

Ferrante Neri, Carlos Cotta, and Pablo Moscato (Eds.)

Handbook of Memetic Algorithms

Studies in Computational Intelligence,Volume 379

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 357. Nadia Nedjah, Leandro Santos Coelho,
Viviana Cocco Mariani, and Luiza de Macedo Mourelle (Eds.)
Innovative Computing Methods and their Applications to
Engineering Problems, 2011
ISBN 978-3-642-20957-4

Vol. 358. Norbert Jankowski,W�lodzis�law Duch, and
Krzysztof Gra̧bczewski (Eds.)
Meta-Learning in Computational Intelligence, 2011
ISBN 978-3-642-20979-6

Vol. 359. Xin-She Yang, and Slawomir Koziel (Eds.)
Computational Optimization and Applications in
Engineering and Industry, 2011
ISBN 978-3-642-20985-7

Vol. 360. Mikhail Moshkov and Beata Zielosko
Combinatorial Machine Learning, 2011
ISBN 978-3-642-20994-9

Vol. 361.Vincenzo Pallotta,Alessandro Soro, and
Eloisa Vargiu (Eds.)
Advances in Distributed Agent-Based Retrieval Tools, 2011
ISBN 978-3-642-21383-0

Vol. 362. Pascal Bouvry, Horacio González-Vélez, and
Joanna Kolodziej (Eds.)
Intelligent Decision Systems in Large-Scale Distributed
Environments, 2011
ISBN 978-3-642-21270-3

Vol. 363. Kishan G. Mehrotra, Chilukuri Mohan, Jae C. Oh,
Pramod K.Varshney, and Moonis Ali (Eds.)
Developing Concepts in Applied Intelligence, 2011
ISBN 978-3-642-21331-1

Vol. 364. Roger Lee (Ed.)
Computer and Information Science, 2011
ISBN 978-3-642-21377-9

Vol. 365. Roger Lee (Ed.)
Computers, Networks, Systems, and Industrial
Engineering 2011, 2011
ISBN 978-3-642-21374-8

Vol. 366. Mario Köppen, Gerald Schaefer, and
Ajith Abraham (Eds.)
Intelligent Computational Optimization in Engineering, 2011
ISBN 978-3-642-21704-3

Vol. 367. Gabriel Luque and Enrique Alba
Parallel Genetic Algorithms, 2011
ISBN 978-3-642-22083-8

Vol. 368. Roger Lee (Ed.)
Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing 2011, 2011
ISBN 978-3-642-22287-0

Vol. 369. Dominik Ryżko, Piotr Gawrysiak, Henryk Rybinski,
and Marzena Kryszkiewicz (Eds.)
Emerging Intelligent Technologies in Industry, 2011
ISBN 978-3-642-22731-8

Vol. 370.Alexander Mehler, Kai-Uwe Kühnberger,
Henning Lobin, Harald Lüngen,Angelika Storrer, and
Andreas Witt (Eds.)
Modeling, Learning, and Processing of Text Technological
Data Structures, 2011
ISBN 978-3-642-22612-0

Vol. 371. Leonid Perlovsky, Ross Deming, and Roman Ilin
(Eds.)
Emotional Cognitive Neural Algorithms with Engineering
Applications, 2011
ISBN 978-3-642-22829-2

Vol. 372.António E. Ruano and
Annamária R.Várkonyi-Kóczy (Eds.)
New Advances in Intelligent Signal Processing, 2011
ISBN 978-3-642-11738-1

Vol. 373. Oleg Okun, Giorgio Valentini, and Matteo Re (Eds.)
Ensembles in Machine Learning Applications, 2011
ISBN 978-3-642-22909-1

Vol. 374. Dimitri Plemenos and Georgios Miaoulis (Eds.)
Intelligent Computer Graphics 2011, 2011
ISBN 978-3-642-22906-0

Vol. 375. Marenglen Biba and Fatos Xhafa (Eds.)
Learning Structure and Schemas from Documents, 2011
ISBN 978-3-642-22912-1

Vol. 376. Toyohide Watanabe and Lakhmi C. Jain (Eds.)
Innovations in Intelligent Machines – 2, 2012
ISBN 978-3-642-23189-6

Vol. 377. Roger Lee (Ed.)
Software Engineering Research, Management and
Applications 2011, 2011
ISBN 978-3-642-23201-5

Vol. 378. János Fodor, Ryszard Klempous,
and Carmen Paz Suárez Araujo (Eds.)
Recent Advances in Intelligent Engineering Systems, 2011
ISBN 978-3-642-23228-2

Vol. 379. Ferrante Neri, Carlos Cotta,
and Pablo Moscato (Eds.)
Handbook of Memetic Algorithms, 2012
ISBN 978-3-642-23246-6

Ferrante Neri, Carlos Cotta, and Pablo Moscato (Eds.)

Handbook of MemeticAlgorithms

123

Editors

Dr. Ferrante Neri
University of Jyväskylä
Dept. of Mathematical Information
Technology
P.O. Box 35
FI-40014 Jyväskylä
Finland
E-mail: neferran@cc.jyu.fi

Dr. Carlos Cotta
Universidad Málaga
Escuela Técnica Superior de Ingenieŕıa
Informática
Campus de Teatinos, s/n
29071 Málaga
Spain
E-mail: ccottap@lcc.uma.es

Dr. Pablo Moscato
University of Newcastle
School of Electrical Engineering &
Computer Science
University Drive
Callaghan NSW 2308
Australia
E-mail: moscato@cs.newcastle.edu.au

ISBN 978-3-642-23246-6 e-ISBN 978-3-642-23247-3

DOI 10.1007/978-3-642-23247-3

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2011938286

c© 2012 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

If the world doesn’t adapt itself to you, you
have to adapt yourself to it. (Gil Grissom)

Imagination could conceive almost anything
in connection with this place. (Howard
Phillips Lovecraft)

We must be the change we want to see in the
world. (Mahatma Gandhi)

To my friends in Jyväskylä and worldwide, to
my parents in Bari, global thanks for
patience and support (Ferrante Neri)

To Rocı́o(s), Carlos and Alicia, the
local-optimizers of my life (Carlos Cotta)

To those that in elementary schools teach our
children about the power of evolution, and to
those that use this power to make the world a
better place (Pablo Moscato)

Preface

Memetic Algorithms (MAs) are computational intelligence structures combining
multiple and various operators in order to address optimization problems. The di-
versity in the operator selection is at the basis of MA success and their capability
of facing complex problems. Besides the details correlated to specific implementa-
tions, the importance and need of MAs is in the fact that they opened a new scenario
in front of the scientific community. More specifically, MAs suggested to the com-
puter science community that optimization problems can be more efficiently tackled
by hybridizing and combining existing algorithmic structures rather than using ex-
isting paradigms. A crucially important contribution of MAs has been to offer a
new perspective in algorithmic design. Before MA diffusion, the various paradigms
were considered as “separated islands” to be elected as a solver for a given problem.
On the contrary, MAs assume that a paradigm should not be necessarily selected. A
solver can be generated by combining the strong points of various paradigms and
obtaining a solver which is capable to outperform each paradigm, separately. This
approach is the basics of the problem oriented algorithmic design which is, on one
hand, the natural consequence of the No Free Lunch theorems, on the other hand,
the founding concept for the automatic and real time design of problem solvers.
The latter will likely be the future of computational intelligence as machines, in
the future, will need to analyse and “understand” the problems before automatically
proposing a suitable solver.

This book organizes, in a structured way, all the the most important results in the
field of MAs since their earliest definition until now. This is one of the few books
explicitly addressing MAs, algorithmic aspects, and specific implementations and
is the only book which offers a systematic set of “recipes” to tackle, by means
of memetic approaches, a broad set of optimization problems. Optimization in the
presence of both discrete and continuous representation is analysed as well as con-
strained and multi-objective problems in both stationary case and in the presence of
uncertainties. Each chapter describes the algorithmic solutions for facing one of the
above-mentioned problems. A big emphasis is also given to the automatic coordi-
nation of algorithmic components by means of self-adaptive, co-evolutionary, and
diversity-adaptive schemes. In addition, this book attempts to be self-consistent as

X Preface

it gives a description of a set of possible modules composing a MA. In addition, a
set of successful examples in real-world applications in engineering is also given.

The book is structured in four parts. In the first part, containing Chapters 1–4, the
basic concepts and elements composing Memetic Algorithms (MAs) are introduced.
Chapter 1 defines basic concepts and definitions about optimization, complexity and
metaheuristics. Chapter 2 describes the general structure and issues about Evolu-
tionary Algorithms (EAs). General issues concerning the operation of EAs are dis-
cussed and different EA variants presented. Then, the problem of choosing the right
EA instance, that is, the problem of designing and tuning evolutionary algorithms
is presented. Chapter 3 defines Local Search and gives some examples of Local
Search Algorithms by distinguishing the main algorithmic structures in continuous
and combinatorial spaces. Chapter 4 gives a definition of MA, analyzes the reason
of its success and distinguishes between MAs and Memetic Computing.

In the second part, containing Chapters 5–14, methodological aspects about al-
gorithmic design and how to handle problem difficulties are studied. For each class
of problems a review on the subject is given and some study cases are displayed for
clarity. Chapter 5 discusses parametrization problems and balance of global and lo-
cal search within MA frameworks. MAs in discrete and combinatorial optimization
problems are analyzed in Chapters 6 and 7, respectively. Chapter 6 focuses on the
design of semantic combination operators, development of dedicated local search
procedures and management of population diversity. Other important issues, such
as design of rich evaluation functions and constraint handling techniques, are also
discussed. Two case studies with the purpose of showing how these issues can be
effectively implemented in practice are also included in Chapter 6. Combinatorial
problems and MA performance is the main focus of Chapter 7 where the concept of
fitness landscapes is introduced and advanced fitness landscape analysis techniques
are presented. A comparative analysis of the performance is carried out for the Trav-
elling Salesman Problem an the Binary Quadratic Programming Problem. MAs for
continuous optimization are presented in Chapter 8 after an overview on popular
global optimizers for continuous problems. Particularities of memetic approaches
for continuous optimization are highlighted in a novel taxonomy. Constrained op-
timization problems are addressed in Chapter 9 where a review on MAs for con-
strained problems is given and and two algorithmic implementations are presented
in greater details. In the subsequent two chapters, the automatic coordination of lo-
cal search components within evolutionary frameworks is discussed. Chapter 10 dis-
cusses diversity-based adaptive systems and focuses on fitness diversity techniques
for adaptive MAs. A comparative analysis of recently proposed diversity metrics is
also given. Chapter 11 presents recent research results about self-adaptive evolution
of the memes and co-evolutionary MAs. It is shown how adaptive schemes contain-
ing local search information encoded within solutions and evolving in parallel pop-
ulations connected to the population of solutions can lead to the design of flexible
memetic frameworks. The chapter describes a framework for this research and pre-
vious findings with self-adaptive methods concerning representation and scalability.
It then goes on to consider in more depth issues relevant to co-evolutionary systems
such as credit assignment and the ratio of population sizes which can be thought

Preface XI

of as the memetic “load” that an evolving population can support. Chapter 12 dis-
cusses another trending topic in MAs, namely the combination of MAs with com-
plete techniques (i.e., techniques capable of provably finding the global optimum,
or guaranteeing approximation bounds), and with incomplete variants thereof. The
book also focuses on MAs for specific classes of optimization problems. Chapter 13
presents MA implementations for multi-objective optimization problems. Chapter
14 shows recent MA implementations for optimization problems in the presence of
uncertainties.

The third part contains Chapter 15 and 16 and gives some examples of domain
specific MA implementations and applications in given fields. Chapter 15 presents
relevant MA applications in engineering and design while Chapter 16 summarizes
the most significative applications of MAs in Bioinformatics.

Finally the fourth part, containing the epilogue of this book, Chapter 17 within
the context of biographical notes and anecdotes, present the ideas that guided MAs
at their earliest definition stage and how many open problems posed before can
guide the future development of the field.

We wish to express our sincere gratitude for all the external contributors of this
book who allowed us to produce a solid and high quality work covering a large
spectrum in the field of MAs. Last but not least, we thank our families and friends
for the constant support during the production of this volume.

Jyväskylä, Finland, June 2011 Ferrante Neri
Málaga, Spain, June 2011 Carlos Cotta
Newcastle, Australia, June 2011 Pablo Moscato

Contents

Part I: Foundations

1 Basic Concepts . 3
Ferrante Neri, Carlos Cotta
1.1 What Is Optimization? . 3
1.2 Optimization Can Be Hard . 5
1.3 Using Metaheuristics . 6

2 Evolutionary Algorithms . 9
Ágoston E. Eiben, James E. Smith
2.1 Motivation and Brief History . 9
2.2 What Is an Evolutionary Algorithm? . 10
2.3 Components of Evolutionary Algorithms. 12

2.3.1 Representation (Definition of Individuals) 13
2.3.2 Evaluation Function (Fitness Function) 14
2.3.3 Population . 14
2.3.4 Parent Selection Mechanism . 15
2.3.5 Variation Operators . 15
2.3.6 Survivor Selection Mechanism (Replacement) 17
2.3.7 Initialisation . 17
2.3.8 Termination Condition . 18

2.4 The Operation of an Evolutionary Algorithm 18
2.5 Evolutionary Algorithm Variants . 21
2.6 Designing and Tuning Evolutionary Algorithms 25
2.7 Concluding Remarks . 27

3 Local Search . 29
Marco A. Montes de Oca, Carlos Cotta, Ferrante Neri
3.1 Basic Concepts . 29
3.2 Neighborhoods and Local Optima . 30
3.3 Classifications of Local Search . 31
3.4 Local Search in Combinatorial Domains . 33

XIV Contents

3.4.1 Hill Climbing . 34
3.4.2 Simulated Annealing . 35
3.4.3 Tabu Search . 36

3.5 Local Search in Continuous Domains . 36
3.5.1 Classification of Local Search Techniques for

Continuous Domains . 37
3.5.2 Commonly Used Local Search Techniques in

Memetic Algorithms for Continuous Domains 38

4 A Primer on Memetic Algorithms . 43
Ferrante Neri, Carlos Cotta
4.1 Introduction . 43
4.2 The Need for Memetic Algorithms . 44
4.3 A Basic Memetic Algorithm Template . 46
4.4 Design Issues . 49
4.5 Conclusions and Outlook . 50
4.6 Memetic Algorithms and Memetic Computing 51

Part II: Methodology

5 Parametrization and Balancing Local and Global Search 55
Dirk Sudholt
5.1 Introduction . 55
5.2 Balancing Global and Local Search . 56

5.2.1 Early Works and the Effect of Local Search 56
5.2.2 Aspects That Determine the Optimal Balance 58
5.2.3 How to Find an Optimal Balance 60

5.3 Time Complexity of Local Search . 61
5.3.1 Polynomial and Exponential Times to Local

Optimality . 62
5.3.2 Intractability of Local Search Problems 63

5.4 Functions with Superpolynomial Performance Gaps 66
5.4.1 Functions Where the Local Search Depth Is

Essential . 67
5.4.2 Functions Where the Local Search Frequency Is

Essential . 69
5.5 Conclusions . 71

6 Memetic Algorithms in Discrete Optimization 73
Jin-Kao Hao
6.1 Introduction . 73
6.2 Survey of Memetic Algorithms for Discrete Optimization 74

6.2.1 Rationale . 74
6.2.2 Memetic Algorithms in Overview 75
6.2.3 Performance of Memetic Algorithms for Discrete

Optimization . 77

Contents XV

6.3 Special Design Considerations . 77
6.3.1 Design of Dedicated Local Search 77
6.3.2 Design of Semantic Combination Operator 81
6.3.3 Population Diversity Management 83
6.3.4 Other Issues . 85

6.4 Case Studies . 86
6.4.1 Graph Coloring Problems . 87
6.4.2 Maximum Parsimony Phylogeny . 89

6.5 Conclusions . 93

7 Memetic Algorithms and Fitness Landscapes in Combinatorial
Optimization . 95
Peter Merz
7.1 Introduction . 95
7.2 MAs in Combinatorial Optimization . 95

7.2.1 Combinatorial Optimization . 96
7.2.2 MA Outline . 96
7.2.3 Related Meta-Heuristics . 98

7.3 Why and When MAs Work . 98
7.3.1 The Concept of Fitness Landscapes 99
7.3.2 NK-Landscapes . 99
7.3.3 Analysis of Fitness Landscapes . 100

7.4 Case Study I: The TSP . 105
7.4.1 Fitness Landscape . 106
7.4.2 State-of-The-Art Meta-Heuristics for the TSP 108

7.5 Case Study II: The BQP . 111
7.5.1 Fitness Landscape . 112
7.5.2 State-of-the-Art Meta-Heuristics for the BQP 115
7.5.3 A Memetic Algorithm Using Innovative

Recombination . 116
7.6 Conclusion . 119

8 Memetic Algorithms in Continuous Optimization 121
Carlos Cotta, Ferrante Neri
8.1 Introduction and Basic Concepts . 121
8.2 Global and Local Continuous Optimization 122
8.3 Global Optimization Algorithms . 123

8.3.1 Stochastic Global Search, Brute Force and Random
Walk . 124

8.3.2 Evolution Strategy and Real Coded Evolutionary
Algorithms . 124

8.3.3 Particle Swarm Optimization . 127
8.3.4 Differential Evolution . 129

8.4 Particularities of Memetic Approaches for Continuous
Optimization . 131

XVI Contents

9 Memetic Algorithms in Constrained Optimization 135
Tapabrata Ray, Ruhul Sarker
9.1 Introduction . 135
9.2 Constrained Optimization . 136
9.3 Classification of MAs . 138
9.4 MAs with Conventional Representation . 138
9.5 MAs with Alternative Representations . 140
9.6 Numerical Case Studies . 142

9.6.1 Case Study 1: Infeasibility Empowered Memetic
Algorithm for Constrained Optimization Problems:
MA with Conventional Representation 142

9.6.2 Case Study 2: MA with Alternative Representation 147
9.7 Summary and Conclusions . 151

10 Diversity Management in Memetic Algorithms 153
Ferrante Neri
10.1 Introduction . 153
10.2 Handling the Diversity of Memetic Algorithms: A Short

Survey . 154
10.3 Fitness Diversity Adaptation . 157

10.3.1 Fitness Diversity Metrics . 158
10.3.2 Coordination of the Search: The “Natura non Facit

Saltus” Principle . 162
10.4 Conclusion . 164

11 Self-adaptative and Coevolving Memetic Algorithms 167
James E. Smith
11.1 Introduction . 167
11.2 Background . 168

11.2.1 MAs with Multiple LS Operators 168
11.2.2 Self-adaptation in EAs . 169
11.2.3 Co-evolutionary Systems . 169

11.3 A Framework for Self-adaption and Co-evolution of Memes
and Genes . 170
11.3.1 Specifying Local Search . 171
11.3.2 Adapting the Specification of Local Search 171

11.4 Test Suit and Methodology . 173
11.4.1 The Test Suite . 174
11.4.2 Experimental Set-Up and Terminology 174

11.5 Self-adaptation of Fixed and Varying Sized Rules 175
11.5.1 Self-adapting the Choice from a Fixed Set of Memes . . . 175
11.5.2 Self-adaptation of Meme Definitions 176
11.5.3 Results on Trap Functions . 176
11.5.4 Analysis of Results and Evolution of Rule Base 177
11.5.5 Benchmarking the Self-adaptive Systems 178
11.5.6 Summary of Self-adaptive Results 181

Contents XVII

11.6 Extension to True Co-evolution: the Credit Assignment
Problem . 181
11.6.1 Results: Reliability . 182
11.6.2 Results: Efficiency . 184

11.7 Varying the Population Sizes . 185
11.8 Conclusions . 188

12 Memetic Algorithms and Complete Techniques 189
Carlos Cotta, Antonio J. Fernández Leiva, José E. Gallardo
12.1 Introduction . 189
12.2 Background . 190
12.3 Classification of Hybridization Approaches 191
12.4 Integrative Combinations . 192
12.5 Collaborative Combinations . 195
12.6 Conclusions . 199

13 Multiobjective Memetic Algorithms . 201
Andrzej Jaszkiewicz, Hisao Ishibuchi, Qingfu Zhang
13.1 Introduction . 201
13.2 Basic Definition and Concepts . 202

13.2.1 Basic Concepts . 202
13.2.2 Aggregation Functions . 204
13.2.3 Weighted Sum Approach . 204
13.2.4 Tchebycheff Approach . 205

13.3 Adaptation of Memetic Algorithms for Multiobjective
Optimization – Basic Concepts . 205
13.3.1 Dominance-Based Evaluation Mechanisms 206
13.3.2 Aggregation Function-Based Evaluation

Mechanisms . 207
13.3.3 Problem Landscapes in Multiobjective Optimization . . . 208
13.3.4 Archive of Potentially Pareto-optimal Solutions 209
13.3.5 Evaluation of Multiobjective Memetic Algorithms 209

13.4 Examples of Multiobjective Memetic Algorithms 210
13.4.1 MOGLS of Ishibuchi and Murata 210
13.4.2 M-PAES . 210
13.4.3 NSGA-II with LS . 211
13.4.4 MOGLS of Jaszkiewicz . 211
13.4.5 RM-MEDA . 212
13.4.6 MOEA/D . 213
13.4.7 MGK Population Heuristic . 213
13.4.8 Memetic Approach by Chen and Chen 214
13.4.9 SPEA2 with LS . 214
13.4.10 Interactive Memetic Algorithm by Dias et al. 214
13.4.11 SMS-EMOA with Local Search . 214

13.5 Implementation of Multiobjective Memetic Algorithms 214
13.6 Conclusions . 217

XVIII Contents

14 Memetic Algorithms in the Presence of Uncertainties 219
Yoel Tenne
14.1 Motivation . 219
14.2 Uncertainty Due to Approximation . 220
14.3 Uncertainty Due to Robustness . 224
14.4 Uncertainty Due to Noise . 229
14.5 Uncertainty Due to Time-Dependency . 232
14.6 Conclusion . 237

Part III: Applications

15 Memetic Algorithms in Engineering and Design 241
Andrea Caponio, Ferrante Neri
15.1 Introduction . 241
15.2 Applications of MAs in Engineering Problems 242

15.2.1 Engineering Applications in Single-Objective
Optimization . 242

15.2.2 Engineering Applications in Multi-Objective
Optimization . 252

15.3 A Study Case: The Fast Adaptive Memetic Algorithm 255
15.3.1 An Insight into the Problem . 255
15.3.2 Fast Adaptive Memetic Algorithm 257

15.4 Conclusions . 259

16 Memetic Algorithms in Bioinformatics . 261
Regina Berretta, Carlos Cotta, Pablo Moscato
16.1 Introduction . 261
16.2 Microarray Data Analysis . 262

16.2.1 Clustering . 264
16.2.2 Feature Selection . 265

16.3 Phylogenetics . 266
16.4 Protein Structure Analysis and Molecular Design 267
16.5 Sequence Analysis . 269
16.6 Systems Biology . 270

Part IV: Epilogue

17 Memetic Algorithms: The Untold Story . 275
Pablo Moscato
17.1 Motivation, or Something Like That . 275
17.2 In the Beginning, There Was no Evolutionary Computation 276
17.3 Caltech and the Red Door Cafe . 281
17.4 Landscapes and the Correlation of Local Optima 285
17.5 Hierarchical Objective Functions and Memetic Algorithms

That Run on a “Segment” . 289
17.6 A Royal Visit to Argentina . 292

Contents XIX

17.7 To Brazil, without the Beaches . 296
17.8 Fixed-Parameter Tractability, and the Complexity of

Recombination . 299
17.9 Newcastle, Australia, and Biomedical Research Closer to the

Beach . 303
17.10 Future Opportunities (if We Constrain the Beast) 305

References . 311

Author Index . 361

Subject Index . 363

List of Contributors

Regina Berretta
Centre for Bioinformatics, Biomarker
Discovery and Information-Based Medicine,
The University of Newcastle, University
Drive, Callaghan, NSW, 2308, Australia
e-mail: Regina.Berretta@

newcastle.edu.au

Andrea Caponio
Technical University of Bari, Via E. Orabona
5, 70121 Bari, Italy
e-mail:
caponio@deemail.poliba.it

Carlos Cotta
ETSI Informática, Universidad de Málaga,
Campus de Teatinos,
29071 Málaga, Spain
e-mail: ccottap@lcc.uma.es

Ágoston E. Eiben
Free University,
Amsterdam, The Netherlands
e-mail: gusz@cs.vu.nl

Antonio J. Fernández Leiva
ETSI Informática, Universidad de Málaga,
Campus de Teatinos,
29071 Málaga, Spain
e-mail: afdez@lcc.uma.es

José E. Gallardo
ETSI Informática, Universidad de Málaga,
Campus de Teatinos,
29071 Málaga, Spain
e-mail: pepeg@lcc.uma.es

Jin-Kao Hao
LERIA, Université d’Angers, 2 Boulevard
Lavoisier,
49045 Angers Cedex 01, France
e-mail:
jin-kao.hao@univ-angers.fr

Hisao Ishibuchi
Department of Computer Science and
Intelligent Systems, Osaka Prefecture
University, 1-1 Gakuen-cho, Nakaku, Sakai,
Osaka 599-8531, Japan
e-mail:
hisaoi@cs.osakafu-u.ac.jp

Andrzej Jaszkiewicz
Poznan University of Technology, Institute
of Computing Science, Piotrowo 2, 60-965
Poznan, Poland
e-mail:
jaszkiewicz@cs.put.poznan.pl

Peter Merz
University of Kaiserslautern, Department of
Computer Science,

XXII List of Contributors

67653 Kaiserslautern, Germany
e-mail: peter.merz@ieee.org
and
University of Applied Sciences and Arts
Hannover, Department of Computer Science
and Business Administration, 30459
Hannover, Germany
e-mail:
peter.merz@fh-hannover.de

Marco Montes de Oca
IRIDIA, CoDE, Université Libre de
Bruxelles, Brussels, Belgium
e-mail: mmontes@ulb.ac.be

Pablo Moscato
Centre for Bioinformatics, Biomarker
Discovery and Information-based Medicine,
The University of Newcastle, University
Drive, Callaghan NSW 2308, Australia
e-mail:
Pablo.Moscato@newcastle.edu.au

Ferrante Neri
Department of Mathematical Information
Technology, P.O. Box 35 (Agora), 40014,
University of Jyväskylä, Finland
e-mail: ferrante.neri@jyu.fi

Tapabrata Ray
School of Engineering and Information
Technology, University of New South Wales

at Australian Defence Force Academy,
Canberra ACT 2600, Australia
e-mail: t.ray@adfa.edu.au

Ruhul Sarker
School of Engineering and Information
Technology, University of New South Wales
at Australian Defence Force Academy,
Canberra ACT 2600, Australia
e-mail: r.sarker@adfa.edu.au

James E. Smith
Department of Computer Science, University
of the West of England, Bristol,
BS16 1QY, UK
e-mail: james.smith@uwe.ac.uk

Dirk Sudholt
School of Computer Science, The University
of Birmingham Edgbaston,
Birmingham B15 2TT, UK
e-mail: d.sudholtcs.bham.ac.uk

Yoel Tenne
Department of Mechanical Engineering and
Science-Faculty of Engineering,
Kyoto University, Yoshida-honmachi,
Sakyo-ku, Kyoto 606-8501, Japan
e-mail: yoel.tenne@

ky3.ecs.kyoto-u.ac.jp

Qingfu Zhang
The School of Computer Science &
Electronic Engineering University of Essex,
Colchester, CO4 3SQ, UK
e-mail: qzhang@essex.ac.uk

Acronyms

ACA Adaptive Checkers Algorithm
ACO Ant Colony Optimization
ADM Adaptive Dual Mapping
AES Average Evaluation of Success
AGLMA Adaptive Global-Local Memetic Algorithm
AnDE Annealing Differential Evolution
ANN Artificial Neural Network
B&B Branch and Bound
BE Bucket Elimination
BLX Blended Crossover
BP Backpropagation algorithm
BQP Binary quadratic Programming
BS Beam Search
CA Checkers Algorithms
CDMOMA Cross-Dominance Multi-Objective Memetic Algorithm
CE Controlled Evaluation
CHC Cross generational elitist selection, Heterogeneous recombination,

and Cataclysmic mutation
CI Computational Intelligence
CMA-ES Covariance Matrix Adaptation Evolution Strategy
COMA Co-evolutionary Memetic Algorithm
COP Combinatorial Optimization Problem
ConOP Constrained Optimization Problem
CVRP Capacitated Vehicle Routing Problem
CCVRP Cumulative Vehicle Routing Problems
DE Differential Evolution
DFSS Design For Six Sigma
DiBIP Diversity-Based Information Preservation Crossover
DOR Dynastically Optimal Recombination

XXIV Acronyms

DPX Distance Preserving Crossover
DT Discrete Tomography
EA Evolutionary Algorithm
EC Evolutionary Computation
EDA Estimation of Distribution Algorithm
EIT Electrical Impedance Tomography
EMDE Enhanced Memetic Differential Evolution
EO Extremal Optimization
EP Evolutionary Programming
ET Exact Technique
FAMA Fast Adaptive Memetic Algorithm
FDA Fitness Diversity Adaptation
FDC Fitness Distance Correlation
FET Full Employment Theorem
FPGA Field Programmable Gate Array
FPT Fixed-Parameter Tractable
GA Genetic Algorithm
GARSS Genetic Algorithm with Robust Selection Scheme
GCHC Greedy Crossover Hill Climbing
GP Genetic Programming
GPX Greedy Partition Crossover
HC Hill Climbing
H-IFF Hierarchical-if-and-only-if
HJA Hooke-Jeeves Algorithm
HK Held-Karp bound
IDEA Infeasibility Driven Evolutionary Algorithm
IEMA Infeasibility Empowered Memetic Algorithm
ILK Iterated Lin-Kernighan heuristic
IPE Inexact Pre-Evaluation
k-COLOR graph k-Coloring Problem
LKH Lin-Kernighan Heuristic
LP Linear Programming
LS Local Search
LSD Least Significant Difference
LTFE Life Time Fitness Evaluation
MA Memetic Algorithm
MaxCMO Maximum Contact Map Overlap
MAX-SAT Maximum Satisfiability
MC Memetic Computing
MC-VRP Multi-Compartment Vehicle Routing Problem
MDE Memetic Differential Evolution
MOEA/D Multi-Objective Evolutionary Algorithm based on Decomposition
MOGLS Multi-Objective Genetic Local Search

Acronyms XXV

MOMA Multi-Objective Memetic Algorithm
MOO Multi-Objective Optimization
MOP Multi-objective Optimization Problem
MORA Multi-Objective Rosenbrock Algorithm
MSE Mean-Squared Error
MST Minimum Spanning Tree
NEWUOA NEW Unconstrained Optimization Algorithm
NFLT No Free Lunch Theorem
NSGA Non-dominated Sorting Genetic Algorithm
PALS Problem-Aware Local Search
PBIL Population-Based Incremental Learning
PCR Polymerase Chain Reaction
PD Proportional Derivative
PDMOSA Pareto Dominance Multi-Objective Simulated Annealing
PF Pareto Front
PI Proportional Integral
PID Proportional Integral Derivative
PLS Polynomial Local Search
PMSM Permanent Magnet Synchronous Motor
PNS Progressive Neighborhood Search
PTAS Polynomial Time Approximation Scheme
PSO Particle Swarm Optimization
QAP Quadratic Assignment Problem
QB Queen-Bee algorithm
RBF Radial Basis Function
REVAC Relevance Estimation and VAlue Calibration
RM-MEDA Regularity Model-Based Multi-objective Estimation of Distribution

Algorithm
SA Simulated Annealing
SIA Swarm Intelligence Algorithm
SLS Stochastic Local Search
SMHC Steepest Mutation hill Climbing
SNP Single Nucleotide Polymorphism
SNR Signal-to-Noise Ratio
SOM Self-Organizing Map
SPEA2 modified Strength Pareto Evolutionary Algorithm
SPMDE Super Fit Memetic Differential Evolution
SPO Sequential Parameter Optimization
SPOT Sequential Parameter Optimization Toolbox
SQP Sequential Quadratic Programming
SR Success Rate
SS Scatter Search
TR Trust Region

XXVI Acronyms

TRI Triggered Random Immigrants
TS Tabu Search
TSP Traveling Salesman Problem
UPGMA Unweighted Pair Group Method with Arithmetic Mean
VEGA Vector Evaluated Genetic Algorithm
VLS Variable Local Search
VLSI Very-Large Scale Integration
VRP Vehicle Routing Problem
WCSP Weighted constraint Satisfaction Problem

Part I

Chapter 1
Basic Concepts

Ferrante Neri and Carlos Cotta

1.1 What Is Optimization?

In every day life, we always have to make decisions, e.g. the path to choose in order
to go back home from work, the brand of milk in a supermarket, whether to watch
football or a movie on TV, etc. Some of these choices appear to us obvious while
some other choices require some thinking. Regardless of the context, decisions are
usually made in order to reach a certain goal or satisfy a given necessity. For ex-
ample, in the case of going back home from work, a reasonable goal would be to
choose a path which leads us back home in the shortest possible time. Let us assume
that the path should be performed by walking. In this case, the solution for the prob-
lem is likely to be the shortest path. This would be a simple optimization problem.
If the goal would be to be at home at the earliest time after having bought some-
thing in the city center, e.g. a visit a shop, we have to exclude some of the possible
paths. More specifically, we have to take into account only the paths which pass
through the shop. The path having the latter features are said to be feasible while
all the others are infeasible. The newly stated problem is a constrained optimization
problem. If an additional goal, beside being back at home in the shortest possible
time, is to take the opportunity for having some physical activities by means of a
long walk, two conflicting objectives must be taken into account and a compromise
must be accepted (e.g. a path that is not too long as to get home reasonably early but
also not too short as to have at least some physical activity). Due to the presence of
two simultaneous and conflicting goals, the latter is a multi-objective optimization
problem.

Ferrante Neri
Department of Mathematical Information Technology, P.O. Box 35 (Agora), 40014,
University of Jyväskylä, Finland
e-mail: ferrante.neri@jyu.fi

Carlos Cotta
Dept. de Lenguajes y Ciencias de la Computación. Universidad de Málaga,
Campus de Teatinos, 29071 Málaga, Spain
e-mail: ccottap@lcc.uma.es

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 3–7.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

4 F. Neri and C. Cotta

More mathematically, let us consider a solution x, i.e. a vector of n design vari-
ables (x1,x2, . . . ,xi, . . . ,xn). Each of the design variable xi can take values from a
domain Di (e.g., an interval [xL

i ,xU
i] if variables are continuous, or a certain dis-

crete collection of values otherwise). The Cartesian product of these domains for
each design variable is called the decision space D . Let us consider a set of func-
tions f1, f2, . . . , fm defined in D and returning real values. Under these conditions,
the most general statement of an optimization problem is given by the following
formulas:

Maximize/Minimize fm m = 1,2, . . . ,M

sub ject− to g j (x) � 0 j = 1,2, . . . ,J

hk (x) = 0 k = 1,2, . . . ,K

xL
i � xi � xU

i i = 1,2, . . . ,n

(1.1)

where g j and hk are inequality and equality constraints, respectively.
From the definition above, we can easily see that if m = 1 the problem is single-

objective, while for m > 1 the problem is multi-objective. The presence/absence of
the functions g j and hk make the problem more or less severely constrained. Finally,
the continuous or combinatorial nature of the problem is given by the fact that D is
a discrete or dense set. In other words, all the problems considered in this book can
be considered as specific cases of the general definition in equations (1.1).

In the continuous case, for each m the detection of a maximum or minimum point
requires the detection of those points characterized by a null gradient, i.e.:

∇ f =

⎡
⎢⎢⎢⎢⎣

∂
∂x1
∂
∂x2

. . .
∂
∂xn

⎤
⎥⎥⎥⎥⎦

= 0̄ (1.2)

In general, in a multidimensional continuous decision space D , there are several
points satisfying the condition in eq. (1.2). Some of these points are minima, some
are maxima and some are saddle points. While solving an optimization problem,
e.g., a minimization, it is fundamental to distinguish the three kinds of point. In order
to distinguish them, the determinant of the Hessian matrix should be discussed.
More specifically, the Hessian matrix is:

H (x) =

⎡
⎢⎢⎢⎢⎢⎣

∂ 2 f
∂x2

1

∂
∂x1

∂
∂x2

f . . . ∂
∂x1

∂
∂xn

f

∂
∂x2

∂
∂x1

f ∂2 f
∂x2

2
.

.
∂
∂xn

∂
∂x1

f ∂2 f
∂x2

n

⎤
⎥⎥⎥⎥⎥⎦

(1.3)

In order to check whether a point x0 is a minimum, a maximum, or a saddle point,
the determinant Δ of the Hessian matrix must be checked. If

1 Basic Concepts 5

Δ > 0 and
∂ 2 f

∂x2
0

> 0, (1.4)

x0 is a local minimum; if

Δ > 0 and
∂ 2 f

∂x2
0

< 0, (1.5)

x0 is a local maximum; if Δ < 0, x0 is a saddle point.
The situation is much more subtle in the case of combinatorial domains, in which

the notion of locality for optima is associated to a particular definition of neighbor-
hood among the discrete elements in D .

1.2 Optimization Can Be Hard

In real-world applications, it is usually not so important to detect local optima. The
global optimum is usually of interest for engineers and practitioners. Thus, in princi-
ple, all the null gradient points should be detected and analyzed before selecting the
global optimum. In practical problems, this set of operations is not always possible
as often the objective function is not differentiable within the entire decision space,
or is not even available in an explicit analytical form (being e.g. a procedure, a sim-
ulation, or an experiment measurement). In addition, it must be remarked that from
an engineering/application viewpoint it is fundamental to detect a solution which
displays a high performance and it is usually irrelevant whether or not this solution
corresponds to a null gradient.

When regarded from a computational perspective, the above ideas can be char-
acterized in terms of computational complexity. Assuming a certain computational
framework (e.g., Turing machines), it is possible to measure the amount of resources
(time or space to give two distinguished examples) that a certain algorithm requires
in order to fulfill its objective, e.g., finding the global optimum for a certain opti-
mization problem. By analyzing the growth of such resource consumption in terms
of the size of the problem instance considered it is possible to define complex-
ity classes of problems. More precisely, we can denote as REC(f (n)) the class of
problems for which there exists an algorithm (not necessarily the same algorithm
for all problems in the class) that solves any instance of size n using at most f (n)
units of resource REC. It is customary –yet sometimes unrealistic– to consider that
a problem is tractable if it can be solved in polynomial time, i.e., if it belongs to
class TIME(nk) for some fixed k. In case of decision problems (those for which a
yes/no response is sought), this definition amounts to the well-known class P.

Using the notion of reduction (an efficient1 mechanism for transforming an in-
stance of problem A into an instance of problem A′), we can define a problem A as
C-hard if any problem in class C can be reduced to A (hence A is at least as hard to
solve as any problem in C). If a problem is C-hard and also belongs to class C, it is

1 The notion of efficiency here refers to the particular complexity class under consideration,
e.g., polynomial time when studying classes in the polynomial hierarchy [701].

6 F. Neri and C. Cotta

termed C-complete. Problems complete for a class are useful in characterizing the
actual complexity of the class.

It turns out that many interesting problems are NP-complete when their deci-
sion version is considered, that is, they can be solved in polynomial time by a
non-deterministic Turing machine (or alternatively, a yes-solution can be verified
in polynomial time). Clearly, class P is a subset of class NP and, although yet un-
proven, it is widely believed that P is a proper subset of NP, i.e., P�=NP. This means
that no efficient –polynomial-time– algorithm is known to solve the problem to op-
timality. Furthermore, many real-world problems can also be shown to be hard to
approximate, i.e., there exist no efficient algorithm capable of providing solutions
whose quality is guaranteed to be within a certain distance of the optimum (several
complexity classes can be defined in terms of the approximation ratios attainable
[907]).

This complexity barrier can be dealt with using two different (and complemen-
tary) approaches. The first one is the use of parameterized complexity techniques.
These techniques try to factor out some part of the problem input as a parameter
k, and provide TIME(f (k)nc) (where c is a constant that does not depend on the
parameter k and f (·) is an arbitrary function of k) algorithms for these problems.
Assuming realistic instances of the problems would just exhibit low parameter val-
ues k, these algorithms turn out to provide efficient solutions to the problems under
consideration (which are thus termed fixed-parameter tractable). The second poten-
tial approach is the use of metaheuristics, as discussed next.

1.3 Using Metaheuristics

When hypotheses on the optimization problem cannot be made, a general purpose
optimization algorithm/procedure must be implemented for solving the problem or
at least detecting some solutions with a high performance. General purpose algo-
rithms are usually referred as metaheuristics from the ancient Greek words ���� and
�����	
 , i.e., literally “I search beyond” or more generally “beyond the search”, in
the sense that the search can be done at an abstract level to the result of another
search procedure.

Metaheuristics have been developed during the last decades jointly with the
progress of computational hardware and, nowadays, there exists a huge variety of
general purpose optimization algorithms. Some of them get their inspiration from
the nature, e.g. evolutionary principles, physical phenomena, animal behaviour, etc.,
in order to tackle the problem. These nature inspired methods are also known as
Computational Intelligence Optimization algorithms since they use Computational
Intelligence (CI) to face optimization problems. Traditionally, CI was identified as
subject including Fuzzy Systems, Neural Networks and Evolutionary Computation.
This definition appears today too restrictive and outdated, since other recently de-
fined algorithmic structures, such as Swarm Intelligence, can also fit within CI.
Amongst these emergent metaheuristics or, if we prefer, CI optimization algorithms,
Memetic Algorithms (MAs) represent a successful story which developed during the

1 Basic Concepts 7

last two decades and are year after year becoming an important CI paradigm which
allows the solution of complex optimization problems.

This book attempts to explain in depth the algorithmic and implementation as-
pects of this paradigm, its variations in optimization problems under specific cir-
cumstances, some implementation in specific application domains, and finally the
historical context where the terms have been coined and the early implementations
have been performed. More specifically, this book is divided into four parts, the first
about basic concepts and algorithmic components, the second is about specific MA
implementations and problems, and the third part is about MA applications. Finally,
the last part gives some historical background and biographical notes regarding the
earliest definition of MAs.

Acknowledgements. F. Neri is supported by the Academy of Finland, Akatemiatutkija
130600, Algorithmic Design Issues in Memetic Computing. C. Cotta is partially supported
by Spanish MICINN under project NEMESIS (TIN2008-05941) and by Junta de Andalucı́a
under project TIC-6083.

Chapter 2
Evolutionary Algorithms

Ágoston E. Eiben and James E. Smith

2.1 Motivation and Brief History

Developing automated problem solvers (that is, algorithms) is one of the central
themes of mathematics and computer science. Similarly to engineering, where look-
ing at Nature’s solutions has always been a source of inspiration, copying ‘natural
problem solvers’ is a stream within these disciplines. When looking for the most
powerful problem solver of the universe, two candidates are rather straightforward:

• the human brain, and
• the evolutionary process that created the human brain.

Trying to design problem solvers based on these answers leads to the fields of neu-
rocomputing and evolutionary computing respectively. The fundamental metaphor
of evolutionary computing (EC) relates natural evolution to problem solving in a
trial-and-error (a.k.a. generate-and-test) fashion.

In natural evolution, a given environment is filled with a population of individuals
that strive for survival and reproduction. Their fitness – determined by the environ-
ment – tells how well they succeed in achieving these goals, i.e., it represents their
chances to live and multiply. In the context of a stochastic generate-and-test style
problem solving process we have a collection of candidate solutions. Their quality
– determined by the given problem – determines the chance that they will be kept
and used as seeds for constructing further candidate solutions.

Surprisingly enough, this idea of applying Darwinian principles to automated
problem solving dates back to the forties, long before the breakthrough of comput-
ers [270]. As early as in 1948 Turing proposed “genetical or evolutionary search”

Ágoston E. Eiben
Free University, Amsterdam, The Netherlands
e-mail: gusz@cs.vu.nl

James E. Smith
UWE, Bristol, UK
e-mail: James.Smith@uwe.ac.uk

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 9–27.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

10 Á.E. Eiben and J.E. Smith

Table 2.1. The basic evolutionary computing metaphor linking natural evolution to problem
solving

EVOLUTION PROBLEM SOLVING

environment ←→ problem

individual ←→ candidate solution

fitness ←→ quality

and already in 1962 Bremermann actually executed computer experiments on “op-
timization through evolution and recombination”. During the sixties three different
implementations of the basic idea have been developed at three different places. In
the USA Fogel introduced evolutionary programming, [269, 271], while Holland
called his method a genetic algorithm [325, 389, 645]. In Germany Rechenberg and
Schwefel invented evolution strategies [761, 801]. For about 15 years these areas de-
veloped separately; it is since the early nineties that they are envisioned as different
representatives (“dialects”) of one technology that was termed evolutionary com-
puting [32, 36, 37, 235, 596]. It was also in the early nineties that a fourth stream
following the general ideas has emerged: Koza’s genetic programming [41, 483].
The contemporary terminology denotes the whole field by evolutionary comput-
ing, or evolutionary algorithms, and considers evolutionary programming, evolution
strategies, genetic algorithms, and genetic programming as sub-areas.

2.2 What Is an Evolutionary Algorithm?

As the history of the field suggests, there are many different variants of evolution-
ary algorithms. The common underlying idea behind all these techniques is the
same: given a population of individuals within some environment that has limited
resources, competition for those resources causes natural selection (survival of the
fittest). This in turn causes a rise in the fitness of the population. Given a quality
function to be maximised, we can randomly create a set of candidate solutions, i.e.,
elements of the function’s domain, commonly called individuals. We then apply the
quality function to these as an abstract fitness measure – the higher the better. On
the basis of these fitness values some of the better individuals are chosen to seed the
next generation. This is done by applying recombination and/or mutation to them.
Recombination is an operator that is applied to two or more selected individuals (the
so-called parents) producing one or more new candidates (the children). Mutation
is applied to one individual and results in one new individual. Therefore executing
the operations of recombination and mutation on the parents leads to the creation of
a set of new individuals (the offspring). These have their fitness evaluated and then
compete – based on their fitness (and possibly age)– with the old ones for a place in
the next generation. This process can be iterated until an individuals with sufficient
quality (a solution) is found or a previously set computational limit is reached.

2 Evolutionary Algorithms 11

There are two fundamental forces that form the basis of evolutionary systems:

• Variation operators (recombination and mutation) create the necessary diversity
within the population, and thereby facilitate novelty.
• Selection acts as a force increasing the mean quality of solutions in the popula-

tion. As opposed to variation operators, selection reduces diversity.

The combined application of variation and selection generally leads to improving
fitness values in consecutive populations. It is easy (although somewhat misleading)
to view this process as if evolution is optimising (or at least “approximising”) the
fitness function, by approaching the optimal values closer and closer over time. An
alternative view is that evolution may be seen as a process of adaptation. From
this perspective, the fitness is not seen as an objective function to be optimised,
but as an expression of environmental requirements. Matching these requirements
more closely implies an increased viability, which is reflected in a higher number
of offspring. The evolutionary process results in a population which is increasingly
better adapted to the environment.

It should be noted that many components of such an evolutionary process are
stochastic. Thus, although during selection fitter individuals have a higher chance
of being selected than less fit ones, typically even the weak individuals have a chance
of becoming a parent or of surviving. During the recombination process, the choice
of which pieces from the parents will be recombined is made at random. Similarly
for mutation, the choice of which pieces will be changed within a candidate solution,
and of the new pieces to replace them, is made randomly. The general scheme of an
evolutionary algorithm is given in Fig. 1 in a pseudocode fashion.

Algorithm 1. The general scheme of an evolutionary algorithm in pseudocode

INITIALISE population with random individuals;1

EVALUATE each individual;2

repeat3

SELECT parents;4

RECOMBINE pairs of parents;5

MUTATE the resulting offspring;6

EVALUATE new individuals;7

SELECT individuals for the next generation;8

until TERMINATION CONDITION is satisfied ;9

It is easy to see that this scheme falls into the category of generate-and-test algo-
rithms. The evaluation (fitness) function represents a heuristic estimation of solution
quality, and the search process is driven by the variation and selection operators.
Evolutionary algorithms possess a number of features that can help to position them
within the family of generate-and-test methods:

• EAs are population based, i.e., they process a whole collection of candidate
solutions simultaneously.

12 Á.E. Eiben and J.E. Smith

• EAs mostly use recombination, mixing information from two or more candidate
solutions to create a new one.
• EAs are stochastic.

The various dialects of evolutionary computing that we have mentioned previously
all follow these general outlines, differing only in technical details as shown in the
overview table (2.2) later on in this chapter. In particular, the representation of a
candidate solution is often used to characterise different streams. Typically the rep-
resentation (i.e., the data structure encoding an individual) has the form of; strings
over a finite alphabet in genetic algorithms (GAs), real-valued vectors in evolution
strategies (ESs), finite state machines in classical evolutionary programming (EP),
and trees in genetic programming (GP). The origin of these differences is mainly
historical. Technically, one representation might be preferable to others if it matches
the given problem better; that is, it makes the encoding of candidate solutions easier
or more natural. For instance, when solving a satisfiability problem with n logical
variables, the straightforward choice is to use bit-strings of length n, hence the ap-
propriate EA would be a genetic algorithm. To evolve a computer program that can
play checkers, trees are well-suited (namely, the parse trees of the syntactic expres-
sions forming the programs), thus a GP approach is likely. It is important to note
that the recombination and mutation operators working on candidates must match
the given representation. Thus, for instance, in GP the recombination operator works
on trees, while in GAs it operates on strings. In contrast to variation operators, the
selection process only takes fitness information into account, and so it works in-
dependently from the choice of representation. Therefore differences between the
selection mechanisms commonly applied in each stream are a matter of tradition
rather than of technical necessity.

2.3 Components of Evolutionary Algorithms

In this section we discuss evolutionary algorithms in detail. There are a number of
components, procedures, or operators that must be specified in order to define a
particular EA. The most important components, indicated by italics in Fig. 1, are:

• Representation (definition of individuals)
• Evaluation function (or fitness function)
• Population
• Parent selection mechanism
• Variation operators, recombination and mutation
• Survivor selection mechanism (replacement)

To create a complete, run-able, algorithm, it is necessary to specify each of these
components and to define the initialisation procedure and a termination condition.

2 Evolutionary Algorithms 13

2.3.1 Representation (Definition of Individuals)

The first step in defining an EA is to link the “real world” to the “EA world”, that
is, to set up a bridge between the original problem context and the problem-solving
space where evolution takes place. Objects forming possible solutions within the
original problem context are referred to as phenotypes, while their encoding, that
is, the individuals within the EA, are called genotypes. This first design step is
commonly called representation, as it amounts to specifying a mapping from the
phenotypes onto a set of genotypes that are said to represent them. For instance,
given an optimisation problem where the possible solutions are integers, the given
set of integers would form the set of phenotypes. In this case one could decide to
represent them by their binary code, so for example the value 18 would be seen as
a phenotype, and 10010 as a genotype representing it. It is important to understand
that the phenotype space can be very different from the genotype space, and that the
whole evolutionary search takes place in the genotype space. A solution – a good
phenotype – is obtained by decoding the best genotype after termination. Therefore
it is desirable that the (optimal) solution to the problem at hand – a phenotype – is
represented in the given genotype space.

Within the Evolutionary Computation literature many synonyms can be found for
naming the elements of these two spaces.

• On the side of the original problem context the terms candidate solution, phe-
notype, and individual are all used to denote points in the space of possible
solutions. This space itself is commonly called the phenotype space.
• On the side of the EA, the terms genotype, chromosome, and again individual

are used to denote points in the space where the evolutionary search actually
takes place. This space is often termed the genotype space.
• There are also many synonymous terms for the elements of individuals. A place-

holder is commonly called a variable, a locus (plural: loci), a position, or – in a
biology-oriented terminology – a gene. An object in such a place can be called
a value or an allele.

It should be noted that the word “representation” is used in two slightly different
ways. Sometimes it stands for the mapping from the phenotype to the genotype
space. In this sense it is synonymous with encoding, e.g., one could mention binary
representation or binary encoding of candidate solutions. The inverse mapping from
genotypes to phenotypes is usually called decoding, and it is necessary that the
representation should be invertible so that for each genotype there is at most one
corresponding phenotype. The word representation can also be used in a slightly
different sense, where the emphasis is not on the mapping itself, but on the “data
structure” of the genotype space. This interpretation is the one we use when, for
example, we speak about mutation operators for binary representation.

14 Á.E. Eiben and J.E. Smith

2.3.2 Evaluation Function (Fitness Function)

The role of the evaluation function is to represent the requirements the population
should adapt to. It forms the basis for selection, and so it facilitates improvements.
More accurately, it defines what “improvement” means. From the problem-solving
perspective, it represents the task to be solved in the evolutionary context. Tech-
nically, it is a function or procedure that assigns a quality measure to genotypes.
Typically, this function is composed from a quality measure in the phenotype space
and the inverse representation. To stick with the example above, if the task is to find
an integer x that maximises x2, the fitness of the genotype 10010 could be defined
as the square of its corresponding phenotype: 182 = 324.

The evaluation function is commonly called the fitness function in EC. This
might cause a counterintuitive terminology if the original problem requires min-
imisation, because the term fitness is usually associated with maximisation. Mathe-
matically, however, it is trivial to change minimisation into maximisation, and vice
versa.

Quite often, the original problem to be solved by an EA is an optimisation prob-
lem. In this case the name objective function is often used in the original problem
context, and the evaluation (fitness) function can be identical to, or a simple trans-
formation of, the given objective function.

2.3.3 Population

The role of the population is to hold (the representation of) possible solutions. A
population is a multiset1 of genotypes. The population forms the unit of evolution.
Individuals are static objects that do not change or adapt; it is the population that
does. Given a representation, defining a population may be as simple as specifying
how many individuals are in it, that is, setting the population size. Alternatively, in
some sophisticated EAs a population has an additional spatial structure, defined via
a distance measure or a neighbourhood relation. This may be thought of as akin to
the way that “real” populations evolve within the context of a spatial structure dic-
tated by the individuals’ geographical position on earth. In such cases the additional
structure must also be defined in order to fully specify a population. In contrast to
variation operators, that act on one or more parent individuals, the selection opera-
tors (parent selection and survivor selection) work at the population level. In general,
they take the whole current population into account, and choices are always made
relative to what is currently present. For instance, the best individual of a given pop-
ulation is chosen to seed the next generation, or the worst individual of the given
population is chosen to be replaced by a new one. In almost all EA applications the
population size is constant and does not change during the evolutionary search.

The diversity of a population is a measure of the number of different solutions
present. No single measure for diversity exists. Typically people might refer to
the number of different fitness values present, the number of different phenotypes

1 A multiset is a set where multiple copies of an element are possible.

2 Evolutionary Algorithms 15

present, or the number of different genotypes. Other statistical measures such as en-
tropy are also used. Note that the presence of only one fitness value in a population
does not necessarily imply that only one phenotype is present, since many pheno-
types may have the same fitness. Equally, the presence of only one phenotype does
not necessarily imply only one genotype. The converse is, however, not true: if only
one genotype is present then this implies only one phenotype and fitness value are.

2.3.4 Parent Selection Mechanism

The role of parent selection or mating selection is to distinguish among individuals
based on their quality, and in particular, to allow the better individuals to become
parents of the next generation. An individual is a parent if it has been selected to
undergo variation in order to create offspring. Together with the survivor selection
mechanism, parent selection is responsible for pushing quality improvements. In
EC, parent selection is typically probabilistic. Thus, high-quality individuals have
more chance of becoming parents than those with low quality. Nevertheless, low-
quality individuals are often given a small, but positive chance; otherwise the whole
search could become too greedy and get stuck in a local optimum.

2.3.5 Variation Operators

The role of variation operators is to create new individuals from old ones. In the
corresponding phenotype space this amounts to generating new candidate solutions.
From the generate-and-test search perspective, variation operators perform the “gen-
erate” step. In principle, there is no restriction on how such variation operators work.
The variation operators in the traditional EA dialects are usually divided into two
types based on their arity, distinguishing unary and n-ary (n > 1) operators. Such a
division can also be made for the newest members of the EA family, such as differ-
ential evolution [733] or particle swarm optimisation methods [457].

2.3.5.1 Mutation

A unary variation operator is commonly called mutation. It is applied to one geno-
type and delivers a (slightly) modified mutant, the child or offspring. A mutation
operator is always stochastic: its output – the child – depends on the outcomes of
a series of random choices. It should be noted that an arbitrary unary operator is
not necessarily seen as mutation. For example, it might be tempting to use the term
mutation to describe a problem-specific heuristic operator which acts on one in-
dividual2. However, in general mutation is supposed to cause a random, unbiased
change. For this reason it might be more appropriate not to call heuristic unary
operators mutation. The role of mutation has historically been different in vari-
ous EC dialects. Thus, in genetic programming for instance, it is often not used
at all, whereas in genetic algorithms it has traditionally been seen as a background

2 Such operators are used frequently in memetic algorithms.

16 Á.E. Eiben and J.E. Smith

operator, used to fill the gene pool with “fresh blood”, and in evolutionary program-
ming it is the sole variation operator responsible for the whole search work.

It is worth noting that variation operators form the evolutionary implementation
of elementary steps within the search space. Generating a child amounts to step-
ping to a new point in this space. From this perspective, mutation has a theoretical
role as well: it can guarantee that the space is connected. There are theorems which
state that an EA will (given sufficient time) discover the global optimum of a given
problem. These often rely on this “connectedness” property that each genotype rep-
resenting a possible solution can be reached by the variation operators [236]. The
simplest way to satisfy this condition is to allow the mutation operator to “jump”
everywhere: for example, by allowing that any allele can be mutated into any other
with a nonzero probability. However, it should also be noted that many researchers
feel these proofs have limited practical importance, and many implementations of
EAs do not in fact possess this property.

2.3.5.2 Recombination

A binary variation operator is called recombination or crossover. As the names
indicate, such an operator merges information from two parent genotypes into one
or two offspring genotypes. Like mutation, recombination is a stochastic operator:
the choices of what parts of each parent are combined, and how this is done, depend
on random drawings. Again, the role of recombination differs between EC dialects:
in genetic programming it is often the only variation operator, and in genetic algo-
rithms it is seen as the main search operator, whereas in evolutionary programming
it is never used. Recombination operators with a higher arity (using more than two
parents) are mathematically possible and easy to implement, but have no biologi-
cal equivalent. Perhaps this is why they are not commonly used, although several
studies indicate that they have positive effects on the evolution [234].

The principle behind recombination is simple – by mating two individuals with
different but desirable features, we can produce an offspring that combines both of
those features. This principle has a strong supporting case – for millennia it has
been successfully applied by plant and livestock breeders to produce species that
give higher yields or have other desirable features. Evolutionary algorithms create
a number of offspring by random recombination, and we hope that while some will
have undesirable combinations of traits, and most may be no better or worse than
their parents, some will have improved characteristics. The biology of the planet
Earth, where with a very few exceptions lower organisms reproduce asexually, and
higher organisms always reproduce sexually [569, 570], suggests that recombina-
tion is the superior form of reproduction. However recombination operators in EAs
are usually applied probabilistically, that is, with a non-zero chance of not being
performed.

It is important to remember that variation operators are representation dependent.
Thus for different representations different variation operators have to be defined.
For example, if genotypes are bit-strings, then inverting a 0 to a 1 (1 to a 0) can be

2 Evolutionary Algorithms 17

used as a mutation operator. However, if we represent possible solutions by tree-like
structures another mutation operator is required.

2.3.6 Survivor Selection Mechanism (Replacement)

The role of survivor selection or environmental selection is to distinguish among
individuals based on their quality. In that, it is similar to parent selection, but it is
used in a different stage of the evolutionary cycle. The survivor selection mechanism
is called after the creation of the offspring from the selected parents. As mentioned
in Sect. 2.3.3, in EC the population size is almost always constant, which means
that a choice has to be made about which individuals will be allowed in to the next
generation. This decision is often based on their fitness values, favouring those with
higher quality, although the concept of age is also frequently used. In contrast to par-
ent selection, which is typically stochastic, survivor selection is often deterministic.
Thus, for example, two common methods are the fitness-based method of ranking
the unified multiset of parents and offspring and selecting the top segment, or the
age-biased approach of selecting only from the offspring.

Survivor selection is also often called replacement or the replacement strategy.
In many cases the two terms can be used interchangeably, and so the choice of
which to use is often arbitrary. A good reason to use the name survivor selection is
to keep terminology consistent: steps 1 and 5 in Fig. 1 are both named selection,
distinguished by an adjective. A preference for using replacement can be motivated
if there is a large difference between the number of individuals in the population and
the number of newly-created children. In particular, if the number of children is very
small with respect to the population size, e.g., 2 children and a population of 100. In
this case, the survivor selection step is as simple as choosing the two old individuals
that are to be deleted to make places for the new ones. In other words, it is more
efficient to declare that everybody survives unless deleted and to choose whom to
replace. If the proportion is not skewed like this, e.g., 500 children made from a
population of 100, then this is not an option, so using the term survivor selection is
appropriate.

2.3.7 Initialisation

Initialisation is kept simple in most EA applications, the first population is seeded
by randomly generated individuals. In principle, problem-specific heuristics can be
used in this step, to create an initial population with higher fitness. Whether this is
worth the extra computational effort, or not, very much depends on the application
at hand. There are, however, some general observations concerning this issue based
on the so-called anytime behaviour of EAs. These are discussed in Sect. 2.4.

18 Á.E. Eiben and J.E. Smith

2.3.8 Termination Condition

We can distinguish two cases of a suitable termination condition. If the problem
has a known optimal fitness level, probably coming from a known optimum of the
given objective function, then in an ideal world our stopping condition would be the
discovery of a solution with this fitness , albeit perhaps only within a given precision
ε > 0. However, EAs are stochastic and mostly there are no guarantees of reaching
such an optimum, so this condition might never get satisfied, and the algorithm may
never stop. Therefore we must extend this condition with one that certainly stops
the algorithm. The following options are commonly used for this purpose:

1. The maximally allowed CPU time elapses.
2. The total number of fitness evaluations reaches a given limit.
3. The fitness improvement remains under a threshold value for a given period of

time (i.e., for a number of generations or fitness evaluations).
4. The population diversity drops under a given threshold.

Technically, the actual termination criterion in such cases is a disjunction: optimum
value hit or condition x satisfied. If the problem does not have a known optimum,
then we need no disjunction. We simply need a condition from the above list, or a
similar one that is guaranteed to stop the algorithm.

2.4 The Operation of an Evolutionary Algorithm

Evolutionary algorithms have some rather general properties concerning how they
work. To illustrate how an EA typically works, we will assume a one-dimensional
objective function to be maximised. Fig. 2.1 shows three stages of the evolutionary
search, showing how the individuals might typically be distributed in the beginning,
somewhere halfway, and at the end of the evolution. In the first phase, directly af-
ter initialisation, the individuals are randomly spread over the whole search space
(Fig. 2.1, left). After only a few generations this distribution changes: because of
selection and variation operators the population abandons low-fitness regions and
starts to “climb” the hills (Fig. 2.1, middle). Yet later (close to the end of the search,
if the termination condition is set appropriately), the whole population is concen-
trated around a few peaks, some of which may be suboptimal. In principle it is
possible that the population might climb the “wrong” hill, leaving all of the in-
dividuals positioned around a local but not global optimum. Although there is no
universally accepted definition of what the terms mean, these distinct phases of the
search process are often categorised in terms of exploration (the generation of new
individuals in as yet untested regions of the search space), and exploitation (the
concentration of the search in the vicinity of known good solutions). Evolutionary
search processes are often referred to in terms of a trade-off between exploration and
exploitation. Too much of the former can lead to inefficient search, and too much of
the latter can lead to a propensity to focus the search too quickly. Premature con-
vergence is the well-known effect of losing population diversity too quickly, and

2 Evolutionary Algorithms 19

begin halfway end

Fig. 2.1. Typical progress of an EA illustrated in terms of population distribution

getting trapped in a local optimum. This danger is generally present in evolutionary
algorithms.

The other effect we want to illustrate is the anytime behaviour of EAs. We show
this by plotting the development of the population’s best fitness (objective function)
value over time (Fig. 2.2). This curve is characteristic for evolutionary algorithms,
showing rapid progress in the beginning and flattening out later on. This is typical
for many algorithms that work by iterative improvements to the initial solution(s).
The name “anytime” comes from the property that the search can be stopped at any
time, and the algorithm will have some solution, even if it is suboptimal.

Fig. 2.2. Typical progress of an EA illustrated in terms of development over time of the
highest fitness in the population

Based on this anytime curve we can make some general observations concern-
ing initialisation and the termination condition for EAs. In Section 2.3.7 we ques-
tioned whether it is worth putting extra computational effort into applying intelligent
heuristics to seed the initial population with better-than-random individuals. In gen-
eral, it could be said that the typical progress curve of an evolutionary process makes
it unnecessary. This is illustrated in Fig. 2.3. As the figure indicates, using heuristic
initialisation can start the evolutionary search with a better population. However,
typically a few (k in the figure) generations are enough to reach this level, making
the worth of extra effort questionable in general.

The anytime behaviour also gives some general indications regarding the choice
of termination conditions for EAs. In Fig. 2.4 we divide the run into two equally
long sections. As the figure indicates, the progress in terms of fitness increase in

20 Á.E. Eiben and J.E. Smith

Fig. 2.3. Illustration of why heuristic initialisation might not be worth additional effort. Level
a shows the best fitness in a randomly initialised population, level b belongs to heuristic
initialisation

Fig. 2.4. Illustration of why long runs might not be worth performing. X shows the progress
in terms of fitness increase in the first half of the run, while Y belongs to the second half

the first half of the run (X) is significantly greater than in the second half (Y). This
provides a general suggestion that it might not be worth allowing very long runs. In
other words, because of frequently observed anytime behaviour of EAs, we might
surmise that effort spent after a certain time (number of fitness evaluations) are
unlikely to result in better solution quality.

We close this review of EA behaviour by looking at EA performance from a
global perspective. That is, rather than observing one run of the algorithm, we con-
sider the performance of EAs for a wide range of problems. Fig. 2.5 shows the
1980s view after Goldberg [325]. What the figure indicates is that robust problem
solvers –as EAs are claimed to be– show a roughly evenly good performance over
a wide range of problems. This performance pattern can be compared to random
search and to algorithms tailored to a specific problem type. EAs clearly outperform
random search. In contrast, a problem-tailored algorithm performs much better than
an EA, but only on the type of problem for which it was designed. As we move
away from this problem type to different problems, the problem-specific algorithm
quickly loses performance. In this sense, EAs and problem-specific algorithms form
two opposing extremes. This perception played an important role in positioning EAs
and stressing the difference between evolutionary and random search, but it grad-
ually changed in the 1990s based on new insights from practise as well as from

2 Evolutionary Algorithms 21

Fig. 2.5. 1980s view of EA performance after Goldberg [325]

theory. The contemporary view acknowledges the possibility of combining the two
extremes into a hybrid algorithm. This insight is the main premise behind memetic
algorithms that form the subject matter of the present book.

2.5 Evolutionary Algorithm Variants

Throughout this chapter we present evolutionary computing as one problem-solving
paradigm, mentioning four historical types of EAs as “dialects”. These dialects have
emerged independently to some extent (except GP that grew out of GAs) and de-
veloped their own terminology, research focus, and technical solutions to realise
particular evolutionary algorithm features. The differences between them, however,
are not crisp – there are many examples of EAs that are hard to place into one of the
historical categories. It is one of our main messages that such a division is not highly
relevant, even though it may be helpful in some cases. Existing literature however,
often uses the names of these dialects to position a particular method and we feel
that a good introduction should also include some information about them. To this
end, we provide a simple summary in Table 2.2.

It is worth to note that the borders between the four main EC streams have di-
minishined over the last decade. Approaching EAs from a “unionist” perspective it
is better not to distinguish different EAs by the traditional stream they belong to,
but by their main algorithmic components: representation, recombination operator,
mutation operator, parent selection operator, and survivor selection operator. Re-
viewing the details of the commonly used operators and related parameters exceeds
the scope of this chapter. Hence, we are forced to use (the names of) them without
further explanation here and refer to a modern text book, such as [239] or [193],
for those details. Table 2.3 provides an illustration showing how particular choices
can lead to a typical genetic algorithm or evolution strategy, thus linking the two
perspectives.

Considering Table 2.3, one may notice that it does not provide all details needed
for a complete specification of an evolutionary algorithm. For instance, the popula-
tion size is not specified. This observation raises the issue of algorithm parameters
and, one step further, the issue of algorithm design.

22 Á.E. Eiben and J.E. Smith

Table 2.2. Overview of the main EA dialects

Component EA Dialect

or feature GA ES EP GP

Typical problems Combinatorial Continuous Optimisation Modelling

optimisation optimisation

Typical Strings over a Vectors of Appl. specific Trees

representation finite alphabet real numbers often as in ES

Role of Primary variation Important, but Never applied Primary/only

recombination operator secondary variation operator

Role of Secondary Important, The only Secondary,

mutation variation sometimes the variation sometimes

operator only operator operator not used at all

Parent Random, biased Random, Each individual Random, biased by

selection by fitness uniform creates one child fitness

Survivor Random, Deterministic, Random, Random,

selection biased by biased by biased by biased by

fitness fitness fitness fitness

Table 2.3. A typical GA and ES as an instantiation of the generic EA scheme

GA ES

Representation bit-strings real-valued vectors

Recombination 1-point crossover intermediary

Mutation bit-flip Gaussian noise by N(0,σ)

Parent selection 2-tournament uniform random

Survivor selection generational (μ,λ)
Extra none self-adaptation of σ

In the broad sense, algorithm design includes all decisions needed to specify an
algorithm for solving a given (type of) problem. A decision to use evolutionary algo-
rithms implies a general algorithmic framework – the one described in the beginning
of this chapter. Using such an algorithmic framework implies that the algorithm de-
signer adopts many design decisions (that led to the framework) and only needs to
specify a “few” details. The principal challenge for algorithm designers is caused by
the fact that the design details largely influence the performance of the algorithm. A
well designed EA can perform orders of magnitude better than one based on poor
choices. Hence, algorithm design in general, and EA design in particular, is an op-
timization problem itself, where the objective to be optimised is the performance of
the EA.

As stated above, designing an EA for solving a given problem requires fill-
ing in the details of the generic EA framework appropriately. To denote these

2 Evolutionary Algorithms 23

details one can use the term EA parameters. Using this terminology, designing
an EA for a given application amounts to selecting good values for the param-
eters. For instance, the definition of an EA might include setting the parameter
crossoveroperator to onepoint, the parameter crossoverrate to 0.5, and the
parameter populationsize to 100. In principle, this is a sound naming conven-
tion, but intuitively, there is a difference between choosing a good crossover opera-
tor from a given list, e.g., {onepoint,uniform,averaging}, and choosing a good
value for the related crossover rate pc ∈ [0,1]. This difference can be formalised if
we distinguish parameters by their domains. The parameter crossoveroperator
has a finite domain with no sensible distance metric or ordering, whereas the domain
of the parameter pc is a subset of IR with the natural structure for real numbers. This
difference is essential for searchability of the design space. For parameters with
a domain that has a distance metric, or is at least partially ordered, one can use
heuristic search and optimization methods to find optimal values. For the first type
of parameters this is not possible because the domain has no exploitable structure.
The only option in this case is sampling.

The difference between these two types of parameters has already been noted in
evolutionary computing, but various authors use various naming conventions. For
instance, [47] uses the names qualitative and quantitative parameters respectively,
[951] distinguishes between symbolic and numeric parameters, while [67] calls them
categorical and numerical. Furthermore, [819] calls unstructured parameters com-
ponents and the elements of their domains operators and in the corresponding ter-
minology a parameter is instantiated by a value, while a component is instantiated
by allocating an operator to it. In the context of statistics and data mining one distin-
guishes two types of variables (rather than parameters) depending on the presence
of an ordered structure, but a universal terminology is lacking here too. Commonly
used names are nominal vs. ordinal and categorical vs. ordered variables. Look-
ing at it from a technical perspective, the very essence of the matter is the pres-
ence/absence of a (partial) ordering which is pivotal to searchability. This aspect is
best captured through the names ordered and unordered parameters.

Table 2.4. Possible pairs of terms to distinguish the two types of EA parameters

Type I Type II

qualitative parameter quantitative parameter

symbolic parameter numeric parameter

categorical parameter numerical parameter

component parameter

nominal variable ordinal variable

categorical variable ordered variable

unordered parameter ordered parameter

24 Á.E. Eiben and J.E. Smith

For a clear distinction between these cases we propose to use the terms qualitative
parameter and quantitative parameter and to call the elements of the parameter’s
domain parameter values.3 In practice, quantitative parameters are mostly numeri-
cal values, e.g., the parameter crossover rate uses values from the interval [0,1], and
qualitative parameters are often symbolic, e.g., crossoveroperator. However, in
general, quantitative parameters and numerical parameters are not the same, because
it is possible to have an ordering on a set of symbolic values - for example colours
may be ordered by how they appear in the rainbow. Note that the terminology we
propose here does not refer to the presence/absence of the (partial) ordering. In this
respect, ordered vs. unordered could have been be better, but we prefer quantitative
and qualitative for non-technical reasons, feeling that their use is more natural.

It is important to note that the number of parameters of EAs is not speci-
fied in general. Depending on particular design choices one might obtain dif-
ferent numbers of parameters. For instance, instantiating the qualitative param-
eter parentselection by tournament implies a new quantitative parameter
tournamentsize. However, choosing for roulettewheel does not add any pa-
rameters. This example also shows that there can be a hierarchy among parameters.
Namely, qualitative parameters may have quantitative parameters “under them”. If
an unambiguous treatment requires we can call such parameters sub-parameters,
always belonging to a qualitative parameter.

Distinguishing qualitative and quantitative parameters naturally leads to distin-
guishing two levels in designing a specific EA for a given problem. In the resulting
terminology we say that the high-level qualitative parameters define the EA, while
the low-level quantitative parameters define a variant of this EA. Table 2.5 illustrates
this matter.

Adopting this naming convention we can give a detailed answer to the question
that forms the title of this chapter: What are Evolutionary Algorithms? An evolu-
tionary algorithm is a partial instantiation of the generic EA framework where the
values to instantiate qualitative parameters are defined, but the quantitative parame-
ters are not. After specifying all details, including the values for all parameters, we
obtain an EA instance. This terminology enables precise formulations, meanwhile it
enforces care with phrasing. Clearly, this distinction between EAs and EA instances
is similar to distinguishing problems and problem instances. For example, “TSP”
represents the set of all possible problem configurations of the travelling salesman
problem, whereas an instance is one specific problem, e.g., the 10 cities TSP with
a given distance matrix D and Euclidean metric. If rigorous terminology is required
then the right phrasing is “to apply an EA instance to a problem instance”.

3 Parameter values belonging to qualitative parameters, e.g., one-point-crossover, uniform-
crossover, or tournament-selection, ranked-biased-selection, are usually called operators.
This is fully consistent with our proposal here and can be seen as a matter of an additional
naming convention.

2 Evolutionary Algorithms 25

Table 2.5. Three EA instances specified by the qualitative parameters: Representation, re-
combination, mutation, parent selection, survivor selection, and the quantitative parameters :
mutation rate (pm), mutation step size (σ), crossover rate (pc), population size (μ), offspring
size (λ), and tournament size. The EA instances in columns EA1 and EA2 are just variants of
the same EA. The EA instance in column EA3 belongs to a different EA.

EA1 EA2 EA3

Representation bitstring bitstring real-valued

Recombination 1-point 1-point averaging

Mutation bit-flip bit-flip Gaussian N(0,σ)

Parent selection tournament tournament uniform random

Survivor selection generational generational (μ,λ)
pm 0.01 0.1 0.05

σ n.a. n.a 0.1

pc 0.5 0.7 0.7

μ 100 100 10

λ n.a. n.a. 70

tournament size 2 4 n.a.

2.6 Designing and Tuning Evolutionary Algorithms

As mentioned above, designing an good EA is in fact an optimisation problem. This
problem is far from trivial, because there is very little known in general about the
influence of EA parameters on EA performance. Most researchers and practitioners
agree that the parameters of EAs interact with each other in a complex, non-linear
way and even after 30 years of research there are only vague heuristics for design-
ing a good EA instance for a given problem. In practice, the EA is often chosen
intuitively or driven by habits, e.g., one may have a personal preference for GAs,
while others’ default could be ES. After that, parameter values are mostly selected
by conventions (mutation rate should be low), ad hoc choices (why not use uniform
crossover), and experimental comparisons on a limited scale (testing combinations
of three different crossover rates and three different mutation rates).

Figure 2.6 shows the general scheme of the EA design process attempting to op-
timise algorithm performance on a given problem.4 The designer is testing different
parameter values, whose utility is determined by the performance of the correspond-
ing EA instance on the given problem instance. Formally, such a design session is
a trial-and-error (a.k.a. generate-and-test) procedure, resulting in specific values for
the parameters of the EA in question. Given that all parameters of an EA must
be specified before it can be applied, finding good parameter values is an absolutely
necessary condition for any application, hence an immediate need for all researchers

4 To be very precise: optimise the performance of an EA instance on a given problem
instance.

26 Á.E. Eiben and J.E. Smith

Fig. 2.6. Illustration of 3-tier hierarchy behind EA design showing the control flow (left), and
the information flow (right).

and practitioners. In this light, it is odd that the evolutionary computing community
has not adopted algorithmic optimisers to solve the EA parameter tuning problem.
Ironically, it has been noted long ago that the EA tuning problem falls in the problem
class where EAs are claimed to be competitive solvers:

• the given problem has many parameters leading to a large search space,
• the problem has parameters of different types (e.g., reals, integers, symbolic

values),
• there are complex non-linear interactions between the parameters leading to a

complex non-linear objective function,
• the objective function has many local optima,
• there is noise in the data hindering exact calculations.

This insight has motivated the so-called meta-EAs, whose first representatives,
meta-GAs, have been developed already in the late eighties to tune GA parameters
[335]. However, meta-GAs or meta-ES [381] have never been used on a large scale.
This really suboptimal situation is slowly changing over the last couple of years.
The new development takes place along different research lines. First, meta-EAs
are being “unearthed”, enriched with additional features and tested for their ability
to find good EA parameters, see, for instance, [951]. Another line of research con-
cerns generic parameter tuners, developed and used to optimise EA parameters. The
Sequential Parameter Optimization Toolbox (SPOT), [47, 48, 49] uses an iterative
procedure, repeatedly testing parameter vectors and using the results to fit a model to
predict the utility of other parameter vectors. Over the course of a run, SPOT simul-
taneously improves the prediction model and the parameter vectors. The Relevance
Estimation and VAlue Calibration method (REVAC) implicitly creates probability
distributions regarding the parameters (one probability distribution per parameter)
in such a way that parameter values that proved to be good in former trials have
a higher probability then poor ones. Initially, all distributions represent a uniform
random variable and after each new test they are updated based on the new informa-
tion. After terminating the tuning process, i.e., stopping REVAC, these distributions
can be retrieved and analysed, showing not only the range of promising parame-
ter values, but also disclosing information about the relevance of each parameter,

2 Evolutionary Algorithms 27

[650, 651, 819]. As for the (near) future, it seems safe to predict that the increasing
maturity of such parameter tuners will lead to their adoption in the EC commu-
nity. This, in turn, can increase the performance of EAs on a large scale and deliver
novel insights and knowledge about the relationships between EA parameters and
EA performance.

2.7 Concluding Remarks

We have described the basic evolutionary paradigm and how it encompasses a wide
range of iterative population-based global search methods. Representatives from this
class of methods have now been successfully applied to a huge range of different
application domains as can be witnessed by the ever increasing volume of papers,
conferences and journals. The prime difference between evolutionary and memetic
algorithms (MAs) is that, as we have described them, EAs do not consider a step of
self-improvement within the cycle - they just work on the outcome of randomised
variation. In contrast Memetic Algorithms introduce a stage of individual (rather
than population) learning, so that a solution (or its genotype) is (often systemati-
cally) perturbed and replaced by the new solution (or possibly its genotype) if that
has higher fitness, independently of the rest of the population.

Chapter 3
Local Search

Marco A. Montes de Oca, Carlos Cotta, and Ferrante Neri

3.1 Basic Concepts

At an abstract level, memetic algorithms can be seen as a broad class of population-
based stochastic local search (SLS) methods, where a main theme is “exploiting
all available knowledge about a problem,” see also Moscato and Cotta [618], page
105. The most wide-spread implementation of this theme is probably that of im-
proving some or all individuals in the population by some local search method. This
combination of a population-based, global search and a single-solution local search
is a very appealing one. The global search capacity of the evolutionary part of a
memetic algorithm takes care of exploration, trying to identify the most promising
search space regions; the local search part scrutinizes the surroundings of some ini-
tial solution, exploiting it in this way. This idea is not only an appealing one, it is
also practically a very successful one. In fact, for a vast majority of combinatorial
optimization problems and, as it is also becoming more clear in recent research, also
for many continuous optimization problems this combination leads to some of best
performing heuristic optimization algorithms.

The role of the local search is fundamental and the selection of its search rule
and its harmonization within the global search schemes make the global algorith-
mic success of memetic frameworks. The local search can be integrated within the

Marco A. Montes de Oca
IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
e-mail: mmontes@ulb.ac.be

Carlos Cotta
Department of Lenguajes y Ciencias de la Computación, University of Malaga, Spain
e-mail: ccottap@lcc.uma.es

Ferrante Neri
Department of Mathematical Information Technology, P.O. Box 35 (Agora), 40014,
University of Jyväskylä, Finland
e-mail: ferrante.neri@jyu.fi

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 29–41.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

30 M.A.M. de Oca, C. Cotta, and F. Neri

evolutionary cycle mainly in two ways. The first is the so called “life-time learn-
ing”, i.e., the application of the local search to a candidate solution. In this case the
metaphor is the cultural development of the individuals which is then transmitted to
the other solutions over the subsequent generations. The second way is the applica-
tion of the local search during the solution generation, i.e., the generation of a perfect
child. This class of memetic implementations aims at selecting the most convenient
offspring amongst the potential offspring solutions. This aim can be achieved, for
example, by applying a local search to select the most convenient cutting point in a
genetic algorithm crossover, or by using some kind of complete technique for this
purpose [164, 165] – see Chapter 12.

In this chapter, we focus on the local search techniques and give a concise
overview of local improvement methods both for combinatorial and for continu-
ous optimization problems. Rather than giving a detailed account of all intricacies
of local search algorithms, we focus on the main concepts and review some of the
main local search variants. We start by first introducing some basic notions about
neighborhoods and local optima. Next, we discuss the characterization of the local
search and illustrate in details, some examples of local search algorithms in combi-
natorial and continuous domains. Without loss of generality, we assume here that we
deal with minimization problems. Obviously, everything discussed here can easily
be adapted to the maximization case.

3.2 Neighborhoods and Local Optima

The notion of neighborhood is essential to understand local search. Intuitively, a
solution s′ is termed a neighbor of s if the former can be reached from the latter in
a single step (by the application of a so-called move operator). The neighborhood
N (s) of a solution s is the set of all its neighbors. Notice firstly that neighbor-
hood relationships are often –but not always– symmetrical. Secondly, the existence
of a move operator allows not having to define neighborhoods explicitly (by enu-
merating the neighbors) but just implicitly (by referring to the potential transitions
attainable upon application of the move operator). Moves can be typically regarded
as modifications of some parts of a solution. Under an appropriate distance measure
between solutions, these moves can thus be seen as “local”, hence the name of the
search paradigm. This said, the notion of closeness between neighboring solutions
is not straightforward; as a matter of fact, neighborhood relationships can be quite
complex – see [624].

Local search algorithms in combinatorial and continuous spaces have some in-
trinsic differences due to the differences in the types of the underlying search spaces.
Let us denote the search space by S in the following. While combinatorial search
spaces are finite for finite size problems, continuous search spaces are infinite and
not enumerable. From these differences some other differences also result in the
notions of local optima and the way how one is searching for improved candidate
solutions. Intuitively, a local optimum is a solution for which in its local neighbor-
hood no better solution exists.

3 Local Search 31

In combinatorial problems, the number of candidate solutions in the neighbor-
hood of a current candidate solution s is enumerable and a local optimum can be
defined as a a candidate solution sl for which it holds that ∀s ∈ N (sl) we have
f (s) � f (sl), where f : s �→ R is the objective function. It is also easy to identify
whether a candidate solution is a local optimum, since one simply needs to enu-
merate all neighboring candidate solutions and check whether they are better or not
than the current candidate solution. If none such exists, the solution is a local opti-
mum. If the number of neighbors is polynomial in the instance size and the objective
function is computable in polynomial time, which is the typical case for many neigh-
borhood definitions and optimization problems, then this check can be also done in
polynomial time.

For continuous optimization problems, the decision space is in principle a dense
set and is thus composed of an infinite amount of points. This makes the enumer-
ation impossible for the search of the optimum. It must be remarked that in the
representation within a (finite) machine, dense sets cannot be represented with an
infinite set and the sets are technically finite and the distance between each pairs
of points is at least equal to the machine precision. An extensive description of this
topic is given in Chapter 8, where continuous optimization problems are discussed.
We can formally define a local optimum in a continuous space as a point s◦ ∈ S,
such that

f (s◦) � f (s) , (3.1)

for all points s ∈ S that satisfy the relation 0 � ||s◦ − s|| � ε . The set of points
encircled in the region limited by the magnitude of ε is the neighborhood of the
local optimum s◦. Note that any global optimum is also a local optimum; however,
the opposite is not necessarily true.

According to an alternative representation, in continuous optimization, a global
optimum is a solution s� ∈ S, such that

s� = argmin
s∈S

f (s) , (3.2)

where S ⊆ R
n is the feasible search space, and f : S �→ R is the cost function to

minimize. When S = R
n the problem of finding the optimum of f is called uncon-

strained, otherwise it is said to be constrained.

3.3 Classifications of Local Search

At a general level, for both combinatorial and continuous domains, local search
algorithms can be classified from various perspectives:

1. According to the nature of the search logic:

• Stochastic: the generation of the trial solution occurs in a randomized way
• Deterministic: the generation of the trial solution is deterministic

32 M.A.M. de Oca, C. Cotta, and F. Neri

2. According to the amount of solutions involved

• Single-solution: the algorithm processes and perturbs only one solution
• Multiple-solution: the algorithm processes more that one solution which

are usually employed for interacting and jointly generate trial solutions

3. According to the pivot rule:

• Steepest Descent: the algorithm generates a set of solutions and selects the
most promising only after having explored all the possibilities
• Greedy: the algorithm performs the replacement as soon as detects a solu-

tion outperforming the current best and starts over the exploration

On the basis of these classifications two important considerations must be carried
out. First, every local search algorithm and, more generally, every optimization al-
gorithm, can be seen as a logical procedure composed of two sets of operations: 1)
generation of trial solutions 2) selection of trial solutions. In this light the first two
classifications above characterize some crucial aspects of the trial solution genera-
tion while the latter regards the selection phase. Second, the classifications should
not be considered in a binary way but more as properties of the procedure phases.
For example, an algorithm is not either fully stochastic or fully deterministic but is
likely to have a certain degree of stochastic logic and determinism. For two given
algorithms a meaningful statement is to establish which among those two is “more”
deterministic. To give a more concrete example, the simplex proposed in [653] can-
not be considered a stochastic algorithm but due to the randomized re-sampling of
the solutions is more stochastic than the Powell algorithm proposed in [728]. In a
similar way, the classification according to the pivot rule must be interpreted as a
property of the selection phase. An algorithm which explores/enumerates the entire
neighborhood of a trial solution is possible as well as an algorithm which centers
the search in the new current best solution. On the other hand, several intermediate
possibilities can also be implemented and lead to efficient algorithms.

In this light, also the concepts of local and global searches should be seen as
a progressive property of the algorithm. Intuitively, a local search is thought of as
an algorithmic structure converging to the closest local optimum while the global
search should have the potential of detecting the global optimum. De facto this def-
inition is not rigorous and does not correspond to the actual behavior of the algo-
rithms. For example, a hill-descender with a fully deterministic candidate solution
generation can potentially converge to the global optimum of a highly multi-modal
fitness landscape if a proper initial radius is set. Dually, an evolutionary algorithm
with a population composed of a few individuals can converge to a suboptimal so-
lution in the neighborhood of the best individual of the initial population. In this
sense, an algorithm is not simply either global or local but can be characterized by
a certain degree of local/global search features.

3 Local Search 33

3.4 Local Search in Combinatorial Domains

Combinatorial spaces constitute a formidable and challenging application domain
for local search techniques. Unlike continuous spaces in which neighborhood rela-
tionships are naturally defined in terms of Euclidean distance or any other suitable
metric on R

n, the definition of neighborhood in discrete domains is a major step in
the resolution of the problem under consideration. Following the terminology used
in forma analysis [750], we can consider situations in which the representation of
solutions is orthogonal –i.e., solutions are represented as a collection of variables
vi, each of them taking values from a domain Di and any combination of values
for different variables being feasible– and situations in which the representation is
non-orthogonal. In the former case the (feasible) search space S is

S =
n

∏
i=1

Di, (3.3)

i.e., the Cartesian product of variable domains. It is then possible to define neighbor-
hood relationships on the basis of modifications of single variables. An illustrative
example is that of binary strings, the typical representation in traditional genetic
algorithms. Solutions thus belong to B

n, and we can define a collection of nested
neighborhoods Ni(s) = {s′ | H(s,s′) = i}, where H(s,s′) is the Hamming distance
between s and s′. This example is easily generalizable to integer representations, and
can be further extended by considering the L1 norm (Manhattan distance) or alike
in case there was some locality between numerically close variable values.

The case of non-orthogonal representations is more complex since not every com-
bination of variable values is feasible in them. This means that moves must be done
solution-wise rather than variable-wise. A popular example is that of permutations:
solutions are in this case arrangements of a collection of n objects (the integers
1, · · · ,n typically), and no single variable can be modified in isolation. There are
numerous possibilities for perturbing permutations though. For example:

• swap: two elements are selected and interchanged.
• insert: an element is selected, removed from its location and inserted at another

place.
• invert: a subsequence of adjacent elements is selected and their ordering is re-

versed.

just to name a few (please check chapter 7 of [764] for an overview of perturbation
strategies for permutations in the context of the Traveling Salesman Problem). The
situation can obviously be more complex in cases where other more sophisticated
structures are used as representation of solutions, e.g., trees [19, 152, 723].

The neighborhoods sketched above are central in the functioning of single so-
lution metaheuristics. These algorithms process one solution and after subsequent
modifications returns a solution which is supposed to be similar to the starting so-
lution but characterized by a higher performance. Within the context of MAs, these
local searches process one solution within the evolutionary framework and improve
during their “life-time”.

34 M.A.M. de Oca, C. Cotta, and F. Neri

Algorithm 2. A Local Search Algorithm

Procedure Local Search (s);1

begin2

INITIALIZEMEMORY(M);3

repeat4

N ←PICKNEIGHBORHOODSTRUCTURE(M);5

s′ ← PICKNEIGHBOR(N ,s);6

SELECT(s,s′,M);7

UPDATEMEMORY(s,M);8

until TERMINATIONCRITERION(M) ;9

return s;10

end11

Algorithm 2 provides a rather general outline of a single-solution metaheuris-
tic. This algorithm receives an initial solution and iteratively picks a neighbor and
decides whether to accept this neighbor as the new current solution or not. This pro-
cess can be modulated by a memory structure that the algorithm may use in order
to decide which neighborhood should be used to select the neighbor, whether to ac-
cept the latter as new current solution or not, and even to support some high-level
strategy for intensifying or diversifying the search.

One of the most distinctive features of local search strategies in combinatorial
domains is the possibility of performing some kind of incremental evaluation of
neighbors, i.e., computing f (s′) as f (s′) = f (s) + Δ f (s,s′), where Δ f (s,s′) is a
term that depends on the perturbation exerted on s to obtain s′ and can be typically
computed in a simple and efficient way. This often means that the cost of explor-
ing the neighborhood of a solution is not much higher than a few full evaluations,
thus allowing the practical use of intensive local search procedures. The following
subsections give some examples of single-solution local search algorithms.

3.4.1 Hill Climbing

The simplest way to perform the local search in a combinatorial space is obtained
by perturbing a trial solution and replacing it with the perturbed solution when
the newly generate candidate solution outperforms the solution before perturbation.
This procedure is termed Hill Climbing (HC) –or hill descending in a minimization
context– and can be characterized in terms of the pseudocode depicted in Algorithm
2 as a memoryless, single-neighborhood local search procedure.

There can be several variants of the algorithm depending on, for instance, the
pivot rule as mentioned in Sect. 3.3. Thus, we have steepest-ascent HC (an algo-
rithm that explores the full neighborhood N (s) of the current solution s , picks the
best neighbor, accepts it if it is better than the incumbent) and random HC (an algo-
rithm that picks a single random neighbor s′ ∈N (x) and accepts it if is better than
s). In the first case, the algorithm terminates upon finding a local optimum (i.e., a
solution s which is better than any other s′ ∈N (x)) or exhausting its computational

3 Local Search 35

budget; in the second case only the computational limit applies, unless the algorithm
keeps track of the neighbors generated and is capable of avoiding duplicates and/or
detecting when the neighborhood is fully explored.

In some cases the neighborhood is very large and a full exploration is not possible
(at least using the simple schema of HC – local branching procedures for exploring
very large neighborhoods are possible though [263]). Such situations are usually
dealt with by considering a random sampling of a certain size of the neighborhood,
or by resorting to a simpler random HC. Another important issue is the presence
of plateaus, i.e., when the best neighbor is neither better nor worse than the current
solution. In that case the algorithm may opt for terminating, or may try to navigate
through the plateau by accepting this best neighbor even if it is not strictly better
than the incumbent. This is done for example in GSAT [804], a powerful solver for
the MAX-SAT problem. Some strategy for avoiding cycling (i.e., oscillating search
between a couple of solutions) may be required in this case. these are typically used
in tabu search – see Sect. 3.4.3.

3.4.2 Simulated Annealing

While simple, the selection strategy depicted before for HC is unable to cope with
rugged search spaces in which local optima are manifold, at least as an independent
search technique. The search will terminate in a local optimum and it will have to
be restarted from a different initial solution in order to locate other local optima
(and eventually the global optimum). Such a restarting strategy is a simple way of
endowing HC with global optimization capabilities, yet in some sense can be seen
as a brute-force approach. More sophisticated strategies are however possible in or-
der to escape from local optima. In particular, uphill moves (i.e., moves to worse
solutions) must be at some point accepted. This is precisely the case of Simulated
Annealing (SA) [122, 468]. SA is a single solution metaheuristic which performs
the search of new solutions according to the logic described for HC but, in addition
to performing the replacement when f (s′) � f (s), a worsening in the performance
is accepted with a certain probability. This probability depends exponentially on the
run-time, i.e., it is high at the beginning of the (local) optimization process and low
at its end. The acceptance of only improvements may result into the fact that the
algorithm gets stuck on a suboptimal solution. This condition is clearly undesired
because if the algorithm does not succeed at improving its candidate solution for a
large number of function calls, the algorithmic budget is wasted and the final solu-
tion is likely to have a poor performance. Thus, the main idea behind SA is to avoid
such situation by refreshing the solution. The acceptance of a slightly worse solu-
tion should prevent the algorithm from getting stuck in some suboptimal solutions.
To be precise, the neighboring configuration is accepted with probability P given by

P =
{

1, if Δ f > 0

e−
Δ f
T , otherwise

(3.4)

36 M.A.M. de Oca, C. Cotta, and F. Neri

where T is a time-varying parameter termed temperature. This parameter modulates
the acceptance probability, since the larger the temperature, the worse an acceptable
neighbor can be. This parameter is decreased from its initial value T0 to a final value
Tk < T0 via a process termed cooling schedule. There exist many cooling schedules
in the literature, such as arithmetic, geometric or hyperbolic cooling [867]. In ad-
dition, there exist adaptive cooling strategies that take into account the evolution of
the search, performing cooling and reheating as required, e.g., [243].

3.4.3 Tabu Search

Tabu Search (TS) is memory-based local search metaheuristic [309, 310, 317] with
global optimization capabilities. It can be regarded a sophisticated extension of ba-
sic HC in which the best neighboring solution is chosen as the next configuration,
even if it is worse than the current one. Notice that in case the neighborhood rela-
tionship is symmetric, it might happen that the best neighbor of solution s was s′ and
vice versa. In that case a memory-less search would simply cycle between these two
solutions. TS avoids this by keeping a so-called tabu list of movements: a neigh-
boring solution is accepted only if the corresponding move is not tabu. The actual
meaning of a move being tabu may vary depending on the problem and designer’s
choice. Thus, it may be possible that it is tabu to restore a modified variable to a
previous value, or it may be tabu to modify that variable at all (an analogous reason-
ing can be done when the moves are done solution-wise –e.g., as in permutations–
rather than variable-wise). The tabu status of a move is not permanent: it only lasts
for a number of search steps, whose value is termed tabu tenure. The tabu tenure
can be fixed, or may vary during the search (even randomly within certain limits).
The latter is useful to hinder long cycles in the search. In addition, it is common to
consider an aspiration criterion that allows overriding the tabu status of a move, e.g.,
a move is accepted if it improves the best known solution even if it is tabu.

Algorithm 3 depicts the basic structure of a TS algorithm. It must be noted that
a full-fledged TS algorithm is often endowed with additional strategies for intensi-
fying and diversifying the search (e.g., frequency-based strategies that promote or
penalize attribute values that occur frequently), and may also incorporate multiple
neighborhoods among which the algorithm oscillates strategically.

3.5 Local Search in Continuous Domains

In this section, we turn our attention to optimization in continuous domains. In con-
trast to combinatorial optimization, where the search space is finite, in continuous
optimization the search space is, in theory, infinite. Of course, in practice, the search
space is also discrete as one is constrained by the precision of the representation of
floating point numbers in the host computer. Nevertheless, its cardinality is so huge
that for practical purposes it can be regarded as continuous.

Finding an extremum in a continuous domains is a different story. It is a very im-
portant task but it’s difficult in general. The main difference with respect to the local

3 Local Search 37

Algorithm 3. Tabu Search

Procedure Tabu Search (s,N);1

begin2

INITIALIZETABULIST(M);3

s∗ ← s; // best known solution4

repeat5

L←GENERATENEIGHBORLIST(N ,s);6

s′ ← PICKBEST(L);7

if ISTABU(s′,M) and not ASPIRATIONCRITERIA(s′,s∗) then8

s′ ← PICKBESTNONTABU(L)9

endif10

UPDATETABULIST(s,s′,M);11

s← s′;12

if f (s∗) > f (s) then13

s∗ ← s14

endif15

until TERMINATIONCRITERION(M) ;16

return s∗;17

end18

search in discrete domain is the concept of gradient. More specifically, in continuous
optimization, a local search can make use of gradient information in order to quickly
descend the basin of attraction and thus support a global optimization framework
which performs the selection of the search directions by means of the only fitness
comparisons. For example, a trivial MA composed of an evolutionary framework
and a hill-climber combines two alternative search logics: the fitness comparison
of distant solutions generated within the decision space offered by the evolutionary
framework and the gradient based search logic offered by the hill-climber. A proper
combination of global and local search guarantees the success of a MA.

This section focuses on local search for continuous optimization problems. After
some basic concepts and a classification of LS techniques for continuous domains,
four popular algorithms are briefly described and a short survey on other techniques
is given.

3.5.1 Classification of Local Search Techniques for Continuous
Domains

The main criterion to classify local search methods for continuous domains is based
on the order of the derivatives used for exploring the search space. Based on this
criterion, optimization methods can be classified as follows:

Zeroth-order methods. Methods that belong to this class are called direct search
methods. According to Trosset’s definition [892], direct search methods are those
that work with ordinal relations between objective function values. They do not

38 M.A.M. de Oca, C. Cotta, and F. Neri

use the actual values to model, directly or indireclty, higher order properties of
the objective function.
First-order methods. This class of methods rely on direct access to the ob-
jective function and to the gradient vector at any point. Methods referred to as
“derivative-free”, belong to this category if the zeroth-order information is used
to approximate higher order properties of the objective function.
Second-order methods. These methods use objective function values, (numeri-
cal approximations of) gradient vectors, and (numerical approximations of) Hes-
sian matrices.

A second classification criterion is whether a method is stochastic or deterministic.
Stochastic methods make randomized choices during their execution, while deter-
ministic methods do not. These randomized choices encompass solution generation
and/or solution selection [393]. In memetic algorithms, both types of techniques are
used; however, deterministic methods are more commonly used. A brief description
of some of these techniques is presented in the following section.

3.5.2 Commonly Used Local Search Techniques in Memetic
Algorithms for Continuous Domains

In this section, we describe some of the most commonly used local search tech-
niques in the literature of memetic algorithms for continuous optimization. Addi-
tionally, each of the algorithms that are described in detail belong to different strate-
gies for local optimization, namely, downhill, gradient, quasi-Newton, and trust-
region strategies.

3.5.2.1 Downhill Strategy: Simplex Method

This method, which was proposed by Nelder and Mead [653], is used for mini-
mizing an n-dimensional objective function f . It is based on a simplex, which is
composed of a set of n + 1 points P = {P0,P1, . . . ,Pn} in the search space. At each
iteration of the algorithm, the simplex can modified by at least one of three opera-
tions: reflection, contraction, and expansion. We denote Ph and Pl as the points with
the highest and lowest objective function values, respectively. P̄ is the centroid of
the points Pi such that f (Pi) < f (Ph) ∀Pi ∈P . The reflection of Ph, denoted by P�,
is defined as

P� = (1 +α)P̄−αPh , (3.5)

where α > 0 is a parameter called reflection coefficient. If f (Pl) < f (P�) < f (Ph),
then Ph is replaced by P�, and the algorithm starts a new iteration. If f (P�) < f (Pl),
then P� is expaned to P�� as follows

P�� = γP� +(1− γ)P̄ , (3.6)

where γ > 1 is a parameter called expansion coefficient. If f (P��) < f (Pl), then Ph

is replaced by P��, and the algorithm starts a new iteration. However, if f (P��) >

3 Local Search 39

f (Pl), then it is said that the expansion operation failed and Ph is replaced by P�

before continuing to the next iteration.
If f (P�) > f (Pi) ∀Pi ∈P \{Ph}, then Ph is replaced by P� only if f (P�) < f (Ph),

otherwise Ph remains unchanged. After this operation, a new point P�� is generated
as follows

P�� = βPh +(1−β)P̄, (3.7)

where 0 < β < 1 is a parameter called contraction coefficient. Ph is replaced by
P�� unless f (P��) > min{ f (Ph), f (P�)}, in which case all points Pi are replaced by
(Pi + Pl)/2 before the next iteration begins.

The termination criterion can be either a minimum displacement in the search
space, a minimum decrease in the objective function value, or a maximum number
of iterations. This method has been used many times as a local search component of
other algorithms (e.g., [123, 250, 383, 540, 607, 680, 719]).

3.5.2.2 Gradient Strategy: Powell’s Direction Set Method

This method was proposed by M. J. D. Powell [728]. It tries to minimize an objective
function f : R

n→ R by constructing a set of conjugate directions through a series
of line searches. Directions vi i ∈ {1 : n} are said to be conjugate with respect to an
n×n positive definite matrix A, if

vT
i Av j = 0 , ∀i, j ∈ {1 : n} , i �= j . (3.8)

Furthermore, to be conjugate, directions vi i∈ {1 : n}must be linearly independent.
Conjugate search directions are attractive because if A is the Hessian matrix of the

objective function, it can be minimized in exactly n line searches [731]. Although
Powell’s method does not need information about the objective function’s deriva-
tives, it can be considered a gradient strategy because it uses (implicitly) second
order properties of the objective function [801].

The basic procedure of this method is the following: First, from an initial point
P0 ∈ R

n, it performs n line searches using the unit vectors ei as initial search direc-
tions ui. At each step, the new initial point from which the next line search is carried
out is the point where the previous line search found a relative minimum. A point Pn

denotes the minimum discovered after all n line searches. Second, the method elim-
inates the first search direction by doing ui = ui+1 ∀i ∈ {1 : n−1}, and replacing the
last direction un for Pn−P0. Next, a move to the minimum along the direction un is
performed.

Performing n iterations of the procedure described above, would minimize a
quadratic objective function using a total of n(n + 1) line searches. However, un-
der some circumstances, it is possible that the set of constructed directions become
linearly dependent, which would make the algorithm fail. To prevent this from hap-
pening, after n or n + 1 iterations, the set of search directions can be reset to either
the original unit vectors, or to the columns of an orthogonal matrix (e.g., obtained
by computing the principal components of the old direction set). Another approach

40 M.A.M. de Oca, C. Cotta, and F. Neri

is to substitute search directions in such a way as to maximize the determinant of
the normalized direction vectors.

The method terminates when the magnitude of change of all variables is smaller
than a predefined threshold. Powell’s method has been used in numerous hybrid
algorithms (e.g., [609, 680, 683, 766, 806]).

3.5.2.3 Quasi-Newton Strategy: Davidon-Fletcher-Powell Method

A Newton strategy uses the objective function’s first and second order derivatives to
rapidly optimize quadratic forms. In most practical cases, however, a quasi-Newton
strategy is preferred. In a quasi-Newton strategy, the inverse of the objective func-
tion’s Hessian is not computed directly, it is approximated from the objective func-
tion’s gradient.

The Davidon-Fletcher-Powell method, also known as the variable metric strategy,
was proposed by Fletcher and Powell [266], who based their proposal on Davidon’s
work [182]. It is an iterative procedure that works as follows. First, the user needs
to specify an initial guess P0 for the solution. An n× n matrix H0 must also be
initialized. Normally, H0 = I. For any iteration k, we have

Pk+1 = Pk− skHT
k ∇ f (Pk) , (3.9)

where the step length sk is computed by line search and it is the value that minimizes
the objective function along the direction−HT

k ∇ f (Pk) from the current solution Pk.
The matrix Hk is updated as follows

Hk+1 = Hk +
ykyT

k

yT
k zk
− Hkzk(Hkzk)T

zT
k Hkzk

, (3.10)

where yk = Pk+1−Pk =−skHT
k ∇ f (Pk), and zk = ∇ f (Pk+1)−∇ f (Pk).

When the derivatives of the objective function are not available, the modifications
introduced by Stewart [849] can be used. The Davidon-Fletcher-Powell method has
been used as a local search component in hybrid local-global optimization algo-
rithms, for instance in [29, 336, 510, 515].

3.5.2.4 Trust-Region Strategy: NEWUOA

In this category of methods, the objective function is approximated by a local model
defined over a neighborhood of the current best solution. The quality of this model
is trusted only in this neighborhood, therefore the name trust region [142].

A trust-region method works as follows: At any iteration, a model of the objective
function is defined over a trust region of a certain radius. The trust region is centered
on the current best-so-far solution Pk. A trial point sk is then generated such that
a new point Pk + sk sufficiently reduces the model, and it is still within the trust
region. An evaluation of the objective function at Pk +sk is performed, and the value
returned is compared to the prediction of the model. If the prediction is sufficiently
accurate, the new point is accepted as the new best-so-far solution, and the next

3 Local Search 41

iteration is executed. In the next iteration, the trust-region radius can be larger or
equal to the one used in the previous iteration. However, if the prediction is not
sufficiently accurate, the new point is rejected and the next iteration is executed
with a reduced trust-region radius.

Existing trust-region methods differ in the way they define the model of the ob-
jective function, the criteria used to accept a new solution, and the way they update
both the model and the trust-region radius. Here, we briefly describe a state-of-
the-art trust-region method for unconstrained continuous optimization. This method
is called NEWUOA (NEW Unconstrained Optimization Algorithm) [730]. For ap-
proximating an n-dimensional objective function, NEWUOA uses a quadratic in-
terpolation of O(n) points within the trust region (a common value being 2n + 1
points). It is possible to use a linear number of interpolation points if the Hessian of
the model changes as little as possible from one iteration to the next. Once the model
is computed, it is minimized using a truncated conjugate gradient method [952]. The
point that minimizes the model is accepted if some conditions on the accuracy of the
interpolation and the trust region size are met. Besides the number of interpolation
points, the initial and final trust region radii are parameters of the method.

Trust-region methods have been applied in the context of global optimization
in [682, 687, 878, 956]

3.5.2.5 Other Methods

The family of methods described in the previous section have been the most com-
mon choice for performing local search in memetic and other hybrid local-global
search continuous optimization algorithms. However, in principle, any method that
explores a solution’s neighborhood can be used as a local search mechanism. In fact,
there are several hybrid algorithms proposed in the literature that use algorithms that
can be used as global optimizers. Interestingly, the main distinctive feature of these
mechanisms is that they belong to the class of stochastic local search methods (cf.
Section 3.5.1).

Examples of this approach are Solis and Wets’ minimization technique [834],
which is used, for example, in [383, 528, 607]. The covariance matrix adaptation
evolution strategy [361] (a state-of-the-art continuous optimization technique at the
time of writing) has been used as a local search method in [607, 608, 643]. A particle
swarm optimization algorithm [457] has been used with genetic algorithms [326] to
refine elite solutions [436]. Simulated annealing [468] has been also used as a local
search method in [658]. As a final example, we want to mention the simultaneous
perturbation stochastic approximation method [838], which has also been used as a
gradient-estimation local search method in [515].

Acknowledgements. The authors thank Thomas Stützle for his help in early drafts of this
chapter. This work was supported by the META-X project, an Action de Recherche Con-
certée funded by the Scientific Research Directorate of the French Community of Belgium,
by Spanish MICINN under project NEMESIS (TIN2008-05941) and Junta de Andalucı́a un-
der project TIC-6083, and by the Academy of Finland, Akatemiatutkija 130600, Algorithmic
Design Issues in Memetic Computing.

Chapter 4
A Primer on Memetic Algorithms

Ferrante Neri and Carlos Cotta

4.1 Introduction

Memetic Algorithms (MAs) are population-based metaheuristics composed of an
evolutionary framework and a set of local search algorithms which are activated
within the generation cycle of the external framework, see [376]. The earliest MA
implementation has been given in [621] in the context of the Travelling Salesman
Problem (TSP) while an early systematic definition has been presented in [615]. The
concept of meme is borrowed from philosophy and is intended as the unit of cultural
transmission. In other words, complex ideas can be decomposed into memes which
propagate and mutate within a population. Culture, in this way, constantly undergoes
evolution and tends towards progressive improvements. Strong ideas tend to resist
and be propagated within a community while weak ideas are not selected and tend
to disappear. In the metaphor, the ideas are the search operators: the fittest tend to
be employed while the inadequate ones are likely to disappear.

This chapter gives an initial description of MA frameworks explaining the lit-
erature context of their generation and success as well as their general structures.
More specifically, Section 4.2 analyzes the context where MAs have been intro-
duced and puts into relationship the algorithmic flexibility of the memetic paradigm
with the the No Free Lunch Theorem. Section 4.3 shows the outline of a general
MA implementation. Section 4.5 gives a quick overview on the MA application and
employment in literature. Finally, Section 4.6 explains the difference between MAs
and the general emerging trend of Memetic Computing.

Ferrante Neri
Department of Mathematical Information Technology, P.O. Box 35 (Agora), 40014,
University of Jyväskylä, Finland
e-mail: ferrante.neri@jyu.fi

Carlos Cotta
Departamento de Lenguajes y Ciencias de la Computación, Escuela Técnica Superior de
Ingenierı́a Informática, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
e-mail: ccottap@lcc.uma.es

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 43–52.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

44 F. Neri and C. Cotta

4.2 The Need for Memetic Algorithms

In order to understand in depth the role and need of MAs, it is fundamental to con-
sider the historical context within which MAs have been defined. In 1988, when the
first MAs were defined, Genetic Algorithms (GAs) were extremely popular among
computer scientists and their related research was oriented towards the design of
algorithms having a superior performance with respect to all the other algorithms
present in literature. This approach is visible in many famous texts published in
those years, e.g. [325]. Unlike all the algorithms proposed at that time, a MA was
not a specific algorithm but was something much more general than an optimiza-
tion algorithm: since MAs consist of the concept of combining global and local
search algorithms, they represented a broad and flexible class of algorithms which
somehow contained the previous work on Evolutionary Algorithms (EAs) and thus,
constituted a new philosophy in optimization. Probably due to their excessively in-
novative contents, MAs had to face for about one decade, the skepticism of the
scientific community which repeatedly rejected the memetic approach as a valuable
possibility in optimization.

Since 1997, researchers in optimization had to dramatically change their view
about the subject. More specifically, in the light of increasing interest in general
purpose optimization algorithms, it has become important, in the end of 90’s to
understand the relationship between how well an algorithm a performs on a given
optimization problem f on which it is run on the the basis of the features of the prob-
lem f . A slightly counter intuitive result has been derived by Wolpert and Macready
in [940] which states that for a given pair of algorithms A and B:

∑
f

P(xm| f ,A) =∑
f

P(xm| f ,B) (4.1)

where P(xm| f ,A) is the probability that algorithm A detects the optimal solution for
a generic objective function f and P(xm| f ,B) is the analogue probability for algo-
rithm B. In [940] the statement eq. 4.1 is proved for both static and time-dependent
case and are named “No Free Lunch Theorems” (NFLT). In other words, in 1997 it
was mathematically proved that the average performance of any pair of algorithms
across all possible problems is identical. Thus, if an algorithm performs well on
a certain class of problems then it necessarily pays for that with degraded perfor-
mance on the set of all remaining problems as this is the only way that all algorithms
can have the same performance averaged over all functions [940]. Strictly speaking,
the proof of NFLT is made under the hypothesis that both the algorithms A and
B are non-revisiting, i.e. the algorithms do not perform the fitness evaluation of the
same candidate solution more often than once during the optimization run. Although
this hypothesis is de facto not respected for most of the computational intelligence
optimization algorithms, the concept that there is no universal optimizer had a sig-
nificant impact on the scientific community.

It should be highlighted that a class of problems on which an algorithm performs
well is not defined by the nature of the application but rather by the features of the

4 A Primer on Memetic Algorithms 45

fitness function within the search space. For example an optimization problem is
characterized by:

• the shape and properties of a corresponding fitness landscape (see definitions
below),
• multi-modality,
• separability of the problem,
• absence or presence of a noise in the values of the objective function (optionally,

the type of noise),
• time dependency of the objective function (dynamic problems)
• shape and connectivity of the search domain

In evolutionary biology, the idea of studying evolution by visualizing the distribution
of fitness values as a kind of landscape was first introduced by Wright [941].

More formally, the fitness landscape (S, f ,d) of a problem instance for a given
problem consists of a set of points S, a fitness function f which assigns values
(fitness) to solutions from S, and a distance measure d : S× S→ R which defines
the spacial structure of the landscape. This rather abstract concept has proven to
be useful for understanding the functionality of various optimization methods, see
[581] and [583].

One of the most important properties of the fitness landscape is epistasis whose
concept has been borrowed from biology where it refers to the degree to which the
genes are correlated. As it is well known, a function is separable if it can be rewritten
as a sum of functions of just one variable. The separability is closely related to the
concept of epistasis. In the field of evolutionary computation, the epistasis measures
how much the contribution of a gene to the fitness of the individual depends on
the values of other genes. Nonseparable functions are more difficult to optimize as
the accurate search direction depends on two or more genes. On the other hand,
separable functions can be optimized for each variable in turn. However, epistasis
does not provide any piece of information on how the fitness values are topologically
related to each other. By knowing the epistasis of an optimization problem, it cannot
be established whether the fitness values form a smooth progression resulting in a
solitary optimum or whether they form a spiky pattern of many isolated optima
[438].

The impossibility of understanding each detail of the fitness landscape depends
not only on the fitness function but also on the search algorithm [438] since an
observed landscape appears to be an artefact of the algorithm used or, more specifi-
cally, of the neighborhood structure induced by the operators used by the algorithm
[433]. The neighborhood structure is defined as a set of points that can be reached
by a single move of a search algorithm [375]. Closely related to the concept of the
neighborhood structure is the notion of a basin of attraction induced by this struc-
ture. More specifically, a basin of attraction of a local optimum x is the set of points
X of the search space such that a search algorithm starting from any point from X
ends in the local optimum x. A special note should be made regarding the land-
scapes with plateaus, i.e. regions in search domain where the function has constant
or nearly constant values. If a search method is trapped on such region it cannot get

46 F. Neri and C. Cotta

any information regarding the gradient or even its estimates. Generally speaking,
this situation is rather complicated and special algorithmic components should be
used in this case. Finally, an important feature of a fitness landscape is the presence
or absence of symmetry. Special components can be included in the algorithms for
symmetrical problems.

In addition, two features can be mentioned which appear to be semi-defining
when distinguishing the classes of problems on which an algorithm performs well.
The first one is dimensionality of the problem. Two problems with high dimension-
ality of the search domain can be put into the same class, however an algorithm that
performs well for one of them might not necessarily work well for the other one. At
the same time, two specialized algorithms for these two problems will have some
common features intended to overcome difficulties arising from high dimensional-
ity. The second semi-defining feature is computational cost of a single evaluation of
the objective function. Clearly, two problems with computationally expensive ob-
jective functions can have different features mentioned above that will put them into
different classes. However, these problems are unsolvable (in practice) if treated
as computationally cheap functions, therefore algorithms for such problems should
have common type components which allow proper handling of the computational
cost.

There is generally a performance advantage in incorporating prior knowledge
into the algorithm, however the results of NFLT do not deem the use of unspecial-
ized algorithms futile. It is impossible to determine the fraction of practical prob-
lems for which an algorithm yields good results rapidly, therefore a practical free
lunch is possible. NFLT constitute, in a certain sense, the “Full Employment The-
orem” (FET) for optimization professionals. In computer science and mathematics,
the term FET is used to refer to a theorem that shows that no algorithm can opti-
mally perform a particular task done by some class of professionals. In this sense,
as no efficient general purpose solver exists, there is always scope for improving al-
gorithms for better performance on particular problems. Since MAs, as mentioned
above, represent a broad class of algorithms which combine various algorithmic
components, a suitable combination is necessary for a given problem. Since, during
the last decade, computer scientists had to observe the features of their optimiza-
tion problem in order to propose an ad-hoc optimization algorithm, the approach of
combining various search operators within the algorithmic design became a com-
mon practice. In this sense, the development of NFLT implicitly encouraged the use
and development of MAs, which became extremely popular and often necessary, in
computer science at first, and in engineering and applied science more recently, thus
constituting the FET for MAs.

4.3 A Basic Memetic Algorithm Template

As mentioned in previous sections, MAs blend together ideas from different search
methodologies, and most prominently ideas from local search techniques and
population-based search. Indeed, from a very general point of view a basic MA

4 A Primer on Memetic Algorithms 47

can be regarded as one (or several) local search procedure(s) acting on a set pop of
|pop|� 2 solutions which engage in periodical episodes of cooperation via recom-
bination procedures. This is shown in Algorithm 4.

Algorithm 4. A Basic Memetic Algorithm

function BasicMA (in P: Problem, in par: Parameters): Solution;1

begin2

pop← Initialize(par, P);3

repeat4

newpop1 ← Cooperate(pop, par, P);5

newpop2 ← Improve(newpop1, par, P);6

pop← Compete (pop, newpop2);7

if Converged(pop) then8

pop← Restart(pop, par);9

endif10

until TerminationCriterion(par) ;11

return GetNthBest(pop, 1);12

end13

This template requires some explanation. First of all, the Initialize procedure is
responsible for creating the initial set of |pop| solutions. While traditional evolu-
tionary algorithms usually resorted to simply generating |pop| solutions at random
(in some cases following a systematic procedure to ensure a good coverage of the
search space), MAs typically attempt to use high-quality solutions as starting point.
This can be done either using a more sophisticated mechanism (for instance, some
constructive heuristic) to inject good solutions in the initial population [861], or by
using a local-search procedure to improve random solutions (see Algorithm 5).

Algorithm 5. Injecting high-quality solutions in the initial population.

function Initialize(in par: Parameters, in P: Problem): Bag{Solution};1

begin2

pop← /0;3

for j← 1 to par.popsize do4

i← RandomSolution(P);5

i← LocalSearch (i, par, P);6

pop← pop∪{i};7

endfor8

return pop;9

end10

As for the TerminationCriterion function, it typically amounts to checking a limit
on the total number of iterations, reaching a maximum number of iterations without
improvement, or having performed a certain number of population restarts.

48 F. Neri and C. Cotta

Algorithm 6. The pipelined Cooperate procedure.

function Cooperate (in pop: Bag{Solution}, in par: Parameters, in P: Problem):1

Bag{Solution};
begin2

last pop← pop;3

for j← 1 to par.numop do4

newpop← /0;5

for k← 1 to par.numapps j do6

parents← Select (last pop, par.arity j);7

newpop← newpop ∪ ApplyOperator (par.op j , parents, P);8

endfor9

last pop← newpop;10

endfor11

return newpop;12

end13

The procedures Cooperate and Improve constitute the core of the MA. Starting
with the former, its most typical incarnation is based on two operators for selecting
solutions from the population and recombining them. Of course, this procedure can
be readily extended to use a collection of variation operators applied in a pipeline
fashion. As shown in Algorithm 6, this procedure comprises numop stages, each
one corresponding to the iterated application of a particular operator op j that takes
arityin j solutions from the previous stage, generating arityout j new solutions.

As to the Improve procedure, it embodies the application of a local search pro-
cedure to solutions in the population. Notice that in an abstract sense a local search
method can be modeled as a unary operator, and hence it could have been included
within the Cooperate procedure above. However, local search plays such an im-
portant role in MAs that it deserves separate treatment. Indeed, there are several
important design decisions involved in the application of local search to solutions,
i.e., to which solutions should it be applied, how often, for how long, etc. See also
next section.

Next, the Compete procedure is used to reconstruct the current population us-
ing the old population pop and the newly generated population newpop2. Bor-
rowing the terminology from the evolution strategy [761, 800] community, there
exist two main possibilities to carry on this reconstruction: the plus strategy and
the comma strategy. The latter is usually regarded as less prone to stagnation [32],
with the ratio |newpop|/|pop| 6 being a common choice [34]. Since this op-
tion can be somewhat computationally expensive if the fitness function is complex
and time-consuming, a popular alternative is using a plus strategy with a low value
of |newpop|, analogous to the so-called steady-state replacement strategy in GAs
[930]. This option usually provides a faster convergence to high-quality solutions,
although care has to be taken with premature convergence to suboptimal regions of
the search space. This leads to the last component of the template shown in Algo-
rithm 4, the restarting procedure.

4 A Primer on Memetic Algorithms 49

Algorithm 7. The Restart procedure.

function Restart (in pop: Bag{Solution}, in par: Parameters, in P: Problem):1

Bag{Solution};
begin2

newpop← /0;3

for j← 1 to par.preserved do4

i← GetNthBest(pop, j);5

newpop← {i};6

endfor7

for j← par.preserved +1 to par.popsize do8

i← RandomSolution(P);9

i← LocalSearch (i, par, P);10

newpop← {i};11

endfor12

return newpop;13

end14

First of all, it must be decided whether the population has degraded or has not,
using some measure of information diversity in the population such as Shannon’s
entropy [184]. Once the population is considered to be at a degenerate state, the
restart procedure is invoked. Again, this can be implemented in a number of ways.
A very typical strategy is to keep a fraction of the current population, generating new
(random or heuristic) solutions to complete the population, as shown in Algorithm
7. The procedure shown therein is also known as the random-immigrant strategy
[130]. Another possibility is to activate a strong or heavy mutation operator in order
to drive the population away from its current location in the search space.

4.4 Design Issues

The general template of MAs depicted in the previous section must be instantiated
with precise components in order to be used for solving a specific problem. MAs
are commonly implemented as EAs endowed with a local search component, and
therefore the theoretical corpus available for the former can be used to guide some
aspects of the design process, e.g., the representation of solutions in terms of mean-
ingful information units [183, 751].

The most MA-specific design decisions are those related to the local search com-
ponent, not just from the point of view of parameterization (see below) but also with
the actual inner working of the component and its interplay with the remaining op-
erators. This latter issue is well exemplified in the work of Merz and Freisleben on
the TSP [285]. They consider the use of the Lin-Kernighan heuristic [524], a highly
intensive local search procedure, and note that the average distance between local
optima is similar to the average distance between a local optimum and the global
optimum. For this reason, they introduce a distance-preserving crossover (DPX)
operator that generate offspring whose distance from the parents is the same as the

50 F. Neri and C. Cotta

distance between the parents themselves. Such an operator is likely to be less effec-
tive if a less powerful local improvement method, e.g., 2-opt, was used, inducing a
different distribution of local optima.

Once a local search procedure is selected, an adequate parameterization must be
determined, i.e., how often it must be applied, how to select the solutions that will
undergo local improvement, and how long must improvement epochs last. These are
delicate issues since there exists theoretical evidence [494, 857] that an inadequate
parameter setting can turn the algorithmic solution from easily solvable to non-
polynomially solvable. Regarding the probability of application of local search, its
precise values largely depend on the problem under consideration [411], and its
determination is in many cases an art. For this reason, adaptive and self-adaptive
mechanisms have been defined in order to let the algorithm learn what the most
appropriate setting is. The term partial lamarckianism [151, 396, 717] is used to
denote these strategies where not every individual is subject to local search.

As to the selection of individuals that will undergo local search, most common
options are random-selection, and fitness-based selection, where only the best indi-
viduals are subject to local improvement. For example, Nguyen et al. [665] consider
an approach in which the population is sorted and divided into n levels (n being the
number of local search applications), and one individual per level is randomly se-
lected. Note that such a strategy can be readily deployed on a structured MA as
defined by Moscato et al. [62, 94, 282, 576, 578], in which fitness-based layers are
explicitly available. See also [80, 736, 737, 836] for other population management
strategies.

4.5 Conclusions and Outlook

Memetic algorithms are a pragmatic, cross-disciplinary optimization paradigm that
has emerged in the last quarter of a century to become nowadays one of the most
widely used solving approaches. This is supported by a plethora of applications in
disparate fields ranging from machine learning and knowledge discovery to plan-
ning, scheduling and timetabling, from bioinformatics to electronics, engineering,
and telecommunications, or from economics to physics, just to mention a few. The
reader may check [154, 375, 618, 619, 620, 626, 632], for a survey of these appli-
cations and pointers to the literature.

Throughout this chapter we have provided a brief introduction to the main is-
sues regarding the definition and design of a basic memetic algorithm. However,
it must be emphasized that the MA paradigm is very rich and has given rise to an
ample set of variations and more sophisticated MA models. Among these, we can
firstly cite multiobjective MAs (MOMAs). MOMAs are applied to problems which
exhibit multiple, partially-conflicting objectives, and in which the notion of Pareto-
dominance is therefore essential. Actually, MOMA approaches can be roughly clas-
sified into two major classes: scalarizing approaches [408, 409, 419, 421] (based on
the use of some aggregation mechanism to combine the multiple objectives into
a single scalar value), and Pareto-based approaches [471, 472] (considering the

4 A Primer on Memetic Algorithms 51

notion of Pareto-dominance for deciding transitions among neighboring solutions).
MOMAs will be dealt in more detail in chapter 13 in this volume.

Adaptive MAs also deserve special attention. As mentioned in Section 4.4, deci-
sions related to parameterization are essential in order to achieve an effective MA.
It is therefore not surprising that attempts have been made to let the algorithm find
by itself adequate values for these parameters [40, 536, 605, 606]. Furthermore,
the term “meta-lamarckian learning” [680] has been coined to denote strategies in
which the algorithm learns to select appropriate local search operators from a cer-
tain available collection (note the relationship with hyperheuristics [169]). A further
step is taken in the so-called multi-memetic algorithms, in which each solution car-
ries a gene that indicates which local search has to be applied on it (either indicating
which one from a pre-existing collection, by parameterizing a general local search
template, or by using a grammar to define new operators) [488, 490, 496]. At an even
higher level, solutions and local-search operators can coevolve [830, 831]. Adaptive
MAs will be dealt in more detail in chapter 11 in this volume.

Last but not least, there exist nowadays a growing trend in combining MAs with
complete techniques such as branch-and-bound or branch-and-cut among others.
There are many ways in which such a combination can be done. For example, an
exact technique can be used as an internal operator of the MA [295, 742], as a post-
processing technique [469], run in parallel with the MA [294, 297, 740], and even
combine several of the previous approaches [299]. The combination of MAs with
exact techniques will be dealt in more detail in chapter 12 in this volume.

4.6 Memetic Algorithms and Memetic Computing

It is fundamental to clarify the difference between MAs and Memetic Computing
(MC) . As stated above, MAs are population-based evolutionary algorithms com-
posed of an evolutionary framework and a list of local search algorithms activated
within the generation cycle of the evolutionary framework, see [376]. While this
book refers to MAs, it is worthy to take into account that recently the term MC be-
came widely used amongst computer scientists. An early definition has been given
in [689], where MC is defined as “...a paradigm that uses the notion of meme(s)
as units of information encoded in computational representations for the purpose of
problem solving”. In other words, part of the scientific community tried to extend
the concept of meme for problem solving, see [655], to something broader and more
innovative. The fact that ad-hoc optimization algorithms can efficiently solve given
problems is a well-known result from literature. On the other hand, the ultimate goal
in artificial intelligence is the generation of autonomous and intelligent structures.
In computational intelligence optimization, the goal is the automatic detection of
the optimal optimization algorithm for each fitness landscape, or, in other terms,
the on-line (i.e. during run-time) automatic design of optimization algorithms. MC
can be seen then as a subject which studies complex structures composed of sim-
ple modules (memes) which interact and evolve adapting to the problem in order to
solve it. This view of the subject leads to a more modern definition of MC.

52 F. Neri and C. Cotta

Definition 4.1. Memetic Computing is a broad subject which studies complex and
dynamic computing structures composed of interacting modules (memes) whose
evolution dynamics is inspired by the diffusion of ideas. Memes are simple strategies
whose harmonic coordination allows the solution of various problems.

In this light, MAs should be seen as a cornerstone and founding subset of MC.

Acknowledgements. C. Cotta is supported by Spanish MICINN under project NEMESIS
(TIN2008-05941) and by Junta de Andalucı́a under project TIC-6083. F. Neri is supported
by the Academy of Finland, Akatemiatutkija 130600, Algorithmic Design Issues in Memetic
Computing.

Part II

Chapter 5
Parametrization and Balancing Local and
Global Search

Dirk Sudholt

5.1 Introduction

This chapter is devoted to the parametrization of memetic algorithms and how to
find a good balance between global and local search. This is one of the most press-
ing questions when designing a hybrid algorithm. The idea of hybridization is to
combine the advantages of different components. But if one components dominates
another one, hybridization may become more hindering than useful and compu-
tational effort may be wasted. For the case of memetic algorithms, if the effect of
local search is too strong, the algorithm may quickly get stuck in local optima of bad
quality. Moreover, the algorithm is likely to rediscover the same local optimum over
and over again. Lastly, an excessive local search quickly leads to a loss of diversity
within the population.

The importance of the parametrization of memetic algorithms has already been
recognized by Hart [366] in 1994. He posed the following questions, many of which
have been reproduced in similar ways in later articles:

• How often should local search be applied?
• On which solutions should local search be used?
• How long should the local search be run?
• How efficient does a local search need to be?

We will mostly deal with the first and the third question in the sequel. In concrete
implementations of memetic algorithms different parameters occur. Related to the
first question is a strategy to call local search with a fixed frequency, the local search
frequency. A similar strategy is to call local search probabilistically, with a fixed lo-
cal search probability. With regard to the third question, often the running time of
one local search is capped to a value called local search depth. Other mechanisms

Dirk Sudholt
School of Computer Science, The University of Birmingham Edgbaston,
Birmingham B15 2TT, UK
e-mail: d.sudholtcs.bham.ac.uk

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 55–72.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

56 D. Sudholt

can have a comparable effect. [411] restricted the neighborhood used for one itera-
tion of local search to some fixed parameter k. The size of the neighborhood is also
a crucial parameter in variable-neighborhood search algorithms [604]. Paenke, Jin,
and Branke [697] used the lifetime of an individual to balance the effect of global-
and individual-level adaptation in stochastic environments.

This list of mechanisms for balancing global and local search is by far not com-
plete. While some considerations described in this chapter hold for a large variety
of balancing techniques, we will consider the local search frequency and the local
search depth as the most typical mechanisms.

We describe the outline of this chapter. In Section 5.2 we will survey applications
and theoretical studies dealing with the parametrization. The effect of local search
is discussed and aspects are described that have a strong impact on the optimal bal-
ance between global and local search. We also review approaches how to find such
an optimal balance. Section 5.3 deals with the complexity of local search. We will
ask how powerful local search is on its own and in which settings a local optimum
can be found in polynomial time. For many practically important problems we can-
not guarantee that local search always finds a local optimum in polynomial time.
Even stronger, there is strong evidence that no algorithm can perform this task in
polynomial time. Implications for memetic algorithm design are discussed. Finally,
we will present artificial functions in Section 5.4 and running time analyses demon-
strating that the parametrization of memetic algorithms can be extremely hard. This
also strengthens the fact that there is no a priori optimal parametrization that works
well for every problem. The chapter ends with conclusions in Section 5.5.

5.2 Balancing Global and Local Search

5.2.1 Early Works and the Effect of Local Search

The early work by Hart [366] and a subsequent extension to combinatorial opti-
mization by Land [503] lead to many conclusions for the design of memetic al-
gorithms. Hart investigated the impact of the local search frequency for the opti-
mization of common test functions in continuous spaces like the Rastrigin function,
the Griewank function, and modifications thereof. His experimental results suggest
that genetic algorithms (GAs) with large populations are most effective when lo-
cal search is used infrequently. He also claims that a large local search frequency
is needed if the algorithm is not able to identify regions that are likely to contain
global optima. As the introduction of elitism increases the degree of exploitation,
compared to exploration, less local search is needed when using elitism. Hence,
also the type of GA used with local search has a strong impact on performance.
Hart also remarks that the use of local search has restricted many applications to use
small population sizes because of the increased computational effort. This holds in
particular when local search is applied to every individual in the population.

Regarding the selection of individuals for which local search is to be performed,
Hart [366] proposes to decrease the local search frequency for each individual by the

5 Parametrization and Balancing Local and Global Search 57

number of duplicates contained in the population. This works around the problem of
having redundant local searches on the same solutions. He generalizes this approach
towards reducing the local search frequency with respect to the degree of similar-
ity to other solutions in the population. To this end, a distance metric in genotype
space is used. This closely resembles the well-known fitness sharing mechanism for
preserving diversity [547]. Section III.C.3 Land [503] proposes several extensions
and similar approaches. One is to choose a subset of the population such that the
minimum distance between any two selected individuals is maximized. A second
strategy is to ensure that every individual in the population is close to an individ-
ual that is selected for local search. This way, if the population consists of several
clusters, we can hope that all clusters benefit from local search.

Hart [366] also investigated biasing the selection of individuals for local search
towards fitter individuals. However, as argued by Section III.C.3 Land [503], this
reinforces the dominance of the already fit individuals and hence leads to a rapid
loss of diversity. In addition, good solutions are likely to be close to local optima,
hence they will have the least benefit of applying more local search to them. Also,
for solutions that are close to local optima improvements may be hard to find, which
renders the local search less efficient.

Related to the last remark is the question how easy improvements can be achieved
for specific solutions. Section III.C.3 Land [503] introduced the notion of a “local
search potential” as a measure for the expected gain in fitness in relation to the
computational effort. The local search potential can be estimated by performing few
steps of local search, a so-called “local search sniff” and recording both the gain and
the effort throughout the sniffing period. The average gain per unit of effort is then
used as an estimation for its future effectiveness. The drawbacks of this approach
is that these sniffs might use a fair amount of computational effort to yield reliable
estimations. Moreover, there are no guarantees that the progress in early steps of
local search will be an accurate prediction of future progress.

The use of local search is not restricted to evolutionary algorithms. Memetic
approaches have also been used for various other paradigms such as estimation-
of-distribution algorithms [6] or Ant Colony Optimization [215, 514]. The effect
of local search can be quite different in other paradigms. In a recent study Neu-
mann, Sudholt, and Witt [661] argued that the use of local search in ant colony opti-
mization (ACO) can change the behavior of the algorithm drastically. Without local
search, the sampling distribution for new solutions given by artificial pheromones
usually follows the best-so-far solution. This enables the algorithm to follow paths
and ridges in the search space. When introducing local search with a large local
search depth, however, a newly discovered local optimum might be far away from
the “center of gravity” of the sampling distribution. In ACO algorithms using the
best-so-far rule (i. e. always rewarding the current best solution found so far), the
pheromones are then directly adapted towards the new local optimum. Instead of
following the path taken by local search to arrive at this local optimum, the direct
adaptation of pheromones can make the algorithm sample solutions from a totally
different area of the search space. Neumann et al [661] demonstrated for a con-
structed function where this effect may mislead the search and turn a polynomial

58 D. Sudholt

optimization time into an exponential one, with high probability. However, they
also proved for a slightly different function that this behavior can also prevent the
algorithm from getting stuck in a local optima. Local search can then also help to
reduce an exponential optimization time to a polynomial one.

5.2.2 Aspects That Determine the Optimal Balance

The optimal balance between global and local search clearly depends on the opti-
mization problem at hand and the memetic algorithm applied to it. The latter not
only includes the choice of the operators employed and issues of representation, but
also various other parameters of the algorithm such as the population size, selection
pressure, and the mutation rate. Even among the mentioned aspects and for plain
evolutionary algorithms there is strong evidence that the precise choice of param-
eters can have a tremendous effect on performance. Theoretical studies have been
performed, e. g., by Storch [852] and Witt [939] for the choice of the parent pop-
ulation size, Jansen, De Jong, and Wegener [417] for the choice of the offspring
population size, Jansen and Wegener [416] for the choice of the mutation rate, and
Lehre and Yao [511] for the ratio of the selection pressure in ranking selection and
the mutation rate.

We therefore cannot expect to obtain design guidelines that do not depend on all
the mentioned aspects and nevertheless always lead to good results. The existence
of such guidelines is excluded by the well-known no free lunch theorems [401, 940].
These results state that when averaging over a class of problems that is closed un-
der permutation, all algorithms (this includes all parametrizations for one specific
algorithm) have equal average performance. It is, however, also clear that the set-
ting of the no free lunch theorems is much too general to be of any relevance. The
vast majority of functions considered are of no interest for optimization as they
have exponential-size representations [228]. In Section 5.4 we will present much
stronger results for one particular memetic algorithm. The considered functions do
have polynomial-size representations and exhibit superpolynomial or exponential
performance gaps for even small changes of the parametrization. This shows that
for the considered algorithm there is no polynomial relation between optimal and
non-optimal parameter values.

So, the parameters and design aspects of a memetic algorithm should not be
viewed in isolation. The strongest dependency is probably the one between the lo-
cal search depth and the local search frequency. Choosing one parameter value with
disregard to the other one often does not make much sense. For instance, [411] dis-
covered that in applications to the multi-objective permutation flowshop scheduling
problem the optimal number k of neighbors visited in one iteration of local search
was strongly negatively correlated with the local search frequency pLS. The best
performance was obtained when the product k · pLS was within a range of 1 to 10.

Also, the balance of exploration and exploitation is important. In iterated local
search algorithms [533] local search is typically used in every iteration and per-
formed until a local optimum is found. So, local search is used to its utmost extend.

5 Parametrization and Balancing Local and Global Search 59

On the other hand, iterated local search algorithms tend to use strong perturbations,
i. e., large mutations before applying local search. In this setting, a powerful explo-
rative operator balances out a powerful exploitative operator. When the underlying
evolutionary component of a memetic algorithm is more similar to a classical ge-
netic algorithm, that is, if more emphasis is put on exploration by populations and
the use of recombination and mutation, less local search should be used in order not
to disrupt exploration.

The optimal balance between global and local search also depends on design and
implementation issues. In some applications, local search is computationally ex-
pensive. This holds, for example, in the case of large or computationally expensive
neighborhoods like the Lin-Kernighan neighborhood or pivoting rules such as steep-
est descent/ascent, where the whole neighborhood must be searched. Using pivoting
rules such as first improvement or neighborhood reduction techniques can speed up
the local search significantly and thus shift the “optimal” amount of local search.

In several applications it is possible to perform incremental fitness evaluations
during local search. If the fitness can be efficiently updated in cases where only few
components (bits, objects, edges, . . .) are modified in an iteration of local search, lo-
cal search tends to be much faster than the genetic component of the algorithm. One
example is the TSP where the cost of a 2-Exchange operation can be computed by
only looking at the 4 edges involved, see, e. g. [411, 583]. In fact, Jaszkiewicz [419]
reported in a study on a multi-objective TSP problem that local search was able
to perform 300 times more function evaluations per second than a multi-objective
genetic algorithm. Also neighborhood reduction techniques turned out to be very
useful for speeding up local search [583].

On the other hand, [411] argued that for flowshop scheduling recomputing the
fitness after a local change of a schedule cannot be done much faster than computing
the fitness from scratch. This is because even local changes may imply that the
completion times for almost all jobs have to be recalculated. The execution time for
one iteration of local search is thus a very important issue.

When considering multi-objective problems, it is important to maintain diver-
sity in the population. Sindhya, Deb, and Miettinen [815] used a local search that
optimizes an achievement scalarizing function. The local search helps with the con-
vergence to the Pareto front, but it is also likely to create extreme points on the
Pareto front. To this end, the authors used a dynamic schedule for choosing the lo-
cal search probability. The local search probability linearly increases from 0 to the
inverse population size and then drops to 0 again. The number of generations for
one such cycle is proportional to the population size.

Concluding, there are many aspects that determine the optimal balance between
global and local search. Many different parameter settings have been proposed,
some of which are due to dynamic or adaptive schedules. Table 5.1 summarizes
the above-mentioned aspects. In the following, we will describe approaches how
such an optimal balance can be found.

60 D. Sudholt

Table 5.1. Overview on aspects that affect the optimal amount of local search.

less local search more local search

exploration by GA weak exploration strong exploration

mutation strength small mutations large perturbations

pivoting rule steepest ascent/descent first improvement

neighborhood size large neighborhood small neighborhood/reduction techniques

implementation of LS expensive recalculations incremental fitness evaluations

objectives multi-objective problem single-objective problem

5.2.3 How to Find an Optimal Balance

Several approaches have been proposed how to find a good parametrization for
memetic algorithms. There are general approaches for finding good parameter
settings that are not tailored towards memetic algorithms and hence are somewhat
beyond the scope of this chapter. We briefly mention one such approach called se-
quential parameter optimization (SPO) introduced by Bartz-Beielstein, Lasarczyk,
and Preuß [49]. SPO aims at finding the best parametrization by combining classical
and modern statistical techniques. It can be seen as a search heuristic trying to op-
timize the performance of non-deterministic algorithms. SPO iteratively applies the
following three steps. First, an experimental analysis of an algorithm with a given
parametrization is performed. Then, the performance of the algorithm (including
its parametrization) is estimated by means of a stochastic process model. In a third
step, additional parameter settings in the parameter space are determined in a sys-
tematic way. For further details, we refer to Bartz-Beielstein [47], Bartz-Beielstein,
Lasarczyk, and Preuß [49].

Goldberg and Voessner [329] and Sinha, Chen, and Goldberg [818] presented
a system-level theoretical framework for optimizing global-local hybrids. Two dif-
ferent optimization goals are considered: maximizing the probability of reaching a
solution within a given accuracy and minimizing the time needed to do so. The au-
thors considered the impact of the local search depth for a hybrid that uses random
search as a global component. They presented formulas for determining the optimal
local search depth for the mentioned optimization goals. The formulas, however,
are based on some simplifying assumptions and they do require knowledge on the
structure of the problem that is usually not available in practice. The probabilities
of reaching specific basins of attraction in one step of the global searcher have to
be known as well as the average time local search takes to local optimality for each
basin.

Another well-studied approach is to include domain knowledge into the design
of memetic algorithms [583, 923]. This knowledge can be gained by analyzing the
fitness landscape of the problem (instance) at hand. One useful measure for the
ruggedness of a fitness landscape is the correlation length. It is, in turn, based on
the random walk correlation function r(s), also known as autocorrelation. The func-
tion r(s) specifies the correlation between two points of a random walk that are s

5 Parametrization and Balancing Local and Global Search 61

time steps away. The random walk chooses the next point uniformly from a fixed
neighborhood. Different neighborhoods may thus lead to different correlations. If
the correlation is high, the correlation length is large and the fitness landscape is
smooth. If the correlation is low, the correlation length is small and the fitness land-
scape is rugged. It has been observed that large correlation lengths lead to a large
number of iterations until local search finds a local optimum. On the other hand, a
small correlation length often means that local search may quickly get stuck in bad
local optima [583]. Fitness landscape analysis can help to choose the right neigh-
borhood and a suitable parametrization for the local search.

Last but not least, adaptive techniques may help to find a good parametrization.
Memetic algorithms using many different local searchers are known as multimeme
algorithms [658]; each local search operator is called a “meme.” The choice of
memes can be made adaptively or even self-adaptively, see the survey by Ong, Lim,
Zhu, and Wong [683]. Also coevolutionary systems have been developed that coe-
volve a local searcher alongside the evolution of solutions [490, 830].

5.3 Time Complexity of Local Search

In order to fully understand the capabilities of local search, it is indispensable to
know its limitations. In this section we describe theoretical results on the time com-
plexity of local search and discuss implications on memetic algorithm design. We
will look at local search in isolation and ask how long it takes until one call of local
search finds a local optimum. From the perspective of memetic algorithms, we ask
how efficient the local search component is in computing a local optimum from its
basin of attraction. If local search cannot find local optima efficiently, a memetic
algorithm will most likely show poor performance, even if the global component
can locate the basin of attraction of the global optimum efficiently. We will also re-
view a theory of intractability that applies to many important problems and memetic
algorithms used in practice. It can be proven that under certain complexity theory
assumptions and in the worst case local optima cannot be computed in polynomial
time by any means, even for more sophisticated algorithms than local search. It is
not the case that local search is too simple to locate local optima efficiently. Instead,
the mentioned problems are so difficult that computing local optima is hard for any
(arbitrarily sophisticated) search strategy.

The following presentation is based in parts on Michiels, Aarts, and Korst [598],
Chapter 6. Define a local search problem as a combination of a combinatorial op-
timization problem, a neighborhood function mapping a solution to a subset of the
search space, and an indication whether the problem is a maximization or a mini-
mization problem. The goal of a local search problem is to compute a local optimum
with respect to the goal of the optimization. Note that the neighborhood is an inte-
gral part of the problem. Using a different neighborhood function leads to a different
local search problem.

The main question is how many iterations local search will need in order to find a
local optimum. It is helpful to use the following perspective. Define the state graph

62 D. Sudholt

of a problem as a directed graph where the set of vertices corresponds to the search
space. The state graph includes an edge (x,y) if and only if y is a neighbor of x and
y is strictly better than x. A local optimum thus corresponds to a sink, i. e., a vertex
with no outgoing edges. The number of iterations needed to find a local optimum
corresponds to the length of the path from the starting point to a sink. The precise
choice of an outgoing edge is determined by the pivoting rule.

5.3.1 Polynomial and Exponential Times to Local Optimality

In many applications, local search finds an optimum in polynomial time. Assume
the neighborhood is searchable in polynomial time and the number of function val-
ues is polynomially bounded. Then clearly all paths in the state graph only have
polynomial length and local search will finish in polynomial time. Problems with
only a polynomial number of function values include the NP-hard Minimum Graph
Coloring problem if the number of colors used is taken as fitness function and the
NP-hard MAXSAT problem, when one uses the number of satisfied clauses as ob-
jective function. Another NP-hard problem with this property is the graph partition-
ing problem. The fitness corresponds to the number of cut edges, which ranges from
0 to n2/4, n being the number of vertices. Also weighted problems might show this
property, for instance in special cases where the weights are integral, positive, and
polynomially bounded. Land [503], Section III.A.1 gives a formal proof for a class
of weighted graph partitioning problems and a weighted TSP.

Lin-Kernighan-type or variable-depth-type of local searches perform a chained
sequence of local moves and fix solution components (edges, bits, vertices, . . .) that
have been changed until the end of local search. Hence, these local searches also
trivially stop after polynomially many steps (see [859] for an analysis of memetic
algorithms with variable-depth search). The effect is similar as for local searches
with a maximum local search depth; local search stops in polynomial time without
guarantee of having found a local optimum.

When the number of function values is superpolynomial, it might still be that
all paths in the state graph have only polynomial length. But for some problems one
can actually prove that in settings with exponentially many function values exponen-
tially long paths exist. Englert, Röglin, and Vöcking [245] constructed an instance
for the Euclidean TSP where the state graph for the 2-Opt algorithm has exponential
length. Hence, in the worst case—with respect to the choice of the starting point and
the pivoting rule—local search takes exponential time.

Similar results also hold for pseudo-Boolean optimization. Horn, Goldberg, and
Deb [395] presented so-called long path problems which contain a fitness-increasing
path in the state graph under the Hamming neighborhood (two solutions are neigh-
bored if they only differ in exactly one bit). The length of the path is of orderΘ(2n/2)
if n is the number of bits. In addition, for every point x on the path every Hamming
neighbor y of x has strictly lower fitness than x, unless y is itself a point on the path.
In other words, the next successor on the path is the only neighbor with a better
fitness. This property ensures that a local search using the Hamming neighborhood

5 Parametrization and Balancing Local and Global Search 63

cannot leave the path and thus is forced to climb to its very end. This holds regard-
less of the pivoting rule as the pivoting rule cannot make any choices. All points not
belonging to the path give hints to reach the start of the path, hence also on average
over all starting points local search needs exponential time.

Note, however, that flipping 2 bits at a time or using a stochastic neighborhood
such as standard bit mutations suffices to reach the end of the path efficiently by
taking shortcuts. Rudolph [780] proved an upper bound of O(n3) for the expected
optimization time of the simple algorithm (1+1) EA whose mutation operator flips
each bit independently with probability 1/n. He also formally defined a more robust
generalization to long k-paths where at least k bits have to flip in order to take a
shortcut. The parameter k can be chosen such that the length of the path is still
exponential (say, of order 2

√
n) and the probability of taking a shortcut by standard

bit mutations is still exponentially small. This yields an example where also using
larger neighborhoods that can flip up to k− 1 bits at a time need exponential time
for suitable initializations. Also the stochastic neighborhood used by the (1+1) EA
does not avoid exponential expected optimization times for suitable values of k, as
proven by Droste, Jansen, and Wegener [227].

5.3.2 Intractability of Local Search Problems

NP-completeness theory is a well-known and powerful tool to prove that many im-
portant optimization problems are intractable, in a sense that no polynomial-time
algorithm for the problem can exist, assuming P �= NP. There is a similar theory for
local search problems that can be used to characterize local search problems where
under reasonable assumptions no polynomial-time algorithm exists for finding lo-
cal optima. This includes arbitrary algorithms that need not have much in common
with local search algorithms. The foundation for this theory was laid by Johnson,
Papadimitriou, and Yannakakis [429]. We give an informal introduction into this
theory and refer the reader to Yannakakis [948] and Michiels et al [598], Chap-
ter 6 for complete formal definitions. For this subsection we assume that the reader
has basic knowledge on NP-completeness and refer to classical text books for fur-
ther reading [303, 701, 925]. A brief treatment of NP-completeness is also given
in Michiels et al [598], Appendix B.

The complexity class we will focus on is called PLS for “polynomial-time search-
able.” A local search problem Π is in PLS if there exist two polynomial-time algo-
rithms with the following properties. One algorithm can be seen as an initializa-
tion operator. It simply computes some initial solution for Π in polynomial time.
The second polynomial-time algorithm, given a solution s, either computes a better
neighbor of s or reports that s is a local optimum. If a problem is in PLS, this means
that there is a local search algorithm such that the initialization and each iteration of
local search can be executed in polynomial time. This is not to be confused with the
question how many iterations are needed in order to find a local optimum.

Similar to reductions in NP-completeness theory, there is the concept of a reduc-
tion between PLS-problems: we can relate the difficulties of two problems Π1,Π2

64 D. Sudholt

in PLS as follows. Denote a PLS-reduction from Π1 to Π2 by Π1 �PLS Π2. A PLS-
reduction demands a polynomial-time algorithm that maps a problem instance of
Π1 to an instance of Π2 and a polynomial-time algorithm that maps a solution for
Π2 back to a solution for Π1. In the latter mapping, we require that if the solution
s2 for Π2 is a local optimum for Π2 and s2 is mapped to a solution s1 for Π1, then
s1 must be a local optimum for Π1. Hence, if we want to solve Π1, we can use the
first algorithm to transform the instance for problem Π1 into an instance of Π2, then
solve problem Π2 to local optimality, and finally map the local optimum back to a
local optimum for Π1 using the second algorithm.

If Π1 �PLS Π2 then we can conclude that Π2 is “at least as hard” as Π1. This
means that if Π1 cannot be solved in polynomial time, then Π2 cannot be solved in
polynomial time either. But if Π2 is polynomial-time solvable, then Π1 also is. This
concept leads to the notion of PLS-completeness: a problem Π is PLS-complete if
every problem in PLS can be PLS-reduced to it; in other words, Π is PLS-complete
if it is at least as hard as every other problem in PLS. PLS-complete problems thus
constitute the hardest problems in PLS. If it could be shown for one PLS-complete
problem that a local optimum can always be found within polynomial time, then
all problems in PLS would be solvable in polynomial time. Speaking in terms of
complexity classes, we would then have P = PLS. However, as no polynomial-time
algorithm has been found for any PLS-complete problem, it is widely believed that
P �= PLS.

Theorem 5.1. If P �= PLS, there exists no algorithm that always computes a local
optimum for a PLS-complete local search problem in polynomial time.

This result not only states that local search probably cannot find local optima for
PLS-complete problems. It also says that no other, arbitrarily sophisticated algo-
rithm can do better.

The theory of PLS-completeness has concrete implications as many well-known
local search problems have been proven to be PLS-complete. We list some examples
and refer to Michiels et al [598], Appendix C for a more detailed list.

Theorem 5.2. The following local search problems are PLS-complete.

• Pseudo-Boolean optimization: maximize or minimize a function {0,1}n → �

using the Hamming neighborhood
• MAX-2-SAT for the Hamming neighborhood as well as the Kernighan-Lin

neighborhood
• MAXCUT for the Hamming neighborhood as well as the Kernighan-Lin neigh-

borhood
• Metric TSP for the k-Exchange neighborhood as well as (a slightly modified

variant of) the Lin-Kernighan neighborhood.

So, there are PLS-completeness results for neighborhoods used by common lo-
cal search algorithms. Memetic algorithms usually combine different neighbor-
hoods for genetic operators and local searchers. Multimeme algorithms or variable-
neighborhood search even use several neighborhoods for local search. Does PLS-
completeness also hold in these settings?

5 Parametrization and Balancing Local and Global Search 65

The answer is yes. Recall that a PLS-reductionΠ1 �PLS Π2 demands that all local
optima in Π2 must be mapped to local optima in Π1. In order to prove that a problem
Π2 is PLS-complete, it suffices to show that Π1 �PLS Π2 for a PLS-complete local
search problem Π1. Assume that Π1 is PLS-complete and consider the situation
where Π1 and Π2 are based on the same combinatorial problem. Further assume that
Π2 uses a “larger” neighborhood in the following sense: if x and y are neighbored in
Π1 then they are also neighbored in Π2. For example, Π1 might be the TSP with a
2-Exchange neighborhood and Π2 might be the TSP with a neighborhood of all 2-
Exchange and 3-Exchange moves. Now, if x is a local optimum in Π2 then it is also
a local optimum in Π1 (it might even have less neighbors to compete with). Hence,
using the identity function for mapping local optima in Π2 back to Π1 establishes
a PLS-reduction Π1 �PLS Π2 and proves PLS-completeness for Π2. Note that the
term “neighborhood” can be used in a broad sense. In the above example, Π2 might
use different kinds of operators. For instance, instead of containing 2-Exchange and
3-Exchange moves, the neighborhood of Π2 could contain 2-Exchange moves and
Lin-Kernighan moves. Note, however, that the enlarged neighborhood must still be
searchable in polynomial time as otherwise Π2 would not be contained in PLS.

It is also possible to incorporate populations as described by Krasnogor and
Smith [494]. A local search problem Π1 whose state space reflects a single solu-
tion can be mapped to a local search problem Π2 whose state space reflects all
possible populations. The function value for Π2 can be defined as the Π1-value for
the best individual in the population. The neighborhood function for Π2 would con-
tain all possible transitions to other populations using the neighborhood function of
Π1. As long as this neighborhood is searchable in polynomial time, a PLS-reduction
Π1 �PLS Π2 can simply map the best individual from the population of the problem
Π2 to Π1. If the population cannot be improved by any operation in Π2, then the
best individual cannot be improved in Π1. Hence, a locally optimal population for
Π2 implies a locally optimal individual for Π1. With this PLS-reduction, we have
shown that the population-enhanced problem Π2 is PLS-complete as well.

The conclusion from these observations is the following: if we know that a lo-
cal search problem Π1 is PLS-complete, then all algorithms that result from Π1 by
extending the algorithm to populations, enlarging neighborhoods, or adding new
operators are, in turn, PLS-complete. This holds under the condition that all consid-
ered neighborhoods are searchable in polynomial time. Krasnogor and Smith [494]
formalize PLS-completeness results for memetic algorithms on the TSP that use the
2-Opt operator. Quoting from their work, “the addition of a population to the evo-
lutionary heuristic does not improve the worst-case behavior beyond that of local
search.”

For the sake of completeness, we also mention that there is a stronger notion of
PLS-completeness, called tight PLS-completeness. For tightly PLS-complete prob-
lems there can exist paths in the state graph of exponential length. This implies that
local search needs exponential time in the worst case. This holds even regardless
of the pivoting rule. Actually, all problems mentioned in Theorem 5.2 are tightly
PLS-complete. To prove tight PLS-completeness, so called tight PLS-reductions
are needed that additionally preserve the length of paths in the state graph, up to

66 D. Sudholt

polynomial factors. Tight PLS-completeness is, however, not robust with respect to
extensions of the neighborhood as larger neighborhoods might add shortcuts in the
state graph.

How can we deal with PLS-complete problems? Recall that PLS-completeness
only focusses on the worst-case behavior. Even if the worst case is hard, the average-
case performance or the performance when starting with “typical” starting points
generated by the global component might be much better. In fact, problem instances
constructed to reveal exponential-length paths in the state space are mostly contrived
and very dissimilar to problem instances encountered in practice. Furthermore, even
if there is an intractability result for a general problem, it might be that one is ac-
tually solving an easier special case of the general problem. While the TSP us-
ing common neighborhoods is PLS-complete for general edge weights, local search
trivially succeeds in polynomial time if the edge weights are positive and polynomi-
ally bounded integers. Though the general problem is (tightly) PLS-complete, the
weight-restricted TSP is not.

5.4 Functions with Superpolynomial Performance Gaps

From general hardness results that hold for classes of algorithms under certain as-
sumptions, we now move on the more concrete results for specific memetic algo-
rithms. We will present results that prove the non-existence of a priori guidelines
for the parametrization of the investigated memetic algorithms. For both the local
search depth and the local search frequency there are functions where only specific
parameter values can guarantee an effective running time behavior. With only small
variations of the parameters, the typical running time experiences a phase transition
from polynomial to superpolynomial or even exponential running times. The “op-
timal” parameter values for these functions can be chosen almost arbitrarily. This
implies that for almost each fixed parametrization (whose value may depend on the
problem size) there is a function for which this parameter is far from being opti-
mal. This section is based on Sudholt [858]. Preliminary results were published in
Sudholt [855, 856].

The non-existence of an all-purpose optimal parameter value is not surprising
in the light of the no free lunch theorems [401, 940], but our statements are much
stronger. For instance, they prove that the running times of “good” and “bad” pa-
rameter values are not polynomially related. Also, the no free lunch theorems only
yield a mere existence proof and do not give any hints how separating functions
might look like.

The downside of this approach is that these strong statements can only be ob-
tained by fixing a memetic algorithm that is simple enough to be handled analyt-
ically. In particular, the algorithm does not use crossover. The algorithm is called
(μ+λ) EA. It uses a fixed maximum local search depth denoted by δ and calls local
search with a fixed frequency, every τ iterations. The local search used iteratively
searches for neighbors with strictly larger fitness and stops if no such point exists
or the maximum local search depth of δ iterations has been hit. It may be imple-
mented using an arbitrary pivoting rule. The (μ+λ) MA operates with a population

5 Parametrization and Balancing Local and Global Search 67

Algorithm 8. Local search(y)
for δ iterations do1

if there is a z ∈N (y) with f (z) > f (y) then2

y← z;3

else4

stop and return y;5

endif6

endfor7

return y;8

Algorithm 9. (μ+λ) Memetic Algorithm

Let t← 0;1

Initialize P0 with μ individuals chosen uniformly at random;2

repeat3

P′t ← /0;4

for i← 1 to λ do5

Choose x ∈ Pt uniformly at random;6

Create y by flipping each bit in x independently with prob. pm;7

if t mod τ = 0 then8

y← local search(y)9

endif10

P′t ← P′t ∪{y};11

endfor12

Create Pt+1 by selecting the best μ individuals from Pt ∪P′t ; // Break ties13

in favor of P′t
t ← t +1;14

until termination ;15

of size μ and creates λ offspring in each generation. This is done by choosing ran-
domly a parent, then mutating it, and, every τ generations, additionally applying
local search to the result of the mutation. The population for the next generation is
selected among the best parents and offspring.

5.4.1 Functions Where the Local Search Depth Is Essential

Now we describe how to construct a function fD parametrized by an “ideal” value
D for the local search depth, such that the following holds. Formal definitions can
be found in Sudholt [858]. If the local search depth is chosen as δ = D, then the
(μ+λ) EA optimizes fD efficiently. However, if the local search depth is only a little
bit away from this ideal value, formally |δ −D|� log3 n, then the (μ+λ) EA needs
superpolynomial time, with high probability. The precise result reads as follows.

Theorem 5.3. Let D � 2log3 n, λ = O(μ), and μ ,δ ,τ ∈ poly(n). Initialize the
(μ+λ) MA with μ copies of the first point on the path, then the following holds
with high probability:

68 D. Sudholt

– if δ = D, the (μ+λ) MA optimizes fD in polynomial time
– if |δ −D|� log3 n, the (μ+λ) MA needs superpolynomial time on fD.

We only remark without giving a formal proof that the function can be adapted such
that in the second case the stronger assumption |δ−D|� nε for some constant ε > 0
leads to exponential optimization times.

In the following, we describe the construction of the function fD and the main
proof ideas. The construction is based on the long k-paths already mentioned in Sec-
tion 5.3. On this path it is very unlikely that mutation can find a shortcut as at least
k = Ω(

√
n) bits would have to flip simultaneously in one mutation. For simplicity,

we assume that the algorithm starts with the whole population at the start of the path
and only mention that the construction can be adapted for random initialization. All
points that are neither on the path nor global optima are assigned a very low fitness,
so that the algorithm only searches on the path. In fact, the mentioned points all
receive the same low fitness value, so that local search stops immediately if called
from a point that is surrounded by low-fitness individuals. In some sense, we have
thus transformed an n-dimensional problem into a one-dimensional problem. The
path points are assigned fitness values in the following way. The basic idea is that
a global optimum can only be found with good probability if local search stops at
specific points on the long k-path.

index

fit
ne

ss

D D
D

Fig. 5.1. Sketch of the function fD. The x-axis shows the index on the long k-path. The y-
axis shows the fitness. The thick solid line shows the fitness of the points on the long k-path.
Encircled path points are close to a target region with respect to Hamming distance. The long
k-path can be separated into n subsequent sections with increasing fitness, each one ending
with a local optimum. For the sake of clarity, only the first three out of n sections are shown.

The path can be divided into sections on which the fitness is strictly increasing
on the path. Each section ends with a local optimum. A sketch of the function is
given in Figure 5.1, reproduced from Sudholt [858]. The absolute fitness values at
the start of these sections is set so low that a section can only be climbed by local
search, given that a preceding mutation creates a suitable starting point. For each
section, a set of global optima is placed close to the path in a way that local search
cannot locate a global optimum when climbing the section. (This is where we have

5 Parametrization and Balancing Local and Global Search 69

to think of an n-dimensional problem again as this cannot be properly drawn in a
one-dimensional picture.) However, if the local search depth is set in such a way that
local search stops close to the global optima, then there is a good chance of jumping
to a global optimum the next time this individual is selected for mutation.

Now, the main ideas of the proof are as follows. If the local search depth is
smaller than D− log3 n, local search typically stops with a search point that is infe-
rior to all points in the population. The new offspring is then immediately rejected
by selection. The only way to avoid this is to make a large jump by mutation that
flips at least log3 n bits simultaneously. The probability for this event is superpoly-
nomially small and the expected waiting time until this happens is superpolynomial.
This establishes a superpolynomial lower bound in the case δ � D− log3 n.

In case the local search depth attains the “ideal” value δ = D, there is a constant
probability that local search stops close to a set of global optima and a mutation
flipping two bits creates a global optimum next time this individual is selected for
mutation. Note that the algorithm only needs to be successful on one section in order
to find a global optimum. With high probability this happens at least once within n
trials and the algorithm succeeds in polynomial time.

If the local search depth is too high, i. e., δ � D+ log3 n, every time local search
climbs a section it runs past the set of global optima and ends with the next local
optimum. This holds since each section has length D+ log3 n. From there, a global
optimum can only be reached by a large mutation or if the population is able to
approach the target set by moving downhill on the section from the local optimum.
Note that a new offspring might survive even if it is worse than its parent in case
the population contains individuals that are still worse than the offspring. However,
using family-tree techniques [938], one can prove that with high probability the
population is quickly taken over by the best individuals in the population before
getting downhill.

5.4.2 Functions Where the Local Search Frequency Is Essential

Also the choice of the local search frequency can have a tremendous impact on the
performance of the (μ+λ) MA. As the analysis presented in Sudholt [858] is quite
involved, the results are limited to the (1+1) MA where μ = λ = 1. Two functions
called Racecon and Raceuncon are defined according to given values for n,δ , and τ .
For formal definitions we again refer to Sudholt [858]. The (1+1) MA is efficient on
Racecon, but inefficient on Raceuncon. Now, if the local search frequency is halved,
the (1+1) MA suddenly becomes inefficient on Racecon, but efficient on Raceuncon.

The functions Racecon and Raceuncon, which we call race functions, are con-
structed in similar ways, so we describe them both at once. First of all, we partition
all bit strings into their left and right halves, which form two subspaces {0,1}n/2

within the original space {0,1}n for even n. Each subspace contains a part of a long
path. Except for special cases, the fitness is the (weighted) sum of the positions
on the two paths. This way, climbing either path is rewarded and the (1+1) MA is
encouraged to climb both paths in parallel.

70 D. Sudholt

The difference between the two paths in the left and right halves of the bit string is
that they are adapted to the two neighborhoods used by mutation and local search,
respectively. In the left half, we have a connected path of predefined length. The
right half contains a path where only every third point of the long k-path is present.
Instead of a connected path, we have a sequence of isolated peaks where the closest
peaks have Hamming distance 3. As the peaks form a path of peaks, we speak of an
unconnected path. While the unconnected path cannot be climbed by local search,
mutation can jump from peak to peak as a mutation of 3 specific bits has probability
at least 1/(en3). Concluding, local search is well suited to climb the connected path
while mutation is well suited to climb the unconnected path.

Now, the main idea is as follows. Choosing appropriate lengths for the two paths,
if the local search frequency is high, we expect the (1+1) MA to optimize the con-
nected path prior to the unconnected path. Contrarily, if the local search frequency is
low, the (1+1) MA is likely to optimize the unconnected path prior to the connected
one. Which path is optimized first can make a large performance difference. In the
special cases where the end of any path is reached, we define separate fitness values
for Racecon and Raceuncon. For Racecon, if the connected path is optimized first (i. e.,
wins the race), a global optimum is found. However, if the unconnected path wins
the race, Racecon turns into a so-called deceptive function that gives hints to move
away from all global optima and to get stuck in a local optimum. In this situation,
the expected time to reach a global optimum is exponential, i. e., 2Ω(nε) for some
constant ε > 0. For Raceuncon, the (1+1) MA gets trapped in the same way if the
connected path wins and a global optimum is found in case the unconnected path
wins.

The precise result is as follows. The preconditions δ � 36, δ/τ � 2/n, and
τ = O(n3) require that “enough” iterations of local search are performed during
a polynomial number of generations. The reason is that local search must be a vis-
ible component in the algorithm for the different local search frequencies to take
effect. The condition τ = nΩ(1) as well as the choice of the initial search point are
required for technical reasons.

Theorem 5.4. Let δ = poly(n), δ � 36, δ/τ � 2/n, τ = nΩ(1), and τ = O(n3). If
the (1+1) MA starts with a search point whose positions on the connected and un-
connected paths are 0 and n5, respectively, then with overwhelming probability

– the (1+1) MA with local search frequency 1/τ optimizes Racecon in polynomial
time while the (1+1) MA with local search frequency 1/(2τ) needs exponential
time on Racecon and

– the (1+1) MA with local search frequency 1/τ needs exponential time on
Raceuncon while the (1+1) MA with local search frequency 1/(2τ) optimizes
Raceuncon in polynomial time.

The proof is quite technical; it requires good estimations for the progress made on
the connected and the unconnected path, respectively. This is done separately for
generations with and without local search, respectively. Using appropriate values
for the lengths of the two paths derived from the analysis, one can show the fol-
lowing with overwhelming probability. With local search frequency 1/τ , within n4

5 Parametrization and Balancing Local and Global Search 71

generations on both race functions the end of the connected path is reached first. On
Racecon the (1+1) MA has then found an optimum, while it has become trapped on
Raceuncon. With local search frequency 1/(2τ), within

√
2n4 generations the total

progress by local search on the connected path is decreased by a factor of roughly
1/
√

2, compared to the previous setting. At the same time, the total progress on the
unconnected path by mutation is increased by a factor of roughly

√
2. Summing up

the progress values yields that then with overwhelming probability the (1+1) MA
has found the end of the unconnected path first and Raceuncon is optimized, while
the (1+1) MA is trapped on Racecon.

An interesting insight gained from the analysis is that just one iteration of local
search helps significantly with the location of isolated peaks. Mutation has to flip
three specific bits in order to reach the next point on the unconnected path. However,
if local search is called after mutation and were it only for one iteration, the next
point on the unconnected path is also reached if only two out of the mentioned three
bits are flipped. The probability for a successful step is hence roughly a factor of 3n
larger! So, in contrast to our intuition, local search does indeed help to optimize the
unconnected path. Fortunately for our proof, the steps made on the unconnected path
in generations with local search are unbiased. Creating the next successor on the
unconnected path by mutation and local search has the same probability as creating
the closest predecessor on the path. Both operations will be accepted with high
probability if δ � 6 since at least δ −1 iterations of local search are spent to make
progress on the connected path. Also recall that the connected path is weighted with
a factor of n in the fitness function. Hence, the progress made on the connected
path will dominate the effect of movements on the unconnected path. The search
on the unconnected path in generations with local search is hence unbiased and
the probability of making large progress due to the random walk behavior can be
bounded. However, this only holds under the condition that τ = nΩ(1), i. e., if the
local search frequency is not too high. Otherwise, the variance of the random walk
behavior will indeed have a significant effect on the progress on the unconnected
path. The author conjectures that with a very high local search frequency, the effect
might even be reversed such that the unconnected path has a larger benefit from
local search than the connected path.

5.5 Conclusions

Finding a good balance between global and local search is a crucial step in the de-
sign of memetic algorithms. This topic has been addressed explicitly or implicitly
in a variety of applications as well as in empirical and theoretical works. An impor-
tant conclusion is that the optimal balance is determined by many aspects. Finding
a good balance involves knowledge on the problem structure as well as a careful
consideration of the algorithms’ operators, local search neighborhoods, settings of
other parameters like the mutation strength, and implementation issues.

The chapter also covered theoretical approaches that are important to memetic al-
gorithm researchers as they show the limits on the efficiency of memetic algorithms.

72 D. Sudholt

The time complexity of local search is an interesting and rich topic in its own right
and it can help to understand the effect of local search in memetic settings. PLS-
completeness results indicate that for many practical problems there probably is no
algorithm that can always find a local optimum in polynomial time. These intractabil-
ity results can help prevent researchers from trying to achieve the impossible. Fi-
nally, running time analyses for a particular memetic algorithm have demonstrated
superpolynomialor exponential performance gaps even for only slight changes of the
parametrization. This rules out a priori design guidelines with polynomially related
optimization times, for the considered memetic algorithm. All these findings indicate
that finding a good parametrization remains an interesting and challenging topic for
the years to come.

Chapter 6
Memetic Algorithms in Discrete Optimization

Jin-Kao Hao

6.1 Introduction

Discrete optimization concerns in essence the search for a “best” configuration (op-
timal solution) among a set of finite candidate configurations according to a partic-
ular criterion. There are several ways to describe a discrete optimization problem.
In its most general form, it can be defined as a collection of problem instances, each
being specified by a pair (S, f) [704], where S is the set of finite candidate config-
urations, defining the search space; f is the cost or objective function, given by a
mapping f : S→ R+.

Solving the instance (S, f) is to find an s∗ ∈ S such that f (s∗) � f (s) for all s ∈ S
(this minimization formulation can easily be transformed into a maximization prob-
lem). Such a configuration s∗ is a globally optimal solution (or simply an optimal
solution) to the given instance.

Given its generality, discrete optimization allows many problems of practi-
cal and theoretical importance to be conveniently formulated. Examples are the
classical problems of general integer programming, permutation problems (e.g.,
traveling salesman problem, bandwidth minimization, linear arrangement), and
constraint satisfaction and optimization problems (satisfiability problems in propo-
sitional logic, graph partitioning, k-coloring). Discrete optimization naturally covers
practical problems of the environment, renewable energy, distribution, infrastructure
design, communications and productivity in the manufacturing and service sectors.

However, discrete optimization problems are known to be difficult to solve in
general. Most of them, in particular those of practical interest, belong to the class
of NP-hard problems, and thus cannot be efficiently solved to optimality. Over the
past decades, important efforts have been made to improve the solution methods
and important progresses have been achieved in both exact and heuristic strategies
in pursuit of optimal or near optimal solutions.

Jin-Kao Hao
LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
e-mail: jin-kao.hao@univ-angers.fr

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 73–94.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

74 J.-K. Hao

This chapter concerns the design of Memetic Algorithms (MAs) [615, 617] for
finding optimal or high quality near optimal solutions to hard discrete optimization
problems.

6.2 Survey of Memetic Algorithms for Discrete Optimization

6.2.1 Rationale

From a fundamental point of view, the task of searching for a best solution in a com-
binatorial space is all about a suitable balance between “exploitation” and “explo-
ration” for an effective examination of the given search space. The dual concept of
exploitation and exploration covers two fundamental and complementary aspects of
any effective search procedure. This concept is also known under the term “intensi-
fication” and “diversification” introduced within the Tabu Search (TS) methodology
[317].

Exploitation emphasizes the ability of a method to examine intensively and in
depth specific search areas while exploration is the ability of a method to diversify
the search in order to find promising new search areas. Consequently, if the search
focuses solely on exploitation, it will confine itself in a limited area, fails to visit
other areas of the search space, and may be trapped in poor optima. On the other
hand, a method relying heavily on exploration and overlooking exploitation will lack
capacity to examine in depth a given area and miss out solutions of good quality. To
be effective, a search method thus needs to appropriately conciliate exploitation and
exploration. Memetic Algorithms constitute a very interesting framework offering a
variety of strategies and mechanisms to achieve this general objective.

MAs are hybrid search methods that are based on the population-based search
framework [35, 239] and neighborhood-based local search framework (LS) [393].
Popular examples of population-based methods include Genetic Algorithms and
other Evolutionary Algorithms while Tabu Search and Simulated Annealing (SA)
are two prominent local search representatives. The basic rationale behind a MA is
to combine these two different search methods in order to take advantage of their
complementary search strategies. Indeed, it is generally believed that the population-
based search framework offers more facilities for exploration while neighborhood
search provides more capabilities for exploitation. If they are combined in a suitable
way, the resulting hybrid method can then offer a good balance between exploitation
and exploration, assuring a high search performance.

Like other metaheuristics, MAs are a general optimization framework that can
potentially be applied to various discrete search or optimization problems. Never-
theless, it should be clear that a blind application of MAs (or any other metaheuris-
tics) to a particular problem will not be able to lead to satisfactory solutions. To be
effective, the MA framework must be carefully adapted to the given problem and in-
tegrate problem-specific knowledge within its search operators and strategies. This
is the key point of a successful MA application in practice.

6 Memetic Algorithms in Discrete Optimization 75

6.2.2 Memetic Algorithms in Overview

Memetic Algorithms [615, 617] are a population-based computational framework
and share a number of features with methods like Evolutionary Algorithms [35,
239], and Scatter Search [320]. MAs operate on a set of candidate solutions and
use these solutions to create new solutions by applying variation operators such as
combinations and local improvements.

From a general perspective, a MA is composed of a number of basic components:
a pool of candidate solutions (also called population of individuals) to sample the
search space, a combination operator (crossover) to create new candidate solutions
(offspring) by blending two or more existing solutions, an improvement operator to
ameliorate offspring solutions, and a population management strategy. In addition
to these elements, the MA also needs an evaluation or fitness function to assess the
quality of each candidate solution as well as a selection mechanism to determine the
candidate solutions that will survive and undergo variations.

From an operational perspective, a typical MA starts with an initial population
(see §6.3.4) and then repeats cycles of evolution. Each cycle, also called a genera-
tion, consists of four sequential steps.

1. Selection of parents: Selection aims to determine the candidate solutions that
will survive in the following generations and be used to create new solutions.
Selection for reproduction often operates in relation with the fitness (quality)
of the candidate solutions; high quality solutions have thus more chances to
be chosen. Well-known examples of selection strategies include roulette-wheel
and tournament. Selection can also be done according to other criteria such as
diversity. In such a case, only “distanced” individuals are allowed to survive
and reproduce. If the solutions of the population are sufficiently diversified, se-
lection can also be carried out randomly. The selection strategy influences the
diversity of the population (see also §6.3.3).

2. Combination of parents for offspring generation: Combination aims to create
new promising candidate solutions by blending (suitably) existing solutions
(parents), a solution being promising if it can potentially lead the optimization
process to new search areas where better solutions may be found. To achieve
this, the combination operator is often designed such that it captures the seman-
tics of the targeted problem to ensure the heritage of good properties from par-
ents to offspring. Additionally, the design of the combination operator should
ideally take care of creating diversified offspring. From a perspective of explo-
ration and exploitation, such a combination is intended to play a role of strategic
diversification with a long term goal of reinforcing the intensification. A care-
fully designed combination operator constitutes a driving force of a successful
MA.

3. Local improvement of offspring: The goal of local improvement is to im-
prove the quality of an offspring as far as possible. For this purpose, local im-
provement takes an offspring as its input (current solution) and then iteratively

76 J.-K. Hao

Algorithm 10. Memetic Algorithm Template

Input: |P|; // Size of population P1

Output: s∗; // Best solution found2

P← POPGENERATION(|P|); //3

POPEVALUATION(P); // Fitness evaluation of each individual4

s∗ ← best(P); // Record the best solution found so far5

f ∗ ← f (s∗); // Record the fitness of the best solution6

while Stop Condition is not verified do7

(p1...pk)← PARENTSSELECTION(P); // k � 2 parents are selected8

s′ ← RECOMBINATION(p1...pk); // Offspring generation9

s← OFFSPRINGIMPROVEMENT(s′); // Improvement of offspring10

solution by local search
P← POPULATIONUPDATE(s,P); // Population update according11

to a quality-diversity rule
(s∗, f ∗)← BESTSOLUTIONUPDATE(s∗, f ∗,P); // Best solution and its12

fitness are always recorded

endw13

return s∗14

replaces the current solution by another solution taken from a given neighbor-
hood. This process stops and returns the best solution found when a user-defined
stop condition is met. Compared with the combination operator, local improve-
ment plays essentially the role of intensifying the search by exploiting search
paths delimited by the underlying neighborhood. Like combination, local im-
provement is another key component and driving force of a MA.

4. Update of the population: This step decides whether a new solution should be-
come a member of the population and which existing solution of the population
should be replaced. Often, these decisions are made according to criteria related
to both quality and diversity. Such a strategy is commonly employed in meth-
ods like Scatter Search and many Evolutionary Algorithms. For instance, a basic
quality-based updating rule would replace the worst solution of the population
while a diversity-based rule would substitute for a similar solution according
to a distance metric. Other criteria like recency (age) can also be considered.
The policies employed for managing the population are essential to maintain
an appropriate diversity of the population, to prevent the search process from
premature convergence, and to help the algorithm to continually discover new
promising search areas.

The general MA template is described in Algorithm 10 where special attention must
be payed to the design of particular components. The stop condition can be a max-
imum number of cycles (generations), a maximum number of evaluations, a maxi-
mum number of cycles without improving the best solution, a solution quality to be
reached or a lower-bounded threshold for the population diversity.

We deliberately leave out the mutation operator within this MA template. In some
sense, local search can be viewed as a guided macro-mutation operator. However,

6 Memetic Algorithms in Discrete Optimization 77

mutation can also be applied to reinforce population diversity. As a lean design
principle, only necessary components are included in a MA, any unjustified and
superficial elements must be excluded.

6.2.3 Performance of Memetic Algorithms for Discrete
Optimization

The computational performance of a MA depends first on the representation of the
solution space (solution encoding) which should preferably be problem dependent
and ease the design of efficient search operators.

The performance of a MA depends then on the design of its two key search
components: Combination and local improvement operators. Their design should
integrate useful problem-specific knowledge of the given problem in order to ensure
aggressive exploitation and guided exploration.

The performance of a MA is also conditioned by the way the population is man-
aged to promote and maintain a fertile diversity during the search process. Indeed,
much like conventional Evolutionary Algorithms, premature convergence can eas-
ily occur if the population loses its diversity. Diversity management is particularly
important with MAs because of the specific nature of their aggressive and intensi-
fied search strategies. Consequently, it is crucial for a MA to maintain with rigor a
“good” population diversity as long as possible.

The interaction between the components of a MA can directly influence the be-
havior and the performance of the MA. A long or short local search phase after each
combination could change the search trajectories. Similarly, a very effective local
search procedure may weaken the role of the combination operator while a very
strong combination operator may make it less critical to have a highly efficient local
improvement procedure.

Finally, the runtime efficiency of a MA depends for a large part on the choice of
the data structures employed to implement the different components of the MA. A
typical example concerns local improvement procedures that explore the candidate
solutions of a neighborhood and represent the most time-consuming part of a MA.
In such a situation, it is critical to devise appropriate data structures to enable and
streamline a fast neighborhood evaluation (see §6.3.1.3). Otherwise, the computa-
tional overheads will jeopardize the search power of the method.

6.3 Special Design Considerations

6.3.1 Design of Dedicated Local Search

Local improvement is one of the most important components of a MA and ensures
essentially the role of intensive exploitation of the search space. This is typically
achieved either by dedicated local search heuristics (see examples in [460, 523,
524]) or by tailored general neighborhood search methods. In this part, we focus
our discussion on adaptation of local search metaheuristics [393], but a large part

78 J.-K. Hao

of the discussion applies to the design of local improvement procedures based on
specific heuristics.

6.3.1.1 Local Search Template

Let (S, f) be our search problem where S and f are respectively the search space and
optimization objective. A neighborhood N over S is any function that associates to
each solution s ∈ S some other solutions N(s) ⊂ S. Any solution s′ ∈ N(s) is called
a neighboring solution or simply a neighbor of s. For a given neighborhood N, a
solution s is a local optimum with respect to N if s is the best in terms of f among
the solutions in N(s).

The notion of neighborhood can be explained in terms of the move operator.
Typically applying a move mv to a solution s changes s slightly and leads to a
neighboring solution s′. This transition from a solution to a neighbor is denoted
by s′ = s⊕mv. Let Γ (s) be the set of all possible moves which can be applied to s,
then the neighborhood N(s) of s can be defined by: N(s) = {s⊕mv|mv ∈ Γ (s)}.

A typical local search algorithm begins with an initial configuration s in S and
proceeds iteratively to visit a series of configurations following the neighborhood.
At each iteration, a particular neighbor s′ ∈ N(s) is sought to replace the current
configuration and the choice of s′ is determined by the underlying metaheuristic and
by referring to the quality of the neighboring solution. For instance, a strict Descent
algorithm always replaces the current solution s by a better neighbor s′ while tabu
search replaces the current solution by a best neighbor s′ even if the latter is of
inferior quality. Still with simulated annealing, the transition from s to a randomly
selected neighbor s′ is conditioned by a changing probability.

6.3.1.2 Neighborhood Design

The success of a LS algorithm depends strongly on its neighborhood. The neigh-
borhood defines the subspace of the search problem to be explored by the method.
For a given problem, the definition of the neighborhood should structure the search
space such that it helps the search process to find its way to good solutions.

The choice of neighborhood is conditioned by the representation (genotype) used
to encode the candidate solutions of the search space (phenotype). It may further
depend on the structure and constraints of the problem on hand. Here we briefly
review some neighborhoods associated to three conventional representations, which
have a variety of applications.

• Binary representation: With this representation, each solution of the search
space is coded by a binary string. Binary representation is very popular in dis-
crete optimization due to the fact that many problems are naturally formulated
with binary variables. Typical examples include SAT/Max-SAT, Knapsack, Un-
constrained Quadratic Optimization, graph bi-partitioning etc. For these binary
problems, two basic neighborhoods are defined by the k- f lip and Swap move
operators. The k- f lip move changes the values of k (k �1) variables. So any
neighbor s′ ∈N(s) has a Hamming distance of k to solution s. A larger k induces

6 Memetic Algorithms in Discrete Optimization 79

a larger (and stronger) neighborhood. Nevertheless, whether a larger neighbor-
hood should be preferred in practice depends on the computational cost to eval-
uate the neighborhood. Swap exchanges the values of two variables that have
different values. Note that Swap can be simulated by two 1- f lip moves.

• Permutation representation: Here, each solution of the search space corre-
sponds to a permutation π : {1..n} → {1..n}. Permutation representation has
a large range of applications in discrete optimization. Prominent examples in-
clude Traveling Salesman Problem, Flow-Shop/Job-Shop scheduling, Linear
Arrangement, Bandwidth Minimization etc. Two basic neighborhoods for this
representation are available using Swap and Rotation moves. Given a permu-
tation (solution) π , The Swap move exchanges π(i) and π(j) for some i and
j (i �= j). If π ′ is a neighbor of π by swapping i and j, then π ′(k) = π(k) for
k �= i, j, π ′(i) = π(j) and π ′(j) = π(i). The Rotation move rotates all the val-
ues between π(i) and π(j) for some i < j. Thus, if π ′ is a rotation neighbor of
π obtained with i < j, then π ′(k) = π(k)+ 1 for i � k < j, π ′(j) = π(i), and
π ′(k) = π(k) for all other k. Note that Rotation(i, j) can be simulated by j− i
successive Swap moves starting with Swap(i, i+ 1).

• Integer representation: With this representation, each solution of the search
space corresponds to an integer vector whose values are taken from some dis-
crete domains. Integer representation is very useful and convenient for many
constraint satisfaction and optimization problems. A common neighborhood is
defined by a “one-change” move that consists in replacing the current value of
a single variable by a new domain value. The set of candidate variables under
consideration for a value change can be identified with a number of rules spe-
cific to the problem at hand. For instance, if the search algorithm deals with
unfeasible solutions, i.e. some variables are receiving conflicting values relative
to some constraints, the set of candidate variables can be constituted of the sub-
set of conflicting variables [289, 291, 672]. Such a neighborhood is typically
employed in local search algorithms for solving Constraint Satisfaction Prob-
lems. More generally, candidate variables for a value change can be identified
as those that are critical for improving the objective function or for reaching the
feasibility.

These neighborhoods can be applied directly to a given problem if the problem
fits well the required representation. A common practice is to adapt a conventional
neighborhood with problem-specific knowledge. Moreover, in some situations, it is
useful to investigate the possibility of multiple neighborhoods that can be applied at
different stages of the search process (see §6.3.1.4 below).

6.3.1.3 Neighborhood Evaluation

Another design issue that arises is the evaluation of a given neighborhood. Indeed, a
local search procedure moves iteratively from the current solution to a new solution
chosen within the neighborhood. To make this choice, local search needs to know

80 J.-K. Hao

the cost variation (also called the move value) between the current solution s and a
candidate neighbor s′ ∈ N(s). The move value indicates whether the neighbor s′ is
of better, worse or equal quality relative to s. Let Δ f = f (s′) - f (s) denote this move
value.

• Incremental evaluation: Basically, there are two ways to obtain Δ f for a neigh-
bor. The trivial way is to calculate f (s′) from “scratch” using the objective func-
tion1 f . Doing this way may be expensive if f needs to be evaluated very often
or if the evaluation of f itself involves complex calculations. A more efficient
alternative aims to derive the value of f (s′) from the value f (s) by updating
only what is strictly necessary. Indeed, if a neighbor s′ is close to its initial so-
lution s, which is true for many neighborhoods, then the evaluation of f (s′) can
be carried out in this incremental manner. For a number of basic neighborhoods,
like those shown previously, such an incremental evaluation is often possible.

• Full search of neighborhood: The incremental evaluation can be applied to all
the neighbors of a given neighborhood relation. In this case, it is generally use-
ful to investigate dedicated data structures (call it Δ -table) to store the move val-
ues for all the neighbors of the current solution. Δ -table provides a convenient
way to know the quality of each neighbor and enables an efficient search of the
full neighborhood. With such a Δ -table, the local search algorithm can decide
easily at each iteration which neighbor to take according to its search strategy.
For instance, a best-improvement descent algorithm will take the move that is
identified by the most negative value in the Δ -table to minimize the objective
function. After each move, the Δ -table (often only a portion of it) is updated
accordingly using the incremental evaluation technique to propagate the effect
of the move. Δ -table is a very useful technique for local search algorithms. This
is particularly the case for descent-based methods like Tabu Search where a best
neighbor needs to be identified (see examples in [393]).

• Approximative evaluation: The practical usefulness of Δ -table depends on both
the complexity and the number of updates needed after each move transition.
It may happen that, the move value can not be incrementally calculated or the
Δ updates need to change a large portion of Δ -table. In this case, it would be
useful to replace the initial evaluation function by a (fast) approximative eval-
uation function [424]. More generally, approximate evaluation is useful if the
evaluation function is computationally expensive to calculate or if the function
is ill-defined.

• Order of evaluation: If the neighborhood is not completely searched, one must
decide the order in which the neighborhood is explored. For instance, the first-
improvement descent technique moves to any improving neighbor. If there are
several improving neighbors, the descent search picks the “first” one encountered

1 For the reason of simplicity, the term “objective function” is used here. A more precise
term is “evaluation function”, see §6.3.4.

6 Memetic Algorithms in Discrete Optimization 81

in the order the neighbors are examined. To allow such a method to increase its
search diversity, a random order may be preferred [704].

6.3.1.4 Combination of Neighborhoods

Very often, different neighborhoods may be available, enabling alternative ways to
explore the search space. In such a situation, it is interesting to consider combined
use of multiple neighborhoods. For illustrative purpose, consider two neighborhoods
N1 and N2. Then one can consider at least three ways to use them in a combined way.

First, neighborhood union N1 ∪N2 includes all the neighbors of the two under-
lying neighborhoods, so that any member of N1 and N2 is a member of N1 ∪N2. A
local search algorithm using this combined neighborhood selects the next neighbor-
ing solution among all the solutions in both neighborhoods. This combination has
no sense if one neighborhood is fully included in the other one.

With Probabilistic neighborhood union N1�N2, a neighbor solution in N1 (or N2)
belongs to N1�N2 with probability p (resp. probability 1-p). A local search algo-
rithm using this combined neighborhood selects at each iteration the next neighbor
from N1 with probability p and from N2 with probability 1-p.

Token-ring combination N1→ N2 is time-dependent and defined alternatively ei-
ther by N1 or N2 according to some pre-defined conditions [209]. A local search
algorithm using this combined neighborhood cycles through these neighborhoods.
It typically starts with one neighborhood until the search stagnates, then changes to
the other neighborhood until the search stagnates again to switch back to the first
neighborhood and so on.

The advantage of combined neighborhood was already demonstrated a long time
ago in [524] for solving the Traveling Salesman Problem. More generally, the is-
sue of transitioning among alternative neighborhoods was discussed with the Tabu
Search framework and strategic oscillation design in [312]. More recent examples of
local search methods focusing on multiple neighborhoods include Variable Neigh-
borhood Search [363], Neighborhood Portfolio Search [209] and Progressive Neigh-
borhood Search [323]. Examples of studies on neighborhood combinations can be
found in [353, 539].

6.3.2 Design of Semantic Combination Operator

6.3.2.1 Solution Combination

Combination is another key component of a MA and constitutes one leading force
to explore the search space. The basic idea of combination is very appealing since
it provides a very general way of generating new solutions by mixing existing solu-
tions. Contrary to local changes of local improvement, combination can bring into
new solutions more useful information, that may be beneficial for a healthy evolu-
tion of the search process.

As a first step, it would be tempting to consider the application of a blind (ran-
dom) crossover operators for solution combinations. Doing this has the advantage

82 J.-K. Hao

of ease of application. However, one question should be asked before this approach
is attempted: Is the crossover operator meaningful with respect to the optimization
objective? If the answer is negative, the crossover operator is probably not appropri-
ate and the sole role it would play in this case would be to introduce some random
diversification in the search process.

In practice, instead of applying blind crossovers, it is often preferable to consider
dedicated combination operators that have strong “semantics” with respect to the
optimization objective. A semantic combination aims to pass intrinsic good proper-
ties from parents to offspring. The design of such a combination operator is far from
trivial and in fact represents a challenging issue. Although there are some theoretical
guidances, the discovery of such a semantic combination operator in practice relies
basically on a deep analysis and understanding of the given problem. Compared
with the design of local search procedures, the design of a meaningful combination
operator constitutes probably one of the most creative parts of an effective MA.

6.3.2.2 Theoretical Foundations

The schemata theory [389] and the building block hypothesis [325] are often men-
tioned to explain (partially) the performance of Genetic Algorithms. Intuitively,
building blocks are promising patterns of solutions that can be progressively as-
sembled by crossover to get improved solutions. Given that this theory is defined
for binary and simple Genetic Algorithm, it is not directly applicable in the con-
text of MAs. Nevertheless, assembling building blocks to generate new solutions
remains an appealing idea. In [750, 753], the concept of forma is introduced to
generalize the schemata theory. A formal framework is even proposed to try to cap-
ture some fundamental aspects of MA in [752]. The forma theory suggests a set
of general principles for the design of solution representations and recombination
operators. According to this theory, a suitable recombination operator is required to
fulfill two conditions called respect and proper assortment. Intuitively, the respect
condition advocates the heritage of shared characteristics of parents to offspring,
while proper assortment ensures the heritage of desirable characteristics of each
parent by their offspring. This is in accordance with the general principle of con-
serving good features through inheritance and discarding bad features developed in
Grouping Genetic Algorithms [248].

6.3.2.3 Design of Combination Operator

These abstract considerations only provide us with very general guidances for de-
signing recombination operators. For a particular problem, it is still necessary to find
out what are the building blocks (interesting patterns or characteristics) of solutions
that can be assembled and inherited through the recombination process. Unfortu-
nately, there is no short-cut to this quest and a fine analysis and deep understanding
of the given problem is indispensable to find useful clues.

First, one can analyze the samples of optimal or high quality solutions to possibly
identify regular patterns shared by these solutions. Indeed, if such a pattern exists,

6 Memetic Algorithms in Discrete Optimization 83

then the recombination operator can be constrained to conserve the pattern from the
parent solutions and to avoid breaking the pattern. Alternatively, the recombination
operator can also be encouraged to promote the emergence of favorable building
blocks. For instance, such an analysis applied to the Traveling Salesman Problem
shows that high quality local optima share sub-tours [523, 524]. This property has
been used by several highly successful crossover operators which conserve common
edges or sub-tours in offspring solutions [286, 636, 648, 720, 931]. Similarly, for
the graph k-coloring problem, an analysis of coloring solutions discloses that some
nodes are always grouped to the same color class (i.e. colored with the same color).
This characteristic has helped to devise powerful combination operators, as shown
in [217, 290] and in [292, 537, 549, 726] with multi-parents.

6.3.2.4 Multi-Parent Combination

Combination may operate with more than two parents. Multiple parent combination
is even a general rule for the Scatter Search metaheuristic which uses, in its original
form, linear combinations of several solutions to create new solutions [308]. Al-
though there is no theoretical justifications, the practical advantage of multiple par-
ent recombination was demonstrated in several occasions for discrete optimization.
For instance, for the graph k-coloring problem, several recent and top-performing
algorithms integrate multiple parent combination [292, 537, 549, 726], where color
classes from different solutions are assembled to build offspring colorings. More
generally, when multiple solutions are used for creating a new solution, one can de-
fine special rules to score the solution components of each parent solution and use
strategic voting rules to combine components from different parents solutions.

A question that arises for multi-parent combination is how to determine the num-
ber of the parents. By using two parents, the offspring is expected to inherit 50%
material from each parent. The contribution of each parent to the new solution de-
screases with an increasing number of parents. If the building blocks from different
parents are independent from one another, taking more parents into account would
be interesting to build good and diversified offspring. Otherwise, if a building block
from a parent is epistatic with respect to the building blocks of other parents, blend-
ing more parents means more disruption, and thus should be avoided.

6.3.3 Population Diversity Management

Population diversity is another important issue that should be considered in the de-
sign of an effective MA [290, 726, 836]. If the population diversity is not properly
managed, the population will converge prematurely and the search process stops
with poor local optima. This is particularly true when a small population is used
by the MA. In what follows, we first provide some precisions about the nature of
diversity and explain how fertile diversity can be promoted and maintained within a
population. Note however that diversity is not interesting per se within a MA. The
ultimate goal of population diversity is to help the search process not only to avoid

84 J.-K. Hao

premature converge, but also to continually discover interesting new solutions in
order to explore non-visited promising search areas. See also Chapter 10.

6.3.3.1 Diversity

Population diversity can be measured by a similarity (or distance) metric applied
to the members of the population. The metric can be defined either on the solution
representation level (genotype metric) or solution level (phenotype metric) [325].
For instance, pair-wise Hamming distance can be used as a genotype metric to mea-
sure population diversity. Diversity can also be measured in terms of entropy [267]
or by the so-called moment of inertia [614]. Genotype metric is usually problem
independent, and thus may or may not reflect the intrinsic diversity of a population
with respect to the given optimization objective.

Population diversity can also be measured at the phenotype level over the solu-
tion space. For instance, for partition problems like graph k-coloring, the distance
between two partitions can be measured by the so-called transfer distance which
is the minimum number of elements that need to be moved between classes of one
partition so that the resulting partition becomes the other partition [189, 763]. A phe-
notype metric is defined over the solution space and thus is more likely to measure
the real diversity of a population.

In order to observe suitably the population diversity, it is useful to first determine
the most appropriate distance or similarity metric with respect to the optimization
objective of the given problem. Moreover, if the population diversity needs to be
continually monitored, it becomes important to pay attention to the cost of comput-
ing the underlaying metric.

6.3.3.2 Promoting and Maintaining Useful Diversity

Population diversity can be promoted and managed at several levels of a MA.
One evident possibility is to define specific selection rules to favor the selection
of distanced parents for mating. Another possibility concerns the variation opera-
tors which can be designed in such a way that they favor the generation of diverse
and varied offspring. For instance, the “Distance Preserving Crossover” introduced
in [286, 588] is constrained to generate an offspring which is at the same distance
from both parents. More generally, the path-relinking type of combinations typi-
cally construct offspring solutions by considering both the solution quality and its
distance to its parent solutions [320] (see also [538] for an example).

Population diversity can also be controlled by the offspring acceptation and re-
placement strategies. Specifically, this can be done according to both solution di-
versity and quality. For instance, in [726] a minimum diversity-quality threshold is
imposed between the solutions of the population. The acceptation of a new offspring
is conditioned not only by its quality, but also by its distance to existing solutions.
Similarly, diversity and quality are considered to select the victim solution to be
replaced by the offspring.

6 Memetic Algorithms in Discrete Optimization 85

Other useful ideas for diversity preservation can be found in the areas of Genetic
Algorithms. Well-known examples include sharing [327] and crowding [204, 546].

6.3.4 Other Issues

In addition to the components mentioned until now, the design of an effective
Memetic Algorithm should take into account a number of other considerations
which are briefly discussed in this section.

• Initial population: There are basically two ways to obtain an initial population:
Random generation and constructive elaboration. While random generation is
easy to apply, it can hardly generate initial solutions of good quality. To im-
prove the basic random generation method, a simple sampling technique can be
applied. Let P be the population size, then one can generate K > P solutions
and then retain only the P “best” ones. Initial generation by construction can be
used if some fast greedy heuristics are available for the given problem. Notice
that, in this case, the greedy heuristics must be randomized such that each ap-
plication leads to a different solution. Another issue that can be considered at
the initialization stage is to take care of building a diversified population. This
can be achieved by controlling the distance between each new solution and the
existing solutions of the population. Only distant new solutions are allowed to
join the population.

• Distance: At several places, MAs may need to measure the distance between
two solutions or between a solution and a group of solutions. For instance, par-
ents selection may operate in such a way that the selected parents are sufficiently
distant. Similarly, a population management strategy may decide the accepta-
tion or rejection of an offspring by considering its distance to the members of
the population. When an operation refers to the notion of distance, it is prefer-
able to employ an appropriate distance metric which is meaningful with respect
to the given problem. For instance, for partition problems like graph coloring
(see §6.4.1), Hamming distance is not a suitable metric to characterize the dif-
ference of two partitions. Instead, transfer distance between partitions should
be preferred. Once again, the choice of the distance metric should ideally be
correlated with the semantics of the problem on hand.

• Rich evaluation function: Evaluation function assesses the quality of a candi-
date solution with respect to the optimization objective and orients the search
method to “navigate” through the search space. A good evaluation function is
expected to be able to distinguish each solution from the other solutions and thus
to effectively guide the search method to make the most appropriate choice at
each iteration. Very often, the initial optimization objective f is directly used as
evaluation function. However, such a function may not be sufficiently discrim-
inant to distinguish different solutions. To improve the discriminating power,
it is useful to incorporate in the evaluation function additional information,

86 J.-K. Hao

e.g. relative to the structure of the problem instance to be solved. Examples can
be found in [248, 431, 772]. Moreover, when constrained optimization prob-
lems are considered, some constrains may be hard to satisfy, and thus are re-
laxed. Among various constraint relaxation techniques, a common practice is
to integrate the relaxed constraints into the evaluation function as a (weighted)
component or as a part of a multi-component evaluation function (see examples
in [316, 902, 903]).

• Constraints: The constraints in the considered problem may influence the de-
sign of some MA components. For instance, suppose that the MA algorithm is
expected to explore only feasible solutions. Then one must decide whether a
combination operator is constrained to create only feasible solutions. If infea-
sible offspring is allowed, it is necessary to consider a dedicated mechanism to
repair the broken constraints. Similarly, neighborhood design can take into con-
sideration the constraints to identify eligible moves. For instance, in feasibility
search problems, this is often done by identifying problem variables involving
violated constraints and restricting the set of authorized moves to those defined
on these conflicting variables. Finally, as previously stated, constraints that are
difficult to solve can be used in the design of the evaluation function.

• Connections with Scatter Search and Path Relinking: As discussed in [311]
and [317] (Chapter 9), the MA framework shares ideas with Scatter Search and
Path Relinking [313, 320]. These latter methods provide unifying principles for
joining solutions based on generalized path constructions (in both Euclidean
and neighborhood spaces) and by using strategic design. Solution combination
in Scatter Search originated historically from strategies for combining decision
rules and combining constraints. In Scatter Search, dispersed new solutions are
created from a set of reference solutions by weighted combinations of subsets of
the reference solutions that are selected as elite solutions. With Path Relinking,
offspring solutions are generated by exploring, within a neighborhood space,
trajectories that connect two or more reference solutions. One notices that the
reference solutions or subsets of them can be considered as parent solutions for
combination while combination resorts to diverse strategies such as attribute
voting and weighting.

6.4 Case Studies

In this section, we show two case studies of quite different nature with the purpose
of showing how these issues can be effectively implemented in practice. We partic-
ularly focus on the design of combination and local search operators.

6 Memetic Algorithms in Discrete Optimization 87

6.4.1 Graph Coloring Problems

6.4.1.1 Problem Description

Given an integer k and a undirected graph G = (V,E) with a set V of vertices and a
set E of edges, a legal k-coloring of G is a partition of V into k distinct color classes
such that each color class is composed of pairwise non-adjacent vertices. The graph
k-coloring problem (k-COLOR) aims at finding a legal k-coloring for a fixed k while
the graph coloring problem (COLOR) determines the smallest k for a given graph G
(its chromatic number χG) such that G has a legal k-coloring. Since COLOR can be
handled by solving a series of k-COLOR with decreasing k values, we only consider
here k-COLOR.

For a given k-COLOR instance, i.e. an integer k and graph G = (V,E), let s =
{C1,C2...Ck} denote a partition of V into k distinct color classes such that each Ci

(i ∈ {1,2...k}) contains all the vertices that are colored with color i. Let S denote all
such partitions. For any s ∈ S, define its conflict number f (s) to be the number of
pairs of adjacent vertices x and y ({x,y} ∈ E) belonging to a same color class of s.
Then k-COLOR can be solved by minimizing f (s); f (s)=0 implies that s is a legal
k-coloring, i.e. all its color classes Ci are conflict-free.

Notice that among the large number of existing heuristic algorithms for k-
COLOR, Memetic Algorithms are certainly among the most powerful ones and
provide the best results on the well-known DIMACS benchmark instances of this
well-known NP-complete problem.

6.4.1.2 Partition Crossovers

In order to design a semantic combination operator, let us try to get an idea about the
possible “building blocks” for our problem. The goal of k-COLOR is to determine a
set of k distinct conflict-free color classes. In this context, color classes can be con-
sidered our basic “building blocks”. If there are several “good” color classes among
some candidate solutions, then these color classes can favorably be recombined to
obtain new candidate solutions. This idea was first explored by the Greedy Partition
Crossover (GPX) described in [290] and the Union of Independent Sets crossover
in [217], which are also related to the design of grouping crossovers described in
[248].

Operating with two parent k-colorings s1 and s2, GPX builds step by step the k
classes C0

1 , . . . ,C0
k of the offspring s0. At the first step, GPX creates C0

1 by choosing
a largest class from one parent and removes its vertices from both parents s1 and s2.
GPX repeats then the same operations for the next k-1 steps, but alternates each time
the parent considered. If some vertices remain unassigned at the end of these k steps,
they are randomly assigned to one of the k color classes. The alternation between the
parents aims at a balanced mixture of information from both parents and avoiding
the dominance of one parent over the other one during the recombination.

Table 6.1 shows an example with 3 color classes (k = 3) and 10 vertices repre-
sented by capital letters A,B,· · · ,J.

88 J.-K. Hao

Table 6.1. The Greedy Partition Crossover: An example from [290]

parent s1 → A B C D E F G H I J C0
1 := {D,E,F,G} A B C H I J

parent s2 C D E G A F I B H J remove D,E,F and G C A I B H J

offspring s D E F G

parent s1 A B C H I J C0
2 := {B,H,J} A C I

parent s2 → C A I B H J remove B,H and J C A I

offspring s D E F G D E F G B H J

parent s1 → A C I C0
3 := {A,C} I

parent s2 C A I remove A and C I

offspring s D E F G B H J D E F G B H J A C

The basic idea underlying GPX was also explored with multiple parent combina-
tion operators [292, 352, 537, 549, 726]. Using multiple parents for combination is
fertile for k-COLOR since this offers more possibilities to obtain good (large) color
classes for each step of the recombination operation. By generalizing two parents
to multiple parents, refined and additional strategies were also introduced to make
the combination process as effective as possible. For instance with the AMaPX op-
erator of [537], in order to favor the creation of diversified offspring, each time a
color class from a parent is transmitted to the offspring, this parent’s k-coloring will
not be considered for the next few steps of offspring building. In [726], in order to
measure the goodness of the color classes of the parent colorings, the combination
operator takes into account the size of each color class, the number of conflicting
vertices as well as the degrees of the vertices in the color class.

A question that arises when multiple parents are used is how to determine the
number of parents. It is clear that by using more parents, fewer classes will be trans-
mitted from each parent to the offspring and this also implies that the class blending
from each parent is also more disrupted. An analysis of the relations between the
number of vertices, the number of color classes and the number of parents permits
to identify a heuristic rule to fix the right number of parents [726].

In [292], the combination operation is performed within a slightly different con-
text. The algorithm maintains a pool of conflict-free color classes obtained dur-
ing the search process. From time to time, these color classes are used to generate
new k-colorings. Other combination operators using similar ideas are investigated
in [217, 352, 549].

6.4.1.3 Local Improvement by Tabu Search

In memetic coloring algorithms, Tabu Search is frequently used for local improve-
ment to ameliorate a new offspring created by the combination operator. For illus-
tration purpose, we use the TS algorithm described in [290] as an example. It uses
the constrained “one-change” move described in §6.3.1.2 such that a neighbor s′ of
a given configuration s is obtained by moving a single conflicting vertex v from a
color class Ci to another color class Cj. When such a move < v, i > is performed, the

6 Memetic Algorithms in Discrete Optimization 89

couple < v, i > is classified tabu for the next tl iterations. Therefore, v cannot be reas-
signed to the class i during this period, unless moving v back to the color class i leads
to a configuration better than the best configuration found so far (aspiration crite-
rion). The tabu tenure tl for a move is variable and depends on the number nbCFL of
conflicting vertices in the current configuration: tl = Random(A)+α ∗nbCFL where
A and α are two parameters and the Random(A) function returns a random number
from {0, · · · ,A−1}. To implement the tabu list, it is sufficient to use a |V |×k table.

The algorithm memorizes and returns the most recent configuration s∗ among the
best configurations found: After each iteration, the current configuration s replaces
s∗ if f (s) � f (s∗) (and not only if f (s) < f (s∗)). The rational to return the last best
configuration is that we want to produce a solution which is as far away as possible
from the initial solution in order to better preserve the diversity in the population.

6.4.2 Maximum Parsimony Phylogeny

6.4.2.1 Problem Description

Phylogenetics is the study of evolutionary relationships among various groups of
organisms (for example, species or populations). These connections are represented
graphically through phylogenetic trees. Computational phylogenetics aims to infer
phylogenetic trees from molecular data such as protein or DNA sequences [256].
The main phylogenetic approaches include methods using a distance-matrix, the
maximum likelihood or maximum parsimony criterion.

Maximum parsimony phylogeny generally takes as input a multiple sequence
alignment which is a matrix M of characters composed of n lines (related to a set
S of species, where |S| = n) and k columns which represent the characters of the
sequences [255]. Each sequence is also called a taxon. Each character of the matrix
belongs to an alphabet Σ . A phylogenetic tree T of the given input is a binary tree
such that (1) the leaves of T are the set of n species, and (2) each internal node
is induced by the sequence of parsimony of its two descendant sequences. Given
two sequences S1 =< x1, · · · ,xk > and S2 =< y1, · · · ,yk > with ∀i ∈ {1..k},xi,yi

belonging to the power set P(Σ = {−,A,C,G,T}), the sequence of parsimony
P(S1,S2) =< z1, · · · ,zk > of S1 and S2 is given by ([264]) :

∀i,1 � i � k,zi =

{
xi∪ yi, if xi∩ yi = /0

xi∩ yi,otherwise
(6.1)

The score of the sequence of parsimony defines the “distance” separating its two
descent sequences:

fP(S1,S2) =
k

∑
i=1

ci where ci =

{
1, if xi∩ yi = /0

0,otherwise
(6.2)

90 J.-K. Hao

Algorithm 11. The general DiBIP crossover scheme
Input: T1, T2, δ , Δ ,⊕, Λ
Output: A child tree T ∗

1. Apply the tree-to-distance operator Δ to each parent tree Ti (i=1,2) to obtain the
corresponding distance matrix Di = Δ (Ti);

2. Apply the matrix operator ⊕ to D1 and D2 to obtain D∗: D∗ ← D1⊕D2;
3. Apply the distance-to-tree operator Λ to D∗ to obtain a child tree: T ∗ ←Λ (D∗).

Let T be a binary parsimony tree with n leafs or species. T has then n−1 sequences
of parsimony (internal nodes). Let I denote the set of these internal nodes. The Fitch
parsimony score f (T) of T is defined as follows:

f (T) =∑
i∈I

fi(T) (6.3)

The aim of the Maximum Parsimony problem (MP) is then to find a most parsi-
monious phylogenetic tree T ∗ such that T ∗ minimizes the parsimony score. Since
there are ∏n

i=3(2i− 3) possible binary trees with n leafs, this problem is a highly
combinatorial search problem. The MP problem is computationally difficult since
its associated decision problem is equivalent to the NP-complete Steiner problem in
a hypercube [277]. MP has been subject of many studies for many years. Among
them, neighborhood-based local search and various hybrid algorithms are certainly
the most popular solution methods. In what follows, we show a Memetic Algorithm
called HYDRA [767], which combines a dedicated tree crossover called DiBIP
[322] and a progressive neighborhood local search method [323].

6.4.2.2 Distance-Based Information Preservation Crossover

First, let us notice that conventional tree crossovers known in genetic program-
ming are not suitable here. The Distance-Based Information Preservation crossover
(DiBIP) is specifically designed for the MP problem. DiBIP is based on a topolog-
ical distance between species (leafs) and aims to preserve common properties of
parents in terms of this distance between species. For instance, two species that are
close (or far) in both parents should stay close (resp. distant) in the offspring. Given
two parents trees, the DiBIP crossover is realized in three steps: Calculate a distance
matrix for each parent tree, then combine the two resulting matrices to get a third
matrix and finally create a child tree from this last matrix.

The general DiBIP crossover scheme is described in Algorithm 11 where T1 and
T2 denote two parents trees. δ is a distance metric to measure the distance of each
pair of species of a tree T , Δ a tree-to-distance operator to obtain a distance matrix of
a tree,⊕ a matrix operator to combine 2 distance matrices to produce a new distance
matrix,Λ a distance-to-tree operator to construct a tree from a given distance matrix.

A specific DiBIP crossover operator is obtained once δ , Δ , ⊕, and Λ are pro-
vided. The distance measure δ should be ideally correlated to the evolutionary

6 Memetic Algorithms in Discrete Optimization 91

changes between species. For instance, 2 species separated in the tree by a small
number of evolutionary changes should have a smaller distance than 2 species sep-
arated by a large number of changes. The distance measure should additionally be
tree-topology dependent. In this sense, the length of the elementary path between
2 species is a possible option while Hamming distance is not suitable here because
this metric is totally independent of tree topologies.

Moreover, since we want to preserve representative features of the parents during
the crossover operation, a valid matrix operator ⊕ should favor such an inheritance
from parents to offspring and meet some relation preservation property. For instance,
if a pair of species (a,b) is closer than another pair (c,d) in both parents, then this
relation should be conserved. Consider the operation⊕ such that for a pair of species
(i, j), (D1⊕D2)(i, j) = α.min{D1(i, j),D2(i, j)}+(1−α).max{D1(i, j),D2(i, j)}
with α ∈ [0,1]. This indeed defines a valid ⊕ operator. Furthermore, this definition
offers in fact many possibilities and seems particularly relevant to MP. For instance,
the arithmetic average (α = 0.5) and the max operator max (α = 0) are 2 special
cases. At last, let us mention that the arithmetic addition is another simple valid ⊕
operator.

We now show a concrete example. Given two species i and j, define their distance
δi j to be the topological distance, i.e. the length of the elementary path between the
respective ascendants of i and j, (minus 1 if the path contains the root of the tree T).
The matrix operator⊕ is the addition + such that D(i, j) = D1(i, j)+D2(i, j), which
satisfies the relation preservation property previously mentioned. The distance-to-
tree operator Λ is a non-deterministic variant of the well-known UPGMA (Un-
weighted Pair Group Method with Arithmetic Mean) method [833]. Figs. 6.1 and
6.2 show an application of this crossover operator. One observes that the closeness
of species in both parents is conserved in the child. This observation applies equally
to distant species.

6.4.2.3 Progressive Neighborhood Search

For local improvement, HYDRA uses Progressive Neighborhood Search (PNS)
which operates with a variable-size neighborhoods [323]. Given a parsimony tree
T , a neighboring tree T ′ is typically obtained by a move that consists in cutting a
sub-tree from T and reinserting the sub-tree elsewhere in the initial tree. If a mean-
ingful metric can be defined to measure the distance between the cutting and insert-
ing points, then it would be possible to define neighborhoods of variable sizes. In
[323], the topological distance δ shown in Section 6.4.2.2 is used for this purpose.
A distance parameter d is introduced to constraint the distance between the pruned
edge i and the edge j receiving the insertion such that δi j � d.

So, setting d = ∞ leads to a large neighborhood where the pruned edge (with
its subtree) can be reinserted anywhere in the tree. Consequently, the topological
change can be important. This case corresponds in fact to the well-known Subtree
Pruning Regrafting neighborhood [862] whose size equals 2(n− 3)(2n− 7) [12].
Reversely, setting d = 1 gives a small neighborhood where neighboring trees are
close to the current tree. This case corresponds to another well-known neighborhood

92 J.-K. Hao

Parent 1 : T1 Parent 2 : T2

D1 = Δ(T1)

A B C D E F G H I J K L M N

A - B

B 6 - C

C 5 3 - D

D 1 5 4 - E

E 5 5 4 4 - F

F 5 5 4 4 2 - G

G 5 3 0 4 4 4 - H

H 5 5 4 4 0 2 4 - I

I 0 6 5 1 5 5 5 5 - J

J 5 1 2 4 4 4 2 4 5 - K

K 2 4 3 1 3 3 3 3 2 3 - L

L 7 1 4 6 6 6 4 6 7 2 5 - M

M 5 5 4 4 2 0 4 2 5 4 3 6 - N

N 7 1 4 6 6 6 4 6 7 2 5 0 6 -

D2 = Δ(T2)
A B C D E F G H I J K L M N

A - B

B 8 - C

C 4 6 - D

D 1 7 3 - E

E 0 8 4 1 - F

F 9 1 7 8 9 - G

G 4 6 0 3 4 7 - H

H 2 6 2 1 2 7 2 - I

I 6 4 4 5 6 5 4 4 - J

J 7 1 5 6 7 2 5 5 3 - K

K 4 4 2 3 4 5 2 2 2 3 - L

L 9 1 7 8 9 0 7 7 5 2 5 - M

M 6 2 4 5 6 3 4 4 2 1 2 3 - N

N 6 4 4 5 6 5 4 4 0 3 2 5 2 -

Fig. 6.1. Application of the DiBIP Tree Crossover [322] – The parents

called Nearest Neighbor Interchange [922] which swaps two adjacent branches of
the tree leading to (2n− 6) neighbors [770]. By varying the parameter d, one gets
neighborhoods of intermediate sizes.

The Progressive Neighborhood Search is based on this parametric neighborhood
and its neighborhood changes during the search process by varying the value of
d. In the particular MP context, PNS carries out a descent search starting with
a large neighborhood (i.e. with large d) and reduces progressively the neighbor-
hood. Indeed, at the beginning of the search, it is possible to obtain strong quality

6 Memetic Algorithms in Discrete Optimization 93

D∗ = D1⊕D2

A B C D E F G H I J K L M N

A - B

B 14 - C

C 9 9 - D

D 2 12 7 - E

E 5 13 8 5 - F

F 14 6 11 12 11 - G

G 9 9 0 7 8 11 - H

H 7 11 6 5 2 9 6 - I

I 6 10 9 6 11 10 9 9 - J

J 12 2 7 10 11 6 7 9 8 - K

K 6 8 5 4 7 8 5 5 4 6 - L

L 16 2 11 14 15 6 11 13 12 4 10 - M

M 11 7 8 9 8 3 8 6 7 5 5 9 - N

N 13 5 8 11 12 11 8 10 7 5 7 5 8 -

Child : T ∗ = Λ (D∗)

Fig. 6.2. Application of the DiBIP Tree Crossover [322] – The offspring

improvement by important topological modifications of the tree with large d. When
the search progresses and the quality of the trees becomes better and better, only
small improvements can be expected with small tree modifications. It is thus more
judicious to switch to smaller and small neighborhoods to accelerate the search.

One notices that PNS shares some features with Variable Neighborhood Search
(VNS) [363]. However, contrary to VNS, the neighborhoods explored by PNS are
not systematically of increasing sizes. Within the context of our Maximum Parsi-
mony problem, PNS even progressively reduces its neighborhood.

6.5 Conclusions

In this chapter we have presented the basic concepts of Memetic Algorithms for
Discrete Optimization. Focus is given to the key design issues of an effective MA
algorithm. We have explained the usefulness of a deep study and understanding of
the optimization problem on hand. We have insisted on the importance of a careful
adaptation of the general search strategies offered by the MA framework, a suitable
incorporation of problem specific knowledge in different components of the MA
as well as a logical integration of these components. The pursuit goal is clearly to
build an effective MA algorithm that is able to ensure a balanced exploitation and
exploration of the search space.

94 J.-K. Hao

It should be clear that a blind MA application would have little chance to deliver
good results for difficult optimization problems. High performance can only be pos-
sible by a disciplined and careful specialization of the general MA framework to
the targeted problem. It is equally important to apply the “lean design” principle in
order to avoid redundant or superficial algorithmic components.

The framework of Memetic Algorithms constitutes an interesting enrichment to
the arsenal of existing discrete optimization methods and offers a valuable alterna-
tive for tackling hard discrete optimization problems.

Acknowledgements. This work was partially supported by “Angers Loire Métropole” and
the Region of “Pays de la Loire” within the following projects: MILES, BIL, Radapop and
LigeRO. I’m grateful to my research collaborators within and outside the Group “Metaheuris-
tics, Optimization and Applications” of the LERIA Laboratory.

Chapter 7
Memetic Algorithms and Fitness Landscapes in
Combinatorial Optimization

Peter Merz

7.1 Introduction

Combinatorial optimization problems (COPs) arise in many practical applications
in the fields of management science, biology, chemistry, physics, engineering, and
computer science. Although the search space is comprised of a finite number of can-
didate solutions, many of these problems are very complex and thus hard to solve.
Often, the search space grows exponentially with the problem size rendering enu-
meration schemes impractical. Moreover, for many problems it has been shown that
they are NP-hard, hence no polynomial time algorithm is known to find optimum
solutions. Therefore, effective meta-heuristics are required to find (near) optimum
solutions in short time. Memetic algorithms are known to perform well for a wide
range of combinatorial optimization problems. Still, an open question is when and
why they perform so well. After providing an overview and a common outline of
memetic algorithms for combinatorial optimization problems in section 2, we intro-
duce the concept of fitness landscapes in section 3 to address these two questions.
In Section 4 and 5 we present case studies of the TSP and the BQP, respectively,
in which we show and discuss results from the fitness landscape analysis. Further-
more, we discuss the state-of-the-art meta-heuristics for these problems. Section 6
concludes the chapter.

7.2 MAs in Combinatorial Optimization

The travelling salesman Problem (TSP) is one of the best-known combinatorial op-
timization problems. Often, new new ideas in meta-heuristics have initially been
tested on the TSP and were applied afterwards to other combinatorial problems.

Peter Merz
University of Applied Sciences and Arts Hannover,
Department of Computer Science and Business Administration, 30459 Hannover, Germany
e-mail: peter.merz@fh-hannover.de

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 95–119.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

96 P. Merz

Hence, it is not surprising that the first memetic algorithms have been developed for
the TSP. In the late 80s, several attempts have been made to apply evolutionary al-
gorithms to the travelling salesman problem. Especially, when using recombination,
many researchers discovered that it is necessary to use some form of local search
within the evolutionary framework [334]. One of the reasons why recombination-
based evolutionary algorithms fail to perform well on the TSP is that it is not trivial
to recombine some of the edges of two or more TSP tours into a single tour such that
all edges are from at least one of the parents and the resulting edge set is a valid TSP
tour. Most recombination operators introduce implicit mutations by adding random
edges of arbitrary length to ensure feasibility [230, 565, 581, 931]. As a conse-
quence, the offspring tend to be much worse than their parents if the parents have
a high fitness. Therefore, researchers considered applying local search to remove
these arbitrary long edges from the tours.

7.2.1 Combinatorial Optimization

According to [303], a combinatorial optimization problem P is either a minimization
problem or a maximization problem, and it consists of

1. a set DP of instances,
2. a finite set SP(I) of candidate solutions for each instance I ∈ DP, and
3. a function mP that assigns a positive rational number mP(I,x) called the solution

value for x to each instance I ∈ DP and each candidate solution x ∈ SP(I).

Thus, an optimal solution for an instance I ∈ DP is a candidate solution x∗ ∈ SP(I)
such that, for all x ∈ SP(I), mP(I,x∗) � mP(I,x) if P is a minimization problem, and
mP(I,x∗) � mP(I,x) if P is a maximization problem.

Due to the fact that the set of candidate solutions is finite, an algorithm for find-
ing an optimum solution always exists. This algorithm, referred to as exhaustive
search, simply evaluates and compares mP(I,x) for all x ∈ SP(I). Unfortunately, the
search space of many combinatorial problems grows exponentially with the prob-
lem size, i.e., the number of components in a solution vector x. Thus, this complete
enumeration scheme becomes impractical. For a large class of combinatorial opti-
mization problems no alternative algorithms running in polynomial time are known.
This phenomenon has led to the development of complexity theory [303], and in
particular, to the theory of NP-completeness.

Combinatorial optimization can be considered as a special case of discrete opti-
mization. However, in discrete optimization the search space is not always finite. In
contrast to integer programming, combinatorial optimization refers to problems on
graphs, matroids and other discrete structures.

7.2.2 MA Outline

Beginning with Brady [81], many researchers have made consequent use of local
search in their evolutionary algorithms for the TSP [86, 331, 622, 637, 896]. These

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 97

Algorithm 12. The Memetic Algorithm

begin1

foreach S in Population do S← LocalSearch(Init());2

while not terminated do3

Offspring← ;4

for i← 0 to crossovers do5

A← Select(Population);6

B← Select(Population);7

C← LocalSearch(Recombine(A, B));8

Offspring← OffSpring + C;9

endfor10

for i← 0 to mutations do11

A← Select(Population);12

C← LocalSearch(Mutate(A));13

Offspring← OffSpring + C;14

endfor15

Population← Select(Population, Offspring);16

endw17

end18

approaches can be classified as memetic algorithms although they have not been
called so at the time they have been proposed. Some researchers used the term Ge-
netic Local Search [285, 286, 478, 584, 896], others described them as hybrids of
evolutionary and local search. Still today, many researchers use the same basic MA
framework that is shown in Alg.12. In this framework, local search is consequently
applied to all newly created solutions, more precisely to all the members of the
initial population created by some initialization operator, and those solutions cre-
ated by the mutation and recombination operators. In the framework, recombination
and mutation are treated independent of each other. In some MAs, mutation is only
applied after crossover. However, we concentrate on the framework above since it
allows for mutation–only MAs.

When using recombination, selection becomes highly important, since there is
a high probability of premature convergence. Due to the fact that local search is
expensive, MAs tend to have relatively small population sizes (10–40 individuals).
Compared to EAs without local search, the problem of convergence is more severe.
When the population only contains very similar solutions, recombination / com-
bined with local search will likely discover the same solutions again and again. It is
therefore important to keep diversity in the population. There are several methods
to deal with diversity preservation depending on the type of selection: In selection
for recombination, one can choose to recombine only those individuals which are
sufficiently far away from each other in the search space. Another approach is to
consider diversification in the recombination operator itself as has done in HX or
DPX [76, 246, 247]. Moreover, in selection for survival duplicates may be removed
such that each indivdual is found only once in the population [247] or replacement
scheme may be used that replaces similar solutions based on a distance threshold

98 P. Merz

[285, 286]. Finally, a restart mechanism can be used to diversify the population
once convergence has been detected [246, 581].

7.2.3 Related Meta-Heuristics

There are several meta-heuristics which are similar to MAs. Most notably, Scatter
Search [313] and Iterated/Stochastic Local Search [533]. While the former incorpo-
rates a recombination meachanism as and the MA framework above, the latter can be
considered as a special case of the MA above. In that case the population is reduced
to 1 and only mutation is used (#recombinations=0,#mutations=1), which simplifies
the algorithm significantly. Iterated local search (ILS) was also first proposed for the
TSP [427], but has been applied later on to various combinatorial problems [533].
The outline of iterated local search is shown in Alg. 13.

Algorithm 13. Iterated Local Search.

begin1

S← Init();2

S← LocalSearch(S);3

while not terminated do4

T←Mutate(S);5

T← LocalSearch(T);6

S← Select(S, T);7

endw8

end9

Iterated local search is also highly similar to some instances of variable neigh-
borhood search (VNS) [604].

7.3 Why and When MAs Work

Although many different meta-heuristics have been proposed for combinatorial opti-
mization problems, only little is known in which cases they are effective. Moreover,
every approach comes with a considerable number of parameters and it is often not
known which parameter settings are optimum due to the huge parameter space and
the computational time required for testing all possible combinations.

In the case of MAs, it would be highly desirable to have guidelines for the devel-
opment of MAs for new or untackled combinatorial optimization problems. Impor-
tant questions that arise are: Which local search operator or neighborhood to choose,
how many iterations to apply local search, to use recombination or mutation, how
to mutate or recombine and so forth. Fitness landscape analysis has been shown to
be valuable when trying to find answers to these questions. We therefore provide a
short overview of fitness landscapes and statistics methods to analyse them.

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 99

7.3.1 The Concept of Fitness Landscapes

The concept of fitness landscapes [941], introduced to illustrate the dynamics of
biological evolutionary optimization, has been proven to be very powerful in evo-
lutionary theory. As metioned before, the concept has been shown to be useful for
understanding the behavior of combinatorial optimization algorithms and can help
in predicting their performance. Regarding the search space, i.e. the set of all (candi-
date) solutions, as a landscape, a heuristic algorithm can be thought of as navigating
through it in order to find the highest peak of the landscape; the height of a point in
the search space reflects the fitness of the solution associated with that point.

More formally, a fitness landscape (S, f ,d) of a problem instance for a given com-
binatorial optimization problem consists of a set of points (solutions) S, a fitness
function f : S→ IR, which assigns a real–valued fitness to each of the points in S,
and a distance measure d : S×S→ IR, which defines the spatial structure of the land-
scape. A fitness landscape can thus be interpreted as a graph GL = (V,E) with vertex
set V = S and edge set E = {(s,s′) ∈ S×S |d(s,s′) = dmin}, with dmin denoting the
minimum distance between two points in the search space. The diameter diamGL of
the landscape is another important property: it is defined as the maximum distance
between any two points in the search space.

For binary coded problems (S = {0,1}n), the graph GL may be a hypercube of
dimension n, and the distance measure may be the hamming distance between bit
strings. For this landscape, the minimum distance dmin is 1 (one bit with a different
value), and the maximum distance is diam GL = n.

7.3.2 NK-Landscapes

To study rugged fitness landscapes, Kauffman [451, 452] developed a formal model
for gene interaction which is called the NK-model. In this model, N refers to the
number of parts in the system, i.e. genes in a genotype or amino acids in a pro-
tein. Each part makes a fitness contribution which depends on the part itself and K
other parts. Thus, K reflects how richly cross-coupled the system is; it measures the
epistasis, i.e. the richness of interactions among the components of the system.

Each point in the NK-fitness landscape is represented by a bit string of length N
and can be viewed as a vertex in the N-dimensional hypercube. The fitness f of a
point b = b1, . . . ,bN is defined as follows:

f (b) =
1
N

N

∑
i=1

fi(bi,bi1 , . . . ,biK), (7.1)

where the fitness contribution fi of the gene at locus i depends on the allele (value of
the gene) bi and K other alleles bi1 , . . . ,biK . The function fi : {0,1}K+1→ IR assigns
a uniformly distributed random number between 0 and 1 to each of its 2K+1 inputs.
The values for i1, . . . , iK are chosen randomly from {1, . . . ,N} or from the left and
right of locus i. The former is called the random neighbor model while the latter is
called the adjacent neighbor model. Since the random neighbor model is NP-hard

100 P. Merz

and the adjacent model is not [929], we focus on the random case. With the NK
model, the “ruggedness” of a fitness landscape can be tuned by changing the value
of K and thus the number of interacting genes per locus. Low values of K indicate
low epistasis and high values of K indicate high epistasis.

7.3.3 Analysis of Fitness Landscapes

7.3.3.1 Autocorrelation Analysis

The local properties of the landscape have a strong influence on the effectiveness
of a local search, since in a local search the decision which point has to be visited
next is based solely on these local properties. The properties can be analyzed with
statistical methods such as autocorrelation/random walk correlation analysis. These
methods calculate (or estimate) the correlation of neighboring points in the search
space with respect to the local search neighborhood. The random walk correlation
function [845, 846, 928]

r(s) =
1

σ2(f) (m− s)

m−s

∑
t=1

(f (xt)− f̄)(f (xt+s)− f̄) (7.2)

of a time series { f (xt)} defines the correlation of two points s steps away along
a random walk of length m through the fitness landscape (σ2(f) denotes the vari-
ance of the fitness values). A step denotes here a move from the current solution
to a neighboring solution in the fitness landscape. Typical random walk correlation
functions for the TSP and NK-landscapes are displayed in Fig. 7.1.

Based on this correlation function, the correlation length � [846] of the landscape
is defined as

� =− 1
ln(|r(1)|) (7.3)

for r(1) �= 0. The correlation length directly reflects the ruggedness of a landscape.
The smaller the value for �, the more rugged the landscape. A landscape is said to be

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
or

re
la

tio
n

Steps

NK Landscape Random Walk Correlation

K=0,N=1000
K=2,N=1000

K=10,N=1000

Fig. 7.1. The random walk correlation functions of NK landscapes (right) with varying K.

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 101

smooth if there is high correlation between neighboring points (correlation length
is large), and rugged if there is low or no correlation between neighboring solu-
tions (correlation length is small). It can be observed that higher correlation leads
to a higher number of iterations in a local search until a local optimum is reached
and may also lead to a higher fitness as Kauffman concludes [451]: On the other
hand, if the correlation is low, the local search terminates after few iterations in a
local optimum with relatively low fitness [451]. The correlation length as a mea-
sure of landscape ruggedness can be utilized to compare different neighborhoods
for a problem (assumed that the neighborhoods have the same size). The higher the
correlation, the more effective the local search.

Alternative landscapes in combinatorial optimization can be found by allowing
for infeasible solutions. However, the problem becomes then to find an appropri-
ate penalty function in order to obtain an effective local search. In the graph bi-
partitioning problem, local search can be performed by exchanging a vertex from
one set with a vertex from the other set. An alternative is to move just one vertex
to the other set. As a consequence, both sets can have different sizes and hence the
solution may be infeasible. Therefore, it is required to introduce a penalty function
to penalize infeasible solutions depending on the absolute difference of the sizes of
the two sets. The objective becomes

f (V1,V2) = |e(V1,V2)|+α(|V1|− |V2|)2, (7.4)

where V1,V2 are the two vertex sets, e(·, ·) is the number of edges between the two
sets, and α is called the imbalance factor [430]. In [20], the correlation length has
been used to determine the perfect imbalance factor α , resulting in the highest ran-
dom walk correlation. In experiments, it could been verified that the ”optimum”
imbalance factor leads to the best local search performance. Thus, the correlation
length can be used to find the smoothest and hence easiest landscape for a local
search for a given problem. In some cases, where the correlation length is problem
instance dependent, it may serve as an indicator for the hardness of the instance
for a local search. For NK-Landscapes as well as for other combinatorial optimiza-
tion problems such as the quadratic assignment problem, it can be observed that the
number of iterations of a local search (the number of moves until a local optimum is
reached) decreases for less correlated landscapes and the resulting solution quality
becomes worse [451, 581, 587].

7.3.3.2 Fitness Distance Correlation

The effectiveness of the evolutionary meta-search depends on the global properties
of the fitness landscape. Since in the MAs discussed in this chapter, the evolutionary
variation operators are applied to locally optimum solutions, the distribution of the
local optima is the most important global property of a landscape. The distribution
can be analyzed with a fitness distance correlation analysis of the local optima – the
peaks in the fitness landscape. The fitness distance correlation (FDC) coefficient ρ
is defined as

102 P. Merz

ρ(f ,dopt) =
Cov(f ,dopt)
σ(f)σ(dopt)

, (7.5)

where Cov(·, ·) denotes the covariance of two random variables and σ(·) denotes
the standard deviation. The FDC determines how closely fitness and distance to
the nearest optimum in the search space (denoted by dopt) are related. If fitness in-
creases when the distance to the optimum becomes smaller, then search is expected
to be easy for selection–based algorithms, since there is a “path” to the optimum via
solutions with increasing fitness. A value of ρ = −1.0 (ρ = 1.0) for a maximiza-
tion (minimization) problem indicates that fitness and distance to the optimum are
perfectly related and that search promises to be easy.

The FDC coefficient has been proposed in [435] as a measure for problem diffi-
culty for genetic algorithms. In [14], a counterexample is presented in which a GA
performs well on an uncorrelated landscape. Horjik and Manderick argue why FDC
is useful for recombination [394]. [832] propose the NKP model which is a superset
of the NK model and show that as K increases the correlation goes down but with
no statistically significant effect on the mean fitness of the local optima. A summary
of landscape metrics and related issues is provided in [438]. These papers, however,
concentrate on evolutionary algorithms without local search.

In respect to MA performance, FDC analysis may reveal a correlation between
the fitness and the distance of the local optima to the global optimum. The presence
of correlation implies that the fitness increases the closer the local optima are to
the global optimum. Therefore, an MA can exploit this feature by ‘hopping’ from
one local optimum to the next local optimum with better fitness until the global
optimum is reached. If recombination is used for variation, ‘jumping’ from one peak
to another can be achieved if the recombination is respectful, i.e. if the resulting
offspring point lies near both parents and has a distance to its parents that is no
greater than the distance between the parents themselves. Compared to other forms
of variation, the resulting offspring are closer to other local optima with high fitness.
In such cases, it is more likely that the offspring is within a suboptimal ‘basin of
attraction’ (with higher fitness than the parents) rather than jumping into an arbitrary
direction.

Besides the FDC, fitness distance scatter plots provide useful information about
a fitness landscape. In fact, there are cases in which the FDC can be misinterpreted
if the plot is not considered. In Fig. 7.2, typical fitness distance plots are provided.
The NK-landscape in the left (N = 1024,K = 2) is correlated but the landscape
(N = 1024,K = 11) shown on the right is uncorrelated, the local optima appear to
be randomly distributed in the search space. The correlated landscape has a mas-
sive central structure, meaning that the optimum is more or less central among other
near optimum local optima. This phenomenon can be observed for several other
combinatorial optimization problems and is also known as the big valley structure
(for minimization problems). The structured landscape is well suited for MA based
on recombination while the uncorrelated and structured landscape is not. In fact, for
the latter it was shown that variation based on mutation is better than recombination,
such as uniform crossover [581]. Thus, in uncorrelated landscapes, jumps in random

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 103

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e
Δf

Distance to optimum dopt

C2-1024

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e
Δf

Distance to optimum dopt

xdr-B11-1024

Fig. 7.2. FDC plots for two NK-landscapes with K = 2 (left) and K = 11 (right)

directions with a fixed jump distance are more effective than jumps toward other
solutions with high fitness using variable jump distances (respectful recombination).

7.3.3.3 Advanced Fitness Landscape Analysis

Although the analysis techniques described above are valuable, they do not focus
on all important aspects of the fitness landscape. Hence, in [583] we proposed some
rather simple statistical analysis methods. The first addresses the question how much
should be mutated in a mutation-based MA? Intuitively, the idea would be to mutate
only the minimum number of components in the solution vector that is sufficient to
leave the basin of attraction of the local optimum represented by the current solu-
tion. In [583], we computed the average escape rate form local optima depending on
the number of mutation steps for various landscapes. Since the higher the number
of mutation steps, the higher the chance to escape but also the higher the compu-
tational cost in terms of local search iterations to reach a new local optimum, we
proposed to calculate the number of local search iterations per escape for various
mutation strengths. In Fig.7.3, the escape rates and the number of iterations per es-
cape for NK-landscapes with three different values of K are shown on the left, and
on the right, respectively. Both escape rates and number of iterations per escape for

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

E
sc

ap
e

ra
te

Steps

NK Landscapes: 1-opt Local Optima

K=2,N=512
K=6,N=512

K=12,N=512

10

20

30

40

50

60

70

80

90

100

110

0 20 40 60 80 100

Ite
ra

tio
ns

 /
E

sc
ap

e

Steps

NK Landscapes: 1-opt Local Optima

K=2,N=512
K=4,N=512

K=12,N=512

Fig. 7.3. Basins of Attraction of Local Optima in the NK-model

104 P. Merz

1-opt local optima are shown depending on the number of mutation steps performed
to escape. The number of mutation steps is equal to the distance of the mutated solu-
tion and the local optimum. The left plot shows that the basins of attraction become
larger with increasing K or at least escaping becomes harder: more mutation steps
are required to leave the current basin of attraction. This is surprising, since with
increasing K the number of local optima increases and we would expect the size of
the basins of attraction to decrease. The question arises whether there is an optimum
mutation rate in terms of computation costs. At which mutation rate is the number
of visited local optima per time unit maximum? The answer is given in the left part
of the figure. Clearly, for K = 12, there is an optimum at 20 mutation steps. For the
landscapes with smaller K, the optimum approaches two mutation steps.

Additionally to this local search escape analysis we proposed random walk anal-
ysis starting at local optima. This analysis provides a picture of the search space
from a local optimums’ perspective. The idea here is that walking away from a lo-
cal optimum in a random direction may show a different degradation of fitness than
walking in the direction of another local optimum. How severe this difference is,
depends on fitness distance correlation of the local optima. However, this analysis
does not require the knowledge of a global optimum as the FDC analysis does. In
Fig.7.4, the results of a random walk analysis for the NK-model is shown for dif-
ferent values of K. The random walks in the direction of another local optimum
(simulating recombination) are denoted by ’rec’, the random walks in a random
direction (simulating mutation) or denoted by ’rw’. In the left, the average fitness
values of the solutions on a typical random walk path are displayed over the dis-
tance from the starting point of the random walk (parent A). As expected, the fitness
decreases when moving away from A. When approaching B the fitness increases as
expected. The fitness of the solutions halfway on a random walk between solution A
and B tell an interesting story. Let C denote such a point with d(A,C) = d(A,B)/2.
For K = {2,6}, this fitness is considerably higher than for the solutions on a ran-
dom walk in an arbitrary direction indicating that recombination produces much
better solutions than mutation. For K = 12, this effect can not be observed. Here,
the fitness halfway on a random walk between A and B is similar to the fitness on an
arbitrary random walk, indicating that recombination is not superior to mutation for
this landscape. This is not surprising since the fitness distance correlation analysis
reveals that the local optima are randomly distributed in the search space. On the
right of the figure, the fitness difference of points on directed and undirected ran-
dom walks is provided depending on the distance to parent A: The fitness difference
f (Crec)− f (Crw) for points Crec on a directed random walk and points Crw on an
undirected random walk depending on the distance d(A,C) = d(A,B)/2 are shown
The data is collected over a full run of a memetic algorithm. For K = 2, the fitness
difference and the distance of the parents are correlated (upper right of the figure).
The higher the distance, the better recombination performs compared to mutation
(upper left of the figure). Recombination is also always superior to mutation in case
of K = 6. However, The gain achieved with recombination is highest for distances
about 100 and decreases with decreasing distance as well as increasing distance. For
K = 12, the picture changes. Recombination and mutation perform equally well for

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 105

0.5

0.55

0.6

0.65

0.7

0.75

0 50 100 150 200 250

F
itn

es
s

Distance

NK Landscapes (K=2,N=512): Random Walks

rec
rw

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 50 100 150 200 250 300

F
itn

es
s

D
iff

er
en

ce

Distance

NK Landscapes (K=2,N=512): Random Walks

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 50 100 150 200 250

F
itn

es
s

Distance

NK Landscapes (K=6,N=512): Random Walks

rec
rw

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 50 100 150 200 250 300

F
itn

es
s

D
iff

er
en

ce

Distance

NK Landscapes (K=6,N=512): Random Walks

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 50 100 150 200 250

F
itn

es
s

Distance

NK Landscapes (K=12,N=512): Random Walks

rec
rw

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 50 100 150 200 250 300

F
itn

es
s

D
iff

er
en

ce

Distance

NK Landscapes (K=12,N=512): Random Walks

Fig. 7.4. Random Walks Starting from a Local Optimum in the NK model.

a distance around 250. This is the case at the beginning of the MA run. Later in the
run of the MA, the average distance of the solutions in the population drops due to
the effects of mutation with a relatively small mutation rate. For a parents distance
smaller than 50, recombination is again superior to mutation.

7.4 Case Study I: The TSP

The travelling salesman problem (TSP) is believed to be the best-known combina-
torial optimization problem. Exact methods such as branch & cut as well as many
meta-heuristics have been evaluated initially on the TSP. The reason why it has
attracted so many researchers is probably that it is very easy to formulate and un-
derstand: Given a set of cities and the distances between them, the problem is to find
the shortest closed tour that visits each city exactly once. More formally, the tour
length

106 P. Merz

l(π) =
n−1

∑
i=1

dπ(i),π(i+1) + dπ(n),π(1) (7.6)

has to be minimized, where di j is the distance between city i and city j and π a
permutation of 〈1,2, . . . ,n〉. Thus, an instance I = 〈D〉 is defined by a distance matrix
D = (d)i j , and a solution (TSP tour) is a vector π with j = π(i) denoting city j to
visit at the i-th step.

A special case of the TSP is the Euclidean TSP. Here, the distance matrix di j is
symmetric, that is di j = d ji ∀ i, j ∈ {1,2, . . . ,n}, and the triangle inequality holds:
di j � dik +dk j ∀ i, j,k ∈ {1,2, . . . ,n}. The distance between two cities is defined by
the Euclidean distance between two points in the plane. These two assumptions do
not lead to a reduction of the complexity; hence the general as well as the euclidian
problem is NP-hard. In the following we focus on the Euclidean TSP.

7.4.1 Fitness Landscape

The TSP is also among the first combinatorial optimization problems for which
researchers tried to analyze the search space. In order to define the fitness landscape
for the TSP, an appropriate distance measure is required.

A suitable distance measure for TSP tours appears to be a function that counts the
number of edges different in both tours: Since the fitness of a TSP tour is determined
by the sum of the weights of the edges the tour consists of, the distance between two
tours t1 and t2 can be defined as the number of edges in which one tour differs from
the other. Hence

d(t1,t2) = |{e ∈ E | e ∈ t1∧ e �∈ t2}|. (7.7)

This distance measure has been used by several researchers, including [76, 286, 548,
638]. It has been shown that this distance function satisfies all four metric axioms
[774].

Alternatively, a distance measure could be defined by counting the number of
applications of a neighborhood search move to obtain one solution from the other.
In the case of the 2-opt move, the corresponding distance metric d2−opt is bound by
d � d2−opt � 2d [548].

7.4.1.1 Autocorrelation Analysis

Stadler and Schnabl [847] performed a landscape analysis of random TSP land-
scapes considering different neighborhoods: the 2-opt and the node exchange neigh-
borhood. Their results can be summarized as follows.

For the symmetric TSP, both landscapes (based on 2-opt and node exchange) are
AR(1) landscapes. The random walk correlation function for random landscapes is
of the form

r(s) ≈ exp(−s/�) = exp(−b/n · s), (7.8)

with n denoting the number of nodes/cities of the problem instance and b denoting
the number of edges exchanged between neighboring solutions. Thus, for the 2-opt

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
or

re
la

tio
n

Steps

TSP Random Walk Correlation

Edge Exchange
Node Exchange

Fig. 7.5. Random walk correlation functions for the TSP based on edge exchange and node
exchange.

landscape, the normalized correlation length ξ = �/n is 1
2 , for the node re-insertion

landscape ξ is 1
3 , and for the node exchange landscape ξ is 1

4 . This result coincides
with experimentally obtained results that 2-opt local search is much more effective
than local search based on node exchange or node re-insertion [764]. The correlation
functions for edge and node exchange are shown in Fig.7.5.

The formula 7.8 implies that a landscape with a strict 3-opt neighborhood is more
rugged than a landscape with a 2-opt neighborhood. One may conclude that a 2-opt
local search performs better than a 3-opt local search. However, the opposite is true,
since the 3-opt neighborhood is much greater than the 2-opt neighborhood and the
3-opt neighborhood as defined above contains the 2-opt neighborhood. Therefore,
a 3-opt local search cannot perform worse than a 2-opt local search in terms of
solution quality.

7.4.1.2 Fitness Distance Correlation

The fitness distance correlation of local minima of the TSP has been analyzed in
[75, 76] for a single instance and also in [581] for serveral other typical TSP in-
stances. Given the distance measure described above, the results show a strong cor-
relation between tour length and distance to the optimum solution. In fact, the TSP
was the first problem to show the deep valley structure, meaning that better local op-
tima tend to be close to the global optimum. Moreover, the global optimum is found
in a big valley surounded by the other local optima and the local optima concentrate
in a relatively small part of the search space. A radically different structure would be
a random distribution of the local optima in the search space. Hence there would be
no correlation between distance to the optimum and tour length. In Fig.7.6, the fit-
ness distance plot of a typical TSP instance is shown together with a fitness distance
plot for a completely unstructured landscape of the quadratic assignment problem
(QAP). The figure indicates that not all combinatorial problems have a ’nice’ land-
scape as the TSP. The findings also provide an explanation of the success of many
of the TSP heuristics. Many meta–heuristics implicitly exploit the fact that local op-
tima are close to each other. An obviously reasonable strategy is to hop from one

108 P. Merz

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e
Δf

Distance to optimum dopt

pr1002.tsp

0
100000
200000
300000
400000
500000
600000
700000
800000

0 10 20 30 40 50 60 70 80

C
os

t d
iff

er
en

ce
 Δ

c

Distance to optimum dopt

tai100a

Fig. 7.6. FDC plots for a TSP instance (left) and a QAP instance (right).

local optimum to the next better one until the global optimum is reached. This is, in
fact, what MAs and ILS do.

7.4.2 State-of-The-Art Meta-Heuristics for the TSP

The TSP has served as a test-bed for new heuristic approaches including evolu-
tionary algorithms (EA) and memetic algorithms. Consequently, many approaches,
both evolutionary and non-evolutionary, have been proposed. Here, we focus on
those approaches which are highly effective and scalable. Euclidean TSP instances
up to a size of 1,000 can be considered as trivial for most algorithms. In fact, these
small problems can usually be solved exactly by Branch & Cut [24] in a few sec-
onds. Therefore, these instances are no longer of interest for heuristics research
on the TSP. For instances up to approx. 30,000 cities, very effective heuristics have
been proposed most of which are based on the powerful Lin-Kernighan (LK) heuris-
tic [524], a variable k-opt local search. An example is Helsgaun’s LK implementa-
tion (LKH) [380].

Only few evolutionary algorithms can compete with LKH. One of the best evolu-
tionary approaches is the EA of Nagata using EAX crossover [647] and 2-opt local
search. This algorithm finds (near) optimal tours up to a size of 33,000 cities, al-
though with a high runtime. Recently, Nguyen et al.[664] have proposed a memetic
algorithm which utilizes a variant of the MPX crossover operator [637] and a Lin-
Kernighan local search variant with 5-opt moves. Results are reported for instances
up to 85,900 cities. The authors claim that their algorithm is more effective than
LKH. Moreover, the authors describe an approach for solving the World TSP (ap-
prox. 2 million cities) by solving and merging subproblems. But results for other
instances in the range from 100,000 to 10 million cities are not reported.

For instances larger than 100,000 cities, only few heuristics have been proposed.
For these instances, the DIMACS TSP implementation challenge [428] lists several
approaches of which the best are based on the LK heuristic: The multi-level algo-
rithm of Walshaw [912] first reduces the size of a TSP instance stepwise and then
applies the (chained) LK heuristic to the smaller problems. The results are inferior to
the results obtained by directly applied chained LK or iterated LK heuristics. These

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 109

heuristics are based on the principle of iterated local search [533], an evolutionary
heuristic incorporating local search. The idea is to stepwise improve the current best
solution by mutating it and subsequently applying local search. The first iterated lo-
cal search was the iterated Lin-Kernighan (ILK) heuristic by Johnson [427]. Other
variants have been proposed such as the chained Lin-Kernighan heuristic [25, 26].
These ILK heuristics have been applied to instances with up to 10 million cities. The
only algorithm within the DIMACS challenge not using LK as a subroutine and still
being highly effective for large instances is the dynamic programming approach of
Balas and Simonetti [39].

Except for the LKH heuristic, none of the mentioned algorithms provides a lower
bound on the optimum solution. To the best of our knowledge, the only evolution-
ary algorithm computing lower bounds is the one proposed in [556]. However, the
approach deals with instances below 2,400 cities only.

7.4.2.1 An ILS Approach for Very Large TSP Instances

In [590] we have presented an iterated local search approach that simultaneously
improves lower and upper bounds for a TSP instance to provide a gap for the best
solution found. The gap determines the maximum deviation from the optimum so-
lution and therefore provides a quality measure for the obtained TSP tour. The ap-
proach differs from exact algorithms like Branch & Cut [179] in that no efficient
linear programming (LP) solver is required and it differs from approximation al-
gorithms such as PTAS (polynomial time approximation scheme) [27] in that no
general performance guarantee is provided. Instead, the quality is proved for each
instance and a particular run: a final gap between lower and upper bound of 1%
means that the solution found is at most one percent above the optimum (in practice
the real gap is much lower).

Our local search is based on the LK heuristic, hence our iterated local search
is called iterated LK. The general outline of our iterated LK is shown in Alg. 14.
In contrast to other approaches, our ILK incorporates a lower bound computation.

Algorithm 14. The Advanced Iterated Link-Kernighan Heuristic

begin1

C← FindInitialCandidateSet(Instance);2

Tour← Init();3

Tour← LocalSearch(C, Tour);4

C← FindInitialLowerBound(C, TourLength(Tour));5

for iter← 1 to MaxIter do6

Tbest← Tour;7

Tour←Mutate(Tour);8

Tour← LocalSearch(Tour);9

if TourLength(Tour) < TourLength(Tbest) then Tbest← Tour;10

if (iter mod 400) = 0 then C← UpdateLowerBound(C, TourLength(Tbest));11

endfor12

end13

110 P. Merz

This computation is interleaved with the optimization algorithm as can be seen in
the figure: every 400 iterations of the ILK, the lower bound is improved until there
appears to be no more improvement possible (the lower bound computation has
converged). The lower bound computation possibly modifies the candidate edge set,
which is used by the local search to look for improving moves (edge exchanges).

To find initial solutions (Init() in the pseudo code), we use the Quick-Boruvka
heuristic [26, 428], and the initial candidate set (FindInitialCandidateSet(Instance)
in the pseudo code) is based on a subgraph containing the two nearest neighbors for
each quadrant of a city [26]. This candidate set has the property of being connected.

The mutation operator used in the algorithm is non-sequencial four exchange
[524, 588] using a random walk on the candidate set to find edges to be included in
the tour. This operator has been proven to be very effective in conjunction with Lin-
Kernighan local search [26]. The random walk on the candidate edge set assures that
edges with a relatively small length instead of arbitrarily long edges are included.

As mentioned before, we use a variant of the original Lin-Kernighan heuristic
for the local search. Compared to the original LK, we use 3-opt moves as submoves
instead of 2-opt moves at all levels. We do not use backtracking which simplifies
the implementation drastically without affecting the performance. In this aspect our
implementation is similar to LKH.

In order to compare with other state-of-the-art approaches, Table 7.1 shows a
comparison with the eleven best performing algorithms (out of 90) listed on the
DIMACS TSP challenge web page. The summary was produced with the statistics

Table 7.1. Comparison of DIMACS TSP Challenge Results on E1M.0. ILK-PM-.1N de-
notes our ILK with 1 million iterations and ILK-PM-.1N denotes our ILK with 1,2 million
iterations.

% HK Seconds Implementation Reference

0.787 17544.0 ILK-PM-.12N this paper

0.792 77161.6 ILK-NYYY-N ([663])

0.797 16062.0 ILK-PM-.1N this paper

0.804 8694.0 ILK-PM-.1N without LB this paper

0.841 6334.0 ILK-NYYY-Ng ([663])

0.879 42242.5 MLCLK-N [912]

0.888 3480.2 ILK-NYYY-.5Ng ([663])

0.903 19182.7 BSDP-6 [39]

0.903 19503.1 BSDP-8 [39]

0.903 21358.3 BSDP-10 [39]

0.903 19108.1 CLK-ABCC-N.Sparc [25]

0.905 19192.3 CLK-ACR-N [26]

0.910 16008.0 CLK-ABCC-N.MIPS [25]

0.945 20907.6 MLCLK-.5N [912]

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 111

code from the challenge. Thus the running time reported in the table is normalized
to a DEC Alpha processor with 500 MHz in order to allow a comparison of the
different approaches. The quality is given as the percentage excess over the Held-
Karp (HK) bound. As shown in the table, our algorithm provides a significantly
better tour quality than the other approaches. And it does this in a fraction of time of
the second best approach which is also an ILK implementation. Note that none of the
competitors computes a lower bound. For the 10 million city instance E10M.0, the
quality of our approach is 0.75% over the Held-Karp bound compared to the best
algorithm of the DIMACS challenge which is 1.63% over the Held-Karp bound!
This is due to the fact that the best algorithms for the smaller instances do not scale
as well as our approach. While the runtime of our approach without lower bound
computation grows linearly with the problem size, the runtime of the others clearly
grows faster and and yields in the non-applicability of these algorithms to very large
problem instances (>1 million) whereas our approach is still very successful even
if the lower bound computation is activated.

More details on the algoritm as well as the results can be found in [590].

7.5 Case Study II: The BQP

In the unconstrained binary quadratic programming problem (BQP), a symmetric
rational n×n matrix Q = (qi j) is given, and a binary vector of length n is searched
for, such that the quantity

f (x) = xt Q x =
n

∑
i=1

n

∑
j=1

qi j xi x j, xi ∈ {0,1} ∀ i = 1, . . . ,n (7.9)

is maximized. This problem is also known as the (unconstrained) quadratic bivalent
programming problem, (unconstrained) quadratic zero–one programming problem,
or (unconstrained) quadratic (pseudo-) boolean programming problem [55]. The
general BQP is known to be NP-hard but there are special cases that are solvable in
polynomial time [55]. In [926], it has been shown that there are special cases of the
BQP, which can be solved efficiently with simple EAs, but there are also cases, for
which these EAs have been proven to be ineffective (exponentially growing running
time).

The BQP has a large number of applications, for example in capital budgeting
and financial analysis problems [506, 571], CAD problems [485], traffic message
management problems [300], machine scheduling [10], and molecular conformation
[722]. Furthermore, several other combinatorial optimization problems can be for-
mulated as a BQP, such as the maximum cut problem, the maximum clique problem,
the maximum vertex packing problem and the maximum independent set problem
[414, 707, 708].

There is a close relation between binary quadratic programming and NK-
landscapes: The objective function of the BQP can be decomposed into n functions.

112 P. Merz

The fitness of a BQP solution can thus be rewritten as a sum of functions for each
site, called the fitness contributions fi of site i in the genome:

f (x) =
n

∑
i=1

fi(xi,xi1 , . . . ,xik(i)), (7.10)

fi(x) =
n

∑
j=1

qi j xi x j. (7.11)

Similar to the NK-landscapes defined in [452], the fitness contribution fi of a site
i depends on the gene value xi and of k(i) other genes xi1 , . . . ,xik(i) . While for NK-
landscapes k(i) = K is constant for all i, in the BQP k(i) is defined as the number of
non-zero entries in the i-th column of matrix Q. Hence, the degree of epistasis in a
BQP instance can be easily determined by calculating the density of the matrix Q. It
is defined as the number of non-zero entries divided by the number of total entries
in the matrix. Thus, the density is between 0 and 1, where 0 means no epistasis and
1 maximum epistasis (every gene depends on the values of all other genes).

7.5.1 Fitness Landscape

Since the BQP is binary-coded and local search for the BQP is based on the k-opt
neighborhood as defined as

Nk-opt(x) = {x′ ∈ X |dH(x′,x) � k} (7.12)

where dH denotes the hamming distance between bit strings and X the set of all
bit strings of length n (X = {0,1}n), the landscape considered in the search space
analysis of the BQP is L = (X , f ,dH). The graph of this landscape is a hypercube of
dimension n in which the nodes represent the (candidate) solutions of the problem.
An edge in the graph connects neighboring points in the landscape, i.e. points that
have hamming distance 1.

7.5.1.1 Autocorelation Analysis

Since there are no theoretical results on the autocorrelation function or the random
walk correlation function for the BQP, experiments have been conducted in [591]
to estimate the correlation length of selected landscapes. The instances were taken
from ORLIB [54] and [18, 318]. Here, we summarize the findings: Considering all
selected instances, the quotient of n/� varies in tight bounds: the lowest value for
n/� is 2.36 and the highest is 2.71. Compared to NK-landscapes, this is fairly low
since in the NK-model n/�≈ K + 1. For the instances denoted glov500, the values
are very similar (2.67± 0.04) and thus remain constant independent of the density
of the problem. For the set kb-g, the values for n/� do change with the density of
Q, but the values become smaller with increasing density. This is surprising, since
in the NK-model, the correlation length decreases with increasing epistasis, and the

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 113

density can be regarded as a measure of epistasis in the BQP. For the set of instances
of size 2500 and a density of 0.1, the values for n/� are constant (about 2.66).

Summarizing, all the instances of the BQP considered here have got a smooth
landscape similar to NK-landscapes with K � 3.

7.5.1.2 Fitness Distance Correlation Analysis

In a FDC analysis, we studied the correlation of fitness (objective f(x)) and distance
to the optimum for local optima with respect to 1-opt local search. The findings
can be summarized as follows. In most cases, the average distance between the
local optima and the average distance to the global optimum (best-known solution)
are very similar. Moreover, the local optima are located in a small region of the
search space: the average distance between the local optima is between a fourth
and sixth of the maximum distance (the diameter) between two solutions in the
search space. For set glov500, the average distance to the optimum is a sixth of the
diameter independent of the density of Q. For set beas2500 the local optima are
even closer to the optimum in relation to the maximum distance of two solutions
in the landscape: the average distance to other local optima is more than a seventh
of the diameter of the landscape. The FDC coefficient varies from -0.56 to -0.81
excluding glov500-4. The FDC coefficient for this instance is -0.31.

In Figure 7.7, some scatter plots are provided in which the distance to the global
optimum is plotted against the fitness difference Δ f = f (xopt)− f (xloc) for each lo-
cal optimum found. The figure indicates that the local optima are even closer to each
other than for smooth NK-landscapes with K = 2, revealing the deep valley/massiv
central property.

7.5.1.3 Advanced Fitness Landscape Analysis

In order to analyze the structure of the basins of attraction more closely, we con-
ducted several experiments for the BQP [583]. For each problem instance, 1000
local optima were generated and mutated 100 times with a specified mutation rate.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

0 500 1000 1500 2000 2500

F
itn

es
s

di
ffe

re
nc

e
Δf

Distance to optimum dopt

beas2500-1.b

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

F
itn

es
s

di
ffe

re
nc

e
Δf

Distance to optimum dopt

C2-1024

Fig. 7.7. 1-opt Local Optima FDC plots for a BQP instance (left), an NK-landscape with
K = 2 (right)

114 P. Merz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

E
sc

ap
e

ra
te

Steps

BQP: 1-opt Local Optima

kb-g01
kb-g03
kb-g08

50

100

150

200

250

300

350

400

0 50 100 150 200

Ite
ra

tio
ns

 /
E

sc
ap

e

Steps

BQP: 1-opt Local Optima

kb-g01
kb-g04
kb-g08

Fig. 7.8. Basins of Attractions of Local Optima: The escape rate (left) and LS itera-
tions/escape

The number of mutation steps was increased from 1 to n/2 where n denotes the
problem size. Since both problems are binary coded, the number of mutation steps
is defined as the number of bit-mutations executed by the mutation operator.

The BQP instances from [319] denoted kb-g01, kb-g02, . . . , kb-g10, where
the number indicates the density of matrix Q (01 means density 0.1 and 10 denotes
density 1.0), were used in the experiments. All instances have a problem size of
n = 1000. In all cases, 1-opt local search (single bit-flip neighborhood) was used
with the best improvement strategy [582, 589]. Selected results are presented in
Fig. 7.8 (right). The question arises whether there is an optimum mutation rate in
terms of computation costs. At which mutation rate is the number of visited local
optima per time unit maximum? The answer is given in Fig. 7.8 (left). In the figure,
the number of local search iterations per escape is displayed over the number of
mutation steps. For densities greater 0.1, the optimum is around hundred mutation
steps and the optimum approaches 2 steps for density 0.1.

To investigate the properties of random walks starting at local optima we con-
ducted several experiments on the problem instances mentioned above. During the
run of a memetic algorithm, random walks were performed by selecting two parents
A and B and performing a random walk from A to B to simulate recombination as
well as a walk with the same length starting at A in an arbitrary direction to simulate
mutation. Fig. 7.9 shows the results of the random walk analysis for the BQP on
selected instances. Directed random walks have a much higher average fitness than
undirected random walks. As the right of the figure indicates, the fitness difference
is always positive, independent of the distance between the start and end-points of
the random walks. During the whole run of the MA, recombination is clearly su-
perior to mutation since the random walks from one local optimum to the other
produce solutions with much higher fitness than random walks starting at the same
local optima but in arbitrary direction.

As the FDC analysis reveals, BQP landscapes are structured, even with a high
density of matrix Q. Hence, recombination appears to be superior to mutation as the
random walk correlation analysis indicates. However, in [591] it has been shown
that simple recombination schemes are not very effective in MAs for the BQP. The

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 115

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

0 50 100 150 200 250

F
itn

es
s

Distance

BQP (kb-g01): Random Walks

rec
rw

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300

F
itn

es
s

D
iff

er
en

ce

Distance

BQP (kb-g01): Random Walks

-50000

0

50000

100000

150000

200000

250000

0 50 100 150 200 250

F
itn

es
s

Distance

BQP (kb-g08): Random Walks

rec
rw

0

20000

40000

60000

80000

100000

120000

0 50 100 150 200 250 300

F
itn

es
s

D
iff

er
en

ce

Distance

BQP (kb-g08): Random Walks

Fig. 7.9. Random Walks Starting from Local Optima of the BQP

reasons become obvious considering the results of the local search escape analysis:
the local optima in the BQP have very large basins of attractions leading to the
fact that after recombination and local search, one of the parent local optima is
rediscovered very often. As a consequence, additional techniques are required to
prevent this from happening, as shown in [591].

7.5.2 State-of-the-Art Meta-Heuristics for the BQP

Several (meta–)heuristic approaches have been proposed for the BQP. In the follow-
ing, we briefly review effective heuristic algorithms capable of finding optimum/best-
known or very good near-optimum solutions for the BQP.

Glover, Kochenberger, and Alidaee [319] have proposed a tabu search heuristic
for instances of up to 500 variables. Their method consists of a strategic oscillation
scheme that alternates between constructive and destructive phases.

Lodi, Allemand, and Liebling [532] proposed a heuristic based on an evolution-
ary algorithm for the same problem set studied by Glover et al. Their heuristic is
combined with the local search algorithm that is based on the constructive and de-
structive phases of the tabu search in [319]. Their crossover operator is similar to
uniform crossover [864], utilizing the MinRange algorithm, which is based on the
property by Pardalos and Rodgers [706].

Alkhamis, Hasan, and Ahmed proposed a simulated annealing algorithm [11].
Unfortunately, only small problem instances with up to 100 variables were inves-
tigated. In [55], Beasley has provided larger BQP test problems with up to 2500

116 P. Merz

variables as new test problems of the ORLIB [54]. Beasley includes the best-known
solutions for each of the provided instances found by tabu search and simulated
annealing.

In our genetic local search algorithm [586], a simple local search (called 1-opt,
see below) and a variant of uniform crossover, HUX [246], were employed. For sev-
eral large instances of [55], they provided new best-known solutions and have shown
that their algorithm outperforms the two alternative heuristics reported by Beasley.
Furthermore, we developed a greedy heuristic and two local search heuristics called
1-opt and k-opt [589]. We showed that in particular the k-opt local search is ca-
pable of finding high-quality solutions even for the large-scale problem instances,
and they also proposed that these heuristics are well suited as components for meta-
heuristics, such as MA.

Katayama and Narihisa [446] proposed a new simulated annealing-based heuris-
tic with a reannealing process. The approach was tested on the large instances rang-
ing from 500 to 2500 variables contained in the ORLIB. Although simulated an-
nealing is based on the simple 1-opt neighborhood structure, better average solution
results for the large instances were found as compared to the other heuristics: our
genetic local search et al. [586] and the heuristics by Beasley [55]. Moreover, the
heuristic was considerably faster than the others, and new best-known solutions for
several large instances were reported.

7.5.3 A Memetic Algorithm Using Innovative Recombination

In [591], we proposed a memetic algorithm using a new recombination operator
that takes the properties of the search space of the BQP into account. Although the
landscape is correlated/structured, recombination operators such as HUX or simple
uniform crossover are not that effective due to the large basins of attraction of the
local optima, as stated above. This is even more true when a powerful variable k-opt
local search is used.

The outline of the MA is provided in Alg. 15. The population is initialized (Init())
with the randomized greedy heuristic we proposed in [589]. The local search used
is a randomized k-opt local search algorithm proposed in [447, 448], which is based
on the k-opt local search proposed in [589]. Similar to the Lin-Kernighan algorithm
for the TSP [524], the basic idea of the heuristic is to find a solution by flipping a
variable number of k bits in the solution vector per iteration. In each step, a sequence
of n solutions is generated by flipping a random bit with positive gain or the bit with
the highest associated gain. Furthermore, a candidate set is used to assure that each
bit is flipped no more than once. The best solution in the sequence is accepted as the
new solution for the next iteration.

To minimize the number of times a local optimum is rediscovered, we have pro-
posed a new variation operator. The basic idea is to utilize a simple local search for
introducing new alleles, i.e. alleles not contained in both parents. The crossover can
be regarded as innovative, since new alleles are introduced based on the associated
gain in fitness. Hence the name innovative variation. The operator works as follows:

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 117

Algorithm 15. BQP-MA

begin1

foreach S in Population do S← LocalSearch(Init());2

while not terminated do3

Offspring← {};4

for i← 0 to crossovers do5

A← Select(Population);6

B← Select(Population);7

C← LocalSearch(Recombine(A, B));8

Offspring← OffSpring + C;9

endfor10

Population← Select(Population, Offspring);11

if Converged(Population) then12

foreach S in Population\Best do S← LocalSearch(Mutate(S));13

endif14

endw15

end16

In the first step, the common and the non-common bits of the parents are identified.
Then, the contents of parent Ia are copied to the offspring. Variation is now achieved
by alternately flipping non-common bits and common-bits: In a loop, a randomly se-
lected non-common bit is flipped with a positive associated gain, if there is at least
one such non-common bit. The common bit with the maximum associated gain is
flipped afterwards, even if the gain is negative. If a bit has been flipped, it is removed
from the set it was contained in (either the common or non-common bit set). The
loop is repeated n times where n is the number of non-common bits.

Mutation is only applied when the population is converged. In such a case, we
perform a diversification/restart strategy, which is borrowed from [246], in order di-
versity the population by moving to other points of the search space if no new best
individual in the population was found for more than 30 generations. In response
to this requirement, the individuals except for the best one in the population are
mutated by flipping randomly chosen n/3 bits for each individual of length n. Af-
ter that, each of the mutated individuals is improved by the randomized k-opt local
search to obtain a renewal set of local optima and the search is started again with the
new, diverse population. The performance of our MA is shown in Table 7.2. We have
tested our algorithm on several benchmark instances from the literature. The first set
kb-g consists of 10 instances of size n = 1000 that have been provided by Kochen-
berger and have been used in the performance evaluation of scatter search [18]. The
densities of instances in the problem set are between 0.1 and 1.0. The last two sets
beas1000 (n = 1000) and beas2500 (n = 2500) were first studied by Beasley [55],
each of which consists of ten instances with dens(Q) = 0.1.

In [591], a detailed comparison with other approaches for the BQP has been
made. Summarizing, The MA approach provides a higher average solution qual-
ity than other approaches. CPU times have not been reported for all approaches or
are not directly comparable to our results. However, our MA is superior or at least

118 P. Merz

Table 7.2. Computational results of the MA with innovative variation incorporating the ran-
domized k-opt local search algorithm for test problem instances from the literature.

best MA with Innovative Variation

Instance dens(Q) known best avg (quality %) b/30 t1/s (gens)

kb-g01 0.1 131456 131456 131456.0 (0.000000) 30 6.1 (6)

kb-g02 0.2 172788 172788 172788.0 (0.000000) 30 12.8 (9)

kb-g03 0.3 192565 192565 192565.0 (0.000000) 30 11.4 (4)

kb-g04 0.4 215679 215679 215679.0 (0.000000) 30 42.0 (23)

kb-g05 0.5 242367 242367 242367.0 (0.000000) 30 15.6 (5)

kb-g06 0.6 243293 243293 243293.0 (0.000000) 30 69.4 (30)

kb-g07 0.7 253590 253590 253590.0 (0.000000) 30 45.7 (13)

kb-g08 0.8 264268 264268 264268.0 (0.000000) 30 40.2 (12)

kb-g09 0.9 262658 262658 262618.0 (0.015219) 25 140.1 (40)

kb-g10 1.0 274375 274375 274335.4 (0.014423) 15 143.9 (41)

beas1000-1 0.1 371438 371438 371438.0 (0.000000) 30 6.7 (9)

beas1000-2 0.1 354932 354932 354932.0 (0.000000) 30 7.7 (10)

beas1000-3 0.1 371236 371236 371236.0 (0.000000) 30 5.8 (5)

beas1000-4 0.1 370675 370675 370675.0 (0.000000) 30 6.6 (7)

beas1000-5 0.1 352760 352760 352760.0 (0.000000) 30 11.8 (20)

beas1000-6 0.1 359629 359629 359629.0 (0.000000) 30 11.0 (17)

beas1000-7 0.1 371193 371193 371193.0 (0.000000) 30 9.1 (12)

beas1000-8 0.1 351994 351994 351994.0 (0.000000) 30 28.1 (50)

beas1000-9 0.1 349337 349337 349337.0 (0.000000) 30 6.1 (6)

beas1000-10 0.1 351415 351415 351415.0 (0.000000) 30 7.3 (9)

beas2500-1 0.1 1515944 1515944 1515944.0 (0.000000) 30 59.9 (15)

beas2500-2 0.1 1471392 1471392 1471357.8 (0.002322) 26 165.2 (60)

beas2500-3 0.1 1414192 1414192 1414183.1 (0.000629) 29 87.8 (30)

beas2500-4 0.1 1507701 1507701 1507701.0 (0.000000) 30 42.2 (9)

beas2500-5 0.1 1491816 1491816 1491816.0 (0.000000) 30 76.1 (29)

beas2500-6 0.1 1469162 1469162 1469162.0 (0.000000) 30 78.5 (26)

beas2500-7 0.1 1479040 1479040 1479040.0 (0.000000) 30 92.2 (30)

beas2500-8 0.1 1484199 1484199 1484199.0 (0.000000) 30 47.1 (10)

beas2500-9 0.1 1482413 1482413 1482413.0 (0.000000) 30 140.0 (70)

beas2500-10 0.1 1483355 1483355 1483336.9 (0.001218) 28 108.6 (43)

comparable to other state of the art approaches including tabu search and scatter
search. In [700], a multi-start tabu search has been proposed that appears to be sim-
ilarly effective. Again, a direct comparison is not easy. The author, however, fails
to compare with the results from [591]. Instead, older results are considered from
[586].

7 Memetic Algorithms and Fitness Landscapes in Combinatorial Optimization 119

7.6 Conclusion

In this chapter, we have discussed fitness landscape analysis as suitable methodol-
ogy for discovering search space properties relevant for the development of memetic
algorithms. We have shown that some combinatorial optimization problems have
structured landscapes that have a deep value/massive central structure. This struc-
ture is known to be a reason why MAs perform well on certain combinatorial prob-
lems. We have argued that the results from the fitness landscape analysis can be
used to design local search (autocorrelation analysis) or can help in deciding to use
mutation based or recombination variation (fitness distance analysis). In two case
studies, we have demonstrated that MAs are highly effective and belong to state-
of-the-art meta-heuristics. For the binary quadratic programming problem, we have
shown that an advanced fitness analysis can help in designing a recombination op-
erator by assuring that it has a high chance to leave the basin of attraction of the
current local optima. This innovative variation operator increases the effectiveness
of the MA considerably.

Chapter 8
Memetic Algorithms in Continuous
Optimization

Carlos Cotta and Ferrante Neri

8.1 Introduction and Basic Concepts

Intuitively, a set is considered to be discrete if it is composed of isolated elements,
whereas it is considered to be continuous if it is composed of infinite and contiguous
elements and does not contain “holes”.

More formally, to introduce the concept of continuous optimization, some pre-
liminary definitions are required. If we consider sub-sets of real numbers, where the
partial order is obviously valid, a set S is said to be dense if

∀x1,x2 ∈ S : ∃x3 : x1 � x3 � x2. (8.1)

If the property above is not satisfied for all the points, the set is said to be discrete.
When the property is not satisfied for some of the points in D, the set is composed
of multiple not interconnected dense sets.

It must be remarked that, since a set of infinite numbers cannot be represented
in a machine, in computer science all the sets are in principle discrete. On the other
hand, a set where the distance between each pair of consecutive points is not bigger
than the machine precision ε can be considered as a dense set. In other words, the
definition of a dense set in computer science can be modified in the following way.
A set S is said to be dense in computer science if

∀x1,x2 ∈ S,x1 < x2 : ∃x3 ∈ S : [(x3− x1) � ε]∧ [(x2− x3) � ε] . (8.2)

Carlos Cotta
Dept. de Lenguajes y Ciencias de la Computación. Universidad de Málaga,
Campus de Teatinos, 29071 Málaga, Spain
e-mail: ccottap@lcc.uma.es

Ferrante Neri
Department of Mathematical Information Technology, P.O. Box 35 (Agora),
40014 University of Jyväskylä, Finland
e-mail: ferrante.neri@jyu.fi

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 121–134.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

122 C. Cotta and F. Neri

A multidimensional set composed of the Cartesian product of multiple dense sets S
is said to be decision space D. An optimization problem defined on a decision space
D is said to be continuous optimization problem. More specifically, throughout this
chapter we refer to the minimization problem of an objective function f (x), where x
is a vector of n design variables in a decision space D. In general, this optimization
problem can be subject to a set of constraints. For the sake of simplicity, in this
chapter we just consider the minimization within a hyper-rectangular space.

Although the concept of continuous optimization is strictly related to the concept
of continuous functions, the two concepts should not be identified. According to the
Cauchy definition, a continuous function is characterized by the following property:
an infinitesimal change in the independent variable corresponds to an infinitesimal
change of the dependent variable. The optimization of a continuous function is al-
ways a continuous optimization problem. The reverse statement is not not true. In
computer science, even when the function displays discontinuity points still the re-
sulting problem is continuous.

This chapter focuses on continuous optimization problems and on the application
of Memetic Algorithms (MAs) in order to solve such problems. Section 8.2 high-
lights the difference between global and local optimization for continuous problems.
Section 8.3 briefly illustrates a set of popular global optimizers which can be used
as an evolutionary framework within a MA.

8.2 Global and Local Continuous Optimization

In discrete optimization, solutions are simply characterized by their fitness values.
Thus, a solution can either be optimal or suboptimal. In continuous optimization, the
situation is different as the position of each candidate solution within the decision
space takes a high importance. It can intuitively be seen from the Cauchy definition
of continuous function that for a given point its closest points are expected to have a
similar performance with respect to the point. In this context, the concept of neigh-
borhood is extremely important. For a given point, its neighborhood is that set of
points characterized by distance ε from it. This concept is fundamental in contin-
uous optimization because, unlike the discrete optimization case, it make sense to
discuss about small movements and search directions. In other words, unlike what
happens in the discrete case, in continuous optimization it makes sense to discuss
about the gradient which can be redefined, along the generic variable xi, for the
“continuous discrete” case of computer science in the following way:

∂ f
∂xi

=
f (xi + ε)− f (xi)

ε
. (8.3)

If a gradient can be defined, it can be used from a starting point to select the most
promising neighbor and thus to identify a promising search direction. The informa-
tion derived from the knowledge of the gradient values can be obviously exploited
within an optimizer. A major difference should be highlighted between the gradi-
ent defined above for continuous problems in computer science and the classical

8 Memetic Algorithms in Continuous Optimization 123

gradient in mathematical analysis. While in mathematical analysis a null gradient
corresponds to a critical point, i.e., a true local/global optimum, plateau or saddle
point, in computer science a null gradient (according to the definition above) in
a point means that the entire neighborhood of this point has the same fitness val-
ues; thus the point falls within a plateau. From this consideration, it is clear that
the null gradient condition cannot be used in computer science to identify the true
local/global optima (which is the goal of the optimization) but only plateaus. The
detection of local optima should be performed in a different way: a point is a lo-
cal minimum(maximum) if the objective function values of the neighborhood are all
higher (lower) than that of the point.

Without a loss of generality, let us consider minimization problems. Usually op-
timization problems are multimodal, i.e., contain multiple local minima. However,
the goal in optimization is to detect the global optimum, that is, in our case, the min-
imum exhibiting the lowest function value. All the methods that make an explicit or
implicit use of gradient information tend to detect the closest local minimum. Thus,
an efficient global optimizer should not be based only on gradient information but
also on direct fitness comparisons among solutions regardless their position within
the decision space. This approach guarantees an extensive search and hopefully al-
lows that algorithms get stuck within local optima. In this context, it is important
to define the concept of basin of attraction. Two definitions can be given in both
a broad and restricted sense. In a broad sense, for a given search strategy, objec-
tive function, and starting point(s), a basin of attraction is the set of points which
can be reached. However, when in a generic way computer scientists refer to the
term basin of attraction without specifying the search strategy, it is meant that the
specific search strategy is the classical deterministic hill-descender which perturbs
separately each variable. Thus, a decision space can be mapped as a composition
of basins of attraction and the goal of global optimization is to detect the globally
optimum basin of attractions and avoid the local ones.

MAs in continuous optimization are thus thought as algorithmic structures which
require both global and local search components whose coordination make the suc-
cess of the computational paradigm. These structures are usually composed of an
evolutionary framework which has the role of performing the global search and one
or more local search algorithms activated within the generation cycle of the external
framework.

8.3 Global Optimization Algorithms

While some local search algorithms have been previously illustrated, in this chap-
ter some global search algorithms, which are shown as examples of evolutionary
frameworks in MAs, are briefly presented in the following section.

124 C. Cotta and F. Neri

8.3.1 Stochastic Global Search, Brute Force and Random Walk

The simplest (and often not so efficient) way to perform the global optimal search of
a black box function is the progressive perturbation of one or more solutions in order
to improve upon its performance. The search can be performed by various search
rules, for example by generating a new solution within the decision space or by
adding a randomized perturbation vector to a trial solution. This class of algorithms
is often named Stochastic Global Search or simply Stochastic Search, see [838],
and has the crucial importance of being the basic principle behind all the modern
computational intelligence optimization algorithms. It must be observed that all the
modern algorithms which take their inspiration on the most various natural sources,
such as principles of the evolution or collective behavior of animals or even MAs,
are at the end stochastic search algorithms which differ one from another on the
trial solution generation mechanism or the strategy for retaining the solutions (and
selecting the search directions).

In order to clarify this concept let us consider two classical global optimization
algorithms which are based on completely opposite search logics. The first, namely
brute force, consists of the construction of a regular grid within the decision space
and the sample of the points in correspondence to the nodes. This algorithm has
been taken into account in this context because it is a global search algorithm based
on a fully deterministic generation of solutions. Another famous simple stochastic
search is the random walk, see [337]. This algorithm perturbs each coordinate of
a candidate solution by means of a Gaussian distribution. It can be immediately
observed that the random walk is a highly randomized method as the trial search
directions rely only on stochastic perturbations.

As an additional remark, although very different, these two methods are both
plagued by the same problem: their performance highly depends on the parameter
setting. In the brute force, the selection of step size, and thus amount of points to
sample, must be carried out to avoid inefficient search or an unacceptable compu-
tational time. Likewise, in the random walk the success of the algorithm heavily
depends on the mean value and standard deviation of the perturbation Gaussian. In
other words, regardless the degree of randomization in the search logic, when there
is no information on the objective function, the parameter setting becomes key point
in the algorithmic performance.

8.3.2 Evolution Strategy and Real Coded Evolutionary
Algorithms

In 70s, while Genetic Algorithms (GAs) were developed for discrete and combi-
natorial optimization problems [389], Evolution Strategy (ES) were developed for
continuous optimization problems [760, 798]. In ES, each individual is a real-valued
vector composed of its candidate solution representation x and a set of self-adaptive
parameters σ :

(x,σ) = (x1, . . . ,xn,σ1, . . . ,σn) (8.4)

8 Memetic Algorithms in Continuous Optimization 125

In many evolution strategy variants, a set of self-adaptive parameters of a second
kind can be added to the solution encoding. At each generation cycle, parent selec-
tion relies on pseudo-randomly selecting some solutions to undergo recombination
and mutation. In evolution strategies a big emphasis is placed on mutation while
recombination sometimes plays a minor role (although it is not simply dismissed as
in evolutionary programming) – see [65] for a in-depth treatment of these two oper-
ators in ES. The general mutation rule is defined, for the generic ith design variable,
by:

σi = σie
N(0,τ ′)+Ni(0,τ) (8.5)

and
xi = N (xi,σi) (8.6)

where N (μ ,σ) is normally a distributed random number with mean μ and standard
deviation σ . The update of σ can be performed by means of several rules proposed
in literature. The most famous are the 1/5 success rule [760], uncorrelated mutation
with one step size, uncorrelated mutation with n step sizes and correlated mutation,
for details see [239]. The method shown in Eq. (8.5) corresponds to uncorrelated
mutations with n step sizes, and τ,τ ′ are two parameters (the local and the global
learning rate respectively) that can be set as [32]:

τ = 1/

√
2
√

n (8.7)

τ ′ = 1/
√

2n (8.8)

The notation Ni(0,τ) is used to denoted a different random number for each param-
eter, whereas N(0,τ) is a common –solution-wise– random number. The general
idea is that the solutions are mutated within their neighborhood based on a certain
probabilistic criterion with the aim of generating new promising solutions.

The recombination can be discrete or intermediary: discrete recombination gener-
ates an offspring solution by pseudo-randomly choosing the genes from two parent
solutions, while intermediary recombination generates an offspring whose genes are
obtained by calculating a randomly weighted average of the corresponding genes of
two parents (other methods are possible though – see Section 8.4).

The parent selection can be performed either in the genetic algorithm fashion
by replacing the whole parent population with the best members of the offspring
population or by merging parent and offspring populations and selecting the wanted
number of individuals on the basis of their fitness values. These strategies are usually
known as comma and plus strategy respectively.

In the 90s, a reorganization of the knowledge regarding evolution inspired meta-
heuristics was performed. This lead to the fact that GAs, ES, Evolutionary Program-
ming and other branches of the field have all been seen as an expression of the same
idea and named Evolutionary Algorithms (EAs). These algorithms, characterized
by four phases, 1) parent selection, 2) crossover, 3) mutation, 4) survivor selec-
tion, can be implemented to both continuous and discrete optimization, by properly

126 C. Cotta and F. Neri

Fig. 8.1. Functioning of the BLX−α recombination operator. Offspring variable zi is ran-
domly sampled from the interval denoted by a thick line.

representing the solutions and their recombination. The most natural way to repre-
sent candidate solutions of a continuous optimization problem is simply to use them
“as they are”, i.e., have a representation of vectors of real numbers without any
conversion (as in classical GAs where all the numbers were converted to binary).

A multitude of recombination strategies among pairs or small groups of solutions
have been proposed in literature. The advantages of one strategy with respect to an-
other are, in general, dependent on the problem. A very broadly used recombination
strategy is the so called BLX−α crossover, see [246, 382]. For two given parent
solutions x and y, their offspring z is generically calculated in the following way:

zi = U [mi−αI,Mi +αI] (8.9)

where α is a parameter, Mi = max(xi,yi), mi = min(xi,yi), I = |xi− yi| and U [a,b]
is a uniformly distributed random number in the interval [a,b]. Parameter α is thus
used to tune the explorative capability of crossover – see Fig. 8.1. A parent centric
variant of BLX−α is also defined in [536] by sampling each offspring variable
from a closed interval of radius 2αI centered at any of the corresponding parental
variables.

Precisely related to this exploration issue (or more generically to the avoid-
ance of premature convergence), it is worth mentioning another EA variant that
is commonly used as the population-based engine of continuous MA, namely the
CHC (Cross generational elitist selection, Heterogeneous recombination, and Cata-
clysmic mutation) algorithm [246]. The main idea of this algorithm is to combine
strong selective pressure with incest-prevention strategies and explorative recom-
bination. The incest-prevention strategy amounts to avoiding that two very similar
solutions are recombined (since this would likely produce very similar offspring
as well, hence leading to diversity loss and potential premature convergence). To
do so, a distance parameter δ is maintained, determining the minimal distance that
must exist between two solutions if these are to be recombined. This parameter
can change dynamically in order to cope with the progressive convergence of the
population. As to the selection, it is typically done using the plus strategy of ES.
Algorithm 16 shows the pseudocode of the CHC algorithm.

A final evolutionary approach for continuous optimization that deserves be-
ing mentioned is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[362]. This algorithm falls within the class of estimation of distribution algorithms
[534] (EDAs) and has been shown to be extremely efficient when solving contin-
uous optimization benchmarks [28]. CMA-ES is based on generating solutions via
a multivariate normal distribution whose mean and covariance matrix is adaptively

8 Memetic Algorithms in Continuous Optimization 127

Algorithm 16. Pseudo-code of the CHC algorithm

begin1

generate initial population P←{p1, · · · , pμ};2

initialize distance parameter δ ;3

while ¬ termination-condition do4

create solutions pairs S← (pi, p j);5

P′ ← /0;6

for (p, p′) ∈ S do7

d←distance(p, p′);8

if d � δ then9

p′′ ←recombine(p, p′);10

P′ ← P′ ∪{p′′};11

endif12

endfor13

P←plus-select(P,P′);14

if P′ = /0 then15

decrease δ ;16

if δ < 0 then17

restart population P;18

initialize distance parameter δ ;19

endif20

endif21

endw22

end23

learnt as in EDAs, i.e., utilizing truncation selection to pick a subset of the best
solutions generated in each step, and using these solutions to update the distribu-
tion parameters. CMA-ES has a solid theoretical background and several desirable
properties such as invariance to several transformations of the objective function
and a relatively low number of parameters. Furthermore, it can not only serve as
a population-based engine but also as a local searcher if adequately parameterized,
e.g., (1 + 1)-CMA-ES [605], We refer to [360] for further details and source code
of the CMA-ES algorithm.

8.3.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based optimization metaheuris-
tic introduced in [458], and then developed in various variants for test problems
and applications. The main metaphor employed in PSO is that a group of particles
makes use of their “personal” and “social” experience in order to explore a decision
space and detect solutions with a high performance. More specifically, a population
of candidate solutions is randomly sampled within the decision space. Subsequently,
the fitness value of each candidate solution is computed and the solutions are ranked
on the basis of their performance. The solution associated to the best fitness value
detected overall is named global best xgb. At the first generation, each solution xi

128 C. Cotta and F. Neri

is identified with the corresponding local best solution xlb
i , i.e., the most successful

value taken in the history of each solution. At each generation, each solution xi is
perturbed by means of the following rule:

xi = xi + vi (8.10)

where the velocity vector vi is a perturbation vector generated in the following way:

vi = ωvi +α1(xlb
i − xi)+α2(xgb− xi) (8.11)

where ω is the so-called inertia parameter (the higher this parameter, the longer it
takes the particle to change direction), and α1,α2 are two parameters that control
the attraction the particle feels towards the best-known local/global solutions. These
are typically set uniformly at random –within the interval (0,1), i.e., 0 excluded
and 1 included– in each step; we denote as U(0,1) as such a uniform distribution.
The fitness value of the newly generated xi is calculated and if it outperforms the
previous local best value the value of xlb

i is updated. Similarly, if the newly generated
solution outperforms the global best solution, a replacement occurs. At the end of
the optimization process, the final global best detected is the estimate of the global
optimum returned by the particle swarm algorithm. It is important to remark that in
PSO, there is a population of particles which has the role of exploring the decision
space and a population of local best solutions (the global best is the local best with
the highest performance) to keep track of the successful movements.

In order to better understand the metaphor and thus the algorithmic philosophy
behind PSO, the population can be seen as a group of individuals which search
for the global optimum by combining the exploration along two components: the
former is the memory and thus learning due to successful and unsuccessful moves
(personal experience) while the latter is a partial imitation of the successful move
of the most promising individual (social experience). In other words, as shown in
the formula above, the perturbation is obtained by the vectorial sum of a move in
the direction of the best overall solution and a move in the direction of the best
success achieved by a single particle. These directions in modern PSO algorithms
are weighted by means of random scale factors, since the choice has to turn out
to be beneficial in terms of diversity maintenance and prevention of premature
convergence.

Many versions and variants of PSO have been proposed in literature in order
to attempt to enhance its performance. In order to give a flavor of possible PSO
modifications, two examples are here reported. A popular variant is the linearly
variable weight factor ω proposed in [809]:

ω = ωmax− (ωmax−ωmin)
g
G

(8.12)

where g is the current generation and G is the generation budget. Parameters ωmax

and ωmin are usually set equal to 0.9 and 0.4, respectively.

8 Memetic Algorithms in Continuous Optimization 129

Algorithm 17. PSO pseudo-code

begin1

generate Np particles and Np velocities pseudo-randomly;2

copy the population of particles into the set of local bests: ∀i,xi−lb = xi ;3

while budget condition do4

for i = 1 : Np do5

compute f (xi);6

endfor7

for i = 1 : Np do8

// ** Velocity Update **
generate a vector of random numbers U(0,1);9

vi = ωvi +U(0,1)(xlb
i − xi)+U(0,1)(xgb− xi);10

// ** Position Update **
xi = xi + vi;11

// ** Survivor Selection **
if f (xi) � f (xi−lb) then12

xlb
i = xi;13

if f (xi) � f
(
xgb
)

then14

xgb = xi;15

endif16

endif17

endfor18

endw19

end20

Another variant is the constriction factor proposed in [129]. Within such a scheme
the velocity update is:

vi = χvi + c1U(0,1)
(

xlb
i − xi

)
+ c2U(0,1)

(
xnb

i − xi

)
(8.13)

where xnb
i is the best within the neighborhood (see for details [129]). The constric-

tion factor χ is defined as:

χ =
2∣∣∣2−φ−
√
φ 2−4φ

∣∣∣
(8.14)

where φ = c1 + c2 = 4.1 and c1 = c2 = 2.05, see [129]. A pseudo-code showing the
main features of the basic PSO is given in Algorithm 17.

8.3.4 Differential Evolution

Differential Evolution (DE) is an interesting optimizer for continuous problems
which shares some properties of evolutionary algorithms (e.g., the crossover) and
some others of swarm intelligence algorithms (the one-to-one replacement). Ac-
cording to its original definition given in [853], DE consists of the following steps.

130 C. Cotta and F. Neri

An initial sampling of Spop individuals is performed pseudo-randomly with a uni-
form distribution function within the decision space D. At each generation, for each
individual xi from the Spop in the population, three mutually distinct individuals
xr, xs and xt are pseudo-randomly extracted from the population. According to DE
logic, a provisional offspring x′off is generated by mutation as:

x′off = xt + F(xr− xs) (8.15)

where F ∈ [0,1+[is a scale factor which controls the length of the exploration vector
(xr− xs) and thus determines how far from point xi the offspring should be gener-
ated. With F ∈ [0,1+[, it is meant here that the scale factor should be a positive value
which cannot be much greater than 1, see [733]. While there is no theoretical upper
limit for F , effective values are rarely greater than 1.0. The mutation scheme shown
in Eq. (8.15) is also known as DE/rand/1. Other variants of the mutation rule have
been subsequently proposed in literature, see [745]:

• DE/best/1: x′off = xbest + F (xs− xt)
• DE/cur-to-best/1: x′off = xi + F (xbest − xi)+ F (xs− xt)
• DE/best/2: x′off = xbest + F (xs− xt)+ F (xu− xv)
• DE/rand/2: x′off = xr + F (xs− xt)+ F (xu− xv)
• DE/rand-to-best/2: x′off = xr + F (xbest − xi) +F (xr− xs)+ F (xu− xv)

where xbest is the solution with the best performance among individuals of the pop-
ulation, xu and xv are two additional pseudo-randomly selected individuals. It is
worthwhile to mention the rotation invariant mutation shown in [732]:

• DE/current-to-rand/1 xoff = xi + K (xt − xi)+ F ′ (xr− xs)

where K is is the combination coefficient, which as suggested in [732] should be
chosen with a uniform random distribution from [0,1] and F ′= K ·F . For this special
mutation the mutated solution does not undergo the crossover operation (since it
already contains the crossover), described below.

Recently, in [733], a new mutation strategy has been defined. This strategy,
namely DE/rand/1/either-or, consists of the following:

x′off =

{
xt + F (xr− xs) if U (0,1) < pF

xt + K (xr + xs−2xt) otherwise
(8.16)

where for a given value of F , the parameter K is set equal to 0.5(F + 1).
When the provisional offspring has been generated by mutation, each gene of

the individual x′off is exchanged with the corresponding gene of xi with a uniform
probability and the final offspring xoff is generated:

xoff , j =

{
xi, j if U (0,1) < CR

x′off , j otherwise
(8.17)

8 Memetic Algorithms in Continuous Optimization 131

Algorithm 18. DE/rand/1/bin pseudo-code

begin1

generate Np individuals of the initial population pseudo-randomly;2

while budget condition do3

for k = 1 : Np do4

compute f (xk);5

endfor6

for k = 1 : Np do7

// ** Mutation **
select three individuals xr , xs, and xt ;8

compute x′off = xt +F(xr−xs);9

// ** Crossover **
xoff = x′off ;10

for i = 1 : n do11

generate U(0,1);12

if U(0,1) > Cr then13

xoff [i] = xk [i];14

endif15

endfor16

// ** Survivor Selection **
if f
(
xoff
)

� f (xk) then17

save index for replacement xk = xoff ;18

endif19

endfor20

perform replacements;21

endw22

end23

where U (0,1) is a random number between 0 and 1; j is the index of the gene
under examination. This crossover strategy is well-known as binary crossover and
indicated as “bin”. For the sake of completeness, we mention that there exist a few
other crossover strategies, for example the exponential strategy see [733]. However
in this paper we focus on the bin strategy since it is the most commonly used and
often the most promising.

The resulting offspring xoff is evaluated and, according to a one-to-one spawning
strategy, it replaces xi if and only if f (xoff) � f (xi); otherwise no replacement oc-
curs. For sake of clarity, the pseudo-code highlighting the working principles of DE
is shown in Algorithm 18.

8.4 Particularities of Memetic Approaches for Continuous
Optimization

In principle the deployment of memetic algorithms on continuous domains can be
done using the generic algorithmic template presented in Chapter 4, much like it is

132 C. Cotta and F. Neri

done for combinatorial problems – see Chapter 6. This said, continuous optimization
problems have several distinctive features that must be considered in order to come
up with efficient memetic solvers. Two of the most relevant ones are:

• The cost of local search: in many combinatorial domains it is frequently possi-
ble to compute the fitness of a perturbed solution incrementally, e.g., let x be a
solution and let x′ ∈N (x) be a neighboring solution; then the fitness f (x′) can
be often computed as f (x′) = f (x)+Δ f (x,x′), where Δ f (x,x′) is a term that
depends on the particular perturbation done on x and is typically efficient to
compute (much more efficiently that a full fitness computation). For example,
in the context of the traveling salesman problem and the 2-opt neighborhood,
the fitness of a perturbed solution can be computed in constant time by calcu-
lating the difference between the weights of the two edges added and the two
edges removed. This is much more difficult in the context of continuous opti-
mization problems, which are often non-linear and hard to decompose as the
sum of linearly-coupled terms. Hence local search usually has to resort to full
fitness computations.
• The underlying search landscape: the interplay among the different search op-

erators used in memetic algorithms (or even in simple evolutionary algorithms)
is a crucial issue for achieving good performance in any optimization domain.
When tackling a combinatorial problem, this interplay is a complex topic since
each operator may be based on a different search landscape. It is then essential
to understand these different landscape structures and how they are navigated
– the “one operator, one landscape” view [434]. In the continuous domain the
situation is somewhat simpler, in the sense that there exists a natural underly-
ing landscape in Dn (typically D = R), that is induced by distance measures
such as Euclidian distance. In other words, neighborhood structures are defined
by closed spheres of radius ε in the case of unary operators, and by solid hy-
percubes in the case of recombination (recall for example the BLX−α opera-
tor). The intuitive imagery of local optima and basins of attraction naturally fits
here, and allows the designer to exert some control on the search dynamics by
carefully adjusting the intensification/diversification properties of the operators
used.

These two issues mentioned above have been dealt in the literature on memetic al-
gorithms for continuous optimization in different ways. Starting with the first one
(the cost of local search), it emphasizes the need for carefully selecting when and
how local search is applied (obviously this is a general issue, also relevant in com-
binatorial problems, but definitely crucial in continuous ones). Needless to say, this
decision-making is very hard in general [494, 857], see also Chapter 5, but some
strategies have been put forward in previous works. A rather simple one is to resort
to partial Lamarckianism [396] by randomly applying local search with probabil-
ity pLS < 1. Obviously, the application frequency is not the only parameter that
can be adjusted to tune the computational cost of local search: the intensity of local

8 Memetic Algorithms in Continuous Optimization 133

search (i.e., for how long is local improvement attempted on a particular solution)
is another parameter to be tweaked. This adjustment can be done blindly (i.e., pre-
fixing a constant value or a variation schedule across the run), or adaptively. For
example, Molina et al. [605] define three different solution classes (on the basis of
fitness) and associate a different set of local-search parameters for each of them.
Related to this, Nguyen et al. [665] consider a stratified approach, in which the
population is sorted and divided into n levels (n being the number of local search
applications), and one individual per level is randomly selected. This is shown to
provide better results than random selection. We refer to [40] for an in-depth em-
pirical analysis of the time/quality tradeoffs when applying parameterized local
search within memetic algorithms. This adaptive parameterization has been also ex-
ploited in so-called local-search chains [608], by saving the state of the local-search
upon completion of a certain solution for later use if the same solution is selected
again for local improvement. Let us finally note with respect to this parameteriza-
tion issue that adaptive strategies can be taken one step further, entering into the
realm of self-adaptation. An overview of the possibilities to this end is provided in
Chapter 11.

As to what the exploitation/exploration balance regards, it is typically the case
that the population-based component is used to navigate through the search space,
providing interesting starting points to intensify the search via the local improve-
ment operator. The diversification aspect of the population-based search can be
strengthened in several ways, such as for example using multiple subpopulations
[640], or diversity-oriented replacement strategies. The latter are common in scatter
search [320] (SS), an optimization paradigm closely related to memetic algorithms
in which the population (or reference set in the SS jargon) is divided in tiers: en-
trance to them is gained by solution on the basis of fitness in one case, or diversity
in the other case. Additionally, SS often incorporated restarting mechanisms to in-
troduce fresh information in the population upon convergence of the latter. Diversi-
fication can be also introduced via selective mating, as it is done in CHC (see Sect.
8.3.2). A related strategy was proposed by Lozano et al. [536] via the use of negative
assortative mating: after picking a solution for recombination, a collection of poten-
tial mates is selected and the most diverse one is used. Other strategies range from
the use of clustering [806] (to detect solutions likely within the same basin of attrac-
tion upon which it may not be fruitful to apply local search), or the use of standard
diversity preservation techniques in multimodal contexts such as sharing or crowd-
ing. It should also be mentioned that sometimes the intensification component of
the memetic algorithm is strongly imbricated in the population-based engine, with-
out resorting to a separate local search component. This is for example the case of
the so-called crossover hill climbing [432], a procedure which essentially amount
to using a hill climbing procedure on states composed of a collection of solutions,
using crossover as move operator (i.e., introducing a newly generated solution in
the collection –substituting the worst one– if the former is better than the latter).
This strategy was used in the context of real-coded memetic algorithms in [536]. A
different intensifying strategy was used by [161], by considering an exact procedure
for finding the best combination of variable values from the parents (a so-called

134 C. Cotta and F. Neri

optimal discrete recombination). This obviously requires that the objective function
is amenable to the application of an efficient procedure for exploring the dynas-
tic potential (set of possible children) of the solutions being recombined – see also
Chapter 12. We refer to [535] for a detailed analysis of diversification/intensification
strategies in hybrid metaheuristics (in particular in memetic algorithms).

Acknowledgements. C. Cotta is partially supported by Spanish MICINN under project
NEMESIS (TIN2008-05941) and by Junta de Andalucı́a under project TIC-6083. This re-
search is supported by the Academy of Finland, Akatemiatutkija 130600, Algorithmic Design
Issues in Memetic Computing.

Chapter 9
Memetic Algorithms in Constrained
Optimization

Tapabrata Ray and Ruhul Sarker

9.1 Introduction

Memetic Algorithms (MAs) are a fairly recent breed of optimization algorithms cre-
ated through a synergetic coupling of global and local search strategies [615]. While
predecessors of MAs, i.e. Genetic Algorithms (GAs) and Evolutionary Algorithms
(EAs) have had significant success in solving a number of real life complex opti-
mization problems in the past, their performance can be greatly improved though
a hybridization with other techniques [188]. GAs or EAs hybridized with local
search strategies are commonly referred as memetic algorithms. These methods are
inspired by models of natural systems that combine the evolutionary adaptation of a
population with individual learning within the lifetimes of its members. While, the
underlying GA/EA provides the ability for exploration, the local search aids in ex-
ploitation [492]. The exploitation schemes adopted in MAs include incorporation of
heuristics, approximation algorithms, local search algorithms, specialized schemes
for recombination etc.

An excellent review of memetic algorithms has been presented by Ong, Lim and
Chen [689]. The performance of a MA is largely dependent on the correct choice
of the local search strategies (memes), identification of the sub-set undergoing local
improvements and the convergence criterion used in local search strategies. In this
chapter, first, we discuss constrained optimization and provide a brief review of us-
ing memetic algorithms in solving Constrained Optimization Problems (ConOPs).
The representations and local search approaches used in memetic algorithms in
solving different ConOPs are also described and reviewed. We also present two
case studies to demonstrate the use memetic algorithms in solving ConOPs. The
first case study is designed to solve constrained numerical optimization problems
with traditional representation while the next is designed to solve a combinatorial

Tapabrata Ray · Ruhul Sarker
School of Engineering and Information Technology, University of New South Wales at
Australian Defence Force Academy, Canberra ACT 2600, Australia
e-mail: {t.ray,r.sarker}@adfa.edu.au

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 135–151.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

136 T. Ray and R. Sarker

optimization problem with an alternative representation. In the first case study, a
local search is embedded within an evolutionary algorithm to accelerate its rate of
convergence. The evolutionary algorithm unlike common EA’s preserves a set of
marginally infeasible solutions throughout the course of search in an attempt to
identify solutions to constraint optimization problems with a higher rate of conver-
gence. The above MA also adopts a conventional representation scheme.

In the true sprit of MAs, the second study of MA is designed to solve job shop
scheduling problems through intelligent representation that includes several prob-
lem specific recombination schemes to accelerate the rate of convergence. Both case
studies show the benefits of using using MAs in solving ConOPs.

9.2 Constrained Optimization

Many real-world design and decision processes require a solution to Constrained
Optimization Problems (ConOPs). In general, the ConOPs can be represented math-
ematically as follows (without loss of generality, minimization is considered here).

Minimize f (X)
Subject to gi(X)≥ 0, i = 1, . . . ,m,

h j(X) = 0, i = 1, . . . , p,

Li ≤ xi ≤Ui, i = 1,2, . . .n

(9.1)

where X = (x1, . . . ,xn) is a vector with n decision variables, f (X) is the objective
function, gi(X) is the ith inequality constraint, h j(X) is the jth equality constraint,
each xi has a lower limit Li and an upper limit Ui.

Based on the characteristics and mathematical properties, ConOPs can be of
many different types. They may contain different types of variables such as real,
integer and discrete, and may have equality and/or inequality constraints. The ob-
jective and constraint functions could be either linear or nonlinear. The problem
may have one or more objectives, and each objective could be either of maximiza-
tion or minimization. The functions may be either continuous or discontinuous, and
either unimodal or multimodal. The feasible space for such problems could be a
small fraction of the search space, the entire search space or a collection of multiple
disjoint spaces. The optimal solution may or may not lie on constraint boundaries.
A classification of optimization problems can be found in [791]. The application of
constrained optimization methods is thus wide. A few examples include: planning
(resource allocation, logistics, production planning, and scheduling), engineering
design (welded beam, pressure vessel, and VLSI chip design), medical science (op-
timization of beams for radiotherapy, DNA sequencing), and computer science (data
base design and data mining).

Researchers and practitioners use both conventional mathematical optimiza-
tion methods and more recent methods relying on computational intelligence to
solve ConOPs. One drawback of conventional optimization methods is the fact

9 Memetic Algorithms in Constrained Optimization 137

that they require specific properties (such as convexity, continuity and differentia-
bility) of the mathematical model and hence require simplifications of the prob-
lem via assumptions [792]. In addition, the choice of a method is determined by
the problem classification and sub-classification. In contrast, algorithms based on
computational intelligence are simple to implement, do not require underlying prop-
erties of the model, are amenable to parallelization and can be readily applied to a
range of problems.

An EA is one such class of method based on computational intelligence where a
population(set) of solutions are iteratively improved in an attempt to identify global
optimal solutions. However, they usually require evaluation of numerous solutions
prior to convergence resulting in higher computational times and exhibit poor con-
vergence [455]. On the other hand, local search algorithms converge quickly to a
local optimum but lack a global perspective. A combination of a population based
algorithm and a local search have resulted in a new class of algorithms referred as
MAs which capitalizes the benefits of both algorithms simultaneously. For example,
a recent study conducted by Hasan et al. [378] on a job shop scheduling problem
highlighted that better quality of solutions could be obtained using MA with re-
duced computational effort as compared to genetic algorithms. Boudia and Prins
[79] indicated that the solutions produced by memetic algorithms, for an integrated
production-distribution problem, made significant savings as compared to others.
More recently Singh et al. [816] reported the results of their infeasibility empowered
memetic algorithm on a set of CEC-2010 constrained optimization benchmarks. It
is also important to highlight that MAs are also attractive for dynamic optimization
problems where an improved rate of convergence is required along with the ability
to search for global optima. Isaacs et al. [407] have reported the performance of a
memetic algorithm on dynamic bi-objective problems highlighting the benefits over
evolutionary algorithms.

While population based methods such as EAs perform well as compared to con-
ventional methods on unconstrained optimization problems, their performance on
constrained optimization problems is not exceptionally good. Common search op-
erators of EAs (such as crossover and mutation) are blind to the constraints. As a
consequence, the candidate solutions generated by these operators may violate con-
straints [126]. Hence, mechanisms for constraint handling play an important role
on the performance of such algorithms. Over the past decade, various constraint
handling techniques have been proposed in the context of evolutionary optimization
[126, 133, 195, 597, 908]. These techniques can be grouped as: penalty functions,
special representations and operators, repair algorithms, separation of objectives and
constraints, and hybrid methods. The purpose of these methods is to find the con-
straint violations, and use such information to rank and select the individuals for
reproduction. Such methods are referred as MAs with conventional representation
and are discussed in depth in the following section.

While many MAs adopt conventional representation i.e. the solution represented
as a vector of decision variables, there are many which focus on the underlying
solution representation scheme and include specialized representation and/or re-
pair methods to deal with constraints efficiently. The details of such methods are

138 T. Ray and R. Sarker

discussed under the broad context of MAs with alternative representation. Two case
studies are carefully selected to illustrate the behavior of both these classes of MAs.

9.3 Classification of MAs

As observed in the literature, the trend of MAs used for constrained optimization
can be represented by the classification shown in Figure 9.1.

Fig. 9.1. Classification of MAs

Some examples of MAs based on the above classification are given in Table 9.1.
It is interesting to observe that MAs, with chromosome representation based on
solution vector, use penalty or repair method for dealing with constraint violation.
On the other hand, MAs, with alternative chromosome representation, use derivative
free local search method, and use either feasible individuals or repair infeasible
individuals to deal with constraints. From the review in an earlier section, it is clear
that the alternative representation is popular for solving combinatorial optimization
problems.

9.4 MAs with Conventional Representation

In this section, we will discuss optimization problem solving, using MAs, where
the complete mathematical model is available and a chromosome is represented as
a vector of decision variables.

Handoko et al. [356] developed a MA where a GA was combined with a gradient
based local search to solve nonlinear programming problems. The constraint viola-
tion was handled using three simple rules as of Deb [195] : (i) the feasible individual
is preferred over the infeasible one; (ii) for two feasible individuals, the individual
with better fitness is preferred; and (iii) for two infeasible individuals, the individ-
ual with lower constraint violation is preferred. Their experimental results indicated
that MAs outperformed conventional algorithms in terms of both quality of solution
and the rate of convergence.

9 Memetic Algorithms in Constrained Optimization 139

Table 9.1. Examples of MAs in literature

Representation (as discussed earlier)

Based on solution vector Alternative Representation

Constraint handling Constraint handling

Penalty/Repair Penalty/Repair Ensures feasibility

Gradient Handoko et al. [356]

based Singh et al. [816]

local Kelner et al. [455]

search Barkat Ullah et al. [44]

Derivative Lin and Liang [518] Hasan et al. [377, 378] Prins [734, 735]

free Barkar Ullah et al. [45] Fallahi et al. [249]

local Boudia and Prins [79] Ngueveu et al. [662]

search Park et al. [713] Mendoza et al. [579]

Marinakis & Marinaki [555]

Singh et al. [816] designed an infeasibility empowered MA for solving con-
strained optimization problems where an underlying EA was combined with a local
search (Sequential Quadratic Programming (SQP)). The constraint violation was
tackled using principles of infeasible solution embedding Singh et al. [759] and the
results were reported for the series of 18 constrained test problems as introduced in
CEC-2010 competition.

Lin and Liang [518] proposed a hybrid algorithm where a GA was combined with
an adaptive penalty method and a line search technique (Hooke and Jeeves). The
performance of the algorithm on a series of 13 well-known benchmark problems
established its robustness.

Kelner et al. [455] proposed a hybrid algorithm as a combination of a GA and
a local search strategy based on the interior point method, for solving constrained
multi-objective mathematical models. The constraints were handled using the rules
proposed by Deb [195]. The efficiency of the algorithm was demonstrated using a
number of test problems.

Barkat Ullah et al. [44] proposed an agent based memetic algorithm in which four
local search algorithms were used for adaptive learning. The algorithms included
random perturbation, neighborhood and gradient search methods. Subsequently, an-
other specialized local search method was designed to deal with equality constraints
(Barkat Ullah et al. [45]. The constraints were handled using the rules proposed by
Deb [195]. Although the algorithm identified high quality solutions on the set of
13 benchmarks, the computational time was a bit longer than state-of-the-art algo-
rithms (Runarsson and Yao [782]) as the underlying lattice-like environment and
orthogonal crossovers consumed a fair amount of time.

Liu et al. [527] developed a memetic co-evolutionary differential evolution al-
gorithm where the population was divided into two sub-populations. The purpose
of one sub-population is to minimize the fitness function, and the other is to min-
imize the constraint violation. The optimization was achieved through interactions

140 T. Ray and R. Sarker

between the two sub-populations. No penalty coefficient was used in the method
while a Gaussian random number was used to modify the individuals when the best
solution remained unchanged over several generations. The results indicate the al-
gorithm being computationally inexpensive in terms of memory requirements and
CPU times and efficient when compared with existing state of the art algorithms.

While most of the applications reported above are tested on mathematical bench-
marks, several practical applications have also adopted conventional representation.
Boudia and Prins [79], Park et al. [713], and Berretta and Rodrigues [61] dealt with
three different practical problems and in all studies chromosomes were designed
using conventional representation. Boudia and Prins [79] considered the problem
of cost minimization of a production-distribution system. The moves (local search)
used were 2-OPT, relocate a customer, and swap between two customers. A re-
pair mechanism was also applied for constraint satisfaction. The algorithm reported
significant savings as compared to two other existing methods. Park et al. [713]
combined a GA with a tunnel-based dynamic programming scheme (as a local
search) to solve highly constrained non-linear discrete dynamic optimization prob-
lems arising from long-term planning. The infeasible solutions were repaired by
regenerating partial characters. The algorithm successfully solved reasonable sized
practical problems which cannot be solved using conventional approaches. A multi-
stage capacitated lot-sizing problem was solved by the memetic algorithm proposed
by Berretta and Rodrigues [61] using heuristics as local search coupled with usual
crossover and mutation operators. The results using the above method were better
than those generated using existing heuristics.

9.5 MAs with Alternative Representations

While the above section highlighted a number of successful MAs that have been
designed to solve constrained optimization problems using conventional represen-
tation schemes, there are also a number of MAs that have been designed to solve
problems using alternative representation schemes. Combinatorial problems require
many integer (mainly binary) variables and logical constraints to represent them
mathematically. Hence, a chromosome design based on the decision variables of
the mathematical model as a vector becomes too long. Just to give an idea, let us
consider a single variable piecewise linear function or a continuous nonlinear func-
tion that can be approximated by a number of piecewise linear functions. To express
these functions mathematically for n segments, we need (n+1) real variables, (n-1)
binary variables and (n+1) logical constraints. So, 2n variables in the chromosome
and additional (n + 1) constraints are required to represent the function of a single
variable. In alternative chromosome design, one can use just one variable as illus-
trated in Ray and Sarker [758]. The applications of alternative representations in
MAs are briefly reviewed below.

Prins [734] developed a memetic algorithm for solving vehicle routing prob-
lems (VRPs) which outperformed most Tabu Search (TS) heuristics (best known
algorithms for VRPs at that time) on a number of test instances. The solution was

9 Memetic Algorithms in Constrained Optimization 141

represented using a TSP-like permutation chromosome, without trip delimiters, and
local search procedures (like moving or swapping some nodes) were used in lieu
of mutation for search. Later, Prins [735] proposed two more memetic algorithms
for heterogeneous fleet vehicle routing problems (HFVRPs) that are based on chro-
mosome encoded as giant tours, without trip delimiters. Such chromosomes do not
directly represent the decision variables of the corresponding mathematical model
of the problem. In both of the above studies, Prins applied an optimal evaluation
procedure that splits the tours into feasible trips and assign vehicles to them. As a
result, no repair mechanism or penalty method was required. The perturbation was
achieved through the relocation of one customer, the exchange of two customers,
and 2-OPT moves operated on one or two selected routes. In order to maintain di-
versity, a distance measure in the solution space was used. The algorithm is one of
the most successful algorithms for vehicle fleet mix problem with both fixed and
variable costs (VFMP-FV) that has been able to discover six new best solutions to
benchmark problems.

El Fallahi et al. [249] and Ngueveu et al. [662] developed a memetic algorithm
for multi-compartment vehicle routing problems (MC-VRPs) and cumulative ve-
hicle routing problems (CCVRPs) respectively. In these algorithms, the chromo-
some representation and evaluation procedure are similar to Prins [734]. However,
the moves (local search) in the first algorithm are based on 2-OPT, relocate and I-
interchange and the second include 2-OPT, relocation of one customer and exchange
of two customers. Mendoza et al. [579] proposed a memetic algorithm for a variant
of MC-VRPs with a different representation known as the genetic vehicle repre-
sentation (GVR). In GVR, each permutation contains an ordered set of customers
representing a route. This representation allows the straightforward application of
the selected crossover, mutation and local search operators designed to work on in-
dependent routes. The authors used relocate and 2-OPT as the local search schemes.

Marinakis and Marinaki [555] proposed a memetic algorithm for the solution of
VRPs. The MA makes use of a GA framework with an expanding neighborhood
search. Although, significantly better solutions were reported on two sets of bench-
mark instances, there is no comparison on computational time.

Hasan et al. [377, 378] developed a memetic algorithm for solving job-shop
scheduling problems. They used job pair-relation based genotype representation,
priority rules as local search, and a repair mechanism for changing the infeasible
individuals into feasible. It is generally accepted that the time taken per generation
of MA would be higher than that of GA. However Hasan et al. [378] proved that
MA, as compared to GA, not only improves the quality of solutions but also reduces
the overall computational time. The proposed MA improved the average of the best
solutions over GA by 2.623%, while reducing the computational time by 40.57%
on average per problem. It is also important to take note that these are based on 40
well-known series of benchmark problems.

142 T. Ray and R. Sarker

9.6 Numerical Case Studies

Two case studies are discussed in depth in the following sub-sections.

9.6.1 Case Study 1: Infeasibility Empowered Memetic Algorithm
for Constrained Optimization Problems: MA with
Conventional Representation

In this section we present an Infeasibility Empowered Memetic Algorithm (IEMA)
which is a combination of Infeasibility Driven Evolutionary Algorithm(IDEA) and
a local search based on Sequential Quadratic Program (SQP). IDEA is a derived
variant of EAs in which a small proportion of marginally infeasible solutions are
preserved to accelerate the rate of convergence. While most EAs rank feasible so-
lutions above infeasible solutions, IDEA ranks solutions based on the original ob-
jectives along with additional objective representing constraint violation measure.
In addition, “good” infeasible solutions are ranked higher than the feasible solu-
tions, and thereby the search proceeds through both feasible and infeasible regions,
resulting in greater rate of convergence to optimal solutions. The studies reported
in [759, 817] indicate that IDEA has better rate of convergence over conventional
EAs for a number of constrained single and multi-objective optimization problems.
The following subsections provide the background of IDEA and necessary details
of IEMA.

9.6.1.1 Infeasibility Driven Evolutionary Algorithm (IDEA)

A generalized single-objective optimization problem can be formulated as shown
in (9.1). It is a usual practice to convert the equality constraints to inequality con-
straints using a small tolerance (i.e. h(x) = 0 is converted to |h(x)| ≤ ε). Hence, the
discussion presented here is with regards to presence of inequality constraints only.

To effectively search the design space (including the feasible and the infeasible
regions near constraint boundaries), the original single objective constrained opti-
mization problem is reformulated as bi-objective unconstrained optimization prob-
lem as shown in (9.2).

Minimize f ′1(x) = f1(x)
f ′2(x) = violation measure

(9.2)

The additional objective represents a measure of constraint violation, which is re-
ferred to as “violation measure”. It is based on the amount of relative constraint
violations among the population members. Each solution in the population is as-
signed m ranks, corresponding to each m constraints. The ranks are calculated as
follows. To get the ranks corresponding to ith constraint, all the solutions are sorted
based on the constraint violation value of ith constraint. Solutions that do not violate
the constraint are assigned rank 0. The solution with the least constraint violation
value gets rank 1, and the rest of the solutions are assigned increasing ranks in the

9 Memetic Algorithms in Constrained Optimization 143

Algorithm 19. Infeasibility Driven Evolutionary Algorithm (IDEA)

begin1

// Given population size N number of generations NG > 1
and Proportion of infeasible solutions 0 < α < 1

Nin f ← α ∗N;2

Nf ← N−Nin f ;3

set pop1← Initialize();4

Evaluate(pop1);5

for i = 2 to NG do6

child popi−1← Evolve(popi−1);7

Evaluate(child popi−1);8

(S f ,Sin f)← Split(popi−1 +child popi−1);9

Rank(S f);10

Rank(Sin f);11

popi← Sin f (1 : Nin f)+S f (1 : Nf)12

endfor13

end14

ascending order of their constraint violation values. The process is repeated for all
the constraints and as a result each solution in the population gets assigned m ranks.
The violation measure is the sum of these m ranks corresponding to m constraints.

The main steps of IDEA are outlined in Algorithm 19. IDEA uses simulated
binary crossover (SBX) and polynomial mutation operators to generate offspring
from a pair of parents selected using binary tournament as in NSGA-II [200]. Indi-
vidual solutions in the population are evaluated using the original problem defini-
tion (9.1) and the infeasible solutions are identified. The solutions in the parent and
offspring population are divided into a feasible set (S f) and an infeasible set (Sin f).
The solutions in the feasible set and the infeasible set are ranked separately using the
non-dominated sorting and crowding distance sorting [200] based on 2 objectives
as per the modified problem definition (9.2). The solutions for the next generation
are selected from both the sets to maintain infeasible solutions in the population.
In addition, the infeasible solutions are ranked higher than the feasible solutions
to provide a selection pressure to create better infeasible solutions resulting in an
active search through the infeasible search space.

A user-defined parameter α is used to maintain a set of infeasible solutions as a
fraction of the size of the population. The numbers Nf and Nin f denote the number
of feasible and infeasible solutions as determined by parameter α . If the infeasible
set Sin f has more than Nin f solutions, then first Nin f solutions are selected based on
their rank, else all the solutions from Sin f are selected. The rest of the solutions are
selected from the feasible set S f , provided there are at least Nf number of feasible
solutions. If S f has fewer solutions, all the feasible solutions are selected and the
rest are filled with infeasible solutions from Sin f . The solutions are ranked from 1 to
N in the order they are selected. Hence, the infeasible solutions selected first will be
ranked higher than the feasible solutions selected later.

144 T. Ray and R. Sarker

Algorithm 20. Infeasibility Empowered Memetic Algorithm (IEMA)

begin1

// Given population size N number of generations NG > 1
and Proportion of infeasible solutions 0 < α < 1

Nin f ← α ∗N;2

Nf ← N−Nin f ;3

pop1 = Initialize();4

Evaluate(pop1);5

for i = 2 to NG do6

child popi−1← Evolve(popi−1);7

Evaluate(child popi−1);8

(S f ,Sin f)← Split(popi−1 +child popi−1);9

Rank(S f);10

Rank(Sin f);11

popi← Sin f (1 : Nin f)+S f (1 : Nf);12

x← Random solution in popi;13

xbest← Local search (x);14

// xbest is the best solution found using local search
from x

Replace worst solution in popi with xbest;15

Rank(popi);16

Rank the solutions again in popi17

endfor18

end19

9.6.1.2 Infeasibility Empowered Memetic Algorithm (IEMA)

The proposed algorithm IEMA is constructed using IDEA as the baseline algorithm.
For single objective problems, a local search can be a very efficient tool for opti-
mization. However, its performance is largely dependent on the starting solution.
The proposed algorithm tries to exploit the advantages of both these approaches,
i.e. 1) searching near the constraint boundaries by preserving marginally infeasible
solutions during the search, and 2) the effectiveness of local search to expedite the
convergence in potentially optimal regions of the search space. Hence, we refer to
the proposed algorithm as Infeasibility Empowered Memetic Algorithm (IEMA).

The proposed IEMA is outlined in algorithm 20. In IEMA, during each genera-
tion, apart from the evolution of the solutions in IDEA, a local search is done from
a random solution in the population, for a prescribed number of function evalua-
tions (set to 2000 here). Sequential Quadratic Programming (SQP) [729] has been
used in the presented studies for the local search. Thereafter, the worst solution in
the population is replaced by the best solution found from the local search. The
ranking of solutions is done in the same way as done in IDEA. The injection of
good quality solutions found using the local search guides the population towards
potentially optimal regions of the search space. The evolved solutions in turn act as
good starting solutions for the local search in subsequent generations.

9 Memetic Algorithms in Constrained Optimization 145

9.6.1.3 Results on CEC-2010 Benchmark Problems

• Experimental setup: The performance of IEMA is presented for one of the
most recent difficult set of constrained optimization benchmarks, i.e. that of
IEEE CEC-2010, constrained optimization competition. Twenty five runs of
the proposed algorithm IEMA are done on each of the test problems C01 -
C18 [550]. The parameters used for IEMA are same for each problem, i.e. no
tuning of parameters is done across the problems. The parameters are listed in
Table 9.2. A maximum of 2000 function evaluations are allotted to the local
search within each generation.

Table 9.2. Parameters used for IEMA

Parameter Value

Population Size 200

Max. FES for 10D problems: 200000

for 30D problems: 600000

Crossover Probability 0.9

Crossover index 15

Mutation Probability 0.1

Mutation index 20

Infeasibility Ratio (α) 0.9

• PC configuration: All the runs are made on a cluster with the compute nodes
DL140G3 5110 NHP Sata, with following configuration:

1. Processor - Dual-core Intel Xeon 5110
2. RAM - 4GB
3. Operating system - Redhat Linux

IEMA algorithm is implemented in Matlab 2008a.
• Summary of results: The results for 10D problems are shown in Table 9.3,

whereas the results for 30D problems are listed in Table 9.4. To determine the
median, following procedure is adopted. All the runs in which a feasible solu-
tion was found are sorted based on the best function value obtained. Thereafter,
all the runs in which no feasible solutions are found are sorted based on the
mean constraint violation of the best (infeasible) solution found. Feasible runs
are ranked above infeasible runs. In the sorted list, the 13th solution is reported
as the median solution (only if the median is feasible). The best, mean and worst
runs reported in the tables are based only on the runs in which at least one fea-
sible solution was found. The number of such feasible runs are also reported in
the tables for each problem. The median value, if infeasible is also not reported.

146 T. Ray and R. Sarker

From Table 9.3, it is observed that for 10D problems, IEMA is able to
achieve all (25) feasible runs for 12 problems out of 18. The best value ob-
tained for many problems are much better than the median and worst values,
indicating a possibility of highly multimodal objective functions. This also re-
sults in a correspondingly high value of standard deviation (std), as seen from
the table.

For 30D problems (Table 9.4), the results are worse as compared to the 10D
problems. For 4 out of 18 functions, no feasible solution was identified. Among
the remaining 14 functions, all 25 runs were feasible for 11 problems. Once
again, the results are seen to have a high standard deviation value as in 10D
case, and the best values found are much better than the median/worse values
for some of the problems.

Table 9.3. Performance of IEMA on 10D problems

C01 C02 C03 C04 C05 C06

Best -0.74731 -2.27771 1.46667e-16 -9.98606e-06 -483.611 -578.662

Median -0.74615 -2.27771 3.2005e-15 -9.95109e-06 -483.611 -578.662

Mean -0.743189 -2.27771 6.23456e-07 -9.91135e-06 -379.156 -551.47

std 0.00433099 1.82278e-07 1.40239e-06 8.99217e-08 179.424 73.5817

Feasible 25 25 25 25 24 24

C07 C08 C09 C10 C11 C12

Best 1.74726e-10 1.00753e-10 1.20218e-09 5.4012e-09 -0.00152271 -10.9735

Median 1.9587e-09 3.94831e-09 333.32 42130.4 -0.00152271 -0.199246

Mean 3.25685e-09 4.0702 1.95109e+12 2.5613e+12 -0.00152271 -0.648172

std 3.38717e-09 6.38287 5.40139e+12 3.96979e+12 2.73127e-08 2.19928

Feasible 25 25 23 19 24 24

C13 C14 C15 C16 C17 C18

Best -68.4294 8.03508e-10 9.35405e-10 4.44089e-16 9.47971e-15 2.23664e-15

Median -68.4294 1.29625e-08 26.1715 0.0320248 2.59284e-12 6.78077e-15

Mean -68.0182 56.3081 1.57531e+08 0.0330299 0.00315093 1.61789e-14

std 1.40069 182.866 6.04477e+08 0.0226013 0.0157547 3.82034e-14

Feasible 25 25 25 25 25 25

• Convergence plots: The convergence plots for C09, C10, C14, C15, C17 and
C18 are shown in Figure 9.2. The plots show the feasible solutions only, for
the best runs corresponding to these problems. The objective values have been
plotted in log scale in order to aid visualization.
• Time complexity: The time complexity of the algorithm is shown in Table 9.5.

T 1 and T 2 are as defined in [550]. T 1 represents the average (across C01-
C18) time taken for evaluating the problem 10000 times, whereas T 2 represents
the average time taken across C01-C18 by the algorithm IEMA to run through
10000 FES.

9 Memetic Algorithms in Constrained Optimization 147

Table 9.4. Performance of IEMA on 30D problems

C01 C02 C03 C04 C05 C06

Best -0.821883 -2.28091 - - -286.678 -529.593

Median -0.819145 -2.27767 - - - -

Mean -0.817769 -1.50449 - - -270.93 -132.876

std 0.00478853 2.14056 - - 14.1169 561.042

Feasible 25 25 0 0 4 2

C07 C08 C09 C10 C11 C12

Best 4.81578e-10 1.12009e-09 7314.23 27682 - -

Median 6.32192e-10 0.101033 7.91089e+06 1.1134e+07 - -

Mean 8.48609e-10 17.7033 2.98793e+07 1.58342e+07 - -

std 4.84296e-10 40.8025 4.50013e+07 1.68363e+07 - -

Feasible 25 25 25 25 0 0

C13 C14 C15 C16 C17 C18

Best -68.4294 3.28834e-09 31187.6 6.15674e-12 9.27664e-10 1.37537e-14

Median -67.6537 7.38087e-09 7.28118e+07 1.26779e-10 5.67557e-06 2.12239e-14

Mean -67.4872 0.0615242 2.29491e+08 0.00163294 0.0883974 4.73841e-14

std 0.983662 0.307356 4.64046e+08 0.0081647 0.15109 6.5735e-14

Feasible 25 25 25 25 25 25

Table 9.5. Time complexity of IEMA (in seconds)

T1 T2 (T2−T 1)/T 1

10D problems 2.57636 9.05104 2.51312

30D problem 2.57854 13.2825 4.1512

9.6.2 Case Study 2: MA with Alternative Representation

The job-shop scheduling problem (JSSP) is a well-known practical planning prob-
lem in the manufacturing sector. A classical JSSP is a combination of N jobs and
M machines. Each job consists of a set of operations that has to be processed, on
a set of known machines, and where each operation has a known processing time.
A schedule is a complete set of operations, required by a job, to be performed on
different machines, in a given order. In addition, the process may need to satisfy
other constraints such as (i) no more than one operation of any job can be executed
simultaneously and (ii) no machine can process more than one operation at the same
time. The objectives usually considered in JSSPs are the minimization of makespan.
The total time between the starting of the first operation and the ending of the last
operation, is termed as the “makespan”. We first develop a traditional GA for solv-
ing JSSPs. We then proposed three versions of memetic algorithms using three new

148 T. Ray and R. Sarker

0 0.5 1 1.5 2

x 10
5

10
−10

10
−5

10
0

10
5

10
10

10
15

Function evaluations

O
bj

ec
tiv

e
va

lu
e

C09
C10
C14
C15

(a) 10D

0 1 2 3 4 5 6

x 10
5

10
−10

10
−5

10
0

10
5

10
10

10
15

Function evaluations

O
bj

ec
tiv

e
va

lu
e

C09

C10

C14

C15

(b) 30D

0 0.5 1 1.5 2

x 10
5

10
−15

10
−10

10
−5

Function evaluations

O
bj

ec
tiv

e
va

lu
e

C17
C18

(c) 10D

0 1 2 3 4 5 6

x 10
5

10
−15

10
−10

10
−5

10
0

10
5

Function evaluations

O
bj

ec
tiv

e
va

lu
e

C17
C18

(d) 30D

Fig. 9.2. Convergence plots (y-axis is in log scale)

priority rules for improving the performance of traditional GA, namely: partial re-
ordering (PR), gap reduction (GR) and restricted swapping (RS). The performances
of our proposed algorithms are analyzed by solving 40 well-known benchmark
problems. The chromosome representation, priority rules and the performance anal-
ysis are briefly discussed below.

9.6.2.1 Chromosome Representation

In this study, we do not solve the mathematical model of the job shop problem.
Instead we develop GA and MA for solving the problem directly. We select the job
pair-relationship based representation for the genotype, as in [649, 946], due to the
flexibility of applying genetic operators to it. In this representation, a chromosome is
symbolized by a binary string, where each bit stands for the order of a job pair (u,v)
for a particular machine m. This binary string acts as the genotype of individuals.
The corresponding phenotype represents the job sequence for each machine. Further
details on the chromosome design can be found in Hasan et al. [377].

9 Memetic Algorithms in Constrained Optimization 149

9.6.2.2 Priority Rules

The priority rules developed for this study are as follows.

• Partial Reordering (PR): In this rule, we identify the machine which is the
deciding factor for the makespan and the last job (say J∗) that is to be processed
by that machine. That machine can be termed as the bottleneck machine in
the chromosome under consideration. Then we find the machine (say M∗) that
is required by the first operation of the identified job J∗. The re-ordering rule
then suggests that the first operation of the identified job (J∗) must be the first
task on machine M∗ if it is not already scheduled. If we move the job J∗ from
its current position to the 1st position, we may need to push some other jobs
currently scheduled on machine M∗ to the right. In addition, it may provide an
opportunity to shift some jobs to the left on other machines. The overall process
helps to reduce the makespan for some chromosomes.
• Gap Reduction (GR): After each generation, the generated phenotype usu-

ally leaves some gaps between the jobs. Sometimes, these gaps are necessary
to satisfy the precedence constraints. However, in some cases, a gap could be
removed or reduced by placing a job from the right side of the gap. For a given
machine, this is like swapping between a gap from the left and a job from the
right of a schedule. In addition, a gap may be removed or reduced by simply
moving a job to its adjacent gap at the left. This process would help to develop
a compact schedule from the left and continuing up to the last job for each ma-
chine. Of course, it must ensure no conflict or infeasibility before accepting the
move.
• Restricted swapping (RS): For a given machine, the restricted swapping rule

allows swapping between the adjacent jobs if and only if the resulting schedule
is feasible. This process is carried out only for the job which takes the longest
time for completion.

9.6.2.3 Implementation

First, we implement a simple GA for solving JSSPs. We use simple two point
crossover and bit flip mutation as reproduction operators. We then implemented
three versions of MAs by introducing the priority rules as local search techniques as
follows:

• MA(PR): Partial re-ordering rule with GA,
• MA(GR): Gap reduction rule with GA, and
• MA(GR-RS): Gap reduction and restricted swapping rule with GA

In both GA and MA, we apply elitism in each generation to preserve the best so-
lution found so far, and also to inherit the elite individuals more than the rest. In
performing the crossover operation, we use the tournament selection that chooses
one individual from the elite class of the individuals (i.e. the top 15%) and two in-
dividuals from the rest. This selection then plays a tournament between the last two
and performs crossover between the winner and the elite individual. We rank the

150 T. Ray and R. Sarker

individuals on the basis of the fitness value. From our extensive parametric analysis,
we have chosen the crossover and mutation rate as 0.45 and 0.35 respectively. We
set the population size to 2500 and the number of generations to 1000. Note that
JSSPs usually require a higher population size. For example, Pezzella et al. [721]
used a population size of 5000 even for 10×10 problems. In our approach, GR is
applied to every individual. On the other hand, we apply PR and RS to only 5%
of randomly selected individuals in every generation. To test the performance of
our proposed algorithms, we have solved the 40 benchmark problems designed by
Lawrence [509] and have compared the results.

9.6.2.4 Result and Analysis

Each problem was run 30 times and Table 9.6 compares the performance of four
algorithms we implement [GA, MA(PR), MA(GR), and MA(GR-RS)] in terms of
the % average relative deviation (ARD) from the best result published in the lit-
erature, the standard deviation of % relative deviation (SDRD), and the average
number of fitness evaluations required. From Table 9.6, it is clear that the perfor-
mance of the MAs are better than the GA, and MA(GR) is better than both MA(PR)
and GA. The addition of RS to MA(GR), which is known as MA(GR-RS), has
clearly enhanced the performance of the algorithm. Out of the 40 test problems,
both MA(GR) and MA(GR-RS) obtained exact optimal solutions for 23 problems.
In addition, MA(GR-RS) obtained optimal solutions for another 4 problems and
substantially improved solutions for 10 other problems. In general, these two algo-
rithms converged quickly, which can be seen from the average number of fitness
evaluations.

Table 9.6. Comparing our four algorithms for 40 test problems

Algorithm Optimal ARD SDRD Average # of Average # of Average

Found (%) generations Fitness eval.(103) Computational

time (s)

GA 15 3.591 4.165 270.93 664.90 201.60

MA(PR) 16 3.503 4.192 272.79 660.86 213.42

MA(GR) 23 1.360 2.250 136.54 356.41 105.87

MA(GR-RS) 27 0.968 1.656 146.63 388.58 119.81

As shown in Table 9.6, the addition of the local search techniques to GA (for
the last two MAs) not only improves the quality of solutions significantly but also
helps in converging to the solutions with a lower number of generations and a lower
total number of fitness evaluations. However, as the local search techniques require
additional computation, the computational time per generation for all three MAs
is higher than GA. For example, the average computational time taken per genera-
tion by the algorithms GA, MA(PR), MA(GR) and MA(GR-RS) are 0.744, 0.782,
0.775 and 0.817 seconds respectively. Interestingly, the overall average computa-
tional time per test problem solved, for the algorithm MA(GR-RS), is the lowest

9 Memetic Algorithms in Constrained Optimization 151

among the four algorithms implemented. As of Table 9.6, for all 40 test problems,
the algorithm MA(GR-RS) improved the average of the best solutions over GA by
2.623%, while reducing the computational time by 40.57% on average per problem.
This clearly demonstrates the strength of MAs.

9.7 Summary and Conclusions

This chapter provides a review of various memetic algorithms that have been pro-
posed over the years to deal with constrained optimization problems. Details of
two distinct and widely different classes of MAs are presented in the chapter. The
first MA adopts a conventional representation scheme and employs a population
based global search and a SQP for local search. The population based global search
component of MA explicitly maintains a fraction of marginally infeasible solutions
in a quest to accelerate its rate of convergence. The second MA and its variants
on the other hand is designed to efficiently solve job shop scheduling problems.
The algorithm employs specialized representation, recombination and local search
strategies/heuristics in an attempt to improve the rate of convergence. The exam-
ples clearly highlight the potential benefits that can be realized through the use of
MAs and the range of local learning schemes that can be used to further enhance its
performance.

Acknowledgements. The authors would like to acknowledge the help received from Dr.
Kamrul Hasan for providing results for the Job Shop Scheduling problem, and Mr. Hemant
Kumar Singh for benchmarking IEMA and formatting of this manuscript. The efforts of Dr.
Amitay Isaacs to generate several parts of the code is also acknowledged.

Chapter 10
Diversity Management in Memetic Algorithms

Ferrante Neri

10.1 Introduction

In Evolutionary Computing, Swarm Intelligence, and more generally, population-
based algorithms diversity plays a crucial role in the success of the optimization.
Diversity is a property of a group of individuals which indicates how much these
individuals are alike. Clearly, a group composed of individuals similar to each other
is said to have a low diversity whilst a group of individuals dissimilar to each other is
said to have a high diversity. In computer science, in the context of population-based
algorithms the concept of diversity is more specific: the diversity of a population is
a measure of the number of different solutions present, see [239].

Ideally, a population-based algorithm is supposed to work in high diversity con-
ditions during the early stages of the optimization, then progressively lose diversity
in proximity to the global basin of attraction, and eventually lose all diversity when
the global optimum is detected. The latter condition means that the entire popula-
tion is characterized by a unique genotype, i.e. the global optimum. The described
functioning happens very rarely in practice since the algorithm tends either to pre-
maturely converge to a suboptimal solution or to stagnate. Premature convergence is
an undesired condition, which very often jeopardizes the functioning of Evolution-
ary Algorithms (EAs), consisting of a diversity loss in the presence of a sub-optimal
(and unsatisfactory) candidate solution, see [246]. Stagnation is typical of Swarm
Intelligence Algorithms (SIAs) but is present also in some EA structures. An al-
gorithm stagnates when it does not succeed at enhancing upon its individual with
the best performance while the diversity is still high. In other words, the algorithm
repeatedly explores less promising areas of the decision space and thus does not
manage to register improvements.

Due to their different structures, EAs and SIAs require different and complemen-
tary techniques for handling diversity. More specifically, in EAs a mechanism which

Ferrante Neri
Department of Mathematical Information Technology, P.O. Box 35 (Agora),
40014 University of Jyväskylä, Finland
e-mail: ferrante.neri@jyu.fi

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 153–165.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

154 F. Neri

preserves diversity and thus inhibits premature convergence is beneficial, while such
an approach in SIAs can be detrimental and turn into stagnation behavior.

In Memetic Algorithms (MAs), since their earliest definition in [621] and early
original works in Memetic Computing (MC), see [615] and [622], the problem of di-
versity is taken into account and implicitly analyzed. Since MAs perform the search
by employing multiple search logics, diversity is preserved by studying the decision
space under complementary perspectives, see [489]. This means that if the search
logic within the evolutionary framework fails at detecting new promising solutions,
the local search components give an extra chance to the algorithm to detect fresh
and promising genotypes. This is probably one of the main reasons contributing to
the success of MAs.

However, as remarked in [239], MAs by themselves are not a “magic solution”
to optimization problems, and the employment of multiple search logics does not
guarantee the prevention of premature convergence or stagnation. For example, a
MA based on an evolutionary framework and employing local search components
can naturally lose diversity since the application of the local search to a set of points
belonging to the same (sub-optimal) basin attraction would produce the convergence
of a part of the population to the corresponding local optimum.

In order to prevent MAs from premature convergence and stagnation, several
approaches attempting to handle population diversity in MAs have been proposed
during recent years. This chapter deals with diversity in MAs and presents a survey
of techniques recently proposed in literature for handling diversity and coordinating
the various algorithmic components contained within MAs. Section 10.2 gives a
short survey on the topic. Section 10.3 focuses on Fitness Diversity adaptation and,
presents various diversity metrics and the related adaptation techniques.

10.2 Handling the Diversity of Memetic Algorithms: A Short
Survey

Most of the MAs proposed in the literature employ an evolutionary framework (and
not a swarm intelligence framework). Thus, most of the work on diversity attempts
to preserve diversity and prevent premature convergence.

A classical and straightforward approach has been proposed in [246] where a
generational Genetic Algorithm (GA) employing truncation selection is proposed.
The algorithm randomly pairs parents; but only those string pairs which differ from
each other by some number of bits (i.e., a mating threshold) are allowed to repro-
duce. In this way, diversity is preserved by inhibiting the presence of duplicates. A
similar approach has been proposed with reference to an engineering problem in
[863] and [205].

In [640] the problem of diversity is handled by employing a structured popula-
tion. A distributed GA and a local search algorithm process the entire population.
The sub-population evolves independently and thus preserves the diversity of the
entire population.

10 Diversity Management in Memetic Algorithms 155

In [648] a local search crossover is integrated within the evolutionary framework.
The basic idea of this local search crossover is to remove and replace genes in a
selected parent solution on the basis of its common and different edges with the
other parent solution. As a result, the offspring is genotypically different from the
parents and diversity is preserved.

In [581] a specific crossover for preserving the diversity is proposed. This
crossover keeps constant the Hamming distance (i.e. the number of genes in a can-
didate solution at which the corresponding symbols are different) between parents
and offspring. Moreover, in [581] a restarting mechanism is proposed. This simple
(and sometimes efficient) mechanism consists of resampling the individuals of the
population in the presence of diversity loss and possible premature convergence.

In [491] a MA composed by a GA and an adaptive local search algorithm is
proposed. This adaptive local search is inspired by Simulated Annealing, see [468]
and [122], and is supposed to improve upon the available genotypes when the pop-
ulation is diverse and to increase the diversity when the population is approaching
the convergence condition. The diversity preservation logic proposed in [491] can
be summarized in the following way: a solution which is slightly worse than the
starting one can be accepted under the condition that it increases the diversity in the
population. More formally, for a given minimization problem and for a given candi-
date solution x, a newly generated solution x′ replaces x according to the following
probability:

P =

⎧⎨
⎩

1 if f (x′) � f (x)

e
k| f (x′)− f (x)|
| fmin− favg| otherwise

(10.1)

where fmin and favg are, respectively, minimum and average fitness values among
the population individuals and k is a normalization constant. This technique mea-
sures the diversity by means of the fitness value and is strongly related to the fitness
diversity adaptation which will be extensively discussed in Section 10.3.

In [492] the encoding of memetic information (in the mentioned paper muta-
tions for some problems and local search algorithms for another problem) is per-
formed within the solutions. A probabilistic criterion manages the transmission of
the memes and thus search strategies from parents to offspring. In [492], multiple
local search algorithms are employed, de facto composing a multimeme algorithm,
see [496] and [489]. The resulting algorithmic structure is supposed to prevent pre-
mature convergence by offering multiple search perspectives of the decision space.
The main algorithmic philosophy is that the combination and coordination of a set
of various search logics enhances the chance of obtaining a high performance or,
more modestly, at least overcome the bottlenecks resulting from the specific limi-
tations of a certain search structure. For example the employment of a local search
algorithm employing a steepest descent pivot rule can be efficient in the proximity
of the global optimum when it is important to finalize the search by exploiting the
neighborhood while a random walk algorithm can support the evolutionary frame-
work to detect new promising directions when the search still has not detected a
promising direction. If a MA employs both these local searches, it might be able
to handle both the situations. In addition, the adaptation is supposed to allow the

156 F. Neri

algorithm to decide itself the most proper local search on the basis of the situation.
The employment and thus coordination of multiple local search algorithms within
a MA is a crucially important topic in Memetic Computing and is somehow the
“hearth” and the reason for success/unsuccess of a MA. Some examples of stud-
ies on this specific topic are reported in [411], [493], [683], [830] and references
therein.

In [806] a MA for clustering is proposed. Two modified selection schemes based
on fitness assignment concur at global and local levels to preserve diversity and to
prevent premature convergence. In [715], a MA for solving multimodal problems is
presented. The concept of fitness sharing is extended to the local search algorithms,
thus defining Baldwinian sharing. In practice, the algorithm employs a sharing tech-
nique (i.e. a normalization of the fitness values based on the Euclidean distances to
affect the sorting/selection and thus prefer a population composed by spread out
points) in order to guarantee that diversity is preserved.

In [536] a real-coded MA is proposed. Within this MA two mechanisms for pre-
serving the diversity are employed. The first mechanism, namely negative assor-
tative mating, consists of selecting genotypically distant parents in order to obtain
an offspring which does not look similar to either generating parent. The second
mechanism, namely Breeder Genetic Algorithm (BGA) mutation [639], is a muta-
tion operator which promotes the generation of distant genes within the solutions by
employing an ad-hoc probability distribution function.

In [873] the problem of diversity is handled by using multiple search logics and
a structured population. Two adaptive systems for preserving diversity are also pre-
sented. Both mechanisms rely on the fact that the frequency of the local search helps
to preserve diversity. According to the first adaptive system, at the beginning of
the optimization process the sub-populations already contain enough diversity and
therefore do not need additional search moves coming from the local search; hence
the local search algorithms are activated with a low frequency. Subsequently, since
the population naturally tends to progressively lose diversity, the local search is ac-
tivated with a higher frequency. More specifically, the frequency γ of local search
activation is given by the following heuristic rule:

γ =
1√

2πσ
exp

(
−1

2

(
gen− μ

σ

)2
)
η (10.2)

where μ and σ are mean value and standard deviation of a Gaussian distribution,
gen is the generation number, and η is a scaling factor.

The second adaptation system is more complex and less intuitive compared to the
first one. In order to explain this mechanism, let us consider a (sub-)population S of
individuals. The population can be partitioned into Q groups S1,S2, . . . ,SQ where
each group contains individuals characterized by the same fitness value. With refer-
ence to the generic j− th group, we can define the ratio p j as:

p j =

∣∣S j
∣∣

Q
∑

i=1
|Si|

(10.3)

10 Diversity Management in Memetic Algorithms 157

where with |∗| is indicated the cardinality of the set, i.e. how many individuals be-
long to a given group. On the basis of the described partitioning, Shannon’s infor-
mation entropy, see [775], is defined as:

E =−
Q

∑
j=1

p j log(p j). (10.4)

For a given population the entropy can be considered as a fitness-based diversity
measure. In [873] the entropy variation is used to determine the amount of local
search to be employed. More specifically the diversity frequency at the generation
gen is given by:

β (gen) = 1 +
E (gen)−E (gen− k)

E (gen− k)
(10.5)

where E (gen) and E (gen− k) (where gen � k) are the population entropy measure
at the gen− th and (gen− k)− th generation, respectively.

10.3 Fitness Diversity Adaptation

Fitness Diversity Adaptive MAs are a class of algorithms which, like other works
e.g. [491] and [873], measure fitness diversity in order to estimate the population di-
versity. This choice is done considering that for multi-variate problems the measure
of genotypical distance can be excessively time and memory consuming and thus
the adaptation might require an unacceptable computational overhead. Obviously,
fitness diversity could not give an efficient estimation of population diversity, since
it can happen that very different points take the same fitness values, e.g. if the points
lay in a plateau. However, this fact does not effect the decision mechanism of the
adaptive system for the following reasons.

The MAs employing Fitness Diversity Adaptation (FDA) are composed of an
evolutionary framework and a list of local searchers. The coordination of the local
search is carried out by the fitness diversity. More specifically, when the diversity is
low one or more explorative local searchers, e.g. Nelder-Mead Simplex [653], are
activated in order to offer an alternative search logic, and possibly to detect new
promising search directions and increase the diversity. If this mechanism fails and
the algorithm keeps losing diversity and converging to some areas of the decision
space an exploitative local search algorithm, e.g. Rosenbrock Algorithm [776], at-
tempts to quickly perform the exploitation of the most promising basin of attraction
and thus quickly complete the search. If the fitness diversity is low, the candidate so-
lutions in the population have a similar performance. This fact can mean either that
the solutions are concentrated within a small region of the decision space, or that
the solutions are distributed over one or more plateaus or over two or more basins of
attraction having a similar performance. It can easily be visualized that all the listed
situations are undesirable and that the activation of an alternative search move can
increase the chances to detect “fresh” genotypes. In other words, although the FDA
does not guarantee a proper estimation of the population diversity, it is an efficient

158 F. Neri

index to estimate the correct moment of the evolution which would benefit from a
local search application.

Although the fitness diversity mechanism sounds reliable at first, it hides two
practical issues when the algorithmic design is performed. The first issue is how to
measure the diversity while the second is how to use the diversity information for
coordinating the local and global search. The following subsections address these
two problems.

10.3.1 Fitness Diversity Metrics

Before analyzing the various metrics presented in the literature for measuring di-
versity a comment on the approach is necessary. As highlighted in [657], there is
no “best” metric in general but there is a “most suitable” metric dependent not only
on the problem (i.e. the fitness landscape) but also on the nature of the evolutionary
framework. For example, an efficient diversity metric for Evolution Strategy (ES)
would likely be inadequate to measure the diversity of Differential Evolution (DE).
This consideration can be seen as a consequence of the No Free Lunch Theorem
[940].

The first fitness diversity metric has been introduced in [104] and then used in
[659]. This metric is given by:

ξ = min

{∣∣∣∣
fbest − favg

fbest

∣∣∣∣ ,1
}

, (10.6)

where fbest and favg are respectively best and average fitness values over the indi-
viduals of the population. Measurement ξ can be seen as the answer to the question
“How close is the average fitness to the best one?”. Thus, if the average fitness value
is as good as the best, the diversity is low and ξ ≈ 0. On the contrary, if the fit-
ness values are very distant the diversity metric is saturated to 1 and the diversity
can be considered to be high. In this way, the metric ξ can say whether the local
search activation is suitable (ξ ≈ 0) or unnecessary (ξ = 1). This metric proved to
lead to a high algorithmic performance in some cases but suffers from robustness,
as shown in [657]. The main drawback of this metric is that it is dependent on the
codomain width: adding a constant value to the fitness function would lead to an
important variation of the diversity values. However, this diversity metric is very
efficient in the specific cases it has been used: for multivariate and complex fitness
landscapes having a limited range of variability in the fitness values (e.g. [0,10]) and
the minimum around zero (e.g. for error minimization in engineering problems).

The second fitness diversity metric has been introduced in [888] and used also in
[889]. The metric is:

ν = min

{
1,

σ f∣∣ favg
∣∣
}

, (10.7)

where
∣∣ favg

∣∣ and σ f are respectively the average value and standard deviation over
the fitness values of individuals of the population. Also the parameter ν can vary

10 Diversity Management in Memetic Algorithms 159

between 0 and 1 and can be seen as a measurement of the fitness diversity and
distribution of the fitness values within the population. In other words, ν is the
answer to the question “How sparse are the fitness values within the population?”.
As well as ξ , ν is codomain dependent and works with a limited range of variability.
Unlike ξ , ν depends on the standard deviation and thus on the fitness distribution
over all individuals of the population. In addition, ν is less sensitive than ξ to fitness
diversity variations and would not consider high diversity a situation where one
individual has a performance significantly better than the others. For this feature if
ξ is efficient on an ES framework employing the plus strategy, ν can be employed
for SIAs and DE i.e. for those algorithms which normally work in high diversity
conditions, see [889].

The third fitness diversity metric has been introduced in [658] for a specific med-
ical application. This metric consists of the following:

ψ = 1−
∣∣∣∣

favg− fbest

fworst − fbest

∣∣∣∣ (10.8)

where fbest , favg and fworst are respectively best, average and worst fitness over the
individuals of the population. The parameter ψ can be seen as the answer to the
question “If we sort all fitness values over a line, which position is occupied by
the average fitness?”. The metric ψ also varies between 0 and 1. It can be noticed
that, unlike the two metrics previously presented, ψ is not codomain dependant, i.e.
its value does not depend on the range of variability of the fitness values. Due to
its structure, this metric is very sensitive to small variations and thus is especially
suitable for fitness landscapes containing plateaus and low gradient areas. Parameter
ψ has been successfully employed within memetic frameworks which employ plus
strategy in the spirit of the ES.

In [106] the following parameter is used:

χ =

∣∣ fbest − favg
∣∣

max
∣∣ fbest − favg

∣∣
k

(10.9)

where fbest and favg are the fitness values of, respectively, the best and average in-
dividuals of the population. max

∣∣ fbest − favg
∣∣
k is the maximum difference observed

(e.g. at the kth generation), beginning from the start of the optimization process. It is
clear that χ varies between 0 and 1; it scores 1 when the difference between the best
and average fitness is the largest observed, and scores 0 when fbest = favg i.e. the
entire population is characterized by a unique fitness value. Thus, χ is the answer to
the question “How much better is the best individual than the average fitness of the
population with respect to the history of the optimization process?”.

Besides considering it as a measurement of the fitness diversity, χ is an esti-
mation of the best individual performance with respect to the other individuals. In
other words, χ measures how much the super-fit outperforms the remaining part of

160 F. Neri

the population. More specifically, the condition χ ≈ 1 means that one individual
has a performance far above the average, thus one super-fit individual is leading the
search. Conversely, the condition χ ≈ 0 means that performance of the individuals
is comparable and there is not a super-fit. Due to its nature, χ is suitable for guess-
ing the state of convergence in a population of a SIA or a DE. In [106], χ has been
defined for coordinating the search components of a MA based on a DE framework.
This choice was carried out by taking into account the fact that a DE structure works
well when one individual is better than the others since it has the role of guiding the
search. However, its performance should not be excessively good with respect to the
others; otherwise, it would be unlikely for another individual to succeed at outper-
forming the leading individual. As a general guideline, a DE population containing
a super-fit individual needs to exploit the direction offered by the super-fit in order
to eventually generate a new individual that outperforms the super-fit. Conversely, a
DE population made up of individuals with comparable fitness values requires that
one individual that clearly outperforms the others be generated in order to have a
good search lead. A similar analysis can be carried out for Particle Swarm Opti-
mization (PSO) and other SIAs.

In [887] another fitness diversity metric has been introduced. This metric is given
by:

φ =
σ f

| fworst − fbest | (10.10)

where σ f is the standard deviation of fitness values over individuals of the popula-
tions, and fworst and fbest are the worst and best fitness values, respectively, of the
population individuals.

Analogous to the other fitness diversity indexes listed above, φ varies between 0
and 1. When the fitness diversity is high, φ ≈ 1; on the contrary when the fitness
diversity is low, φ ≈ 0. The index φ can be seen as a combination of ν in formula
(10.7) and ψ in formula (10.8) because it represents the distribution of fitness val-
ues over individuals of the population with respect to its range of variability. In other
words, φ is the answer to the question ”How sparse are the fitness values with re-
spect to the range of fitness variability at the current generation?”. The index ψ was
also designed for DE based algorithms. Employment of the standard deviation in the
numerator in formula (10.10) is due to the fact that a DE framework tends to gen-
erate an individual with performance significantly above the average (as mentioned
for the metric χ) and efficiently continues optimization for several generations. In
this sense, an estimation of the fitness diversity of a DE population by means of the
difference between best and average fitness values can return a misleading result
and each value must be taken into account. Regarding the denominator in formula
(10.10), a normalization to the range of variability of the current population makes
the index co-domain invariant (unlike ν in formula (10.7)) and its estimation is not
affected, for example by adding an offset to the fitness function. Thus, the index
φ can be successfully employed, within a DE framework, on problems of various
kinds.

10 Diversity Management in Memetic Algorithms 161

Finally, another fitness diversity index inspired also by the entropy study in [873]
has been proposed in [481]. The population is sorted according to the fitness values.
Thus an interval [fmin, fmax]] having width d can be detected. Let us indicate with
n1 the number of individuals falling within

[
fmin, fmin + d

3

]
and with n3 the num-

ber of individuals falling within
[

fmax− d
3 , fmax

]
. Indicating with Np the number of

individuals of the population and assuming that we want to solve a minimization
problem, the diversity is then estimated as:

τ3 = 0.5 +
n1− n3

2Np
. (10.11)

In other words, this metric subdivides the population into three quality classes and
measures the diversity as a difference of the cardinality of the classes. Metric τ3 has
been used for an ES framework but it might be suitable also for different frame-
works. It has successfully been applied to a chemical engineering problem charac-
terized by a highly multi-variate function but likely not a very multi-modal fitness
landscape. It must be remarked that although τ3 also varies between 0 and 1, the in-
terpretation of the parameter is different from the other diversity metrics. The max-
imum diversity condition occurs when τ3 = 0.5, which corresponds to maximum
distribution of the performance over the individuals of the population. The condi-
tions τ3 ≈ 0 and τ3 ≈ 1 mean that a few individuals have a very high performance
with respect to the others and that a few individuals have a very low performance
with respect to the others, respectively. In order to visualize this approach, it may
be useful to imagine a ring where value 0 and 1 are contiguous. In this sense, this
metric measures the balance among the three performance regions. This sophisti-
cated way to measure diversity has the drawback that the metric can suffer from
abrupt changes in proximity to 0 and 1 and very slow changes in proximity to 0.5,
in correspondence of the same variations within the population. This can make the
adaptation rather complicated to handle.

In order to summarize the features of the diversity metrics listed in this section,
a synoptical scheme is shown in Table 10.1.

Table 10.1. Diversity Metrics: Synoptical Scheme

Diversity Metric Framework Landscape Features Drawbacks

ξ EAs Highly Multi-modal Lanscape Non scalable

ν SIAs, DE Flexible Non scalable

ψ EAs Plateaus, Flat Landscapes Very sensitive

χ SIAs, DE Flexible Very DE and PSO tailored

φ SIAs, DE Flexible Very sensitive

τ3 EAs Large Scale not too Multi-modal Abrupt and Slow Variations

162 F. Neri

10.3.2 Coordination of the Search: The “Natura non Facit
Saltus” Principle

At each generation, when a diversity metric is calculated the problem that follows is
how to use such information in order to perform the coordination of global and local
search. As mentioned before, let us consider that the MA employs an evolutionary
framework and two local search algorithms, the first having explorative features,
the second having exploitative features. The goal is to activate the explorative local
search algorithm when the population has lost part of its diversity and to activate the
exploitative local search algorithm when the population has lost most of its diver-
sity and is approaching a convergence condition. In order to obtain this effect three
adaptive schemes have been proposed in the literature.

The first scheme, used in [104], [659], and [658], employs a threshold mechanism
for the application of local search. More specifically, when the control parameter
surpasses a given threshold, the corresponding local search algorithm is activated.
This mechanism can be seen as a probabilistic scheme where the probability of the
local search activation, dependent upon the control parameter, is a step function
which takes the value 1 within the threshold limits and 0 elsewhere. Although this
kind of scheme has proven to be efficient for various applications (see e.g. [657]),
the continuous variation of the fitness diversity in an evolutionary algorithm is not
in accordance with this step function. In other words, if the fitness diversity metrics
measure the necessity of the algorithm increasing/decreasing the local search within
the memetic framework, the intensity of the local search is supposed to be related to
the variation of the diversity metrics. On the contrary, a step function suggests that
the local search is abruptly introduced within the search at its maximum intensity
and can thus be too crude an approximation of the exploration/exploitation necessity
of the MA.

In order to introduce smooth variation in the intensity of the local search applica-
tion, two more schemes have been proposed in [106] and [889], respectively. More
specifically, the step function has been replaced with a continuous function within
the memetic frameworks under examination. Thus, the probability of local search
activation is given by a function of the fitness diversity.

Indicating with λ the fitness diversity metric, the first function is the beta distri-
bution function, see [106]:

p (λ) =
1

B(s,t)
· (λ −a)(s−1) (b−λ)(t−1)

(b−a)(s+t−1) (10.12)

where a and b are, respectively, the inferior and superior limits of the distribution;
B(s,t) is the beta function; s = 2 and t = 2 are the shape parameters. Parameters
a and b must be set on the basis of the algorithm under consideration. The latter
parameters play the same role as the thresholds in the previous scheme.

10 Diversity Management in Memetic Algorithms 163

The second, used in [889], is the exponential distribution:

p (λ) = e
−(λ−μp)

2σ2
p (10.13)

where μp and σp are the parameters characterizing the intensity application range
of the local search.

In order to better explain the three coordination scheme, let us consider the Fast
Adaptive Memetic Algorithm (FAMA) proposed in [104]. This algorithm is based
on an ES framework and two local search algorithms. The first local search, play-
ing an explorative role, is the Nelder-Mead Algorithm (NMA) [653] and the sec-
ond playing an exploitative role, is the Hooke-Jeeves Algorithm (HJA) [391]. For a
proper functioning of FAMA, we desire that the NMA be activated when the diver-
sity becomes low in order to give an alternative search logic, and that the HJA be
activated in very low diversity condition. Since FAMA employs the ξ metric, this
statement can be rephrased as: the NMA is activated when 0.05 < ξ < 0.5 and the
HJA when ξ < 0.2. By keeping the same amount of local search, if the beta distri-
bution function is employed then a = 0 and b = 0.68 for the NMA and, a = 0 and
b = 0.3 for the HJA. Fig. 10.1 gives a graphical representation of the local search
coordination, dependent on the diversity metrics, for the FAMA. The diagram shows
the step functions (as in the original implementations) in the upper part, the related
beta distribution functions in the central part, and the related exponential distribu-
tions in the lowest part.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

STEP

0 0.2 0.4 0.6 0.8 1
0

0.5

1

BETA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

EXP

NMA

HJA

Fig. 10.1. Coordination of the local search for the FAMA

It should be remarked that the scaling of beta and exponential functions is done
taking into account the fact that the areas below each trend are the same i.e. the over-
all balance between global and local search is the same for the original and proposed
versions of each algorithm. For the sake of clarity, activation of a local searcher is

164 F. Neri

performed by sampling (by means of a uniform distribution) a pseudo-random num-
ber ε in [0,1] and then comparing it with p(λ); if ε < p(λ) the corresponding local
search is performed.

Numerical results reported in [890] show that the employment of continuous
functions is beneficial and succeeds at improving upon the step scheme for a con-
stant amount of local and global search. This fact has been expressed as the “natura
non facit saltus” principle. The Latin expression “natura non facit saltus”, i.e. na-
ture does not make (sudden) jumps, is a principle of classical physics, claimed since
Aristoteles’ time until the formulation of the quantum mechanic theory, which states
that variation of physical phenomena is continuous, thus not containing “jumps”.
This concept has been extended to Memetic Computing and more specifically to the
local search coordination, dependent on a fitness diversity index. The local search
activation should not be abruptly started on the basis of some conditions but should
slowly be increased and decreased around a suitable diversity condition.

10.4 Conclusion

This chapter analyzes the problem of diversity in Memetic Computing. The problem
of diversity loss is very relevant in Evolutionary Computation since a premature di-
versity loss can lead to a premature algorithmic convergence into undesired areas of
the decision space. Dually, some algorithms could fail at generating new genotypes
despite a high diversity and thus stagnate. In Memetic Computing this problem is
even more important because the local search application might cause the conver-
gence to the same (or a very similar) point starting from a set of solutions belonging
to the same basin of attraction. However, since Memetic Algorithms employ differ-
ent search logics, if a proper coordination of the algorithmic components is carried
out, a successful optimizer can be designed. Modern Memetic Algorithms use dif-
ferent local search algorithms for preserving a proper diversity which promotes the
enhancements in the search, and they propose adaptive techniques for coordinating
the various algorithmic components.

Several schemes for handling diversity have been illustrated. The employment
of structured population has been widely used since it implicitly allows a preser-
vation of diversity. However, distributed algorithms by themselves are not enough
to prevent stagnation and premature convergence. Therefore, an adaptive system
can support the memetic framework. A control mechanism based on Shannon’s en-
tropy can be an efficient countermeasure. Fitness diversity adaptation also provides
an efficient diversity control system since a diversity metric is used to coordinate
the local search. Although this approach is promising it hides two problems: how
to measure the diversity and how to use this information within a memetic frame-
work. In accordance with the No Free Lunch Theorem, there is no optimal diversity
metric, but rather its design should take into account the problem and the evolution-
ary/swarm intelligence structure under consideration. A synoptical table compares
the metrics and gives some hints on how to use some diversity metrics proposed in
the literature. Regarding the coordination of the algorithmic components, it has been

10 Diversity Management in Memetic Algorithms 165

observed that an efficient Memetic Algorithm should contain both explorative and
exploitative local search algorithms. The explorative local search algorithm(s) assist
the framework to detect novel promising search directions when the diversity is de-
creasing, while the exploitative one(s) perform an extensive search within already
detected basins of attraction when the population has lost most of its diversity. To
pursue this aim three control functions are illustrated in this chapter. The first func-
tion is a step function, i.e. local search is activated simply by means of threshold
comparison. Although this approach is efficient, it has a wide margin of improve-
ment if instead of a step function a continuous function is preferred. Two proba-
bility distribution functions have been considered. Previous studies observed that,
while keeping constant the amount of local and global search, a Memetic Algorithm
employing continuous functions outperforms on a regular basis the corresponding
algorithm employing the step function. This fact was previously named the “natura
non facit saltus” principle for Memetic Algorithms.

Acknowledgements. This work is supported by Academy of Finland, Akatemiatutkija
130600, Algorithmic Design Issues in Memetic Computing.

Chapter 11
Self-adaptative and Coevolving Memetic
Algorithms

James E. Smith

11.1 Introduction

Results from applications of meta-heuristics, and Evolutionary Computation in par-
ticular, have led to the widespread acknowledgement of two facts. The first is that
evolutionary optimisation can be improved by the use of local search methods, cre-
ating so-called Memetic Algorithms. The second is that there is no single ”best”
choice of memetic operators and parameters- rather the situation changes according
to both the problem and the particular stage of search. This has created a grow-
ing interest in ”Adaptive” Memetic Algorithms which combine a portfolio of local
search operators with some method to choose between them. Here we describe tech-
niques which extend these ideas to allow the behaviours of the local search opera-
tors to adapt during the search process. In the first case these maybe thought of as
Self-Adaptive, so that each member of the evolving population encodes for both an
initial solution to a problem, and a learning mechanism which acts on that solution
to improve it. More generally, we show that these can be treated as separate co-
evolving populations of ”genes” and ”memes” . Following a review of related work,
we next describe a framework for meme-gene self-adaptation and co-evolution. This
is followed by a summary of the ”proof-of-concept” and of findings concerning rep-
resentation and scalability with self-adaptive memes. Next the paper considers in
more depth issues relevant to co-evolution such as credit assignment, and the ratio
of population sizes - which can be thought of as the memetic ”load” that an evolving
population can support.

James E. Smith
Department of Computer Science, University of the West of England,
Bristol, BS16 1QY, UK Name
e-mail: james.smith@uwe.ac.uk

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 167–188.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

168 J.E. Smith

11.2 Background

The performance benefits which can be achieved by hybridising Evolutionary Al-
gorithms (EAs) with Local Search (LS) operators, so-called Memetic Algorithms
(MAs), have now been well documented across a wide range of problem domains
such as optimisation of combinatorial, non-stationary and multi-objective problems
(see [493] for a review, and [376] for a collection of recent algorithmic and theo-
retical work). Typically in these algorithms, a LS improvement step is performed
on each of the products of the generating (recombination and mutation) operators,
prior to selection for the next population. There are of course many variants on this
theme, but these can easily be fitted within a general syntactic framework [493].

In recent years it has been increasingly recognised that the choice of LS operator
will have a major impact on the efficacy of the hybridisation. Of particular impor-
tance is the choice of move operator, which defines the neighbourhood function, and
so governs the way in which new solutions are generated and tested. For example
Krasnogor and Smith used Polynomial Local search (PLS) theory to show that the
worst-case runtime of an MA is not improved over the underlying EA if the LS
neighbourhood function does not differ from those of the EAs variation operators
[494]. However, points which are locally optimal with respect to one neighbourhood
structure will not in general be so with respect to another, unless of course they are
globally optimal. It therefore follows that even if a population only contains local
optima, then changing the LS move operator (neighbourhood) may provide a means
of progression in addition to recombination and mutation. This observation has led
a number of authors to investigate mechanisms for choosing between a set of pre-
defined LS operators which may be used during a particular run of a meta-heuristic
such as an EA.

11.2.1 MAs with Multiple LS Operators

There are several recent examples of the use of multiple LS operators within evolu-
tionary systems. Ong et al. [683] present an excellent recent review of work in the
field of what they term “Adaptive Memetic Algorithms”. This encompasses Krasno-
gor’s “Multi-Memetic Algorithms” [486, 487, 491, 492, 496], Smith’s COMA
framework [821, 824, 825, 830], Ong and Keane’s “Meta-Lamarkian MAs [680],
and Hyper-Heuristics [96, 97, 169, 456]. In another interesting related algorithm,
Krasnogor and Gustafson’s “Self-Generating MAs” use a grammar to specify for in-
stance when local search takes place [488, 490]. Essentially all of these approaches
maintain a pool of LS operators available to be used by the algorithm, and at each
decision point make a choice of which to apply. There is a clear analogy between
these algorithms and Variable Neighbourhood Search [363], which uses a heuristic
to control the order of application of a set of predefined LS operators to a single
improving solution. The difference here lies in the population based nature of MAs,
so that not only do we have multiple LS operators but also multiple candidate so-
lutions, which makes the task of deciding which LS operator to apply to any given
one more complex.

11 Self-adaptative and Coevolving Memetic Algorithms 169

Ong’s classification uses terminology developed elsewhere to describe adaptation
of operators and parameters in Evolutionary Algorithms [237, 238, 386, 829]. This
categorises algorithms according to the way that these decisions are made. One way
(termed ”static”) is to use a fixed strategy . Another is to use feedback of which
operators have provided the best improvement recently. This is termed “Adaptive”,
and is further subdivided into “external”, “local” (to a deme or region of search
space), and “global” (to the population) according to the nature of the knowledge
considered. Finally they note that LS operators may be linked to candidate solutions
(Self-Adaptive). We will adopt this terminology, and also make use of the general
term “meme” to denote an object specifying a particular local search strategy.

11.2.2 Self-adaptation in EAs

We are concerned with meta-heuristics which maintain two sets of objects - one of
genes and one of memes. If these sets are adaptive, and use evolutionary processes to
manage what may now be termed populations, then we can draw some immediate
parallels to other work. If the populations are of the same size and selection of
the two is tightly coupled (to use the notation of [22]) then this can be considered
as a form of Self Adaptation. The use of the intrinsic evolutionary processes to
adapt mutation step sizes has long been used in Evolution Strategies [799], and
Evolutionary Programming [268]. Similar approaches have been used to self-adapt
mutation probabilities [31, 828] and recombination operators[793, 827] in genetic
algorithms (GAs) as well as more complex generating operators combining both
mutation and recombination [826]. More recently Smith and Serpell have showed
that self-adaptation can very effectively govern both the choice and parameterisation
of different mutation operators for GAs with permutation representations [807].

11.2.3 Co-evolutionary Systems

If selection is performed separately for the two populations, with memes’ fitness
assigned as some function of the relative improvement they cause in the “solu-
tion” population, then we have a co-operative co-evolutionary system. Following
initial work by Husbands and Mill [399] this metaphor has gained increasing in-
terest. Paredis has examined the co-evolution of solutions and their representations
[709]. Potter and DeJong have also used co-operative co-evolution of partial solu-
tions in situations where an obvious problem decomposition was available [727].
Both reported good results. Bull [90] conducted a series of more general studies on
co-operative co-evolution using Kauffman’s static NKC model. In [92] he examined
the evolution of linkage flags in co-evolving “symbiotic” systems and showed that
the strategies which emerge depend heavily on the extent to which the two popula-
tions affect each others fitness landscape. In highly interdependent situations linkage
of the two species’ chromosomes was preferred –which in our context is equiva-
lent to memes self-adapting as part of the solutions’ genotypes. Bull also exam-
ined the effect of various strategies for pairing members of different populations for

170 J.E. Smith

evaluation [91]. This showed mixed results, although the NKC systems he inves-
tigated used fixed interaction patterns. This work has recently been revisited and
extended by Wiegand et al. with very similar findings [933]. Wiegand’s work also
focused attention on the number of partners with which a member of either popula-
tion should be evaluated, which draws attention to the trade-off between accurately
estimating the value of an object (solution or meme), and using up evaluations
doing so. Parker and Blumenthal’s “Punctuated Anytime Learning with samples”
[714] is another recent approach to the pairing problem by using periodic sampling
to estimate fitness, but this is more suited to approaches where the two popula-
tions evolve at different rates. Closely related to this, Bull, Holland and Blackmore
have examined the effect of changing the relative speed of evolution of popula-
tions which they termed ”genes” and ”memes” [93]. Their results showed that as
the relative speed of meme evolution increased a point was reached beyond which
gene evolution effectively ceases. However, the NKC systems they use severely limit
the types of interaction permitted to an abstraction rather different from most MA
applications.

There has also been a large body of research into competitive co-evolution (see
[710] for an overview). Here the fitnesses assigned to the two populations are di-
rectly related to how well individuals perform against the other population - what
has been termed “predator-prey” interactions. Luke and Spector [541] have pro-
posed a general framework within which populations can be co-evolved under dif-
ferent pressures of competition and co-operation. This uses speciation both to aid
the preservation of diversity and as a way of tackling the credit assignment problem.

In all the co-evolutionary work cited above, the different populations only affect
each other’s perceived fitness, unlike the COMA framework where the meme pop-
ulation can directly affect the genotypes within the solution population. This raises
the question of whether the modifications arising from Local Search should be writ-
ten back into the genotype (Lamarckian Learning) or not (Baldwinian Learning).
Although the pseudo-code and the discussion below, assumes Lamarckian learning,
this is not a prerequisite of the COMA framework. However, even if a Baldwinian
approach was used, COMA differs from the co-evolutionary systems above because
there is a selection phase within the local search, so that if all of the neighbours of a
point defined by the meme’s rule are of inferior fitness, then the point is retained un-
changed within the population. If one was to discard this criterion and simply apply
the rule (possibly iteratively), the system could be viewed as a type of “developmen-
tal learning” akin to the studies in Genetic Code e.g. [443] and the “Developmental
Genetic Programming” of Keller and Banzhaf [453, 454].

11.3 A Framework for Self-adaption and Co-evolution of
Memes and Genes

In this section we describe a conceptual framework designed to support a wide range
of algorithms for meme adaptation.

11 Self-adaptative and Coevolving Memetic Algorithms 171

11.3.1 Specifying Local Search

The primary factor that affects the behaviour of the LS is the choice of neighbour-
hood generating function. This can be thought of as defining a set of points n(i)
that can be reached by the application of some move operator to the point i. One
representation is as a graph G = (v,e) where the set of vertices v are the points
in the search space, and the edges relate to applications of the move operator i.e
ei j ∈ G ⇐⇒ j ∈ n(i). The provision of a scalar fitness value, f , defined over the
search space means that we can consider the graphs defined by different move op-
erators as “fitness landscapes” [433]. Merz and Freisleben [585] present a number
of statistical measures which can be used to characterise fitness landscapes, and
have been proposed as potential measures of problem difficulty. They show that the
choice of move operator can have a dramatic effect on the efficiency and effective-
ness of the Local Search, and hence of the resultant MA.

The second component of Local Search is the choice of pivot rule, which can be
Steepest Ascent or Greedy Ascent. In the former the “termination condition” is that
the entire neighbourhood n(i) has been searched, whereas the latter stops as soon as
an improvement is found. Note that one can consider only a randomly drawn sample
of size N <<| n(i) | if the neighbourhood is too large to search.

The final component is the “depth” of the Local Search. This lies in the con-
tinuum between only one improving step being applied to the search continuing to
local optimality. Studies with MAs e.g. [366] have shown it affects the performance
both in terms of time taken and of quality of solution found.

11.3.2 Adapting the Specification of Local Search

The aim of this work is to provide a means whereby the definition of the LS operator
used within a MA can be varied over time, and then to examine whether evolution-
ary processes can control that variation so that beneficial adaptation takes place.
Accomplishing this aim requires the provision of four major components, namely:

• A means of representing a LS operator in an evolvable form i.e. as a meme.
• A means of assigning fitness to memes.
• A choice of population structures and sizes, selection and replacement methods

for managing the meme population.
• A set of experiments to permit evaluation and analysis of the system.

The pseudo-code in Algorithm 21 illustrates the algorithmic framework of a CO-
evolutionary Memetic Algorithm (COMA) developed to support this research. Note
that although this pseudo-code assumes synchronous evolution, this need not in
general be the case. The representation of the memes is a tuple <Pivot, Depth,
Pairing,Move>, which can readily encompass all of the other requirements identi-
fied above. The representation of the tuple elements leads naturally to the choice
of evolutionary variation operators. The Pivot,Depth and Pairing elements can be
easily mapped onto integer or cardinal representations. The latter element, is one

172 J.E. Smith

Algorithm 21. Pseudo-Code Definition of COMA algorithm
// Given populations P of μs solutions and M of μm memes
initialise P and M randomly ;1
set generations← 0;2
set evaluations← 0;3
while run termination condition is satisfied do4

// Create μs solution offspring and store parent ids
for i← 1toμs do5

set FirstParent[i]← Select One Parent(P);6
set SecondParent[i]← Select One Parent(P);7
set Offspring[i]← Recombine(FirstParent[i],SecondParent[i]);8
Mutate(Offspring[i]);9
set i← i +1;10

endfor11
// Create mum meme offspring according to pairing
for i← 1toμm do12

set Pairing← Get Pairing(M,i);13
if Pairing = SelfAdaptive then14

set MemeParent1[i]← FirstParent[i];15
set MemeParent2[i]← SecondParent[i];16
// note this requires μm = μs.

endif17
else if Pairing = Fitness Based then18

set MemeParent1[i]← Select One Parent(M);19
set MemeParent2[i]← Select One Parent(M);20

endif21
else22

set MemeParent1[i]← RandInt(1,μm);23
set MemeParent2[i]← RandInt(1,μm);24

endif25
set NewMemes[i]← Recombine(MemeParent1[i],MemeParent2[i]);26
Mutate(NewMemes[i]);27
set i← i+1;28

endfor29
// Apply local search to Offspring Using Memes
for i← 1toμs do30

set original fitness← Get Fitness(Offspring[i]);31
if Pairing = SelfAdaptive then32

set meme← i;33
endif34
else35

set meme← Select Random(NewMemes);36
endif37
set Neighbours← Apply Rule To Offspring(Offspring[i],NewMemes[meme]);38
Evaluate Fitness(Neighbours);39
set Offspring[i]← Apply Pivot Rule(Neighbours);40
set Δfitness← Get Fitness(Offspring[i]) - original fitness;41
Update Meme Fitness(NewMemes[meme], Δfitness);42
set evaluations← evaluations +1 + |Neighbours|;43
set i← i +1;44

endfor45
set P← Offspring;46
set M← NewMemes;47

endw48

11 Self-adaptative and Coevolving Memetic Algorithms 173

of {Self-Adaptive, Random, Fitness Based} and determines how memes are created
and applied to solutions. As is illustrated in the If..Else section of the pseudo-code,
a range of behaviours from self-adaptive, through collaborative co-evolution to ran-
dom meme drift can be obtained.

This framework is designed it be generic in the way that move operators are de-
scribed - for example they could be GP-like expressions as per [288]. However while
such richness tends to lead to complexity of expression suitable for practical applica-
tions, it can make analysis of evolved behaviour more difficult. Therefore for the ini-
tial development work a simpler format was used together with well-understood test
problems. In what follows, move operators are encoded as condition:action pairs,
which specify one pattern to be looked for in the problem representation, and an-
other to replace it. The neighbourhood of a point i then consists of i itself, plus all
those points where the substring denoted by condition appears in the representation
of i and is replaced by the action. To give an example, a rule 1#0→ 111 matches the
binary string 1100111000 in the first, second, sixth and seventh positions, and the
neighbourhood is the set {1100111000, 1110111000, 11111111000, 1100111100,
1100111110}.

Note that the string is not treated as toroidal, and the neighbours are evaluated
in a random order so as not to introduce positional bias into the local search when
greedy ascent is used. Although this representation at first appears very simple, it
has the potential to represent highly complex moves via the use of symbols to denote
not only single/multiple wild-card characters (in a manner similar to that used for
regular expressions in Unix) but also the specifications of repetitions and iterations.
Further, permitting the use of different length patterns in the condition and action
parts of the rule gives scope for cut and splice operators working on variable length
solutions.

11.4 Test Suit and Methodology

A range of well understood test problems were used to examine the performance of
various self-adaptive and coevolutionary MAs. Some of these are ”standard” testbed
functions for EAs, others were specifically designed to probe and evaluate certain
behaviours. The initial systems only used rules where the condition and action pat-
terns were of equal length and were composed of values taken from the set of per-
missible allele values of the problem representation, augmented by a “don’t care”
symbol (#) which is allowed to appear in the condition part of the rule and option-
ally in the action where it is treated as invert. In practise, each rule was augmented
by a value rule length specifying the number of positions in the pattern string to
consider. This permitted not only the examination of the effects of different fixed
rule sizes, but also the ability to adapt its value via mutation.

174 J.E. Smith

11.4.1 The Test Suite

The first set of problems used are composed of 16 subproblems of Deb’s 4-bit fully
deceptive function [35]. The fitness of each subproblem i is given by its unitation
u(i), that is the number of bits set to “one”:

f (i) =

{
0.6−0.2 ·u(i) : u(i) < 4

1 : u(i) = 4
(11.1)

In addition to a “concatenated” version (4-Trap), a second “distributed”version
(Dist-Trap) was used in which the subproblems were interleaved i.e. sub-problem
i was composed of the genes i, i+ 16, i+ 32, i+ 48. This separation ensured that in
a single application even the longest rules allowed in these experiments would be
unable to alter more than one element in any of the sub-functions. A third variant
of this problem (Shifted-Trap) was designed to be more “difficult” than the first for
the COMA algorithm, by making patterns which were optimal in one sub-problem,
sub-optimal in all others. Since unitation is simply the Hamming distance from the
all-zeroes string, each sub-problem can be translated by replacing u(i) with the
Hamming distance from an arbitrary 4 bit string. There were 16 sub-problems so
the binary coding of each ones’ index was used as basis for its fitness calculation.

The second test function was Watson’s Hierarchical-if-and-only-if (H-IFF) func-
tion, a highly epistatic problem designed to examine the virtues of recombination.
At the bottom level, fitness is awarded to matching pairs of adjacent bits in a solution
s, i.e.

f1s =
l/2−1

∑
i=0

1−XOR(s2i,s2i+1) (11.2)

and this process is applied recursively, so that a problem of size l = 2k has k levels.
In each ascending level the number of blocks is reduced by a factor of two, and
the fitness awarded for each matching pair is increased by a constant factor, in our
case 2. This problem has a number of Hamming sub-optima, and two global optima
corresponding to the u(i)∈ {0,1}. Problem sizes l ∈ {16, . . . ,512,1024}were used,
corresponding to 3 to 10 levels. Note that for l >16 the length of the blocks to be
identified at the highest levels far exceeded the maximum rule length.

The Maximum satisfiability (Max-SAT) problem is a classical combinatorial op-
timisation problem, consisting of a number of Boolean variables and a set of clauses
built from those variables. A full description and many examples can be found in
[392]. For each length {50,100,250} the first 25 were taken from the sets of uni-
formly randomly created satisfiable instances around the phase transition (in terms
of hardness) where there are approximately 4.3 clauses per variable.

11.4.2 Experimental Set-Up and Terminology

A generational genetic algorithm, with deterministic binary tournament selection
for parents and no elitism was used. Population size μs was 250 unless otherwise

11 Self-adaptative and Coevolving Memetic Algorithms 175

stated. One Point Crossover (with probability 0.7) and bit-flipping mutation (with a
bitwise probability of 0.01) were used on the problem representation. These choices
were taken as “standard”, and no attempt was made to tune them to the particular
problems at hand. Mutation was applied to the rules with a allele-wise probability
of 0.0625 - the inverse of the maximum rule length allowed to the adaptive version.
If the rule length was adaptive, they were randomly initialised in the range [1,16],
and during mutation, a value of +/- 1 is randomly added with probability 0.0625,
subject to staying in range.

For each problem, 20 runs were made, each continuing until the global optimum
was reached, subject to a maximum of 500,000 evaluations. Two performance met-
rics were considered; the Success Rate (SR) which is the number of runs finding
the global optimum, and the Average Evaluations to Success (AES) which is the
mean time taken to locate the global optimum on successful runs. The reason for
the large cut-off value was to try and avoid skewing results as can happen with
an arbitrarily chosen lower cut-off, rather than to be indicative of the amount of
time available for a “real world” problem. Note that since one iteration of a local
search may involve several evaluations, this allows more generations to the GA, i.e.
algorithms are compared strictly on the basis of the number of calls to the evalu-
ation function. Any observed differences in performance were tested for statistical
significance using ANOVA and pairwise post-hoc testing using the Tukey’s Least
Significant Difference (LSD) and Tamhane’s T2 tests at the 95% confidence level.

The variants of self- and co-adaptive algorithms that can be instantiated within
this framework are denoted as CXY where X denotes the pairing and is one of L
(Linked, or self-adaptive), R (Random drift) or T (Tournament - variants of fitness
based coevolution). Y denotes the pivot function and is one of Greedy, Steepest or
Adaptive. Rule lengths are adaptive unless denoted by a numeric prefix. Depth of
search is one unless indicated by a suffix -L (to local optima) or -Adaptive.

11.5 Self-adaptation of Fixed and Varying Sized Rules

11.5.1 Self-adapting the Choice from a Fixed Set of Memes

The first experiments in this line of research explored the ability of evolutionary
mechanisms to correctly select between a number of fixed memes. This can be
achieved trivially within the COMA framework by the use of appropriate initial-
isation for the meme population, setting the meme recombination probabilities to
zero and defining the mutation operator so that it chose between the set of fixed
memes rather than operating ”within” each meme. In [492] experiments were run
on a range of TSP problems using MAs with one of set of ten memes which var-
ied in both their move operators and depth. When the search progress was plotted
together, it could clearly be seen that the optimal choice of meme was dependant
on the state of the search as well as on the individual TSP instance. Next the pop-
ulation members of ”multimeme” algorithm were allowed to self-adapt the choice
of which meme to use. The results showed that the progress tracked that of the

176 J.E. Smith

currently best-performing meme from the ”static” MAs, ultimately outperforming
each of them. The evolved patterns of meme usage closely matched what might have
been ”designed” with hindsight, with periods of one meme dominating alternating
with periods of broader usage as local optima were reached, then escaped from.

The concept of self-adapting the choice from a fixed set of memes was also suc-
cessfully demonstrated by Krasnogor et al. for protein structure alignment [496].

11.5.2 Self-adaptation of Meme Definitions

Initial experiments were restricted to considering a simple system, and examining
first whether the system was able to evolve useful rules for the ”trap” problems -
first when the rule length naturally matched the structure of the problem, and then
whether the system was able to adapt to an appropriate rule length for different prob-
lems. For this reason it was decided to avoid the various issues concerning popula-
tion management, pairing strategies and credit assignment, and instead work with
a single improvement step, a fully linked self-adaptive system and a greedy pivot
rule. These choices were coded into the chromosomes at initialisation, and variation
operators were not used on them. The algorithms used (and the abbreviations which
will be used to refer to them hereafter) are as follows:

• A “vanilla” GA with no Local Search (GA).
• A simple bit-flipping MA (SMA-G).
• COMA using a random rules, i.e. with the learning disabled (CRG).
• COMA with self-adaptive memes, greedy pivot and adaptive rule lengths (CLG).
• COMA using fixed length memes (1-CLG,. . .,10-CLG),

Experiments were run with population sizes (μs,μm) of 100, 250 and 500.

11.5.3 Results on Trap Functions

The results on 4-Trap showed that the GA, SMA, and 1-CLG algorithms frequently
failed to find the optimum but the other COMA variants, always did. On these prob-
lems there was a clear benefit to using adaptive neighbourhood local search, al-
though since the CRG algorithm also found the optimum on every run, it cannot be
concluded from the Success Rates that learning was taking place. Considering the
AES, the GA, SMA and 1-CLG algorithms took significantly longer to locate the
optimum. For a population of 500 2-CLG joined the significantly slower group.

In short, it could be observed that for fixed rule lengths of between 3 and 9,
and for the adaptive version, the COMA system derived performance benefits from
evolving LS rules according to both metrics on this function.

For the Shifted-Trap function, the performances of the GA and SMA were not
significantly different from those on 4-Trap because these algorithms solved the sub-
problems independently and so were “blind” to whether the optimal string for each
was different. The COMA results exhibited the same pattern of behaviour noted

11 Self-adaptative and Coevolving Memetic Algorithms 177

above; fast, reliable problem solving for all but 1-CLG and 2-CLG, and even for
these two the AES results were statistically significantly better than GA or SMA.

On Dist-Trap, GA, SMA and CRG never located the global optimum, regardless
of population size. While the Success Rate for COMA was less than for the other
problems (typically 10-15/20 for μ = 100 and 15-20/20 for μ = 250), the same
pattern was observed of better performance (SR and AES) for the adaptive version
and fixed rule lengths in the range 3-5, tailing off at the extremes of the length range.

11.5.4 Analysis of Results and Evolution of Rule Base

The deceptive functions used were specifically chosen because GA theory suggests
they are best solved by finding and mixing optimal solutions to sub-problems. Thus
the GA failed to solve the function when the crossover operator was not suited to
the representation (Dist-Trap). Considering the action of a single bit-flipping LS
operator on these “trap” subproblems, a search of the Hamming neighbourhood of a
solution will always lead towards the sub-optimal solution when the unitation is 0,1
or 2, regardless of pivot rule. Additionally, the greedy search of the neighbourhood
will lead towards the deceptive optimum 75% of the time when the unitation is 3.
This explains the poor results of the SMA, and 1-CLG algorithms.

The behaviour of the CLG algorithm was examined by plotting the population
mean against time of the rule length, the specificity of the condition (the propor-
tion of values set to #), and the unitation of the action. These results are shown in
Figure 11.1.

For the 4-Trap function, the system rapidly evolved medium length (3−4), gen-
eral (specificity < 50%) rules whose action was to set all the bits to 1 (mean unita-
tion 100%). Closer inspection of the evolving rule-base confirmed that the optimal
subproblem string was being learnt and applied.

0 5 10 15 20
0

20

40

60

80

100
4-Trap

0 25 50
Generations

0

20

40

60

80

100
Shifted Trap

0 25 50
0

20

40

60

80

100

Length (x10)
Specificity (%)
Unitation(%)
Best Fitness

Distributed trap

Fig. 11.1. Analysis of Evolved Rules on three problems with different properties

178 J.E. Smith

For the Shifted-Trap function, where the optimal sub-blocks are all different, the
rule length decreased more slowly from its initial mean value of 8. The specificity
also remained higher, and the mean unitation remained at 50%, indicating that
different rules were being maintained. This was borne out by closer examination of
the evolved rule sets.

The behaviour on Dist-Trap was similar to that on 4Trap, albeit over a longer
time-scale. The algorithm could not possibly be learning specific rules about sub-
problems, since no rule was able to affect more than one locus of any subproblem.
Rather, the system learnt the general rule of setting all bits to 1. The rules were gen-
erally shorter than for 4Trap, which means that the number of potential neighbours
was higher for any given rule. The high incidence of #s meant that the rule length
defined a maximum radius in Hamming space for the neighbourhood, rather than a
fixed distance from the original solution. These two observations, together with the
longer times to solution, suggest that when the system was unable to find a single
rule that matched the problems’ structure, a more diverse search took place using
a more complex neighbourhood which slowly adapted itself to the current solution
population. Full details of these experiments and analysis may be found in [821].

11.5.5 Benchmarking the Self-adaptive Systems

In order to test these hypotheses about how the memes self-adapt in different ways
a further set of experiments was run using a wider range of problems, with 50 runs
per problem-length to tease out statistically significant differences. For the first two
sets of results, both steepest and greedy ascent pivot rules were tried, for the final,
MAX-SAT problem, the pivot rule was also allowed to adapt under mutation.

11.5.5.1 Exploiting Search Space Regularities Gives Scalability

The hypothesis memes adapt to identify and exploit any regularities in the prob-
lem space was tested by varying the lengths of two problems. The first of these
comprised multiple concatenated copies of (11.1) with lengths in the range {40, 60,
80,..., 200}. As expected from above, the results for SMA-G were extremely poor.
The next worse algorithm was CRS. The SR steadily decreased 50 (100%) at length
40 to 5 at length 100 and zero above that. All the other algorithms showed SR of 49
or 50 up to length 160, but only the CLS (39) and CLG (50) solved the 200-bit prob-
lem. This provides evidence that learning is taking place in the meme populations.
The AES results were revealing. The GA was faster than CLG and CLS but the in-
crease in AES with length was worse than linear. The AES results of the successful
COMA variants, and analysis of the evolving rule bases, supported the hypothesis of
discovering and exploiting regularities. In this case it meant identifying a rule giving
the optimal solution to the sub-problems, and then applying it to each sub-problem
in the string in successive generations. as shown in Figure 11.2 CLG was the fastest
algorithm, followed by CLS, and all three were near-linear. For example, a linear
regression of AES to length for CLG fitted the data with a correlation co-efficient of
0.97.

11 Self-adaptative and Coevolving Memetic Algorithms 179

Fig. 11.2. Efficiency of different algorithms on 4 Trap functions with varying length. Anno-
tations beside points show where Success Rates were less than 50/50.

On the H-IFF problems all of the MAs had higher Success Rates than the GA,
and again the CLG and CLS were significantly the best. For example, out of 50 runs
with l = 128 the SR values were 0 (GA, CRG, CRS), 4 (MA), 38 (CLG), 43 (CLS).
Only the CLG (10) variant solved the 256 bit problem. As on other problems: the
greedy ascent versions found the optimum faster (lower AES) than the equivalent
steepest ascent versions but not as reliably (lower SR). ANOVA on the MBF results
confirmed that the performance was statistically significantly different with 95%
confidence. Post-hoc analysis showed that the CLG and CLS variants had a higher
mean best fitness than the others but did not significantly differ.

11.5.5.2 Escaping Local Optima by Changing Neighbourhoods

Shifted-Trap, Dist-Trap and MAX-3SAT were used to examine the behaviour when
there were no regularities that could be exploited. On the Dist-Trap function, only
the CLS and CLG algorithms ever located the global optimum, and both always did,
CLG significantly faster than CLS. On the Shifted-Trap function, the success rates
were 39/50 (CRS) 45/50 (SMA-G) and 50/50 (all others). There was no significant
difference in the mean times to solution.

On MAX-SAT the GA, steepest/greedy simple MAs (SMA-S, SMA-G), and
self-adaptive COMA algorithms with greedy, steepest and adaptive pivot strategies
(CLG, CLS, CLA) were run ten times on each instance. Table 11.1 shows the num-
ber of success from 250 runs. Full experimental details , and some results omitted
here for brevity, may be found in [830].

As can be seen, for the 50 variable instances the simple MAs have the highest
success rates, and the GA the worst. For the longer instances all methods are much
less successful, and many instances are not solved by any algorithms. SMA-G and

180 J.E. Smith

Table 11.1. Success Rates (out of 250) for different length MAX-3SAT problems.

Algorithm Length 50 Length 100

GA 125 21

SMA-S 154 0

SMA-G 153 25

CLS 141 0

CLG 135 25

CLA 144 8

100
50

len

CTACLACTGCTSCLGCLSSMA-GSMA-SGA

Algorithm

600000

400000

200000

0

M
ea

n
Ev

al
ua

tio
ns

 to
 S

uc
ce

ss

600000

400000

200000

0

M
ea

n
Ev

al
ua

tio
ns

 to
 S

uc
ce

ss

Fig. 11.3. Box plots of AES for 100 (top) and 50 (bottom) variable MAX-3SAT instances.

CLG show the same performance For the shorter instances the steepest ascent strat-
egy is on average better, but there are differences between individual instances. For
the longer instances the cost of searching the entire neighbourhood every iteration
becomes prohibitive, so that SMA-S and CLS solve no instances. Analysis shows
that the adaptive variant CLA performs on a par with whichever of the S or G vari-
ants is better for each instance, suggesting successful adaptation.

The AES results show that the GA is the fastest algorithm followed by a close
grouping of SMA-G, CLG then CLA, with the CLS algorithm taking more time
and having a higher variance. The adaptive pivot variants both fall between their
respective greedy and steepest counterparts, both in terms of mean and variance.
GA was significantly faster, and the SMA-S significantly slower than the other al-
gorithms, CLS/CLA/CLG did not significantly differ. Analysis of the mean best
fitness showed that the CLA algorithm came between the two fixed strategies, but
again the ordering of CLG/CLS, and the magnitude of the difference between them,
was instance dependant.

11 Self-adaptative and Coevolving Memetic Algorithms 181

11.5.6 Summary of Self-adaptive Results

The results above highlight the problem of choosing the appropriate local search op-
erator which provided the original rationale for the development of COMA. For ex-
ample, although the Memetic Algorithm with a simple bit-flipping hill climber had
the highest Success Rates and Mean Best Fitness on the Max-3SAT problems, it’s
performance on the other problems was derisory, and frequently worse than the sim-
ple GA. In contrast the self-adaptive MAs exhibited better performance than the GA
or SMA over a wide range of problems, according to different metrics. Fuller details
of the experiments with binary-coded problems may be found in [821, 822, 830],
and details of successful application to a protein structure prediction problem may
be found in [822, 825]. Overall adapting the pivot rule (CLA) is outperformed by
whichever is better of steepest or greedy ascent, but the difference is often marginal,
and more importantly the choice (CLS or CLG) is problem dependant.

11.6 Extension to True Co-evolution: the Credit Assignment
Problem

Having established the basic principle of evolving memes which coded for LS rules
as a means of enhancing optimisation performance in MAs, the next series of exper-
iments used a full co-evolutionary model. Experiments reported in [824, 825, 830]
showed that a major factor determining successful adaption was the credit assign-
ment mechanism used to award fitness to a solution. The results also showed that
with meme fitness dependant simply on the improvement caused, the choice of pivot
and pairing strategies are intertwined.

Unsurprisingly, the greedy variants almost always used less evaluations than the
steepest ascent equivalents on successful runs. However, for some problems (but not
all) the extra noise introduced by using a greedy ascent was sufficient to “fool” the
simple credit assignment mechanism. Thus a good rule will only get a low fitness
if the first match only leads to a small improvement, whereas larger improvement
(and hence fitness) might be seen if it was applied elsewhere in the solution. Another
related source of noise is the choice of partner.

In [831] a number of methods were examined to try and overcome the difficul-
ties of the greedy strategy by reducing the amount of noise present. Meme parent
selection used binary tournaments based on fitness defined in the following ways.

• Simple “global-adaptive” scheme where the fitness of a meme was the improve-
ment it caused when applied to a solution (CT). Note that even if a meme per-
fectly encapsulates the problem structure it can achieve zero fitness if it happens
not to match or change the solution it is paired with.
• COMA with a “memory” (CTD). Inspired by Paredis’ “Life Time Fitness Eval-

uation” (LTFE) [710] this uses a time-decaying fitness function of the form:

meme f itness′ = meme f itness ·α+ improvement caused (11.3)

182 J.E. Smith

A newly created meme takes the average of its parent’s fitnesses. After initial
experiments a decay factor of α = 0.5 was used.
• A modification to the COMA algorithm so that two solution parents con-

tribute to create two offspring solutions via recombination, and similarly for the
memes. Each meme is then tested against both of the solutions and the fitness
assigned is either the mean (CT2M) or better (CT2B) of the two improvements
noted. In Wiegand’s terminology this is a collaboration poolsize of two. Each
solution takes the better of the two neighbours found for it.

11.6.1 Results: Reliability

Table 11.2 shows the Success Rates achieved with the different algorithms on each
function and problem length. The results not just for the 3 Trap variants but also
the H-IFF show the clear advantage of Adaptive Memetic Algorithms over both
the static counterpart (SMA-G) and a simple Genetic Algorithm (GA). The global-
random scheme (CRG) shows lower Success Rates than the other COMA algo-
rithms on most problems. The self-adaptive scheme (CLG) also has lower success
rates on the longer H-IFF problems and the SAT problems that the co-evolutionary

Table 11.2. Success Rates of Algorithms on Different Functions

Function Len CRG CLG CT2BG CT2MG CTDG CTG GA SMAG

4Trap 20 10 10 10 10 10 10 10 10

40 10 10 10 10 10 10 10 6

60 10 10 10 10 10 10 10 3

80 10 10 10 10 10 10 10 0

100 10 10 10 10 10 10 10 0

120 10 10 10 10 10 10 8 0

140 9 10 10 10 10 10 3 0

160 10 10 10 10 10 10 1 0

180 2 10 7 9 10 10 0 0

200 0 10 2 4 10 10 0 0

Shifted Trap 64 10 10 10 10 10 10 10 3

Dist-Trap 64 0 10 10 10 10 9 0 0

H-IFF 16 10 10 10 10 10 10 10 10

32 10 10 10 10 10 10 5 10

64 2 9 9 10 10 8 4 8

128 0 3 5 8 6 7 0 0

256 0 0 6 4 4 3 0 0

SAT 50 131 134 146 152 136 145 114 153

100 28 21 24 26 16 25 38 27

Total 272 307 319 333 312 327 243 230

11 Self-adaptative and Coevolving Memetic Algorithms 183

200.0180.0160.0140.0120.0100.080.060.040.020.0

len

500000

400000

300000

200000

100000

0

A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 S

uc
ce

ss

CT2B

CT2M

CS

CTD

CT

256.0128.064.0

len

400

300

200

100

0

A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 S

uc
ce

ss
 (1

00
0s

)

CTD

CS

CT
CT2M

CT2B

Fig. 11.4. Average Evaluations to Success on Trap (top) and H-IFF (bottom) functions.

variants. Comparing the four different fitness schemes for coevolution, no clear pat-
tern emerges:

• On the 4-trap functions, the meme evolution task is to identify rules of the form
####→ 1111, and then maintain and exploit them through repeated application.
Here the simpler schemes based on a single pairing (CTG, CTDG) find the
optimum slightly more often for the longer instances in the time allowed.

184 J.E. Smith

SMA-GGACTGCTDGCT2MGCT2BGCSGCRG

name

500

400

300

200

100

0

Ev
al

ua
tio

ns
 to

 S
uc

es
s (

10
00

s)

Fig. 11.5. Box-plots of Evaluations to Success on SAT functions. Lighter boxes are for 50-
variable instances, darker ones for 100 variables.

• On the Shifted-Trap and Dist-Trap functions, where it is necessary to maintain
a diverse rule-set in the meme population, algorithms perform the same (100%
Success), except the simple CTG (9/10 on Dist-Trap).
• On the H-IFF and SAT problems the fitness schemes based on a collaboration

poolsize of 2 are more successful, the averaging version (CT2MG) especially
so. Notably the CTDG scheme with memory and a collaboration poolsize of 1
is markedly less successful than the others on the SAT functions.
• Overall the CT2MG algorithm has the highest success rate.

11.6.2 Results: Efficiency

Figures 11.4 and 11.5 illustrate the change in the mean time to locate the optimum
for the Trap, H-IFF and SAT functions used with different length instances. The
results for the GA, SMAG and CRG are omitted from the first two for the sake of
clarity as they are so poor. On the Trap functions the results with collaboration pool-
size 1 (CTG, CTDG, CLG) are obtained faster than with the poolsize of 2 (CT2MG,
CT2BG), the difference being increasingly statistically significant for the longer in-
stances. This is a natural result of the overhead of testing each meme against two
solutions - since the solution just takes the better of the two improvements to be the
result of its Lamarkian learning, the other evaluations are “wasted” from that point
of view. This explains the lower SR for CT2MG/CT2BG on longer 4-Trap problems.
However on the H-IFF function the CTG approach is not only less successful than

11 Self-adaptative and Coevolving Memetic Algorithms 185

the CTDG approach, but takes more evaluations when it does find the optimum. This
can be explained by the fact that the algorithm needs to make a decision between the
all ’1’s solution and the all ’0’s solution, and the use of a memory helps make this
decision consistent between generations. On the SAT problems, where there is no
regular problem structure to be learnt and exploited, the CT2M/B G schemes again
significantly take longer.

11.7 Varying the Population Sizes

The results in the previous section clearly demonstrate the advantages of a credit
assignment mechanism that does not rely solely on the improvement caused when
a meme is applied to a single solution. In general those schemes that make use of
multiple collaborations (to use Wiegend’s terminology) - either explicitly within the
same generation, or via a memory - have higher success rates, but this is sometimes
at the expense of significantly increased run-times. The memory-based approach
(CTDG) is faster, but can be mislead as shown by the lower SR results for the SAT
functions. We hypothesise that this is because the meme population is not converg-
ing in these runs, so the use of fitness inherited from both parents is more “noisy”.

One obvious way to assess memes in the context of multiple solutions (points in
the search space) without ”wasting” evaluations is to reduce the size of the meme
population μm relative to μs. To investigate this, a series of experiments were run
using different size meme populations. After some brief initial experimentation, the
following changes were made to the parameter settings, with the results shown in
Table 11.3:

• The ”#” character in a ”action” string is taken to mean ”invert the current value”.
• The solution population size was increased to 500 and self-adaptive mutation

was applied using the scheme outlined in [820, 823, 850].
• The tournament size in the meme population was increased from 2 to 5. This

effectively reduces the size of the meme population since less fit memes have a
smaller probability of being selected as parents.
• The fitness of each meme is assigned by summing improvement that meme

caused in different solutions divided by the number of calls to the evaluation
function used. However multiple copies of memes were allowed so this po-
tentially provides a mix of what Schoenauer et al. have termed ”extreme” and
”average” value rewards in the context of adaptive operator selection in EAs
[260].

The results of these experiments are presented in Table 11.3 and Figure 11.6, and
can be summarised as follows:

• Overall the COMA algorithms are clearly more effective (higher SR) than the
GA and SMA.
• Although not shown for reasons of clarity, the coevolutionary memetic algo-

rithms are also overall more efficient (lower AES) than the GA or SMA.

186 J.E. Smith

Table 11.3. Success Rates of different functions as number of memes is varied

H
-IF

F
T

rap
M

ax-S
at

A
lgorithm

16
32

64
128

256
512

1024
Total

40
80

120
160

200
Total

50
100

Total

C
TA

-pop-10
50

48
45

24
23

15
5

210
48

46
34

34
32

194
196

40
236

C
TA

-pop-50
50

50
49

46
37

39
31

302
50

47
49

48
44

238
229

49
278

C
TA

-pop-100
50

50
50

44
42

37
29

302
50

50
50

49
49

248
232

54
286

C
TA

-pop-200
50

50
50

46
40

39
34

309
50

50
50

50
50

250
257

62
319

C
TA

-pop-400
50

50
50

48
41

36
29

304
50

50
50

50
50

250
260

56
316

G
A

50
33

2
0

0
0

0
85

30
3

0
0

0
33

100
15

115

C
T

G
-pop-10

50
49

42
34

30
17

9
231

50
39

39
36

32
196

212
45

267

C
T

G
-pop-50

50
50

47
47

41
34

33
302

50
50

47
45

45
237

224
49

273

C
T

G
-pop-100

50
50

49
49

41
37

31
307

50
50

50
50

48
248

247
49

296

C
T

G
-pop-200

50
50

50
46

44
38

33
311

50
50

50
50

50
250

247
61

308

C
T

G
-pop-400

50
50

50
49

41
36

38
314

50
50

50
50

50
250

257
57

314

S
M

A
-G

50
49

24
1

0
0

0
124

38
6

0
0

0
44

246
48

294

11 Self-adaptative and Coevolving Memetic Algorithms 187

Fig. 11.6. Average Evaluations to Success on Trap (bottom) and H-IFF (top) functions as a
function of length and number of memes. Error bars represent 95% conficence intervals for
mean, grouping within each length is (l to r) 10,50,100,200,400 memes.

• On average there is little difference in effectiveness or efficiency between the
fixed (CTG) and adaptive (CTA) pivot rules.
• Adapting the pivot rules creates more reliably efficient methods - the 95% con-

fidence intervals for the AES are smaller for the CTA than for the corresponding
CTG algorithms.

188 J.E. Smith

• The algorithms with low numbers of memes (μm ∈ {10,50}) are less effec-
tive. This may well arise from premature convergence or loss of diversity in the
meme population, which could be ameliorated by reducing the selection pres-
sure or increasing the mutation rate.
• The variation in efficiency reduces as the number of memes is increased - for

similar reasons to the previous observation.
• The algorithms with 200 memes are the most effective (highest overall SR,

especially on H-IFF and MAX-SAT) whilst not being significantly less effective
than the algorithms with 400 memes (AES values not significantly different
with 95& confidence).

Of particular interest is the relationship between the time taken to solve problems,
and their length. As can be seen there appears to be a linear trend in Figure 11.6
- although the logarithmic scale should be noted. This is most evident for the H-
IFF functions where a wider range of lengths is used. Using the SPSS tool to fit a
curve to results for CTA, pooling the results for 200 and 400 memes reveals that
a relationship of the form AES = 233.3 · len1.018 accounts for over 80% of the
variation in solution times.

11.8 Conclusions

This chapter describes a conceptual framework within which self-adaptive and co-
evolutionary memetic systems can be examined. Starting with systems which self-
adapt the choice of which meme to use from a fixed set, and then moving through
self-adaptation of the meme behaviours to a full co-evolutionary system, experimen-
tal results show progressively enhanced problem-solving behaviour using a variety
of mechanisms.

The extension to co-evolution showed that the credit assignment mechanisms is
critical, and selection within the meme population can be affected by noise arising
from a number of sources. Mechanisms such as the use of multiple partners, or
memory have been examined. The most promising appears to be a decoupling of
the two populations with fewer memes than solutions.

Along the way the meme definitions have become progressively richer - permit-
ting wildcards, inversion, and length adaptation in the pattern matching, and adapt-
ing the choice of pivot function. The stage is now well prepared for the use of richer
definitions such as GP-like functions, which may be application specific as used
elsewhere e.g. evolving MAX-SAT solvers using primitive elements derived from
other heuristics [288, 461].

Chapter 12
Memetic Algorithms and Complete Techniques

Carlos Cotta, Antonio J. Fernández Leiva, and José E. Gallardo

12.1 Introduction

As mentioned in previous chapters in this volume, metaheuristics (and specif-
ically MAs) have a part of their raison d’etre in practically solving problems
whose resolution would be otherwise infeasible by means of other non-heuristic
approaches. Such alternative non-heuristic approaches are complete methods that
–unlike heuristics– do guarantee that the deviation from optimality of the solution
they will provide is somehow bounded (and as a particular case, that the optimal
solution will be found). These methods are eventually limited by the curse of di-
mensionality, yet they may still constitute a very interesting resource either from the
application point of view, or from the lessons that can be learnt from them. Indeed,
in some sense these approaches could be considered complementary to metaheuris-
tics rather that mere “rivals”. Even more so in the case of MAs, whose philosophy
has been since its inception much more flexible and integrative rather than dogmatic
or exclusive.

This said, despite the eclosion of metaheuristics as powerful optimization tech-
niques during the 80s and 90s, inter-breeding between the fields of provably problem-
solving and heuristic problem-solving was relatively limited until the last decade
(some seminal works dating back from the mid 90s – e.g., [165]). The last years
however have witnessed a remarkable increase in the number of works trying to
combine ideas from these two areas. Certainly, MAs have also played an important
role in this cross-fertilization of search paradigms. Along this chapter we will re-
view some of the lines of research that have emerged in this regard. To this end,
we will begin by briefly revisiting complete techniques to highlight their strengths
and weaknesses, and what they have to offer to metaheuristics. Subsequently, we
will outline some of the efforts that have been made in the literature to classify

Carlos Cotta · Antonio J. Fernández Leiva · José E. Gallardo
Dept. Lenguajes y Ciencias de la Computación, Universidad de Málaga,
ETSI Informática, Campus de Teatinos, 29071 Málaga, Spain
e-mail: {ccottap,afdez,pepeg}@lcc.uma.es

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 189–200.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

190 C. Cotta, A.J.F. Leiva, and J.E. Gallardo

hybrid approaches. Although these classifications are usually general and intended
to cover more than just complete-heuristic combinations, they will provide a frame-
work within which actual combinations of MAs with exact techniques (or from the
broad interpretation of memetic algorithms, MAs incorporating exact techniques)
can be studied. This will be done in Sections 12.4 and 12.5.

12.2 Background

Complete techniques are those whose results can be proved to be at bounded dis-
tance from the optimum. From a very general point of view, these techniques can be
further subdivided into techniques that guarantee finding the optimal solutions, i.e.,
exact techniques, and techniques that only provide a fixed or adjustable bound (that
is, a bound that can be reduced by spending more computational effort), i.e., approx-
imation techniques. Curiously, and this is something that may be worth some further
analysis from a sociological and/or philosophical point of view, the community of
researchers working on approximation theory has been traditionally more skeptical
with respect to the value of metaheuristic optimization. Conversely, it is also true
that the usefulness of approximation algorithms has not been always appreciated by
the metaheuristic community, in part due to the inherent limitations of the former in
many practical contexts – see for example [224] for a glimpse of the computational
complexity of PTAS (a polynomial time approximation scheme, probably one of the
jewels of the crown in approximation theory) for several common problems.

Focusing thus on exact techniques, such as for example branch and bound [507],
dynamic programming [57], branch and cut [654], etc. these are characterized by the
fact that they guarantee finding optimal solutions at the cost of a non-polynomial
growth of computation time (and often memory consumption too). Their limita-
tions are those emanating from the theory of computational complexity, such as the
conspicuous P vs NP question. It must be noted however that such classical (unidi-
mensional) hardness characterizations are not necessarily correlated with practical
performance. A much more interesting characterization can be obtained from the
field of parameterized complexity [221], in which hardness is approached from a
multidimensional perspective, factoring out some parameter(s) from the input and
trying to isolate the problem’s difficulty in them. If this can be done –formally, if the
complexity of the problem can be shown to be polynomially related to the input size
(once the parameter is factored out), and the degree of the polynomial is unrelated
to the value of the parameter– the problem is said to be fixed-parameter tractable
(FPT). FPT problems can be solved for small values of the parameter using the ar-
senal developed by the parameterized-complexity community – e.g., [667]. Hard
problems can be nevertheless detected from a parameterized perspective, and for
such problems metaheuristics are fully in order.

There are many ways in which the hybridization of metaheuristics in general
(and MAs in particular) with exact techniques can be fruitful: exact techniques can,
for example, reduce their resource consumption if they obtain valuable input from
metaheuristics (e.g., improved bounds); on the other hand, metaheuristics routinely

12 Memetic Algorithms and Complete Techniques 191

Exact and
Metaheuristic Hybrids

Collaborative
Combination

Sequential
Execution

Parallel or
Interwitned
Execution

Integrative
Combination

Exact Alg. in
Metaheuristics

Metaheuristics
in Exact Alg.

Fig. 12.1. Puchinger and Raidl’s classification of exact-heuristic hybrid algorithms.

use search mechanisms –recombination, mutation, etc.– in which exact techniques
can play an important role to intensify the search. Furthermore, hybridization of
MAs and exact techniques can be defined at several nested levels thus providing
multiple ways of boosting each other’s performance. In the following we will survey
some successful hybridization models reported in the literature along these lines just
depicted. Subsequently, we will overview several approaches to classify these hybrid
models.

12.3 Classification of Hybridization Approaches

Several taxonomical attempts have been proposed to classify hybrid optimization al-
gorithms. For example, Talbi [872] proposed a mixed hierarchical-flat classification
scheme. The hierarchical component captured the structure of the hybrid, whereas
the flat component specified the features of the algorithms involved in the hybrid.
More precisely, the hierarchical portion of the taxonomy firstly distinguished be-
tween low-level (a given function of a metaheuristic is replaced by another meta-
heuristic) and high-level (combined algorithms are self-contained) hybridization.
Secondly, it was distinguished between relay hybridization (a set of metaheuristics
is applied in a pipeline fashion) and teamwork hybridization (cooperative optimiza-
tion models). Cotta [147] proposed another related taxonomy with the dichotomy
strong vs. weak as its root. This distinction referred to whether problem-knowledge
was placed in the core of the algorithm, affecting its internal components (e.g., rep-
resentation and/or genotype-phenotype mapping, operators, etc.), or in the combi-
nation of different search algorithms that retained their identity. This terminology
is consistent with the classification of problem-solving strategies in artificial intelli-
gence as strong and weak methods [595].

192 C. Cotta, A.J.F. Leiva, and J.E. Gallardo

A much more interesting classification for the purposes of this chapter is that
proposed by Puchinger and Raidl [741]. This classification is specifically intended
for exact-metaheuristic combinations, and establishes two main categories for such
hybrid algorithms:

• Collaborative combinations, where an exact algorithm and a metaheuristic
method exchange some information, but none of them are part of the other,
and
• Integrative combinations, where one technique is a subordinate of the other, i.e.,

there is a master algorithm that uses the other one.

These two categories can be further refined depending on the particular of the com-
bination as shown inf Figure 12.1. Thus, a collaborative combination can be se-
quential or parallel/intertwined, depending on how the control flow passes from one
algorithm to the other. Similarly, an integrative combination can be subdivided in
models in which an exact technique plays the role of master (i.e., the metaheuristic
is embedded in an exact technique), and models in which the opposite is true.

As mentioned before, this latter classification fits nicely into context of this chap-
ter, so we will consider it in order to survey existing hybrid approaches combining
MAs and exact techniques.

12.4 Integrative Combinations

One basic form of integrative collaboration consists of endowing a memetic algo-
rithm with an exact technique (ET) so that this ET is a subordinate of the MA. The
most common implementation consists of combining an EA with a procedure to
perform a complete local search (which can consider the whole neighborhood and
in this sense can be viewed as an exact technique). This is usually done after evalu-
ation, although it must be noted however that the integration does not simply reduce
itself to this particular scheme. In fact, the purpose of using an ET inside a MA is
to provide specific knowledge that can help to a better optimization process. For
instance, Algorithm 22 shows a general picture of where an ET can be incorporated
inside an MA.

As it can be seen, during the initialization of the population some complete
method may be used to generate high quality initial solutions. Of course, this com-
plete method may only consider a subset of the search space, a relaxed version of
the problem, or may perform just a truncated search, since otherwise the problem
would just be solved at that stage (not to mention the computational cost). An exam-
ple of relaxed initialization using complete techniques can be found in [148], where
a backtracking algorithm is used to create feasible initial solutions for a protein
structure prediction problem (thus relaxing optimality to mere feasibility). Another
related approach will be discussed in next subsection in the context of collabora-
tive models, and considers a variant of a B&B algorithm –namely beam search– to
initialize the population of a MA with the aim of improving its performance. In ad-
dition to this an exhaustive LS could be applied to improve the individuals generated
initially with the aim of providing a first population of better quality. This procedure

12 Memetic Algorithms and Complete Techniques 193

Algorithm 22. Pseudocode of a basic MA based on a integrative collaboration
with an exact technique ET

for i ∈ {1, . . . ,POPULATION SIZE} do1

pop[i]←RANDOM-SOLUTION();2

if Rand[0,1] < pET then // ET is applied with probability pET3

EXACT-TECHNIQUE (pop[i]); // Usually ET = Local4

Improvement

endif5

endfor6

i← 0;7

while i < MaxEvals do8

RANK-POPULATION (pop); // sort population according to9

fitness
parent1←SELECT (pop);10

if Rand[0,1] < pX then // recombination is done11

parent2 ← SELECT (pop);12

child← RECOMBINE (parent1, parent2); // RECOMBINE might be an13

Exact Technique

else14

child← parent1;15

endif16

child← MUTATE (child, pM); // pM is the mutation probability17

per gene
if Rand[0,1] < p′ET then // ET is applied18

EXACT-TECHNIQUE (child); // Usually Local Improvement19

applied here

endif20

pop[μ]← child; // replace worst21

endw22

return best solution in pop;23

is intimately related to the idea of local branching by Fischetti and Lodi [263], and
to Congram’s Dynasearch [138, 139].

Another proposal that can be devised from the general schema shown above is the
use of an ET as a recombination operator. Recombination or mutation operators can be
intelligently designed so that specific problem knowledge is used in order to improve
the offspring. For instance, Cotta et al. [165] used a problem-specific B&B approach
for the Travelling Salesman Problem based on 1-trees and the Lagrangean relaxation
[910], to build a hybrid recombination operator. More precisely, the B&B was used
in order to build the best possible tour within the (Hamiltonian) subgraph defined
by the union of edges in the parents. This recombination procedure was costly, but
provided better results than blind edge recombination. This model was later extended
to a more general operator termed dynastically optimal recombination (DOR) [164].
The term refers to the dynastic potential, which in the framework of Forma Analysis
[750] denotes the set of children attainable from a certain set of parents. DOR thus
consists of finding the best children in this dynastic potential, i.e., that with the best

194 C. Cotta, A.J.F. Leiva, and J.E. Gallardo

combination of parental features. This is done by “intelligently” exploring this set,
using an adequate complete algorithm, check e.g. [163].

Related to the previous approach, [295] presented a memetic algorithm, embed-
ded with tabu search, for weighted constraint satisfaction problems (see next section
for a more detailed discussion of this kind of problems) in which bucket elimina-
tion (BE) [202] is used as a mechanism for recombining solutions, providing the
best possible child from the parental set. BE is an exact technique related to dy-
namic programming which based on variable elimination and is commonly used for
solving constraint satisfaction problems. This algorithm, with another collaborative
proposals, was applied to the resolution of the maximum density still life problem,
a hard constraint optimization problem based on Conway’s game of life.

Additionally, problem knowledge can be incorporated in the genotype to phe-
notype mapping present in many MAs, like when repairing an infeasible solution.
This technique is used, for instance, in the MA designed by Chu and Beasley [127]
for the multidimensional 0-1 knapsack problem. The use of complete techniques,
again relaxed or truncated, can be here considered as well, check, e.g., [148] for an
example of using backtracking to repair infeasible solutions.

Another place where an exact method can be particularly useful when used inside
an MA is in the optimization of problems where different representations are consid-
ered. In these cases, an exact technique can be specifically useful in the codification-
decodification phase. For instance, Puchinger and Raidl [742] represented another
attempt to incorporate exact methods in metaheuristics. This work considered dif-
ferent heuristics algorithms for a real world glass cutting problem and a combined
GA and B&B approach was proposed. The GA used an order-based representation
that was decoded with a greedy heuristic. Incorporating B&B in the decoding for
occasionally (with a certain probability) locally optimizing subpatterns turned out
to increase the solution quality in a few cases.

Note also that applying always the ET in each generation of the MA (or initially
on each individual in the initial population) is not always the best option (as shown
in [858] for the application of LS on each generated new individual). For instance,
if one considers LS as the technique to embed inside a MA, partial Lamarckianism
[396], namely applying local search only to a fraction of individuals, can result
in better performance. These individuals to which local search will be applied can
be selected in many different ways [665]. Thus, LS can be applied to improve the
individual with certain probability pLS; in case of application, the improvement uses
up a number of LSevals evaluations (or in the case of specific local search such as
HC, until it stagnates, whatever comes first). It is easy to extrapolate these results
from the use of LS to any ET embedded in a MA.

In general, the underlying idea of this kind of integration is to combine the inten-
sifying capabilities of the embedded ET method, with the diversifying features of
MA, i.e., the population will spread over the search space providing starting points
for a deeper (probably local) exploration. As generations go by, promising regions
will start to be spotted, and the search will concentrate on them. Ideally, this com-
bination should be synergistic, providing better results that either the MA or the
ET by themselves. Regarding this issue, one can find in the literature a number of

12 Memetic Algorithms and Complete Techniques 195

proposals that explore the intensification/diversification balance within the memetic
algorithm. Some works lean towards a more explorative combination, by using a
blind recombination operator in the MA whereas other models incorporate an in-
tense exploration of the dynastic potential of the solutions being recombined.

The other possibility for integrative combinations is to incorporate a metaheuris-
tics into an exact algorithm. One example is the hybrid algorithm combining Genetic
Algorithms and Integer Programming B&B approaches to solve MAX-SAT prob-
lems described in [287]. This hybrid algorithm gathered information during the run
of a linear programming-based B&B algorithm, and used it to build the population
of an EA population. The EA was eventually activated, and the best solution found
was used to inject new nodes in the B&B search tree. The hybrid algorithm was run
until the search tree was exhausted, and hence it is an exact approach. However, in
some cases it expands more nodes than the B&B algorithm alone.

12.5 Collaborative Combinations

As mentioned in Section 12.3, the class of collaborative combinations includes hy-
brid algorithms which exchange information, but such that none of them is a sub-
ordinate of the other. Two subcases can be here considered in order to execute both
algorithms:

• Sequential execution, in which one of the algorithms is completely executed
before the other. Examples of this group are those in which one of the techniques
can act as a kind of preprocessing for the other or those where the result of one
algorithm can be used as data to initialize the other.
• Parallel or intertwined execution, where both techniques are executed simulta-

neously, either in parallel (i.e., running at the same time on different processors)
or in an intertwined way by alternating between both algorithms.

As an example of sequential combinations we can cite the work of Klau et al. [469],
in which a branch and cut algorithm is used analogously to the idea of dynastically
optimal recombination mentioned in previous section, to combine the final popu-
lation provided by a MA. This hybrid algorithm is applied to the prize-collecting
Steiner tree problem. We will focus here on hybrid collaborative techniques in the
second group. MAs and B&B techniques can be integrated by way of a direct collab-
oration, so that both techniques work alone in parallel (i.e., both processes perform
independently) at the same level. Under this scheme, both processes will share the
incumbent solution to the problem being solved. Whenever one of the algorithms
finds a better approximation, it can update the solution. Two straightforward ways
of obtaining a benefit of this parallel execution are [165]:

• The B&B algorithm can use the lower bound provided by the MA to purge its
problem queue. Problems whose upper bound are smaller than the one obtained
by the MA cannot improve the incumbent solution and can be safety removed.

196 C. Cotta, A.J.F. Leiva, and J.E. Gallardo

• The B&B algorithm can provide information about more promising regions of
the search space into the MA population. The aim of this process is to to guide
the MA search towards these promising regions of the search space.

Several implementations of these schemes are possible. For example, Cotta et al.
[165] proposed a collaborative approach such as the one described above for the
TSP. Puchinger and Raidl [740] consider the parallel combination of a MA and a
branch and cut algorithm for the multidimensional knapsack problem. The MA pro-
vides improved bounds to the branch and cut algorithm, and the latter provides both
new best-so-far solutions and the corresponding dual variable values, to be used for
repairing and local search. More recently, Gallardo et al. [294] defined a hybrid al-
gorithm that starts by running a MA (with a randomly initialized population) in iso-
lation, so that a first approximation to the solution is obtained. This initial solution
is later used by a B&B algorithm to purge its problem queue. As it can be seen, no
information from the B&B algorithm was used in this first execution of the MA. In
a subsequent phase, the B&B algorithm starts its execution. New solutions found by
the B&B are incorporated into the MA population (by replacing the worst individ-
ual). Whenever a new solution is found, the B&B phase is paused and the MA is run
to stabilization. In addition, pending nodes in the B&B queue are incorporated into
the MA population periodically. The intention of this transfer is to direct the MA to
these regions of the search space, that represent the subset of the search space still
unexplored by the Branch and Bound. In this way, the MA is used for finding prob-
ably good solutions in those regions. Upon finding an improved lower bound (or
upon stabilization of the MA if no improvement is found), B&B is resumed. This
process is repeated until the search tree is exhausted, or a time limit is reached. One
interesting property of this hybrid algorithm is that it acts as an anytime algorithm,
providing both a quasi-optimal solution, and an indication of the maximum distance
to the optimum. In [293, 294] this implementation schema is used to tackle large
instances of the multidimensional knapsack problem. Experimental results showed
that the hybrid approach can provide high quality results, better than those obtained
by the MA and B&B on their own.

An alternative implementation of the previous model consist on using beam
search (BS)[46] instead of B&B. This is an incomplete derivative of the later and
acts thus as an heuristic method. In essence, BS extends every partial solution from
a set B (called the beam) in at most kext possible ways, generating a new beam.
When all solutions in B have been extended, the algorithm reduces the new beam
by selecting the best up to kbw (called the beam width) solutions and proceeds. A
very interesting feature of this heuristic is that it extends in parallel a set of different
partial solutions in several possible ways. For this reason, it can be used to provide
periodically diverse promising partial solutions to a population based search method
such as a MA. A general description of the resulting hybrid algorithm is given in
Algorithm 23.

The beam search part of the algorithm can be iterated for each level of the search
tree that corresponds to the problem at hand. The hybrid algorithm starts by exe-
cuting this process for an initial number of levels (parameter l0 of the algorithm).
Subsequently, both parts of the hybrid algorithm are alternatively executed until a

12 Memetic Algorithms and Complete Techniques 197

Algorithm 23. Beam Search + MA hybrid algorithm

for l0 levels do run BS;1

repeat2

select popsize nodes from problem queue;3

initialize MA population with selected nodes;4

run MA;5

if MA solution better than BS solution then6

let BS solution←MA solution;7

endif8

for l levels do run BS ;9

until timeout or tree-exhausted ;10

return BS solution;11

termination condition is reached. Similar to the first implementation, for every exe-
cution of the MA, its population is initialized using the nodes in the BS queue. As
the size of the BS queue is usually larger than the MA population size, a criteria,
such as selecting the best nodes according to some measure of quality or selecting
a subset that provides high diversity, has to be used in order to select a subset from
the queue. Nodes in the BS queue represent partial solutions in which some genes
are fixed but others are indeterminate, so they must first be converted to full solu-
tions in a problem dependent way. This must be considered when instantiating the
general template for different combinatorial problems. This kind of collaborative in-
tegration of Beam Search and MAs has been used to tackle different combinatorial
optimization problems. In [297] the hybrid algorithm was experimentally evaluated
on the multidimensional 0-1 knapsack problem and on the shortest common super-
sequence problem, a NP-hard classical problem from the realm of string analysis.
For both problems, it was shown the benefits of using the hybrid approach when
compared to the constituents algorithms. Additionally, an analysis of the dynamics
and sensitivity on different parameters of the algorithm was carried out. In [298],
the hybrid algorithm was applied to the inference of phylogenetic trees, an impor-
tant problem in Systematic Biology, that aims to represent the evolutionary history
for a collection of organisms. That work focused in the ultrametric model for phylo-
genetic inference. A robust setting for the different parameters of the algorithm was
determined, and the hybrid algorithm was experimentally shown to also be syner-
getic for this problem.

A related hybridization model has been defined in [299] for weighted constraint
satisfaction problems (WCSP) [795]. A WCSP is a constraint satisfaction problem
(CSP) in which preferences among solutions can be expressed. Formally, a WCSP
can be defined by a tuple (X ,D ,F), where D = {D1, · · · ,Dn} is a set of finite do-
mains, X = {x1, · · · ,xn} is a set of variables taking values from their finite domains
and F is a set of cost functions (also called soft constraints or weighted constraints)
used to declare preferences among possible solutions. Each f ∈F is defined over a
subset of variables, var(f) ⊆X , called its scope. The objective function F –to be
minimized– is defined as the sum of all functions in F , i.e., F = ∑ f∈F f . WCSP
were tackled using a algorithmic model based on the hybridization of MAs with

198 C. Cotta, A.J.F. Leiva, and J.E. Gallardo

GA

TS
Local

Search

BE

Crossover

BS

MA

MB
Lower
Bound Upper Bound

Promising Regions

Fig. 12.2. Schematic description of the multilevel hybrid algorithm.

exact techniques at two levels: within the MA (as an embedded operator), and out-
side it (in a cooperative model). Figure 12.2 depicts the different components of
the algorithm and their relationships. The first level of hybridization has already
been described in Section 12.4, so we will describe here the second level, in which
the MA cooperates with a beam search algorithm that further uses the technique of
mini-buckets as a lower bound.

Algorithm 24. Hybrid algorithm for a WCSP

sol← ∞;1

B←{ () };2

for i← 1 to n do3

B′ ← {};4

for s ∈B do5

for a ∈ Di do6

B′ ←B′ ∪ {s · (xi = a)} ;7

endfor8

endfor9

B← select best kbw nodes from B′;10

if i � kMA then11

initialize MA population with best popsize nodes from B′;12

run MA;13

sol←min (sol,MA solution);14

endif15

endfor16

return sol;17

The proposed hybrid algorithm, that executes BS and the MA in an interleaved
way, is depicted in Algorithm 24. Here, a (possibly partial) solution for a WCSP
instance is represented by a vector of variables s = (x1,x2, . . . ,xi), i � n, where
s · (xi = a) stands for the extension of partial solution s by assigning value a to its
i-th variable. The hybrid algorithm proceeds by constructing a search tree, so that its
leaves are complete solutions to the problem and internal nodes at level i represent
solutions that are partially specified up to the i-th variable. The algorithm traverses

12 Memetic Algorithms and Complete Techniques 199

this tree heuristically in a breadth first way using a BS algorithm that only maintains
the best kbw nodes at each level of the tree. During each iteration of BS (lines 5-
16), a variable is assigned for every solution in the beam (line 8). The interleaved
execution of the MA starts only when partial solutions in the beam have at least kMA

variables (line 12). For each iteration of BS, the best popsize solutions in the beam
are selected with the purpose of initializing the population of the MA (line 13). The
solution provided after the execution of the MA is used to update the incumbent
solution (sol), and this process is iterated until the search tree is exhausted.

The performance of this algorithm will depend on the quality of the heuristic
function used to estimate partial solutions (line 11). In order to compute tight,
yet computationally inexpensive, lower bounds for the remaining part of the so-
lutions, the technique of mini-buckets (MB) can be used. As described by Kask and
Dechter[445], the intermediate functions created by applying the MB scheme can be
used as a general mechanism to compute heuristic functions that estimate the best
cost of yet unassigned variables in partial solutions. This can be achieved by run-
ning MB as a preprocessing stage. The set of augmented buckets computed during
this process can be used as estimations of the best cost extension to partial solutions
(check [445] for details).

In [296, 299], such a multilevel algorithm was used to tackle the Maximum Den-
sity Still Life Problem, a hard constrained problem defined in the context of John
Conway’s game of life. The resulting algorithm was able to find optimal solutions
for currently solved instances of the problem in considerable less time that state-of-
the art approaches. Additionally, it was able to find new best known solutions for
very large instances whose exact solutions are yet unknown.

12.6 Conclusions

Throughout this chapter we have surveyed existing work on MAs that incorporate at
some level a complete technique. Several notes have to be done here. Notice firstly
from a ‘terminological’ point of view that many evolutionary techniques hybridized
with complete techniques can be considered memetic regardless of whether a clas-
sical trajectory-based local search algorithm is also used or not. For example, in
an evolutionary algorithm that used an exact technique for recombination, the latter
could be regarded as a generalized local-search operator working on set of solutions
rather than on single solutions, and using a neighborhood composed of all solu-
tions in the corresponding dynastic potential. This is also related to the so-called
crossover hill-climbing idea defined in [536] for continuous optimization.

From a practical point of view, this kind of hybrid approaches must carefully
control the computational complexity of the problems submitted to complete search.
This draws again a connection to parameterized complexity by noting that this com-
plexity is typically related to some structural parameter of the problem (e.g., a higher
similarity of the parents during exact recombination reduces the size of the dynastic
potential, thus making its exploration more amenable in principle). Even though no
efficient (in the FPT sense) algorithmic resolution were available for the problem at

200 C. Cotta, A.J.F. Leiva, and J.E. Gallardo

hand, the combinatorial explosion could be kept within acceptable levels by check-
ing these parameters and resorting to other approaches (truncated exact search, fast
heuristic search, or even a blind procedure) if the possibility of a prohibitive com-
putational cost cannot be excluded prior to a certain invocation of the complete
method.

The any-time nature of MAs has to be considered as well. Whether a hybrid ap-
proach including complete techniques is itself complete or not, it is very important
that it provides better and better solutions for any increasing computational budget
allowed. This is not always possible within the context of complete techniques, e.g.,
a B&B algorithm using a best-first policy may exhaust its allotted time and/or mem-
ory without producing a single feasible solution. On the other hand, the very same
B&B algorithm using a LIFO policy may quickly provide a solution but take a long
time to improve it. MAs are however ideal for anytime search, and this can be ex-
ploited in a synergistic combination. Note for example that a parallel collaborative
model using a MA and an exact technique may end up providing both an upper and
a lower bound for the optimal solution, and the higher the computational budget
available, the tighter these bounds will be.

Acknowledgements. This work is supported by Spanish MICINN under project NEMESIS
(TIN2008-05941) and Junta de Andalucı́a under project TIC-6083.

Chapter 13
Multiobjective Memetic Algorithms

Andrzej Jaszkiewicz, Hisao Ishibuchi, and Qingfu Zhang

13.1 Introduction

Multiple conflicting points of view, which are often taken into account in real life
applications, naturally result in a multiple objective optimization problem (MOP)
[848]. In order to find the best compromise solution of a MOP, or a good approx-
imation of it, Multiobjective Optimization (MOO) methods need some preference
information from a decision maker. According to when and how the preference in-
formation is used in the solution procedure, MOO methods can be classified as
either methods with a priori, a posteriori, or progressive (interactive) articulation of
preferences [400].

In recent years, the demand for new applications and the increasing computing
power have led to growing interest in computationally hard multiobjective prob-
lems, e.g. nonlinear or combinatorial optimization problems. These problems arise
in many areas such as scheduling, timetabling, production facilities design, vehicle
routing, telecommunication routing, investment planning and location. Problems of
this kind are difficult to solve even in the single objective case. Encouraged by the
success of metaheuristics in single-objective optimization (see e.g. [694]), much
effort has been made in developing MOO metaheuristics.

Andrzej Jaszkiewicz
Poznan University of Technology, Institute of Computing Science, Piotrowo 2,
60-965 Poznan, Poland
e-mail: jaszkiewicz@cs.put.poznan.pl

Hisao Ishibuchi
Department of Computer Science and Intelligent Systems, Osaka Prefecture University,
1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
e-mail: hisaoi@cs.osakafu-u.ac.jp

Qingfu Zhang
The School of Computer Science & Electronic Engineering University of Essex,
Colchester, CO4 3SQ, UK
e-mail: qzhang@essex.ac.uk

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 201–217.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

202 A. Jaszkiewicz, H. Ishibuchi, and Q. Zhang

Traditional MOO methods usually assume that an underlying single-objective
exact solver is available. This solver is used to solve a series of substitute single-
objective optimization problems sequentially. The objective functions of these sub-
stitute optimization problems could be an aggregation function of the individual
objectives of the MOP in question. Their optimal solution can be Pareto optimal
solutions of the MOP under some conditions. However, for many hard MOPs, no
efficient exact solvers are available. One can use a single-objective metaheuristic
instead of an exact solver. A single run of the metaheuristic can generate a single
approximate Pareto-optimal solution and therefore many runs are required to gener-
ate multiple solutions. This approach is simple but not very efficient.

Many dedicated multiobjective metaheuristics have recently been developed
[131, 196, 418]. These methods aim at generating in a single run a set of solu-
tions for approximating the whole Pareto optimal front. The set of solutions could
be then presented to the decision maker (DM) to allow it to choose the best compro-
mise solution in a posteriori or interactive manner [422].

A multiobjective metaheuristic is often a modified version of a single objective
heuristic method. It is natural to expect that the best results may be achieved by
adapting the most efficient single objective methods to the multiobjective problems.
Memetic algorithms proved to be one of the most efficient metaheuristic paradigms
for single objective optimization [618]. For this reason, many attempts have been
made to extend memetic algorithms to multiobjective optimization.

The purpose of this review is to present and discuss basic concepts in multiob-
jective memetic algorithms and to characterize some state-of-the-art algorithms. In
the next section, we introduce some basic definitions in MOO. In the third section,
we discuss the main ideas in multiobjective memetic algorithms. The fourth section
presents several typical multiobjective memetic algorithms. Some specific imple-
mentation issues are discussed in the fifth section. In the last section we discuss
some further research topics in this area.

13.2 Basic Definition and Concepts

In this section, we introduce some basic concepts and aggregation functions in mul-
tiobjective optimization.

13.2.1 Basic Concepts

A multiobjective optimization problem (MOP) can be stated as follows:

maximize F(x) = (f1(x), . . . , fm(x)) (13.1)

subject to x ∈ Ω

where Ω is the decision space, F : Ω → Rm consists of m real-valued objective
functions. Rm is called the objective space. The attainable objective set is defined
as the set {F(x)|x ∈ Ω}.

13 Multiobjective Memetic Algorithms 203

Ω can be a subset of a base set S and often be described by several constraints
C1, . . . ,Ck. i.e.

Ω = {x ∈ S|x satisifies all the constraints C1, . . . ,Ck}. (13.2)

In this case,Ω is called the feasible solution space and any solution in Ω is a feasible
(candidate) solution. A solution in S is infeasible if it is not in Ω , in other words, it
violates at least one constraint.

If x ∈ Rn, all the objectives are continuous and Ω is described by

Ω = {x ∈ Rn|h j(x) � 0, j = 1, . . . ,k}, (13.3)

where h j are continuous functions, we call (1) a continuous MOP. If Ω is a finite or
countably infinite set, then (1) is a combinatorial MOP.

Domination is widely used to compare different solutions in multiobjective opti-
mization.

Definition 13.1. Let u,v∈ Rm, u is said to dominate v if and only if ui � vi for every
i ∈ {1, . . . ,m} and u j > v j for at least one index j ∈ {1, . . . ,m}1.

Domination defines a strict partial ordering in the objective space- not any two vec-
tors are comparable based on domination. For example, (1,0) and (0,1) do not
dominate each other.

Definition 13.2. Let x,y ∈Ω , x is said to dominate y if and only if F(x) dominates
F(y).

Obviously, a rational decision maker prefers x to y if x dominates y.

Definition 13.3. x∗ ∈Ω is a Pareto optimal solution and F(x∗) is a Pareto optimal
vector to (13.1) if no other solution in Ω can dominate x∗. The set of all the Pareto
optimal solutions is called the Pareto optimal set (PS) and the set of all the Pareto
optimal vectors is the Pareto front (PF).

We should point out that the above definition refers to the global optimality. x is
called locally Pareto optimal if it cannot be dominated by any solutions in a neigh-
borhood of x.

In many real-life applications of multiobjective optimization, an approximation
to the PF is required by a decision maker for selecting the final preferred solution.
Most MOPs may have many or even infinite Pareto optimal vectors. It is very time-
consuming, if not impossible, to obtain the complete PF. On the other hand, the
decision maker may not be interested to have an unduly huge number of Pareto
optimal vectors to deal with due to overflow of information. Therefore, many multi-
objective optimization algorithms are to find a manageable number of approximate
Pareto optimal solutions to approximate the Pareto set or Pareto front. Researchers
and practitioners are often more interested in approximating the Pareto front than

1 This definition of domination is for maximization. All the inequalities should be reversed
if the goal is to minimize the objectives in (13.1).

204 A. Jaszkiewicz, H. Ishibuchi, and Q. Zhang

the Pareto set because the objective space is of lower dimension and it is easy to
visualize an approximate Pareto front. However, recent work has shown that ap-
proximation of the Pareto set is also very important.

Definition 13.4. Given a set of solutions P, x ∈ P is called a nondominated solution
in P if no solution in P can dominate x.

Many multiobjective metaheurstics are based on Pareto dominance. These methods
often select nondominated solutions from a set of solutions.

Definition 13.5. zid = (z1, . . . ,zm) is called the ideal objective vector if zi is the max-
imal function value of fi(x) over Ω .

Definition 13.6. znadir = (z1, . . . ,zm) is call the nadir objective vector if

zi = in f{yi|(y1, . . . ,ym) ∈ PF} (13.4)

Ideal objective vectors and nadir vectors in the objective space are the upper and
lower bounds of the PF, which are of interest since they are useful for determin-
ing the range of the Pareto front and for normalizing the objectives so that all the
objectives in the same range. A typical normalization is:

fi(x)← fi(x)− znad
i

zi− znad
i

(13.5)

It might be not practical to obtain the exact ideal and nadir vectors, one can substitute
them by approximate ones.

13.2.2 Aggregation Functions

In traditional optimization, a widely-used strategy for dealing with a MOP is to
aggregate all the individual objective functions and then optimize the aggregation
function. In the following, we introduce three popular aggregation approaches.

13.2.3 Weighted Sum Approach

This approach considers a convex combination of the different objectives. Let λ =
(λ1, . . . ,λm)T be a weight vector, i. e., λi � 0 for all i = 1, . . . ,m and ∑m

i=1λi = 1.
Then the aggregated function is

gws(x|λ) =
m

∑
i=1

λi fi(x). (13.6)

where we use gws(x|λ) to emphasize that λ is a coefficient vector in this objective
function while x is the variables to be optimized. A maximal solution of a weighted
sum function is Pareto optimal to (13.1) if all the weights are positive. Moreover,

13 Multiobjective Memetic Algorithms 205

for any Pareto optimal solution x∗ to a convex MOP, there exists a weight vector
such that x∗ is the maximal solution to (13.6). However, for a non-convex MOP,
there may exist a Pareto optimal solution which is not a maximal solution to any
weighted sum function.

13.2.4 Tchebycheff Approach

In this approach, the aggregation function to be minimized is in the form

gte(x|λ ,z∗) = max
1�i�m

{λi(−z∗i − fi(x))} (13.7)

where z∗ is the ideal point or a point dominated by the ideal point. Each Tchebycheff
aggregation function has at least one global minimum which is Pareto optimal to
(13.1). Under some mild conditions for each Pareto optimal point x∗, there exists a
weight vector λ such that x∗ is an optimal solution of (13.7). Therefore, one is able
to obtain different Pareto optimal solutions by altering the weight vector.

One weakness with this approach is that its aggregated function could be flat in
some regions. To overcome it, the following aggregated function can be used:

gte(x|λ ,z∗)+ρgws(x|λ) (13.8)

Aggregation methods are still a very active research topic in traditional optimization.
The readers interested in more detail about aggregation methods may wish to consult
[233, 241, 599].

13.3 Adaptation of Memetic Algorithms for Multiobjective
Optimization – Basic Concepts

Memetic algorithms have to evaluate or compare a set of solutions at each generation
for determining their contribution to the next generation. In the single objective case,
several different evaluation functions or mechanisms have been used and studied in
solution evaluation, the objective function itself, however, is the most natural and
widely used evaluation function [618]. In multiobjective optimization, no such a
natural choice for the evaluation exists. The evaluation mechanism is one of the
major issues in the design of multiobjective memetic algorithms. A good evaluation
mechanism should guide the solutions generated to

• approach the Pareto front,
• and at the same time disperse over all (or some desired) regions of the Pareto

front.

Two main classes of evaluation mechanisms have been proposed for multiobjective
memetic algorithms, i.e., mechanisms based on the dominance relation and mech-
anisms based on aggregation functions. Of course, these two mechanisms could be
hybridized together. Below we discuss these two evaluation mechanisms.

206 A. Jaszkiewicz, H. Ishibuchi, and Q. Zhang

13.3.1 Dominance-Based Evaluation Mechanisms

As pointed out in Section 2, the dominance relation defines a partial order in the set
of all feasible solutions. All the Pareto-optimal solutions are the best with respect to
this order. Therefore, the use of dominance relation in evaluation mechanisms cre-
ates a selection pressure towards the Pareto front. Dominance relation alone leaves,
however, many pairs of solutions incomparable. For this reason, dominance relation
on its own may not be able to define a single best solution in a neighborhood or in
a tournament. Thus, multiobjective memetic algorithms need additional evaluation
mechanisms with dominance relation to distinguish different solutions.

Probably, the most popular dominance based evaluation mechanism is Pareto
ranking, which was originally suggested by Goldberg [325] and has been widely
used in multiobjective evolutionary algorithms (see e.g.[131, 196]). In this mech-
anism, the dominance relation is used to rank all the solutions in the current pop-
ulation. Different algorithms may use slightly different versions of Pareto ranking.
Srinivas and Deb [844] used the most direct implementation of the Goldberg’s idea
in their Nondominated Sorting Genetic Algorithm (NSGA) [199]. It assigns rank
1 to all solutions nondominated in the current population. Then, the nondominated
solutions are temporarily removed from the population and the next rank is assigned
to the solutions nondominated in the remaining part of the population. The process
is continued until all solutions in the population are ranked.

Dominance relation may also be used to guide local search-based memetic algo-
rithms. For example, Knowles and Corne [472, 473] proposed a greedy local search
method mainly based on dominance relation. Their idea is to accept a new neigh-
borhood solution if it dominates the current solution. In population-based Pareto
local search [21, 50, 705], the neighborhood of each solution of the current popula-
tion is explored, and if no solution of the population weakly dominates a generated
neighbor, the neighbor is added to the population.

An obvious advantage of dominance relation is its independence on any mono-
tonic transformation of objective functions. Furthermore, particular dominance-
based evaluation mechanisms are usually very simple and have no or few param-
eters. For example, Pareto local search is a fully parameter-free method.

Dominance-based evaluation mechanisms may have, however, some significant
disadvantages. Although dominance relation assures the pressure towards the Pareto
front, it does not necessarily assure the dispersion of the solutions over all regions
of the Pareto front. Thus, the basic method often needs to be extended by intro-
ducing some additional dispersion mechanisms. For example, several researchers
[276, 472, 844] suggested the use of fitness sharing to improve Pareto ranking. The
idea is to penalize a solution if it is too close, either in the objective or in the decision
space, to some other solutions in the current population. Note that many fitness shar-
ing techniques use some kind of distance measures in the objective space. Hence,
the techniques are not invariant of scaling and more general of monotonic transfor-
mation of objective functions.

Another disadvantage of dominance-based evaluation mechanisms is that the se-
lection pressure decreases with the growing number of objectives. The larger the

13 Multiobjective Memetic Algorithms 207

number of objectives is, the lower the chance that one of two solutions dominates
the other. In particular, a population of a multiobjective memetic algorithm may
easily contain mainly or only mutually non-dominated solutions which are incom-
parable based on the dominance relation.

Increasing the number of objectives may also deteriorate the efficiency of algo-
rithms based purely on the dominance relation. For example, in the case of Pareto
local search, the number of neighborhood solutions to be accepted may become very
large, and the size of the population to be maintained may grow enormously.

Furthermore, efficient single-objective local search algorithms usually use a
number of advanced, problem-specific speed-up techniques based on the proper-
ties of the objective function. Such techniques often cannot be directly adapted to
dominance-based mechanisms. There is still very little work that applies speed-up
techniques in local search algorithms based on dominance relations [542].

13.3.2 Aggregation Function-Based Evaluation Mechanisms

Evaluation of new solutions with the use of Aggregation functions is another typi-
cal evaluation mechanism. Aggregation functions have well-established theoretical
properties as tools for generating Pareto-optimal solutions in traditional MOO (see
section 2). Thanks to these properties of Aggregation functions, their use also in-
duces a pressure towards the Pareto front. Of course, a single Aggregation function
would guide a metaheuristic towards a single Pareto solution. This drawback could
be, however, overcome by the use of multiple Aggregation functions defined by vari-
ous weight vectors. For example, Serafini [805] used the mechanism of random walk
to modify the weights randomly in each iteration. Ulungu et al. [897] and Zhang
and Li [957] used a predefined set of well dispersed weight vectors. Czyzak and
Jaszkiewicz [696] and Hansen [358] modified the weights deterministically in each
iteration in order to obtain a form of repulsion between a population of solutions,
Hajela and Lin [350] allowed the weights to evolve during the search. Ishibuchi
and Murata [409] and Jaszkiewicz [419] generated weight vectors randomly in each
iteration.

An important advantage of Aggregation functions-based evaluation mechanisms
is the fact that by the use of various weight vectors they naturally assure dispersion
of the search over all regions of the Pareto front. Thus, no additional dispersion
mechanisms like the fitness sharing are needed. Another advantage of such mecha-
nisms is that many speed-up techniques may easily be used in local search based on
Aggregation functions.

A disadvantage of Aggregation functions-based evaluation mechanisms is their
dependence on monotonic transformations of objective functions. A simple change
of units in one objective may significantly deteriorate the algorithm performance. It
is thus very important to assure that all the objectives take their values in comparable
ranges. It may be achieved with the use of normalized objective values (see section
2). Some methods, e.g. Jaszkiewicz’s MOGLS [420], perform automatic scaling of
objectives.

208 A. Jaszkiewicz, H. Ishibuchi, and Q. Zhang

According to the properties mentioned in section 2, weighted Tchebycheff and
composite Aggregation functions have the advantage over linear Aggregation func-
tions of being able to generate all Pareto optimal solutions. Note, however, that the
properties concern only optimal solutions of the Aggregation functions. A subop-
timal solution of a linear Aggregation function found by a metaheuristic may ap-
pear to be a nonsupported Pareto optimal solution. Some experiments indicated that
the use of linear Aggregation functions may yield better results for some particular
problems (see e.g. [359, 419]). Nevertheless, weighted Tchebycheff or composite
Aggregation functions should still be considered as the first choice for Aggregation
functions-based evaluation mechanisms.

13.3.3 Problem Landscapes in Multiobjective Optimization

Intuitively, a problem (fitness) landscape is a graph where solutions play the role
of vertices and edges indicate the neighborhood relation or a distance measure in
the decision space between solutions [581, 618, 762]. In the single-objective case,
it is labeled on vertices with real values of the fitness function. In the multiobjective
case, it is labeled with vectors of real values.

A simple conclusion of the No free lunch theorem [940] is that no optimization
algorithm may work for all possible landscapes. The properties of landscapes may
be analyzed e.g. by the distance between local optima [76], fitness-distance corre-
lation [581] or scatter plots of fitness versus distance. Several authors observed that
single-objective memetic algorithms perform very well for problems with the ’big
valley’ property. This property means that there is a correlation between quality of
solutions and their distance, i.e. good solutions tend to be located close according
to some distance measure in the decision space.

Landscape analysis of multiobjective problems has not achieved significant at-
tention yet. Very few such studies have been performed [276, 357]. However, it is
natural to expect that (approximately) Pareto-optimal solutions do not need to be
close in the decision space. For example, Pareto-optimal solutions corresponding
to optima of particular objectives may be very distant in the decision space if the
objectives are independent or conflicting. On the other hand, some solutions close
in the objective space may also be close in the decision space [357].

This observation puts some new light on the typical statement that ”population-
based methods are ideal candidates for solving multiobjective problems” (see e.g.
[196], Preface). In fact, single-objective population-based methods are rather de-
signed to converge towards the vicinity of good solutions, and some natural conver-
gence mechanism, e.g. genetic drift [328], may be beneficial in the single-objective
case. The same convergence may, however, cause a multiobjective population-based
method converge to a sub-region of the Pareto front only. Thus, dispersion mech-
anisms that are ’side’ elements of single-objective algorithms may become crucial
in the multiobjective case. Indeed, some studies indicate that various population-
based methods have problems with assuring proper dispersion of solutions even if
the convergence to the Pareto front is very good [420].

13 Multiobjective Memetic Algorithms 209

Furthermore, the ’big valley’ property and the convergence of the population well
explain the effectiveness of recombination operators. The recombination constructs
a new solution by combining properties of the parents, and so, creating a solution
being close to the parents and other good solutions. This offspring solution may be
then efficiently improved by local search. In fact, some very successful recombina-
tion operators such as respectful operators [581] are directly designed to preserve
properties common to both parents.

In multiobjective cases, the population may contain some very distant solutions
with few or no common properties. Recombination of such solutions does not need
to produce good offspring and may deteriorate efficiency and effectiveness of the
whole algorithm. Thus multiobjective memetic algorithms may require some spe-
cialized mechanisms for selection of promising parents for recombination [412].

13.3.4 Archive of Potentially Pareto-optimal Solutions

In the single-objective case, the outcome of the algorithm should be the best solu-
tion found, even if in some cases it is not contained in the final population. In the
multiobjective case, an analogue of the single best solution is the set of potentially
Pareto-optimal solutions, i.e. solutions that are not dominated by any other solutions
generated by the algorithm. Some initial population-based multiobjective memetic
algorithms did not take this fact into account and assumed that their outcome is the
final population. This means that many potentially Pareto-optimal solutions could
have been lost. Thus, it is natural to maintain an additional archive of potentially
Pareto-optimal solutions. Please note, however, that the size of this archive may
become enormously large and its maintenance may become the main factor influ-
encing the efficiency of the algorithm. Thus some techniques for reduction of the
archive size have been proposed.

13.3.5 Evaluation of Multiobjective Memetic Algorithms

With the increasing number of multiobjective memetic algorithms and other meta-
heuristics, the issue of their evaluation and comparison becomes of crucial impor-
tance. Although full evaluation of single objective metaheuristics is already a com-
plicated task that involves many aspects like quality of results and computational
efficiency, some difficulties are specific to the multiple objective case. In the sin-
gle objective case, when two algorithms generate two solutions, their comparison
is straightforward. Either one of the solutions is better or they are equally good on
the single objective function. In the multiobjective case we are dealing with evalua-
tion and comparison of sets of solutions from the point of view of multiple criteria.
In some cases, two sets of potentially Pareto-optimal solutions may be compared
based on the dominance relation only with the use of so-called set outperformance
relations [421, 970]. For example if all solutions in one set are covered (are domi-
nated or equal) by solutions from another set the latter should be considered better.
These relations leave, however, many pairs of sets incomparable. Thus, a number of

210 A. Jaszkiewicz, H. Ishibuchi, and Q. Zhang

quality indicators have been proposed. The quality indicators, usually, assign a sin-
gle real value to each set. It is natural to expect that the proper quality indicators
should properly rank sets comparable with set outperformance relations. Several
quality indicators like hypervolume or R-indicator have this property. For detailed
analysis of this issue see e.g. [421, 969, 970].

13.4 Examples of Multiobjective Memetic Algorithms

13.4.1 MOGLS of Ishibuchi and Murata

Ishibuchi and Murata [409] proposed multiobjective genetic local search (MOGLS),
which is the first well-known multiobjective memetic algorithm. Their MOGLS uses
a weighted sum fitness function for parent selection and local search. Pareto domi-
nance is used only for maintaining an archive population. The archive population is
updated at every generation so that it includes all non-dominated solutions among
examined ones during the current execution of MOGLS. At each generation, the
weight vector is randomly updated when a pair of parents is selected from the cur-
rent population by roulette wheel selection based on the weighted sum fitness func-
tion. An offspring is generated from the selected pair of parents. The current weight
vector is used for local search from the generated offspring. When the next pair
of parents is selected, the weight vector is randomly updated. In this manner, the
next population is generated by iterating random weight update, parent selection,
crossover, mutation and local search. Some non-dominated solutions in the archive
population are randomly selected and added to the current population as elite indi-
viduals. MOGLS of Ishibuchi and Murata [409] has some good properties such as
the use of archived non-dominated solutions as parents and the use of aggregation
functions with multiple weight vectors. Its performance, however, is not so high be-
cause its implementation is too naive. Its performance can be easily improved by
a number of simple tricks such as the increase in the selection pressure for parent
selection, the choice of a good starting solution for local search with the current
weight vector, and the specification of a good balance between genetic search and
local search [409, 410].

13.4.2 M-PAES

Memetic Pareto Archived Evolution Strategy (M-PAES) method proposed by
Knowles and Corne [472, 473] is a memetic algorithm based fully on the dominance
relation. The method is composed of two sequential phases - local search phase and
recombination phase. In the local search phase the local search is independently ap-
plied to each starting solution. The local search is based on the dominance relation.
The new neighborhood solution is rejected if it is dominated by the current solution,
and accepted if it dominates the current solution. If the two solutions are mutually
nondominated, the two solutions are compared with a local archive of potentially
Pareto-optimal solutions and the one from a less crowded region is accepted. This

13 Multiobjective Memetic Algorithms 211

acceptance rule is an additional dispersion mechanism. In recombination phase, ran-
domly selected solutions from the current population created in local search phase
and solutions from global archive of potentially Pareto-optimal solutions are re-
combined. The acceptance criterion of the offspring again takes into account both
dominance relation and location in the more or less crowded region of the global
archive. Although the method uses some dispersion mechanism in both phases, the
experiment in [420] indicated that the method may be strongly affected by genetic
drift.

13.4.3 NSGA-II with LS

Deb and Goel [198] proposed an algorithm in which local search is used to im-
prove results of a standard multiobjective evolutionary algorithm. The method com-
bines dominance-based and aggregation functions-based guiding mechanisms. The
method starts by using Nondominated Sorted Genetic Algorithm-II NSGA-II that
uses recombination and some dominance-based elitist dispersion mechanism. The
algorithm is fully based on the dominance relation. Pairs of solutions are selected
from the current population by binary tournament selection based on the dominance
relation and a crowding measure. In the second phase each solution generated by
NSGA-II is a starting point for local search. The local search is based on weighted
linear aggregation functions. The weight vector is set automatically depending on
the location of the solution in comparison to other solutions. Intuitively, solutions
located close to the best value on a given objective will have a large weight value
corresponding to this objective. In other words, each solution is pushed in the di-
rection in which it is already good. The authors report that the hybrid approach
improves performance of NSGA-II on a number of engineering design problems.

Cheng et al. [125] also proposed a multiobjective memetic algorithm based on the
NSGA II method [199]. In each generation of NSGA-II they apply local search to
just one potentially Pareto-optimal solution. To choose this solution a weighted lin-
ear aggregation function is drawn at random. Then 2-tournament based on the cur-
rent aggregation function is used to select the single solution to which local search
is applied. The method is applied to the multiobjective job shop scheduling problem
on which the method performs better than a benchmark non-memetic evolutionary
algorithm.

Garret and Dasgupta [304] hybridized NSGA II with a variant of tabu search for
the multiobjective quadratic assignment problems. They studied the influence of the
length of tabu search runs and noticed that with increasing number of objectives it
becomes more beneficial to perform more short runs.

13.4.4 MOGLS of Jaszkiewicz

Jaszkiewicz has proposed a multiobjective genetic local search (MOGLS) method
based on the aggregation functions guiding mechanism [419]. Alike the MOGLS of
Ishibuchi and Murata a random weight vector of the aggregation function is drawn in

212 A. Jaszkiewicz, H. Ishibuchi, and Q. Zhang

each iteration. In a single iteration, two solutions are recombined and local search,
or, more generally, a specialized heuristic, is applied to the offspring. The local
search optimizes the current aggregation function. The random selection of weight
vectors assures dispersion over all regions of the Pareto front. In each iteration, the
search is pushed in a different direction but always towards the Pareto front. The
method uses a relatively large population of solutions and some effort is made to
define its size automatically. The solutions for recombination are also drawn based
on the current aggregation function. In the original version parents are drawn at ran-
dom from among some (e.g. 20) solutions being the best on this function. Thus only
solutions being very good from the point of view of the current aggregation function
could be recombined. This technique gives a high chance of constructing a new solu-
tion that performs well on the same function. In the improved version called Pareto
memetic algorithm [421], this selection was based on the tournament selection with
many solutions taking part in the single tournament. This mechanism improves effi-
ciency of the selection. The method has been applied to the multiobjective traveling
salesperson problem (TSP) [419], multiobjective knapsack problem [420], and mul-
tiobjective set covering problem [421]. In [423] it has been combined with a very
efficient Lin-Kernighan local search for single objective TSP. Since a weighted lin-
ear aggregation function was used in this case, it was possible to directly apply the
Lin-Kernighan method for the standard single objective TSP.

13.4.5 RM-MEDA

RM-MEDA (Regularity Model-Based Multiobjective Estimation of Distribution Al-
gorithm) [957] for continuous MOPs is a an example of utilizing problem-specific
knowledge in designing multiobjective heuristics. Under certain smoothness as-
sumptions, the PS of a continuous MOP defines a piecewise continuous (m− 1)-
dimensional manifold in the decision space. where m is the number of the objectives.
Therefore, the PS of a continuous bi-objective optimization problem is a piecewise
continuous curve in Rn while the PS of a continuous MOP with three objectives is
a piecewise continuous surface. The idea behind RM-MEDA is to force its popula-
tion to converge to a (m− 1) piecewise continuous (m− 1)-dimensional manifold.
At each generation, RM-MEDA firstly extracts statistical information from some se-
lected good solutions and then estimates the distribution of Pareto optimal points by
using a probability model whose centroid is a (m− 1)-dimensional manifold. New
solutions are generated by sampling from the model thus built. The major compu-
tational overhead in RM-MEDA lies in model building. It is very costly to build a
very accurate model. The local principal component analysis, a low-cost statistical
algorithm, has been used for modeling. The experimental results have demonstrated
that RM-MEDA works well, particularly when the PS is not a linear manifold. Re-
cently, RM-MEDA has been generalized to the case when the dimensionality of the
PS is unknown [961].

13 Multiobjective Memetic Algorithms 213

13.4.6 MOEA/D

MOEA/D (multiobjective evolutionary algorithm based on decomposition) [955] is
a simple and generic multiobjective metaheuristic. It uses a aggregation method to
decompose the MOP into N single objective optimization subproblems and solves
these subproblems simultaneously (where N is a control parameter set by users).
In MOEA/D, N procedures are employed and different procedures are for solv-
ing different subproblems. A neighborhood relationship among all the subproblems
(procedures) is defined based on the distances of their weight vectors. Neighboring
subproblems should have similar fitness landscapes and optimal solutions. There-
fore, neighboring procedures can speed up their searches by exchanging informa-
tion. In a simple version of MOEA/D [955] , each individual procedure keeps one
solution in its memory, which could be the best solution found so far for its subprob-
lems; it generates a new solution by performing genetic operators on several solu-
tions from its neighboring procedures, and updates its memory if the new solution
is better than old one for its subproblem. A procedure also passes its new generated
solution on to some (or all) of its neighboring procedures, who will update their
current solutions if the received solution is better. A major advantage of MOEA/D
is that single objective local search can be used in each procedure in a natural way
since its task is for optimizing a single objective subproblem. Several improvements
on MOEA/D have been made recently. Li and Zhang suggested using two different
neighborhood structures for balancing exploitation and exploration [516]. Zhang
et al [961] proposed a scheme for dynamically allocating computational effort to
different procedures in MOEA/D in order to reduce the overall cost and improve
the algorithm performance, this implementation of MOEA/D is efficient and effec-
tive and has won the CEC’09 MOEA competition. Nebro and Durillo developed a
thread-based parallel version of MOEA/D [652], which can be executed on multi-
core computers. Palmers et al. proposed an implementation of MOEA/D in which
each procedure recorded more than one solutions [699]. Ishibuchi et al. proposed
using different aggregation functions at different search stages [413].

13.4.7 MGK Population Heuristic

Gandibleux at al. [301] proposed a hybrid population heuristic for combinatorial
problems. They used a Pareto ranking-based evolutionary algorithm as the popula-
tion heuristic. The algorithm starts by seeding the initial population with some very
good solutions. The solutions may be supported by Pareto-optimal solutions found
by either an exact or approximate method. Furthermore, local search is applied dur-
ing the run of the method. The method has been applied to a permutation scheduling
problem and to the knapsack problem.

214 A. Jaszkiewicz, H. Ishibuchi, and Q. Zhang

13.4.8 Memetic Approach by Chen and Chen

Chen and Chen [124] combine a dominance-based local search with a Pareto
ranking-based multiobjective evolutionary algorithm. They use a special kind of
local search with several species exploiting different regions in the objective space.
The method has been applied to the problem of flexible process sequencing.

13.4.9 SPEA2 with LS

Schuetze et al. [797] combined SPEA2 [968] algorithm with local search for con-
tinuous multiobjective problems. They developed Hill-Climber with Sidestep pro-
cedure based on the dominance relation than can move either towards or along the
Pareto front. They reported significant improvements of the performance in com-
parison to the standard SPEA2 algorithm.

SPEA2 was also hybridized with a gradient-based local search for continuous
problems by Harada eta al. [365]. They compared two approaches, GA with local
search and GA then local search. They reported better performance of the latter for
continuous problems.

13.4.10 Interactive Memetic Algorithm by Dias et al.

Dias et al. [212] proposed an interactive multiobjective memetic algorithm. The al-
gorithm optimizes an aggregation function based on the preferences of the decision
maker. The algorithm works like a standard single objective memetic algorithm,
however, the whole set of potentially Pareto-optimal solutions may be presented
to the decision maker. The algorithm uses hot start technique. When the decision
maker changes his/her preferences the current population is optimized further with
a new aggregation function. The algorithm has been applied to the dynamic location
problem.

13.4.11 SMS-EMOA with Local Search

Koch et al. [475] hybridized SMS-EMOA [64] with a gradient-based local search
for continuous problems. SMS-EMOA in an indicator-based evolutionary algorithm
that optimizes the hypervolume of the dominated space. The authors used a multi-
objective Newton method.

13.5 Implementation of Multiobjective Memetic Algorithms

When we implement a multiobjective memetic algorithm for a particular MOO
problem, we have a large number of options in its design. This means that we have a
number of implementation issues to be taken into account. Typical issues are as fol-
lows: choice of a population-based multiobjective global search algorithm, choice

13 Multiobjective Memetic Algorithms 215

of a local search algorithm, timing of local search, selection of starting points for
local search, and allocation of the available computation time to global search and
local search. Each of these issues is briefly explained in the following:

1. The choice of a population-based multiobjective global search algorithm: This
choice includes the related settings in the chosen global search algorithm (e.g., cod-
ing of solutions, genetic operators, parameter specifications, etc.). In early proposals
of multiobjective memetic algorithms, evolutionary algorithms were mainly used
for global search. This is because other population-based multiobjective algorithms
were not popular in 1990s. Recently various multiobjective algorithms have been
proposed based on different population-based global search mechanisms such as
particle swarm optimization [134], ant colony optimization [214], and differential
evolution [30, 769]. New types of multiobjective evolutionary algorithms have been
also proposed based on estimation of distribution algorithms [957], indicator-based
algorithms [64, 244, 967], and multiple aggregation functions [967]. As a result, we
have a wide variety of options with respect to the global search part of multiobjective
memetic algorithms.

2. The choice of a local search algorithm such as hill-climbing, simulated an-
nealing and tabu search: This choice includes the related settings in the chosen local
search algorithm (e.g., a generation mechanism of a neighboring solution, an ac-
ceptance criterion of neighbors, a termination condition of local search, etc.). The
specification of an acceptance criterion is usually the same as the choice of a lo-
cal search guiding mechanism. Problem-specific heuristics can be incorporated into
local search, which usually improves the search ability of multiobjective memetic
algorithms [413]. In the case of combinatorial optimization, generation mechanisms
of neighbouring solutions in local search are usually similar to mutation operators
in evolutionary algorithms. That is, new solutions are generated in a similar man-
ner in local search and mutation whereas they have different acceptance criteria. On
the other hand, different mechanisms are often used to generate new solutions in
local search and mutation when multiobjective memetic algorithms are designed for
continuous optimization. This is because the gradient information of objective func-
tions is often used in local search to find better solutions whereas mutation usually
modifies a part of the current solution randomly.

3. Timing of local search: Local search can be combined with a population-based
multiobjective global search algorithm in various manners with respect to the timing
of local search. Usually local search is invoked at every generation of a population-
based multiobjective global search algorithm. In this case, local search starts from
an offspring in global search. That is, global search can be viewed as providing local
search with good starting points. Then the improved solutions by local search are
used as parents in global search. That is, local search can be viewed as providing
global search with good parents. In this manner, a population of solutions is improved
by alternately using global search and local search. Local search is not necessarily
to be used at every generation. For example, it can be used at every 10 generations
or every 100 generations. One extreme case is the use of local search only before
global search. In this case, local search can be viewed as generating a good initial
population for global search. The basic idea behind this implementation is ”better

216 A. Jaszkiewicz, H. Ishibuchi, and Q. Zhang

solutions may be obtained by recombining good locally-optimal solutions”. Another
extreme case is the use of local search only after global search. In this case, global
search can be viewed as generating good starting points for local search. In other
words, local search can be viewed as being used for the final improvement of global
search results. The basic idea behind this implementation is ”the local search ability
of population-based algorithms is not high” and ”better solutions may exist in the
vicinity of good solutions”.

4. Choice of staring points for local search: When local search is applied, start-
ing points should be chosen from the current (or offspring) population. One naive
implementation is to apply local search to all solutions in the current population.
Another implementation is to apply local search to each solution probabilistically.
Of course, other mechanisms can be implemented to choose starting points for local
search such as the choice of only a small number of very good solutions with respect
to some local search guiding mechanisms and the application of local search only
to non-dominated solutions.

5. Allocation of available computation time to global search and local search: In
single-objective memetic algorithms, many more solutions are usually examined by
local search than population-based global search. This is not a bad strategy because
the goal of single-objective optimization is usually to find a single optimal solution.
In the case of multiobjective optimization, however, it is not a good strategy to spend
too much computation time on local search for a specific direction even if some
Pareto optimal solutions can be found by local search. This is because the goal
of multiobjective optimization is not to find some Pareto optimal solutions but to
approximate the entire Pareto front. We need to search for Pareto optimal solutions
in various directions. Thus we should not spend too much computation time on
local search for a specific direction. As a result, it is very important to allocate
available computation time to global search and local search [411]. Moreover the
computation time for local search should be appropriately reallocated to various
local search directions.

As we have already explained in a previous subsection, landscape analysis is very
useful in the design of efficient multiobjective memetic algorithms. For example, if
a multiobjective problem has many local optima where local search is trapped, it
may be a better idea to shallowly examine only a few neighbors of many start-
ing points rather than to deeply examine many neighbors of a few starting points.
However, the landscape of real-world multiobjective problems is often unknown. In
that case, it is important to understand characteristics of each component of mul-
tiobjective memetic algorithms. For example, if a local search algorithm with high
search ability towards the Pareto front is available, it may be a good idea to use a
population-based global search algorithm with high diversity maintenance ability.
On the other hand, if we use a population-based global search algorithm with high
convergence property towards a part of the Pareto front, the diversity improvement
by local search is important. The point is to fully utilize the synergy effect of using
both global search and local search.

13 Multiobjective Memetic Algorithms 217

13.6 Conclusions

Multiobjective memetic algorithms constitute a very promising class of multiob-
jective metaheuristics. In many experiments they proved their efficiency for both
combinatorial and continuous MOO problems.

Despite the need for new efficient memetic methods and the need for further
applications, a number of other important directions for further research could
suggested:

• The use of landscapes analysis in the design of recombination operators or the
whole methods. Despite of some promising preliminary results discussed above,
we are far from full understanding of the influence of landscapes of MOO prob-
lems on the performance of multiobjective memetic algorithms.

• The use of Pareto local search in multiobjective memetic algorithms. PLS has
recently proved [542] to be a powerful technique for some multiobjective com-
binatorial optimization problems, being able to compete with memetic algo-
rithms based on standard local search. PLS, however, becomes prohibitively
inefficient with increasing number of objectives. Thus, hybridization with some
global search techniques seems to be a promising approach.
• The use of advanced local search techniques, e.g. candidate moves, in MOO.

Such techniques may have crucial influence on the performance of the local
search component, and thus on the performance of the whole multiobjective
memetic algorithm.
• Hybridization of other population-based algorithms, e.g. ant colony optimiza-

tion, particle swarm optimization, differential evolution, with local search in
MOO. Such algorithms may provide alternative global search components of-
ten competitive to evolutionary algorithms.
• Handling of many objectives in multiobjective memetic algorithms. Since, in

general, the size of the Pareto front and the time needed to approximate it grows
fast with the increasing number of objectives, interactive approaches seem to be
a promising direction. In this case, some partial preference information may be
used to focus the search on the desired regions of the Pareto front.

Chapter 14
Memetic Algorithms in the Presence of
Uncertainties

Yoel Tenne

14.1 Motivation

Memetic Algorithms have proven to be potent optimization frameworks which are
capable of handling a wide range of problems. Stemming from the long-standing
understating in the optimization community that no single algorithm can effectively
accomplish global optimization [940], memetic algorithms combine global and lo-
cal search components to balance exploration and exploitation [368, 765]: the global
search explores the function landscape while the local search refines solutions. In lit-
erature the terms memetic algorithms [615, 673] and hybrid algorithms [325] refer
to the same global–local framework just described. The merits of memetic algo-
rithms have been demonstrated in numerous publications, [374, 375, 686, 688].

However, while optimization algorithms are often conceived and tested on syn-
thetic mathematical problems, real-world applications can be significantly different.
One such major difference is that real-world problems often induce uncertainty in
the optimization problem and studies identify four common scenarios [425]:

1. a model approximates the objective function and provides the optimizer with
predicted objective values having an unknown error

2. the variables can stochastically fluctuate and it is required to find a solution
which is insensitive to these fluctuations

3. the responses from the objective function are corrupted by noise and
4. the problem (objective function, constraints) is dynamic, that is, varies with

time.

As such, baseline memetic algorithms developed using synthetic problems can per-
form poorly in such uncertain settings and this has motivated research into new

Yoel Tenne
Department of Mechanical Engineering and Science-Faculty of Engineering,
Kyoto University, Japan
e-mail: yoel.tenne@ky3.ecs.kyoto-u.ac.jp

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 219–237.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

220 Y. Tenne

and dedicated memetic frameworks. As such the goal of this chapter is to survey
representative studies on memetic algorithms in the four uncertainty classes. In the
remainder of the chapter we consider without loss of generality the minimization
problem

min f (x)
s.t. gi(x) � 0 , i = 1 . . .k

(14.1)

as the baseline optimization problem.
The remainder of this chapter is as follows: Section 14.2 surveys Algorithms for

optimization with uncertainty due to approximation, Section 14.3 deals with Algo-
rithms for robust optimization, Section 14.4 surveys Algorithms for noisy optimiza-
tion problems, Section 14.5 deals with dynamic optimization problems and lastly
Section 14.6 concludes the chapter.

14.2 Uncertainty Due to Approximation

Current research in engineering and science often replaces real-world laboratory ex-
periments with analysis-codes, that is, computationally-intensive simulations which
model real-world physics with high accuracy [881]. The approach allows to reduce
the cost and duration of the design process and is being widely used, for example in
aerospace [307, 725] electrical engineering [484] and chemistry [603]. Such com-
puter simulations are typically computationally expensive, that is, each simulation
call requires minutes to hours of CPU time. This makes many optimization algo-
rithms, and particularly computational intelligence ones (such as evolutionary algo-
rithms, particle swarm optimizers and so on) inapplicable since they require many
thousands of function evaluations making the optimization process prohibitively
expensive.

There are two main approaches to combat this difficulty. First, parallelization
allows to reduce the wall-clock time [192, 725]. While the approach can be effi-
cient one potential obstacle is that for commercial analysis-codes there is typically
a licence restricting the number of concurrent simulations which can be run.

A complementary approach is that of modelling. Based on the ‘plug-in’ concept
in statistics, the idea is to create a computationally cheaper mathematical approx-
imation of the expensive simulation and to use it instead during the optimization
search. The optimization algorithm then obtains the (predicted) objective values
from the model in a fraction of the time when compared to using the true (expensive)
simulation [283, 603]. Representative model types include:

• Quadratics [646]: the simplest models which capture function curvature and
have the general form

S (x) =
1
2

xTHx + xTg + c (14.2)

where coefficients are typically determined by a least-squares fit.

14 Memetic Algorithms in the Presence of Uncertainties 221

• Radial Basis functions (RBFs) [85]: the model is defined as a linear combination
of kernel basis functions

S (x) =
k

∑
i=1

αiφ(‖x− xi‖) (14.3)

where αi is a scalar coefficient and xi is an interpolation point. The coefficients
are obtained from the Lagrangian interpolation condition

Φα = f (14.4)

where Φ is the interpolation matrix (Φ i, j = φ(‖xi−x j‖)) and f is the vector of
responses (f i = f (xi)).

• Kriging [172]: a statistically-oriented approach which models the function as a
combination of a global ‘drift’ function (typically a constant β) and a stochastic
function Z(x) providing local adjustments so the model becomes

S (x) = β + Z(x) . (14.5)

The stochastic function is a Gaussian process with a zero mean and variance
σ . Model parameters are typically calibrated by maximum-likelihood to best
fit the data [554].
• Artificial Neural Networks (ANN) [68]: a biologically-inspired approach which

uses an array of inter-connected ‘neurons’ (processing units). The ANN is
trained using available data and learns the input-output mapping.

While models alleviate the bottleneck of high computational cost they introduce
uncertainty into the optimization problem: the optimizer now needs to operate based
on the responses of the model but those are inherently inaccurate as the model is
trained using a typically small sample (since evaluations are expensive). The extent
of inaccuracy is unknown and depends on various factors such as the dimension and
landscape complexity of the objective function and the sample size [544, 851].

Model inaccuracy implies that the optimizer is searching on a deformed land-
scape with uncertainty regarding its ‘goodness’. If the model accuracy is poor then
the optimizer may even converge to a false optimum (an optimum of the model
which is not an optimum of the true expensive function) [426]. This implies that
to be effective model-assisted frameworks must account for this uncertainty due to
approximation and several approaches have been proposed.

In [307, 439] the authors proposed the Inexact Pre-Evaluation (IPE) framework
which uses the expensive function in the first few generations (typically 2–3) and
then uses the model almost exclusively while only a portion of the elites are eval-
uated with the expensive function and are used to update the model. The approach
was later incorporated into a hierarchical distributed algorithm [803] which uses
‘layers’ of optimization, for example, at each layer an EA uses an analysis code of
different fidelity. Promising individuals would then migrate from the computation-
ally cheap low-fidelity layer to the expensive high-fidelity layer to obtain a more
accurate fitness and vice versa. The idea was later expanded such that each layer

222 Y. Tenne

may use different solvers, for example an EA and a gradient-based resulting in a
memetic like framework [440]. By using the high-accuracy simulation and a gradi-
ent search the framework can diminish the effect of the low fidelity simulations.

In [426] the authors proposed the Controlled Evaluations (CE) framework which
monitors the model accuracy using cross-validation: a cache of previously evaluated
vectors is split into two disjoint sets and a model is trained using one set and tested
on the complementary set. Model accuracy is then measured by the mean squared
error (MSE)

MSE =
1
k

k

∑
i=1

(
S (x)− f (x)

)2
(14.6)

for a test set of k vectors. The authors examined both individual-based control
(at each generation evaluating a few vectors with the expensive function) and
generational-based control (every few generations evaluating all individuals with
the expensive function). A fuzzy logic rule adapted the frequency of expensive eval-
uations, that is, it increased the number of expensive evaluations when the MSE is
too large and vice versa. A related memetic approach was proposed in [305] where
for an expensive multiobjective optimization problem. The EA was used for a cer-
tain number of generations and then an ANN was trained to predict objective re-
sponses. The framework then used a gradient local search to refine solutions while
monitoring the goodness of the ANN using (14.6).

The trust-region (TR) framework is another option for managing optimization
with approximation uncertainty and has a long standing history in nonlinear pro-
gramming (and unrelated to expensive black-box optimization). The idea is to per-
form a sequence of restricted steps around the optimum instead of a one-shot global
optimization of the model. Starting from an initial guess x(0) then at each iteration
i = 0 ,1 , . . . a model is trained and the framework performs a trial step, that is, it
seeks an optimum of the model constrained to the trust-region (T) where

T = {x : ‖x− x(i)‖p � Δ} , p = 1 or 2 , (14.7)

where Δ is the TR radius. This defines the constrained optimization problem

min S (x)
s.t. x ∈T

(14.8)

which gives a minimizer xm . Next, the framework examines the success of the trial
step with the merit value

ρ =
f (x(i))− f (xm)

S (x(i))−S (xm)
, (14.9)

where ρ > 0 indicates the trial was successful, that is, the predicted optimum indeed
improves on the current iterate (ρ = 1 indicates a perfect agreement between the
model prediction and the true function). Based on the value of ρ the framework
then updates the iterate and the TR, for example:

14 Memetic Algorithms in the Presence of Uncertainties 223

• if ρ > 0 : centre the TR at xm (so x(i+1) = xm) and increase Δ .
• otherwise decrease Δ .

A merit of the TR framework is that it guarantees asymptotic convergence to an
optimum of the true (expensive) objective function [141, 771] which has motivated
using it in memetic settings.

Reference [78] seems to be among the first to propose a TR-based memetic
framework. It used a variant of the pattern search algorithm as a global search which
gradually restricted the search to zoom in on an optimum. In case no improvement
was made over the current iterate the authors proposed invoking a gradient-free local
search to refine solutions.

Later [681, 682] proposed memetic frameworks combining an EA as a global
search where at each generation every non-duplicated vector in the population was
refined using a TR local search with local RBF models. The extent of the memetic
refinement was limited to k iterations (prescribed a-priori by the user). If the local
search found an improved (true) solution after k iterations then another round was
performed but otherwise it terminated and the resultant solution replaced its original
in the population in a Lamarckian updating scheme.

In [878, 879] the authors proposed a TR memetic framework which uses quadratic
models and clustering. An EA performs global exploration and it directly evaluates
the expensive objective function. Every several generations the framework would
cluster the population using the k-means algorithm [543] to identify if the popu-
lation is converging around previously found optima. The idea is to improve the
search by identifying basins of attractions (by clustering) and invoking the local
search only from solutions considered to lie in yet unexplored basins [891]. The lo-
cal search is based on the DFO algorithm which is a gradient-free TR local search
algorithm [140, 141].

To further improve search efficiency and leverage on the power of models several
studies have proposed using models both in the global and local search phases. For
example, [963] extended the framework from [681]: an EA searches over a global
Kriging model and a number of solutions were then refined using a TR local search
with RBF models. After the local search the refined solutions replace the originals
in the population in a Lamarckian update scheme. A related study [962] proposed a
framework which uses a global Kriging model but with multiple local searches (pos-
sibly performed in parallel) where each is performed based on a different model
type. The idea is that occasionally an inaccurate model can actually yield a fast
improvement in the search [685] and so performing multiple searches and select-
ing the best solution among them can improve the search effectiveness (the study
used a quadratic model and an RBF one during the local search). Continuing the
multiple models approach, [522] has recently proposed a framework relying on en-
sembles of models as well as smoothing models. The framework uses an ensemble
of different local models where the individual predictions by each model are ag-
gregated into a single response based on the models’ accuracy. The framework also
employs a smoothing-model (low-order polynomial) to reduce the number of optima
and simplify the landscape. During the search the framework chooses between the

224 Y. Tenne

optimum predicted by the smoothing model and the ensemble. The authors have
also presented a multiobjective variant of the framework.

Another development was that of model-adaptive frameworks [876, 879, 880].
The approach is motivated by the tenet that an optimal model is problem dependant
but often there is insufficient a-priori information to select the optimal type [476,
557]. As such, a model-adaptive framework aims to autonomously select the best
model from a family of candidates. To achieve this the framework leverages on
a rigorous statistical model selection theory: it assesses the goodness of a model
based on its maximum likelihood which is a statistical measure indicating how well
a model fits the data [526, 718]. When comparing different candidate models the
one having the highest likelihood is chosen as the best predictor of the data.

Leveraging on these ideas, [876] proposed a model-adaptive memetic frame-
work which uses a DFO-like local search with Kriging models and selected at
each iteration an optimal local model type. A follow-up study [880] then extended
model-adaption to select an optimal global model as well. The proposed frame-
work used an RBF neural network as a global model and selected an optimal RBF
kernel for it out of the four candidate kernel functions based on the MSE crite-
rion (14.6). Next, an EA would search for an optimum of the model and then a
TR local search would improve the predicted optimum. The local search followed
the classical TR procedure described earlier but with the addition of monitoring
the number of points in the TR. If the trial step was unsuccessful and there were
too few points in the TR a new point would be added to improve the model. Also,
the framework selected an optimal model during the local search iterations. The
global–local process would repeat until the optimization budget was exhausted. Al-
gorithm 25 gives a pseudocode of the framework. Three variants of Ratle’s algo-
rithm [757] were used each with a different RBF model (multiquadric, linear and
inverse multiquadric) where the model type was fixed throughout the search. The
proposed framework showed statistically significant performance advantage over
the three variants indicating the merit of model adaption. Lastly, the framework and
Ratle’s algorithm were also used in an airfoil shape optimization (an 11 dimensional
problem) and again showed a statistically-significant performance advantage. Over-
all, performance analysis showed that adapting the model improves the optimization
search.

14.3 Uncertainty Due to Robustness

In many real-world applications a system needs to operate under a range of condi-
tions and not a single fixed one. For example, an engine should maintain efficiency
over a range of operating speeds or an aircraft fleet assignment should maintain
punctuality while accounting for a range of weather conditions and so on. In these
cases and similar ones elements of the problem are not crisp but can stochastically
assume any value within a known range. In such settings the optimization goal is
typically not to find the best global optimum but rather a robust solution which
yields a ‘good’ objective response and which is relatively insensitive to fluctuations.

14 Memetic Algorithms in the Presence of Uncertainties 225

Algorithm 25. A Global–Local Model-Adaptive Memetic Framework [880]

generate initial sample;1

repeat2

global search phase: select model type by maximum likelihood;3

train global model;4

locate model optimum with EA;5

select starting point for local search;6

local search phase: repeat7

select model type by maximum likelihood;8

train local model;9

perform trial step;10

update TR based on step, improve model if necessary;11

until k iterations or convergence ;12

until until evaluations budget exhausted ;13

Robust optimization problems can be classified according to which elements of the
problem vary:

• objective function (for example, noise in instruments measuring the objective
values).
• variables (for example, manufacturing inaccuracies).
• operating conditions (for example, the ambient temperature in which a system

operates).

As a side note, a solution which can be adapted to yield a high-quality response is
termed flexible [837]. In contrast, a robust solution requires no adaption.

Given the stochastic nature of the variations, statistical decision theory [203, 610]
suggests three main criteria for selecting robust solutions (for simplicity we con-
sider an unconstrained minimization problem). The robust solution should provide
a bound on the worst case performance, implying (in minimization) a min-max for-
mulation, that is

minmax f (x) . (14.10)

The robust solution should minimize the expected objective value, mathematically

min F(x) (14.11)

where

F(x) =
∫ +∞

−∞
f (x +δ) p(δ) (14.12)

and x is the baseline design vector (nominal settings), δ is a fluctuation and p(δ)
is its probability density function. In practice both the distribution p(δ) and the
effect of fluctuations on the objective response (or uncertainty propagation [229])
are unknown and so algorithms use Monte Carlo sampling [526] to generate the
empirical unbiased estimate

226 Y. Tenne

F̂(x) 1
N

N

∑
i=1

f (x +δ) . (14.13)

The robust solution should minimize both the expected objective response and its
variance since (14.12), (14.13) can still yield a small expected value even when there
are large positive and negative responses cancelling each other. This scenario also
considers the objective variance

Var (f (x)) =
∫ ∞

−∞
(f (x + δ)−F(x))2 p(δ) . (14.14)

The problem formulation is then

min F(x)
min Var(f (x))

(14.15)

which is a bi-objective optimization problem. As before, when the exact information
is unavailable algorithms use the empirical unbiased estimate of the variance

V̂ar(F) =
1

k−1

k

∑
i=1

(f − F̂)2 (14.16)

In [869] the authors proposed a memetic algorithm for robust optimization of digital
filters where the uncertainty in performance is due to material imperfections. The
problem formulation involves both three parameters (which can assume a range of
values) and 12 design variables defining the filter geometry (termed control factors).
The goal of the optimization was to find a filter with a robust frequency response.
Following the Taguchi method [870], the authors used a full-factorial design for the
three parameters (defining ‘low’ and ‘high’ settings for each parameter and evalu-
ating all 8 combinations). The authors then defined a sound-to-noise ratio (SNR) as
a measure of robustness and maximized it. The optimizer was a memetic algorithm
which combined a real-coded EA and the the variable neighbourhood search algo-
rithm [604], which searches in increasingly larger local neighbourhoods around the
current iterate.

In [811] the authors considered the problem of optimizing a robust aircraft control
system using a memetic algorithms. The problem was formulated as a quadratic
minimization problem where the goal was to find a set of matrix elements which
optimize a prescribed system robustness measure. The memetic algorithm combined
an EA with a hill-climbing local search.

In a multiobjective formulation [835] proposed a memetic algorithm for robust
optimization while considering both the expected value and variance of the objective
function. The study applied the algorithm to robust optimization of airfoils where the
goal was to identify an airfoil shape yielding a low drag (aerodynamic friction) over
a range of aircraft velocities. The proposed algorithms used a variant of the NSGA-II
algorithm [196] to approximate the Pareto front and then invoked a gradient-based
local search to refine solutions. For each solution the local search minimized one

14 Memetic Algorithms in the Presence of Uncertainties 227

function at a time while treating the other as a constraint, and the resulting vector
was used as a starting point for subsequent steps, repeating the procedure for the
two objective functions.

In another multiobjective study [691] used the Design-for-Six-Sigma (DFSS) ap-
proach which considers both the mean and variance of the objective and proposed
using a particle swarm optimizer (PSO) to obtain the Pareto front of the mean–
variance objectives. A follow-up study [690] then extended the idea to a memetic
algorithm combining an EA as a global search algorithm and then using a finite-
differences quasi-Newton local search to further refine the solutions, an approach
termed memetic algorithm for robust solution search. The local search was applied
to a certain percentage of the population chosen at random but without considering
the variance of the fitness, that is, a single objective refinement of the solutions. The
authors also applied an ageing operator which adjusted the expected mean fitness
based on the duration an individual has survived.

Considering multiobjective optimization and robustness [324] proposed a multi-
objective EA for robust and constrained optimization. The algorithm uses a micro-
GA (that is, having a very small population) as a form of a local search to obtain
the worst-case performance of candidate solutions. It also uses a tabu-like approach
which restricts and guides the EA and periodic re-evaluation of cached solutions to
reduce uncertainty regarding their fitness.

In [521] the authors addressed the problem of robust optimization when no a-
priori information is known about the uncertainties. Commonly, algorithms assume
some a-priori statistical distribution for the unknown uncertainties (for example
Gaussian) but this can be unfounded. The authors proposed the inverse robust evolu-
tionary design methodology which combines an EA with a constrained local search
(performed by an SQP solver). The idea is to replace the classical problem (termed
forward optimization) with inverse optimization which locates a target solution sat-
isfying some prescribed criteria:

min f (x)−T

s.t. xl � x � xu
(14.17)

where T is the target output performance. The authors proposed a single objective
variant which considers only the robustness function (the maximum uncertainty a
design variable handles before violating the worst-case performance), bi-objective
(robustness function and objective function) and tri-objective which also considers
the opportunity fitness.

In [98] the authors proposed a memetic algorithm for robust airline scheduling
where the goal was to obtain a fleet assignment which accounts for flight re-timing
and aircraft rerouting. Using a multiobjective approach the study considered two ob-
jectives: schedule reliability and schedule flexibility. The proposed algorithm used
a tailored representation (the adjacency representation often used in traveling sales-
man problems) and multi-memes (multiple local searchs) to improve effectiveness.
The algorithm used three variants of local search, each considering the schedule

228 Y. Tenne

reliability, schedule flexibility or both. The study also used a host of additional fea-
tures such as archiving and biased sampling (to encourage exploration).

Also in scheduling problems, [837] proposed a memetic algorithm for the stochas-
tic capacitated vehicle routing problem (CVRP). The baseline CVRP is that of de-
termining the sequence in which a fleet of vehicles visits spatially distributed cus-
tomers such that some cost measure (time, distance) is minimized. In the stochastic
CVRP the customer demands and travel costs are no longer crisp which motivates
a robust approach. The proposed algorithm samples the objective function around a
set of solutions and selects (based on the problem formulation) either the expected
(mean) response or the worst-case (max). The algorithm refines solutions using a
local search combined with tabu search.

Following the worst case performance approach to robust optimization [684]
proposed a memetic algorithm designed for expensive objective functions. The al-
gorithm builds upon the earlier genetic algorithm with robust solution searching
schemes (GARSS) [895] in which a random perturbation was added to a chromo-
some before evaluation. In its single evaluation variant each chromosome was per-
turbed once while in the multiple evaluations variant it was perturbed repeatedly
and the final fitness was taken either as the mean or worst of the perturbed set.
Empirical tests show that the multiple evaluations variant was more reliable than
the single evaluation one but obviously required more function evaluations which
makes the algorithm inapplicable to expensive problems. As such, the authors pro-
posed an algorithm which combines a max-min optimization strategy with a TR
model-assisted approach and a Baldwinian updating scheme. The algorithm starts
with an initial sample (random or by design of experiments) and uses the baseline
GARSS algorithm with the worst fitness of the perturbed set taken as the chromo-
some fitness. The GARSS is run for several generations while evaluating the true
(expensive) function and all vectors and associated fitness are cached. Next, each
individual in the population is refined with a TR local search where the goal of the
latter is to find the worst case performance. To reduce function evaluations the local
search used RBF models which were trained using cached vectors adjacent to the
TR centre and the TR procedure follows that described in 14.2. The goal of the lo-
cal search was to find the worst case performance for each population member by
solving the max-min problem

min f (x + xc)
s.t. x ∈Ω (14.18)

where x is the vector of perturbations, xc is the baseline candidate and Ω is the fea-
sible range of perturbations. The search was performed using an SQP solver and
the TR iterations terminated after a prescribed k expensive function evaluations. If
the TR local-search found a lower objective value then it replaced the fitness of
the original population members (that is, before the local search was invoked) in
a Baldwinian learning scheme (the chromosome was not changed). Algorithm 26
gives a pseudocode of the framework (adapted from [684]). Performance analysis
was based on a robust airfoil shape optimization problem with a parametrization

14 Memetic Algorithms in the Presence of Uncertainties 229

Algorithm 26. Trust-region Enabled Max-Min Surrogate-Assisted EA [684]

initialize database;1

repeat2

for each individual i in population do3

if status is database building then4

evaluate individual with true (expensive) function and cache;5

endif6

else improve individual with TR–SQP search7

initialize TR;8

repeat9

train local RBF model using neighbours from database;10

establish domain where uncertain variables vary Ω ;11

find point of worst-fitness in TR using RBF models (trial step);12

evaluate predicted point with expensive function and cache it;13

update TR based on success of trial step;14

until TR termination condition met ;15

set individual’s fitness to worst-case value;16

17

endfor18

Apply standard EA operators to create a new population;19

until EA termination condition met ;20

resulting in a 24-dimensional problem. The authors first obtained an airfoil shape
without considering any perturbation (a classical non-robust optimization) as a ref-
erence shape. Next, they applied the framework to robust optimization in the pres-
ence of manufacturing errors (±5% error bounds on design variables). Analysis
showed the performance of the robust airfoil is indeed more stable than that of the
non-robust one. The authors also optimized the airfoil for perturbations in operating
conditions (cruise velocity). Similarly to the previous case, the robust airfoil perfor-
mance was more stable over the entire range of cruise speeds while the performance
of the non-robust airfoil degrades quickly outside the nominal operating point. Over-
all, the framework was able to generate robust designs on a limited computational
budget.

14.4 Uncertainty Due to Noise

In many real-world applications repeatedly evaluating the same vector returns
slightly different objective values, a scenario termed noisy optimization. Such fluc-
tuations in the response imply uncertainty regarding the true function value. Noisy
functions are encountered in two main scenarios:

1. The response is obtained by measuring some real-world process and noise is
either inherent in the process or in the measurement instruments. For example,
reading electrical signals from an electric motor [104].

230 Y. Tenne

2. The objective function depends on some random process. For example, when
optimizing the topology of neural networks the same vectors (candidate topolo-
gies) can produce different responses due to random initialization of network
weights [949].

The dominant (and sometimes implicit) assumptions in noisy optimization problems
are that the noise is random (so it cannot be filtered out a-priori) and that its ampli-
tude is much smaller than the underlying objective response (so it only moderately
deforms the landscape). Many studies also assume that the noise is Gaussian.

Since the observed responses are corrupted by noise some additional sampling
mechanism needs to be introduced to estimate the true objective value. These mech-
anisms come in two main flavours:

1. Explicit Averaging: a better estimate of the true response can be obtained by
using multiple samples. In temporal sampling the same vector is re-sampled n
times and under the assumption of random Gaussian noise this allows to im-
prove (reduce) the estimated response variance by

√
n [808]. A complementary

approach is that of spatial sampling where the samples are taken from neigh-
bouring points around the current individual [788].

2. Implicit Averaging: simply increasing the population size provides more sam-
ples of the objective function and implicitly combats noise. The population size
can be either fixed (set a-priori to a high value) or adapted during the search.

With the first category (noise due to external processes), in [104] the authors tack-
led the problem of optimizing the control system of an electric motor. They used
online optimization, that is, where each candidate control settings were tested in
real-time and the resulting performance was fed back into the algorithm. The mea-
surements of the motor were inherently noisy and to combat noise the study pro-
posed a memetic algorithm which monitored the population diversity to control the
degree of mutation: high diversity invoked more local searches while low diversity
invoked a higher mutation rate. Also, the algorithm selected between two types of
local search (Hooke-Jeeves pattern search [391] and Nelder-Mead simplex [653]) to
refine vectors.

Also in this category, [462] proposed a memetic algorithm combining a real-
coded EA with the Bacteria Foraging local search. The latter is inspired by the
swim pattern of the E. coli bacteria in the presence of favourable/hostile environ-
ment (rich/poor with nutrients). The idea is to perform tentative moves (similar to
the bacteria’s swim pattern) and adapt the step size based on the success/failure
of these moves. The authors applied the memetic algorithm to optimization of a
Proportional/Integral/Derivative (PID) controller for an automatic voltage controller
subject to a sine wave noise.

In [601] the authors proposed a memetic algorithm based on differential evolu-
tion where the scale factor was adjusted with a local search. The algorithm also
employed a noise analysis component to determine whether to replace a parent with
an offspring. Specifically, it compared the samples of fitness (for each) to determine
whether the means were sufficiently distinct (so a comparison is meaningful). If so,

14 Memetic Algorithms in the Presence of Uncertainties 231

the better solution was retained but otherwise the algorithm sampled more points
and repeated the comparison.

In [43] the authors considered the noisy pattern recognition problem of inexact
graph matching, that is, determining whether two images match when one is cor-
rupted by noise. They proposed a memetic algorithm in a combinatorial framework
where each graph is represented by a chromosome of its vertices. The GA uses tour-
nament selection and a new position based cross-over but no mutation. A tailored
local search explored the neighbourhood of a solution and if it succeeded in locat-
ing a better individual then the latter replaced the original in a Lamarckian update
scheme. The operators were designed to be insensitive to vertex location to provide
better immunity to noise.

Also in this class, [695] studied the problem of matching an input image to one
from an available data set. The difficulty being that the input image may be par-
tially obscured, deformed and so on which results in a noisy optimization prob-
lem. They used a specialized encoding to represent both the input image and the
database images by segmenting them into lines and connecting angles. They pro-
posed a memetic algorithm which combined a real-coded EA (one point cross-over,
uniform mutation) and a hill-climbing local search. For each database image the al-
gorithm matched each segment to the those of the input image while ignoring small
differences (to combat minor image deformations).

Related to the second category of noise due to a random process, [171] proposed
an EA which uses a self-organizing map (SOM) [477] as a local search operator. The
algorithm was designed to solve the vehicle routing problem (VRP) with emphasis
on noisy data. The SOM was used to allow immunity to noise and to fluctuations
in customer demands. The authors have also proposed several dedicated operators
which work in conjunction with the SOM to improve the search.

In [656, 660] the authors tackled the problem of training a neural network used
for controlling resource discovery in peer-to-peer (P2P) networks. They considered
a multi-layer perceptron (MLP) network with a topology of 22 input neurons and
10 hidden-layer neurons plus a bias channel resulting in 298 weights to optimize.
Since the network needs to operate under a variety of query conditions this results in
a noisy objective function. The authors proposed the adaptive global–local memetic
algorithm (AGLMA) which combined a real-coded EA with self-adaptation and two
local searches: the stochastic simulated-annealing (SA) [468] and the deterministic
Hooke-Jeeves. To combat noise the algorithm adjusted the objective response by
explicit averaging. The proposed algorithm used a measure of population diversity

ψ = 1− F̂avg− F̂best

F̂worst− F̂best
(14.19)

where the measures are the average, best and worst fitness values in the population at
the end of a generation. It follows that ψ 1 indicates high diversity and ψ 0 low
diversity. The algorithm used this diversity measure to determine when to invoke
each local search by the heuristic rules

232 Y. Tenne

ψ

⎧⎨
⎩
∈ [0.1,0.5] invoke simmulated annealing

< 0.2 invoke Hooke-Jeeves
(14.20)

The idea is to use an explorative search (the SA) when the population diversity is
decreasing (low ψ values). The Hooke-Jeeves local search was applied to the best
individual and does not have the same explorative qualities but is more localized.
It follows that for ψ ∈ [0.1,0.2] both local searchs are applied. The algorithm also
leveraged on implicit resampling by adjusting the population size based on the di-
versity measure using the rule

Spop = S f
pop + Sv

pop · (1−ψ) (14.21)

where S f
pop , Sv

pop are a prescribed lower and upper bounds on the population size,
respectively. Algorithm 27 gives a pseudo-code of the framework. As mentioned,
the authors applied the algorithm to the topology optimization of a P2P network
and benchmarked it against the Checkers Algorithm (CA), the Adaptive Check-
ers Algorithm (ACA) and a baseline real-coded GA while the optimization budget
was 1.5e6 function evaluations. The proposed algorithm (AGLMA) performed best,
closely followed by ACA and lastly the CA and baseline GA. Although the AGLMA
converged more slowly than the CA it obtained a better final solution. The paper ex-
plains that the ACA can be viewed as an AGLMA without the memetic (that is, local
search) component which explains its slightly degraded performance and highlights
the merit of the memetic approach. Further, the AGLMA and ACA also effectively
filtered noise which was evident from the convergence analysis (given in the paper)
when compared to the CA and baseline GA. Overall, the AGLMA framework was
able to handle this high-dimensional and noisy optimization problem.

14.5 Uncertainty Due to Time-Dependency

In the three categories covered so far (expensive evaluations, robustness, noise) the
underlying optimization problem was fixed. However, in many real-world applica-
tions the problem is time-dependant so (14.1) becomes

min f (x, t)
s.t. gi(x, t) � 0 , i = 1 . . .k

t = 1 ,2 , . . .

(14.22)

that is, the objective landscape, constraints and hence the problem optima may vary
with time. Such problems arise in diverse applications such as scheduling [525] and
control [755].

14 Memetic Algorithms in the Presence of Uncertainties 233

Algorithm 27. Adaptive Global–Local Memetic Algorithm [660]

sample weights W and self-adaptive parameters h;1

evaluate fitness of initial population with explicit averaging;2

calculate merit value: ψ ← 1− F̂avg−F̂best

F̂worst−F̂best
;3

while budget conditions and ψ > 0.01 do4

for all individuals i do5

for all variables j do6

update weights and self-adaptive parameters;7

endfor8

endfor9

evaluate fitness of population by explicit averaging;10

sort population (parents+offspring) based on fitness;11

if 0.1 � ψ � 0.5 then12

execute simmulated annealing on 2nd best individual;13

if ψ < 0.2 then14

execute Hooke-Jeeves on best individual;15

endif16

if simmulated annealing successful then17

execute Hooke-Jeeves on individual improved by SA;18

endif19

endif20

calculate Spop← S f
pop +Sv

pop · (1−ψ);21

select Spop best individuals as the next generation;22

calculate merit value: ψ ← 1− F̂avg−F̂best

F̂worst−F̂best
23

endw24

The time-dependant nature of such problems introduces several specific algorith-
mic considerations:

1. Since the optimization algorithm effectively needs to solve not one but a series
of problems it should not drive the population of candidate solutions to fast con-
vergence but should rather maintain diversity to allow the population to adapt
to the changing landscapes.

2. Between subsequent time steps changes to the problem formulation are often
small so it may be beneficial to search in the vicinity of the recent optimum
(optimum tracking).

Due to their unique nature dynamic problems are often tested with a tailored suite
of problems termed the Moving Peaks [82, 613, 906] which define a time-varying
multimodal landscape where peaks deform and translate. There are also specific
performance measures for dynamic problems where the commonly used one being
the mean offline performance

foff =
1
T

T

∑
t=1

f ∗(t) (14.23)

where f ∗(t) is the best objective value found at time step t [927].

234 Y. Tenne

In [904, 905, 906] the authors proposed a memetic algorithm combining a bi-
nary EA with the variable local search (VLS) operator to track optima in dynamic
problems. The EA invoked the operator when the averaged best performance of the
population dropped below a prescribed threshold. Once a change in the landscape
was detected the VLS operator enabled a local search around individuals from the
pre-change population, an approach motivated by the assumption that changes are
gradual (as mentioned above). The extent of the search was variable and calibrated
based on the observed degree of change. When the VLS operator was invoked the
evolutionary operators of recombination and mutation were temporarily suspended
and the EA generated new vectors by adding or subtracting (with equal probabil-
ity) from the population a random binary vector (whose range of values was limited
to define a small search neighbourhood). After a single application of the VLS the
EA reverted back to standard recombination and mutation and observed the per-
formance of the population elites over a period of several generations. If the mean
performance did not reach its previous (pre-change) value then the range of the VLS
operator was increased and the process was repeated.

In [915] the authors proposed a memetic algorithm based on a particle swarm
optimizer (PSO) and a hill-climbing local search. The algorithm combined several
techniques to improve its performance in dynamic problems:

1. when updating a particle’s position the algorithm considered the best solution
found by the particle and its neighbours (termed local-PSO) to avoid rapid con-
vergence

2. particles were refined by a local search which stochastically perturbed an elite
vector to perform a neighbourhood search

3. particles were positioned on a virtual ‘ring’ and communicate only with their
ring-wise neighbours (irrespective of the Euclidean distance in the search space)
as an additional measure to avoid rapid convergence and lastly

4. to increase diversity the worst solutions were extracted and allowed to evolve in
a sub-swarm independently from the main swarm.

In [635] the authors proposed a memetic algorithm which combined the Extremal
Optimization algorithm (EO) [77] and a deterministic local search. The former (EO)
starts from a baseline solution and perturbs it to generate a population and then
probabilistically eliminates the worse member. As such, it aims not for fast con-
vergence but for gradual adaption, which has motivated the authors to apply it to
dynamic problems. In a follow-up study [633] the authors proposed another variant
which at each generation refined one population member with a local search using
the Hooke-Jeeves algorithm. Another follow-up study [634] evaluated both the EO
with the Hooke-Jeeves variant and with an improved local search which scanned
along each coordinate with an initial step and adjusted the step size depending on
the search progress.

In [232] the authors tackled dynamic and highly constrained problems and pro-
posed a memetic algorithm based on the scatter search framework [321] which com-
bines a global search (diversification) and a local search (intensification). The global
search generated solutions similarly to an evolutionary recombination operator and

14 Memetic Algorithms in the Presence of Uncertainties 235

where an offspring could replace only a parent. Solutions were also generated in a
Nelder-Mead simplex-like move which explored along promising directions. Next,
solutions were chosen for refinement based on competitive ranking (considering
both their fitness and diversity) and were refined with one of several local opti-
mizers (the authors considered variants of SQP and hill-climbing). The algorithm
handled constraints by a static penalty method.

Recently [482] proposed a memetic algorithm for dynamic multiobjective prob-
lems. The idea is to accelerate the convergence of a multiobjective EA (or similar
algorithms) by predicting the change in the Pareto set based on the observed pattern
in past time steps under the assumption that the Pareto set does not change errat-
ically but follows an identifiable pattern. The approach used a predictive gradient
(g) which approximated the shift in the population between consecutive time-steps.
The idea was then to shift individuals in the population using the rule

xnew = x + μg . (14.24)

The predictive gradient was calculated based on changes in the centroid of the non-
dominated solutions. The algorithm monitored landscape changes by comparing the
fitness of a subset of individuals and so a mismatch between consecutive time-steps
indicated a landscape change. This then triggered a population update where a pre-
determined number of individuals were randomly selected and updated with the
predictive gradient. The approach was implemented within a multiobjective evolu-
tionary gradient search algorithm.

In [913] the authors proposed a memetic algorithm for dynamic optimization
which used a binary representation where at each generation the elite was refined
by a local search and added several tailored enhancements. First, it used two hill-
climbing variants for the local search:

1. greedy crossover hill climbing (GCHC): used the current elite and another par-
ent (chosen by roulette wheel selection) and generated an offspring by uniform
crossover and

2. steepest mutation hill climbing (SMHC): the elite individual was mutated by
randomly flipping its bits.

In both variants the offspring replaced the elite if it was better. Another feature was
that the algorithm adapted the probability of applying each variant based on their
success in previous steps (starting from an equal probability of 0.5 for both). The
success of a step was measured by

η =
| fimp− fini|

fini
(14.25)

where fimp , fini were the improved and initial objective values, respectively, and the
probability of applying each variant was updated by

p(t +1) = p(t)+Δ ·η(t) (14.26)

236 Y. Tenne

where Δ was prescribed by the user. Lastly, the algorithm safeguarded the popula-
tion diversity using two procedures:

1. adaptive dual mapping (ADM): before starting a local search the method evalu-
ated the bit-complementary of the initial solution and used the better of the two
as the resultant initial vector and

2. triggered random immigrants (TRI): when the population diversity was deemed
low a portion of the population was replaced by randomly generated individuals
while the population diversity was measured by

ξ = ∑s
i=1 d(x�, xi)

s
(14.27)

where s is the population size and d(x�, xi) is the Euclidean distance between
the current elite and the ith individual in the population.

Algorithm 28 gives a pseudo-code of the framework. The authors evaluated the pro-
posed framework using tests derived from stationary problems (the 100-bit binary
coded variants of the OneMax, Plateau, RoyalRoad and Deceptive). The authors
used memetic variants with the GCHC, SMHC, AHC operators described above, a

Algorithm 28. Memetic Algorithm for Dynamic Problems [913]

initialize population and evaluate individuals;1

calculate algorithm parameters;2

select elite for local search;3

if ADM is used then4

create a dual of the elite and evaluate;5

if dual is better set as new elite;6

endif7

perform AHC with elite;8

repeat9

apply standard EA operators(selection,recombination,mutation) to create offspring;10

evaluate offspring and select individuals for next generation;11

select elite for local search;12

calculate algorithm parameters;13

if ADM is used then14

create a dual of the elite and evaluate;15

if dual is better set as new elite;16

endif17

perform AHC with elite;18

if TRI is used then19

if ξ < θ0 then20

replace a prescribed number of worst individuals in new generation with21

random immigrants;
endif22

endif23

until stop condition is met ;24

14 Memetic Algorithms in the Presence of Uncertainties 237

baseline GA, a baseline GA with population restart when a change is detected, a GA
with random immigrants, a GA with elitism-based immigrants and the population-
based incremental algorithm (PBIL). Performance analysis indicated that:

1. the diversity-based procedures improved performance in dynamic problems
2. the ADM approach performed better when there were significant changes in the

environment while the TRI performs better in correnspondence to small changes
3. the optimal local search was problem dependant and there was no clear winner

and lastly
4. the AHC approach used multiple local searches which provided more

robustness.

Overall, results indicated that the combination of the AHC as a local search with
ADM and TRI provided an effective memetic framework for dynamic problems.

14.6 Conclusion

Optimization problems arising in real-world applications can differ significantly
from synthetic mathematical test problems and one such major difference is un-
certainty induced by approximation, robustness, noise or time-dependency. While
computational intelligence algorithms have been applied to such problems, memetic
algorithms offer enhanced capabilities which significantly improve search efficacy
under such challenging settings, as surveyed in this chapter. The complexity of real-
world problems can be expected to grow, for example, to problems with multiple
uncertainties (expensive and robust or noisy and dynamic). In such settings memetic
algorithms will likely further establish their standing as a potent framework for op-
timization in the presence of uncertainties.

Acknowledgements. This research is kindly supported by the Japan Society for Promotion
of Science.

Part III

Chapter 15
Memetic Algorithms in Engineering and Design

Andrea Caponio and Ferrante Neri

15.1 Introduction

When dealing with real-world applications, one often faces non-linear and non-
differentiable optimization problems which do not allow the employment of exact
methods. In addition, as highlighted in [104], popular local search methods (e.g.
Hooke-Jeeves, Nelder Mead and Rosenbrock) can be ill-suited when the real-world
problem is characterized by a complex and highly multi-modal fitness landscape
since they tend to converge to local optima. In these situations, population based
meta-heuristics can be a reasonable choice, since they have a good potential in de-
tecting high quality solutions. For these reasons, meta-heuristics, such as Genetic
Algorithms (GAs), Evolution Strategy (ES), Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO), and Differential Evolution (DE), have been ex-
tensively applied in engineering and design problems.

On the other hand, population-based meta-heuristics do not guarantee detection
of the global optimum and they might either prematurely converge to solutions with
a poor performance or stagnate without successfully improving upon the current
best solutions. In order to overcome these problems and as a consequence of the
No Free Lunch Theorem [940], engineers realized that real-world problems can
be efficiently solved by means of an ad-hoc combination of algorithms. This fact
led to an employment in recent years of Memetic Algorithms (MAs). As a matter
of fact, MAs, if properly designed and implemented, can be a valid alternative to
classical meta-heuristics in engineering and design. In some cases, MAs can lead to
results which are orders of magnitude more accurate and efficient than other popular
optimizers.

Andrea Caponio
Technical University of Bari, Via E. Orabona 5, 70121 Bari, Italy
e-mail: caponio@deemail.poliba.it

Ferrante Neri
University of Jyväskylä, P.O. Box 35 (Agora), 40014, University of Jyväskylä, Finland
e-mail: ferrante.neri@jyu.fi

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 241–260.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

242 A. Caponio and F. Neri

This chapter aims to summarize the main results in the topic of MAs successfully
applied to engineering and design. Although not exhaustive, the proposed survey
is supposed to give some indications about the main trends and some suggestions
about the future of MAs in engineering.

This chapter is structured in the following way. Section 15.2 presents a survey
on applications of MAs for real-world problems. In particular, Subsection 15.2.1
focuses on single-objective optimization problems while Subsection 15.2.2 deals
with multi-objective optimization problems. Regarding single-objective, a survey on
MAs in image processing is given in Subsection 15.2.1.1, in telecommunications in
Subsection 15.2.1.2, in electrical and electronic engineering in Subsection 15.2.1.3,
and in other fields in Subsection 15.2.1.4. Regarding multi-objective optimization,
a survey on MAs in hardware design is presented in Subsection 15.2.2.1, in electri-
cal and electronic engineering in Subsection 15.2.2.2, and in image processing and
telecommunications in Subsection 15.2.2.3. Section 15.3 presents a case of study:
an ad-hoc MA applied to a specific control engineering problem. Finally, Section
15.4 gives the conclusions of this work and attempts to foresee the future trends in
the field.

15.2 Applications of MAs in Engineering Problems

In engineering and applied science, many decision making problems need to meet
several objectives: minimize risk, maximize reliability, minimize errors or devia-
tions from desired levels, minimize costs, and so on. The solution to these problems
can be found through a single-objective or a multi-objective method: each of these
approaches presents different advantages and drawbacks. Whichever of them we
follow, when designing MAs, other important questions to answer are which local
searchers should be employed and how they should be effectively hybridized within
the evolutionary framework and in relation to each other, as highlighted in [489]. Of
particular interest are the guidelines that lead to the execution and the coordination
of the local searcher(s) in MAs. Some algorithms bluntly apply them to each point
generated by the evolutionary framework, resulting in a very thorough search for the
optimum, which, on the other hand, can also be extremely slow to converge. Some
other algorithms follow instead one or more rules to choose when to launch a local
searcher, possibly which one to run, and which individuals should it try to improve
on: this logic leads to a less exhaustive, but generally quite faster, optimization.

In this section, we analyze various algorithmic solutions and strategies in Memetic
Computing for facing engineering problems. In Subsection 15.2.1, we focus on MAs
for single-objective optimization while in Subsection 15.2.2 we focus on MAs for
multi-objective engineering problems.

15.2.1 Engineering Applications in Single-Objective Optimization

In single-objective optimization for real-world problems, we search for a solution
corresponding to the minimum (or to the maximum) value of a single objective

15 Memetic Algorithms in Engineering and Design 243

function. Although in real-world situations most of the problems are actually multi-
objective, the problems can still be considered single-objective by constructing a
fitness function that usually comprehends several different objectives into one. This
means establishing an a-priori ranking of importance of the various objectives and
implicitly accepting a compromise among them. For example, the scalarized ap-
proach, see [599], is a diffuse technique to aggregate various objectives: a weight
factor is linked to each objective on the basis of its importance and the weighted
sum is optimized. This is a very practical method that leads to a faster optimization
process, while implicitly accepting that a ranking of the importance of each objec-
tive with respect to the others is already known, thus excluding some solutions that
might still be interesting.

In the past years, several different single-objective meta-heuristics were devel-
oped and successfully applied to real-world problems. For instance, GAs [325], ES
[354], PSO [458], and DE [787], were already widely used in real-world situations,
showing extremely good performance. Furthermore, single-objective optimization
becomes a mandatory choice when the time available to find a solution is limited,
which often happens when dealing with real-time applications. For these reasons,
single-objective MAs have been more popular than multi-objective MAs in the past
and the greater part of the algorithms proposed in the literature are meant for single-
objective optimization.

15.2.1.1 Memetic Algorithms in Image Processing

Many problems in image processing and analysis can be treated as optimization
issues: feature extraction and recognition, filtering, image registration, and recon-
struction are all situations in which, among a huge set of alternatives, we have to
find the one that best solves the problem at hand.

In [888], the Memetic Differential Evolution (MDE), a hybridization of DE with
the Hooke-Jeeves Algorithm (HJA) and a Stocastic Local Searcher (SLS), is pro-
posed to design digital visual filters for flaw detection on a roll of paper produced in
an industrial process. The two local search algorithms are coordinated by a rule that
estimates the fitness diversity among the individuals in the current population. An
improvement to this algorithm, namely Enhanced Memetic Differential Evolution
(EMDE), that hybridizes the DE framework with Simulated Annealing (SA), SLS
and HJA, is proposed in [889]. Particularly interesting is the rule used to coordinate
the local search: every 1000 DE fitness evaluations, a measure of the fitness diver-
sity and of the fitness values distribution within the population is computed. Then,
according to a probabilistic scheme, one or more local search algorithms are run
on selected individuals. In this way, according to the progress of the optimization
process, the local search algorithms and the individuals selected are likely to give
the best results. The performance offered by EMDE outrun those given by GA, ES,
SA, DE and MDE.

In [258] a single solution population MA for the correction of illumination inho-
mogeneities in images is presented. In this case, the local search algorithm makes
use of the gradient of the objective function. The algorithm is compared with ES,

244 A. Caponio and F. Neri

and the results show that a memetic approach is promising indeed for the problem
under study.

Article [51] deals with discrete tomography reconstruction (DT), a highly multi-
modal problem which cannot be properly solved through standard hill-climber
algorithms. On the other hand, standard GAs are also not adequate for the DT
reconstruction, since they are not originally designed to work with binary matrices.
A new evolutionary approach, with crossover and mutation operators designed to
handle binary images, is then proposed. In addition, a stochastic hill climb method
is applied to each new solution, so that during each stage of the search, all individ-
uals represent a local optimum in the search space. This MA offers good results for
several different reconstruction problems, but the thoroughness of the local search
algorithm considerably slows down the optimization process, limiting its applica-
bility to images of size 50×50 or less.

In [211], new crossover and mutation operators are designed, and a switch op-
erator and a compactness constraint are applied to the same problem. The resulting
algorithm is much more greedy than the one in [51], and is able to process 100×100
binary images in reasonable time, but compatibility between the solutions found and
the inputs is not assured.

In [789], Santamaria et al. investigate the effectiveness of MAs for the construc-
tion of a 3D model of forensic objects through image registration. Several MAs,
based on CHC (which stands for Cross generational elitist selection, Heterogeneous
Recombination and cataclysmic mutation), DE and Scatter Search, are compared.
The Powell’s method, the Solis & Wets method and the crossover-based local search
method are used as local search methods. These local search algorithms are inte-
grated into the evolutionary framework by means of two different laws: in one case
the local search is applied to random selected individuals, in the other case it is
applied to all those offsprings which outperform their own parents. Moreover, this
study highlights the importance of a proper memetic design in order to obtain high
quality performance in the image registration problem.

Article [564] deals with the problem of image registration for inspection of
printed circuit boards arbitrarily placed on a conveyor belt. The GA framework is
hybridized with a hill-climb procedure which is applied on every individual which
manages to remain the fittest for a predefined number of iterations.

In [498], Kumar et al. apply MAs to feature selection in face recognition, showing
that their approach considerably outperforms the most famous Eigenface method.

Ali and Topchy, in [9], use a memetic approach to solve the Video Chain Op-
timization problem. Three different MAs are obtained by hybridizing the GA with
three different local searchers: the Next-Ascent Stochastic Hill-Climbing, the NMA
and the Estimation Distribution algorithm. The goal of the optimization process is
to find the optimum combination of parameter settings, implementation alternatives,
and interconnection schemes of several image processing algorithms, in order to de-
liver the best final picture quality.

In [960] a combination of the ACO and GA with simplex is presented for the
problem of setting up a learning model for the “tuned” mask in texture classification:
the initial candidate masks are generated by means of the GA with simplex and the

15 Memetic Algorithms in Engineering and Design 245

ACO is then used to search the optimal mask. New solutions are created by GA
operators.

Article [670] applies the MA proposed in [355], a GA enclosing a SA-like selec-
tion scheme, to train a morphological neural network used for image reconstruction
problems. The proposed method outperforms the standard training techniques in
terms of quality of the reconstructed images.

15.2.1.2 Memetic Algorithms in Telecommunications

Many situations which have to be solved through optimization procedures can also
be found in telecommunications. Article [810] deals with signal processing and the
problem of blind signal separation, i.e. how to separate a signal from the noise that
affects it. The MA described combines a standard GA with a neighborhood local
search which is applied to all the new individuals generated by GA. The results
encourage the use of MAs for this kind of problem.

In [814], a MA is used to solve the Routing and Wavelength Assignment prob-
lem, an NP-complete graph-theoretical problem related to optical networks. The
proposed algorithm hybridizes two different heuristics, developed for this specific
case, and a GA with application-specific mutation and crossover operators. The
probabilities that each of these operators are applied to an individual follow a credit-
assignment rule. A more recent study for the same problem is shown in [262], where
two MAs are proposed. The first one, using fixed probabilities to apply recombina-
tion or mutation, runs the local search on each new solution, pursuing a steady state
logic for the survival selection. The second MA proposed is a distributed version
of the first one on a network of optimization processes, and allows the exchange of
individuals regularly by means of an epidemic algorithm.

In [747], a MA is developed to assign cells to switches in cellular mobile net-
works: each new individual, generated through recombination or mutation, under-
goes a tabu search algorithm. In [748], a multi-population memetic approach is pre-
sented for the same problem. Article [749] combines a multi-population compact
GA with the tabu search which is applied to each newly generated individual: the
proposed MA is able to find a feasible solution and to outperform two comparison
optimization algorithms.

Article [441] deals with location area management, another important problem in
mobile networks: after introducing an evolutionary approach and a multi-population
GA, the paper proposes a MA in which the local search is used to generate the initial
population and as the mutation operator.

Paper [785] proposes two hybrid approaches combining a Hopfield Neural Net-
work, used as local search, and GAs, to solve the terminal assignment problem,
which involves determining minimum cost links to form a communications net-
work. The first algorithm uses a binary-coded GA following an elitist strategy to
transmit the highest fitness individual to the next generation. Each new individual
undergoes the local search and the result of the neural algorithm replaces it in the
new population. The second algorithm is an integer coded version of the first one.

246 A. Caponio and F. Neri

In [464], Kim at al. propose a novel encoding in a MA to solve the channel
assignment problem in frequency division multiple-access wireless communications
systems. At first, the GA is applied, and if it fails to significantly improve on the
solutions for a pre-defined number of generations, the local searcher is executed
on a random individual; similarly, after the local searcher is executed without any
improvement for a fixed number of iterations, the GA is invoked again. Crossover
and mutation operators are designed in relation to the encoding proposed for the
problem under examination.

A GA-based MA for dynamic design of wireless networks is described in [257],
while in [786], a MA is used to develop an efficient centralized clustering algo-
rithm for wireless sensor networks: the proposed algorithm mixes a GA with a local
searcher which is performed on each new individual.

Neri et al. implemented in [656] the Adaptive Global Local Memetic Algorithm
to train a neural network used to solve the resource discovery problem in Peer to
Peer networks. Training of neural networks in this context is challenging due to
the large number of weights and the (great) amount of noise in the dynamic testing
environment. The local searchers used in this algorithm are SA and HJA, and the co-
ordination is done through a parameter, namely ψ , which measures the population
diversity and is specially designed for flat fitness landscapes. ψ is also used to con-
trol the size of the population which is adaptively adjusted during the optimization
process.

In [180], a hybridization of DE and SA, namely Annealed DE (AnDE) is used to
solve the spread spectrum radar poly-phase code design problem: the AnDE is fun-
damentally a DE in which the worst offspring can survive according to a decreasing
probability rule inspired by SA.

Article [208] presents a MA integrating ACO and SA to design reliable commu-
nication networks: specifically, the SA obtains a seed network topology to initialize
the pheromone trails, while the ACO searches for the best network solution using
the trails which are continuously updated during the search.

In [480] a GA in which the mutation operator is replaced by the Cut Saturation
Algorithm is applied to the problem of optimal backbone design of communication
networks.

Article [899] proposes four memetic approaches for frequency modulation sound
parameter identification: the GA and the Queen-Bee (QB) algorithm are combined
with the random optimization method, while the PSO and DE algorithm are com-
bined with the NMA. Results show that the memetic versions of GA, QB, PSO, and
DE outperform their counterparts.

Alabau et al. present a MA for the problem of radio frequency assignment in
[7, 8]. In this study the authors exploit an integer coded GA, with two crossover and
two mutation operators developed for the problem under study; specifically the first
mutation operator uses a greedy algorithm to decide which gene to change in order
to obtain the best possible result, while the second mutation operator is based on
the tabu search algorithm. Furthermore, the initial population is also generated by
means of a greedy algorithm.

15 Memetic Algorithms in Engineering and Design 247

In [901], three MAs, differing in the way the heuristic search is applied, are com-
pared for traffic engineering in an Internet Protocol version 6 (IPv6) domain by
means of routing optimization.

Article [886] proposes a serialization of GA and SA applied to broadband match-
ing network design for antennas, while in [517] the effectiveness of the subsequent
application of GA and a direct search method is investigated for the synthesis of
shape-beam array antennas.

In [174] the frequency assignment problem for a GSM network is faced with
a MA combining a DE with a penalty assignment strategy for unfeasible solutions,
and a local searcher, designed for the problem under study, which is applied to newly
generated individuals. Results show that the proposed modifications considerably
improve on performance of standard DE for this kind of problems.

15.2.1.3 Memetic Algorithms in Electrical and Electronic Engineering

Evolutionary techniques have been widely employed in electric and electronic en-
gineering in order to solve optimization problems. Lately, MAs have also been ap-
plied in the field. Leskinen et al. study the performance of two kinds of MAs on
the Electrical Impedance Tomography (EIT) problem in [513]. This paper proposes
a comparison of five EAs, two of which are novel MAs employing a self-adaptive
DE scheme: in one of them the local search is performed on the scale factor used
by DE during the optimization, while in the other it is performed on the generated
individual. Results show that the MAs are more promising when the geometrical
configuration makes the problem harder to solve, i.e. for more difficult optimization
problems.

In [900] a hybrid GA is used for the large Unit Commitment Problem (UCP) in
electric power systems, a very complex mixed combinatorial and continuous con-
strained optimization problem. The proposed algorithm hybridizes a binary coded
GA with a modified Lamarckian local searcher.

In [874] a MA based on a GA framework is proposed for performing very large
scale integrated-circuit (VLSI) automatic design. The genetic operators are used
only for exploration purposes, while exploitation of the promising regions is per-
formed by the local search algorithms. Novel crossover and mutation schemes are
proposed for the VLSI design problem. The local search algorithms are applied only
to promising points, i.e. points whose fitness is performing above a predetermined
threshold value.

Carrano et al., in [108], solve the problem of power distribution system design
under load evolution uncertainties with an immune inspired MA. The algorithm pre-
sented is a Clonal Selection Algorithm hybridized with a local search algorithm ex-
plicitly designed for networks, namely the Network Local Search. This local search
is used to improve each local optimum previously detected during the search.

Article [219] presents a MA based on Evolutionary Programming (EP) and
SA for the tuning of the proportional-derivative (PD) and proportional-integral-
derivative (PID) multi-loop controllers for a two-degree-of-freedom robot manip-
ulator. After each generation of EP, the SA is run on all individuals in the new

248 A. Caponio and F. Neri

population so that only the local optima take part in the search. Similarly, in [812]
a MA made up of an integer-coded GA and a hill-climb algorithm is used to tune a
PID controller for a servo-motor system.

Caponio et al., in [106], propose the Super Fit Memetic Differential Evolution
(SFMDE) which hybridizes two different evolutionary approaches and two differ-
ent local searchers. At first, a PSO algorithm is run to generate some solutions with
a high performance. These solutions are then integrated within a population of an
evolutionary framework. This evolutionary framework employs the structure of a
DE and employs two additional local search algorithms: a Rosenbrock algorithm
and the NMA. Both local search algorithms are highly exploitative in comparison
with the DE framework, but the Rosenbrock algorithm, being more “thorough”, is
more capable to finalize the optimization, while the NMA is more keen to further
improve some fairly promising solutions. To coordinate the local searchers, a param-
eter called χ is calculated at the end of each DE generation: the value of χ measures
the population diversity and the particular fitness value of the individual displaying
the best performance with respect to the others. On the basis of this metric, the al-
gorithm adaptively increases its exploitation pressure or attempts at exploring new
search directions. The viability of the SFMDE is proved through some test prob-
lems and two real-world problems: the design of a proportional-integral (PI) speed
controller of a direct current electric motor, and the design of digital filters for de-
fect detection in paper production (see [888, 889]). A similar real-world problem is
addressed in [104] and summarized in greater details in Section 15.3.

In [105] the performance obtained by three mate-heuristics (DE, GA, PSO) and
three MAs (MDE, FAMA, SFMDE [104, 105, 888]) is compared in order to opti-
mally design a permanent magnet synchronous motor (PMSM) control system, re-
alized with a Proportional-Integral (PI) scheme. This study shows that a DE-based
MA can be successful for this kind of problem; in particular, SFMDE offers the best
average performance on the problem examined.

Article [349] compares the results obtained by a MA, a MA with population
management, and a real valued GA, in the design of a supplementary controller for
high-voltage direct current links to damp oscillations in a power system. Results
show that both MAs offer better solutions to the problem than the GA, but the MA
with population management has better convergence characteristics.

Hazrati et al. use a MA for pricing and allocation of spinning reserve and energy
in restructured power systems in [379]. The target of the optimization is to maximize
the market benefits and to minimize the payments to energy and reserves. The pro-
posed algorithm uses the SA to improve, after each generation, the best individual
found by a GA framework.

In [945], a MA based on tabu search is proposed for the optimal coordination of
power relays: the objective takes into account sensitivity, selectivity, reliability and
speed of intervention. Results show that the proposed algorithm is fast and easily
finds the optimal solution.

Articles [194, 746] implement a MA for loss reduction in power distribution sys-
tems under variable demands: the proposed algorithm optimizes the power distribu-
tion network in order to have less switch operations, which generally cause losses.

15 Memetic Algorithms in Engineering and Design 249

The MA is a GA, with a novel chromosome representation and crossover operators,
hybridized with a local searcher, a variation of the branch-exchange procedure spe-
cific for this application, which is applied on the best solution every 50 generations.

In [921], a GA-based MA is presented for finding the optimal network structure
and switching configuration in service restoration in power distribution networks.
The proposed algorithm combines a two-stage GA previously applied to this kind
of problem, with a local search procedure, a greedy algorithm, and an efficient max-
imum flow algorithm. The local search, a branch exchange algorithm, is run on all
the feasible solutions after each GA iteration.

Crutchley and Zwolinski present in [173] a MA for direct current operating point
analysis of non-linear circuits. In this case, a DE framework is supported by a
Newton-Raphson solver which has the role of finalizing on the search and kicks
in when the DE ceases to considerably improve the best solution.

In [175], a combination of GA and SA is used to compute the optimal scheduling
of generator maintenance in power systems. According to a steady state logic, a
new individual is always inserted in the next population when it outperforms its best
parent; if this does not happen, then the probabilistic acceptance approach of the
simple SA is used to decide whether or not the new solution should be included in
the population.

Hidalgo et al. propose in [385] a hybrid approach for multi-FPGA (multiple Field
Programmable Gate Array) system design: after a predetermined number of com-
pact GA iterations, a local searcher tries to improve upon the best solution by ran-
domly changing its genes.

Article [919] deals with the problem of fault diagnosis in a power transformer: in
order to pursue this aim, a probabilistic neural network tuned by means of a combi-
nation of PSO and Back Propagation (BP) is used. The two algorithms are serialized
so that when the PSO stops improving on the best solution, the BP algorithm is ac-
tivated in order to find the global optimum.

In [23], a GA and a least square curve fitting method are combined to identify
the parameters of some peculiar transistors (NMOS in this case). Also in this case
the local searcher is run at the end of the optimization process, i.e. when the GA
does not manage to improve on the best solution. Results show that this memetic
approach outperforms a simple GA and other standard techniques used for this kind
of problem. Article [943] also deals with the parameter identification of electronic
devices (MOSFET).The voltage parameter identification is performed by means of
a MA in which a hill-climb algorithm assists a GA in generating the first population
and in performing mutation operation.

Tian et al. refers in [885] to the problem of circuit maximum power estimation.
For this aim, a GA employing two problem-specific components, namely input shar-
ing and bit climbing, has been designed.

Liu et al. optimize the design and the sizing of the power train components of
hybrid electric vehicles by means of GAs combined with Sequential Quadratic Pro-
gramming (SQP) in [529]. In this case the GA is run at first, and when the search
slows down the SQP method is applied to 20% of individuals randomly selected
among the population, and to the best individual.

250 A. Caponio and F. Neri

In articles [101, 102], a combination of float coded GA and trust region algorithm
is proposed for parameters identification of strain and dynamic hysteresis model for
magnetostrictive actuators. In [340] a GA is alternated with an approximation based
local searcher for the problem of optimal electromagnetic design: the SQP is used in
this algorithm, and the velocity of the search is increased by using an approximated
model for the local search procedure. The SQP is run cyclically after a predefined
number of GA iterations.

In [403], a MA for electromagnetic topology optimization is proposed. A
2-dimensional encoding technique is introduced, along with the corresponding
crossover and mutation operator. The GA is used as the main evolutionary algo-
rithm, aided in its search by a novel on/off sensitivity method launched according to
a probabilistic rule. The MA was applied to three real-world problems, proving to
be a very promising optimization method in the field of electromagnetism.

Article [944] applies a GA/SA hybrid algorithm for the parameters identification
of the flux linkage model for switched reluctance motors. Simulated and experimen-
tal results prove the accuracy of the model tuned by the proposed technique.

In [459] the acceptance criterion of the SA is used for chromosome selection in
a binary GA. The resulting optimization algorithm is used to decide where to place
measurement devices for power system state estimation.

Bui and Moon describe in [87] a MA mixing GA and a weak variation of the
Fiduccia-Mattheyses algorithm, applied to each individual after crossover and mu-
tation: this algorithm is used for partitioning electronic circuit hyper-graphs into two
disjoint graphs of minimum ratio cut. The application of the proposed approach to
several benchmark circuit graphs demonstrates its validity.

15.2.1.4 Other Engineering Applications of Memetic Algorithms

MAs were also applied in other fields of engineering, or for problems that do not
specifically fit into the categories cited before. Article [854] proposes the use of two
MAs to train a neural network for non linear system identification. The first MA is
a hybrid between GA and BP, the second is a hybrid between DE and the same BP.
In both cases BP is applied to each new individual generated by the evolutionary
framework. The authors eventually show that the DE-BP algorithm outperforms the
GA-BP and the other reference algorithms in this specific application.

In [261] a particular SA algorithm is developed for the Global Positioning Sys-
tem (GPS) surveying network problem. Since SA is a local searcher and has no
evolutionary components, the authors speak of a memetic SA because they replace
the canonical SA perturbation steps with an internal local search step.

Tagawa et al., in [868, 869], introduce a MA for the optimum design of surface
acoustic wave filters: the Variable Neighborhood Search algorithm is applied as lo-
cal searcher to each new solution and a distance-based mutation is proposed to keep
diversity among the population.

Article [724] presents a memetic approach to the problem of smooth map iden-
tification in electronic control units for internal combustion engines. A simple local

15 Memetic Algorithms in Engineering and Design 251

searcher is implemented as mutation operator in a GA framework, thus obtaining a
memetic GA.

In [251] a MA incorporating two local optimization operators in a micro GA were
used to solve a structural optimization problem. One local searcher is a direct search
technique derived from the HJA; this algorithm is used at each generation to improve
upon the offspring obtained by applying genetic operators to the population. When
this algorithm gets stuck, the second local search algorithm, a hill climber, is applied
to get the search out of this impasse. This approach is then applied to design a
minimum weight 18-bar truss structure subject to node forces.

Article [877] presents a MA assisted by an adaptive topology Radial Basis Func-
tion (RBF) network and variable local models for airfoil shape optimization: after
the evolutionary algorithm has been run, its solution is processed by a trust region
approach.

Kim et al. present in [463] a MA which hybridizes a clustered GA with a neural
network, local search, and random search for parameter identification of rolling ele-
ment bearings. SQP is adopted as local search algorithm, and a novel random search
technique is developed in order to find unexplored regions of the search space.

In [499], a hybrid between GA and tabu search is proposed to minimize pro-
duction costs of thermal units: at each iteration, the tabu search is used to improve
promising solutions, and the results show that the MA is fast and reliable for the
problem considered.

Ong et al. propose a surrogated assisted MA for aerodynamic shape design
in [679]. Alternating exact and approximated evaluation for aerodynamic perfor-
mances of wing profiles, the proposed algorithm evolves the population by means
of standard operators and applies to all new design points a local search strategy
which implements a trust-region framework to interleave the exact and approximate
models.

Article [38] provides a comparison of several evolutionary approaches to the
problem of optimization of causal infinite impulse response filters with applications
to perfect reconstruction quadrature mirror filter banks. Four approaches for this
problem are studied. At first, a constrained genetic algorithm searches a promis-
ing valley in the fitness landscape, and then the suboptimal filter parameters ob-
tained are further optimized using four different methods: a GA-based “creep code”,
a gradient-based constrained SQP method, a Quasi-Newton method, and a non-
gradient-based downhill Simplex method.

Burke et al. propose a memetic approach for the thermal generator maintenance
scheduling problem in [95, 96]. More precisely, in [96], hybridizations of GA with
tabu search, a basic hill-climber and a SA are compared for the problem under study,
while in [95], the GA combined with tabu search is further modified to produce a
multi-stage approach.

In [566], two different strategies are applied and compared for the problem of
seismic image analysis. One of the MAs proposed applies the local searcher, a wave-
form steepest ascent, to each member of the population at every generation of GA.
The second approach runs the local search to each individual after a predefined
number of GA generations.

252 A. Caponio and F. Neri

Tao, in [875], applies a MA to train a fuzzy neural network controller for a truck
backer-upper. GA is chosen as the main evolutionary framework, and at each iter-
ation, some individuals are processed by a BP algorithm while the remaining ones
undergo standard genetic crossover and mutation.

In article [176], GAs are combined with a quasi-Newton method to solve the
non-linear equation of a helicopter trim model. Zhang et al. in [958] try to solve
the problem of inverse acceleration in robots with degrees-of-freedom less than six.
The proposed approach makes use of a hybridization of a GA framework with a
random search algorithm to avoid the calculation of the inverse Jacobian matrix and
the second order influence coefficient matrix.

Article [972] applies a simple MA, made up of a GA and a local searcher applied
to each newly generated individual, to the problem of spatial-temporal electroen-
cephalogram dipole estimation, which is an ill-posed not fully determined inverse
problem.

In article [693], a MA coupling an EA and a gradient search is designed for
optimization of structures under dynamical load. In addition, an artificial neural
network was used to control the parameters of the gradient-based algorithm.

15.2.2 Engineering Applications in Multi-Objective Optimization

While single-objective optimization techniques quickly provide a final unique so-
lution, multi-objective algorithms give the chance to fully comprehend and model
a problem, describing more thoroughly the connections between objectives and in-
puts. Multi-objective optimization eventually leads to a set of compromised solu-
tions, known as the Pareto-optimal solution front, each of which minimizes (or
maximizes) at least one objective, without simultaneously increasing (or decreas-
ing) one or more of the others. The multi-objective approach is more thorough and
usually requires more time, and, besides, once the final set is available, a decision
making process is needed to select the most suitable solution. A comparative analy-
sis between single-objective and multi-objective optimization can be found in [132].

Two important problems to solve in designing Multi-Objective Memetic Algo-
rithms (MOMAs) are how to define a local search in a multi-objective environment,
and how to optimally balance the global and the local search when dealing with
simultaneous competing objectives [411]. In the following, special attention will be
paid to how these problems were faced in real-world situations.

15.2.2.1 Memetic Algorithms in Hardware Design

During the design of some specific tools or hardware devices, one must satisfy many
conflicting needs and one may be interested in understanding their mutual interac-
tions. For this reason MOMAs have been widely applied to optimally plan hard-
ware. One interesting application can be found in paper [196], where a MOMA
is implemented to solve various problems of mechanical shape optimization. The
study stresses the importance of a fast and good convergence and on the need to
reach a final set of solutions well spread across the Pareto front. The proposed

15 Memetic Algorithms in Engineering and Design 253

algorithm is realized by mixing a binary encoded NSGA-II [200] with a single ob-
jective local searcher, performing the weighted sum approach, which is applied to
each non-dominated solution.

In [470], a multi-tiered MOMA for design of quantum cascade lasers is pro-
posed. The evolutionary algorithm used by Kleeman et al. is the General Multi-
Objective Parallel algorithm, while the local searcher used, applied after predefined
generations throughout the entire process, is a multi-tiered neighborhood search,
i.e. a neighborhood search algorithm which changes different alleles according to
the number of generations done. The new non-dominated points returned by the
local searcher are then reinserted in the population. Several strategies to apply the
local search are implemented, and the results obtained are compared.

Article [835] describes the use of MOMAs in aerodynamic shape optimization
through computational fluid dynamics. Song integrates within a NSGA-II frame-
work a fitness sharing method in the design space, in addition to the fitness sharing
in the objective space. The local searcher used is a single objective SA that tries to
cyclically improve on each objective while treating the others as constraints. The
SA is run on a certain number of points in the Pareto set: the more successful the
previous local search step was, the more points will be selected.

Wang et al. in [917, 918, 919, 920] apply different MOMAs to the optimiza-
tion of structures under load uncertainties. In all cases the proposed algorithm is a
hybridization of multi-objective GA with HJA, but while in [917] the HJA is used
as a standard local searcher applied to each solution generated by mutation oper-
ator, in [918, 919, 920] it is integrated as a worst-case scenario technique of anti-
optimization, leaving to the evolutionary framework the duty to solve the multi-
objective optimization. The algorithm presented in [917], is also applied in [871]
to the automatic design of a compliant grip-and-move manipulator by topology and
shape optimization.

15.2.2.2 Memetic Algorithms in Electric and Electronic Engineering

Electric and electronic engineering problems have also been intensely studied
through multi-objective optimization techniques. Article [178] applies a MOMA
to the automated synthesis of analog circuits in order to optimize circuit topologies
and parameters. The evolutionary framework is implemented ad hoc and application
specific crossover and mutation operators are used. The classification procedure is
done through the crowded comparison operator introduced in the NSGA-II [200],
and SA is applied to each new solution generated by the evolutionary framework
and to non-dominated individuals after each ranking process.

In [103] the Cross-Dominance Multi-Objective MA (CDMOMA) is proposed
and applied to design the control system of a direct current electric motor. The CD-
MOMA is composed of a NSGA-II [200] framework and two local searchers: the
novel Multi-Objective Rosenbrock Algorithm (MORA) and the Pareto Domination
Multi-Objective Simulated Annealing (PDMOSA) proposed in [860]. To coordi-
nate the evolutionary framework and the two local searchers, the algorithm employs
the so-called cross dominance concept after each generation. This novel concept

254 A. Caponio and F. Neri

consists of the calculation of a metric; this metric, namely λ , represents the mu-
tual dominance between two sets of candidate solutions. This metric is then used,
with the aid of a probabilistic scheme, to coordinate the MORA and the PDMOSA
within the evolutionary framework. In the logic of the designer, the PDMOSA helps
find non-dominated solutions in unexplored areas of the decision space, while the
MORA tries to improve the individuals that already have a high quality by ex-
ploring their neighborhood. After showing the validity of the CDMOMA with sev-
eral benchmark functions, the authors apply it to optimally tune a DC motor speed
control system.

Mori and Yoshida, in [611], present an efficient power distribution network
expansion planning method in the presence of uncertainties. The article presents
a novel MOMA based on the Controlled-NSGA-II [197] combined with a local
searcher run on the non-dominated points after each generation of the evolutionary
framework. Results given prove the efficiency of this method for the problem under
study.

In [4] a MOMA is applied to aircraft control system design. A multi-objective
GA, working in the decision variable space, is supported by a local search that fine
tunes the population directly in the objective space. The results of the local search
process are then re-mapped into the decision space by means of an artificial neural
network which is trained during the global search process.

Katsumata and Terano in [449] design a MOMA improving Bayesian optimiza-
tion algorithm with tabu search and Pareto ranking. The proposed algorithm is then
applied to an electric equipment configuration problem in a power plant.

In [177], a bi-objective MA is proposed for the optimal design of resonator
filters of arbitrary topology. A local search algorithm assists the EA for fitness
improvement of candidate circuits, refining their parameters in order to prevent
good topologies with non-optimized parameters values from being prematurely
discarded. Local search is run on each elite individual after the classification pro-
cess, and on the topologies of new circuits after the crossover/mutation procedure.

15.2.2.3 Memetic Algorithms in Image Processing and Telecommunications

Some interesting examples of MOMAs in real-world optimization regard image pro-
cessing and telecommunications problems. In article [754], the authors deal with the
problem of intelligent feature extraction of isolated handwritten symbols by means
of a multi-objective optimization algorithm: after coding the problem to treat it as a
two-objective optimization, Radtke et al. propose a multi-objective GA hybridized
with an annealed based heuristic. The MOMA follows a Pareto ranking approach,
and the local searcher is applied to each individual generated by the genetic opera-
tors; at the end of each generation, the most promising individuals are stored in an
archive. Results show that implementing a local searcher considerably improves the
convergence speed of a stand-alone GA.

In [474], two different telecommunication problems are studied by means of
several Multi-Objective Evolutionary Algorithms and one MOMA, namely the
M-PAES, proposed in [472]. Numerical results show how a multi-objective ap-
proach can be very successful for this kind of problem.

15 Memetic Algorithms in Engineering and Design 255

Martins et al. propose a multi-objective memetic approach to the design of wire-
less sensor networks in [558]. The proposed algorithm is composed of a global and
a local strategy. The global strategy has the role of designing the entire network of
sensors, while the local one is used to repair the neighborhood of a failing node in
the network.

In [530, 531], a MOMA based on a GA, is applied to the design problem of a
capacitated multi-point network. During the search the generation of the new pop-
ulation is done by mixing four methods: an elitism reservation strategy, the shift-
ing Prüfer vector, genetic crossover and mutation and the complete random method.
Each of these strategies creates a subpopulation, and these are then merged. Compar-
isons between the proposed approach, the single objective GA with weighted sum
approach and the vector evaluated GA (VEGA), show that the proposed MOMA
finds most non-dominated solutions and offers the best performance.

15.3 A Study Case: The Fast Adaptive Memetic Algorithm

In this section, we will further discuss the study presented in [104], in which a
Fast Adaptive Memetic Algorithm (FAMA) is used to design on-line and off-line
the optimal control system for a Permanent Magnet Synchronous Motor (PMSM).
The FAMA is an interesting example of MA applied to real-world problems. The
FAMA is composed of an ES evolutionary framework with dynamic population size
and two different local search algorithms, the HJA and the NMA. The local search
is coordinated by means of an adaptive rule based on the concept of fitness diversity.

15.3.1 An Insight into the Problem

The performance offered by an electric motor is strictly connected to the quality
of its control. Although many control structures are available, a common and con-
venient alternative is the Proportionate Integrator (PI)-based control. This control
structure allows, despite its simplicity and low cost, high-performance if properly
designed. Thus, an efficient algorithmic solution for tuning PI controllers is a very
relevant topic in an industrial environment. In a nutshell, the control system of
an electric motor is a device which guarantees that the motor does not encounter
malfunctioning when a dynamic operation is performed. In other words, a control
system is supposed to guarantee that the motor reacts quickly and accurately to an
external event. For example if while a motor is working and an additional torque
is suddenly applied (this is a typical scenario in industries), a good control system
should ensure that the motor counterbalances the extra torque without damages to
the structure. It is important to remark that with damage we do not mean only ma-
jor damages which immediately compromise the functioning of the motor but also
micro-damages which may significantly shorten the life of the devices.

Fig. 15.1 shows the block diagram of a vector controlled PMSM drive studied in
[104].

256 A. Caponio and F. Neri

PMSM

Load

enc

*

0
sd

i =

*

sq
i

sq
i

sd
i

-
+

-
+

sq
i

+

sq
i

sd
i

+

+

r
è

dq

abc

speed controllersmoothing filter isq controller

sd
i

+

+

-

isd controller

+

dq

abc

speed

calculator

*

sd
v

*

sq
v

main

*

r
ù

r
ù

r
ù

r
ù

x

+
+

x

voltage compensators

-K
1

K
2

K
3

K
isq isq

��

�
isq

K
� �r r

���
sm

K
isd isd

��

Fig. 15.1. Block Diagram of a vector-controlled PMSM drive

In [104], the main features of a good control system have been conceptualized
as the capability of the motor to provide a quick and accurate response to speed
command, load disturbance, and measurement noise. Thus, the PI tuning can be
seen as a multi-objective optimization problem. More specifically, to evaluate the
quality of each solution a training test, made of 8 speed and load torque steps, was
designed. Each individual was used in this training test and its performance was
given by the fitness in 15.1

f =
4

∑
i=1

(
ai ·

nstep

∑
j=1

fi, j

)
(15.1)

where j indicates the number of the generic speed step, i indicates the number of
the performance index, and ai is the positive normalization factor of the respective
performance index fi, j . Specifically, f1, j measures the speed error in the settling
phase, f2, j is the overshoot index, f3, j measures the rise time, and f4, j takes account
of the undesired d-axis-current oscillations, which increase losses and vibrations in
the motor and drive.

It is interesting to notice that, since during the on-line optimization (the fitness
function is not calculated by a computer but measured from an actually function-
ing motor) an unstable solution can be tested, to overcome the danger of possibly
stressing the hardware, each performance index is constantly monitored during each
experiment so that when a dangerous situation is recognized, the motor is stopped
and a penalty factor is applied to the objective value.

15 Memetic Algorithms in Engineering and Design 257

15.3.2 Fast Adaptive Memetic Algorithm

The FAMA is a MA based on an ES framework. Initially a set of points is pseudo-
randomly generated in the search space. Then, at the end of each iteration, the index
ξ is calculated according to equation 15.2:

ξ =

⎧⎨
⎩

∣∣∣ fbest− favg
fbest

∣∣∣ if
∣∣∣ fbest− favg

fbest

∣∣∣� 1

1 if
∣∣∣ fbest− favg

fbest

∣∣∣> 1
(15.2)

where fbest and favg are respectively the best and average fitness at the last iteration.
Parameter ξ measures the diversity and, indirectly, the current state of convergence
of the algorithm: the condition ξ = 1 means that there is a high diversity (in terms
of fitness) among the individuals of the population and that the solutions are not
exploited enough, while when ξ → 0 the convergence is getting closer and since
it could be premature, a higher search pressure is needed. According to this logic,
the coefficient ξ is used to adaptively set several parameters of the optimization
algorithm:

- The size of the population is set according to this rule:

Spop = S f
pop + Sv

pop (1− ξ) (15.3)

where S f
pop is the minimum size of the population deterministically fixed and

Sv
pop is the maximum size of the variable population. When ξ = 1 the population

contains high diversity and a small number of solutions need to be exploited,
if ξ → 0 the population is going to converge and a bigger population size is
required to increase the exploration.

- The probability of mutation is set in the following way:

pm = 0.4(1−ξ) (15.4)

Furthermore, the value of ξ is also used to decide which local searcher should be
run and when: defining η as the number of the current generation, when (ξ < 0.1)
AND (η > 8) the algorithm is likely to converge soon and the HJA is applied to
the best performing individual to refine the final stages of the search. On the con-
trary, if (0.05 < ξ < 0.1)AND(η > 4), the NMA is applied on 11 individuals, i.e.
the dimension of the search space +1, pseudo-randomly selected in the population,
in order to find promising search directions. These two local search algorithms are
both direct methods and can be applied to the given objective function which, being
non-linear and not-differentiable, and without an explicit analytical expression (the
fitness is generated by an experiment and its measures), could not have been tack-
led with any analytic approach. Furthermore, HJA and NMA show different and
complementary behaviors: while the HJA is highly deterministic converging to the
closest local optimum, the NMA retains some stochastic features, since its outcome
depends on the initial sampling and the solutions are periodically sampled at random
(during the shrinking phase).

258 A. Caponio and F. Neri

The FAMA is stopped either when the number of generation η reaches a pre-
arranged number, or when the coefficient ξ gets smaller than a predetermined value.

15.3.2.1 Experimental Results

The FAMA was compared with a pure GA and a simplex algorithm for the off-line
optimization, and with a pure GA only for the on-line optimization. With off-line op-
timization we mean that the fitness function is calculated by means of a simulation
model of the control system simulated within a computer. With on-line optimiza-
tion we mean that the fitness is measured by means of experiments on an actual
motor and an actual control system. The necessity of repeating the optimization
twice allows an initial identification of the interesting region of the decision space
which contains the optimum. The optimization must then be replicated by means
of the actual devices because the model, although accurate, cannot fully simulate
the real-world. As a matter of fact, similar motors of different producers can have
very different responses in stress conditions. In addition, even apparently identical
motors characterized by the same nameplate might have some different behaviors.
Even measurement devices unavoidably influence (although in a minor way) the
motor performance. For these reasons, it is important to design a specific control
system tailored to the features of the available devices.

Figures 15.2 and 15.3 compare the performance trends obtained in the off-line
and in the on-line case respectively. It is worth noticing that experimental results
are, as expected, considerably different than the simulation results. This is due to
non-linearities and uncertainties of the system, which were impossible to accurately
model. In both cases, the results obtained by FAMA are strictly better than the initial
commissioning and than the results offered by the other optimization techniques.

0 2000 4000 6000 8000 10000
2

4

6

8

10

12

14

16

number of fitness evaluations

fit
ne

ss
 v

al
ue

GA

SIMPLEX

FAMA

Fig. 15.2. Performance trend of three optimization methods (Simulation result)

15 Memetic Algorithms in Engineering and Design 259

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
3

4

5

6

7

8

9

number of fitness evaluations

fit
ne

ss
 v

al
ue GA

FAMA

Fig. 15.3. Performance trend of two optimization methods (Experimental result)

The Fast Adaptive Memetic Algorithm presented in [104] is a good example of a
MA applied to real-world optimization. Facing a non-differentiable problem which
could not be solved with analytical techniques, the FAMA was designed keeping
an eye on the peculiarities of the specific context under study. Nonetheless it in-
cludes some guidelines which are useful in similar conditions, i.e. when the fitness
landscape is highly multi-modal and contains high gradient areas. Finally, FAMA
demonstrates that the optimization performance is increased not only by the inte-
gration of a local search algorithm within an evolutionary framework, but also by a
smart coordination strategy between the algorithmic components.

15.4 Conclusions

Many real-world problems are too complex to be solved by means of standard an-
alytical techniques. In theses situations, direct search methods have become more
and more popular. Specifically MAs, joining the exploration characteristics of Evo-
lutionary Algorithms with the exploitative abilities of local searchers, have found a
continuously increasing success in engineering problems.

When designing MAs, special attention must be paid to the peculiarities of the
specific optimization problem to deal with. Putting together an evolutionary frame-
work with one or more local searchers could not be enough to get good results, and
a strategy to combine and harmonize the different components of a MA should be
designed.

This chapter offered a panoramic view of several fields in which MAs were suc-
cessfully applied so far. Researchers could see how different situations have been
faced. The most interesting cases were analyzed in more depth and a specific situa-
tion, the self commissioning of electric drives for a permanent magnet synchronous
motor, was described in detail.

260 A. Caponio and F. Neri

Future trends, in accordance to the No Free Lunch Theorem, will be oriented to-
wards the design of domain-specific MAs for addressing each engineering problem.
On the other hand, this trend might lead to the design of overwhelmingly complex
optimization algorithms which can require an extensive parameter tuning if minor
modifications are made to the original problem (e.g. variation of working condi-
tions). For this reason, in our view a keyword in future MA design in engineering
will be “algorithmic robustness”. Finally, in our opinion, it will be important that
future MAs have a relatively simple structure and are fairly easy to modify and
control.

Thus, we think that engineers and computer scientists will attempt to find a com-
promise between high performance and algorithmic flexibility. A crucial role will
be played by the adaptation rules and their capability of being employed in various
optimization problems, thus attempting to push towards “the outer limit” of the No
Free Lunch Theorem. By giving up a marginal part of the algorithmic performance,
future MAs will attempt to solve not only a very specific case but a restricted set of
problems having common features. A suitable trade-off will be in our opinion a fu-
ture topic of discussion. The final aim would be the implantation of “fully intelligent
algorithms” which can automatically detect the suitable algorithmic components or
might even be able to design the algorithms during the run time on basis of the fitness
landscape response without any human decision. Although some interesting work
has been already done, completely avoiding human decision within the algorithmic
design phase is still very far from achievable

Acknowledgements. This research is supported by the Academy of Finland, Akatemiatutk-
ija 130600, Algorithmic Design Issues in Memetic Computing.

Chapter 16
Memetic Algorithms in Bioinformatics

Regina Berretta, Carlos Cotta, and Pablo Moscato

16.1 Introduction

Bioinformatics is an exciting research field for memetic algorithms (MAs). Its core
activity is the integration of techniques from Computer Science, Mathematics and
Statistics to address challenging computational problems related with the analysis
of large volumes of data. Due to its huge relevance as a means to understand biology
in the 21st Century, this field has attracted the attention of many pioneers in MAs,
including the authors of this chapter.

During the past two decades, the field of molecular biology and the new high-
throughput technologies associated with it has spawned a number of interesting
problems. These problems can, in many cases, be posed as optimization problems
which are combinatorial, non-linear, and often have aspects of both. Some exam-
ples arise in the analysis of large scale genetic datasets (e.g. gene expression us-
ing microarrays, massive datasets of single nucleotide polymorphisms derived from
genome-wide association studies, etc.).

The field of bioinformatics is characterized by a constant evolution in computa-
tional methods for clustering and feature selection, analysis of phylogenetic trees

Regina Berretta
Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine,
School of Electrical Engineering and Computer Science, The University of Newcastle,
University Drive, Callaghan, NSW, 2308, Australia
e-mail: Regina.Berretta@newcastle.edu.au

Carlos Cotta
Escuela Técnica Superior de Ingenieria Informática, Universidad de Málaga,
Campus de Teatinos, 29071 - Málaga, Spain
e-mail: ccottap@lcc.uma.es

Pablo Moscato
Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine and
Hunter Medical Research Institute, School of Electrical Engineering and Computer Science,
The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
e-mail: Pablo.Moscato@newcastle.edu.au

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 261–271.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

262 R. Berretta, C. Cotta, and P. Moscato

(inference and reconstruction), image processing, protein analysis (structure predic-
tion, sequence alignment), drug therapy design, among many others others. As we
said before, many aspects of these problems are combinatorial in nature, involving
the selection or the arrangement of discrete objects. Many of these combinatorial
problems are NP-optimization problems, thus biologists are generally interested in
finding the optimal solution of a given problem, but if that is impossible to obtain,
they also rely for their investigations in high-quality solutions, provided by some
metaheuristic technique. In this sense, MAs are a good strategy as they can provide
solutions quickly, but then if they are coupled to an exact solver (thus forming a
complete MA – check chapter 12), they can also prove the optimality of the final
solution.

In general, researchers employ exact methods developed by themselves, and
highly crafted for the problem at hand, or rely on Integer Programming reformu-
lations of their problems. References in Mathematical Programming, Integer Pro-
gramming for problems in computational biology can be found in works by Lan-
cia [501] and Althaus et al. [15]. A hands-on approach to modeling using commer-
cial packages can be found in [338] and [278]. Our experience with students, coming
from different academic backgrounds, also suggest that the book by Williams [936],
and the reviews of Greenberg, Hart and Lancia [332] and Festa [259], are not only
useful but they have the added value of being very motivational for those interested
in crossing fields and to jump into this new area. However, it is clear that since the
size of the datasets associated to these challenges problems is, in general, is mas-
sive, in many cases it is necessary to develop efficient metaheuristics to deal with the
large instances of these problems. As usual, research on metaheuristics is important
as it can provide good upper bounding schemes to guide exact search procedures.

This chapter provides an review of MAs that have been developed to address
some of the problems mentioned above. For an eagle’s view of the contents, in Ta-
ble 16.1 the reader can find a list of references grouped by application. For the sake
of completeness we have also included in this table some applications in the wider
area of biomedicine, where applications of memetic algorithms are also manifold.
In particular, it is worth mentioning the deployment of MAs for optimizing cancer
treatment, both in radiotherapy [347, 348] and chemotherapy [519, 520, 894]. Pre-
cisely related to this later issue of drug scheduling we can cite the work of Neri et
al. for HIV multidrug therapy [658]. Imaging applications in tomography and imag-
ing are also numerous [99, 144, 210, 211, 789] (please check [716] for a review of
metaheuristic methods applied to microwave imaging). In the following sections we
will focus on the purely bioinformatic tasks defined in the table though.

16.2 Microarray Data Analysis

With the introduction of DNA microarray technologies, it is now possible mea-
sure the expression of thousands of genes simultaneously. However, this obviously
comes at a price as even a single microarray experiment leads to the need to deal
with large datasets. This has posed a challenge primarily for statistics, as researchers

16 Memetic Algorithms in Bioinformatics 263

Table 16.1. An overview of MA applications in Bioinformatics

Area Subarea Reference

Microarray analysis clustering [406, 592, 698, 840, 841]

gene ordering [167, 576, 631]

feature selection [339, 402, 953, 964, 965,
966]

Phylogenetics inference and reconstruction [153, 155, 157, 298, 767,
937]

consensus tree [723]

Protein analysis structure prediction [53, 148, 150, 495, 496,
677, 790, 959]

structure comparison [107, 488]

Molecular design ligand docking [373, 612]

PCR product primer design [947]

Sequence analysis DNA sequencing [218]

multiple sequence alignment [883]

supersequence problem [151, 297]

Systems biology cell models [773]

gene regulatory network [465, 466, 671, 842, 843,
893]

Biomedicine 3D reconstruction of forensic ob-
jects

[789]

Radiotherapy [347, 348]

Drug therapy design [519, 520, 658, 894]

Tomography [99, 144, 210, 211]

now need to deal with the “large n, small m” problem (where n denotes the number
of measurements on a single sample and m is the total number of samples). Statis-
ticians obviously prefer to deal with the reverse situation, with more samples than
measurements. When multi-variate methods are required, researchers resort to ob-
taining “molecular signatures”, searching for a more coherent, reliable and robust
set of molecular changes [668]. They count on Computer Science (allied of course
with statistical methods) for the development of sophisticated algorithms to analyze
such data.

The approaches for the analysis of microarray datasets can be primary classified
as unsupervised and supervised methods. At this description level, we can under-
stand that these microarray datasets are basically two-dimensional arrays of values
(the measurements) and that a re-assignment of labels to the samples (and, analo-
gously, to the measurements) helps to uncover some structure within the data.

Clustering algorithms are the most common example of unsupervised methods
to find these structures. Another unsupervised method, which can be seen as a

264 R. Berretta, C. Cotta, and P. Moscato

particular type of clustering algorithm is called gene ordering. In this case the over-
all objective is to find a permutation of either the rows or columns of this two-
dimensional array such that those having the same patterns of global expression are
relatively close in the permutation. An example of supervised method is feature se-
lection, in which the aim is selecting a subset of features (genes in this case) such
that a main goal is optimized, for example, classification accuracy.

We now give a brief description of some MAs that have been proposed to address
the clustering and feature selection problems in microarrays.

16.2.1 Clustering

From the description we have given before, it is clear that clustering encompasses
a wide number of different problems, as the word “scheduling” in Production Plan-
ning and Operations Research encompasses different specific problems. Merz and
Zell’s proposal [592] for the clustering problem in microarray data analysis is based
on a model in which the task is to define an assignment of objects into clusters, such
that the sum of squared distances to the centroid of the cluster is minimized. They
proposed a MA which uses the K-Means algorithm as a local search technique. They
use uniform crossover and they also propose a new one denominated replacement
recombination operator. They compare the MA with a multi-start k-means local
search using five different microarray datasets.

Speer et al. used in [840, 841] a Minimum Spanning Tree (MST) to represent the
data, where each node is a gene and each edge between nodes i and j represent the
dissimilarity between genes i and j, thus modeling the clustering problem as tree
partitioning problem, i.e., deleting a set of edges to find the clusters. They proposed
a MA based on the framework presented by Merz and Zell in [592]. They use two
fitness functions, the sum-of-squared-error criteria (the same used in [592]) and the
Davies-Bouldin-Index [186], which minimizes the intra-cluster and maximizes the
inter-cluster distances. Using four microarray datasets, they compared the MA with
two other popular clustering algorithms, the average linkage algorithm [242] and
the Best2Partition [950], which is also based on a MST-representation of the data.

Palacios et al. [698] present the results of different population based metaheuris-
tics (genetic algorithms, MAs and estimation of distribution algorithms) to obtain
biclusters from microarray datasets. According to the authors, the advantage of find-
ing biclusters in microarray datasets (instead of traditional clusters) stems from the
ability to find a group of genes that are similar in a specific subset of samples. To
analyze the performance of each algorithm, they used a yeast expression dataset
comprising 17 samples on 2,900 probes.

Gene Ordering is another unsupervised method that can be interpreted as a spe-
cial type of clustering algorithm. The objective is, given a gene expression dataset,
to rearrange the genes, such that genes with similar expression patterns stay close
to each other. MAs to tackle this problem have been proposed in [167, 576, 631].
In [167], Cotta et al. represent a solution as a binary tree, using hierarchical clus-
tering as a start point. The crossover operator is similar to the one used in [155],

16 Memetic Algorithms in Bioinformatics 265

using subtrees from the parents to create an offspring. Flipping subtrees are used
as the model for the mutation operator. Two local searches are applied, the first
one works by inverting branches of subtrees and the second one employs a pair-
wise interchange local search. They test the MA in instances with up to 500 genes.
Mendes et al. [576] uses the same MA, but with the objective to evaluate the im-
pact of parallel processing in the performance of the MA and ability to apply it
in larger instances (up to 1,000 genes). More recently, in [631] these MAs are im-
proved significantly, with the inclusion of new local searches which employ Tabu
Search. The MA is tested not only in microarray instances (containing more than
6,000 genes), but as well in images, where the objective is unscramble the rows
of an image when the image has all its rows permuted at random. The images are
excellent as benchmark instances and help to evaluate gene ordering and different
clustering algorithms, making it easier to understand the quality of the results. The
MA proposed by Moscato et al. [631] has been successfully applied in different
microarray studies [63, 170, 330, 397, 577, 768].

16.2.2 Feature Selection

Feature selection methods are used primarily in bioinformatics to reduce the di-
mensionality of a dataset to help to discriminate between classes of samples under
study. We note that the definition of a feature is rather general, it can be a gene
expression (as in microarray datasets), a single nucleotide polymorphism (SNP) (as
in genome-wide association studies), protein abundances (as in ELISA kit panels),
among many others sources of biological information. Feature Selection methods
can be classified as filter or wrapper methods. In filter methods, the features selected
are evaluated based only on the characteristic of the data and in the wrapper meth-
ods, a classification algorithm is embedded in the method, giving constant feedback
regarding the quality of the set of features selected.

Zhu et al. [965] present a MA for feature selection problems with the objective to
improve classification performance. Each individual in the population is composed
of a set of selected features (X) and a set of excluded features (Y). The local search
procedure move features between sets X and Y based on some filter ranking meth-
ods, such as ReliefF, Gain Ratio and Chi-Square. They evaluated the performance of
their approach using four UCI datasets (UC Irvine Machine Learning Repository1)
and four microarray datasets, showing improvements in the classification accuracy.

In [953], Zhu and Ong present a similar MA, but now using a Markov blan-
ket approach in the local search procedure. In [964], the same authors present a
comparison study between the MAs presented in [965] and [953]. They evaluated
the results on synthetic and real microarray datasets. Both MAs perform well in
regards to classification accuracy, but the one that uses Markov blanket approach
gives smaller feature sets. Finally, in [966], they present a memetic framework that
combines the previous approaches with a hybridization of wrapper and filter fea-
ture selections methods. The computational tests were done in fourteen microarray

1 http://archive.ics.uci.edu/ml/

266 R. Berretta, C. Cotta, and P. Moscato

data sets containing 1,000 to 24,481 genes. They have also tested their methods for
hyperspectral imagery classification. The classification accuracy was good and the
number of features selected varies depending on the local search used.

Other MAs for feature selection problems were proposed in [339, 402]. However,
as stated by Zhu et al. [966], due to the inefficient local search methods a large
amount of redundant computation is incurred on evaluating the fitness of feature
subsets. This is an issue worth considering in detail when designing an MA as we
rely on the power of local search, associated with good data structures, to speed-up
the process. This is an area of great interest and we hope more sophisticated MAs
will be developed during this decade.

16.3 Phylogenetics

The aim of plylogenetics is to study the evolutionary relationship between species,
which can be represented by a phylogenetic tree. The inference of phylogenetic
trees, known as Phylogeny Problem, is a very challenging task and is certainly
important in molecular biology. It has connections with other problem domains
in bioinformatics like multiple sequence alignment, protein structure prediction,
among others [153]. The aim of the Phylogeny Problem is to find the tree (or in
certain cases the network), that best represents the evolutionary history of a set of
species. Several criteria have been defined in order to measure the quality of a certain
tree given certain input data (typically, molecular data corresponding to a collection
of different organisms or taxa); these can be broadly grouped into sequence-based
methods (such as maximum parsimony and maximum likelihood) and distance-
based methods (e.g., minimal ultrametric trees). Unfortunately, NP-hardness has
been shown for phylogenetic inference under most of these models [190, 191, 277,
942]). Due to the complexity of the problem, the research focuses in the develop-
ment of powerful metaheuristics, like MAs [153, 155, 157, 298, 767, 937].

Cotta and Moscato proposed several MAs for hierarchical clustering from dis-
tance matrices under a minimum-weight ultrametric tree model (i.e., finding an ul-
trametric tree of minimal overall weight, such that its associated distance matrix
bounds the observed distances from above). The first approaches [155] were based
on the use of evolutionary algorithms endowed with heuristic decoders, which could
be viewed as greedy hill-climbers for genotype-to-phenotype mapping. Although
these provided much better results than other simpler decoder-based approaches
and tree-based evolutionary algorithms, their computational cost was also large.
Later [157] an orthodox memetic approach was presented based on the use of a
tree representation and a local search operator based on tree rotations.

A scatter search method using path relinking was subsequently presented by
Cotta [153]. Scatter Search (SS) [314, 320, 500] is a powerful metaheuristic which
can be considered as a particular type of MA that often relies more on determinis-
tic strategies rather than randomization. In this work, the author used a ultrametric
model and a minimum weight criterion as in previous works [155, 157]. The SS

16 Memetic Algorithms in Bioinformatics 267

algorithm was evaluated using five real biological data sets from an online reposi-
tory –the TreeBase site2– and was shown to compare favorably to an evolutionary
algorithm and a MA. Related to this, Gallardo et al. [298] propose an hybrid algo-
rithm that combines Branch and Bound (BnB) and MA in an interleaved way. The
idea is to have both techniques sharing information between them. They used the
same five biological data sets from as [153] and showed improved results.

Williams and Smith [937] use maximum parsimony as the optimization crite-
ria, which means that the tree with the least evolutionary events is the best. They
propose a MA, which uses diverse and elitist populations (similar with the ones
used in scatter search methods). More precisely, their approach is based on main-
taining a collection of Rec-I-DCM3 trees (Recursive-Iterative DCM3, a powerful
heuristic for designing maximum parsimony trees [777]) which cooperate within a
selectorecombinative evolutionary algorithm. They evaluate their method using bio-
logical datasets with up to 4,114 sequences, obtaining better results than parsimony
ratchet [669] and TNT (Tree Analysis using New Technology3). Richer et al. [767]
also uses maximum parsimony as the optimization criteria. They propose a MA that
uses progressive neighborhood as local search (similar with VNS - variable neigh-
borhood search [364]). They used twelve instances from TreeBase, and obtained
results that were generally equal or better than TNT.

A problem related to phylogenetic inference is that of finding consensus trees,
namely finding a tree that summarizes the information comprised in a collection
of trees (e.g., finding a unique tree that faithfully amalgamates the outcome of dif-
ferent phylogenetic inference methods). A seminal approach to this problem using
evolutionary methods can be found in [152] on the basis of the TreeRank distance
measure [916] between trees. Pirkwieser and Raidl [723] tackled this problem using
VNS, evolutionary algorithms (EAs) , MAs (using EAs endowed with local search
on different tree-based neighborhood structures), and multi-level hybrids based on
the intertwined execution of VNS and EA/MA which ultimately produced the best
results.

16.4 Protein Structure Analysis and Molecular Design

Problems involving analysis of protein structure are fundamental in bioinformatics.
We refer to Oakley et al. [677] who present a review of problems involving analysis
of protein structure (including structure prediction, structure comparison, aggrega-
tion of structures, etc.).

The protein structure prediction (PSP) problem aims to find the 3D structure with
minimum energy (based in a specific energy model) given the primary sequence of
the protein (i.e., the linear sequence of amino acids composing the protein). Krasno-
gor et al. [495] analyzed three main factors affecting the efficacy of evolutionary
algorithms for PSP: the encoding scheme, the way illegal shapes are considered
by the search, and the energy (fitness) function used. In [148] the protein structure

2 www.treebase.org
3 http://www.zmuc.dk/public/phylogeny/tnt/

268 R. Berretta, C. Cotta, and P. Moscato

prediction problem on the hydrophobic-polar (HP) model was considered. The HP
model [213] is based on classifying each amino acid into two classes: hydrophobic
or non-polar (H), and hydrophilic or polar (P), according to their interaction with
water molecules. In this case the binary sequence of H/P amino acids is embedded
in a cubic lattice subject to non-overlapping constraints, with the aim of maximiz-
ing the number of H-H contacts, namely the number of H-H pairs that are adjacent
in the lattice. The MA featured the inclusion of a backtracking operator in order to
repair infeasible protein configurations. A similar approach was used in [150] in the
context of the HPNX energy model, an extension of the HP model in which polar
amino acids are split into three classes: positively charged (P), negatively charged
(N), and neutral (X). Krasnogor et al. [496] presented a multimemetic algorithm for
protein structure prediction using four different models (HP in square and triangle
lattice, and functional model proteins in the square and diamond lattice). Bazzoli
and Tettamanzi [53] also considered the HP cubic lattice model. They presented a
MA using a self-adaptive strategy, where the local search is applied with a prob-
ability guided by a function similar to the one used in simulated annealing, with
the aim to either control exploitation or diversification. According with the authors,
the MA was strongly based on the MA proposed by Krasnogor and Smith [491],
where the authors compared self-adaptation against other local-search approaches
for the traveling salesman problem. Santos and Santos [790] presents a MA for the
protein structure problem using 2D triangular HP lattice model, whose main feature
was the use of caching in order to reuse computation and speed-up fitness evalua-
tion. The study of Zhao [959] addressed HP models as well. They described several
metaheuristics such as MAs, tabu search, ant colony optimization, self-organizing
map-based computing approaches and chain growth algorithm PERM, highlighting
their advantages and disadvantages.

Protein structure comparison or protein alignment is another important problem
in the area of protein structure analysis problem. In this case the goal is to iden-
tify structural similarities between proteins. Some MAs developed to deal with this
problem can be found in [107, 488, 568, 911]. Carr et al. [107] considered the
maximum contact map overlap problem. They presented a multimemetic algorithm
where a family of local searches is used: selection of the particular local search to
be applied depends on the instance, stage of the search or which individual is using
it. The MA proposed is a combination of the genetic algorithm proposed by Lan-
cia et al. [502] and six different local searches. Their computational results have
showed that the results obtained by their method are compatible with the state of
art in this problem. Also, Krasnogor [488] proposed a self-generating MA to ob-
tain structural alignment between pair of proteins using the Maximum Contact Map
Overlap (MaxCMO) problem as a model. MaxCMO is an alignment of two proteins
that maximizes the structural similarity. They tested the approach in four different
data sets, of which one was composed of randomly generated proteins and the other
three data sets with real world proteins.

A bioinformatics area closely related to protein structure analysis is that of
molecular design, which actually can be regarded as a superset of the former. In-
deed, conformational analysis, namely determining the low-energy configurations

16 Memetic Algorithms in Bioinformatics 269

a molecule can adopt is a natural generalization of the protein structure prediction
problem (for example, Zacharias et al. [954] presented a MA based on a genetic
algorithm endowed with simulated annealing to determine the ground state geome-
try of molecular systems). In general, molecular design is a very hard problem, and
numerous evolutionary approaches have been proposed in the literature to deal with
problems in this area, e.g., [128, 935].

Ligand docking, i.e., the identification of putative ligands based on the geometry
of the latter and that of a receptor site, is a problem within the area of molecular
design with paramount interest for structure-based drug discovery. MA approaches
to this problem have been proposed by Hart et al. [373, 612] using an evolutionary
algorithm endowed with the Solis-Wets method for local search (see Chapter 12),
aimed to minimize the free energy potential of the docking. This MA is used in
the AutoDock4 software package. MAs have also been used for PCR (Polymerase
chain reaction) product primer design [947], taking into account constraints such as
primer length, GC content, melting temperature, etc.

16.5 Sequence Analysis

Sequence analysis is arguably one of the lowest-level tasks in bioinformatics, albeit
it remains a very important one due to its role in generating the input data for further
biological problems. Within this general subarea we can cite problems such as DNA
sequencing and the alignment of genomic/proteomic sequences.

DNA sequencing amounts to determining the correct order of nucleotides in a
certain DNA sequencing. This order must be ascertained by assembling short frag-
ments of DNA obtained from the fragmentation by chemical or mechanical means
of a larger sequence. These fragments are typically randomly distributed across
the sequence and partially overlap, thus leading to a permutational problem with
strong similarities to that of finding a minimum weight Hamiltonian path. In [218]
a spatially-structured evolutionary algorithm endowed with a so-called problem-
aware local search (PALS) procedure is presented for this purpose.

Another important problem in sequence analysis is that of aligning sequences
of nucleotides or amino acids. This problem actually bears some relationship with
sequencing, since the determination of the best overlap among DNA fragments re-
quires finding the best pairwise alignment. The applications of sequence alignment
are not limited to this case though; thus, they are very important in phylogenetic
studies to cite a relevant example. This alignment problem is easily solvable in
polynomial time for two sequences using a dynamic programming approach, but
its complexity quickly grows for when a multiple sequence alignment is sought.
Not surprisingly, evolutionary methods have been commonly applied to this prob-
lem – see [813] for a survey. Some of these evolutionary approaches can be actually
regarded as memetic. For example, the evolutionary Clustal/improver presented in
[883] incorporates a seeding mechanism (using the outcome of the Clustal5 software

4 http://autodock.scripps.edu/
5 http://www.clustal.org/

270 R. Berretta, C. Cotta, and P. Moscato

package) for creating a high quality initial population, and an improvement strategy
based on the removal of matched gap columns which can be regarded as a simple
form of local search.

Closely related to sequence alignment, the problem of finding the shortest com-
mon supersequence (SCS) for a collection of biological sequences stands as another
important task. A supersequence of a given sequence is a possibly longer sequence
in which all the symbols of the former can be found in the same order (although not
necessarily consecutively). Finding the SCS for a given collection of sequences is a
NP-hard problem that has been commonly dealt with in metaheuristics [70, 83, 149]
including MAs. Thus, Cotta [151] considered a MA defined on the basis of an evolu-
tionary algorithm endowed with a repairing mechanism (based on a greedy heuris-
tic) and a local search operator based on the iterative removal of symbols in the
tentative supersequence. Later, Gallardo et al. [297] presented a multi-level MA
that combined the previous algorithm with a beam search algorithm (see Chapter
12), executed in an intertwined way. This MA was shown to provide much better
results than the combined algorithm as stand-alone techniques.

16.6 Systems Biology

Systems biology [13] is a prominent interdisciplinary area of bioscientific research
focusing on the holistic study of cellular systems from the perspective of (and us-
ing tools from) complex systems and dynamical systems theory. This encompasses
the analysis and modeling of cell systems, including the study of networks of ge-
nomic/proteomic/metabolomic interactions. The latter are very amenable to the use
of network-theoretical results and graph-based algorithmic tools, among which MAs
excel. Thus, Spieth et al. consider a memetic approach to gene regulatory network
modelling using linear weight matrices [924] and S-systems [914]. They use a bi-
nary genetic algorithm to evolve the topology of the network, and an evolution strat-
egy to do local search on the parameters of the model representing the network. They
consider a so-called feedback MA in which the outcome of the local search is used
to filter gene dependencies whose strength is below a certain threshold. This can be
regarded as a Lamarckian learning procedure, as opposed to the Baldwinian learn-
ing of the simpler MA [842] without feedback. An analogous approach is followed
by Norman and Iba [671]: they consider time series data of gene expression and use
a differential evolution endowed with hill climbing to determine the structure of the
network and the kinetic parameters; an information-based criterion is used for fit-
ness evaluation. It is also worth mentioning the work of Kimura et al. [465] in which
a genetic local search method is used to solve the inference problem in the context
of S-systems. In a later work [466], they consider a cooperative approach based on
multiple subpopulations and problem decomposition and use golden section search
in order to do local improvement. Tsai and Wang [893] consider a differential evo-
lution hybridized with local search for S-system inference too.

A wider perspective on cell models is provided by [773]. They consider the use of
P-systems [738], a computing model included in the ampler paradigm of membrane

16 Memetic Algorithms in Bioinformatics 271

computing [739]. These computational models are inspired by cellular processes,
and can be roughly described a system of so-called membrane structures, namely
permeable (and potentially nested) containers that comprise collections of symbols
and grammar-like rules for their evolution. By an appropriate definition of the rules
and a wise arrangement of membranes it is possible to carry out an arbitrary com-
putation. The biological inspiration of these systems make them specifically suited
for cell modelling and simulation though. Romero-Campero et al. use a two-level
genetic algorithm to evolve the structure of a P-system: the upper level is devoted to
searching in the space of rules, and the lower level performs numerical adjustment
of the kinetic parameters determining the probability of application of each rule.

Acknowledgements. C. Cotta is supported by Spanish MICINN under project NEMESIS
(TIN2008-05941) and Junta de Andalucı́a under project TIC-6083.

Part IV

Chapter 17
Memetic Algorithms: The Untold Story

Pablo Moscato

17.1 Motivation, or Something Like That

I believe this is, in some sense, the end. It is, however, only the end of one journey.
We are not abandoning our quest as a new destiny is on the horizon. As happens
with the end of any cycle, new opportunities and a large number of challenges arise.
Certainly, there is much more to be done for memetic algorithms than what we have
collectively achieved until now. I truly believe this is the end of one journey, the
end of the beginning of memetic algorithms. And now, although I am very happy
that we have finally established the field, I am equally concerned about becoming
“the establishment”. Writing and editing a handbook, for somebody who dislikes
academic dogmas and appreciates the continuous criticism his own work, the task
becomes intrinsically challenging. And now, in a non-rhetorical way I ask, like a
child in a car: “Are we there yet?” and “What’s next?”

Paradoxically, this is not the first time I ask myself about the future of MAs, or
indeed, if we are at an inflexion point in their seemingly continuous evolution. To
use an old cliché, “it seems like yesterday” that, when I was returning to La Plata
from Pasadena in October 1989, I thought about which strategy I should follow to
develop that incipient research field. I was bringing back to my country half a cubic
meter of papers and preprints, and all my computer files on the 80MB hard drive of
my gorgeous Macintosh SE/30. It was only a week before that flight, and just a few
days before Loma Prieta’s earthquake to be more precise, that I had finally managed
to compile all I knew about MAs at the time, on a technical report that many told me
I would never be able to publish (and, to be honest, I never really intended to publish
yet I wanted to be public, a great contradiction at the time). I recall that during my
flight back to Argentina I thought my country will give me the peace of mind and a
more relaxed research atmosphere on which to develop this field. How wrong I was.

Pablo Moscato
Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine and
Hunter Medical Research Institute, School of Electrical Engineering and Computer Science,
The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
e-mail: Pablo.Moscato@newcastle.edu.au

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 275–309.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

276 P. Moscato

Against all odds MAs, initially only supported from very distant positions (La
Plata, Argentina, and Edinburgh, Scotland), evolved from the collaboration of re-
searchers of two countries that had been recently enemies at war, a few technical
reports, a conference paper in 1992, and a couple of papers in journals, it all led to
what the field is today. Twenty years have passed, and perhaps it is now the right
time, while the memories are still fresh, to tell a few good lessons learned before
“all those moments will be lost in time, like tears in the rain.” (did I mention that I
may be using old clichés to disguise a lack of creative inspiration?).

The reader may ask, and with reason, “what is the point of a nostalgic-induced
racconto of events in this quite technical book?” I have no real defence. There are no
good reasons, I am afraid. My first colleague in these endeavours of MAs, Mike Nor-
man, once told me: “Pablo, you know, Life is a cheeseburger!”, and when I asked
why he completed the thought: “It has no sense.” But, jokes apart, both our pub-
lisher and our readers expect more than a random collection of anecdotal evidence
of that. I think there are some interesting stories to tell, linked to the mathematics we
knew at the time, and the constraints we faced, that explain many of our decisions.
I also think that I have the opportunity to point towards where the future of MAs
may be, by letting readers understand the path so far, sometimes hidden by the cold
ink of our manuscripts. I like the irony that our Handbook may look at the future of
MAs by understanding the past.

What can I offer in return for a few biographical notes? After all, at forty-five,
I have not yet won a Grand Slam tournament and I have no previous fashion mod-
elling, singing, or a political career to be writing biographical notes about. I do,
however, feel that I have some good stories to tell, including a few mistakes I have
made that could help newcomers and our students to avoid committing, and that I
can highlight a few good choices that immodesty compel, and dishonesty permit, to
account as virtues of intuition or talent instead of just being attributed to mere sheer
strikes of luck.

With no further ado, blaming no more motivation than three years of peer-
pressure, the several “you must write all these things down” I have received from
some colleagues, and, perhaps, a short dose of “keeping-the-record-straight” on
some technical issues and historical remarks, the recollection of these life events
may give a privileged insider’s view of this fascinating scientific and social phe-
nomena, a narrative from which at least I hope to harvest a smile.

17.2 In the Beginning, There Was no Evolutionary
Computation

‘How did it all start?’ I could say that, at least for me, the work that finally lead to
the initial development of MAs really started way before 1988, and does not really
involve any major influence of evolutionary computation.

In September 1985, two events happened close in time that in a certain way
changed my life. I recall them happening on the same week. I was a fourth year
Physics student at University of La Plata, Argentina, when I attended a seminar of

17 Memetic Algorithms: The Untold Story 277

somebody who was announced as being: “Argentina’s most famous physicist of all
time”. Either that exact phrase or another tone of equal fanfare was used to intro-
duce him to the audience. After all, his research credentials were of the highest stan-
dards; the Virasoro algebra was named after him (he introduced it into string theory
in 1970), and many particle physicists in the audience were eagerly waiting for his
seminar. Now in Rome, Virasoro, together with Marc Mezard and Giorgio Parisi,
were changing focus, actively working on spin glasses [66, 231, 467, 594, 712].
That seminar was an “smörgåsbord” of information for us geographically chal-
lenged undergraduates in a Third World country deprived of Internet access, with
no emailing systems, and with a library full of missing journals, volumes and is-
sues. Virasoro presented a “physicist view” of a number of things that later will
take my full-time dedication including: computer science fundamentals, design of
algorithms, theory of computation, Turing Machines, NP-Completeness and combi-
natorial optimization, Monte Carlo methods, the travelling salesman problem, Sim-
ulated Annealing, Hopfield’s artificial neural network approach for optimization,
and ultrametricity [593, 711, 756]. I recall that I wrote down every single word he
said that I could not understand, and that was a big set of words indeed. I rushed to
the library to try to find the papers he recommended, with a notoriously consistent
pattern of bad luck most of the time.

Virasoro was in La Plata for a couple of days. We (the students) thought he had an
imposing presence. He really looked like a reincarnated Michelangelo to me, but we
dared to ask him to give us photocopies of his latest preprints. I recall several other
visits, perhaps in 1986 and 1987, and he was always very helpful and I will always
be grateful for that inspiring seminar. He was also very inspiring with stories of how
amazingly Parisi was defeating all odds at making hardware and software for the
APE computers and the good science coming from those great maverick Italians.
Every time he would come he would share his work and other manuscripts he was
reading. Each year he would return bringing precious preprints that for me were eye
openers of the “New Physics”. In that unorthodox way I had my first contact with
what could really be called ‘Computer Science’.

Right after Virasoro’s seminar, I travelled to Mar del Plata to attend the Festival
of the Union Internationale du Cinéma (UNICA), the amateur cinema association.
Watching movies from 9AM to midnight was my preferred way for a mid-semester
break at the time. What a geek, many would say, but I would say that I met fantastic
people at the Festival, completely out of my scientific world. For the purpose of
this narrative, however, I should mention only one anecdote. The director of the
Festival’s Jury was Krzysztof Kieslowski, who had previously shot Camara Buff
(“Amator”, in its original name, 1979) and was screened off competition at the
event. Most of his other films (e.g. Workers, 1971; Blind Chance, 1981; No End,
1985), had trouble with the tight censorship existing in Poland at that time. An
Argentinean journalist on a press conference, immediately after the screening of
”Amator”, aimed to challenge Kieslowski with a “reality check”. Insolently, yet
naively, the journalist dared to fire a “killer” question, something on the lines of:
“Aren’t you frustrated as an artist that the general public can not see your films?”,
she said. Kieslowski answer was fast as a lightning strike: “It is clear that you do not

278 P. Moscato

live in Poland”, he answered. “In our country we have shoes whose soles fall off,
new cars with engines that do not start, why shouldn’t we produce films that nobody
can see?” A few years later some of those films were released, then in 1989 he shot
The Decalogue, and the rest is more or less history, quickly becoming one of the
best cinema directors of all times. And I inherit a tiny bit of his courage, against all
advice, four years later, to convince myself to write a long manuscript, potentially
unpublishable, that I truly enjoyed writing analogous to his movies, hardly anybody
would be able to read.

Looking back, I took from that unforgettable week, and the unforgettable scien-
tists and artists I met in between 1985 and 1988, a common lesson: “take risks, work
in your craft with love and passion (otherwise do not do it, it is not worth the effort),
take more risks, shoot the movie you want to see, write the paper you want to read,
and when you are close to 45 years of age, take bigger risks”. Both Kieslowski and
Virasoro had my age when I first met them in 1985. I am making a reminder note
for myself now.

When I returned to La Plata, I undertook a more systematic search at the Physics
library without much hope or success; nothing was really very useful on the topics
of NP-completeness and computer science, almost nothing about “artificial neural
networks” could be found. At the time there was in La Plata one bachelor degree in
“Calculista Cientifico”, which, if you completed it, left you in the hard position of
deciding if you would be literally translated to English in your CV as “Scientific Es-
timator” or “Scientific Calculator”. Although it was a relatively good degree it did
not open many doors academically speaking. Rumors existed at the time that these
“Scientific Calculators” were sometimes employed by researchers as associates but
were not allowed to be co-authors of the papers as “they have just written the com-
puter programs”.

However, I did find a great book which gave me an introduction to Computer
Science holding hands with a problem [508]. This is something I recommend for the
following reason. I recall that one of our colourful Physics academics at La Plata,
Victor Kuz, who taught a course on Fluid Mechanics (something that he indeed
liked to teach) gave unexpected excellent advice. He may not even remember this.
One morning, just before starting his lecture, he said on arrival:

“Poor you! You will graduate soon, and when you are my age you will probably be
one more physicist in a world which will already have one million physicists. I wonder
what you will be working on!”

And then he took a piece of chalk and started to give his lecture while our heads
were still spinning around that thought. In another opportunity he started the lecture
saying something like this:

“As in life, you must have only one true love, choose one problem and make steady
efforts to know everything about it for the rest of your life.”

I think the original quote was probably richer in detail, including the advice of hav-
ing several previous romantic relationships followed by only one true love that you
should then marry, but the novel idea, the part that involves scientific research, is

17 Memetic Algorithms: The Untold Story 279

original in some circles even today. He may have also said “challenging problem”,
but that may be me projecting and not him actually saying it, I am not sure. Two
great lessons from Victor.

In contrast, many years later, my wife and I were attending a conference in
Operations Research. At the event, a relatively renowned expert in combinatorial
optimization was giving the following advice to graduate students: “choose rela-
tively obscure problems, avoid those challenging ones, publish a lot on these ob-
scure problems as the competition will be less on them, attempt all simple problem
variations and write more papers, etc.” In essence, build a CV and not a career in
science. For us both, it was a scandal. It looked for me as a chapter of: “How to
lose creativity and self-esteem in 10 days”. My advice would be quite the opposite:
choose a challenge early on in your career. Follow your conscience. Choose a chal-
lenging problem domain on which everything is being attempted, so you will learn
all techniques, take risks. The challenges and the problem will guide you. I can tell
from my own experience. Victor Kuz, you were right! The problem I chose was my
mentor, my ultimate PhD advisor !

With the book I found [508], I chose a problem as early as 1986, the Traveling
Salesman Problem (TSP). And while I was finishing the fifth and last year of my
undergraduate Physics degree, I was studying the TSP book while at the same time
was reading everything that I could find in the areas of simulated annealing (SA),
artificial neural networks, and statistical mechanics of disordered systems. The TSP
was my mentor and that book was my guide. I was truly reading everything I could
find on this problem. With my Timex Sinclair 2068 (48K RAM + 24K ROM, my first
computer) I wrote a program in BASIC using SA according to the physicists rules of
thumb of the time, including different annealing schedules, as well as randomized
versions of the constructive heuristics. Quickly it became clear to me that the so-
called good properties of SA were more the product of insufficient experimental
testing against the existing Computer Science heuristics. It was not until further
empirical testing with programs I wrote in Pascal in 1987 and early 1988 which run
on a Digital MicroVAX and an IBM PC XT 286, that I truly convinced myself that
SA was not delivering to its high promises (no matter the high praise of the physics
community). I became, now officially, a professional sceptic, secretly challenging
the dogma.

It is clear, at least for me, that scepticism is a key attribute in research, but you do
not develop a career by just being a sceptic. You must be able to invent something.
In 1986, I was seeking how to make these new ideas from Physics work well against
standard methods in Computer Science. My interest on Hopfield neural networks
for the TSP soon moved to a less enthusiastic view of the field after reading about
other approaches from Operations Research and Management Science, including
Lagrangian Relaxation for integer programming formulations of NP-optimization
problems. I also explored the Boltzmann machine paradigm [1, 2] to address these
instances and wrote a couple of programs for the TSP. While I was still not con-
vinced of these approaches, I got the first idea trying to sort out the problem of
an undesirable parameter of Hopfield networks, the so-called ‘temperature’. After
all, similar issues were lurking in SA and Boltzmann machines. The beginning of

280 P. Moscato

a long battle, as I consider that any “parameter” you have in an algorithm often
shows a design flaw you have not been able to address by other means. In this case,
too high a temperature, a Hopfield network would not converge to a configuration
that would satisfy the restrictions imposed by the problem constraints and would
not produce feasible solutions; too cold a temperature and it will do it, at the cost
of not “exploring” other alternatives, thus preventing the network to visit a “region
of configuration space” where low lying local minima probably exist. What if the
solution to this problem would be to use more than one Hopfield network, each one
working at a different temperature and each one coding for feasible solutions of the
problem?

This idea was probably inspired from Lapedes and Farber’s approach that used
two interacting neural networks in which one network “teaches” another one to per-
form a content addressable memory task [505]. I thought that this idea was promis-
ing, and that perhaps “emergent” phenomena could be achieved by having a collec-
tion of neural networks all addressing the same optimization problem.

I noticed that my Timex Sinclair 2068 could handle only two of these Hopfield
networks I was running simulations with (due to its memory limitations), so I started
to experiment on different ways by which I could couple the two neural networks
to obtain better solutions. The basic idea was that when one of the networks would
find a better solution than the other (which means a smaller tour) it will switch to
a colder temperature (“fix” this configuration) while the other network will have an
increment of temperature, allowing it to continue the exploration of configuration
space. I recall I needed to install an oscillating mechanism allowing the coupling to
vary, so that the higher temperature network at the time could have an independence
of action during some time period. It looked a good idea on the drawing board, but
would it really work in practice? The answer, as usually in this field, is both a ‘Yes’
and a ‘No’.

My “pretty good” idea had a kind of fatal flaw; the combined coupling system of
two networks was also creating a number of extra local minima, which were detri-
mental to the search process of my population of two networks. Overall, it seemed
that the variance of the final results were greater than those obtained with a single
network. Sometimes I would obtain dramatically better results, but in many cases the
networks were trapped in low-quality local optima, sometimes not even a feasible
solution of the original TSP problem instance. And, overall, the whole enterprise
seemed to me, in comparison with my experiments with SA, a colossal waste of
CPU time. I knew that, after all, I was simulating on a computer a “physical com-
putation” device, a process that could be eventually embedded in custom hardware.
However, I had the impression that if I needed something for local optimization by a
“software agent” (a Hopfield neural network in this case), that “something” should
be much faster. Efficient local search algorithms were key, but I got the first insight
that there might be a way of recombining partial solutions to explore the configura-
tion space. The “exploratory” long jump could be guided by the solutions already
obtained.

17 Memetic Algorithms: The Untold Story 281

17.3 Caltech and the Red Door Cafe

In November 1987, just around the time I was defending my degree thesis in La
Plata, I won a Rotary Foundation Scholarship to do one year of full-time graduate
studies overseas. That was the first time I would be paid to do research! “Crime
pays!”, my friends used to tease me. The title of my proposal was: “Collective com-
putational properties of neural networks”, with an intention to expand that research
into utilizing several networks concurrently solving the same problem. Since there
were many talented researchers with interests in neural networks, Complex Systems
and Physics in Caltech, I wrote a letter to Steve Koonin, Chairman of the Faculty,
in which I basically described what I had been doing (including my work on the
t-expansion, a non-perturbative analytic method for the calculation of ground-state
energies for Hamiltonian systems in lattice gauge theories, as well as my interests
in the statistical mechanics of disordered systems). I also asked Osvaldo Civitarese,
one of my lecturers in La Plata, to write a recommendation letter for me (Osvaldo
had just returned from Caltech, where he used the same desk that Hans Bethe had
used in an office next to W. Fowler and he was very supportive of me going there).
Koonin might have passed the letters around and Geoffrey C. Fox sent me a tele-
gram (yes, a telegram, I am that old) that basically said something as brief as this:
“I agree to be your supervisor. Come here.”. I rushed to the library to see who he
was; I found that he had worked with Richard Feynman, Robert L. Walker and with
Stephen Wolfram. Not bad for a landing!

Caltech then accepted me and also provided a Special Scholarship that combined
with Rotary’s support would pay for a whole year of studies and living expenses in
Pasadena. The ticket finally arrived twenty-three hours before the flight’s departure
time, and only a week before the beginning of classes, and finally I was on my first
international trip!

Caltech was great, and probably still is, at networking its people to produce inno-
vative ideas. Already at the graduate student welcoming party I met fellow arriving
students that I immediately started respecting as great professionals, and truly val-
ued friends: Jose Tierno (coming from Montevideo, Uruguay), Enrico Santi (from
Padova, Italy), Edoardo Amaldi (from EPFL, Lausanne), David MacKay (from
Cambridge, UK), etc., and with some of them I have maintained close contact
through all these years. Curiously, a few days later I discovered that Edoardo had
been working at Virasoro’s group in Rome for a short period and that he also had
Fox as advisor. Amaldi was originally coming from EPFL Lausanne (he is now at
Politecnico di Milano). It was Fox’s idea to put me in the same 9 square meters office
with Edoardo and another Italian, Roberto Battiti (who, as far as I remember spent
most of the year working in computing optical flows [52], shape-from-shading, and
speeding-up backpropagation learning with more sophisticated conjugate-gradient
algorithms). With three big desks, three computers, shelves and a window (yes, we
had sunlight !), I recall we had to tell each other when we were going to stand up or
move a chair. It was a bit packed, like a trio of masters of Italian football “catenac-
cio” (Amaldi, Moscato and Battiti) but it was also mutually inspiring and, measuring
by Caltech standards, a lot of fun.

282 P. Moscato

Edoardo immediately resonated with me on my scepticism of SA for combina-
torial optimization. He had the view that we should be using Tabu Search instead
(“you should use Tabu Search for everything!”, he used to say literally or by using
some other form of “subtle” Italian advice). He was quite right in his excitement, to
some extent. A large extent, I should add. Tabu Search was also an incipient method-
ology at the time, which Edoardo was aware of due to Fred Glover’s visits to EPFL,
Glover’s seminars and Edoardo’s own experimentation with it on neural networks
with Ising bonds (a joint work with S. Nicolis, while in Virasoro’s lab in Rome) [17].
Tabu Search thus enters into the world of MAs via a similar mechanism; it came
mainly due the dissapointment we had with SA, but it took until 1990-92 to use it
more systematically in population-based approaches for optimization. It did prove
very useful [616] and even two decades later we still use this combination [631].

As a student, I discovered that most of the courses in Physics at Caltech included
some sort of reiteration of subjects that I had already covered in my last year in La
Plata, sometimes using the same textbooks (as a B.Sc. in Physics was a five-year
degree, several of the courses contained material that highly overlapped my pre-
vious courses taken two years before). Since my research plan for the Fellowship
was highly interdisciplinary, I took courses that were valid for Physics but offered
and aligned with other disciplines. I will discuss two of them: Theory of Neural
Networks and two trimester courses in Computational Physics (which were mainly
related to Concurrent Computation, and were based on the work by Fox and other
members of his group who were pioneering the use of hypercubes for scientific com-
puting). The former course was coordinated by Yaser Abu-Mostafa (still at Caltech)
and J. Stephen Judd (now at University of Pennsylvania and Princeton) and it was
three trimesters long. David, Edoardo, Jose and myself took it. For me that course
was an eye-opener and I enjoyed it a lot. We covered issues on neural networks
that related to Information Theory, computational complexity, generalization, learn-
ing theory and the Vapnik-Chervonenkis dimension [702, 703] (an absolutely novel
concept at the time). I believe that those courses had an influence in Edoardo, Jose,
David and me; in my case they were part of my final “informal re-entry program”
into Computer Science.

In the other course, early in October 1988, Fox gave a lecture about the applica-
tion of SA for the TSP on hypercube computers that made me think that the approach
was really wrong, doomed, even. Basically, he described a strategy called “domain
decomposition”; each processor of the hypercube computer was receiving only a
subset of the cities, which led to a lot of problems inherent to this algorithmic design
decision. I recalled that I thought that it should be better to follow an approach like
the one I used for my neural nets, so that each of the processors can have the whole
problem instance (the inter-cities distance matrix). I asked Fox to have a meeting
to discuss my idea. To test if there was an improvement, I could employ the same
basic SA I was very familiar with (and witness if true progress was being made). I
had plans for a competitive interaction between optimization agents, but a mecha-
nism for sharing information (which we later called “cooperation”) was missing. He
suggested: “Perhaps what you are looking for is something that some people called
‘crossover’. A bright young guy that I have hired for a couple of months gave a talk

17 Memetic Algorithms: The Untold Story 283

about that, why don’t you talk with him”. That “guy” was Michael G. Norman, who
was coming from the Edinburgh University (the group that later became Edinburgh
Parallel Computing Centre (EPCC)), and had given a talk about a new idea called
“Genetic Algorithms”.

Three years later, when I gave a seminar at the EPCC in Dec. 1991, my open-
ing line was: “Memetic algorithms were born from previous work and also from
two deceptions, the one that I had with Simulated Annealing, and the one that Mike
Norman had with Genetic Algorithms.” Mike was at Caltech to set up a new type
of hardware and software facility for Fox’s group, the Meiko Computing Surface, a
beauty that had 32 T800 transputers. Mike had worked on implementations of paral-
lel SA, following Geman and Geman [306]) on the much larger Computing Surface
at the University of Edinburgh. He had also looked at the problem of optimizing
the topology by which the processors of the Computing Surface were connected,
using a Genetic Algorithm and the Order Crossover operator, previously introduced
by Lawrence Davis for TSP. His paper was rejected for publication and never pub-
lished, a theme we will return to below.

The GA parallelizes in a different way from SA because the population itself
can be split across multiple processors. However, the population evaluation (rank-
ing etc.) of a traditional Genetic Algorithm (without any sort of hybridization) that
determines the “survival of the fittest” is a global operation, which is inefficient
to implement on a multi-processor machine because it introduces communication
overhead and synchronization delays. To avoid this, influenced by a seminar from
Hans Mühlenbein who had visited Edinburgh in 1988, Mike started to introduce a
concept of locality into his GA. He ran a standard GA on an individual processor
(thereby defining a sub-population local to that processor), and then sent random
members to other random sub-populations which were accepted into those popula-
tions with a probability depending on their fitness relative to the receiving popula-
tion. Mike noticed that this approach also reduced the phenomenon of premature
convergence, where slight variations on a “quite good” solution came to dominate a
population (basically different “sub-species” can evolve in each subpopulation). It
also matched well my formed belief on how to search a “quasi ultrametric” structure
in configuration space, so it looked as the right thing to do.

The Meiko was late arriving so Mike, in a friendly rivalry with Steve Otto (with
whom he shared a house), had spent a few weeks implementing an Order Crossover
based Genetic Algorithm for the Traveling Salesman Problem in C, first on an early
IBM RS/6000 that nobody wanted to use, and then on a i386-based Sun Workstation
(the ill-fated Roadrunner) that also nobody wanted to use. The GA was no better
than the SA, but for different reasons. The Order Crossover operator added huge
amounts of what we perceived as “noise”, i.e. the introduction of a small number of
long edges that, with high probability, caused the newly generated solutions to be
rejected from the population. This ultimately led to severe premature convergence,
since only solutions that were very similar could be crossed over without introducing
long edges.

When we met and started discusions it was clear that Fox had actually put us
on the route to solving both of our problems. The Order Crossover operator could

284 P. Moscato

provide the mechanism for sharing information, and the SA could quickly remove
the “noise” generated by the recombination procedure. We then discussed ways of
elegantly leveraging the locality of the Computing Surface, analogous to the lo-
cality of competition in the natural world. But even during our first discussion we
convinced ourselves that the locality for competitive interactions could be made dif-
ferent than the one for “cooperation” (i.e. the recombination algorithm). This would
prevent the recombination of solutions that could be very similar (an issue which is
key in MAs even today). In this way we designed the topology on a toroidal grid
that was the first population structure introduced in our MAs.

After our first meeting, Mike challenged me to see if I could put some of our
ideas into “a decent pseudocode that I can understand and implement”, a task that
I rushed to complete that same night, aiming to address any problematic corner that
may be remaining. It was not a long description, perhaps only seven pages long,
but in the morning I left the pseudocode on his desk. He called me back in the
afternoon when he arrived to work (Mike’s office had no windows and he worked
nights) and after a few explanations, more discussions and iterations on the same
day he decided he would code it by amending the codebase already written for TSP
GAs. In less than a week our first MA was running on the Sun Roadrunner. It was
subsequently ported to the Meiko Computing Surface when it arrived, and also to
the Intel Hypercube.

He basically did what he was paid for and also wrote the code of our first MA at
the same time. It would have taken me a couple of years I guess. I was still in tech-
nological shock with my rudiments of Pascal and MS DOS, in a new world of UNIX
and C, to achieve anything like that. We were very impressed with our own creation;
this hybrid was clearly much better than the sum of parts and only borrowed the OX
operator from GAs. The rest was a truly original new design. The first MA was then
a solution for the problem of efficiently running a parallel optimization heuristic on
an MIMD machine, an instance of a new paradigm for stochastic search. Several
of the design decisions of our first MA (the ring topology, four interconnections
for each agent, different neighbourhoods) were based on the first hardware that was
used to run it, a Meiko Computing Surface. The core codebase still compiles and
runs (although the graphics libraries for the UI which displayed tours and population
fitness no longer exist).

From that day on, Mike and I would meet at the Red Door Café, “the only real
place in Caltech”, as Mike used to say and I used to agree. A real student’s café, with
bits of borrowed or used furniture that did not match, but it did a decent espresso
(Mike needs this) and cheesecake. It was not the high tech place of today, perhaps
Mike will find it a scandal, now it has a .pdf file of the menu available from a web-
site, with no cheesecake! It was a good and relatively quiet place to discuss and to
get away from the neat spaces. It was conveniently located half-way from where
we both had our offices. During these meetings we discussed changes of our ba-
sic MA (not many, I would say) but also my first computational experience on the
TSP instances that I had worked on for the past two years. We were very soon con-
vinced we had something “big” in our hands, and we crafted on a table what the
title of the technical report should be. It should contain the words ‘Cooperative’,

17 Memetic Algorithms: The Untold Story 285

‘competitive’, ‘complex’, ‘combinatorial’, ‘search’ and Mike insisted on ”agents”,
as our approach was driven by the complex interaction of ‘software agents’ as we en-
visioned that they can have different algorithms running on each of the agents [615].
We went together to a seminar that Steve Otto was giving, in which he explained
their method (basically the one that Fox was describing in his lectures) and it gave
us more conviction that this approach was, I would not say wrong, but intrinsi-
cally uninteresting from our point of view. We thought: “What is the point of using
one hundred processors to achieve a less than linear speed-up of a heuristic that
searches a space of 102000 configurations ?” Indeed you need to find a “collective
computational strategy” that produces some kind of “emergent” behaviour, some-
thing that brings a superlinear speed-up when you use a population of interacting
agents, instead of a single one (this idea has been further explored in the following
years, see [678] and references therein). For us, it was recombination and the in-
terspersed phases of cooperation and competition which was the secret of our early
success, and we planned to exploit them on some “cool” applications.

Before Mike left Caltech, when his contract expired at the end of November, I
showed him a drawing and a new set of rules for a modification of the basic pop-
ulation structure (the ring topology). I was proposing to use a ternary tree instead.
It took more than two years to finally start experimenting with that idea, when I
returned to Argentina, but I recall how early we concluded that it was the way to
go. The ternary tree structure was also crafted with the transputers in mind, it was
adopted in many of our papers (for instance, see [631]), and it has proved to be a
robust strategy (see for instance the experiments in [94]).

I spent most of the year 1989, while still at Caltech, engaged in full-time student
duties while I was also experimenting with the basic MA code as implemented by
Mike during our short collaboration (which lasted less than one month!). Mike had
ported it to the Intel Hypercubes, SUN workstations and, of course, the Meiko, in a
couple of days. It showed linear speed-ups and we were very happy in all respects.
We put together our first technical report [673]. On his way back to Edinburgh, Mike
shared Thanksgiving Dinner with Lawrence Davis in Cambridge, MA (later Davis
was the President of Tica Associates) and told him about our results. Mike then soon
embarked on PhD studies and defended a thesis that had produced some remarkable
theoretical results that are still highly influential [675, 676].

17.4 Landscapes and the Correlation of Local Optima

“But why does this thing work so well?” I spent a lot of time at Caltech running
simulations to try to figure out the reasons. Of course, some of the features were
there by design, but a few others were unexpected. For instance, a 16-agents popu-
lation was performing more-or-less equally to one with 128 agents. In fact, it was
perhaps slightly better to use 16. Initially, I was not obtaining quantitative data, but
to qualitatively understand how to make it faster and better, without losing the key
ingredients of its success. Typically, on instances having up to 500 cities (including
the famous att532.tsp instance) our runs were ending close to one percent of

286 P. Moscato

the optimal tour length. The algorithm was remarkably insensitive to the anneal-
ing schedule that the agents were using and it was not very dependent on random
mutation. This was something that I expected due to its design, but the level of its
robustness was still a surprise to me. Clearly, the key was the synergy between the
local search methods we were using (a subset of the 3-opt “moves” for the TSP) and
the recombination method.

I was soon sharing the excitement of these discoveries with some people (both my
fellow students and my lecturers). One of my lecturers, J. Stephen Judd, who really
had a lot of patience with me, was sceptical at best. He was a good help all the time
and together with Yaser Abu-Mostafa they were great mentors in Computer Science.
Stephen told me he had tried GAs before and in his experience “GAs do not work”.
He could not see much difference still between GAs and our approach, for lack of
understanding of the area I guess. But he still had an open mind after seeing our re-
sults on the TSP; he also gave me a working manuscript illustrating his experiments.
He tried to use GAs (no local search at all there, a real GA, alla Holland) for a vari-
ation of one of his loading problems in neural nets [437]. He gave me a manuscript
of his experiments and he challenged me to “make it work”. He respected L. Darrell
Whitley’s work and I think he had a curiosity to see if somebody else could make
GAs work where he could not. Judd’s incomplete but long manuscript was a very
interesting read, and when I finished I went to talk with him. My “diagnosis” was
that the problem was with the recombination operator he was using. He had tried
a 1-point crossover for a binary encoding (or a uniform crossover, I do not recall,
but it was a simple mechanism only). For the problem he was using, indeed the GA
reduced to nothing more than a random search. He needed, in my view, something
more sophisticated to deal with the depth of these networks. I had a similar expe-
rience while trying to help Shailesh Hegde, another of my classmates, improve his
GAs for learning in neural networks [600]. In Judd’s problem, a manuscript which
I have unfortunately recently lost after so many years. I recall that the problem was
inherent to the depth of the network, one of the parameters of its architecture.

Judd’s attempt on GAs gave me the impression that the type of recombination
should be highly problem-dependent and, most worrisome, instance-dependent. For
these problems, it seemed that a recombination operator should utterly take into
consideration that there is a strong dependence between attributes encoding for so-
lutions. Given two solutions (encoded as a structure that possesses a linear ordering
of attributes) the general heuristic rule in evolutionary algorithms is that a recombi-
nation operator must preserve the “common” parts. However, in this case a special
consideration should be given to start from the end that contains the attributes of
which the others depend. In Judd’s loading problem, the values of attribute b would
strongly depend on all the values given to attributes a if a < b. In my mind, I linked
this with my previous readings about ultrametricity. For instance, if you have a set
of words of arbitrary length (finite or infinite) over some alphabet Σ , a distance be-
tween two different words x,y can be defined as d(x,y) = 2−n, where n is the first
symbol at which the words differ. This distance measure is ultrametric. This said,
a recombination operator that acts on these words and preserves the common parts
until the first symbol on which they differ will, by construction, regardless of which

17 Memetic Algorithms: The Untold Story 287

algorithm is used to complete the process, always produce a new and different word
which will be at most at the same distance to one of both parents. A given problem, I
thought, may have different representations that have ultrametricity properties, and
among those, one is perhaps very closely “correlated” with the cost function, so
that closer local minima have very similar objective function values. Many years
later this concept would be efficiently exploited by Peter Merz in his now classical
”Distance Preserving Crossover” for the TSP.

I spotted a connection. If the solutions used as input for the recombination algo-
rithm were the product of highly optimized configurations, they may have some sort
of “quasi-ultrametric” structure. If a high correlation with the values of the objective
functions exists this combination could be exploited. This was something at which
perhaps a local search heuristic could be intrinsically limited because this structure
involves some global property of the feasible solutions. If a recombination operator
could somehow be designed to exploit this structure, then the stochastic nature of
these population-based heuristics could help us explore this “reduced” configuration
space. In essence, the individual optimizing processes after recombination act as a
“repair” mechanism, a kind of “projection”, that brings us back to an element of
a subset of configurations that can be stochastically searched by recombination to
reinitiate the search process. There were, however, some extra conditions needed.
If we were seeking the minimal cost solutions for an optimization problem, we
would like some kind of “smoothness” to be present. If two highly optimized feasi-
ble solutions were obtained by some individual search strategy, the closer they were
(according to a given metric) the more similar their costs should be. Local minima
should then be highly correlated for this strategy to work better than completely
random search.

As early as January 1989, I started to put all these ideas onto a LaTeX file, work-
ing on it incrementally every day, while at the same time I was a full-time stu-
dent in Physics and conducting research in other areas. I knew from the start that
it would be “big”, and probably I would never be able to publish it, so I called the
file “bigone.tex” and started to work at including all the ideas and evidence that I
had to the inner workings of our MAs. However, it still was not called “memetic
algorithms”. During that winter, and while discussing what I was doing with a fel-
low classmate, Scott John, in a Kung-Fu course I was taking, he recommended the
book of Richard Dawkins, The Selfish Gene. After reading Dawkins’ discussion on
cultural evolution and memes, I thought that by calling this new type of method
‘memetic’, I might liberate researchers from the unnecessary corset imposed to their
creativity by “emulating” biological evolution. I had no other intention, as it has
been reported somewhere, to emulate “cultural evolution”. If it seems I have acci-
dentally done so in some manuscript, I would regret my improper use of words. I
may have dropped my guard by saying “some aspect” of cultural evolution (like the
tightly regulated evolution of a martial art), but how to emulate such an “inherently
unregulated” thing like that escapes my imagination today. My only quest was re-
ally to motivate researchers to think outside of the box, not to bring a new, slightly
wider corset on creativity, on which to restrict the development of new methods. I
also chose to introduce the word ‘Towards’ in the title of that report, as I knew that

288 P. Moscato

it would take a lot of time, decades perhaps, until the full development of some of
these ideas would materialize. In some sense, there are many in that technical report
that are still developing, brewing in different places around the world, so I still think
we are moving towards memetic algorithms. A lot is yet to be done in memetic
computing.

Shailesh Hegde convinced me to apply for a student grant that finally paid us
both to attend the Third International Conference in Genetic Algorithms in Fairfax,
Virginia in which he presented a later highly cited paper [600]. I was not presenting
anything, not even an abstract there, but I guess I was accepted as we were coming
from a respectable university and that was part of the outreach aspect of the con-
ference. A very generous offer by the organizers. We arrived in early June and we
stayed with some of Shailesh’s friends in Washington D.C., watching together in
horror the final outcome of the Tiananmen Square protests on TV. Then the con-
ference started. To be honest, everything had a glimpse of irrelevance for me after
all these events. However, in retrospect, having been at that conference was very
useful and very relevant. I met Christopher L. Huntley and Donald E. Brown as
well as Martina Gorges-Schleuter. I found that Mike Norman and I were not alone
in our quest, and I decided I would report on the similarities I found between our
approaches in the technical report I had been preparing since January.

At the conference, however, there was a session with an open debate on “the fu-
ture of GAs” or something like that. I may be making this up, but at a certain point
of the debate that was the main theme. At question time, somebody from the audi-
ence stood up and said that in his opinion, we should all move towards new types
of hybrid algorithms, and he said: “I have heard of very interesting work on hybrid
algorithms being done at Caltech”, etc. and I was kind of astonished. He was talk-
ing about our work! How did he know? Who was this person? Curiously, he was
immediately, severely, and undeservedly in my opinion, “reprimanded” for such an
undogmatic thought, by a highly regarded member of the GA community who now,
20 years later, proclaims to be keen on hybrids. My mother told me a lesson many
years ago: “never argue with a fool in public because half of the people listening
may not be able to tell the difference”. I am not saying that anybody there was a
fool, they all may have reasons to argue against a change in the dogma, including
political ones or a hidden agenda. But I also want to note that I also live by Richard
Feynman’s rule: “The first principle is that you must not fool yourself - and you are
the easiest person to fool”. The fool in question might actually have been me in that
discussion, I did not have much evidence after all. So, basically, after all this philo-
sophical “méandre” that does not really lead anywhere, I would say, simply, that
on the occasion, I just “chickened out” and kept my mouth closed. I did not defend
the reprimanded early-adopter, early-defender of “hybrids”. I should have done it,
and over the years I regretted that. However, I did what my conscience and curiosity
obliged me to do. After the debate finished, I approached the champion of the cause
to introduce myself and to thank him for mentioning our work. To my surprise, the
person in question was Lawrence Davis, the researcher that Mike had visited on
his way back to Edinburgh seven months before. We chatted a bit, not much as the
conference was finishing, and we both went back to our cities, to do what I think

17 Memetic Algorithms: The Untold Story 289

is far more constructive for a researcher. Davis went to Cambridge, Massachusets,
and later presented his perspective on the importance of hybrids in Handbook of Ge-
netic Algorithms (already cited more than 5,000 times) [188]. In my case I returned
to Pasadena and completed the technical report I had been working on since January,
now adapting it to also include the work of Huntley and Gorges-Scheleuter, giving
them, as well as everybody supporting this view, deserved praise. I tried to find the
good working features, the connections [615]. I paid particular attention to cite other
researchers that pave the way before us like Kase and Nishiyama [444], Brady [81]
and Kauffman and Levin [450], as well as those I met there like Gorges-Scheleuter,
Huntley and many others. I felt, however, that I was very alone in my quest, and until
June 2007, although I participated in dozens of program committees for meetings on
every continent, I did not return to another Evolutionary Computation conference.
I sometimes wonder if that experience could have had some influence, but I think
ultimately the results, and not sterile political debates, should lead the way. I proac-
tively championed the field, always requesting high standards for MAs whenever I
could, either by giving formal and informal advice, either as reviewer, editor, or just
by pointing at relevant literature from my web pages. Hybrids were attacked from
all sides, and what is now considered the norm was considered the exception that
had to prove its worth.

17.5 Hierarchical Objective Functions and Memetic
Algorithms That Run on a “Segment”

When I returned to La Plata, things could have not been worse for science. I still had
opportunities overseas, but by the Rotary Fellowship agreement I signed stated that
I should stay in my own country for at least one year. In January 1990, I received
a letter from Fox who sent me a preprint of his new book and an invitation to join
him in Syracuse (“when the dust settles” said the letter) to finish my PhD under his
supervision. The “dust” referred to the long process he was initiating, as he was to
be moving on in one year.

When I left Caltech, Fox gave me a “blank cheque”: “If you can find a way to
‘log in’ from Argentina, you can use the computers at no cost.” That was really
something, as in 1990 the group was establishing the Intel Touchstone Delta. But
Argentina had no full Internet access. All universities were dialling in to a modem
at the Ministry of Foreign Affairs, and from that single connection we, as thousands
of others, had limited email contact with the world. The Internet map was very, very
different at the time1. This means, you should forget about any niceties we enjoy
daily. When there was a problem with your ‘Inbox’ you should travel to Buenos
Aires to fix the problem at the Ministry! And sometimes, return the next day again,
as the problem may have reoccurred (and iterate)...

The morale of the researchers could not have been lower. Inflation in 1989 was
around 5,000 percent and 1,300 percent in 1990. The Minister of Finance, who

1 http://www.worldmapper.org/posters/
worldmapper map335 ver5.pdf

290 P. Moscato

“controlled” inflation by artificially creating a fixed dollar-argentinean peso ex-
change rate later gave a clear sign of the type of support he was giving to science.
When the university academics united in protest due to the low salaries, the Min-
ister on national TV famously asked scientists “to go wash dishes” (this means in
Argentina that you should do the only useful thing you are capable of doing). If
this support of science was coming from a former PhD in Economics from Harvard
University, the readers can easily imagine which type of support we had from the
rest of the government. He was also instrumental on the lack of Internet access(see:
The Internet in Argentina: Study and Analysis of Government Policy)2.

In the middle of these macro-chaotic working conditions, there was a lab at Uni-
versity of La Plata that had the opportunity to develop an incipient parallel comput-
ing program which I could lead. The idea was that I would direct three part-time
students to develop computer programs on a T800 transputer system that was com-
ing to the lab thanks to an established cooperation agreement that the head of the lab
had with INRIA, Rocquencourt. We did receive the system, which we soon sarcas-
tically nicknamed “the segment” (which was, after all, correct, it is just a hypercube
topology of dimension one). It was also the ironic homage to the short-sightedness
of our lab’s head, who was answering my request for expansion of the system with
his favourite one-liner: “why do you need more processors if you have two? You are
already working in parallel computing”.

We did a lot of things to try to make the place habitable for a computational-
intensive research group, like connecting old Textronix 4010 monitors (or other
monitors made for oscilloscopes or some other uses) to help us use the existing
Digital MicroVAX, etc. We also received three or four PCs, and that was basically
the infrastructure we had to work for the next six years. I developed a research pro-
gram in which we did both research in MAs as well as running on “the segment”,
which was, after all, of little help. However, I systematically designed MAs that
could produce linear speed-up running on the computers like the ones I had at Cal-
tech, yet they can be simulated on PC systems and deliver good performance against
other methods.

In late 1990, I gave my first talk at the EPFL, invited by Dominique de Werra, fol-
lowing a recommendation of Edoardo, who was there completing his PhD with him.
I got only one person very interested in my presentation on MAs, Daniel Costa. This
was, after all, the place in Europe where Tabu Search was reigning supreme. Before
that, I visited Virasoro in Rome, who thanked me for sending him a year earlier my
technical report (something I did it before leaving Caltech), and he said: “somebody
here liked your work a lot”. I think he was referring to Filippo Menczer, but he was
not there at the time. Those two colleagues provided the earliest citations of our
work in MAs [146, 572].

In the period from 1990 to early 1993, I was mainly concerned with a few key
problems on where to develop MAs, elucidating why they were working, or as-
certaining how to perfect them. They were the TSP (still my “mentor”) [625],
the Quadratic Assignment Problem [109], and The Binary Perceptron Learning

2 http://www.isoc.org/oti/articles/0599/chaumeil.html

17 Memetic Algorithms: The Untold Story 291

Problem [616]. I had worked on these three problems with J. Fernando Fontanari
while at Caltech. Together, we wrote a short, simple yet important paper in which
we tested if a “deterministic update” rule was giving the same performance as the
probabilistic update rule. We worked in a typical “Mythbuster-mode”, pure scepti-
cism at work. Our results indicated that the deterministic update was giving, typi-
cally, results that were of the same quality as the ones of the probabilistic update
(when we were “thermalizing”, e.g. when we used long runs at a constant tempera-
ture). We also thought that when you were not thermalizing, the indication was that
this method was faster (actually, I was already experimenting with variants in deter-
ministic update in our MA algorithm developed with Mike Norman at the time to
speed-up the local search). We considered with Fernando that the work was perhaps
publishable, providing a definite gravestone in simulated annealing. Indeed, one of
the referees was extremely positive, saying that “this is the paper I was waiting
for!”, or something of that note. We presented our results to John Hopfield in one
of his group’s internal seminar sessions and he was interested (which means that
he asked a couple of questions at the end, something that was considered by some
members of his group as a sign that he was really interested). Our paper was ac-
cepted very soon, but published more than a year later, after the journal confused
it with a new submission after a change of title requested by a referee. Today, the
original paper on simulated annealing in Science still reigns supreme in terms of
citations (Google Scholar counts more than 20,510), while our “mythbuster” killer
manuscript still runs far behind (only 47 so far!). However, within these, we have
some interesting results, including a proof of optimality of our proposal among an
infinite number of alternative strategies [284]. In addition, it is attributed to have an
important role in a record-breaking method for disk-packing problems3. Johannes
Schneider’s method was rated by Time Magazine as “one of the best inventions of
2009” and uses our deterministic update proposal [641, 642].

Our paper in SA with Fontanari links with this story about MAs due to an inter-
esting finding. When we plotted a curve for what is analogous to the “specific heat”
as a function of the temperature during the annealing run, we noted some sudden
changes when the temperature goes below some particular values. The quotation
marks indicate that we were using the same functional form for the specific heat
but the deterministic update. We also soon discovered that these values were not
problem dependent, but instance dependent (i.e. directly associated with the spe-
cific distance matrix that we have as input). This behaviour indicated to us that, for
the local search operator we were using, we were in the presence of some sort of
“clustering” of solutions in the configuration space we were visiting. It was also in-
dicating that when the typical fluctuations of the tour length at a given temperature
were smaller, the closer we were getting to low length tours. There was, in some
sense, a hierarchical cost structure [616] clearly revealed by the deterministic up-
date rule. We concluded: “Summarizing, our results indicate that the stochasticity
of the updating rule in the simulated annealing algorithm does not play a major
role in the search of near-optimal minima. It seems to us that the smoothening of

3 http://www.newscientist.com/article/dn16716

292 P. Moscato

the cost function landscape at high temperature and the gradual definition of the
minima during the cooling process are the fundamental ingredients for the success
of simulated annealing.” This was in line with my perceived qualitative runs with
MAs. Once you were trapped in one area of configuration space, and for a particular
threshold value, there were configurations that you were not able to reach.

The simplicity of our argumention uncovered consequences which are deep. Our
findings seem to indicate a serious problem in the understanding of SA and the ex-
istence of a misinformation that perpetuates until today. In a minimization problem,
our current MAs overcome the problems of SA by exploring low cost configura-
tions very efficiently via, for instance, Tabu Search or a fast individual optimization
algorithm, and by using recombination they can provide “long jumps” in configura-
tion space. Tabu Search could be associated in Physics with some particular type of
self avoiding random walk. The MAs would avoid getting trapped in less promising
regions in configuration space by stochastic features present in the recombination
operators. Challenged by one of the referees of [616] to give an example of those
hierarchical cost functions, I chose to include a section on proteins and their energy
landscape. Indeed, after several years and the success of methods like Autodock4

that belongs to the MA paradigm (a “Lamarckian Genetic Algorithm”). I am happy
I chose such an example. I also presented results on the Binary Perceptron Learn-
ing problem, a problem that Edoardo Amaldi had proven NP-complete[16], hoping
to make a case of the importance of correlation of local optima and landscapes for
MAs, like in my technical report of 1989 and on the use of different Tabu Search
processes on each agent.

17.6 A Royal Visit to Argentina

In March 1993, when I was considering that I should leave Argentina to continue
my work overseas as I could not see any future continuing there, I got an email from
Mike Norman. He was finishing his PhD in Edinburgh and was considering his
options that were plentiful, from writing a book on Parallel Fortran to come to Ar-
gentina for six months under the auspices of a Royal Society Fellowship. The latter
was certainly the best option for me too, and we worked towards it. If he could get it,
it would have been the first time since the Falkands/Malvinas war that a researcher
would be sent from the UK to Argentina, on a re-established research cooperation
between the Royal Society and CONICET (Argentina). After all, we had a “seem-
ingly continuous” research cooperation that started in 1988 at Caltech. In 1992, we
had published a joint conference paper at the Parallel Computing and Transputer
Applications (PACTA’92) conference in Barcelona [622] that introduced MAs in
Europe, and I had visited him twice in Edinburgh in November 1991 and September
1992. At PACTA ’92 the Teraflop Grand Challenge was the major topic of discus-
sions5, but our paper with Mike has become the most cited of that conference and

4 http://autodock.scripps.edu/
5 http://www.chilton-computing.org.uk/inf/
transputers/p011.htm

17 Memetic Algorithms: The Untold Story 293

the one that introduced MAs in Europe. Mike obtained the desired fellowship and
he travelled to Argentina with his partner, Ruth Thomas, in September 1993.

Having Mike in Argentina required a bit of preparation, mainly on the research
front. Our collaboration had been sporadic but extremely productive. Without his
talents, I might have not been able to do anything of value in MAs at Caltech. In
November 1991, I visited him and I gave a seminar at the Department of Computer
Science, The University of Edinburgh. He hosted me for two weeks and together
we developed the Strategic Edge Crossover (SEX) [622] recombination that we
incorporated to the old code. The extraordinarily leap in performance of MAs we
observed by just changing the Order Crossover to the SEX showed us that investing
in better algorithm designs was always better than fruitless tuning around parameters
in heuristic optimization methods. The prospect of having Mike in Argentina was
very exciting, and I knew that it would postpone, perhaps for a couple of years, my
attempts to leave my country and the precarious research environment I was still
working in.

During the six months before September, Mike and I worked towards making
the visit very profitable. In late 1991, I had written a letter to David S. Johnson,
of AT&T, asking for reprints of his works in SA, and any other preprint he could
consider useful to send regarding my research interests. He was very kind in includ-
ing with his response not only his (pre/re)-reprints, but also sending several papers
by Jon Bentley (of Programming Perls fame), including his work on kd-trees for
semidynamic point sets [59]. [Thanks David, once again, for that brilliant package
of information you sent me!] What a joy it was to read all those papers! I under-
stood then that there would not be any future progress in MAs for the TSP unless
we started to efficiently use these data structures and clever local search algorithms.
Supported by the extraordinary breakthroughs that Bentley was giving to the field
we decided with Mike to incorporate these new data structures to the code. Via email
we exchanged information, pieces of source code or pseudocode, and while Mike
was preparing himself for his South American adventure we emailed on a daily basis
discussing these future MAs.

We hosted Mike and Ruth for a week in a in Buenos Aires, in a small apart-
ment that my family had in a posh neighbourhood called Recoleta. They were really
enjoying the city and a lot of things amused them, like the red mailboxes that were
almost identical to those of London, in a city with hints of Paris, Madrid, and Austro-
Hungarian buildings. I recall they were also amused by some of the local pubs that
had noticeboards in front of them saying things like: “Tonight: Freddie Mercury”.
Mike couldn’t stop laughing hard at those, “Pablo, another one I am pretty sure is
dead, should I enter and tell the owner?”, he used to say. They brought a laptop and
he developed two versions of the MA for the TSP, “cheddar” and “stilton” (the latter
identical to the former but with fancy though very useful graphics). They incorpo-
rated all that we knew was best practice in MAs at the time, a ternary tree structure
for the population composed of 13 agents, the Strategic Edge Crossover recombi-
nation algorithm, neighbourhood searches based on 2-opt and special versions of
the 3-opt, all powered by a clever use of the kd-tree data structures of Bentley. In
September 1993, I am pretty sure we had the world’s fastest MA for the TSP, and

294 P. Moscato

probably one of the world’s best heuristics, and it was running on a laptop! In 1992,
a previous MA [625] that we developed with a one student from La Plata, Fernando
Tinetti as part of his Degree Thesis, was already extremely competitive against state
of the art branch-and-cut based methods. I tested this at EPFL during a visit and
it was clear that, although our MA was not an exact method, they could constitute
a great upper-bounding method that could work well together with an exact search
procedure. The new code we developed with Mike while in Argentina was much
faster, orders of magnitude faster. The use of Bentley’s special data structures, plus
all the other advances we introduced in the first three months in Argentina, allowed
us to obtain optimal solutions for 100-cities problems in a few seconds on a lap-
top, while we had been unable to do that at Caltech four years before even with
computers that had costed two million US dollars.

During those first days, we incorporated some of the TSP instances that I had
been designing thanks to Lindenmayer systems (L-Systems). The purpose was to
have a controlled set of testbed instances for the experimental evaluation of heuris-
tics. These instances, later named “fractal instances of the TSP” [552, 553], would
allow us to uncover key mechanisms of the MA, and its implementation in the code,
that could be considered strengths and potential weaknesses [623], and complement
the use of the TSPLIB instances. We used several of these fractal instances to test
our MAs while developing the codes.

It turned out that this research on these instances, and this new original idea, took
a lot of our time during those six months. We identified a very interesting property
of the real number 0.714782700791294...[674], later recognized as one of the only
164 “fundamental mathematical constants”. From more than 215,000,000 mathe-
matical constants calculated with more than 2 billion digits, our constant (named
“TSP constant”6) has been selected as “essential” for the elaborated mathematics
behind Simon Plouffe’s Inverter, establishing one important opening conjecture in
Computer Science7, namely that our constant may indeed be the elusive “TSP con-
stant” introduced by Beardwood, Halton and Hammersley, first proposed in 1959 in
a manuscript published in the Proc. of the Cambridge Philosophical Society [674].
During all those six months we also worked on the MA, improving it bit by bit,
sometimes with unexpectedly bad results, as when we tried to replace the recombi-
nation algorithm by other more elaborate methods that did not perform so well. It
was, however, becoming conceptually simpler and simpler, and very elegant, with-
out any of those ad hoc parameters which unfortunately plague many metaheuristic
procedures.

Towards the end of Mike’s period in La Plata, it was clear that the tasks ahead
were exceeding the capacity we currently had to handle them. There were too many
subprojects to be completed, and the research group allocated for parallel comput-
ing, that I was directing, had vanished by lack of funds. I decided to place a small
advertisement at a couple of the university’s billboards asking for undergraduates
who would like to volunteer some time to do some research in my area. With the

6 http://pi.lacim.uqam.ca/eng/table en.html
7 http://mathworld.wolfram.com/TravelingSalesmanConstants.html

17 Memetic Algorithms: The Untold Story 295

brief CVs and academic transcripts I received, it was difficult to choose one, but
there was at least for me a clear winner. With a previous background in Engineeer-
ing I was not entirely sure, he had recently moved to informatics. Mike interceded
and said, after I interviewed him: ”Get him! He is keen.” That student was Natalio
Krasnogor, who worked with me first as a volunteer and then as a Degree The-
sis student. Later, in turn, Natalio convinced me to bring David Pelta to our set of
undergraduate volunteers, and although we worked on-and-off in MAs during that
time, we built an incipient bioinformatics group. Natalio became very involved in
research in MAs. He completed a PhD in MAs supervised by Jim Smith at Uni-
versity of West of England (Bristol) in 2002, and he is founding editor of Memetic
Computing, having organized Workshops on Memetic Algorithms since 2000 and
being a champion of the cause in Europe and the USA. Natalio is now Professor of
Applied Interdisciplinary Computing at the University of Nottingham in the UK and
is having a brilliant international career with great emphasis in Evolutionary Com-
putation, MAs and their application. David is Associate Professor at University of
Granada, Spain, and has also been very active in the whole field of Evolutionary Al-
gorithms. This said, I guess I have little to add but thank all members of this chain of
people who almost invariably have appeared in my life through being highly recom-
mended by somebody else, Fox recommended Mike, who recommended Natalio,
who recommended David. I guess I have been extremely lucky to work with them
all. Follow the heart-felt good recommendations, may be the moral. In turn, I may
have been also part of the chain as I recommended to both Natalio and David the
preprints of Bill Hart, at Sandia Labs, who had been working on methods for toy
problems in the area of protein folding [369, 370, 371] and while still in Argentina I
directed Natalio on heuristics for the TSP and David in these problems on models of
protein folding. I understand Natalio visited Hart in 1996 and introduced MAs there,
which blended well with their interest in evolutionary algorithms [372, 376]. I also
understand that AutoDock, since version 4.0 if not before that, uses the optimization
routines of the ACRO optimization library developed by Hart.

Mike and Ruth returned to Scotland in March 1994, to watch the BBC on a TV in-
stead of listening to it on a shortwave radio when the interference allowed it. We all
had many unfinished manuscripts. Mike and I continued collaborating, time permit-
ting, finishing several papers during the next years. Ruth wrote part of her first book
of short stories while in La Plata, and completed it in Edinburgh [882]. Mike started
a consultancy company and established Makespan Ltd. and later Scapa Technolo-
gies, two very highly successful commercial enterprises that kept him very busy for
many years. Some of our work in MAs was surpassed in terms of performance very
soon after, in 1996, by Peter Merz, preventing us from having a chance to capitalize
on that small time-window of opportunity in 1993-94 to publish our own results.
But, on the other hand, it was really good to see Peter Merz coming out, as a rising
star bringing innovative ideas and great results into the field.

296 P. Moscato

17.7 To Brazil, without the Beaches

We finally obtained full Internet access at the universities by mid 1994. I recalled
logging in with Natalio at a server at the ETHZ. We were trying to “get in” using
“ping” everyday (the whole of Argentina had IP numbers and an internal intranet).
One day in June finally it was working. We are now on the World Wide Web! What a
thrill it was when it was finally working. We were reprimanded by the local authori-
ties: “How do you dare to use the Internet if it has not been officially inaugurated?”
we were told. Yes... Argentina “inaugurated” the Internet. With access to informa-
tion, and the ability to provide information uploading .ps files with our work, we
could get out of the ostracism imposed by the lack of physical presence on the in-
ternational circles. How could we use it?

In 1994, after Mike returned to Edinburgh, he told me about two papers that
Nicholas Radcliffe and Patrick Surry had published. I knew that there was some
trouble ahead. Although they do not explicitly contradict our definition of MA, their
formalization included the restrictive idea that recombination has as input parent
solutions which are locally optimal with respect to some neighbourhood function.
We had never used such a restrictive definition, as we had viewed this constraint
in the algorithm design as rather unproductive since 1988. The papers, however,
were giving a very clear and strong message. They showed the benefits of MAs, and
were supporting the use of Forma Analysis, to reflect on the design of evolutionary
operators [751, 752]. Mike introduced MAs to Radcliffe, a colleague working at the
EPCC in 1989. The three of us discussed MAs during my visit to Edinburgh in 1991
and I had adopted Forma Analysis for semantical discussion of properties of the
operators as a useful description. A student we co-directed with Mike in 1992 on a
summer project I prepared, Reimar Hofmann, applied this formalism and developed
it as a predictive tool for the a priori evaluation of operators. He did a fantastic job,
showed clearly the benefits of our MA approach and then wrote an interesting thesis
with the results of his further studies [387, 388].

In 1995 I met Regina Berretta, my wife, who at the time was a second year
PhD candidate at the prestigious Universidade Estadual de Campinas (UNICAMP),
Brazil. We met on an Operations Research Summer School. She was working on
metaheuristics for production planning problems. I also started to have a part-time
job as Visiting Professor at Tandil, around 400 kms from La Plata. A year later,
I moved to UNICAMP as Visiting Professor and we married in Brazil in 1996 and
lived in Campinas, which contrary to what my readers may daydream, was not close
to the beach. The contract I had was for six months (and I was on leave from my
post in Argentina), and at the end of this period there was a big question mark in
our lives. How will I get a salary? I wrote a project to obtain a grant that would
pay my PhD salary to study the possible links, or show the existence of them,
between the theory of approximability in computer science and the informal no-
tions of “hardness” in Evolutionary Computing [367]. With that project I obtained
a PhD scholarship from FAPESP, Brazil, and I became a colleague of some of the
same graduate students that the previous semester had been my students (often at-
tending the same courses). I finally followed the advice of Joshua “Shuki” Bruck

17 Memetic Algorithms: The Untold Story 297

who four years earlier seriously summoned me to get a PhD if I wanted to have
a life in academia. In 1997 I met two other graduate students (Luciana Buriol and
Alexandre Mendes), and we all had Paulo Morelato França as supervisor; we started
a fruitful research collaboration that remains active up to the present. Our work
tried to support the use of MAs in Operations Research and Production Planning
[279, 280, 281, 282, 302, 573, 574, 575, 626, 627, 628].

At UNICAMP I also discovered, now as a student, how big the field of MAs was
becoming. I was taking one course that had the opportunity for us to present some
research on a topic related to the Theory of Computation. A few months before, I had
met Pavel Pudlak, who gave a seminar at the Department of Computing, and after
we had a post-seminar discussion. He gave me a copy of something he was writing
on a novel idea “Genetic Turing Machines” [743, 744]. During one class, I proposed
to the lecturer that I would study this subject who immediately counter-suggested:
“I propose you something better; why don’t you study Memetic Turing Machines?
Have you ever heard about memetic algorithms?” I thought my lecturer was teasing
me; but that was not the case. I had started the Memetic Algorithms’ Home Page in
February 1996, so two years later a lot of people had already discovered the subject
(and each other). I knew that nobody had proposed such a thing as a Memetic Turing
Machines. However the whole experience brought back home an interesting feeling.
I had the impression that now the genius was definitely out of the bottle, clearly MAs
did not belong to a few of us any more.

It was now clear, by mid-1998, that a large number of people, including ourselves,
would start to experiment with MAs in their role as heuristic problem solvers in a
large number of different settings. There would be a lot of experimental results,
more practical application sought in novel problem areas, and perhaps an increasing
void in theory. However, it also alarmed me that there would be a widening gap on a
direction that I wanted MAs to have right from the beginning: the hybridization with
exact methods from mathematical programming, logic and constraint programming
and artificial intelligence techniques. The final three sentences of [615] were:

“Memetic algorithms are not a new heuristic that can be chosen to be applied in an
optimization problem. They are not motivated to replace present heuristics. Instead
they are a framework to exploit all previous knowledge about the problem, combining
methods to improve their performance.”

so that, of course, includes the use of exact algorithms. I decided to look on the
web for some people who may be heading in that direction and I found a researcher
in Málaga, Spain, (Carlos Cotta) who had been discussing these issues in his PhD
thesis and his published manuscripts [147, 160, 162]. To my surprise, he was also
fluent in Radcliffe and Surry’s Forma Analysis [166]. These factors allowed us to
have a useful dialogue from the start and we developed a collaboration via email.
It took two years until I was able to finally visit him in Málaga in 2000, after our
interaction increased later in 1999.

298 P. Moscato

Some of these concerns on this widening gap are evident in the chapters that I
contributed, either as author or as editor, to ”New Ideas in Optimization”, written
during the second part of 1998 [136, 617]. Peter Merz, who kindly accepted my
request, contributed a highly cited chapter on the relationship of ”fitness distance
correlation” and MA design [585]. I thought that he was the key person to write that
chapter at the time. Peter not only mastered how to create a useful recombination
operator that worked well with the Lin-Kernighan heuristic for the TSP, he was also
providing impressive results in other problems as well. His chapter would then link
a long list of discussions and results linked to my own work, as well as predecessors
like Kaufmann, Kirkpatrick, and the work done by Hofmann, Radcliffe and Surry,
and Terry Jones (who I met after I gave a talk at the Santa Fe Institute in April
of 1994) [435]. I also invited one of my students, Diana Holstein [390], to write
a chapter since we were working on an area that I wanted to expand, that of the
adaptation of individual search processes by each agent. It does seem, however, that
this line of research has been developing more in non-linear than in combinatorial
optimization.

With Regina, we chose to present work on the Number Partitioning Prob-
lem [60, 62]. Although a fully-polynomial time approximation scheme exists for
this problem, it did appear to be hard for a variety of metaheuristic methods. The
reasons behind this failure, possibly related to a poor selection of neighbourhood
function and representation, was explored. It has been included as a challenge for
the MA field practitioners, to help overcome the limitations and to promote new
creative developments. The use of Tabu Search, to overcome the limitations of Sim-
ulated Annealing, indicated that this is a possibility, but the problem has become a
standard challenge to other algorithmic approaches. We considered it paradigmatic
of the type of problems on which theoretical and practical advances can lead to im-
provements in our understanding of how to create better evolutionary algorithms of
the memetic type.

In “New Ideas in Optimization” I also started some other more ambitious theo-
retical endeavours that, probably due to lack of my own talent, but certainly due to
lack of time and funding, I was not able to develop as I think they deserve to be. I
tried to build two research directions: one was related to a computational complexity
class denominated Polynomial Merger algorithms [617]. The other one was related
to a way of designing recombination operators based on a worst-case analysis, bor-
rowing elements from the analysis of off-line algorithms [136]. The idea was to use
Competitive Analysis and Comparative Analysis to give tight theoretical bounds for
the problem of the design of recombination operators with proven worst-case per-
formance. More than a decade after publication of this book, these two ideas have
not yet been developed by the community, and I feel that theoreticians will find a
fertile ground to be further developed in the context of the theory of parameterized
complexity. Next I will link this story with the next chapter in our lives, when we
took our research “down under”.

17 Memetic Algorithms: The Untold Story 299

17.8 Fixed-Parameter Tractability, and the Complexity of
Recombination

By the end of 1999, I was sure that there were severe obstacles to reconcile what
is considered ‘hard’ for the theory of approximability in computational complex-
ity (which is a well-established formal concept) with what is considered ‘hard’ for
people working in Evolutionary Computation. In some sense, the answer to one
of the questions I posed myself as a thesis project in Brazil was ‘No’; these no-
tions of hardness were not compatible at all. The problem we were studying with
Regina, called NUMBER PARTITIONING, was a case in point [60]. The problem is
in class FPTAS, i.e. there exists a fully-polynomial time approximation scheme for
it. This means it is considered on the “lowest level” for a decision problem that is
the NP-complete class, yet it seems “hard” for Evolutionary Computation and other
metaheuristics. It is, however, clear that the “hardness” for EC is usually biased
by the limitations of the skills of the practitioner instead of a clear mathematical
tight bounding classification. On the other hand, the notion of having a fptas or a
polynomial-time approximation scheme, does not necessarily guarantee that it may
be a useful algorithm for some practical application. There was no bridge between
theory and practice in the horizon.

I was searching for an alternative theoretical perspective that could put some
kind of new perspective on these matters when I found on the web an article by
R. Downey, M. Fellows and U. Stege called “Computational Tractability: the view
from Mars” [225]. To my surprise, the perspective from Mars was also my own! My
wife is the witness of how much I enjoyed reading each line of that paper. Finally,
I found a few authors that, regardless what “the community” would do with them
after that manuscript was published, were spelling out, loud and clear, the deficien-
cies of research in Theoretical Computer Science at the time. They did it with a
passionate stand, for a change of perspective on the status quo of Theoretical Com-
puter Science, stagnated in a single minded exercise of proving NP-completeness
and inapproximability results and then “walk away”. I hope my readers will not
misunderstand me on this point. Research in NP-completeness of a new problem is
useful, absolutely essential I would say, but it should not produce a single minded
breed of theoreticians, incapable of recognizing the amount of positive results of em-
pirically well-performing heuristics and exact algorithms (or their hybridizations).
Unfortunately, many of our computer science theoreticians have been indoctrinated,
in a fundamentalist way, that this research is always the only relevant thing, while
practical aspects of computing are of secondary importance.

The “View from Mars” paper included something that also hit me as of very
important consequence. The authors were highlighting the role of treewidth. They
said: “Important distribution parameters may also arise in ways that are not at all
obvious. Thorup, for example, has shown that the flow graphs of structured pro-
grams for the major computer languages have treewidth k � 7 [884].” After all,
these “important distributional parameters” which “are not at all obvious”, are the
ones that, when understood, can also lead to important insights about how to de-
velop efficient evolutionary algorithms and metaheuristics. Would they have a way

300 P. Moscato

to identify them in a more systematic way ? Could the theory of “parameterized
complexity” [100, 220, 222, 223, 226] help in providing tools for the “efficient”
implementation of key algorithms in memetic algorithms, like optimal recombi-
nation algorithms under some constraints and variable-depth local neighbourhood
searches?

I knew that there might be an important connection. I can remark here again that
the success of the highly performing CONCORDE code for the TSP (a joint project
of David Applegate, Robert E. Bixby, Vaek Chvátal, and William J. Cook), is also
based on the notion of treewidth. In 2003, Cook and Seymour presented the case
in their “Tour Merging via Branch-decomposition” paper [143], although reference
to their recombination algorithm existed on other manuscripts well before that date.
They showed that by first creating a sparse weighted graph (with the set of cities
as vertices and the union of the edges of ten high-quality tours on a TSP instance
as edge set), it is sometimes possible to improve on the best of these ten tours by
finding another one that belongs to this graph and that has the minimum total tour
length. This was very important as although this new problem is still NP-hard it
can be solved, via dynamic programming algorithms, in time proportional to the
size of graph and a constant of proportionality that grows with the branchwidth
of the graph. The concepts of treewidth and branchwidth are related, and they are
intrinsically linked today to many important results in the theory of parameterized
complexity.

For me all these concepts were like pieces of a puzzle which I started to collect
more than a decade before. In 1991, when I first met Nick Radcliffe in Edinburgh,
during a meeting I had with him and Mike Norman, I suggested that, perhaps, the
problems we were facing in designing “optimal” recombination operators could be
linked to computational complexity. “Perhaps, the problem of finding a recombi-
nation operator that is optimal, under certain conditions, is NP-hard” I said. We
all agreed that it was a good target for a research agenda, to systematically iden-
tify these new NP-hard problems arising from our metier; but that was an ill-posed
question: what did “optimal” really mean? I had no clear mathematical model at
the time to frame the discussion.

This said, after I finished reading “the view from Mars” paper, I was motivated to
send an email to Fellows and Downey, to try to entice their interest in the develop-
ment of a theory for recombination algorithms based on parameterized complexity.
Judd taught me well about how to entice the interest of theoretical computer scien-
tists, with a clean cut problem. I sent an email to them that was very brief and said
something like this:

“Dear Profs. Fellows and Downey, I have the following problem: I have as input an
undirected weighted graph G(V,E,W), and I also have as input two Hamiltonian cycles
C1 and C2 of G, such that C1 �= C2, and without losing generality Length(C1) �
Length(C2). The question is then, ”Does there exist C, which is another Hamiltonian
cycle of G, such that C �= C1,C2; and Length(C) < Length(C2) ? Can parameterized
complexity serve to address this type of problem?”

In essence, this is what my proposal of a class for polynomial merger algorithms
was all about. Can we find out under which conditions the problem of creating

17 Memetic Algorithms: The Untold Story 301

another feasible solution better than the worst of the solutions given, is solvable in
polynomial-time? If there is a small parameter that restricts the input, under which
conditions/properties of the input can we find a fixed-parameter tractable algorithm?

Their answer did not take much time. Downey immediately thought that there
may be a neat formalization of this generic set of problems in terms of the k-STEP

HALTING PROBLEM FOR NONDETERMINISTIC TURING MACHINES which is the
following: ”given a nondeterministic Turing machine M (with unrestricted nonde-
terminism and alphabet size) and a positive integer parameter k, is it possible for M
to halt in at most k steps, starting with an empty tape?”. I do not recall exactly his
email, but it made some sense at the time and involved two machines with different
halting time steps k and k′ and the question involved the existence of a third machine.
Fellows was eager to frame the source of these problems; he was interested on the
logistics side: “Where did this problem come from?” I told him that I can produce,
eventually, hundreds of those, as they were coming naturally from the polynomial
merger algorithms class, a proposal for a new computational complexity class for
which I had no complete problem. After several emails during the next two months
he said, “Come here ! Too much email, I’ll buy you a ticket and we can discuss in
Victoria.” Those five or six days that I spent in British Columbia were very useful. I
had a great first-hand tutorial on parameterized complexity and we had a chance to
explore the possible synergies between fixed-parameter tractability and MAs.

One key event that helped to understand the potential of the combination tech-
niques occurred when Fellows proposed to discuss the MAXIMUM LEAF SPAN-
NING TREE problem. In this problem, we are given an undirected connected graph
and the task is to find a subgraph of the graph that is spanning tree and, from those,
find one that has a maximum number of leaves possible. Mike asked me to illus-
trate how to create a MA for this problem (the game was basically, I give you any
NP-optimization problem, can you always create an MA for it, or something of that
sort). With two different greedy heuristics, I quickly generated two feasible solutions
for a given instance of the problem, two trees which turned out to have eight and
nine leaves respectively. I then proceeded like in other combinatorial optimization
problems, in which recombination is achieved by looking only at the information
produced by the solutions (analogous to the merging of TSP tours of Cook and Sey-
mour or our Strategic Edge Recombination for the TSP). Running the same greedy
heuristics now on the graph formed by the union of the edges of the two trees, led
to two solutions with eleven and fourteen leaves, dramatically improving the previ-
ous results. None of these things would surprise somebody working on MAs today.
However, the interesting bit for me came right after. During the afternoon (as we
had the discussion during the morning), Mike was intrigued by the procedure and
tried to see if the recombination could have been done better, not by the greedy pro-
cedures I used but by another kind of algorithm, hopefully an exact. He noticed that
the sparseness of this graph now made evident that some reduction rules could have
been used. Mike, and his wife and collaborator Fran Rosamond, who was working
with us during the whole day, quickly started to annotate all the reduction rules that
were coming naturally by inspection of the graph. Some of these rules were easy to

302 P. Moscato

mathematically prove to be correct/safe, others would require more effort, but what
struck us all was how quickly the theses of many theorems for the correctness of
these reductions rules were “begging to be proved”. The sparseness of the graph,
and perhaps I should better say its treewidth, were the key ingredients behind this
process.

Later the same year, in June 2000, I finally was able to visit Carlos Cotta in Spain
for a couple of weeks. That was great, the visit promised to be very productive;
we finally had the opportunity to talk face-to-face. But, which face? I discovered in
the airport that I had been working with him for two years, yet I had never seen a
picture of him. On his home page, he had a picture of David Duchovny, of X-Files
fame at the time instead of his own. Universities were more liberal in their web
policies then. Carlos would get from time to time the occasional email: “You won’t
believe this Professor, but you look very much alike a famous actor that works in
a science fiction TV program...”. When all arriving people at the airport finally met
their relatives and friends and left, and only the two of us remained; we shook hands
went to an Irish pub for an Irish beer (so Andalusian a beginning).

During the two weeks, Carlos and I discussed several methodological improve-
ments to MAs, mainly involving the incorporation of exact algorithms, and I told
him about my experience in Victoria just a few months before. We discussed several
ideas about how to improve MAs and the possible links with the theory of parame-
terized complexity.

A key issue that arose, which we recognized early in our first meeting, was that it
could be possible that with parameterized complexity we could finally answer sev-
eral questions regarding the complexity of recombination. This was a long quest for
me, and perhaps we could establish some sort of lower bound on the complexity
of recombination under certain circumstances. If we took a problem of interest, for
instance the TSP, we noticed that many recombination operators for this problem
have been established on the basis of attributes/features which were required to be
either present or absent in the newly generated solutions (usually via polynomial-
time algorithms). This seemed to be a generic template, a design pattern of sorts.
For instance, the Distance Preserving Crossover of Merz explicitly included all
edges that are present in both parents and avoided those edges that were present
in one but not the other parent. This means that, although randomized, it still had
the same characteristic design pattern, that of systematically allowing attributes to
be present or absent. Merz’ DPX did not require the retrieval of the “optimal tour”
among all those that had this characteristic. Assuming that this could be done in
polynomial-time for two tours, the natural question was to identify the computa-
tional complexity of having, let’s say, k tours, and finding the optimal tour under
some giving constraints.

What are these general constraints? We noticed that this issue is very problem
specific, so apart from generic membership constraints, it is difficult to have a core
problem that encompasses a template for recombination; the generic pattern for re-
combination. We thus resort to what is core for the polynomial merger class. In
the basic definition, we are given p feasible solutions and we want to create a new
one which is, different from the others, and is better than the worst. This means

17 Memetic Algorithms: The Untold Story 303

that we can assign different labels to the samples and, without losing generality,
assume that one of the p solutions is the worst one (or the one with information to
be avoided) and the others with information to be preserved. If that is the case, the
task of identifying which features are to be preserved or avoided, can be viewed as
a special case of the k-Feature Set as defined by Davies and Russell, who proved
it NP-complete [187]. This clearly linked to my discussion with Radcliffe and Nor-
man in 1991; there are multi-parent recombination problems which are NP-hard, but
it could be that some of them are fixed-parameter tractable. After initially trying to
prove this, what we then ended up proving is that it is unlikely that the problem is
in class FPT (the class of problems for which a fixed-parameter tractable algorithm
exists) if the number of attributes is the parameter. Instead, we proved that k-Feature
Set is W [2]-complete, meaning that only by discovering some kind of special struc-
ture that restricts the instances to be of a particular subclass we can we hope to find
a subproblem that is in FPT (unless the FPT �= W [2] conjecture is proven false).
A year later we completed a manuscript entitled “On the parameterized complex-
ity of multiparent recombination”, which, due to the referees request, has finally
been published as “The k-Feature Set problem is W [2]-complete” [156], without the
important emphasis that the result has on the complexity of recombination. Later
in 2005, we published another manuscript at an international conference where we
had the opportunity to include this important information as a guide for the devel-
opment of a theoretical approach to prove tight lower-bounds on the complexity of
recombination in a general scenario [159].

After my trip to Europe and our discussions with Carlos, I returned to Brazil, with
the conviction that there was a lot of potential in linking memetic algorithms with
parameterized complexity research. In particular, I considered that fixed-parameter
tractable algorithms had a role in the development of exact solutions for sub-
problems that originate in questions related to recombination. To some extent, fpt
algorithms also could play a role in local search. I considered that they were key for
problems that arise in merging feasible solutions. These ideas, which I still believe
have a lot of potential, were later included in the thesis I defended at UNICAMP,
a year later. Today, several results involving parameterized complexity and local
search exist (see for instance the work of Dániel Marx [497, 559, 560, 561, 562,
563], Daniel Lokshtanov [253, 275], Stephan Szeider [865, 866] and references
therein). While some researchers who are active in parameterized complexity and
also in memetic algorithms are joining forces, like Gregory Gutin, Daniel Kara-
petyan and Natalio Krasnogor for instance [343, 344, 345, 346, 442] the systematic
design of recombination algorithms using fpt algorithmics it is still in its infancy.

17.9 Newcastle, Australia, and Biomedical Research Closer to
the Beach

In late 1999, I read in FAPESP’s newsletter that a new lab was being set up at the
Ludwig Institute in Sao Paulo which, at an estimated cost of 1 million US dol-
lars, would allow cancer researchers to investigate “thousands of genes at the same

304 P. Moscato

time”. I am talking about the first generation of microarray technologies that were
finally arriving to Brazil. During the next two years, while working on the k-Feature
Set as a model of recombination problems for Evolutionary Computation, I also
looked at the practical applications that it can have for the analysis of gene expres-
sion in cancer and other human diseases [168].

With this double interest which presents a duality of objectives but still relates
to some basic core problems that are common to MAs and biomedical research,
we moved from Campinas (UNICAMP), Brazil to The University of Newcastle,
Australia, in September 2002. We are now relatively near the beautiful vineyards of
the Hunter Valley and very close indeed to pristine beaches. My wife then joined as
a Faculty member in March 2003, and on the basis of our joint work we consolidated
the Newcastle Bioinformatics Initiative (NBI). We moved due to the insistence of
Mike Fellows, who thought that we could develop this joint program of research in
parameterized complexity, memetic algorithms and bioinformatics. The truth is that
the latter started almost 48 hours after arrival. Two days after arrival, we were still
with no credit card, no tax number, no bank account, no house, no car, nothing really,
our Pro Vice-Chancellor was already asking me to write a project to establish a
group in bioinformatics. Thanks to a grant I put together during my first month in my
new job, I obtained funds to establish the NBI, a three year project that would start
in 2003, and aimed at bringing together the some research “silos” in biotechnology
and medical research on a common theme. We joined the Hunter Medical Research
Institute (HMRI). One of the terms of reference of the NBI was to work so that,
after the three year period, it should have enough research outcomes to justify the
creation of a Centre dedicated to the theme. In June 2006, I led the proposal of a
new project in collaboration with other HMRI and university researchers. Our bid
was successful and in January 2007 I established the Centre for Bioinformatics,
Biomarker Discovery and Information-based Medicine. Today we are also one of
the seven research programs of the HMRI, the third medical research institute of
New South Wales.

As expected, much of the development of memetic algorithms and computational
complexity studies were linked to the research in bioinformatics and biomarker dis-
covery. When I received the referees reports of the first national competitive grant
that we submitted from Newcastle, one of the reviewers wrote something like this:
“The Traveling Salesman Problem is not one of Australia’s National Priorities”.
My “true love” is a dusty Cinderella here. Concerned with continue the development
of MAs, but with the added constraint of having to support my research group only
from external competitive grant, our research has become increasingly more concen-
trated on applications of MAs. A number of different ideas on experimental testing
of improvements on our basic MAs are still pending to be fully developed. In spite of
these new circumstances, the new ideas we develop in MAs are nevertheless incor-
porated into our more recent publications [167, 404, 405, 406, 545, 576, 629, 631].

As a consequence, during the recent years we have proposed a number of MAs
with novel ideas for very challenging problems. For instance, in another collabora-
tion with Carlos Cotta, we proposed an interesting approach for the problem of find-
ing a Minimum Weight Ultrametric Tree from distance matrices [157]. We selected

17 Memetic Algorithms: The Untold Story 305

this problem area as we felt at the time that there were not many MAs developed
for problems which involve problem representations in which feasible solutions are
trees. Given an instance of the problem, by first using an MA to solve some variants
of the Minimum Weight Hamiltonian Path Problem on the input distance matrix,
we first obtain a probably optimal solution of this NP-hard problem. By restricting
the solution space of the original problem to only those trees that have leaves that
can be ordered we drastically prune the space of possible solutions. In that way we
guide the search performed by an actual clustering algorithm. With a high-quality
feasible solution that acts as an excellent upper bound, we can return to the original
unconstrained problem to prove optimality or to improve on the solution already
obtained. This approach has been shown to be highly effective in practice, allowing
for the first time the scaling by one order of magnitude the size of instances solved
for this problem. We conjecture that this is an important new design tool for MAs.
Ideally, the population of agents can be using different “guiding hints” (i.e. different
alternative high-quality orderings of the leaves) and help to guide the exact methods
in different ways. An alternative approach, in which a co-evolution of the ordering
of the leaves and the evolution of the topologies of the trees is performed in a dif-
ferent time scale seems also promising and worth exploring. We have applied this
methodology to the analysis of mitochondrial DNA as well as for gene expression
obtained from microarray studies of cancer samples.

We have continued with the development of MAs for other combinatorial prob-
lems, like the Asymmetric TSP [94], and problems involving ordering in bioinfor-
matics [397, 577, 630, 778]. In most cases we have continued developing proven
ideas involving population structure (a ternary tree, for example), the use of diver-
sification and intensification local search procedures based on Tabu Search, and the
hybridization with exact algorithms and other heuristics.

17.10 Future Opportunities (if We Constrain the Beast)

Writing these notes has not been what I expected. I thought it would have been
something of an easy ride, but it was not. It is hard to condense so many ideas and
so many years in a few pages, so unfortunately I am leaving a lot outside these
lines. I am giving my apologies to a large number of collaborators and projects
which I have been unable to include in this discussion in which I tried to have
“bounded treewidth”. But at the end of this chapter, as I said in the introductory
comments, again I do not feel that we have reached a conclusion, a “grand finale”.
I have the feeling that the best in MAs is still to come. And that the obligations and
the challenges of people that practice MAs are immense [158] but that the future is
indeed promising for those that will master these techniques and take the ideas to
their full potential. Collectively, over two decades, we may have proven a first case
for MAs on many problems, and in particular on the TSP, but we still have myriad
other problems waiting for important advances. We still have a gap on the design of
efficient and smarter recombination algorithms.

306 P. Moscato

Although these gaps exists, it is true that we are also just discovering how to
exploit structural parameters in our problems of interest. We can take for instance
one of the concepts I discussed before, treewidth. We are just at the beginning of
understanding how to explore it well, yet this beginning has lasted for more than
two decades [71, 71, 512, 934]. I am struck at how many times I have encountered
this concept within my research in MAs, and in parameterized complexity, and,
even more surprisingly, in my formal education in computer science at Caltech. Yet
I am also surprised how little we have explored it properly; my mistake. I do not
hope this to be repeated so this section aims to tell the story, with the hope that new
researchers can develop it further.

I recalled that, back in 1989, I had a conversation one day with J. Stephen Judd
in his office. I was teasing him: “I don’t think you are very popular among machine
learning researchers. You go there, and ‘Bang!’ you prove their decision problems
are NP-compete and then walk away. That’s not going to create a lot of friends
in applied conferences”. Of course, Stephen was not “just” doing that. It was true
that he did prove “negative” results of that sort, but he was also proving “positive”
results, algorithms that could run in polynomial-time for particular network struc-
tures. In his thesis, he studied families of “shallow” architectures that are defined
as having bounded depth and unbounded width, and he defined the “support cone
interaction graph” (SCI) which allows one to distinguish the tractable from the in-
tractable subcases. He tried to stress the importance of this concept, and indeed he
achieved that, and at least in my case I have learnt the lesson well. During his lec-
tures, he gave us a homework on which we had to program an algorithm for machine
learning one task, and we experienced first-hand the difficulty inherent to crossing
this boundary (between a problem that is NP-complete and a special case for which
a tractable loading/learning algorithm was easy available). In his thesis, he showed
that when the treewidth is O(logn), the learning problem can be solved in poly-
nomial time; and when the treewidth is nΩ(1) the problem becomes NP-complete
even if the SCI graph is a simple 2-dimensional planar grid. However, it was not
until I found it again being central in parameterized complexity and also in the tour
merging approaches of the CONCORDE team for the TSP, that the full-impact of
its utility became obvious to me.

I will say something that will probably shock both theoreticians and practition-
ers. In essence, at the core, both MAs and fixed-parameter tractablity researchers
are striving to find some form of intrinsic structural characteristic of the class of
instances. This is a common theme. Rolf Neidermeier and other researchers are
proposing the “deconstruction” of NP-hardness proofs as a way to identify the
parameters that inherently are present in a problem and that can “push the prob-
lem” to be intractable [479] and recognizes the need of merging these paradigms
when he proposes in his book “that topics such as local search or evolutionary
and memetic algorithms will become new subjects of fixed-parameter studies”[666].
These two algorithmic streams do not differ in that one is deterministic and the other
is all randomized; in complete MAs (CONCORDE being a case in point), we stop
when we have actually proved that we have obtained the optimal solution; an im-
plicit exhaustive enumeration scheme is necessarily being employed to guarantee

17 Memetic Algorithms: The Untold Story 307

optimality. In fpt algorithms, generally we have a data reduction step (which in Op-
erations Research has been traditionally called ‘preprocessing’) based on reduction
rules [72, 252]. As such, that step must be always attempted in MAs, provided that
the problem is in the FPT class. We take that lesson from parameterized complex-
ity, but, in turn, we should increase the awareness among the theoretical community
that the problems of finding optimal recombination schemes are a great niche for
combined theoretical and practical computing research. It is curious that the fpt-
community is neglecting this area, as the preprocessing mechanisms are far more
useful for these subproblems that appear in MA implementations than in dealing
with the original problem. This is an area, on which, after all these years, we still
have a lot to do and where I would be glad to see more researchers both theoreticians
and practitioners shaking hands and productively collaborating.

Reading again the conclusions of Judd’s thesis, I found a paragraph which is
remarkable and perhaps suits well the discussion we have here. He wrote:

“Whatever the case, our underlying assumption is that complexity analysis (and specif-
ically the P vs. NP distinction) provides a means to narrow down the things that biolog-
ical machines do and how they do it. Our strategy is to take the general NP-complete
problem and add architectural constraints, and search for polynomial-time loading
problems. We feel very safe in assuming that the brain cannot be solving any NP-
hard problem, and we feel secure in assuming further that evolution would have found
efficient ways to utilize the available hardware. Ergo brain mechanisms are likely to
be described by decision problems found ‘just below’ the level of NP-completeness.
Hence the general outline and thrust of our research program.”

Judd’s quest was to find “a general methodology of how connectionist networks
should be constructed” for machine learning applications. He is indeed a pioneer in
this process of “deconstructing” NP-hardness proofs. We do have a similar quest:
how can we establish a general and systematic methodology that guides how MA
algorithms should be designed. In particular, given an NP-hard optimization prob-
lem which is not in class FPT, it may be possible that there exists identifiable FPT
problems that naturally appear in the design of optimal recombination operators and
local search techniques. Thus fpt algorithms could be used, in concert with random-
ized methods, and under some circumstances, for more systematic exploration when
needed.

The lessons learned in the past two decades give now a general idea of how to
progress. Here is where the past can also enlighten the future. When confronted
with an NP-hard problem, we can look at both efficient procedures, coming from
approximation algorithms and fpt algorithmics as tools that can provide efficient
solutions “just below” the full complexity of the problem [73]. These special cases
can provide us with powerful individual search and recombination algorithms. The
“tour merging” procedures for the TSP as described by Cook and Seymour are
a case in point. While in general the complexity of recombination is W [2]-hard
(recall that we have proven that k-Feature Set is W [2]-complete), given an NP-
hard problem, this does not mean that, by looking at treewidth/hypertree width,
local treewidth [206, 207, 272, 351] pathwidth [74, 274], branchwidth [216, 273,
384], rankwidth [89, 398], cliquewidth [88, 265], q-branched tree treewidth [274],

308 P. Moscato

tree-length/branch-length [898], boolean-width [3, 58], NLC-width [341, 644],
bounded degeneracy [567] etc. we can not provide efficient algorithms that provide
optimal recombination methods for many problems.

There will be some challenges ahead in this route, of course. One of them is
that, and one of likely criticisms, is that in general, given an instance of an NP-
hard problem, we are not given as input these values of parameters. Even the task
of computing them, like cliquewidth or NLC-width, has already been proven to be
NP-hard in the general case [254, 342]. This means that special attention should
be given to the way of encoding feasible solutions of the original NP-hard problem
such that it can give rise to other NP-hard problems of bounded, and hopefully small,
parameters, so that optimal recombination strategies can be found. I expect that we
can soon have researchers exploring this space.

More than two decades from my own beginnings in this area of research, starting
from the unconventional perspective of spin-glasses and ultrametricty, it is interest-
ing to note that problems in that area are now solved with algorithms that can be
categorized as “memetic” [415]. In some sense, we have come full circle, as Parisi
states are now searched with this technique in spin glasses. I do, however, note an-
other thing: that it took us years of mathematics and computer science to recognize
that, in many problems of interest, for many of our implicit enumerative schemes
based on some forms of tree-based search, it was some parameter related with some
“width” notion that was “ the source” of increased computational complexity. Take
the case of CONCORDE, for instance, but this is true for other problems as well.
This said, although sometimes I feel we have learned a lot in the past two decades,
I also feel we have learnt in a hard way a lesson that was pretty obvious from the
start.

I am also convinced that MAs have not lost a single bit of their innovation. I said
in 1989 referring to a MA: “For it the network really is the computational device”
in a paragraph where I predicted MAs could be perfect for what we now call “grids”
or “clouds”. Their time in history is right now. The revolutionary social role of
MAs stays the same. They have always aimed at bringing the best of each field of
expertise and act as a framework for an algorithmic engineering process when we
need to address a problem. As a framework for collaboration, MAs role is intact.
It is not like other methodologies, based on a theme and neglecting the others. It is
a philosophical stand asking for a different collaborative perspective on algorithm
design, and a such they remain novel and “aggressively useful”.

The number of heuristic, metaheuristic and parallel techniques that are converg-
ing to MAs increases day by day. And I think that, while research on things like
deterministic preprocessing kernelization will continue for decades, and that fpt-
algorithmics will continue to grow, they will not replace the need of randomization
to provide upper and lower bounding schemes to the implicit enumerative schemes.
Clearly, the design of these schemes should be revisited, and co-evolution of de-
terministic and randomized methods [181], together co-evolution of instances [5]
to “train” deterministic methods will be used. The right balance of randomiza-
tion and determinism, and the synergistic collaboration of algorithmic methods and

17 Memetic Algorithms: The Untold Story 309

theoretical results, will keep on fueling the development of MAs and bring them to
higher achievements.

I can’t wait to see the developments of the next two decades!

Acknowledgements. I would like to thank all people named in this chapter, as well as many
other colleagues and collaborators for fruitful discussions over the years which I could un-
fortunately include here due to space constraints. In particular, I would like to thank Mike
Norman and Regina Berretta for their help in developing MAs and for critical reviews of
parts of this chapter. Sincere thanks also go to Elena Prieto and Daniel Johnstone for proof-
reading and comments on an early draft. Many thanks also to Ferrante and Carlos, with my
apologies for not being the best co-editor that their efforts deserved in three very complicated
years for me. In addition, I would like to thank them for giving me the freedom to present
these notes in a highly non-standard way.

References

1. Aarts, E.: Boltzmann machines for travelling salesman problems. European Journal of
Operational Research (1989)

2. Ackley, D., Hinton, G., Sejnowski, T.: A learning algorithm for boltzmann machines.
Cognitive Science (1985)

3. Adler, I., Bui-Xuan, B.-M., Rabinovich, Y., Renault, G., Telle, J.A., Vatshelle, M.: On
the Boolean-Width of a Graph: Structure and Applications. In: Thilikos, D.M. (ed.) WG
2010. LNCS, vol. 6410, pp. 159–170. Springer, Heidelberg (2010)

4. Adra, S., Hamody, A., Griffin, I., Fleming, P.: A hybrid multi-objective evolutionary
algorithm using an inverse neural network for aircraft control system design. In: [116],
pp. 1–8 (2005)

5. Ahammed, F., Moscato, P.: Evolving L-systems as an intelligent design approach to find
classes of difficult-to-solve traveling salesman problem instances. In: Di Chio, C. (ed.)
EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 1–11. Springer, Heidelberg (2011)

6. Aickelin, U., Burke, E.K., Li, J.: An estimation of distribution algorithm with intelli-
gent local search for rule-based nurse rostering. Journal of the Operational Research
Society 58, 1574–1585 (2007)

7. Alabau, M., Idoumghar, L., Schott, R.: New hybrid genetic algorithms for the frequency
assignment problem. In: International Conference on Tools with Artificial Intelligence,
pp. 136–142. IEEE Press, Los Alamitos (2001)

8. Alabau, M., Idoumghar, L., Schott, R.: New hybrid genetic algorithms for the frequency
assignment problem. IEEE Transactions on Broadcasting 48(1), 27–34 (2002)

9. Ali, W., Topchy, A.P.: Memetic optimization of video chain designs. In: [201],
pp. 869–882 (2004)

10. Alidaee, B., Kochenberger, B.G., Ahmadian, A.: 0–1 Quadratic Programming Ap-
proach for the Optimal Solution of Two Scheduling Problems. International Journal
of Systems Science 25, 401–408 (1994)

11. Alkhamis, T., Hasan, M., Ahmed, M.: A Simulated Annealing for the Unconstrained
Quadratic Pseudo-Boolean Function. European Journal of Operational Research 108,
641–652 (1998)

12. Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics on evolu-
tionary trees. Annals of Combinatorics 5(1), 1–15 (2001)

13. Alon, U.: An Introduction to Systems Biology – Design Principles of Biological Cir-
cuits. Mathematical and Computational Biology Series, vol. 10. Chapman & Hall/Crc
(2006)

312 References

14. Altenberg, L.: Fitness Distance Correlation Analysis: An Instructive Counterexample.
In: [33], pp. 57–64 (1997)

15. Althaus, E., Klau, G.W., Kohlbacher, O., Lenhof, H.-P., Reinert, K.: Integer linear pro-
gramming in computational biology. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient
Algorithms. LNCS, vol. 5760, pp. 199–218. Springer, Heidelberg (2009)

16. Amaldi, E.: On the complexity of training perceptrons. In: Kohonen, T., Mäkisara, K.,
Simula, O., Kangas, J. (eds.) Artificial Neural Networks, pp. 55–60. Elsevier science
publishers B.V, Amsterdam (1991)

17. Amaldi, E., Nicolis, S.: Stability-capacity diagram of a neural network with ising bonds.
Journal de Physique (1989)

18. Amini, M.M., Alidaee, B., Kochenberger, G.A.: A Scatter Search Approach to Uncon-
strained Quadratic Binary Programs. In: [145], pp. 317–329 (1999)

19. Andreatta, A., Ribeiro, C.: Heuristics for the phylogeny problem. Journal of Heuris-
tics 8, 429–447 (2002)

20. Angel, E., Zissimopoulos, V.: Autocorrelation Coefficient for the Graph Bipartitioning
Problem. Theoretical Computer Science 191, 229–243 (1998)

21. Angel, E., Bampis, E., Gourves, L.: A dynasearch neighborhood for the bicriteria trav-
eling salesman problem. In: Gandibleux, X., et al. (eds.) Metaheuristics for Multiobjec-
tive Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535,
pp. 153–176. Springer, Heidelberg (2004)

22. Angeline, P.: Adaptive and self-adaptive evolutionary computations. In: Computational
Intelligence, pp. 152–161. IEEE Press, Los Alamitos (1995)

23. Antoun, G., El-Nozahi, M., Fikry, W., Abbas, H.: A hybrid genetic algorithm for MOS-
FET parameter extraction. In: IEEE Canadian Conference on Electrical and Computer
Engineering, vol. 2, pp. 1111–1114. IEEE Press, Los Alamitos (2003)

24. Applegate, D., Bixby, R., Chvátal, V., Cook, B.: Finding Cuts in the TSP (A preliminary
report). Technical Report 95-05, DIMACS (1995)

25. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding Tours in the TSP. Tech.
Rep. Report Number 99885, Research Institute for Discrete Mathematics, University
of Bonn, Germany (1999)

26. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for Large Traveling Sales-
man Problems. INFORMS Journal on Computing 15(1), 82–92 (2003)

27. Arora, S.: Polynomial Time Approximation Schemes for Euclidean Traveling Salesman
and Other Geometric Problems. Journal of the ACM 45(5), 753–782 (1998)

28. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population
size. In: [116], pp. 769–1776 (2005)

29. Baba, N.: A hybrid algorithm for finding a global minimum. International Journal of
Control 37(5), 930–942 (1983)

30. Babu, B., Chakole, P., Mubeen, J.H.S.: Multiobjective differential evolution (MODE)
for optimization of adiabatic styrene reactor. Chemical Engineering Science 60(17),
4822–4837 (2005)

31. Bäck, T.: Self adaptation in genetic algorithms. In: Varela, F., Bourgine, P. (eds.) Toward
a Practice of Autonomous Systems: Proceedings of the 1st European Conference on
Artificial Life, pp. 263–271. MIT Press, Cambridge (1992)

32. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press,
New York (1996)

33. Bäck, T. (ed.): Seventh International Conference on Genetic Algorithms. Morgan Kauf-
mann, San Mateo (1997)

References 313

34. Bäck, T., Hoffmeister, F.: Adaptive search by evolutionary algorithms. In: Ebeling, W.,
Peschel, M., Weidlich, W. (eds.) Models of Self-organization in Complex Systems.
Mathematical Research, vol. 64, pp. 17–21. Akademie-Verlag (1991)

35. Bäck, T., Fogel, D.B., Michalewicz, Z.: Handbook of evolutionary computation.
Springer, Heidelberg (1989)

36. Bäck, T., Fogel, D., Michalewicz, Z.: Evolutionary Computation 1: Basic Algorithms
and Operators. Institute of Physics Publishing (2000)

37. Bäck, T., Fogel, D., Michalewicz, Z.: Evolutionary Computation 2: Advanced Algo-
rithms and Operators. Institute of Physics Publishing (2000)

38. Baicher, G., Turton, B.: Comparative study for optimisation of causal IIR perfect re-
construction filter banks. In: [112], pp. 974–977 (2000)

39. Balas, E., Simonetti, N.: Linear Time Dynamic-Programming Algorithms for New
Classes of Restricted TSPs: A Computational Study. INFORMS Journal on Comput-
ing 13(1), 56–75 (2000)

40. Bambha, N.K., Bhattacharyya, S.S., Teich, J., Zitzler, E.: Systematic integration of pa-
rameterized local search into evolutionary algorithms. IEEE Transactions on Evolution-
ary Computation 8(2), 137–155 (2004)

41. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming: An Introduc-
tion. Morgan Kaufmann, San Francisco (1998)

42. Banzhaf, W., et al. (eds.): Genetic and Evolutionary Computation Conference –
GECCO 1999. Morgan Kaufmann, Orlando (1999)

43. Bärecke, T., Detyniecki, M.: Memetic algorithms for inexact graph matching. In: [118],
pp. 4238–4245 (2007)

44. Barkat Ullah, A.S.S.M., Sarker, R., Cornforth, D., Lokan, C.: AMA: A new approach
for solving constrained real-valued optimization problems. Soft Computing 13(8-9),
741–762 (2009)

45. Barkat Ullah, A.S.S.M., Sarker, R., Lokan, C.: An agent-based memetic algorithm
(AMA) for nonlinear optimization with equality constraints. In: [120], pp. 70–77 (2009)

46. Barr, A., Feigenbaum, E.: Handbook of Artificial Intelligence. Morgan Kaufmann, New
York (1981)

47. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation—The New
Experimentalism. Natural Computing Series. Springer, Heidelberg (2006)

48. Bartz-Beielstein, T., Markon, S.: Tuning search algorithms for real-world applications:
A regression tree based approach. Tech. Rep. CI-172/04, Collaborative Research Centre
531, University of Dortmund, Germany (2004)

49. Bartz-Beielstein, T., Lasarczyk, C., Preuß, M.: Sequential parameter optimization. In:
[116], pp. 773–780 (2005)

50. Basseur, M.: Design of cooperative algorithms for multi-objective optimization: appli-
cation to the flow-shop scheduling problem. 4OR: A Quarterly Journal of Operations
Research 4(3), 255–258 (2006)

51. Batenburg, K.: An evolutionary algorithm for discrete tomography. Discrete Applied
Mathematics 151(1–3), 36–54 (2005)

52. Battiti, R., Amaldi, E., Koch, C.: Computing optical flow across multiple scales: an
adaptive coarse-to-fine strategy. International Journal of Computer Vision (1991)

53. Bazzoli, A., Tettamanzi, A.G.B.: A memetic algorithm for protein structure prediction
in a 3D-lattice HP model. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drech-
sler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D.,
Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 1–10. Springer, Heidel-
berg (2004)

314 References

54. Beasley, J.E.: OR-Library: Distributing Test Problems by Electronic Mail. Journal of
the Operational Research Society 41(11), 1069–1072 (1990)

55. Beasley, J.E.: Heuristic Algorithms for the Unconstrained Binary Quadratic Program-
ming Problem. Tech. rep., Management School, Imperial College, London, UK (1998)

56. Belew, R.K., Booker, L.B. (eds.): Fourth International Conference on Genetic Algo-
rithms. Morgan Kaufmann, San Diego (1991)

57. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
58. Belmonte, R., Vatshelle, M.: On graph classes with logarithmic boolean-width. CoRR

abs/1009.0216 (2010)
59. Bentley, J.: Experiments on traveling salesman heuristics. In: Proceedings of the 1st

Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 91–99 (1990)
60. Berretta, R., Moscato, P.: The number partitioning problem: An open challenge for

evolutionary computation? In: [145], pp. 261–278 (1999)
61. Berretta, R., Rodrigues, L.F.: A memetic algorithm for a multistage capacitated lot-

sizing problem. International Journal of Production Economics 87(1), 67–81 (2004)
62. Berretta, R., Cotta, C., Moscato, P.: Enhancing the performance of memetic algorithms

by using a matching-based recombination algorithm: Results on the number partitioning
problem. In: Resende, M., Pinho de Sousa, J. (eds.) Metaheuristics: Computer-Decision
Making, pp. 65–90. Kluwer Academic Publishers, Boston (2003)

63. Berretta, R., Costa, W., Moscato, P.: Combinatorial optimization models for finding
genetic signatures from gene expression datasets. In: Keith, J.M. (ed.) Bioinformatics,
Volume II: Structure, Function and Applications, Methods in Molecura Biology, ch. 19,
pp. 363–378. Humana Press (2008)

64. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection
based on dominated hypervolume. European Journal of Operational Research 181(3),
1653–1669 (2007)

65. Beyer, H.G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001)
66. Binder, K., Young, A.: Spin glasses: Experimental facts, theoretical concepts, and open

questions. Reviews of Modern Physics (1986)
67. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated f-race: An

overview. In: Bartz-Beielstein, T. (ed.) Empirical Methods for the Analysis of Opti-
mization Algorithms, Natural Computing, pp. 311–336. Springer, Heidelberg (2010)

68. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Ox-
ford (1995)

69. Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels, M.
(eds.): HM 2008. LNCS, vol. 5296. Springer, Heidelberg (2008)

70. Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E.: A probabilistic beam search ap-
proach to the shortest common supersequence problem. In: Cotta, C., van Hemert, J.
(eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 36–47. Springer, Heidelberg (2007)

71. Bodlaender, H.L.: Some classes of graphs with bounded treewidth. Bulletin of the
EATCS 36, 116–125 (1988)

72. Bodlaender, H.L.: On reduction algorithms for graphs with small treewidth. In: van
Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 45–56. Springer, Heidelberg (1994)

73. Bodlaender, H.L.: Improved self-reduction algorithms for graphs with bounded
treewidth. Discrete Applied Mathematics 54(2-3), 101–115 (1994)

74. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and
treewidth of graphs. Journal of Algorithms 21(2), 358–402 (1996)

75. Boese, K.: Cost versus Distance in the Traveling Salesman Problem. Tech. Rep. TR-
950018, UCLA Computer Science Department, Los Angeles, CA (1995)

References 315

76. Boese, K., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for combina-
torial global optimization. Operations Research Letters 16(2), 101–113 (1994)

77. Boettcher, S., Percus, A.G.: Extremal optimization: Methods derived from co-evolution.
In: [42], pp. 825–832 (1999)

78. Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A
rigorous framework for optimization of expensive functions by surrogates. Structural
Optimization 17(1), 1–13 (1999)

79. Boudia, M., Prins, C.: A memetic algorithm with dynamic population management for
an integrated production-distribution problem. European Journal of Operational Re-
search 195(3), 703–715 (2009)

80. Boudia, M., Prins, C., Reghioui, M.: An effective memetic algorithm with population
management for the split delivery vehicle routing problem. In: Bartz-Beielstein, T.,
Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.)
HCI/ICCV 2007. LNCS, vol. 4771, pp. 16–30. Springer, Heidelberg (2007)

81. Brady, R.M.: Optimization Strategies Gleaned from Biological Evolution. Nature 317,
804–806 (1985)

82. Branke, J.: Memory enhanced evolutionary algorithms. In: [111], pp. 1875–1882 (1999)
83. Branke, J., Middendorf, M., Schneider, F.: Improved heuristics and a genetic algorithm

for finding short supersequences. OR-Spektrum 20, 39–45 (1998)
84. Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.): Multiobjective Optimization,

Interactive and Evolutionary Approaches. LNCS, vol. 5252. Springer, Heidelberg (2008)
85. Buhmann, M.D.: Radial Basis Functions Theory and Implementations. Cambridge

Monographs on Applied and Computational Mathematics, vol. 12. Cambridge Univer-
sity Press, Cambridge (2003)

86. Bui, T.G., Moon, B.R.: A New Genetic Approach for the Traveling Salesman Problem.
In: Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 7–12.
IEEE Press, Los Alamitos (1994)

87. Bui, T.N., Moon, B.R.: GRCA: a hybrid genetic algorithm for circuit ratio-cut parti-
tioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 17(3), 193–204 (1998)

88. Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Feedback vertex set on graphs of low
cliquewidth. In: Fiala, J., Kratochvı́l, J., Miller, M. (eds.) IWOCA 2009. LNCS,
vol. 5874, pp. 113–124. Springer, Heidelberg (2009)

89. Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: H-join decomposable graphs and algorithms
with runtime single exponential in rankwidth. Discrete Applied Mathematics 158(7),
809–819 (2010)

90. Bull, L.: Artificial symbiology. PhD thesis, University of the West of England (1995)
91. Bull, L.: Evolutionary computing in multi agent environments: Partners. In: [33],

pp. 370–377 (1997)
92. Bull, L., Fogarty, T.: Horizontal gene transfer in endosymbiosis. In: Langton, C., Shi-

mohara, K. (eds.) Proceedings of the 5th International Workshop on Artificial Life:
Synthesis and Simulation of Living Systems (ALIFE 1996), pp. 77–84. MIT Press,
Cambridge (1997)

93. Bull, L., Holland, O., Blackmore, S.: On meme-gene coevolution. Artificial Life 6(3),
227–235 (2000)

94. Buriol, L., França, P., Moscato, P.: A new memetic algorithm for the asymmetric trav-
eling salesman problem. Journal of Heuristics 10(5), 483–506 (2004)

95. Burke, E., Smith, A.: A multi-stage approach for the thermal generator maintenance
scheduling problem. In: [111], pp. 1085–1092 (1999)

316 References

96. Burke, E., Smith, A.: Hybrid evolutionary techniques for the maintenance scheduling
problem. IEEE Transactions on Power Systems 15(1), 122–128 (2000)

97. Burke, E., Kendall, G., Soubeiga, E.: A tabu search hyperheuristic for timetabling and
rostering. Journal of Heuristics 9(6), 451–470 (2003)

98. Burke, E.K., De Causmaecker, P., De Maere, G., Mulder, J., Paelinck, M., Berghe, G.V.:
A multi-objective approach for robust airline scheduling. Computers and Operations
Research 37, 822–832 (2010)

99. Cadieux, S., Tanizaki, N., Okamura, T.: Time efficient and robust 3-D brain image cen-
tering and realignment using hybrid genetic algorithm. In: 36th SICE Annual Confer-
ence, pp. 1279–1284. IEEE Press, Los Alamitos (1997)

100. Cai, L., Chen, J.: On fixed-parameter tractability and approximability of NP-hard opti-
mization problems. In: 2nd Israel Symposium on Theory of Computing and Systems,
pp. 118–126. IEEE Comp. Soc. Press, Natanya (1993)

101. Cao, S., Zheng, J., Huang, W., Yang, G., Sun, Y., Wang, B.: Identification of strain
hysteresis model for giant magnetostrictive actuators using a hybrid genetic algorithm.
In: International Conference on Electrical Machines and Systems, vol. 3, pp. 2009–2012
(2005)

102. Cao, S., Wang, B., Zheng, J., Huang, W., Sun, Y., Yang, Q.: Modeling dynamic hys-
teresis for giant magnetostrictive actuator using hybrid genetic algorithm. IEEE Trans-
actions on Magnetics 42(4), 911–914 (2006)

103. Caponio, A., Neri, F.: Integrating cross-dominance adaptation in multi-objective
memetic algorithms. In: Goh, C., Ong, Y., Tan, K. (eds.) Multi-Objective Memetic
Algorithms. Studies in Computational Intelligence, vol. 171, pp. 325–351. Springer,
Heidelberg (2009)

104. Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive
memetic algorithm for on-line and off-line control design of PMSM drives. IEEE
Transactions on System Man and Cybernetics-part B, special issue on Memetic Al-
gorithms 37(1), 28–41 (2007)

105. Caponio, A., Neri, F., Cascella, G.L., Salvatore, N.: Application of memetic differential
evolution frameworks to PMSM drive design. In: [119], pp. 2113–2120 (2008)

106. Caponio, A., Neri, F., Tirronen, V.: Super-fit control adaptation in memetic differential
evolution frameworks. Soft Computing 13(8-9), 811–831 (2009)

107. Carr, R., Hart, W., Krasnogor, N., Hirst, J., Burke, E.: Alignment of protein structures
with a memetic evolutionary algorithm. In: [504], pp. 1027–1034 (2002)

108. Carrano, E.G., Souza, B.B., Neto, O.M., Takahashi, R.H.C.: An immune inspired
memetic algorithm for power distribution system design under load evolution uncer-
tainties. In: [119], pp. 3252–3258 (2008)

109. Carrizo, J., Tinetti, F., Moscato, P.: A computational ecology for the quadratic assign-
ment problem. In: Proceedings of the 21st Meeting on Informatics and Operations Re-
search, SADIO, Buenos Aires (1992)

110. Cattolico, M. (ed.): Genetic and Evolutionary Computation Conference – GECCO
2006. ACM Press, Seattle (2006)

111. CEC, IEEE Congress on Evolutionary Computation 1999, IEEE Press, Washington DC
(1999)

112. CEC, IEEE Congress on Evolutionary Computation 2000, IEEE Press, San Diego
(2000)

113. CEC, IEEE Congress on Evolutionary Computation 2002, IEEE Press, Honolulu (2002)
114. CEC, IEEE Congress on Evolutionary Computation 2003, IEEE Press, Canberra (2003)
115. CEC, IEEE Congress on Evolutionary Computation 2004, IEEE Press, Portland (2004)

References 317

116. CEC, IEEE Congress on Evolutionary Computation 2005, IEEE Press, Edinburgh
(2005)

117. CEC, IEEE Congress on Evolutionary Computation 2006, IEEE Press, Vancouver
(2006)

118. CEC, IEEE Congress on Evolutionary Computation 2007, IEEE Press, Singapore
(2007)

119. CEC, IEEE Congress on Evolutionary Computation 2008, IEEE Press, Hong Kong
(2008)

120. CEC, IEEE Congress on Evolutionary Computation 2009, IEEE Press, Trondheim
(2009)

121. CEC, IEEE Congress on Evolutionary Computation 2010, IEEE Press, Barcelona
(2010)

122. Cerny, V.: A thermodynamical aprroach to the traveling salesman problem. Journal of
Optimization, theory and Application 45(1), 41–51 (1985)

123. Chelouah, R., Siarry, P.: Genetic and Nelder–Mead algorithms hybridized for a more
accurate global optimization of continuous multiminima functions. European Journal
of Operational Research 148(2), 335–348 (2003)

124. Chen, J.H., Chen, J.H.: Multi-objective memetic approach for flexible process sequenc-
ing problems. In: [784], pp. 2123–2128 (2008)

125. Cheng, H.C., Chiang, T.C., Fu, L.C.: Multiobjective job shop scheduling using memetic
algorithm and shifting bottleneck procedure. In: IEEE Symposium on Intelligence in
Scheduling, pp. 15–21. IEEE Press, Los Alamitos (2009)

126. Chootinan, P., Chen, A.: Constraint handling in genetic algorithms using a gradient-
based repair method. Computers & Operations Research 33(8), 2263–2281 (2006)

127. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack prob-
lem. Journal of Heuristics 4, 63–86 (1998)

128. Clark, D., Westhead, D.: Evolutionary algorithms in computer-aided molecular design.
Journal of Computer-aided Molecular Design 10(4), 337–358 (1996)

129. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability and convergence in
a multidimensional complex space. IEEE Transactions on Evolutionary Computa-
tion 6(1), 58–73 (2002)

130. Cobb, H., Grefenstette, J.: Genetic algorithms for tracking changing environments. In:
Forrest, S. (ed.) ICGA 1993, pp. 529–530. Morgan Kaufmann, San Mateo (1993)

131. Coello Coello, C., Van Veldhuizen, D.A., Lamont, G.: Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

132. Coello Coello, C.A.: A comprehensive survey of evolutionary-based multiobjective op-
timization techniques. Knowledge and Information Systems 1, 269–308 (1998)

133. Coello Coello, C.A.: Constraint-handling using an evolutionary multiobjective optimiza-
tion technique. Civil engineering and environmental systems 17(4), 319–346 (2000)

134. Coello Coello, C.A., Pulido, G.T., Lechuga, M.: Handling multiple objectives with
particle swarm optimization. IEEE Transactions on Evolutionary Computation 8(3),
256–279 (2004)

135. Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.): EMO 2005. LNCS,
vol. 3410. Springer, Heidelberg (2005)

136. Coll, P., Durán, G., Moscato, P.: On worst-case and comparative analysis as design
principles for efficient recombination operators: A graph coloring case study. In: [145],
pp. 279–294 (1999)

137. Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.): EA 2001. LNCS,
vol. 2310. Springer, Heidelberg (2002)

318 References

138. Congram, R.: Polynomially searchable exponential neighbourhoods for sequencing
problems in combinatorial optimisation. PhD thesis. University of Southampton, Fac-
ulty of Mathematical Studies (2000)

139. Congram, R., Potts, C., van de Velde, S.: An iterated dynasearch algorithm for the
single-machine total weighted tardiness scheduling problem. INFORMS Journal on
Computing 14(1), 52–67 (2002)

140. Conn, A.R., Scheinberg, K., Toint, P.L.: On the convergence of derivative-free methods
for unconstrained optimization. In: Iserles, A., Buhmann, M.D. (eds.) Approximation
Theory and Optimization: Tributes to M.J.D. Powell, pp. 83–108. Cambridge Univer-
sity Press, Cambridge (1997)

141. Conn, A.R., Scheinberg, K., Toint, P.L.: Recent progress in unconstrained nonlinear
optimization without derivatives. Mathematical Programming 79, 397–414 (1997)

142. Conn, A.R., Gould, N., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)
143. Cook, W., Seymour, P.D.: Tour merging via branch-decomposition. INFORMS Journal

on Computing 15(3), 233–248 (2003)
144. Cordón, O., Damas, S., Santamarı́a, J., Martı́, R.: Scatter search for the 3D point matching

problem in image registration. INFORMS Journal on Computing 20(1), 55–68 (2008)
145. Corne, D., Dorigo, M., Glover, F. (eds.): New Ideas in Optimization. McGraw-Hill,

Maidenhead (1999)
146. Costa, D.: An evolutionary tabu search algorithm and the NHL scheduling problem.

INFOR 33(3), 161–178 (1995)
147. Cotta, C.: A study of hybridisation techniques and their application to the design of

evolutionary algorithms. AI Communications 11(3-4), 223–224 (1998)
148. Cotta, C.: Protein structure prediction using evolutionary algorithms hybridized with

backtracking. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687,
pp. 321–328. Springer, Heidelberg (2003)

149. Cotta, C.: A comparison of evolutionary approaches to the shortest common super-
sequence problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005.
LNCS, vol. 3512, pp. 50–58. Springer, Heidelberg (2005)

150. Cotta, C.: Hybrid evolutionary algorithms for protein structure prediction in the HPNX
model. In: Computational Intelligence, Theory and Applications. Advances in Soft
Computing, vol. 2, pp. 525–534. Springer, Heidelberg (2005)

151. Cotta, C.: Memetic algorithms with partial lamarckism for the shortest common super-
sequence problem. In: [602], pp. 84–91 (2005)

152. Cotta, C.: On the Application of Evolutionary Algorithms to the Consensus Tree Prob-
lem. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 58–67.
Springer, Heidelberg (2005)

153. Cotta, C.: Scatter search with path relinking for phylogenetic inference. European Jour-
nal of Operational Research 169(2), 520–532 (2005)

154. Cotta, C., Fernández, A.: Memetic algorithms in planning, scheduling, and timetabling.
In: Dahal, K., Tan, K., Cowling, P. (eds.) Evolutionary Scheduling. Studies in Compu-
tational Intelligence, vol. 49, pp. 1–30. Springer, Heidelberg (2007)

155. Cotta, C., Moscato, P.: Inferring phylogenetic trees using evolutionary algorithms. In:
[580], pp. 720–729 (2002)

156. Cotta, C., Moscato, P.: The k-feature set problem is W[2]-complete. Journal of Com-
puter and Systems Science 67(4), 686–690 (2003)

157. Cotta, C., Moscato, P.: A memetic-aided approach to hierarchical clustering from
distance matrices: Application to phylogeny and gene expression clustering. Biosys-
tems 72(1-2), 75–97 (2003)

References 319

158. Cotta, C., Moscato, P.: Evolutionary computation: Challenges and duties. In: Menon,
A. (ed.) Frontiers of Evolutionary Computation, pp. 53–72. Kluwer Academic Press,
Boston (2004)

159. Cotta, C., Moscato, P.: The parameterized complexity of multiparent recombination. In:
Proceedings of MIC 2005 - The 6th Metaheuristics International Conference, Vienna,
Austria, pp. 237–242 (2005)

160. Cotta, C., Troya, J.: A hybrid genetic algorithm for the 0-1 multiple knapsack prob-
lem. In: Smith, G., Steele, N., Albrecht, R. (eds.) Artificial Neural Nets and Genetic
Algorithms 3, pp. 251–255. Springer, Wien (1998)

161. Cotta, C., Troya, J.: Optimal discrete recombination: Hybridising evolution strategies
with the A* algorithm. In: Mira, J. (ed.) IWANN 1999. LNCS, vol. 1607, pp. 58–67.
Springer, Heidelberg (1999)

162. Cotta, C., Troya, J.: On the influence of the representation granularity in heuristic forma
recombination. In: Carroll, J., Damiani, E., Haddad, H., Oppenheim, D. (eds.) ACM
Symposium on Applied Computing 2000, pp. 433–439. ACM Press, New York (2000)

163. Cotta, C., Troya, J.M.: Using a Hybrid Evolutionary-A* Approach for Learning Reac-
tive Behaviours. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty,
T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWorkshops 2000, EvoFlight 2000,
EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000, and EvoROB/EvoRobot 2000.
LNCS, vol. 1803, pp. 347–356. Springer, Heidelberg (2000)

164. Cotta, C., Troya, J.: Embedding branch and bound within evolutionary algorithms. Ap-
plied Intelligence 18(2), 137–153 (2003)

165. Cotta, C., Aldana, J., Nebro, A., Troya, J.: Hybridizing genetic algorithms with branch
and bound techniques for the resolution of the TSP. In: Pearson, D., Steele, N.,
Albrecht, R. (eds.) Artificial Neural Nets and Genetic Algorithms 2, pp. 277–280.
Springer, Wien (1995)

166. Cotta, C., Alba, E., Troya, J.: Utilising dynastically optimal forma recombination in
hybrid genetic algorithms. In: [240], pp. 305–314 (1998)

167. Cotta, C., Mendes, A., Garcı́a, F., França, P., Moscato, P.: Applying memetic algo-
rithms to the analysis of microarray data. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R.,
Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer,
J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003,
EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003.
LNCS, vol. 2611, pp. 22–32. Springer, Heidelberg (2003)

168. Cotta, C., Sloper, C., Moscato, P.: Evolutionary search of thresholds for robust feature
set selection: Application to the analysis of microarray data. In: Raidl, G.R., Cagnoni,
S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Mar-
chiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS,
vol. 3005, pp. 21–30. Springer, Heidelberg (2004)

169. Cowling, P.I., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling
a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079,
pp. 176–190. Springer, Heidelberg (2001)

170. Cox, M., Bowden, N., Moscato, P., Berretta, R., Scott, R.I., Lechner-Scott, J.S.:
Memetic algorithms as a new method to interpret gene expression profiles in multiple
sclerosis. In: Abstracts of the 23rd Congress of the European Committee for Treatment
and Research in Multiple Sclerosis and the 12th Annual Conference of Rehabilitation
in Multiple Sclerosis, Prague, Czech Republic, vol. 13(suppl. 2), p. S205 (2007)

171. Créput, J.C., Koukam, A.: The memetic self-organizing map approach to the vehicle
routing problem. Journal of Soft Computing 12, 1125–1141 (2008)

320 References

172. Cressie, N.A.C.: Statistics for Spatial Data. Wiley, Chichester (1993)
173. Crutchley, D., Zwolinski, M.: Using evolutionary and hybrid algorithms for dc operat-

ing point analysis of nonlinear circuits. In: [113], pp. 753–758 (2002)
174. da Silva Maximiano, M., Vega-Rodriguez, M.A., Gomez-Pulido, J., Sanchez-Perez,

J.: A hybrid differential evolution algorithm to solve a real-world frequency assign-
ment problem. In: International Multiconference on Computer Science and Information
Technology, pp. 201–205 (2008)

175. Dahal, K., Burt, G., McDonald, J., Galloway, S.: GA/SA-based hybrid techniques for the
scheduling of generator maintenance in power systems. In: [112], pp. 567–574 (2000)

176. Dai, J., Wu, G., Wu, Y., Zhu, G.: Helicopter trim research based on hybrid genetic algo-
rithm. In: World Congress on Intelligent Control and Automation, pp. 2007–2011 (2008)

177. Dantas, M., da C Brito, L., de Carvalho, P.: Biobjective hybrid evolutionary algorithm
applied to resonator filters of arbitrary topology. In: IEEE International Conference on
Electronics, Circuits and Systems, pp. 296–299. IEEE Press, Los Alamitos (2006)

178. Dantas, M.J.P., da C. Brito, L., de Carvalho, P.H.P.: Multi-objective memetic algorithm
applied to the automated synthesis of analog circuits. In: Sichman, J.S., Coelho, H.,
Rezende, S.O. (eds.) IBERAMIA 2006 and SBIA 2006. LNCS (LNAI), vol. 4140,
pp. 258–267. Springer, Heidelberg (2006)

179. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a Large-Scale Traveling
Salesman Problem. Operations Research 2, 393–410 (1954)

180. Das, S., Konar, A., Chakraborty, U.K.: Annealed differential evolution. In: [118],
pp. 1926–1933 (2007)

181. David-Tabibi, O., Koppel, M., Netanyahu, N.S.: Genetic algorithms for automatic
search tuning. ICGA Journal 33(2), 67–79 (2010)

182. Davidon, W.C.: Variable metric method for minimization. Tech. Rep. ANL-5990, Ar-
gonne National Laboratory (1959)

183. Davidor, Y.: Epistasis Variance: Suitability of a Representation to Genetic Algorithms.
Complex Systems 4(4), 369–383 (1990)

184. Davidor, Y., Ben-Kiki, O.: The interplay among the genetic algorithm operators: Infor-
mation theory tools used in a holistic way. In: [551], pp. 75–84 (1992)

185. Davidor, Y., Männer, R., Schwefel, H.-P. (eds.): PPSN 1994. LNCS, vol. 866. Springer,
Heidelberg (1994)

186. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on In
Pattern Analysis and Machine Intelligence PAMI-1, 224–227 (1979)

187. Davies, S., Russell, S.: NP-completeness of searches for smallest possible feature sets.
In: Greiner, R., Subramanian, D. (eds.) AAAI Symposium on Intelligent Relevance,
pp. 41–43. AAAI Press, New Orleans (1994)

188. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold Computer Library,
New York (1991)

189. Day, W.: The complexity of computing metric distances between partitions. Mathemat-
ical Social Sciences 1(1), 269–287 (1981)

190. Day, W.: Computationally difficult problems in phylogeny systematics. Journal of The-
oretic Biology 103, 429–438 (1983)

191. Day, W.: Computational complexity of inferring phylogenies from dissimilarity matri-
ces. Bulletin of Mathematical Biology 49(4), 461–467 (1987)

192. De Falco, I.: An introduction to evolutionary algorithms and their application to the
aerofoil design problem–Part II: The Results. In: van den Braembussche, R., Manna,
M. (eds.) Inverse Design and Optimisation Methods, Von Karman Institute for Fluid
Dynamics (1997)

References 321

193. De Jong, K.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge
(2006)

194. de Queiroz, L., Lyra, C.: A genetic approach for loss reduction in power distribution
systems under variable demands. In: [117], pp. 2691–2698 (2006)

195. Deb, K.: An efficient constraint handling method for genetic algorithms. Computer
Methods in Applied Mechanics and Engineering 186, 311–338 (2000)

196. Deb, K.: Multi-objective Optimization using Evolutionary Algorithms, pp. 147–149.
John Wiley and Sons LTD, Chichester (2001)

197. Deb, K., Goel, T.: Controlled elitist non-dominated sorting genetic algorithms for better
convergence. In: [971], pp. 67–81 (2001)

198. Deb, K., Goel, T.: A hybrid multi-objective evolutionary approach to engineering shape
design. In: [971], pp. 385–399 (2001)

199. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II. In: [796], pp. 849–858
(2000)

200. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

201. Deb, K., et al. (eds.): GECCO 2004. LNCS, vol. 3102. Springer, Heidelberg (2004)
202. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelli-

gence 113(1-2), 41–85 (1999)
203. DeGroot, M.H.: Optimal Statistical Decisions. McGraw-Hill Book Company, New

York (1970)
204. DeJong, K.A.: An analysis of the behavoir of a class of genetic adaptive systems. PhD

thesis, University of Michigan, Ann Arborn, MI, USA (1975)
205. Delvecchio, G., Lofrumento, C., Neri, F., Sylos Labini, M.: A fast evolutionary-

deterministic algorithm to study multimodal current fields under safety level con-
straints. COMPEL: International Journal for Computation and Mathematics in Elec-
trical and Electronic Engineering 25(3), 599–608 (2006)

206. Demaine, E.D., Hajiaghayi, M.T.: Fast algorithms for hard graph problems: Bidimen-
sionality, minors, and local treewidth. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383,
pp. 517–533. Springer, Heidelberg (2005)

207. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Bidimensional parame-
ters and local treewidth. SIAM J. Discrete Math. 18(3), 501–511 (2004)

208. Dengiz, B., Altiparmak, F., Belgin, O.: A hybrid ant colony optimization approach for
the design of reliable networks. In: [118], pp. 1118–1125 (2007)

209. Di Gaspero, L., Schaerf, A.: Neighborhood portfolio approach for local search ap-
plied to timetabling problems. Journal of Mathematical Modeling and Algorithms 5(1),
65–89 (2006)

210. Di Gesù, V., Lo Bosco, G., Millonzi, F., Valenti, C.: A memetic algorithm for binary
image reconstruction. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA
2008. LNCS, vol. 4958, pp. 384–395. Springer, Heidelberg (2008)

211. Di Gesù, V., Lo Bosco, G., Millonzi, F., Valenti, C.: Discrete tomography reconstruc-
tion through a new memetic algorithm. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di
Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Mc-
Cormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S.
(eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 347–352. Springer, Heidelberg (2008)

212. Dias, J., Captivo, M., Clı́maco, J.: A memetic algorithm for multi-objective dynamic
location problems. Journal of Global Optimization 42(2), 221–253 (2008)

322 References

213. Dill, K.: Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990)
214. Doerner, K., Gutjahr, W., Hartl, R., Strauss, C., Stummer, C.: Pareto ant colony op-

timization: A metaheuristic approach to multiobjective portfolio selection. Annals of
Operations Research 131(1-4), 79–99 (2004)

215. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
216. Dorn, F., Telle, J.A.: Semi-nice tree-decompositions: The best of branchwidth,

treewidth and pathwidth with one algorithm. Discrete Applied Mathematics 157(12),
2737–2746 (2009)

217. Dorne, R., Hao, J.K.: A new genetic local search algorithm for graph coloring. In: [240],
pp. 745–754 (1998)

218. Dorronsoro, B., Alba, E., Luque, G., Bouvry, P.: A self-adaptive cellular memetic algo-
rithm for the dna fragment assembly problem. In: [119], pp. 2656–2663 (2008)

219. dos Santos Coelho, L., Rodrigues Coelho, A., Krohling, R.: Parameters tuning of mul-
tivariable controllers based on memetic algorithm: fundamentals and application. In:
IEEE International Symposium on Intelligent Control, pp. 752–757. IEEE Press, Los
Alamitos (2002)

220. Downey, R., Fellows, M.: Fixed parameter tractability and completeness III: Some
structural aspects of the W-hierarchy. In: Ambos-Spies, K., Homer, S., Schöning,
U. (eds.) Complexity Theory: Current Research, pp. 166–191. Cambridge University
Press, Cambridge (1993)

221. Downey, R., Fellows, M.: Fixed parameter tractability and completeness I: Basic theory.
SIAM Journal of Computing 24, 873–921 (1995)

222. Downey, R., Fellows, M.: Fixed-parameter tractability and completeness II: On com-
pleteness for W [1]. Theoretical Computer Science 141(1-2), 109–131 (1995)

223. Downey, R., Fellows, M.: Parameterized computational feasibility. In: Clote, P., Rem-
mel, J. (eds.) Feasible Mathematics II, pp. 219–244. Birkhäuser, Basel (1995)

224. Downey, R., McCartin, C.: Some new directions and questions in parameterized com-
plexity. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340,
pp. 12–26. Springer, Heidelberg (2004)

225. Downey, R., Fellows, M., Stege, U.: Computational Tractability: The View From Mars.
Bulletin of the European Association for Theoretical Computer Science 69, 73–97
(1999)

226. Downey, R., Fellows, M., Stege, U.: Parameterized Complexity: A framework for sys-
tematically confronting computational intractability. In: Contemporary Trends in Dis-
crete Mathematics: From DIMACS to DIMATIA to the future. AMS-DIMACS Pro-
ceedings Series, pp. 49–99. AMS, Providence (1999)

227. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm.
Theoretical Computer Science 276, 51–81 (2002)

228. Droste, S., Jansen, T., Wegener, I.: Optimization with randomized search heuristics—
the (A)NFL theorem, realistic scenarios, and difficult functions. Theoretical Computer
Science 287(1), 131–144 (2002)

229. Duvigneau, R., Praveen, C.: Meta-modeling for robust design and multi-level optimiza-
tion. In: Proceedings of the 42nd AAAF Congress on Applied Aerodynamics, AAAF,
Sophia-Antipolis, France (2007)

230. Dzubera, J., Whitley, D.: Advanced Correlation Analysis of Operators for the Traveling
Salesman Problem. In: [185], pp. 68–77 (1994)

231. Edwards, S., Anderson, P.: Theory of spin glasses. Journal of Physics F: Metal Physics
(1975)

References 323

232. Egea, J.A., Balsa-Canto, E., Garćia, M.S.G., Ranga, J.R.: Dynamic optimization of non-
linear processes with an enhanced scatter search method. Journal of Industrial Chemical
Engineering Research 48, 4388–4401 (2009)

233. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)
234. Eiben, A.: Multiparent recombination. In: Bäck, T., Fogel, D., Michalewicz, Z. (eds.)

Evolutionary Computation 1: Basic Algorithms and Operators, pp. 289–307. Institute
of Physics Publishing (2000)

235. Eiben, A., Michalewicz, Z.: Evolutionary Computation. IOS Press, Amsterdam (1998)
236. Eiben, A., Aarts, E., van Hee, K.: Global convergence of genetic algorithms: A markov

chain analysis. In: [802], pp. 4–12 (1991)
237. Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algo-

rithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)
238. Eiben, A., Michalewicz, Z., Schoenauer, M., Smith, J.: Parameter control in evolution-

ary algorithms. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in
Evolutionary Algorithms, pp. 19–46. Springer, Heidelberg (2007)

239. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin
(2003)

240. Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.): PPSN 1998. LNCS,
vol. 1498. Springer, Heidelberg (1998)

241. Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization.
Springer, Heidelberg (2008)

242. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of
genome-wide expression patterns. National Academy of Sciences 95(25), 14,863–
14,868 (1998)

243. Elmohamed, M.A.S., Coddington, P.D., Fox, G.C.: A comparison of annealing tech-
niques for academic course scheduling. In: Burke, E.K., Carter, M. (eds.) PATAT 1997.
LNCS, vol. 1408, pp. 92–112. Springer, Heidelberg (1998)

244. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume
measure as selection criterion. In: [135], pp. 62–76 (2005)

245. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the 2-
Opt algorithm for the TSP. In: Bansal, N., Pruhs, K., Stein, C. (eds.) 18th ACM-SIAM
Symposium on Discrete Algorithms (SODA 2007), pp. 1295–1304. SIAM, Philadel-
phia (2007)

246. Eshelman, L.: The CHC Adaptive Search Algorithm: How to Have Safe Search When
Engaging in Nontraditional Genetic Recombination. In: Rawlings, G.J.E. (ed.) Founda-
tions of Genetic Algorithms, pp. 265–283. Morgan Kaufmann, San Francisco (1991)

247. Eshelman, L.J., Schaffer, J.D.: Preventing premature convergence in genetic algorithms
by preventing incest. In: [56], pp. 115–122 (1991)

248. Falkenauer, E.: Genetic algorithms and grouping problems. John Wiley & Sons, Inc.,
New York (1998)

249. Fallahi, A.E., Prins, C., Calvo, R.W.: A memetic algorithm and a tabu search for the
multi-compartment vehicle routing problem. Computers & Operations Research 35(5),
1725–1741 (2008)

250. Fan, S.K.S., Liang, Y.C., Zahara, E.: A genetic algorithm and a particle swarm opti-
mizer hybridized with Nelder–Mead simplex search. Computers & Industrial Engineer-
ing 50(4), 401–425 (2006)

251. Fawaz, Z., Xu, Y., Behdinan, K.: Hybrid evolutionary algorithm and application to
structural optimization. Structural and Multidisciplinary Optimization 30(3), 219–226
(2005)

324 References

252. Fellows, M.R.: Recent developments in the theory of pre-processing. In: Atallah, M., Li,
X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 4–5. Springer, Heidelberg
(2011)

253. Fellows, M.R., Rosamond, F.A., Fomin, F.V., Lokshtanov, D., Saurabh, S., Villanger,
Y.: Local search: Is brute-force avoidable? In: Boutilier, C. (ed.) IJCAI, pp. 486–491
(2009)

254. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-complete.
SIAM J. Discrete Math. 23(2), 909–939 (2009)

255. Felsenstein, J.: Evolutionary trees from dna sequences: a maximum likelihood ap-
proach. Journal of Molecular Evolution 17, 368–376 (1981)

256. Felsenstein, J.: Inferring phylogenies. Sinauer Associates, Inc., Publishers, Sunderland
(2003)

257. Ferentinos, K., Tsiligiridis, T.: A memetic algorithm for dynamic design of wireless
sensor networks. In: [118], pp. 2774–2781 (2007)

258. Fernandez, E., Grana, M., Cabello, J.: An instantaneous memetic algorithm for illumi-
nation correction. In: [115], pp. 1105–1110 (2004)

259. Festa, P.: On some optimization problems in molecular biology. Mathematical Bio-
sciences 207(2), 219–234 (2007)

260. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed bandits
and extreme value-based rewards for adaptive operator selection in evolutionary algo-
rithms. In: Stützle, T. (ed.) LION 3. LNCS, vol. 5851, pp. 176–190. Springer, Heidel-
berg (2009)

261. Fidanova, S., Alba, E., Molina, G.: Memetic simulated annealing for the GPS surveying
problem. In: Margenov, S., Vulkov, L.G., Waśniewski, J. (eds.) NAA 2008. LNCS,
vol. 5434, pp. 281–288. Springer, Heidelberg (2009)

262. Fischer, T., Bauer, K., Merz, P.: A distributed memetic algorithm for the routing and
wavelength assignment problem. In: [781], pp. 879–888 (2008)

263. Fischetti, M., Lodi, A.: Local branching. Mathematical Programmming 98, 23–47
(2003)

264. Fitch, W.M.: Towards defining course of evolution: minimum change for a specified
tree topology. Systematic Zoology 20, 406–416 (1971)

265. Flarup, U., Lyaudet, L.: On the expressive power of permanents and perfect matchings
of matrices of bounded pathwidth/cliquewidth. Theory Comput. Syst. 46(4), 761–791
(2010)

266. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization.
The Computer Journal 6(2), 163–168 (1963)

267. Fleurent, C., Ferland, J.A.: Object-oriented implementation of heuristic search meth-
ods for graph coloring. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and
Satisfiability: Second DIMACS Implementation Challenge. DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, vol. 26, pp. 619–652. American
Mathematical Society, Providence (1996)

268. Fogel, D.: Evolving artificial intelligence. PhD thesis, University of California (1992)
269. Fogel, D.: Evolutionary Computation. IEEE Press, Los Alamitos (1995)
270. Fogel, D.: Evolutionary Computation: the Fossil Record. IEEE Press, Los Alamitos

(1998)
271. Fogel, L., Owens, A., Walsh, M.: Artificial Intelligence through Simulated Evolution.

Wiley, Chichester (1966)

References 325

272. Fomin, F.V., Thilikos, D.M.: Dominating sets and local treewidth. In: Di Battista, G.,
Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 221–229. Springer, Heidelberg
(2003)

273. Fomin, F.V., Thilikos, D.M.: Branchwidth of graphs. In: Kao, M.Y. (ed.) Encyclopedia
of Algorithms. Springer, Heidelberg (2008)

274. Fomin, F.V., Fraigniaud, P., Nisse, N.: Nondeterministic graph searching: From path-
width to treewidth. Algorithmica 53(3), 358–373 (2009)

275. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Fast local search algorithm for
weighted feedback arc set in tournaments. In: Fox, M., Poole, D. (eds.) Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,
Georgia, USA, July 11-15, AAAI Press, Menlo Park (2010)

276. Fonseca, C., Fleming, P.: An overview of evolutionary algorithms in multiobjective
optimisation. Evolutionary Computation 3(1), 1–16 (1995)

277. Foulds, L., Graham, R.: The steiner problem in phylogeny is NP-complete. Advances
in Applied Mathematics 3(1), 43–49 (1982)

278. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathemat-
ical Programming, 2nd edn. Duxbury Press Brooks Cole Publishing Co. (2003)

279. Franca, P., Gupta, J., Mendes, A., Moscato, P., Veltink, K.: Evolutionary algorithms for
flowshop scheduling with family setups. Computers and Industrial Engineering 48(3),
491–506 (2005)

280. França, P., Mendes, A., Moscato, P.: Algoritmos Meméticos e o Sequenciamento
em Máquina Simples com Setup Times e Restrições de Datas de Entrega. In: XXX
SOBRAPO - Simpósio Brasileiro de Pesquisa Operacional, Curitiba, PR, Brasil, de
Novembro 25-27, Sociedade Brasileira de Pesquisa Operacional, pp. 315–316 (1998),
extended abstract

281. França, P., Moscato, P., Müller, F., Mendes, A., Buriol, L.: O Projeto MemePool:
Um Framework para Otimização Combinatória. In: XXX SOBRAPO- Simpósio
Brasileiro de Pesquisa Operacional, Curitiba, PR, Brasil, de Novembro 25-27, So-
ciedade Brasileira de Pesquisa Operacional, pp. 20–21 (1998), extended abstract

282. França, P.M., Mendes, A., Moscato, P.: A memetic algorithm for the total tardiness
single machine scheduling problem. European Journal of Operational Research 132(1),
224–242 (2001)

283. Frank, P.D.: Global modeling for optimization. SIAM SIAG/OPT Views-and-News 7,
9–12 (1995)

284. Franz, A., Hoffmann, K.H., Salamon, P.: A best possible strategy for finding ground
states. Physical Review Letters 86, 5219–5222 (2001)

285. Freisleben, B., Merz, P.: A genetic local search algorithm for solving symmetric and
asymmetric traveling salesman problems. In: Proceedings of the 1996 IEEE Interna-
tional Conference on Evolutionary Computation, Nagoya, Japan, pp. 616–621. IEEE
Press, Los Alamitos (1996)

286. Freisleben, B., Merz, P.: New genetic local search operators for the traveling salesman
problem. In: [909], pp. 890–899 (1996)

287. French, A., Robinson, A., Wilson, J.: Using a hybrid genetic-algorithm/branch and
bound approach to solve feasibility and optimization integer programming problems.
Journal of Heuristics 7(6), 551–564 (2001)

288. Fukunaga, A.: Automated discovery of local search heuristics for satisfiability testing.
Evolutionary Computation 16(1), 31–61 (2008)

289. Galinier, P., Hao, J.K.: Tabu search for maximal constraint satisfaction problems. In:
Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 196–208. Springer, Heidelberg (1997)

326 References

290. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal of
Combinatorial Optimization 3(4), 379–397 (1999)

291. Galinier, P., Hao, J.K.: A general approach for constraint solving by local search. Jour-
nal of Mathematical Modelling and Algorithms 3(1), 73–88 (2004)

292. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-coloring
problem. Discrete Applied Mathematics 156(2), 267–279 (2008)

293. Gallardo, J.E., Cotta, C., Fernández, A.J.: A hybrid model of evolutionary algo-
rithms and branch-and-bound for combinatorial optimization problems. In: [116],
pp. 2248–2254 (2005)

294. Gallardo, J.E., Cotta, C., Fernández, A.J.: Solving the multidimensional knapsack prob-
lem using an evolutionary algorithm hybridized with branch and bound. In: [602],
pp. 21–30 (2005)

295. Gallardo, J.E., Cotta, C., Fernández, A.J.: A memetic algorithm with bucket elimination
for the still life problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS,
vol. 3906, pp. 73–85. Springer, Heidelberg (2006)

296. Gallardo, J.E., Cotta, C., Fernández, A.J.: A multi-level memetic/exact hybrid algorithm
for the still life problem. In: [783], pp. 212–221 (2006)

297. Gallardo, J.E., Cotta, C., Fernández, A.J.: On the hybridization of memetic algorithms
with branch-and-bound techniques. IEEE Transactions on Systems, Man and Cybernet-
ics, part B 37(1), 77–83 (2007)

298. Gallardo, J.E., Cotta, C., Fernández, A.J.: Reconstructing phylogenies with memetic
algorithms and branch-and-bound. In: Bandyopadhyay, S., Maulik, U., Wang, J. (eds.)
Analysis of Biological Data: A Soft Computing Approach, pp. 59–84. World Scientific,
Singapore (2007)

299. Gallardo, J.E., Cotta, C., Fernández, A.J.: Solving weighted constraint satisfaction
problems with memetic/exact hybrid algorithms. Journal of Artificial Intelligence Re-
search 35, 533–555 (2009)

300. Gallo, G., Hammer, P.L., Simeone, B.: Quadratic Knapsack Problems. Mathematical
Programming 12, 132–149 (1980)

301. Gandibleux, X., Morita, H., Katoh, N.: The supported solutions used as a genetic infor-
mation in a population heuristic. In: [971], pp. 429–442 (2001)

302. Garcia, V., França, P.M., Mendes, A., Moscato, P.: A parallel memetic algorithm applied
to the total tardiness machine scheduling problem. In: 20th International Parallel and
Distributed Processing Symposium. IEEE Press, Los Alamitos (2006)

303. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York (1979)

304. Garret, D., Dasgupta, D.: An empirical comparison of memetic algorithm strategies
on the multiobjective quadratic assignment problem. In: IEEE Symposium on Com-
putational intelligence in multi-criteria decision-making, pp. 80–87. IEEE Press, Los
Alamitos (2009)

305. Gaspar-Cunha, A., Vieira, A.: A multi-objective evolutionary algorithm using neural
networks to approximate fitness evaluations. International Journal of Computers, Sys-
tems and Signals 6(1), 18–36 (2005)

306. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

307. Giannakoglou, K.C.: Design of optimal aerodynamic shapes using stochastic optimiza-
tion methods and computational intelligence. International Review Journal Progress in
Aerospace Sciences 38(1), 43–76 (2002)

References 327

308. Glover, F.: Heuristics for integer programming using surrogate constraints. Decision
Sciences 8(1), 156–166 (1977)

309. Glover, F.: Tabu search – part I. ORSA Journal of Computing 1(3), 190–206 (1989)
310. Glover, F.: Tabu search – part II. ORSA Journal of Computing 2(1), 4–31 (1989)
311. Glover, F.: Tabu search for nonlinear and parametric optimization (with links to genetic

algorithms). Discrete Applied Mathematics 49(1–3), 231–255 (1994)
312. Glover, F.: Tabu search and adaptive memory programming advances, applications and

challenges. In: Barr, R., Helgason, R., Kennington, J. (eds.) Interfaces in Computer
Science and Operations Research, vol. 7, pp. 1–75. Springer, Heidelberg (1997)

313. Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton, E.,
Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 13–54.
Springer, Heidelberg (1998)

314. Glover, F.: Scatter search and path relinking. In: [145], pp. 291–316 (1999)
315. Glover, F., Kochenberger, G. (eds.): Handbook of Metaheuristics. Kluwer Academic

Publishers, Boston (2003)
316. Glover, F., Kochenberger, G.A.: Critical event tabu search for multidimensional knap-

sack problems. In: Osman, I., Kelly, J. (eds.) Metaheuristics: The Theory and Applica-
tions, pp. 407–425. Kluwer Academic Publishers, Dordrecht (1996)

317. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)
318. Glover, F., Kochenberger, G., Alidaee, B., Amini, M.: Tabu Search with Critical Event

Memory: An Enhanced Application for Binary Quadratic Programs. In: Voss, S.,
Martello, S., Osman, I., Roucairol, C. (eds.) Meta-Heuristics - Advances and Trends
in Local Search Paradigms for Optimization, pp. 83–109. Kluwer Academic Publish-
ers, Dordrecht (1998)

319. Glover, F., Kochenberger, G.A., Alidaee, B.: Adaptive Memory Tabu Search for Binary
Quadratic Programs. Management Science 44(3), 336–345 (1998)

320. Glover, F., Laguna, M., Martı́, R.: Fundamentals of scatter search and path relinking.
Control and Cybernetics 39(3), 653–684 (2000)

321. Glover, F., Laguna, M., Martı́, R.: Scatter search. In: Ghosh, A., Tsutsui, S. (eds.) Ad-
vances in Evolutionary Computation: Theory and Applications. Natural Computing Se-
ries, pp. 519–537. Springer, Heidelberg (2003)

322. Goëffon, A., Richer, J.M., Hao, J.K.: A distance-based information preservation tree
crossover for the maximum parsimony problem. In: [783], pp. 761–770 (2006)

323. Goëffon, A., Richer, J.M., Hao, J.K.: Progressive tree neighborhood applied to the max-
imum parsimony problem. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 5(1), 136–145 (2008)

324. Goh, C.K., Tan, K.C.: Evolving the tradeoffs between pareto-optimality and robustness
in multi-objective evolutionary algorithms. In: Yang, S., Ong, Y.S., Jin, Y. (eds.) Evo-
lutionary Computation in Dynamic and Uncertain Environments. SCI, pp. 457–478.
Springer, Heidelberg (2007)

325. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, Reading (1989)

326. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic
Algorithms. Kluwer Academic Publishers, Norwell (2002)

327. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal func-
tion optimization. In: [333], pp. 41–49 (1987)

328. Goldberg, D.E., Segrest, P.: Finite markov chain analysis of genetic algorithms. In:
[333], pp. 1–8 (1987)

328 References

329. Goldberg, D.E., Voessner, S.: Optimizing global-local search hybrids. In: [42],
pp. 220–228 (1999)

330. Gómez Ravetti, M., Rosso, O.A., Berretta, R., Moscato, P.: Uncovering molecular
biomarkers that correlate cognitive decline with the changes of hippocampus’ gene ex-
pression profiles in alzheimer’s disease. PLoS ONE 5(4), e10, 153 (2010)

331. Gorges-Schleuter, M.: ASPARAGOS: An Asynchronous Parallel Genetic Optimization
Strategy. In: [794], pp. 422–427 (1989)

332. Greenberg, H.J., Hart, W.E., Lancia, G.: Opportunities for combinatorial optimization
in computational biology. INFORMS Journal on Computing 16(3), 211–231 (2004)

333. Grefenstette, J. (ed.): Second International Conference on Genetic Algorithms. Morgan
Kaufmann, San Mateo (1987)

334. Grefenstette, J.J.: Incorporating Problem Specific Knowledge into Genetic Algorithms.
In: Davis, L. (ed.) Genetic Algorithms and Simulated Annealing. Research Notes in
Artificial Intelligence, pp. 42–60. Morgan Kaufmann Publishers, San Francisco (1987)

335. Greffenstette, J.: Optimisation of control parameters for genetic algorithms. IEEE
Transactions on Systems, Man and Cybernetics 16, 122–128 (1986)

336. Grimbleby, J.B.: Hybrid genetic algorithms for analogue network synthesis. In: [111],
pp. 1781– 1787 (1999)

337. Gross, D., Harris, C.M.: Fundamentals of Queueing Theory. Wiley, NY (1985)
338. Guéret, C., Prins, C., Sevaux, M.: Applications of optimisation with Xpress-MP. Dash

Optimization (2002)
339. Guerra-Salcedo, C., Chen, S., Whitley, D., Smith, S.: Fast and accurate feature selection

using hybrid genetic strategies. In: [111], pp. 177–184 (1999)
340. Guimaraes, F., Lowther, D., Ramirez, J.: Analysis of the computational cost of

approximation-based hybrid evolutionary algorithms in electromagnetic design. IEEE
Transactions on Magnetics 44(6), 1130–1133 (2008)

341. Gurski, F.: Characterizations for restricted graphs of NLC-width 2. Theor. Comput.
Sci. 372(1), 108–114 (2007)

342. Gurski, F., Wanke, E.: Minimizing NLC-width is NP-complete. In: Kratsch, D. (ed.)
WG 2005. LNCS, vol. 3787, pp. 69–80. Springer, Heidelberg (2005)

343. Gutin, G., Karapetyan, D.: A memetic algorithm for the multidimensional assignment
problem. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) SLS 2009. LNCS, vol. 5752,
pp. 125–129. Springer, Heidelberg (2009)

344. Gutin, G., Karapetyan, D.: A selection of useful theoretical tools for the design and
analysis of optimization heuristics. Memetic Computing 1(1), 25–34 (2009)

345. Gutin, G., Karapetyan, D.: A memetic algorithm for the generalized traveling salesman
problem. Natural Computing 9(1), 47–60 (2010)

346. Gutin, G., Karapetyan, D., Krasnogor, N.: Memetic algorithm for the generalized asym-
metric traveling salesman problem. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta,
D.A. (eds.) NICSO. SCI, vol. 210, pp. 199–210. Springer, Heidelberg (2007)

347. Haas, O., Burnham, K., Mills, J., Reeves, C., Fisher, M.: Hybrid genetic algorithms ap-
plied to beam orientation in radiotherapy. In: Proccedings of 4th European Conference
on Intelligent Techniques and Soft Computing, Verlag Mainz, vol. 3, pp. 2050–2055
(1996)

348. Haas, O., Burnham, K., Mills, J.: Optimization of beam orientation in radiotherapy
using planar geometry. Physics in Medicine and Biology 43(8), 2179–2193 (1998)

References 329

349. Haidari, S., Farsangi, M., Nezamabadi-pour, H., Lee, K.Y.: Design of supplementary
controller for HVDC using memetic algorithm with population management. In: IEEE
Power and Energy Society General Meeting - Conversion and Delivery of Electrical
Energy in the 21st Century, pp. 1–6. IEEE Press, Los Alamitos (2008)

350. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Struc-
tural Optimization 4, 99–107 (1992)

351. Hajiaghayi, M., Nishimura, N.: Subgraph isomorphism, log-bounded fragmentation,
and graphs of (locally) bounded treewidth. J. Comput. Syst. Sci. 73(5), 755–768 (2007)

352. Hamiez, J.P., Hao, J.K.: Scatter search for graph coloring. In: [137], pp. 168–179 (2002)
353. Hamiez, J.-P., Robet, J., Hao, J.-K.: A tabu search algorithm with direct representation

for strip packing. In: Cotta, C., Cowling, P. (eds.) EvoCOP 2009. LNCS, vol. 5482,
pp. 61–72. Springer, Heidelberg (2009)

354. Hammel, U., Bäck, T.: Evolution strategies on noisy functions, how to improve conver-
gence properties. In: [185], pp. 159–168 (1994)

355. Han, C.W., Park, J.I.: SA-selection-based genetic algorithm for the design of fuzzy
controller. International Journal of Control, Automation, and Systems 3(2), 236–243
(2005)

356. Handoko, S., Kwoh, C., Ong, Y., Lim, M.: A study on constrained ma using ga and sqp:
Analytical vs. finite-difference gradients. In: [119], pp. 4031–4038 (2008)

357. Hansen, M.: Metaheuristics for multiple objective combinatorial optimization. PhD the-
sis, Technical University of Denmark (1998)

358. Hansen, M.: Tabu search for multiobjective combinatorial optimization: TAMOCO.
Control and Cybernetics 29(3), 799–818 (2000)

359. Hansen, M.: Use of substitute scalarizing functions to guide a local search based heuris-
tic: the case of moTSP. Journal of Heuristics 6(3), 419–430 (2000)

360. Hansen, N.: The CMA evolution strategy (2011),
http://www.lri.fr/˜hansen/cmaesintro.html (accessed on April 18,
2011)

361. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolu-
tion strategies: The covariance matrix adaptation. In: IEEE Conference on Evolutionary
Computation, pp. 312–317. IEEE Press, Piscataway (1996)

362. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

363. Hansen, P., Mladenović, N.: An introduction to variable neighborhood search. In: Voss,
S., et al. (eds.) Metaheuristics, Advances and Trends in Local Search Paradigms for
Optimization, pp. 433–458. Kluwer Academic Publishers, Dordrecht (1999)

364. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Glover, F., Kochen-
berger, G. (eds.) Handbook of Metaheuristics, pp. 145–184. Kluwer Academic Pub-
lishers, Boston (2002)

365. Harada, K., Ikeda, K., Kobayashi, S.: Hybridization of genetic algorithm and local
search in multiobjective function optimization: recommendation of GA then LS. In:
[110], pp. 667–674 (2006)

366. Hart, W.: Adaptive global optimization with local search. PhD thesis, University of
California, San Diego, CA (1994)

367. Hart, W., Belew, R.: Optimizing an arbitrary function is hard for the genetic algorithm.
In: [56], pp. 190–195 (1991)

330 References

368. Hart, W., Belew, R.K.: Optimization with genetic algorithm hybrids that use local
search. In: Belew, R.K., Mitchell, M. (eds.) Adaptive Individuals in Evolving Popula-
tions: Models and Algorithms, Santa Fe Institute Studies in the Sciences of Complexity,
ch. 27, pp. 483–496. Addison-Wesley, Reading (1995)

369. Hart, W., Istrail, S.: Fast protein folding in the hydrophobic-hydrophilic model within
three-eighths of optimal. Journal of Computational Biology 3(1), 53–96 (1996)

370. Hart, W., Istrail, S.: Lattice and off-lattice side chain models of protein folding: Linear
time structure prediction better than 86% of optimal. Journal of Computational Biol-
ogy 4(3), 241–259 (1997)

371. Hart, W., Istrail, S.: Robust proofs of NP-hardness for protein folding: General lattices
and energy potentials. Journal of Computational Biology 4(1), 1–20 (1997)

372. Hart, W., Istrail, S.: Locally-adaptive and memetic evolutionary pattern search algo-
rithms. Evolutionary Computaton 11(1), 29–52 (2003)

373. Hart, W., Rosin, C., Belew, R., Morris, G.: Improved evolutionary hybrids for flexi-
ble ligand docking in autodock. In: Floudas, C.A., Pardalos, P.M. (eds.) Optimization
in Computational Chemistry and Molecular Biology, Nonconvex Optimization and Its
Applications, vol. 40, pp. 209–230. Springer, Heidelberg (2000)

374. Hart, W., Krasnogor, N., Smith, J.E.: Special issue on memetic algorithms. Evolutionary
Computation 12(3) (2004)

375. Hart, W., Krasnogor, N., Smith, J.: Recent advances in memetic algorithms. STUD-
FUZZ, vol. 166. Springer, Heidelberg (2005)

376. Hart, W., Krasnogor, N., Smith, J.E.: Memetic evolutionary algorithms. In: [375],
pp. 3–27 (2005)

377. Hasan, K., Sarker, R., Essam, D.: Evolutionary scheduling with rescheduling option for
sudden machine breakdowns. In: [121], pp. 1913–1920 (2010)

378. Hasan, S., Sarker, R., Essam, D., Cornforth, D.: Memetic algorithms for solving job-
shop scheduling problems. Memetic Computing 1(1), 69–83 (2009)

379. Hazrati, N., Rashidi-Nejad, M., Gharaveisi, A.A.: Pricing and allocation of spinning re-
serve and energy in restructured power systems via memetic algorithm. In: Conference
on Power Engineering, 2007 Large Engineering Systems, pp. 234–238 (2007)

380. Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Salesman
Heuristic. European Journal of Operational Research 126(1), 106–130 (2000)

381. Herdy, M.: Reproductive isolation as strategy parameter in hierarchically organized
evolution strategies. In: [551], pp. 2–9 (1992)

382. Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator for real-
coded genetic algorithms: An experimental study. International Journal of Intelligent
Systems 18, 309–338 (2003)

383. Herrera, F., Lozano, M., Molina, D.: Continuous scatter search: An analysis of the in-
tegration of some combination methods and improvement strategies. European Journal
of Operational Research 169(2), 450–476 (2006)

384. Hicks, I.V.: Branchwidth and branch decompositions. In: Floudas, C.A., Pardalos, P.M.
(eds.) Encyclopedia of Optimization, pp. 332–339. Springer, Heidelberg (2009)

385. Hidalgo, J., Lanchares, J., Ibarra, A., Hermida, R.: A hybrid evolutionary algorithm
for multi-FPGA systems design. In: Euromicro Symposium on Digital System Design,
pp. 60–67 (2002)

386. Hinterding, R., Michalewicz, Z., Eiben, A.: Adaptation in evolutionary computation:
A survey. In: 1997 IEEE Conference on Evolutionary Computation. IEEE Press, Los
Alamitos (1997)

References 331

387. Hofmann, R.: Parallel evolutionary trajectories. Research Report SS92-11, Edinburgh
Parallel Computing Centre (1992)

388. Hofmann, R.: Examinations on the algebra of genetic algorithms. Master’s thesis, Tech-
nische Universität München, Institut fü Informatik (1993)

389. Holland, J.H.: Adaptation and artificial systems. University of Michigan Press (1975)
390. Holstein, D., Moscato, P.: Memetic algorithms using guided local search: A case study.

In: [145], pp. 235–244 (1999)
391. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems.

Journal of the ACM 8, 212–229 (1961)
392. Hoos, H.H., Stützle, T.: SATLIB: An online resource for research on SAT. In: Gent, I.,

Maaren, H., Walsh, T. (eds.) SAT 2000, pp. 283–292. IOS Press, Amsterdam (2000),
http://www.satlib.org

393. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann Publishers, San Francisco (2004)

394. Horjik, W., Manderick, B.: The Usefulness of Recombination. In: Proceedings of the
European Conference on Artificial Life. Springer, Heidelberg (1995)

395. Horn, J., Goldberg, D.E., Deb, K.: Long path problems. In: [185], pp. 149–158 (1994)
396. Houck, C., Joines, J., Kay, M., Wilson, J.: Empirical investigation of the benefits of

partial lamarckianism. Evolutionary Computation 5(1), 31–60 (1997)
397. Hourani, M., Berretta, R., Mendes, A., Moscato, P.: Genetic signatures for a rodent

model of parkinson’s disease using combinatorial optimization methods. In: Keith, J.M.
(ed.) Bioinformatics: Structure, Function and Applications, Methods in Molecura Biol-
ogy, vol. II, pp. 379–392. Humana Press (2008)

398. Hung, L.-J., Kloks, T.: Classifying rankwidth k-DH-graphs. In: Ablayev, F., Mayr, E.W.
(eds.) CSR 2010. LNCS, vol. 6072, pp. 195–203. Springer, Heidelberg (2010)

399. Husbands, P., Mill, F.: Simulated coevolution as the mechanism for emergent planning
and scheduling. In: [56], pp. 264–270 (1991)

400. Hwang, C.L., Paidy, S., Yoon, K., Masud, A.: Mathematical programming with multiple
objectives: A tutorial. Computers and Operations Research 7, 5–31 (1980)

401. Igel, C., Toussaint, M.: A no-free-lunch theorem for non-uniform distributions of target
functions. Journal of Mathematical Modelling and Algorithms 3(4), 313–322 (2004)

402. Il-Seok, O., Jin-Seon, L., Byung-Ro, M.: Hybrid genetic algorithms for feature selec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1424–1437
(2004)

403. Im, C.H., Jung, H.K., Kim, Y.J.: Hybrid genetic algorithm for electromagnetic topology
optimization. IEEE Transactions on Magnetics 39(5), 2163–2169 (2003)

404. Inostroza-Ponta, M., Berretta, R., Mendes, A., Moscato, P.: An automatic graph layout
procedure to visualize correlated data. In: Bramer, M. (ed.) IFIP AI. IFIP, vol. 217,
pp. 179–188. Springer, Heidelberg (2006)

405. Inostroza-Ponta, M., Mendes, A., Berretta, R., Moscato, P.: An integrated QAP-based
approach to visualize patterns of gene expression similarity. In: Randall, M., Abbass,
H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828, pp. 156–167. Springer,
Heidelberg (2007)

406. Inostroza-Ponta, M., Berretta, R., Moscato, P.: Qapgrid: A two level qap-based ap-
proach for large-scale data analysis and visualization. PLoS ONE 6(1), 6(1), e14, 468
(2011)

407. Isaacs, A., Ray, T., Smith, W.: Memetic algorithm for dynamic bi-objective optimiza-
tion problems. In: [120], pp. 1707–1713 (2009)

332 References

408. Ishibuchi, H., Murata, T.: Multi-objective genetic local search algorithm. In: Fukuda,
T., Furuhashi, T. (eds.) 1996 International Conference on Evolutionary Computation,
pp. 119–124. IEEE Press, Nagoya (1996)

409. Ishibuchi, H., Murata, T.: Multi-objective genetic local search algorithm and its appli-
cation to flowshop scheduling. IEEE Transactions on Systems, Man and Cybernetics -
Part C: Applications and Reviews 28(3), 392–403 (1998)

410. Ishibuchi, H., Narukawa, K.: Some issues on the implementation of local search in
evolutionary multiobjective optimization. In: [201], pp. 1246–1258 (2004)

411. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search
in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE
Transactions on Evolutionary Computation 7(2), 204–223 (2003)

412. Ishibuchi, H., Narukawa, K., Tsukamoto, N., Nojima, Y.: An empirical study on
similarity-based mating for evolutionary multiobjective combinatorial optimization.
European Journal of Operational Research 188(1), 57–75 (2008)

413. Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Use of biased neighbor-
hood structures in multiobjective memetic algorithms. Soft Computing 13(8–9), 795–
810 (2009)

414. Ivănescu, P.L.: Some Network Flow Problems Solved with Pseudo-Boolean Program-
ming. Operations Research 13, 388–399 (1965)

415. Iyama, Y., Matsubara, F.: Ground-state properties of a heisenberg spin glass model with
a hybrid genetic algorithm. Journal of the Physical Society of Japan 78(1), 014,703
(2009)

416. Jansen, T., Wegener, I.: On the choice of the mutation probability for the (1+1) EA. In:
[796], pp. 89–98 (2000)

417. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size
in evolutionary algorithms. Evolutionary Computation 13, 413–440 (2005)

418. Jaszkiewicz, A.: Multiple objective metaheuristic algorithms for combinatorial opti-
mization. PhD thesis, Poznan University of Technology, habilitation thesis (2001)

419. Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization.
European Journal of Operational Research 137, 50–71 (2002)

420. Jaszkiewicz, A.: On the performance of multiple objective genetic local search on the
0/1 knapsack problem. a comparative experiment. IEEE Transactions on Evolutionary
Computation 6(4), 402–412 (2002)

421. Jaszkiewicz, A.: A comparative study of multiple-objective metaheuristics on the bi-
objective set covering problem and the pareto memetic algorithm. Annals of Operations
Research 131(1-4), 135–158 (2004)

422. Jaszkiewicz, A., Branke, J.: Interactive multiobjective evolutionary algorithms. In: [84],
pp. 179–193 (2008)

423. Jaszkiewicz, A., Zielniewicz, P.: Efficient adaptation of the pareto memetic algorithm to
the multiple objective travelling salesperson problem. In: 7th International conference
on MultiObjective Programming and Goal Programming, MOPFP 2006 (2006)

424. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation.
Soft Computing - A Fusion of Foundations, Methodologies and Applications 9(1), 3–12
(2005)

425. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments. IEEE Trans-
actions on Evolutionary Computation 9(3), 305–317 (2005)

426. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with
approximate fitness functions. IEEE Transactions on evolutionary computation 6(5),
481–494 (2002)

References 333

427. Johnson, D.S.: Local Optimization and the Traveling Salesman Problem. In: Paterson,
M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 446–461. Springer, Heidelberg (1990)

428. Johnson, D.S., McGeoch, L.A.: Experimental Analysis of Heuristics for the STSP.
In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Variations,
Kluwer Academic Publishers, Dordrecht (2002)

429. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? Journal
of Computer and System Sciences 37(1), 79–100 (1988)

430. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by Simu-
lated Annealing: An Experimental Evaluation; Part I, Graph Partitioning. Operations
Research 37, 865–892 (1989)

431. Johnson, D.S., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: An
experimental evaluation; part II, graph coloring and number partitioning. Operations
Research 39(3), 378–406 (1991)

432. Jones, T.: Crossover, macromutation, and population-based search. In: Eshelman, L.
(ed.) Sixth International Conference on Genetic Algorithms, pp. 73–80. Morgan Kauf-
mann, San Francisco (1995)

433. Jones, T.: Evolutionary algorithms, fitness landscapes and search. PhD thesis, Univer-
sity of New Mexico, USA (1995)

434. Jones, T.: One operator, one landscape. Tech. Rep. #95-02-025, Santa Fe Institute
(1996)

435. Jones, T., Forrest, S.: Fitness Distance Correlation as a Measure of Problem Difficulty
for Genetic Algorithms. In: Eshelman, L.J. (ed.) Proceedings of the 6th International
Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann, San Francisco
(1995)

436. Juang, C.F.: A hybrid of genetic algorithm and particle swarm optimization for recur-
rent network design. IEEE Transactions on Systems, Man, and Cybernetics–Part B:
Cybernetics 34(2), 997–1006 (2004)

437. Judd, J.S.: Neural network design and the complexity of learning. In: Neural Network
Modeling and Connectionism. MIT Press, Cambridge (1990)

438. Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search land-
scapes. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary
Computing. Natural Computing Series, pp. 175–206. Springer, Heidelberg (2001)

439. Karakasis, M.K., Giannakoglou, K.C.: On the use of surrogate evaluation models in
multi-objective evolutionary algorithms. In: Proceedings of the European Conference
on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004
(2004)

440. Karakasis, M.K., Koubogiannis, D., Giannakoglou, K.C.: Hierarchical distributed evo-
lutionary algorithms in shape optimization. International Journal of Numerical Methods
in Fluids 53(3), 455–469 (2007)

441. Karaoğlu, B., Topçuoğlu, H., Gürgen, F.: Evolutionary algorithms for location area
management. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin,
Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWork-
shops 2005. LNCS, vol. 3449, pp. 175–184. Springer, Heidelberg (2005)

442. Karapetyan, D., Gutin, G.: A new approach to population sizing for memetic
algorithms: A case study for the multidimensional assignment problem. CoRR
abs/1003.4314 (2010)

443. Kargupta, H., Ghosh, S.: Towards machine learning through genetic code-like transfor-
mations. Tech. rep., Computer Science and Electrical Engineering Department, Univer-
sity of Maryland Baltimore County (2001)

334 References

444. Kase, S., Nishiyama, N.: An Industrial Engineering Game Model for Factory Layout.
The Journal of Industrial Engineering XV(3), 148–150 (1964)

445. Kask, K., Detcher, R.: A general scheme for automatic generation of search heuristics
from specification dependencies. Artificial Intelligence 129, 91–131 (2001)

446. Katayama, K., Narihisa, H.: Performance of Simulated Annealing-based Heuristic for
the Unconstrained Binary Quadratic Programming Problem. Tech. rep., Okayama Uni-
versity of Science, Dept. of Information and Computer Engineering, Okayama, Japan
(1999)

447. Katayama, K., Narihisa, H.: Solving Large Binary Quadratic Programming Problems
by Effective Genetic Local Search Algorithm. In: [932], pp. 643–650 (2000)

448. Katayama, K., Narihisa, H.: A Variant k-opt Local Search Heuristic for Binary
Quadratic Programming. Trans. IEICE (A) J84-A(3), 430–435 (2001)

449. Katsumata, Y., Terano, T.: Bayesian optimization algorithm for multi-objective solu-
tions: application to electric equipment configuration problems in a power plant. In:
[114], pp. 1101–1107 (2003)

450. Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged land-
scapes. Journal of Theoretical Biology 128, 11–45 (1987)

451. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, Oxford (1993)

452. Kauffman, S.A., Levin, S.: Towards a General Theory of Adaptive Walks on Rugged
Landscapes. Journal of Theoretical Biology 128, 11–45 (1987)

453. Keller, R., Banzhaf, W.: Genetic programming using genotype-phenotype mapping
from linear genomes into linear phenotypes. In: Koza, J., Goldberg, D., Fogel, D.,
Riolo, R. (eds.) 1st Annual Conference on Genetic Programming, pp. 116–122. MIT
Press, Cambridge (1996)

454. Keller, R., Banzhaf, W.: The evolution of genetic code in genetic programming. In:
[42], pp. 1077–1082 (1999)

455. Kelner, V., Capitanescu, F., Léonard, O., Wehenkel, L.: A hybrid optimization technique
coupling an evolutionary and a local search algorithm. Journal of Computational and
Applied Mathematics 215(2), 448–456 (2008)

456. Kendall, G., Cowling, P., Soubeiga, E.: Choice function and random hyperheuristics.
In: Fourth Asia-Pacific Conference on Simulated Evolution and Learning, Singapore,
pp. 667–671 (2002)

457. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann Publishers, San
Francisco (2001)

458. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Con-
ference on Neural Networks, pp. 1942–1948. IEEE Press, Los Alamitos (1995)

459. Kerdchuen, T., Ongsakul, W.: Optimal measurement placement for power system state
estimation using hybrid genetic algorithm and simulated annealing. In: International
Conference on Power System Technology, pp. 1–5 (2006)

460. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. The
Bell System Technical Journal 49(2), 291–307 (1970)

461. KhudaBukhsh, A., Xu, L., Hoos, H., Leyton-Brown, K.: SATenstein: Automatically
building local search SAT solvers from components. In: 21st International Joint Con-
ference on Artificial Intelligence, pp. 517–524. AAAI Press, Menlo Park (2009)

462. Kim, D.H., Abraham, A.: A hybrid genetic algorithm and bacterial foraging approach
for global optimization and robust tuning of PID controller with disturbance rejection.
In: Grosan, C., Abraham, A., Ishibuchi, H. (eds.) Hybrid Evolutionary Algorithms,
pp. 171–199. Springer, Heidelberg (2007)

References 335

463. Kim, E.Y., Yang, B.S., Tan, A.C.C.: A hybrid evolutionary algorithm and its application
to parameter identification of rolling elements bearings. In: Kosinski W (ed.) Advances
in Evolutionary Algorithms, IN-TECH (2008)

464. Kim, S.S., Smith, A.E., Lee, J.H.: A memetic algorithm for channel assignment in wire-
less fdma systems. Computers and Operations Research 34(6), 1842–1856 (2007)

465. Kimura, S., Hatakeyama, M., Konagaya, A.: Inference of s-system models of ge-
netic networks from noisy time-series data. Chem.-Bio. Informatics Journal 4(1), 1–14
(2004)

466. Kimura, S., et al.: Inference of S-system models of genetic networks using a cooperative
coevolutionary algorithm. Bioinformatics 21(7), 1154–1163 (2005)

467. Kirkpatrick, S., Sherrington, D.: Infinite-ranged models of spin-glasses. Physical Re-
view B (1978)

468. Kirkpatrick, S., Gelatt, C.D.J., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

469. Klau, G., Ljubić, I., Moser, A., Mutzel, P., Neuner, P., Pferschy, U., Raidl, G.,
Weiskircher, R.: Combining a memetic algorithm with integer programming to solve
the prize-collecting Steiner tree problem. In: [201], pp. 1304–1315 (2004)

470. Kleeman, M.P., Lamont, G.B., Cooney, A., Nelson, T.R.: A multi-tiered memetic
multiobjective evolutionary algorithm for the design of quantum cascade lasers. In:
Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS,
vol. 4403, pp. 186–200. Springer, Heidelberg (2007)

471. Knowles, J., Corne, D.: A Comparison of Diverse Aproaches to Memetic Multiobjective
Combinatorial Optimization. In: Wu, A.S. (ed.) Proceedings of the 2000 Genetic and
Evolutionary Computation Conference Workshop Program, pp. 103–108 (2000)

472. Knowles, J., Corne, D.: M-PAES: A memetic algorithm for multiobjective optimization.
In: [112], pp. 325–332 (2000)

473. Knowles, J., Corne, D.W.: Approximating the nondominated front using the pareto
archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)

474. Knowles, J.D., Oates, M., Corne, D.: Advanced multi-objective evolutionary algorithms
applied to two problems in telecommunications. British Telephone Technology Jour-
nal 18(18), 51–65 (2000)

475. Koch, P., Kramer, O., Rudolph, G., Beume, N.: On the hybridization of SMS-EMOA
and local search for continuous multiobjective optimization. In: Rothlauf, F. (ed.)
GECCO 2009, pp. 603–610. ACM Press, Montreal (2009)

476. Koehler, J.R., Owen, A.B.: Computer experiments. In: Ghosh, S., Rao, C.R., Krishna-
iah, P.R. (eds.) Handbook of Statistics, pp. 261–308. Elsevier, Amsterdam (1996)

477. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30.
Springer, Heidelberg (1995)

478. Kolen, A., Pesch, E.: Genetic Local Search in Combinatorial Optimization. Discrete
Applied Mathematics and Combinatorial Operations Research and Computer Sci-
ence 48, 273–284 (1994)

479. Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing intractability - a
multivariate complexity analysis of interval constrained coloring. J. Discrete Algo-
rithms 9(1), 137–151 (2011)

480. Konak, A., Smith, A.: A hybrid genetic algorithm approach for backbone design of
communication networks. In: [111], pp. 1817–1823 (1999)

481. Kononova, A.V., Hughes, K.J., Pourkashanian, M., Ingham, D.B.: Fitness diversity
based adaptive memetic algorithm for solving inverse problems of chemical kinetics.
In: [118], pp. 2366–2373 (2007)

336 References

482. Koo, W.T., Goh, C.K., Tan, K.C.: A predictive gradient strategy for multiobjective evo-
lutionary algorithms in a fast changing environment. Journal of Soft Computing 2,
87–110 (2010)

483. Koza, J.: Genetic Programming. MIT Press, Cambridge (1992)
484. Koziel, S., Bandler, J.W., Madsen, K.: A space mapping framework for engineering

optimization: theory and implementation. IEEE Transactions on Microwave Theory 54,
3721–3730 (2006)

485. Krarup, J., Pruzan, P.M.: Computer-Aided Layout Design. Mathematical Programming
Study 9, 75–94 (1978)

486. Krasnogor, N.: Coevolution of genes and memes in memetic algorithms. In: Wu,
A. (ed.) Proceedings of the 1999 Genetic and Evolutionary Computation Conference
Workshop Program (1999)

487. Krasnogor, N.: Studies in the theory and design space of memetic algorithms. PhD
thesis, University of the West of England (2002)

488. Krasnogor, N.: Self-generating metaheuristics in bioinformatics: The protein structure
comparison case. Genetic Programming and Evolvable Machines 5(2), 181–201 (2004)

489. Krasnogor, N.: Toward robust memetic algorithms. In: [375], pp. 185–207 (2005)
490. Krasnogor, N., Gustafson, S.: A study on the use of “self-generation” in memetic algo-

rithms. Natural Computing 3(1), 53–76 (2004)
491. Krasnogor, N., Smith, J.: A memetic algorithm with self-adaptive local search: TSP as

a case study. In: [932], pp. 987–994 (2000)
492. Krasnogor, N., Smith, J.: Emergence of profitable search strategies based on a simple

inheritance mechanism. In: [839], pp. 432–439 (2001)
493. Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: model, taxon-

omy, and design issues. IEEE Transactions on Evolutionary Computation 9, 474–488
(2005)

494. Krasnogor, N., Smith, J.: Memetic algorithms: The polynomial local search complex-
ity theory perspective. Journal of Mathematical Modelling and Algorithms 7(1), 3–24
(2008)

495. Krasnogor, N., Hart, W., Smith, J., Pelta, D.: Protein structure prediction with evolu-
tionary algorithms. In: [42], pp. 1569–1601 (1999)

496. Krasnogor, N., Blackburne, B., Burke, E., Hirst, J.: Multimeme algorithms for proteine
structure prediction. In: [580], pp. 769–778 (2002)

497. Krokhin, A.A., Marx, D.: On the hardness of losing weight. In: Aceto, L., Damgård,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part I. LNCS, vol. 5125, pp. 662–673. Springer, Heidelberg (2008)

498. Kumar, D., Kumar, S., Rai, C.S.: Memetic algorithms for feature selection in face recog-
nition. In: International Conference on Hybrid Intelligent Systems, pp. 931–934. IEEE
Computer Society, Los Alamitos (2008)

499. Kumarappan, N., Mohan, M.: Hybrid genetic algorithm based fuel restricted real power
optimization for utility system. In: [114], pp. 1294–1301 (2003)

500. Laguna, M., Martı́, R.: Scatter Search. Methodology and Implementations in C. Kluwer
Academic Publishers, Boston (2003)

501. Lancia, G.: Mathematical programming in computational biology: an annotated bibli-
ography. Algorithms 1(2), 100–129 (2008)

502. Lancia, G., Carr, R., Walenz, B., Istrail, S.: 101 optimal pdb structure alignments: a
branch-and-cut algorithm for the maximum contact map overlap problem. In: Fifth
Annual International Conference on Computational Molecular Biology, RECOMB,
pp. 193–202. ACM Press, New York (2001)

References 337

503. Land, M.W.S.: Evolutionary algorithms with local search for combinatorial optimiza-
tion. PhD thesis, University of California, San Diego, CA (1998)

504. Langdon, W.B., et al. (eds.): Genetic and Evolutionary Computation Conference –
GECCO 2002. Morgan Kaufmann, New York (2002)

505. Lapedes, A., Farber, R.: A self-optimizing, nonsymmetrical neural net for content ad-
dressable memory and pattern recognition. Physica D: Nonlinear Phenomena 22(1-3),
247–259 (1986)

506. Laughunn, D.J.: Quadratic Binary Programming. Operations Research 14, 454–461
(1970)

507. Lawler, E., Wood, D.: Branch and bounds methods: A survey. Operations Research 4(4),
669–719 (1966)

508. Lawler, E., Lenstra, J., Kan, A.R., Shmoys, D.: The Travelling Salesman Problem: A
Guided Tour of Combinatorial Optimization. Wiley Interscience, Chichester (1985)

509. Lawrence, S.: Resource constrained project scheduling: an experimental investigation
of heuristic scheduling techniques (supplement). Tech. rep., Graduate School of Indus-
trial Administration, Carnegie-Mellon University, Pittsburgh, Pennsylvania (1984)

510. Le, M.N., Ong, Y.S., Jin, Y., Sendhoff, B.: Lamarckian memetic algorithms: local opti-
mum and connectivity structure analysis. Memetic Computing 1(3), 175–190 (2009)

511. Lehre, P.K., Yao, X.: On the impact of the mutation-selection balance on the runtime
of evolutionary algorithms. In: Jansen, T., Garibay, I., Wiegand, R.P., Wu, A.S. (eds.)
Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA 2009),
pp. 47–58. ACM, New York (2009)

512. Lepistö, T., Salomaa, A. (eds.): ICALP 1988. LNCS, vol. 317. Springer, Heidelberg
(1988)

513. Leskinen, J., Neri, F., Neittaanmäki, P.: Memetic variation local search vs. life-time
learning in electrical impedance tomography. In: Giacobini, M., Brabazon, A., Cagnoni,
S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado,
P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 615–624. Springer, Heidelberg
(2009)

514. Levine, J., Ducatelle, F.: Ant colony optimisation and local search for bin packing and
cutting stock problems. Journal of the Operational Research Society 55(7), 705–716
(2004)

515. Li, B., Ong, Y.S., Le, M.N., Goh, C.K.: Memetic gradient search. In: [119],
pp. 2894–2901 (2008)

516. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto
sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation 13(2),
284–302 (2009)

517. Li, X., Li, B.: Synthesis of the shaped-beam array antennas using hybrid genetic
algorithm. In: International Symposium on Antennas, Propagation and EM Theory,
pp. 155–157 (2008)

518. Li, X., Liang, X.M.: A hybrid adaptive evolutionary algorithm for constrained optimiza-
tion. In: Third International Conference on Intelligent Information Hiding and Multi-
media Signal Processing, vol. 2, pp. 338–341 (2007)

519. Liang, Y., Leung, K.S., Mok, T.S.K.: Evolutionary drug scheduling model for cancer
chemotherapy. In: [201], pp. 1126–1137 (2004)

520. Liang, Y., Leung, K.S., Mok, T.S.K.: Evolutionary drug scheduling models with dif-
ferent toxicity metabolism in cancer chemotherapy. Applied Soft Computing 8(1),
140–149 (2008)

338 References

521. Lim, D., Ong, Y.S., Lim, M.H., Jin, Y.: Single/Multi-objective inverse robust evolution-
ary design methodology in the presence of uncertainty. In: Yang, S., Ong, Y.S., Jin, Y.
(eds.) Evolutionary Computation in Dynamic and Uncertain Environments. Studies in
Computational Intelligence, vol. 51, pp. 437–456. Springer, Heidelberg (2007)

522. Lim, D., Jin, Y., Ong, Y.S., Sendhoff, B.: Generalizing surrogate-assisted evolutionary
computation. IEEE Transactions on Evolutionary Computation 14(3), 329–355 (2010)

523. Lin, S.: Computer solutions of the traveling salesman problem. The Bell System Tech-
nical Journal 44(10), 2245–2269 (1965)

524. Lin, S., Kernighan, B.: An Effective Heuristic Algorithm for the Traveling Salesman
Problem. Operations Research 21, 498–516 (1973)

525. Lin, S.C., Goodman, E.D., Punch, W.F.: A genetic algorithm approach to dynamic job
shop scheduling problems. In: [33], pp. 481–488 (1997)

526. Linhart, H., Zucchini, W.: Model Selection. Wiley Series in Probability and Mathemat-
ical Statistics. Wiley-Interscience Publication, Hoboken (1986)

527. Liu, B., Ma, H., Zhang, X., Zhou, Y.: A memetic co-evolutionary differential evolution
algorithm for constrained optimization. In: [118], pp. 2996–3002 (2007)

528. Liu, B.F., Chen, J.H., Hwang, S.F., Ho, S.Y.: MeSwarm: Memetic particle swarm op-
timization. In: Beyer, H.G., O’Reilly, U.M. (eds.) GECCO 2005, pp. 267–268. ACM
Press, Washington DC (2005)

529. Liu, X., Wu, Y., Duan, J.: Optimal sizing of a series hybrid electric vehicle using a
hybrid genetic algorithm. In: IEEE International Conference on Automation and Logis-
tics, pp. 1125–1129. IEEE Press, Los Alamitos (2007)

530. Lo, C.C., Chang, W.H.: A multiobjective hybrid genetic algorithm for the capacitated
multipoint network design problem. In: IEEE International Conference on Communi-
cations, vol. 3, pp. 1573–1576. IEEE Press, Los Alamitos (1999)

531. Lo, C.C., Chang, W.H.: A multiobjective hybrid genetic algorithm for the capacitated
multipoint network design problem. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B 30(3), 461–470 (2000)

532. Lodi, A., Allemand, K., Liebling, T.M.: An Evolutionary Heuristic for Quadratic 0–1
Programming. European Journal of Operational Research 119, 662–670 (1999)

533. Lourenço, H.R., Martin, O., Stützle, T.: Iterated Local Search. In: [315], pp. 321–353
(2003)

534. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E.: Towards a New Evolutionary
Computation. In: Advances on Estimation of Distribution Algorithms. Studies in Fuzzi-
ness and Soft Computing, vol. 192, Springer, Heidelberg (2006)

535. Lozano, M., Garcı́a-Martı́nez, C.: Hybrid metaheuristics with evolutionary algorithms
specializing in intensification and diversification: Overview and progress report. Com-
puters & Operations Research 37(3), 481–497 (2010)

536. Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms
with crossover hill-climbing. Evolutionary Computation 12(3), 273–302 (2004)

537. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of Oper-
ational Research 200(1), 235–244 (2010)

538. Lü, Z., Glover, F., Hao, J.K.: A hybrid metaheuristic approach to solving the ubqp
problem. European Journal of Operational Research 207(3), 1254–1262 (2010)

539. Lü, Z., Hao, J.K., Glover, F.: Neighborhood analysis: a case study on curriculum-based
course timetabling. Journal of Heuristics 17(2), 97–118 (2010)

540. Luersena, M.A., Le Riche, R.: Globalized Nelder–Mead method for engineering opti-
mization. Computers & Structures 82(23-26), 2251–2260 (2004)

References 339

541. Luke, S., Spector, L.: Evolving teamwork and coordination with genetic programming.
In: Koza, J., Goldberg, D., Fogel, D., Riolo, R. (eds.) 1st Annual Conference on Genetic
Programming, pp. 141–149. MIT Press, Cambridge (1996)

542. Lust, T., Jaszkiewicz, A.: Speed-up techniques for solving large-scale biobjective TSP.
Computers and Operations Research 37, 521–533 (2010)

543. MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and
Probability, pp. 281–297 (1967)

544. Madych, W.R.: Miscellaneous error bounds for multiquadric and related interpolators.
Computers and Mathematics with Applications 24(12), 121–138 (1992)

545. Mahata, P., Costa, W., Cotta, C., Moscato, P.: Hierarchical clustering, languages and
cancer. In: [779], pp. 67–78 (2006)

546. Mahfoud, S.W.: Crowding and preselection revisited. In: [551], pp. 27–36 (1992)
547. Mahfoud, S.W.: Niching methods. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.)

Handbook of Evolutionary Computation, pp. C6.1:1–C6.1:4. Institute of Physics Pub-
lishing and Oxford University Press, Bristol (1997)

548. Mak, K.T., Morton, A.J.: Distances between Traveling Salesman Tours. Discrete Ap-
plied Mathematics and Combinatorial Operations Research and Computer Science 58,
281–291 (1995)

549. Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring
problem. INFORMS Journal on Computing 20(2), 302–316 (2008)

550. Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for the
CEC, competition and special session on single objective constrained real-parameter
optimization. Tech. rep., Nangyang Technological University, Singapore (2009)

551. Männer, R., Manderick, B. (eds.): Parallel Problem Solving from Nature II. Elsevier,
Brussels (1992)

552. Mariano, A., Norman, M., Moscato, P.: Arbitrarily large planar ETSP instances with
known optimal tours. Pesquisa Operacional 15(1,2), 89–96 (1995)

553. Mariano, A., Norman, M., Moscato, P.: Using L-systems to generate arbitrarily large
instances of the euclidean traveling salesman problem with known optimal tours. In:
XXVII Simposio Brasileiro de Pesquisa Operacional, Sociedade Brasileira de Pesquisa
Operacional, Rio de Janeiro (1995)

554. Marida, K., Marshall, R.: Maximum likelihood estimation of models for residual co-
variance in spatial regression. Biometrika 71(1), 135–146 (1984)

555. Marinakis, Y., Marinaki, M.: A hybrid genetic - particle swarm optimization algorithm
for the vehicle routing problem. Expert Systems with Applications 37(2), 1446–1455
(2010)

556. Marinakis, Y., Migdalas, A., Pardalos, P.M.: A Hybrid Genetic–GRASP Algorithm Us-
ing Lagrangean Relaxation for the Traveling Salesman Problem. Journal of Combina-
torial Optimization 10(4), 311–326 (2005)

557. Martin, J.D., Simpson, T.W.: Use of Kriging models to approximate deterministic com-
puter models. AIAA Journal 43(4), 853–863 (2005)

558. Martins, F.V.C., Carrano, E.G., Wanner, E.F., Takahashi, R.H.C., Mateus, G.R.: A dy-
namic multiobjective hybrid approach for designing wireless sensor networks. In: [120],
pp. 1145–1152 (2009)

559. Marx, D.: Local search. Parameterized Complexity News 3, 7–8 (2008)
560. Marx, D.: Searching the k-change neighborhood for TSP is W[1]-hard. Oper. Res.

Lett. 36(1), 31–36 (2008)

340 References

561. Marx, D., Schlotter, I.: Stable assignment with couples: parameterized complexity
and local search. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917,
pp. 300–311. Springer, Heidelberg (2009)

562. Marx, D., Schlotter, I.: Parameterized complexity and local search approaches for the
stable marriage problem with ties. Algorithmica 58(1), 170–187 (2010)

563. Marx, D., Schlotter, I.: Stable assignment with couples: Parameterized complexity and
local search. Discrete Optimization 8(1), 25–40 (2011)

564. Mashohor, S., Evans, J., Arslan, T.: Image registration of printed circuit boards using
hybrid genetic algorithm. In: [117], pp. 2685–2690 (2006)

565. Mathias, K., Whitley, D.: Genetic Operators, the Fitness Landscape and the Traveling
Salesman Problem. In: [551], pp. 219–228 (1992)

566. Mathias, K., Whitley, L., Stork, C., Kusuma, T.: Staged hybrid genetic search for
seismic data imaging. In: IEEE Conference on Evolutionary Computation, vol. 1,
pp. 356–361. IEEE Press, Los Alamitos (1994)

567. Mathieson, L.: The parameterized complexity of editing graphs for bounded degener-
acy. Theor. Comput. Sci. 411(34-36), 3181–3187 (2010)

568. May, A., Johnson, M.: Protein-structure comparisons using a combination of a genetic
algorithm, dynamic-programming and least-squares minimization. Protein Engineer-
ing 7(4), 475–485 (1994)

569. Maynard-Smith, J.: The Evolution of Sex. Cambridge University Press, Cambridge
(1978)

570. Maynard-Smith, J., Száthmary, E.: The Major transitions in evolution. W.H. Freeman,
New York (1995)

571. McBride, R.D., Yormark, J.S.: An Implicit Enumeration Algorithm for Quadratic Inte-
ger Programming. Management Science 26(3), 282–296 (1980)

572. Menczer, F., Parisi, D.: Evidence of hyperplanes in the genetic learning of neural net-
works. Biological Cybernetics 66, 283–289 (1992)

573. Mendes, A., Franca, P., Moscato, P.: Fitness landscapes for the total tardiness single
machine scheduling problem. Neural Network World 2(2), 165–180 (2002)

574. Mendes, A., França, P.M., Moscato, P., Garcia, V.: Population studies for the gate matrix
layout problem. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002.
LNCS (LNAI), vol. 2527, pp. 319–339. Springer, Heidelberg (2002)

575. Mendes, A., Muller, F., Franca, P., Moscato, P.: Comparing meta-heuristic approaches
for parallel machine scheduling problems. Production Planning & Control 13(2),
143–154 (2002)

576. Mendes, A., Cotta, C., Garcia, V., França, P., Moscato, P.: Gene ordering in microarray
data using parallel memetic algorithms. In: Skie, T., Yang, C.S. (eds.) 2005 International
Conference on Parallel Processing Workshops, pp. 604–611. IEEE Press, Oslo (2005)

577. Mendes, A., Scott, R., Moscato, P.: Microarrays - identifying molecular portraits for
prostate tumors with different gleason patterns. In: Trent, R. (ed.) Clinical Bioinfor-
matics - Methods in Molecular Medicine, Methods in Molecular Medicine, vol. 141,
pp. 131–151. Humana Press (2007)

578. Mendes, A.S., França, P.M., Moscato, P.: Fitness landscapes for the total tardiness sin-
gle machine scheduling problem. Neural Network World 2(2), 165–180 (2002)

579. Mendoza, J.E., Castanier, B., Guéret, C., Medaglia, A.L., Velasco, N.: A memetic al-
gorithm for the multi-compartment vehicle routing problem with stochastic demands.
Computers & Operations Research 37(11), 1886–1898 (2010), metaheuristics for Lo-
gistics and Vehicle Routing

References 341

580. Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel,
H.-P. (eds.): PPSN 2002. LNCS, vol. 2439. Springer, Heidelberg (2002)

581. Merz, P.: Memetic algorithms for combinatorial optimization problems: Fitness land-
scapes and effective search strategies. PhD thesis, University of Siegen, Germany (2000)

582. Merz, P.: NK-Fitness Landscapes and Memetic Algorithms with Greedy Operators and
k-opt Local Search. In: Krasnogor, N. (ed.) Proceedings of the Third International
Workshop on Memetic Algorithms, WOMA III (2002)

583. Merz, P.: Advanced fitness landscape analysis and the performance of memetic algo-
rithms. Evolutionary Computation 12(3), 303–326 (2004)

584. Merz, P., Freisleben, B.: Genetic Local Search for the TSP: New Results. In: Bäck, T.,
Michalewicz, Z., Yao, X. (eds.) Proceedings of the 1997 IEEE International Conference
on Evolutionary Computation, pp. 159–164. IEEE Press, Piscataway (1997)

585. Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design. In: [145],
pp. 245–260 (1999)

586. Merz, P., Freisleben, B.: Genetic Algorithms for Binary Quadratic Programming. In:
[42], pp. 417–424 (1999)

587. Merz, P., Freisleben, B.: Fitness Landscape Analysis and Memetic Algorithms for the
Quadratic Assignment Problem. IEEE Transactions on Evolutionary Computation 4(4),
337–352 (2000)

588. Merz, P., Freisleben, B.: Memetic Algorithms for the Traveling Salesman Problem.
Complex Systems 13(4), 297–345 (2001)

589. Merz, P., Freisleben, B.: Greedy and Local Search Heuristics for Unconstrained Binary
Quadratic Programming. Journal of Heuristics 8(2), 197–213 (2002)

590. Merz, P., Huhse, J.: An Iterated Local Search Approach for Finding Provably Good
Solutions for Very Large TSP Instances. In: [781], pp. 929–939 (2008)

591. Merz, P., Katayama, K.: Memetic Algorithms for the Unconstrained Binary Quadratic
Programming Problem. Bio Systems 78(1-3), 99–118 (2004)

592. Merz, P., Zell, A.: Clustering gene expression profiles with memetic algorithms. In:
[580], pp. 811–820 (2002)

593. Mezard, M., Virasoro, M.: The microstructure of ultrametricity. Journal de
Physique 46(8), 1293–1307 (1985)

594. Mezard, M., Parisi, G., Virasoro, M.: Spin glass theory and beyond. World Scientific,
Singapore (1987)

595. Michalewicz, Z.: A hierarchy of evolution programs: An experimental study. Evolu-
tionary Computation 1(1), 51–76 (1993)

596. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer, Heidelberg (1996)

597. Michalewicz, Z., Schoenauer, M.: Evolutionary Algorithms for Constrained Parameter
Optimization Problems. Evolutionary Computation 4(1), 1–32 (1996)

598. Michiels, W., Aarts, E., Korst, J.: Theoretical Aspects of Local Search. Springer, Hei-
delberg (2007)

599. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Opera-
tions Research and Management Science, vol. 12. Kluwer, Dordrecht (1999)

600. Miller, G.F., Todd, P.M., Hegde, S.U.: Designing neural networks using genetic algo-
rithms. In: [794], pp. 379–384 (1989)

601. Mininno, E., Neri, F.: A memetic differential evolution approach in noisy optimization.
Journal of Memetic Computing 2, 111–135 (2010)

602. Mira, J., Álvarez, J.R. (eds.): IWINAC 2005. LNCS, vol. 3562. Springer, Heidelberg
(2005)

342 References

603. Mitchell, T.J., Morris, M.D.: Bayesian design and analysis of computer experiments:
Two examples. Statistica Sinica 2, 359–379 (1992)

604. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers & OR 24(11),
1097–1100 (1997)

605. Molina, D., Herrera, F., Lozano, M.: Adaptive local search parameters for real-coded
memetic algorithms. In: [116], pp. 888–895 (2005)

606. Molina, D., Lozano, M., Herrera, F.: Memetic algorithms for intense continuous local
search methods. In: [69], pp. 58–71 (2008)

607. Molina, D., Lozano, M., Herrera, F.: Study of the influence of the local search method
in memetic algorithms for large scale continuous optimization problems. In: Stützle, T.
(ed.) LION 3. LNCS, vol. 5851, pp. 221–234. Springer, Heidelberg (2009)

608. Molina, D., Lozano, M., Garcı́a-Martı́nez, C., Herrera, F.: Memetic algorithms for con-
tinuous optimization based on local search chains. Evolutionary Computation 18(1),
1–37 (2010)

609. Montes de Oca, M.A., Van den Enden, K., Stützle, T.: Incremental particle swarm-
guided local search for continuous optimization. In: [69], pp. 72–86 (2008)

610. Morgan, B.W.: An Introduction to Bayesian Statistical Decision Processes. Prentice-
Hall, Englewood Cliffs (1968)

611. Mori, H., Yoshida, T.: Probabilistic distribution network expansion planning with multi-
objective memetic algorithm. In: IEEE Canada Electric Power Conference, pp. 1–6.
IEEE Press, Los Alamitos (2008)

612. Morris, G., Goodsell, D., Halliday, R., Huey, R., Hart, W., Belew, R.: AJOlson Au-
tomated docking using a lamarckian genetic algorithm and an empirical binding free
energy function. Journal of Computational Chemistry 19(14), 1639–1662 (1998)

613. Morrison, R., De Jong, K.: A test problem for nonstationary environments. In: [111],
pp. 2047–2053 (1999)

614. Morrison, R., De Jong, K.: Measurement of population diversity. In: [137], pp. 31–41
(2002)

615. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts:
Toward memetic algorithms. Tech. Rep. 826, California Institute of Technology (1989)

616. Moscato, P.: An Introduction to Population Approaches for Optimization and Hierarchi-
cal Objective Functions: The Role of Tabu Search. Annals of Operations Research 41(1-
4), 85–121 (1993)

617. Moscato, P.: Memetic algorithms: a short introduction. In: [145], pp. 219–234 (1999)
618. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: [315],

pp. 105–144 (2003)
619. Moscato, P., Cotta, C.: Memetic algorithms. In: González, T. (ed.) Handbook of Ap-

proximation Algorithms and Metaheuristics, ch. 22. Taylor & Francis, Abington (2006)
620. Moscato, P., Cotta, C.: A modern introduction to memetic algorithms. In: Gendrau,

M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, 2nd edn. International Series in
Operations Research and Management Science, vol. 146, pp. 141–183. Springer, New
York (2010)

621. Moscato, P., Norman, M.: A competitive and cooperative approach to complex combi-
natorial search. Tech. Rep. 790, Caltech Concurrent Computation Program (1989)

622. Moscato, P., Norman, M.G.: A “Memetic” Approach for the Traveling Salesman Prob-
lem Implementation of a Computational Ecology for Combinatorial Optimization on
Message-passing Systems. In: Valero, M., Onate, E., Jane, M., Larriba, J.L., Suarez, B.
(eds.) Parallel Computing and Transputer Applications, pp. 177–186. IOS Press, Ams-
terdam (1992)

References 343

623. Moscato, P., Norman, M.G.: On the performance of heuristics on finite and infinite
fractal instances of the euclidean traveling salesman problem. INFORMS Journal on
Computing 10(2), 121–132 (1998)

624. Moscato, P., Schaerf, A.: Local search techniques for scheduling problems. Notes of the
tutorial given at the 13th European Conference on Artificial Intelligence, ECAI 1998
(1998)

625. Moscato, P., Tinetti, F.: Blending heuristics with a population-based approach: A
memetic algorithm for the traveling salesman problem. Report 92-12, Universidad Na-
cional de La Plata, C.C. 75, La Plata, Argentina (1992)

626. Moscato, P., Cotta, C., Mendes, A.: Memetic algorithms. In: [692], pp. 53–85 (2004)
627. Moscato, P., Mendes, A., Cotta, C.: Scheduling and production & control. In: [692],

pp. 655–680 (2004)
628. Moscato, P., Mendes, A., Linhares, A.: VLSI design: Gate matrix layout problem. In:

[692], pp. 455–478 (2004)
629. Moscato, P., Berretta, R., Hourani, M., Mendes, A., Cotta, C.: Genes related with

alzheimer’s disease: A comparison of evolutionary search, statistical and integer pro-
gramming approaches. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler,
R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.)
EvoWorkshops 2005. LNCS, vol. 3449, pp. 84–94. Springer, Heidelberg (2005)

630. Moscato, P., Berretta, R., Mendes, A.: A new memetic algorithm for ordering datasets:
Applications in microarray analysis. In: Proceedings of MIC 2005 - The 6th Meta-
heuristics International Conference, Vienna, Austria, pp. 695–700 (2005)

631. Moscato, P., Mendes, A., Berretta, R.: Benchmarking a memetic algorithm for ordering
microarray data. Biosystems 88(1-2), 56–75 (2007)

632. Moscato, P., Berretta, R., Cotta, C.: Memetic algorithms. In: Wiley Encyclopedia of
Operations Research and Management Science. Wiley, Chichester (2011)

633. Moser, I., Chiong, R.: A hooke-jeeves based memetic algorithm for solving dynamic
optimisation problems. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B.
(eds.) HAIS 2009. LNCS, vol. 5572, pp. 301–309. Springer, Heidelberg (2009)

634. Moser, I., Chiong, R.: Dynamic function optimisation with hybridised extremal dynam-
ics. Journal of Memetic Computing 2, 137–148 (2010)

635. Moser, I., Hendtlass, T.: A simple and efficient multi-component algorithm for solving
dynamic function optimisation problems. In: [118], pp. 252–259 (2007)

636. Müehlenbein, H., Gorges-Schleuter, M., Krämer, O.: Evolution algorithms in combina-
torial optimization. Parallel Computing 7, 65–88 (1988)

637. Mühlenbein, H.: Parallel Genetic Algorithms, Population Genetics and Combinatorial
Optimization. In: [794], pp. 416–421 (1989)

638. Mühlenbein, H.: Evolution in Time and Space – The Parallel Genetic Algorithm. In:
Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms. Morgan Kaufmann, San
Francisco (1991)

639. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic
algorithm, I: Continuous parameter optimization. Evolutionary Computation 1(1),
25–49 (1993)

640. Mühlenbein, H., Schomisch, M., Born, J.: The parallel genetic algorithm as function
optimizer. In: [56], pp. 271–278 (1991)

641. Müller, A., Schneider, J., Schömer, E.: Packing a multidisperse system of hard disks in
a circular environment. Physical Review E 79(021102) (2009)

642. Müller, A., Schneider, J., Schömer, E.: Ultrametricity property of energy landscapes of
multidisperse packing problems. Physical Review E 79(031122) (2009)

344 References

643. Müller, C.L., Baumgartner, B., Sbalzarini, I.F.: Particle swarm CMA evolution strategy
for the optimization of multi-funnel landscapes. In: [120], pp. 2685–2692 (2009)

644. Müller, H., Urner, R.: On a disparity between relative cliquewidth and relative nlc-
width. Discrete Applied Mathematics 158(7), 828–840 (2010)

645. Murata, T., Ishibuchi, H., Tanaka, H.: Genetic algorithms for flowshop scheduling prob-
lems. Computers & Industrial Engineering 30(4), 1061–1071 (1996)

646. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product
Optimization Using Designed Experiments. John Wiley and Sons, Chichester (1995)

647. Nagata, Y.: New EAX Crossover for Large TSP Instances. In: [783], pp. 372–381
(2006)

648. Nagata, Y., Kobayashi, S.: Edge assembly crossover: a high-power genetic algorithm
for the travelling salesman problem. In: [33], pp. 450–457 (1997)

649. Nakano, R., Yamada, T.: Conventional genetic algorithm for job shop problems. In:
[56], pp. 474–479 (1991)

650. Nannen, V., Eiben, A.: A method for parameter calibration and relevance estimation in
evolutionary algorithms. In: [110], pp. 183–190 (2006)

651. Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolutionary
algorithm parameters. In: Veloso, M.M. (ed.) 20th International Joint Conference on
Artificial Intelligence (IJCAI), Hyderabad, India, pp. 1034–1039. AAAI Press, Menlo
Park (2007)

652. Nebro, A.J., Durillo, J.J.: A study of the parallelization of the multi-objective meta-
heuristic MOEA/D. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073,
pp. 303–317. Springer, Heidelberg (2010)

653. Nelder, A., Mead, R.: A simplex method for function optimization. Computation Jour-
nal 7, 308–313 (1965)

654. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. John Wiley &
Sons, Chichester (1988)

655. Neri, F., Mininno, E.: Memetic compact differential evolution for cartesian robot con-
trol. IEEE Computational Intelligence Magazine 5(2), 54–65 (2010)

656. Neri, F., Kotilainen, N., Vapa, M.: An Adaptive Global-Local Memetic Algorithm to
Discover Resources in P2P Networks. In: Giacobini, M. (ed.) EvoWorkshops 2007.
LNCS, vol. 4448, pp. 61–70. Springer, Heidelberg (2007)

657. Neri, F., Tirronen, V., Kärkkäinen, T., Rossi, T.: Fitness diversity based adaptation in
multimeme algorithms: A comparative study. In: [118], pp. 2374–2381 (2007)

658. Neri, F., Toivanen, J., Cascella, G.L., Ong, Y.S.: An adaptive multimeme algorithm for
designing HIV multidrug therapies. IEEE/ACM Transactions on Computational Biol-
ogy and Bioinformatics 4(2), 264–278 (2007)

659. Neri, F., Toivanen, J., Mäkinen, R.A.E.: An adaptive evolutionary algorithm with in-
telligent mutation local searchers for designing multidrug therapies for HIV. Applied
Intelligence 27(3), 219–235 (2007)

660. Neri, F., Kotilainen, N., Vapa, M.: A memetic-neural approach to discover resources
in P2P networks. In: Cotta, C., van Hemert, J. (eds.) Recent Advances in Evolutionary
Computation for Combinatorial Optimization. Studies in Computational Intelligence,
vol. 153, pp. 113–129. Springer, Heidelberg (2008)

661. Neumann, F., Sudholt, D., Witt, C.: Rigorous analyses for the combination of
ant colony optimization and local search. In: Dorigo, M., Birattari, M., Blum, C., Clerc,
M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 132–143.
Springer, Heidelberg (2008)

References 345

662. Ngueveu, S.U., Prins, C., Calvo, R.W.: An effective memetic algorithm for the cumu-
lative capacitated vehicle routing problem. Computers & Operations Research 37(11),
1877–1885 (2010)

663. Nguyen, H.D., Yoshihara, I., Yamamori, K., Yasunaga, M.: A New Three-Level Tree
Data Structure for Representing TSP Tours in the Lin-Kernighan Heuristic. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences E90-A(10), 2187–2193 (2007)

664. Nguyen, H.D., Yoshihara, I., Yamamori, K., Yasunaga, M.: Implementation of an Ef-
fective Hybrid GA for Large-Scale Traveling Salesman Problems. IEEE Transactions
on Systems, Man and Cybernetics, Part B 37(1), 92–99 (2007)

665. Nguyen, Q.H., Ong, Y.S., Krasnogor, N.: A study on the design issues of memetic
algorithm. In: [118], pp. 2390–2397 (2007)

666. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford Lecture Series in
Mathematics and Its Applications. Oxford University Press, Oxford (2006)

667. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-
tractable algorithms. Information Processing Letters 73, 125–129 (2000)

668. Nilsson, R., Björkegren, J., Tegnér, J.: On reliable discovery of molecular signatures.
BMC Bioinformatics 10(38) (2009)

669. Nixon, K.C.: The parsimony ratchet, a new method for rapid parsimony analysis.
Cladistics 15, 407–414 (1999)

670. Nobuhara, H., Han, C.W.: Evolutionary computation schemes based on max plus alge-
bra and their application to image processing. In: International Symposium on Intelli-
gent Signal Processing and Communications, pp. 538–541 (2006)

671. Noman, N., Iba, H.: Inferring gene regulatory networks using differential evolution
with local search heuristics. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 4(4), 634–647 (2007)

672. Nonobe, K., Ibaraki, T.: A tabu search approach for the constraint satisfaction prob-
lem as a general problem solver. European Journal of Operational Research 106(2-3),
599–623 (1998)

673. Norman, M., Moscato, P.: A competitive-cooperative approach to complex combinato-
rial search. Tech. Rep. 790, California Institute of Technology (1989)

674. Norman, M., Moscato, P.: The euclidean traveling salesman problem and a space-filling
curve. Chaos, Solitons and Fractals 6, 389–397 (1995)

675. Norman, M.G., Thanisch, P.: Models of machines and computation for mapping in mul-
ticomputers. ACM Comput. Surv. 25(3), 263–302 (1993)

676. Norman, M.G., Pelagatti, S., Thanisch, P.: On the complexity of scheduling with com-
munication delay and contention. Parallel Processing Letters 5, 331–341 (1995)

677. Oakley, M., Barthel, D., Bykov, Y., Garibaldi, J., Burke, E., Krasnogor, N., Hirst, J.:
Search strategies in structural bioinformatics. Current Protein and Peptide Science 9(3),
260–274 (2008)

678. Okushi, F.: Parallel cooperative propositional theorem proving. Annals of Mathematics
and Artificial Intelligence 26(1-4), 59–85 (1999)

679. Ong, Y., Lum, K., Nair, P., Shi, D., Zhang, Z.: Global convergence of unconstrained and
bound constrained surrogate-assisted evolutionary search in aerodynamic shape design.
In: [114], pp. 1856–1863 (2003)

680. Ong, Y.S., Keane, A.J.: Meta-lamarckian learning in memetic algorithms. IEEE Trans-
actions on Evolutionary Computation 8(2), 99–110 (2004)

681. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally ex-
pensive problems via surrogate modeling. AIAA Journal 41(4), 687–696 (2003)

346 References

682. Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-assisted evolutionary op-
timization frameworks for high-fidelity engineering design problems. In: Jin, Y. (ed.)
Knowledge Incorporation in Evolutionary Computation, pp. 307–331. Springer, Berlin
(2004)

683. Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algo-
rithms: A comparative study. IEEE Transactions On Systems, Man and Cybernetics -
Part B 36(1), 141–152 (2006)

684. Ong, Y.S., Nair, P.B., Lum, K.Y.: Max-min surrogate-assisted evolutionary algorithm
for robust aerodynamic design. IEEE Transactions on Evolutionary Computation 10(4),
392–404 (2006)

685. Ong, Y.S., Zhou, Z., Lim, D.: Curse and blessing of uncertainty in evolutionary algo-
rithm using approximation. In: [117], pp. 2928–2935 (2006)

686. Ong, Y.S., Krasnogor, N., Ishibuchi, H.: Special issue on memetic algorithms. IEEE
Transactions on Systems Man and Cybernetics-part B 37(1) (2007)

687. Ong, Y.S., Lum, K.Y., Nair, P.B.: Hybrid evolutionary algorithm with Hermite radial
basis function interpolants for computationally expensive adjoint solvers. Journal Com-
putational Optimization and Applications 39(1), 97–119 (2008)

688. Ong, Y.S., Lim, M.H., Neri, F., Ishibuchi, H.: Special issue on emerging trends in soft
computing–memetic algorithms. Journal of Soft Computing 13(8-9) (2009)

689. Ong, Y.S., Lim, M.H., Chen, X.: Memetic computation-past, present and future. IEEE
Computational Intelligence Magazine 5(2), 24–31 (2010)

690. Ono, S., Hirotani, Y., Nakayama, S.: A memetic algorithm for robust optimal solution
search–hybridization of multi-objective genetic algorithm and quasi-newton method.
International Journal of Innovative Computing, Information and Control 5(12B),
5011–5019 (2009)

691. Ono, S., Yoshitake, Y., Nakayama, S.: Robust optimization using multi-objective parti-
cle swarm optimization. Artificial Life and Robotics 14(2) (2009)

692. Onwubolu, G., Babu, B. (eds.): New Optimization Techniques in Engineering. Studies
in Fuzziness and Soft Computing, vol. 141. Springer, Berlin (2004)

693. Orantek, P.: Hybrid evolutionary algorithms in optimization of structures under dynam-
ical loads. In: Burczyński, T., Osyczka, A. (eds.) IUTAM Symposium on Evolutionary
Methods in Mechanics, Solid Mechanics and Its Applications, vol. 117, pp. 297–308.
Springer, Heidelberg (2004)

694. Osman, I., Laporte, G.: Metaheuristics: A bibliography. Annals of Operations Re-
search 65, 513–623 (1996)

695. Ozcan, E., Mohan, C.K.: Steady state memetic algorithm for partial shape matching.
In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 527–536. Springer,
Heidelberg (1998)

696. Czyak, P., Jaszkiewicz, A.: Pareto simulated annealing - a metaheuristic technique for
multiple-objective combinatorial optimisation. Journal of Multi-Criteria Decision Anal-
ysis 7, 34–47 (1998)

697. Paenke, I., Jin, Y., Branke, J.: Balancing population- and individual-level adaptation
in changing environments. Adaptive Behavior – Animals, Animats, Software Agents,
Robots, Adaptive Systems 17(2), 153–174 (2009)

698. Palacios, P., Pelta, D., Blanco, A.: Obtaining biclusters in microarrays with population-
based heuristics. In: [779], pp. 115–126 (2006)

699. Palmers, P., McConaghy, T., Steyaert, M., Gielen, G.: Massively multi-topology sizing
of analog integrated circuits. In: Conference on Design, Automation and Test in Europe,
pp. 706–711. IEEE Press, Los Alamitos (2009)

References 347

700. Palubeckis, G.: Multistart Tabu Search Strategies for the Unconstrained Binary
Quadratic Programming Problem. Annals of Operations Research 131, 259–282 (2004)

701. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
702. Papadimitriou, C., Yannakakis, M.: On limited nondeterminism and the complexity of

the V-C dimension. In: Allender, J., et al. (eds.) 8th Annual Conference on Structure in
Complexity Theory, IEEE Computer Society Press, pp. 12–18. IEEE Computer Society
Press, San Diego (1993)

703. Papadimitriou, C., Yannakakis, M.: On limited nondeterminism and the complexity of
the V-C dimension. Journal of Computer and System Sciences 53(2), 161–170 (1996)

704. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and com-
plexity. Prentice-Hall, Englewood Cliffs (1982)

705. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective
traveling salesman problem: An experimental study. In: Gandibleux, X., Sevaux, M.,
Sörensen, K., Tkindt, V. (eds.) Meta-heuristics for Multiobjective Optimisation. Lec-
ture Notes in Economics and Mathematical Systems, vol. 535, pp. 177–199. Springer,
Heidelberg (2004)

706. Pardalos, P.M., Rodgers, G.P.: Computational Aspects of a Branch and Bound Algo-
rithm for Unconstrained Quadratic Zero–One Programming. Computing 45, 131–144
(1990)

707. Pardalos, P.M., Rodgers, G.P.: A Branch and Bound Algorithm for the Maximum Clique
Problem. Computers and Operations Research 19(5), 363–375 (1992)

708. Pardalos, P.M., Xue, J.: The Maximum Clique Problem. Journal of Global Optimiza-
tion 4, 301–328 (1994)

709. Paredis, J.: The symbiotic evolution of solutions and their representations. In: Eshel-
man, L.J. (ed.) ICGA 1995, pp. 359–365. Morgan Kaufmann, Pittsburgh (1995)

710. Paredis, J.: Coevolutionary algorithms. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.)
Evolutionary Computation 2 Advanced Algorithms and Operators, pp. 224–238. Taylor
& Francis, Abington (2000)

711. Parga, N., Virasoro, M.: The ultrametric organization of memories in a neural network.
Journal de Physique 47(11), 1857–1864 (1986)

712. Parisi, G.: Infinite number of order parameters for spin-glasses. Physical Review Letters
(1979)

713. Park, Y.M., Park, J.B., Won, J.R.: A hybrid genetic algorithm/dynamic programming
approach to optimal long-term generation expansion planning. International Journal of
Electrical Power & Energy Systems 20(4), 295–303 (1998)

714. Parker, G., Blumenthal, H.: Varying sample sizes for the co-evolution of heterogeneous
agents. In: [115], pp. 766–771 (2004)

715. Parthasarathy, P.V., Goldberg, D.E., Burns, S.A.: Tackling multimodal problems in hy-
brid genetic algorithms. In: [839], p. 775 (2001)

716. Pastorino, M.: Stochastic optimization methods applied to microwave imaging: A re-
view. IEEE Transactions on Antennas and Propagation 55(3, Part 1), 538–548 (2007)

717. Paszkowicz, W.: Properties of a genetic algorithm extended by a random self-learning
operator and asymmetric mutations: A convergence study for a task of powder-pattern
indexing. Analytica Chimica Acta 566(1), 81–98 (2006)

718. Pawitan, Y.: In All Likelihood: Statistical Modelling and Inference Using Likelihood.
Oxford Scientific Publishing (2001)

719. Perez, J.R., Basterrechea, J.: Comparison of different heuristic optimization methods
for near-field antenna measurements. IEEE Transactions on Antennas and Propaga-
tion 55(3), 549–555 (2007)

348 References

720. Peter, M., Freisleben, B.: Memetic algorithms for the traveling salesman problem. Com-
plex Systems 13(4), 297–345 (2001)

721. Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-shop
scheduling problem. Computers & Operations Research 35(10), 3202–3212 (2008)

722. Phillips, A.T., Rosen, J.B.: A Quadratic Assignment Formulation for the Molecular
Conformation Problem. Journal of Global Optimization 4, 229–241 (1994)

723. Pirkwieser, S., Raidl, G.R.: Finding consensus trees by evolutionary, variable neighbor-
hood search, and hybrid algorithms. In: [784], pp. 323–330 (2008)

724. Poland, J., Knödler, K., Mitterer, A., Fleischhauer, T., Zuber-Goos, F., Zell, A.: Evo-
lutionary search for smooth maps in motor control unit calibration. In: Steinhöfel, K.
(ed.) SAGA 2001. LNCS, vol. 2264, pp. 107–116. Springer, Heidelberg (2001)

725. Poloni, C., Giurgevich, A., Onseti, L., Pediroda, V.: Hybridization of a multi-objective
genetic algorithm, a neural network and a classical optimizer for a complex design
problem in fluid dynamics. Computer Methods in Applied Mechanics and Engineer-
ing 186(2-4), 403–420 (2000)

726. Porumbel, D.C., Hao, J.K., Kuntz, P.: An evolutionary approach with diversity guar-
antee and well-informed grouping recombination for graph coloring. Computers and
Operations Research 37(10), 1822–1832 (2010)

727. Potter, M., De Jong, K.: A cooperative coevolutionary approach to function optimisa-
tion. In: [185], pp. 248–257 (1994)

728. Powell, M.J.D.: An efficient method for finding the minimum of a function of several
variables without calculating derivatives. The Computer Journal 7(2), 155–162 (1964)

729. Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations.
In: Watson, G. (ed.) Numerical Analysis, pp. 144–157. Springer, Heidelberg (1978)

730. Powell, M.J.D.: The NEWUOA software for unconstrained optimization. In: Pillo,
G.D., Roma, M. (eds.) Large-Scale Nonlinear Optimization, pp. 255–297. Springer,
Berlin (2006)

731. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C.
The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York (1992)

732. Price, K.V.: Mechanical engineering design optimization by differential evolution. In:
[145], pp. 293–298 (1999)

733. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to
Global Optimization. Springer, Heidelberg (2005)

734. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem.
Computers & Operations Research 31(12), 1985–2002 (2004)

735. Prins, C.: Two memetic algorithms for heterogeneous fleet vehicle routing problems.
Engineering Applications of Artificial Intelligence 22(6), 916–928 (2009), artificial In-
telligence Techniques for Supply Chain Management

736. Prins, C., Prodhon, C., Calvo, R.W.: A memetic algorithm with population management
(MA|PM) for the capacitated location-routing problem. In: Gottlieb, J., Raidl, G.R.
(eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 183–194. Springer, Heidelberg (2006)

737. Prodhom, C., Prins, C.: A memetic algorithm with population management (MA|PM)
for the periodic location-routing problem. In: [69], pp. 43–57 (2008)

738. Păun, G.: Computing with membranes. Tech. Rep. TUCS Report 208, Turku Center for
Computer Science (1998)

739. Păun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002)
740. Puchinger, J., Raidl, G.: Cooperating memetic and branch-and-cut algorithms for solv-

ing the multidimensional knapsack problem. In: Proceedings of the 2005 Metaheuristics
International Conference, Vienna, Austria, pp. 775–780 (2005)

References 349

741. Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in combina-
torial optimization: a survey and classification. In: [602], pp. 41–53 (2005)

742. Puchinger, J., Raidl, G.R., Koller, G.: Solving a real-world glass cutting problem. In:
Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 165–176. Springer,
Heidelberg (2004)

743. Pudlák, P.: Complexity theory and genetics. In: Structure in Complexity Theory Con-
ference, pp. 383–395 (1994)

744. Pudlák, P.: Complexity theory and genetics: The computational power of crossing over.
Inf. Comput. 171(2), 201–223 (2001)

745. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical
optimization. In: [116], pp. 1785–1791 (2005)

746. Queiroz, L., Lyra, C.: Adaptive hybrid genetic algorithm for technical loss reduction
in distribution networks under variable demands. IEEE Transactions on Power Sys-
tems 24(1), 445–453 (2009)

747. Quintero, A., Pierre, S.: A memetic algorithm for assigning cells to switches in cellular
mobile networks. IEEE Communications Letters 6(11), 484–486 (2002)

748. Quintero, A., Pierre, S.: Sequential and multi-population memetic algorithms for as-
signing cells to switches in mobile networks. Computer Networks 43(3), 247–261
(2003)

749. Quintero, A., Pierre, S.: On the design of large-scale UMTS mobile networks us-
ing hybrid genetic algorithms. IEEE Transactions on Vehicular Technology 57(4),
2498–2508 (2008)

750. Radcliffe, N.: The algebra of genetic algorithms. Annals of Mathematics and Artificial
Intelligence 10, 339–384 (1994)

751. Radcliffe, N., Surry, P.: Fitness Variance of Formae and Performance Prediction. In:
Whitley, L., Vose, M. (eds.) Proceedings of the 3rd Workshop on Foundations of Ge-
netic Algorithms, pp. 51–72. Morgan Kaufmann, San Francisco (1994)

752. Radcliffe, N., Surry, P.: Formal Memetic Algorithms. In: Fogarty, T.C. (ed.) AISB-WS
1994. LNCS, vol. 865, pp. 1–16. Springer, Heidelberg (1994)

753. Radcliffe, N.J.: Forma analysis and random respectful recombination. In: [56],
pp. 222–229 (1991)

754. Radtke, P.V.W., Wong, T., Sabourin, R.: A multi-objective memetic algorithm for intel-
ligent feature extraction. In: [135], pp. 767–781 (2005)

755. Rajesh, J., Gupta, K., Kusumakar, H.S., Jayaraman, V.K., Kulkarni, B.D.: Dynamic op-
timization of chemical processes using ant colony framework. Computers and Chem-
istry 25(6), 583–595 (2001)

756. Rammal, R., Toulouse, G., Virasoro, M.: Ultrametricity for physicists. Reviews of Mod-
ern Physics 58, 765–788 (1986)

757. Ratle, A.: Accelerating the convergence of evolutionary algorithms by fitness landscape
approximations. In: [240], pp. 87–96 (1998)

758. Ray, T., Sarker, R.: Genetic algorithm for solving a gas lift optimization problem. Jour-
nal of Petroleum Science and Engineering 59(1-2), 84–96 (2007)

759. Ray, T., Singh, H.K., Isaacs, A., Smith, W.: Infeasibility driven evolutionary algorithm
for constrained optimization. In: Mezura-Montes, E. (ed.) Constraint Handling in Evo-
lutionary Optimization. Studies in Computational Intelligence, pp. 145–165. Springer,
Heidelberg (2009)

760. Rechenberg, I.: Evolutionsstrategie – optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. PhD thesis, Technical University of Berlin (1971)

350 References

761. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart (1973)

762. Reeves, C.R., Rowe, J.E.: Genetic algorithms: principles and perspectives: a guide to
GA theory. Kluwer Academic Publishers, Dordrecht (2003)

763. Régnier, S.: Sur quelques aspects mathématiques des problèmes de classification au-
tomatique. Mathématiques et Sciences Humaines, reprint of ICC Bulletin 4, 175–191
(1965)

764. Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications.
LNCS, vol. 840. Springer, Heidelberg (1994)

765. Renderes, J.M., Flasse, S.P.: Hybrid methods using genetic algorithms for global opti-
mization. IEEE Transactions on Systems, Man, and Cybernetics–Part B 26(2), 243–258
(1996)

766. Renders, J.M., Bersini, H.: Hybridizing genetic algorithms with hill-climbing meth-
ods for global optimization: Two possible ways. In: IEEE Conference on Evolutionary
Computation, pp. 312–317. IEEE Press, Piscataway (1994)

767. Richer, J.-M., Goëffon, A., Hao, J.-K.: A memetic algorithm for phylogenetic recon-
struction with maximum parsimony. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.)
EvoBIO 2009. LNCS, vol. 5483, pp. 164–175. Springer, Heidelberg (2009)

768. Riveros, C., et al.: A transcription factor map as revealed by a genome-wide gene
expression analysis of whole-blood mRNA transcriptome in multiple sclerosis. PLoS
ONE 5(12), e14,176 (2010)

769. Robic, T., Filipic, B.: DEMO: Differential evolution for multiobjective optimization.
In: [135], pp. 520–533 (2005)

770. Robinson, D.: Comparison of labeled trees with valency three. Journal of Combinatorial
Theory, Series B 11(2), 105–119 (1971)

771. Rodrı́guez, J.F., Renaud, J.E., Watson, L.T.: Trust region augmented Lagrangian meth-
ods for sequential response surface approximation and optimization. ASME Journal of
Mechanical Design 120(1), 58–66 (1998)

772. Rodriguez-Tello, E., Hao, J.K., Torres-Jimenez, J.: An effective two-stage simulated
annealing algorithm for the minimum linear arrangement problem. Computers and Op-
erations Research 35(10), 3331–3346 (2008)

773. Romero-Campero, F., Cao, H., Camara, M., Krasnogor, N.: Structure and parameter
estimation for cell systems biology models. In: [784], pp. 331–338 (2008)

774. Ronald, S.: Distance Functions for Order–Based Encodings. In: Proceedings of the
1997 IEEE International Conference on Evolutionary Computation, pp. 49–54. IEEE
Press, Los Alamitos (1997)

775. Rosca, J.P.: Entropy-driven adaptive representation. In: Rosca, J.P. (ed.) Proceedings
of the Workshop on Genetic Programming: from Theory to Real-World Applications,
pp. 23–32 (1995)

776. Rosenbrock, H.H.: An automatic method for findong the greatest or least value of a
function. The Computer Journal 3(3), 175–184 (1960)

777. Roshan, U., Moret, B.M.E., Warnow, T., Williams, T.L.: Rec-i-dcm3: A fast algorith-
mic technique for reconstructing large phylogenetic trees. In: IEEE Computer Society
Bioinformatics Conference 2004, pp. 98–109. IEEE Press, Los Alamitos (2004)

778. Rosso, O., Mendes, A., Berretta, R., Rostas, J., Hunter, M., Moscato, P.: Distinguishing
childhood absence epilepsy patients from controls by the analysis of their background
brain electrical activity (ii): A combinatorial optimization approach for electrode selec-
tion. Journal of Neuroscience Methods 181(2), 257–267 (2009)

References 351

779. Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E.,
Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.):
EvoWorkshops 2006. LNCS, vol. 3907. Springer, Heidelberg (2006)

780. Rudolph, G.: How mutation and selection solve long-path problems in polynomial ex-
pected time. Evolutionary Computation 4(2), 195–205 (1997)

781. Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.): PPSN 2008. LNCS,
vol. 5199. Springer, Heidelberg (2008)

782. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization.
IEEE Transactions on Evolutionary Compution 4, 284–294 (2000)

783. Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao,
X. (eds.): PPSN 2006. LNCS, vol. 4193. Springer, Heidelberg (2006)

784. Ryan, C., Keijzer, M. (eds.): Genetic and Evolutionary Computation Conference –
GECCO 2008. ACM Press, Atlanta (2008)

785. Salcedo-Sanz, S., Yao, X.: A hybrid hopfield network-genetic algorithm approach for
the terminal assignment problem. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B: Cybernetics 34(6), 2343–2353 (2004)

786. Salehpour, A.A., Afzali-Kusha, A., Mohammadi, S.: Efficient clustering of wireless
sensor networks based on memetic algorithm. In: International Conference on Innova-
tions in Information Technology, pp. 450–454. IEEE Press, Los Alamitos (2008)

787. Salvatore, N., Cascella, G., Caponio, A., Stasi, S., Neri, F.: Optimization of DSKF-
based algorithm for sensorless SFO-SM control of IMs using differential evolution. In:
International Conference on Electrical Machines, paper ID 1225 (2008)

788. Sano, Y., Kita, H.: Optimization of noisy fitness functions by means of genetic algo-
rithms and history of search. In: [796], pp. 571–580 (2000)

789. Santamarı́a, J., Cordón, O., Damas, S., Garcı́a-Torres, J.M., Quirin, A.: Performance
evaluation of memetic approaches in 3D reconstruction of forensic objects. Soft Com-
puting 13(8-9), 883–904 (2009)

790. Santos, E., ESantos, J.: Effective computational reuse for energy evaluations in protein
folding. International Journal of Artificial Intelligence Tools 15(5), 725–739 (2006)

791. Sarker, R., Newton, C.: Optimization Modelling: A Practical Approach. Taylor & Fran-
cis Group/CRC Press, USA (2008)

792. Sarker, R., Kamruzzaman, J., Newton, C.: Evolutionary optimization (evopt): A brief
review and analysis. International Journal of Computational Intelligence and Applica-
tions 3(4), 311–330 (2003)

793. Schaffer, J., Morishima, A.: An adaptive crossover distribution mechanism for genetic
algorithms. In: [333], pp. 36–40 (1987)

794. Schaffer, J.D. (ed.): Third International Conference on Genetic Algorithms. Morgan
Kaufmann, San Mateo (1989)

795. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard and
easy problems. In: 14th. International Join Conference on Artificial Intelligence, IJCAI
1995, Montreal, Canada, pp. 631–637 (1995)

796. Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao,
X. (eds.): PPSN 2000. LNCS, vol. 1917. Springer, Heidelberg (2000)

797. Schuetze, O., Sanchez, G., Coello Coello, C.A.: A new memetic strategy for the numer-
ical treatment of multi-objective optimization problems. In: [784], pp. 705–712 (2008)

798. Schwefel, H.P.: Kybernetische Evolution als Strategie der experimentellen Forschung in
der Strömungstechnik. PhD thesis, Technical University of Berlin, Hermann Föttinger–
Institute for Fluid Dynamics (1965)

352 References

799. Schwefel, H.P.: Numerical Optimisation of Computer Models. J. Wiley, Chichester
(1981)

800. Schwefel, H.P.: Evolution strategies: A family of non-linear optimization techniques
based on imitating some principles of natural evolution. Annals of Operations Re-
search 1, 165–167 (1984)

801. Schwefel, H.P.: Evolution and Optimum Seeking. John Wiley & Sons, Inc., New York
(1994)

802. Schwefel, H.-P., Männer, R. (eds.): PPSN 1990. LNCS, vol. 496. Springer, Heidelberg
(1991)

803. Sefrioui, M., Périaux, J.: A hierarchical genetic algorithm using multiple models for
optimization. In: [796], pp. 879–888 (2000)

804. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiabil-
ity problems. In: National Conference on Artificial Intelligence, pp. 440–446. AAAI,
Menlo Park (1992)

805. Serafini, P.: Simulated annealing for multiple objective optimization problems. In:
Tenth International Conference on Multiple Criteria Decision Making, vol. 1, pp. 87–96
(1992)

806. Seront, G., Bersini, H.: A new GA-local search hybrid for continuous optimization
based on multi-level single linkage clustering. In: [932], pp. 90–95 (2000)

807. Serpell, M., Smith, J.: Self-adaptation of mutation operator and probability for permu-
tation representations in genetic algorithms. Evolutionary Computation 18(3), 491–514
(2009)

808. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4th
edn. Chapman and Hall, Boca Raton (2007)

809. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE World Congress
on Computational Intelligence, pp. 69–73 (1998)

810. Shyr, W.-J.: The hybrid genetic algorithm for blind signal separation. In: King, I.,
Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, vol. 4234, pp. 954–963.
Springer, Heidelberg (2006)

811. Shyr, W.J.: Robust control design for aircraft controllers via memetic algorithms. Inter-
national Journal of Innovative Computing, Information and Control 5(10A), 3133–3140
(2009)

812. Shyr, W.J., Wang, B.W., Yeh, Y.Y., Su, T.J.: Design of optimal PID controllers using
memetic algorithm. In: American Control Conference, vol. 3, pp. 2130–2131 (2002)

813. Shyu, C., Sheneman, L., Foster, J.A.: Multiple sequence alignment with evolutionary
computation. Genetic Programming and Evolvable Machines 5, 121–144 (2004)

814. Sinclair, M.: Minimum cost routing and wavelength allocation using a genetic-
algorithm/heuristic hybrid approach. In: IEE Conference on Telecommunications
(Conf. Publ. No. 451), pp. 67–71 (1998)

815. Sindhya, K., Deb, K., Miettinen, K.: A local search based evolutionary multi-objective
optimization approach for fast and accurate convergence. In: [781], pp. 815–824 (2008)

816. Singh, H., Ray, T., Smith, W.: Performance of infeasibility empowered memetic algo-
rithm for CEC 2010 constrained optimization problems. In: [121], pp. 1–8 (2010)

817. Singh, H.K., Isaacs, A., Ray, T., Smith, W.: Infeasibility Driven Evolutionary Algo-
rithm (IDEA) for Engineering Design Optimization. In: 21st Australiasian Joint Con-
ference on Artificial Intelligence AI 2008, pp. 104–115 (2008)

818. Sinha, A., Chen, Y., Goldberg, D.E.: Designing efficient genetic and evolutionary algo-
rithm hybrids. In: [375], pp. 259–288 (2005)

References 353

819. Smit, V.N.S., Eiben, A.: Costs and benefits of tuning parameters of evolutionary algo-
rithms. In: [781], pp. 528–538 (2008)

820. Smith, J.: Modelling GAs with self adaptive mutation rates. In: [839], pp. 599–606
(2001)

821. Smith, J.: Co-evolution of memetic algorithms: Initial investigations. In: [580],
pp. 537–548 (2002)

822. Smith, J.: Co-evolving memetic algorithms: A learning approach to robust scalable op-
timisation. In: [114], pp. 498–505 (2003)

823. Smith, J.: Parameter perturbation mechanisms in binary coded gas with self-adaptive
mutation. In: Rowe, J., Poli, R., De Jong, K., Cotta, C. (eds.) Foundations of Genetic
Algorithms 7, pp. 329–346. Morgan Kauffman, San Francisco (2003)

824. Smith, J.: Protein structure prediction with co-evolving memetic algorithms. In: [114],
pp. 2346–2353 (2003)

825. Smith, J.: The co-evolution of memetic algorithms for protein structure prediction. In:
[375], pp. 105–128 (2005)

826. Smith, J., Fogarty, T.: Adaptively parameterised evolutionary systems: Self adaptive
recombination and mutation in a genetic algorithm. In: [909], pp. 441–450 (1996)

827. Smith, J., Fogarty, T.: Recombination strategy adaptation via evolution of gene linkage.
In: 1996 IEEE Conference on Evolutionary Computation, pp. 826–831 (1996)

828. Smith, J., Fogarty, T.: Self adaptation of mutation rates in a steady state genetic algo-
rithm. In: 1996 IEEE Conference on Evolutionary Computation, pp. 318–323 (1996)

829. Smith, J., Fogarty, T.: Operator and parameter adaptation in genetic algorithms. Soft
Computing 1(2), 81–87 (1997)

830. Smith, J.E.: Coevolving memetic algorithms: A review and progress report. IEEE
Transactions on Systems, Man, and Cybernetics, Part B 37(1), 6–17 (2007)

831. Smith, J.E.: Credit assignment in adaptive memetic algorithms. In: Lipson, H. (ed.)
GECCO 2007, pp. 1412–1419. ACM Press, London (2007)

832. Smith, R.E., Smith, J.E.: An Examination of Tunable, Random Search Landscapes. In:
Foundations of Genetic Algorithms V, pp. 165–182. Morgan Kaufmann, San Francisco
(1999)

833. Sneath, P., Sokal, R.: Numerical taxonomy. W.H. Freeman and Co, San Francisco
(1973)

834. Solis, F.J., Wets, R.J.B.: Minimization by random search techniques. Mathematics of
Operations Research 6(1), 19–30 (1981)

835. Song, W.: Multiobjective memetic algorithm and its application in robust airfoil shape
optimization. In: Goh, C.K., Ong, K.Y. (eds.) Multi-Objective Memetic Algorithms.
Studies in Computational Intelligence, vol. 171, pp. 389–402. Springer, Heidelberg
(2009)

836. Sörensen, K., Sevaux, M.: MA|PM: memetic algorithms with population management.
Computers and Operations Research 33(5), 1214–1225 (2006)

837. Sörensen, K., Sevaux, M.: A practical approach for robust and flexible vehicle routing
using metaheuristics and Monte Carlo sampling. Journal of Mathematical Modelling
and Algorithms 8(4), 387–407 (2009)

838. Spall, J.C.: Introduction to Stochastic Search and Optimization. Estimation, Simulation,
and Control. John Wiley & Sons, Inc., Hoboken (2003)

839. Spector, L., et al. (eds.): Genetic and Evolutionary Computation Conference – GECCO
2001. Morgan Kaufmann, San Francisco (2001)

840. Speer, N., Merz, P., Spieth, C., Zell, A.: Clustering gene expression data with memetic
algorithms based on minimum spanning trees. In: [114], pp. 1848–1855 (2003)

354 References

841. Speer, N., Spieth, C., Zell, A.: A memetic clustering algorithm for the functional par-
tition of genes based on the gene ontology. In: IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology, pp. 252–259. IEEE Press,
Los Alamitos (2004)

842. Spieth, C., Streichert, F., Speer, N., Zell, A.: A memetic inference method for gene
regulatory networks based on S-systems. In: [115], pp. 152–157 (2004)

843. Spieth, C., Streichert, F., Supper, J., Speer, N., Zell, A.: Feedback memetic algorithms
for modeling gene regulatory networks. In: 2005 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology, pp. 61–67. IEEE Press, Los
Alamitos (2005)

844. Srinivas, N., Deb, K.: Multiple objective optimization using nondominated sorting in
genetic algorithms. Evolutionary Computation 2(2), 221–248 (1994)

845. Stadler, P.F.: Towards a Theory of Landscapes. In: Lopéz-Peña, R., Capovilla, R.,
Garcı́a-Pelayo, R., Waelbroeck, H., Zertuche, F. (eds.) Complex Systems and Binary
Networks. Lecture Notes in Physics, vol. 461, pp. 77–163. Springer, Berlin (1995)

846. Stadler, P.F.: Landscapes and their Correlation Functions. Joural of Mathematical
Chemistry 20, 1–45 (1996)

847. Stadler, P.F., Schnabl, W.: The Landscape of the Travelling Salesman Problem. Physics
Letters A 161, 337–344 (1992)

848. Steuer, R.: Multiple Criteria Optimization - Theory, Computation and Application. Wi-
ley, Chichester (1986)

849. Stewart, G.W.: A modification of davidson’s minimization method to accept difference
approximations of derivatives. Journal of the ACM 14(1), 72–83 (1967)

850. Stone, C., Smith, J.: Strategy parameter variation in self-adaptation of mutation rates.
In: [504], pp. 586–593 (2002)

851. Stone, C.J.: Optimal global rates of convergence for nonparametric regression. Annals
of Statistics 10(4), 1040–1053 (1982)

852. Storch, T.: On the choice of the parent population size. Evolutionary Computa-
tion 16(4), 557–578 (2008)

853. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for
global optimization over continuous spaces. Tech. Rep. TR-95-012, ICSI (1995)

854. Subudhi, B., Jena, D., Gupta, M.: Memetic differential evolution trained neural net-
works for nonlinear system identification. In: IEEE Region 10 and international Confer-
ence on Industrial and Information Systems, pp. 1–6. IEEE Press, Los Alamitos (2008)

855. Sudholt, D.: Local Search in Evolutionary Algorithms: The Impact of the Local Search
Frequency. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 359–368. Springer,
Heidelberg (2006)

856. Sudholt, D.: On the analysis of the (1+1) memetic algorithm. In: [110], pp. 493–500
(2006)

857. Sudholt, D.: Memetic algorithms with variable-depth search to overcome local optima.
In: [784], pp. 787–794 (2008)

858. Sudholt, D.: The impact of parametrization in memetic evolutionary algorithms. Theo-
retical Computer Science 410(26), 2511–2528 (2009)

859. Sudholt, D.: Hybridizing evolutionary algorithms with variable-depth search to over-
come local optima. Algorithmica 59(3), 343–368 (2011)

860. Suman, B.: Study of simulated annealing based algorithms for multiobjective optimiza-
tion of a constrained problem. Computers & Chemical Engineering 28(9), 1849–1871
(2004)

References 355

861. Surry, P., Radcliffe, N.: Inoculation to initialise evolutionary search. In: Fogarty, T.C.
(ed.) AISB-WS 1996. LNCS, vol. 1143, pp. 269–285. Springer, Heidelberg (1996)

862. Swofford, D.L., Olsen, G.J., Waddell, P.J., Hillis, D.M.: Phylogeny inference. In: Hillis,
D.M., Moritz, C., Mable, B.K. (eds.) Molecular Systematics, ch. 11, pp. 407–514. Sin-
auer Associates, Inc. (1999)

863. Sylos Labini, M., Covitti, A., Delvecchio, G., Neri, F.: A quasi-genetic algorithm for
searching the dangerous areas generated by a grounding system. COMPEL: Interna-
tional Journal for Computation and Mathematics in Electrical and Electronic Engineer-
ing 23(3), 724–732 (2004)

864. Syswerda, G.: A Study of Reproduction in Generational and Steady State Genetic Al-
gorithms. In: Rawlings, G.J.E. (ed.) Foundations of Genetic Algorithms, pp. 94–101.
Morgan Kaufmann, San Mateo (1991)

865. Szeider, S.: The parameterized complexity of k-flip local search for SAT and MAX SAT.
In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 276–283. Springer, Heidelberg
(2009)

866. Szeider, S.: The parameterized complexity of k-flip local search for SAT and MAX
SAT. Discrete Optimization 8(1), 139–145 (2011)

867. Szu, H., Hartley, R.: Fast simulated annealing. Physiscs Letters A 122, 157–162 (1987)
868. Tagawa, K., Matsuoka, M.: Optimum design of surface acoustic wave filters based on the

taguchi’s quality engineering with a memetic algorithm. In: [783], pp. 292–301 (2006)
869. Tagawa, K., Masuoka, M., Tsukamoto, M.: Robust optimum design of saw filters with

the taguchi method and a memetic algorithm. In: [116], pp. 2146–2153 (2005)
870. Taguchi, G.: Robust Engineering. McGraw-Hill Book Company, New York (1990)
871. Tai, K., Wang, N., Yang, Y.: Hybrid GA multiobjective optimization for the design of

compliant micro-actuators. In: IEEE International Conference on Systems, Man and
Cybernetics, pp. 559–564 (2008)

872. Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–564
(2002)

873. Tang, J., Lim, M.H., Ong, Y.S.: Diversity-adaptive parallel memetic algorithm for solv-
ing large scale combinatorial optimization problems. Soft Computing-A Fusion of
Foundations, Methodologies and Applications 11(9), 873–888 (2007)

874. Tang, M., Yao, X.: A memetic algorithm for VLSI floorplanning. IEEE Transactions on
Systems, Man, and Cybernetics, Part B 37(1), 62–69 (2007)

875. Tao, W.H.: Fuzzy neural network control of truck backer-upper using hybrid genetic
algorithms. In: International Conference on Information Acquisition, pp. 9–12. IEEE
Press, Los Alamitos (2004)

876. Tenne, Y.: A model-assisted memetic algorithm for expensive optimization problems.
In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation. Studies in Computa-
tional Intelligence, vol. 193, Springer, Heidelberg (2009)

877. Tenne, Y., Armfield, S.: A memetic algorithm assisted by an adaptive topology rbf
network and variable local models for expensive optimization problems. In: Kosinski
W (ed) Advances in Evolutionary Algorithms, IN-TECH (2008)

878. Tenne, Y., Armfield, S.W.: A memetic algorithm using a trust-region derivative-free
optimization with quadratic modelling for optimization of expensive and noisy black-
box functions. In: Yang, S., Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in Dy-
namic and Uncertain Environments. Studies in Computational Intelligence, vol. 51,
pp. 389–415. Springer, Heidelberg (2007)

356 References

879. Tenne, Y., Armfield, S.W.: A versatile surrogate-assisted memetic algorithm for opti-
mization of computationally expensive functions and its engineering applications. In:
Yang, A., Shan, Y., Thu Bui, L. (eds.) Success in Evolutionary Computation. Studies in
Computational Intelligence, vol. 92, pp. 43–72. Springer, Heidelberg (2008)

880. Tenne, Y., Armfield, S.W.: A framework for memetic optimization using variable global
and local surrogate models. Journal of Soft Computing 13(8) (2009)

881. Tenne, Y., Goh, C.K.: Computational Intelligence in Expensive Optimization Problems.
In: Evolutionary Learning and Optimization. Springer, Heidelberg (2010)

882. Thomas, R.: Sea Monster Tattoo. Polygon (1997)
883. Thomsen, R., Munkegade, N., Fogel, G.B., Krink, T., Group, E., Group, E.: A clustal

alignment improver using evolutionary algorithms. In: [113], pp. 121–126 (2002)
884. Thorup, M.: Structured programs have small tree-width and good register allocation

(extended abstract). In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 318–332.
Springer, Heidelberg (1997)

885. Tian, Z., Liu, Y., Yang, H., Wang, H.: A hybrid genetic algorithm with critical primary
inputs sharing and minor primary inputs bits climbing for circuit maximum power esti-
mation. In: International Conference on Natural Computation, vol. 4, pp. 183–187 (2007)

886. Tie-hua, J., Dong-lin, S., Ai-xin, C., Yan-jun, Z., Guo-yu, W.: Broadband matching net-
work design for antennas using a hybrid genetic algorithm. In: International Symposium
on Antennas, Propagation and EM Theory, pp. 90–93 (2008)

887. Tirronen, V., Neri, F.: Differential evolution with fitness diversity self-adaptation. In:
Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation. Studies in Computa-
tional Intelligence, vol. 193, pp. 199–234. Springer, Heidelberg (2009)

888. Tirronen, V., Neri, F., Karkkainen, T., Majava, K., Rossi, T.: A memetic differential
evolution in filter design for defect detection in paper production. In: Giacobini, M.
(ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 320–329. Springer, Heidelberg (2007)

889. Tirronen, V., Neri, F., Kärkkäinen, T., Majava, K., Rossi, T.: An enhanced memetic dif-
ferential evolution in filter design for defect detection in paper production. Evolutionary
Computation 16(4), 529–555 (2008)

890. Tirronen, V., Neri, F., Majava, K., Kärkkäinen, T.: The ”natura non facit saltus” princi-
ple in memetic computing. In: [119], pp. 3881–3888 (2008)

891. Törn, A.: Cluster analysis using seed points and density-determined hyperspheres as an
aid to global optimization. IEEE Transactions on Systems, Man, and Cybernetics 7(8),
610–616 (1977)

892. Trosset, M.W.: I know it when I see it: Toward a definition of direct search methods.
SIAG/OPT Views-and-News 9, 7–10 (1997)

893. Tsai, K.Y., Wang, F.S.: Evolutionary optimization with data collocation for reverse en-
gineering of biological networks. Bioinformatics 21(7), 1180–1188 (2005)

894. Tse, S.M., Liang, Y., Leung, K.S., Lee, K.H., Mok, T.: A memetic algorithm for
multiple-drug cancer chemotherapy schedule optimization. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B 37(1), 84–91 (2007)

895. Tsutsui, S., Ghosh, A.: Genetic algorithms with a robust solution scheme. IEEE Trans-
actions on Evolutionary Computation 1(3), 201–208 (1997)

896. Ulder, N.L.J., Aarts, E.H.L., Bandelt, H.J., van Laarhoven, P.J.M., et al.: Genetic Local
Search Algorithms for the Traveling Salesman Problems. In: [802], pp. 109–116 (1991)

897. Ulungu, E.L., Teghem, J., Fortemps, P., Tuyttens, D.: MOSA method: a tool for solving
multiobjective combinatorial optimization problems. Journal of Multi-Criteria Decision
Analysis 8, 221–236 (1999)

References 357

898. Umezawa, K., Yamazaki, K.: Tree-length equals branch-length. Discrete Mathemat-
ics 309(13), 4656–4660 (2009)

899. Vakil Baghmisheh, M., Alinia Ahandani, M., Talebi, M.: Frequency modulation sound
parameter identification using novel hybrid evolutionary algorithms. In: International
Symposium on Telecommunications, pp. 67–72. IEEE Press, Los Alamitos (2008)

900. Valenzuela, J., Smith, A.E.: A seeded memetic algorithm for large unit commitment
problems. Journal of Heuristics 8, 173–195 (1999)

901. Vallejo, A., Cutiller, A.Z.D.V.D., Dalmau, J.: Implementation of traffic engineering in
NGNs using hybrid genetic algorithms. In: International Conference on Systems and
Networks Communications, pp. 262–267 (2008)

902. Vasquez, M., Hao, J.K.: A heuristic approach for antenna positioning in cellular net-
works. Journal of Heuristics 7(5), 443–472 (2001)

903. Vasquez, M., Hao, J.K.: A logic-constrained knapsack formulation and a tabu algorithm
for the daily photograph scheduling of an earth observation satellite. Computational
Optimization and Applications 20(2), 137–157 (2001)

904. Vavak, F., Jukes, K.A., Fogarty, T.C.: A genetic algorithm with variable range of local
search for tracking changing environments. In: [909], pp. 376–385 (1996)

905. Vavak, F., Jukes, K.A., Fogarty, T.C.: Adaptive combustion balancing in multiple
burner boiler using a genetic algorithm with variable range of local search. In: [33],
pp. 719–726 (1997)

906. Vavak, F., Jukes, K.A., Fogarty, T.C.: Performance of a genetic algorithm with vari-
able local search range relative to frequency of the environmental changes. In: Koza,
J.R. (ed.) Third Annual Conference on Genetic Programming, pp. 602–608. Morgan
Kaufmann, San Francisco (1998)

907. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001)
908. Venkatraman, S., Yen, G.: A generic framework for constrained optimization using ge-

netic algorithms. IEEE Transactions on Evolutionary Computation 9(4), 424–435 (2005)
909. Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.): PPSN 1996. LNCS,

vol. 1141. Springer, Heidelberg (1996)
910. Volgenant, A., Jonker, R.: A branch and bound algorithm for the symmetric traveling

salesman problem based on the 1-tree relaxation. European Journal of Operational Re-
search 9, 83–88 (1982)

911. Volk, J., Herrmann, T., Wuthrich, K.: Automated sequence-specific protein nmr assign-
ment using the memetic algorithm match. Journal of Biomolecular Nmr. 41(3), 127–138
(2008)

912. Walshaw, C.: A Multilevel Approach to the Travelling Salesman Problem. Operations
Research 50(5), 862–877 (2002)

913. Wang, H., Wang, D., Yang, S.: A memetic algorithm with adaptive hill climbing strategy
for dynamic optimization problems. Journal of Soft Computing 13, 763–780 (2009)

914. Wang, H., Qian, L., Dougherty, E.: Inference of gene regulatory networks using S-
system: a unified approach. IET Systems Biology 4(2), 145–156 (2010)

915. Wang, H., Yang, S., Ip, W.H., Wang, D.: A particle swarm optimization based memetic
algorithm for dynamic optimization problems. Natural Computing 3(9), 703–725 (2010)

916. Wang, J., Shan, H., Shasha, D., Piel, W.: Treerank: A similarity measure for nearest neigh-
bor searching in phylogenetic databases. In: 15th International Conference on Scientific
and Statistical Database Management, pp. 171–180. IEEE Press, Cambridge (2003)

917. Wang, N., Tai, K.: A hybrid genetic algorithm for multiobjective structural optimiza-
tion. In: [118], pp. 2948–2955 (2007)

358 References

918. Wang, N., Yang, Y.: Target geometry matching problem for hybrid genetic algorithm
used to design structures subjected to uncertainty. In: [120], pp. 1644–1651 (2009)

919. Wang, N., Yang, Y., Tai, K.: Hybrid genetic algorithm for designing structures subjected
to uncertainty. In: IEEE International Conference on Systems, Man and Cybernetics,
pp. 565–570. IEEE Press, Los Alamitos (2008)

920. Wang, N., Yang, Y., Tai, K.: Optimization of structures under load uncertainties based
on hybrid genetic algorithm. In: [119], pp. 4039–4044 (2008)

921. Watanabe, I., Kurihara, I., Nakachi, Y.: A hybrid genetic algorithm for service restora-
tion problems in power distribution systems. In: [117], pp. 3250–3257 (2006)

922. Waterman, M., Smith, T.: On the similarity of dendograms. Journal of Theoretical Bi-
ology 73, 789–800 (1978)

923. Watson, J.P., Howe, A.E., Whitley, L.D.: An analysis of iterated local search for job-
shop scheduling. In: Ibaraki, T., Yoshitomi, Y. (eds.) Fifth Metaheuristics International
Conference, MIC 2003 (2003)

924. Weaver, D., Workman, C., Stormo, G.: Modeling regulatory networks with weight ma-
trices. In: Pacific Symposium on Biocomputing, vol. 4, pp. 112–123 (1999)

925. Wegener, I.: Complexity Theory—Exploring the Limits of Efficient Algorithms.
Springer, Heidelberg (2005)

926. Wegener, I., Witt, C.: On the analysis of a simple evolutionary algorithm on quadratic
pseudo-boolean functions. Journal of Discrete Algorithms 3(1), 61–78 (2005)

927. Weicker, K.: Performance measures for dynamic environments. In: [580], pp. 64–73
(2002)

928. Weinberger, E.D.: Correlated and Uncorrelated Fitness Landscapes and How to Tell the
Difference. Biological Cybernetics 63, 325–336 (1990)

929. Weinberger, E.D.: NP Completeness of Kauffman’s N-k Model, A Tuneable Rugged
Fitness Landscape. Tech. Rep. 96-02-003, Santa Fe Institute, Santa Fe, New Mexico
(1996)

930. Whitley, D.: Using reproductive evaluation to improve genetic search and heuristic dis-
covery. In: [333], pp. 108–115 (1987)

931. Whitley, D., Starkweather, T., Fuquay, D.: Scheduling Problems and Traveling Sales-
man: The Genetic Edge Recombination Operator. In: [794], pp. 133–140 (1989)

932. Whitley, L.D., et al. (eds.): Genetic and Evolutionary Computation Conference –
GECCO 2000. Morgan Kaufmann, Las Vegas (2000)

933. Wiegand, R., Liles, W., De Jong, K.: An empirical analysis of collaboration methods in
cooperative coevolutionary algorithms. In: [839], pp. 1235–1245 (2001)

934. Wiegers, M.: The k-section of treewidth restricted graphs. In: Rovan, B. (ed.) MFCS
1990. LNCS, vol. 452, pp. 530–537. Springer, Heidelberg (1990)

935. Willett, P.: Genetic algorithms in molecular recognition and design. Trends in Biotech-
nology 13(12), 516–521 (1995)

936. Williams, H.P.: Model Building in Mathematical Programming, 4th edn. Wiley, Chich-
ester (2000)

937. Williams, T., Smith, M.: The role of diverse populations in phylogenetic analysis. In:
[110], pp. 287–294 (2006)

938. Witt, C.: Runtime analysis of the (μ+1) EA on simple pseudo-Boolean functions. Evo-
lutionary Computation 14(1), 65–86 (2006)

939. Witt, C.: Population size versus runtime of a simple evolutionary algorithm. Theoretical
Computer Science 403(1), 104–120 (2008)

940. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Transac-
tions on Evolutionary Computation 1(1), 67–82 (1997)

References 359

941. Wright, S.: The role of mutation, inbreeding, crossbreeding, and selection in evolution.
In: Proceedigns of the Sixth International Congress on Genetics, vol. 1, pp. 356–366
(1932)

942. Wu, B., Chao, K.M., Tang, C.: Approximation and exact algorithms for constructing
minimum ultrametric trees from distance matrices. Journal of Combinatorial Optimiza-
tion 3(2), 199–211 (1999)

943. Wu, T., Li, D., Liu, X., Du, G., Han, R.: Model-adaptable MOSFET parameter extrac-
tion with a hybrid genetic algorithm. In: International Conference on Solid-State and
Integrated Circuit Technology, pp. 1299–1302 (2006)

944. Xia, C., Xue, M., Chen, W., Xie, X.: Flux linkage characteristic measurement and pa-
rameter identification based on hybrid genetic algorithm for switched reluctance mo-
tors. In: IEEE Conference on Industrial Electronics and Applications, pp. 1619–1623.
IEEE Press, Los Alamitos (2008)

945. Xu, C., Zou, X., Yuan, R., Wu, C.: Optimal coordination of protection relays using new
hybrid evolutionary algorithm. In: [119], pp. 823–828 (2008)

946. Yamada, T.: Studies on metaheuristics for jobshop and flowshop scheduling problems.
PhD thesis, Department of Applied Mathematics and Physics, Kyoto University, Kyoto,
Japan (2003)

947. Yang, C.H., Cheng, Y.H., Chuang, L.Y., Chang, H.W.: Specific PCR product primer
design using memetic algorithm. Biotechnol. Prog. 25(3), 745–753 (2009)

948. Yannakakis, M.: Computational complexity. In: Local Search in Combinatorial Opti-
mization, pp. 19–55. Princeton University Press, Princeton (1997)

949. Yao, X., Liu, Y.: A new evolutionary systems for evolving artificial neural networks.
IEEE Transactions on Neural Networks 8(3), 694–713 (1997)

950. Ying Xu, D.V.: Olman Clustering gene expression data using a graph-theoretic approach:
An application of minimum spanning tree. Bioinformatics 18(4), 526–535 (2002)

951. Yuan, B., Gallagher, M.: Combining meta-EAs and racing for difficult EA parameter
tuning tasks. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in Evolu-
tionary Algorithms, pp. 121–142. Springer, Heidelberg (2007)

952. Yuan, Y.: On the truncated conjugate gradient method. Mathematical Program-
ming 87(3), 561–573 (2000)

953. Zhu, Z., Ong, M.Y.S.: Markov blanket-embedded genetic algorithm for gene selection.
Pattern Recognition Archive 40(11), 3236–3248 (2007)

954. Zacharias, C.R., Lemes, M.R., Pino, A.D.: Combining genetic algorithm and simulated
annealing: a molecular geometry optimization study. Journal of Molecular Structure:
THEOCHEM 430, 29–39 (1998)

955. Zhang, Q., Li, H.: MOEA/D: A multi-objective evolutionary algorithm based on de-
composition. IEEE Transactions on Evolutionary Computation 11(6), 712–731 (2007)

956. Zhang, Q., Sun, J., Tsang, E., Ford, J.: Hybrid estimation of distribution algorithm for
global optimisation. Engineering Computations 21(1), 91–107 (2004)

957. Zhang, Q., Zhou, A., Jin, Y.: RM-MEDA: A regularity model based multiobjective
estimation of distribution algorithm. IEEE Transactions on Evolutionary Computa-
tion 12(1), 41–63 (2008)

958. Zhang, Y.G., Huang, Y.M., Xie, L.M.: Robot inverse acceleration solution based on
hybrid genetic algorithm. In: International Conference on Machine Learning and Cy-
bernetics, vol. 4, pp. 2099–2103 (2008)

959. Zhao, X.C.: Advances on protein folding simulations based on the lattice hp models
with natural computing. Applied Soft Computing 8(2), 1029–1040 (2008)

360 Author Index

960. Zheng, H., Wong, A., Nahavandi, S.: Hybrid ant colony algorithm for texture classifi-
cation. In: [114], pp. 2648–2652 (2003)

961. Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of pareto optimal solutions in
both the decision and objective spaces by an estimation of distribution algorithm. IEEE
Transactions on Evolutionary Computation 13(5), 1167–1189 (2009)

962. Zhou, Z., Ong, Y.S., Lim, M.H., Lee, B.: Memetic algorithms using multi-surrogates for
computationally expensive optimization problems. Journal of Soft Computing 11(10),
957–971 (2007)

963. Zhou, Z., Ong, Y.S., Nair, P.B., Keane, A.J., Lum, K.Y.: Combining global and local
surrogate models to accelerate evolutionary optimization. IEEE Transactions on Sys-
tems, Man, and Cybernetics–Part C 37(1), 66–76 (2007)

964. Zhu, Z., Ong, Y.S.: Memetic algorithms for feature selection on microarray data. In:
Liu, D., Fei, S., Hou, Z.-G., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4491,
pp. 1327–1335. Springer, Heidelberg (2007)

965. Zhu, Z., Ong, Y.S., Dash, M.: Wrapper-filter feature selection algorithm using a
memetic framework. IEEE Transactions on Systems, Man, and Cybernetics, Part
B 37(1), 70–76 (2007)

966. Zhu, Z., Jia, S., Ji, Z.: Towards a memetic feature selection paradigm. Computational
Intelligence Magazine 5, 41–53 (2010)

967. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X.,
Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E.,
Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842.
Springer, Heidelberg (2004)

968. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolu-
tionary algorithm for multiobjective optimization. In: EUROGEN 2001 Evolutionary
Methods for Design, Optimisation and Control with Applications to Industrial Prob-
lems, pp. 12–21 (2001)

969. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Grunert da Fonseca, V.: Performance
assesment of multiobjective optimizers: an analysis and review. IEEE Transactions on
Evolutionary Computation 7(2), 117–132 (2003)

970. Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of pareto set approximations. In:
[84], pp. 373–404 (2008)

971. Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.): EMO 2001.
LNCS, vol. 1993. Springer, Heidelberg (2001)

972. Zou, L., Zhu, S., He, B.: Spatio-temporal EEG dipole estimation by means of a hybrid
genetic algorithm. In: Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, vol. 2, pp. 4436–4439. IEEE Press, Los Alamitos (2004)

Author Index

Berretta, Regina 261

Caponio, Andrea 241
Cotta, Carlos 3, 29, 43, 121, 189, 261

de Oca, Marco A. Montes 29

Eiben, Ágoston E. 9

Gallardo, José E. 189

Hao, Jin-Kao 73

Ishibuchi, Hisao 201

Jaszkiewicz, Andrzej 201

Leiva, Antonio J. Fernández 189

Merz, Peter 95
Moscato, Pablo 261, 275

Neri, Ferrante 3, 29, 43, 121, 153, 241

Ray, Tapabrata 135

Sarker, Ruhul 135
Smith, James E. 9, 167
Sudholt, Dirk 55

Tenne, Yoel 219

Zhang, Qingfu 201

Subject Index

(μ+λ) MA 67

acronyms, list of XXIII
allele 13
alternative representation 140
ant colony optimization 268
anytime behaviour 19
applications 50
approximated objective functions 220
arity 15

backtracking 192
balance of global and local search 55–72
Baldwinian learning 228, 270
basin of attraction 123
beam search 196
beta distribution 162
binary quadratic programming 111–118
bioinformatics 261–271, 303

cell models 270
clustering 264–265
conformational analysis 268
consensus tree 267
DNA sequencing 269
feature selection 265–266

filter vs wrapper methods 265
gene ordering 264
gene regulatory networks 270
ligand docking 269
microarray analysis 262–266
molecular design 268–269
molecular signature 263
phylogenetic trees 197
phylogeny 266–267

maximum parsimony 89, 267
ultrametric tree 266, 304

polymerase chain reaction 269
protein alignment 268
protein structure analysis 267–268
protein structure prediction 192, 267

HP model 268
sequence alignment 269
sequence analysis 269–270
shortest common supersequence 270
systems biology 270–271

biomedicine 262
drug therapy scheduling 262
radiotherapy 262
tomography 262

Boltzmann machine 279
branch and bound 51, 190, 195, 267
branch and cut 51, 109, 190, 195, 196
branchwidth 300
breeder genetic algorithm 156
brute force 124
bucket elimination 194

mini-buckets 198, 199

candidate solution 13
CHC 126

pseudocode 127
Checkers algorithm 232
child 15
chromosome 13
CMA-ES 41
co-evolution 51
coevolving MA 167
combinatorial local search 33

364 Subject Index

combinatorial optimization 96
complete techniques 51, 190

approximation algorithms 190
exact algorithms 190

complexity 5
class 5
intractability of local search 63–66
polynomial hierarchy 5
reduction 5

conjugate directions 39
constrained optimization 135–151

benchmark 145
weighted constraint satisfaction problem

194, 197
continuous optimization 121–134, 199

local optimum 31
continuous space

dense set 121
optimization problem 122

control systems 255
conventional representation 138
covariance matrix adaptation evolution

strategy, 126
crossover 16
crossover hill climbing, see recombination,

hill climbing

Davidon-Fletcher-Powell method 40
decision space 4
decoding 13
dedication V, VII
differential evolution 129–131, 270

mutation variants 130
pseudocode 131

discrete optimization 73–94
Distance-Based information Preservation

Crossover, 90
diversity 14, 83, 153–165
χ measure 159
ν measure 158
φ measure 160
ψ measure 159, 231
τ3 measure 161
ξ measure 158, 257
adaptive local search 155
beta distribution 162
crossover 155
entropy 49
exponential distribution 163

fitness diversity 157
local search 155
multi-search 156
natura non facit saltus 162
self-adaptation 155
structured population 154
truncation selection 154

domain decomposition 282
dominance 203
dynamic programming 190, 194
Dynasearch 193

encoding 13
engineering and design 241

aerodynamic design 251, 253, 254
antenna 247
electrical and electronic engineering

247
electic motors 248
electromagnetism 250
netwrok applications 250
power systems 248

electroenchephalogram 252
filter design 251
frequency modulation 246
image processing 243

forensic objects 244
image registration 244
tomography 244

Internet applications 247
radar design 246
radio frequency assignment 246
seismic analysis 251
telecommunications 254
thermal generator 251

engineering applications 241–260
environmental selection 17
epistasis 45
estimation of distribution 126
evaluation function 14
evaluation mechanism

aggregation function 207
dominance 206

evolution strategy 48, 124–125
uncorrelated mutation 125

evolutionary algorithm 9–27
Infeasibility Driven Evolutionary

Algorithm, 142
real coded 125

Subject Index 365

exploitation 18
exploration 18
exponential distribution 163
exponential time 62

fitness function 14
fitness landscape 45, 95–119, 171 208,

285
basin of attraction 45
distance 49
distribution of local optima 50
fitness distance correlation 101–103,

298
multiobjective 208
plateau 35
random walk correlation 100

forma analysis 33, 82, 193, 296
Full Employment Theorem 46
fully polynomial time approximation

scheme 299

gene 13
genetic algorithm 283
genotype space 13
genotypes 13
global optimization 123–131
gradient 122
graph coloring problems 87
GSAT 35

Hessian matrix 4
hill climbing 34–35

crossover 133
plateau 35

Hooke-Jeeves pattern search 230
Hopfield network 279
hybridization 189, 288

collaborative models 192, 195–199
exact techniques 189
integrative models 192–195
multilevel model 197
taxonomy 191–192
with backtracking 192
with beam search 196, 198, 270
with branch and bound 195
with branch and cut 195, 196
with evolution strategy 270
with hill climbing 270
with Hooke-Jeeves method 231

with simulated annealing 231, 269, 284
hyperheuristics 51

ideal objective vector 204
IEMA 144
individual 13
infeasibility

Infeasibility Driven Evolutionary
Algorithm, 142

Infeasibility Empowered Memetic
Algorithm 144

initialization 17
innovative recombination 116
Ising bond 282
iterated local search 98

job-shop scheduling problem 147

Kauffman 101
knapsack problem 194, 196, 197
Kriging function 221

L-Systems 294
lagrangean relaxation 193
Lagrangian interpolation 221
Lamarckianism

partial 194
Lin-Kernighan heuristic 49, 109, 298
linear programming 109
local branching 193
local optimum 123
local search 29–41, 48, 67, 78

2-opt 50
classification 31
continuous domains 36–41

classification 37
depth 67
frequency 69
golden section search 270
greedy 32
iterated 98
iterated local search 109
Lin-Kernighan heuristic 49, 109, 298
local optimum 31
parameterized complexity 303
parameters 50
partial lamarckianism 50
single vs multiple solution 32
single-solution metaheuristics 33

366 Subject Index

Solis-Wets 269
steepest ascent 32
stochastic vs deterministic 31

locus 13

Markov blanket 265
mating selection 15
MAX-SAT problem 35, 195
maximum density still life problem 194,

199
maximum leaf spanning tree 301
maximum satisfiability 174
membrane computing 271
meme 175
memetic algorithm

adaptive 51
adaptive global-local 231
co-evolution 51, 170–173
combination with exact techniques 51
combinatorial optimization 95
complete 306
continuous optimization 131
design 49–50
discrete local search 77
discrete optimization 74
fast adaptive 255, 257–258
history 275–309
Infeasibility Empowered Memetic

Algorithm 144
initial population 47
local search 48
meta-lamarckian learning 51
metalamarckian 168
multimeme 51, 168, 268
multiobjective 50, 205–216
need 44–46
origins 275
parallel 285
Pareto archived evolution strategy 210
performance measure 77
philosophy 44, 98
replacement 48
reproduction 48
restart 49
self-adaptive 268
self-generating 168
template 46–49
termination 47

memetic computing 51
metaheuristics 6–7
microarray analysis 262–266
minimum spanning tree 264
multi-layer perceptron network 231
multiobjective

aggregation function 204
archive of Pareto solutions 209
evolutionary algorithm based on

decomposition, 213
fitness landscape 208
genetic local search 210, 211
ideal objective vector 204
memetic algorithm 205–216

engineering and design 252
MOGLS 50
MPAES 50
nadir objective vector 204
Pareto dominance 50, 203
Pareto MA 50
Pareto optimal solution 203
Pareto optimal vector 203
strength Pareto evolutionary algorithm

214
Tchebycheff approach 205
weighted sum approach 204

multiobjective optimization 201–217
mutation 15

heavy 49

nadir objective vector 204
negative assortative mating 156
neighborhood 30

binary 79
combination 81
design 78
exploration 79
integer 79
permutation 33, 79

neighborhood generating function 171
neighborhood structure 45
neural network

approximation 221
Hopfield network 279

NEWUOA 40
NK-landscape 99–100
No Free Lunch Theorem 44, 58, 158,

208, 241
noisy problems, 229

Subject Index 367

explicit averaging 230
implicit averaging 230

NSGA-II 143, 211
number partitioning problem 298

objective function 14
offspring 15
operations research 50
optimization

continuous 121–134
discrete 73–94
presence of uncertainties 219–237

optimization problem 3
optimum

global 31
local 31

P-systems 270
parameter tuning 25
parameterization 55–72
parameterized complexity 6, 190,

299–303, 305–309
fixed-parameter tractable 6, 190, 303
local search 303
reduction rules 301

parent 15
parent selection 15
Pareto dominance 203
Pareto optimal solution 203
Pareto optimal solutions

archive 209
Pareto optimal vector 203
particle swarm optimization 41, 127–129

pseudocode 129
variants 128
velocity update, 128

path relinking 266
permanent magnet synchronous motor

255
permutation

neighborhood 33
phenotype 13
phenotype space 13
polynomial local search 168
polynomial time 5, 62
polynomial time approximation scheme

109, 190
population 14

initialization 47
management 50
spatial structure 154, 284

population-based 12
Powell’s algorithm 32, 39
predictive gradient 235
premature convergence 18, 48
prize-collecting Steiner tree problem 195
progressive neighborhood search 91

quadratic approximation 220
quadratic programming

binary 111–118
sequential 144

radial basis function 221
random walk 124
real coded evolutionary algorithms 125
Rec-I-DCM3 267
recombination 16

BLX-α 126
DPX 49
dynastically optimal recombination 193
hill climbing 133, 199
optimal discrete 134
parent centric 126
PCX-α 126

replacement 17, 48
reporduction 48
representation 13

alternative 140
conventional 138
non orthogonal 33
orthogonal 33

restart 49
heavy mutation 49
random immigrant strategy 49

robust design 224

S-systems 270
saddle point 5
scatter search 266
self-adaptation 167–188

meme coordination 176
meme definition 176
specific local search 171

self-adaptive MA 167
semantic combination operator 81
sequential quadratic programming 144

368 Subject Index

Shannon’s entropy 49
shortest common supersequence

problem 197
Simplex method 32
simplex method 38, 230
simulated annealing 35–36, 41, 231, 279

cooling schedule 36
simultaneous perturbation stochastic

approximation method 41
software agent 285
Solis and Wets’ method 41
Steiner problem 90
stochastic global search 124
stop criterion 18
superpolynomial performance 66
survivor selection 17
symbols, list of XXIII

tabu search 36, 88, 194, 268, 282
aspiration criterion 36
tabu list 36
tenure 36

Tchebycheff approach 205
termination condition 18, 47
time complexity 61

time-dependency 232
adaptive dual mapping 236
triggered immigrants 236

trap function 176
travelling salesman problem 33, 49, 100,

105–111, 116, 193, 196, 279
2-opt 50
Lin-Kernighan heuristic 49, 109, 298
very large instances 109

treewidth 299, 305
Trust region 40
Turing machine 5, 6

ultrametricity 286
uncertainties 219–237
unitation 174
Unweighted Pair Group Method with

Arithmetic Mean, 91

Vapnik-Chervonenkis dimension 282
variable neighborhood search 168, 267
variation operators 15

Watson’s Hierarchical-if-and-only-if 174

XHC 133

	Cover
	Studies in Computational Intelligence 379
	Handbook of Memetic Algorithms
	ISBN 9783642232466
	Preface
	Contents
	Part I: Foundations
	1 Basic Concepts
	What Is Optimization?
	Optimization Can Be Hard
	Using Metaheuristics

	2 Evolutionary Algorithms
	Motivation and Brief History
	What Is an Evolutionary Algorithm?
	Components of Evolutionary Algorithms
	Representation (Definition of Individuals)
	Evaluation Function (Fitness Function)
	Population
	Parent Selection Mechanism
	Variation Operators
	Survivor Selection Mechanism (Replacement)
	Initialisation
	Termination Condition

	The Operation of an Evolutionary Algorithm
	Evolutionary Algorithm Variants
	Designing and Tuning Evolutionary Algorithms
	Concluding Remarks

	3 Local Search
	Basic Concepts
	Neighborhoods and Local Optima
	Classifications of Local Search
	Local Search in Combinatorial Domains
	Hill Climbing
	Simulated Annealing
	Tabu Search

	Local Search in Continuous Domains
	Classification of Local Search Techniques for Continuous Domains
	Commonly Used Local Search Techniques in Memetic Algorithms for Continuous Domains

	4 A Primer on Memetic Algorithms
	Introduction
	The Need for Memetic Algorithms
	A Basic Memetic Algorithm Template
	Design Issues
	Conclusions and Outlook
	Memetic Algorithms and Memetic Computing

	Part II: Methodology
	5 Parametrization and Balancing Local and Global Search
	Introduction
	Balancing Global and Local Search
	Early Works and the Effect of Local Search
	Aspects That Determine the Optimal Balance
	How to Find an Optimal Balance

	Time Complexity of Local Search
	Polynomial and Exponential Times to Local Optimality
	Intractability of Local Search Problems

	Functions with Superpolynomial Performance Gaps
	Functions Where the Local Search Depth Is Essential
	Functions Where the Local Search Frequency Is Essential

	Conclusions

	6 Memetic Algorithms in Discrete Optimization
	Introduction
	Survey of Memetic Algorithms for Discrete Optimization
	Rationale
	Memetic Algorithms in Overview
	Performance of Memetic Algorithms for Discrete Optimization

	Special Design Considerations
	Design of Dedicated Local Search
	Design of Semantic Combination Operator
	Population Diversity Management
	Other Issues

	Case Studies
	Graph Coloring Problems
	Maximum Parsimony Phylogeny

	Conclusions

	7 Memetic Algorithms and Fitness Landscapes in CombinatorialOptimization
	Introduction
	MAs in Combinatorial Optimization
	Combinatorial Optimization
	MA Outline
	Related Meta-Heuristics

	Why and When MAs Work
	The Concept of Fitness Landscapes
	NK-Landscapes
	Analysis of Fitness Landscapes

	Case Study I: The TSP
	Fitness Landscape
	State-of-The-Art Meta-Heuristics for the TSP

	Case Study II: The BQP
	Fitness Landscape
	State-of-the-Art Meta-Heuristics for the BQP
	A Memetic Algorithm Using Innovative Recombination

	Conclusion

	8 Memetic Algorithms in Continuous Optimization
	Introduction and Basic Concepts
	Global and Local Continuous Optimization
	Global Optimization Algorithms
	Stochastic Global Search, Brute Force and Random Walk
	Evolution Strategy and Real Coded Evolutionary Algorithms
	Particle Swarm Optimization
	Differential Evolution

	Particularities of Memetic Approaches for Continuous Optimization

	9 Memetic Algorithms in Constrained Optimization
	Introduction
	Constrained Optimization
	Classification of MAs
	MAs with Conventional Representation
	MAs with Alternative Representations
	Numerical Case Studies
	Case Study 1: Infeasibility Empowered Memetic Algorithm for Constrained Optimization Problems: MA with Conventional Representation
	Case Study 2: MA with Alternative Representation

	Summary and Conclusions

	10 Diversity Management in Memetic Algorithms
	Introduction
	Handling the Diversity of Memetic Algorithms: A Short Survey
	Fitness Diversity Adaptation
	Fitness Diversity Metrics
	Coordination of the Search: The ``Natura non Facit Saltus'' Principle

	Conclusion

	11 Self-adaptative and Coevolving Memetic Algorithms
	Introduction
	Background
	MAs with Multiple LS Operators
	Self-adaptation in EAs
	Co-evolutionary Systems

	A Framework for Self-adaption and Co-evolution of Memes and Genes
	Specifying Local Search
	Adapting the Specification of Local Search

	Test Suit and Methodology
	The Test Suite
	 Experimental Set-Up and Terminology

	 Self-adaptation of Fixed and Varying Sized Rules
	Self-adapting the Choice from a Fixed Set of Memes
	Self-adaptation of Meme Definitions
	Results on Trap Functions
	Analysis of Results and Evolution of Rule Base
	Benchmarking the Self-adaptive Systems
	Summary of Self-adaptive Results

	Extension to True Co-evolution: the Credit Assignment Problem
	Results: Reliability
	Results: Efficiency

	Varying the Population Sizes
	Conclusions

	12 Memetic Algorithms and Complete Techniques
	Introduction
	Background
	Classification of Hybridization Approaches
	Integrative Combinations
	Collaborative Combinations
	Conclusions

	13 Multiobjective Memetic Algorithms
	Introduction
	Basic Definition and Concepts
	Basic Concepts
	Aggregation Functions
	Weighted Sum Approach
	Tchebycheff Approach

	Adaptation of Memetic Algorithms for Multiobjective Optimization – Basic Concepts
	Dominance-Based Evaluation Mechanisms
	Aggregation Function-Based Evaluation Mechanisms
	Problem Landscapes in Multiobjective Optimization
	Archive of Potentially Pareto-optimal Solutions
	Evaluation of Multiobjective Memetic Algorithms

	Examples of Multiobjective Memetic Algorithms
	MOGLS of Ishibuchi and Murata
	M-PAES
	NSGA-II with LS
	MOGLS of Jaszkiewicz
	RM-MEDA
	MOEA/D
	MGK Population Heuristic
	Memetic Approach by Chen and Chen
	SPEA2 with LS
	Interactive Memetic Algorithm by Dias et al.
	SMS-EMOA with Local Search

	Implementation of Multiobjective Memetic Algorithms
	Conclusions

	14 Memetic Algorithms in the Presence of Uncertainties
	Motivation
	Uncertainty Due to Approximation
	Uncertainty Due to Robustness
	Uncertainty Due to Noise
	Uncertainty Due to Time-Dependency
	Conclusion

	Part III: Applications
	15 Memetic Algorithms in Engineering and Design
	Introduction
	Applications of MAs in Engineering Problems
	Engineering Applications in Single-Objective Optimization
	Engineering Applications in Multi-Objective Optimization

	A Study Case: The Fast Adaptive Memetic Algorithm
	An Insight into the Problem
	Fast Adaptive Memetic Algorithm

	Conclusions

	16 Memetic Algorithms in Bioinformatics
	Introduction
	Microarray Data Analysis
	Clustering
	Feature Selection

	Phylogenetics
	Protein Structure Analysis and Molecular Design
	Sequence Analysis
	Systems Biology

	Part IV: Epilogue
	17Memetic Algorithms: The Untold Story
	Motivation, or Something Like That
	In the Beginning, There Was no Evolutionary Computation
	Caltech and the Red Door Cafe
	Landscapes and the Correlation of Local Optima
	Hierarchical Objective Functions and Memetic Algorithms That Run on a ``Segment''
	A Royal Visit to Argentina
	To Brazil, without the Beaches
	Fixed-Parameter Tractability, and the Complexity of Recombination
	Newcastle, Australia, and Biomedical Research Closer to the Beach
	Future Opportunities (if We Constrain the Beast)

	References
	Subject Index

