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GUIDANCE IN THE USE OF ADAPTIVE CRITICS
FOR CONTROL

GEORGE G. LENDARIS AND JAMES C. NEIDHOEFER

1. Introduction

The aim of this chapter is to provide guidance to the prospective
user of the Adaptive Critic / Approximate Dynamic Programming
methods for designing the action device in certain kinds of control sys-
tems. While there are currently various different successful “camps” in
the Adaptive Critic community, spanning government, industry, and
academia, and while the work of these independent groups may en-
tail important differences, there are basic common threads. The latter
include: Reinforcement Learning (RL), Dynamic Programming (DP),
and basic Adaptive Critic (AC) concepts.

Describing and understanding the fundamental equations of DP is
not difficult. Similarly, it is not difficult to show diagrams of differ-
ent AC methodologies and understand conceptually how they work.
However, understanding the wide variety of issues that crop up in ac-
tually applying the AC methodologies is both non-trivial and crucial
to the success of the venture. Some of the important tasks include:
formulating (appropriately) the problem-to-be-solved; defining a util-
ity function that properly captures/embodies the problem-domain re-
quirements; selecting the discount factor; designing the training “syl-
labus”; designing training strategies and selecting associated run-time
parameters (epoch size, learning rates, etc.); deciding when to start
and stop training; and, not the least, addressing stability issues. A
brief overview of the three topics listed in the previous paragraph (RL,
DP, and AC) is given first, followed by the main body of this chapter,
in which selected issues important to successful application of ACs are
described, and some approaches to addressing them are presented.

Clearly,while much progress in the development and application of
Adaptive Critics has already occurred, much yet remains to be done.
The last section of the chapter describes some items the authors deem
important be included in a future research agenda for the Adaptive
Critic community.
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2. Reinforcement- Learning

Reinforcement-Learning (RL) occurs when an agent learns behav-
iors through trial-and-error interactions with its environment, based
on “reinforcement” signals from the environment. In the past ten to
fifteen years, the potential of reinforcement-learning has excited the
imagination of researchers in the machine learning, intelligent systems,
and artificial intelligence communities. Achievement of such potential,
however, can be elusive, as formidable obstacles reside in the details of
computational implementation.

In a general RL model, an agent interacts with its environment
through sensors (perception) and actuators (actions) [13], [6]. Each
interaction iteration typically includes the following: the agent re-
ceives inputs that indicate the state of the environment; the agent
then selects and takes an action, which yields an output; this output
changes the state of the environment, transitioning it to a “better”
or a “worse” state; the latter are indicated to the agent by either
a “reward” or a “penalty” from the environment, and the amount
of such reward/penalty has the effect of a “reinforcement” signal to
the agent. The behavior of a healthy agent tends to increase the re-
ward part of the signal, over time, through a trial and error learning
process. Thorndike’s law of effect has been rephrased in [5], [56] to
offer the following definition of reinforcement-learning: “If an action
taken by a learning system is followed by a satisfactory state of affairs,
then the tendency of the system to produce that particular action is
strengthened or reinforced. Otherwise, the tendency of the system
to produce that action is weakened.” Reinforcement-Learning differs
from supervised-learning mainly in the kind of feedback received from
the environment. In supervised-learning, the equivalent of a “teacher”
function is available that knows the correct output, a priori, for each
of the agent’s outputs, and training/learning is based on output error
data. In RL, on the other hand, the agent only receives a more general,
composite reward/punish signal, and learns from this using an operat-
ing principle of increasing the amount of reward it receives over time.
While RL has been implemented in a variety of different ways and has
involved other related research areas (e.g., search and planning), in this
chapter, we focus on application of the RL ideas to implementing ap-
proximate Dynamic Programming, often called Adaptive Critics. We
comment that the phrase ‘Adaptive Critic’ was originally coined by
Widrow, [61], in a manner that implies learning with a critic. The
present authors, on the other hand, prefer that the term ‘adaptive’ in
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the phrase refer to the critic’s learning attribute. We note that [59]
also uses the term ‘adaptive’ in this latter sense.

3. Dynamic Programming

Dynamic Programming (DP) [7] provides a principled method for
determining optimal control policies for discrete-time dynamic systems
whose states evolve according to given transition probabilities that de-
pend on a decision/control u. Simultaneous with a transition from one
state (call it X(t)) to the next (X(t + 1)) under control u, a cost U
is incurred [8]. Optimality is defined in terms of minimizing the sum
of all the costs to be incurred while progressing from any state to the
end state (both, finite and infinite cases are handled). This sum of
costs is called ‘cost-to-go,’ and the objective of DP is to calculate nu-
merically the optimal cost-to-go function J∗. An associated optimal
control policy is also computed. Fundamental to this approach is Bell-
man’s Principle of Optimality, which states that: “no matter how an
intermediate point is reached in an optimal trajectory, the rest of the
trajectory (from the intermediate point to the end) must be optimal.”
Unfortunately, the required DP calculations become cost-prohibitive as
the number of states and controls become large (Bellman’s “curse of
dimensionality”); since most real-world problems fall into this category,
approximating methods for DP have been explored since its inception
(e.g. see [27]). The DP method entails the use of a Utility function,
where the Utility function is crafted (by the user) to embody the design
requirements of the given control problem. This function provides the
above-mentioned ‘cost’ incurred while transitioning from a given state
to the next one. A secondary utility function, known as the Value
function (referred to above as the Cost-to-Go function), is defined in
terms of the Utility function, and is used to perform the optimization
process. [Bellman used the technically correct terminology Value func-
tional, but much of our literature uses function instead; the latter is
used in this chapter.] Once the ‘optimal’ version of the Value function
has been determined, then the optimal controller may be designed, e.g.,
via the Hamilton-Jacobi-Bellman equation.

4. Adaptive Critics: “Approximate Dynamic
Programming”

The Adaptive Critic concept is essentially a juxtaposition of RL and
DP ideas. It will be important to keep in mind, however, that whereas
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DP calculates the control via the optimal Value Function, the AC con-
cept utilizes an approximation of the optimal Value Function to ac-
complish its controller design. For this reason, AC methods have been
more properly referred to as implementing Approximate Dynamic Pro-
gramming (ADP). A family (also called “ladder”) of ADP structures
was proposed by Werbos in the early 1990’s [59], [60], and has been
widely used by others [11], [12], [14], [15], [18], [19], [21], [22], [23], [24],
[25], [26], [32], [33], [34], [36], [37], [38], [41], [43], [45], [46]. While the
original formulation was based on neural network implementations, it
was noted that any learning structure capable of implementing the ap-
propriate mathematics would work. Fuzzy Logic structures would be
a case in point; recent examples may be found in [25], [44], [48], [53],
[55]. This family of ADP structures includes: Heuristic Dynamic Pro-
gramming (HDP), Dual Heuristic Programming (DHP), and Global
Dual Heuristic Programming (GDHP). There are ‘action dependent’
(AD) versions of each, yielding the acronyms: ADHDP, ADDHP, and
ADGDHP. A detailed description of all these ADP structures is given
in [43], called Adaptive Critic Designs there; additional details may
also be found in [41].

The different ADP structures can be distinguished along three di-
mensions: 1) The inputs provided to the critic; 2) the outputs of the
critic; and 3) the requirements for a plant model in the training process.

4.1. Critic Inputs. The critic typically receives information about the
state of the plant (and of a reference model of the plant, where appro-
priate); in the action dependent structures, the critic is also provided
the outputs of the action device (controller).

4.2. Critic Outputs. In the HDP structure, the critic outputs an
approximation of the Value Function J(t); in the DHP structure, it
approximates the gradient of J(t); and in the GDHP, it approximates
both, J(t) and its gradient.

4.3. Model requirements. While there exist formulations that re-
quire only one training loop (e.g. [30]), the above ADP methods all
entail the use of two training loops: one for the controller and one for
the critic. There is an attendant requirement for two trainable function
approximators, one for the controller and one for the critic. Depending
on the ADP structure, one or both of the training loops will require a
model of the plant. The controller training loop adapts the function ap-
proximator to be an approximately optimal controller (whose outputs
are u(t)), via maximizing the secondary utility function J(t). Since
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a gradient-based learning algorithm is typically used, derivatives’ esti-
mates are required for controller training (in the DHP version, these
estimates are provided directly from the critic). Adaptation of the
function approximation in the critic training loop is based on the con-
sistency of its estimates through time, the exact implicit relationship
being a function of the type of critic used and the structure of the pri-
mary utility function. In this chapter, we focus on the DHP structure;
this structure requires a plant model for both loops. We mention that
some view this model dependence to be an unnecessary “expense.” The
position of the authors, however, is that the expense is in many con-
texts more than compensated for by the additional information avail-
able to the learning/optimization process. We take further motivation
for pursuing model-dependent versions from the biological exemplar:
some explanations of the human brain developmental/learning process
invoke the notion of ‘model imperative’ [39].

4.4. Model Use in Training Loops. Figure 1 provides a general
diagrammatic layout for the ADP discussion. The base components
are the action/controller and the plant; the controller receives mea-
surement data about the plant’s current state X(t) and outputs the
control u(t); the plant receives the control u(t), and moves to its next
state X(t+1). The X(t) data is provided to the critic and to the Utility
function. In addition, the X(t + 1) data is provided for a second pass
through the critic. All of this data is needed in the calculations for
performing the controller and critic training (the various dotted lines
going into the ‘calculate’ boxes). This training is based on the Bellman
Recursion:

(1) J(t) = U(t) + γJ(t + 1)

We note that the term J(t + 1) is an important component of this
equation, and is the reason that X(t + 1) is passed through the critic
to get its estimate for time (t + 1) (see [17] [16] for fuller expansion of
the equations involved).

The following is a verbal “walk through” of the six different AC
structures, pointing out why and in which loop(s) of each structure a
plant model is required. The results are tabulated in Table I.

HDP: The critic estimates J(t) based directly on the plant state
X(t); since this data is available directly from the plant, critic training
does not need a plant model for its calculations. Controller train-
ing, on the other hand, requires finding the derivatives of J(t) with

respect to the control variables, obtained via the chain rule ∂J(t)
∂ui(t)

=
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X(t)
action

model

critic#1

critic#2

utility

u(t)
X(t+1)

(X(t))

(X(t+1)

calculate

calculate wij

X t

Figure 1. General layout of Adaptive Critic structures

∑n
j=1

∂J(t)
∂Xj(t)

∂Xj(t)

∂ui(t)
. Estimates of the first term in this equation (deriva-

tives of J(t) with respect to the states) are obtained via Backpropaga-
tion through the critic network; estimates for the second term (deriva-
tives of the states with respect to the controls) require a differentiable
model of the plant, e.g., an explicit analytic model, a neural network
model, etc. Thus HDP uses a plant model for the controller training
but not the critic training.

ADHDP (Q-learning is in this category): Critic training is the same
as for HDP. Controller training is simplified, in that since the control
variables are inputs to the critic, the derivatives of J(t) with respect

to the controls,
(

∂X(t)
∂u(t)

)
, are obtained directly from Backpropagation

through the critic. Thus ADHDP uses no plant models in the training
process.

DHP: Recall that for this version, the critic directly estimates the

derivatives of J(t) with respect to the plant states, i.e. λi(t) = ∂J(t)
∂Xi(t)

.

The identity used for critic training is (in tensor notation):

λi(t) = ∂U(t)
∂Xi(t)

+ ∂U(t)
∂ui(t)

∂uj(t)

∂Xi(t)
+ λk(t + 1)

[
∂Xk(t+1)

∂Xi(t)
+ ∂Xk(t+1)

∂um(t)
∂um(t)
∂Xi(t)

]

To evaluate the right hand side of this equation, a full model of the
plant dynamics is needed. This includes all the terms for the Jacobian

matrix of the coupled plant-controller system, e.g.
∂Xj(t+1)

∂Xi(t)
and

∂Xj(t+1)

∂ui(t)
.

Controller training is much like that in HDP, except that the controller
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training loop directly utilizes the critic outputs along with the system
model. So, DHP uses models for both critic and controller training.

ADDHP: ADDHP critics use both state and control variables as
inputs, and output the gradient of J(t) with respect to both states and

controls,
(

∂J(t)
∂X(t)

)
and

(
∂X(t)
∂u(t)

)
. This method utilizes the DHP critic

training process, but gets the derivatives needed for controller training
directly from the critic’s output. Therefore ADDHP uses a plant model
for critic training but not for controller training.

GDHP: GDHP critics have state variables as inputs, and they out-
put both J(t) and its gradient with respect to states. Critic train-
ing utilizes both the HDP and DHP recursions; controller training as
in DHP. Therefore GDHP uses models for both critic and controller
training.

ADGDHP: ADGDHP critics have both state and control variables
as inputs, and they output both J(t) and its gradient with respect to
states and controls. As with GDHP, critic training utilizes both the
HDP and DHP recursions, and controller training is as in ADDHP.
Therefore ADGDHP uses a model for critic training but not for con-
troller training.

Table I. Summary of Requirement For Model in Training Loops

ADP              Model NEEDED for training of 

STRUCTURE CRITIC CONTROLLER

HDP X

    ADHDP 

DHP X X

   ADDHP X

GDHP X X

   ADGDHP X

5. Some Current Research on Adaptive Critic
Technology

As part of providing guidance to prospective users of the ADP meth-
ods to develop controller designs, we sketch some of the work being done
in the area, and provide citations that the reader may find useful.

Andersen and his colleagues at Colorado State University have been
working on combining Robust control theory with Reinforcement-Learning
methodologies to develop proofs for both, static and dynamic stability,
(e.g. [1],[2]). A Reinforcement-Learning procedure has resulted which
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is guaranteed to remain stable even during training. In an attempt to
speed up the process (which turns out being on the slow side), work is
underway to use predicted reinforcement along with received reinforce-
ment.

Balakrishnan and his colleagues at the University of Missouri-Rolla,
have been working on applying adaptive critic based neurocontrol for
distributed parameter systems (e.g. [11], [12], [26], [36], [37], [38]). The
objectives of this research are to develop and demonstrate new adaptive
critic designs, and to analyze the performance of these neurocontrollers
in controlling parabolic, hyperbolic, and elliptic systems.

Barto and his colleagues at the University of Massachusetts, have
been working on methods to allow an agent learning through reinforcement-
learning to automatically discover subgoals (e.g. [28], [40]). By creat-
ing and using subgoals, the agent is able to accelerate its learning on
the current task, and to transfer its expertise to other related tasks.
Discovery of subgoals is attained by examining commonalities across
multiple paths to a solution. The task of finding these commonalities is
cast as a multiple-instance learning problem, and the concept of diverse
density is used to find the solution.

KrishnaKumar at the NASA Ames Intelligent Flight Controls Lab,
and Neighoefer, at Accurate Automation Coorporation, show an inter-
esting implementation and application of adaptive critics ([14]). The
basic idea is that if a nonlinear system can be linearized at repre-
sentative points in the operational envelope, then the solution to the
Ricatti equation at each point can be used as the Bellman Value func-
tion (“cost to go”) for DP. If the Ricatti solutions also show a degree
of statistical correlation, then an “Immunized” scheme (which mimics
the building block scheme of biological immune systems) can be used
with Ricatti solutions as “building blocks” to act as HDP Immunized
Adaptive Critics (IAC).

Lendaris and his colleagues at the Portland State University NW
Computational Intelligence Laboratory (NWCIL) have focused the past
few years on exploring application issues related to ADP, in particular,
the DHP version (e.g. [18], [19], [21], [22], [23], [24], [25], [48], [49], [50],
[51], [52], [53]). Much of the material reported in this chapter is an out-
growth of that work. A MATLAB based DHP computational platform
has been developed, and is available for downloading and use from the
NWCIL Web site: www.nwcil.pdx.edu. Key recent research and appli-
cation results related to ADP involve the use of Fuzzy Logic structures
for the controller, critic, and/or plant in the DHP ADP method (see
Section 6.10). A recent application project is the design of a nonlinear
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controller for a hypersonic-shaped aircraft known as LoFlyte r© [20].
Current work focuses on exploring methods of J∗ surface generation
for fast optimal decision/control design.

Prokhorov and his colleagues at the Ford Research Laboratory have
done a significant amount of work in developing stability analysis tech-
niques for neural networks (e.g., [3], [4], [10]). An interesting appli-
cation of the AC method was their experiment with a “real” ball and
beam system. The benchmark ball and beam system was built in the
lab, and different approaches were used to control the system. Neural
networks were used in three roles: 1) to identify the system, 2) for the
controller, and 3) for the critic. In one of their studies, they made the
problem even more difficult by applying a sticky adhesive to the surface
of the beam [9]; the ACs successfully handled the problem.

Saeks and his colleagues at Accurate Automation Corporation have
been working with a variety of AC and adaptive dynamic program-
ming implementations (e.g. [30], [45], [46]). Some of these imple-
mentations include an ADP algorithm based directly on the Hamilton-
Jacobi-Bellman equation, and includes a continuous time stability proof
that remains valid during on-line training. In [30], demonstrations of
this algorithm are given for i) the linear case, ii) the nonlinear case
using a locally quadratic approximation to the value functional, and
iii) the nonlinear case using a (potentially global) radial basis function
approximation of the Value function. Another AC implementation has
been developed suitable for real-time applications [32], [33]. This is a
time-varying linear critic methodology based on LQR theory. Appli-
cations of these algorithms have included controlling the hybrid power
system of a hybrid electric vehicle, pitch control in simulated aircraft
problems, simulated X-43 autolanding analysis, path-planning for au-
tonomous UAV flight, and the guidance module of a satellite formation
flying algorithm.

Active work is also being performed by researchers such as Paul Wer-
bos, Jennie Si, Sylvia Ferrari/Robert Stengel, and Ganesh Venayag-
amourthy/Donald Wunsch. Please refer to their respective chapters in
this book for a summary of their work.

6. Application Issues

In this section, we discuss various considerations that are important
to the application of ADP. Before getting to the specifics, we comment
that two major issues confronted in establishing practical training pro-
tocols are (1) the choice of control scenarios, and (2) the setting of
values for the different parameters that govern the dynamics of the
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learning process. The control scenarios aspect includes the selection of
regulation points, targets/target trajectories, initial plant states, noise
regimes, and reset conditions (i.e. when should a training run be termi-
nated). Training parameters of critical importance include the learning
coefficients for both the critic and the controller, and the discount fac-
tor γ used in the Bellman recursion.

6.1. Problem Formulation. The mathematical formalism used in
previous sections indicates that the plant’s state vector X(t) is input
to the critic and to the controller. An important pragmatic issue turns
out being what to include in the definition of X(t) for ADP compu-
tational purposes? The control engineer using this methodology must
have deep understanding of the problem context and the physical plant
to be controlled to successfully make the requisite choices for X(t). A
strong suggestion is to invoke your engineering intuition and whatever
rigorous knowledge is available to satisfy yourself that the variables
you select as inputs to the controller and critic are sufficient to assure
that at every point in the corresponding state space, there will exist a
unique action for the controller to take. If you decide such uniqueness
is questionable, then you may have to estimate some (even a hybrid)
variable that will make the state space unique. If this is not achieved,
all is not lost, but more complex learning structures, e.g., recurrent
neural networks, may have to be used, and these are more difficult to
train.

Not all mathematically describable states are observable; and even if
they are in principle, there may be instrumentation constraints. Fur-
ther, there are cases where we might be able to measure certain system
variables (e.g., acceleration) whereas theory suggests fewer variables
(e.g., only position and velocity) are required. But, experience informs
us that in some situations, inclusion of the additional measurement
could make the ADP process work better - e.g., if the learning device
has to infer the equivalent of acceleration to satisfy certain control ob-
jectives, providing acceleration directly might be beneficial. However,
“more” is not always better, as more inputs potentially add to the com-
putational and inferencing burden. In such a case, one could explore
option(s) equivalent to providing position and acceleration instead of
position and velocity.

When performing the problem-formulation task, it is useful to dis-
cern whether the plant is decomposable - that is, to determine whether
certain aspects of the plant dynamics may be considered to be only
loosely coupled. If so, this could be useful while crafting the Utility
function (discussed below), and even provides the possibility that an
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equivalently loosely decoupled controller architecture might be appro-
priate.

While it may border on the obvious, another aspect of problem for-
mulation that is critical to success is a clear statement of the control
objectives. Only after clarity of the objectives is at hand, is one in a
position to give explicit attention to the fundamental issue of how these
objectives are to be represented for ADP application. The choice of
this representation is a prerequisite to the next task, and is one of the
key determinants of the eventual success or failure of the ADP design
process.

6.2. Crafting the Utility Function. The Utility function is the only
source of information the ADP process has about the task for which
it is designing the controller. When the statement is made that Dy-
namic Programming designs an optimal controller, optimality is defined
strictly in terms of the Utility function. It is important to recognize
that a different Utility function will (typically) yield a different con-
troller. The two key creative tasks performed by the user of ADP are

(1) deciding what to include in the X(t) vector, as discussed in the
above sub-section,

(2) crafting the Utility function in a manner that properly cap-
tures/embodies the problem-domain requirements, and yields a
desirable controller.

One mathematical formalism suggests designating the control task
in terms of a reference trajectory, say X∗(t) (which could in principle
be obtained from a reference model), and defining the Utility function
directly as U(t) = ||X(t)−X∗(t)|| (e.g., see [41]). In practice, however,
one finds that the ADP process can often be improved by treating some
of the components of X(t) in a non-uniform manner within U(t). For
example, different relative weightings might be used for various compo-
nents, or more dramatically, some of the error components might use
different powers, or alternatively, have nonlinear coefficients (e.g., see
[21], [42]). Further, as suggested in [16] and [23], there is often sub-
stantial benefit to paring down U(t) to contain the minimum number
of terms necessary to accomplish the task (what these are, however,
are not always easy to determine a priori).

We reproduce here a sequence of Utility functions reported in [21]
that were crafted to represent an increasing set of constraints stipulated
in the problem definition phase. The context was to design a steering
and velocity controller for a 2-axle, terrestrial, autonomous vehicle; the
task was to change lanes on a multi-lane road.
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The first Utility function defined in that paper is an example of the
suggestion above that it may be appropriate to have different weight-
ings of the state variables:

U1 = −
(

1

2
yerr

)2

−
(

1

8
verr

)2

− 1

16
(v̇)2

The design objectives that motivated this Utility function definition
were (a) reduce distance to centerline of adjacent lane (y-error) to zero,
(b) reduce velocity error to zero and (c) don’t be too aggressive in
making the velocity corrections.

The second Utility function is an example where a non-linear rule is
incorporated. To accommodate a stipulated requirement for handling
a sudden change of friction between the tire and the road (e.g., hit an
ice patch), an SI (sliding index) term was crafted to provide a proxy
indication of where on the nonlinear tire-model curve (of tire side force
vs. tire slip angle) the vehicle was operating in:

SI =


−10




∂ay

∂αf
−

(
∂ay

∂αf

)
base(

∂ay

∂αf

)
base







where
(

∂ay

∂αf

)
base

is the slope at the linear portion of the curves. The

terms in SI are calculated via (small) applied steering inputs and mea-
sured resulting side forces generated at the tire-road interface (via a
lateral accelerometer on the vehicle). So defined, the sliding index ap-
proaches a value of 10 when sliding is occurring, and approaches zero
for no sliding.

Then, a new Utility function was crafted as follows:

U2 =

[
U1 for SI < 3

U1 − 1
4
(SI)2 for SI ≥ 3

]

The SI value was input to the Critic and the Controller, and with this
Utility function the DHP process developed a controller that success-
fully dealt with an ice patch in the road (and similarly, for a lateral
wind gust), as described/discussed in [21].

In the third Utility function of the above reference, an additional
term to limit lateral acceleration was included to accommodate a stip-
ulation in the problem description concerning passenger “comfort” in
automobiles, or for trucks, a “low tipping” requirement:

U3 = U2 − 1

8
(af )

2



GUIDANCE IN THE USE OF ADAPTIVE CRITICS FOR CONTROL 13

The reader may consult [21] to see the performances of the sequence
of controllers generated by the DHP process using the above sequence
of Utility functions.

Another kind of Utility function modification is to add time-lagged
values of selected state variables, to help account for known delays in
the plant being controlled. An example of this was used for one of the
Narendra benchmark problems [31], presented in [24]:

U(t) = [x1(t + 1)− x′1(t + 1)]
2
+ [x2(t + 2)− x′2(t + 2)]

2

This Utility function did as well or better than more complex Utility
functions previously reported in the literature for the same benchmark
problem, and with substantially less computational overhead.

6.2.1. Decomposition of Utility Functions. If during the Problem For-
mulation task it is determined that the plant is (even approximately)
decomposable, then there is a potential for crafting separate Utility
functions for each of the resulting “chunks.”

In this case, it may be appropriate to define the overall Utility
function as a sum of such component Utility functions, i.e., U(t) =
U1(t) + ... + Up(t).

With such a formulation, a separate critic estimator could be used
for each term. For HDP critics, one has

J(t) =
∞∑
i=0

γiU(t + i)

=
∞∑
i=0

p∑
j=1

γiUj(t + i)

=

p∑
j=1

Jj(t)

and for DHP

∇J(t) =

p∑
j=1

∇Jj(t)

In practice, this decomposition tends to speed up critic learning, as
each sub-critic is estimating a simpler function.

In the case of multiple outputs from the controller, the controller
learning process can also be simplified if the additive terms in the cost
function correspond to separate modes, and the latter are dominated
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by distinct control variables. For example, consider a two dimensional
nonlinear system:

x1 = f1(x , u1)

x2 = f2(x , u2)

with primary cost function

U(t) = g1(x, u1, t) + g2(x, u2, t)

and secondary cost function

J(t) = J1(t) + J2(t)

In DHP this could be approached using two critics, each estimating
∇Ĵ1(t) or ∇Ĵ2(t) respectively. The complete gradient for controller
training would be(

∂

∂u1

Ĵ1(t) +
∂

∂u1

Ĵ2(t),
∂

∂u2

Ĵ1(t) +
∂

∂u2

Ĵ2(t)

)

For initial training, the cross terms could be dropped and the following

approximation used:
(

∂
∂u1

Ĵ1(t),
∂

∂u2
Ĵ2(t)

)
. This simplifies the learning

of the dominant plant dynamics and control effects. It may be useful
to include a subsequent fine tuning of the controller via inclusion of the
cross terms, unless the interactions are very weak.

See [22] for an example of decomposed utility functions for the steer-
ing and speed control of a 2-axle terrestrial vehicle. Also, see [41] for
a related kind of critic decomposition, one the author calls ‘primitive
adaptive critics.’

6.3. Scaling Variables. While theory does not speak to this issue di-
rectly, empirical evidence suggests that it is eminently useful to scale
the components of X(t) being fed into the controller and the critic (e.g.,
see [17]), such that each of the variable values are nominally in the range
of ±1, particularly when the critic and/or controller are implemented
via neural networks (this recommendation is dependent on the approx-
imating structure used). Further, as indicated above, it is important
to pay attention to the relative scaling of the component terms in the
Utility function. The latter may hinge solely on engineering intuition
related to the problem domain and the control specifications.

6.4. Selecting the Discount Factor. The original equation defined
by Bellman that led to Equation (1) above is as follows:

J(t) = U(t) +
∞∑

k=1

γkU(t + k)(2)
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We notice that the Value function J(t) is given in terms of the current
U(t), plus the sum of all future values of U(·), pre-multiplied by a
discount factor γ, where 0 ≤ γ ≤ 1. At γ = 0, only the present value
of U is used, ignoring all future values. At γ = 1, all future values are
deemed equally important (“infinite horizon” version).

In principle, we might expect the γ value to be governed by the
requirements of the original problem formulation. In applying ADP,
however, an important issue is how the value of γ influences the ADP
convergence process (via its role in the Bellman recursion, Equation
1). The degree to which this is felt is different for the HDP, DHP, and
GDHP structures. To help inform your intuition about this, note that
the critic outputs values that are used to train itself, so at early stages
of the process, the component in Equation 1 contributed by the critic
may be considered equivalent to ‘noise.’

For the HDP structures, those that directly estimate J(t) values,
appropriately selecting γ is critical for convergence of critic training.
Common practice (e.g. [9]) is to start training with low γ values and
then anneal them up (progressively increment them). The low γ values
represent a high discount rate that cancels out the right hand term of
the Bellman recursion. This results in the critic learning to approxi-
mate (just) the primary utility function U(t). Progressively increment-
ing γ then causes the critic to learn how the primary costs accumulate
through time to form the long-term (secondary) value function, J(t).

For the DHP structures, those that directly produce ∇J(t), this
annealing process tends to be less necessary, often allowing large γ
values to be used from the very beginning. For higher dimensional
problems, however, even for the DHP structure, it has been found
useful to “schedule” the γ values. A reasonable rule of thumb is that
even if a larger value of γ is suggested by the problem formulation
and/or the ADP structure type, use a small value at the early stages
of the ADP process, while the state of knowledge in the critic is low,
and as the critic’s training proceeds, incrementally increase γ to higher
levels.

6.5. Selecting Learning Rates. As mentioned earlier, the ADP struc-
tures addressed here all include two training loops: one for the critic
and one for the controller. A separate learning rate (or learning-rate
schedule) is associated with each training loop. In certain special cases,
theory may be invoked to determine approximate desired values for
the learning rates. For example, in Prokhorov et al., [57], success was
reported using dual Kalman filters to automatically adjust certain pa-
rameters, though this approach adds substantial computation to the
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process. More generally, however, “rule of thumb” is our primary
guide, and even these are determined empirically within given prob-
lem contexts. Determining the values of these and other parameters
turns out being the most labor-intensive aspect of employing the ADP
methodology. In some cases, the user gets the feeling that the process
requires an exhaustive search. The NWCIL DHP computational plat-
form mentioned in Section 5 (available at www.nwcil.pdx.edu) provides
a capability to experiment with lots of parameter values with minimal
human intervention.

As is well known, the learning rate values mentioned above are im-
portant determinants of the training loop dynamics - and in particular,
whether or not the process will converge, and if so, the convergence rate.
Pragmatically, one determines useful ranges for the two learning rates
empirically. Fortunately, once values are found that result in a conver-
gent ADP process, these values are relatively robust to other process
parameter changes the user may wish to explore. As with the γ values
of the previous section, once useful ranges for learning rates are found,
annealing (scheduling) the learning rates is also beneficial. The direc-
tion of annealing/scheduling in this case is the opposite: start with
larger learning rates, and anneal downwards as learning progresses.

During the process of discovering useful values of the learning rates,
if a selected set of rates results in the ADP process converging, but
very slowly, then increase the learning rates incrementally - until one
or both of the incremented values causes the process to diverge. Then
just back down a notch or two. The more usual situation, however,
is that early experiments result in a divergent process; in these cases,
it is useful to observe which loop diverges first. The rate in this loop
is adjusted first. Intuitively, since the controller is designed based on
information acquired by the critic, it would make sense to use a larger
learning-rate for the critic (to have it learn faster) than the controller.
Indeed, there is empirical evidence for this. However, we have also seen
counter examples, where it worked better for the controller to have a
higher learning rate. The rule-of-thumb we have developed is to start
with a ratio of about 10:1 for the learning rates, the critic’s being the
larger one. Typical learning-rate values found useful in the problem
domains explored by the first author in the past have been between
0.001 to 0.01, and sometimes up to 0.1.

Summary for Section 6.5
General summary:

Guidance for selection of ADP process parameters is via “rules of
thumb”.
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ADP parameter-value determination is the most labor-intensive as-
pect of employing the methodology.

Specific to this subsection:
Learning rate values determine training loop dynamics.
It is useful to use separate rates in each training loop.
One Rule of Thumb: Use a ratio of about 10:1 for the learning rates,

the larger one for the critic loop (however, see caveat in the text).
To determine useful range(s) for learning rates, start exploration

with (sometimes very) low values to find at least one set that will yield
convergence; increase incrementally until process no longer converges;
then back down a notch or two.

If no combination is found that yields convergence, see next subsec-
tion.

Learning-rate values found useful in applications to date (by first
author and co-workers) for the critic loop are between 0.001 - 0.01, and
sometimes up to 0.1.

Once useful ranges of learning rates are determined, scheduling (an-
nealing) the rates within these ranges may be beneficial during the
design runs.

Scheduling of Learning Rate values goes from large to small (in con-
trast to scheduling gamma values of previous sub-section, which goes
from small to large).

6.6. Convergence of the ADP (controller design) process. The
task of getting the ADP process to converge involves a carefully orches-
trated selection of all of the above items. Experience indicates that
there is strong interaction among their values in how they affect ADP
convergence. If after scaling has been accomplished and exploration
of learning rate and γ values has been performed with no successful
convergence, we suggest reconsidering the Utility function formulation.
We have examples of situations where seemingly minor changes in for-
mulation of the Utility function resulted in dramatically different ADP
convergence behavior and resulting controller design. Associated with
this, it may also be useful to reconsider the selection of variables be-
ing used as inputs to the controller and to the critic (cf. discussion in
Section 6.1 as well).

6.7. Designing the Training “Syllabus”. Specific attention must
be given to the design of the training regimen. Many issues need to be
considered. In the control context, a key issue is persistence of exci-
tation, which entails a requirement that the plant be stimulated such
that all important modes are excited “sufficiently often” during the
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learning process. Additionally, it is also important that the full range
of controller actions are experienced. A key rule-of-thumb in designing
the regimen is to start the training with the simplest tasks first, and
then build up the degree of difficulty. The truck backer-upper project
of [35] provides an excellent example of this training principle, albeit
in the context of a different learning methodology (Backpropagation
through time).

The above rule-of-thumb includes considerations such as choosing
initial plant states near regulation points or target states, selecting
target trajectories that remain within a region of state space with ho-
mogenous dynamics, and initializing the controller with a stabilizing
control law. This last approach falls under the topic of using a priori
information to pre-structure either the controller or critic (more on this
below). As the easier scenarios are successfully learned, harder scenar-
ios are introduced in a manner that persistence of excitation across
the entire desired operating region is achieved. In this stage, initial
conditions for the plant are chosen farther and farther from regula-
tion points, target trajectories are chosen so as to cross boundaries in
qualitative dynamics, etc. The progression continues until the entire
operating range of the controller is being exercised in the training runs.

A useful practice employed by the authors is to brainstorm how we
would train animals or humans, including ourselves, to learn the given
task. We then transform the insights gained into candidate training
syllabi for the given ADP task.

6.8. Stopping/Reset Criteria. Another operational issue to con-
sider is when to stop the learning process and start over again. In
the well-known pole-cart problem, there is a straightforward decision:
When the pole drops, stop the process, reset the pole, and continue
the training process (e.g. see [16], [17]). As another example, con-
sider training a steering controller for a 4-wheeled terrestrial vehicle
to change lanes on a highway: if the vehicle goes off the road, rather
than continuing the training process to see if the controller can learn to
get the vehicle back on the highway, instead, stop the process as soon
as the vehicle goes “out of bounds,” return to the starting point, and
continue the training, starting the controller and critic weights (in the
NN context) where they left off (e.g., see [21], [22]). The idea is to give
an opportunity to improve the controller based on the design it had
just before going out-of-bounds, rather than after it got “mired in the
mud,” as it might do in attempting to get back on the highway in the
steering example. This idea may easily be generalized: Specify limits
for each component of X(t) (and u(t) if appropriate) being used in the
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Utility function, create an out-of-bounds monitoring procedure, when
an out-of-bound condition is detected (for one or more of the mon-
itored variables), stop the process, return to an appropriate starting
point, and continue the training.

This stop/reset strategy may also be usefully applied in those cases
where the critic continues to diverge, no matter what choices are made
with learning rate and/or other parameters. After a relatively “sweet”
spot in the parameter values has been determined, even if the process
does not converge by itself, the stop/reset strategy has been successfully
employed to get the system to converge.

6.9. Simultaneous vs. Sequential Operation of Critic and Con-
troller Training Loops. Once a forward computation is performed
through the controller and plant, and a critic output is obtained (esti-
mate of J(t) or its derivatives), the ADP system is poised to perform
a learning cycle in each of the two training loops. One strategy would
be to simultaneously perform a learning cycle in both. This strat-
egy works, and indeed, the authors routinely use it. However, experi-
mentally determining values for the ADP process parameters discussed
above is sometimes more difficult with this strategy than with other
possibilities. In some early papers (e.g. [42], [43], [47], [57], [60], a “flip-
flop” strategy was proposed wherein training was performed a number
of times (called an epoch) in one loop while the training for the other
loop was put on “hold”, and then during the next epoch, the roles of
being trained and being on hold were flipped. This flip-flop sequencing
continued until the whole ADP process converged. While this strategy
tends to be easier to get to converge, its convergence rate is slower
than for other alternatives. This slower convergence is a consequence
of losing information in those loops that are placed on hold. Addi-
tional strategies were subsequently developed (see [16], [17]) that also
make use of the principle of separate (non-simultaneous) training, but
in addition provide a means of preserving all the available information,
thus avoiding the penalty of longer convergence times. The mecha-
nism for preserving the information is called “shadow critic” in the
critic training loop, and “shadow controller” in the controller training
loop. The shadow concept entails performing the training updates in a
COPY of the critic (rather than in the critic itself) and in a COPY of
the controller during their respective “hold” epochs. Then at the end
of the “hold” epoch, the design in the COPY (shadow version) is up-
loaded to the in-line version as a starting point for training during the
next epoch. Various combinations are described: Shadow Critic Only;
Shadow Controller Only; Shadow Critic and Shadow Controller. The
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motivating benefit for using these alternate strategies is their enhanced
convergence performance. In addition, however, for some limited cases
explored, the controller designs generated via the various strategies had
some qualitative differences as well [24].

More recently, the Shadow Controller concept was incorporated in
a proposed design of a method to deal with stability issues that arise
when the ADP method is to be used in an on-line context [19]. See
Section 6.11 below.

6.10. Embedding a-priori Knowledge. If a priori knowledge is
available about the problem domain that may be translated into a start-
ing design of the controller and/or the critic, then it behooves us to use
this knowledge as a starting point for the ADP procedures. While the
ADP methods may be made to converge with random initializations
of the controller and critic networks (usually only applicable in off-line
situations), it is generally understood that the better the starting con-
troller design, the “easier” it will be for the ADP process to converge.
Another way to look at this is that if the starting controller design is
“close” to an optimal design (e.g., the human designers already did
a pretty good job), then the ADP system’s task is one of refining a
design - and this is intuitively easier than having to explore the design
domain to even get to what is a starting point in the assumed context.

There are a variety of ways to obtain a priori information about the
problem domain that can be used to initialize the trainable function
approximator in the ADP process. For example, consider a system
with an existing controller, but the controller’s design is known to be
non-optimal and it is desired to improve the design. One could train a
neural network to copy this controller, substitute this NN in place of the
controller, and implement an ADP process to optimize the controller
design. If the ADP requires a differentiable plant model, then such a
model will also have to be developed before starting the process. With
this starting controller design, one would begin the ADP process with
a long epoch to train just the critic, and then transition into one of the
strategies described in the previous section to incrementally improve
both, the critic’s estimate of J∗ and the corresponding controller design.

An alternate location to embed a priori knowledge is in the critic.
For example, in the context of an LQR (linear quadratic regulator)
problem, the J∗ surface is known to be parabolic. While the various
parameter values of the parabolic surface may not be known a priori,
if the critic is pre-structured to just represent such surfaces, then ADP
convergence is enhanced, e.g. see [54]. We think of this in terms of
pre-biasing the critic’s ‘perception’ of the problem.
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Often times, the key source of a priori knowledge resides in the head
of a human expert. There is little available in the neural network liter-
ature that provides guidance on how to embed such a priori knowledge
into a neural network starting design. On the other hand, a large liter-
ature has developed in recent decades describing theory and methods
for using Fuzzy Logic to capture such human expertise, and further, for
using Fuzzy Systems in the controls context. Space limitations preclude
surveying that literature here; a couple of accessible suggestions to the
reader are [58], [62]. It is important to point out here that certain Fuzzy
structures qualify as trainable universal function approximators, and
thus, should in principle be usable in ADP processes. Indeed, success-
ful use of Fuzzy structures for both controller and/or critic roles, and
in fact, for the plant’s differentiable model, have been accomplished
(e.g., see [50], [51], [53]). We summarize below an example of such
an application (taken from [50]), to convey the thought process you
would use to employ such techniques. A summary of the results to be
described in the following few paragraphs is given in Table II.

A Fuzzy structure known as a first-order TSK model (e.g. see [62])
offers a direct approach for representing the relevant characteristics of
the plant, and for prestructuring both the controller and critic. A very
simple model of the well-known cart-pole system was constructed us-
ing such a structure, and for DHP training, it was demonstrated that
this model’s effectiveness was comparable to the use of a full analytic
model. This is especially interesting since no example-specific informa-
tion (pole length or mass, cart mass, etc.) was included in the model.

The line of reasoning went as follows. First, it was noted that the
six observable variables (related to pole angle θ and cart position x)
constitute a coupled pair of second order systems. It can be inferred

that the derivatives ∂θ
∂θ

, ∂θ
∂θ̇

, ∂θ
∂θ̈

, ∂θ̇
∂θ̇

, ∂θ̇
∂θ̈

, ∂x
∂x

, ∂x
∂ẋ

, ∂x
∂ẍ

, ∂ẋ
∂ẋ

and ∂ẋ
∂ẍ

are all always
positive. This observation constitutes a partial qualitative model of
the plant’s dynamics. An additional observation is that application of
a positive control force to the cart tends to increase x, ẋ and ẍ, and
decrease θ, θ̇ and θ̈; this a priori knowledge allows setting ∂x

∂u
, ∂ẋ

∂u
, and

∂ẍ
∂u

positive, and ∂θ
∂u

, ∂θ̇
∂u

and ∂θ̈
∂u

negative. This collection of assumptions
was defined as the Double Integrator Model (DIM). When the DIM
was substituted into the baseline DHP training procedure in place of
the true analytic plant model, the procedure successfully produced a
controller 81 percent of the time (as compared to 99.99 percent with
the analytic model).

Buoyed by this promising result, another piece of a priori knowledge
was crafted out of the observable fact that when the pole is deflected
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from vertical, the force of gravity will tend to increase the angular
acceleration of the pole in the same direction as the deflection while
also imparting an acceleration to the cart in the opposite direction.
This resulted in a new pair of rules:

If θ 6= 0 then
∂ẍ

∂θ
is negative

and

If θ 6= 0 then
∂θ̈

∂θ
is positive

The DIM augmented with these two rules was called the Crisp Rule
Double Integrator Model (CRDIM). When used in the DHP training
procedure this model turned out being only 76 percent effective.

While initially disappointing, this result provided the context for an
important conclusion: while the linguistic description of the plant’s
behavior is correct, the crisp implementation of the rules that were
used actually detracted from the effectiveness of the CRDIM for con-
troller training. By moving to a Fuzzy framework for the entire model,
substantially improved results were obtained.

To keep the fuzzy implementation simple, only three linguistic val-
ues were used for each variable: POSITIVE, ZERO and NEGATIVE.
A triangular membership function was used for the ZERO linguistic
value (with end points scaled consistent with the expected range of
the quantitative variable), and the membership functions for the POS-
ITIVE and NEGATIVE values were defined so that the sum of mem-
bership values for any quantitative value sum to 1. The underlying
observations included in the CRDIM were translated into fuzzy infer-
ence rules implemented using the sup-min operator for composition
and the max operator for aggregation (cf. [62]). Height defuzzification
was used, with centroid values of 1, 0 and -1 for POSITIVE, ZERO
and NEGATIVE output values respectively. It should be clear that
this Fuzzy Rule Model (FRM) would be a very poor numerical model
of the system. Never the less it was 99 percent effective when used in
DHP training, very close in performance to the true analytic model.
‘Effectiveness’ in this context is defined as the percentage of the trials
in which the training procedure successfully produces a controller.

More advanced details about use of Fuzzy structures in DHP ADP
systems are given in [52] and [53].
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Table II. Effectiveness of Models in DHP Training
(Pole-Cart problem)

Type of Model Effectiveness in Training
Analytic 99.99 %

Double Integrator 81 %
D. I. with Crisp Rules 76 %

Fuzzy Rules 99 %

6.11. Stability issues. Direct application of Dynamic Programming
(DP) as originally defined would be performed off-line, and would yield
an optimal controller design that would then be implemented and in-
serted into the object system. The DP method guarantees that the
resulting controller is a stabilizing one (entailed in the definition of
optimal).

The approximate DP (ADP) methods considered in this book are
also intended to yield optimal controllers, albeit only approximately
optimal ones, after the underlying iterative approximation process has
converged. Once the ADP process does converge, we can assume, with
reasonable theoretical justification, that the resulting controller design
is a stabilizing one (e.g. see [41]).

The stability story is more complicated, however, when the ADP
methods are to be used on-line to modify the design of the controller
to accommodate changes in the problem context (i.e. to be an adap-
tive controller in the traditional controls literature sense, or, to be a
reconfigurable controller of the more recent literature). In this (on-line)
case, the question of whether the controller design is a stabilizing one
has to be asked at each iteration of the ADP design process. This is
called step-wise stability in [30] or static stability in [2].

As in Section 5, we offer here a brief review of related research (here
concerning stability issues) as part of providing guidance to prospective
users of the ADP.

6.11.1. Recent Approaches to Stability Issues. The group at Colorado
State University address the issue of stability in ADP systems in terms
of what they call ‘static’ stability and ‘dynamic’ stability, [2]. Their
static stability means that each time the controller’s design is modified,
it continues to be a stabilizing controller. This kind of stability is called
step-wise stability in [30]. Their dynamic stability notion, on the other
hand, refers to the dynamics introduced by the sequence of changed
controller designs in the loop. They approach static stability with
neural network controllers by first extracting the linear time-invariant
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(LTI) components of the neural network and representing the remain-
ing parts as sector-bounded nonlinear uncertainties. Integral Quadratic
Constraint (IQC) analysis [1] is then used to determine the stability of
the system consisting of the plant, nominal controller, and the neural
network with given weight values. The dynamic stability problem is
addressed by once again treating the neural network’s nonlinear com-
ponents as sector bounded nonlinear uncertainties. In addition, un-
certainty in the form of a slowly time-varying scalar is added to cover
weight changes during learning. Finally, IQC analysis is applied to de-
termine stability [29]. In this way, the network weight learning problem
is transformed into one of network weight uncertainty; following this,
a straightforward computation guarantees the stability of the network
during training. The “down side” of this approach is its rather slow
convergence to a design solution.

The group at the University of Massachusetts use Lyapunov methods
to successfully verify qualitative properties of controller designs, such
as stability, or limiting behavior, [28]. Lyapunov-based methods are
used to ensure that an agent learning through reinforcement learning
exhibits behavior that satisfies qualitative properties relating to goal-
achievement and safety.

The group at the Ford Research Laboratories has done a signifi-
cant amount of work in analyzing the stability of recurrent neural net-
works (RNNs), [3], [4], [9], [10]. Their work focuses on the global
Lyapunov stability of multilayer perceptrons, where they assume the
network weights are fixed. They perform a state space transformation
to convert the original RNN equations to a form suitable for stability
analysis. Then appropriate linear matrix inequalities (LMI) are solved
to determine whether the system under study is globally exponentially
stable. In [4], an on-line system capable of analyzing an input-output
data sequence to construct a sequence of binary classifications without
being provided correct class information as part of the training process
is described. The system employs both supervised and unsupervised
training techniques to form multiple behavior models.

The group at Portland State University’s NW Computational Intel-
ligence Laboratory has proposed a computation/simulation approach
based on the Shadow Controller concept mentioned in Section 6.9 (e.g.
see [18], [19]). This approach is predicted to become viable for on-line
applications as computational power continues to increase. Since the
issue during on-line training of a controller is to avoid instantiating
into the control loop a controller that is not stabilizing, the (DHP,
in their case) training is done only on the Shadow Controller. While
many issues remain to be resolved for this proposed procedure, the idea
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is to determine the (local) stability of the current Shadow Controller
design by performing a high-speed simulation of the closed loop (using
the plant model already required for the DHP method), determine a
local linearization, determine the s-plane pole locations, and from this
test to determine whether the current Shadow Controller design meets
minimum stability requirements; if so, upload the design to the on-line
controller; if not, wait until another train/test cycle. The assumption is
that stabilizing controller designs will occur sufficiently often to render
the proposed procedure viable.

The group at Accurate Automation Corporation has developed an
adaptive dynamic programming (incidentally, in [30], the acronym ADP
is used for Adaptive Dynamic Programming, whereas in the present
book ADP is used for Approximate Dynamic Programming) algorithm
with a continuous time stability proof, [30] . The algorithm is initial-
ized with a (stabilizing) Value function, and the corresponding control
law is computed via the Hamilton-Jacobi-Bellman Equation (which is
thus guaranteed to be a stabilizing controller for this step), and the sys-
tem is run; the resultant state trajectories are kept track of and used
to update the Value function in a soft computing mode. The method
is repeated to convergence. In [30], this method is shown to be glob-
ally convergent, with step-wise stability, to the optimal Value function
/ control law pair for an (unknown) input affine system with an in-
put quadratic performance measure (modulo the appropriate technical
conditions). This algorithm has been demonstrated on the example
problems mentioned in Section 5 for Saeks and his colleagues.

7. Items For Future ADP Research

As mentioned in Section 1, much progress in the development and
application of Adaptive Critics has already occurred, yet much remains
to be done. We comment here on two topics that appear to us to have
significant potential for expanded/enhanced application of the ADP
methods. One relates to employment of Fuzzy communication among
the actors in an ADP system, and the other relates to speeding up the
process of J∗ generation in selected problem domains.

The idea for the latter is to develop a computational intelligence
methodology that efficiently designs optimal controllers for additional
problems within an assumed problem domain, based on knowledge of
existing designs in that domain. Research on this approach is just start-
ing at the NWCIL, but promises to benefit from broader involvement.
As currently envisioned, the key ingredient of this methodology will
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be a J∗ Surface Generator (J∗SG). Fundamental tasks in this quest
involve representation, representation, representation.

The idea for including Fuzzy communication among the actors in an
ADP system (in contrast to within the various actors, as discussed in
Section 6.10) is motivated by observing the process wherein, for ex-
ample, a human athlete refines his/her performance based on verbal
hints/instructions provided by an experienced coach (this may apply
to many human activities, such as dancing, art, etc.). A potentially key
location for receiving/embedding such knowledge communicated via a
Fuzzy representation could be the Utility function. A hint that the
Utility function could be the heart of such a refinement process may
reside for us in the sequence of additions to the Utility functions de-
scribed in Section 6.2, and the corresponding refinements in controller
performance achieved. Each of us has many personal experiences of
using verbally communicated guidance to enhance some kind of per-
formance, and this could provide a rich source of intuition for such an
approach. We encourage dialogue to begin within our research com-
munity.

References

[1] C. Anderson. Approximating a policy can be easier than approximating a value
function. Technical Report CS-00-101, Colorado State University, 2000.

[2] C. Anderson, R. M. Kretchner, P. M. Young, and D. C. Hittle. Robust re-
inforcement learning control with static and dynamic stability. International
Journal of Robust and Nonlinear Control, 11, 2001.

[3] N. Barabanov and D. Prokhorov. Stability analysis of discrete-time recurrent
neural networks. IEEE Trans. On Neural Networks, March, 2002.

[4] N. Barabanov and D. Prokhorov. Two alternative stability criteria for discrete-
time rmlp. Las Vegas, NV, Dec. 2002. Control and Decision Conference.

[5] A. G. Barto. Handbook of Intelligent Control, chapter Reinforcement Learn-
ing and Adaptive Critic Methods, pages 469–491. New York: Van Nostrand-
Reinhold, 1992.

[6] A. G. Barto and R. S. Sutton. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[7] R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.
[8] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena

Scientific, 1996.
[9] P. Eaton, D. Prokhorov, and D. Wunsch. Neurocontroller for fuzzy ball-and-

beam systems with nonlinear, nonuniform friction. IEEE Trans. On Neural
Networks, pages 423–435, March 2000.

[10] L. Feldkamp, T. Feldkamp, and D. Prokhorov. Intelligent Signal Processing,
chapter An Approach to Adaptive Classification. IEEE Press, 2001.

[11] Z. Huang and S. N. Balakrishnan. Robust adaptive critic based neurocon-
trollers for missiles with model uncertainties. 2001 AAA Guidance, Navigation
and Control Conference, Montreal, Canada, Aug 2001.



GUIDANCE IN THE USE OF ADAPTIVE CRITICS FOR CONTROL 27

[12] Z. Huang and S.N. Balakrishnan. Robust adaptive critic based neurocontrollers
for systems with input uncertainties. Proceedings of IJCNN’2000, Como, Italy,
pages B–263, July 2000.

[13] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[14] K. KrishnaKumar and J. Neidhoefer. Immunized adaptive critics. invited ses-
sion on Adaptive Critics, ICNN ’97, Houston, 1997. A version of this was
presented at ANNIE ’96, November 10- 13, St. Louis, MO.

[15] K. KrishnaKumar and J. Neidhoefer. Immunized Adaptive Critic for an Au-
tonomous Aircraft Control Application. Artificial immune systems and their
applications. Springer-Verlag, Inc., 1998.

[16] G. G. Lendaris and T. T. Shannon C. Paintz. More on training strategies
for critic and action neural networks in dual heuristic programming method
(invited paper). Proceedings of Systems Man and Cybernetics Society Interna-
tional Conference’97, Orlando, IEEE Press, October 1997.

[17] G. G. Lendaris and C. Paintz. Training strategies for critic and action neural
networks in dual heuristic programming method. Proceedings of International
Conference on Neural Networks’97 (ICNN’97), Houston, July 1997.

[18] G. G. Lendaris, R. A. Santiago, and M. S. Carroll. Dual heuristic program-
ming for fuzzy control. Proceeedings of IFSA / NAFIPS Conference,Vancouver,
B.C., July 2002.

[19] G. G. Lendaris, R. A. Santiago, and M. S. Carroll. Proposed framework for
applying adaptive critics in real-time realm. Proceedings of International Con-
ference on Neural Networks’02 (IJCNN’ 2002), Hawaii, May 2002.

[20] G. G. Lendaris, R. A. Santiago, J. McCarthy, and M. S. Carroll. Controller
design via adaptive critic and model reference methods. Proceedings of Inter-
national Conference on Neural Networks’03 (IJCNN’ 2003), Portland, July
2003.

[21] G. G. Lendaris and L. J. Schultz. Controller design (from scratch) using ap-
proximate dynamic programming. Proceedings of IEEE International Sympo-
sium on Intelligent Control ’2000,(IEEE-ISIC’2000), Patras,Greece, July 2000.

[22] G. G. Lendaris, L. J. Schultz, and T. T. Shannon. Adaptive critic design for
intelligent steering and speed control of a 2-axle vehicle. Proceedings of Inter-
national Conference on Neural Networks’00 (IJCNN’2000) Italy, Jan 2000.

[23] G. G. Lendaris and T. T. Shannon. Application considerations for the dhp
methodology. Proceedings of the International Joint Conference on Neural Net-
works’98 (IJCNN’98), Anchorage, IEEE Press, May 1998.

[24] G. G. Lendaris, T. T. Shannon, and A. Rustan. A comparison of training
algorithms for dhp adaptive critic neuro-control. Proceedings of International
Conference on Neural Networks’99 (IJCNN’99), Washington,DC, 1999.

[25] G. G. Lendaris, T. T. Shannon, L. J. Schultz, S. Hutsell, and A. Rogers.
Dual heuristic programming for fuzzy control. Proceeedings of IFSA / NAFIPS
Conference,Vancouver, B.C., July 2001.

[26] X. Liu and S. N. Balakrishnan. Convergence analysis of adaptive critic based
neural networks. Proceedings of 2000 American Control Conference, Chicago,
IL, June 2000.

[27] R. Luus. Iterative Dynamic Programming. CRC Press, 2000.



28 GEORGE G. LENDARIS AND JAMES C. NEIDHOEFER

[28] A. McGovern and A. G. Barto. Automatic discovery of subgoals in reinforce-
ment learning using diverse density. Proceedings of the 18th International Con-
ference on Machine Learning, pages 361–368, 2001.

[29] A. Megretski and A. Rantzer. System analysis via integral quadratic con-
straints: Part ii. Technical Report ISRN LUTFD2/TFRT-7559-SE, Lund In-
stitute of Technology, September, June 1997.

[30] J. J. Murray, C. Cox, G.G. Lendaris, and R. Saeks. Adaptive dynamic program-
ming. IEEE TRANSACTIONS on SYSTEMS, MAN. and CYBERNETICS,
PART C: Applications and Reviews, 32, No.2:140–153, May 2002.

[31] K. S. Narendra and S. Mukhopadhyay. Adaptive control of nonlinear multi-
variable systems using neural networks. Neural Networks, 7(5):737–752, 1994.

[32] J. C. Neidhoefer. Report. Technical Report AAC-01-055, Accurate Automation
Corp, 2001.

[33] J. C. Neidhoefer. Report. Technical Report AAC-02-016, Accurate Automation
Corp, 2002.

[34] J. C. Neidhoefer and K. Krishnakumar. Intelligent control for autonomous
aircraft missions. IEEE Transactions on Systems, Man, and Cybernetics, Part
A, January 2001.

[35] D. Nguyen and B. Widrow. Neural Networks for Control, chapter The Truck
Backer-Upper: an Example of Self Learning in Neural Networks. MIT Press,
1957.

[36] R. Padhi and S. N. Balakrishnan. Adaptive critic based optimal control for
distributed parameter systems. Proceedings International Conference on In-
formation, Communication and Signal Processing, December 1999.

[37] R. Padhi and S. N. Balakrishnan. A systematic synthesis of optimal pro-
cess control with neural networks. Proceedings American Control Conference,
Washington, D.C., June 2001.

[38] R. Padhi, S. N. Balakrishnan, and T. Randolph. Adaptive critic based opti-
mal neuro control synthesis for distributed parameter systems. Automatica,
37:1223–1234, 2001.

[39] J. C. Pearce. The Biology of Transcendence. Park Street Press, 2002.
[40] T. J. Perkins and A. G. Barto. Lyapunov design for safe reinforcement learning.

AAAI Spring Symposium on Safe Learning Agents.
[41] D. Prokhorov. Adaptive Critic Designs and their Application. PhD thesis,

Texas Tech University, 1997. Department of Electrical Engineering.
[42] D. Prokhorov, R. Santiago, and D. Wunsch. Adaptive critic designs: A case

study for neurocontrol. Neural Networks, 8:1367–1372, 1995.
[43] D. Prokhorov and D. Wunsch. Adaptive critic designs. IEEE Transactions on

Neural Networks, 8(5):997–1007, 1997.
[44] A. Rogers, T. T. Shannon, and G. G. Lendaris. A comparison of dhp

based antecedent parameter tuning strategies for fuzzy control. Proceedings
of IFSA/NAFIPS Conference, Vancouver B.C., July, 2001.

[45] R. Saeks, C. Cox, J. Neidhoefer, and D. Escher. Adaptive critic control of the
power train in a hybrid electric vehicle. Proceedings SMCia Workshop, 1999.

[46] R. Saeks, C. Cox, J. Neidhoefer, P. Mays, and J. Murray. Adaptive critic
control of a hybrid electric vehicle. IEEE Transactions on Intelligent Trans-
portation Systems, 3, No.4, December, 2002.



GUIDANCE IN THE USE OF ADAPTIVE CRITICS FOR CONTROL 29

[47] R. Santiago and P. Werbos. New progress towards truly brain-like intelligent
control. PROC WCNN ’94, pp. I-2toI-33, Erlbaum, 1994.

[48] L. J. Schultz, T. T. Shannon, and G. G. Lendaris. Using dhp adaptive
critic methods to tune a fuzzy automobile steering controller. Proceedings of
IFSA/NAFIPS Conference, Vancouver, B.C., July, 2001.

[49] T. T. Shannon. Partial , noisy and qualitative models for adaptive critic based
neuro-control. Proceedings of International Conference on Neural Networks’99
(IJCNN’99), Washington, D.C., July, 1999.

[50] T. T. Shannon and G. G. Lendaris. Qualitative models for adaptive critic
neurocontrol. Proceedings of IEEE SMC’99 Conference, Tokyo, June, 1999.

[51] T. T. Shannon and G. G. Lendaris. Adaptive critic based approximate dynamic
programming for tuning fuzzy controllers. Proceedings of IEEE-FUZZ 2000,
IEEE Press, 2000.

[52] T. T. Shannon and G. G. Lendaris. A new hybrid critic-training method for
approximate dynamic programming. Proceedings of International Society for
the System Sciences, ISSS’2000, Toronto, August, 2000.

[53] T. T. Shannon and G. G. Lendaris. Adaptive critic based design of a fuzzy
motor speed controller. Proceedings of ISIC2001, Mexico City, Mexico, Sep-
tember, 2001.

[54] T. T. Shannon, R. A. Santiago, and G. G. Lendaris. Accelerated critic learn-
ing in approximate dynamic programming via value templates and perceptual
learning. Proceedings of IJCNN’03, Portland, July, 2003.

[55] S. Shervais and T. T. Shannon. Adaptive critic based adaptation of a fuzzy pol-
icy manager for a logistic system. Proceedings of IFSA /NAFIPS Conference,
Vancouver, B.C., July, 2001.

[56] R. S. Sutton, A. G. Barto, and R. J. Williams. Reinforcement learning is direct
adaptive optimal control. Proceedings of the American Control Conference,
Boston, MA, pp. 2143-2146, 1991.

[57] N. Visnevski and D. Prokhorov. Control of a nonlinear multivariable system
with adaptive critic designs. Proceedings of Artificial Neural Networks in En-
gineering (ANNIE), ASME Press, New York, 6:559–565, 1996.

[58] L. X. Wang. A Course in Fuzzy Systems and Control. Prentice Hall, 1997.
[59] P. J. Werbos. Neural Networks for Control, chapter A Menu of Designs for

Reinforcement Learning Over Time, pages 67–95. MIT Press, Cambridge, MA,
1990.

[60] P. J. Werbos. Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive
Approaches, chapter Approximate Dynamic Programming for Real-Time Con-
trol and Neural Modeling, pages 493–525. Van Nostrand Reinhold, New York,
1994.

[61] B. Widrow, N. Gupta, and S. Maitra. Punish/reward: Learning with a critic
in adaptive threshhold systems. IEEE Transactions on Systems, Man and Cy-
bernetics, 3(5):455–465, 1973.

[62] J. Yen and R. Langari. Fuzzy Logic: Intelligence, Control and Information.
Prentice Hall, 1999.


