requires additional data memory locations to store intermediate results.
The strategy for converting these equations to code is to start at the top (compute cg(1))
and identify the pair of inputs to be used first (in this case bz (1) and bg(3)). Then look
down the list to find the second (compute cg(3)) place where these two inputs are used.
Pull bz (1) and bg(3) from memory, compute cg(1) and cz(3), and store the results in
data memory locations M(14) and M(15) different than previously occupied by bz (1) and
br(3). Different data memory locations are required because by (1) and b (3) are also used
in computing cg(4) and cg(2), respectively.
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Next, look for the computation for ¢;(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. Note that bz(5), b;(5), bgr(6), and b;(6) are also

used in Stage 3.

Algorithm Steps
cr(1) = br(1) + br(3)
cr(1) =b;(1) + b;(3)
cr(2) = br(3) — br(5)
cr(2) = b;(3) — b;(5)
cr(3) = br(1) — br(3)
cr(3) = b;(1) = b;,(3)
cr(4) = br(5) — br(1)
cr(@) =b;(5) — bs(1)
cr(5) = br(2) + br(4)
c1(5) =b;(2) +b;(4)
cr(6) = br(2) — br(4)
cr(6) = b;(2) — b;(4)
cr(7) = br(4) — br(6)
ci(7) = b;(4) — b;(6)
cr(8) = br(6) — br(2)
c1(8) = b;(6) — b;(2)

Memory Map
cr(l) = M(14)
cr(1) = M(18)
cr(2) = M(3)
cr(2) = M(10)
cr(3) = M(15)
c;(3) = M(19)
cr(4) = M(1)
cr(4) = M(8)
cr(5) = M(16)
cr(5) = M(Q20)
cr(6) = M(17)
cr(6) = M(Q21)
cr(7) = M@)
() = M(11)
cr(8) = M(6)
cr(8) = M(13)

Stage 3: Third Set of Input Adds

The strategy for converting these equations to code is to start at the top (compute
dr(1)) and identify the pair of inputs to be used first (in this case bg(5) and c(1)). In this
case there is only one result associated with these two input data values. Pull bg(5) and
cgr(1) from memory, compute dg(1), and store the result in data memory location M (2)
previously occupied by br(5).

Next, look for the computation for d;(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps
dr(1) = br(5) + cr(1)
dr(1) = b;(5) + ¢/ (1)
dr(2) = br(6) + cr(5)
dr(2) = b;(6) + c1(5)
er(0) = ag(0) + dg(1)
er(0) = a;(0) +dr(1)

Memory Map
dr(1) > MQ)
dr(1) = M)
dr(2) = M(5)
d;(2) = M(12)
er(0) = M)
er(0) = M(7)
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Stage 4: Multiplications

This stage contains all of the multiplications and also requires additional data memory
locations to store intermediate results. In all cases the multiplication is performed by pulling
adata value from memory, multiplying it by the appropriate constant, and returning the result
to the same data memory location.

Algorithm Steps
er(1) ={—1+ [cos(27/7) + cos(dn /7) + cos(67r/7)]/3} x dr(1)

Memory Map
er(l) = M(Q2)

e;(1) = {—=1+4 [cos(2m/7) 4 cos(4r/T) + cos(67/T7)]/3} * d;(1)
er(2) = {[2 x cos(2m/7) — cos(4m/7) — cos(6m/7)]/3} * cr(3)
e;(2) = {[2 x cos(2m/7) — cos(4m/T) — cos(67/7)]1/3} * ¢;(3)
er(3) = {[cos(2m/T) — 2 x cos(4m/T) + cos(67/T)]/3} * cr(2)
e;(3) = {[cos(2n/T) — 2 x cos(4m/T) + cos(67/7)]/3} * c;(2)
er(4) = {[cos(2m/T) + cos(4r/T7) — 2 x cos(6rr/7)]/3} * cr(4)
e;(4) = {[cos(2m/7) + cos(4rr/T) — 2 x cos(67/T)]/3} * c;(4)
er(5) = —{[sin(2w/7) + sin(47 /7) — sin(67/7)]/3} * d;(2)
e;(5) = {[sin(2r/7) + sin(4r /7) — sin(67/7)]/3} * dr(2)
er(6) = —{[2 xsin(2m /7) — sin(dx /7) + sin(67 /7)]/3} * ¢;(6)
e7(6) = {[2 xsin(2 /7) — sin(4m/7) + sin(67/7)]1/3} * cr(6)
er(7) = —={[sin(2/7) — 2 * sin(d5 /7) — sin(67/7)]/3} * c;(7)
er(7) = {[sin(2n/7) — 2 x sin(4n/7) — sin(67x/7)]/3} * cg(7)
er(8) = —{[sin(2m/7) + sin(47/7) + 2 * sin(67/7)]/3} * c;(8)
er(8) = {[sin(2x/7) + sin(4r/7) + 2 * sin(67r/7)]/3} * cg(8)

er(1) = M(9)
er(2) = M(15)
er(2) = M(19)
er(3) = MQ)
er(3) = M(10)
er(4) = M(1)
er(4) = M)
er(5) = M(12)
er(5) = M(S)
er(6) = M(21)
er(6) = M(17)
er(7) = M(11)
er(7) = M(4)
er(8) = M(13)
er(8) = M(6)

Stage 5: First Postmultiply Adds

The strategy for converting these equations to code is to start at the top (compute
fr(1)) and identify the pair of inputs to be used first (in this case ez (0) and ez(1)). In this
case there is only one result associated with these two input data values. Pull ez (0) and
eg(1) from memory, compute fz(1), and store the result in data memory location M(2)
previously occupied by ez(1).

Next, look for the computation for f7(1) on the list and repeat the same set of steps.
The remaining adds and subtracts require additional data memory locations because ez (5)
is used in three places. Therefore, its data memory location cannot be used for results until
the last time it is used as the input to a set of computations. Continue this process until
all the Algorithm Steps have been computed and their results stored in the Memory Map
addresses.

Algorithm Steps
Sfr(1) = eg(0) + er(1)
J1(1) = €;(0) + e/(1)
fr(2) = er(5) + er(6)

Memory Map
Sr(D) = M(2)
Ji()y = M©9)
fr(2) = M(20)
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Algorithm Steps
J1(2) = e;(5) + €,(6)
Sr(3) = er(5) — er(6)
J13) =e;(5) — e;(6)
fr(@) = er(5) —er(7)
f1(4) = e;(5) —e;(7)

Memory Map
J1(2) = M(16)
Sr(3) = M(21)
f13) = M(17)
Sr(4) = M(12)
J1(4) = M(5)

Stage 6: Second Postmultiply Adds

The strategy for converting these equations to code is to start at the top (compute
gr(1)) and identify the pair of inputs to be used first (in this case fz(1) and ez(2)). Notice
that the same set of inputs is used to compute gg(2). However, fz(1) is also used to compute
gr(3). Its memory location cannot be used to store gg(1) or gg(2), but can be used to store
gr(3). Therefore, the strategy is to pull fz(1) and eg(2) from memory, compute gg(1)
and gr(2), and store the results in data memory locations M (14) and M(15) previously
occupied by cg(1) and eg(2).

Next, look for the computation for g;(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and all of the results
are returned to the data memory locations.

Algorithm Steps
gr(l) = fr(1) +er(2)
gr() = fi(1) +e;(2)
gr(2) = fr(l) —er(2)
g1(2) = fi(1) —e;(2)
gr(3) = fr(1) — er(3)
gr(3) = fi(1) —e;(3)
gr@) = fr(2) +er(7)
gi@) = f1(2) + e, (7)
gr(5) = fr(3) —er(d)
g1(5) = f1(3) —es(8)
gr(6) = fr(4) + er(8)
g1(6) = f1(4) +e;(8)

Memory Map
gr(l) = M(14)
gr(1) = M(18)
gr(2) = M(15)
21(2) = M(19)
gr(3) = M(2)
g1(3) > M)
gr(4) = M(11)
gr(4) = M@4)
gr(5) = M(21)
g1(5) = M(17)
gr(6) = M(13)
g1(6) = M(6)

Stage 7: Third Postmultiply Adds

The strategy for converting these equations to code is to start at the top (compute
hr(1)) and identify the pair of inputs to be used first (in this case gz (1) and e (3)). For this
set of computations only eg(4) and ¢;(4) are used more than once. Therefore, pull gg(1)
and eg(3) from memory, compute 4 g(1), and store the result in data memory location M (3)
previously occupied by ez (3).

Next, look for the computation for /,(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and all of the results
are returned to the data memory locations.



Algorithm Steps
hr(1) = gr(l) +er(3)
hi () = gi(l) +e;(3)
hr(2) = gr(2) —er(4)
hi(2) =gi1(2) —e;(4)
hg(3) = gr(3) + eg(4)
hi(3) = g1 (3) +e;(4)
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Memory Map
hr(l) = M@3)
hi(l) = M(10)
hr(2) = M(15)
hi(2) = M(19)
hr(3) = M(1)
hi(3) = M(8)
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Stage 8: Output Adds

The strategy for converting these equations to code is to start at the top (compute
Ar(1)) and identify the pair of inputs to be used first (in this case 4 g(1) and gr(4)). Next
identify the other computation, 4 ¢ (6), in the list that uses these same two inputs. Therefore,
pull Ag(1) and gg(4) from memory, compute A (1) and 4x(6), and store the result in data
memory locations M(3) and M(11) previously occupied by hg(1) and gg(4). Next, look
for the computation for 4;(1) on the list and repeat the same set of steps.

The output of this stage requires only 14 data memory locations. Therefore, the results
of computing A z(2) and 4 z(5), using intermediate results located in the extra data memory
locations, are placed in available locations within the original M(0) to M(13). Continue
this process until all the Algorithm Steps have been computed and all of the results are
returned to the data memory locations.

Algorithm Steps

Ar(0) = eg(0)

A;(0) =e;(0)

Ar(l) = hg(1) — gr(4)
Ay =hi(1) — g1(4)
Ar(2) = hp(2) — gg(5)
A2y =hi(2) —gi1(5)
AR(3) = hr(3) + gr(6)
A;3) =hi(3) + gi(6)
AR(4) = hg(3) — gr(6)
A;(4) = hi(3) — g,;(6)
AR(5) = hp(2) + gr(5)
A;(5) =hi(2) + g/(5)
AR(6) = hg(l) + gr(4)
Ap(6) = h(1) + g1 (4)

Memory Map
Ar(0) = M(0)
A1(0) = M(7)
Agr(l) = M(3)
A;(1) = M(10)
Ar(2) = M(2)
A;(2) = M©O)
Ar(3) = M)
A4;(3) = M(8)
Ar(4) = M(13)
A;(4) = M(6)
Ag(5) = M(5)
A;(5) = M(12)
Agr(6) = M(11)
A1(6) = M(4)

8.7.2 Singleton 7-Point FFT

The Singleton [2] 7-point FFT requires 60 adds, 36 multiplies, 17 data memory
locations, and 6 multiplier constant memory locations. The three stages are as follows.
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Stage 1: Input Adds

This stage does not require additional data memory locations or accessing any of
the multiplier constants. Further, the add/subtract process is the same for all of the real
and imaginary pairs. The strategy for converting these equations to code is to start at the
top (compute bz (1)) and identify the pair of inputs to be used first (in this case ag(1) and
ag(6)). Then look down the list to find the second (compute bz (2)) place where these two
inputs are used. Pull ag(1) and ag(6) from memory, compute bg(1) and bg(2), and store
the results in data memory locations M (1) and M (6) previously occupied by ar(1) and
apr ( 6) .

Next, look for the computation for 5;(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps
br(1) = ag(1) + ar(6)
br(1) = a;(1) + as(6)
br(2) = ar(1) —ag(6)
br(2) = ar(1) —as(6)
br(3) = ar(2) + ar(s)
br(3) = a;(2) +as(5)
br(4) = ar(2) —agr(5)
br(4) = ar(2) — as(5)
br(5) = ar(3) +ar4)
br(5) =a;(3) +a;4)
br(6) = ar(3) —ar(4)
br(6) =a;(3) —a;4)

Memory Map
br(l) = M(1)
b(1) = M)
br(2) = M(6)
b;(2) = M(13)
br(3) = M(2)
b;(3) = M)
br(d) = M(S)
br(4) = M(12)
br(5) = M(3)
b;(5) = M(10)
br(6) = M(4)
b;(6) = M(11)

Stage 2: Multiply-Accumulates

This stage contains all of the multiplications and also requires additional data memory
locations to store intermediate results because of multiple multiply-accumulate operations
requiring the same input data. The terms with the sine multipliers are computed first to
minimize required memory. The Memory Map is based on Constraint 5 of Section 8.2.

Algorithm Steps

cr(2) = br(2) x sin(27/7) + br(4) * sin(4w/7) + br(6) * sin(6w/7)

cr(4) = br(2) *sin(4m/7) — br(4)  sin(67/7) — bg(6) * sin(2m /7)

cr(6) = br(2) * sin(6m/7) — br(4) » sin(2m/7) + br(6) * sin(4x /7)

cr(1) = ag(0) + br(1) * cos(2r/7) + br(3) * cos(dm/T) + br(5) * cos(67/7)
cr(3) = ar(0) + br(1) * cos(4r/7) + br(3) * cos(6m/7) + br(5) *x cos(2m/7)
cr(5) = ar(0) + br(1) x cos(67/7) + br(3) * cos(2r/7) + br(5) * cos(4m/T)
AR(0) = ag(0) + br(1) + br(3) + br(S)

cr(2) = br(2) * sin(Qr /7) + by(4) * sin(4x/7) + b;(6) * sin(67/7)

Memory Map
cr(2) = M(14)
cr(4) = M(15)
cr(6) = M(16)
cr(l) = M)
cr(3) = M)
cr(5) = M(6)
Ar(0) = M(0)
cr(2) = M(1)
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Algorithm Steps
c;(4) = b;(2) *sin(4w/7) — by(4) * sin(67 /T) — b;(6) * sin(27/7)
c1(6) = b;(2) xsin(6 /7) — by(4) * sin(2m /7) + b;(6) = sin(4w /7)
c;(1) = a;0) + b;(1) x cosRr/T) + by(3) * cos(dr/T) + b;(5) x cos(67/7)
cr(3) = a;(0) + by(1) x cos(4m/7) + b;(3) * cos(6r/7) + b;(5) *x cos(2r/7)
c;(5) = a;(0) + b;(1) * cos(6r/T) + b;(3) * cos(2m /T) + b;(5) * cos(dm/T)
A;(0) =a;(0) +b;(1) +b,(3) + b;(5)

Stage 3: Output Adds
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Memory Map
cr(4) = M(2)
c;(6) = M(3)
cr(l) = M(11)
cr(3) = M(12)
cr(5) = M(13)
A (0) = M)

The strategy for converting these equations to code is to start at the top (compute

ARg(1)) and identify the pair of inputs to be used first (in this case cg(1l) and c;(2)). Next
identify the other computation, 4 g(6), in the list that uses these same two inputs. Therefore,
pull cz(1) and ¢;(2) from memory, compute A4 g(1) and 4(6), and store the result in data
memory locations M (1) and M (6) previously occupied by cg(1) and c;(2).

Next, look for the computation for 4,(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and all of the results
are returned to the data memory locations.

8.8 EIGHT-POINT FFT

Algorithm Steps
Ar(1) = cr(1) +¢c1(2)
Ar(1) = c/(1) = cr(2)
AR(6) = cr(l) —c/(2)
Ap(6) = c;(1) + cr(2)
AR(2) = cr(3) +c/(4)
A1(2) = c/(3) — cr(4)
AR(5) = cr(3) —c;(4)
A1(5) = ¢;(3) + cr(4)
Ar(3) = cr(5) +¢/(6)
A1) = ci(5) — cr(6)
AR(4) = cr(5) — c;(6)
A[(4) = C1(5) + CR(6)

Memory Map
Ar(l) = M(1)
Ar(1) = M(8)
Ar(6) = M4)
Ar(6) = M(11)
Ar(2) > M(2)
A;(2) = M©O)
Ar(S) = M%)
A:05) = M(12)
Ar(3) = M3)
A;(3) = M(10)
Ar(4) = M(6)
Ar(4) = M(13)

The 8-point DFT is defined for k = 0, 1,2, 3,4, 5,6, and 7, as

,
Alk) = Z a(n) x e~ /28

n=0

(8-8)

Four fast versions of the 8-point DFT are presented. The Winograd [1] algorithm was
developed by using a decomposition based on circular convolution properties. The radix-4
and -2 [4] and radix-2 [5] algorithms were developed based on 90° and 180° symmetries.
The Practical Transform Length (PTL) [6] algorithm was developed using a decomposition
based on complex conjugate symmetry properties.
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If the 8-point DFT is calculated directly using Equation 8-8, it would require 16
complex multiplies and 56 complex adds. The number of complex multiplies is lower
than expected (seven for each of seven output frequency components) because many of the
multiplier constants are +1 or & (see Figure 3-1). Since a complex multiply uses 4 real
multiplies and 2 real adds, and a complex add uses 2 real adds, the 8-point DFT would
require 64 real multiplies and 144 real adds. The number of adds and multiplies shown
for each of the fast algorithms is significantly less than required for computing the DFT
directly. However, if only a subset of the output frequency components is required, it may
be more cost effective to compute the DFT equation directly for those terms. For example,
if A(0) is the only term needed, it can be computed with 14 adds and no multiplies using
the DFT directly. Each of the other 7 output frequencies requires 6 complex multiplies and
6 complex adds for a total of 24 real adds and 24 real multiplies. With this in mind the
crossover point between using the DFT directly and one of the 8-point FFT algorithms can
be determined based on the number of output frequency components that must be computed.

Since all of the input data is required for each output frequency component calculation,
the direct DFT computations require 16 memory locations for the input data and 16 more
for the output frequency components. This is a total of 32 data memory locations, since
the input and output are complex. Similarly, the DFT data addressing is sequential (i.e.,
0 through 7 for each output frequency component), and the computational architecture is
simple since they can all be performed with a complex multiply accumulator (see Chapter
10 for details). Addressing the complex multiplier coefficients requires either a modulo
arithmetic scheme (k * n mod 8) or that the addresses be stored in program memory.

8.8.1 Winograd 8-Point FFT

The Winograd [1] 8-point FFT requires 52 adds, 4 multiplies, 16 data memory loca-
tions, and one multiplier constant memory location. The four stages are as follows.

Stage 1: Input Adds

This stage does not require any of the multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting these
equations to code is to start at the top (compute b(0)) and identify the pair of inputs to be
used first (in this case a g (0) and ag (4)). Then look down the list to find the second (compute
br(1)) place where these two inputs are used. Pull ag(0) and az(4) from memory, compute
br(0) and bz(1), and store the results in data memory locations M (0) and M (4) previously
occupied by az(0) and ar(4).

Next, look for the computation for 5,(0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps Memory Map
br(0) = agr(0) +ar(4) br(0) = M(0)
br(1) = ar(0) — ag(4) br(l) = M(4)
b1(0) =a;(0) +a;4) b1(0) = M(8)
b(1)=a;0) —a;4) bi(1) = M(12)
br(2) = agr(l) +ar(5) br(2) = M(1)



Algorithm Steps
br(3) = ar(l) —ar(5)
hi(2)y =a;(1)+a;(5)
hi(3) =a;(1) —as(5)
br(4) = ar(2) + ar(6)
br(5) = agr(2) —ar(6)
bi(4) =a;(2) +a;(6)
bi(5) = a;(2) —a;(6)
br(6) = ag(3) +ar(7)
br(T) = ag(3) —ar(7)
br(6) = a;(3) +a;(7)
bi(7)y = ai(3) —a(7)
cr(0) = br(0) + br(4)
cr(l) = br(0) — br(4)
cr(0) = b;(0) + b1(4)
ci(1) =b,(0) = b;(4)
cr(2) = br(2) + bg(6)
cr(3) = br(2) — br(6)
c1(2) = b;(2) + b;(6)
cr(3) = b;(2) = b;(6)
cr(4) = br(3) + br(7)
cr(5) = br(3) = br(7)
ci(4)=b;3)+bi(7)
ci(5) =b,3) = b;(7)

Stage 2: Multiplies
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Memory Map
br(3) = M(S5)
bi1(2) = M)
br(3) = M(13)
br(4) = M(2)
br(5) = M(6)
bi(4) = M(10)
bi(5) = M(14)
br(6) = M(3)
br(T)y = M(T)
b (6) = M(11)
b (7) = M(15)
cr(0) = M(0)
cr(l) = M(Q2)
c1(0) = M(8)
ci(1) = M(10)
cr(2) = M(1)
cr(3) = M(3)
ci(2) = M)
cr(3) = M(11)
cr(4) = M(5)
cr(5) = M(7)
c/(4) = M(13)
cr(5) = M(15)

This stage contains all of the multiplications. In all cases the multiplication is per-
formed by pulling a data value from memory, multiplying it by the appropriate constant,
and returning the result to the same data memory location. Note that only one multiplier

constant is required.

Algorithm Steps
cr(4) = cp(4) x cos(mr/4)
cr(5) = cg(5) * cos(m/4)
ci(4) = c;(4) xcos(m/4)
c1(5) = c;(5) * cos(/4)

Stage 3: Postmultiply Adds

Memory Map
cr(4) = M(5)
cr(5) = M(7)
cr(4) = M(13)
ci(5) = M(15)

This stage also does not require any of the multiplier constants. Further, the add/sub-
tract process is the same for all of the real and imaginary pairs. The strategy for converting
these equations to code is to start at the top (compute dg (0)) and identify the pair of inputs
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to be used first (in this case cz(0) and cz(2)). Then look down the list to find the second
(compute dg(4)) place where these two inputs are used. Pull cz(0) and cg(2) from memory,
compute dg(0) and dg(4), and store the results in data memory locations M (0) and M(1)
previously occupied by cz(0) and cg(2).

Next, look for the computation for b;(0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses. Notice that some of these additions require one
imaginary input and one real input. This approach to these additions implements the required
multiplication by j = +/—1, which converts real parts of data to imaginary parts and
imaginary parts to real parts (with a sign change).

Algorithm Steps Memory Map
dr(0) = cr(0) + cr(2) dr(0) = M(0)
dr(4) = cr(0) — cr(2) dr(4) = M(1)
dr(0) =c;(0) +¢/(2) d;(0) = M(8)
dr4) =c1(0) —¢;(2) di(4) = M©9)
dr(2) = cr(l) +¢1(3) dr(2) = M(2)
di(2) = c/(1) — cr(3) dr2) = M@3)
dr(6) = cr(l) — ci(3) dr(6) = M(11)
di(6) = c/(1) + cr(3) d(6) = M(10)

dg(1) = br(1) +cr(5) dr(l) = M4)
dr(5) = br(1) — cr(5) dr(5) = M(7)

di(1) = b;(1) + ¢1(5) di(1) = M(12)
d;(5) = b;(1) — ¢1(5) d;(5) = M(15)
dg(3) = b;(5) + c1(4) dr(3) = M(13)
dr(7) = —=b;(5) +c1(4) dr(7) = M(14)
d;(3) = br(5) + cr(4) d;(3) = M(5)
di(7) = bg(5) — cr(4) di(7) = M(6)

Stage 4: Output Adds

This stage also does not require any multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting
these equations to code is to start at the top (compute 4 (1)) and identify the pair of inputs
to be used first (in this case dg(1) and dr(3)). Then look down the list to find the second
(compute 4 z(7)) place where these two inputs are used. Pull dz(1) and dg(3) from memory,
compute Az (1) and 4z(7), and store the results in data memory locations M (4) and M (13)
previously occupied by dr(1) and dg(3).

Next, look for the computation for 4;(1) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps Memory Map
Ar(0) =dgr(0) Ar(0) = M(0)
A4;(0) = d;(0) A41(0) = M®)
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Algorithm Steps Memory Map
Ar(4) =dr(4) Ar(4) = M(1)
A1(4) =d;(4) A;(4) = M9
Ar(2) = dgr(2) Ar(2) = M(2)
A;(2) =d;(2) A;(2) = M@3)
AR(6) = dr(6) Ar(6) = M(11)
A(6) = d;(6) A1(6) = M(10)
Ar(1l) = dg(1) +dr(3) Ar(1) = M)
A;(1) =d; (1) —d;(3) A1) = M(5)

Ar(3) = dgr(5) +dr(7) Ar(3) = M(14)
A;(3) =d;(5) +d;(7) A;(3) = M(15)
ARr(S) = —dr(7) + dr(5) Ar(5) = M(7)
A[(5) = —d(7) + d;(5) A;1(5) = M(6)
Ar(7) = dg(1) — dr(3) Ar(7) = M(13)
Ar(7) =d;(1) +d;(3) Ar(7) = M(12)

8.8.2 Eight-Point Radix-4 and -2 Algorithm

The radix-4 and -2 [4] 8-point FFT requires 52 adds, 4 multiplies, 16 data memory
locations, and one location for the multiplier constant. The four stages are as follows:

Stage 1: Input Adds

This stage does not require any of the multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting these
equations to code is to start at the top (compute bg(0)) and identify the pair of inputs to be
used first (in this case ag (0) and ag (4)). Then look down the list to find the second (compute
br(1)) place where these two inputs are used. Pull ag(0) and ag (4) from memory, compute
br(0) and bg(1), and store the results in data memory locations M (0) and M (4) previously
occupied by ag(0) and ag(4).

Next, look for the computation for b,(0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps Memory Map
br(0) = ag(0) + ar(4) br(0) = M(0)
b1(0) =a;(0) +a;(4) b;(0) = M(8)

br(1) = ag(0) — ar(4) br(1) = M(4)
br(1) = a;(0) —ar4) bi(1) = M(12)
br(2) = agr(2) + ag(6) br(2) = M(2)
b1(2) = a;(2) +a;(6) b1(2) = M(10)
br(3) = ar(2) — ag(6) br(3) = M(6)
bi(3) = a;(2) —a;(6) bi(3) = M(14)
br(4) = ag(l) +ar(5) br(4) = M(1)
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BUILDING-BLOCK ALGORITHMS

Algorithm Steps
bi(4) = a;(1) +a;(5)
br(5) = agr(1) —agr(5)
b1(5) = a;(1) —a;(5)
br(6) = ar(3) +ar(7)
b1(6) =a;(3) +a;(7)
br(7) = ar(3) —ar(7)
bi(7) =a;(3) —a;(7)

Memory Map
b;4) = M)
br(5) = M(5)
b;(5) = M(13)
br(6) = M(3)
b (6) = M(11)
br(7)y = M(7)
b;(7) = M(15)

Stage 2: Second Set of Input Adds

This stage also does not require any multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting these
equations to code is to start at the top (compute cg(0)) and identify the pair of inputs to be
used first (in this case bz (0) and bg(2)). Then look down the list to find the second (compute
cr(2)) place where these two inputs are used. Pull bz (0) and bz (2) from memory, compute
cg(0) and cg(2), and store the results in data memory locations M (0) and M (2) previously
occupied by bg(0) and bg(2).

Next, look for the computation for ¢;(0) on the list and repeat the same set of steps.
Continue this process until all the Algorithm Steps have been computed and their results
stored in the Memory Map addresses.

Algorithm Steps
cr(0) = br(0) + br(2)
c1(0) = b;(0) + b,(2)
cr(2) = br(0) — br(2)
c1(2) = b;(0) — b;(2)
cr(1) = br(1) + b;(3)
cr(1) = b;(1) — br(3)
cr(3) = br(1) = b;(3)
c1(3) = b;(1) + br(3)
cr(4) = br(4) + bgr(6)
ci(4) =b;(4) + b;(6)
cr(6) = br(4) — br(6)
c1(6) = b;(4) — b;(6)
cr(5) = br(5) + b;(7)
cr(5) = b1(5) — br(7)
cr(7) = br(S) — b;(7)
cr(7) = b;(5) + br(7)

Memory Map
cr(0) = M(0)
cr(0) = M(@8)
cr(2) = M(Q)
cr(2) = M(10)
cr(l) => M@)
cr(1) = M(6)
cr(3) = M(14)
c;(3) = M(12)
cr(4) = M(1)
c;(4) = M©9)
cr(6) = M)
cr(6) = M(11)
cr(5) = M(S)
c1(5) = M)
cr(7) = M(15)
c;(7) = M(13)

Stage 3: Multiplies

This stage contains all of the multiplications. In all cases, multiplication is performed
by pulling a data value from memory, multiplying it by the appropriate constant, and re-
turning the result to the same data memory location. Note that only one multiplier constant
is required because cos(2m/8) = sin(27/8).
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Algorithm Steps
dr(5) = cg(5) * cos(2n/8)
d;(5) = ¢;(5) * sin(2m /8)
dr(7) = cg(7) * cos(2m/8)
di(7) = ¢;(7) * sin(2m /8)

Memory Map
dr(5) = M(5)
d;(5) = M®T)
dg(7) = M(15)
d;(7) = M(13)

Stage 4: Output Adds

This stage also does not require any multiplier constants. Further, the add/subtract
process is the same for all of the real and imaginary pairs. The strategy for converting these
equations to code is to start at the top (compute 4 z(0)) and identify the pair of inputs to be
used first (in this case ¢z (0) and cg(4)). Then look down the list to find the second (compute
AR (4)) place where these two inputs are used. Pull ¢z (0) and cg (4) from memory, compute
Ag(0) and Ag(4), and store the results in data memory locations M(0) and M (1) previously
occupied by cg(0) and cg(4).

Next, look for the computation for 4,(0) on the list and repeat the same set of
steps. Continue this process until all the Algorithm Steps have been computed and their
results stored in the Memory Map addresses. Notice that some of these additions require
one imaginary input and one real input. This approach to these additions implements the
required multiplication by j = /=1, which converts real parts of data to imaginary parts
and imaginary parts to real parts (with a sign change).

Algorithm Steps
AR(0) = cr(0) + cr(4)
A1(0) = ¢;(0) + ¢/ (4)
er(5) =dgr(5) +d;(5)
er(5) = —=dgr(5) +d;(5)
er(7) = —dr(7) + d;(7)
e;(7) = —dg(7) —d;(7)

Ar(1) = cr(1) + eg(5)
A1)y =c;(1) +¢;(5)
AR(2) = cr(2) 4+ ¢;(6)
Ar(2) = ¢;(2) — cr(6)
Ar(3) = cr(3) + er(7)
A;33) =c;(3) +ei(7)

AR(4) = cp(0) — cg(4)
A;(4) =¢;(0) —c;(4)

AR(5) = cg(1l) — eg(5)
Ar(5) = ci(1) —¢;(5)

AR(6) = cr(2) — ¢;(6)
Ay(6) = c/(2) + cr(6)
Ar(T) = cr(3) —eg(7)
A7) =c1(3) —e;(7)

Memory Map
Ar(0) = M©)
A;(0) = M(8)
er(5) = M(5)
er(5) = M)
er(7) = M(15)
er(7) = M(3)
Agr(l) => M4)
A;(1) = M(6)
Ar(2) = M(2)
A4;2) = MQ3)
Ar(3) = M(14)
A4;3) = M(12)
Ar(4) = M(1)
Ai1(4) = M)
AR(5) = M(5)
A;(5) = M)
Ar(6) = M(11)
A1(6) = M(10)
Ar(7T) = M(15)
A(7) = M(13)
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