
C5955

w w w . c r c p r e s s . c o m

Editor-in-Chief

Krishnaiyan “KT” Thulasiraman

Edited by

Subramanian Arumugam
Andreas Brandstädt

Takao Nishizeki
Thulasiram

an, A
rum

ugam
,

B
randstädt, and N

ishizeki

Chapman & Hall/CRC
Computer & Information Science Series

Chapman & Hall/CRC
Computer & Information Science Series

The fusion between graph theory and combinatorial optimization has led to theoretically profound
and practically useful algorithms, yet there is no book that currently covers both areas together.
Handbook of Graph Theory, Combinatorial Optimization, and Algorithms is the first to present a
unified, comprehensive treatment of both graph theory and combinatorial optimization.

Divided into 11 cohesive sections, the handbook’s 44 chapters focus on graph theory, combinatorial
optimization, and algorithmic issues. The book provides readers with the algorithmic and theoretical
foundations to

• Understand phenomena as shaped by their graph structures
• Develop needed algorithmic and optimization tools for the study of graph structures
• Design and plan graph structures that lead to certain desirable behavior

With contributions from more than 40 worldwide experts, this handbook equips readers with the
necessary techniques and tools to solve problems in a variety of applications. Readers gain expo-
sure to the theoretical and algorithmic foundations of a wide range of topics in graph theory and
combinatorial optimization, enabling them to identify (and hence solve) problems encountered in
diverse disciplines, such as electrical, communication, computer, social, transportation, biological,
and other networks.

Features
• Gives a broad, integrated account of graph theory, combinatorial optimization, and related

algorithmic issues
• Describes well-tested algorithms, techniques, and tools for solving computationally intractable

problems
• Covers numerous topics of interest in applications in computer science, electrical and com-

puter engineering, very large-scale integrated (VLSI) circuit design, industrial and systems
engineering, telecommunication networks, network science and engineering, transportation
networks, machine intelligence, and data mining

• Provides the theoretical foundation for further advances
• Includes a survey section at the end of each chapter that offers pointers for exploring related

advances and issues

Handbook of
Graph Theory,
Combinatorial

Optimization, and
Algorithms

H
andbook of G

raph Theory,
C

om
binatorial O

ptim
ization, and A

lgorithm
s

Computer Science

C5955_cover.indd 1 11/3/15 8:58 AM

Handbook of
Graph Theory,
Combinatorial

Optimization, and
Algorithms

CHAPMAN & HALL/CRC
COMPUTER and INFORMATION SCIENCE SERIES

Series Editor: Sartaj Sahni

ADVERSARIAL REASONING: COMPUTATIONAL APPROACHES TO READING THE OPPONENT’S MIND
Alexander Kott and William M. McEneaney

COMPUTER-AIDED GRAPHING AND SIMULATION TOOLS FOR AUTOCAD USERS
P. A. Simionescu

DELAUNAY MESH GENERATION
Siu-Wing Cheng, Tamal Krishna Dey, and Jonathan Richard Shewchuk

DISTRIBUTED SENSOR NETWORKS, SECOND EDITION
S. Sitharama Iyengar and Richard R. Brooks

DISTRIBUTED SYSTEMS: AN ALGORITHMIC APPROACH, SECOND EDITION
Sukumar Ghosh

ENERGY-AWARE MEMORY MANAGEMENT FOR EMBEDDED MULTIMEDIA SYSTEMS: A COMPUTER-AIDED DESIGN APPROACH
Florin Balasa and Dhiraj K. Pradhan

ENERGY EFFICIENT HARDWARE-SOFTWARE CO-SYNTHESIS USING RECONFIGURABLE HARDWARE
Jingzhao Ou and Viktor K. Prasanna

FUNDAMENTALS OF NATURAL COMPUTING: BASIC CONCEPTS, ALGORITHMS, AND APPLICATIONS
Leandro Nunes de Castro

HANDBOOK OF ALGORITHMS FOR WIRELESS NETWORKING AND MOBILE COMPUTING
Azzedine Boukerche

HANDBOOK OF APPROXIMATION ALGORITHMS AND METAHEURISTICS
Teofilo F. Gonzalez

HANDBOOK OF BIOINSPIRED ALGORITHMS AND APPLICATIONS
Stephan Olariu and Albert Y. Zomaya

HANDBOOK OF COMPUTATIONAL MOLECULAR BIOLOGY
Srinivas Aluru

HANDBOOK OF DATA STRUCTURES AND APPLICATIONS
Dinesh P. Mehta and Sartaj Sahni

HANDBOOK OF DYNAMIC SYSTEM MODELING
Paul A. Fishwick

HANDBOOK OF ENERGY-AWARE AND GREEN COMPUTING
Ishfaq Ahmad and Sanjay Ranka

HANDBOOK OF GRAPH THEORY, COMBINATORIAL OPTIMIZATION, AND ALGORITHMS
Krishnaiyan “KT” Thulasiraman, Subramanian Arumugam, Andreas Brandstädt, and Takao Nishizeki

PUBLISHED TITLES

HANDBOOK OF PARALLEL COMPUTING: MODELS, ALGORITHMS AND APPLICATIONS
Sanguthevar Rajasekaran and John Reif

HANDBOOK OF REAL-TIME AND EMBEDDED SYSTEMS
Insup Lee, Joseph Y-T. Leung, and Sang H. Son

HANDBOOK OF SCHEDULING: ALGORITHMS, MODELS, AND PERFORMANCE ANALYSIS
Joseph Y.-T. Leung

HIGH PERFORMANCE COMPUTING IN REMOTE SENSING
Antonio J. Plaza and Chein-I Chang

HUMAN ACTIVITY RECOGNITION: USING WEARABLE SENSORS AND SMARTPHONES
Miguel A. Labrador and Oscar D. Lara Yejas

IMPROVING THE PERFORMANCE OF WIRELESS LANs: A PRACTICAL GUIDE
Nurul Sarkar

INTEGRATION OF SERVICES INTO WORKFLOW APPLICATIONS
Paweł Czarnul

INTRODUCTION TO NETWORK SECURITY
Douglas Jacobson

LOCATION-BASED INFORMATION SYSTEMS: DEVELOPING REAL-TIME TRACKING APPLICATIONS
Miguel A. Labrador, Alfredo J. Pérez, and Pedro M. Wightman

METHODS IN ALGORITHMIC ANALYSIS
Vladimir A. Dobrushkin

MULTICORE COMPUTING: ALGORITHMS, ARCHITECTURES, AND APPLICATIONS
Sanguthevar Rajasekaran, Lance Fiondella, Mohamed Ahmed, and Reda A. Ammar

PERFORMANCE ANALYSIS OF QUEUING AND COMPUTER NETWORKS
G. R. Dattatreya

THE PRACTICAL HANDBOOK OF INTERNET COMPUTING
Munindar P. Singh

SCALABLE AND SECURE INTERNET SERVICES AND ARCHITECTURE
Cheng-Zhong Xu

SOFTWARE APPLICATION DEVELOPMENT: A VISUAL C++®, MFC, AND STL TUTORIAL
Bud Fox, Zhang Wenzu, and Tan May Ling

SPECULATIVE EXECUTION IN HIGH PERFORMANCE COMPUTER ARCHITECTURES
David Kaeli and Pen-Chung Yew

VEHICULAR NETWORKS: FROM THEORY TO PRACTICE
Stephan Olariu and Michele C. Weigle

PUBLISHED TITLES CONTINUED

Editor-in-Chief

Krishnaiyan “KT” Thulasiraman
University of Oklahoma

Norman, Oklahoma, USA

Edited by

Subramanian Arumugam
Kalasalingam University

Tamil Nadu, India

Andreas Brandstädt
University of Rostock

Rostock, Germany

Takao Nishizeki
Tohoku University

Sendai, Japan

Handbook of
Graph Theory,
Combinatorial

Optimization, and
Algorithms

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20151116

International Standard Book Number-13: 978-1-4200-1107-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and
information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission
to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact
the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides
licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation
without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface xi

Editors xiii

Contributors xv

Section I Basic Concepts and Algorithms

Chapter 1 � Basic Concepts in Graph Theory and Algorithms 3

Subramanian Arumugam and Krishnaiyan “KT” Thulasiraman

Chapter 2 � Basic Graph Algorithms 21

Krishnaiyan “KT” Thulasiraman

Chapter 3 � Depth-First Search and Applications 59

Krishnaiyan “KT” Thulasiraman

Section II Flows in Networks

Chapter 4 � Maximum Flow Problem 79

F. Zeynep Sargut, Ravindra K. Ahuja, James B. Orlin, and Thomas L. Magnanti

Chapter 5 � Minimum Cost Flow Problem 113

Balachandran Vaidyanathan, Ravindra K. Ahuja, James B. Orlin, and Thomas L. Magnanti

Chapter 6 � Multicommodity Flows 157

Balachandran Vaidyanathan, Ravindra K. Ahuja, James B. Orlin, and Thomas L. Magnanti

Section III Algebraic Graph Theory

Chapter 7 � Graphs and Vector Spaces 177

Krishnaiyan “KT” Thulasiraman and M. N. S. Swamy

Chapter 8 � Incidence, Cut, and Circuit Matrices of a Graph 191

Krishnaiyan “KT” Thulasiraman and M. N. S. Swamy

C5955–C000.tex vii 2015/11/4 8:57pm

vii

viii � Contents

Chapter 9 � Adjacency Matrix and Signal Flow Graphs 215

Krishnaiyan “KT” Thulasiraman and M. N. S. Swamy

Chapter 10 � Adjacency Spectrum and the Laplacian Spectrum of a Graph 227

R. Balakrishnan

Chapter 11 � Resistance Networks, Random Walks, and Network
Theorems 247

Krishnaiyan “KT” Thulasiraman and Mamta Yadav

Section IV Structural Graph Theory

Chapter 12 � Connectivity 273

Subramanian Arumugam and Karam Ebadi

Chapter 13 � Connectivity Algorithms 291

Krishnaiyan “KT” Thulasiraman

Chapter 14 � Graph Connectivity Augmentation 315

András Frank and Tibor Jordán

Chapter 15 � Matchings 349

Michael D. Plummer

Chapter 16 � Matching Algorithms 373

Krishnaiyan “KT” Thulasiraman

Chapter 17 � Stable Marriage Problem 403

Shuichi Miyazaki

Chapter 18 � Domination in Graphs 419

Subramanian Arumugam and M. Sundarakannan

Chapter 19 � Graph Colorings 449

Subramanian Arumugam and K. Raja Chandrasekar

Section V Planar Graphs

Chapter 20 � Planarity and Duality 475

Krishnaiyan “KT” Thulasiraman and M. N. S. Swamy

Chapter 21 � Edge Addition Planarity Testing Algorithm 489

John M. Boyer

Chapter 22 � Planarity Testing Based on PC-Trees 525

Wen-Lian Hsu

C5955–C000.tex viii 2015/11/4 8:57pm

Contents � ix

Chapter 23 � Graph Drawing 537

Md. Saidur Rahman and Takao Nishizeki

Section VI Interconnection Networks

Chapter 24 � Introduction to Interconnection Networks 587

S. A. Choudum, Lavanya Sivakumar, and V. Sunitha

Chapter 25 � Cayley Graphs 627

S. Lakshmivarahan, Lavanya Sivakumar, and S. K. Dhall

Chapter 26 � Graph Embedding and Interconnection Networks 653

S.A. Choudum, Lavanya Sivakumar, and V. Sunitha

Section VII Special Graphs

Chapter 27 � Program Graphs 691

Krishnaiyan “KT” Thulasiraman

Chapter 28 � Perfect Graphs 707

Ch́ınh T. Hoàng and R. Sritharan

Chapter 29 � Tree-Structured Graphs 751

Andreas Brandstädt and Feodor F. Dragan

Section VIII Partitioning

Chapter 30 � Graph and Hypergraph Partitioning 829

Sachin B. Patkar and H. Narayanan

Section IX Matroids

Chapter 31 � Matroids 879

H. Narayanan and Sachin B. Patkar

Chapter 32 � Hybrid Analysis and Combinatorial Optimization 923

H. Narayanan

Section X Probabilistic Methods, Random Graph Models,
and Randomized Algorithms

Chapter 33 � Probabilistic Arguments in Combinatorics 945

C.R. Subramanian

Chapter 34 � Random Models and Analyses for Chemical Graphs 997

Daniel Pascua, Tina M. Kouri, and Dinesh P. Mehta

C5955–C000.tex ix 2015/11/4 8:57pm

x � Contents

Chapter 35 � Randomized Graph Algorithms: Techniques and Analysis 1011

Surender Baswana and Sandeep Sen

Section XI Coping with NP-Completeness

Chapter 36 � General Techniques for Combinatorial Approximation 1027

Sartaj Sahni

Chapter 37 � ε-Approximation Schemes for the Constrained Shortest Path
Problem 1035

Krishnaiyan “KT” Thulasiraman

Chapter 38 � Constrained Shortest Path Problem: Lagrangian
Relaxation-Based Algorithmic Approaches 1041

Ying Xiao and Krishnaiyan “KT” Thulasiraman

Chapter 39 � Algorithms for Finding Disjoint Paths with QoS Constraints 1063

Alex Sprintson and Ariel Orda

Chapter 40 � Set-Cover Approximation 1075

Neal E. Young

Chapter 41 � Approximation Schemes for Fractional Multicommodity
Flow Problems 1079

George Karakostas

Chapter 42 � Approximation Algorithms for Connectivity Problems 1097

Ramakrishna Thurimella

Chapter 43 � Rectilinear Steiner Minimum Trees 1115

Tao Huang and Evangeline F. Y. Young

Chapter 44 � Fixed-Parameter Algorithms and Complexity 1141

Venkatesh Raman and Saket Saurabh

Index 1197

C5955–C000.tex x 2015/11/4 8:57pm

Preface

Research in graph theory and combinatorial optimization has experienced explosive growth
in the last three decades or so. Rapid technological advances such as those in telecommu-
nication networks and large-scale integrated circuit design; emergence of new areas such as
network science, which emphasizes applications in social networks and biological networks;
and advances in theoretical computer science have all contributed to this explosion of inter-
est and knowledge in graph theory and combinatorial optimization and related algorithmic
issues. Therefore, it is no surprise that these disciplines have come to play a central role in
engineering and computer science curricula. Several excellent textbooks dealing with graph
theory or combinatorial optimization are now available. These books can be broadly classi-
fied into two categories. In the first category are the books that deal with all the essential
topics in graph theory or combinatorial optimization. These books are intended to serve as
textbooks for senior undergraduate students and beginning graduate students. In the second
category are books that give an in-depth treatment of certain specific topics. They are appro-
priate for students who intend to pursue a research career in graph theory or combinatorial
optimization. Since these disciplines have reached a certain level of maturity, we see a need
for a book that gives a broader and an integrated treatment of both graph theory and combi-
natorial optimization. Such a book will help students and researchers equip themselves with
techniques and tools that will strengthen their ability to see opportunities to apply graph
theory and combinatorial optimization in solving problems they encounter in their applica-
tions. Our long years of experience in teaching and applying graph theory and combinatorial
optimization have convinced us that while tools and techniques enhance one’s ability to solve
problems, a broader exposure to them will also help an individual see problems that will not
be visible otherwise. This philosophy is the underlying motivating factor for undertaking this
project.

A book that satisfies the above objective has to be necessarily a handbook with contribu-
tions from experts on the various topics to be covered. Size limitations also require that we
make some sacrifices in the treatment of the topics. We decided to emphasize proofs of results
and underlying proof techniques, since exposure to them would help enhance the analytical
skills of students. So, the authors were requested to give proofs of all theorems unless they
were too long, and limit the illustrations of theorems and algorithms to a minimum.

This book is organized into 11 sections, with each section consisting of chapters focusing
on a specific theme. Overall there are 44 chapters. Roughly speaking, there are 21 chapters
dealing exclusively with graph theory, 19 dealing exclusively with combinatorial optimization,
and 24 dealing with algorithmic issues. We believe that this book will serve as a reference
and also provide material to develop different courses according to the needs of the students.

The coverage of this book is by no means exhaustive. Advances in graph minors and
extremal graph theory are obvious omissions. There is also room for including additional
topics in combinatorial optimization, particularly, approximation algorithms and recent

C5955–C000.tex xi 2015/11/4 8:57pm

xi

xii � Preface

applications. We hope the survey section at the end of each chapter provides adequate point-
ers for exploring other related issues. We also hope a future edition will make the coverage
more complete.

It has been a pleasure working with the editorial and production teams at Taylor &
Francis Group. In particular we are thankful to Randi Cohen, senior acquisition editor;
Joette Lynch, project editor; and Indumathi Sambantham, project management executive at
Lumina Datamatics, for making the production process smooth, swift, and painless.

“KT” thanks Sartaj Sahni of the University of Florida, Gainesville, Florida, for the oppor-
tunity to undertake this project and graduate students Mamta Yadav (now at the University
of Oklahoma, Norman, Oklahoma), Dr. Yuh-Rong Chen (now at Nanyang Technological
University, Singapore), and Dr. Jincheng Zhuang (now at the Chinese Academy of Sciences,
China) for their valuable help at different stages during the preparation of this book.

For “KT” it all started when he was introduced to graph theory during 1963–1964 by
Professor Myril B. Reed of the University of Illinois who was then visiting the College of
Engineering, Guindy (now Anna University, Chennai, India), under the USAID educational
program. This marked the beginning of a career in exploring graph theoretic applications.
“KT” gratefully dedicates this handbook to the memory of Professor Myril Reed whose
inspirational teaching and works triggered all that happened to him in his academic life.

Krishnaiyan “KT” Thulasiraman
University of Oklahoma

Subramanian Arumugam
Kalasalingam University

Andreas Brandstädt
University of Rostock

Takao Nishizeki
Tohoku University

C5955–C000.tex xii 2015/11/4 8:57pm

Editors

Krishnaiyan “KT” Thulasiraman, PhD, has been professor and Hitachi chair in com-
puter science at the University of Oklahoma, Norman, Oklahoma, since 1994 and holds the
professor emeritus position in electrical and computer engineering at Concordia University,
Montreal, Québec, Canada. His prior appointments include professorships in electrical engi-
neering and computer science at the Indian Institute of Technology Madras, Chennai, India
(1965–1981) and in electrical and computer engineering at the Technical University of Nova
Scotia, Halifax, Nova Scotia, Canada (1981–1982), and at Concordia University (1982–1994).
He has held visiting positions at the University of Illinois, Champaign, Illinois; University of
Waterloo, Waterloo, Ontario, Canada; University of Karlsruhe, Karlsruhe, Germany; Tokyo
Institute of Technology, Meguro, Japan; and the National Chiao-Tung University, Hsinchu,
Taiwan.

“KT” earned his bachelor’s and master’s degrees in electrical engineering from Anna
University (formerly College of Engineering, Guindy), Chennai, India, in 1963 and 1965,
respectively, and a PhD in electrical engineering from the Indian Institute of Technology
Madras, Chennai, India, in 1968. His research interests have been in graph theory, combi-
natorial optimization, and related algorithmic issues with a specific focus on applications in
electrical and computer engineering. He has published extensively in archival journals and
has coauthored two textbooks entitled Graphs, Networks and Algorithms and Graphs: Theory
and Algorithms published by Wiley-Interscience in 1981 and 1992, respectively. He has been
professionally active within the IEEE, in particular, IEEE Circuits and Systems, Computer
and Communications Societies, and the ACM.

“KT” has received several honors and awards, including the Distinguished Alumnus
Award of the Indian Institute of Technology Madras; IEEE Circuits and Systems Society
Charles Desoer Technical Achievement Award; IEEE Circuits and Systems Society Golden
Jubilee Medal; senior fellowship of the Japan Society for Promotion of Science; and fellowship
of the IEEE, AAAS, and the European Academy of Sciences.

Subramanian Arumugam, PhD, is currently senior professor (research) and director,
National Centre for Advanced Research in Discrete Mathematics, Kalasalingam University,
Krishnankoil, India. He was previously professor and head of the Department of Mathematics
at Manonmaniam Sundaranar University, Tirunelveli, India. He is also a visiting professor
at Liverpool Hope University, Liverpool, UK, and adjunct professor at Ball State University,
Muncie, Indiana. He was conjoint professor at the University of Newcastle, Australia, from
2009 to 2012. His current area of research is graph theory and its applications. He has guided
35 PhD candidates and has published approximately 195 papers in national and international
journals. He has 47 years of academic experience and has authored 32 books, including two
textbooks in Tamil, which are widely used by undergraduate students of various universities
in India. He has organized 27 conferences and workshops and has edited 12 proceedings. He
is the founder editor-in-chief of AKCE International Journal of Graphs and Combinatorics,
which has been indexed in SCOPUS and is to be published jointly with Elsevier from 2015
onward.

C5955–C000.tex xiii 2015/11/4 8:57pm

xiii

xiv � Editors

Andreas Brandstädt, PhD, has been a professor in computer science at the University of
Rostock, Rostock, Germany, since 1994 (officially retired October 2014). His prior appoint-
ments include a professorship in computer science at the University of Duisburg, Germany
(from 1991 to 1994), and assistant professorships in computer science at the University of
Hagen, Hagen, Germany (from 1990 to 1991), and in mathematics at the University of Jena,
Jena, (then) East Germany (from 1974 to 1990).

He has held various visiting professorships in France, for example, at the University of
Amiens (thrice), University of Clermont-Ferrand (twice), University of Metz, as well as the
University of Koper, Slovenia; and he has presented invited lectures at various international
conferences.

Dr. Brandstädt earned his master’s degree (diplom), his PhD (Dr. rer. nat.), and his
habilitation (Dr. rer. nat. habil.) in mathematics from the University of Jena, East Germany,
in 1974, 1976, and 1983, respectively.

His research interests have been in stochastics, complexity theory, formal languages, graph
algorithms, graph theory, combinatorial optimization, and related algorithmic issues with
a specific focus on efficient algorithms based on graph structure and graph classes with
tree structure. He has published extensively in various international journals and conference
proceedings, is the author of a textbook Graphen und Algorithmen (in German), and has
coauthored a widely cited monograph, Graph Classes: A Survey.

He has been active within various program committees, such as the WG conferences and
the ODSA conferences, as co-organizer of such conferences and coeditor of the corresponding
conference proceedings.

Takao Nishizeki, PhD, was a student at Tohoku University, Japan, earning a bachelor’s
degree in 1969, a master’s in 1971, and a PhD in 1974, all in electrical communication
engineering. He continued at Tohoku as a faculty member, and became a full professor there
in 1988. He retired in 2010, becoming a professor emeritus at Tohoku University, Japan,
but continued teaching as a professor at Kwansei Gakuin University, Nishinomiya, Japan,
over the period 2010–2015. He was also a visiting research mathematician at Carnegie-Mellon
University, Pittsburgh, Pennsylvania, from 1977 to 1978.

Dr. Nishizeki has established himself, both nationally and internationally, as a world
leader in computer science, in particular, algorithms for planar graphs, edge coloring, net-
work flows, VLSI routing, graph drawing, and cryptology. His publication list includes 3
coauthored books, 5 edited books, and more than 300 technical papers in leading journals
and prestigious conferences, such as JACM, SIAM Journal on Computing, Algorithmica,
Journal of Algorithms, Journal of Cryptology, STOC, ICALP, and SODA.

Dr. Nishizeki is a fellow of many distinguished academic and scientific societies, including
ACM, IEEE, IEICE of Japan, Information Processing Society of Japan, and Bangladesh
Academy of Sciences. He served as advisory committee chair of ISAAC 1990–2009 and as
steering committee member of Graph Drawing Conference 1993–2009.

For his great achievements in computer science, Professor Nishizeki has received many
awards, including the Science and Technology Prize of the Japanese Ministry of Education,
IEICE Achievement Award, ICF Best Research Award, Funai Information Science Promotion
Award, TELECOM Technology Award, and Best Paper Awards of IEICE, JSIAM, IPSJ,
ISAAC, FAW-AAIM, and WALCOM.

C5955–C000.tex xiv 2015/11/4 8:57pm

Contributors

Ravindra K. Ahuja
Department of Industrial and Systems

Engineering
University of Florida
Gainesville, Florida

Subramanian Arumugam
National Centre for Advanced Research in

Discrete Mathematics (n-CARDMATH)
Kalasalingam University
Krishnankoil, India
and
School of Electrical Engineering

and Computer Science
The University of Newcastle
New South Wales, Australia
and
Department of Computer Science
Liverpool Hope University
Liverpool, United Kingdom
and
Department of Computer Science
Ball State University
Muncie, Indiana

R. Balakrishnan
Department of Mathematics
Bharathidasan University
Tiruchirappalli, India

Surender Baswana
Department of Computer Science

and Engineering
Indian Institute of Technology

Kanpur
Kanpur, India

John M. Boyer
IBM Canada
Victoria, British Columbia, Canada

Andreas Brandstädt
Department of Computer Science
University of Rostock
Rostock, Germany

K. Raja Chandrasekar
National Centre for Advanced Research in

Discrete Mathematics (n-CARDMATH)
Kalasalingam University
Krishnankoil, India

S. A. Choudum
Department of Mathematics
Indian Institute of Technology Madras
Chennai, India

S. K. Dhall
School of Computer Science
University of Oklahoma
Norman, Oklahoma

Feodor F. Dragan
Department of Computer Science
Kent State University
Kent, Ohio

Karam Ebadi
National Centre for Advanced Research in

Discrete Mathematics (n-CARDMATH)
Kalasalingam University
Krishnankoil, India

András Frank
Department of Operations Research
Eötvös University
and
MTA-ELTE Egerváry Research

Group on Combinatorial
Optimization

Budapest, Hungary

xv

xvi � Contributors

Ch́ınh T. Hoàng
Department of Physics and Computer Science
Wilfrid Laurier University
Waterloo, Ontario, Canada

Wen-Lian Hsu
Institute of Information Science
Academia Sinica
Taipei, Taiwan

Tao Huang
Synopsys, Silicon Valley
Sunnyvale, California

Tibor Jordán
Department of Operations Research
Eötvös University
and
MTA-ELTE Egerváry Research

Group on Combinatorial
Optimization

Budapest, Hungary

George Karakostas
Department of Computer Science
McMaster University
Hamilton, Ontario, Canada

Tina M. Kouri
Department of Computer Science

and Engineering
University of South Florida
Tampa, Florida

S. Lakshmivarahan
School of Computer Science
University of Oklahoma
Norman, Oklahoma

Thomas L. Magnanti
Sloan School of Management
Massachusetts Institute of Technology
Cambridge, Massachusetts

Dinesh P. Mehta
Department of Electrical Engineering

and Computer Science
Colorado School of Mines
Golden, Colorado

Shuichi Miyazaki

Academic Center for Computing and Media
Studies

Kyoto University
Kyoto, Japan

H. Narayanan

Department of Electrical
Engineering

Indian Institute of Technology
Bombay

Mumbai, India

Takao Nishizeki

Graduate School of Information Sciences
Tohoku University
Sendai, Japan

Ariel Orda

Department of Electrical Engineering
Technion–Israel Institute

of Technology
Haifa, Israel

James B. Orlin

Sloan School of Management
Massachusetts Institute of Technology
Cambridge, Massachusetts

Daniel Pascua

Department of Electrical Engineering
and Computer Science

Colorado School of Mines
Golden, Colorado

Sachin B. Patkar

Department of Electrical Engineering
Indian Institute of Technology Bombay
Mumbai, India

Michael D. Plummer

Department of Mathematics
Vanderbilt University
Nashville, Tennesse

Contributors � xvii

Md. Saidur Rahman
Department of Computer Science and

Engineering
Bangladesh University of EngineeringInstitute

of Mathematical and Technology
Dhaka, Bangladesh

Venkatesh Raman
The Institute of Mathematical Sciences
Chennai, India

Sartaj Sahni
Department of Computer and Information

Sciences and Engineering
University of Florida
Gainesville, Florida

F. Zeynep Sargut
Department of Industrial Engineering
Izmir University of Economics
Izmir, Turkey

Saket Saurabh
The Institute of Mathematical Sciences
Chennai, India

Sandeep Sen
Department of Computer Science

and Engineering
Indian Institute of Technology Delhi
New Delhi, India

Lavanya Sivakumar
SRM Research Institute (Mathematics)
SRM University
Chennai, India

Alex Sprintson
Department of Electrical and Computer

Engineering
Texas A&M University
College Station, Texas

R. Sritharan
Department of Computer Science
The University of Dayton
Dayton, Ohio

C.R. Subramanian
The Institute of Mathematical Sciences
Chennai, India

M. Sundarakannan
Department of Mathematics
SSN College of Engineering
Chennai, India

V. Sunitha
Department of Information and Communication

Technology
Dhirubhai Ambani Institute of Information

and Communication Technology
Gandhinagar, India

M.N.S. Swamy
Department of Electrical and Computer

Engineering
Concordia University
Montreal, Québec, Canada

Krishnaiyan “KT” Thulasiraman
School of Computer Science
University of Oklahoma
Norman, Oklahoma

Ramakrishna Thurimella
Department of Computer Science
University of Denver
Denver, Colorado

Balachandran Vaidyanathan
Operations Research
FedEx Corporation
Memphis, Tennessee

Ying Xiao
VT iDirect Inc.
Herndon, Virginia

Mamta Yadav
School of Computer Science
University of Oklahoma
Norman, Oklahoma

Evangeline F.Y. Young
Department of Computer Science and

Engineering
The Chinese University of Hong Kong
Hong Kong, China

Neal E. Young
Department of Computer Science
University of California
Riverside, California

I
Basic Concepts and Algorithms

1

C H A P T E R 1

Basic Concepts in Graph
Theory and Algorithms
Subramanian Arumugam

Krishnaiyan “KT” Thulasiraman

CONTENTS

1.1 Introduction . 3
1.2 Basic Concepts . 4
1.3 Subgraphs and Complements . 5
1.4 Connectedness . 6
1.5 Operations on Graphs . 7
1.6 Trees . 8
1.7 Cutsets and Cuts . 9
1.8 Eulerian Graphs . 9
1.9 Hamiltonian Graphs . 9
1.10 Graph Parameters . 10
1.11 Directed Graphs . 11
1.12 Paths and Connections in Digraphs . 12
1.13 Directed Graphs and Relations . 13
1.14 Directed Trees and Arborescences . 13
1.15 Directed Eulerian Graphs . 14
1.16 Directed Hamiltonian Graphs . 14
1.17 Acyclic Directed Graphs . 15
1.18 Tournaments . 15
1.19 Computational Complexity and Completeness . 16

1.1 INTRODUCTION

In this chapter we give a brief introduction to certain basic concepts and results in graph the-
ory and algorithms, some of which are not explicitly defined in the remaining chapters of this
book. For easy reference we also provide a list of commonly used symbols for graph parame-
ters and concepts. For basic concepts in graphs, digraphs, and algorithms we refer to Bondy
and Murty [1], Chartrand and Lesniak [2], Swamy and Thulasiraman [3], Thulasiraman and
Swamy [4], and West [5].

C5955–C001.tex 3 2015/11/4 1:59pm

3

4 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1.2 BASIC CONCEPTS

A graph G consists of a pair (V, E) where V is a nonempty finite set whose elements are
called vertices and E is a set of unordered pairs of distinct elements of V. The elements of
E are called edges of the graph G. If e = {u, v} ∈ E, the edge e is said to join u and v. The
vertices u and v are called the end vertices of the edge uv. We write e = uv and we say that
the vertices u and v are adjacent. We also say that the vertex u and the edge e are incident
with each other. If two distinct edges e1 and e2 are incident with a common vertex, then
they are called adjacent edges. A graph with n vertices and m edges is called a (n, m) graph.
The number of vertices in G is called the order of G. The number of edges of G is called the
size of G.

A graph is normally represented by a diagram in which each vertex is represented by a
dot and each edge is represented by a line segment joining two vertices with which the edge
is incident. For example, if G = (V, E) is a graph where V = {a, b, c, d} and E = {ab, ac, ad},
then G is a (4, 3) graph and it is represented by the diagram given in Figure 1.1.

The definition of a graph does not allow more than one edge joining two vertices. It also
does not allow any edge joining a vertex to itself. Such an edge joining a vertex to itself is
called a self-loop or simply a loop. If more than one edge joining two vertices are allowed,
the resulting object is called a multigraph. Edges joining the same pair of vertices are called
multiple edges. If loops are also allowed, the resulting object is called a pseudo graph.

A graph in which any two distinct vertices are adjacent is called a complete graph. The
complete graph on n vertices is denoted by Kn. A graph whose edge set is empty is called a
null graph or a totally disconnected graph.

A graph G is called a bipartite graph if V can be partitioned into two disjoint subsets
V1 and V2 such that every edge of G joins a vertex of V1 to a vertex of V2 and (V1, V2) is called
a bipartition of G. If G contains every edge joining the vertices of V1 to the vertices of V2 then
G is called a complete bipartite graph. If V1 contains r vertices and V2 contains s vertices,
then the complete bipartite graph G is denoted by Kr,s. The graph given in Figure 1.1 is
K1,3.

A graph G is k-partite, k ≥ 1, if it is possible to partition V (G) into k subsets V1, V2, . . ., Vk

(called partite sets) such that every element of E(G) joins a vertex of Vi to a vertex of Vj , i ̸= j.
A complete k-partite graph G is a k-partite graph with partite sets V1, V2, . . ., Vk having

the additional property that if u ∈ Vi and v ∈ Vj , i ̸= j, then uv ∈ E(G). If |Vi| = ni, then
this graph is denoted by K(n1, n2, . . ., nk) or Kn1,n2,...,nk

.
The degree of a vertex vi in a graph G is the number of edges incident with vi. The degree

of vi is denoted by dG(vi) or deg vi or simply d(vi). A vertex v of degree 0 is called an isolated
vertex. A vertex v of degree 1 is called a pendant vertex.

Theorem 1.1 The sum of the degrees of the vertices of a graph G is twice the number of
edges. �

Corollary 1.1 In any graph G the number of vertices of odd degree is even. �
a

b c d

Figure 1.1 Example of a graph.

C5955–C001.tex 4 2015/11/4 1:59pm

Basic Concepts in Graph Theory and Algorithms � 5

For any graph G, we define

δ(G) = min{deg v : v ∈ V (G)}

and

∆(G) = max{deg v : v ∈ V (G)}.

If all the vertices of G have the same degree r, then δ(G) = ∆(G) = r and in this case G is
called a regular graph of degree r. A regular graph of degree 3 is called a cubic graph.

1.3 SUBGRAPHS AND COMPLEMENTS

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G) and
the assignment of end vertices to edges in H is the same as in G. We then write H ⊆ G
and say that G contains H. The graph H is called a proper subgraph of G if either E(H) is
a proper subset of E(G) or V (H) is a proper subset of V (G). Also H is called a spanning
subgraph of G if V (H) = V (G). If V1 ⊂ V, then the subgraph G1 = (V1, E1) is called an
induced subgraph of G if G1 is the maximal subgraph of G with vertex set V1. Thus, if G1 is
an induced subgraph of G, then two vertices in V1 are adjacent in G1 if and only if they are
adjacent in G. The subgraph induced by V1 is denoted by ⟨V1⟩ or G[V1]. It is also called a
vertex-induced subgraph of G.

If E1 ⊂ E, then the subgraph of G with edge set E1 and having no isolated vertices is
called the subgraph induced by E1 and is denoted by G[E1]. This is also called edge-induced
subgraph of G.

Let G = (V, E) be a graph. Let vi ∈ V. The subgraph of G obtained by removing the
vertex vi and all the edges incident with vi is called the subgraph obtained by the removal of
the vertex vi and is denoted by G − vi. Clearly G − vi is an induced subgraph of G. If G is
connected S ⊂ V and G − S is not connected, then S is called a vertex cut of G.

Let ej ∈ E. Then G − ej = (V, E − {ej}) is called the subgraph of G obtained by the
removal of the edge ej . Clearly G − ej is a spanning subgraph of G which contains all the
edges of G except ej .

Let G = (V, E) be a graph. Let vi, vj be two vertices which are not adjacent in G.
Then G + vivj = (V, E ∪ {vi, vj}) is called the graph obtained by the addition of the edge
vivj to G.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic if there exists a
bijection f : V1 → V2 such that u, v are adjacent in G1 if and only if f(u), f(v) are adjacent
in G2. If G1 is isomorphic to G2, we write G1 ∼= G2. The map f is called an isomorphism
from G1 to G2.

Let f be an isomorphism of the graph G1 = (V1, E1) to the graph G2 = (V2, E2). Let
v ∈ V1. Then deg v = deg f(v).

An isomorphism of a graph G onto itself is called an automorphism of G. Let Γ(G) denote
the set of all automorphisms of G. Clearly the identity map i : V → V defined by i(v) = v is
an automorphism of G so that i ∈ Γ(G). Further if α and β are automorphisms of G then αβ

and α−1 are also automorphisms of G. Hence Γ(G) is a group and is called the automorphism
group of G.

Let G = (V, E) be a graph. The complement G of G is defined to be the graph which has
V as its set of vertices and two vertices are adjacent in G if and only if they are not adjacent
in G. The graph G is said to be a self-complementary graph if G is isomorphic to G.

C5955–C001.tex 5 2015/11/4 1:59pm

6 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1.4 CONNECTEDNESS

A walk of a graph G is an alternating sequence of vertices and edges v0, x1, v1,
x2, v2, . . ., vn−1, xn, vn beginning and ending with vertices such that each edge xi is incident
with vi−1 and vi.

We say that the walk joins v0 and vn and it is called a v0 − vn walk. Also v0 is called the
initial vertex and vn is called the terminal vertex of the walk. The above walk is also denoted
by v0, v1, . . ., vn, the edges of the walk being self evident. The number of edges in the walk is
called the length of the walk.

A single vertex is considered as a walk of length 0. A walk is called a trail if all its
edges are distinct and is called a path if all its vertices are distinct. A graph consisting of a
path with n vertices is denoted by Pn. A v0 − vn walk is called closed if v0 = vn. A closed
walk v0, v1, v2, . . ., vn = v0 in which n ≥ 3 and v0, v1, . . ., vn−1 are distinct is called a cycle
(or circuit) of length n. The graph consisting of a cycle of length n is denoted by Cn.

Two vertices u and v of a graph G are said to be connected if there exists a u − v path
in G. A graph G is said to be connected if every pair of its vertices are connected. A graph
which is not connected is said to be disconnected.

It is an easy exercise to verify that connectedness of vertices is an equivalence relation on
the set of vertices V. Hence V can be partitioned into nonempty subsets V1, V2, . . ., Vn such
that two vertices u and v are connected if and only if both u and v belong to the same set Vi.

Let Gi denote the induced subgraph of G with vertex set Vi. Clearly the subgraphs
G1, G2, . . ., Gn are connected and are called the components of G. Clearly a graph G is
connected if and only if it has exactly one component.

For any two vertices u, v of a graph we define the distance between u and v by

d(u, v) =
{

the length of a shortest u − v path if such a path exists
∞ otherwise.

If G is a connected graph, then d(u, v) is always a nonnegative integer. In this case d is
actually a metric on the set of vertices V.

Theorem 1.2 A graph G with at least two vertices is bipartite if and only if all its cycles
are of even length. �

A cutvertex of a graph G is a vertex whose removal increases the number of components. A
bridge of a graph G is an edge whose removal increases the number of components. Clearly
if v is a cutvertex of a connected graph, then G − v is disconnected.

Theorem 1.3 Let v be a vertex of a connected graph G. The following statements are
equivalent:

1. v is a cutvertex of G.

2. There exists a partition of V −{v} into subsets U and W such that for each u ∈ U and
w ∈ W , the vertex v is on every u − w path.

3. There exist two vertices u and w distinct from v such that v is on every u − w path. �

Theorem 1.4 Let x be an edge of a connected graph G. The following statements are
equivalent:

C5955–C001.tex 6 2015/11/4 1:59pm

Basic Concepts in Graph Theory and Algorithms � 7

1. x is bridge of G.

2. There exists a partition of V into two subsets U and W such that for every vertex
u ∈ U and w ∈ W, the edge x is on every u − w path.

3. There exist two vertices u, w such that the edge x is on every u − w path. �

Theorem 1.5 An edge x of a connected graph G is a bridge if and only if x is not on any
cycle of G. �

A nonseparable graph is a connected graph with no cutvertices. All other graphs are separable.
A block of a separable graph G is a maximal nonseparable subgraph of G.

Two u − v paths are internally disjoint if they have no common vertices except u and v.

Theorem 1.6 Every nontrivial connected graph contains at least two vertices that are not
cutvertices. �

Theorem 1.7 A graph G with n ≥ 3 vertices is a block if and only if any two vertices of G
are connected by at least two internally disjoint paths. �

A block G is also called 2-connected or biconnected because at least two vertices have to
be removed from G to disconnect it. The concepts of vertex and edge connectivities and
generalized versions of the above theorem, called Menger’s theorem, will be discussed further
in Chapter 12 on connectivity.

1.5 OPERATIONS ON GRAPHS

Next we describe some binary operations defined on graphs. Let G1 and G2 be two graphs
with disjoint vertex sets. The union G = G1 ∪ G2 has V (G) = V (G1) ∪ V (G2) and E(G) =
E(G1) ∪ E(G2). If a graph G consists of k(≥ 2) disjoint copies of a graph H, then we write
G = kH. The join G = G1 + G2 has V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪
{uv|u ∈ V (G1) and v ∈ V (G2)}.

A pair of vertices vi and vj in a graph G are said to be identified if the two vertices are
replaced by a new vertex such that all the edges in G incident on vi and vj are now incident
on the new vertex.

By contraction of an edge e we refer to the operation of removing e and identifying its
end vertices. A graph G is contractible to a graph H if H can be obtained from G by a
sequence of contractions.

The Cartesian product G = G1⊔⊓G2 has V (G) = V (G1)×V (G2) and two vertices (u1, u2)
and (v1, v2) of G are adjacent if and only if either u1 = v1 and u2v2 ∈ E(G2) or u2 = v2 and
u1v1 ∈ E(G1).

The n-cube Qn is the graph K2 if n = 1, while for n ≥ 2, Qn is defined recursively as
Qn−1⊔⊓K2. The n-cube Qn can also be considered as that graph whose vertices are labeled by
the binary n-tuples (a1, a2, . . ., an) (i.e., ai is 0 or 1 for 1 ≤ i ≤ n) and such that two vertices
are adjacent if and only if their corresponding n-tuples differ at precisely one coordinate. The
graph Qn is an n-regular graph of order 2n. The graph Qn is called a hypercube.

The strong product G1⊔⊓×G2 of G1 and G2 is the graph with vertex set V (G1) × V (G2)
and two vertices (u1, u2) and (v1, v2) are adjacent in G1⊔⊓×G2 if u1 = v1 and u2v2 ∈ E(G2),
or u1v1 ∈ E(G1) and u2 = v2, or u1v1 ∈ E(G1) and u2v2 ∈ E(G2).

C5955–C001.tex 7 2015/11/4 1:59pm

8 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The direct product G1 ×G2 of two graphs G1 and G2 is the graph with vertex set V (G1)×
V (G2) and two vertices (u1, u2) and (v1, v2) are adjacent in G1 × G2 if u1v1 ∈ V (G1) and
u2v2 ∈ E(G2).

The lexicographic product G1 ◦ G2 of two graphs G1 and G2 is the graph with vertex set
V (G1) × V (G2) and two vertices (u1, u2) and (v1, v2) are adjacent in G1 ◦ G2 if u1v1 ∈ E(G1)
or u1 = v1 and u2v2 ∈ E(G2).

1.6 TREES

The graphs that are encountered in most of the applications are connected. Among connected
graphs trees have the simplest structure and are perhaps the most important ones. A tree is
the simplest nontrivial type of a graph and in trying to prove a general result or to test a
conjecture in graph theory, it is sometimes convenient to first study the situation for trees.

A graph that contains no cycles is called an acyclic graph. A connected acyclic graph is
called a tree. Any graph without cycles is also called a forest so that the components of a
forest are trees.

A tree of a graph G is a connected acyclic subgraph of G. A spanning tree of a graph G
is a tree of G having all the vertices of G. A connected subgraph of a tree T is called a
subtree of T.

The cospanning tree T ∗ of a spanning tree T of a graph G is the subgraph of G having
all the vertices of G and exactly those edges of G that are not in T. Note that a cospanning
tree may not be connected.

The edges of a spanning tree T are called the branches of T, and those of the corresponding
cospanning tree T ∗ are called links or chords.

A spanning tree T uniquely determines its cospanning tree T ∗. As such, we refer to the
edges of T ∗ as the chords or links of T.

Theorem 1.8 The following statements are equivalent for a graph G with n vertices and m
edges:

1. G is a tree.

2. There exists exactly one path between any two vertices of G.

3. G is connected and m = n − 1.

4. G is acyclic and m = n − 1.

5. G is acyclic, and if any two nonadjacent vertices of G are connected by an edge, then
the resulting graph has exactly one cycle. �

Theorem 1.9 A subgraph G′ of an n-vertex graph G is a spanning tree of G if and only if
G′ is acyclic and has n − 1 edges. �

Theorem 1.10 A subgraph G′ of a connected graph G is a subgraph of some spanning tree
of G if and only if G′ is acyclic. �

A graph is trivial if it has only one vertex.

Theorem 1.11 In a nontrivial tree there are at least two pendant vertices. �

For a graph G with p components a spanning forest is a collection of p spanning trees, one
for each component.

C5955–C001.tex 8 2015/11/4 1:59pm

Basic Concepts in Graph Theory and Algorithms � 9

The rank ρ(G) and nullity µ(G) of a graph G of order n and size m are defined by
ρ(G) = n − k and µ(G) = m − n + k, where k is the number of components of G. Note that
ρ(G) + µ(G) = m.

The arboricity a(G) of a graph G is the minimum number of edge disjoint spanning forests
into which G can be decomposed.

1.7 CUTSETS AND CUTS

A cutset S of a connected graph G is a minimal set of edges of G such that G − S is
disconnected. Equivalently, a cutset S of a connected graph G is a minimal set of edges of G
such that G − S has exactly two components.

Let G be a connected graph with vertex set V. Let V1 and V2 be two disjoint subsets of
V such that V = V1 ∪ V2. Then the set S of all those edges of G having one end vertex in V1
and the other in V2 is called a cut of G. This is usually denoted by [V1, V2].

Theorem 1.12 A cut in a connected graph G is a cutset or union of edge-disjoint cutsets
of G. �

Several results connecting spanning trees, circuits, and cutsets will be discussed in Chapters 7
and 8.

1.8 EULERIAN GRAPHS

Let G be a connected graph. A closed trail containing all the edges of G is called an Eulerian
trail. A graph G having an Eulerian trial is called an Eulerian graph.

The following theorem gives simple and useful characterizations of Eulerian graphs.

Theorem 1.13 The following statements are equivalent for a connected graph G.

1. G is Eulerian.

2. The degree of every vertex in G is even.

3. G is the union of edge-disjoint circuits. �

Corollary 1.2 Let G be a connected graph with exactly 2k(k ≥ 1) odd vertices. Then the
edge set of G can be partitioned into k open trails. �

Corollary 1.3 Let G be a connected graph with exactly two odd vertices. Then G has an
open trail containing all the edges of G. �

1.9 HAMILTONIAN GRAPHS

A Hamiltonian cycle in a graph G is a cycle containing all the vertices of G. A Hamiltonian
path in G is a path containing all the vertices of G. A graph G is defined to be Hamiltonian
if it has a Hamiltonian cycle.

An Euler trail is a closed walk passing through each edge exactly once and a Hamiltonian
cycle is a closed walk passing through each vertex exactly once. Thus there is a striking
similarity between an Eulerian graph and a Hamiltonian graph. This may lead one to expect
that there exists a simple, useful, and elegant characterization of a Hamiltonian graph, as in
the case of an Eulerian graph. Such is not the case; in fact, development of such a character-
ization is a major unsolved problem in graph theory. However, several sufficient conditions
have been established for a graph to be Hamiltonian.

C5955–C001.tex 9 2015/11/4 1:59pm

10 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

We present several necessary conditions and sufficient conditions for a graph to be Hamil-
tonian. We observe that any Hamiltonian graph has no cutvertex.

Theorem 1.14 If G is Hamiltonian, then for every nonempty proper subset S of
V (G),ω(G − S) ≤ |S| where ω(H) denotes the number of components in any graph H. �

A sequence d1 ≤ d2 ≤ · · · ≤ dn is said to be graphic if there is a graph G with n vertices
v1, v2, . . ., vn such that the degree d(vi) of vi equals di for each i. Also (d1, d2, . . ., dn) is then
called the degree sequence of G.

If S : d1 ≤ d2 ≤ · · · ≤ dn and S∗ : d∗
1 ≤ d∗

2 ≤ · · · ≤ d∗
n are graphic sequences such that

d∗
i ≥ di for 1 ≤ i ≤ n, then S∗ is said to majorize S.

The following result is due to Chavátal [6].

Theorem 1.15 A simple graph G = (V, E) of order n, with degree sequence d1 ≤ d2
≤ · · · ≤ dn is Hamiltonian if dk ≤ k < n/2 ⇒ dn−k ≥ n − k. �

Corollary 1.4 A simple graph G = (V, E) of order n ≥ 3 with degree sequence d1 ≤ d2
≤ · · · ≤ dn is Hamiltonian if one of the following conditions is satisfied:

1. 1 ≤ k ≤ n ⇒ dk ≥ n
2 [7].

2. (u, v) /∈ E ⇒ d(u) + d(v) ≥ n [8].

3. 1 ≤ k < n
2 ⇒ dk > k [6].

4. j < k, dj ≤ j and dk ≤ k − 1 ⇒ dj + dk ≥ n [6]. �

The closure of a graph G with n vertices is the graph obtained from G by repeatedly joining
pairs of nonadjacent vertices whose degree sum is at least n until no such pair remains. The
closure of G is denoted by c(G).

Theorem 1.16 A graph is Hamiltonian if and only if its closure is Hamiltonian. �

Corollary 1.5 Let G be a graph with at least 3 vertices. If c(G) is complete, then G is
Hamiltonian. �

1.10 GRAPH PARAMETERS

Several graph parameters relating to connectivity, matching, covering, coloring, and dom-
ination will be discussed in different chapters of this book. In this section we give a brief
summary of some of the graph theoretic parameters.

Definition 1.1 The distance d(u, v) between two vertices u and v in a connected graph is
defined to be the length of a shortest u − v path in G. The eccentricity e(v) of a vertex v
is the number maxu∈V (G) d(u, v). Thus e(v) is the distance between v and a vertex farthest
from v. The radius rad G of G is the minimum eccentricity among the vertices of G, while
the diameter diam G of G is the maximum eccentricity. A vertex v is a central vertex if
e(v) = rad(G) and the center Cen(G) is the subgraph of G induced by its central vertices.
A vertex v is a peripheral vertex if e(v) = diam(G), while the periphery Per(G) is the
subgraph of G induced by its peripheral vertices.

C5955–C001.tex 10 2015/11/4 1:59pm

Basic Concepts in Graph Theory and Algorithms � 11

Definition 1.2 If G is a noncomplete graph and t is a nonnegative real number such that
t ≤ |S|/ω(G − S) for every vertex-cut S of G, where ω(G − S) is the number of components
of G − S, then G is defined to be t-tough. If G is a t-tough graph and s is a nonnegative real
number such that s < t, then G is also s-tough. The maximum real number t for which a
graph G is t-tough is called the toughness of G and is denoted by t(G).

Definition 1.3 A subset S of vertices of a graph is called an independent set if no two
vertices of S are adjacent in G. The number of vertices in a maximum independent is called
the independence number of G.

Definition 1.4 The clique number ω(G) of a graph G is the maximum order among the
complete subgraphs of G.

We observe that the clique number of G is the independence number of its complement.

Definition 1.5 The girth of a graph G having at least one cycle is the length of a shortest
cycle in G. The circumference of G is the length of a longest cycle in G.

Definition 1.6 The vertex cover of a graph G is a set S of vertices such that every edge of
G has at least one end vertex in S. An edge cover of G is a set L of edges such that every
vertex of G is incident to some edge of L. The minimum size of a vertex cover is called the
vertex covering number of G and is denoted by β(G). The minimum size of an edge cover is
called the edge covering number of G and is denoted by β′(G).

1.11 DIRECTED GRAPHS

A directed graph (or in short digraph) D is a pair (V, A) where V is a finite nonempty set and
A is a subset of V × V − {(x, x)/x ∈ V }. The elements of V and A are respectively called
vertices and arcs. If (u, v) ∈ A then the arc (u, v) is said to have u as its initial vertex (tail)
and v as its terminal vertex (head). Also the arc (u, v) is said to join u to v.

As in the case of graphs a digraph can also be represented by a diagram. A di-
graph is represented by a diagram of its underlying graph together with arrows on its
edges, each arrow pointing toward the head of the corresponding arc. For example D =
({1, 2, 3, 4}, {(1, 2), (2, 3), (1, 3), (3, 1)}) is a digraph. The diagram representing D is given in
Figure 1.2.

The indegree d−(v) of a vertex v in a digraph D is the number of arcs having v as its
terminal vertex. The outdegree d+(v) of v is the number of arcs having v as its initial vertex.
The ordered pair (d+(v), d−(v)) is called the degree pair of v.

The degree pairs of the vertices 1, 2, 3 and 4 of the digraph in Figure 1.2 are (2,1), (1,1),
(1,2), and (0,0) respectively.

Theorem 1.17 In a digraph D, the sum of the indegrees of all the vertices is equal to the
sum of their outdegrees, each sum being equal to the number of arcs in D. �

1 2

3
4

Figure 1.2 Example of a directed graph.

C5955–C001.tex 11 2015/11/4 1:59pm

12 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Subgraphs and induced subgraphs of a directed graph are defined as in the case of undirected
graphs.

Let D = (V, A) be a digraph. The underlying graph G of D is a graph having the same
vertex set as D and two vertices u and w are adjacent in G whenever (u, w) or (w, u) is in A.

Similarly if we are given a graph G we can obtain a digraph from G by giving orientation
to each edge of G. A digraph thus obtained from G is called an orientation of G.

The converse digraph D′ of a digraph D is obtained from D by reversing the direction of
each arc.

1.12 PATHS AND CONNECTIONS IN DIGRAPHS

A walk (directed walk) in a digraph is a finite alternating sequence W = v0x1v1 . . . xnvn

of vertices and arcs in which xi = (vi−1, vi) for every arc xi. W is called a walk from
v0 to vn or a v0 − vn walk. The vertices v0 and vn are called origin and terminus of W,
respectively, and v1, v2, . . ., vn−1 are called its internal vertices. The length of a walk is the
number of occurrences of arcs in it. A walk in which the origin and terminus coincide is called
a closed walk.

A path (directed path) is a walk in which all the vertices are distinct. A cycle (directed
cycle or circuit) is a nontrivial closed path whose origin and internal vertices are distinct.

If there is a path from u to v then v is said to be reachable from u. A digraph is
called strongly connected or strong if every pair of vertices are mutually reachable. A di-
graph is called unilaterally connected or unilateral if for every pair of vertices, at least
one is reachable from the other. A digraph is called weakly connected or weak if the un-
derlying graph is connected. A digraph is called disconnected if the underlying graph is
disconnected.

Theorem 1.18 The edges of a connected graph G = (V, E) can be oriented so that the
resulting digraph is strongly connected if and only if every edge of G is contained in at least
one cycle. �

Let D = (V, A) be a digraph.
1. Let W1 be a maximal subset of V such that for every pair of vertices u, v ∈ W1, u is

reachable from v and v is reachable from u. Then the subdigraph of D induced by W1
is called a strong component of D.

2. Let W2 be a maximal subset of V such that for every pair of vertices u, v ∈ W2, either
u is reachable from v or v is reachable from u. Then the subdigraph of D induced by
W2 is called a unilateral component of D.

3. Let W3 be a maximal subset of V such that for every pair of vertices u, v ∈ W3, u and v
are joined by a path in the underlying graph of D. Then the subdigraph of D induced
by W3 is called a weak component of D.

We observe that each vertex of D is in exactly one strong component of D. An arc x lies in
exactly one strong component if it lies on a cycle. There is no strong component containing
an arc that does not lie on any cycle.

The condensation D∗ of a digraph D has the strong components S1, S2, . . ., Sn of D as
its vertices with an arc from Si to Sj whenever there is at least one arc from Si to Sj in D.

A directed graph is said to be quasi-strongly connected if for every pair of vertices v1 and
v2 there is a vertex v3 from which there is a directed path to v1 and a directed path to v2.
Note that v3 need not be distinct from v1 or v2.

C5955–C001.tex 12 2015/11/4 1:59pm

Basic Concepts in Graph Theory and Algorithms � 13

1.13 DIRECTED GRAPHS AND RELATIONS

A binary relation R on a set X = {x1, x2, . . .} is a collection of ordered pairs of elements of
X. If (xi, xj) ∈ R, then we write xi R xj . A most convenient way of representing a binary
relation R on a set X is by a directed graph, the vertices of which stand for the elements of
X and the edges stand for the ordered pairs of elements of X defining the relation R.

For example, the relation is a factor of on the set X = {2, 3, 4, 6, 9} is shown in Figure 1.3.
Let R be a relation on a set X = {x1, x2, . . .}. The relation R is called reflexive if xiRxi

for all xi ∈ X. The relation R is said to be symmetric if xiRxj implies xjRxi. The relation
R is said to be transitive if xiRxj and xjRxk imply xiRxk. A relation R which is reflexive,
symmetric, and transitive is called an equivalence relation. If R is an equivalence relation
defined on a set S, then we can uniquely partition S into subsets S1, S2, . . ., Sk such that
two elements x and y of S belong to Si if and only if xRy. The subsets S1, S2, . . ., Sk are all
called the equivalence classes induced by the relation R on the set S.

The directed graph representing a reflexive relation is called a reflexive directed graph.
In a similar way symmetric and transitive directed graphs are defined. We now make the
following observations about these graphs:

1. In a reflexive directed graph, there is a self-loop at each vertex.

2. In a symmetric directed graph, there are two oppositely oriented edges between any
two adjacent vertices. Therefore, an undirected graph can be considered as representing
a symmetric relation if we associate with each edge two oppositely oriented edges.

3. The edge (v1, v2) is present in a transitive graph G if there is a directed path in G from
v1 to v2.

1.14 DIRECTED TREES AND ARBORESCENCES

A vertex v in a directed graph D is a root of D if there are directed paths from v to all the
remaining vertices of D.

Theorem 1.19 A directed graph D has a root if and only if it is quasi-strongly connected. �

A directed graph D is a tree if the underlying undirected graph is a tree. A directed graph
D is a directed tree or arborescence if D is a tree and has a root.

We present in the next theorem a number of equivalent characterizations of a directed
tree.

4

2

6

3

9

Figure 1.3 Directed graph representation of a relation on the set X = {2, 3, 4, 6, 9}.

C5955–C001.tex 13 2015/11/4 1:59pm

14 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 1.20 Let D be a directed graph with n > 1 vertices. Then the following statements
are equivalent:

1. D is a directed tree.

2. There exists a vertex r in D such that there is exactly one directed path from r to every
other vertex of D.

3. D is quasi-strongly connected and loses this property if any edge is removed from it.

4. D is quasi-strongly connected and has a vertex r such that d−(r) = 0. �

Theorem 1.21 A directed graph D has a directed spanning tree if and only if D is quasi-
strongly connected. �

1.15 DIRECTED EULERIAN GRAPHS

A directed Euler trail in a directed graph D is a closed directed trail that contains all the
arcs of D. An open directed Euler trail is an open directed trail containing all the arcs of D.
A directed graph possessing a directed Euler trail is called a directed Eulerian graph.

The following theorem gives simple and useful characterizations of directed Eulerian
graphs.

Theorem 1.22 The following statements are equivalent for a connected directed graph D.

1. D is a directed Eulerian graph.

2. For every vertex v of D, d−(v) = d+(v).

3. D is the union of some edge-disjoint directed cycles. �

Theorem 1.23 A directed connected graph D possesses an open directed Euler trail if and
only if the following conditions are satisfied:

1. In D there are two vertices v1 and v2, such that d+(v1) = d−(v1) + 1 and d−(v2) =
d+(v2) + 1.

2. For every vertex v different from v1 and v2, we have d+(v) = d−(v). �

Theorem 1.24 The number of directed Euler trails of a directed Eulerian graph D without
self-loops is τd (D)

∏n
p=1 (d− (vp) − 1)!, where n is the number of vertices in D and τd(D) is

the number of directed spanning trees of G with v1 as root. �

Corollary 1.6 The number of directed spanning trees of a directed Eulerian graph is the
same for every choice of root. �

1.16 DIRECTED HAMILTONIAN GRAPHS

A directed circuit in a directed graph D is a directed Hamilton circuit of D if it contains all
the vertices of D. A directed path in D is a directed Hamilton path of G if it contains all the
vertices of D. A digraph is a directed Hamiltonian graph if it has a directed Hamilton circuit.
A directed graph D is complete if its underlying undirected graph is complete.

C5955–C001.tex 14 2015/11/4 1:59pm

Basic Concepts in Graph Theory and Algorithms � 15

Theorem 1.25 Let u be any vertex of a strongly connected complete directed graph with
n ≥ 3 vertices. For each k, 3 ≤ k ≤ n, there is a directed circuit of length k containing u. �

Corollary 1.7 A strongly connected complete directed graph is Hamiltonian. �

Theorem 1.26 Let D be a strongly connected n-vertex graph without parallel edges and
self-loops. If for every vertex v in D, d−(v) + d+(v) ≥ n, then D has a directed Hamilton
circuit. �

Corollary 1.8 Let D be a directed n-vertex graph without parallel edges or self-loops. If
min (δ−, δ+) ≥ n/2 > 1, then D contains a directed Hamilton circuit. �

Theorem 1.27 If a directed graph D = (V, A) is complete, then it has a directed Hamilton
path. �

1.17 ACYCLIC DIRECTED GRAPHS

A directed graph is acyclic if it has no directed circuits. Obviously the simplest example of
an acyclic directed graph is a directed tree.

We can label the vertices of an n-vertex acyclic directed graph D with integers from the
set {1, 2, . . ., n} such that the presence of the edge (i, j) in D implies that i < j. Note that
the edge (i, j) is directed from vertex i to vertex j. Ordering the vertices in this manner is
called topological sorting.

Theorem 1.28 In an acyclic directed graph D there exists at least one vertex with zero
indegree and at least one vertex with zero outdegree. �

Select any vertex with zero outdegree. Since D is acyclic, by Theorem 1.28, there is at least
one such vertex in D. Label this vertex with the integer n. Now remove from D this vertex
and the edges incident on it. Let D′ be the resulting graph. Since D′ is also acyclic, we can
now select a vertex whose outdegree in D′ is zero. Label this with the integer n − 1. Repeat
this procedure until all the vertices are labeled. It is now easy to verify that this procedure
results in a topological sorting of the vertices of D.

1.18 TOURNAMENTS

A tournament is an orientation of a complete graph. It derives its name from its application
in the representation of structures of round-robin tournaments. In a round-robin tournament
several teams play a game that cannot end in a tie, and each team plays every other team
exactly once. In the directed graph representation of the round-robin tournament, vertices
represent teams and an edge (v1, v2) is present in the graph if the team represented by the
vertex v1 defeats the team represented by the vertex v2. Clearly, such a directed graph has
no parallel edges and self-loops, and there is exactly one edge between any two vertices. Thus
it is a tournament.

The teams participating in a tournament can be ranked according to their scores. The
score of a team i is the number of teams it has defeated. This motivates the definition of the
score sequence of a tournament.

The score sequence of an n-vertex tournament is the sequence (s1, s2, . . ., sn) such that
each si is the outdegree of a vertex of the tournament. An interesting characterization of a
tournament in terms of the score sequence is given in the following theorem.

C5955–C001.tex 15 2015/11/4 1:59pm

16 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 1.29 A sequence of nonnegative integers s1, s2, . . ., sn is the score sequence of a
tournament G if and only if

1.
∑n

i=1 si = n(n−1)
2 .

2.
∑k

i=1 si = k(k−1)
2 for all k < n. �

Suppose we can order the teams in a round-robin tournament such that each team precedes
the one it has defeated. Then we can assign the integers 1, 2, . . ., n to the teams to indicate
their ranks in this order. Such a ranking is always possible since in a tournament there exists
a directed Hamilton path and it is called ranking by a Hamilton path.

Note that ranking by a Hamilton path may not be the same as ranking by the score.
Further, a tournament may have more than one directed Hamilton path. In such a case there
will be more than one Hamilton path ranking. However, there exists exactly one directed
Hamilton path in a transitive tournament. This is stated in the following theorem, which is
easy to prove.

Theorem 1.30 In a transitive tournament there exists exactly one directed Hamilton path. �

1.19 COMPUTATIONAL COMPLEXITY AND COMPLETENESS

In assessing the efficiency of an algorithm two metrics are used; time complexity and space
complexity. In this book we will be mainly concerned with time complexities of algorithms.
The computational time complexity of an algorithm is a measure of the number of primitive
operations (low level instructions) performed during the execution of the algorithm. We will
use what is known as the random access machine (RAM) model in which it is assumed that
the computer can perform any primitive operation in a constant number of steps which do
not depend on the size of the input.

A function t(n) is said to be O(g(n)) if there exist some constant c and some nonnegative
integer n0 such that

t(n) ≤ c g(n) for all n ≥ n0

This definition is referred to as the big-Oh notation. Usually it is pronounced as t(n) is big
Oh of g(n). We can also say as t(n) is order g(n). For example 5n2 + 100n is O(n2).

A function t(n) is said to be Ω(g(n)), if there exist some positive constant c and some
nonnegative integer n0 such that

t(n) ≥ c g(n) for all n ≥ n0

This definition is referred to as the big-Omega notation. Usually it is pronounced as t(n) is
big-Omega of g(n). For example, n3 is Ω(n2).

A function t(n) is said to be Θ(g(n)), if t(n) is O(g(n)) and Ω(g(n)). It is pronounced as
t(n) is big-Theta of g(n). For example, (1/2) n(n − 1) is Θ(n2).

There are several texts that discuss the above and other asympototic notations as well
as properties involving them. For example, see Levitin [9], Goodrich and Tamassia [10], and
Cormen et al. [11].

An algorithm for a problem is efficient [12] if there exists a polynomial p(k) such that an
instance of the problem whose input length is k takes at most p(k) elementary computational
steps to solve. In other words any algorithm of polynomial time complexity is accepted to be
efficient. There are several problems that defy polynomial time algorithms in spite of massive
efforts to solve them efficiently. This family includes several important problems such as the

C5955–C001.tex 16 2015/11/4 1:59pm

Basic Concepts in Graph Theory and Algorithms � 17

traveling salesman problem, the graph coloring problem, the problem of simplifying Boolean
functions, scheduling problems, and certain covering problems.

In this section we present a brief introduction to the theory of NP -completeness.
A decision problem is one that asks only for a yes or no answer. For example the ques-
tion Can this graph be 5-colored? is a decision problem. Many of the important optimization
problems can be phrased as decision problems. Usually, if we find a fast algorithm for a
decision problem, then we will be able to solve the corresponding original problem also
efficiently. For instance, if we have a fast algorithm to solve the decision problem for graph
coloring, by repeated applications (in fact, n log n applications) of this algorithm, we can find
the chromatic number of an n-vertex graph.

A decision problem belongs to the class P if there is a polynomial time algorithm to solve
the problem. A verification algorithm is an algorithm A which takes as input an instance
of a problem and a candidate solution to the problem, called a certificate and verifies in
polynomial time whether the certificate is a solution to the given problem instance. The
class NP is the class of problems which can be verified in polynomial time.

The fundamental open question in computational complexity is whether the class P
equals the class NP. By definition, the class NP contains all problems in class P. It is not
known, however, whether all problems in NP can be solved in polynomial time.

In an effort to determine whether P = NP, Cook [13] defined the class of NP -complete
problems. We say that a problem P1 is polynomial-time reducible to a problem P2, written
P1 ≤p P2, if

1. There exists a function f which maps any instance I1 of P1 to an instance of P2 in such
a way that I1 is a yes instance of P1 if and only if f(I1) is a yes instance of P2.

2. For any instance I1, the instance f(I1) can be constructed in polynomial time.

If P1 is polynomial-time reducible to P2, then any algorithm for solving P2 can be used to
solve P1. We define a problem P to be NP -complete if (1) P ∈ NP, and (2) for every problem
P ′ ∈ NP, P ′ ≤p P. If a problem P can be shown to satisfy condition (2), but not necessarily
condition (1), then we say that it is NP -hard. Let NPc denote the class of NP -complete
problems.

The relation ≤p is transitive. Because of this, a method frequently used in demonstrating
that a given problem is NP -complete is the following:

1. Show that P ∈ NP .

2. Show that there exists a problem P ′ ∈ NPc, such that P ′ ≤p P.

It follows from the definition of NP -completeness that if any problem in NPc can be solved in
polynomial time, then every problem in NPc can be solved in polynomial time and P = NP.
On the other hand, if there is some problem in NPc that cannot be solved in polynomial
time, then no problem in NPc can be solved in polynomial time.

Cook [13] proved that there is an NP -complete problem. The satisfiability problem is
defined as follows:

Let X = {x1, x2, . . ., xn} be a set of Boolean variables. A literal is either a variable xi

or its complement xi. Thus the set of literals is L = {x1, x2, . . ., xn, x1, x2, . . ., xn}. A clause
C is a subset of L. The satisfiability problem (SAT) is: Given a set of clauses, does there
exist a set of truth values (T or F), one for each variable, such that every clause contains at
least one literal whose value is T. Cook’s proof that SAT is NP -complete opened the way to
demonstrate the NP -completeness of a vast number of problems. The second problem to be

C5955–C001.tex 17 2015/11/4 1:59pm

18 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1 2

3 4

Figure 1.4 Graph for the illustration of the concept of reducibility.

proved NP -complete is 3-SAT the 3-satisfiability problem, which is the special case of SAT
in that only three literals are permitted in each clause.

The list of NP -complete problems has grown very rapidly since Cook’s work. Karp [14,15]
demonstrated the NP -completeness of a number of combinatorial problems. Garey and
Johnson [16] is the most complete reference on NP -completeness and is highly recom-
mended. Other good textbooks recommended for this study include Horowitz and Sahni [17],
Melhorn [18], and Aho et al. [19]. For updates on NP -completeness see the article titled
“NP -completeness: An ongoing guide” in the Journal of Algorithms.

Since the concept of reducibility plays a dominant role in establishing the NP -
completeness of a problem, we shall illustrate this with an example.

Consider the graph G = (V, E) in Figure 1.4 and the decision problem Can the vertices
of G be 3-colored? We now reduce this problem to an instance of SAT.

We define 12 Boolean variables xi,j(i = 1, 2, 3, 4; j = 1, 2, 3) where the variable xi,j

corresponds to the assertion that vertex i has been assigned color j. The clauses are defined
as follows:

C(i) = {xi,1, xi,2, xi,3}, 1 ≤ i ≤ 4;
T (i) = {xi,1, xi,2}, 1 ≤ i ≤ 4;
U(i) = {xi,1, xi,3}, 1 ≤ i ≤ 4;
V (i) = {xi,2, xi,3}, 1 ≤ i ≤ 4;
D(e, j) = {xu,j , xv,j}, for every e = (u, v) ∈ E, 1 ≤ j ≤ 3.

Whereas, C(i) asserts that each vertex i has been assigned at least one color, the clauses
T (i), U(i) and V (i) together assert that no vertex has been assigned more than one color. The
clauses D(e, j)’s guarantee that the coloring is proper (adjacent vertices have been assigned
distinct colors).

Thus, the graph of Figure 1.4 is 3-colorable if and only if there exists an assignment of
truth values T and F to the 12 Boolean variables x1,1, x1,2, . . ., x4,3 such that the each of the
clauses contains at least one literal whose value is T.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, Berlin, Germany, 2008.

[2] G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th Edition, CRC Press, Boca
Raton, FL, 2005.

C5955–C001.tex 18 2015/11/4 1:59pm

Basic Concepts in Graph Theory and Algorithms � 19

[3] M. N. S. Swamy and K. Thulasiraman, Graphs, Networks and Algorithms, Wiley-
Interscience, New York, 1981.

[4] K. Thulasiraman and M. N. S. Swamy, Graphs: Theory and Algorithms, Wiley-
Interscience, New York, 1992.

[5] D. B. West, Introduction to Graph Theory, 2nd Edition, Prentice Hall, Upper Saddle
River, NJ, 2001.

[6] V. Chavátal, On Hamilton’s ideals, J. Comb. Th. B, 12 (1972), 163–168.

[7] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., 2 (1952),
69–81.

[8] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly, 67 (1960), 55.

[9] A. Levitin, Introduction to the Design and Analysis of Algorithms, Pearson, Boston, MA,
2012.

[10] M. T. Goodrich and R. Tamassia, Algorithm Design: Foundations, Analysis and Internet
Examples, John Wiley & Sons, New York, 2002.

[11] T. H. Cormen, C. E. Liercersona, and R. L. Rivest, Introduction to Algorithms, MIT
Press, Cambridge, MA, 1990.

[12] J. Edmonds, Paths, trees and flowers, Canad. J. Math., 17 (1965), 449–467.

[13] S. A. Cook, The complexity of theorem proving procedures, Proc. 3rd ACM Symp. on
Theory of Computing, ACM, New York, 1971, 151–158.

[14] R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer Com-
munications, R. E. Miller and J. W. Thatcher, Eds., Plenum Press, New York, 1972,
85–104.

[15] R. M. Karp, On the computational complexity of combinatorial problems, Networks, 5
(1975), 45–68.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco, CA, 1979.

[17] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Science
Press, Potomac, MD, 1978.

[18] K. Melhorn, Graph Algorithms and NP-Completeness, Springer-Verlag, New York,
1984.

[19] A. V. Aho, J. E. Hopcroft, and J. D. Ullman The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

C5955–C001.tex 19 2015/11/4 1:59pm

C H A P T E R 2

Basic Graph Algorithms*
Krishnaiyan “KT” Thulasiraman

CONTENTS

2.1 Introduction . 21
2.2 Minimum Weight Spanning Tree . 22
2.3 Optimum Branchings . 25
2.4 Transitive Closure . 30
2.5 Shortest Paths . 35

2.5.1 Single Source Shortest Paths: Bellman–Ford–Moore Algorithm 36
2.5.1.1 Negative Cycle Detection . 38
2.5.1.2 Shortest Path Tree . 38

2.5.2 Single Source Shortest Paths in Graphs with No Negative Length
Edges: Dijkstra’s Algorithm . 39

2.5.3 All Pairs Shortest Paths . 42
2.6 Transitive Orientation . 44

2.1 INTRODUCTION

Graphs arise in the study of several practical problems. The first step in such studies is to
discover graph theoretic properties of the problem under consideration that would help us in
the formulation of a method of solution to the problem. Usually solving a problem involves
analysis of a graph or testing a graph for some specified property. Graphs that arise in the
study of real-life problems are very large and complicated. Analysis of such graphs in an
efficient manner, therefore, involves the design of efficient computer algorithms.

In this and the next chapter we discuss several basic graph algorithms. We consider these
algorithms to be basic in the sense that they serve as building blocks in the design of more
complex algorithms. While our main concern is to develop the theoretical foundation on which
the design of the algorithms is based, we also develop results concerning the computational
complexity of these algorithms.

The computational complexity of an algorithm is a measure of the running time of the
algorithm. Thus it is a function of the size of the input. In the case of graph algorithms,
complexity results will be in terms of the number of vertices and the number of edges in the
graph. In the following function g(n) is said to be O(f(n)) if and only if there exist constants
c and n0 such that |g(n)| ≤ c|f(n)| for all n ≥ n0. Furthermore, all our complexity results
will be with respect to the worst-case analysis.

There are different methods of representing a graph on a computer. Two of the most
common methods use the adjacency matrix and the adjacency list. Adjacency matrix
representation is not a very efficient one in the case of sparse graphs. In the adjacency

∗This chapter is an edited version of Sections 14.1, 14.2, 15.1, and 15.8 in Swamy and Thulasiraman [17].

C5955–C002.tex 21 2015/11/4 8:54am

21

22 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

list representation, we associate with each vertex a list that contains all the edges incident
on it. A detailed discussion of data structures for representing a graph may be found in some
of the references listed at the end of this chapter.

2.2 MINIMUM WEIGHT SPANNING TREE

Consider a weighted connected undirected graph G with a nonnegative real weight w(e)
associated with each edge e of G. The weight of a subgraph of G will refer to the sum of the
weights of the edges of the subgraph. In this section we discuss the problem of constructing
a minimum weight spanning tree of G. We present two algorithms for this problem, namely,
Kruskal’s algorithm [1] and the one due to Prim [2]. Theorems 2.1 through 2.3 provide the
basis of these algorithms. In the following, T + e denotes the subgraph T ∪ {e}. Similarly,
T − e denotes the subgraph that results after deleting edge e from T . Also, contraction of an
edge e = (u, v) results in a new graph G′ in which the vertices u and v are replaced by a single
vertex w and all the edges in G that are incident on u or v are incident on vertex w in G′.
The self loop on w that results because of the coalescing of u and v will not be present in G′.

Theorem 2.1 Consider a vertex v in a weighted connected graph G. Among all the edges
incident on v, let e be one of minimum weight. Then, G has a minimum weight spanning
tree that contains e.

Proof. Let Tmin be a minimum weight spanning tree of G. If Tmin does not contain e, then a
circuit C is created when e is added to Tmin. Let e′ be the edge of C that is adjacent to e.
Clearly e′ ∈ Tmin. Also T ′ = Tmin − e′ + e is a spanning tree of G. Since e and e′ are both
incident on v, we get w(e) ≤ w(e′). But w(e) ≥ w(e′) because w(T ′) = w(Tmin) − w(e′) +
w(e) ≥ w(Tmin). So, w(e) = w(e′) and w(T ′) = w(Tmin). Thus we have found a minimum
weight spanning tree, namely T ′, containing e. �
If the fundamental circuit with respect to a chord c of a spanning tree T contains branch b,
then T − b + c is also a spanning tree of G (see Chapter 7). Using this result we can prove
the statements in Theorem 2.2 along the same lines as the proof of Theorem 2.1.

Theorem 2.2 Let e be a minimum weight edge in a weighted connected graph G. Then

1. G has a minimum weight spanning tree that contains e.

2. If Tmin is a minimum weight spanning tree of G, then for every chord c w(b) ≤ w(c),
for every branch b in the fundamental circuit of Tmin with respect to c.

3. If Tmin is a minimum weight spanning tree of G, then for every branch b ∈ Tmin
w(b) ≤ w(c), for every chord c in the fundamental cutset of Tmin with respect to b. �

Theorem 2.3 Let T be an acyclic subgraph of a weighted connected graph G such that there
exists a minimum weight spanning tree containing T . If G′ denotes the graph obtained by
contracting the edges of T , and T ′

min is a minimum weight spanning tree of G′, then T ′
min ∪T

is a minimum weight spanning tree of G.

Proof. Let Tmin be a minimum weight spanning tree of G containing T . Let Tmin = T ∪ T ′.
Then T ′ is a spanning tree of G′. Therefore

w(T ′) ≥ w(T ′
min). (2.1)

It is easy to see that T ′
min ∪ T is also a spanning tree of G. So

w(T ′
min ∪ T) ≥ w(Tmin) = w(T) + w(T ′). (2.2)

C5955–C002.tex 22 2015/11/4 8:54am

Basic Graph Algorithms � 23

From this we get
w(T ′

min) ≥ w(T ′). (2.3)

Combining (2.1) and (2.3) we get w(T ′
min) = w(T ′), and so w(T ′

min∪T) = w(T ′∪T) = w(Tmin).
Thus T ′

min ∪ T is a minimum weight spanning tree of G. �
We now present Kruskal’s algorithm.

Algorithm 2.1 Minimum weight spanning tree (Kruskal)

Input: G = (V, E) is the given nontrivial n-vertex weighted connected graph with m edges.
The edges are ordered according to their weights, that is, w(e1) ≤ w(e2) ≤ · · · ≤ w(em).
Output: A minimum weight spanning tree of G. The edges e′

1, e′
2, . . ., e′

n−1 will be the
required spanning tree.
begin

k ← 0;
T0 ← ϕ;
for i = 1 to m do

If Tk + ei is acyclic then
begin

k ← k + 1;
e′

k ← ei;
Tk ← Tk−1 + e′

k;
end

end

Kruskal’s algorithm essentially proceeds as follows. Edges are first sorted in the order of
nondecreasing weights and then examined, one at a time, for inclusion in a minimum weight
spanning tree. An edge is included if it does not form a circuit with the edges already selected.

Next we prove the correctness of Kruskal’s algorithm.

Theorem 2.4 Kruskal’s algorithm constructs a minimum weight spanning tree of a weighted
connected graph.

Proof. Let G be the given nontrivial weighted connected graph. Clearly, when Kruskal’s
algorithm terminates, the edges selected will form a spanning tree of G. Thus the algorithm
terminates with k = n− 1, and Tn−1 as a spanning tree of G.

We next establish that Tn−1 is indeed a minimum weight spanning tree of G by proving
that every Tk, k ≥ 1 constructed in the course of Kruskal’s algorithm is contained in a
minimum weight spanning tree of G. Our proof is by induction on k.

Clearly by Theorem 2.1, G has a minimum weight spanning tree that contains the edge
e′

1 = e1. In other words T1 = {e1} is contained in a minimum weight spanning tree of G.
As inductive hypothesis, assume that Tk, for some k ≥ 1 is contained in a minimum weight
spanning tree of G. Let G′ be the graph obtained by contracting the edges of Tk. Then the
edge e′

k+1 selected by the algorithm will be a minimum weight edge in G′. So, by Theorem 2.2,
the edge e′

k+1 is contained in a minimum weight spanning tree T ′
min of G′. By Theorem 2.3,

Tk ∪ T ′
min is a minimum weight spanning tree of G. More specifically Tk+1 = Tk + e′

k+1 is
contained in a minimum weight spanning tree of G and the correctness of Kruskal’s algorithm
follows. �
We next present another algorithm due to Prim [2] to construct a minimum weight spanning
tree of a weighted connected graph.

C5955–C002.tex 23 2015/11/4 8:54am

24 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Algorithm 2.2 Minimum weight spanning tree (Prim)

Input: G = (V, E) is the given nontrivial n-vertex weighted connected graph.
Output: A minimum weight spanning tree of G. The edges e1, e2, . . ., en−1 will form the
required minimum spanning tree.
begin

i ← 1;
T0 ← ϕ;
Select any vertex v ∈ V ;
S ← {v};
while i ≤ n− 1 do

begin
Select an edge ei = (p, q) of minimum weight such that ei has exactly one
end vertex, say p, in S;
Ti ← Ti−1 + ei;
Add vertex q to the set S;
i← i + 1;

end
end

As in Kruskal’s algorithm, Prim’s algorithm also constructs a sequence of acyclic sub-
graphs T1, T2, . . ., and terminates with Tn−1, a minimum weight spanning tree of G.
The subgraph Ti+1 is constructed from Ti by adding an edge of minimum weight with
exactly one end vertex in Ti. This construction ensures that all Ti’s are connected. If G′

denotes the graph obtained by contracting the edges of Ti, and W denotes the vertex of
G′, which corresponds to the vertex set of Ti, then ei+1 is in fact a minimum weight edge
incident on W in G′. This observation and Theorems 2.1 and 2.3 can be used (as in the
proof of Theorem 2.4) to prove that each Ti is contained in a minimum weight spanning tree
of G. This would then establish that the spanning tree produced by Prim’s algorithm is a
minimum weight spanning tree of G.

Both Prim’s and Kruskal’s algorithms can be viewed as special cases of a more general
version. Both these algorithms construct a sequence of acyclic subgraphs T1, T2, . . ., Tn−1 with
Tn−1 as a minimum weight spanning tree. Each Ti+1, is constructed by adding an edge ei+1
to Ti. They differ in the way ei+1 is selected. As before, let G′ denote the graph obtained by
contracting the edges of Ti, and W denote the (super) vertex of G′, which corresponds to
the vertex set of Ti. Then the two algorithms select weight edge ei+1 as follows.

Prim: ei+1 is a minimum weight edge incident on W in G′.
Note: This is a restricted application of Theorem 2.1 since this theorem is applicable to
any vertex in G′.

Kruskal: ei+1 is a minimum weight edge in G′.
Note: This is also a restricted application of Theorem 2.1 since this theorem only requires
ei+1 to be the minimum weight edge incident on some vertex in G′.

Both these algorithms result in a minimum weight spanning tree since the edge ei+1 selected
as above is in a minimum weight spanning tree of G′ as proved in Theorems 2.1 and 2.3.

The following algorithm which unifies both Prim’s and Kruskal’s algorithms is slightly
more general than both.

C5955–C002.tex 24 2015/11/4 8:54am

Basic Graph Algorithms � 25

Algorithm 2.3 Minimum weight spanning tree (Unified version)

Input: G = (V, E) is the given nontrivial n-vertex weighted connected graph.
Output: A minimum weight spanning tree of G. The edges e1, e2, . . ., en−1 will form the
required minimum spanning tree.
begin

i← 1;
T0 ← ϕ;
G′ ← G;
while i ≤ n− 1 do

begin
Select an edge ei = (p, q) such that ei+1 is a minimum weight edge incident
on any vertex in G′;
Contract the edge ei in G′ and let G′ denote the contracted graph;
Ti ← Ti−1 + ei;
i← i + 1;

end
end

For complexity results relating to the minimum weight spanning tree enumeration problem
see Kerschenbaum and Van Slyke [3], Yao [4], and Cheriton and Tarjan [5]. For sensitiv-
ity analysis of minimum weight spanning trees and shortest path trees see Tarjan [6]. See
Papadimitriou and Yannakakis [7] for a discussion of the complexity of restricted minimum
weight spanning tree problems. For a history of the minimum weight spanning tree problem
see Graham and Hall [8]. The complexity of Kruskal’s algorithm is O(m log n) (see Korte
and Vygen [9]). Clearly the complexity of Prim’s algorithm is O(n2). For more sophisticated
implementations see [10–13]. See also [14] for an algorithm due to Jarnik.

2.3 OPTIMUM BRANCHINGS

Consider a weighted directed graph G = (V, E). Let w(e) be the weight of edge e. Recall
that the weight of a subgraph of G is defined to be equal to the sum of the weights of all the
edges in the subgraph.

A subgraph Gs of G is a branching in G if Gs has no directed circuits and the in-degree of
each vertex of Gs is at most 1. Clearly each component of Gs is a directed tree*. A branching
of maximum weight is called an optimum branching.

In this section we discuss an algorithm due to Edmonds [15] for computing an optimum
branching of G. Our discussion here is based on Karp [16].

An edge e = (i, j) directed from vertex i to vertex j is critical if

1. w(e) > 0.

2. w(e) ≥ w(e′) for every edge e′ = (k, j) incident into j.

A spanning subgraph H of G is a critical subgraph of G if

1. Every edge of H is critical.

2. The in-degree of every vertex of H is at most 1.

∗See Chapter 1 for the definition of a directed tree, also called an arborescence.

C5955–C002.tex 25 2015/11/4 8:54am

26 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

e7

(a)

2

6

e8

3

e9

4 e11

5
e4

1e6

6

e5 6
e2

5e1

5
e3

3
e10

1
e12

e7

(b)

2

6

e8

3

e9

5
e4

6
e5

6
e2

5
e3

Figure 2.1 (a) A directed graph G. (b) A critical subgraph of G. (Data from M. N. Swamy
and K. Thulasiraman, Graphs, Networks and Algorithms, Wiley-Interscience, 1981.)

A directed graph G and a critical subgraph H of G are shown in Figure 2.1. It is easy to see
that

1. Each component of a critical subgraph contains at most one circuit, and such a circuit
will be a directed circuit.

2. A critical subgraph with no circuits is an optimum branching of G.

Consider a branching B. Let e = (i, j) be an edge not in B, and let e′ be the edge of B
incident into vertex j. Then e is eligible relative to B if

B′ = (B ∪ e)− e′

is a branching.
For example, the edges {e1, e2, e3, e4, e7, e8} form a branching B of the graph of Figure 2.1.

The edge e6, not in B, is eligible relative to B since

(B ∪ e6)− e7

is a branching of this graph.
Lemmas 2.1 and 2.2 are easy to prove, and they lead to Theorem 2.5, which forms the

basis of Karp’s proof of the correctness of Edmonds’ algorithm. In the following the edge set
of a subgraph H will also be denoted by H.

Lemma 2.1 Let B be a branching, and let e = (i, j) be an edge not in B. Then e is eligible
relative to B if and only if in B there is no directed path from j to i. �

C5955–C002.tex 26 2015/11/4 8:54am

Basic Graph Algorithms � 27

Lemma 2.2 Let B be a branching and let C be a directed circuit such that no edge of C−B
is eligible relative to B. Then |C −B| = 1. �

Theorem 2.5 Let H be a critical subgraph. Then there exists an optimum branching B such
that, for every directed circuit C in H, |C −B| = 1.

Proof. Let B be an optimum branching that, among all optimum branchings, contains a
maximum number of edges of the critical subgraph.

Consider any edge e ∈ H − B that is incident into vertex j, and let e′ be the edge of B
incident into j. If e were eligible, then

(B ∪ e)− e′

would also be an optimum branching, containing a larger number of edges of H than B does;
a contradiction. Thus no edge of H −B is eligible relative to B. So, by Lemma 2.2, for each
circuit C in H, |C −B| = 1. �
Let C1, C2, . . ., Ck be the directed circuits in H. Note that no two circuits of H can have a
common edge. In other words, these circuits are edge-disjoint. Let e0

i be an edge of minimum
weight in Ci, i ≥ 1.

Corollary 2.1 There exists an optimum branching B such that:

1. |Ci −B| = 1, i = 1, 2, . . ., k.

2. If no edge of B − Ci is incident into a vertex in Ci, i = 1, 2, . . ., k, then

Ci −B = e0
i . (2.4)

Proof. Among all optimum branchings that satisfy item 1, let B be a branching containing
a minimum number of edges from the set {e0

1, e0
2, . . ., e0

k}. We now show that B satisfies
item 2.

If not, suppose that, for some i, e0
i ∈ B, but that no edge of B − Ci is incident into

a vertex in Ci. Let e = Ci − B. Then (B − e0
i) ∪ e is clearly an optimum branching

that satisfies item 1 but has fewer edges than B from the set {e0
1, e0

2, . . ., e0
k}. This is a

contradiction. �
This result is very crucial in the development of Edmonds’ algorithm. It suggests that we
can restrict our search for optimum branchings to those that satisfy (2.4).

Next we construct, from the given graph G, a simpler graph G′ and show how to
construct from an optimum branching of G′ an optimum branching of G that satis-
fies (2.4).

As before, let H be the critical subgraph of G and let C1, C2, . . ., Ck be the directed circuits
in H. The graph G′ is constructed by contracting all the edges in each Ci = 1, 2, . . ., k. In G′,
vertices of each circuit Ci are represented by a single vertex ai, called a pseudo-vertex. The
weights of the edges of G′ are the same as those of G, except for the weights of the edges
incident into the pseudo-vertices. These weights are modified as follows.

Let e = (i, j) be an edge of G such that j is a vertex of some circuit Cr and i is
not in Cr. Then in G′, e is incident into the pseudo-vertex ar. Define ẽ as the unique
edge in Cr that is incident into vertex j. Then in G′ the weight of e, denoted by w′(e),
is given by

w′(e) = w(e)− w(ẽ) + w(e0
r). (2.5)

C5955–C002.tex 27 2015/11/4 8:54am

28 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

For example, consider the edge e1 incident into the directed circuit {e2, e3, e4, e5} of the
critical subgraph of the graph G of Figure 2.1. Then ẽ1 = e5, and the weight of e1 in G′ is
given by

w′(e1) = w(e1)− w(e5) + w(e4)
= 5− 6 + 5
= 4.

Note that e4 is a minimum weight edge in the circuit {e2, e3, e4, e5}.
Let E and E′, respectively, denote the edge sets of G and G′. We now show how to

construct from a branching B′ of G′ a branching B of G that satisfies (2.4) and vice versa.
For any branching B of G that satisfies (2.4) it is easy to see that

B′ = B ∩ E′ (2.6)

is a branching of G′. Furthermore, B′ as defined is unique for a given B.
Next consider a branching B′ of G′. For each Ci, let us define C ′

i as follows:

1. If the in-degree in B′ of a pseudo-vertex ai is zero, then

C ′
i = Ci − e0

i .

2. If the in-degree in B′ of ai is nonzero, and e is the edge of B′ incident into ai, then

C ′
i = Ci − ẽ.

Now it is easy to see that

B = B′ k
∪

i=1
C ′

i. (2.7)

is a branching of G that satisfies (2.4). Furthermore, B as defined is unique for a given B′.
Thus we conclude that there is a one-to-one correspondence between the set of branchings

of G that satisfy (2.4) and the set of branchings of G′. Also, the weights of the corresponding
branchings B and B′ satisfy

w(B)− w(B′) =
k∑

i=1
w(Ci)−

k∑
i=1

w(e0
i). (2.8)

This property of B and B′ implies that if B is an optimum branching of G that satisfies (2.4),
then B′ is an optimum branching of G′ and vice versa. Thus we have proved the following
theorem.

Theorem 2.6 There exists a one-to-one correspondence between the set of all optimum
branchings in G that satisfy (2.4) and the set of all optimum branchings in G′. �

Edmonds’ algorithm for constructing an optimum branching is based on Theorem 2.6 and is
as follows:

C5955–C002.tex 28 2015/11/4 8:54am

Basic Graph Algorithms � 29

Algorithm 2.4 Optimum branching (Edmonds)

S1. From the given graph G = G0 construct a sequence of graphs G0, G1, G2, . . ., Gk,
where

1. Gk is the first graph in the sequence whose critical subgraph is acyclic and
2. Gi, 1 ≤ i ≤ k, is obtained from Gi−1 by contracting the circuits in the critical

subgraph Hi−1 of Gi−1 and altering the weights as in (2.5).
S2. Since Hk is acyclic, it is an optimum branching in Gk. Let Bk = Hk.

Construct the sequence Bk−1, Bk−2, . . ., B0, where
1. Bi, 0 ≤ i ≤ k − 1, is an optimum branching of Gi.

2. Bi, for i ≥ 0, is constructed by expanding, as in (2.7), pseudo-vertices in
Bi+1.

As an example let G0 be the graph in Figure 2.1a, and let H0 be the graph in Figure 2.1b.
H0 is the critical subgraph of G0. After contracting the edges of the circuits in H0 and
modifying the weights, we obtain the graph G1 shown in Figure 2.2a. The critical subgraph
H1 of G1 is shown in Figure 2.2b. H1 is acyclic. So it is an optimum branching of G1. An
optimum branching of G0 is obtained from H1 by expanding the pseudo-vertices a1 and a2
(which correspond to the two directed circuits in H0), and it is shown in Figure 2.2c.

The running time of Edmonds’ optimum branching algorithm is O(mn), where m is
the number of edges and n is the number of vertices. Tarjan [18] gives an O(mn log n)

0

4

0

21

4

2

2

6

5

6

5

5

3

(a) (b) (c)

e7

e8

e11

e4

e6

e2

e1

a1

a1

a2a2

e1

e1

e3

e10

e10

e10

e12

Figure 2.2 (a) Graph G1. (b) H1 a critical subgraph of G1. (c) An optimum branching of
graph G of Figure 2.1a. (Data from M. N. Swamy and K. Thulasiraman, Graphs, Networks
and Algorithms, Wiley-Interscience, 1981.)

C5955–C002.tex 29 2015/11/4 8:54am

30 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

implementation of Edmonds’ algorithm. Gabow et al. [13] have given an O(m + n log n) time
implementation using Fibonacci heaps (see also Camerini et al. [19]). Bock [20] and Chu and
Liu [21] have also independently discovered Edmonds’ algorithm.

2.4 TRANSITIVE CLOSURE

A binary relation R on a set is a collection of ordered pairs of the elements of the set. If
(x, y) ∈ R, then we say that x is related to y and denote this relationship by x R y. A relation
R is transitive if x R y whenever there exists a sequence

x0 = x, x1, x2, . . ., xk = y

such that k > 0 and x0 R x1, x1 R x2, . . ., and xk−1 R xk.
The transitive closure of a binary relation R is a relation R∗ defined as follows: x R∗ y if

and only if there exists a sequence

x0 = x, x1, x2, . . ., xk = y

such that k > 0 and x0 R x1, x1 R x2, . . ., and xk−1 R xk.
Clearly, if x R y, then x R∗ y. Hence R ⊆ R∗. Further, it can be easily shown that R∗

is transitive. In fact, it is the smallest transitive relation containing R. So if R is transitive,
then R∗ = R.

A binary relation R on a set S can be represented by a directed graph G in which each
vertex corresponds to an element of S and (x, y) is a directed edge of G if an only if x R
y. The directed graph G∗ representing the transitive closure R∗ of R is called the transitive
closure of G. It follows from the definition of R∗ that the edge (x, y), x ̸= y, is in G∗ if
and only if there exists in G a directed path from the vertex x to the vertex y. Similarly
the self-loop (x, x) at vertex x is in G∗ if and only if there exists in G a directed circuit
containing x. For example, the graph shown in Figure 2.3b is the transitive closure of the
graph of Figure 2.3a.

Suppose that we define the reachability matrix of an n-vertex directed graph G as an
n×n (0, 1) matrix in which the (i, j) entry is equal to 1 if and only if there exists a directed
path from vertex i to vertex j when i ̸= j, or a directed circuit containing vertex i when
i = j. In other words the (i, j) entry of the reachability matrix is equal to 1 if and only if
vertex j is reachable from vertex i through a path of directed edges in G. The problem of
constructing the transitive closure of a directed graph arises in several applications (e.g., see
Gries [22]). In this section we discuss an elegant and computationally efficient algorithm due
to Warshall [23] for computing the transitive closure of a directed graph. We also discuss a
variation of Warshall’s algorithm given by Warren [24].

(a) (b)

Figure 2.3 (a) Graph G. (b) G∗, transitive closure of G. (Data from M. N. Swamy and K.
Thulasiraman, Graphs, Networks and Algorithms, Wiley-Interscience, 1981.)

C5955–C002.tex 30 2015/11/4 8:54am

Basic Graph Algorithms � 31

3 4

1 2

(a)

3 4

1 2

(b)

3 4

1 2

(c)

Figure 2.4 Illustration of Warshall’s algorithm. (a) G0. (b) G1 = G2. (c) G3 = G4. (Data from
M. N. Swamy and K. Thulasiraman, Graphs, Networks and Algorithms, Wiley-Interscience,
1981.)

Let G be an n-vertex directed graph with its vertices denoted by the integers 1, 2, . . ., n.
Let G0 = G. Warshall’s algorithm constructs a sequence of graphs so that Gi ⊆ Gi+1,
0 ≤ i ≤ n− 1, and Gn is the transitive closure of G. The graph Gi, i ≥ 1, is obtained from
Gi−1 by processing vertex i in Gi−1. Processing vertex i in Gi−1 involves addition of new
edges to Gi−1 as described next.

Let, in Gi−1, the edges (i, k), (i, l), (i, m), . . . be incident out of vertex i. Then for each
edge (j, i) incident into vertex i, add to Gi−1 the edges (j, k), (j, l), (j, m), . . . if these edges
are not already present in Gi−1. The graph that results after vertex i is processed is denoted
as Gi. Warshall’s algorithm is illustrated in Figure 2.4.

It is clear that Gi ⊆ Gi+1, i ≥ 0. To show that Gn is the transitive closure of G we need
to prove the following result.

Theorem 2.7

1. Suppose that, for any two vertices s and t, there exists in G a directed path P from vertex
s to vertex t such that all its vertices other than s and t are from the set {1, 2, . . ., i}.
Then Gi contains the edge (s, t).

2. Suppose that, for any vertex s, there exists in G a directed circuit C containing s such
that all its vertices other than s are from the set {1, 2, . . ., i}. Then Gi contains the
self-loop (s, s).

Proof.

1. Proof is by induction on i.
Clearly the result is true for G1 since Warshall’s construction, while processing vertex
1, introduces the edge (s, t) if G0(= G) contains the edges (s, 1) and (1, t).
Let the result be true for all Gk, k < i.
Suppose that i is not an internal vertex of P . Then it follows from the induction
hypothesis that Gi−1 contains the edge (s, t). Hence Gi also contains (s, t) because
Gi−1 ⊆ Gi.
Suppose that i is an internal vertex of P . Then again from the induction hypothesis it
follows that Gi−1 contains the edges (s, i) and (i, t). Therefore, while processing vertex
i in Gi−1, the edge (s, t) is added to Gi.

2. Proof follows along the same lines as in (1). �

As an immediate consequence of this theorem we get the following corollary.

C5955–C002.tex 31 2015/11/4 8:54am

32 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Corollary 2.2 Gn is the transitive closure of G. �

We next give a formal description of Warshall’s algorithm. In this description the graph
G is represented by its adjacency matrix M and the symbol ∨ stands for Boolean
addition.

Algorithm 2.5 Transitive closure (Warshall)

Input: M is the adjacency matrix of G.
Output: Transitive closure of G.
begin
for i = 1, 2, . . ., n do

begin
for j = 1, 2, . . ., n do

if M(j, i) = 1 then
begin

for k = 1, 2, . . ., n do
M(j, k)←M(j, k) ∨ M(i, k);

end
end

end

A few observations are now in order:

1. Warshall’s algorithm transforms the adjacency matrix M of a graph G to the adjacency
matrix of the transitive closure of G by suitably overwriting on M . It is for this reason
that the algorithm is said to work in place.

2. The algorithm processes all the edges incident into a vertex before it begins to process
the next vertex. In other words it processes the matrix M column-wise. Hence, we
describe Warshall’s algorithm as column-oriented.

3. While processing a vertex no new edge (i.e., an edge that is not present when the
processing of that vertex begins) incident into the vertex is added to the graph. This
means that while processing a vertex we can choose the edges incident into the vertex
in any arbitrary order.

4. Suppose that the edge (j, i) incident into the vertex i is not present while vertex i
is processed, but that it is added subsequently while processing some vertex k, k> i.
Clearly this edge was not processed while processing vertex i. Neither will it be pro-
cessed later since no vertex is processed more than once. In fact, such an edge will not
result in adding any new edges.

5. Warshall’s algorithm is said to work in one pass since each vertex is processed exactly
once.

Suppose that we wish to modify Warshall’s algorithm so that it becomes row-oriented. In a
row-oriented algorithm, while processing a vertex, all the edges incident out of the vertex are
to be processed. The processing of the edge (i, j) introduces the edges (i, k) for every edge
(j, k) incident out of vertex j. Therefore new edges incident out of a vertex may be added
while processing a vertex row-wise. Some of these newly added edges may not be processed
before the processing of the vertex under consideration is completed. If the processing of
these edges is necessary for the computation of the transitive closure, then such a processing

C5955–C002.tex 32 2015/11/4 8:54am

Basic Graph Algorithms � 33

1 4 3 2

1 4 3 2

1 4 3 2

(a)

(b)

(c)

Figure 2.5 Example of row-oriented transitive closure algorithm: (a) G, (b) G′, and (c) G∗.
(Data from M. N. Swamy and K. Thulasiraman, Graphs, Networks and Algorithms, Wiley-
Interscience, 1981.)

can be done only in a second pass. Thus, in general, a row-oriented algorithm may require
more than one pass to compute the transitive closure.

For example, consider the graph G of Figure 2.5a. After processing row-wise the ver-
tices of G we obtain the graph G′ shown in Figure 2.5b. Clearly, G′ is not the transitive
closure of G since the edge (1,2) is yet to be added. It may be noted that the edge (1,3) is
not processed in this pass because it is added only while processing the edge (1,4). The same
is the case with the edge (4,2).

Suppose we next process the vertices of G′. In this second pass the edge (1,2) is added
while processing vertex 1 and we get the transitive closure G∗ shown in Figure 2.5c. Thus in
the case of the graph of Figure 2.5a two passes of the row-oriented algorithm are required.

Now the question arises whether two passes always suffice. The answer is in the affir-
mative, and Warren [24] has demonstrated this by devising a clever two-pass row-oriented
algorithm. In this algorithm, while processing a vertex, say vertex i, in the first pass only
edges connected to vertices less than i are processed, and in the second pass only edges con-
nected to vertices greater than i are processed. In other words the algorithm transforms the
adjacency matrix M of the graph G to the adjacency matrix of G∗ by processing in the first
pass only entries below the main diagonal of M and in the second pass only entries above the
main diagonal. Thus during each pass at most n(n− 1)/2 edges are processed. A description
of Warren’s modification of Warshall’s algorithm now follows.

Algorithm 2.6 Transitive closure (Warren)

Input: M is the adjacency matrix of G.
Output: Transitive closure of G.
begin

for i = 2, 3, . . ., n do {Pass 1 begins}
begin

for j = 1, 2, . . ., i− 1 do
if M(i, j) = 1 then

begin
for k = 1, 2, . . ., n do

M(i, k)←M(i, k) ∨ M(j, k);
end

C5955–C002.tex 33 2015/11/4 8:54am

34 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

end
{Pass 1 ends}

for i = 1, 2, . . ., n− 1 do {Pass 2 begins}
begin

for j = i + 1, i + 2, . . ., n do
if M(i, j) = 1 then

begin
for k = 1, 2, . . ., n do

M(i, k)←M(i, k) ∨ M(j, k);
end

end
{Pass 2 ends}

end

As an example, consider again the graph shown in Figure 2.5a. At the end of the first pass
of Warren’s algorithm we obtain the graph shown in Figure 2.6a, and at the end of the
second pass we get the transitive closure G∗ shown in Figure 2.6b. The proof of correctness
of Warren’s algorithm is based on the following lemma.

Lemma 2.3 Suppose that, for any two vertices s and t, there exists in G a directed path P
from s to t. Then the graph that results after processing vertex s in the first pass of Warren’s
algorithm contains an edge (s, r), where r is a successor of s on P and either r > s or r = t.

Proof. Proof is by induction on s.
If s = 1, then the lemma is clearly true because all the successors of 1 on P are greater

than 1. Assume that the lemma is true for all s < k and let s = k. Suppose (s, i1) is the first
edge on P . If i1 > s, then clearly the lemma is true.

If i1 < s, then by the induction hypothesis the graph that results after processing vertex
i1 in the first pass contains an edge (i1, i2), where i2 is a successor of i1 on P and either
i2 > i1 or i2 = t.

If i2 ̸= t and i2 < s, then again by the induction hypothesis the graph that results after
processing vertex i2 in the first pass contains an edge (i2, i3) where i3 is a successor of i2
on P , and either i3 > i2 or i3 = t.

If i3 ̸= t and i3 < s, we repeat the arguments on i3 until we locate an im such that
either im > s or im = t. Thus the graph that we have before the processing of vertex s
begins contains the edges (s, i1), (i1, i2), . . ., (im−1, im) such that the following conditions are
satisfied:

1 4 3 2

1 4 3 2

(a)

(b)

Figure 2.6 Illustration of Warren’s algorithm. (Data from M. N. Swamy and K. Thulasiraman,
Graphs, Networks and Algorithms, Wiley-Interscience, 1981.)

C5955–C002.tex 34 2015/11/4 8:54am

Basic Graph Algorithms � 35

1. ip is a successor of ip−1 on P , p ≥ 2.
2. im−1 > im−2 > im−3 > · · · > i1, and ik < s for k ̸= m.
3. im = t or im > s.

We now begin to process vertex s. Processing of (s, i1) introduces the edge (s, i2) because of
the presence of (i1, i2). Since i2 > i1, the edge (s, i2) is subsequently processed. Processing
of this edge introduces (s, i3) because of the presence of (i2, i3), and so on. Thus when the
processing of s is completed, the required edge (s, im) is present in the resulting graph. �

Theorem 2.8 Warren’s algorithm computes the transitive closure of a directed graph G.

Proof. We need to consider the following two cases.

Case 1 For any two distinct vertices s and t there exists in G a directed path P from s to t.
Let (i, j) be the first edge on P (as we proceed from s to t) such that i > j. Then it

follows from Lemma 2.3 that the graph that we have, before the second pass of Warren’s
algorithm begins, contains an edge (i, k), where k is a successor of i on P and either k = t or
k > i. Thus after the first pass is completed there exists a path P ′ : s, i1, i2, . . ., im, t such
that s < i1 < i2 < · · · < im and each ij+1 is a successor of ij on P .

When in the second pass we process vertex s, the edge (s, i1) is first encountered. The
processing of this edge introduces the edge (s, i2) because of the presence of the edge (i1, i2).
Since i2 > i1, the edge (s, i2) is processed subsequently. This, in turn, introduces the edge
(s, i3), and so on. Thus when the processing of s is completed, we have the edge (s, t) in the
resulting graph.

Case 2 There exists in G a directed circuit containing a vertex s.
In this case we can prove along the same lines as before that when the processing of

vertex s is completed in the second pass, the resulting graph contains the self-loop (s, s). �
Clearly both Warshall’s and Warren’s algorithms have the worst-case complexity O(n3).
Warren [24] refers to other row-oriented algorithms. For some of the other transitive closure
algorithms (see [25–33]). Syslo and Dzikiewicz [34] discuss computational experiences with
several of the transitive closure algorithms. Melhorn [35] discusses the transitive closure
problem in the context of general path problems in graphs. Several additional references on
this topic can also be found in [35].

2.5 SHORTEST PATHS

Let G be a connected directed graph in which each directed edge is associated with a finite
real number called the length of the edge. The length of an edge directed from a vertex i to
a vertex j is denoted by w(i, j). If there is no edge directed from vertex i to vertex j, then
w(i, j) = ∞. The length of a directed path in G is the sum of the lengths of the edges in
the path. A minimum length directed s − t path is called a shortest path from s to t. The
length of a shortest directed s− t path, if it exists, is called the distance from s to t, and it
is denoted as d(s, t). We assume that the vertices are denoted as 1, 2, . . ., n.

In this section we consider the following two problems:

1. Single Source Shortest Paths Problem: Find the shortest paths from a specified vertex
s to all other vertices in G.

2. All-Pairs Shortest Paths Problem: Find the shortest paths between all the ordered pairs
of vertices in G.

C5955–C002.tex 35 2015/11/4 8:54am

36 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

These two problems arise in several optimization problems. For example, finding a minimum
cost flow in a transport network involves finding a shortest path from the source to the sink
in the network [36] (see also Chapter 5).

2.5.1 Single Source Shortest Paths: Bellman–Ford–Moore Algorithm

We first make a few observations and assumptions that do not cause any loss of generality
of the algorithms to be discussed in this section.

• Vertex 1 will serve as the source vertex. Algorithms for the shortest path problems
start with an initial estimate of the distance of each vertex from the source vertex 1.
We will denote this estimate for vertex i by λ(i). Initially, λ(1) = 0 and λ(i) = ∞
for all i ̸= 1. Algorithms repeatedly update these estimates until they all become the
required distance values. That is, at termination, d(1, i) = λ(i).

• We assume that all vertices are reachable from the source vertex. In other words, we
assume that there is a directed path from the source vertex to every other vertex. Thus,
at termination of the algorithms, λ(i) values will be finite.

• Algorithms search for a shortest directed walk from the source vertex to every other
vertex. We assume that the graph has no directed circuit of negative length. If such
a circuit C were present, then a directed walk P of arbitrarily small length from the
source vertex to every vertex in C can be found by repeatedly traversing the circuit C.

The following theorem is the basis of all shortest path algorithms that we will be discussing
in this section. In this theorem and the subsequent discussions, an i− j directed path refers
to a directed path from vertex i to vertex j.

Theorem 2.9 (Optimality conditions) Consider a connected directed graph G = (V, E)
with each edge e ∈ E associated with a finite real number w(e). Let λ(i), i ≥ 1 denote the
length of a 1− i directed path. Then for all i ≥ 1, λ(i) is the distance from vertex 1 to vertex
i, that is λ(i) = d(1, i), if and only if the following condition is satisfied.

λ(i) + w(i, j) ≥ λ(j), for every edge e = (i, j). (2.9)

Proof.
Necessity: Let λ(i), i ≥ 1 be the distance from vertex 1 to vertex i. Suppose condition (2.9) is
violated for some edge e = (i, j). Then, λ(i) + w(e) < λ(j). Since there is no directed circuit
of negative length, concatenating the edge e to a shortest path from vertex 1 to vertex i will
give a path of length less than λ(j), contradicting that λ(j) is the length of a shortest path
from vertex 1 to vertex i.

Sufficiency: Consider a directed path P from vertex 1 to vertex j and let

P : 1 = i0, i1, . . ., ik−1, ik = j.

Assume that the λ(i)’s satisfy (2.9).
Then

λ(j) = λ(ik) ≤ λ(ik−1) + w(ik−1, ik)
≤ λ(ik−2) + w(ik−2, ik−1) + w(ik−1, ik) . . .

≤ λ(i0) + w(i0, i1) + w(i1, i2) + · · ·+ w(ik−2, ik−1) + w(ik−1, ik)
= w(i0, i1) + w(i1, i2) + · · ·+ w(ik−2, ik−1) + w(ik−1, ik),

since i0 = 1 and λ(1) = 0.

= length of path P .

C5955–C002.tex 36 2015/11/4 8:54am

Basic Graph Algorithms � 37

Since the length of every directed path P from vertex 1 to vertex j is at least λ(j), and λ(j)
is the length of a directed path from vertex 1 to vertex j, it follows that λ(j) is the length of
a shortest path from vertex 1 to vertex j. �
We are now ready to present a shortest path algorithm due to Ford [37]. This algorithm is
also attributed to Bellman [38] and Moore [39]. So we shall call this Bellman–Ford–Moore
(in short, BFM) algorithm.

Algorithm 2.7 Shortest paths in graphs with negative length edges
(Bellman–Ford–Moore)

Input: A connected graph G = (V, E) with length w(e) = w(i, j) for each edge e = (i, j).
Output: Shortest paths and their lengths from vertex 1 to all other vertices.
begin
λ(1)← 0;
λ(i)←∞, for each i ̸= 1;
PRED (i)← i, for every vertex i;
while there exists an edge e = (i, j) satisfying λ(i) + w(i, j) < λ(j) do

begin
λ(j)← λ(i) + w(i, j);
PRED (j)← i;

end
end

Note that the algorithm starts by assigning λ(1) = 0 and λ(j) = ∞ for all j ̸= 1. If there
exists an edge (i, j) which violates the optimality condition (2.9) then the λ(j) value is
updated to λ(j) = λ(i) + w(i, j) and the predecessor of j is set to i. If for every edge (i, j)
the optimality condition is satisfied then the algorithm terminates.

A few observations are now in order.
• If at any iteration λ(j) is finite and PRED(j) = i then it means that vertex j received its

current label λ(j) while examining the edge (i, j) and λ(j) is updated to λ(i) + w(i, j).
Since there are no directed circuits of negative length in the graph, a directed 1−j path
of length λ(i) + w(i, j) can then be obtained by tracing the path backward from vertex
j along the predecessors. For example, if PRED(8) = 6, PRED(6) = 9 and PRED(9)
= 1, then the 1 – 8 path along the edges (1,9), (9,6), and (6,8) is of length λ(8).

• Since there are no directed circuits of negative length, the number of times the label
of a vertex j is updated is no more than the number of directed paths from vertex 1 to
vertex j. Since the number of directed paths is finite, the BFM algorithm will terminate,
and at termination the label values will satisfy (2.9).

This establishes the correctness of the BFM algorithm. We summarize this result in the
following theorem.

Theorem 2.10 For a directed graph G with no directed circuits of negative length, the
Bellman–Ford–Moore Algorithm terminates in a finite number of steps, and upon termi-
nation, λ(j) = d(1, j) for every vertex j. �
Note that the number of directed paths from vertex 1 to another vertex could be exponential
in the number of vertices of the graph. So, if in the implementation of Algorithm 2.7 edges are
selected in an arbitrary manner, it is possible that the algorithm may perform an exponential
number of operations before terminating. We next present an implementation which results
in O(mn) time complexity, where m denotes the number of edges and n denotes the number
of vertices in the network.

C5955–C002.tex 37 2015/11/4 8:54am

38 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Step 1: First arrange the edges in any specified order as follows: e1, e2, e3, . . ., em

Step 2: Scan the edges one by one and check if the condition λ(j) > λ(i)+w(i, j) is satisfied
for edge (i, j). If so, update λ(j) = λ(i) + w(i, j).

Step 3: Stop if no λ(j) is updated in step 2. Otherwise, repeat step 2.

In the above implementation Step 2 is called a sweep or a phase. During a phase, m edges
are scanned and the λ(j) values are updated if necessary. Thus a sweep takes O(m) time. We
now show that the algorithm terminates in atmost n sweeps. We first prove the following.

Theorem 2.11 If there exists a shortest path from vertex 1 to vertex j having k edges, then
λ(j) will have reached its final value by the end of the kth sweep.

Proof. Proof is by induction on k. Clearly the result is true for k = 1, because the vertex j
will get its final λ(j) value when the edge (1, j) is scanned during the first sweep. As induction
hypothesis, assume that the result is true for some k ≥ 1. In other words, we assume that if
there exists a shortest path from vertex 1 to vertex j having k edges, then at the end of the
kth sweep, λ(j) will have reached its final value.

Consider a vertex j which is connected to 1 by a shortest path having (k + 1) edges.

P : 1, i1, i2, i3, . . ., ik, ik+1 = j

Since the subpath from 1 to ik is a shortest path to ik having k edges, then by the induction
hypothesis λ(ik) will have reached its final value by the end of the kth sweep. During the
(k + 1)th sweep when edge (ik, ik+1) is scanned λ(ik+1) will be updated to λ(ik+1) = λ(ik) +
w(ik, ik+1) which is the length of P . Thus at the end of the (k +1)th sweep, λ(ik+1) = d(1, j)
which is its final value. �

Now we can see that the BFM algorithm will terminate in at most n sweeps because every
path has at most (n− 1) edges. So the complexity of the above implementation of the BFM
algorithm is O(mn). We call this implementation of the BFM as edge-based implementation.

In a similar manner, we can design a vertex-based implementation of the BFM algorithm.
In this implementation, we first order the vertices as 1, 2, . . .,n. Recall that vertex 1 is the
source vertex. During a sweep each vertex is examined in the order specified by the vertex
ordering. Here, examining a vertex j involves examining all the edges incident on and directed
away from j and updating the labels of the neighbors according to step 2. We can again show
that no more than n sweeps will be required and that the algorithm terminates in O(mn)
time. We will call this vertex-based implementation.

2.5.1.1 Negative Cycle Detection

As we noted earlier, λ(j)’s satisfying the optimality conditions do not exist if there exists a
directed circuit of negative length. So, if a negative directed were present, the BFM algorithm
will not terminate. Suppose C denotes the maximum of the absolute values of all edge lengths,
no path can have a cost smaller than −nC. Thus if the λ(j) value falls below −nC for some
node j, then we can terminate the algorithm. The negative length circuit can be obtained
by tracing the predecessor values starting at node j.

2.5.1.2 Shortest Path Tree

At the end of the shortest path algorithm each node j has a predecessor PRED(j). The set
of edges (j, PRED(j)) will form a tree called the shortest path tree. Each path from 1 to

C5955–C002.tex 38 2015/11/4 8:54am

Basic Graph Algorithms � 39

node j in the tree gives a shortest length path from 1 to j. Also, λ(j) = λ(i) + w(i, j) for
every edge (i, j) on this tree.

Sometimes we may be interested in getting the second, third, or higher shortest paths.
These and related problems are discussed in Christofides [40], Dreyfus [41], Frank and Frisch
[42], Gordon and Minoux [43], Hu [44], Lawler [45], Minieka [46], and Spira and Pan [47].
For algorithms designed for sparse networks see Johnson [48] and Wagner [49] (see also
Edmonds and Karp [50], Fredman [51], and Johnson [52]). For a shortest path problem that
arises in solving a special system of linear inequalities and its applications see Comeau and
Thulasiraman [53], Lengauer [54], and Liao and Wong [55].

2.5.2 Single Source Shortest Paths in Graphs with No Negative Length Edges:
Dijkstra’s Algorithm

In this section we consider a special case of the shortest path problem where all the edge
lengths are nonnegative. This restricted version of the shortest path problem admits a very
efficient algorithm due to Dijkstra [56]. This algorithm may be viewed as a vertex-based
implementation of the BFM algorithm. This implementation requires only one sweep of all
the vertices, but in contrast to the BFM algorithm the order in which the vertices are selected
for scanning cannot be arbitrary. This order depends on the edge lengths. Following is an
informal description of Dijkstra’s algorithm.

Like the BFM algorithm, Dijkstra’s algorithm starts by assigning λ(1) = 0 and λ(j) =∞
for all j ̸= 1. Initially, all vertices are unlabeled.

A general iteration: In iteration i

• An unlabeled vertex i with minimum λ-value is labeled Permanent. Let this vertex be
denoted as ui, that is, among all unlabeled vertices vertex ui has the smallest λ-value.

• Then every edge (ui, j) where j is unlabeled is examined for violation of the optimality
condition (2.9). If there exists such an edge (ui, j), then the λ(j) value is updated to
λ(j) = λ(ui) + w(ui, j) and the predecessor of j is set to ui.

The algorithm terminates when all the vertices are permanently labeled. A formal description
of Dijkstra’s algorithm is given next. In this description, we use an array PERM to indicate
which of the vertices are permanently labeled. If PERM(v) = 1, then v is a permanently
labeled vertex. We start with PERM(v) = 0 for all v. PRED is an array that keeps a record
of the vertices from which the vertices get permanently labeled. If a vertex v is permanently
labeled, then v, PRED(v), PRED(PRED(v)), . . ., 1 are the vertices in a shortest directed 1-v
path.

Algorithm 2.8 Shortest paths in graphs with non-negative edge lengths
(Dijkstra)

Input: A connected graph G = (V, E) with length w(e) = w(i, j) ≥ 0 for each edge
e = (i, j).
Output: Shortest paths and their lengths from vertex 1 to all other vertices.
begin
λ(1)← 0;
λ(i)←∞, for each i ̸= 1;
PRED(i) ← i, for every vertex i;
PERM(i) ← 0, for every vertex i;
S0 ← ϕ;
for k = 1, 2, . . ., n do

C5955–C002.tex 39 2015/11/4 8:54am

40 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

begin (iteration k begins)
Let uk be a vertex that is not yet labeled permanently and has minimum
λ-value;
PERM(uk)← 1;
Sk ← Sk−1 ∪ {uk};
for every edge e = (uk, j) do

If λ(j) > λ(uk) + w(uk, j), then λ(j)← λ(uk) + w(uk, j) and
PRED(j)← uk;

end (iteration k ends)
end

Note that in a computer program∞ is represented by as high a number as necessary. Further,
if the final λ value of a vertex v is equal to ∞, then it means that there is no directed path
from s to v.

To illustrate Dijkstra’s algorithm, consider the graph G in Figure 2.7 in which the length
of an edge is shown next to the edge. In Figure 2.8 we have shown the λ values of vertices
and the entries of the PRED array.

For any i the circled entries correspond to the permanently labeled vertices. The entry
with the mark ∗ is the label of the latest permanently labeled vertex ui. The shortest paths
from s and the corresponding distances are obtained from the final λ values and the entries
in the PRED array.

Theorem 2.12 For i ≥ 1, let ui denote the vertex that is labeled permanently in iteration
i of Dijkstra’s algorithm, and d(ui) be the λ-value of ui at the termination of the algorithm.
Then

1. d(u1) ≤ d(u2) ≤ · · · ≤ d(un); and

2. d(1, uj) = d(ui) for all j ≥ 1.

Note: In Dijkstra’s algorithm the λ-value of a vertex does not change once the vertex is
labeled permanently.

Proof. Proof depends on the following observations based on the way labels are updated and
how a vertex is selected for permanent labeling.

G H

D E
A F

B C

5

10

6

8

13

8

12

4

19

7

6

14

10
2

7

Figure 2.7 Graph for illustrating Dijkstra’s algorithm. (Data from M. N. Swamy and
K. Thulasiraman, Graphs, Networks and Algorithms, Wiley-Interscience, 1981.)

C5955–C002.tex 40 2015/11/4 8:54am

Basic Graph Algorithms � 41

Vertices

i A B C D E F G H

1 0 * ∞ ∞ ∞ ∞ ∞ ∞ ∞

2 0 7 ∞ 8 ∞ ∞ 6 * ∞

3 0 7 * ∞ 8 ∞ ∞ 6 ∞

4 0 7 ∞ 8 * ∞ ∞ 6 ∞

5 0 7 ∞ 8 16 * ∞ 6 21

6 0 7 ∞ 8 16 ∞ 6 21 *

7 0 7 ∞ 8 16 25 * 6 21

8 0 7 ∞ * 8 16 25 6 21

PRED(A) = A

PRED(C) = C

PRED(B) = A

PRED(D) = A

PRED(E) = D

PRED(G) = A

PRED(F) = H

PRED(H) = D

From To Shortest path

A B A, B

A C No Path

A D A, D

A E A, D, E

A F A, D, H, F

A G A, G

A H A, D, H

(a)

(b)

Figure 2.8 Illustration of Dijkstra’s algorithm. The λ values are shown in (a). (Data from
M. N. Swamy and K. Thulasiraman, Graphs, Networks and Algorithms, Wiley-Interscience,
1981.)

1. Let Si denote the set of all the vertices permanently labeled at the end of iteration i.
That is Si = {u1, u2, . . ., ui}. Then, at the end of iteration i, λ(j) of a vertex j ̸= Si, if
it is finite, is the minimum of the labels considered for assignment to j while scanning
the edges directed into j from the permanently labeled vertices u1, u2, . . ., ui. So,

λ(j) ≤ d(uk) + w(uk, j), for all j ̸= Si and k ≤ i (2.10)

2. ui+1 is the vertex not in Si with minimum λ-value. This means that

λ(ui+1) = d(ui+1) ≤ d(uk) + w(uk, ui+1), for all k ≤ i (2.11)

PRED(ui+1) is the vertex uk for which the above minimum is achieved. So, if
PRED(ui+1) = ua, then

d(ui+1) = d(ua) + w(ua, ui+1). (2.12)

3. It follows from (2.10) that for j > i

d(uj) ≤ d(ui) + w(ui, uj) (2.13)

because λ-values of vertices do not increase from iteration to iteration.

Proof of (1): If a = i, then from (2.12) we get d(ui+1) = d(ui) + w(ui, ui+1) and so d(ui) ≤
d(ui+1).

If a < i, then vertex ui+1 must have reached its final label value d(ui+1) = d(ua) +
w(ua, ui+1) in iteration a.

So, in the iteration i when ui with label d(ui) was selected for permanent labeling, the
vertex ui+1 with label d(ui+1) = d(ua)+w(ua, ui+1) was also available for consideration. But
vertex ui was permanently labeled. So, d(ui) ≤ d(ui+1).

Result (1) follows since the above argument is valid for all i ≥ 1.

C5955–C002.tex 41 2015/11/4 8:54am

42 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof of (2): We prove the result by showing that d(u1), d(u2), . . ., d(un) satisfy the optimality
condition for shortest path lengths given in Theorem 2.9.

Consider any edge (ui, uj). If i > j, then d(uj) ≤ d(ui), by the result (1) of the theorem. So
d(ui)+w(ui, uj) ≥ d(uj). Suppose that i < j. Then, we see from (2.13) that d(ui)+w(ui, uj) ≥
d(uj).

Thus, the labels d(u1), d(u2), . . ., d(un) at the termination of Dijkstra’s algorithm satisfy
the optimality condition for shortest path lengths and the result (2) follows. �
Dijkstra’s algorithm requires examination of at most m edges and at most n minimum
computations, leading to a complexity of O(m + n log n). In our discussions thus far we
have assumed that all the lengths are nonnegative. Dijkstra’s algorithm is not valid if some
of the lengths are negative. (Why?)

2.5.3 All Pairs Shortest Paths

Suppose that we are interested in finding the shortest paths between all the n(n−1) ordered
pairs of vertices in an n-vertex directed graph. A straight-forward approach to get these
paths would be to use the BFM algorithm n times. However, there are algorithms that are
computationally more efficient than this. These algorithms are applicable when there are no
negative-length directed circuits. Now we discuss one of these algorithms. This algorithm,
due to Floyd [57], is based on Warshall’s algorithm (Algorithm 2.5) for computing transitive
closure.

Consider an n-vertex directed graph G with lengths associated with its edges. Let the
vertices of G be denoted as 1, 2, . . ., n. Assume that there are no negative-length directed
circuits in G. Let W = [wij] be the n × n matrix of direct lengths in G, that is, wij is the
length of the directed edge (i, j) in G. We set wij =∞ if there is no edge (i, j) directed from
i to j. We also set wii = 0 for all i.

Starting with the matrix W (0) = W , Floyd’s algorithm constructs a sequence W (1),

W (2), . . ., W (n) of n × n matrices so that the entry w
(n)
ij in W (n) would give the distance

from i to j in G. The matrix W (k) = [w(k)
ij] is constructed from the matrix W (k−1) = [w(k−1)

ij]
according to the following rule:

w
(k)
ij = min

{
w

(k−1)
ij , w

(k−1)
ik + w

(k−1)
kj

}
(2.14)

Let P
(k)
ij denote a path of minimum length among all the directed i−j paths, which use

as internal vertices only those from the set {1, 2, . . ., k}. The following theorem proves the
correctness of Floyd’s algorithm.

Theorem 2.13 For 0 ≤ k ≤ n, w
(k)
ij is equal to the length of P

(k)
ij .

Proof. Proof follows from the following observations.

1. If P
(k)
ij does not contain vertex k then w

(k)
ij = w

(k−1)
ij .

2. If P
(k)
ij contains vertex k then w

(k)
ij = w

(k−1)
ik + w

(k−1)
kj because a subpath of a shortest

path is a shortest path between the end vertices of the subpath.

Note: See the similarity between the proof of this theorem and the proof of correctness of
Warshall’s algorithm for transitive closure. �
Usually, in addition to the shortest lengths, we are also interested in obtaining the paths
that have these lengths. Recall that in Dijkstra’s algorithm we use the PRED array to keep a

C5955–C002.tex 42 2015/11/4 8:54am

Basic Graph Algorithms � 43

record of the vertices that occur in the shortest paths. This is achieved in Floyd’s algorithm
as described next.

As we construct the sequence W (0), W (1), . . ., W (n), we also construct another sequence
Z(0), Z(1), . . ., Z(n) of matrices such that the entry z

(k)
ij of Z(k) gives the vertex that immedi-

ately follows vertex i in P
(k)
ij . Clearly, initially we set

z
(0)
ij =

{
j, if wij ̸=∞;
0, if wij =∞.

(2.15)

Given Z(k−1) = [z(k−1)
ij], Z(k) = [z(k)

ij] is obtained according to the following rule: Let

M = min
{

w
(k−1)
ij , w

(k−1)
ik + w

(k−1)
kj

}
Then

z
(k)
ij =

z
(k−1)
ij , if M = w

(k−1)
ij ;

z
(k−1)
ik , if M < w

(k−1)
ij .

(2.16)

It should be clear that the shortest i−j path is given by the sequence i, i1, i2, . . ., ip, j of
vertices, where

i1 = z
(n)
ij , i2 = z

(n)
i1j , i3 = z

(n)
i2j , . . . j = z

(n)
ipj . (2.17)

Algorithm 2.9 Shortest paths between all pairs of vertices (Floyd)

Input: W = [wij] is the n × n matrix of direct lengths in the given directed graph G =
(V, E). Here wii = 0 for all i = 1, 2, . . ., n. The graph does not have negative-length directed
circuits.
Output: Shortest directed paths and their lengths between every pair of vertices.
begin

for every (i, j) ∈ V × V do
if (i, j) ∈ E then zij ← j else zij ← 0;

for k = 1, 2, . . ., n do
for each (i, j) ∈ V × V do

begin
if wij > wik + wkj then

begin
wij ← wik + wkj ;
zij ← zik;
end

end
end

Suppose the graph has some negative-length directed circuits. Then, during the execution
of Floyd’s algorithm, wii becomes negative for some i. This means that the vertex i is
in some negative-length directed circuit and so the algorithm can be terminated at that
stage.

It is easy to see that Floyd’s algorithm is of complexity O(n3). This algorithm is also
valid for finding shortest paths in a network with negative lengths provided the network does
not have a directed circuit of negative length. Dantzig [58] proposed a variant of Floyd’s
algorithm that is also of complexity O(n3).

C5955–C002.tex 43 2015/11/4 8:54am

44 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

For some of the other shortest path algorithms see Tabourier [59], Williams and White
[60], and Yen [61]. Deo and Pang [62] and Pierce [63] give exhaustive bibliographies of algo-
rithms for the shortest path and related problems. A discussion of complexity results for
shortest path problems can be found in Melhorn [35] and Tarjan [64]. Discussions of shortest
path problems in a more general setting can be found in [43] and [35], Carré [65], and Tarjan
[66]. For some other developments see Moffat and Takoka [67] and Frederickson [68].

2.6 TRANSITIVE ORIENTATION

An undirected graph G is transitively orientable if we can assign orientations to the edges
of G so that the resulting directed graph is transitive. If G is transitively orientable, then G⃗
will denote a transitive orientation of G.

For example, the graph shown in Figure 2.9a is transitively orientable. A transitive ori-
entation of this graph is shown in Figure 2.9b.

In this section we discuss an algorithm due to Pnueli et al. [69] to test whether a sim-
ple undirected graph G is transitively orientable and obtain a transitive orientation G⃗ if
one exists. To aid the development and presentation of this algorithm, we introduce some
notations:

1. i→ j means that vertex i is connected to vertex j by an edge oriented from i to j.

2. i← j is similarly defined.

3. i—j means that there is an edge connecting vertex i and vertex j.

4. i/—j means that there is no edge connecting vertex i and vertex j.

5. i 9 j means that either i/—j or i← j or the edge i—j is not oriented.

i→ j, i← j, and i—j will also be used to denote the corresponding edges.
Consider now an undirected graph G = (V, E) which is transitively orientable. Let G⃗ =

(V, E⃗) denote a transitive orientation of G.
Suppose that there exist three vertices i, j, k ∈ V such that i→ j, j—k, and i/—k, then

transitivity of G⃗ requires that j ← k. Similarly, if i, j, k ∈ V , i → j, i—k, and j/—k, then
transitivity of G⃗ requires that i→ k.

These two observations lead to the following simple rules which form the basis of Pnueli,
Lempel and Even’s algorithm.

Rule R1 For i, j, k ∈ V , if i→ j, j—k, and i/—k, then orient the edge j—k as j ← k.

Rule R2 For i, j, k ∈ V , if i→ j, i—k, and j/—k, then orient the edge i—k as i→ k.

(a) (b)

Figure 2.9 (a) Graph G. (b) A transitive orientation of G. (Data from M. N. Swamy and K.
Thulasiraman, Graphs, Networks and Algorithms, Wiley-Interscience, 1981.)

C5955–C002.tex 44 2015/11/4 8:54am

Basic Graph Algorithms � 45

i k

j

R1

i k

j

j k

i

R2

j k

i

(a)

(b)

Figure 2.10 (a) Rule R1. (b) Rule R2. (Data from M. N. Swamy and K. Thulasiraman, Graphs,
Networks and Algorithms, Wiley-Interscience, 1981.)

These two rules are illustrated in Figure 2.10, where a dashed line indicates the absence of
the corresponding edge.

A description of the transitive orientation algorithm now follows.

Algorithm 2.10 Transitive orientation (Pnueli, Lempel, and Even)

S1. G is the given simple undirected graph i ← 1.
S2. (Phase i begins.) Select an edge e of the graph G and assign an arbitrary orientation

to e. Assign, whenever possible, orientations to the edges in G adjacent to e, using
Rule R1 or Rule R2. The directed edge e is now labeled examined.

S3. Test if there exists in G a directed edge which has not been labeled examined. If yes,
go to step S4. Otherwise go to step S6.

S4. Let i→ j be a directed edge in G which has not been labeled examined. Now do the
following, whenever applicable for each edge in G incident on i or j, and then label
i→ j examined:
Case 1 Let the edge under consideration be j—k.

a. (Applicability of rule R1.) If i/–k and the edge j—k is not oriented, then
orient j—k as j ← k.

b. (Contradiction of rule R1.) If i/–k and the edge j—k is already oriented as
j → k, then a contradiction of rule R1 has occurred. Go to step S9.

Case 2 Let the edge under consideration be i—k.
a. (Applicability of rule R2.) If j/–k and the edge i—k is not oriented, then

orient i—k as i→ k.
b. (Contradiction of rule R2.) If j/–k and edge i—k is already oriented as i← k,

then a contradiction of rule R2 has occurred. Go to step S9.
S5. Go to step S3.
S6. (Phase i has ended successfully.) Test whether all the edges of G have been assigned

orientations. If yes, go to step S8. Otherwise remove from G all its directed edges
and let G′ be the resulting graph.

C5955–C002.tex 45 2015/11/4 8:54am

46 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

S7. G← G′ and i← i + 1. Go to Step S2.
S8. (All the edges of the given graph have been assigned orientations which are consistent

with Rules R1 and R2. These orientations define a transitive orientation of the given
graph.) HALT.

S9. (The graph G is not transitively orientable.) HALT.

The main step in the above algorithm is S4. In this step we examine each edge adjacent to
a directed edge, say, edge i → j. If such an edge is already oriented, then we test whether
its orientation and that of i → j are consistent with Rule R1 or Rule R2. If an edge under
examination is not yet oriented, then we assign to it, if possible, an orientation using Rule
R1 or Rule R2.

As we can see, the algorithm consists of different phases. Each phase involves execution
of Step S2 and repeated executions of step S4 as more and more edges get oriented. If a
phase ends without detecting any contradiction of Rule R1 or Rule R2, then it means that
no more edges can be assigned orientations in this phase by application of the two rules, and
that all the orientations assigned in this phase are consistent with these rules.

The algorithm terminates either (1) by detecting a contradiction of Rule R1 or Rule R2, or
(2) by assigning orientations to all the edges of the given graph such that these orientations are
consistent with Rules R1 and R2. In the former case the graph is not transitively orientable,
and in the latter case the graph is transitively orientable with the resulting directed graph
defining a transitive orientation.

The complexity of the algorithm depends on the complexity of executing step S4. This
step is executed at most m times, where m is the number of edges in the given graph.
Each execution of step S4 involves examining all the edges adjacent to an oriented edge.
So the number of operations required to execute step S4 is proportional to 2∆, where ∆
is the maximum degree in the given graph. Thus the overall complexity of the algorithm is
O(2m∆).

Next we illustrate the algorithm with two examples. Consider first the graph G shown in
Figure 2.11a.

Phase 1: We begin by orienting edge 7—2 as 7 → 2. By Rule R2, 7 → 2 implies that
7 → 4 and 7 → 5, and 7 → 4 implies that 7 → 6. Rule R1 is not applicable to any edge
adjacent to 7→ 2.

By Rule R2, 7→ 5 and 7→ 6 imply that 7→ 1 and 7→ 3, respectively. In this phase no
more edges can be assigned orientations. We can also check that all the assigned orientations
are consistent with Rules R1 and R2. Phase 1 now terminates, and the edges oriented in this
phase are shown in Figure 2.11b.

Now remove from the graph G of Figure 2.11a all the edges which are oriented in Phase 1.
The resulting graph G′ is shown in Figure 2.11c. Phase 2 now begins, and G′ is the graph
under consideration.

Phase 2: We begin by orienting edge 1—2 as 1→ 2. This results in the following sequences
of implications:

(1→ 2)⇒
R1

(2← 3)⇒
R2

(3→ 5)⇒
R1

(6→ 5)⇒
R1

(4→ 5)

(2← 3)⇒
R2

(3→ 4)

(6→ 5)⇒
R2

(6→ 1)

(6→ 5)⇒
R2

(6→ 2)

Thus all the edges of G′ have now been oriented as shown in Figure 2.11d.

C5955–C002.tex 46 2015/11/4 8:54am

Basic Graph Algorithms � 47

4

3

2

5

6

1

7

4

3

2

5

6

1

7

4

3

2

5

6

1

4

3

2

5

6

1

4

3

2

5

6

1

7

(a) (b)

(c)

(e)

(d)

Figure 2.11 (a–e) Illustration of transitive orientation algorithm.

These orientations of G′ are also consistent with the Rules R1 and R2.
Therefore phase 2 terminates successfully.
The resulting transitive orientation of G is shown in Figure 2.11e.
Consider next the graph shown in Figure 2.12. We begin by orienting edge 1—2 as 1→ 2.

This leads to the following sequence of implications:

(1→ 2)⇒
R1

(2← 3)⇒
R2

(3→ 4)⇒
R1

(4← 5)⇒
R2

(5→ 1)⇒
R1

(1← 2), (2.18)

C5955–C002.tex 47 2015/11/4 8:54am

48 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

4 3

5 2

1

Figure 2.12 A non-transitively orientable graph.

which requires that 1—2 be directed as 1 ← 2, contrary to the orientation we have already
assigned to the edge 1—2. Thus a contradiction of Rule R1 is observed. Hence the graph of
Figure 2.12 is not transitively orientable.

We now proceed to prove the correctness of Algorithm 2.10. To do so we need to prove
the following two assertions.

Assertion 2.1 If Algorithm 2.10 terminates successfully (step S8), then the resulting
directed graph is a transitive orientation of the given graph.

Assertion 2.2 If the given graph is transitively orientable, then Algorithm 2.10 terminates
successfully.

We first consider Assertion 1.
Given an undirected graph G = (V, E). Suppose that the algorithm terminates success-

fully.
Consider now any two edges i → j and k → l which are assigned orientations in the

same phase of the algorithm. Then we can construct a sequence of implications, which starts
with the directed edge i → j and ends orienting the edge k—l as k → l. Such a sequence
will be called a derivation chain from i→ j to k → l. For example, in the directed graph of
Figure 2.11d the following are two of the derivation chains from 2← 6 to 3→ 4:

(2← 6)⇒ (3→ 2)⇒ (3→ 4)
(2← 6)⇒ (5← 6)⇒ (3→ 5)⇒ (3→ 2)⇒ (3→ 4)

Thus it is clear that it is meaningful to talk about a shortest derivation chain between any
pair of directed edges which are assigned orientations in the same phase of Algorithm 2.10.
Proof of Assertion 1 is based on the following important lemma.

Lemma 2.4 After a successful completion of phase 1 it is impossible to have three vertices
i, j, k such that i→ j and j → k with i 9 k.

Proof. Note that “i 9 k” means that either i/—k or i← k or edge i—k is not oriented.
It is clear that there is an edge connecting i and k. For otherwise we get a contradiction

because by Rule R1, i→ j implies that j ← k.
Now assume that forbidden situations of the type i→ j and j → k with i 9 k exist after

phase 1 of Algorithm 2.10. Then select, from among all the derivation chains which lead to
a forbidden situation, a chain which is shortest with the minimum number of directed edges

C5955–C002.tex 48 2015/11/4 8:54am

Basic Graph Algorithms � 49

j

k

j′

i

k

j k′

i

(a) (b)

Figure 2.13 Illustration of the proof of Lemma 2.19.

incident into k. Clearly, any such chain must be of length at least 3. Let one such chain be
as follows:

(i→ j)⇒ (α1)⇒ (α2)⇒ · · · ⇒ (αp−1)⇒ (j → k).

Now αp−1 must be either j → j′ for some j′ or k′ → k for some k′. Thus we need to consider
two cases.

Case 1 Let αp−1 be j → j′.

Then the derivation (αp−1) ⇒ (j → k) requires that j′ /— k. Further i → j′, for other-
wise the derivation chain

(i→ j)⇒ (α1)⇒ · · · ⇒ (αp−2)⇒ (j → j′)

would lead to the forbidden situation i → j and j → j′ with i 9 j′. But this chain is
shorter than our chain, contradicting its minimality.

The situation arising out of the above arguments is depicted in Figure 2.13a, where a
dashed line indicates the absence of the corresponding edge.

Now i→ j′ and j′/–k imply that i→ k by Rule R2. But this contradicts our assumption
that i 9 k.

Case 2 Let αp−1 be k′ → k.

As in the previous case the derivation (αp−1) ⇒ (j → k) requires that j/–k′. Further
i—k′, for otherwise k′ → k would imply that i → k, contrary to our assumption that
i 9 k. In addition, i→ j and j/–k′ imply that i→ k′.

The situation resulting from the above arguments is depicted in Figure 2.13b.

Now the derivation chain

(i→ k′)⇒ (i→ j)⇒ (α1)⇒ · · · ⇒ (αp−2)⇒ (k′ → k),

leading to the forbidden situation i→ k′ and k′ → k with i 9 k is of the same length
as our chain, but with one less edge entering k. This is again a contradiction of the
assumption we have made about the choice of our chain. �

Let E′ be the set of edges which are assigned orientations in the first phase, and let
→
E′ be

the corresponding set of directed edges. The following result is an immediate consequence of
Lemma 2.4.

C5955–C002.tex 49 2015/11/4 8:54am

50 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 2.14 The subgraph
→
G′= (V,

→
E′) of the directed edges of the set

→
E′ is transitive. �

Theorem 2.15 If Algorithm 2.10 terminates successfully, then it gives a transitive
orientation.

Proof. Proof is by induction on the number of phases in the algorithm. If the algorithm
orients all the edges of the given graph in phase 1, then, by Theorem 2.14, the resulting
orientation is transitive.

Let the given graph G = (V, E) be oriented in p phases. Let E′ be the set of edges which
are assigned orientations in the first phase. Then, by Theorem 2.14, the subgraph

→
G′ = (V,

→
E′)

is transitive. Further, since the subgraph G′′ = (V, E − E′) is orientable in p − 1 phases, it
follows from the induction hypothesis that

→
G′′= (V,

→
E −

→
E′) is transitive. Now we prove that

the directed graph
→
G = (V,

→
E) is transitive.

Suppose that
→
G is not transitive, that is, there exist in

→
G three vertices i, j, k such that

i→ j and j → k, but i 9 k. Then both i→ j and j → k cannot belong to
→
E′ or to

→
E −

→
E′

because
→
G′ and

→
G′′ are both transitive.

Without loss of generality, assume that i → j is in
→
E′ and j → k is in

→
E −

→
E′. Then

there must be an edge i—k connecting i and k; for otherwise i → j would imply j ← k, by
Rule R1.

Suppose that the edge i—k is oriented as i ← k in Phase 1. Then
→
G′ is not transitive,

resulting in a contradiction. On the other hand, if it is oriented as i ← k in a latter phase,
then

→
G′′ is not transitive, again resulting in a contradiction.

Thus it is impossible to have in G three vertices i, j, k such that i → j and j → k, but
i 9 k. Hence

→
G is transitive. �

Thus Assertion 1 is established. We next proceed to establish Assertion 2.
Consider a graph G = (V, E) which is transitively orientable. It is clear that if we reverse

the orientations of all the edges in any transitive orientation of G, then the resulting directed
graph is also a transitive orientation of G.

Suppose that we pick an edge of G and assign an arbitrary orientation to it. Let this
edge be i → j. If we now proceed to assign orientations to additional edges using Rules R1
and R2, then the edges so oriented will have the same orientations in all possible transitive
orientations in which the edge i—j is oriented as i→ j. This is because once the orientation
of i—j is specified, the orientation derived by Rules R1 and R2 are necessary for transitive
orientability. It therefore follows that if we apply Algorithm 2.10 to the transitively orientable
graph G, then Phase 1 will terminate successfully without encountering any contradiction
of Rule R1 or Rule R2. Further the edges oriented in the first phase will have the same
orientations in some transitive orientation of G.

If we can prove that graph G′′ = (V, E −E′), where E′ is the set of edges oriented in the
first phase, is also transitively orientable, then it would follow that the second phase and also
all other phases will terminate successfully giving a transitive orientation of G. Thus proving
Assertion 2 is the same as establishing the transitive orientability of G′′ = (V, E−E′). Toward
this end we proceed as follows.

Let the edges of the set E′ be called marked edges, and the end vertices of these edges
be called marked vertices. Let V ′ denote the set of marked vertices. Note that an unmarked
edge may be incident on a marked vertex.

C5955–C002.tex 50 2015/11/4 8:54am

Basic Graph Algorithms � 51

p

i k

lj

j

i
k

l

(a) (b)

Figure 2.14 Illustration of the proof of Lemma 2.5.

Lemma 2.5 It is impossible to have three marked vertices i, j, k such that edge i—j and
j—k are unmarked, and edge i—k is marked.

Proof. Assume that forbidden situations of the type mentioned in the lemma exist. In other
words, assume that there exist triples of marked vertices i, j, k such that edges i—j and j—k
are unmarked, and edge i—k is marked. For each such triple i, j, k there exists a marked
edge j—l for some l, because j is a marked vertex. Therefore there exists a derivation chain
from the marked edge i—k to the marked edge j—l.

Now select a forbidden situation with i, j, and k as the marked vertices such that there
is a derivation chain P from i—k to j—l, which is a shortest one among all such chains
that lead to a forbidden situation. This is shown in Figure 2.14a, where a diamond on
an edge indicates that the edge is marked, and a dashed line indicates the absence of the
corresponding edge.

The next marked edge after i—k in the shortest chain P is either i—p or k—p, for some
p. We assume, without loss of generality, that it is k—p. Hence i/—p, for otherwise edge k—p
would not have been marked from edge i—k. Further there exists the edge i—l connecting
i and l, for otherwise edge i—j would have been marked. Thus p and l are distinct. Also
there exists the edge j—p, for otherwise edge j—k would have been marked. The relations
established so far are shown in Figure 2.14b. Now j—p cannot be a marked edge, for marking
it would result in marking i—j. Now we have a shorter derivation chain from edge k—p to
edge j—l, leading to another forbidden situation where edges k—j and j—p are unmarked
with edge k—p marked. A contradiction. �

Theorem 2.16 If G = (V, E) is transitively orientable, then G′′ = (V, E − E′) is also
transitively orientable.

Proof. Since the Rules R1 and R2 mark only adjacent edges, it follows that the graph G′ =
(V ′, E′) is connected.

Consider now a vertex v ∈ V − V ′. If v is connected to any vertex v′ ∈ V ′, then v should
be connected to all the vertices of V ′ which are adjacent to v′, for otherwise the edge v − v′

would have been marked. Since the graph G′ is connected, it would then follow that v should
be connected to all the vertices in V ′.

Let
→
G be a transitive orientation of G such that the orientations of the edges of

→
E′ agree

in
→
G.

C5955–C002.tex 51 2015/11/4 8:54am

52 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Next we partition the set V − V ′ into four subsets as follows:

A = {i|i ∈ V − V ′ and for all j ∈ V ′, i→ j in
→
G},

B = {i|i ∈ V − V ′ and for all j ∈ V ′, j → i in
→
G},

C = {i|i ∈ V − V ′ and for all j ∈ V ′, i /— in
→
G},

D = V − (V ′ ∪ A ∪B ∪ C).

Note that D consists of all those vertices of V − V ′ which are connected to all the vertices
of V ′, but not all the edges connecting a vertex in D to the vertices in V ′ are oriented in the
same direction.

Transitivity of
→
G implies the following connections between the different subsets of V :

1. For every i ∈ A, j ∈ D, k ∈ B, i→ j, j → k, and i→ k.

2. For all i ∈ C and j ∈ D, i/—j.

3. All edges connecting A and C are directed from A to C.

4. All edges connecting B and C are directed from C to B.

The situation so far is depicted in Figure 2.15a.
Now reverse the orientations of all the edges directed from V ′ to D so that all the edges

connecting V ′ and D are directed from D to V ′. The resulting orientation is as shown in
Figure 2.15b. We now claim that this orientation is transitive.

To prove this claim we have to show that, in the graph of Figure 2.15b, if i → j and
j → k, then i → k for all i, j, and k. Clearly, this is true if none of these three edges is
among those edges whose directions have just been reversed.

Thus we need to consider only the following four cases:

1. i ∈ D, j ∈ V ′, and k ∈ V ′.

2. i ∈ D, j ∈ V ′, and k ∈ B.

3. j ∈ D, k ∈ V ′, and i ∈ A.

4. j ∈ D, k ∈ V ′, and i ∈ D.

B

D

A

C V ′ V ′

B

D

A

C

(a) (b)

Figure 2.15 Illustration of the proof of Theorem 2.16.

C5955–C002.tex 52 2015/11/4 8:54am

Basic Graph Algorithms � 53

In all these four cases i→ k as shown in Figure 2.15b. Thus the orientation of Figure 2.15b
is transitive.

Now remove from the graph of Figure 2.15b all the edges of E′, namely, all the marked
edges.

Suppose that in the resulting graph there exist vertices i, j, and k such that i → j and
j → k, but i 9 k. Here i 9 k means only that i/— k, for i ← k would imply that the
orientation in Figure 2.15b is not transitive. If edge i—k is not in E−E′, it should be in E′,
for otherwise the orientation in Figure 2.15b is not transitive. Thus i and k are in V ′.

Since there is no vertex outside V ′ which has both an edge into it from V ′ and an edge
from it into V ′, it follows that j is also in V ′.

Thus we have i, j, k marked, edges i—j and j—k unmarked, and edge i—k marked. This
is not possible by Lemma 2.5.

Therefore the directed graph which results after removing the edges of
→
E′ from the graph

of Figure 2.15b is transitive. Hence G′′ = (V, E − E′) is transitively orientable. �

Thus we have established Assertion 2 and hence the correctness of Algorithm 2.10.
It should now be clear that the transitive orientation algorithm discussed above is an

example of an algorithm which is simple but whose proof of correctness is very much involved.
For an earlier algorithm on this problem see Gilmore and Hoffman [70].

Pnueli et al. [69] and Even et al. [71] introduced permutation graphs and established a
structural relationship between these graphs and transitively orientable graphs. They also
discussed an algorithm to test whether a given graph is a permutation graph. For perhaps
the most recent work on transitive orientation and related problems (see McConnell and
Spinard [72]).

Certain graph problems which are in general very hard to solve become simple when
the graph under consideration is transitively orientable. Problems of finding a maximum
clique and a minimum coloration are examples of such problems. These problems arise
in the study of memory relocation and circuit layout problems [71] (see also Liu [73] and
Even [74]).

References

[1] J. B. Kruskal, Jr., On the shortest spanning subtree of a graph and the travelling
salesman problem, Proc. Am. Math. Soc., 7 (1956), 48–50.

[2] R. C. Prim, Shortest connection networks and some generalizations, Bell Sys. Tech. J.,
36 (1957), 1389–1401.

[3] A. Kerschenbaum and R. Van Slyke, Computing minimum spanning trees efficiently,
Proceedings of the 25th Annual Conference of the ACM, 1972, 518–527.

[4] A. C. Yao, An O(|E| log log |V |) algorithm for finding minimum spanning trees, Inform.
Process. Lett., 4 (1975), 21–23.

[5] D. Cheriton and R. E. Tarjan, Finding minimum spanning trees, SIAM J. Comput.,
5 (1976), 724–742.

[6] R. E. Tarjan, Sensitivity analysis of minimum spanning trees and shortest path trees,
Inform. Process. Lett., 14 (1982), 30–33.

[7] C. H. Papadimitriou and M. Yannakakis, The Complexity of restricted minimum span-
ning tree problems, J. ACM, 29 (1982), 285–309.

C5955–C002.tex 53 2015/11/4 8:54am

54 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[8] R. L. Graham and P. Hall, On the history of the minimum spanning tree problem,
Mimeographed, Bell Laboratories, Murray Hill, NJ, 1982.

[9] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, Springer,
New York, 2000.

[10] B. Chazelle, A fast deterministic algorithm for minimum spanning trees, Proceedings of
the 38th Annual IEEE Symposium on Foundations of Computer Science, 1997, 22–31.

[11] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network
optimization problems, J. ACM, 34 (1987), 596–615.

[12] H. N. Gabow, Z. Galil, and T. Spencer, Efficient implementation of graph algorithms
using contraction, Proceedings of the 25th Annual IEEE Symposium on Foundations of
Computer Science, 1984, 338–346.

[13] H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan, Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs, Combinatorica, 6 (1986),
109–122.

[14] B. Korte and J. Nesetril, Vojtech Jarnik’s work in combinatorial optimization, Report
No. 97855-0R, Research Institute for Discrete Mathematics, University of Bonn,
Germany, 1997.

[15] J. Edmonds, Optimum branchings, J. Res. Nat. Bur. Std., 71B (1967), 233–240.

[16] R. M. Karp, A simple derivation of Edmonds’ algorithm for optimum branchings, Net-
works, 1 (1972), 265–272.

[17] M. N. Swamy and K. Thulasiraman, Graphs, Networks and Algorithms, Wiley-
Interscience, New York, 1981.

[18] R. E. Tarjan, Finding optimum branchings, Networks, 7 (1977), 25–35.

[19] P. M. Camerini, L. Fratta, and F. Maffioli, A note on finding optimum branchings,
Networks, 9 (1979), 309–312.

[20] F. C. Bock, An algorithm to construct a minimum directed spanning tree in a directed
network, Developments in Operations Research, B. Avi-Itzak, Ed., Gordon & Breach,
New York, 1971, 29–44.

[21] Y. Chu and T. Liu, On the shortest arborescence of a directed graph, Scientia Sinica
[Peking], 4, (1965), 1396–1400; Math. Rev., 33, 1245 (D. W. Walkup).

[22] D. Gries, Compiler Construction for Digital Computers, Wiley, New York, 1971.

[23] S. Warshall, A theorem on boolean matrices, J. ACM, 9 (1962), 11–12.

[24] H. S. Warren, A modification of Warshall’s algorithm for the transitive closure of binary
relations, Comm. ACM, 18 (1975), 218–220.

[25] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev, On economical con-
struction of the transitive closure of a directed graph, Soviet Math. Dokl., 11 (1970),
1209–1210.

[26] J. Eve and R. Kurki-Suonio, On computing the transitive closure of a relation, Acta
Inform., 8 (1977), 303–314.

C5955–C002.tex 54 2015/11/4 8:54am

Basic Graph Algorithms � 55

[27] M. J. Fischer and A. R. Meyer, Boolean matrix multiplication and transitive closure,
Conference Record, IEEE 12th Annual Symposium on Switching and Automata Theory,
1971, 129–131.

[28] M. E. Furman, Application of a method of fast multiplication of matrices in the problem
of finding the transitive closure of a graph, Soviet Math. Dokl., 11 (1970), 1252.

[29] I. Munro, Efficient determination of the transitive closure of a directed graph, Inform.
Process. Lett., 1 (1971), 56–58.

[30] P. E. O’Neil and E. J. O’Neil, A fast expected time algorithm for boolean matrix mul-
tiplication and transitive closure, Inform. Control, 22 (1973), 132–138.

[31] P. Purdom, A transitive closure algorithm, BIT, 10 (1970), 76–94.

[32] C. P. Schnorr, An algorithm for transitive closure with linear expected time, SIAM J.
Comput., 7 (1978), 127–133.

[33] V. Strassen, Gaussian elimination is not optimal, Numerische Math., 13 (1969), 354–356.

[34] M. M. Syslo and J. Dzikiewicz, Computational experience with some transitive closure
algorithms, Computing, 15 (1975), 33–39.

[35] K. Melhorn, Graph Algorithm and NP-completeness, Springer-Verlag, Berlin, Germany,
1984.

[36] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Prince-
ton, NJ, 1962.

[37] L. R. Ford, Jr., Network flow theory, Paper P-923, RAND Corp., Santa Monica, CA,
1956.

[38] R. E. Bellman, On a routing problem, Quart. Appl. Math., 16 (1958), 87–90.

[39] E. F. Moore, The shortest path through a maze, Proceedings of the International Sym-
posium on the Theory of Switching, Part II, University Press, Cambridge, MA, 1957,
285–292.

[40] N. Christofides, Graph Theory: An Algorithmic Approach, Academic Press, New York,
1975.

[41] S. E. Dreyfus, An appraisal of some shortest-path algorithms, Oper. Res., 17 (1969),
395–412.

[42] H. Frank and I. T. Frisch, Communication, Transmission and Transportation Networks,
Addison-Wesley, Reading, MA, 1971.

[43] M. Gordon and M. Minoux, Graphs and Algorithms (trans. by S. Vajda), Wiley, New
York, 1984.

[44] T. C. Hu, A decomposition algorithm for shortest paths in a network, Oper. Res., 16
(1968), 91–102.

[45] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart &
Winston, New York, 1976.

C5955–C002.tex 55 2015/11/4 8:54am

56 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[46] E. Minieka, Optimization Algorithms for Networks and Graphs, Marcel Dekker, New
York, 1978.

[47] P. M. Spira and A. Pan, On finding and updating spanning trees and shortest paths,
SIAM J. Comput., 4 (1975), 375–380.

[48] D. B. Johnson, Efficient algorithms for shortest paths in sparse networks, J. ACM, 24
(1977), 1–13.

[49] R. A. Wagner, A shortest path algorithm for edge-sparse graphs, J. ACM, 23 (1976),
50–57.

[50] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for
network flow problems, J. ACM, 19 (1972), 248–264.

[51] M. L. Fredman, New bounds on the complexity of the shortest path problem, SIAM J.
Comp., 5 (1976), 83–89.

[52] D. B. Johnson, A note on Dijkstra’s shortest path algorithm, J. ACM, 20 (1973),
385–388.

[53] M. A. Comeau and K. Thulasiraman, Structure of the submarking-reachability problem
and network programming, IEEE Trans. Circuits Syst., 35 (1988), 89–100.

[54] T. Lengauer, On the solution of inequality systems relevant to IC layout, J. Algorithms,
5 (1984), 408–421.

[55] Y. Liao and C. K. Wong, An algorithm to compact VLSI symbolic layout with mixed
constraints, IEEE Trans. CAD. Circuits Syst., 2 (1983), 62–69.

[56] E. W. Dijkstra, A note on two problems in connection with graphs, Numerische Math.,
1 (1959), 269–271.

[57] R. W. Floyd, Algorithm 97: Shortest path, Comm. ACM, 5 (1962), 345.

[58] G. B. Dantzig, All shortest routes in a graph, Theory of Graphs, Gordon & Breach, New
York, 1967, 91–92.

[59] Y. Tabourier, All shortest distances in a graph: An improvement to Dantzig’s inductive
algorithm, Discrete Math., 4 (1973), 83–87.

[60] T. A. Williams and G. R. White, A note on Yen’s algorithm for finding the length of all
shortest paths in N -node nonnegative distance networks, J. ACM, 20 (1973), 389–390.

[61] J. Y. Yen, Finding the lengths of all shortest paths in N—node, nonnegative distance
complete networks using N3/2 additions and N3 comparisons, J. ACM, 19 (1972),
423–424.

[62] N. Deo and C. Y. Pang, Shortest path algorithms-taxonomy and annotation, Networks,
14 (1984), 275–323.

[63] A. R. Pierce, Bibliography on algorithms for shortest path, shortest spanning tree and
related circuit routing problems (1956–1974), Networks, 5 (1975), 129–149.

[64] R. E. Tarjan, Data structures and network algorithms, CBMS-NSF Regional Conference
Series in Applied Mathematics, Vol. 44, Society for Industrial Applied Mathematics,
Philadelphia, PA, 1983.

C5955–C002.tex 56 2015/11/4 8:54am

Basic Graph Algorithms � 57

[65] B. Carré, Graphs and Networks, Clarendon Press, Oxford, 1979.

[66] R. E. Tarjan, A unified approach to path problems, J. ACM., 28 (1981), 577–593.

[67] A. Moffat and T. Takoka, An all-pairs shortest path algorithm with expected time
O(n2 log n), SIAM J. Comp., 16 (1987), 1023–1031.

[68] G. N. Frederickson, Fast algorithms for shortest paths in planar graphs with applications,
SIAM J. Comp., 16 (1987), 1004–1022.

[69] A. Pnueli, A. Lempel, and S. Even, Transitive orientation of graphs and identification
of permutation graphs, Canad. J. Math., 23 (1971), 160–175.

[70] P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs and of
interval graphs, Canad. J. Math., 16 (1964), 539–548.

[71] S. Even, A. Pnueli, and A. Lempel, Permutation graphs and transitive graphs, J. ACM,
19 (1972), 400–410.

[72] R. M. McConnell and J. P. Spinrad, Modular decomposition and transitive orientation,
Technical Report 475/1995, Technische Universitat Berlin, Fachbereich Mathematik,
1995.

[73] C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York,
1968.

[74] S. Even, Algorithmic Combinatorics, Macmillan, New York, 1973.

C5955–C002.tex 57 2015/11/4 8:54am

C H A P T E R 3

Depth-First Search
and Applications*
Krishnaiyan “KT” Thulasiraman

CONTENTS

3.1 Introduction . 59
3.2 DFS of an Undirected Graph . 59
3.3 DFS of a Directed Graph . 63
3.4 Biconnectivity and Strong Connectivity Algorithms . 66

3.4.1 Biconnectivity Algorithm . 66
3.4.2 Strong Connectivity Algorithm . 68

3.5 st-Numbering of a Graph . 71

3.1 INTRODUCTION

In this chapter we describe a systematic method for exploring a graph. This method known
as depth-first search, in short, DFS, has proved very useful in the design of several effi-
cient algorithms [2,3]. We describe three of these application, namely, biconnectivity, strong
connectivity and s− t numbering algorithms.

3.2 DFS OF AN UNDIRECTED GRAPH

We first describe DFS of an undirected graph. To start with, we assume that the graph under
consideration is connected. If the graph is not connected, then DFS would be performed
separately on each component of the graph. We also assume that there are no self-loops in
the graph. DFS of an undirected graph G proceeds as follows:

We choose any vertex, say v, in G and begin the search from v. The start vertex v, called
the root of the DFS, is now said to be visited.

We then select an edge (v, w) incident on v and traverse this edge to visit w. We also
orient this edge from v to w. The edge (v, w) is now said to be examined and is called a tree
edge. The vertex v is called the father of w, denoted as FATHER(w).

In general, while we are at some vertex x, two possibilities arise:

1. If all the edges incident on x have already been examined, then we return to the father of
x and continue the search from FATHER(x). The vertex x is now said to be completely
scanned.

2. If there exists some unexamined edges incident on x, then we select one such edge (x, y)
and orient it from x to y. The edge (x, y) is now said to be examined. Two cases need
to be considered now:

∗This chapter is an edited version of Sections 11.7, 11.8, and 11.10 in Thulasiraman and Swamy [1].

C5955–C003.tex 59 2015/11/4 9:00am

59

60 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Case 1 If y has not been previously visited, then we traverse the edge (x, y), visit y, and
continue the search from y. In this case (x, y) is a tree edge and x = FATHER(y).
Case 2 If y has been previously visited, then we proceed to select another unexamined edge
incident on x. In this case the edge (x, y) is called a back edge.
During the DFS, whenever a vertex x is visited for the first time, it is assigned a distinct
integer DFN(x) such that DFN(x) = i, if x is the ith vertex to be visited during the search.
DFN(x) is called the depth-first number (DFN) of x. Clearly, DFNs indicate the order in
which the vertices are visited during DFS.

DFS terminates when the search returns to the root and all the vertices have been visited.
We now present a formal description of the DFS algorithm. In this description the graph under
consideration is assumed to be connected. The array MARK used in the algorithm has one
entry for each vertex. To begin with we set MARK(v) = 0 for every vertex v in the graph,
thereby indicating that no vertex has yet been visited. Whenever a vertex is visited for the
first time, we set the corresponding entry in the MARK array equal to 1. We use an array
SCAN that has one entry for each vertex in the graph. To begin with we set SCAN(v) = 0 for
every vertex v, thereby indicating that none of the vertices is completely scanned. Whenever
a vertex is completely scanned, the corresponding entry in the SCAN array is set to 1. The
arrays DFN and FATHER are as defined before. TREE and BACK are two sets storing,
respectively, the tree edges and the back edges as they are generated.

Algorithm 3.1 DFS of an undirected graph

Input: G = (V, E) is a connected undirected graph. Vertex s is the start vertex of the
depth-first search.
Output: Depth-first numbering of the vertices of G and the depth-first search tree with
vertex s as the root vertex.
begin

TREE ← ϕ;
BACK ← ϕ;
for every edge e in G, EXAMINED (e)← 0 ;
for vertex v in G

do
FATHER(v) ← v;
MARK(v) ← 0;
SCAN(v) ← 0;

od
MARK(s) ← 1;
DFN(s) ← 1;
i← 1;
v ← s;
repeat

while there exists an edge e = (v, w) with EXAMINED(e) = 0
do

Orient the edge (v, w) from v to w;
EXAMINED(e) ← 1;
if MARK(w) = 0 then

begin
i← i + 1;

C5955–C003.tex 60 2015/11/4 9:00am

Depth-First Search and Applications � 61

DFN(w)← i;
TREE ← TREE ∪ {(v, w)};
MARK(w) ← 1;
FATHER(w)← v;
v ← w;

end
else BACK = BACK ∪ {(v, w)};

od
end while
SCAN(v) ← 1;
v ← FATHER(v);

until v = s and SCAN(s) = 1;
end

As we can see from the preceding description, DFS partitions the edges of G into tree edges
and back edges. It is easy to show that the tree edges form a spanning tree of G. DFS also
imposes directions on the edges of G. The resulting directed graph will be denoted by Ĝ.
The tree edges with their directions imposed by the DFS will form a directed spanning tree
of Ĝ. This directed spanning tree will be called the DFS tree.

Note that DFS of a graph is not unique since the edges incident on a vertex may be
chosen for examination in any arbitrary order.

As an example, we have shown in Figure 3.1 DFS of an undirected graph. In this figure
tree edges are shown as continuous lines, and back edges are shown as dashed lines. Next
to each vertex we have shown its DFN. We have also shown in the figure the list of edges
incident on each vertex v. This list for a vertex v is called the adjacency list of v, and it gives
the order in which the edges incident on v are chosen for examination.

Let T be a DFS tree of a connected undirected graph. As we mentioned before, T is a
directed spanning tree of G. For further discussions, we need to introduce some terminology.

If there is a directed path in T from a vertex v to a vertex w, then v is called an
ancestor of w, and w is called a descendant of v. Furthermore, if v ̸= w, v is called a
proper ancestor of w, and w is called a proper descendant of v. If (v, w) is a directed edge
in T , then v is called the father of w, and w is called a son of v. Note that a vertex may have
more than one son. A vertex v and all its descendants form a subtree of T with vertex v as
the root of this subtree.

Two vertices v and w are related if one of them is a descendant of the other. Otherwise v
and w are unrelated. If v and w are unrelated and DFN(v) < DFN(w), then v is said to be
to the left of w; otherwise, v is to the right of w. Edges of G connecting unrelated vertices
are called cross edges. We now show that there are no cross edges in G.

Let v1 and v2 be any two unrelated vertices in T . Clearly then there are two distinct ver-
tices s1 and s2 such that (1) FATHER(s1) = FATHER(s2) and (2) v1 and v2 are descendants
of s1 and s2, respectively (see Figure 3.2).

Let T1 and T2 denote the subtrees of T rooted at s1 and s2, respectively. Assume without
loss of generality that DFN(s1) < DFN(s2). It is then clear from the DFS algorithm that
vertices in T2 are visited only after the vertex s1 is completely scanned.

Further, scanning of s1 is completed only after all the vertices in T1 are scanned com-
pletely. So there cannot exist an edge connecting v1 and v2. For if such an edge existed, it
would have been visited before the scanning of s1 is completed.

C5955–C003.tex 61 2015/11/4 9:00am

62 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

6
5

8

4 7
10 11

3 9

2

1

Vertex Adjacency List

1 (1, 2), (1, 3), (1, 4)

2 (2, 1), (2, 3), (2, 8), (2, 9), (2, 10), (2, 11)

3 (3, 1), (3, 2), (3, 4), (3, 5), (3, 6), (3, 7)

4 (4, 1), (4, 3), (4, 5), (4, 6)

5 (5, 3), (5, 4)

6 (6, 3), (6, 4)

7 (7, 3), (7, 8)

8 (8, 2), (8, 7)

9 (9, 2), (9, 10), (9, 11)

10 (10, 2), (10, 9)

11 (11, 2), (11, 9)

Figure 3.1 DFS of an undirected graph.

FATHER(s1) = FATHER(s2)

s1 s2

v2

v1

Figure 3.2 Illustration of the proof of Theorem 3.1.

C5955–C003.tex 62 2015/11/4 9:00am

Depth-First Search and Applications � 63

Thus we have the following.

Theorem 3.1 If (v, w) is an edge in a connected undirected graph G, then in any DFS tree of
G either v is a descendant of w or vice versa. In other words, there are no cross edges. �

The absence of cross edges in an undirected graph is an important property that forms
the basis of an algorithm to be discussed in Section 3.4.1 for determining the biconnected
components of a graph.

3.3 DFS OF A DIRECTED GRAPH

DFS of a directed graph is essentially similar to that of an undirected graph. The main differ-
ence is that in the case of a directed graph an edge is traversed only along its orientation. As a
result of this constraint, edges in a directed graph G are partitioned into four categories (and
not two as in the undirected case) by a DFS of G. An unexamined edge (v, w) encountered
while at the vertex v would be classified as follows.

Case 1 w has not yet been visited.
In this case (v, w) is a tree edge.

Case 2 w has already been visited.

a. If w is a descendant of v in the DFS forest (i.e., the subgraph of tree edges), then (v, w)
is called a forward edge.

b. If w is an ancestor of v in the DFS forest, then (v, w) is called a back edge.

c. If v and w are not related in the DFS forest and DFN(w) < DFN(v), then
(v, w) is a cross edge. Note that there are no cross edges of the type (v, w) with
DFN(w) > DFN(v). The proof for this is along the same lines as that for Theorem 3.1.

A few useful observations are now in order:

1. An edge (v, w), with DFN(w) > DFN(v), is either a tree edge or a forward edge. During
the DFS it is easy to distinguish between a tree edge and a forward edge because a
tree edge always leads to a new vertex.

2. An edge (v, w) with DFN(w) < DFN(v) is either a back edge or a cross edge. Such an
edge (v, w) is a back edge if and only if w is not completely scanned when the edge is
encountered while examining the edges incident out of v.

3. DFS forest, the subgraph of tree edges, may not be connected even if the directed graph
under consideration is connected. The first vertex to be visited in each component of
the DFS forest will be called the root of the corresponding component.

A description of the DFS algorithm for a directed graph is presented next. As we pointed
out earlier, when we encounter an edge (v, w) with DFN(w) < DFN(v), we shall classify it
as a back edge if SCAN(w) = 0; otherwise (v, w) is a cross edge. We also use two arrays,
FORWARD and CROSS, that store respectively, forward and cross edges.

C5955–C003.tex 63 2015/11/4 9:00am

64 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Algorithm 3.2 DFS of a directed graph

Input: G = (V, E) is a connected directed graph.
Output: Depth first numbering of the vertices of G.
begin

TREE ← ϕ; BACK ← ϕ; FORWARD ← ϕ; CROSS ← ϕ;
for every edge e in G EXAMINED (e) ← 0;
for every vertex v in G

do
FATHER (v)← v; MARK(v) ← 0; SCAN (v) ← 0;
ROOT(v) ← 0;

od
i← 0;
repeat

while there exists a vertex v with MARK(v) = 0;
MARK(v) ← 1; i← i + 1; DFN(v) ← i; ROOT(v) ← 1;
repeat

while there exists an edge e← (v, w) with EXAMINED(e) = 0
do

Orient the edge (v, w) from v to w ; EXAMINED(e) ← 1;
if MARK(w) ← 0 then

begin
i← i + 1;
DFN(w) ← i;
TREE ← TREE ∪ {(v, w)};
MARK(w) ← 1 ;
FATHER(w) ← v;
v ← w;

end
else
if DFN(w) > DFN(v) then

FORWARD ← FORWARD ∪ {(v, w)};
else if SCAN(w) = 0 then

BACK ← BACK ∪ {(v, w)};
else CROSS ← CROSS ∪ {(v, w)};

od
end while
SCAN(v) ← 1;
v ← FATHER(v);

until ROOT(v) = 1 and SCAN (v) =1
end while

until i = n;
end

As an example, DFS of a directed graph is shown in Figure 3.3a. Next to each vertex we
have shown its DFN. The tree edges are shown as continuous lines, and the other edges are
shown as dashed lines. The DFS forest is shown separately in Figure 3.3b.

We pointed out earlier that the DFS forest of a directed graph may not be connected,
even if the graph is connected. This can also be seen from Figure 3.3b. This leads us to the
problem of discovering sufficient conditions for a DFS forest to be connected. In the following
we prove that the DFS forest of a strongly connected graph is connected. In fact, we shall be

C5955–C003.tex 64 2015/11/4 9:00am

Depth-First Search and Applications � 65

4

5

7

3

2

6

1

11

10

12

9
13

8

(a)

4

5

7

3

2

6

1

10

12

9
13

8

(b)

11

Figure 3.3 (a) DFS of a directed graph. (b) DFS forest of graph in (a).

establishing a more general result. Let T denote a DFS forest of a directed graph G = (V, E).
Let Gi = (Vi, Ei), with |Vi| ≥ 2, be a strongly connected component of G. Consider any two
vertices v and w in Gi. Assume without loss of generality that DFN(v) < DFN(w). Since Gi

is strongly connected, there exists a directed path P in Gi from v to w. Let x be the vertex
on P with the lowest DFN and let Tx be the subtree of T rooted at x. Note that cross edges
and back edges are the only edges that lead out of the subtree Tx. Since these edges lead
to vertices having lower DFNs than DFN(x), it follows that once path P reaches a vertex
in Tx, then all the subsequent vertices on P will also be in Tx. In particular, w also lies in
Tx. So it is a descendant of x. Since DFN(x) ≤ DFN(v) < DFN(w), it follows from the DFS
algorithm that v is also in Tx. Thus, any two vertices v and w in Gi have a common ancestor
that is also in Gi.

We may conclude from this that all the vertices of Gi have a common ancestor ri that is
also in Gi. It may now be seen that among all the common ancestors in T of vertices in Gi

vertex ri has the highest DFN. Further, it is easy to show that if v is a vertex in Gi, then
any vertex on the tree path from ri to v will also be in Gi. So the subgraph of T induced by
Vi is connected. Thus we have the following.

Theorem 3.2 Let Gi = (Vi, Ei) be a strongly connected component of a directed graph G =
(V, E). If T is a DFS forest of G, then the subgraph of T induced by Vi is connected. �

C5955–C003.tex 65 2015/11/4 9:00am

66 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Following is an immediate corollary of Theorem 3.2.

Corollary 3.1 The DFS forest of a strongly connected graph is connected. �

It is easy to show that the DFS algorithms are both of complexity O(n + m), where n is the
number of vertices and m is the number of edges in a graph.

3.4 BICONNECTIVITY AND STRONG CONNECTIVITY ALGORITHMS

In this section we discuss algorithms due to Hopcroft and Tarjan [2] and Tarjan [3] for deter-
mining the biconnected components and the strongly connected components of a graph.
These algorithms are based on DFS. We begin our discussion with the biconnectivity
algorithm.

3.4.1 Biconnectivity Algorithm

First we recall that a biconnected graph is a connected graph with no cut-vertices. A maximal
biconnected subgraph of a graph is called a biconnected component of the graph.∗

A crucial step in the development of the biconnectivity algorithm is the determination
of a simple criterion that can be used to identify cut-vertices as we perform a DFS. Such a
criterion is given in the following two lemmas.

Let G = (V, E) be a connected undirected graph. Let T be a DFS tree of G with vertex
r as the root. Then we have the following.

Lemma 3.1 Vertex v ̸= r is a cut-vertex of G if and only if for some son s of v there is no
back edge between any descendant in T of s (including itself) and a proper ancestor of v.

Proof. Let G′ be the graph that results after removing vertex v from G. By definition, v is a
cut-vertex of G if and only if G′ is not connected.

Let s1, s2, . . ., sk be the sons of v in T . For each i, 1 ≤ i ≤ k, let Vi denote the set of
descendants of si (including itself), and let Gi be the subgraph of G′ induced on Vi. Further
let V ′′ = V ′ − ∪k

i=1Vi, where V ′ = V − {v}, and let G′′ be the subgraph induced on V ′′.
Note that all the proper ancestors of v are in V ′′.

Clearly, G1, G2, . . ., Gk and G′′ are all subgraphs of G, which together contain all the
vertices of G′. We can easily show that all these subgraphs are connected. Further, by Theo-
rem 3.1 there are no edges connecting vertices belonging to different Gi’s. So it follows that
G′ will be connected if and only if for every i, 1 ≤ i ≤ k, there exists an edge (a, b) between
a vertex a ∈ Vi and a vertex b ∈ V ′′. Such an edge (a, b) will necessarily be a back edge,
and b will be a proper ancestor of v. We may therefore conclude that G′ will be connected
if and only if for every son si of v there exists a back edge between some descendant of si

(including itself) and a proper ancestor of v. The proof of the lemma is now immediate. �

Lemma 3.2 The root vertex r is a cut-vertex of G if and only if it has more than one son.

Proof. Proof in this case follows along the same line as that for Lemma 3.1. �
In the following we refer to the vertices of G by their DFNs. To embed into the DFS
procedure the criterion given in Lemmas 3.1 and 3.2, we now define, for each vertex
v of G,

LOW(v) = min({v} ∪ {w|there exists a backedge (x, w) such that x
is a descendant of v, and w is a proper ancestor of v in T}). (3.1)

∗Note that a biconnected component is the same as a block defined in Chapter 1.

C5955–C003.tex 66 2015/11/4 9:00am

Depth-First Search and Applications � 67

Using the LOW values, we can restate the criterion given in Lemma 3.1 as in the following
theorem.

Theorem 3.3 Vertex v ̸= r is a cut-vertex of G if and only if v has a son s such that
LOW(s) ≥ v. �

Noting that LOW(v) is equal to the lowest numbered vertex that can be reached from v by
a directed path containing at most one back edge, we can rewrite (3.1) as

LOW(v) = min({v} ∪ {LOW(s)|s is a son of v} ∪ {w|(v, w)is a backedge})

This equivalent definition of LOW(v) suggests the following steps for computing LOW(v):

1. When v is visited for the first time during DFS, set LOW(v) equal to the DFN of v.

2. When a back edge (v, w) incident on v is examined, set LOW(v) to the minimum of
its current value and the DFN of w.

3. When the DFS returns to v after completely scanning a son s of v, set LOW(v) equal
to the minimum of its current value and LOW(s).

Note that for any vertex v, computation of LOW(v) ends when the scanning of v is completed.
We next consider the question of identifying the edges belonging to a biconnected com-

ponent. For this purpose we use an array STACK. To begin with STACK is empty. As edges
are examined, they are added to the top of STACK.

Suppose DFS returns to a vertex v after completely scanning a son s of v. At this point
computation of LOW(s) will have been completed. Suppose it is now found that LOW(s) ≥ v.
Then, by Theorem 3.3, v is a cut-vertex. Further, if s is the first vertex with this property,
then we can easily see that the edge (v, s) along with the edges incident on s, and its
descendants will form a biconnected component. These edges are exactly those that lie on
top of STACK up to and including (v, s). They are now removed from STACK. From this
point on the algorithm behaves in exactly the same way as it would on the graph G′, which
is obtained by removing from G the edges of the biconnected component that has just been
identified.

For example, a DFS tree of a connected graph may be as in Figure 3.4, where
G1, G2, . . ., G5 are the biconnected components in the order in which they are identified.

A description of the biconnectivity algorithm now follows. This algorithm is essentially
the same as Algorithm 3.1, with the inclusion of appropriate steps for computing LOW(v) and
identifying the cut-vertices and the edges belonging to the different biconnected components.
Note that in this algorithm the root vertex r is treated as a cut-vertex, even if it is not one,
for the purpose of identifying the biconnected component containing r.

G1

G5

G3

G2 G4

Figure 3.4 G1, G2, G3, G4, G5—biconnected components of a graph.

C5955–C003.tex 67 2015/11/4 9:00am

68 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Algorithm 3.3 Biconnectivity

Input: G = (V, E) is a connected undirected graph.
Output: Biconnected components of G.
begin

STACK ← ϕ;
for every edge e in G EXAMINED (e) ← 0;
for vertex v in G

do
FATHER (v)← v;
MARK(v) ← 0;
SCAN(v) ← 0;

od
Pick any vertex s with MARK(s) ← 0;
MARK(s) ← 1;
DFN(s) ← 1;
LOW(s) ← 1;
i← 1;
v ← s;
repeat

while there exists an edge e = (v, w) with EXAMINED(e) = 0
do

EXAMINED(e) ← 1;
STACK ← STACK ∪{(v, w)};
if MARK(w) ← 0 then

begin
MARK(w) ← 1;
i← i + 1;
DFN(w)← i;
FATHER(w)← v;
LOW(w)← i;
v ← w;

end
else LOW(v) ← min{LOW(v), DFN(w)};

od
end while
SCAN(v) ← 1;
if LOW(v) ≥ DFN(FATHER(v)) then

remove all the edges from the top of the STACK up to and
including the edge (FATHER(v), v);
LOW(FATHER(v)) ← min {LOW(v), LOW(FATHER(v))};
v ← FATHER(v);

until v = s and SCAN(s) = 1;
end

3.4.2 Strong Connectivity Algorithm

Recall from Chapter 1 that a graph is strongly connected if for every pair of vertices v and
w there exists in G a directed path from v to w and a directed path from w to v; further a
maximal strongly connected subgraph of a graph G is called a strongly connected component
of the graph.

C5955–C003.tex 68 2015/11/4 9:00am

Depth-First Search and Applications � 69

Consider a directed graph G = (V, E). Let G1 = (V1, E1), G2 = (V2, E2), . . ., Gk =
(Vk, Ek) be the strongly connected components of G. Let T be a DFS forest of G and
T1, T2, . . ., Tk be the induced subgraphs of T on the vertex sets V1, V2, . . ., Vk, respectively.
We know from Theorem 3.2 that T1, T2, . . ., Tk are connected.

Let ri, 1 ≤ i ≤ k, be the root of Ti. If i < j, then DFS terminates at vertex ri earlier than
at rj . Then we can see that for each i < j, either ri is to the left of rj or ri is a descendant
of rj in T . Further Gi, 1 ≤ i ≤ k, would consist of those vertices that are descendants of ri,
but are in none of G1, G2, . . ., Gi−1.

The first step in the development of the strong connectivity algorithm is the determination
of a simple criterion that can be used to identify the roots of strongly connected components
as we perform a DFS. The following observations will be useful in deriving such a criterion.
These observations are all direct consequences of the fact that there exist no directed circuits
in the graph obtained by contracting all the edges in each one of the sets E1, E2, . . ., Ek.

1. There is no back edge of the type (v, w) with v ∈ Vi and w ∈ Vj , i ̸= j. In other words
all the back edges that leave vertices in Vi also end on vertices in Vi.

2. There is no cross edge of the type (v, w) with v ∈ Vi, and w ∈ Vj , i ̸= j and rj is an
ancestor of ri. Thus for each cross edge (v, w) one of the following two is true:

a. v ∈ Vi and w ∈ Vj for some i and j with i ̸= j and rj to the left of ri.
b. For some i, v ∈ Vi and w ∈ Vi.

Assuming that the vertices of G are named by their DFS numbers, we define for each v in G,
LOWLINK(v) = min({v} ∪ {w| there is a cross edge or a back edge from a descendant of v
to w, and w is in the same strongly connected component as v}).

Suppose v ∈ Vi. Then it follows from the above definition that LOWLINK(v) is the
lowest numbered vertex in Vi that can be reached from v by a directed path that contains
at most one back edge or one cross edge. From the observations that we have just made it
follows that all the edges of such a directed path will necessarily be in Gi. As an immediate
consequence we get

LOWLINK(ri) = ri for all 1 ≤ i ≤ k. (3.2)

Suppose v ∈ Vi and v ̸= ri. Then there exists a directed path P in Gi from v to ri. Such a
directed path P should necessarily contain a back edge or a cross edge because ri < v, and
only cross edges and back edges lead to lower numbered vertices. In other words P contains
a vertex w < v. So for v ̸= ri, we get

LOWLINK(v) < v. (3.3)

Combining (3.2) and (3.3) we get the following theorem, which characterizes the roots of the
strongly connected components of a directed graph.

Theorem 3.4 A vertex v is the root of a strongly connected component of a directed graph
G if and only if LOWLINK(v) = v. �

The following steps can be used to compute LOWLINK(v) as we perform a DFS.

1. On visiting v for the first time, set LOWLINK(v) equal to the DFS number of v.

2. If a back edge (v, w) is examined, then set LOWLINK(v) equal to the minimum of its
current value and the DFS number of w.

C5955–C003.tex 69 2015/11/4 9:00am

70 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

3. If a cross edge (v, w) with w in the same strongly connected component as v is explored,
set LOWLINK(v) equal to the minimum of its current value and the DFS number of w.

4. When the search returns to v after completely scanning a son s of v, set LOWLINK(v)
to the minimum of its current value and LOWLINK(s).

To implement step 3 we need a test to check whether w is in the same strongly connected
component as v. For this purpose we use an array STACK1 to which vertices of G are added
in the order in which they are visited during the DFS. STACK1 is also used to determine
the vertices belonging to a strongly connected component.

Let v be the first vertex during DFS for which it is found that LOWLINK(v) = v. Then
by Theorem 3.4, v is a root and in fact it is r1. At this point the vertices on top of STACK1
up to and including v are precisely those that belong to G1. Thus, G1 can easily be identified.
These vertices are now removed from STACK1. From this point on the algorithm behaves in
exactly the same way as it would on the graph G′, which is obtained by removing from G
the vertices of G1.

As regards the implementation of step 3 in LOWLINK computation, let v ∈ Vi and let
(v, w) be a cross edge encountered while examining the edges incident on v. Suppose w is
not in the same strongly connected component as v. Then it would belong to a strongly
connected component Gj whose root rj is to the left of ri. The vertices of such a component
would already have been identified, and so they would no longer be on STACK1. Thus, w
will be in the same strongly connected component as v if and only if w is on STACK1.

A description of the strong connectivity algorithm now follows. This is the same as
Algorithm 3.2 with the inclusion of appropriate steps for computing LOWLINK values and
for identifying the vertices of the different strongly connected components. We use in this
algorithm an array POINT. To begin with POINT(v) = 0 for every vertex v. This indicates
that no vertex is on the array STACK1. POINT(v) is set to 1 when v is added to STACK1, and
it is set to zero when v is removed from STACK1. We also use an array ROOT. ROOT(v) = 1
if it is the root vertex of a tree in the DFS forest. For example, in Figure 3.3b, 1, 8, and 13
are root vertices.

Algorithm 3.4 Strong connectivity

Input: G = (V, E) is a connected directed graph.
Output: Strongly connected components of G.
begin

STACK1 ← ϕ.
for every edge e in G, EXAMINED(e) ← 0;
for every vertex v in G

begin
FATHER(v) ← v;
MARK(v) ← 0;
SCAN(v) ← 0;
ROOT(v) ← 0;
POINT(v) ← 0;

end
end for
i ← 0;
repeat

while there exists a vertex v with MARK(v) = 0;
MARK(v) ← 1; i← i + 1; DFN(v) ← i; ROOT(v) ← 1;

C5955–C003.tex 70 2015/11/4 9:00am

Depth-First Search and Applications � 71

LOWLINK(v) ← i; STACK1 ← STACK1 ∪ {v}; POINT(v) ← 1;
repeat

while there exists an edge e← (v, w) with EXAMINED(e) = 0
do

EXAMINED(v) ← 1;
if MARK(w) = 0 then

begin
i← i + 1;
DFN(w) ← i;
MARK(w) ← 1;
LOWLINK(v) ← i;
FATHER(w) ← v;
v ← w;
STACK1 ← STACK1 ∪ {w};
POINT(w) ← 1;

end
else

if DFN(w) < DFN(v) and POINT(w) = 1 then
LOWLINK(v) ← min{LOWLINK(v), DFN(w)}.

od
end while
SCAN(v) ← 1;
if LOWLINK(v) = DFN(v), then

begin
remove all the vertices from the top of STACK1 up to
and including v;
POINT(x) ← 0 for all such x removed from STACK1;

end
if ROOT(FATHER(v)) = 0 then

LOWLINK(FATHER(v)) ← min{LOWLINK(FATHER(v)),
LOWLINK(v)};

v ← FATHER(v);
until ROOT(v) = 1 and SCAN(v) = 1;

end while
until i = n;

end

See Figure 3.5 for an illustration of this algorithm. In this figure, LOWLINK values are
shown in parentheses. Strongly connected components are {3, 4, 5}, {6, 7, 8, 9, 10}, {2}, and
{1, 11, 12, 13}.

3.5 st-NUMBERING OF A GRAPH

In this section we present yet another application of DFS-computing an st-numbering of a
graph. For an application of s− t numbering, see Reference [4].

Given an n-vertex biconnected graph G = (V, E) and an edge (s, t) of G, a numbering
of the vertices of G is called an st-numbering of G if the following conditions are satisfied,
where g(v) denotes the corresponding st-number of vertex v:

1. For all v ∈ V , 1 ≤ g(v) ≤ n, and for u ̸= v, g(u) ̸= g(v).

2. g(s) = 1.

C5955–C003.tex 71 2015/11/4 9:00am

72 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

5(4)

(3)3

(3)4

7(6)

6(6)

8(7)

(2)2

1(1)

12(1)

13(1)

11(1)

9(7) 10(9)

Figure 3.5 Illustration of Algorithm 3.4.

1

12

4

9

3

11

2 5

7 6

8 10

Figure 3.6 st-graph G [1].

3. g(t) = n.

4. For v ∈ V − {s, t} there are adjacent vertices u and w such that g(u) < g(v) < g(w).

A graph G and an st-numbering of G are shown in Figure 3.6. Lempel et al. [4] have shown
that for every biconnected graph and every edge (s, t) there exists an st-numbering. The
st-numbering algorithm to be discussed next is due to Even and Tarjan [5].

Given a biconnected graph G and an edge (s, t), the st-numbering algorithm of Even
and Tarjan first performs a DFS of G with t as the start (root) vertex and (t, s) as the first
edge. In other words DFN(t) = 1, and DFN(s) = 2. Recall that DFN(v) denotes the DFS

C5955–C003.tex 72 2015/11/4 9:00am

Depth-First Search and Applications � 73

number of vertex v. During the DFS, the algorithm also computes, for each vertex v, its
DFN, FATHER(v) in the DFS tree, the low point LOW(v), and identifies the tree edges and
back edges.

Next the vertices s and t and the edge (s, t) are marked old. All the other vertices and
edges are marked new. An algorithm, called the path finding algorithm, is then invoked
repeatedly (in an order to be described later) until all the vertices and edges are marked old.

The path finding algorithm when applied from an old vertex v finds a directed path into
v or from v and proceeds as follows.

Algorithm 3.5 Path finding algorithm (applied from vertex v)

S1. Pick a new edge incident on v.
i. If (v, w) is a back edge (DFN(w) < DFN(v)), then mark e old and HALT.

Note: The path consists of the single edge e.
ii. If (v, w) is a tree edge (DFN(w) > DFN(v)), then do the following:

Starting from v traverse the directed path that defined LOW(w) and mark all
edges and vertices on this path old. HALT.
Note: The path here starts with the tree edge (v, t) and ends in the vertex u such
that DFN(u) = LOW(w). This path has exactly one back edge.

iii. If (w, v) is a back edge (DFN(w) > DFN(v)) do the following:
Starting from v traverse the edge (w, v) backward and continue backward along
tree edges until an old vertex is encountered. Mark all the edges and vertices on
this path old and HALT.
Note: The path in this case is directed into v.

S2. If all the edges incident on v are old HALT.
Note: The path produced is empty.

The following facts hold true after each application of the path finding algorithm. Note that
the algorithm is always applied from an old vertex.

1. All ancestors of an old vertex are old too. This is true before the first application of
the algorithm since t is the only ancestor of s and it is old. This property remains true
after any one of the applicable steps of the algorithm.

2. When the algorithm is applied from an old vertex v, it either produces an empty path
or it produces a path that starts at v, passes through new vertices and edges and ends
at another old vertex. This is obvious when (v, w) or (w, v) is a back edge (cases [i]
and [iii] of S1). This is also true when (v, w) is a tree edge because in the biconnected
graph G the vertex u defining LOW(w) is an ancestor of v and therefore u is old.

Even and Tarjan’s st-numbering algorithm presented next uses a stack STACK that initially
contains only t and s with s on top of t. In this description we do not explicitly include the
details of DFS. We also assume that to start with t, s and the edge (t, s) are old.

Algorithm 3.6 st-Numbering (Even and Tarjan)

S1. i ← 1.
S2. Let v be the top vertex on STACK. Remove v from STACK. If v = t, then g(v) ← i

and HALT.

C5955–C003.tex 73 2015/11/4 9:00am

74 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

S3. (v ̸= t). Apply the path finding algorithm from v. If the path is empty, then g(v)← i,
i← i + 1 and go to S2.

S4. (The path is not empty.) Let the path be P : v, u1, u2, . . ., uk, w. Place uk, uk−1, . . .,
u1, v on STACK in this order (note that v comes on top of STACK) and go to S2.

Theorem 3.5 Algorithm 3.5 computes an st-numbering for every biconnected graph G =
(V, E).

Proof. The following facts about the algorithm are easy to verify:

1. No vertex appears in more than one place on STACK at any time.

2. Once a vertex v is placed on STACK, no vertex under v receives a number until v
does.

3. A vertex is permanently removed from STACK only after all edges incident on v
become old.

We now show that each vertex v is placed on STACK before t is removed. Clearly this is
true for v = s because initially t and s are placed on STACK with s on top of t.

Consider any vertex v ̸= s, t. Since G is biconnected, there exists a directed path P of
tree edges from s to v. Let P : s, u1, u2, . . ., uk = v. Let m be the first index such that um is
not placed on STACK. Since um−1 is placed on STACK, t can be removed only after um−1 is
removed (fact 2), and um−1 is removed only after all edges incident on um−1, are old (fact 3).
So um must be placed on STACK before t is removed.

We need to show that the numbers assigned to the vertices are indeed st-numbers. Since
each vertex is placed on STACK and eventually removed, every vertex v gets a number g(v).

Clearly all numbers assigned are distinct. Also g(s) = 1 and g(t) = n because s is the
first vertex and t is the last vertex to be removed. Every time a vertex v ̸= s, t is placed on
STACK, there is an adjacent vertex placed above v and an adjacent vertex placed below v.
By fact 2 the one above gets a lower number and the one below gets a higher number. �

Tarjan [6] gives a simplified version of the st-numbering algorithm. See Erbert [7] for another
st-numbering algorithm.

Further Reading

A number of algorithms that use DFS as a building block have been reported in the literature.
For example, see References [8–12]. See Chapter 27 for algorithms on program graphs that
use DFS.

References

[1] K. Thulasiraman and M. N. S. Swamy, Graphs: Theory and Algorithms, Wiley-Inter-
science, 1992.

[2] J. Hopcroft and R. E. Tarjan, Efficient algorithms for graph manipulation, Comm. ACM,
16 (1973), 372–378.

[3] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1
(1972), 146–160.

C5955–C003.tex 74 2015/11/4 9:00am

Depth-First Search and Applications � 75

[4] A. Lempel, S. Even, and I. Cederbaum, An algorithm for planarity testing of graphs,
Theory of Graphs, International Symposium, Rome, Italy, July 1966, P. Rosenstiehl,
Ed., Gordon & Breach, New York, 1967, 215–232.

[5] S. Even and R. E. Tarjan, Computing an st-Numbering, Th. Comp. Sci., New York, 2
(1976), 339–344.

[6] R. E. Tarjan, Two streamlined depth-first search algorithms, Fund. Inform. IX (1986),
85–94.

[7] J. Erbert, st-Ordering the vertices of biconnected graphs, Computing, 30 (1983), 19–33.

[8] H. de Fraysseix and P. Rosenstiehl, A depth-first search characterization of planarity,
Ann. Discrete Math., 13 (1982), 75–80.

[9] J. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components, SIAM J.
Comput., 2 (1973), 135–138.

[10] J. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. ACM, 21 (1974), 549–568.

[11] S. Shinoda, W.-K. Chen, T. Yasuda, Y. Kajitani, and W. Mayeda, A necessary and
sufficient condition for any tree of a connected graph to be a DFS-tree of one of its
2-isomorphic graphs, IEEE ISCAS, New Orleans, LA, 1990, 2841–2844.

[12] J. Valdes, R. E. Tarjan, and E. L. Lawler, The recognition of series parallel digraphs,
SIAM J. Comp., 11 (1982), 298–313.

C5955–C003.tex 75 2015/11/4 9:00am

II
Flows in Networks

77

C H A P T E R 4

Maximum Flow Problem
F. Zeynep Sargut

Ravindra K. Ahuja

James B. Orlin

Thomas L. Magnanti

CONTENTS

4.1 Introduction . 79
4.1.1 Mathematical Formulation . 81
4.1.2 Assumptions . 82

4.2 Preliminaries . 84
4.2.1 Residual Network . 84
4.2.2 Flow Across an s–t Cut . 84

4.3 Augmenting Path Algorithms . 85
4.3.1 Generic Augmenting Path Algorithms . 85
4.3.2 Maximum Capacity and Capacity-Scaling Algorithms 89
4.3.3 Shortest Augmenting Path Algorithm . 91

4.3.3.1 Worst-Case Improvements . 96
4.3.3.2 Improvement in Capacity-Scaling Algorithm 97
4.3.3.3 Further Worst-Case Improvements . 97

4.4 Preflow-Push Algorithms . 98
4.4.1 Generic Preflow-Push Algorithm . 99
4.4.2 FIFO Preflow-Push Algorithm . 103

4.5 Blocking Flow Algorithms . 104
4.5.1 Blocking Flow Algorithm . 106
4.5.2 Malhotra, Kumar, and Maheshwari Algorithm . 107

4.6 Maximum Flow on Unit Capacity Networks . 107

4.1 INTRODUCTION

The maximum flow problem seeks the maximum possible flow in a capacitated network from
a specified source node s to a specified sink node t without exceeding the capacity of any arc.
A closely related problem is the minimum cut problem, which is to find a set of arcs with
the smallest total capacity whose removal separates nodes s and t. The maximum flow and

C5955–C004.tex 79 2015/11/4 9:06am

79

80 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

minimum cut problems arise in a variety of application settings as diverse as manufacturing,
communication systems, distribution planning, and scheduling. These problems also arise as
subproblems in the solution of more difficult network optimization problems. In this chapter,
we study the maximum flow problem, introducing the underlying theory and algorithms.
The book by Ahuja et al. [1] contains a wealth of additional material that amplifies this
discussion.

We give the representative selection problem as an example of a maximum flow problem.
Consider a town that has r residents R1, R2, . . ., Rr; q clubs C1, C2, . . ., Cq; and p political par-
ties P1, P2, . . ., Pp. Each resident is a member of at least one club and can belong to exactly
one political party. Each club must nominate one of its members to represent it on the
town’s governing council so that the number of council members belonging to the polit-
ical party Pk is at most uk. Is it possible to find a council that satisfies this balancing
property?

We consider a problem with r = 7, q = 4, p = 3 and formulate it as a maximum flow prob-
lem in Figure 4.1. The nodes R1, R2, . . ., R7 represent the residents; the nodes C1, C2, . . ., C4
represent the clubs; and the nodes P1, P2, P3 represent the political parties. The network
also contains a source node s and a sink node t. It contains an arc (s, Ci) for each node Ci

denoting a club, an arc (Ci, Rj) whenever the resident Rj is a member of the club Ci, and
an arc (Rj , Pk) if the resident Rj belongs to the political party Pk. Finally, we add an arc
(Pk, t) for each k = 1, 2, 3 of capacity uk; all other arcs have unit capacity.

We next find a maximum flow in this network. If the maximum flow value equals q, then
the town has a balanced council; otherwise, it does not. The proof of this assertion is easy to
establish by showing that (1) any flow of value q in the network corresponds to a balanced
council, and that (2) any balanced council implies a flow of value q in the network. This type
of model has applications in several resource-assignment settings. For example, suppose the
residents are skilled craftsmen, the club Ci is the set of craftsmenwith a particular skill, and

u3

u2

u1

R1

R2

C1

C2

C3

C4

R3

R4

R5

R6

R7

P1

t
s

P2

P3

1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1

1

Figure 4.1 System of distinct representatives.

C5955–C004.tex 80 2015/11/4 9:06am

Maximum Flow Problem � 81

the political party Pk corresponds to a particular seniority class. In this instance, a balanced
town council corresponds to an assignment of craftsmen to a union governing board so that
every skill class has representation on the board and no seniority class has a dominant
representation.

4.1.1 Mathematical Formulation

Let G = (N, A) be a directed network defined by a set N of n nodes and a set A of m directed
arcs. We refer to nodes i and j as endpoints of arc (i, j). A directed path i1−i2−i3−· · ·−ik is a
set of arcs (i1, i2), (i2, i3), . . ., (ik−1, ik). Each arc (i, j) has an associated capacity uij denoting
the maximum possible amount of flow on this arc. We assume that each arc capacity uij is an
integer, and let U = max{uij : (i, j) ∈ A}. The network has two distinguished nodes, a source
node s and a sink node t. To help in representing a network, we use the arc adjacency list
A(i) of node i, which is the set of arcs emanating from it; that is, A(i) = {(i, j) ∈ A : j ∈ N}.
The maximum flow problem is to find the maximum flow from the source node s to the sink
node t that satisfies the arc capacities and mass balance constraints at all nodes. We can
state the problem formally as follows.

Maximize v

subject to

t∑
{j:(i,j)∈A}

xij −
t∑

{j:(j,i)∈A}
xji =

v, i = s
0, i ̸= s or t i ∈ N
−v, i = t

(4.1)

0 ≤ xij ≤ uij for all (i, j) ∈ A (4.2)

We refer to a vector x = {xij} satisfying constraint sets 4.1 and 4.2 as a flow and the
corresponding value of the scalar variable v as the value of the flow. The maximum flow
problem has two constraints. We refer to the constraints 4.1 as the mass balance constraints,
and we refer to the constraints 4.2 as the flow-bound constraints.

The maximum flow problem is a special type of minimum cost flow problem and can be
formulated as a minimum cost flow problem by adding an arc from node t to s, if it does not
exist. Moreover, the capacity of this arc is set to infinite. The minimum cost flow formulation
of the maximum flow problem is given below and the network flow representation is given in
Figure 4.2.

s

1

t

2

s

1

t

2

(a) (b)

Figure 4.2 Representation of the maximum flow problem as a minimum cost flow problem.

C5955–C004.tex 81 2015/11/4 9:06am

82 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Maximize xts

subject to
t∑

{j : (i,j) ∈ A}
xij −

t∑
{j:(j,i)∈A}

xji = 0 for all i ∈ N (4.3)

0 ≤ xij ≤ uij for all (i, j) ∈ A (4.4)
xts ≥ 0 (4.5)

4.1.2 Assumptions

In examining the maximum flow problem, we impose the following assumptions.

Assumption 4.1. Whenever the network contains arc (i, j), then it also contains arc (j, i).
This assumption is satisfied by adding the missing arcs with zero capacities.

Assumption 4.2. The network is directed. If the network contains an undirected arc (i, j)
with capacity uij , it means that this arc permits flow from node i to node j and also
from node j to node i, and the total flow (from node i to node j plus from node j to
node i) has an upper bound uij .

The directed and undirected flow problems are closely related. A well-known reduction
of Ford and Fulkerson [2] reduces the undirected problem to the directed problem with
comparable size and capacity values.

Assumption 4.3. The lower bounds on the arc flows are zero. Sometimes the flow vector x
might be required to satisfy lower bound constraints imposed upon the arc flows; that
is, if lij specifies the lower bound on the flow on arc (i, j) A, we impose the condition
xij ≥ lij . We refer to this problem as the maximum flow problem with positive lower
bounds.

Whereas the maximum flow problem with zero lower bounds always has a feasible solu-
tion (since the zero flow is feasible), the problem with nonnegative lower bounds could
be infeasible. For example, consider the maximum flow problem given in Figure 4.3.
This problem does not have a feasible solution because arc (s, 2) must carry at least 5
units of flow into node 2, and arc (2, t) can take out at most 4 units of flow; therefore,
we can never satisfy the mass balance constraint of node 2.

It is possible to transform a maximum flow problem with positive lower bounds into a
maximum flow problem with zero lower bounds. As illustrated by this example, any max-
imum flow algorithm for problems with nonnegative lower bounds has two objectives:
(1) to determine whether the problem is feasible or not, and (2) if so, to establish a
maximum flow. It therefore comes as no surprise that most algorithms use a two-phase
approach. The first phase determines a feasible flow, if one exists, and the second phase
converts a feasible flow into a maximum flow. It can be shown that each phase essentially
reduces to solving a maximum flow problem with zero lower bounds. Consequently, it is

s

i j

2 t Sink
(2,4)(5,10)

(lij, uij)

Source

Figure 4.3 Maximum flow problem with no feasible solution.

C5955–C004.tex 82 2015/11/4 9:06am

Maximum Flow Problem � 83

possible to solve the maximum flow problem with positive lower bounds by solving two
maximum flow problems, each with zero lower bounds.

Assumption 4.4. There are single source and single sink. If the problem is asking the max-
imum flow from the multiple sources to the multiple sinks, we can create a combined
source that is connected with infinite capacity arcs to all source nodes and a combined
sink that is connected with infinite capacity arcs to all sink nodes.

Arc capacities. There are two cases for the arc capacities: real valued and integral.
Although some algorithms do not require the capacities to be integral, some algorithms
are based on the assumption that the capacities are integral. Algorithms whose complex-
ity bounds involve U assume integrality of the data. In reality, the integrality assumption
is not a restrictive assumption because all modern computers store capacities as rational
numbers and we can always transform rational numbers to integer numbers by multi-
plying them by a suitably large number.

We would like to design maximum flow algorithms that are guaranteed to be efficient
in the sense that their worst-case running times, that is, the total number of multiplica-
tions, divisions, additions, subtractions, and comparisons in the worst case grow slowly
in some measure of the problem’s size. We say that a maximum flow algorithm is an
O(n3) algorithm, or has a worst-case complexity of O(n3), if it is possible to solve any
maximum flow problem using a number of computations that is asymptotically bounded
by some constant times the term n3. We say that an algorithm is a polynomial time
algorithm if its worst-case running time is bounded by a polynomial function of the
input size parameters. For a maximum flow problem, the input size parameters are n,
m, and log U (the number of bits needed to specify the largest arc capacity). We refer
to a maximum flow algorithm as a pseudopolynomial time algorithm if its worst-case
running time is bounded by a polynomial function of n, m, and U . For example, an
algorithm with a worst-case complexity of O(nm log U) is a polynomial time algorithm,
but an algorithm with a worst-case complexity of O(nmU) is a pseudopolynomial time
algorithm.

For many years researchers attempted to find an algorithm faster than the decom-
position barrier Ω(nm). This is a natural lower bound on algorithms that require flow
decomposition and on algorithms that augment flow of one arc at a time. Cheriyan
et al. [3] beat this algorithm for dense graphs, while Goldberg and Rao [4] further
improve this lower bound.

The remainder of this chapter is organized as follows. In Section 4.2, we present some prelim-
inary results concerning flows and cuts. We next discuss two important classes of algorithms
for solving the maximum flow problem: (1) augmenting path algorithms and (2) preflow-
push algorithms. Section 4.3 describes augmenting path algorithms, which augment flow
along directed paths from the source node to the sink node. The proof of the validity of the
augmenting path algorithm yields the well-known max-flow min-cut theorem, which states
that the value of a maximum flow in a network equals the capacity of a minimum cut in
the network. Moreover, we describe three polynomial-time implementations of the generic
augmenting path algorithm. In Section 4.4, we study preflow-push algorithms that flood
the network so that some nodes have excesses and then incrementally relieve the flow from
nodes with excesses by sending flow from excess nodes forward toward the sink node or
backward toward the source node. Additionally, we describe three polynomial implementa-
tions of the preflow-push type algorithms. In Section 4.5, we give the blocking flow type
maximum flow algorithms. In Section 4.6, we describe the faster version of the preflow-push
algorithms for the unit capacity networks. In Section 4.7, we give references for further
reading.

C5955–C004.tex 83 2015/11/4 9:06am

84 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

4.2 PRELIMINARIES

In this section, we discuss some elementary properties of flows and cuts. We will use these
properties to prove the celebrated max-flow min-cut theorem and to establish the correctness
of the augmenting path algorithm described in Section 4.3.

4.2.1 Residual Network

The concept of residual network plays a central role in the development of maximum flow
algorithms. Given a flow x, the residual capacity rij of any arc (i, j) ∈ A is the maximum
additional flow that can be sent from node i to node j using the arcs (i, j) and (j, i). (Recall
our assumption from Section 4.1.2 that whenever the network contains arc (i, j), it also
contains the arc (j, i).) The residual capacity rij has two components: (i) uij − xij , the
unused capacity of arc (i, j), and (ii) the current flow xji on arc (j, i), which we can cancel to
increase the flow from node i to node j. Consequently, rij = uij − xij − xji. We refer to the
network G(x) consisting of the arcs with positive residual capacities as the residual network
(with respect to the flow x). Figure 4.4 gives an example of a residual network.

4.2.2 Flow Across an s–t Cut

Let x be a flow in the network. Adding the mass balance constraint 4.1 for the nodes in S,
we obtain the following equation:

v =
∑
i∈S

 t∑
{j:(i,j)∈A}

xij −
t∑

{j:(j,i)∈A}
xji

 =
t∑

{(i,j)∈(S,S)}

xij −
t∑

{(j,i)∈(S,S)}

xij (4.6)

The second equality uses the fact that whenever both the nodes p and q belong to the node
set S and (p, q) A, the variable xpq in the first term within the bracket (for node i = p) cancels
the variable −xpq in the second term within the bracket (for node j = q). The first expression
in the right-hand side of Equation 4.6 denotes the amount of flow from the nodes in S to
nodes in S, and the second expression denotes the amount of flow returning from the nodes in
S to the nodes in S. Therefore, the right-hand side denotes the total (net) flow across the cut,
and 4.6 implies that the flow across any s− t cut [S, S] equals v. Substituting xij ≤ uij in the
first expression of 4.6 and xij ≥ 0 in the second expression yields v ≤

∑
(i,j)∈[S,S] uij = u[S, S],

implying that the value of any flow can never exceed the capacity of any cut in the network.
We record this result formally for future reference.

(0,1)

(2,3)

(2,2)

(3,4) (5,5) 1 5

12

3

2 1

(xij, uij) rij

s s

i j i j

2 2

1 1

t t

(a) (b)

Figure 4.4 Residual network.

C5955–C004.tex 84 2015/11/4 9:06am

Maximum Flow Problem � 85

The minimum cut problem is a close relative of the maximum flow problem. A cut [S, S]
partitions the node set N into two subsets S and S = N − S. It consists of all arcs with
one endpoint in S and the other in S. We refer to the arcs directed from S to S, denoted by
(S, S), as forward arcs in the cut and the arcs directed from S to S, denoted by (S, S), as
backward arcs in the cut. The cut [S, S] is called an s − t cut if s ∈ S and t ∈ S. We define
the capacity of the cut [S, S], denoted as u[S, S], where

u[S, S] =
∑

(i,j)∈[S,S]

uji

A minimum cut in G is an s − t cut of minimum capacity. We will show that any algorithm
that determines a maximum flow in the network also determines a minimum cut in the
network.

Theorem 4.1 The value of any flow can never exceed the capacity of any cut in the network.
Consequently, if the value of some flow x equals the capacity of some cut [S, S], then x is a
maximum flow and the cut [S, S] is a minimum cut. �

The max-flow min-cut theorem, to be proved in the next section, states that the value of
some flow always equals the capacity of some cut.

4.3 AUGMENTING PATH ALGORITHMS

In this section, we first describe one of the simplest and most intuitive algorithms for solving
the maximum flow problem, an algorithm known as the augmenting path algorithm. Ford
and Fulkerson [2] and Elias et al. [5] independently developed the basic augmenting path
algorithm. We next describe four specific implementations of the augmenting path algorithm:
maximum capacity, capacity scaling, and shortest path algorithms. Several studies show that
prior to the push-relabel type algorithms, shortest path algorithm was superior to the other
algorithms. We first explain the generic version of the augmenting path algorithm.

4.3.1 Generic Augmenting Path Algorithms

Let x be a feasible flow in the network G, and let G(x) denote the residual network cor-
responding to the flow x. We refer to a directed path from the source to the sink in the
residual network G(x) as an augmenting path. We define the residual capacity δ(P) of an
augmenting path P as the maximum amount of flow that can be sent along it; that is,
δ(P) = min{rij : (i, j) ∈ P}. Since the residual capacity of each arc in the residual network
is strictly positive, the residual capacity of an augmenting path is strictly positive. There-
fore, we can always send a positive flow of δ units along it. Consequently, whenever the
network contains an augmenting path, we can send additional flow from the source to the
sink. (Sending an additional δ units of flow along an augmenting path decreases the residual
capacity of each arc (i, j) in the path by δ units.) The generic augmenting path algorithm is
essentially based upon this simple observation. The algorithm identifies augmenting paths in
G(x) and augments flow on these paths until the network contains no such path. We describe
the generic augmenting path algorithm below.

Algorithm: Generic augmenting path

x := 0;

while G(x) contains a directed path from node s to node t do

C5955–C004.tex 85 2015/11/4 9:06am

86 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

{
identify an augmenting path P from node s to node t;
δ(P) = min{rij : (i, j) ∈ P};
augment δ(P) units of flow along path P and update G(x);
}

The performance of the algorithm depends on (1) the number of augmenting paths and
(2) the time to identify an augmenting path. Both numbers depend on which augmenting
path we choose at each step. We can identify an augmenting path P in G(x) by using a graph
search algorithm. A graph search algorithm starts at node s and progressively finds all nodes
that are reachable from the source node using directed paths. Most search algorithms run
in time proportional to the number of arcs in the network, that is, O(m) time, and either
identify an augmenting path or conclude that G(x) contains no augmenting path; the latter
happens when the sink node is not reachable from the source node.

For each arc (i, j) ∈ P , augmenting δ units of flow along P decreases rij by δ units
and increases rji by δ units. The final residual capacities rij when the algorithm terminates
specifies a maximum (arc) flow in the following manner. Since rij = uij − xij + xji, the arc
flows satisfy the equality xij − xji = uij − rij . If uij > rij , we can set xij = uij − rij and
xji = 0; otherwise, we set xij = 0 and xji = rij − uij .

We use the maximum flow problem given in Figure 4.5 to illustrate the algorithm.
Figure 4.5a shows the residual network corresponding to the starting flow x = 0, which is iden-
tical to the original network. The residual network contains three augmenting paths: 1-3-4,
1-2-4, and 1-2-3-4. Suppose the algorithm selects the path 1-3-4 for augmentation. The resid-
ual capacity of this path is δ = min{r13, r34} = min{4, 5} = 4. This augmentation reduces
the residual capacity of arc (1, 3) to zero (thus we delete it from the residual network) and

41

(a)

4

2
1

5

3

3

2

41

(b)

4

2
1

4

1

3

3

2

i j

rij

1 4

4

1

1

1

5

12

3

2

1

4

2 1

5

12

3

4

2
(c) (d)

Figure 4.5 (a) The residual network G(x) for x = 0. (b) The residual network after augmenting
four units along the path 1-3-4. (c) The residual network after augmenting one unit along
the path 1-2-3-4. (d) The residual network after augmenting one unit along the path 1-2-4.

C5955–C004.tex 86 2015/11/4 9:06am

Maximum Flow Problem � 87

increases the residual capacity of arc (3, 1) to 4 (so we add this arc to the residual network).
The augmentation also decreases the residual capacity of arc (3, 4) from 5 to 1 and increases
the residual capacity of arc (4, 3) from 0 to 4. Figure 4.5b shows the residual network at
this stage. In the second iteration, the algorithm selects the path 1-2-3-4 and augments one
unit of flow; Figure 4.5c shows the residual network after the augmentation. In the third
iteration, the algorithm augments one unit of flow along the path 1-2-4. Figure 4.5d shows
the corresponding residual network. Now the residual network contains no augmenting path
and so the algorithm terminates.

Theorem 4.2 (Max-flow min-cut theorem) The maximum value of the flow from a
source node s to a sink node t in a capacitated network equals the minimum capacity among
all s − t cuts.

Proof. The algorithm terminates when the search algorithm fails to identify a directed path
in G(x) from node s to node t, indicating that no such path exists (we prove later that the
algorithm would terminate finitely). At this stage, let S denote the set of nodes in N that are
reachable in G(x) from the source node using directed paths, and S = N − S. Clearly, s ∈ S
and t ∈ S. Since the search algorithm cannot reach any node in S and it can reach each node
in S, we know that rij = 0 for each (i, j) ∈ (S, S). Recall that rij = (uij −xij)+xji, xij ≤ uij ,
and xji ≥ 0. If rij = 0, then xij = uij and xji = 0. Since rij = 0 for each (i, j) ∈ (S, S), by
substituting these flow values in expression 4.6, we find that v = [S, S]. Therefore, the value
of the current flow x equals the capacity of the cut [S, S]. Theorem 4.1 implies that x is a
maximum flow and [S, S] is a minimum cut. This conclusion establishes the correctness of
the generic augmenting path algorithm and, as a by-product, proves the max-flow min-cut
theorem. �
The proof of the max-flow min-cut theorem shows that when the augmenting path algorithm
terminates, it also discovers a minimum cut [S, S], with S defined as the set of all nodes reach-
able from the source node in the residual network corresponding to the maximum flow. For
our previous numerical example, the algorithm finds the minimum cut in the network, which
is [S, S] with S = {1}. The augmenting path algorithm also establishes another important
result given in Theorem 4.3.

Theorem 4.3 (Integrality theorem) If all arc capacities are integer, then the maximum
flow problem always has an integer maximum flow.

Proof. This result follows from the facts that the initial (zero) flow is integer and all arc
capacities are integer; consequently, all initial residual capacities will be integer. Since subse-
quently all arc flows change by integer amounts (because residual capacities are integer),
the residual capacities remain integer throughout the algorithm. Further, the final inte-
ger residual capacities determine an integer maximum flow. The integrality theorem does
not imply that every optimal solution of the maximum flow problem is integer. The maxi-
mum flow problem might have non-integer solutions and, most often, it has such solutions.
The integrality theorem shows that the problem always has at least one integer optimal
solution. �

Theorem 4.4 The generic augmenting path algorithm solves the maximum flow problem in
O(nmU) time.

Proof. An augmenting path is a directed path in G(x) from node s to node t. We have
seen earlier that each iteration of the algorithm requires O(m) time. In each iteration, the

C5955–C004.tex 87 2015/11/4 9:06am

88 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

algorithm augments a positive integer amount of flow from the source node to the sink node.
To bound the number of iterations, we will determine a bound on the maximum flow value.
By definition, U denotes the largest arc capacity, and so the capacity of the cut ({s}, S −{s})
is at most nU . Since the value of any flow can never exceed the capacity of any cut in the
network, we obtain a bound of nU on the maximum flow value and also on the number of
iterations performed by the algorithm. Consequently, the running time of the algorithm is
O(nmU), which is a pseudopolynomial time bound. We summarize the preceding discussion
with the following theorem. �

The generic augmenting path algorithm is possibly the simplest algorithm for solving the
maximum flow problem. Empirically, the algorithm performs reasonably well. However, the
worst-case bound on the number of iterations is not entirely satisfactory for large values
of U . For example, if U = 2n, the bound is exponential in the number of nodes. Moreover,
the algorithm can indeed perform this many iterations, as the example given in Figure 4.6
demonstrates. For this example, the algorithm can select the augmenting paths s − a − b − t
and s − b − a − t alternatively 106 times, each time augmenting unit flow along the path.
This example illustrates one shortcoming of the algorithm.

The second drawback of the generic augmenting path algorithm is that if the capacities
are irrational, the algorithm might not terminate. For some pathological instances of the
maximum flow problem, the augmenting path algorithm does not terminate, and although
the successive flow values converge, they converge to a value strictly less than the maximum
flow value. (Note, however, that the max-flow min-cut theorem holds even if arc capacities are
irrational.) Therefore, if the generic augmenting path algorithm is guaranteed to be effective,
it must select augmenting paths carefully.

(a)

s

a

b

t
1

106 106

106106

(b)

s

a

b

t
1

106

106

106 − 1

106 − 1

1

1

a

b

t
1

106 − 1

106 − 1
106 − 1

106 − 1

11

1 1

s

(c)

Figure 4.6 (a) Residual network for the zero flow. (b) Network after augmenting unit flow along
the path s − a − b − t. (c) Network after augmenting unit flow along the path s − b − a − t.

C5955–C004.tex 88 2015/11/4 9:06am

Maximum Flow Problem � 89

i

s
t

j

1

2

4 4′

3′

2′

1′

3

1

∞

∞

∞

∞

∞

√2

∞

∞

∞

∞

∞

1

r
ij

Figure 4.7 Another pathological instance for the generic augmenting path algorithm.

We give an example of this situation in Figure 4.7. Let us assume that we first choose the
path s − 1 − 1′ − t and then choose the path s − t − 1′ − 1 − s − 3 − 3′ − t. We can continue in
this fashion and always identify a path from s to t. Therefore, it is possible that the generic
augmenting path algorithm does not converge.

The third drawback of the generic augmenting path algorithm is its forgetfulness. In each
iteration, the algorithm generates node labels that contain information about augmenting
paths from the source node to other nodes. The implementation that we described erases
the labels as it moves from one iteration to the next, even though much of this informa-
tion might be valid in the next iteration. Erasing the labels therefore destroys potentially
useful information. Ideally, we should retain a label when we can use it profitably in later
computations.

Researchers have developed specific implementations of the generic augmenting path
algorithms that overcome these drawbacks. Of these, the following four implementations are
particularly noteworthy: (1) the maximum capacity augmenting path algorithm, which always
augments flow along the augmenting path with the maximum residual capacity and can be
implemented to run in O(m2 log U) time; (2) the capacity-scaling algorithm, which uses a
scaling technique on arc capacities and can be implemented to run in O(nm log U) time; and
(3) the shortest augmenting path algorithm, which augments flow along a shortest path (as
measured by the number of arcs) in the residual network and runs in O(n2m) time. Next,
we describe these three algorithms.

4.3.2 Maximum Capacity and Capacity-Scaling Algorithms

In this section, we describe two specific implementations of the generic augmenting path
algorithm. The maximum capacity augmenting path algorithm always augments flow only
along a path with the maximum residual capacity. Let x be any flow and let v be its flow value.
As before, let v∗ be the maximum flow value. It can be shown using the flow decomposition
theory that in the residual network G(x) we can find m or fewer directed paths from the
source to the sink whose residual capacities sum to (v∗−v). Therefore, the maximum capacity
augmenting path has a residual capacity of at least (v∗ − v)/m. Now consider a sequence of

C5955–C004.tex 89 2015/11/4 9:06am

90 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

2m consecutive maximum capacity augmentations starting with the flow x. Suppose that v′

is the new flow value. If in each of these augmentations we augment at least (v∗ − v)/2m
units of flow, then we will establish a maximum flow within 2m or fewer iterations. However,
if one of these 2m augmentations carries less than (v∗ − v)/2m units of flow, it implies that
(v∗ − v′) becomes less than m(v∗ − v)/2m = (v∗ − v)/2. This argument shows that within
2m consecutive iterations, the algorithm either establishes a maximum flow or reduces the
residual capacity of the maximum capacity augmenting path by a factor of at least 2. Since
the residual capacity of any augmenting path is at most 2U and at least 1, after O(m log U)
iterations, the flow must be maximum.

As we have seen, the maximum capacity augmentation algorithm reduces the number
of augmentations in the generic augmenting path algorithm from O(nU) to O(m log U).
However, the algorithm performs more computations per iteration, since it needs to identify
an augmenting path with the maximum residual capacity and not just any augmenting path.
Therefore, the running time is O(Am log U), where A is the time to obtain the maximum
capacity augmenting path in the residual network.

We shall now suggest a variation of the maximum capacity augmenting path algorithm
that does not perform more computations per iteration than the generic augmenting path
algorithm and yet establishes a maximum flow within O(m log U) iterations. Since this algo-
rithm scales the arc capacities implicitly, we refer to it as the capacity-scaling algorithm.

The essential idea underlying the capacity-scaling algorithm is conceptually quite simple:
we augment flow along a path with a sufficiently large residual capacity instead of a path
with the maximum augmenting capacity because we can obtain a path with a sufficiently
large residual capacity fairly easily in O(m) time. To define the capacity-scaling algorithm,
let us introduce a parameter ∆ and, with respect to a given flow x, define the ∆-residual
network as a network containing arcs whose residual capacity is at least ∆. Let G(x, ∆)
denote the ∆-residual network. Note that G(x, 1) = G(x) and G(x, ∆) is a subgraph of G(x).
The capacity-scaling algorithm works as follows.

Algorithm: Capacity scaling

x := 0;

∆ := 2log U ;

while ∆ ≥ 1 do

while G(x, ∆) contains a path from node s to node t do
{
identify a path P in G(x, ∆);
augment min{rij : (i, j) ∈ P} units of flow along P and update G(x, ∆);
}

∆ := ∆/2;

Theorem 4.5 The capacity-scaling algorithm solves the maximum flow problem within
O(m log U) augmentations and runs in O(m2 log U) time.

Proof. Let us refer to a phase of the algorithm during which ∆ remains constant as a scaling
phase and a scaling phase with a specific value of ∆ as a ∆-scaling phase. Observe that in
a ∆-scaling phase, each augmentation carries at least ∆ units of flow. The algorithm starts
with ∆ = 2log U and halves its value in every scaling phase until ∆ = 1. Consequently, the
algorithm performs 1 + ⌊log U⌋ = O(log U) scaling phases. In the last scaling phase, ∆ = 1

C5955–C004.tex 90 2015/11/4 9:06am

Maximum Flow Problem � 91

i j

rij

2 4 2 4

53 53

1 1

4

1513

10 10

15

8

13

12 12

7 8

(a) (b)6

Figure 4.8 (a) Residual network G(x). (b) ∆-residual network G(x, ∆) for ∆ = 8.

and so G(x, ∆) = G(x). This result shows that the algorithm terminates with a maximum
flow. Figure 4.8 shows an example of the residual network when ∆ = 1 and ∆ = 8.

The efficiency of the algorithm depends upon the fact that it performs at most 2m
augmentations per scaling phase. To establish this result, consider the flow at the end of the
∆-scaling phase. Let x′ be this flow and let v′ denote its flow value. Furthermore, let S be
the set of nodes reachable from s in G(x′, ∆). Since G(x′, ∆) contains no augmenting path
from the sources to the sink, t /∈ S. Therefore, [S, S] forms an s − t cut. The definition of S
implies that the residual capacity of every arc in (S, ∆) is strictly less than ∆, and so the
residual capacity of the cut (S, S) is at most m∆. Consequently, v∗ − v′ ≤ m∆. In the next
scaling phase, each augmentation carries at least ∆/2 units of flow, and so this scaling phase
can perform at most 2m such augmentations. The algorithm described earlier requires O(m)
time to identify an augmenting path, and updating the ∆-residual network also requires
O(m) time. �

4.3.3 Shortest Augmenting Path Algorithm

The shortest augmenting path algorithm always augments flow along a shortest path (a path
with the least number of arcs) in the residual network from the source to the sink. Since the
minimum distance from any node i to the sink node t is monotonically nondecreasing over
all augmentations, we obtain the average time per augmentation to O(n).

The shortest augmenting path algorithm proceeds by augmenting flows along admissible
paths. It constructs an admissible path incrementally by adding one arc at a time. The
algorithm maintains a partial admissible path, that is, a path from s to some node i consisting
solely of admissible arcs, and iteratively performs advance or retreat operations from the last
node (i.e., the tip) of the partial admissible path, which we refer to as the current node. If the
current node i has (i.e., is incident to) an admissible arc (i, j), then we perform an advance
operation and add arc (i, j) to the partial admissible path; otherwise, we perform a retreat
operation and backtrack one arc. We repeat these operations until the partial admissible
path reaches the sink node, at which time we perform an augmentation. We repeat this
process until the flow is maximum. Before presenting a formal description of the algorithm,
we illustrate it on the numerical example given in Figure 4.9.

We first compute the initial distance labels by performing the backward breadth-first
search of the residual network starting at the sink node. The numbers next to the nodes in
Figure 4.9 specify these values of the distance labels. In this example, we adopt the convention
of selecting the arc (i, j) with the smallest value of j whenever node i has several admissible
arcs. We start at the source node with a null partial admissible path. The source node has
several admissible arcs, so we perform an advance operation. This operation adds the arc
(1, 2) to the partial admissible path. We store this path using predecessor indices, so we
set pred(2) = 1. Now node 2 is the current node and the algorithm performs an advance
operation at node 2. In doing so, it adds arc (2, 7) to the partial admissible path, which now

C5955–C004.tex 91 2015/11/4 9:06am

92 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

j

d(i) d(j)

(a)

2
1

1

1

1

1

1

1

1

1

1

2
2

2

2

2

2

02

2

2

2

2

2

2

2

Source Sink

i

1 12

2 7

3 8

4 9

5 10

6 11

rij

3

2
1

1

1

1

1

1

1

1

1

1

2
1

11

1 2

2

2

2

02

2

2

2

2

2

2

1 12

2 7

3 8

4 9

5 10

6 11

3

(b)

Figure 4.9 Illustrating the shortest augmenting path algorithm. (a) Original network.
(b) Residual network after an augmentation.

becomes 1-2-7. We also set pred(7) = 2. In the next iteration, the algorithm adds arc (7, 12)
to the partial admissible path obtaining 1-2-7-12, which is an admissible path to the sink
node. We perform an augmentation of value min{r12, r27, r7,12} = min{2, 1, 2} = 1, and thus
saturate the arc (2, 7). Figure 4.9b specifies the residual network at this stage.

We again start at the source node with a null partial admissible path. The algorithm adds
the arc (1, 2) and node 2 becomes the new current node. Now we find that node 2 has no ad-
missible arcs. To create new admissible arcs, we must increase the distance label of node 2. We
thus increase d(2) to the value min{d(j)+1 : (2, j) ∈ A(2), r2j > 0} = 4. We refer to this oper-
ation as a relabel operation. We will later show that a relabel operation preserves the validity
conditions. Observe that the increase in d(2) causes arc (1, 2) to become inadmissible. Thus we
delete arc (1, 2) from the partial admissible path, which again becomes a null path. In the sub-
sequent operations, the algorithm identifies the admissible paths 1-3-8-12, 1-4-9-12, 1-5-10-12,
and 1-6-11-12 and augments a unit flow on these paths. We encourage the reader to carry
out the details of these operations. We now give the algorithmic description of the algorithm.

Algorithm: Shortest augmenting path

x := 0;

obtain the exact distance labels d(i);

current node:= s;

C5955–C004.tex 92 2015/11/4 9:06am

Maximum Flow Problem � 93

while d(s) < n do

{
if current node has an admissible arc then advance(current node)
else retreat(current node);
if current node = t then augment;
}

procedure advance(i)

{

let (i, j) be an admissible arc in A(i);

pred(j) := i and i := j;

}

procedure retreat(i)

{

d(i) := min{d(j) + 1 : (i, j) ∈ A(i) and rij > 0};

if i ̸= s then i := pred(i);

}

procedure augment

{

using the predecessor indices identify an augmenting path P from the source to the
sink;

augment min{rij : (i, j) ∈ P} units of flow along path P ;

}

We first show that the shortest augmenting path algorithm correctly solves the maximum
flow problem.

Theorem 4.6 The shortest augmenting path algorithm maintains valid distance labels at
each step. Moreover, each relabel (or, retreat) operation strictly increases the distance label
of a node.

Proof. We show that the algorithm maintains valid distance labels at every step by performing
induction on the number of augment and relabel operations. (The advance operation does not
affect the admissibility of any arc because it does not change any residual capacity or distance
label.) Initially, the algorithm constructs valid distance labels. Assume, inductively, that the
distance labels are valid prior to an operation; that is, they satisfy the validity conditions.
We need to check whether these conditions remain valid (1) after an augment operation and
(2) after a relabel operation.

C5955–C004.tex 93 2015/11/4 9:06am

94 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1. Although a flow augmentation on arc (i, j) might remove this arc from the residual
network, this modification to the residual network does not affect the validity of the
distance function for this arc. An augmentation on arc (i, j) might, however, create an
additional arc (j, i) with rji > 0 and, therefore, also create an additional inequality
d(j) ≤ d(i) + 1 that the distance labels must satisfy. The distance labels satisfy this
validity condition, though, since d(i) = d(j) + 1 by the admissibility property of the
augmenting path.

2. The relabel operation modifies d(i); therefore, we must show that the validity conditions
are satisfied for each incoming and outgoing arc at node i with respect to the new
distance labels, say d′(i). The algorithm performs a relabel operation at node i when it
has no admissible arc; that is, no arc (i, j) ∈ A(i) satisfies the conditions d(i) = d(j)+1
and rij > 0. This observation, in light of the validity condition d(i) ≤ d(j) + 1, implies
that d(i) < d(j) + 1 for all arcs (i, j) ∈ A with a positive residual capacity. Therefore,
d(i) < min{d(j) + 1 : (i, j) ∈ A(i), rij > 0} = d′(i), which is the new distance label
after the relabel operation. We have thus shown that relabeling preserves the validity
condition for all arcs emanating from node i and that each relabel operation strictly
increases the value of d(i). Finally, note that every incoming arc (k, i) satisfies the
inequality d(k) ≤ d(i) + 1 (by the induction hypothesis). Since d(i) < d′(i), the relabel
operation again preserves the validity condition for the arc (k, i). �

Now, we will show that the shortest augmenting path algorithm runs in O(n2m) time. We
first describe a data structure used to select an admissible arc emanating from a given node.
We call this data structure the current-arc data structure. We also use this data structure in
almost all the maximum flow algorithms that we describe in subsequent sections. Therefore,
we first review this data structure before proceeding further.

Recall that we maintain the arc list A(i), which contains all the arcs emanating from
node i. We can arrange the arcs in these lists arbitrarily, but the order, once decided, remains
unchanged throughout the algorithm. Each node i has a current-arc, which is an arc in A(i)
and is the next candidate for admissibility testing. Initially, the current-arc of node i is the
first arc in A(i). Whenever the algorithm attempts to find an admissible arc emanating from
node i, it tests whether the node’s current-arc is admissible. If not, then it designates the
next arc in the arc list as the current arc. The algorithm repeats this process until it either
finds an admissible arc or reaches the end of the arc list.

Consider, for example, the arc list of node 1 in Figure 4.10. In this instance, A(1) =
{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}. Initially, the current-arc of node 1 is arc (1, 2). Suppose the
algorithm attempts to find an admissible arc emanating from node 1. It checks whether the
node’s current-arc, (1, 2), is admissible. Since it is not, the algorithm designates arc (1, 3) as
the current-arc of node 1. The arc (1, 3) is also inadmissible, and so the current-arc becomes
arc (1, 4), which is admissible. From this point on arc (1, 4) remains the current-arc of node
1 until it becomes inadmissible because the algorithm has increased the value of d(4) or
decreased the value of the residual capacity of arc (1, 4) to zero.

Let us consider the situation when the algorithm reaches the end of the arc list without
finding any admissible arc. Can we say that A(i) has no admissible arc? Yes, we can, because
it is possible to show that if an arc (i, j) is inadmissible in previous iterations, then it remains
inadmissible until d(i) increases. So if we reach the end of the arc list, then we perform a
relabel operation and again set the current-arc of node i to be the first arc in A(i). The
relabel operation also examines each arc in A(i) once to compute the new distance label,
which is same as the time it spends in identifying admissible arcs at node i in one scan of
the arc list. We have thus established the following result.

C5955–C004.tex 94 2015/11/4 9:06am

Maximum Flow Problem � 95

j

1

2

3

4

6

5

i
rij

d(j)d(i)

5

Source

0

2

4

2

2

1

4

10

0

3

Figure 4.10 Selecting admissible arcs emanating from a node.

Theorem 4.7 If the algorithm relabels any node at most k times, then the total time spent
in finding admissible arcs and relabeling the nodes is O(k

∑
i∈N |A(i)|) = O(km). �

Theorem 4.8 If the algorithm relabels any node at most k times, then the algorithm satu-
rates arcs (i.e., reduces their residual capacity to zero) at most km/2 times.

Proof. We show that between two consecutive saturations of an arc (i, j), both d(i) and
d(j) must increase by at least 2 units. Since, by our hypothesis, the algorithm increases each
distance label at most k times, this result would imply that the algorithm could saturate
any arc at most k/2 times. Therefore, the total number of arc saturations would be km/2.
Suppose that an augmentation saturates an arc (i, j). Since the arc (i, j) is admissible

d(i) = d(j) + 1.

Before the algorithm saturates the arc again, it must send back flow from node j to node i.
At this time, the distance labels d′(i) and d′(j) satisfy the equality

d′(j) = d′(i) + 1.

In the next saturation of arc (i, j), we must have

d′′(i) = d′′(j) + 1.

Using the above equations, we obtain

d′′(i) = d′′(j) + 1 ≥ d′(j) + 1 = d′(i) + 2 ≥ d(i) + 2.

Similarly, it is possible to show that d′′(j) ≥ d(j) + 2. As a result, between two consecutive
saturations of the arc (i, j), both d(i) and d(j) increase by at least 2 units. �

Theorem 4.9 In the shortest augmenting path algorithm each distance label increases at
most n times. Consequently, the total number of relabel operations is at most n2. The number
of augment operations is at most nm/2.

C5955–C004.tex 95 2015/11/4 9:06am

96 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. Each relabel operation at node i increases the value of d(i) by at least one unit.
After the algorithm has relabeled node i at most n times, d(i) ≥ n. From this point on, the
algorithm never again selects node i during an advance operation since for every node k in
the partial admissible path, d(k) < d(s) < n. Thus the algorithm relabels a node at most
n times and the total number of relabel operations is bounded by n2. The preceding result
in view of Theorem 4.8 implies that the algorithm saturates at most nm/2 arcs. Since each
augmentation saturates at least one arc, we immediately get a bound of nm/2 on the number
of augmentations. �

Theorem 4.10 The shortest augmenting path algorithm runs in O(n2m) time.

Proof. Using Theorems 4.9 and 4.7, we find that the total effort spent in finding admissible
arcs and in relabeling the nodes is O(nm). Theorem 4.9 implies that the total number of
augmentations is O(nm). Each augmentation requires O(n) time, this results in O(n2m)
total effort for the augmentation operations. Each retreat operation relabels a node, so the
total number of retreat operations is O(n2). Each advance operation adds one arc to the
partial admissible path, and each retreat operation deletes one arc from it. Since each partial
admissible path has length at most n, the algorithm requires at most O(n2 + n2m) advance
operations. The first term comes from the number of retreat (relabel) operations, and the
second term from the number of augmentations. The combination of these bounds establishes
the complexity of the algorithm. �

4.3.3.1 Worst-Case Improvements

The shortest augmenting path algorithm terminates when d(s) ≥ n. This termination cri-
terion is satisfactory for the worst-case analysis, but it might not be efficient in practice.
Empirical investigations have revealed that the algorithm spends too much time in rela-
beling nodes and that a major portion of this effort is performed after the algorithm has
established a maximum flow. This happens because the algorithm does not know that it has
found a maximum flow. We next suggest a technique that is capable of detecting the pres-
ence of a minimum cut, and therefore the existence of a maximum flow, much earlier than
d(s) ≥ n is satisfied. Incorporating this technique in the shortest augmenting path algorithm
improves its performance substantially in practice.

We will illustrate this technique by applying it to the numerical example we used earlier
to illustrate the shortest augmenting path algorithm. Figure 4.11 gives the residual network
immediately after the last augmentation. Although the flow is now a maximum flow, since
the source is not connected to the sink in the residual network, the termination criteria of
d(1) ≥ 12 is far from being satisfied. The reader can verify that after the last augmentation,
the algorithm would increase the distance labels of nodes 6, 1, 2, 3, 4, 5, in the given order,
each time by two units. Eventually, d(1) ≥ 12 and the algorithm terminates. Observe that
the node set S of the minimum cut [S, S] equals {6, 1, 2, 3, 4, 5}, and the algorithm increases
the distance labels of all the nodes in S without performing any augmentation. The technique
we describe essentially detects a situation like this one.

To implement this approach, we maintain an n-dimensional additional array, numb, whose
indices vary from 0 to (n−1). The value numb(k) is the number of nodes whose distance label
equals k. The algorithm initializes this array while computing the initial distance labels using
the breadth-first search. At this point, the positive entries in the array numb are consecutive;
that is, the entries numb(0), numb(1), . . ., numb(l) will be positive up to some index l and the
remaining entries will all be zero. For example, the numb array for the distance labels shown
in Figure 4.11 is numb(0) = 1, numb(1) = 5, numb(2) = 5, numb(3) = 1, numb(4) = 4, and

C5955–C004.tex 96 2015/11/4 9:06am

Maximum Flow Problem � 97

1Source

4 1

1

1

1

1

4

04

4

2

Sink12

2 7

3 8

4 9

5 10

6 11

j

d(i) d(j)

i
rij

3

Figure 4.11 Bad example for the shortest augmenting path algorithm.

the remaining entries are zero. Subsequently, whenever the algorithm increases the distance
label of a node from k1 to k2, it subtracts 1 from numb(k1), adds 1 to numb(k2), and checks
whether numb(k1) = 0. If numb(k1) does equal zero, then the algorithm terminates. As seen
earlier, the shortest augmenting path algorithm augments unit flow along the paths 1-2-7-12,
1-3-8-12, 1-4-9-12, 1-5-10-12, and 1-6-11-12. At the end of these augmentations, we get the
residual network shown in Figure 4.11. When we continue the shortest augmenting path
algorithm from this point, then it constructs the partial admissible path 1-6. Next it relabels
node 6, and its distance label increases from 2 to 4. The algorithm finds that numb(2) = 0
and it terminates.

4.3.3.2 Improvement in Capacity-Scaling Algorithm

In the previous section, we described the capacity-scaling algorithm for the maximum flow
problem that runs in O(m2 log U) time. We can improve the running time of this algorithm
to O(nm log U) by using the shortest augmenting path as a subroutine in the capacity-scaling
algorithm. Recall that the capacity-scaling algorithm performs a number of ∆-scaling phases
and that in the ∆-scaling phase it sends the maximum possible flow in the ∆-residual net-
work G(x, ∆) using the generic augmenting path algorithm as a subroutine. In the improved
implementation, we use the shortest augmenting path algorithm to send the maximum possi-
ble flow from node s to node t. We accomplish this by defining the distance labels with respect
to the network G(x, ∆) and augmenting flow along the shortest augmenting path in G(x, ∆).
This algorithm yields a bound of O(nm log U) on the running time of the capacity-scaling
algorithm.

4.3.3.3 Further Worst-Case Improvements

The idea of augmenting flows along the shortest paths is intuitively appealing and easy to
implement in practice. The resulting algorithms identify at most O(nm) augmenting paths,
and this bound is tight; that is, on particular examples these algorithms perform O(nm)
augmentations. The only way to improve the running time of the shortest augmenting path
algorithm is to perform fewer computations per augmentation.

The use of a sophisticated data structure, called dynamic trees, reduces the average
time for each augmentation from O(n) to O(log n). This implementation of the shortest

C5955–C004.tex 97 2015/11/4 9:06am

98 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

TABLE 4.1 Summary of the Augmenting Path Algorithms

Augment Time to Find an Best Running
Iterations Augmenting Path Time

Generic [6,7] O(nU) O(m) O(nmU)
Capacity scaling [8,9] O(m log U) O(n) O(nm log U)
Shortest [8,10] O(nm) O(log n) O(nm log n)

augmenting path algorithm runs in O(nm log n) time, and obtaining further improvements
appears quite difficult except in very dense networks. See Table 4.1 for the summary of results
in this section.

4.4 PREFLOW-PUSH ALGORITHMS

Another class of algorithms for solving the maximum flow problem, known as preflow-push
algorithms, is more decentralized than augmenting path algorithms. Augmenting path algo-
rithms send flow by augmenting along a path. This basic operation further decomposes into
the more elementary operation of sending flow along individual arcs. Sending a flow of δ

units along a path of k arcs decomposes into k basic operations of sending a flow of δ units
along each of the arcs of the path. We shall refer to each of these basic operations as a push.
The preflow-push algorithms push flows on individual arcs instead of on augmenting paths.
Some theoretical time bounds for preflow-push type of algorithms are Goldberg and Tarjan
[11] runs in O(nm log(n2/m)) time, an algorithm of King et al. [12] runs in O(nm + n2+ε)
time for any constant ε > 0, algorithms of Cheriyan et al. [3] runs in O(n3/ log n) time and
O(nm + (n log n)2) time with high probability, and an algorithm of Ahuja et al. [13] runs in
O(nm log n/m

√
log U) time.

A path augmentation has one advantage over a single push: it maintains conservation
of flow at all nodes. The preflow-push algorithms violate conservation of flow at all steps
except at the very end and instead maintain a preflow at each iteration. A preflow is a vector
x satisfying the flow-bound constraints and the following relaxation of the mass balance
constraints: ∑

{j:(i,j)∈A}
xij −

∑
{j:(j,i)∈A}

xji ≥ 0 (4.7)

Each element of a preflow vector is either a real number or equals to +∞. The preflow-push
algorithms maintain a preflow at each intermediate stage. For a given preflow x, we define
the excess for each node i ∈ N − {s, t} as follows:

e(i) =
∑

{j:(i,j)∈A}
xij −

∑
{j:(j,i)∈A}

xji (4.8)

We refer to a node with positive excess as an active node. We adopt the convention that
the source and sink nodes are never active. In a preflow-push algorithm, the presence of an
active node indicates that the solution is infeasible. Consequently, the basic operation in this
algorithm is to select an active node i and try to remove the excess by pushing flow out
of it. When we push flow out of an active node, we need to do it carefully. If we just push
flow to an adjacent node in an arbitrary manner and the other nodes do the same, then it
is conceivable that some nodes would keep pushing flow among themselves, resulting in an
infinite loop, which is not a desirable situation. Since ultimately we want to send the flow to
the sink node, it seems reasonable for an active node to push flow to another node that is
closer to the sink. If all nodes maintain this rule, then the algorithm could never encounter
an infinite loop. The concept of distance labels defined next allows us to implement this
algorithmic strategy.

C5955–C004.tex 98 2015/11/4 9:06am

Maximum Flow Problem � 99

The preflow-push algorithms maintain a distance label d(i) with each node in the network.
The distance labels are nonnegative (finite) integers defined with respect to the residual
network G(x). Let d(i) be the valid distance label at node i; it is then easy to demonstrate
that d(i) is a lower bound on the length of any directed path (as measured by the number of
arcs) from node i to node t in the residual network and thus is a lower bound on the length
of the shortest path between nodes i and j. Let i = i1 − i2 − i3 − · · · − ik − t be any path of
length k in the residual network from node i to node t. The validity conditions (5) imply that
d(i) = d(i1) ≤ d(i2) + 1, d(i2) ≤ d(i3) + 1, . . ., d(ik) ≤ d(t) + 1 = 1. Adding these inequalities
shows that d(i) ≤ k for any path of length k in the residual network, and therefore any
(shortest) path from node i to node t contains at least d(i) arcs. Recall that we say that an
arc (i, j) in the residual network is admissible if it satisfies the condition d(i) = d(j) + 1; we
refer to all other arcs as inadmissible.

The basic operation in the preflow-push algorithm is to select an active node i and try to
remove the excess by pushing flow to a node with a smaller distance label. (We will use the
distance labels as estimates of the length of the shortest path to the sink node.) If node i has
an admissible arc (i, j), then d(j) = d(i) − 1 and the algorithm sends flow on admissible arcs
to relieve the node’s excess. If node i has no admissible arc, then the algorithm increases the
distance label of node i so that node i has an admissible arc. The algorithm terminates when
the network contains no active nodes; that is, excess resides only at the source and sink nodes.

4.4.1 Generic Preflow-Push Algorithm

Now, we will explain the generic preflow-push algorithm.

Algorithm: Generic preflow-push

{

x := 0 and d(j) := 0 for all j ∈ N ;

xsj = usj for each arc (s, j) ∈ A(s);

d(s) := n;

while the residual network G(x) contains an active node do

{
select an active node i;
push/relabel(i);
}

}

procedure push/relabel(i);

{

if the network contains an admissible arc (i, j) then

push min{e(i), rij} units of flow from node i to node j

else replace d(i) by min{d(j) + 1 : (i, j) ∈ A(i) and rij > 0};

}

C5955–C004.tex 99 2015/11/4 9:06am

100 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The algorithm first saturates all arcs emanating from the source node; then each node
adjacent to node s has a positive excess so that the algorithm can begin pushing flow from
active nodes. Since the preprocessing operation saturates all the arcs incident to node s, none
of these arcs is admissible, and setting d(s) = n will satisfy the validity condition. But then,
since d(s) = n, and a distance label is a lower bound on the length of the shortest path from
that node to node t, the residual network contains no directed path from s to t. The subse-
quent pushes maintain this property and drive the solution toward feasibility. Consequently,
when there are no active nodes, the flow is a maximum flow.

A push of δ units from node i to node j decreases both the excess e(i) of node i and the
residual rij of arc (i, j) by δ units and increases both e(j) and rji by δ units. We say that a
push of δ units of flow on an arc (i, j) is saturating if δ = rij and is nonsaturating otherwise.
A nonsaturating push at node i reduces e(i) to zero. We refer to the process of increasing
the distance label of a node as a relabel operation. The purpose of the relabel operation is
to create at least one admissible arc on which the algorithm can perform further pushes.

It is instructive to visualize the generic preflow push algorithm in terms of a physical
network: arcs represent flexible water pipes, nodes represent joints, and the distance function
measures how far nodes are above the ground. In this network, we wish to send water from the
source to the sink. We visualize flow in an admissible arc as water flowing downhill. Initially,
we move the source node upward, and water flows to its neighbors. Although we would like
water to flow downhill toward the sink, occasionally flow becomes trapped locally at a node
that has no downhill neighbors. At this point, we move the node upward, and again water
flows downhill toward the sink. Eventually, no more flow can reach the sink. As we continue
to move nodes upward, the remaining excess flow eventually flows back toward the source.
The algorithm terminates when all the water flows either into the sink or back to the source.

To illustrate the generic preflow-push algorithm, we use the example given in Figure 4.12.
Figure 4.12a specifies the initial residual network. We first saturate the arcs emanating from

1

2

3

4

i j
rij

(e(i), d(i)) (e(j), d(j))

(0,1)

(0,2) (0,0)

(0,1)

4

2 1

5

3 1

2

3

4

(4,1)

(0,2) (0,0)

(2,1)

4

2 1

5

3

(b)(a)

1

2

3

4

(4,1)

(0,2) (1,0)

4

2 1

5

3 1

2

3

4

(0,1)

(0,2) (5,0)

4

2 1

1

4

3

(1,1)(c) (1,2)(d)

Figure 4.12 Example of generic preflow-push algorithm.

C5955–C004.tex 100 2015/11/4 9:06am

Maximum Flow Problem � 101

the source node, node 1, and set d(1) = n = 4. Figure 4.12b shows the residual graph at
this stage. At this point, the network has two active nodes, nodes 2 and 3. Suppose that the
algorithm selects node 2 for the push/relabel operation. Arc (2, 4) is the only admissible arc
and the algorithm performs a saturating push of value δ = min{e(2), r24} = min{2, 1} = 1.
Figure 4.12c gives the residual network at this stage. Suppose the algorithm again selects
node 2. Since no admissible arc emanates from node 2, the algorithm performs a relabel
operation and gives node 2 a new distance label, d(2) = min{d(3) + 1, d(1) + 1} = min
{2, 5} = 2. The new residual network is the same as the one shown in Figure 4.12c except
that d(2) = 2 instead of 1. Suppose this time the algorithm selects node 3. Arc (3, 4) is the
only admissible arc emanating from node 3, and so the algorithm performs a nonsaturating
push of value δ = min{e(3), r34} = min{4, 5} = 4. Figure 4.12d specifies the residual network
at the end of this iteration. Using this process for a few more iterations, the algorithm will
determine a maximum flow.

We now analyze the complexity of the algorithm. To begin with we establish one
important result that distance labels are always valid and do not increase too many times.
As in the shortest augmenting path algorithm, the preflow-push algorithm pushes flow only
on admissible arcs and relabels a node only when no admissible arc emanates from it. The
second conclusion follows from the following theorem.

Theorem 4.11 At any stage of the preflow-push algorithm, each node i with positive excess
is connected to node s by a directed path from i to s in the residual network.

Proof. Notice that for a preflow x, e(s) < 0 and e(i) ≥ 0 for all i ∈ N −{s}. Any preflow x can
be decomposed with respect to the original network G into nonnegative flows along (i) paths
from node s to node t, (ii) paths from node s to active nodes, and (iii) flows around directed
cycles. Let i be an active node relative to the preflow x in G. Then the flow decomposition
of x must contain a path P from node s to node i, since the paths from node s to node t and
the flows around cycles do not contribute to the excess at node i. Then the residual network
contains the reversal of P (P with the orientation of each arc reversed), and so a directed
path from i to s. �

Theorem 4.12 For each node i ∈ N, d(i) < 2n.

Proof. The last time the algorithm relabeled node i, the node had a positive excess, and so
the residual network contained a path P of length at most n − 1 from node i to node s. The
fact that d(s) = n and that d(k) ≤ d(l) + 1 for every arc (k, l) in the path P implies that
d(i) ≤ d(s) + |P | < 2n. �

Since each time the algorithm relabels node i, d(i) increases by at least one unit, we have
established the following result.

Theorem 4.13 Each distance label increases at most 2n times. Consequently, the total num-
ber of relabel operations is at most 2n2. �

Theorem 4.14 The algorithm performs at most nm saturating pushes.

Proof. This result follows directly from Theorems 4.12 and 4.8. �

Theorems 4.7 and 4.13 imply that the total time needed to identify admissible arcs and to
perform relabel operations is O(nm). We next count the number of nonsaturating pushes
performed by the algorithm.

C5955–C004.tex 101 2015/11/4 9:06am

102 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 4.15 The generic preflow-push algorithm performs O(n2m) nonsaturating pushes.

Proof. We prove the theorem using an argument based on potential functions. Let I denote
the set of active nodes. Consider the potential function Φ =

∑
i∈I d(i). Since |I| ≤ n, and

d(i) ≤ 2n for all i ∈ I, the initial value of Φ (after the preprocess operation) is at most 2n2.
At the termination of the algorithm, Φ is zero. During the push/relabel(i) operation, one of
the following two cases must apply. �
Case 1 The algorithm is unable to find an admissible arc along which it can push flow. In
this case, the distance label of node i increases by ε ≥ 1 units. This operation increases Φ
by at most ε units. Since the total increase in d(i) for each node i throughout the execution
of the algorithm is bounded by 2n, the total increase in Φ due to increases in distance labels
is bounded by 2n2.
Case 2 The algorithm is able to identify an arc on which it can push flow, and so it performs
a saturating push or a nonsaturating push. A saturating push on arc (i, j) might create a new
excess at node j, thereby increasing the number of active nodes by 1, and increasing Φ by d(j),
which could be as much as 2n per saturating push, and so 2n2m over all saturating pushes.
Next note that a nonsaturating push on arc (i, j) does not increase |I|. The nonsaturating
push will decrease Φ by d(i) since i becomes inactive, but it simultaneously increases Φ
by d(j) = d(i) − 1 if the push causes node j to become active; the total decrease in Φ
being of value 1. If node j was active before the push, then Φ decreases by an amount d(i).
Consequently, net decrease in Φ is at least one unit per nonsaturating push.

We summarize these facts. The initial value of Φ is at most 2n2 and the maximum
possible increase in Φ is 2n2 + 2n2m. Each nonsaturating push decreases by at least one
unit and always remains nonnegative. Consequently, the algorithm can perform at most
2n2 + 2n2 + 2n2m = O(n2m) nonsaturating pushes.

Finally, we indicate how the algorithm keeps track of active nodes for the push/relabel
operations. The algorithm maintains a set LIST of active nodes. It adds to LIST those nodes
that become active following a push and are not already in LIST, and deletes from LIST
nodes that become inactive following a nonsaturating push. Several data structures (e.g.,
doubly linked lists) are available for storing LIST so that the algorithm can add, delete, or
select elements from it in O(1) time. Consequently, it is easy to implement the preflow-push
algorithm in O(n2m) time. We have thus established the following theorem.
Theorem 4.16 Generic preflow-push algorithm runs in O(n2m) time. �
The preflow-push algorithm has several attractive features, particularly its flexibility and its
potential for further improvements. Different rules for selecting active nodes for the push/
relabel operations create many different versions of the generic algorithm, each with different
worst-case complexity. As we have noted, the bottleneck operation in the generic preflow-
push algorithm is the number of nonsaturating pushes, and many specific rules for examining
active nodes can produce substantial reductions in the number of nonsaturating pushes. The
following specific implementations of the generic preflow-push algorithms are noteworthy:
(1) the first-in, first-out (FIFO) preflow-push algorithm examines the active nodes in the
FIFO order and runs in O(n3) time; (2) the highest label preflow-push algorithm pushes
flow from an active node with the highest value of a distance label and runs in O(n2√

m)
time; and (3) the excess-scaling algorithm uses the scaling of arc capacities to attain a time
bound of O(nm+n2 log U). These algorithms are due to Goldberg and Tarjan [11], Cheriyan
and Maheshwari [14], and Ahuja et al. [13], respectively. These preflow-push algorithms are
more general, more powerful, and more flexible than augmenting path algorithms. The best
preflow-push algorithms currently outperform the best augmenting path algorithms in theory
as well as in practice (see, e.g., Ahuja et al. [15]).

C5955–C004.tex 102 2015/11/4 9:06am

Maximum Flow Problem � 103

4.4.2 FIFO Preflow-Push Algorithm

Before we describe the FIFO implementation of the preflow-push algorithm, we define the
concept of a node examination. In an iteration, the generic preflow-push algorithm selects
a node, say node i, and performs a saturating push or a nonsaturating push or relabels the
node. If the algorithm performs a saturating push, then node i might still be active, but
it is not mandatory for the algorithm to select this node again in the next iteration. The
algorithm might select another node for the next push/relabel operation. However, it is easy
to incorporate the rule that whenever the algorithm selects an active node, it keeps pushing
flow from that node until either the node’s excess becomes zero or the node is relabeled.
Consequently, the algorithm might perform several saturating pushes followed either by a
nonsaturating push or by a relabel operation. We refer to this sequence of operations as a
node examination. We shall assume that every preflow-push algorithm adopts this rule for
selecting nodes for the push/relabel operation.

The FIFO preflow-push algorithm examines active nodes in the FIFO order. The algo-
rithm maintains the set LIST as a queue. It selects a node i from the front of LIST, performs
pushes from this node, and adds newly active nodes to the rear of LIST. The algorithm
examines node i until either it becomes inactive or it is relabeled. In the latter case, we add
node i to the rear of the queue. The algorithm terminates when the queue of active nodes is
empty.

We illustrate the FIFO preflow-push algorithm using the example shown in Figure 4.13a.
The preprocess operation creates an excess of 10 units at each of the nodes 2 and 3. Suppose
that the queue of active nodes at this stage is LIST = {2, 3}. The algorithm takes out node 2
from the queue and examines it. Suppose it performs a saturating push of 5 units on arc
(2, 4) and a nonsaturating push of 5 units on arc (2, 5) (see Figure 4.13b). As a result of
these pushes, nodes 4 and 5 become active and we add these nodes to the queue in this
order, obtaining LIST = {3, 4, 5}. The algorithm next takes out node 3 from the queue.
While examining node 3, the algorithm performs a saturating push of 5 units on arc (3, 5),
followed by a relabel operation of node 3 (see Figure 4.13c). The algorithm adds node 3 to
the queue, obtaining LIST = {4, 5, 3}.

We now analyze the worst-case complexity of the FIFO preflow-push algorithm. For the
purpose of this analysis, we partition the total number of node examinations into different
phases. The first phase consists of those node examinations for the nodes that become active
during the preprocess operation. The second phase consists of the node examinations of all
the nodes that are in the queue after the algorithm has examined the nodes in the first
phase. Similarly, the third phase consists of the node examinations of all the nodes that are
in the queue after the algorithm has examined the nodes in the second phase, and so on. For
example, in the preceding illustration, the first phase consists of the node examinations of
the set {2, 3}, and the second phase consists of the node examinations of the set {4, 5, 3}.
Observe that the algorithm examines any node at most once during a phase.

We will now show that the algorithm performs at most 2n2 +n phases. Each phase exam-
ines any node at most once, and each node examination performs at most one nonsaturating
push. Therefore, a bound of 2n2 + n on the total number of phases would imply a bound of
O(n3) on the number of nonsaturating pushes. This result would also imply that the FIFO
preflow-push algorithm runs in O(n3) time because the bottleneck operation in the generic
preflow-push algorithm is the number of nonsaturating pushes.

To bound the number of phases in the algorithm, we consider the total change in the
potential function Φ = max{d(i) : i is active} over an entire phase. By the total change, we
mean the difference between the initial and final values of the potential function during a
phase. We consider two cases.

C5955–C004.tex 103 2015/11/4 9:06am

104 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

i

3 5

2 4

1 6

j
rij

(e(i), d(i)) (e(j), d(j))

(0,1)(0,2)

(0,3) (0,0)

8

8

5

8

5
10

(a)

(b)

10

(0,1)(0,2)

(5,1)(0,2)
5

8

8

5

5

3

10

10
3 5

2 4

1 6(−20,6) (0,0)

(5,1)(10,2)

(5,1)(0,2)
5

8

8

5

5

3

10

10

3 5

2 4

1 6(−20,6) (0,0)

(c) (10,1)(5,7)

Figure 4.13 Illustrating the FIFO preflow-push algorithm.

Case 1 The algorithm performs at least one relabel operation during a phase. Then might
increase by as much as the maximum increase in any distance label. Theorem 4.13 implies
that the total increase in Φ over all the phases is 2n2.
Case 2 The algorithm performs no relabel operation during a phase. In this case, the excess
of every node that was active at the beginning of the phase moves to nodes with smaller
distance labels. Consequently, Φ decreases by at least one unit.
Combining Cases 1 and 2, we find that the total number of phases is at most 2n2 + n; the
second term corresponds to the initial value of Φ which could be at most n. We have thus
proved the following theorem.

Theorem 4.17 The FIFO preflow-push algorithm runs in O(n3) time. �

The summary of the algorithms in this section are given in Table 4.2.

4.5 BLOCKING FLOW ALGORITHMS

Instead of identifying augmenting paths one by one, Dinic [16] suggested identifying a set of
augmenting paths at each iteration. Each iteration is called a blocking flow.

C5955–C004.tex 104 2015/11/4 9:06am

Maximum Flow Problem � 105

TABLE 4.2 Summary of the Preflow-Push Algorithms

Nonsaturating Pushes Best Running Time
Generic [11] O(n2m) O(n2m)
FIFO [15] O(n3) O(n3)

Distance labels. A distance function d : N → Z+ ∪
{0} with respect to the resid-

ual capacities rij is a function from the set of nodes to the set of nonnegative integers.
We say that a distance function is valid with respect to a flow x if it satisfies the fol-
lowing two conditions: d(t) = 0 and d(i) ≥ d(j) + 1 for every arc (i, j) in the residual
network G(x).

The following observations show why the distance labels might be of use in designing
network flow algorithms.

1. If the distance labels are valid, then the distance label d(i) is a lower bound on the
length of the shortest (directed) path from node i to node t in the residual network.
To establish the validity of this observation, let i = i1 − i2 − · · · − ik − ik+1 = t be
any path of length k in the residual network from node i to t. The validity conditions
imply the following:

d(ik) ≤ d(ik+1) + 1 = d(t) + 1 = 1,

d(ik−1) ≤ d(ik) + 1 ≤ 2,

d(ik−2) ≤ d(ik−1) + 1 ≤ 3,

. . .

d(i) = d(i1) ≤ d(i2) + 1 ≤ k

2. If d(s) ≥ n, then the residual network contains no directed path from the source node
to the sink node. The correctness of this observation follows from the facts that d(s) is a
lower bound on the length of the shortest path from s to t in the residual network and,
therefore, no directed path can contain more than (n − 1) arcs. Therefore, if d(s) ≥ n,
then the residual network contains no directed path from node s to node t.

We say that the distance labels are exact if for each node i, d(i) equals the length of the
shortest path from node i to node t in the residual network. For example, in Figure 4.11, if
node 1 is the source node and node 4 is the sink node, then d = (0, 0, 0, 0) is a valid vector
of distance labels, though d = (3, 1, 2, 0) represents the vector of exact distance labels. We
can determine exact distance labels for all nodes in O(m) time by performing a backward
breadth-first search of the network starting at the sink node.

We say that an arc (i, j) in the residual network is admissible if it satisfies the condition
that d(i) = d(j)+1; otherwise we refer that arc as inadmissible. We also refer to a path from
node s to node t consisting entirely of admissible arcs as an admissible path. Later, we shall
use the following property of admissible paths.

An admissible path is a shortest augmenting path from the source to the sink. Since
every arc (i, j) in an admissible path P is admissible, the residual capacity of this arc and
the distance labels of its end nodes satisfy the conditions (1) rij > 0; and (2) d(i) = d(j) + 1.
The condition (1) implies that P is an augmenting path and condition (2) implies that if P
contains k arcs, then d(s) = k. Since d(s) is a lower bound on the length of any path from the
source to the sink in the residual network, the path P must be a shortest augmenting path.

Dinic’s algorithm constructs shortest path networks, called layered networks, and estab-
lishes blocking flows (to be defined later) in these networks. Now, we point out the relationship
between layered networks and distance labels.

C5955–C004.tex 105 2015/11/4 9:06am

106 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

i j

d(i) d(j)

1

2

4

3

7

1

1

1

02

1

2

4

3

5

7

6

2

1

1

1

1

01

1

2

4

3

5

7

6

2 1

1

1 1

1

0

(a) (b) (c)

Figure 4.14 (a) Residual network. (b) Corresponding layered network. (c) Layered network
after deleting redundant arcs.

Layered network. With respect to a given flow x, we define the layered network V
as follows. We determine the exact distance labels d in G(x). The layered network consists
of those arcs (i, j) in G(x) for which d(i) = d(j) + 1. For example, consider the residual
network G(x) given in Figure 4.14a. The number beside each node represents the exact
distance label. Figure 4.14b shows the layered network of G(x). Observe that, by definition,
every path from the source to the sink in the layered network V is a shortest path in G(x).
Also observe that some arc in v might not be contained in any path from the source to the
sink. For example, in Figure 4.14b, arcs (5, 7) and (6, 7) do not lie on any path in V from
the source to the sink. Since these arcs do not participate in any flow augmentation, we
typically delete them from the layered network and we obtain Figure 4.14c. In the resulting
layered network, the nodes are partitioned into layers of nodes V0, V1, V2, . . ., Vl; and layer k
contains the nodes whose distance labels are equal to k. Furthermore, for every arc (i, j) in
the layered network, i ∈ Vk and j ∈ Vk−1 for some k. Let the source node have the distance
label l.

4.5.1 Blocking Flow Algorithm

A blocking flow is the list of augmentations each of which saturates (reduces the residual
capacity to zero) at least one arc in the layered network. A blocking flow includes at most m
augmenting paths. The flow will be maximum after n−1 blocking flow operations. A blocking
flow can be identified in O(nm) time by using depth first search or O(m log n) time by
employing dynamic tree structure [16]. The total running time of these algorithms are O(n2m)
and O(nm log n), respectively. The algorithm is formally given below.

Blocking flow algorithm

x := 0;

while sink is reachable from the source do

{

identify the current layered network;
find the corresponding blocking flow f ;
augment x by f ;
update the residual network;

}

C5955–C004.tex 106 2015/11/4 9:06am

Maximum Flow Problem � 107

TABLE 4.3 Summary of the Blocking Flow Algorithms

Reference # Blocking Flow Time to Find a Blocking Flow Best Running Time
[16] O(n) O(nm) O(n2m)
[10] O(n) O(m log n) O(nm log n) Dynamic tree
[17] O(n3)

4.5.2 Malhotra, Kumar, and Maheshwari Algorithm

This algorithm relies on the idea of selecting the node with the lowest flow potential. The
flow potential of node i, px(i), is defined as the maximum amount of flow that can be forced
through node i.

px(i) = min

 ∑
(j,i)∈A

(uji − zji),
∑

(i,k)∈A

(uik − xik)

Malhotra, Kumar, and Maheshwari (MPM) algorithm
x := 0;

while there are nodes in the network do

{ select node k with minimum px(k);
send px(k) units of flow from node k toward the node s and t;
augment x by px(k), update G(x);
delete all saturated arcs, node k, and the nodes with only incoming or outgoing
arcs; }

To get an efficient implementation of the MPM algorithm we adopt the following rules.

1. Push flow out of vertex vk only after all the flows pushed into vk from vertices in a
lower layer have been received.

2. Push flow out of vertex vk only after all the flows into vk from vertices in an upper
layer have been received.

3. While pushing a flow along an edge push the maximum possible flow allowed by the
residual capacity at that step.

If we follow the above rules, the total number of saturating pushes during the entire algorithm
is m. The number of non-saturating pushes during each execution of the while loop is at
most n. The while loop will be executed at most n times since at least one node will be
deleted during each execution. So the total number of non-saturating pushes during the
entire algorithm is at most n2 resulting in a overall time complexity of O(m + n2) which is
O(n2) for the MPM algorithm.

In finding a maximum flow the blocking flow computations will be done at most n times.
So the complexity of the maximum flow algorithm using the MPM algorithm for block-
ing computations is O(n3). The summary of the running times in the section are given in
Table 4.3.

4.6 MAXIMUM FLOW ON UNIT CAPACITY NETWORKS

Certain combinatorial problems are naturally formulated as zero-one optimization models.
When viewed as flow problems, these models yield networks whose arc capacities are all 1.

C5955–C004.tex 107 2015/11/4 9:06am

108 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

We will refer to these networks as unit capacity networks. Frequently, it is possible to solve
flow problems on these networks more efficiently than those defined on general networks. In
this section, we describe an efficient algorithm for solving the maximum flow problem on unit
capacity networks. We subsequently refer to this algorithm as the unit capacity maximum
flow algorithm.

In a unit capacity network, the maximum flow value is at most n since the capacity
of the s − t cut [s, S − {s}] is at most n. The labeling algorithm, therefore, determines a
maximum flow within n augmentations and requires O(nm) effort. The shortest augmenting
path algorithm also solves this problem in O(nm) time since its bottleneck operation, which
is the augmentation step, requires O(nm) time instead of O(n2m) time. The unit capacity
maximum flow algorithm that we describe is a hybrid version of these two algorithms. This
unit capacity maximum flow algorithm is noteworthy because by combining features of both
algorithms, it requires only O(min{n2/3m, m3/2}) time, which is consistently better than the
O(nm) bound of either algorithm by itself.

Theorem 4.18 This unit capacity maximum flow algorithm runs in O(min{n2/3m, m3/2})
time.

Proof. The unit capacity maximum flow algorithm is a two-phase algorithm. In the first phase,
it applies the shortest augmenting path algorithm, although not until completion; rather,
this phase terminates whenever the distance label of the source node satisfies the condition
d(s) ≥ d∗ = min{2n2/3, m1/2}. Although the algorithm might terminate with a nonoptimal
solution, the solution is provably near-optimal (its value is within d∗ of the optimal flow
value). In its second phase, the unit capacity maximum flow algorithm applies the labeling
algorithm to convert this near-optimal flow into a maximum flow. As we will see, this two-
phase approach works well for unit capacity networks because the shortest augmenting path
algorithm obtains a near-optimal flow quickly (when augmenting paths are short) but then
takes a long time to convert this solution into a maximum flow (when augmenting paths
become long). It so happens that the labeling algorithm converts this near-optimal flow into
a maximum flow far more quickly than does the shortest augmenting path algorithm.

Let us examine the behavior of the shortest augmenting path algorithm for d∗ =
min{⌈2n2/3⌉, ⌈m1/2⌉}. Suppose the algorithm terminates with a flow vector x′ with a flow
value equal to v′. What can we say about v∗ − v′? (Recall that v∗ denotes the maximum
flow value.) We shall answer this question in two parts: (1) when d∗ = ⌈2n2/3⌉ and (2) when
d∗ = ⌈m1/2⌉.

Suppose d∗ = ⌈2n2/3⌉. For each k = 0, 1, 2, . . ., d∗, let Vk denote the set of nodes with a
distance label equal to k; that is, Vk = {i ∈ N : d(i) = k}. We refer to Vk as the set of nodes
in the kth layer of the network. Consider the situation when each of the sets V1, V2, . . ., Vd∗ is
nonempty. It can be shown that each arc (i, j) in the residual network G(x′) connects a node
in the kth layer to a node in the (k−1)th layer for some k, for otherwise d(i) > d(j)+1, which
contradicts the distance label validity conditions. Therefore, for each k = 1, 2, . . ., d∗, the set
of arcs joining the node sets Vk to Vk−1 forms an s− t cut in the residual network. In the case
that one of the sets, say Vk, is empty, then the cut [S, S] defined by S = Vk+1

∪
Vk

∪
· · ·

∪
Vd∗

is a minimum cut.
Note that |V1| + |V2| + · · · + |Vd∗ | ≤ n − 1 because the sink node does not belong to

any of these sets. We claim that the residual network contains at least two consecutive
layers Vk and Vk−1, each with at most n1/3 nodes. For, if not, then every alternate layer
(say, V1, V3, V5, . . .) would have to contain more than n1/3 nodes, and the total number of
nodes in these layers would be strictly greater than n1/3d∗/2 ≥ n, leading to a contradiction.
Consequently, |Vk| ≤ n1/3 and |Vk−1| ≤ n1/3 for some of the two layers Vk and Vk−1. The
residual capacity of the s − t cut defined by the arcs connecting Vk to Vk−1 is at most

C5955–C004.tex 108 2015/11/4 9:06am

Maximum Flow Problem � 109

|Vk||Vk−1| ≤ n2/3 (since at most one arc of unit residual capacity joins any pair of nodes).
Therefore, it can be shown that v∗ − v′ ≤ n2/3 ≤ d∗.

Next consider the situation when d∗ = ⌈m1/2⌉. The layers of nodes V1, V2, . . ., Vd∗ define
d∗ number of s − t cuts, and these cuts are arc-disjoint. The sum of the residual capacities of
these cuts is at most m since each arc contributes at most one to the residual capacity of any
such cut. Thus some s − t cut must have residual capacity at most ⌈m1/2⌉. This conclusion
proves that v∗ − v′ ≤ ⌈m1/2⌉ = d∗.

In both the cases, we find that the first phase obtains a flow whose value differs from
the maximum flow value by at most d∗ units. The second phase converts this flow into a
maximum flow in O(d∗m) time since each augmentation requires O(m) time and carries a
unit flow. We now show that the first phase also requires O(d∗m) time.

In the first phase, whenever the distance label of a node k exceeds d∗, this node never
occurs as an intermediate node in any subsequent augmenting path since d(k) < d(s) < d∗.
So the algorithm relabels any node at most d∗ times. This observation gives a bound of O(d∗n)
on the number of retreat operations and a bound of O(d∗m) on the time to perform the retreat
operations. Consider next the augmentation time. Since each arc capacity is one, flow aug-
mentation over an arc immediately saturates that arc. During two consecutive saturations of
any arc (i, j), the distance labels of both the nodes i and j must increase by at least two units.
Thus the algorithm can saturate any arc at most ⌊d∗/2⌋ times, giving an O(d∗m) bound on the
total time needed for flow augmentations. The total number of advance operations is bounded
by the augmentation time plus the number of retreat operations and is again O(d∗m). �
Another special case of unit capacity networks, called unit capacity simple networks, also
arises in practice and is of interest to researchers. For this class of unit capacity networks,
every node in the network, except the source and sink nodes, has at most one incoming arc
or at most one outgoing arc. The unit capacity maximum flow algorithm runs even faster for
this class of networks. We achieve this improvement by setting d∗ = n1/2 in the algorithm.

Theorem 4.19 The unit capacity maximum flow algorithm establishes a maximum flow the
in unit capacity simple networks in O(

√
nm) time.

Proof. Consider the layers of nodes V1, V2, . . ., Vd∗ at the end of the first phase. Suppose layer
Vh contains the smallest number of nodes. Then |Vh| ≤

√
n, since otherwise the number of

nodes in all layers would be strictly greater than n. We define a cut Q of arcs as follows: we
consider each node in Vh, and if the node has a unique incoming arc, then we add it to Q,
and if the node has a unique outgoing arc, then we add it to Q. It can be easily shown that Q
defines an s − t cut. The residual capacity of the cut Q is at most |Vh| ≤

√
n. Consequently,

at the termination of the first phase, the flow value differs from the maximum flow value by
at most

√
n units. Using arguments similar to those we have just used, we can now easily

show that the algorithm would run in O(
√

nm) time. �
The proof of Theorem 4.19 relies on the fact that only one unit of flow can pass through each
node in the network (except the source and sink nodes). If we satisfy this condition but allow
some arc capacities to be larger than one, then the unit capacity maximum flow algorithm
would still require only O(

√
nm) time. Theorem 4.19 has another by-product: it permits us

to solve the maximum bipartite matching problem in O(
√

nm) time since we can formulate
this problem as a maximum flow problem on a unit capacity simple network.

Further Reading

In this section, we briefly mention other approaches to solve maximum flow problems. A new
survey on maximum flows is given by Goldberg and Tarjan [18].

C5955–C004.tex 109 2015/11/4 9:06am

110 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Maximum Adjacency Ordering Algorithm

The ordering of nodes v1, v2, . . ., vn is called maximum adjacency (MA) ordering if for all
i, vi is the node in N − {v1, v2, . . ., vi−1} that has the largest sum of residual capacities
of the arcs to the nodes v1, v2, . . ., vi−1. MA ordering algorithm is proposed by Fujishige
[19] and runs in O(n(m + n log n) log nU) time and the scaling version runs is O(nm log U).
Shioura [20] shows that the algorithm is not strongly polynomial by giving a real-valued
instance for which algorithm does not terminate. Matsouka and Fujishige [21] propose an
improved version using preflows. While the theoretical bound is the same as Fujishige [19],
the algorithm is faster in practise.

Arc-Balancing Algorithm

Tarjan et al. [22] presents a round-robin arc-balancing algorithm that computes a maximum
flow in O(n2m log(nU)) time. Although this algorithm is slower than other known algorithms,
it is very simple to implement this algorithm. The algorithm maintains a pseudoflow rather
than a preflow. Let x be a pseudoflow then xij = −xji and xij ≤ uij for all arcs (i, j) ∈ A.
The balance at node i can be calculated as

b(i) =
∑

(j,i)∈A

xji

where b(i) can take both negative (deficit) and positive (excess) values.

Hochbaum’s Pseudoflow Algorithm

Hochbaum proposes a pseudoflow algorithm that runs in O(nm log n) time. Chandran
and Hochbaum shows that the highest label pseudoflow implementation is faster than
the preflow-push type algorithms in most of the instances across many problem families.
Hochbaum and Orlin show that the highest label version of the pseudoflow algorithm runs
in O(nm log(n2/m)) and O(n3) time, with and without dynamic tree implementation.

Fastest Algorithm

The fastest strongly polynomial time algorithm is due to King et al. [12]. Its running time
is O(nmlogm/(nlogn)n). When m = Ω(n1+ε) for any constant ε, the running time is O(nm).
Orlin [23] has shown that the maximum flow problem can be solved in O(nm + m31/16log2n)
time. When m = O(n16/15−ε) this running time is O(nm). Because the algorithm by [12]
solves the max flow problem in O(nm) time for m > n1+ε, this work by Orlin establishes
that the max flow problem can be solved in O(nm) time for all n and m.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] L. Ford and D. R. Fulkerson, Flows in Networks, Princeton University, Princeton, NJ,
1962.

[3] J. Cheriyan, T. Hagerup, and K. Mehlhorn, Can a Maximum Flow Be Computed in
o(nm) Time? Berlin, Germany, Springer, 1990.

[4] A. V. Goldberg and S. Rao, Beyond the flow decomposition barrier, J. ACM, 45
(September 1998), 783–797.

C5955–C004.tex 110 2015/11/4 9:06am

Maximum Flow Problem � 111

[5] P. Elias, A. Feinstein, and C. E. Shannon, A note on the maximum flow through a
network, Inf. Theory, IRE Trans. on, 2(4) (1956), 117–119.

[6] L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Can. J Math., 8(3)
(1956), 399–404.

[7] P. Elias, A. Feinstein, and C. Shannon, A note on the maximum flow through a network,
Inf. Theory, IRE Trans. on, 2(4) (1956), 117–119.

[8] R. K. Ahuja and J. B. Orlin, Distance-directed augmenting path algorithms for max-
imum flow and parametric maximum flow problems, Naval Res. Logist., 38(3) (1991),
413–430.

[9] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for
network flow problems, J. ACM, 19(2) (1972), 248–264.

[10] D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comp. Syst. Sci.,
26(3) (1983), 362–391.

[11] A. V. Goldberg and R. E. Tarjan, A new approach to the maximum-flow problem, J.
ACM, 35(4) (1998), 921–940.

[12] V. King, S. Rao, and R. Tarjan, A faster deterministic maximum flow algorithm,
J. Algorithms, 17(3) (1994), 447–474.

[13] R. K. Ahuja, J. B. Orlin, and R. E. Tarjan, Improved time bounds for the maximum
flow problem, SIAMJ. Comput., 18(5) (1989), 939–954.

[14] J. Cheriyan and S. N. Maheshwari, Analysis of preflow push algorithms for maximum
network flow, SIAMJ. Comput., 18(6) (1989), 1057–1086.

[15] R. K. Ahuja, M. Kodialam, A. K. Mishra, and J. B. Orlin, Computational investigations
of maximum flow algorithms, Eur. J. Oper. Res., 97(3) (1997), 509–542.

[16] E. A. Dinic, Algorithm for solution of a problem of maximum flow in networks with
power estimation, Soviet Math. Doklady, 11(5) (1970), 1277–1280.

[17] V. M. Malhotra, M. P. Kumar, and S. N. Maheshwari, An O(v3) algorithm for finding
maximum flows in networks, Inf. Process. Lett., 7(6) (1978), 277–278.

[18] R. E. Tarjan and A. V. Goldberg, Efficient maximum flow algorithms, Commun. ACM,
57(8) (August 2014), 82–89.

[19] S. Fujishige, A maximum flow algorithm using ma ordering, Oper. Res. Lett., 31(3)
(2003), 176–178.

[20] A. Shioura, The ma-ordering max-flow algorithm is not strongly polynomial for directed
networks, Oper. Res. Lett., 32(1) (2004), 31–35.

[21] Y. Matsuoka and S. Fujishige, Practical efficiency of maximum flow algorithms using ma
orderings and preflows, J. Oper. Res. Soc. Japan-Keiei Kagaku, 48(4) (2005), 297–307.

[22] R. Tarjan, J. Ward, B. Zhang, Y. Zhou, and J. Mao, Balancing applied to maximum
network flow problems, In Algorithms–ESA, 612–623, Berlin, Germany, Springer, 2006.

[23] J. B. Orlin, Max flows in O(nm) time, or better, Proceedings of the 45th Annual ACM
Symposium on Theory of Computing, 2013, 765–774, New York. ACM.

C5955–C004.tex 111 2015/11/4 9:06am

C H A P T E R 5

Minimum Cost Flow
Problem
Balachandran Vaidyanathan

Ravindra K. Ahuja

James B. Orlin

Thomas L. Magnanti

CONTENTS

5.1 Introduction . 114
5.1.1 Notation and Assumptions . 115
5.1.2 Similarity Assumption . 116
5.1.3 Residual Network . 116
5.1.4 Tree, Spanning Tree, and Forest . 117

5.2 Applications . 117
5.2.1 Distribution Problems . 117
5.2.2 Optimal Loading of a Hopping Airplane . 118
5.2.3 Scheduling with Deferral Costs . 118

5.3 Optimality Conditions . 120
5.3.1 Negative Cycle Optimality Conditions . 120
5.3.2 Reduced Cost Optimality Conditions . 121
5.3.3 Complementary Slackness Optimality Conditions . 122

5.4 Minimum Cost Flow Duality . 123
5.5 Cycle-Canceling Algorithm . 125

5.5.1 Augmenting Flow in a Negative Cycle with Maximum Improvement . . . 127
5.5.2 Augmenting Flow along a Negative Cycle with Minimum Mean Cost . . 127

5.6 Successive Shortest Path Algorithm . 127
5.7 Primal-Dual and Out-of-Kilter Algorithms . 129
5.8 Network Simplex Algorithm . 130

5.8.1 Cycle Free and Spanning Tree Solutions . 131
5.8.2 The Network Simplex Algorithm . 133

5.8.2.1 Obtaining an Initial Spanning Tree Structure 133
5.8.2.2 Maintaining a Spanning Tree Structure . 134

5.8.3 Computing Node Potentials and Flows . 135
5.8.4 Entering Arc . 137
5.8.5 Leaving Arc . 138
5.8.6 Updating the Tree . 138

C5955–C005.tex 113 2015/11/4 8:13pm

113

114 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

5.8.7 Termination . 140
5.8.8 Strongly Feasible Spanning Trees . 140

5.8.8.1 Leaving Arc Rule . 141
5.9 Capacity-Scaling Algorithm . 143

5.1 INTRODUCTION

Network flows is a problem domain that lies in the cusp between several fields of enquiry,
including applied mathematics, computer science, engineering, management, and operations
research. The minimum cost flow problem is a fundamental network flow problem. The objec-
tive of this problem is to send units of a good that reside at one or more points in a network
(sources or supplies) with arc capacities to one or more other points in the network (sinks or
demands), incurring minimum cost. In this chapter, we consider algorithmic approaches for
solving the minimum cost flow problem and discuss a few applications. These algorithms are
among the most efficient algorithms known in applied mathematics, computer science, and
operations research for solving large-scale optimization problems.

All other network flow problems, such as the shortest path problem, maximum flow
problem, assignment problem, and transportation problem, can be viewed as special cases of
the minimum cost flow problem. The objective of the shortest path problem is to find a path
of minimum cost on a network between a specified source node and a specified sink node; and
the objective of the maximum flow problem is to find a solution that sends the maximum
possible flow between a specified source node and a specified sink node on a network with arc
capacities. The shortest path problem considers only the cost aspect of the minimum cost
flow problem, and the maximum flow problem considers only arc capacities while neglecting
costs. Consequently, many algorithms for solving the minimum cost flow problem combine
ingredients of both the shortest path and the maximum flow algorithms. These algorithms
solve the minimum cost flow problem by solving a sequence of shortest path problems. We
consider four such algorithms in this chapter. The cycle-canceling algorithm uses shortest path
computations to find augmenting cycles with negative flow costs; it then augments flows along
these cycles and iteratively repeats these computations for detecting negative cost cycles and
augmenting flows. The successive shortest path algorithm incrementally loads flow on the
network from some source node to some sink node, each time selecting an appropriately
defined shortest path. The primal-dual and out-of-kilter algorithms use a similar algorithmic
strategy: At every iteration, they solve a shortest path problem and augment flow along one
or more shortest paths. They differ, however, in their tactics. The primal-dual algorithm uses
a maximum flow computation to simultaneously augment flow along several shortest paths.
Unlike all the other algorithms, the out-of-kilter algorithm permits arc flows to violate their
flow bounds. It uses shortest path computations to find flows that satisfy both the flow
bounds and the cost- and capacity-based optimality conditions.

The simplex method for solving linear programming problems is perhaps the most pow-
erful algorithm ever devised for solving constrained optimization problems. Since minimum
cost flow problems define a special class of linear programs, we might expect the sim-
plex method to be an attractive candidate solution procedure for solving these problems
also. Then again, because network flow problems have considerable special structure, we
might also ask whether the simplex method could possibly compete with other combina-
torial methods, such as the many variants of the successive shortest path algorithm, that
exploit the underling network structure. The general simplex method, when implemented
in a way that does not exploit underlying network structure, is not a competitive solution

C5955–C005.tex 114 2015/11/4 8:13pm

Minimum Cost Flow Problem � 115

procedure for solving minimum cost flow problems. Fortunately, however, if we interpret
the core concepts of the simplex method appropriately as network operations, then when
we apply it to the minimum cost flow problem, we can adapt and streamline the method
to exploit the network structure, producing the network simplex algorithm, which is very
efficient.

Scaling is a powerful idea that has produced algorithmic improvements to many problems
in combinatorial optimization. We might view scaling algorithms as follows. We start with
the conditions for optimality of the network flow problem we are examining, but instead of
enforcing these conditions exactly, we generate an approximate solution that is permitted to
violate one (or more) of the conditions by an amount ∆. Initially, by choosing ∆ quite large,
we will be able to easily find a starting solution that satisfies the relaxed optimality conditions.
We then reset the parameter ∆ to ∆/2 and re-optimize so that the approximate solution
now violates the optimality conditions by at most ∆/2. We then repeat the procedure,
re-optimizing again until the approximate solution violates the conditions by at most ∆/4,
and so forth. This solution strategy is quite flexible and leads to a different algorithm
depending upon which of the optimality conditions we relax and how we perform the re-
optimizations. In this chapter, we apply a scaling approach to the successive shortest path
algorithm to develop a polynomial-time version. We relax two optimality conditions in the
∆-scaling phase: (1) we permit the solution to violate supply-demand constraints by an
amount ∆ and (2) we permit the residual network to contain negative cost cycles, but only if
their capacities are less than ∆. The resulting capacity-scaling algorithm reduces the number
of shortest path computations from pseudopolynomial to polynomial.

To begin our discussion of the minimum cost flow problem, we first lay out the notations,
assumptions and underlying definitions that we use throughout the chapter.

5.1.1 Notation and Assumptions

Let G = (N, A) be a directed network with a cost cij and a capacity uij associated with every
arc (i, j) ∈ A. We associate with each node i ∈ N a number b(i) that indicates its supply or
demand depending upon whether b(i) > 0 or b(i) < 0. The minimum cost flow problem can
be defined as follows:

Minimize
∑

(i,j)∈A

cijxij (5.1)

subject to ∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}
xji = b(i), for all i ∈ N, (5.2)

0 ≤ xij ≤ uij , for all (i, j) ∈ A (5.3)

Let C denote the largest magnitude of any arc cost. Further, let U denote the largest mag-
nitude of any supply/demand or finite arc capacities. We assume that the lower bounds lij
on arc flows are all zero. Let n denote the number of nodes and m the number of arcs. We
further make the following assumptions:

Assumption 5.1 All data (cost, supply/demand, and capacity) are integral.
This assumption is not really restrictive in practice because computers work with

rational numbers, which we can convert to integer numbers by multiplying by a suitably
large number.

C5955–C005.tex 115 2015/11/4 8:13pm

116 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Assumption 5.2 The network is directed.
We can always fulfill this assumption by transforming any undirected network

into a directed network by replacing each undirected arc by two arcs in opposite
directions.

Assumption 5.3 The supply/demands at the nodes satisfy the condition
∑

i∈N b(i) = 0,
and the minimum cost flow problem has a feasible solution.

We can determine whether the minimum cost flow problem has a feasible solution
by introducing a preliminary step that involves solving a maximum flow problem (see
Chapter 4). Introduce a source node s∗ and a sink node t∗. For each node i with b(i) > 0,
add a source arc (s∗, i) with capacity b(i), and for each node i with b(i) < 0, add a sink
arc (i, t∗) with capacity −b(i). Now solve a maximum flow problem from s∗ to t∗. If
the maximum flow saturates all the source arcs, then the minimum cost flow problem
is feasible; otherwise, it is infeasible.

Assumption 5.4 We assume that the network G contains an uncapacitated directed path
(i.e., each arc in the path has infinite capacity) between every pair of nodes.

We impose this condition, if necessary, by adding artificial arcs (1, j) and (j, 1) for
each j ∈ N and assigning a large cost and infinite capacity to each of these arcs. No
such arc would appear in an optimal minimum cost solution unless the problem has no
feasible solution without artificial arcs.

Assumption 5.5 All arc costs are nonnegative.
This assumption imposes no loss of generality since a minimum cost flow problem

with negative arc lengths can be transformed to one with nonnegative arc lengths. This
transformation, however, works if all arcs have finite capacities. Suppose that some
arcs are uncapacitated. We assume that the network contains no directed negative cost
cycle of infinite capacity. The presence of such cycles indicates that the optimal value
of the minimum cost flow problem is unbounded. In the absence of a negative cycle
with infinite capacity, we can make each uncapacitated arc capacitated by setting its
capacity equal to B, where B is the sum of all arc capacities and the supplies of all
supply nodes.

5.1.2 Similarity Assumption

The assumption that each arithmetic operation takes one step might lead us to underestimate
the asymptotic running time of arithmetic operations involving very large numbers since, in
practice, a computer must store these numbers in several words of its memory. Therefore,
to perform each operation on such numbers, a computer must access a number of words
of data and thus take more than a constant number of steps. To avoid such systematic
underestimation of running time, in comparing two running times, we sometimes assume
that both C (i.e., the largest arc cost) and U (i.e., the largest arc capacity) are polynomially
bounded in n (i.e., C = O(nk) and U = O(nk) for some constant k). We refer to this
assumption as the similarity assumption.

5.1.3 Residual Network

Our algorithms rely on the concept of residual networks. The residual network G(x) corre-
sponding to a flow x is defined as follows. We replace each arc (i, j) ∈ A by two arcs (i, j)
and (j, i). The arc (i, j) has cost cij and residual capacity rij = uij − xij , and the arc (j, i)
has cost cji = −cij and residual capacity rji = xij . The residual network contains only arcs
with positive residual capacity.

C5955–C005.tex 116 2015/11/4 8:13pm

Minimum Cost Flow Problem � 117

5.1.4 Tree, Spanning Tree, and Forest

A tree is a connected graph that contains no cycles. A graph that contains no cycles is called
a forest. Alternatively, a forest is a collection of trees. A tree T is a spanning tree of G if T
is a spanning sub-graph of G.

5.2 APPLICATIONS

Minimum cost flow problems arise in almost all industries, including agriculture, commu-
nications, defense, education, energy, health care, manufacturing, medicine, retailing, and
transportation. Indeed, minimum cost flow problems are pervasive in practice. This section
is intended to introduce some applications and to illustrate some of the possible uses of
minimum cost flow problems in practice.

5.2.1 Distribution Problems

A large class of network flow problems centers on shipping and distribution applications.
Suppose a firm has p plants with known supplies and q warehouses with known demands.
It wishes to identify a flow that satisfies the demands at the warehouses with the available
supplies at the plants while minimizing overall shipping costs. This problem is a well-known
special case of the minimum cost flow problem, known as the transportation problem. We
next describe in more detail a slight generalization of this model that also incorporates
manufacturing costs at the plants.

A car manufacturer has several manufacturing plants and produces several car models
at each plant that it then ships to geographically dispersed retail centers throughout the
country. Each retail center requests a specific number of cars of each model. The firm must
determine the production plan of each model at each plant and a shipping pattern that
satisfies the demands of each retail center while minimizing the overall cost of production
and transportation.

We describe this formulation through an example. Figure 5.1 illustrates a situation with
two manufacturing plants, two retailers, and three car models. This model has four types
of nodes: (1) plant nodes, representing various plants; (2) plant/model nodes, correspond-
ing to each model made at a plant; (3) retailer/model nodes, corresponding to the models
required by each retailer; and (4) retailer nodes, corresponding to each retailer. The net-
work contains three types of arcs: (1) Production arcs: These arcs connect a plant node to a
plant/model node; the cost of this arc is the cost of producing the model at that plant. We
might place lower and upper bounds on these arcs to control for the minimum and maximum
production of each particular car model at the plants. (2) Transportation arcs: These arcs
connect plant/model nodes to retailer/model nodes; the cost of such an arc is the total cost
of shipping one car from the manufacturing plant to the retail center. Any such arc might
correspond to a complex distribution channel with, for example, three legs: (a) a delivery
from a plant (by truck) to a rail system, (b) a delivery from the rail station to another rail
station elsewhere in the system, and (c) a delivery from the rail station to a retailer (by a
local delivery truck). The transportation arcs might have lower or upper bounds imposed
upon their flows to model contractual agreements with shippers or capacities imposed upon
any distribution channel. (3) Demand arcs: These arcs connect retailer/model nodes to the
retailer nodes. These arcs have zero costs and positive lower bounds, which equal the demand
of that model at that retail center. Clearly, the production and shipping schedules for the
automobile company have a one-to-one correspondence with the feasible flows in this network
model. Consequently, a minimum cost flow would yield an optimal production and shipping
schedule.

C5955–C005.tex 117 2015/11/4 8:13pm

118 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

p1/m1

p2/m1

p1/m2

p2/m2

p2/m3

r1/m1

r1/m2

r1/m3

r2/m1

r2/m2

p1

p2

r1

r2

Plant

nodes
Plant/model

nodes

Retailer/model

nodes
Retailer

nodes

Figure 5.1 Production–distribution model.

5.2.2 Optimal Loading of a Hopping Airplane

A small commuter airline uses a plane with a capacity to carry at most p passengers on a
hopping flight, as shown in Figure 5.2a. The hopping flight visits the cities 1, 2, 3, . . ., n, in
a fixed sequence. The plane can pick up passengers at any node and drop them off at any
other node. Let bij denote the number of passengers available at node i who want to go to
node j, and let fij denote the fare per passenger from node i to node j. The airline would
like to determine the number of passengers that the plane should carry between the various
origins and destinations in order to maximize the total fare per trip while never exceeding
the plane capacity.

Figure 5.2b shows a minimum cost flow formulation of this hopping plane flight problem.
The network contains data for only those arcs with nonzero costs and with finite capacities:
any arc without an associated cost has a zero cost; any arc without an associated capacity has
an infinite capacity. Consider, for example, node 1. Three types of passengers are available at
node 1, those whose destination is node 2, node 3, or node 4. We represent these three types
of passengers by the nodes 1–2, 1–3, and 1–4 with supplies b12, b13, and b14. A passenger
available at any such node, say, 1–3, either boards the plane at its origin node by flowing
through the arc (1–3, 1) and thus incurring a cost of –f13 units, or never boards the plane,
which we represent by the flow through the arc (1–3, 3). There is a one-to-one correspondence
between feasible flows on this network and feasible solutions to the hopping plane flight
problem.

5.2.3 Scheduling with Deferral Costs

In some scheduling applications, jobs do not have any fixed completion times, but instead
incur a deferral cost for delaying their completion. Some of these scheduling problems have

C5955–C005.tex 118 2015/11/4 8:13pm

Minimum Cost Flow Problem � 119

1

i j

2 3

1 2 3 4

(a)

n−1

1−4

1−3

1−2

2−4

2−3

3−4

n

0
p p p

Cost

−b14−b24−b34
−b12−b23

cij or uij
b(i) b(j)

−b12

−f12

−f14

−f13

−f24

−f23

−f34

b14

b13
b23

b12

b24 b34

Capacity(b)

Figure 5.2 Formulating the hopping plane problem as a minimum cost flow problem.
(a) Hopping plane problem. (b) Minimum cost formulation.

the following characteristics: one of q identical processors (machines) needs to process each of
p jobs. Each job j has a fixed processing time αj that does not depend upon which machine
processes the job or which jobs precede or follow the job. Job j also has a deferral cost cj(τ),
which we assume is a monotonically nondecreasing function of τ, the completion time of the
job. Figure 5.3a illustrates one such deferral cost function. We wish to find a schedule for the
jobs, with completion times denoted by τ1, τ2, . . ., τp, that minimizes the total deferral cost
Σn

j=1cj(τj). This scheduling problem is difficult if the jobs have different processing times,
but it can be modeled as a minimum cost flow problem for situations with uniform processing
times, that is, αj = α for each j = 1, . . ., p.

Since the deferral costs are monotonically nondecreasing with time, in some optimal
schedule the machines will process the jobs one immediately after another, that is, the
machines incur no idle time. As a consequence, in some optimal schedule the completion
time of each job will be kα for some constant k. The first job assigned to every machine
will have a completion time of α units, the second job assigned to every machine will have
a completion time of 2α units, and so forth. This observation allows us to formulate the
scheduling as a minimum cost flow problem in the network shown in Figure 5.3b.

Assume, for simplicity, that r = p/q is an integer. This assumption implies that we
will assign exactly r jobs to each machine. There is no loss of generality in imposing this
assumption because we can add dummy jobs so that p/q becomes an integer. The network has
p job nodes 1, 2, . . ., p, each with one unit of supply; it also has r position nodes, 1̄, 2̄, 3̄, . . ., r̄,
each with a demand of q units, indicating that the position has the capability to process q
jobs. The flow on each arc (j, ī) is 1 or 0, depending upon whether the schedule does or does
not assign job j to the ith position on some machine. If we assign job j to the ith position on
any machine, its completion time is iα, and its deferral cost is cj(iα). Therefore, arc (j, ī) has
a cost of cj(iα). Feasible schedules correspond, in a one-to-one fashion, with feasible flows in
the network and both have the same cost. Consequently, a minimum cost flow will prescribe
a schedule with the least possible deferral cost.

C5955–C005.tex 119 2015/11/4 8:13pm

120 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Completion time τ

Deferral

cost

cj(τ)

1

1

.

.

.

.

.

.

.

.

.

.

j i

cji
-

1 1
–

2 2
–

1 q

q

q

p

c1(α)

c2(α)

c1(2α)

c2(2α)

c1(rα)

c2(rα)

cp(α)

cp(2α)

r
(a) (b) cp(rα)

Figure 5.3 Formulating the scheduling problem with deferral costs.

5.3 OPTIMALITY CONDITIONS

Optimality conditions are useful in several respects. First, they give us a simple validation
method to check whether a given feasible solution to the problem is indeed optimal. We
simply check whether this solution satisfies the optimality conditions. Hence, the optimality
conditions provide us with a certificate of optimality. A nice feature of the certificate is its
ease of use. We need not invoke any complex algorithm to certify that a solution is optimal.
The optimality conditions are also valuable for other reasons. They can help suggest or
motivate algorithms for solving a problem and provide us with a mechanism for establishing
the validity of algorithms for a given problem. To show that an algorithm correctly finds the
optimal solution to a problem, we simply need to show that the solution it generates satisfies
the optimality conditions.

Rather than launching immediately into a discussion of algorithms for the minimum cost
flow problem, we first pause to describe a few different optimality conditions for this problem,
which make our subsequent algorithmic descriptions in the following sections more under-
standable. All the optimality conditions that we state have an intuitive network interpreta-
tion. We consider three different (but equivalent) optimality conditions: (1) negative cycle
optimality condition, (2) reduced cost optimality condition, and (3) complementary slackness
optimality condition.

5.3.1 Negative Cycle Optimality Conditions

Theorem 5.1 (Negative cycle optimality conditions) A feasible solution x∗ is an opti-
mal solution of the minimum cost flow problem if and only if it satisfies the following negative
cycle optimality conditions: the residual network G(x∗) contains no negative cost (directed)
cycle.

Proof. Suppose that x is a feasible flow and that residual network G(x) contains a negative
cycle. Then x cannot be an optimal flow, since by augmenting positive flow along the cycle we
can improve the objective function value. Therefore, if x∗ is an optimal flow, then G(x∗) can-
not contain a negative cycle. Now suppose that x∗ is a feasible flow and that G(x∗) contains
no negative cycle. Let xo be an optimal flow and x∗ ̸= xo. The augmenting cycle property

C5955–C005.tex 120 2015/11/4 8:13pm

Minimum Cost Flow Problem � 121

shows that we can decompose the difference vector xo −x∗ into at most m augmenting cycles
with respect to the flow x∗ and the sum of the costs of flows on these cycles equals cxo − cx∗.
Since the lengths of all the cycles in G(x∗) are nonnegative, cxo − cx∗ ≥ 0, or cxo ≥ cx∗.
Moreover, since xo is an optimal flow, cxo ≤ cx∗. Thus, cxo = cx∗, and x∗ is also an optimal
flow. This argument shows that if G(x∗) contains no negative cycle then x∗ must be optimal,
and this conclusion completes the proof of the theorem. �

5.3.2 Reduced Cost Optimality Conditions

Suppose we associate a real number π(i), unrestricted in sign, with each node i ∈ N . We
refer to π(i) as the potential of node i. We will show in Section 5.4 that π(i) is the linear
programming dual variable corresponding to the mass balance constraint of node i. For a
given set of node potentials π, we define the reduced cost of an arc (i, j) as cπij = cij −π(i) +
π(j). These reduced costs are applicable to both the original and the residual network. We
now proceed to state and prove the following properties.

Property 5.1

a. For any directed path P from node k to node l,
∑

(i,j)∈P cπij =
∑

(i,j)∈P cij −π(k) +π(l).

b. For any directed cycle W,
∑

(i,j)∈W cπij =
∑

(i,j)∈W cij.

Proof. Consider a directed path P from node k to node l.∑
(i,j)∈P

cπij =
∑

(i,j)∈P

(cij − π(i) + π(j))

=
∑

(i,j)∈P

cij −
∑

(i,j)∈P

(π(i) − π(j))

=
∑

(i,j)∈P

cij − π(k) + π(l)

All other terms in the summation
∑

(i,j)∈P (π(i) − π(j)) cancel out except the first and last
terms. Property 5.1b can also be proved in a similar manner by considering a cycle W . �
Notice that this property implies that using the reduced costs cπij instead of the actual costs
cij does not change the shortest path between any pair of nodes k and l, since the potentials
increase the length of every path by a constant amount of π(l) − π(k). This property also
implies that if W is a negative cycle with respect to cij as arc costs, then it is also a negative
cycle with respect to cπij . We can now provide an alternative form of the negative cycle
optimality conditions, stated in terms of the reduced costs of the arcs.

Theorem 5.2 (Reduced cost optimality conditions) A feasible solution x∗ is an opti-
mal solution of the minimum cost flow problem if and only if some set of node potentials π

satisfy the following reduced cost optimality conditions:

cπij ≥ 0 for every arc (i, j) ∈ G(x∗). (5.4)

Proof. We shall prove this result using Theorem 5.1. To show that the negative cycle opti-
mality conditions are equivalent to the reduced cost optimality conditions, suppose solution
x∗ satisfies the latter conditions. Therefore,

∑
(i,j)∈W cπij ≥ 0 for every directed cycle W in

G(x∗). Consequently, by Property 5.1b,
∑

(i,j)∈W cπij =
∑

(i,j)∈W cij ≥ 0, so G(x∗) contains
no negative cycle.

C5955–C005.tex 121 2015/11/4 8:13pm

122 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

To show the converse, assume that for the solution x∗, G(x∗) contains no negative cycle.
Let d(.) denote the shortest path distances from node 1 to all other nodes in G(x∗) (refer to
Chapter 4 for formal description of distance labels). If the network contains no negative cycle,
then the distance labels d(·) are well defined and satisfy the conditions d(j) ≤ d(i)+cij for all
(i, j) in G(x∗). We can restate these inequalities as cij +d(i)−d(j) ≥ 0, or cπij ≥ 0 if we define
π = −d. Consequently, the solution x∗ satisfies the reduced cost optimality conditions. �

In the preceding theorem, we characterized an optimal flow x as a flow that satisfied the
conditions cπij ≥ 0 for all (i, j) in G(x) for some set of node potentials π. In the same
fashion, we could define optimal node potentials as a set of node potentials π that satisfy the
conditions cπij ≥ 0 for all (i, j) in G(x) for some feasible flow x.

The reduced cost optimality conditions have a convenient economic interpretation. Sup-
pose we interpret cij as the cost of transporting one unit of a commodity from node i to
node j through the arc (i, j), and we interpret µ(i) ≡ −π(i) as the cost of obtaining a unit
of this commodity at node i. Then, cij + µ(i) is the cost of the commodity at node j if
we obtain it at node i and transport it to node j. The reduced cost optimality condition,
cij − π(i) + π(j) ≥ 0, or equivalently µ(j) ≤ cij + µ(i), states that the cost of obtaining the
commodity at node j is no more than the cost of the commodity if we obtain it at node i
and incur the transportation cost in sending it from node i to j. The cost at node j might
be smaller than cij + µ(i) because there might be a more cost-effective way to transport the
commodity to node j via other nodes.

5.3.3 Complementary Slackness Optimality Conditions

Both Theorems 5.1 and 5.2 provide means for establishing optimality of solutions to the
minimum cost flow problem by formulating conditions imposed upon the residual network;
we shall now restate these conditions in terms of the original network.

Theorem 5.3 (Complementary slackness optimality conditions) A feasible solution
x∗ is an optimal solution of the minimum cost flow problem if and only if for some set of node
potentials π, the reduced costs and flow values satisfy the following complementary slackness
optimality conditions for every arc (i, j) ∈ A:

if cπij > 0, then x∗
ij = 0; (5.5)

if 0 < x∗
ij < uij , then cπij = 0; and (5.6)

if cπij < 0, then x∗
ij = uij . (5.7)

Proof. We show that the reduced cost optimality conditions are equivalent to (5.5 through
5.7). To establish this result, we first prove that if the node potentials π and the flow vector
x satisfy the reduced cost optimality conditions, then they must satisfy (5.5 through 5.7).
Consider the three possibilities for any arc (i, j) ∈ A.

Case 1. If cπij > 0, then the residual network cannot contain the arc (j, i) because cπji =
−cπij < 0 for that arc, contradicting (5.4). Therefore, x∗

ij = 0.

Case 2. If 0 < x∗
ij < uij , then the residual network contains both the arcs (i, j) and (j, i).

The reduced cost optimality conditions imply that cπij ≥ 0 and cπji ≥ 0. But since cπji = −cπij ,
these inequalities imply that cπij = cπji = 0.

Case 3. If cπij < 0, then the residual network cannot contain the arc (i, j), because cπij < 0
for that arc, contradicting (5.4). Therefore, x∗

ij = uij .

C5955–C005.tex 122 2015/11/4 8:13pm

Minimum Cost Flow Problem � 123

We have thus shown that if the node potentials π and the flow vector x satisfy the reduced
cost optimality conditions, then they also satisfy the complementary slackness optimality
conditions. Similarly we can also prove the converse result, that is, if the pair (x, π) satisfies
the complementary slackness optimality conditions, then it also satisfies the reduced cost
optimality conditions by doing a straightforward case-by-case analysis. �

5.4 MINIMUM COST FLOW DUALITY

For every linear programming problem, which we subsequently refer to as a primal problem,
we can associate another intimately related linear programming problem, called its dual. For
a minimization problem, the objective function value of any feasible solution of the dual is
less than or equal to the objective function of any feasible solution of the primal. Furthermore,
the maximum objective function value of the dual equals the minimum objective function
of the primal. Duality theory is fundamental to the understanding of the theory of linear
programming. In this section, we state and prove these duality theory results for the minimum
cost flow problem, which is a special case of the linear programming problem.

While forming the dual of a (primal) linear programming problem, we associate a dual
variable with every constraint of the primal except for the nonnegativity restriction on arc
flows. For the minimum cost flow problem stated in (5.1), we associate the variable π(i) with
the mass balance constraint of node i and the variable αij with the capacity constraint of
arc (i, j). In terms of these variables, the dual minimum cost flow problem can be stated as
follows:

Maximize w(π,α) =
∑
i∈N

b(i)π(i)−
∑

(i,j)∈A

uijαij (5.8)

subject to

π(i) − π(j) − αij ≤ cij for all (i, j) ∈ A, (5.9)
αij ≥ 0 for all (i, j) ∈ A and π(j) unrestricted for all j ∈ N. (5.10)

Our first duality result for the general minimum cost flow problem is known as the weak
duality theorem.

Theorem 5.4 (Weak duality theorem) Let z(x) denote the objective function value of
some feasible solution x of the minimum cost flow problem and let w(π,α) denote the objec-
tive function value of some feasible solution (π,α) of its dual. Then w(π,α) ≤ z(x).

Proof. We multiply both the sides of (5.9) by xij and sum these weighted inequalities for all
(i, j) ∈ A, obtaining ∑

(i,j)∈A

(π(i) − π(j))xij −
∑

(i,j)∈A

αijxij ≤
∑

(i,j)∈A

cijxij . (5.11)

Notice that the first term on the left-hand side of (5.11) can be re-written as

∑
i∈N

π(i)

 ∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}
xji

 =
∑
i∈N

π(i)b(i). (5.12)

Next notice that replacing xij in the second term on the left-hand side of (5.11) by uij

preserves the inequality because xij ≤ uij and αij ≥ 0. Consequently,∑
i∈N

b(i)π(i) −
∑

(i,j)∈A

αijuij ≤
∑

(i,j)∈A

cijxij . (5.13)

C5955–C005.tex 123 2015/11/4 8:13pm

124 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Now notice that the left-hand side of (5.13) is the dual objective w(π,α) and the right-hand
side is the primal objective, and so we have established the theorem. �
The weak duality theorem implies that the objective function value of any dual feasible
solution is a lower bound on the objective function value of any primal feasible solution. One
consequence of this result is immediate: if some dual solution (π, α) and a primal solution
x have the same objective function value, then (π, α) must be an optimal solution of the
dual problem and x must be an optimal solution of the primal problem. The strong duality
theorem, proved next, shows that such a pair of solutions always exists.

We first eliminate the dual variables αij ’s from the dual formation (5.8) using some
properties of the optimal solution. We can rewrite the constraint (5.9) as

αij ≥ −cπij (5.14)

The coefficient associated with the variable αij in the dual objective (5.8) is −uij , and we wish
to maximize the objective function value. Consequently, in any optimal solution we would
assign the smallest possible value to αij . This observation, in view of (5.10) and (5.14),
implies that

αij = max{0, −cπij} (5.15)

The condition (5.15) allows us to omit αij from the dual formulation. Substituting (5.15) in
(5.8) yields

Maximize w(π) =
∑
i∈N

b(i)π(i) −
∑

(i,j)∈A

max{0, −cπij}uij . (5.16)

We are now in the position to prove the strong duality theorem.

Theorem 5.5 (Strong duality theorem) For any choice of problem data, the minimum
cost flow problem always has a solution x∗ and the dual minimum cost flow problem a solution
π satisfying the property that z(x∗) = w(π).

Proof. We prove this theorem using the complementary slackness optimality conditions (5.5
through 5.7). Let x∗ be an optimal solution of the minimum cost flow problem. Theorem 5.3
implies that x∗ together with some vector π of node potentials satisfies the complementary
slackness optimality conditions. We claim that this solution satisfies the condition

−cπijxij = max{0, −cπij}uij for every arc (i, j) ∈ A. (5.17)

To establish this result, consider the following three cases: (1) cπij > 0, (2) cπij = 0, and (3)
cπij < 0. The complementary slackness conditions (5.5 through 5.7) imply that in the first
two cases, both the left-hand side and right-hand side of (5.17) are zero, and in the third
case both sides equal cπijuij .

Substituting (5.17) in dual objective (5.16) yields

w(π) =
∑
i∈N

b(i)π(i) +
∑

(i,j)∈A

cπijx
∗
ij =

∑
(i,j)∈A

cijx
∗
ij = z(x∗). (5.18)

The second equality follows from the fact that
∑

i∈N b(i)π(i) can be re-written as∑
(i,j)∈A (π(i) − π(j))xij . Then, (5.18) proves the strong duality theorem. �

In Theorem 5.5, we showed that the complementary slackness optimality conditions imply
strong duality. We next prove the converse result, namely that strong duality implies the
complementary slackness optimality conditions.

Theorem 5.6 If x is a feasible flow and π is an (arbitrary) vector satisfying the property that
z(x) = w(π), then the pair (x,π) satisfies the complementary slackness optimality conditions.

C5955–C005.tex 124 2015/11/4 8:13pm

Minimum Cost Flow Problem � 125

Proof. Since z(x) = w(π),∑
(i,j)∈A

cijxij =
∑
i∈N

b(i)π(i) −
∑

(i,j)∈A

max{0, −cπij}uij . (5.19)

Substituting
∑

i∈N b(i)π(i) =
∑

(i,j)∈A (π(i) − π(j))xij in (5.19), we get∑
(i,j)∈A

max{0, −cπij}uij =
∑

(i,j)∈A

−cπijxij (5.20)

Now observe that both the sides have m terms, and each term in the left-hand side is
nonnegative and its value is an upper bound on the corresponding term in the right-hand
side (because max{0, −cπij} ≥ −cπij and uij ≥ xij). Therefore, the two sides can be equal only
when

max{0, −cπij}uij = −cπijxij for every arc (i, j) ∈ A. (5.21)

We now consider three cases.

1. cπij > 0. In this case, the left-hand side of (5.21) is zero, and the right-hand side can be
zero only if xij = 0. This conclusion establishes (5.5).

2. 0 < xij < uij . In this case, cπij = 0; otherwise, the right-hand side of (5.21) is negative.
This conclusion establishes (5.6).

3. cπij < 0. In this case, the left-hand side of (5.21) is −cπijuij and, therefore, xij = uij .
This conclusion establishes (5.7).

These results complete the proof of the theorem. �
The following result is an easy consequence of Theorems 5.5 and 5.6.

Property 5.2 If x∗ is an optimal solution of the minimum cost flow problem and π is an
optimal solution of the dual minimum cost flow problem, then the pair (x∗, π) satisfies the
complementary slackness optimality conditions.

Proof. Theorem 5.5 implies that z(x∗) = w(π) and Theorem 5.6 implies that the pair (x∗, π)
satisfies complementary slackness optimality conditions. �
Minimum cost flow duality has several important implications. Since almost all algorithms
for solving the primal problem also generate optimal node potentials π(i) and the variables
αij , solving the primal problem almost always solves both the primal and dual problems. Sim-
ilarly, solving the dual problem typically solves the primal problem as well. Most algorithms
for solving network flow problems explicitly or implicitly use properties of dual variables and
of the dual linear program. In particular, the dual problem provides us with a certificate that
if we can find a feasible dual solution that has the same objective function value as a given
primal solution, then we know from the strong duality theorem that the primal solution must
be optimal, without making additional calculations and without considering other potentially
optimal primal solutions.

5.5 CYCLE-CANCELING ALGORITHM

Operations researchers, computer scientists, electrical engineers, and many others have exten-
sively studied the minimum cost flow problem and proposed a number of different algorithms
to solve this problem. Notable among these are the cycle-canceling, successive shortest path,
primal-dual, out-of-kilter, and scaling-based algorithms. In this and the following sections,

C5955–C005.tex 125 2015/11/4 8:13pm

126 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

algorithm cycle canceling;
begin

establish a feasible flow x in the network;
while G(x) contains a negative cycle do
begin

use some algorithm to identify a negative cycle W ;
δ : = min{rij : (i, j) ∈ W};
augment δ units of flow in the cycle W and update G(x);

end
end

Figure 5.4 Cycle-canceling algorithm.

we discuss some of the important algorithms for the minimum cost flow problem and point
out relationships among them. We first consider the cycle-canceling algorithm.

The negative cycle optimality conditions suggest one simple algorithmic approach for
solving the minimum cost flow problem, which we call the cycle-canceling algorithm. This
algorithm maintains a feasible solution and at every iteration attempts to improve its
objective function value. The algorithm first establishes a feasible flow x in the network.
Then it iteratively finds negative cost-directed cycles in the residual network and augments
flows on these cycles. The algorithm terminates when the residual network contains no neg-
ative cost-directed cycle. Theorem 5.1 implies that when the algorithm terminates, it has
found a minimum cost flow. Figure 5.4 specifies this generic version of the cycle-canceling
algorithm.

A feasible flow in the network can be found by solving a maximum flow problem. One
algorithm for identifying a negative cost cycle is the label correcting algorithm for the shortest
path problem, which requires O(nm) time to identify a negative cost cycle. A by-product of
the cycle-canceling algorithm is the following important result.

Theorem 5.7 (Integrality property) If all arc capacities and supply/demands of nodes
are integer, then the minimum cost flow problem always has an integer minimum cost flow.

Proof. We show this result by performing induction on the number of iterations. The algo-
rithm first establishes a feasible flow in the network by solving a maximum flow problem
(see Chapter 4). We assume that the maximum flow algorithm finds an integer solution
since all arc capacities in the network are integer, and the initial residual capacities are also
integer. The flow augmented by the cycle-canceling algorithm in any iteration equals the min-
imum residual capacity in the cycle canceled, which, by the inductive hypothesis, is integer.
Hence, the modified residual capacities in the next iteration will again be integer. The result
follows. �
Let us now calculate the number of iterations performed by the algorithm. For the minimum
cost flow problem, mCU is an upper bound on the initial flow cost (since cij ≤ C and xij ≤ U
for all (i, j) ∈ A), and −mCU is a lower bound on the optimal flow cost (since cij ≥ −C
and xij ≤ U for all (i, j) ∈ A). Each iteration of the cycle-canceling algorithm changes the
objective function value by an amount

(∑
(i,j)∈W cij

)
δ, which is strictly negative. Since we

are assuming that all the data of the problem is integral, the algorithm terminates within
O(mCU) iterations and runs in O(nm2CU) time.

The generic version of the cycle-canceling algorithm does not specify the order for select-
ing negative cycles from the network. Different rules for selecting negative cycles produce
different versions of the algorithm, each with different worst-case and theoretical behavior.

C5955–C005.tex 126 2015/11/4 8:13pm

Minimum Cost Flow Problem � 127

The network simplex algorithm, which is widely considered to be one of the fastest algorithms
for the minimum cost flow problem in practice, can be considered a particular version of the
cycle-canceling algorithm. The network simplex algorithm maintains information (a spanning
tree solution and node potentials) that enables it to identify a negative cost cycle in O(m)
time. However, due to degeneracy, the algorithm cannot necessarily send a positive amount
of flow along this cycle, and hence the most general implementation of the network simplex
algorithm does not run in polynomial-time. The following two versions of the cycle-canceling
algorithm are, however, polynomial-time implementations.

5.5.1 Augmenting Flow in a Negative Cycle with Maximum Improvement

Let x be any feasible flow and let x∗ be an optimal flow. The improvement in the objective
function value due to an augmentation along a cycle W is −(

∑
(i,j)∈W cij)(min{rij : (i, j)∈W}).

It can be shown that x∗ equals x plus the flow on at most m augmenting cycles with respect
to x, and improvements in cost due to flow augmentations on these augmenting cycles sum
to cx − cx∗. Consequently, at least one of these augmenting cycles with respect to x must
decrease the objective function value by at least (cx − cx∗)/m. Therefore, if the algorithm
always augments flow along a cycle giving the maximum possible improvement, then this
implies that the method would obtain an optimal flow within O(m log(mCU)) iterations.
Finding a maximum improvement cycle is difficult (i.e., it is an NP-complete problem), but
a modest variation of this approach yields a polynomial time algorithm for the minimum
cost flow problem. We provide a reference of this algorithm in the bibliographic notes.

5.5.2 Augmenting Flow along a Negative Cycle with Minimum Mean Cost

We define the mean cost of a cycle as its cost divided by the number of arcs it contains.
A minimum mean cycle is a cycle whose mean cost is as small as possible. It is possible to
identify a minimum mean cycle in O(nm) or O(

√
nm log(nC)) time. Researchers have shown

that if the cycle-canceling algorithm always augments flow along a minimum mean cycle,
then it performs O(min {nm log(nC), nm2 log n}) iterations.

5.6 SUCCESSIVE SHORTEST PATH ALGORITHM

The cycle-canceling algorithm maintains feasibility of the solution at every step and attempts
to achieve optimality. In contrast, the successive shortest path algorithm maintains optimality
of the solution (as defined in Theorem 5.2) at every step and strives to attain feasibility. It
maintains a solution x that satisfies the nonnegativity and capacity constraints, but it violates
the mass balance constraints of the nodes. At each step, the algorithm selects a node s with
excess supply (i.e., supply not yet sent to some demand node) and a node t with unfulfilled
demand and sends flow from s to t along a shortest path in the residual network. The
algorithm terminates when the current solution satisfies all the mass balance constraints.

In order to describe this algorithm, we first introduce the concept of pseudoflows. A pseud-
oflow is a function x : A → R+ satisfying only the capacity and nonnegativity constraints; it
need not satisfy the mass balance constraints. For any pseudoflow x, we define the imbalance
of node i as

e(i) = b(i) +
∑

{j:(j,i)∈A}
xji −

∑
{j:(i,j)∈A}

xij for all i ∈ N.

If e(i) > 0 for some node i, then we refer to e(i) as the excess of node i; if e(i) < 0, then we call
−e(i) the node’s deficit. We refer to a node i with e(i) = 0 as balanced. Let E and D denote
the sets of excess and deficit nodes in the network. Notice that

∑
i∈N e(i) =

∑
i∈N b(i) = 0,

C5955–C005.tex 127 2015/11/4 8:13pm

128 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

and hence
∑

i∈E e(i) = −
∑

i∈D e(i). Consequently, if the network contains an excess node,
then it must also contain a deficit node. The residual network corresponding to a pseudoflow
is defined in the same way that we define the residual network for a flow.

Lemma 5.1 Suppose a pseudoflow (or a flow) x satisfies the reduced cost optimality con-
ditions with respect to some node potentials π. Let the vector d represent the shortest path
distances from some node k to all other nodes in the residual network G(x) with cπij as the
length of an arc (i, j). Then the following properties are valid:

a. The pseudoflow x also satisfies the reduced cost optimality conditions with respect to
the node potentials π′ = π − d.

b. The reduced costs cπ
′

ij are zero for all arcs (i, j) in a shortest path from node s to every
other node.

Proof. Since x satisfies the reduced cost optimality conditions with respect to π, we have
cπij ≥ 0 for every arc (i, j) in G(x). Furthermore, since the vector d represents shortest path
distances with arc lengths cπij , it satisfies the shortest path optimality conditions; that is

d(j) ≤ d(i) + cπij for all (i, j) ∈ G(x) (5.22)

Substituting cπij = cij − π(i) + π(j) in (5.22), we obtain d(j) ≤ d(i) + cij − π(i) + π(j).
Alternatively, cij − (π(i) − d(i)) + (π(j) − d(j)) ≥ 0, or cπ

′

ij ≥ 0. This conclusion establishes
part (a) of the lemma.

Consider next a shortest path from node s to some node l. For each arc (i, j) in this path,
d(j) = d(i) + cπij . Substituting cπij = cij − π(i) + π(j) in this equation, we obtain cπ

′

ij = 0.
This conclusion establishes part (b) of the lemma. �
The following result is an immediate corollary of the preceding lemma.

Lemma 5.2 Suppose a pseudoflow (or a flow) x satisfies the reduced cost optimality con-
ditions and we obtain x′ from x by sending flow along a shortest path from node s to some
other node k; then x′ also satisfies the reduced cost optimality conditions.

Proof. Define the potentials π and π′ as in Lemma 5.1. The proof of Lemma 5.1 implies that
for every arc (i, j) in the shortest path P from node s to the node k, cπ

′

ij ≥ 0. Augmenting
flow on any such arc might add its reversal (j, i) to the residual network. But since cπ

′

ij = 0
for each arc (i, j) ∈ P , cπ

′

ij = 0 and the arc (j, i) also satisfies the reduced cost optimality
conditions. The lemma follows. �
We are now in a position to describe the successive shortest path algorithm. The node
potentials play a very important role in this algorithm. In addition to using them to prove
the correctness of the algorithm, we use them to maintain nonnegative arc lengths so that
we can solve the shortest path problem more efficiently. Figure 5.5 gives a formal statement
of the successive shortest path algorithm.

We now justify the successive shortest path algorithm. To initialize the algorithm, we set
x = 0, which is a feasible pseudoflow. For the zero pseudoflow x, G(x) = G. Note that this
solution together with π = 0 satisfies the reduced cost optimality conditions because cπij =
cij ≥ 0 for every arc (i, j) in the residual network G(x) (recall Assumption 5.5, which states
that all arc costs are nonnegative). Observe that as long as any node has a nonzero imbalance,
both E and D must be nonempty since the total sum of excesses equals the total sum of
deficits. Thus, until all nodes are balanced, the algorithm always succeeds in identifying an
excess node k and a deficit node l. Assumption 5.4 implies that the residual network contains

C5955–C005.tex 128 2015/11/4 8:13pm

Minimum Cost Flow Problem � 129

algorithm successive shortest path;
begin

x := 0 and π := 0;
e(i) := b(i) for all i ∈ N ;
initialize the sets E and D;
while E ̸= ϕ do
begin

select a node k ∈ E and a node l ∈ D;
determine shortest path distances d(j) from node k to all other nodes in G(x)

with respect to the reduced costs cπij ;
let P denote a shortest path from node s to node t;
update π := π − d;
δ := min[e(s), −e(t), min{rij : (i, j) ∈ P}];
augment δ units of flow along the path P ;
update x, G(x), E, D, and the reduced costs;

end
end

Figure 5.5 Successive shortest path algorithm.

a directed path from node k to every other node, including node l. Therefore, the shortest
path distances d(·) are well defined. Each iteration of the algorithm solves a shortest path
problem with nonnegative arc lengths and strictly decreases the excess of some node (and,
also, the deficit of some other node). Consequently, if U is an upper bound on the largest
supply of any node, then the algorithm would terminate in at most nU iterations. If S(n, m,
C) denotes the time taken to solve a shortest path problem with nonnegative arc lengths,
then the overall complexity of this algorithm is O(nU S(n, m, C)). Since the arc lengths
are nonnegative, the shortest path problem at each iteration can be solved using Dijkstra’s
algorithm. Currently, the best known polynomial-time bound for the Dijkstra’s algorithm is
O(m+n log n), and the best weakly polynomial bound is O(min {m log log C, m+n

√
log C}).

The successive shortest path algorithm takes pseudopolynomial time since it is polynomial
in n, m, and the largest supply U . This algorithm is, however, polynomial-time for the
assignment problem, which is a special case of the minimum cost flow problem, for which
U = 1. In Section 5.9, we describe a polynomial-time implementation of the successive
shortest path algorithm in conjunction with scaling.

5.7 PRIMAL-DUAL AND OUT-OF-KILTER ALGORITHMS

The primal-dual algorithm for the minimum cost flow problem is similar to the successive
shortest path algorithm in the sense that it also maintains a pseudoflow that satisfies the
reduced cost optimality conditions and gradually converts it into a flow by augmenting
flows along shortest paths. In contrast, however, instead of sending flow along one short-
est path at a time, it solves a maximum flow problem that sends flow along all shortest
paths.

The primal-dual algorithm generally transforms the minimum cost flow problem into a
problem with a single excess node and a single deficit node. We transform the problem into
this form by introducing a source node s and a sink node t. For each node i with b(i) > 0, we
add a zero cost arc (s, i) with capacity b(i), and for each node i with b(i) < 0, we add a zero
cost arc (i, t) with capacity −b(i). Finally, we set b(s) =

∑
i∈N :b(i)>0 b(i), b(t) = −b(s), and

C5955–C005.tex 129 2015/11/4 8:13pm

130 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

b(i) = 0 for all i∈N . It is easy to see that a minimum cost flow in the transformed network
gives a minimum cost flow in the original network.

At every iteration, the primal-dual algorithm solves a shortest path problem from the
source to update the node potentials (i.e., as in the successive shortest path algorithm, π(j)
becomes π(j)−d(j)) and then solves a maximum flow problem to send the maximum possible
flow from source to sink using only the arcs with zero reduced cost. The algorithm guarantees
that the excess of some node strictly decreases at each iteration, and also assures that the
node potential of the sink strictly decreases. The latter observation follows from the fact
that after we have solved the maximum flow problem, the network contains no path from
source to the sink in the residual network consisting entirely of arcs with zero reduced costs;
consequently, in the next iteration d(t) ≥ 1. These observations give a bound of min{nU,
nC} on the number of iterations since the magnitude of each node potential is bounded
by nC. This bound is better than that of the successive shortest path algorithm, but, of
course, the algorithm incurs the additional expense of solving a maximum flow problem at
each iteration. If S(n, m, C) and M(n, m, U) denote the solution times of shortest path and
the maximum flow algorithms, then the primal-dual algorithm has an overall complexity of
O(min{nU S(n, m, C), nC M (n, m, U)}).

The successive shortest path and primal-dual algorithms maintain a solution that satisfies
the reduced cost optimality conditions and the flow bound constraints but that violates the
mass balance constraints. These algorithms iteratively modify arc flows and node potentials
so that the flow at each step comes closer to satisfying the mass balance constraints. However,
we could just as well have developed other solution strategies by violating other constraints
at intermediate steps. The out-of-kilter algorithm satisfies only the mass balance constraints,
and so intermediate solutions might violate both the optimality conditions and the flow
bound restrictions. The basic idea is to drive the flow on an arc (i, j) to uij if cπij < 0, drive
the flow to zero if cπij > 0, and to allow any flow between 0 and uij if cπij = 0. The name
out-of-kilter algorithm reflects the fact that arcs in the network either satisfy the reduced
cost optimality conditions (are in-kilter) or do not (are out-of-kilter). We define the kilter
number kij of each arc (i, j) in A as the magnitude of the change in xij required to make
the arc an in-kilter arc while keeping cπij fixed. Therefore, in accordance with the reduced
cost optimality condition, if cπij > 0, then kij = |xij |, and if cπij < 0, then kij = |uij − xij |.
If cπij = 0 and xij > uij , then kij = xij − uij . If cπij= 0 and xij < 0, then kij = −xij . The
kilter number of any in-kilter arc is zero. The sum

∑
(i,j)∈A kij of all kilter numbers provides

us with a measure of how far the current solution is from optimality; the smaller the value
of K, the closer the current solution is to being an optimal solution.

At each iteration, the out-of-kilter algorithm reduces the kilter number of at least one
arc; it terminates when all arcs are in-kilter. Suppose the kilter number of arc (i, j) would
decrease by increasing flow on the arc. The algorithm would obtain a shortest path P from
node j to node i in the residual network and augment at least one unit of flow in the cycle
P ∪ (i, j). The proof of correctness of this algorithm is similar to but more detailed than that
of the successive shortest path algorithm.

5.8 NETWORK SIMPLEX ALGORITHM

The simplex method for solving linear programming problems is perhaps the most powerful
algorithm ever devised for solving constrained optimization problems. Indeed, many mem-
bers of the academic community view the simplex method as not only one of the principal
computational engines of applied mathematics, computer science, and operations research,
but also as one of the landmark contributions to computational mathematics of this century.

C5955–C005.tex 130 2015/11/4 8:13pm

Minimum Cost Flow Problem � 131

The algorithm has achieved this lofty status because of the pervasiveness of its applications
throughout many problem domains, because of its extraordinary efficiency, and because it
permits us to not only to solve problems numerically, but also to gain considerable practical
and theoretical insight through the use of sensitivity analysis and duality theory.

In the introduction, we mentioned that minimum cost flow problems have considerable
special structure, and applying the general simplex method, which does not exploit the prob-
lem structure on these problems gives algorithms that are not competitive when compared
with the combinatorial methods described in the preceding sections. However, if we interpret
the core concepts of the simplex method appropriately as network operations, then when
we apply it to the minimum cost flow problem, we can adapt and streamline the method
to exploit the network structure, producing an algorithm that is very efficient. Our purpose
in this section is to develop this network-based implementation of the simplex method and
show how to apply it to the minimum cost flow problem.

The central concept underlying the network simplex algorithm is the notion of spanning
tree solutions, which are solutions that we obtain by fixing the flow on every arc not in a
spanning tree either at value zero or the arc’s flow capacity. As we show in this section, we
can then solve uniquely for the flow on all the arcs in the spanning tree. We also show that
the minimum cost flow problem always has at least one optimal spanning tree solution and
that it is possible to find an optimal spanning tree solution by moving from one such solution
to another, at each step introducing one new nontree arc into the spanning tree in place of
one tree arc. This method is known as the network simplex algorithm because spanning trees
correspond to the so-called basic feasible solutions of linear programming, and the movement
from one spanning tree solution to another corresponds to a so-called pivot operation of the
general simplex method.

In this section, we describe the network simplex algorithm in detail. We first define the
concept of cycle free and spanning tree solutions and describe a data structure to store and
manipulate the spanning tree. We then show how to compute arc flows and node potentials
for any spanning tree solution. We next discuss how to perform various simplex operations
such as obtaining a starting solution, and selection of entering arcs, leaving arcs, and pivots.
Finally, we show how to guarantee the finiteness of the network simplex algorithm.

5.8.1 Cycle Free and Spanning Tree Solutions

Much of our development in the previous sections has relied upon a simple but powerful
algorithmic idea: to generate an improving sequence of solutions to the minimum cost flow
problem, we iteratively augment flows along a series of negative cycles and shortest paths. As
one of these variants, the network simplex algorithm uses a particular strategy for generating
negative cycles. In this section, as a prelude to our discussion of the method, we introduce
some basic background material. We begin by examining two important concepts known as
cycle free solutions and spanning tree solutions.

For any feasible solution x, we say that an arc (i, j) is a free arc if 0 < xij < uij and is
a restricted arc if xij = 0 or xij = uij . Note that we can both increase and decrease flow on
a free arc while honoring the bounds on arc flows. However, in a restricted arc (i, j) at its
lower bound (i.e., xij = 0) we can only increase the flow. Similarly, in a restricted arc (i, j) at
its upper bound (i.e., xij = uij) we can only decrease the flow. We refer to a solution x as a
cycle free solution if the network contains no cycle composed only of free arcs. Note that in
a cycle free solution, we can augment flow on any augmenting cycle in only a single direction
since some arc in any cycle will restrict us from either increasing or decreasing that arc’s
flow. We also refer to a feasible solution x and an associated spanning tree of the network

C5955–C005.tex 131 2015/11/4 8:13pm

132 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

as a spanning tree solution if every nontree arc is a restricted arc. Notice that in a spanning
tree solution, the tree arcs can be free or restricted.

In this section, we establish a fundamental result of network flows: minimum cost flow
problems always have optimal cycle free and spanning tree solutions. The network simplex
algorithm will exploit this result by restricting its search for an optimal solution to only
spanning tree solutions.

Theorem 5.8 (Cycle free property) If the objective function of a minimum cost flow
problem is bounded from below over the feasible region, then the problem always has an optimal
cycle free solution.

Proof. We prove this result by showing that any feasible solution can be converted to a
corresponding cycle free solution with lesser cost. Let the feasible solution contain at least one
cycle having only free arcs. Consider one such cycle. We now have the following possibilities:
(1) cost of the cycle is negative, (2) cost of the cycle is positive, and (3) cost of the cycle
is zero. In case (1), we can obtain a better solution by sending maximum possible flow in
the direction of the cycle; in case (2), we can obtain a better solution by sending maximum
possible flow against the cycle; and in case (3), solution cost is unchanged if we send flow
in either direction along the cycle. Since the cycle contains only free arcs, whenever we send
maximum possible flow on the cycle, flow on at least one arc will hit its lower or upper bound
and become restricted. This implies that the cycle will no longer contain only free arcs. The
same procedure can be iteratively applied to obtain a cycle free solution. �
It is easy to convert a cycle free solution into a spanning tree solution. The free arcs in a
cycle free solution define a forest (i.e., a collection of node-disjoint trees). If this forest is a
spanning tree, then the cycle free solution is already a spanning tree solution. However, if
this forest is not a spanning tree, since we assume that the underlying network is connected,
we can add some restricted arcs and produce a spanning tree. So, we have established the
following fundamental result:

Theorem 5.9 (Spanning tree property) If the objective function of a minimum cost flow
problem is bounded from below over the feasible region, then the problem always has an optimal
spanning tree solution. �

A spanning tree solution partitions the arc set A into three subsets: (1) T , the arcs in the
spanning tree; (2) L, the nontree arcs whose flow is restricted to value zero; (3) U , the
nontree arcs whose flow is restricted in value to the arcs’ flow capacities. We refer to (T , L,
U) as a spanning tree structure.

Just as we can associate a spanning tree structure with a spanning tree solution, we can
also obtain a unique spanning tree solution corresponding to a given spanning tree structure
(T , L, U). To do so, we set xij = 0 for all arcs (i, j) ∈ L, xij = uij for all arcs (i, j) ∈
U and then solve the mass balance equations to determine the flow values for arcs in T .
We say a spanning tree structure is feasible if its associated spanning tree solution satisfies
all of the arcs’ flow bounds. In the special case in which every tree arc in a spanning tree
solution is a free arc, we say that the spanning tree is nondegenerate; otherwise, we refer
to it as a degenerate spanning tree. We refer to a spanning tree structure as optimal if its
associated spanning tree solution is an optimal solution of the minimum cost flow problem.
The following theorem states a sufficient condition for a spanning tree structure to be an
optimal structure.

Theorem 5.10 (Minimum cost flow optimality conditions) A spanning tree struc-
ture (T, L, U) is an optimal spanning tree structure of the minimum cost flow problem

C5955–C005.tex 132 2015/11/4 8:13pm

Minimum Cost Flow Problem � 133

if it is feasible and for some choice of node potentials π, the arc reduced costs cπij satisfy the
following conditions:

a. cπij = 0, for all (i, j) ∈ T , (5.23)

b. cπij ≥ 0, for all (i, j) ∈ L, and (5.24)

c. cπij ≤ 0, for all (i, j) ∈ U . (5.25)

Proof. Let x∗ be the solution associated with the spanning tree structure (T , L, U). We
know that some set of node potentials π, together with the spanning tree structure (T , L,
U), satisfies (5.23 through 5.25).

We need to show that x∗ is an optimal solution of the minimum cost flow problem.
Minimizing

∑
(i,j)∈A cijxij is equivalent to minimizing

∑
(i,j)∈A cπ

ij
xij . The conditions stated

in (5.23 through 5.25) imply that for the given node potential π, minimizing
∑

(i,j)∈A cπ
ij

xij

is equivalent to minimizing the following expression:

Minimize
∑

(i,j)∈L

cπijxij −
∑

(i,j)∈U

|cij |xij (5.26)

The definition of the solution x∗ implies that for any arbitrary solution x, xij ≥ x∗
ij for all

(i, j) ∈ L, and xij ≤ x∗
ij for all (i, j) ∈ U . The expression (5.26) implies that the objective

function value of the solution x will be greater than or equal to that of x∗. �
The network simplex algorithm maintains a feasible spanning tree structure and moves from
one spanning tree structure to another until it finds an optimal structure. At each iteration,
the algorithm adds one arc to the spanning tree in place of one of its current arcs. The
entering arc is a nontree arc violating its optimality condition. The algorithm (1) adds this
arc to the spanning tree, creating a negative cycle (which might have zero residual capacity);
(2) sends the maximum possible flow in this cycle until the flow on at least one arc in the
cycle reaches its lower or upper bound; and (3) drops an arc whose flow has reached its lower
or upper bound, giving us a new spanning tree structure. Because of its relationship to the
primal simplex algorithm for the linear programming problem, this operation of moving from
one spanning tree structure to another is known as a pivot operation, and the two spanning
tree structures obtained in consecutive iterations are called adjacent spanning tree structures.

5.8.2 The Network Simplex Algorithm

The network simplex algorithm maintains a feasible spanning tree structure at each iteration
and successively transforms it into an improved spanning tree structure until it becomes
optimal. The following algorithmic description specifies the essential steps of the method
(Figure 5.6).

In the following discussion, we describe in greater detail how the network simplex
algorithm uses tree indices to efficiently perform the various steps in the algorithm. This
discussion highlights the value of the tree indices in designing an efficient implementation of
the algorithm.

5.8.2.1 Obtaining an Initial Spanning Tree Structure

Our connectedness assumption, Assumption 5.4, provides one way of obtaining an initial
spanning tree structure. We have assumed that for every node j ∈ N − {1}, the network
contains arcs (1, j) and (j, 1), possibly with sufficiently large costs and capacities. We
construct the initial tree T as follows. We examine each node j, other than node 1, one by
one. If b(j) ≥ 0, we include arc (j, 1) in T with a flow value of b(j). If b(j) < 0, then we

C5955–C005.tex 133 2015/11/4 8:13pm

134 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

algorithm network simplex ;
begin

determine an initial feasible tree structure (T , L, U);
let x be the flow and π be the node potentials associated with this tree structure;
while some non-tree arc violates the optimality conditions do
begin

select an entering arc (k, l) violating its optimality condition;
add arc (k, l) to the tree and determine the leaving arc (p, q);
perform a tree update and update the solutions x and π;

end
end

Figure 5.6 Network simplex algorithm.

include arc (1, j) in T with a flow value of −b(j). The set L consists of the remaining arcs,
and the set U is empty.

5.8.2.2 Maintaining a Spanning Tree Structure

Since the network simplex algorithm generates a sequence of spanning tree solutions, to
implement the algorithm effectively, we need to be able to represent spanning trees conve-
niently in a computer so that the algorithm can perform its basic operations efficiently and
can update the representation quickly when it changes the spanning tree. Over the years,
researchers have suggested several ways for maintaining and manipulating a spanning tree
structure. In this section, we describe one of the more popular representations.

We consider the tree as hanging from a specially designated node, called the root.
Throughout this chapter, we assume that node 1 is the root node. Figure 5.7 gives an exam-
ple of a tree. We associate three indices with each node i in the tree: a predecessor index,
pred(i); a depth index, depth(i); and a thread index, thread(i).

Predecessor index. Each node i has a unique path connecting it to the root. The index
pred(i) stores the first node in that path (other than node i). For example, the path 9–6–5–
2–1 connects node 9 to the root; therefore, pred(9) = 6. By convention, we set the predecessor

(a)

I 1 2 3 4 5 6 7 8 9

Pred(i) 0 1 2 3 2 5 5 6 6

Depth(i) 0 1 2 3 2 3 3 4 4

 read(i) 2 5 4 1 6 8 3 9 7

(b)

1

2

5 3

476

8 9

Figure 5.7 Example of tree indices: (a) rooted tree; (b) corresponding tree indices.

C5955–C005.tex 134 2015/11/4 8:13pm

Minimum Cost Flow Problem � 135

node of the root node, node 1, to zero. Figure 5.7 specifies these indices for the other nodes.
Observe that by iteratively using the predecessor indices, we can enumerate the path from
any node to the root.

A node j is called a successor of node i if pred(j) = i. For example, node 5 has two
successors: nodes 6 and 7. A leaf node is a node with no successors. In Figure 5.7, nodes 4,
7, 8, and 9 are leaf nodes. The descendants of a node i are the node i itself, its successors,
successors of its successors, and so forth. For example, in Figure 5.7, the node set {5, 6, 7,
8, 9} contains the descendants of node 5.

Depth index. We observed earlier that each node i has a unique path connecting it to the
root. The index depth(i) stores the number of arcs in that path. For example, since the path
9–6–5–2–1 connects node 9 to the root, depth (9) = 4. Figure 5.7 gives depth indices for the
rest of the nodes in the network.

Thread index. The thread indices define a traversal of a tree; that is, a sequence of nodes
that walks or threads its way through the nodes of a tree, starting at the root node, visiting
nodes in a top-to-bottom order, and finally returning to the root. We can find thread indices by
performing a depth-first search and setting the thread of a node to be the node in the depth-
first search encountered just after the node itself. For our example, the depth-first traversal
would read 1–2–5–6–8–9–7–3–4–1, and so thread(1) = 2, thread(2) = 5, thread(5) = 6,
and so on.

The thread indices provide a particularly convenient means for visiting (or finding) all
descendants of a node i. We simply follow the thread starting at that node and record
the nodes visited until the depth of the visited node becomes at least as large as that of
node i. For example, starting at node 5, we visit nodes 6, 8, 9, and 7 in order, which are
the descendants of node 5, and then visit node 3. Since the depth of node 3 equals that of
node 5, we know that we have left the descendant tree lying below node 5. We shall see later
that finding the descendant tree of a node efficiently is an important step in developing an
efficient implementation of the network simplex algorithm.

The network simplex method has two basic steps: (1) determining the node potentials
of a given spanning tree structure and (2) computing the arc flows for the spanning tree
structure. We now show how to perform these two steps efficiently using the tree indices.

5.8.3 Computing Node Potentials and Flows

We first consider the problem of computing the node potentials π for a given spanning tree
structure (T , L, U). Note that we can set the value of one node potential arbitrarily because
adding a constant k to each node potential does not alter the reduced cost of any arc; that
is, for any constant k, cπij = cij −π(i)+π(j) = cij − [π(i)+k]+ [π(j)+k]. So for convenience,
we henceforth assume that π(1) = 0. We compute the remaining node potentials using the
fact that the reduced cost of every spanning tree arc is zero, that is,

cπij = cij − π(i) + π(j) = 0 for every arc (i, j) ∈ T . (5.27)

The basic idea in the procedure is to start at node 1 and fan out along the tree arcs using
the thread indices to compute other node potentials. The traversal of nodes using the thread
indices ensures that whenever the procedure visits a node k, it has already evaluated the
potential of its predecessor, and so it can compute π(k) using (5.27). Figure 5.8 gives a
formal statement of the procedure compute-potentials.

C5955–C005.tex 135 2015/11/4 8:13pm

136 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

procedure compute-potentials;
begin

π(1) := 0;
j := thread(1);
while j ̸= 1 do
begin

i := pred(j);
if (i, j) ∈ A then π(j) := π(i) − cij ;
if (j, i) ∈ A then π(j) := π(i) − cji;
j := thread(j);

end
end

Figure 5.8 Procedure compute-potentials.

The procedure compute-potentials requires O(1) time per iteration and performs (n − 1)
iterations to evaluate the node potential of each node. Therefore, the procedure runs in
O(n) time.

One important consequence of the procedure compute-potentials is that the minimum cost
flow problem always has integer optimal node potentials whenever all the arc costs are integer.
To see this result, recall from Theorem 5.9 that the minimum cost flow problem always
has an optimal spanning tree solution. The potentials associated with this tree constitute
optimal node potentials, which we can determine using the procedure compute-potentials.
The description of the procedure compute-potentials implies that if all arc costs are integer,
then node potentials are integer as well (because the procedure performs only additions and
subtractions). We refer to this integrality property of optimal node potentials as the dual
integrality property since node potentials are the dual linear programming variables associated
with the minimum cost flow problem.

Theorem 5.11 (Dual integrality property) If all arc costs are integer, then the mini-
mum cost flow problem always has optimal integer node potentials. �

We next consider the problem of determining the flows on the tree arcs of a given spanning
tree structure. A similar procedure will permit us to determine the flow on tree arcs. We
proceed, however, in the reverse order: Start at a leaf node and move in toward the root
using the predecessor indices while computing flows on arcs encountered along the way. The
following procedure accomplishes this task (Figure 5.9).

The running time of the procedure compute-flows is easy to determine. Clearly, the
initialization of flows and excesses requires O(m) time. If we set aside the time to select
leaf nodes of T , then each iteration requires O(1) time, resulting in a total of O(n) time.
One way of identifying leaf nodes in T is to select nodes in the reverse order of the thread
indices. We identify the reverse thread traversal of the nodes by examining the nodes in the
order dictated by the thread indices, putting all the nodes into a stack in the order of their
appearance, and then taking them out from the top of the stack one at a time. Therefore,
the reverse thread traversal examines each node only after it has examined all of the node’s
descendants. We have thus the procedure compute-flows runs in O(m) time.

The description of the procedure compute-flows implies that if the capacities of all the
arcs and the supplies/demands of all the nodes are integer, then arc flows are integer as well
(because the procedure performs only additions and subtractions). We state this result again
because of its importance in network flow theory.

C5955–C005.tex 136 2015/11/4 8:13pm

Minimum Cost Flow Problem � 137

procedure compute-flows;
begin

e(i) := b(i), for all i ∈ N ;
for each (i, j) ∈ L do set xij := 0;
for each (i, j) ∈ U do

set xij := uij , subtract uij from e(i) and add uij to e(j);
T ′ := T ;
while T ′ ̸= {1} do
begin

select a leaf node j (other than node 1) in the sub-tree T ′;
i := pred(j);
if (i, j) ∈ T ′ then xij := −e(j);
else xji := e(j);
add e(j) to e(i);
delete node j and the arc incident to it from T ′;

end
end

Figure 5.9 Procedure compute-flows.

Theorem 5.12 (Primal integrality property) If capacities of all the arcs and supplies/
demands of all the nodes are integer, then the minimum cost flow problem always has an
integer optimal flow. �

5.8.4 Entering Arc

Two types of arcs are eligible to enter the tree: (1) any arc (i, j) ∈ L with cπij < 0 or
(2) any arc (i, j) ∈ U with cπij > 0. For any eligible arc (i, j), we refer to |cπij | as its violation.
An implementation that selects an arc that violates the optimality condition by the most
might require the fewest number of iterations in practice, but it must examine each nontree
arc in each iteration, which is very time consuming. On the other hand, examining the list
cyclically and selecting the first eligible nontree arc may quickly find the entering arc, but
it may require a relatively large number of iterations due to poor entering arc choice. One
of the most successful implementation strategies uses a candidate list approach that strikes
an effective compromise between these two strategies. This approach also allows sufficient
opportunity for fine-tuning of special problem classes.

The algorithm maintains a candidate list of arcs that violate the optimality conditions,
selecting arcs in a two-phase procedure consisting of major iterations and minor iterations.
In a major iteration, we construct the candidate list. We examine arcs emanating from nodes,
one node at a time, adding the arcs that violate the optimality conditions to the candidate
list until we have either examined all nodes or the list has reached its maximum size. The
next major iteration begins at the node where the previous major iteration ended. In other
words, the algorithm examines nodes cyclically as it adds arcs emanating from them to the
candidate list.

Once the algorithm has formed the candidate list in a major iteration, it performs minor
iterations, scanning all the candidate arcs and selecting a nontree arc from this list that
violates the optimality conditions by the most to enter the basis. As we scan the arcs,
we update the candidate list by removing those arcs that no longer violate the optimality
conditions. Once the list becomes empty or we have reached a specified limit on the number

C5955–C005.tex 137 2015/11/4 8:13pm

138 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

of minor iterations to be performed at each major iteration, we rebuild the list with another
major iteration.

5.8.5 Leaving Arc

Suppose we select arc (k, l) as the entering arc. The addition of this arc to the tree T
creates exactly one cycle W , which we refer to as the pivot cycle. The pivot cycle consists
of the unique path in the tree T from node k to node l, together with arc (k, l). We define
the orientation of the cycle W as the same as that of (k, l) if (k, l) ∈ L and opposite of the
orientation of (k, l) if (k, l) ∈ U . Let W and W denote the sets of forward arcs (i.e., those
along the orientation of W) and backward arcs (those opposite to the orientation of W) in
the pivot cycle. Sending additional flow around the pivot cycle W in the direction of its
orientation strictly decreases the cost of the current solution at the per unit rate of |cπkl|. We
augment the flow as much as possible until one of the arcs in the pivot cycle reaches its lower
or upper bound. Notice that augmenting flow along W increases the flow on forward arcs
and decreases flow on backward arcs. Consequently, the maximum flow change δij on an arc
(i, j) ∈ W that satisfies the flow bound constraints is

δij =
{

uij − xij if (i, j) ∈ W
xij if (i, j) ∈ W

}
To maintain feasibility, we can augment δ = min{δij : (i, j) ∈ W} units of flow along W .
We refer to any arc (i, j) ∈ W that defines δ, that is, for which δ = δij , as a blocking arc.
We then augment δ units of flow and select an arc (p, q) with δpq = δ as the leaving arc,
breaking ties arbitrarily. We say that a pivot iteration is a nondegenerate iteration if δ > 0
and is a degenerate iteration if δ = 0. A degenerate iteration occurs only if T is a degenerate
spanning tree. Observe that if two arcs tie in while determining the value of δ, then the next
spanning tree will be degenerate.

The crucial step in identifying the leaving arc is to identify the pivot cycle. If P (i) denotes
the unique path in the tree from any node i to the root node, then this cycle consists of the
arcs {(k, l)}∪P (k)∪P (l)−(P (k)∩P (l)). In other words, W consists of the arc (k, l) and the
disjoint portions of P (k) and P (l). Using the predecessor indices alone permits us to identify
the cycle W as follows. First, we designate all the nodes in the network as unmarked. We then
start at node k and, using the predecessor indices, trace the path from this node to the root
and mark all the nodes in this path. Next we start at node l and trace the predecessor indices
until we encounter a marked node, say w. The node w is the first common ancestor of nodes
k and l; we refer to it as the apex of cycle W . The cycle W contains the portions of the paths
P (k) and P (l) up to node w, together with the arc (k, l). This method identifies the cycle W
in O(n) time and therefore is efficient. However, it has the drawback of backtracking along
those arcs of P (k) that are not in W . If the pivot cycle lies deep in the tree, far from its root,
then tracing the nodes back to the root will be inefficient. Ideally, we would like to identify
the cycle W in time proportional to |W |. The simultaneous use of depth and predecessor
indices, as indicated in Figure 5.10, permits us to achieve this goal.

This method scans the arcs in the pivot cycle W twice. During the first scan, we identify
the apex of the cycle and also identify the maximum possible flow that can be augmented
along W . In the second scan, we augment the flow. The entire flow change operation requires
O(n) time in the worst-case, but typically it examines only a small subset of nodes (and arcs).

5.8.6 Updating the Tree

When the network simplex algorithm has determined a leaving arc (p, q) for a given entering
arc (k, l), it updates the tree structure. If the leaving arc is the same as the entering arc,

C5955–C005.tex 138 2015/11/4 8:13pm

Minimum Cost Flow Problem � 139

procedure identify-cycle;
begin

i := k and j := l;
while i ̸= j do
begin

if depth(i) > depth(j) then i := pred(i)
else if depth(j) > depth(i) then j := pred(j)
else i := pred(i) and j := pred(j);

end
w := i;

end

Figure 5.10 Procedure for identifying the pivot cycle.

which would happen when δ = δkl = ukl, the tree does not change. In this instance, the arc
(k, l) merely moves from the set L to the set U , or vice versa. If the leaving arc differs from
the entering arc, then the algorithm must perform more extensive changes. In this instance,
the arc (p, q) becomes a nontree arc at its lower or upper bound depending upon whether
(in the updated flow) xpq = 0 or xpq = upq. Adding arc (k, l) to the current spanning tree
and deleting arc (p, q) creates a new spanning tree.

For the new spanning tree, the node potentials also change; we can update them as follows.
The deletion of the arc (p, q) from the previous tree partitions the set of nodes into two sub-
trees, one, T1, containing the root node, and the other, T2, not containing the root node. Note
that the sub-tree T2 hangs from node p or node q. The arc (k, l) has one endpoint in T1 and
the other in T2. As is easy to verify, the conditions π(1) = 0 and cij − π(i) + π(j) = 0 for all
arcs in the new tree imply that the potentials of nodes in the sub-tree T1 remain unchanged,
and the potentials of nodes in the sub-tree T2 change by a constant amount. If k ∈ T1 and
l ∈ T2, then all the node potentials in T2 increase by −cπkl; if l ∈ T1 and k ∈ T2, they increase
by the amount cπkl. Using the thread and depth indices, the method described in Figure 5.11
updates the node potentials quickly.

The final step in the updating of the tree is to re-compute the various tree indices. This
step is rather involved and we refer the reader to the references given in the reference notes
for the details. We do point out, however, that it is possible to update the tree indices in

procedure update-potentials;
begin

if q ∈ T2 then y := q else y := p
if k ∈ T1 then change := −cπkl else change := cπkl;
π(y) := π(y) + change;
z := thread(y);
while depth(z) > depth(y) do
begin

π(z) := π(z) + change;
z := thread(z);

end
end

Figure 5.11 Updating node potentials in a pivot operation.

C5955–C005.tex 139 2015/11/4 8:13pm

140 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

O(n) time. In fact, the time required to update the tree indices is O(|W | + min{|T1|, |T2|},
which is typically much less than n.

5.8.7 Termination

The network simplex algorithm, as just described, moves from one feasible spanning tree
structure to another until it obtains a spanning tree structure that satisfies the optimality
condition (5.23 through 5.27). If each pivot operation in the algorithm is nondegenerate, then
it is easy to show that the algorithm terminates finitely. Recall that |cπkl| is the net decrease
in the cost per unit flow sent around the pivot cycle W . After a nondegenerate pivot (for
which δ > 0), the cost of the new spanning tree structure is δ|cπkl| units less than the cost
of the previous spanning tree structure. Since any network has a finite number of spanning
tree structures and every spanning tree structure has a unique associated cost, the network
simplex algorithm will encounter any spanning tree structure at most once and, hence, will
terminate finitely. Degenerate pivots, however, pose a theoretical difficulty: the algorithm
might not terminate finitely unless we perform pivots carefully. We next discuss a special
implementation, called the strongly feasible spanning tree implementation, which guarantees
finite convergence of the network simplex algorithm even for problems that are degenerate.

5.8.8 Strongly Feasible Spanning Trees

The network simplex algorithm does not necessarily terminate in a finite number of itera-
tions unless we impose some additional restriction on the choice of the entering and leaving
arcs. Very small network examples show that a poor choice leads to cycling, that is, an
infinite repetitive sequence of degenerate pivots. Degeneracy in network problems is not
only a theoretical issue, but also a practical one. Computational studies have shown that as
many as 90% of the pivot operations in commonplace networks can be degenerate. As we
show next, by maintaining a special type of spanning tree called a strongly feasible spanning
tree, the network simplex algorithm terminates finitely; moreover, it runs faster in practice
as well.

Let (T , L, U) be a spanning tree structure for a minimum cost flow problem with integral
data. As before, we conceive of a spanning tree as a tree hanging from the root node. The
tree arcs are either upward pointing (toward the root) or are downward pointing (away from
the root). We now state two alternate definitions of a strongly feasible spanning tree.

1. A spanning tree T is strongly feasible if every tree arc with zero flow is upward pointing
and every tree arc whose flow equals its capacity is downward pointing.

2. A spanning tree T is strongly feasible if we can send a positive amount of flow from
any node to the root along the tree path without violating any flow bound.

If a spanning tree T is strongly feasible, then we also say that the spanning tree structure
(T , L, U) is strongly feasible.

To implement the network simplex algorithm so that it always maintains a strongly
feasible spanning tree, we must first find an initial strongly feasible spanning tree. The
method described earlier in this section for constructing the initial spanning tree structure
always gives such a spanning tree. Note that a nondegenerate spanning tree is always strongly
feasible; a degenerate spanning tree might or might not be strongly feasible. The network
simplex algorithm creates a degenerate spanning tree from a nondegenerate spanning tree
whenever two or more arcs are qualified as leaving arcs and we drop only one of these.
Therefore, the algorithm needs to select the leaving arc carefully so that the next spanning
tree is strongly feasible.

C5955–C005.tex 140 2015/11/4 8:13pm

Minimum Cost Flow Problem � 141

Suppose that we have a strongly feasible spanning tree and, during a pivot operation,
arc (k, l) enters the spanning tree. We first consider the case when (k, l) is a nontree arc at
its lower bound. Suppose W is the pivot cycle formed by adding arc (k, l) to the spanning
tree and that node w is the apex of the cycle W ; that is, w is the first common ancestor of
nodes k and l. We define the orientation of the cycle W as compatible with that of arc (k, l).
After augmenting δ units of flow along the pivot cycle, the algorithm identifies the blocking
arcs, that is, those arcs (i, j) in the cycle that satisfy δij = δ. If the blocking arc is unique,
then we select it to leave the spanning tree. If the cycle contains more than one blocking arc,
then the next spanning tree will be degenerate, that is, some tree arcs will be at their lower
or upper bounds. In this case, the algorithm selects the leaving arc in accordance with the
following rule.

5.8.8.1 Leaving Arc Rule

Select the leaving arc as the last blocking arc encountered in traversing the pivot cycle W
along its orientation starting at the apex w.

To illustrate the leaving arc rule, we consider a numerical example. Figure 5.12 shows a
strongly feasible spanning tree for this example. Let (9, 10) be the entering arc. The pivot
cycle is 10–8–6–4–2–3–5–7–9–10 and the apex is node 2. This pivot is degenerate because
arcs (2, 3) and (7, 5) block any additional flow in the pivot cycle. Traversing the pivot cycle
starting at node 2, we encounter arc (7, 5) later than arc (2, 3); so we select arc (7, 5) as the
leaving arc.

(0, 3)(3, 3)

(3, 4)

(2, 2)

(1, 5)

(2, 3)

(0, 2)

(4, 6)

(3, 6)

Leaving arc

apex w

k l

=

(0, 5)

p

q

=
=

=

=

W1

W2

i

j

(xij, uij)

1

2

3 4

5 6

7 8

9 10

Entering arc

Figure 5.12 Selecting the leaving arc.

C5955–C005.tex 141 2015/11/4 8:13pm

142 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

We show that the leaving arc rule guarantees that in the next spanning tree every node
in the cycle W can send a positive amount of flow to the root node. Let (p, q) be the arc
selected by the leaving arc rule. Let W1 be the segment of the cycle W between the apex w
and arc (p, q) when we traverse the cycle along its orientation. Let W2 = W − W1 − {(p, q)}.
Define the orientation of segments W1 and W2 as compatible with the orientation of W . See
Figure 5.12 for an illustration of the segments W1 and W2. We use the following property
about the nodes in the segment W2.

Property 5.3 Each node in the segment W2 can send a positive amount of flow to the root
in the next spanning tree. �

This observation follows from the fact that arc (p, q) is the last blocking arc in W ;
consequently, no arc in W2 is blocking and every node in this segment can send a positive
amount of flow to the root via node w along the orientation of W2. Note that if the leaving
arc does not satisfy the leaving arc rule, then not all nodes in the segment W2 can send a
positive amount of flow to the root; therefore, the next spanning tree will not be strongly
feasible.

We next focus on the nodes contained in the segment W1.

Property 5.4 Each node in the segment W1 can send a positive amount of flow to the root
in the next spanning tree. �

We prove this observation by considering two cases. If the previous pivot was a nondegenerate
pivot, then the pivot augmented a positive amount of flow δ along the arcs in W1; conse-
quently, after the augmentation, every node in the segment W1 can send a positive amount
of flow back to the root opposite to the orientation of W1 via the apex node w (each node
can send at least δ units to the apex and then at least some of this flow to the root since the
previous spanning tree was strongly feasible). If the previous pivot was a degenerate pivot,
then W1 must be contained in the segment of W between node w and node k because the
property of strong feasibility implies that every node on the path from node l to node w can
send a positive amount of flow to the root before the pivot and, thus, no arc on this path can
be a blocking arc in a degenerate pivot. Now observe that before the pivot, every node in
W1 could send a positive amount of flow to the root, and, therefore, since the pivot does not
change flow values, every node in W1 must be able to send a positive amount of flow to the
root after the pivot as well. This conclusion completes the proof that in the next spanning
tree every node in the cycle W can send a positive amount of flow to the root node.

We next show that in the next spanning tree, nodes not belonging to the cycle W can
also send a positive amount of flow to the root. In the previous spanning tree (before the
augmentation), every node j could send a positive amount of flow to the root and if the tree
path from node j does not pass through the cycle W , then the same path is available to
carry a positive amount of flow in the next spanning tree. If the tree path from node j does
pass through the cycle W , then the segment of this tree path to the cycle W is available to
carry a positive amount of flow in the next spanning tree and once a positive amount of flow
reaches the cycle W , then, as shown earlier, we can send it (or some of it) to the root node.
This conclusion completes the proof that the next spanning tree is strongly feasible.

We now establish the finiteness of the network simplex algorithm. Since we have previ-
ously shown that each nondegenerate pivot strictly decreases the objective function value,
the number of nondegenerate pivots is finite. The algorithm can, however, also perform
degenerate pivots. We will show that the number of successive degenerate pivots between
any two nondegenerate pivots is finitely bounded. Suppose arc (k, l) enters the spanning tree
at its lower bound and in doing so it defines a degenerate pivot. In this case, the leaving
arc belongs to the tree path from node k to the apex w. Now observe from the section on

C5955–C005.tex 142 2015/11/4 8:13pm

Minimum Cost Flow Problem � 143

updating node potentials that node k lies in the sub-tree T2 and the potentials of all nodes in
T2 change by an amount −cp

kl. Since cp
kl < 0, this degenerate pivot strictly decreases the sum

of all node potentials (which, by our prior assumption, is integral). Since no node potential
can fall below −nC, the number of successive degenerate pivots is finite.

So far we have assumed that the entering arcs are always at their lower bounds. If the
entering arc (k, l) is at its upper bound, then we define the orientation of the cycle W as
opposite to the orientation of arc (k, l). The criteria for selecting the leaving arc remains
unchanged—the leaving arc is the last blocking arc encountered in traversing W along its
orientation starting at the apex w. In this case, node l is contained in the sub-tree T2 and,
thus, after the pivot, the potentials of all the nodes in T2 decrease by the amount cπkl > 0;
consequently, the pivot again decreases the sum of the node potentials.

5.9 CAPACITY-SCALING ALGORITHM

Scaling techniques are among the most effective algorithmic strategies for designing
polynomial time algorithms for the minimum cost flow problem. In this section, we describe
an algorithm based on the capacity scaling technique applied to the pseudopolynomial succes-
sive shortest path algorithm described in Section 5.6. The resulting capacity-scaling algorithm
is a polynomial time algorithm.

The successive shortest path algorithm is one of the fundamental algorithms for solving
the minimum cost flow problem. An inherent drawback of this algorithm is that its augmen-
tations might carry relatively small amounts of flow, resulting in a fairly large number of
augmentations in the worst-case. By incorporating a scaling technique, the capacity-scaling
algorithm described in this section guarantees that each augmentation carries sufficiently
large flow and thereby reduces the number of augmentations substantially. This method
permits us to improve the worst-case algorithmic performance from O(nU · S(n, m, C)) to
O(m log U ·S(n, m, C)). (Recall that U is an upper bound on the largest supply/demand and
the largest capacity in the network and S(n, m, C) is the time required to solve a shortest
path problem with n nodes, m arcs, and nonnegative arc costs whose values are no more
than C). This algorithm not only improves upon the algorithmic performance of the suc-
cessive shortest path algorithm, but also illustrates how small changes in an algorithm can
produce significant algorithmic improvements (at least in the worst case).

The capacity-scaling algorithm applies to the general capacitated minimum cost flow
problem. It uses a pseudoflow x and imbalances e(i) as defined in Section 5.6. The algo-
rithm maintains a pseudoflow satisfying the reduced cost optimality conditions and gradually
converts this pseudoflow into a flow by identifying shortest paths from nodes with excesses to
nodes with deficits and augmenting flows along these paths. It performs a number of scaling
phases for different values of a parameter ∆. We refer to a scaling phase with a specific
value of ∆ as the ∆-scaling phase. Initially, ∆ = 2⌊log U⌋. The algorithm ensures that in the
∆-scaling phase each augmentation carries exactly ∆ units of flow. When it is not possible
to do so because no node has an excess of at least ∆ or no node has a deficit of at least ∆,
the algorithm reduces the value of ∆ by a factor of 2 and repeats the process. Eventually,
∆ = 1 and at the end of this scaling phase, the solution becomes a flow. This flow must be
an optimal flow because it satisfies the reduced cost optimality conditions.

For a given value of ∆, we define two sets S(∆) and T (∆) as follows: (1) S(∆) =
{i : e(i) ≥ ∆}, and T (∆) = {i : e(i) ≤ −∆}. In the ∆-scaling phase, each augmentation
must start at a node in S(∆) and end at a node in T (∆). Moreover, the augmentation must
take place on a path along which every arc has residual capacity of at least ∆. Therefore,
we introduce another definition: the ∆-residual network G(x, ∆) is the sub-graph of G(x)
consisting of those arcs whose residual capacity is at least ∆. In the ∆-scaling phase, the
algorithm augments flow from a node in S(∆) to a node in T (∆) along a shortest path in

C5955–C005.tex 143 2015/11/4 8:13pm

144 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

algorithm capacity scaling;
begin

x := 0, π := 0;
∆ := 2⌊log U⌋;
while ∆ ≥ 1
begin {∆-scaling phase}

for every arc (i, j) in the residual network G(x) do
if rij ≥ ∆ and cπij < 0 then send rij units of flow along (i, j), update x and
the imbalances e(.);
S(∆) := {i ∈ N : e(i) ≥ ∆};
T (∆) := {ı ∈ N : e(i) ≤ −∆};
while S(∆) ̸= ϕ and T (∆) ̸= ϕ do
begin

select a node k ∈ S(∆) and a node l ∈ T (∆);
determine shortest path distances d(.) from node k to all other nodes in
the ∆-residual network G(x, ∆) with respect to the reduced costs cπij ;
let P denote a shortest path from node k to node l in G(x, ∆);
update π := π − d;
augment ∆ units of flow along the path P ;
update x, S(∆), T (∆) and G(x, ∆);

end
∆ := ∆/2;

end
end

Figure 5.13 Capacity-scaling algorithm.

G(x, ∆). The algorithm satisfies the property that every arc in G(x, ∆) satisfies the reduced
cost optimality condition; those arcs in G(x) but not in G(x, ∆) might violate this optimality
condition. Figure 5.13 presents an algorithmic description of the capacity-scaling algorithm.

To establish the correctness of the capacity-scaling algorithm, observe that the 2∆-scaling
phase ends when S(2∆) = ϕ or T (2∆) = ϕ. At that point, either e(i) < 2∆ for all i ∈ N
or e(i) > −2∆ for all i ∈ N . These conditions imply that the sum of the excesses (whose
magnitude equals the sum of deficits) is bounded by 2n∆. At the beginning of the ∆-scaling
phase, the algorithm first checks whether all the arcs (i, j) in the ∆-residual network satisfy
the reduced cost optimality condition cπij ≥ 0. The arcs introduced in the ∆-residual network
at the beginning of the ∆-scaling phase (i.e., those arcs (i, j) for which ∆ ≤ rij < 2∆) might
not satisfy the optimality condition (since, conceivably cπij < 0). Therefore, the algorithm
immediately saturates those arcs (i, j) so that they drop out of the residual network; since
the reversal of each of these arcs (j, i) satisfies the condition cπji = −cπij > 0, they satisfy the
optimality condition. Notice that because rij < 2∆, saturating any such arc (i, j) changes
the imbalance of its end points by at most 2∆. As a result, after we have saturated all
the arcs violating the reduced cost optimality condition, the sum of the excesses is at most
2n∆ + 2m∆ = 2(n + m)∆.

In the ∆-scaling phase, each augmentation starts at a node k ∈ S(∆), terminates at a
node l ∈ T (∆), and carries at least ∆ units of flow. Note that Assumption 5.4 implies that
the ∆-residual network contains a directed path from node k to node l, so we always succeed
in identifying a shortest path from node k to node l. Augmenting flow along a shortest path in
G(x, ∆) preserves the property that every arc satisfies the reduced cost optimality condition

C5955–C005.tex 144 2015/11/4 8:13pm

Minimum Cost Flow Problem � 145

(see Section 5.6). When either S(∆) or T (∆) is empty, the ∆-scaling phase ends. At this
point, we divide ∆ by a factor of 2 and start a new scaling phase. Within O(log U) scaling
phases, ∆ = 1, and by the integrality of data, every node imbalance will be zero at the end
of this phase. In this phase, G(x, ∆) ≡ G(x) and every arc in the residual network satisfies
the reduced cost optimality condition. Consequently, the algorithm will obtain a minimum
cost flow at the end of this scaling phase.

As we have seen, the capacity-scaling algorithm is easy to state. Similarly, it is easy to
analyze its running time. We have noted previously that in the ∆-scaling phase the sum of
the excesses is bounded by 2(n+m)∆. Since each augmentation in this phase carries at least
∆ units of flow from a node in S(∆) to a node in T (∆), each augmentation reduces the sum
of the excesses by at least ∆ units. Therefore, a scaling phase can perform at most 2(n + m)
augmentations. Since we need to solve a shortest path problem to identify each augmenting
path, we have established the following result.

Theorem 5.13 The capacity-scaling algorithm solves the minimum cost flow problem in
O(m log U S(n, m, C)) time. �

Further Reading

In this section, we present reference notes on the topics covered in this chapter and also other
progress made in minimum cost flows. This discussion has three objectives: (1) to review the
important theoretical contributions in each topic, (2) to point out the interrelationships
among different algorithms, and (3) to comment on the empirical aspects of the algorithms.

The minimum cost flow problem has a rich history. The classical transportation problem,
a simple case of the minimum cost flow problem, was posed and solved (though incompletely)
by Kantorovich [1], Hitchcock [2], and Koopmans [3]. Dantzig [4] developed the first complete
solution procedure for the transportation problem by specializing his simplex algorithm for
linear programming. He observed the spanning tree property of the basis and the integrality
property of the optimal solution. Later, his development of the upper bounding techniques
for linear programming led to an efficient specialization of the simplex algorithm for the
minimum cost flow problem. Dantzig’s book [5] discusses these topics.

Ford and Fulkerson [6,7] suggested the first combinatorial algorithms for the uncapaci-
tated and capacitated transportation problem; these algorithms are known as primal-dual
algorithms. Ford and Fulkerson [8] later generalized this approach for solving the minimum
cost flow problem. Jewell [9], Iri [10], and Busaker and Gowen [11] independently developed
the successive shortest path algorithm. These researchers showed how to solve the mini-
mum cost flow problem as a sequence of shortest path problems with arbitrary arc lengths.
Tomizava [12] and Edmonds and Karp [13] independently observed that if the computations
use node potentials, then it is possible to implement these algorithms so that the shortest
path problems have nonnegative arc lengths.

Minty [14] and Fulkerson [15] independently developed the out-of-kilter algorithm.
Aashtiani and Magnanti [16] have described an efficient implementation of this algorithm.
The cycle canceling algorithm is credited to Klein [17]. Three special implementations of the
cycle canceling algorithms run in polynomial-time: the first, due to Barahona and Tardos
[18] (which, in turn, modifies an algorithm by Weintraub [19]), augments flow along (neg-
ative) cycles with the maximum possible improvement; the second, due to Goldberg and
Tarjan [20], augments flow along minimum mean cost (negative) cycles; and the third, due
to Wallacher and Zimmermann [21], augments flow along minimum ratio cycles.

Zadeh [22,23] described families of minimum cost flow problems on which each of several
algorithms—the cycle canceling algorithm, the successive shortest path algorithm, the primal-
dual algorithm, and the out-of-kilter algorithm—perform an exponential number of iterations.

C5955–C005.tex 145 2015/11/4 8:13pm

146 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The fact that the same families of networks are bad for many network algorithms suggests an
interrelationship among the algorithms. The insightful paper by Zadeh [24] points out that
each of the algorithms we have just mentioned are indeed equivalent in the sense that they
perform the same sequence of augmentations, which they obtained through shortest path
computations, provided that we initialize them properly and break ties using the same rule.

The network simplex algorithm gained its current popularity in the early 1970s when
the research community began to develop and test algorithms using efficient tree indices.
Johnson [25] suggested the first tree-manipulating data structure for implementing the sim-
plex algorithm. Srinivasan and Thompson [26] and Glover et al. [27] implemented these ideas;
these investigations found the network simplex algorithm to be substantially faster than the
existing codes that implemented the primal-dual and out-of-kilter algorithms. Subsequent
research has been focused on designing improved tree indices and determining the best pivot
rule. Glover et al. [28], Bradley et al. [29], and Barr et al. [30] subsequently discovered
improved data structures. The book by Kennington and Helgason [31] is an excellent source
for references and background concerning these developments. The book by Bazaraa et al.
[32] also describes a method for updating tree indices.

Researchers have conducted extensive studies to determine the most effective pricing
strategy; that is, selection of the entering variable. These studies show that the choice of
pricing strategy has a significant effect on both the solution time and the number of pivots
required to solve minimum cost flow problems. The candidate list strategy we described is
due to Mulvey [33]. Goldfarb and Reid [34], Bradley et al. [29], Grigoriadis and Hsu [35],
Gibby et al. [36], and Grigoriadis [37] described other pivot selection strategies that have been
effective in practice. In a recent development, Sokkalingam et al. [38] considered a new pivot
selection rule based on minimum cost-to-penalty ratio. This method gives rise to efficient
primal simplex algorithms for shortest path and assignment problems.

Experience with solving large-scale minimum cost flow problems has established that for
certain classes of problems, more than 90% of the pivots in the network simplex algorithm
can be degenerate (see Bradley et al. [29], Gavish et al. [39], and Grigoriadis [37]). Thus,
degeneracy is a computational as well as theoretical issue. The strongly feasible spanning
tree technique, proposed by Cunningham [40], and independently by Barr et al. [41–43]
has contributed on both fronts. Computational experiences have shown that maintaining a
strongly feasible spanning tree basis substantially reduces the number of degenerate pivots.
On the theoretical front, the use of this technique led to a finitely converging primal simplex
algorithm. Orlin [44] showed, using a perturbation technique, that for integer data an imple-
mentation of the primal simplex algorithm that maintains a strongly feasible basis performs
O(nmCU) pivots when used with any arbitrary pricing strategy and O(nmC log(mCU))
pivots when used with Dantzig’s pricing strategy.

The strongly feasible spanning tree technique prevents cycling during a sequence of con-
secutive degenerate pivots, but the number of consecutive degenerate pivots can be exponen-
tial. This phenomenon is known as stalling. Cunningham [45] described an example of stalling
and suggested several rules for selecting the entering variable to avoid stalling. One such rule
is the LRC (least recently considered) rule, which orders the arcs in an arbitrary but fixed
manner. The algorithm then examines arcs in the wrap-around fashion, each iteration starting
at the place where it left off earlier, and introduces the first eligible arc into the basis. Cun-
ningham showed that this rule admits at most nm consecutive degenerate pivots. Goldfarb
et al. [46] have described more anti-stalling pivot rules for the minimum cost flow problem.

Orlin [47] developed a polynomial-time dual simplex algorithm; this algorithm per-
forms O(n3 log n) pivots for the uncapacitated minimum cost flow problem. Tarjan [48] and
Goldfarb and Hao [49] have described polynomial-time implementations of a variant of the
network simplex algorithm that permits pivots to increase value of the objective function.

C5955–C005.tex 146 2015/11/4 8:13pm

Minimum Cost Flow Problem � 147

A monotone polynomial-time implementation, in which the value of the objective function
is nonincreasing, remained elusive to researchers until Orlin [50] settled this long-standing
open problem by developing an O(min(n2m log nC, n2m2 log n)) time algorithm. They intro-
duce a pseudopolynomial variant of the network simplex algorithm called the pre-multiplier
algorithm and then develop a cost-scaling version of the pre-multiplier algorithm that solves
the minimum cost flow problem in O(min(nm log nC,nm2 log n)) pivots. They also showed
that the average time per pivot is O(n), using simple data structures. Tarjan [51] further
reduced the time per pivot to O(log n) using dynamic trees as search trees via Euler tours.

A number of empirical studies have extensively tested minimum cost flow algorithms for a
wide variety of network structures, data distributions, and problem sizes. The most common
problem generator is NETGEN, due to Klingman et al. [52], which is capable of generating
assignment, capacitated or uncapacitated transportation, and minimum cost flow problems.
Glover et al. [53] and Aashtiani and Magnanti [16] have tested the primal-dual and the out-
of-kilter algorithms. Helgason and Kennington [54] and Armstrong et al. [55] have reported
on extensive studies of the dual simplex algorithm. The primal simplex has been the subject
of more rigorous investigation; studies conducted by Glover et al. [27,53], Bradley et al. [29],
Mulvey [56], Grigoriadis and Hsu [35], and Grigoriadis [37] are noteworthy. Bertsekas and
Tseng [57] presented computational results for the relaxation algorithm.

Bertsekas [58] suggested the relaxation algorithm for the minimum cost flow problems
with integer data. Bertsekas and Tseng [59] developed the relaxation algorithm and conducted
extensive computational investigations of it. The relaxation approach maintains a pseudoflow
satisfying the optimality conditions. The algorithm operates so that each change in node
potentials increases the dual objective function value and when it determines the optimal-
dual objective function values, it has also obtained an optimal primal solution. A Fortran
code of the relaxation algorithm appears in Bertsekas and Tseng [57]. Their study and ones
conducted by Grigoriadis [37] and Kennington and Wang [60] indicate that the relaxation
algorithm and the network simplex algorithm are the two fastest available algorithms for
solving the minimum cost flow problem in practice. Previous computational studies con-
ducted by Glover et al. [53] and Bradley et al. [29] have indicated that the network simplex
algorithm is consistently superior to the primal-dual and out-of-kilter algorithms. Most of
this computational testing has been done on random network flow problems generated by
the well-known computer program NETGEN, suggested by Klingman et al. [52].

Polynomial Time Algorithms

Researchers have actively pursued the design of fast weakly polynomial and strongly poly-
nomial time algorithms for the minimum cost flow problem. Recall that an algorithm is
strongly polynomial time if its running time is polynomial in the number of nodes and
arcs and does not involve terms containing logarithms of C and U . Table 5.1 summarizes
these theoretical developments in solving the minimum cost flow problem. Ahuja et al.
[61–63] and Goldberg et al. [64] provide more details concerning the development of this
field.

The table reports running times for networks with n nodes and m arcs, m′ of which are
capacitated. It assumes that the integral cost coefficients are bounded in absolute value by C,
and the integral capacities, supplies, and demands are bounded in absolute value by U . The
term S(.) is the running time for the shortest path problem and the term M(.) represents
the corresponding running time to solve a maximum flow problem.

Most of the available (combinatorial) polynomial time algorithms for the minimum cost
flow problems use scaling techniques. Edmonds and Karp [13] introduced the scaling approach

C5955–C005.tex 147 2015/11/4 8:13pm

148 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

TABLE 5.1 Polynomial Time Algorithms for the Minimum Cost Flow Problem

S.No Developers Running Time
Polynomial time combinatorial algorithms
1 Edmonds and Karp [13] O((n + m′) log U S(n, m, C))
2 Rock [65] O((n + m′) log U S(n, m, C))
3 Rock [65] O(n log C M(n, m, U))
4 Bland and Jensen [66] O(n log C M(n, m, U))
5 Goldberg and Tarjan [67] O(nm log(n2/m) log nC)
6 Bertsekas and Eckstein [68] O(n3 log nC)
7 Goldberg and Tarjan [67] O(n3 log nC)
8 Gabow and Tarjan [69] O(nm log n log U log nC)
9 Goldberg and Tarjan [67,20] O(nm log n log nC)
10 Ahuja et al. [70] O(nm(log U/ log log U) log nC) and

O(nm log log U log nC)
11 Orlin [50] O(min(n2m log nC, n2m2 log n))
12 Goldfarb and Zhiying [71] O(m(m + n log n) log (B/(m + n)))

Strongly polynomial-time combinatorial algorithms
1 Tardos [72] O(m4)
2 Orlin [47] O((n + m′)2S(n, m))
3 Fujishige [73] O((n + m′)2S(n, m))
4 Galil and Tardos [74] O(n3 log n S(n, m))
5 Goldberg and Tarjan [67] O(nm2 log n log(n2/m))
6 Goldberg and Tarjan [20] O(nm2 log2 n)
7 Orlin [75] O((n + m′) log n S(n, m))

and obtained the first weakly polynomial time algorithm for the minimum cost flow problem.
This algorithm used the capacity scaling technique. Rock [65] and, independently, Bland and
Jensen [66] suggested a cost scaling technique for the minimum cost flow problem. This
approach solves the minimum cost flow problem as a sequence of O(n log C) maximum flow
problems. Orlin [75] developed the capacity-scaling algorithm presented in Section 5.9, which
is a variant of Edmonds and Karp’s capacity-scaling algorithm. Goldfarb and Zhiying [71]
more recently developed a polynomial time algorithm based on Edmond and Karp’s capacity
scaling and Orlin’s capacity-scaling algorithm. Scaling techniques yield many of the best
(in the worst case) available minimum cost flow algorithms.

The pseudoflow push algorithms for the minimum cost flow problem use the concept
of approximate optimality, introduced independently by Bertsekas [76] and Tardos [72].
Bertsekas [77] developed the first pseudoflow push algorithm. This algorithm was
pseudopolynomial-time. Goldberg and Tarjan [67] used a scaling technique on a variant
of this algorithm to obtain the generic pseudoflow push algorithm. Tarjan [78] proposed a
wave algorithm for the maximum flow problem. The wave implementation of the minimum
cost flow problem, which was developed independently by Goldberg and Tarjan [67] and
Bertsekas and Eckstein [68], relies upon similar ideas. Using a dynamic tree data structure
in the generic pseudoflow push algorithm, Goldberg and Tarjan [67] obtained a compu-
tational time bound of O(nm log n log nC). They also showed that the minimum cost
flow problem can be solved using O(n log nC) blocking flow computations. Using both
finger tree (see Mehlhorn [79]) and dynamic tree data structures, Goldberg and Tarjan
[67] obtained an O(nm log(n2/m) log nC) bound for the wave implementation. Gold-
berg [80] proposed several heuristics to further improve the real-life performance of this
method.

C5955–C005.tex 148 2015/11/4 8:13pm

Minimum Cost Flow Problem � 149

These algorithms, except the wave algorithm, require sophisticated data structures that
impose a very high computational overhead. Although the wave algorithm is very practical,
its worst-case running time is not very attractive. This situation prompted researchers to
investigate the possibility of improving the computational complexity of minimum cost flow
algorithms without using any complex data structures. The first success in this direction was
due to Gabow and Tarjan [69], who developed a triple scaling algorithm running in O(nm log
n log U log nC) time. The second success was due to Ahuja et al. [70], who developed a double
scaling algorithm. The double scaling algorithm runs in O(nm log U log nC) time. Scaling
costs by an appropriately large factor improves the algorithm to O(nm(log U/log log U)
log nC), and a dynamic tree implementation improves the bound further to O(nm log log U
log nC). For problems satisfying the similarity assumptions, the double scaling algorithm is
faster than all other algorithms for all but very dense networks; in these instances, algorithms
by Goldberg and Tarjan appear more attractive.

Goldberg and Tarjan [20] and Barahona and Tardos [18] have developed other polynomial-
time algorithms. Both algorithms are based on the cycle-canceling algorithm due to Klein
[17]. Goldberg and Tarjan [20] showed that if the cycle-canceling algorithm always augments
flow on a minimum-mean cycle (a cycle W for which

∑
(i,j)∈W cij/|W | is minimum), then it is

strongly polynomial-time. Goldberg and Tarjan described an implementation of this approach
running in time O(nm (log n) min{log nC, m log n}). Barahona and Tardos [18], analyzing an
algorithm suggested by Weintraub [19], showed that if the cycle-canceling algorithm augments
flow along a cycle with maximum improvement in objective function, then it performs O(m
log mCU) iterations. Since identifying a cycle with maximum improvement is difficult (i.e.,
NP-hard), they describe a method based on solving an auxiliary assignment problem to
determine a set of disjoint augmenting cycles with the property that augmenting flows along
these cycles improves the flow cost by at least as much as augmenting flow along any single
cycle. Their algorithm runs in O(m2 log(mCU)S(n, m, C)) time. Sokkalingam et al. [81]
developed a scaling version of the cycle-canceling algorithm that performs O(m log(nU))
iterations and runs in O(m(m + n log n) log (nU)). They showed that this algorithm could
be modified to obtain a strongly polynomial O(m(m + n log n)min{log (nU), m log n})
bound.

Edmonds and Karp [13] proposed the first polynomial time algorithm for the minimum
cost flow problem and also highlighted the desire to develop a strongly polynomial time
algorithm. This desire was motivated primarily by theoretical considerations. (Indeed, in
practice, the terms log C and log U typically range from 1 to 20 and are sub-linear in n.)
Strongly polynomial time algorithms are attractive for at least two reasons: (1) they might
provide, in principle, network flow algorithms that can run on real-valued data as well as
integer-valued data and (2) they might, at a more fundamental level, identify the source of
underlying complexity in solving a problem; that is, are problems more difficult or equally
difficult to solve as the values of the underlying data becomes increasingly larger?

The first strongly polynomial-time minimum cost flow algorithm is due to Tardos [72].
Subsequently, Orlin [47], Fujishige [73], Galil and Tardos [74], Goldberg and Tarjan [20,67],
Orlin [75], Ervolina and McCormick [82], Sokkalingam et al. [81], and Fathabadi and Shirdel
[83] provided other strongly polynomial time algorithms. Currently, the fastest strongly
polynomial time algorithm is due to Orlin [75]. This enhanced capacity-scaling algorithm
solves the minimum cost flow problem as a sequence of O(min(m log U , m log n)) shortest
path problems. Vygen [84] describe a new algorithm for the minimum cost flow problem
that can be regarded as a variation of the enhanced capacity-scaling algorithm. Their algo-
rithm can also be considered a variant of dual network simplex, and they showed that the
best worst-case running time of dual simplex algorithms exceeds the running time of their
algorithm by a factor of n.

C5955–C005.tex 149 2015/11/4 8:13pm

150 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Most of the strongly polynomial-time minimum cost flow algorithms use one of the
following two ideas: fixing arc flows or fixing node potentials. Tardos [72] was the first
investigator to propose the use of either of these ideas (her algorithm fixes arc flows). The
minimum mean cycle-canceling algorithm due to Goldberg and Tarjan [20] also fixes arc
flows. Goldberg and Tarjan [20] also presented several variants of the minimum mean cycle
algorithm with improved worst-case complexity. Orlin [47] and Fujishige [73] independently
developed the idea of fixing node potentials, which is the dual of fixing arc flows. Using this
idea, Goldberg et al. [64] obtained the repeated capacity-scaling algorithm. The enhanced
capacity-scaling algorithm achieves the best strongly polynomial-time to solve the minimum
cost flow problem and is due to Orlin [75].

Interior point linear programming algorithms are another source of polynomial time
algorithms for the minimum cost flow problem. Kapoor and Vaidya [85] have shown that
Karmarkar’s [86] algorithm, when applied to the minimum cost flow problem performs
O(n2.5mK) operations, where K = log n + log C + log U . Vaidya [87] suggested another algo-
rithm for linear programming that solves the minimum cost flow problem in O(n2.5m0.5K)
time. Asymptotically, these bounds are worse than that of the double scaling algorithm.

Currently, the best available theoretical time bound for the minimum cost flow problem is
O(min {nm log(n2/m log(nC)), nm (log log U) log(nC), (m log n) (m + n log n)}); the three
bounds in this expression are, respectively, due to Goldberg and Tarjan [67], Ahuja et al.
[70], and Orlin [75].

References

[1] L. V. Kantorovich, Mathematical methods in the organization and planning of pro-
duction, Publication House of the Leningrad University, Translated in Manage. Sci., 6
(1939) (1960), 366–422.

[2] F. L. Hitchcock, The distribution of a product from several sources to numerous facilities,
J. Math. Phy., 20 (1941), 224–230.

[3] T. C. Koopmans, Optimum utilization of the transportation system, In Proc. Int. Stat.
Conf., Washington, DC. Also in Econometrica, 17 (1947) (1949).

[4] G. B. Dantzig, Application of the simplex method to a transportation problem, In
Activity analysis and production and allocation, T. C. Koopmans, editor, John Wiley &
Sons, New York, 1951, 359–373.

[5] G. B. Dantzig, Linear programming and extensions, Princeton University Press, Prince-
ton, NJ, 1962.

[6] L. R. Ford and D. R. Fulkerson, Solving the transportation problem, Manage. Sci., 3
(1956), 24–32.

[7] L. R. Ford and D. R. Fulkerson, A primal-dual algorithm for the capacitated Hitchcock
problem, Nav. Res. Log. Quart., 4 (1957), 47–54.

[8] L. R. Ford and D. R. Fulkerson, Flows in networks. Princeton University Press, Prince-
ton, NJ, 1962.

[9] W. S. Jewell, Optimal flow through networks. Interim Technical Report No. 8, Operations
Research Center, MIT, Cambridge, MA, 1958.

[10] M. Iri, A new method of solving transportation-network problems, J. Oper. Res. Soc.
Japan, 3 (1960), 27–87.

C5955–C005.tex 150 2015/11/4 8:13pm

Minimum Cost Flow Problem � 151

[11] R. G. Busaker and P. J. Gowen, A procedure for determining minimal-cost network flow
patterns, O. R. O. Technical Report No. 15, Operational Research Office, John Hopkins
University, Baltimore, MD, 1961.

[12] N. Tomizava, On some techniques useful for solution of transportation network problems,
Netw., 1 (1972), 173–194.

[13] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for
network flow problems, J. ACM, 19 (1972), 248–264.

[14] G. J. Minty, Monotone networks, Proc. R. Soc. London, 257A (1960), 194–212.

[15] D. R. Fulkerson, An out-of-kilter method for minimal cost flow problems, SIAM J. Appl.
Math., 9 (1961), 18–27.

[16] H. A. Aashtiani and T. L. Magnanti, Implementing primal-dual network flow algo-
rithms. Technical Report OR 055–76, Operations Research Center, MIT, Cambridge,
MA, 1976.

[17] M. Klein, A primal method for minimal cost flows, Manage. Sci., 14 (1967), 205–220.

[18] F. Barahona and E. Tardos, Note on Weintraub’s minimum cost circulation algorithm,
SIAM J. Comput., 18 (1989), 579–583.

[19] A. Weintraub, A primal algorithm to solve network flow problems with convex costs,
Manage. Sci., 21 (1974), 87–97.

[20] A. V. Goldberg and R. E. Tarjan, Finding minimum-cost circulations by canceling neg-
ative cycles, Proc. 20th ACM Symp. Theory Comput., 388–397. Full paper in J. ACM,
36 (1988), 873–886.

[21] C. Wallacher and U. Zimmermann, A combinatorial interior point method for network
flow problems, Math. Prog., 56 (1992), 321–335.

[22] N. Zadeh, A bad network problem for the simplex method and other minimum cost flow
algorithms, Math. Prog. 5 (1973a), 255–266.

[23] N. Zadeh, More pathological examples for network flow problems, Math. Prog., 5
(1973b), 217–224.

[24] N. Zadeh, Near equivalence of network flow algorithms. Technical Report No. 26,
Department of Operations Research, Stanford University, Stanford, CA, 1979.

[25] E. L. Johnson, Networks and basic solutions, Oper. Res., 14 (1966), 619–624.

[26] V. Srinivasan and G. L. Thompson, Benefit-cost analysis of coding techniques for primal
transportation algorithm, J. ACM, 20 (1973), 194–213.

[27] F. Glover, D. Karney, D. Klingman and A. Napier, A computational study on start
procedures, basis change criteria, and solution algorithms for transportation problem,
Manage. Sci., 20 (1974), 793–813.

[28] F. Glover, D. Klingman and J. Stutz Augmented threaded index for network optimiza-
tion, INFOR, 12 (1974), 293–298.

[29] G. Bradley, G. Brown and G. Graves, Design and implementation of large scale primal
transshipment algorithms, Manage. Sci., 21 (1977), 1–38.

C5955–C005.tex 151 2015/11/4 8:13pm

152 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[30] R. Barr, F. Glover and D. Klingman, Enhancement of spanning tree labeling procedures
for network optimization, INFOR, 17 (1979), 16–34.

[31] J. L. Kennington and R. V. Helgason Algorithms for network programming, Wiley-
Interscience, New York, 1980.

[32] M. S. Bazaraa, J. J. Jarvis and H. D. Sherali, Linear programming and network flows.
Second Edition, John Wiley & Sons, New York, 1990.

[33] J. Mulvey, Pivot strategies for primal-simplex network codes, J. ACM, 25 (1978a),
266–270.

[34] D. Goldfarb and J. K. Reid, A practicable steepest edge simplex algorithm, Math. Prog.,
12 (1977), 361–371.

[35] M. D. Grigoriadis and Y. Hsu, The Rutgers minimum cost network flow subroutines,
SIGMAP Bull. ACM, 26 (1979), 17–18.

[36] D. Gibby, F. Glover, D. Klingman and M. Mead, A comparison of pivot selection rules
for primal simplex based network codes, Oper. Res. Lett. 2 (1983), 199–202.

[37] M. D. Grigoriadis, An efficient implementation of the network simplex method, Math.
Prog. Stud., 26 (1986), 83–111.

[38] P. T. Sokkalingam, R. K. Ahuja and P. Sharma, A new pivot selection rule for the
network simplex algorithm, Math. Prog., 78 (1997), 149–158.

[39] B. Gavish, P. Schweitzer and E. Shilfer, The zero pivot phenomenon in transportation
problems and its computational implications, Math. Prog., 12 (1977), 226–240.

[40] W. H. Cunningham, A network simplex method, Math. Prog., 11 (1976), 105–116.

[41] R. Barr, F. Glover and D. Klingman, The alternative path basis algorithm for the
assignment problem, Math. Prog., 12 (1977a), 1–13.

[42] R. Barr, F. Glover and D. Klingman, A network augmenting path basis algorithm for
transshipment problems, Proc. Int. Symp. Extremal Methods Sys. Anal. (1977b).

[43] R. Barr, F. Glover and D. Klingman, Generalized alternating path algorithms for trans-
portation problems, Eur. J. Oper. Res., 2 (1978), 137–144.

[44] J. B. Orlin, On the simplex algorithm for networks and generalized networks, Math.
Prog. Stud., 24 (1985), 166–178.

[45] W. H. Cunningham, Theoretical properties of the network simplex method, Math. Oper.
Res., 4 (1979), 196–208.

[46] D. Goldfarb, J. Hao and S. Kai, Anti-stalling pivot rules for the network simplex algo-
rithm, Networks, 20 (1990), 79–91.

[47] J. B. Orlin, Genuinely polynomial simplex and non-simplex algorithms for the minimum
cost flow problem, Technical Report No. 1615–84, Sloan School of Management, MIT,
Cambridge, MA, 1984.

[48] R. E. Tarjan, Efficiency of the primal network simplex algorithm for the minimum-cost
circulation problem, Math. Oper. Res., 16 (1991), 272–291.

C5955–C005.tex 152 2015/11/4 8:13pm

Minimum Cost Flow Problem � 153

[49] D. Goldfarb and J. Hao, Polynomial-time primal simplex algorithms for the minimum
cost network flow problem, Algorithmica, 8 (1992), 145–160.

[50] J. B. Orlin, A polynomial time primal simplex algorithm for minimum cost flows, Math.
Prog., 78 (1997), 109–129.

[51] R. E. Tarjan, Dynamic trees as search trees via Euler tours, applied to the network
simplex algorithm, Math. Prog., 78 (1997), 169–177.

[52] D. Klingman, A. Napier and J. Stutz, NETGEN: A program for generating large scale
capacitated assignment, transportation, and minimum cost flow network problems, Man-
age. Sci., 20 (1974), 814–821.

[53] F. Glover, D. Karney and D. Klingman, Implementation and computational comparisons
of primal, dual and primal-dual computer codes for minimum cost network flow problem,
Netw., 4 (1974), 191–212.

[54] R. V. Helgason and J. L. Kennington, An efficient procedure for implementing a dual-
simplex network flow algorithm, AIIE Trans., 9 (1977), 63–68.

[55] R. D. Armstrong, D. Klingman and D. Whitman, Implementation and analysis of a
variant of the dual method for the capacitated transshipment problem, Eur. J. Oper.
Res., 4 (1980), 403–420.

[56] J. Mulvey, Testing a large-scale network optimization problem, Math. Prog., 15 (1978b),
291–314.

[57] D. P. Bertsekas and P. Tseng, Relaxation methods for minimum cost ordinary and
generalized network flow problems, Oper. Res., 36 (1988b), 93–114.

[58] D. P. Bertsekas, A unified framework for primal-dual methods in minimum cost network
flow problems, Math. Prog., 32 (1985), 125–145.

[59] D. P. Bertsekas and P. Tseng, The relax codes for linear minimum cost network flow
problems FORTRAN Codes for Network Optimization, B. Simeone, P. Toth, G. Gallo,
F. Maffioli and S. Pallottino, editors, Ann. Oper. Res., 13 (1988a), 125–190.

[60] J. L. Kennington and Z. Wang, The shortest augmenting path algorithm for the trans-
portation problem, Technical Report 90–CSE–10. Southern Methodist University, Dal-
las, TX, 1990.

[61] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network flows. In Handbooks in Operations
Research and Management Science. Vol. 1: Optimization, G. L. Nemhauser, A. H. G.
Rinnooy Kan and M. J. Todd, editors, North-Holland, Amsterdam, the Netherlands,
211–369, 1989.

[62] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Some recent advances in network flows,
SIAM Rev., 33 (1991), 175–219.

[63] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network flows: Theory, algorithms, and
applications. Prentice Hall, Upper Saddle River, NJ, 1993.

[64] A. V. Goldberg, E. Tardos and R. E. Tarjan, Network flow algorithms, Technical Report
No. 860, School of Operations Research and Industrial Engineering, Cornell University,
Ithaca, NY, 1989.

C5955–C005.tex 153 2015/11/4 8:13pm

154 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[65] H. Rock, Scaling techniques for minimal cost network flows. In Discrete Structures and
Algorithms, V. Page, editor, Carl Hansen, Munich, Germany, 181–191, 1980.

[66] R. G. Bland and D. L. Jensen, On the computational behavior of a polynomial-time
network flow algorithm, Math. Prog., 54 (1985), 1–39.

[67] A. V. Goldberg and R. E. Tarjan, Solving minimum cost flow problem by successive
approximation, Math. Oper. Res., 15 (1990), 430–466.

[68] D. P. Bertsekas and J. Eckstein, Dual coordinate step methods for linear network flow
problems, Math. Prog. B, 42 (1988), 203–243.

[69] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for network problems, SIAM
J. Comput., 18 (1989), 1013–1036.

[70] R. K. Ahuja, A. V. Goldberg, J. B. Orlin and R. E. Tarjan, Finding minimum-cost flows
by double scaling, Math. Prog., 53 (1992), 243–266.

[71] D. Goldfarb and J. Zhiying A new scaling algorithm for the minimum cost network flow
problem, Oper. Res. Lett., 25 (1999), 205–211.

[72] E. Tardos, A strongly polynomial minimum cost circulation algorithm, Combinatorica,
5 (1985), 247–255.

[73] S. Fujishige, An O(m3log n) capacity-rounding algorithm for the minimum cost circula-
tion problem: A dual framework of Tardos’ algorithm, Math. Prog., 35 (1986), 298–309.

[74] Z. Galil and E. Tardos, An O(n2(m+nlog n)log n) min-cost flow algorithm, J. ACM, 35
(1987), 374–386.

[75] J. B. Orlin, A faster strongly polynomial minimum cost flow algorithm, Oper. Res., 41
(1993), 377–387.

[76] D. P. Bertsekas, A distributed algorithm for the assignment problem, Ann. Oper. Res.,
14 (1979), 105–123.

[77] D. P. Bertsekas, Distributed relaxation methods for linear network flow problems, Proc.
25th IEEE Conf. Decis. Control, Athens, Greece, 1986.

[78] R. E. Tarjan, A simple version of Karzanov’s blocking flow algorithm, Oper. Res. Lett.,
2 (1984), 265–268.

[79] K. Mehlhorn, Data structures and algorithms, Vol. I: Searching and sorting. Springer-
Verlag, New York, 1984.

[80] A. V. Goldberg, An efficient implementation of a scaling minimum-cost flow algorithm.
Journal of Algorithms, 22 (1997), 1–29.

[81] P. T. Sokkalingam, R. K. Ahuja and J. B. Orlin, New polynomial-time cycle-canceling
algorithms for minimum-cost flows, Networks, 36 (2000), 53–63.

[82] T. R. Ervolina and S. T. McCormick, Two strongly polynomial cut canceling algorithms
for minimum cost network flow, Discrete Appl. Math., 46 (1993), 133–165.

[83] H. S. Fathabadi and G. H. Shirdel, An O(nm2) time algorithm for solving minimal cost
network flow problems, Asia-Pacific J. Oper. Res., 20 (2003), 161–175.

C5955–C005.tex 154 2015/11/4 8:13pm

Minimum Cost Flow Problem � 155

[84] J. Vygen, On dual minimum cost flow algorithms, Math. Methods Oper. Res., 56 (2002),
101–126.

[85] S. Kapoor and P. Vaidya, Fast algorithms for convex quadratic programming and mul-
ticommodity flows, Proc. 18th ACM Symp. Theor. Comput., 147–159, 1986.

[86] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinator-
ica, 4 (1984), 373–395.

[87] P. Vaidya, An algorithm for linear programming which requires O(((m + n)n2 + (m +
n)1.5n)L) arithmetic operations, Proc. 19th ACM Symp. Theor. Comput., 29–38, 1987.

C5955–C005.tex 155 2015/11/4 8:13pm

C H A P T E R 6

Multicommodity Flows
Balachandran Vaidyanathan

Ravindra K. Ahuja

James B. Orlin

Thomas L. Magnanti

CONTENTS

6.1 Introduction . 157
6.1.1 Assumptions . 158

6.2 Applications . 159
6.2.1 Application 1: Routing of Multiple Commodities . 160

6.2.1.1 Communication Networks . 160
6.2.1.2 Railroad Transportation Networks . 160
6.2.1.3 Distribution Networks . 160

6.2.2 Application 2: Multivehicle Tanker Scheduling . 160
6.3 Optimality Conditions . 161

6.3.1 Multicommodity Flow Complementary Slackness Conditions 162
6.4 Lagrangian Relaxation . 163
6.5 Dantzig-Wolfe Decomposition . 164

6.5.1 Reformulation with Path Flows . 165
6.5.2 Optimality Conditions . 165
6.5.3 Path Flow Complementary Slackness Conditions . 166

6.6 Resource-Directive Decomposition . 167

6.1 INTRODUCTION

The multicommodity flow problem is a generalization of the minimum cost flow problem,
described in Chapter 5. Multicommodity flow problems are frequently encountered in sev-
eral application domains. In many applications, several physical commodities, vehicles, or
messages, each governed by their own network flow constraints, share the same network. For
example, in telecommunications applications, telephone calls between specific node pairs in an
underlying telephone network, each define a separate commodity, and all these commodities
share common telephone line resources. In this chapter, we study the multicommodity flow
problem, in which individual commodities share common arc capacities. That is, each arc has
a capacity uij that restricts the total flow of all commodities on that arc. The objective

C5955–C006.tex 157 2015/11/4 9:23am

157

158 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

of this problem is to send several commodities that reside at one or more points in a
network (sources or supplies) with arc capacities to one or more points on the network (sinks
or demands), incurring minimum cost. The arc capacities bind the flows of all commodi-
ties together. If the commodities do not interact with each other (common arc capacities
constraints are relaxed), then the multicommodity flow problem can be solved as several
independent single commodity problems using the techniques discussed in Chapter 5. We
now proceed to give the mathematical formulation of this problem.

Let xk
ij denote the flow of commodity k on arc (i, j), and let xk and ck denote the flow

vector and per unit cost vector for commodity k. Using this notation, we can formulate the
multicommodity flow problem as follows:

Minimize
∑

1≤k≤K

ckxk (6.1)

subject to ∑
1≤k≤K

xk
ij ≤ uij , for all (i, j) ∈ A, (6.2)

Nxk = bk, for all k = 1, 2, . . ., K (6.3)

0 ≤ xk
ij ≤ uk

ij , for all (i, j) ∈ A, k = 1, 2, . . ., K (6.4)

This formulation has a collection of K ordinary mass balance constraints (6.3), one modeling
the flow of each commodity k = 1, 2, . . ., K . The bundle constraints (6.4) tie together the
commodities by restricting the total flow of all the commodities on each arc (i, j) to at most
uij . Note that we also impose individual flow bounds uk

ij on the flow of commodity k on
arc (i, j).

6.1.1 Assumptions

Note that the model (6.1 through 6.4) imposes capacities on the arcs but not on the nodes.
This modeling assumption imposes no loss of generality, since by using the node splitting
techniques we can use this formulation to model situations with node capacities as well.
Three other features of the model are worth noting.

Homogeneous goods assumption. We are assuming that every unit flow of each commodity
uses one unit of capacity of each arc. A more general model would permit the flow
of each commodity k to consume a given amount ρk

ij of the capacity (or some other
resource) associated with each arc and would replace the bundle constraint with a more
general resource availability constraint

∑
1≤k≤K ρk

ijx
k
ij ≤ uij . With minor modifications,

the solution techniques that we will be discussing in this chapter apply to this more
general model as well.

No congestion assumption. We are assuming that we have a hard (i.e., fixed) capacity on
each arc and that the cost on each arc is linear in the flow on that arc.

Indivisible goods assumption. The model (6.1 through 6.4) assumes that the flow variables
can be fractional. In some applications encountered in practice, this assumption is
appropriate; in other application contexts, however, the variables must be integer-valued.
In these instances, the model that we are considering might still prove to be useful, since
either the linear programming model might be a good approximation of the integer

C5955–C006.tex 158 2015/11/4 9:23am

Multicommodity Flows � 159

programming model, or we could use the linear programming model as a linear
programming relaxation of the integer program and embed it within a branch and bound
or some other type of enumeration approach.

We note that the integrality of solutions is one very important distinguishing feature between
single and multicommodity flow problems. As we have seen several times in Chapter 5,
one very nice feature of single commodity network flow problems is that they always have
integer solutions whenever the supply/demand and capacity data are integer-valued. For
multicommodity flow problems, however, this is not the case.

The three main approaches to solving multicommodity flow problems are (1) price-
directive decomposition, (2) resource-directive decomposition, and (3) partitioning methods.
Price-directive decomposition methods place Lagrangian multipliers (or prices) on the bun-
dle constraints and bring them into the objective function so that the resulting problem
decomposes into a separate minimum cost flow problem for each commodity k. These meth-
ods remove the capacity constraints and instead charge each commodity for the use of the
capacity of each arc. These methods attempt to find appropriate prices so that some optimal
solution to the resulting pricing problem or Lagrangian sub-problem also solves the overall
multicommodity flow problem. Several methods are available for finding appropriate prices.

Resource-directive decomposition methods view the multicommodity flow problem as a
capacity allocation problem. All the commodities are competing for the fixed capacity uij of
every arc (i, j) of the network. Any optimal solution to the multicommodity flow problem will
prescribe for each commodity a specific flow on each arc (i, j) that is the appropriate capacity
to allocate to that commodity. If we started by allocating these capacities to the commodities
and then solved the resulting (independent) single commodity flow problems, we would be
able to solve the problem quite easily as a set of independent single commodity flow problems.
Resource-directive methods provide a general solution approach for implementing this idea.
They begin by allocating the capacities to the commodities and then use information gleaned
from the solution to the resulting single commodity problems to reallocate the capacities in
a way that improves the overall system cost.

Partitioning methods exploit the fact that the multicommodity flow problem is a specially
structured linear program with embedded network flow problems. As we have seen in Chapter
5, to solve any minimum cost flow problem, we can use the network simplex method, which
works by generating a sequence of improving spanning tree solutions. This observation raises
the following questions: (1) can we adopt a similar approach for solving the multicommodity
flow problem?; and (2) can we somehow use spanning tree solutions for the embedded network
flow constraints Nxk = bk? The partitioning method is a linear programming approach that
permits us to answer both of these questions affirmatively. It maintains a linear programming
basis that is composed of spanning trees of the individual single commodity flow problems
as well as additional arcs that are required to tie these solutions together to accommodate
the bundle constraints.

We next describe some applications of the multicommodity flow problem before dis-
cussing solution techniques in more detail. We describe classical price-directive methods and
resource-directive methods and direct the reader to suitable references for the basis parti-
tioning methods.

6.2 APPLICATIONS

Multicommodity flow problems arise in a wide variety of application contexts. In this section,
we consider some of these applications.

C5955–C006.tex 159 2015/11/4 9:23am

160 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

6.2.1 Application 1: Routing of Multiple Commodities

In many applications of the multicommodity flow problem, we distinguish commodities
because they are different physical goods and/or because they have different points of origin
and destination; that is, either (1) several physically distinct commodities (e.g., different
manufactured goods) share a common network or (2) a single physical good (e.g., messages
or products) flows on a network, but the good has multiple points of origin and destination
defined by different pairs of nodes in the network that need to send the good to each other.
This second type of application arises frequently in problem contexts such as communication
systems or distribution/transportation systems. In this section, we briefly introduce several
application domains of both types.

6.2.1.1 Communication Networks

In a communication network, nodes represent origin and destination stations for messages,
and arcs represent transmission lines. Messages between different pairs of nodes define distinct
commodities; the supply and demand for each commodity is the number of messages to be
sent between the origin and destination nodes of that commodity. Each transmission line has
a fixed capacity (in some applications the capacity of each arc is fixed; in others, we might
be able to increase the capacity at a certain cost per unit). In this network, the problem of
determining the minimum cost routing of messages is a multicommodity flow problem.

6.2.1.2 Railroad Transportation Networks

In a rail network, nodes represent yard and junction points and arcs represent track sections
between the yards. The demand is measured by the number of cars (or, any other equivalent
measure of tonnage) to be loaded on any train. Since the system incurs different costs for dif-
ferent goods, we divide traffic demand into different classes. Each commodity in this network
corresponds to a particular class of demand between a particular origin-destination pair. The
bundle capacity of each arc is the number of cars that we can load on the trains that are
scheduled to be dispatched on that arc (over some period of time). The decision problem in
this network is to meet the demands of cars at the minimum possible operating cost.

6.2.1.3 Distribution Networks

In distribution systems planning, we wish to distribute multiple (nonhomogeneous) products
from plants to retailers using a fleet of trucks or railcars and using a variety of railheads
and warehouses. The products define the commodities of the multicommodity flow problem,
and the joint capacities of the plants, warehouses, rail yards, and the shipping lanes define
the bundle constraints. Note that this application has important bundle constraints imposed
upon the nodes (plants, warehouses) as well as the arcs.

6.2.2 Application 2: Multivehicle Tanker Scheduling

Suppose we wish to determine the optimal routing of fuel oil tankers required to achieve a
prescribed schedule of deliveries: each delivery is a shipment of some commodity from a point
of supply to a point of demand with a given delivery date. In the simplest form, this problem
considers a single product (e.g., aviation gasoline or crude oil) to be delivered by a single
type of tanker. The multivehicle tanker scheduling problem considers the scheduling and
routing of a fixed fleet of nonhomogeneous tankers to meet a pre-specified set of shipments
of multiple products. The tankers differ in their speeds, carrying capabilities, and operating
costs.

C5955–C006.tex 160 2015/11/4 9:23am

Multicommodity Flows � 161

s1

j

k

i

l t

Tanker

origin nodes

Delivery arc

Delivery arc

In-service arc

Out-of-service arc

In
-s

er
vi

ce
 a

rc

In-service arc

In-service arc

Out-of-service arc

s2

Figure 6.1 Multivehicle tanker scheduling problem.

To formulate the multivehicle tanker scheduling problem as a multicommodity flow prob-
lem, we let the different commodities correspond to different tanker types. Each distinct
type of tanker originates at a unique source node sk. This network has four types of arcs (see
Figure 6.1 for a partial example with two tankers types): in-service, out-of-service, delivery,
and return arcs. An in-service arc corresponds to the initial employment of a tanker type; the
cost of this arc is the cost of deploying the tanker at the origin of the shipment. Similarly, an
out-of-service arc corresponds to the removal of the tanker from service. A delivery arc (i, j)
represents a shipment from origin i to destination j; the cost ck

ij of this arc is the operating
cost of carrying the shipment by a tanker of type k. A return arc (j, k) denotes the movement
(backhaul) of an empty tanker, with an appropriate cost, between two consecutive shipments
(i, j) and (k, l).

Each arc in the network has a capacity of one. The shipment arcs have a bundle capacity
ensuring that at most one tanker type services that arc. Each shipment arc also has a lower
flow bound of one unit, which ensures that the chosen schedule does indeed deliver the
shipment. Some arcs might also have commodity-based capacities uk

ij . For instance, if tanker
type 2 is not capable of handling the shipment on arc (i, j), then we set u2

ij = 0. Moreover,
if tanker type 2 can use the return arc (j, k), but the tanker type 1 cannot (because it is too
slow to make the connection between shipments), then we set u1

jk = 0.
In the multivehicle tanker scheduling problem, we are interested in integer solutions

of the multicommodity flow problem. The solutions obtained by the multicommodity flow
algorithms to be described in this chapter need not be integral. Nevertheless, the fractional
solution might be useful in several ways. For example, we might be able to convert the
nonintegral solution into a (possibly, sub-optimal) integral solution by minor tinkering or,
as we have noted earlier, we might use the nonintegral solution as a bound in solving the
integer-valued problem by a branch and bound enumeration procedure.

6.3 OPTIMALITY CONDITIONS

For this discussion, we assume that the flow variables xk
ij have no individual flow bounds;

that is, each uk
ij = +∞ in the formulation (6.1 through 6.4). Since the multicommodity

flow problem is a linear program, we can use linear programming optimality conditions to
characterize optimal solutions to the problem. Since the linear programming formulation
(6.1 through 6.4) of the problem has one bundle constraint for every arc (i, j) of the network
and one mass balance constraint for each node-commodity combination, the dual linear
program has two types of dual variables: a price wij on each arc (i, j) and a node potential
πk(i) for each combination of commodity k and node i. Using these dual variables, we define
the reduced cost cπ,k

ij of arc (i, j) with respect to commodity k as follows:

cπ,k
ij = ck

ij + wij − πk(i) + πk(j).

C5955–C006.tex 161 2015/11/4 9:23am

162 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

In the matrix notation, this definition is cπ,k = ck + w − πkN .
Note that if we consider a fixed commodity k, this reduced cost is similar to the reduced

cost that we have used in Chapter 5 for the minimum cost flow problem; the difference is
that we now add the arc price wij to the arc cost ck

ij . Note that just as the bundle constraints
provided a linkage between the otherwise independent commodity flow variables xk

ij , the
arc prices wij provide a linkage between the otherwise independent commodity reduced
costs. Linear programming duality theory permits us to characterize optimal solutions to the
multicommodity flow problem.

We first write the dual of the multicommodity flow problem (6.1 through 6.4) as follows:

Maximize−
∑

(i,j)∈A

uijwij +
K∑

k=1
bkπk

subject to

cπ,k
ij = ck

ij + wij − πk(i) + πk(j) ≥ 0 for all (i, j) ∈ A, k = 1, . . ., K

wij ≥ 0 for all (i, j) ∈ A.

The optimality conditions for linear programming are called the complementary slackness
(optimality) conditions and state that a primal feasible solution x and a dual feasible solution
(w,πk) are optimal to the respective problems if and only if the product of each primal
(dual) variable and the slack in the corresponding dual (primal) constraint is zero. The
complementary slackness conditions for the primal-dual pair of the multicommodity flow
problem are as follows.

6.3.1 Multicommodity Flow Complementary Slackness Conditions

The commodity flows yk
ij are optimal in the multicommodity flow problem (6.1 through 6.4)

with each uk
ij = +∞ if and only if they are feasible and for some choice of arc prices wij and

node potentials πk(i), the reduced costs and arc flows satisfy the following complementary
slackness conditions:

a. wij

(
K∑

k=1
yk

ij − uij

)
= 0 for all arcs (i, j) ∈ A. (6.5)

b. cπ,k
ij ≥ 0 for all (i, j) ∈ A and all k = 1, . . ., K. (6.6)

c. cπ,k
ij yk

ij = 0 for all (i, j) ∈ A and k = 1, . . ., K. (6.7)

We refer to any set of arc prices and node potentials that satisfy the complementary slackness
conditions as optimal arc prices and optimal node potentials. The following theorem shows
the connection between the multicommodity and single commodity flow problems.

Theorem 6.1 (Partial dualization result) Let yk
ij be optimal flows and let wij be optimal

arc prices for the multicommodity flow problem (6.1 through 6.4). Then for each commodity
k, the flow variables yk

ij for (i, j) ∈ A solve the following (uncapacitated) minimum cost flow
problem:

Minimize

 ∑
(i,j)∈A

(ck
ij + wij)xk

ij : Nxk = bk, xk
ij ≥ 0 for all (i, j) ∈ A

 (6.8)

C5955–C006.tex 162 2015/11/4 9:23am

Multicommodity Flows � 163

Proof. Since yk
ij are optimal flows and wij are optimal arc prices for the multicommodity

flow problem (6.1), these variables together with some set of node potentials πk(i) satisfy the
complementary slackness condition (6.5). Now notice that the conditions (6.6) and (6.7) are
the optimality conditions for the uncapacitated minimum cost flow problem for commodity
k with arc costs as ck

ij + wij (see Chapter 5, condition (5.3)). This observation implies that
the flows yk

ij solve the corresponding minimum cost flow problems.

This property shows that we can use a sequential approach for obtaining optimal arc prices
and node potentials: we first find optimal arc prices and then attempt to find the optimal
node potentials and flows by solving the single commodity minimum cost flow problems. In
the next few sections, we use this observation to develop and assess algorithms for solving
the multicommodity flow problem.

6.4 LAGRANGIAN RELAXATION

Lagrangian relaxation is a general solution strategy for solving mathematical programs that
permits us to decompose problems to exploit their special structure. This solution approach
is perfectly tailored for solving many problems with embedded network structure. The
multicommodity flow problem is one such problem.

Lagrangian relaxation works by moving hard constraints into the objective function and
penalizing their violation. In the multicommodity flow problem, the complicating constraints
are the bundle arc capacity constraints (6.2). Therefore, to apply Lagrangian relaxation to
the multicommodity flow problem, we associate nonnegative Lagrange multipliers wij with
the bundle constraints (6.2), creating the following Lagrangian sub-problem:

L(w) = min
∑

1≤k≤K

ckxk +
∑

(i,j)∈A

wij

 ∑
1≤k≤K

xk
ij − uij

 (6.9)

Or, equivalently,

L(w) = min
∑

1≤k≤K

∑
(i,j)∈A

(
ck

ij + wij

)
xk

ij −
∑

(i,j)∈A

wijuij (6.10)

subject to

Nxk = bk for all k = 1, . . ., K, (6.11)
xk

ij ≥ 0 for all (i, j) ∈ A and all k = 1, . . ., K (6.12)

Note that since the second term in the objective function of the Lagrangian sub-problem is
a constant for any given choice of the Lagrange multipliers, we can ignore it. The resulting
objective function for the Lagrangian sub-problem has a cost of ck

ij +wij associated with every
flow variable xk

ij . Since none of the constraints in this problem contains the flow variables
for more than one of the commodities, the problem decomposes into separate minimum cost
flow problems, one for each commodity.

For any value of Lagrange multipliers w, it can be shown that L(w) is a lower bound on
the optimal objective function of the original problem. Hence, to obtain the tightest possible
lower bound, we need to solve the following optimization problem, which is referred to as the
Lagrangian multiplier problem:

L∗ = maxw L(w)

The values w for which L(w) = L∗ are called the optimal Lagrange multipliers.

C5955–C006.tex 163 2015/11/4 9:23am

164 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The following theorem, relating Lagrangian relaxation and linear programming, which
we state without proof, is the basis of our solution methodology for the multicommodity flow
problem.

Theorem 6.2 Suppose we apply the Lagrangian relaxation technique to a linear program-
ming problem. Then the optimal value L∗ of the Lagrangian multiplier problem equals the
optimal objective function value of the linear programming problem. �

Lagrangian relaxation is a price-directive decomposition method to solve the multicommod-
ity flow problem. From Theorem 6.2, it follows that by solving the Lagrangian multiplier
problem, we obtain the optimal solution to the corresponding linear programming problem.
Sub-gradient optimization is a commonly used method to solve Lagrangian multiplier prob-
lem. This works in the following method. We alternately do the following: (1) solve a set of
minimum cost flow problems (for a fixed value of the Lagrange multipliers w) with the cost
coefficients ck

ij + wij and (2) update the multipliers. In this case, if yk
ij denotes the optimal

solution to the kth minimum cost flow sub-problem when the Lagrange multipliers have the
value wq

ij at the qth iteration, the sub-gradient update formula can be written as

wq+1
ij =

wq
ij + θq

 ∑
1≤k≤K

yk
ij − uij

+

.

In this expression, the notation [α]+ denotes the positive part of α; that is, max (α, 0). θq is
a step size specifying how far we move from the current solution wq

ij . Note that this update
formula either increases the multiplier wq

ij on arc (i, j) by the amount
∑

1≤k≤K yk
ij−uij if the

sub-problem solutions yk
ij use more than the available capacity uij of that arc or it reduces

the Lagrange multiplier of arc (i, j) by the amount uij −
∑

1≤k≤K yk
ij if the sub-problem

solutions yk
ij use less than the available capacity of that arc. If, however, the decrease would

cause the multiplier wq+1
ij to become negative, then we reduce its value only to value zero. It

can be proved that on a suitable choice of step size θq, the sub-gradient method converges
in a finite number of steps to the optimal solution.

In the next section, we consider an alternate solution approach, known as Dantzig-Wolfe
decomposition, for solving the Lagrangian multiplier problem. This approach requires con-
siderably more work at each iteration for updating the Lagrange multipliers (the solution
of a linear program) but has proved to converge faster than the sub-gradient optimization
procedure for several classes of problems. Rather than describing the Dantzig-Wolfe decom-
position procedure as a variant of Lagrangian relaxation, we will develop it from an alternate
large-scale linear programming viewpoint that provides a somewhat different perspective on
the approach.

6.5 DANTZIG-WOLFE DECOMPOSITION

To simplify our discussion in this section, we consider a special case of the multicommodity
flow problem: we assume that each commodity k has a single source node sk and a single sink
node tk, and a flow requirement of dk units between these source and sink nodes. We also
assume that we impose no flow bounds on the individual commodities other than the bundle
constraints. Therefore, for each commodity k, the sub-problem constraints Nxk = bk, xk ≥ 0
define a shortest path problem: for this model, for any choice wij of the Lagrange multipliers
for the bundle constraints, the Lagrangian relaxation requires the solution of a series of
shortest path problems, one for each commodity.

C5955–C006.tex 164 2015/11/4 9:23am

Multicommodity Flows � 165

6.5.1 Reformulation with Path Flows

To simplify our discussion even further, let us assume that the cost of every cycle W in
the underlying network is nonnegative for every commodity. If we impose this nonnegative
cycle cost condition, then in some optimal solution to the problem, the flow on every cycle
is zero and so we can eliminate the cycle flow variables. Therefore, throughout this section,
we assume that we can represent any potentially optimal solution as the sum of flows on
directed paths.

For each commodity k, let Pk denote the collection of all directed paths from the source
node sk to the sink node tk in the underlying network G = (N, A). In the path flow formu-
lation, each decision variable f(P) is the flow on some path P , and for the kth commodity,
we define this variable for every directed path P in Pk.

Let δij(P) be an arc-path indicator variable; that is, δij(P) equals 1 if arc (i, j) is con-
tained in the path P and is 0 otherwise. Then, the flow decomposition theorem of network
flows states that we can always decompose some optimal arc flow xk

ij into path flows f(P)
as follows:

xk
ij =

∑
p∈P k

δij(P)f(P)

By substituting the path variables in the multicommodity flow formulation, we obtain the
following equivalent path flow formulation:

Minimize
∑

1≤k≤K

∑
P ∈P k

ck(P)f(P) (6.13)

subject to ∑
1≤k≤K

∑
P ∈P k

δij(P)f(P) ≤ uij for all (i, j) ∈ A, (6.14)

∑
P ∈P k

f(P) = dk for all k = 1, . . ., K, (6.15)

f(P) ≥ 0 for all k = 1, . . ., K and all P ∈ P k. (6.16)

Note that the path flow formulation of the multicommodity flow problem has a very simple
constraint structure. The problem has a single constraint for each arc (i, j), which states
the sum of the path flows passing through the arc is at most uij , the capacity of the arc.
Further, the problem has a single constraint (6.15) for each commodity k, which states that
the total flow on all the paths connecting the source node sk and sink node tk of commodity
k must equal the demand dk for this commodity. For a network with n nodes, m arcs, and
K commodities, the path flow formulation contains m + K constraints (in addition to the
nonnegativity restrictions imposed on the path flow values).

6.5.2 Optimality Conditions

The revised simplex method of linear programming maintains a basis at every step, and using
this basis determines a vector of simplex multipliers for the constraints. Since the path flow
formulation (6.13) contains one bundle constraint for each arc and one demand constraint
(6.15) for every commodity, the dual linear program has a dual variable wij for each arc and
another dual variable σk for each commodity k = 1, 2, . . ., K. With respect to these dual
variables, the reduced cost cσ,w

P for each path flow variable f(P) is

cσ,w
P = ck(P) +

∑
(i,j)∈P

wij − σk

The complimentary slackness conditions (6.5 through 6.8) is discussed elaborately in the
following section.

C5955–C006.tex 165 2015/11/4 9:23am

166 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

6.5.3 Path Flow Complementary Slackness Conditions

The commodity path flows f(P) are optimal in the path flow formulation (6.13 through
6.16) of the multicommodity flow problem if and only if we can find (nonnegative) arc prices
wij and commodity prices σk so that the reduced costs and arc flows satisfy the following
complementary slackness conditions:

a. wij

 ∑
1≤k≤K

∑
P ∈P k

δij(P)f(P)− uij

 = 0 for all (i, j) ∈ A. (6.17)

b. cσ,w
P ≥ 0 for all k = 1, . . ., K and all P ∈ P k. (6.18)

c. cσ,w
P f(P) = 0 for all k = 1, . . ., K and all P ∈ P k. (6.19)

The Dantzig-Wolfe’s decomposition method works in the following manner. Imagine that
K different decision makers as well as one coordinator are solving the K-commodity flow
problem. The coordinator’s job is to solve the path formulation (6.13 through 6.16) of the
problem, which we refer to as the master or coordinating problem. In general, the coordinator
has on hand only a subset of the columns of the master problem. Since the coordinator can,
at best, solve the linear program as restricted to this subset of columns, we refer to this
smaller linear program as the restricted master problem. Each of these K decision makers
plays a special role in solving the problem. The K decision makers, with guidance from
the coordinator in the form of arc prices, generate entering variables or columns, with the
kth decision maker generating the columns of the master problem corresponding to the kth
commodity.

The path formulation of the multicommodity flow problem has m + K constraints:
(1) one for each commodity k, specifying that the flow of commodity k is dk and (2) one
for each arc (i, j), specifying that the total flow on that arc is at most uij . The coordinator
solves the restricted master problem to optimality using any linear programming technique,
such as the simplex algorithm, and then needs to determine whether the solution to the re-
stricted master is optimal for the original problem, or if some another column has a negative
reduced cost and can enter the basis. To this end, the coordinator broadcasts the optimal set
of simplex multipliers (or prices) of the restricted master problem; that is, broadcasts an arc
price wij associated with arc (i, j) and a path length σk associated with each commodity k.

After the coordinator has broadcast the prices, the decision maker for commodity k
determines the least cost way of shipping dk units from the source node sk to the sink node
tk of commodity k, assuming that each arc (i, j) has an associated toll of wij in addition
to its arc cost ck

ij . If the cost of this shortest path is less than σk, this would imply that
the corresponding reduced cost cσ,w

P is negative; then the kth decision maker will report this
solution to the coordinator as an improving solution, and the decision variable corresponding
to this path becomes a candidate to enter the basis. If the cost of this path equals σk, then the
kth decision maker need not report anything to the coordinator. (The cost will never be less
than σk because the current solution is optimal to the restricted master problem, and, hence,
the coordinator is already using some path of cost σk for the kth commodity in the current
solution.) The algorithm terminates when no decision maker finds a candidate path to enter
the basis (complementary slackness conditions (6.17) are satisfied). Note that to price out
the columns for commodity k, we need to solve the following shortest path sub-problem:

Minimize
∑

(i,j)∈A

(ck
ij + wij)xk

ij

C5955–C006.tex 166 2015/11/4 9:23am

Multicommodity Flows � 167

subject to
Nxk = bk

xk ≥ 0

By solving this sub-problem, we generate the entering variable columns dynamically and em-
ploy the popular column generation technique that is used to solve large linear programming
problems. Also, notice that the K sub-problems correspond to the relaxed Lagrangian prob-
lem with a multiplier of wij imposed upon each arc (i, j). Consequently, we could view the
coordinator as setting the Lagrange multipliers and solving the Lagrangian multiplier prob-
lem. In fact, Dantzig-Wolfe decomposition is an efficient method for solving the Lagrangian
multiplier problem if we measure efficiency by the number of iterations an algorithm performs.
Unfortunately, in applying Dantzig-Wolfe decomposition, at each iteration the coordinator
must solve a linear program with m + K constraints, and this update step for the simplex
multipliers is very expensive. It is far more time consuming to solve a linear program than to
update the multipliers using sub-gradient optimization. Because each multiplier update for
Dantzig-Wolfe decomposition is so expensive computationally, the Dantzig-Wolfe decomposi-
tion method has generally not proven to be an efficient method for solving the multicommod-
ity flow problem; nevertheless, Dantzig-Wolfe decomposition has one important advantage
that distinguishes it from other Lagrangian-based algorithms. It can be shown that the solu-
tion to the sub-problems provides us with a lower bound on the optimal value of the problem.
Consequently, at each step we also have a bound on how far the current feasible solution is
from optimal. Therefore, we can terminate the algorithm at any step not only with a feasible
solution, but also with a guarantee of how far that solution is from optimality.

6.6 RESOURCE-DIRECTIVE DECOMPOSITION

Lagrangian relaxation and Dantzig-Wolfe decomposition are price-directive methods that
decompose the multicommodity flow problem into single commodity network flow problems
by placing tolls or prices on the complicating bundle constraints. The resource-directive
method that we consider in this section takes a different approach. Instead of using prices to
decompose the problem, it allocates the joint bundle capacity of each arc to the individual
commodities. When applied to the problem formulation (6.1), the resource-directive approach
allocates rk

ij ≤ uk
ij units of the bundle capacity uij of arc (i, j) to commodity k, producing

the following resource-directive problem.

z = min
∑

1≤k≤k
ckxk (6.20)

subject to ∑
1≤k≤K

rk
ij ≤ uij for all (i, j) ∈ A, (6.21)

Nxk = bk for k = 1, . . ., K, (6.22)
0 ≤ xk

ij ≤ rk
ij for all (i, j) ∈ A and all k = 1, . . ., K. (6.23)

Note that the constraint (6.21) ensures that the total resource allocation for arc (i, j) does
not exceed that arc’s bundle capacity. Let r = (rk

ij) denote the vector of resource allocations.
We now make the following elementary observations about the problem.

Property 6.1 The resource-directive problem (6.20 through 6.23) is equivalent to the origi-
nal multicommodity flow problem (6.1) in the sense that (i) if (x, r) is feasible in the resource-
directive problem, then x is feasible for the original problem and has the same objective

C5955–C006.tex 167 2015/11/4 9:23am

168 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

function value and (ii) if x is feasible in the original problem and we set r = x, then (x, r)
is feasible and has the same objective function value in the resource-directive problem. �

Now consider the following sequential approach for solving the resource-directive problem
(6.20). Instead of solving the problem by choosing the vectors r and x simultaneously, let us
choose them sequentially. We first fix the resource allocations rk

ij and then choose the flows
xk

ij . Let z(r) denote the optimal value of the resource-directive problem for a fixed value of
the resource allocation r and consider the following derived resource-allocation problem:

Minimize z(r) (6.24)

subject to ∑
1≤k≤K

rk
ij ≤ uij for all (i, j) ∈ A, (6.25)

0 ≤ rk
ij ≤ uk

ij for all (i, j) ∈ A and all k = 1, . . ., K. (6.26)

The objective function z(r) for this problem is complicated. We know its value only implicitly
as the solution of an optimization problem in the flow variables xk

ij . Moreover, note that for
any fixed value of the resource variables rk

ij , the resource-directive problem decomposes into
a separate network flow sub-problem for each commodity. That is, z(r) =

∑
k∈K zk(rk) with

the value zk(rk) of the kth sub-problem given by

zk(xk) = min ckxk (6.27)

subject to

Nxk = bk for all k = 1, . . ., K, (6.28)
0 ≤ xk

ij ≤ rk
ij for all (i, j) ∈ A and all k = 1, . . ., K. (6.29)

We now make the following observation establishing the relationship between the resource-
allocation and the resource-planning problem.

Property 6.2 The resource-directive problem (6.20) is equivalent to the resource-allocation
problem (6.24) in the sense that (1) if (x, r) is feasible in the resource-directive problem, then
r is feasible in the resource-allocation problem and z(r) ≤ cx, and (ii) if r is feasible in the
resource-allocation problem, then for some vector x, (x, r) is feasible in the original problem
and cx = z(r). �

Let us pause to consider the implications of Properties 6.1 and 6.2. They imply that rather
than solving the multicommodity flow problem directly, we can decompose it into a resource-
allocation problem with a very simple constraint structure with a single inequality constraint,
but with a complex objective function z(r). Although the overall structure of the objective
function is complicated, it is easy to evaluate: to find its value for any choice of the resource-
allocation vector r, we need merely to solve K single commodity flow problems.

Another way to view the objective function z(r) is as the cost of the linear program (6.20)
as a function of the right-hand side parameters r. That is, any value r for the allocation vector
defines the values of right-hand side parameters for this linear program. A well-known result
in linear programming shows us that the function has a special form. We state this result for
a general linear programming problem that contains the multicommodity flow problem as a
special case.

C5955–C006.tex 168 2015/11/4 9:23am

Multicommodity Flows � 169

Property 6.3 Let r denote the set of allocations for which the linear program minimize
{cx : A x = b, 0 ≤ x ≤ r} is feasible. Let z(r) denote the value of this linear program as
a function of right-hand side parameter r. The objective function z(r) is a piecewise linear
convex function of r.

Proof. To establish convexity of z(r), we need to show that if r and r̂ are any two values of
the parameter r for which the given linear program is feasible and θ is any scalar, 0 ≤ θ ≤ 1,
then z(θr + (1 − θ)r̂) ≤ θz(r) + (1 − θ)r̂. Let y and ŷ be optimal solutions to the linear
program for the parameter choices r = r and r = r̂. Note that Ay = b, Aŷ = b, y ≤ r,
and ŷ ≤ r̂. But then A(θy + (1 − θ)ŷ) = b and, hence, θy + (1 − θ)ŷ ≤ θr + (1 − θ)r̂.
Therefore, the vector θy + (1 − θ)ŷ is feasible for the linear program with the parameter
vector r = θr + (1− θ)r̂, and so the optimal objective function value for this problem is at
most c(θy +(1−θ)ŷ). Moreover, by our choice of y and ŷ, z(r) = cy and z(r̂) = cŷ; therefore,

z(θr + (1− θ)r̂) ≤ c(θy + (1− θ)ŷ) = θz(r) + (1− θ)z(r̂)

and so z(r) is a convex function.
The piecewise linearity of z(r) follows from the optimal basis property of linear programs.

That is, for any choice of the parameter r, the problem has a basic feasible optimal solution,
and this basic feasible solution remains optimal for all values of r for which it remains
feasible. Moreover, the objective function value of the linear program is linear in r for any
given (optimal) basis. �
A number of algorithmic approaches are available for solving the resource-directive models
that we have introduced in this section. Since the function z(r) is nondifferentiable (because it
is piecewise linear), we cannot use gradient methods from nonlinear programming to solve the
resource-allocation problem. We could, instead, use several other approaches. For example, we
could search for local improvement in z(r) using a heuristic method. As one such possibility,
we could use an arc-at-a-time approach by adding 1 to rk′

pq and subtracting 1 from rk′′

pq for
some arc (p, q) for two commodities k′ and k′′, choosing the arc and commodities at each step
using some criterion (e.g., the choices that give the greatest decrease in the objective function
value at each step). This approach is easy to implement but does not ensure convergence to
an optimal solution. Note that we can view this approach as changing the resource allocation
at each step using the formula r ← r + θγ with a step length of θ = 1 and a movement
direction of γ = γk

ij given by γk′

pq = 1, γk′′

pq = −1, and γk
ij = 0 for all other arc commodity

combinations. Borrowing ideas from sub-gradient optimization, however, we could use an
optimization approach by choosing the movement direction γ as a sub-gradient corresponding
to the resource-allocation r. A natural approach would be to search for a sub-gradient or
movement direction γ and step length θ that simultaneously maintains feasibility and ensures
convergence to an optimal solution r of the resource-allocation problem (6.24 through 6.26).
Since the scope of this discussion is purely mathematical and not related to network flows,
we do not delve into details here but instead direct the reader to suitable references in the
references section.

Further Reading

Researchers have proposed a number of basic approaches for solving the multicommodity flow
problem. The following are the three basic approaches, all based upon exploiting network
flow substructure, that we have mentioned in this chapter and selected references: (1) price-
directive decomposition algorithm [1–7]; (2) resource-directive decomposition algorithm
[4,8,9]; and (3) basis partitioning [10–12]. Ford and Fulkerson [13] and Tomlin [14] first sug-
gested the column generation approach. The first of these papers was the forerunner to the

C5955–C006.tex 169 2015/11/4 9:23am

170 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

general Dantzig and Wolfe [15] decomposition procedure of mathematical programming. The
excellent survey papers by Assad [16] and by Kennington [17] describe all of these algorithms
and several standard properties of multicommodity flow problems. The book by Kennington
and Helgason [11] and the doctoral dissertation by Schneur [18] are other valuable references
on this topic.

Most of the material discussed in this chapter is classical and dates from the 1960s and
1970s. Many of the standard properties of multicommodity flows (e.g., nonintegrality of op-
timal flows), are due to Fulkerson [19], Hu [20], and Sakarovitch [21]. The decomposition
methods that we have considered in this chapter extend to other situations as long as we can
represent any solution to a problem as a convex combination of other particularly simple solu-
tions; in the text we have used shortest paths as the simple solutions. For some applications,
we might use solutions to knapsack problems as the simple solutions, and in other cases, such
as the general multicommodity flow problem with multiple sources and destinations for each
commodity, the simple solutions might be spanning tree solutions.

Researchers have developed and tested several codes for multicommodity flow problems.
Kennington [17] and Ali et al. [22] have described the results of some of these computational
experiments. These results have suggested that price-directive and partitioning algorithms
are the fastest algorithms for solving multicommodity flow problems. The best multicom-
modity flow codes are 2 to 5 times faster than a general-purpose linear programming code.
Computational experience by Bixby [23] in solving large-scale network flow problems with
side constraints has shown that the simplex method with an advanced starting basis tech-
nique can be very effective computationally.

Interior point algorithms provide another approach for solving multicommodity flow prob-
lems. Although these algorithms yield the only known polynomial-time bounds for these
problems, an efficient and practical implementation of these algorithms has been the subject
of research. The best time bound for the multicommodity flow problem is due to Vaidya
[24]. Tardos’ [25] algorithm solves the multicommodity flow problem in strongly polynomial
time. Vaidya and Kapoor [26] show how to speed up Karmarkar’s linear programming al-
gorithm for the special case of multicommodity flows. Chardaire and Lisser [27] and Castro
[28] developed other interior point methods.

Several researchers have suggested other algorithms for the multicommodity flow prob-
lem: Gersht and Shulman [29], Barnhart [30], Pinar and Zenios [31], Barnhart [32], Barnhart
and Sheffi [33], Farvolden et al. [34], Frangioni and Gallo [35], and Detlefsen and Wallace
[36]. Schneur [18] and Schneur and Orlin [37] studied scaling techniques for the multicom-
modity flow problem. Matsumoto et al. [38] gave a polynomial-time combinatorial algorithm
for solving a multicommodity flow problem in s − t planar networks. Radzig [39] devel-
oped approximation algorithms for the multicommodity flow problem. Barnhart et al. [40]
developed a column generation model and an integer programming based branch-and-price-
and-cut algorithm for integral multicommodity flow problems, and Brunetta et al. [41] inves-
tigated polyhedral approaches and branch-and-cut algorithms for the integral version see also
Assad [58].

Multicommodity network flow models have wide applications in several domains. The
routing of multiple commodities application has been adapted from Golden [42] and Crainic
et al. [43], and the multivehicle tanker scheduling problem from Bellmore et al. [44]. Other
applications are due to Kaplan [45], Evans [46], Geoffrion and Graves [8], Bodin et al. [47],
Assad [4], Korte [48], Gautier and Granot [49], Lin and Yuan [50], Moz and Pato [51], Ouaja
and Richards [52], Ahuja et al. [53], Vaidyanathan et al. [54], Vaidyanathan et al. [55], and
Kumar et al. [56]. The book by Ahuja et al. [57] provides extensive coverage of applications
of network and multicommodity flows.

C5955–C006.tex 170 2015/11/4 9:23am

Multicommodity Flows � 171

References

[1] Cremeans, J.E., R.A. Smith, and G.R. Tyndall. Optimal multicommodity network flows
with resource allocation. Naval Research Logistics Quarterly 17 (1970), 269–280.

[2] Swoveland, C. 1971. Decomposition algorithms for the multi-commodity distribution
problem. Working Paper No. 184, Western Management Science Institute, University of
California, Los Angeles, CA.

[3] Chen, H. and C.G. Dewald. A generalized chain labeling algorithm for solving multi-
commodity flow problems. Computers & Operations Research 1 (1974), 437–465.

[4] Assad, A.A. Models for rail transportation. Transportation Research 14A (1980a),
205–220.

[5] Mamer, J.W. and R.D. McBride. A decomposition-based pricing procedure for large-
scale linear programs: An application to the linear multicommodity flow problem. Man-
agement Science 46 (2000), 693–709.

[6] Holmberg, K. and D. Yuan. A multicommodity network-flow problem with side con-
straints on paths solved by column generation. INFORMS Journal on Computing 15
(2003), 42–57.

[7] Larsson, T. and D. Yuan. An augmented Lagragian algorithm for large scale
multicommodity routing. Computational Optimization and Applications 27 (2004),
187–215.

[8] Goeffrion, A.M. and G.W. Graves. Multicommodity distribution system design by
Benders decomposition. Management Science 20 (1974), 822–844.

[9] Kennington, J.L. and M. Shalaby. An effective subgradient procedure for minimal cost
multicommodity flow problems. Management Science 23 (1977), 994–1004.

[10] Graves, G.W. and R.D. McBride. The factorization approach to large scale linear pro-
gramming. Mathematical Programming 10 (1976), 91–110.

[11] Kennington, J.L. and R.V. Helgason. Algorithms for Network Programming. Wiley-
Interscience, New York, 1980.

[12] Castro, J. and N. Nabona. An implementation of linear and nonlinear multicommodity
network flows. European Journal of Operational Research 92 (1996), 37–53.

[13] Ford, L.R. and D.R. Fulkerson. A suggested computation for maximal multicommodity
network flow. Management Science 5 (1958b), 97–101.

[14] Tomlin, J.A. A linear programming model for the assignment of traffic. Proceedings of
the 3rd Conference of the Australian Road Research Board 3 (1966), 263–271.

[15] Dantzig, G.B. and P. Wolfe. Decomposition principle for linear programs. Operations
Research 8 (1960), 101–111.

[16] Assad, A.A. Multicommodity network flows—A survey. Networks 8 (1978), 37–91.

[17] Kennington, J.L. Survey of linear cost multicommodity network flows. Operations
Research 26 (1978), 209–236.

C5955–C006.tex 171 2015/11/4 9:23am

172 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[18] Schneur, R. Scaling algorithms for multicommodity flow problems and network flow
problems with side constraints. PhD Dissertation, Department of Civil Engineering,
MIT, Cambridge, MA, 1991.

[19] Fulkerson, D.R. Flows in networks. In Recent Advances in Mathematical Programming,
(eds.) R.L. Graves and P. Wolfe, McGraw-Hill, New York, 319–332, 1963.

[20] Hu, T.C. Multi-commodity network flows. Operations Research 11 (1963), 344–360.

[21] Sakarovitch, M. Two commodity network flows and linear programming. Mathematical
Programming 4 (1973), 1–20.

[22] Ali, A.I., D. Barnett, K. Farhangian, J.L. Kennington, B. Patty, B. Shetty,
B. McCarl, and P. Wong. Multicommodity network problems: Applications and compu-
tations. A.I.I.E. Transactions 16 (1984), 127–134.

[23] Bixby, R.E. The simplex method—It keeps getting better. Presented at the 14th In-
ternational Symposium on Mathematical Programming, Amsterdam, the Netherlands,
1991.

[24] Vaidya, P.M. Speeding up linear programming using fast matrix multiplication. In Pro-
ceedings of the 30th Annual Symposium on the Foundations of Computer Science, IEEE,
332–337, 1989.

[25] Tardos, E. A strongly polynomial algorithm to solve combinatorial linear programs.
Operations Research 34 (1986), 250–256.

[26] Vaidya, P.M. and S. Kapoor. Speeding up Karmarkar’s algorithm for multicommodity
flows. Mathematical Programming (Series A) 73 (1996), 111–127.

[27] Chardaire, P. and A. Lisser. Simplex and interior point specialized algorithms for solving
nonoriented multicommodity flow problems. Operations Research 50 (2002), 260–276.

[28] Castro, J. Solving difficult multicommodity problems with a specialized interior-point
algorithm. Annals of Operation Research 124 (2003), 35–48.

[29] Gersht, A. and A. Shulman. A new algorithm for the solution of the minimum cost
multicommodity flow problem. Proceedings of the IEEE Conference on Decision and
Control 26 (1987), 748–758.

[30] Barnhart, C. A network-based primal-dual solution methodology for the multicommod-
ity network flow problem. PhD Dissertation, Department of Civil Engineering, MIT,
Cambridge, MA, 1988.

[31] Pinar, M.C. and S.A. Zenios. Parallel decomposition of multicommodity network flows
using smooth penalty functions. Technical Report 90-12-06, University of Pennsylvania,
Philadelphia, PA, 1990.

[32] Barnhart, C. Dual-ascent methods for large-scale multi-commodity flow problems. Naval
Research Logistics 40 (1993), 305–324.

[33] Barnhart, C. and Y. Sheffi. A network-based primal-dual heuristic for the solution of
multicommodity network flow problems. Transportation Science 27 (1993), 102–117.

C5955–C006.tex 172 2015/11/4 9:23am

Multicommodity Flows � 173

[34] Farvolden, J.M., W.B. Powell, and I.J. Lustig. A primal partitioning solution for the
arc-chain formulation of a multicommodity network flow problem. Operations Research
41 (1993), 669–693.

[35] Frangioni, A. and G. Gallo. A bundle type dual-ascent approach to linear multicom-
modity min-cost flow problems. INFORMS Journal on Computing 11 (1999), 370–393.

[36] Detlefsen, N.K. and S.W. Wallace. The simplex algorithm for multicommodity networks.
Networks 39 (2002), 15–28.

[37] Schneur, R. and J.B. Orlin. A scaling algorithm for multicommodity flow problems.
Operations Research 46 (1998), 231–246.

[38] Matsumoto, K., T. Nishizeki, and N. Saito. An efficient algorithm for finding multicom-
modity flows in planar networks. SIAM Journal on Computing 14 (1985), 289–302.

[39] Radzig, T. Fast deterministic approximation for the multicommodity flow problem.
Mathematical Programming 78 (1997), 43–58.

[40] Barnhart, C., C.A. Hane, and P.H. Vance. Using branch-and-price-and-cut to solve
origin-destination integer multicommodity flow problems. Operations Research 48
(2000), 318–326.

[41] Brunetta, L., M. Conforti, and M. Fischetti. A polyhedral approach to an integer mul-
ticommodity flow problem. Discrete Applied Mathematics 101 (2000), 13–36.

[42] Golden, B.L. A minimum cost multicommodity network flow problem concerning im-
ports and exports. Networks 5 (1975), 331–356.

[43] Crainic, T., J.A. Ferland, and J.M. Rousseau. A tactical planning model for rail freight
transportation. Transportation Science 18 (1984), 165–184.

[44] Bellmore, M., G. Bennington, and S. Lubore. A multivehicle tanker scheduling problem.
Transportation Science 5 (1971), 36–47.

[45] Kaplan, S. Readiness and the optimal redeployment of resources. Naval Research Logis-
tics Quarterly 20 (1973), 625–638.

[46] Evans, J.R. Some network flow models and heuristics for multiproduct production and
inventory planning. A.I.I.E. Transactions 9 (1977), 75–81.

[47] Bodin, L.D., B.L. Golden, A.D. Schuster, and W. Rowing. A model for the blockings of
trains. Transportation Research 14B (1980), 115–120.

[48] Korte, B. Applications of combinatorial optimization. Technical Report No. 88541-OR.
Institute für Okonometrie und Operations Research, Bonn, Germany, 1988.

[49] Gautier, A. and F. Granot. Forest management: A multicommodity flow formulation
and sensitivity analysis. Management Science 41 (1995), 1654–1688.

[50] Lin, Y. and J. Yuan. On a multicommodity flow network reliability model and its appli-
cation to a container-loading transportation problem. Journal of Operations Research
Society of Japan 44 (2001), 366–377.

[51] Moz, M. and M.V. Pato. An integer multicommodity flow model applied to the reros-
tering of nurse schedules. Annals of Operations Research 119 (2003), 285–301.

C5955–C006.tex 173 2015/11/4 9:23am

174 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[52] Ouaja, W. and B. Richards. A hybrid multicommodity routing algorithm for traffic
engineering. Networks 43 (2004), 125–140.

[53] Ahuja, R.K., J. Liu, J.B. Orlin, D. Sharma, and L.A. Shughart. Solving real-life
locomotive scheduling problems. Transportation Science 39 (2005), 503–517.

[54] Vaidyanathan, B., K.C. Jha, and R.K. Ahuja. Multi-commodity network flow approach
to the railroad crew-scheduling problem. IBM Journal of Research and Development 51
(2007b), 325–344.

[55] Vaidyanathan, B., R.K. Ahuja, J. Liu, and L.A. Shughart. Real-life locomotive planning:
New formulations and computational results. Transportation Research B, 2007a.

[56] Kumar, A., B. Vaidyanathan, and R.K. Ahuja. Railroad locomotive scheduling. In En-
cyclopedia of Optimization, 2nd Ed., (eds.) C.A. Floudas and P.M. Pardalos, Springer,
New York, 2007.

[57] Ahuja, R.K., T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, NJ, 1993.

[58] Assad, A.A. Solving linear multicommodity flow problems. Proceedings of the IEEE
International Conference on Circuits and Computers, 157–161, 1980b.

C5955–C006.tex 174 2015/11/4 9:23am

III
Algebraic Graph Theory

175

C H A P T E R 7

Graphs and Vector Spaces*
Krishnaiyan “KT” Thulasiraman

M. N. S. Swamy

CONTENTS

7.1 Introduction . 177
7.2 Fundamental Circuits and Cutsets . 177
7.3 Spanning Trees, Circuits, and Cutsets . 179
7.4 Circuit and Cutset Spaces of a Graph . 182
7.5 Dimensions of Circuit and Cutset Subspaces . 184
7.6 Relationship between Circuit and Cutset Subspaces . 185
7.7 Orthogonality of Circuit and Cutset Subspaces . 186

7.1 INTRODUCTION

Electrical circuit theory is one of the earliest applications of graph theory to a problem in
physical science. The dynamic behavior of an electrical circuit is governed by three laws:
Kirchhoff’s voltage law, Kirchhoff’s current law, and Ohm’s law. Each element in a circuit is
associated with two variables, namely, the current variable and the voltage variable. Kirch-
hoff’s voltage law requires that the algebraic sum of the voltages around a circuit be zero,
and Kirchhoff’s current law requires that the algebraic sum of the currents across a cut be
zero. Thus, circuits and cuts define a linear relationship among the voltage variables and a
linear relationship among the current variables, respectively. It is for this reason that circuits,
cuts, and the vector spaces associated with them have played a major role in the discovery of
several fundamental properties of electrical circuits arising from the structure or the intercon-
nection of the circuit elements. Several graph theorists and circuit theorists have immensely
contributed to the development of what we may now call the structural theory of electrical
circuits. The significance of the results to be presented in this section goes well beyond their
application to circuit theory. They will bring out the fundamental duality that exists between
circuits and cuts and the influence of this duality on the structural theory of graphs. Most of
the results in this section are also relevant to the development of combinatorial optimization
theory as well as matroid theory.

7.2 FUNDAMENTAL CIRCUITS AND CUTSETS

Consider a spanning tree T of a connected graph G. Let the branches of T be denoted
by b1, b2, . . ., bn−1, and let the chords of T be denoted by c1, c2, . . ., cm−n+1, where n is the
number of vertices in G and m is the number of edges in G.

∗This chapter is an edited version of the Chapter 4 in Reference 1.

C5955–C007.tex 177 2015/11/4 10:15am

177

178 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

While T is acyclic, the graph T ∪ ci contains exactly one circuit Ci. This circuit consists
of the chord ci and those branches of T which lie in the unique path in T between the end
vertices of ci. The circuit Ci is called the fundamental circuit of G with respect to the chord
ci of the spanning tree T .

The set of all the m − n + 1 fundamental circuits C1, C2, . . ., Cm−n+1 of G with respect to
the chords of the spanning tree T of G is known as the fundamental set of circuits of G with
respect to T . The nullity µ(G) of a connected graph G is defined to be equal to m − n + 1.
If G is not connected and has p components, then µ(G) = m − n + p.

An important feature of the fundamental circuit Ci is that it contains exactly one chord,
namely, chord ci. Further, chord ci is not present in any other fundamental circuit with
respect to T .

A graph G and a set of fundamental circuits of G are shown in Figure 7.1. A cutset S of
a connected graph G is a minimal set of edges of G such that its removal from G disconnects
G, that is, the graph G − S is disconnected.

We next define the concept of a cut which is closely related to that of a cutset. Consider
a connected graph G with vertex set V . Let V1 and V2 be two mutually disjoint subsets of
V such that V = V1 ∪ V2; that is, V1 and V2 have no common vertices and together contain
all the vertices of V . Then the set S of all those edges of G having one end vertex in V1 and
the other in V2 be called a cut of G. This is usually denoted by ⟨V1, V2⟩. Reed [2] refers to a
cut as a seg (the set of edges segregating the vertex set V).

v4
v5

v6

v1

v2

v5

v2
v3

v4 v6

v1 v3

e9 e10

e6 e7

e10

e7

e3

e9 e10

e7

e6 e7

e3e1

v4 v5

v1 v2

e9

e6

e3

v5

v2

e3

v6

v3

v2v1 v3

e5

v4 v5

v2

e9

e3

v5

v2

e3e1

e5e2

e2

e4

v3

e4

e8

e6 e7

e8

(a) (b)

(c)

Figure 7.1 Set of fundamental circuits of a graph G. (a) Graph G. (b) Spanning tree T of G.
(c) Set of five fundamental circuits of G with respect to T . (Chords are indicated by dashed
lines.)

C5955–C007.tex 178 2015/11/4 10:15am

Graphs and Vector Spaces � 179

Note that the cut ⟨V1, V2⟩ of G is a set of edges of G whose removal disconnects G into
two graphs G1 and G2 which are induced subgraphs of G on the vertex sets V1 and V2.
G1 and G2 may not be connected. If both these graphs are connected, then ⟨V1, V2⟩ is also
the minimal set of edges disconnecting G into exactly two components. Then, by definition,
⟨V1, V2⟩ is a cutset of G.

Any cut ⟨V1, V2⟩ in a connected graph G contains a cutset of G, since the removal of
⟨V1, V2⟩ from G disconnects G. In fact, we can prove that a cut in a graph G is the union of
some edge-disjoint cutsets of G. Formally, we state this in the following theorem.

Theorem 7.1 A cut in a connected graph G is the union of some edge-disjoint cutsets
of G. �

Consider next a vertex v1 in a connected graph. The set of edges incident on v1 forms the
cut ⟨v1, V − v1⟩. The removal of these edges disconnects G into two subgraphs. One of these
subgraphs containing only the vertex v1 is, by definition, connected. The other subgraph is
the induced subgraph G′ of G on the vertex set V − v1. Thus, the cut ⟨v, V − v1⟩ is a cutset
if and only if G′ is connected. However, G′ is connected if and only if v1 is not a cut-vertex.
Thus we have the following theorem.

Theorem 7.2 The set of edges incident on a vertex v in a connected graph G is a cutset
of G if and only if v is not a cut-vertex of G. �

We now show how a spanning tree can be used to define a set of fundamental cutsets.
Consider a spanning tree T of a connected graph G. Let b be a branch of T . Now, removal

of the branch b disconnects T into exactly two components T1 and T2. Note that T1 and T2
are trees of G. Let V1 and V2, respectively, denote the vertex sets of T1 and T2. V1 and V2
together contain all vertices of G.

Let G1 and G2 be, respectively, the induced subgraphs of G on the vertex sets V1 and V2.
It can be seen that T1 and T2 are, respectively, the spanning trees of G1 and G2. Hence, G1
and G2 are connected. This, in turn, proves that the cut ⟨V1, V2⟩ is a cutset of G. This cutset
is known as the fundamental cutset of G with respect to the branch b of the spanning tree
T of G. The set of all the n − 1 fundamental cutsets with respect to the n − 1 branches of
a spanning tree T of a connected graph G is known as the fundamental set of cutsets of G
with respect to the spanning tree T . The rank ρ(G) of a connected G is defined to be equal
to n − 1. If G has p components, then ρ(G) = n − p.

Note that the cutset ⟨V1, V2⟩ contains exactly one branch, namely, the branch b of T .
All the other edges of ⟨V1, V2⟩ are chords of T . This follows from the fact that ⟨V1, V2⟩ does
not contain any edge of T1 or T2. Further, branch b is not present in any other fundamental
cutset with respect to T .

A graph G and a set of fundamental cutsets of G are shown in Figure 7.2.

7.3 SPANNING TREES, CIRCUITS, AND CUTSETS

In this section, we discuss some interesting results which relate cutsets and circuits to span-
ning trees and cospanning trees, respectively. These results will bring out the dual nature of
circuits and cutsets. They will also lead to alternate characterizations of cutsets and circuits
in terms of spanning trees and cospanning trees, respectively.∗

It is obvious that removal of a cutset S from a connected graph G destroys all the
spanning trees of G. A little thought will indicate that a cutset is a minimal set of edges
whose removal from G destroys all spanning trees of G. However, the converse of this result

∗See Section 1.6 for the definition of a cospanning tree.

C5955–C007.tex 179 2015/11/4 10:15am

180 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(a) (b)

(c) (d)

v4

v5

v1

v1

v4 v5

v1

v2

v3

v4

v5

v2

v2

v3

v5

v2

v1

v3

v4

v2

v1

v3

v4

v5

v3

e6

e7

e3

e1

e5

e5

e2

e2

e4

e5

e6

e7
e7

e8

e4

e3

e1

e4

e3

e4

e8

v4

v5

v1 v2

v3
e6

e1

e2

e8

(e) (f)

Figure 7.2 Set of fundamental cutsets of a graph G. (a) Graph G. (b) Spanning tree T of G.
(c) Fundamental cutset with respect to branch e1. (d) Fundamental cutset with respect to
branch e2. (e) Fundamental cutset with respect to branch e6. (f) Fundamental cutset with
respect to branch e8.

is not so obvious. The first few theorems of this section discuss these questions and similar
ones relating to circuits.

Theorem 7.3 A cutset of a connected graph G contains at least one branch of every spanning
tree of G.

Proof. Suppose that a cutset S of G contains no branch of a spanning tree T of G. Then the
graph G − S will contain the spanning tree T and hence, G − S is connected. This, however,
contradicts that S is a cutset of G. �

Theorem 7.4 A circuit of a connected graph G contains at least one edge of every cospan-
ning tree of G.

Proof. Suppose that a circuit C of G contains no edge of the cospanning tree T ∗ of a spanning
tree T of G. Then the graph G − T ∗ will contain the circuit C. Since G − T ∗ is the same
as spanning tree T , this means that the spanning tree T contains a circuit. However, this is
contrary to the definition of a spanning tree. �

C5955–C007.tex 180 2015/11/4 10:15am

Graphs and Vector Spaces � 181

Theorem 7.5 A set S of edges of a connected graph G is a cutset of G if and only if S is
a minimal set of edges containing at least one branch of every spanning tree of G.

Proof. Necessity: If the set S of edges of G is a cutset of G, then, by Theorem 7.3, it contains
at least one branch of every spanning tree of G. If it is not a minimal such set, then a proper
subset S′ of S will contain at least one branch of every spanning tree of G. Then G − S′ will
contain no spanning tree of G and it will be disconnected. Thus, removal of a proper subset
S′ of the cutset S of G will disconnect G. This, however, would contradict the definition of
a cutset. Hence the necessity.

Sufficiency: If S is a minimal set of edges containing at least one branch of every span-
ning tree of G, then the graph G − S will contain no spanning tree, and hence it will be
disconnected. Suppose S is not a cutset, then a proper subset S′ of S will be a cutset. Then,
by the necessity part of the theorem, S′ will be a minimal set of edges containing at least
one branch of every spanning tree of G. This, however, will contradict that S is a minimal
such set. Hence the sufficiency. �
The above theorem gives a characterization of a cutset in terms of spanning trees. We would
like to establish next a similar characterization for a circuit in terms of cospanning trees.

Consider a set C of edges constituting a circuit in a graph G. By Theorem 7.4, C contains
at least one edge of every cospanning tree of G. We now show that no proper subset C ′ of C
has this property. It is obvious that C ′ does not contain a circuit. Hence, we can construct a
spanning tree T that contains C ′. The cospanning tree T ∗ corresponding to T has no common
edge with C ′. Hence for every proper subset C ′ of C, there exists at least one cospanning
tree T ∗ which has no common edge with C ′. In fact, this statement is true for every acyclic
subgraph of a graph. Thus we have the following theorem.

Theorem 7.6 A circuit of a connected graph G is a minimal set of edges of G containing at
least one edge of every cospanning tree of G. �

The converse of the above theorem follows next.

Theorem 7.7 The set Cof edges of a connected graph G is a circuit of G if it is a minimal
set containing at least one edge of every cospanning tree of G.

Proof. As shown earlier, the set C cannot be acyclic since there exists, for every acyclic
subgraph G′ of G, a cospanning tree not having in common any edge with G′. Thus C has
at least one circuit C ′. Suppose that C ′ is a proper subset of C. Then by Theorem 7.6, C ′

is a minimal set of edges containing at least one edge of every cospanning tree of G. This,
however, contradicts the hypothesis that C is a minimal such set. Hence no proper subset of
C is a circuit. Since C is not acyclic, C must be a circuit. �
Theorems 7.6 and 7.7 establish that a set C of edges of a connected graph G is a circuit if
and only if it is a minimal set of edges containing at least one edge of every cospanning tree
of G.

The new characterizations of a cutset and a circuit as given by Theorems 7.5 through 7.7
clearly bring out the dual nature of the concepts of circuits and cutsets. The next theorem
relates circuits and cutsets without involving trees.

Theorem 7.8 A circuit and a cutset of a connected graph have an even number of common
edges.

Proof. Let C be a circuit and S a cutset of a connected graph G. Let V1 and V2 be the vertex
sets of the two connected subgraphs G1 and G2 of G − S.

C5955–C007.tex 181 2015/11/4 10:15am

182 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

If C is a subgraph of G1 or of G2, then obviously the number of edges common to C and
S is equal to zero, an even number.

Suppose that C and S have some common edges. Let us traverse the circuit C starting
from a vertex, say v1, in the set V1. Since the traversing should end at v1, it is necessary that
every time we meet with an edge of S leading us from a vertex in V1 to a vertex in V2, there
must be an edge of S leading us from a vertex in V2 back to a vertex in V1. This is possible
only if C and S have an even number of common edges. �
We would like to point out that the converse of Theorem 7.8 is not quite true. However, we
show in Theorem 7.15 that a set S of edges of a graph G is a cutset (circuit) or the union of
some edge-disjoint cutsets (circuits) if and only if S has an even number of edges in common
with every circuit (cutset).

Fundamental circuits and fundamental cutsets of a connected graph have been defined
with respect to a spanning tree of a graph. It is, therefore, not surprising that fundamental
circuits and cutsets are themselves related as proved next.

Theorem 7.9

1. The fundamental circuit with respect to a chord of a spanning tree T of a connected
graph consists of exactly those branches of T whose fundamental cutsets contain the
chord.

2. The fundamental cutset with respect to a branch of a spanning tree T of a connected
graph consists of exactly those chords of T whose fundamental circuits contain the
branch.

Proof.

1. Let C be the fundamental circuit of a connected graph G with respect to a chord c1
of a spanning tree T of G. Let C contain, in addition to the chord c1, the branches
b1, b2, . . ., bk of T .

Suppose Si, 1 ≤ i ≤ k, is the fundamental cutset of G with respect to the branch
bi, 1 ≤ i ≤ k, of T . The branch bi is the only branch common to both C and Si. The
chord c1 is the only chord in C. Since C and Si must have an even number of common
edges, it is necessary that the fundamental cutset Si contain c1. Next we show that no
other fundamental cutset of T contains c1.

Suppose the fundamental cutset Sk+1 with respect to some branch bk+1 of T con-
tains c1. Then c1 will be the only common edge between C and Sk+1. This will contradict
Theorem 7.8. Thus the chord c1 is present only in those cutsets defined by the branches
b1, b2, . . ., bk.

2. Proof of this part is similar to that of part 1. �

7.4 CIRCUIT AND CUTSET SPACES OF A GRAPH

Let WG be the collection of subsets of edges of a graph G = (V, E) with n vertices and m
edges. Denoting by ⊕ the ring sum (Exclusive-OR) operation, it is easy to verify that WG is
an m-dimensional vector space over GF (2) = {0, 1}.

Since, in this section, we are concerned only with edge-induced subgraphs, we refer to
them simply as subgraphs without the adjective edge-induced. However, we may still use this
adjective in some places to emphasize the edge-induced nature of the concerned subgraph.

C5955–C007.tex 182 2015/11/4 10:15am

Graphs and Vector Spaces � 183

We show that the following subsets of WG are subspaces:

1. WC , the set of all circuits (including the null graph ϕ) and unions of edge-disjoint
circuits of G.

2. WS , the set of all cutsets (including the null graph ϕ) and unions of edge-joint cutsets
of G.

This result will follow once we show that WC and WS are closed under ⊕, the ring sum
operation.

Theorem 7.10 WC , the set of all circuits and unions of edge-disjoint circuits of a graph G,
is a subspace of the vector space WG of G.

Proof. A graph can be expressed as the union of edge-disjoint circuits if and only if every
vertex in the graph is of even degree (i.e., G is Eulerian) (see Chapter 1). Hence we may
regard WC as the set of all edge-induced subgraphs of G in which all vertices are of even
degree.

Consider any two distinct members C1 and C2 of WC . C1 and C2 are edge-induced
subgraphs with the degrees of all their vertices even. Let C3 denote the ring sum of C1 and
C2. To prove the theorem, we need only to show that C3 belongs to WC . In other words, we
should show that in C3 every vertex is of even degree.

Consider any vertex v in C3. Obviously, this vertex should be present in at least one of
the subgraphs C1 and C2. Let Xi, i = 1, 2, 3, denote the set of edges incident on v in Ci. Let
|Xi| denote the number of edges in Xi. Thus |Xi| is the degree of the vertex v in Ci. Note
that |X1| and |X2| are even and one of them may be zero. Further |X3| is nonzero.

Since C3 = C1 ⊕ C2, we get
X3 = X1 ⊕ X2.

Hence
|X3| = |X1| + |X2| − 2|X1 ∩ X2|.

It is now clear from the above equation that |X3| is even, because |X1| and |X2| are both
even. In other words, the degree of vertex v in C3 is even. Since this should be true for all
vertices in C3, it follows that C3 belongs to WC and the theorem is proved. �

Theorem 7.11 The ring sum of any two cuts in a graph G is also a cut in G.

Proof. Consider any two cuts S1 = ⟨V1, V2⟩ and S2 = ⟨V3, V4⟩ in a graph G = (V, E). Note
that

V1 ∪ V2 = V3 ∪ V4 = V

and
V1 ∩ V2 = V3 ∩ V4 = ∅

Let

A = V1 ∩ V3,

B = V1 ∩ V4,

C = V2 ∩ V3,

D = V2 ∩ V4.

C5955–C007.tex 183 2015/11/4 10:15am

184 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

It is easy to see that the sets A, B, C, and D are mutually disjoint. Then

S1 = ⟨A ∪ B, C ∪ D⟩
= ⟨A, C⟩ ∪ ⟨A, D⟩ ∪ ⟨B, C⟩ ∪ ⟨B, D⟩

and

S2 = ⟨A ∪ C, B ∪ D⟩
= ⟨A, B⟩ ∪ ⟨A, D⟩ ∪ ⟨C, B⟩ ∪ ⟨C, D⟩.

Hence, we get
S1 ⊕ S2 = ⟨A, C⟩ ∪ ⟨B, D⟩ ∪ ⟨A, B⟩ ∪ ⟨C, D⟩.

Since
⟨A ∪ D, B ∪ C⟩ = ⟨A, C⟩ ∪ ⟨B, D⟩ ∪ ⟨A, B⟩ ∪ ⟨C, D⟩,

we can write
S1 ⊕ S2 = ⟨A ∪ D, B ∪ C⟩.

Because A ∪ D and B ∪ C are mutually disjoint and together include all the vertices in V,
S1 ⊕ S2 is a cut in G. Hence the theorem. �

Corollary 7.1 The union of any two edge-disjoint cuts in a graph G is also a cut in G. �

Since a cutset is also a cut, it is now clear from Corollary 7.1 that WS is the set of all cuts
in G.

Further, by Theorem 7.11, WS is closed under the ring sum operation. Thus we get the
following theorem.

Theorem 7.12 WS, the set of all cutsets and unions of edge-disjoint cutsets in a graph G,
is a subspace of the vector space WG of G. �

WS will be referred to as the cutset subspace of the graph G.

7.5 DIMENSIONS OF CIRCUIT AND CUTSET SUBSPACES

In this section, we show that the dimensions of the circuit and cutset subspaces of a graph
are equal to the nullity and the rank of the graph, respectively. We do this by proving that
the set of fundamental circuits and the set of fundamental cutsets with respect to some
spanning tree of a connected graph are bases for the circuit and cutset subspaces of the
graph, respectively.

Let T be a spanning tree of a connected graph G with n vertices and m edges. The
branches of T will be denoted by b1, b2, . . ., bn−1 and the chords by c1, c2, . . ., cm−n+1. Let Ci

and Si refer to the fundamental circuit and the fundamental cutset with respect to ci and bi,
respectively.

By definition, each fundamental circuit contains exactly one chord, and this chord
is not present in any other fundamental circuit. Thus no fundamental circuit can be
expressed as the ring sum of the other fundamental circuits. Hence the fundamental circuits
C1, C2, . . ., Cm−n+1 are independent. Similarly, the fundamental cutsets S1, S2, . . ., Sn−1 are
also independent, since each of these contains exactly one branch which is not present in the
others.

C5955–C007.tex 184 2015/11/4 10:15am

Graphs and Vector Spaces � 185

To prove that C1, C2, . . ., Cm−n+1 (S1, S2, . . ., Sn−1) constitute a basis for the circuit
(cutset) subspace of G, we need only to prove that every subgraph in the circuit (cutset)
subspace of G can be expressed as a ring sum of Ci’s (Si’s).

Consider any subgraph C in the circuit subspace of G. Let C contain the chords
ci1 , ci2 , . . ., cir . Let C ′ denote the ring sum of the fundamental circuits Ci1 , Ci2 , . . ., Cir .
Obviously, the chords ci1 , ci2 , . . ., cir are present in C ′, and C ′ contains no other chords of T .
Since C also contains these chords and no others, C ′ ⊕ C contains no chords.

We now claim that C ′ ⊕ C is empty. If this is not true, then by the preceding arguments,
C ′ ⊕C contains only branches and hence has no circuits. On the other hand, being a ring sum
of circuits, C ′ ⊕ C is, by Theorem 7.10, a circuit or the union of some edge-disjoint circuits.
Thus the assumption that C ′ ⊕ C is not empty leads to a contradiction. Hence C ′ ⊕ C is
empty. This implies that C = C ′ = Ci1 ⊕ Ci2 ⊕ . . . ⊕ Cir . In other words, every subgraph in
the circuit subspace of G can be expressed as a ring sum of Ci’s.

In an exactly similar manner we can prove that every subgraph in the cutset subspace of
G can be expressed as a ring sum of Si’s. Thus we have the following theorem.

Theorem 7.13 Let a connected graph G have m edges and n vertices. Then

1. The fundamental circuits with respect to a spanning tree of G constitute a basis for the
circuit subspace of G, and hence the dimension of the circuit subspace of G is equal to
m − n + 1, the nullity µ(G) of G.

2. The fundamental cutsets with respect to a spanning tree of G constitute a basis for the
cutset subspace of G, and hence the dimension of the cutset subspace of G is equal to
n − 1, the rank ρ(G) of G. �

It is now easy to see that in the case of a graph G which is not connected, the set of all
the fundamental circuits with respect to the chords of a forest of G, and the set of all the
fundamental cutsets with respect to the branches of a forest of G are, respectively, bases for
the circuit and cutset subspaces of G. Thus we get the following corollary of the previous
theorem.

Corollary 7.2 If a graph G has m edges, n vertices, and p components, then

1. The dimension of the circuit subspace of G is equal to m − n + p, the nullity of G.

2. The dimension of the cutset subspace of G is equal to n − p, the rank of G. �

7.6 RELATIONSHIP BETWEEN CIRCUIT AND CUTSET SUBSPACES

We establish in this section a characterization for the subgraphs in the circuit subspace of a
graph G in terms of those in the cutset subspace of G.

Since every subgraph in the circuit subspace of a graph is a circuit or the union
of edge-disjoint circuits, and every subgraph in the cutset subspace is a cutset or the
union of edge-disjoint cutsets, we get the following as an immediate consequence of
Theorem 7.8.

Theorem 7.14 Every subgraph in the circuit subspace of a graph G has an even number of
common edges with every subgraph in the cutset subspace of G. �

In the next theorem, we prove the converse of the above.

C5955–C007.tex 185 2015/11/4 10:15am

186 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 7.15

1. A subgraph of a graph G belongs to the circuit subspace of G if it has an even number
of common edges with every subgraph in the cutset subspace of G.

2. A subgraph of a graph G belongs to the cutset subspace of G if it has an even number
of common edges with every subgraph in the circuit subspace of G.

Proof.

1. We may assume, without any loss of generality, that G is connected. The proof when
G is not connected will follow in an exactly similar manner.

Let T be a spanning tree of G. Let b1, b2, . . . denote the branches of T and c1, c2, . . .
denote its chords. Consider any subgraph C of G which has an even number of common
edges with every subgraph in the cutset subspace of G. Without any loss of generality,
assume that C contains the chords c1, c2, . . ., cr. Let C ′ denote the ring sum of the
fundamental circuits C1, C2, . . ., Cr with respect to the chords c1, c2, . . ., cr.

Obviously, C ′ consists of the chords c1, c2, . . ., cr and no other chords. Hence C ′ ⊕ C
consists of no chords.

C ′, being the ring sum of some circuits of G, has an even number of common edges
with every subgraph in the cutset subspace of G. Since C also has this property, so
does C ′ ⊕ C.

We now claim that C ′ ⊕ C is empty. If not, C ′ ⊕ C contains only branches. Let bi

be any branch in C ′ ⊕ C. Then bi is the only edge common between C ′ ⊕ C and the
fundamental cutset with respect to bi. This is not possible since C ′ ⊕ C must have an
even number of common edges with every cutset. Thus C ′ ⊕ C should be empty. In
other words, C = C ′ = C1 ⊕C2 ⊕ . . . ⊕Cr, and hence C belongs to the circuit subspace
of G.

2. The proof of this part follows in an exactly similar manner. �

7.7 ORTHOGONALITY OF CIRCUIT AND CUTSET SUBSPACES

Let e1, e2, . . ., em denote the m edges of a graph G. Suppose we associate each edge-induced
subgraph Gi of G with an m-vector wi such that the jth entry of wi is equal to 1 if and
only if the edge ej is in Gi. Then the ring sum Gi ⊕ Gj of two subgraphs Gi and Gj

will correspond to the m-vector wi + wj , the modulo 2 sum of wi and wj . It can now be
seen that the association just described indeed defines an isomorphism between WG and
the vector space of all m-vectors over GF (2). In fact, if we choose {e1}, {e2}, . . ., {em} as
the basis vector for WG, then the entries of wi are the coordinates of Gi relative to this
basis.

In view of this isomorphism, we again use the symbol WG to denote the vector space of
all the m-vectors associated with the subgraphs of the graph G. Also, WC will denote the
subspace of m-vectors representing the subgraphs in the circuit subspace of G and similarly
WS will denote the subspace of those representing the subgraphs in the cutset subspace of G.

Consider any two vectors wi and wj such that wi is in WC and wj is in WS . Because
every subgraph in WC has an even number of common edges with those in WS , it follows
that the dot product ⟨wi, wj⟩ of wi and wj is equal to the modulo 2 sum of an even number
of 1’s. This means ⟨wi, wj⟩ = 0. In other words, the m-vectors in WC are orthogonal to those
in WS . Thus we have the following theorem.

C5955–C007.tex 186 2015/11/4 10:15am

Graphs and Vector Spaces � 187

Theorem 7.16 The cutset and circuit subspaces of a graph are orthogonal to each other. �

Consider next the direct sum WC � WS . We know that

dim(WC � WS) = dim(WC) + dim(WS) − dim(WC ∩ WS).

Since dim(WC) + dim(WS) = m, we get

dim(WC � WS) = m − dim(WC ∩ WS).

Now the orthogonal subspaces WC and WS will also be orthogonal complements of WG if
and only if dim(WC �WS) = m. In other words WC and WS will be orthogonal complements
if and only if dim(WC ∩ WS) = 0, that is, WC ∩ WS is the zero vector whose elements are all
equal to zero. Thus we get the following theorem.

Theorem 7.17 WC and WS, the circuit and cutset subspaces of a graph are orthogonal
complements if and only if WC ∩ WS is the zero vector. �

Suppose WC and WS are orthogonal complements. Then it means that every vector in WG

can be expressed as wi + wj , where wi is in WC and wj is in WS . In other words, every
subgraph of G can be expressed as the ring sum of two subgraphs, one belonging to the
circuit subspace and the other belonging to the cutset subspace. In particular, the graph G
itself can be expressed as above.

Suppose WC and WS are not orthogonal complements. Then, clearly, there exists a sub-
graph which cannot be expressed as the ring sum of subgraphs in WC and WS . The question
then arises whether, in this case too, it is possible to express G as the ring sum of subgraphs
from WC and WS . The answer is in the affirmative as stated in the next theorem.

Theorem 7.18 Every graph G can be expressed as the ring sum of two subgraphs one of
which is in the circuit subspace and the other is in the cutset subspace of G. �

See Chen [3] and Williams and Maxwell [4] for a proof of this theorem.
A subgraph in the circuit subspace is called a circ. A subgraph that is in the intersection

of the circuit and cutset subspaces of an undirected graph is called a bicycle. That is, a
bicycle is a circ as well as a cut.

The subgraphs used in the decomposition presented in Theorem 7.18 may not be disjoint.
That is, these subgraphs do not form a partition of the edge set of G. We next present two
ways to partition a graph based on cuts and elements of Wc.

Rosenstiehl and Read [5] have proved the following. See also Parthasarathy [6].

Theorem 7.19 [5] Any edge e of a graph G is of one of the following types:

1. e is in a circ that becomes a cut when e is removed from it.

2. e is in a cut that becomes a circ when e is removed from it.

3. e is in a bicycle. �

The partition of the edges defined in Theorem 7.19 is called the bicycle-based tripartition.
The tree distance, d(T1, T2), between any two spanning trees T1 and T2 is defined as

d(T1, T2) = |E(T1) − E(T2)| = |E(T2) − E(T1)|. Two spanning trees T1 and T2 are maximally
distant if d(T1, T2) ≥ d(Ti, Tj) for every pair of spanning trees Ti and Tj . The maximum
distance between any two spanning trees of a connected graph is denoted by dm.

Kishi and Kajitani [7] introduced the concept of principal partition of a graph using
maximally distant spanning trees. Principal partition is also a tripartition of the edge set
of G.

C5955–C007.tex 187 2015/11/4 10:15am

188 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Summary and Related Works

An early paper on vector spaces associated with a graph is by Gould [8], where the question of
constructing a graph having a specified set of circuits is also discussed. Chen [3] and Williams
and Maxwell [4] are also recommended for further reading on this topic. Rosentiehl and
Reed [5] have proved several interesting results relating to circuits and cuts and their
relationship.

In electrical circuit analysis one is interested in solving for all the current and the voltage
variables. The circuit method of analysis (also known as the loop analysis) requires solving
for only m−n+1 independent current variables. The remaining current variables and all the
voltage variables can then be determined using these m−n+1 independent current variables.
The cutset method of analysis requires solving for only n − 1 independent voltage variables.
A question that intrigued circuit theorists for a long time was whether one could use a hybrid
method of analysis involving some current variables and some voltage variables and reduce
the size of the system of equations to be solved to less than both n − 1 and m − n + 1,
the rank and nullity of the graph of the circuit. Ohtsuki, Ishizaki, and Watanabe [9] studied
this problem and showed that dm, the maximum distance between any two spanning trees
of the graph of the circuit is, in fact, the minimum number of variables required in the
hybrid method of analysis. They also showed that the variables can be determined using the
principal partition of the graph. The works by Kishi and Kajitani [7] on principal partition
and by Ohtsuki, Ishizaki, and Watanabe [9] on the hybrid method of analysis are considered
landmark results in electrical circuit theory. Swamy and Thulasiraman [1] give a detailed
exposition of the principal partition concept and the hybrid and other methods of circuit
analysis (see also Chapter 32).

Lin [10] presented an algorithm for computing the principal partition of a graph. Bruno
and Weinberg [11] extended the concept of principal partition to matroids.

In the application of graph theory to the electrical circuit synthesis problem, one encoun-
ters a certain matrix of integers modulo 2 and seeks to determine if this matrix is the cutset
or the circuit matrix of an undirected graph. The complete solution to this problem was given
by Tutte [12]. Cederbaum [13] and Gould [8] considered this problem before Tutte provided
the solution. Tutte [12] provided the necessary and sufficient conditions for the realizability
of a matrix of integers modulo 2 as the circuit or the cutset matrix of an undirected graph.
See Seshu and Reed [14] for a discussion of this topic.

Mayeda [15] gave an alternate proof of Tutte’s realizability condition, shorter than Tutte’s
original proof, which is 27 pages long.

Early works on algorithms for constructing graphs having specified circuit or cutset ma-
trices are in [16,17]. Bapeswara Rao [18] defined the tree-path matrix of an undirected graph
which is essentially the nonunit submatrix of the fundamental circuit matrix and presented
an algorithm for constructing a graph with a prescribed tree-path matrix. This is also an
algorithmic solution to the cutset and the circuit matrix realization problems. A detailed
presentation of Bapeswara Rao’s algorithm is given in [1].

The circuit and cutset matrix realization problems arise in the design of multi-port resis-
tance networks. It was in the context of this application that Cederbaum [13,19] encountered
the realization problem. Interestingly, Bapeswara Rao [18] and Boesch and Youla [20] pre-
sented circuit-theoretic approaches to the realization of a matrix as the cutset or circuit
matrix of a directed graph. Details of Bapeswara Rao’s algorithm based on this approach
may also be found in [1].

C5955–C007.tex 188 2015/11/4 10:15am

Graphs and Vector Spaces � 189

References

[1] M. N. S. Swamy and K. Thulasiraman, Graphs, Networks and Algorithms, Wiley-
Interscience, New York, 1981.

[2] M. B. Reed, The seg: A new class of subgraphs, IEEE Trans. Circuit Theory, CT-8
(1961), 17–22.

[3] W. K. Chen, On vector spaces associated with a graph, SIAM J. Appl. Math., 20 (1971),
526–529.

[4] T. W. Williams and L. M. Maxwell, The decomposition of a graph and the introduction
of a new class of subgraphs, SIAM J. Appl. Math., 20 (1971), 385–389.

[5] P. Rosenstiehl and R. C. Reed, On the principal edge tripartion of a graph, Ann. Discrete
Math., 3 (1978), 195–226.

[6] K. R. Parthasarathy, Basic Graph Theory, Tata McGraw-Hill Publishing Company, New
Delhi, India, 1994.

[7] G. Kishi and Y. Kajitani, Maximally distant trees and principal partition of a linear
graph, IEEE Trans. Circuit Theory, 16 (1969), 323–330.

[8] R. Gould, Graphs and vector spaces, J. Math. Phys., 37 (1958), 193–214.

[9] T. Ohtsuki, Y. Ishizaki, and H. Watanabe, Topological degrees of freedom and mixed
analysis of electrical networks, IEEE Trans. Circuit Theory, 17 (1970), 491–499.

[10] P. M. Lin, An improved algorithm for principal partition of graphs, Proc. IEEE Intl.
Symp. Circuits and Systems, Munich, Germany, 1976, 145–148.

[11] J. Bruno and L. Weinberg, The principal minors of a matroid, Linar Algebra Its Appl.,
4 (1971), 17–54.

[12] W. T. Tutte, Matroids and graphs, Trans. Am. Math. Soc., 90 (1959), 527–552.

[13] I. Cederbaum, Matrices all of whose elements and subdeterminants are 1, −1 or 0,
J. Math. and Phys., 36 (1958), 351–361.

[14] S. Seshu and M. B. Reed, Linear Graphs and Electrical Networks, Addison-Wesley, Read-
ing, MA, 1961.

[15] W. Mayeda, A proof of Tutte’s realizability condition, IEEE Trans. Circuit Theory, 17
(1970), 506–511.

[16] W. T. Tutte, An algorithm for determining whether a given binary matroid is graphic,
Proc. Am. Math. Soc., 11 (1960), 905–917.

[17] W. T. Tutte, From matrices to graphs, Can. J. Math., 56 (1964), 108–127.

[18] V. V. Bapeswara Rao, The Tree-Path Matrix of a Network and Its Applications, PhD
thesis, Department of Electrical Engineering, Indian Institute of Technology, Madras,
India, 1970.

[19] I. Cederbaum, Applications of matrix algebra to network theory, IRE Trans. Circuit
Theory, 6 (1959), 127–137.

[20] F. T. Boesch and D. C. Youla, Synthesis of resistor n-port networks, IEEE Trans. Circuit
Theory, 12 (1965), 515–520.

C5955–C007.tex 189 2015/11/4 10:15am

C H A P T E R 8

Incidence, Cut, and Circuit
Matrices of a Graph
Krishnaiyan “KT” Thulasiraman

M. N. S. Swamy

CONTENTS

8.1 Introduction . 191
8.2 Incidence Matrix . 191
8.3 Cut Matrix . 193
8.4 Circuit Matrix . 196
8.5 Orthogonality Relation . 197
8.6 Submatrices of Cut, Incidence, and Circuit Matrices . 199
8.7 Totally Unimodular Matrices . 202
8.8 Number of Spanning Trees . 203
8.9 Number of Spanning 2-Trees . 205
8.10 Number of Directed Spanning Trees in a Directed Graph . 207
8.11 Directed Spanning Trees and Directed Euler Trails . 211

8.1 INTRODUCTION

In this chapter we introduce the incidence, circuit and cut matrices of a graph and estab-
lish several properties of these matrices which help to reveal the structure of a graph. The
incidence, circuit, and cut matrices arise in the study of electrical networks because these
matrices are the coefficient matrices of Kirchhoff’s equations which describe a network. Thus
the properties of these matrices and other related results to be established in this chapter
have been used extensively in electrical circuit analysis.

Our discussions of incidence, circuit, and cut matrices are mainly with respect to directed
graphs. However, these discussions become valid for undirected graphs too if addition and
multiplication are in GF (2), the field of integers modulo 2. For basic definitions and results on
circuits, cutsets, and their relationship see Chapter 7. Also see Chapter 6.4 of Gross et al. [1].

8.2 INCIDENCE MATRIX

Consider a graph G with n vertices and m edges and having no self-loops. The all-vertex
incidence matrix Ac = [aij] of G has n rows, one for each vertex, and m columns, one for
each edge. The element aij of Ac is defined as follows:

C5955–C008.tex 191 2015/11/4 9:28am

191

192 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(a)

v3 v4

v5

e3

e5

e4
e2

e6
e7

v5

e1

e3

e5

v1

v3

v2

v4

e4e2

e6
e7

1 1 0 0 0 0 0

0 0 0 1 1 0 1

0 0 0 0 0 1 1

0 1 1 0 1 1 0

1 0 1 1 0 0 0

v3Ac =

v1

v2

v4

v5

e1 e3 e5e4e2 e6 e7

1 1 0 0 0 0 0

−1 0 −1 1 0 0 0

0 −1 1 0 1 1 0

0 0 0 0 0 −1 1

0 0 0 −1 −1 0 −1

v3Ac =

v1

v2

v4

v5

e1 e3 e5e4e2 e6 e7

v1 v2e1

(b)

Figure 8.1 (a) Directed graph G and its all-vertex incidence matrix. (b) Undirected graph G

and its all-vertex incidence matrix.

G is directed:

aij =

1, if the jth edge is incident on the ith vertex and oriented away from it;

−1, if the jth edge is incident on the ith vertex and oriented toward it;
0, if the jth edge is not incident on the ith vertex.

G is undirected:

aij =
{

1, if the jth edge is incident on the ith vertex;
0, otherwise.

A row of Ac will be referred as an incidence vector of G. Two graphs and their all-vertex
incidence matrices are shown in Figure 8.1a and 8.1b.

It should be clear from the preceding definition that each column of Ac contains exactly
two nonzero entries, one +1 and one −1. Therefore we can obtain any row of Ac from the
remaining n − 1 rows. Thus any n − 1 rows of Ac contain all the information about Ac. In
other words, the rows of Ac are linearly dependent.

An (n − 1)-rowed submatrix A of Ac will be referred to as an incidence matrix of G.
The vertex which corresponds to the row of Ac which is not in A will be called the reference
vertex or datum vertex of A. Note that

rank(A) = rank(Ac) ≤ n − 1. (8.1)

Now we show that in the case of a connected graph, rank of Ac is in fact equal to n − 1. This
result is based on the following theorem.

Theorem 8.1 The determinant of any incidence matrix of a tree is equal to ±1.

Proof. Proof is by induction on the number n of vertices in a tree.

Any incidence matrix of a tree on two vertices is just a 1×1 matrix with its only entry being
equal to ±1. Thus the theorem is true for n = 2. Note that the theorem does not arise for
n = 1.

C5955–C008.tex 192 2015/11/4 9:28am

Incidence, Cut, and Circuit Matrices of a Graph � 193

Let the theorem be true for 2 ≤ n ≤ k. Consider a tree T with k + 1 vertices. Let A
denote an incidence matrix of T . T has at least two pendant vertices. Let the ith vertex of T
be a pendant vertex, and let this not be the reference vertex of A. If the only edge incident
on this vertex is the lth one, then in A

ail = ±1 and aij = 0, j ̸= l.

If we now expand the determinant of A by the ith row, then

det(A) = ±(−1)i+l det(A′), (8.2)

where A′ is obtained by removing the ith row and the lth column from A.
Suppose T ′ is the graph that results after removing the ith vertex and the lth edge from T .

Clearly T ′ is a tree because the ith vertex is a pendant vertex and the lth edge is a pendant
edge in T . Further it is easy to verify that A′ is an incidence matrix of T ′. Since T ′ is a tree
on n − 1 vertices, we have by the induction hypothesis that

det(A′) = ±1. (8.3)

This result in conjunction with (8.2) proves the theorem for n = k + 1. �

Since a connected graph has at least one spanning tree, it follows from the above theorem
that in any incidence matrix A of a connected graph with n vertices there exists a nonsingular
submatrix of order n − 1. Thus for a connected graph,

rank(A) = n − 1. (8.4)

Since rank(Ac) = rank(A), we get the following theorem.

Theorem 8.2 The rank of the all-vertex incidence matrix of an n-vertex connected graph G
is equal to n − 1, the rank ρ(G) of G. �

An immediate consequence of the above theorem is the following.

Corollary 8.1 If an n-vertex graph has p components, then the rank of its all-vertex inci-
dence matrix is equal to n − p, the rank of G. �

8.3 CUT MATRIX

To define the cut matrix of a directed graph we need to assign an orientation to each cut of
the graph.

Consider a directed graph G = (V, E). If Va is a nonempty subset of V , then the set of
edges connecting the vertices in Va to those in V̄a is a cut, and this cut is denoted as ⟨Va, V̄a⟩.
The orientation of ⟨Va, V̄a⟩ may be assumed to be either from Va to V̄a or from V̄a to Va.
Suppose we assume that the orientation is from Va to V̄a. Then the orientation of an edge in
⟨Va, V̄a⟩ is said to agree with the orientation of the cut ⟨Va, V̄a⟩ if the edge is oriented from
a vertex in Va to a vertex in V̄a.

The cut matrix Qc = [qij] of a graph G with m edges has m columns and as many rows
as the number of cuts in G. The entry qij is defined as follows:

G is directed:

qij =

1, if the jth edge is in the ith cut and its orientation agrees with the cut
orientation;

−1, if the jth edge is in the ith cut and its orientation does not agree with the
cut orientation;

0, if the jth edge is not in the ith cut.

C5955–C008.tex 193 2015/11/4 9:28am

194 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

v1

v3

v1

v5

v3

v2

v4

v3

v2

v4

v5

v2

v1

v4

v5

e1

e3

e3

e5

e6

e5

e6

e1

e2

e2

e6

e7

(a)

(b)

(c)

Figure 8.2 Some cuts of the graph of Figure 8.1a. (a) Cut 1, (b) Cut 2, (c) Cut 3.

G is undirected:

qij =
{

1, if the jth edge is in the ith cut;
0, otherwise.

A row of Qc will be referred to as a cut vector.
Three cuts of the directed graph of Figure 8.1a are shown in Figure 8.2. In each case the

cut orientation is shown in dashed lines. The submatrix of Qc corresponding to these three
cuts is as given below:

e1 e2 e3 e4 e5 e6 e7

cut 1 1 0 1 0 1 1 0
cut 2 1 1 0 0 0 −1 1
cut 3 0 −1 1 0 1 1 0

The corresponding submatrix in the undirected case can be obtained by replacing the −1’s
in the above matrix by +1’s.

Consider next any vertex v. The nonzero entries in the corresponding incidence vector
represent the edges incident on v. These edges form the cut ⟨v, V − v⟩. If we assume that the
orientation of this cut is from v to V − v, then we can see from the definitions of cut and
incidence matrices that the row in Qc corresponding to the cut ⟨v, V − v⟩ is the same as the
row in Ac corresponding to the vertex v. Thus Ac is a submatrix of Qc.

C5955–C008.tex 194 2015/11/4 9:28am

Incidence, Cut, and Circuit Matrices of a Graph � 195

Next we show that the rank of Qc is equal to that of Ac. To do so we need the following
theorem.

Theorem 8.3 Each row in the cut matrix Qc can be expressed, in two ways, as a linear
combination of the rows of the matrix Ac. In each case, the nonzero coefficients in the linear
combination are all +1 or all −1.

Proof. Let ⟨Va, V̄a⟩ be the ith cut in a graph G with n vertices and m edges, and let qi be
the corresponding cut vector. Let Va = {v1, v2, . . ., vr} and V̄a = {vr+1, vr+2, . . ., vn}. For
1 ≤ i ≤ n, let ai denote the incidence vector corresponding to the vertex vi.

We assume, without any loss of generality, that the orientation of < Va, V̄a > is from Va

to V̄a, and prove the theorem by establishing that

qi = a1 + a2 + · · · + ar = −(ar+1 + ar+2 + · · · + an). (8.5)

Let vp and vq be the end vertices of the kth edge, 1 ≤ k ≤ m. Let this edge be oriented
from vp to vq so that

apk = 1,

aqk = −1, (8.6)
ajk = 0, j ̸= p, q.

Now four cases arise.
Case 1 vp ∈ Va and vq ∈ V̄a, that is, p ≤ r and q ≥ r + 1, so that qik = 1.

Case 2 vp ∈ V̄a and vq ∈ Va, that is, p ≥ r + 1 and q ≤ r, so that qik = −1.

Case 3 vp, vq ∈ Va, that is, p, q ≤ r, so that qik = 0.

Case 4 vp, vq ∈ V̄a, that is, p, q ≥ r + 1, so that qik = 0.
It is easy to verify, using (8.6), that the following is true in each of these four cases.

qik = (a1k + a2k + · · · + ark)
= −(ar + 1,k + ar + 2,k + · · · + ank).

(8.7)

Now (8.5) follows since the above equation is valid for all 1 ≤ k ≤ m. Hence the theorem. �

An important consequence of Theorem 8.3 is that rank(Qc) ≤ rank(Ac). However,
rank(Qc) ≥ rank(Ac), because Ac is a submatrix of Qc. Therefore, we get

rank(Qc) = rank(Ac).

Then Theorem 8.2 and Corollary 8.1, respectively, lead to the following theorem.

Theorem 8.4
1. The rank of the cut matrix Qc of an n-vertex connected graph G is equal to n − 1, the

rank of G.

2. The rank of the cut matrix Qc of an n-vertex graph G with p components is equal to
n − p, the rank of G. �

As the above discussions show, the all-vertex incidence matrix Ac is an important sub-
matrix of the cut matrix Qc. Next we identify another important submatrix of Qc.

We know from Chapter 7 that a spanning tree T of an n-vertex connected graph G
defines a set of n − 1 fundamental cutsets—one fundamental cutset for each branch of T .
The submatrix of Qc corresponding to these n − 1 fundamental cutsets is known as the
fundamental cutset matrix Qf of G with respect to T .

C5955–C008.tex 195 2015/11/4 9:28am

196 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Let b1, b2, . . ., bn−1 denote the branches of T . Suppose we arrange the columns and the
rows of Qf so that

1. For 1 ≤ i ≤ n − 1, the ith column corresponds to the branch bi; and

2. The ith row corresponds to the fundamental cutset defined by bi.

If, in addition, we assume that the orientation of a fundamental cutset is so chosen as to
agree with that of the defining branch, then the matrix Qf can be displayed in a convenient
form as follows:

Qf = [U |Qfc] (8.8)

where U is the unit matrix of order n − 1 and its columns correspond to the branches of T .
For example, the fundamental cutset matrix Qf of the connected graph of Figure 8.1a

with respect to the spanning tree T = {e1, e2, e6, e7} is as given below:

Qf =

e1 e2 e6 e7 e3 e4 e5

e1 1 0 0 0 | 1 −1 0
e2 0 1 0 0 | −1 1 0
e6 0 0 1 0 | 0 1 1
e7 0 0 0 1 | 0 1 1

 (8.9)

It is clear from (8.8) that the rank of Qf is equal to n − 1, the rank of Qc. Thus, every
cut vector (which may be a cutset vector) can be expressed as a linear combination of the
fundamental cutset vectors.

8.4 CIRCUIT MATRIX

A circuit can be traversed in one of two directions, clockwise or anticlockwise. The direction
we choose for traversing a circuit defines its orientation.

Consider an edge e which has vi and vj as its end vertices. Suppose that this edge is
oriented from vi to vj and that it is present in circuit C. Then we say that the orientation
of e agrees with the orientation of the circuit if vi appears before vj when we traverse C in
the direction specified by its orientation.

The circuit matrix Bc = [bij] of a graph G with m edges has m columns and as may rows
as the number of circuits in G. The entry bij is defined as follows:

G is directed:

bij =

1, if the jth edge is in the ith circuit and its orientation agrees with the
circuit orientation;

−1, if the jth edge is in the ith circuit and its orientation does not agree with
the circuit orientation;

0, if the jth edge is not in the ith circuit.

G is undirected:

bij =

1, if the jth edge is in the ith circuit;

0, otherwise.

A row of Bc is called a circuit vector of G. Next we identify an important submatrix of Bc.

C5955–C008.tex 196 2015/11/4 9:28am

Incidence, Cut, and Circuit Matrices of a Graph � 197

Consider any spanning tree T of a connected graph G having n vertices and m edges.
Let c1, c2, . . ., cm−n+1 be the chords of T . We know that these m − n + 1 chords define a set
of m − n + 1 fundamental circuits. The submatrix of Bc corresponding to these fundamental
circuits is known as the fundamental circuit matrix Bf of G with respect to the spanning
tree T (see Chapter 7).

Suppose we arrange the columns and rows of Bf so that

1. For 1 ≤ i ≤ m − n + 1, the ith column corresponds to the chord ci; and

2. The ith row corresponds to the fundamental circuit defined by ci.

If, in addition, we choose the orientation of a fundamental circuit to agree with that of
the defining chord, then the matrix Bf can be written as

Bf = [U |Bft], (8.10)

where U is the unit matrix of order m−n+1 and its columns correspond to the chords of T .
For example, the fundamental circuit matrix of the graph of Figure 8.1a with respect to

the spanning tree T = {e1, e2, e6, e7} is as given below:

Bf =

e3 e4 e5 e1 e2 e6 e7

e3 1 0 0 | −1 1 0 0
e4 0 1 0 | 1 −1 −1 −1
e5 0 0 1 | 0 0 −1 −1

 (8.11)

It is obvious from (8.10) that the rank of Bf is equal to m − n + 1, the nullity µ(G) of G.
Since Bf is a submatrix of Bc, we get

rank(Bc) ≥ m − n + 1. (8.12)

We show in the next section that the rank of Bc in the case of a connected graph is equal
to m − n + 1.

8.5 ORTHOGONALITY RELATION

We showed in Chapter 7 that in the case of an undirected graph every circuit vector is
orthogonal to every cut vector. Now we prove that this result is true in the case of directed
graphs too. Our proof is based on the following theorem.

Theorem 8.5 If a cut and a circuit in a directed graph have 2k edges in common, then
k of these edges have the same relative orientations in the cut and in the circuit, and the
remaining k edges have one orientation in the cut and the opposite orientation in the circuit.

Proof. Consider a cut ⟨Va, V̄a⟩ and a circuit C in a directed graph. Suppose we traverse C
starting from a vertex in Va. Then, for every edge e1 which leads us from a vertex in Va to
a vertex in V̄a, there is an edge e2 which leads us from a vertex in V̄a to a vertex in Va. The
proof of the theorem will follow if we note that if e1(e2) has the same relative orientation
in the cut and in the circuit, then e2(e1) has one orientation in the cut and the opposite
orientation in the circuit. �

Now we prove the main result of this section.

C5955–C008.tex 197 2015/11/4 9:28am

198 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 8.6 (Orthogonality Relation) If the columns of the circuit matrix Bc and the
cut matrix Qc are arranged in the same edge order, then

BcQ
t
c = 0.

Proof. Consider a circuit and a cut which have 2k edges in common. The inner product of
the corresponding circuit and cut vectors is equal to zero, since, by Theorem 8.5, it is the
sum of k 1’s and k −1’s. The proof of the theorem now follows because each entry of the
matrix BcQ

t
c is the inner product of a circuit vector and a cut vector. �

Now we use the orthogonality relation to establish the rank of the circuit matrix Bc.
Consider a connected graph G with n vertices and m edges. Let Bf and Qf be the

fundamental circuit and cutset matrices of G with respect to a spanning tree T . If the
columns of Bf and Qf are arranged in the same edge order, then we can write Bf and Qf as

Bf =
[
Bft U

]
and

Qf =
[
U Qfc

]
.

By the orthogonality relation

Bf Qt
f = 0,

that is,

[
Bft U

] [
U

Qt
fc

]
= 0,

that is,

Bft = −Qt
fc. (8.13)

Let β = [β1,β2, . . .,βρ|βρ+1, . . .,βm], where ρ is the rank of G, be a circuit vector with
its columns arranged in the same edge order as Bf and Qf . Then, again by the orthogonality
relation,

[β1,β2, . . .,βρ|βρ+1, . . .,βm]
[

U
Qt

fc

]
= 0.

Therefore

[β1,β2, . . .,βρ] = −[βρ+1,βρ+2, . . .,βm]Qt
fc = [βρ+1,βρ+2, . . .,βm]Bft.

Using the above equation we can write [β1,β2, . . .,βm] as

[β1,β2, . . .,βm] = [βρ+1,βρ+2, . . .,βm][Bft U] = [βρ+1,βρ+2, . . .,βm]Bf . (8.14)

Thus any circuit vector can be expressed as a linear combination of the fundamental
circuit vectors. So

rank(Bc) ≤ rank(Bf) = m − n + 1.

Combining the above inequality with (8.12) establishes the following theorem and its
corollary.

C5955–C008.tex 198 2015/11/4 9:28am

Incidence, Cut, and Circuit Matrices of a Graph � 199

Theorem 8.7 The rank of the circuit matrix Bc of a connected graph G with n vertices and
m edges is equal to m − n + 1, the nullity µ(G) of G. �
Corollary 8.2 The rank of the circuit matrix Bc of a graph G with n vertices, m edges, and
p components is equal to m − n + p, the nullity of G. �

Suppose α = [α1,α2, . . .,αρ,αρ+1, . . .,αm] is a cut vector such that its columns are
arranged in the same edge order as Bf and Qf , then we can start from the relation

αBt
f = 0.

and prove that

α = [α1,α2, . . .,αρ]Qf , (8.15)

by following a procedure similar to that used in establishing (8.14). Thus every cut vector can
be expressed as a linear combination of the fundamental cutset vectors. Since rank(Qf) =
n − 1, we get

rank(Qc) = rank(Qf) = n − 1.

The above is thus an alternate proof of Theorem 8.4.

8.6 SUBMATRICES OF CUT, INCIDENCE, AND CIRCUIT MATRICES

In this section we characterize those submatrices of Qc, Ac, and Bc which correspond to
circuits, cutsets, spanning trees, and cospanning trees and discuss some properties of these
submatrices.

Theorem 8.8
1. There exists a linear relationship among the columns of the cut matrix Qc which

correspond to the edges of a circuit.

2. There exists a linear relationship among the columns of the circuit matrix Bc which
correspond to the edges of a cutset.

Proof.
1. Let us partition Qc into columns so that

Qc = [Q(1), Q(2), . . ., Q(m)].

Let β = [β1,β2, . . .,βm] be a circuit vector. Then by the orthogonality relation, we
have

Qcβ
t = 0

or

β1Q(1) + β2Q(2) + · · · + βmQ(m) = 0. (8.16)

If we assume, without loss of generality, that the first r elements of β are nonzero and
the remaining ones are zero, then we have from (8.16)

β1Q(1) + β2Q(2) + · · · + βrQ(r) = 0.

Thus there exists a linear relationship among the columns Q(1), Q(2), . . ., Q(r) of Qc

which correspond to the edges of a circuit.

2. The proof in this case follows along the same lines as that for part 1. �

C5955–C008.tex 199 2015/11/4 9:28am

200 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Corollary 8.3 There exists a linear relationship among the columns of the incidence matrix
which correspond to the edges of a circuit.

Proof. The result follows from Theorem 8.8, part 1, because the incidence matrix is a sub-
matrix of Qc. �

Theorem 8.9 A square submatrix of order n − 1 of any incidence matrix A of an n-vertex
connected graph G is nonsingular if and only if the edges which correspond to the columns of
the submatrix form a spanning tree of G.

Proof. Necessity: Consider the n − 1 columns of a nonsingular submatrix of A. Since these
columns are linearly independent, by Corollary 8.3, there is no circuit in the corresponding
subgraph of G. Since this acyclic subgraph has n − 1 edges, it follows that it is a spanning
tree of G.

Sufficiency: This follows from Theorem 8.1. �

Thus the spanning trees of a connected graph are in one-to-one correspondence with the
nonsingular submatrices of the matrix A.

Theorem 8.10 Consider a connected graph G with n vertices and m edges. Let Q be a
submatrix of Qc with n − 1 rows and of rank n − 1. A square submatrix of Q of order n − 1
is nonsingular if and only if the edges corresponding to the columns of this submatrix form a
spanning tree of G.

Proof. Necessity: Let the columns of the matrix Q be rearranged so that

Q =
[
Q11 Q12

]
,

with Q11 nonsingular. Since the columns of Q11 are linearly independent, by Theorem 8.8,
part 1, there is no circuit in the corresponding subgraph of G. This acyclic subgraph has
n − 1 edges and is therefore a spanning tree of G.

Sufficiency: Suppose we rearrange the columns of Q so that

Q =
[
Q11 Q12

]
and the columns of Q11 correspond to the edges of a spanning tree T . Then the fundamental
cutset matrix Qf with respect to T is

Qf =
[
U Qfc

]
.

Since the rows of Q can be expressed as linear combinations of the rows of Qf , we can
write Q as

Q =
[
Q11 Q12

]
= DQf

= D
[
U Qfc

]
.

Thus

Q11 = DU = D.

Now D is nonsingular, because both Q and Qf are of maximum rank n − 1. So Q11 is
nonsingular, and the sufficiency of the theorem follows. �

A dual theorem is presented next. Proof follows along the same lines as Theorem 8.10.

C5955–C008.tex 200 2015/11/4 9:28am

Incidence, Cut, and Circuit Matrices of a Graph � 201

Theorem 8.11 Consider a connected graph G with n vertices and m edges. Let B be a
submatrix of the circuit matrix Bc of G with m − n + 1 rows and of rank m − n + 1. A square
submatrix of B of order m − n + 1 is nonsingular if and only if the columns of this submatrix
correspond to the edges of a cospanning tree. �

We conclude this section with the study of an interesting property of the inverse of a
nonsingular submatrix of the incidence matrix.

Theorem 8.12 Let A11 be a nonsingular submatrix of order n − 1 of an incidence matrix A
of an n-vertex connected graph G. Then the nonzero elements in each row of A−1

11 are either
all 1 or all −1.

Proof. Let A be the incidence matrix with vr as the reference vertex. Assume that

A =
[
A11 A12

]
,

where A11 is nonsingular. We know from Theorem 8.9 that the edges corresponding to the
columns of A11 constitute a spanning tree T of G. Then Qf , the fundamental cutset matrix
with respect to T will be

Qf =
[
U Qfc

]
.

By Theorem 8.3, each cut vector can be expressed as a linear combination of the rows of
the incidence matrix. So we can write Qf as

Qf =
[
U Qfc

]
= D

[
A11 A12

]
.

Thus

D = A−1
11 .

Consider now the ith row qi of Qf . Let the corresponding cutset be ⟨Va, V̄a⟩.
Let

Va = {v1, v2, . . ., vk}

and

V̄a = {vk+1, vk+2, . . ., vn}.

Suppose that the orientation of the cutset ⟨Va, V̄a⟩ is from Va to V̄a. Then we get from
(8.5) that

qi = a1 + a2 + · · · + ak (8.17)
= −(ak+1 + ak+2 + · · · + an), (8.18)

where ai is the ith row of Ac.
Note that row ar corresponding to vr will not be present in A. So if vr ∈ Va, then to

represent qi as a linear combination of the rows of A we have to write qi as in (8.18). If
vr ∈ V̄a, then we have to write qi as in (8.17). In both cases the nonzero coefficients in the
linear combination are either all 1 or all −1.

Thus the nonzero elements in each row of D = A−1
11 are either all 1 or all −1. �

The proof used in the above theorem suggests a simple procedure for evaluating A−1
11 . See

Chapter 6 in [2].

C5955–C008.tex 201 2015/11/4 9:28am

202 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

8.7 TOTALLY UNIMODULAR MATRICES

A matrix is totally unimodular if the determinant of each of its square sub matrices is 1, −1,
or 0.

We show in this section that the matrices Ac, Qf , and Bf are all totally unimodular.

Theorem 8.13 The incidence matrix Ac of a directed graph is totally unimodular.

Proof. We prove the theorem by induction on the order of a square submatrix of Ac.
Obviously the determinant of every square submatrix of Ac of order 1 is 1, −1, or 0.

Assume, as the induction hypothesis, that the determinant of every square submatrix of
order less than k is equal to 1, −1, or 0.

Consider any nonsingular square submatrix of Ac of order k. Every column in this matrix
contains at most two nonzero entries, one +1, and/or one −1. Since the submatrix is nonsin-
gular, not every column can have both +1 and −1. For the same reason, in this submatrix
there can be no column consisting of only zeros. Thus there is at least one column that con-
tains exactly one nonzero entry. Expanding the determinant of the submatrix by this column
and using the induction hypothesis, we find that the desired determinant is ±1. �

Let Qf be the fundamental cutset matrix of an n-vertex connected graph G with respect
to some spanning tree T . Let the branches of T be b1, b2, . . ., bn−1. Let G′ be the graph which
is obtained from G by identifying or short-circuiting the end vertices of one of the branches,
say, the branch b1. Then T −{b1} is a spanning tree of G′. Let us now delete from Qf the row
corresponding to branch b1 and denote the resulting matrix as Q′

f . Then it is not difficult
to show that Q′

f is the fundamental cutset matrix of G′ with respect to the spanning tree
T −{b1}. Thus the matrix that results after deleting any row from Qf is a fundamental cutset
matrix of some connected graph. Generalizing this, we can state that each matrix formed by
some rows of Qf is a fundamental cutset matrix of some connected graph.

Theorem 8.14 Any fundamental cutset matrix Qf of a connected graph G is totally
unimodular.

Proof. Let Qf be the fundamental cutset matrix of G with respect to a spanning tree T .
Then

Qf =
[
U Qfc

]
.

Let an incidence matrix A of G be partitioned as A = [A11 A12] where the columns of
A11 correspond to the branches of T . We know from Theorem 8.9 that A11 is nonsingular.
Now we can write Qf as

Qf =
[
U Qfc

]
= A−1

11

[
A11 A12

]
.

If C is any square submatrix of Qf of order n − 1, where n is the number of vertices of
G, and D is the corresponding submatrix of A, then C = A−1

11 D. Since det(D) = ±1 or 0
and det(A−1

11) = ±1, we get

det(C) = ±1 or 0. (8.19)

Consider next any square submatrix H of Qf of order less than n−1. From the arguments
preceding this theorem we know that H is a submatrix of a fundamental cutset matrix of
some connected graph. Therefore, det(H) = ±1 or 0, the proof of which follows along the
same lines as that used to prove (8.19).

Thus the determinant of every square submatrix of Qf is ±1 or 0 and hence Qf is totally
unimodular. �
Next we show that Bf is totally unimodular.

C5955–C008.tex 202 2015/11/4 9:28am

Incidence, Cut, and Circuit Matrices of a Graph � 203

Theorem 8.15 Any fundamental circuit matrix Bf of a connected graph G is totally
unimodular.

Proof. Let Bf and Qf be the fundamental circuit and cutset matrices of G with respect to
a spanning tree T . If Qf = [U Qfc], then we know from (8.13) that

Bf =
[
−Qt

fc U
]
.

Since Qfc is totally unimodular, Qt
fc is also totally unimodular. It is now a simple exercise

to show that [−Qt
fc U] is totally unimodular. �

8.8 NUMBER OF SPANNING TREES

We derive in this section a formula for counting the number of spanning trees in a connected
graph. This formula is based on Theorems 8.9 and 8.13 and a result in matrix theory, known
as the Binet–Cauchy theorem.

A major determinant or briefly a major of a matrix is a determinant of maximum order
in the matrix. Let P be a matrix of order p × q and Q be a matrix of order q × p with p ≤ q.
The majors of P and Q are of order p. If a major of P consists of the columns i1, i2, . . ., ip of
P , then the corresponding major of Q is formed by the rows i1, i2, . . ., ip of Q. For example, if

P =
[
1 −1 3 3
2 2 −1 2

]
, and Q =

1 2,
2 −1,

−3 1,
1 2

,

then for the major ∣∣∣∣∣−1 3
2 −1

∣∣∣∣∣
of P , ∣∣∣∣∣ 2 −1

−3 1

∣∣∣∣∣
is the corresponding major of Q.

Theorem 8.16 (Binet–Cauchy) If P is a p × q matrix and Q is a q × p matrix, with
p ≤ q, then

det(PQ) = Σ(product of the corresponding majors of P and Q). �

Proof of this theorem may be found in Hohn [4].
As an illustration, if the matrices P and Q are as given earlier, then applying the Binet–

Cauchy theorem we get

det(PQ) =
∣∣∣∣∣1 −1
2 2

∣∣∣∣∣
∣∣∣∣∣1 2
2 −1

∣∣∣∣∣ +
∣∣∣∣∣1 3
2 −1

∣∣∣∣∣
∣∣∣∣∣ 1 2
−3 1

∣∣∣∣∣ +
∣∣∣∣∣1 3
2 2

∣∣∣∣∣
∣∣∣∣∣1 2
1 2

∣∣∣∣∣
+

∣∣∣∣∣−1 3
2 −1

∣∣∣∣∣
∣∣∣∣∣ 2 −1
−3 1

∣∣∣∣∣ +
∣∣∣∣∣−1 3

2 2

∣∣∣∣∣
∣∣∣∣∣2 −1
1 2

∣∣∣∣∣ +
∣∣∣∣∣ 3 3
−1 2

∣∣∣∣∣
∣∣∣∣∣−3 1

1 2

∣∣∣∣∣
= − 167.

C5955–C008.tex 203 2015/11/4 9:28am

204 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 8.17 Let G be a connected undirected graph and A an incidence matrix of a
directed graph which is obtained by assigning arbitrary orientations to the edges of G. Then

τ(G) = det(AAt),

where τ(G) is the number of spanning trees of G.

Proof. By the Binet–Cauchy theorem

det(AAt) = Σ(product of the corresponding majors of A and At). (8.20)

Note that the corresponding majors of A and At both have the same value equal to 1, −1,
or 0 (Theorem 8.13). Therefore each nonzero term in the sum on the right-hand side of (8.20)
has the value 1. Furthermore, a major of A is nonzero if and only if the edges corresponding
to the columns of the major form a spanning tree.

Thus there is a one-to-one correspondence between the nonzero terms in the sum on the
right-hand side of (8.20) and the spanning trees of G. Hence the theorem. �

Let v1, v2, . . ., vn denote the vertices of an undirected graph G without self-loops. The
degree matrix ∗ K = [kij] is an n × n matrix defined as follows:

kij =
{

−p, if i ̸= j and there are p parallel edges connecting vi and vj .
d(vi), if i = j.

We can easily see that K = AcA
t
c and is independent of our choice of the orientations for

arriving at the all-vertex incidence matrix Ac. If v is the reference vertex of A, then AAt is
obtained by removing the rth row and the rth column of K. Thus the matrix AAt used in
Theorem 8.17 can be obtained by an inspection of the graph G.

It is clear from the definition of the degree matrix that the sum of all the elements in
each row of K equals zero. Similarly the sum of all the elements in each column of K equals
zero. A square matrix with these properties is called an equi-cofactor matrix. As its name
implies, all the cofactors of an equi-cofactor matrix are equal [4]. Thus from Theorem 8.17
we get the following result, originally due to Kirchhoff [5].

Theorem 8.18 All the cofactors of the degree matrix of a connected undirected graph have
the same value equal to the number of spanning trees of G. �

Next we derive a formula for counting the number of distinct spanning trees which can be
constructed on n labeled vertices. Clearly this number is the same as the number of spanning
trees of Kn, the complete graph on n labeled vertices.

Theorem 8.19 (Cayley) There are nn−2 labeled trees on n ≥ 2 vertices.

Proof. In the case of Kn, the matrix AAt is of the form

n − 1 −1 · · · −1
−1 n − 1 · · · −1
. . · · · .
. . · · · .
. . · · · .

−1 −1 · · · n − 1.

.

∗The degree matrix is also known as the graph Laplacian. See Chapters 10 and 11.

C5955–C008.tex 204 2015/11/4 9:28am

Incidence, Cut, and Circuit Matrices of a Graph � 205

By Theorem 8.17, the determinant of this matrix gives the number of spanning trees of Kn,
which is the same as the number of labeled trees on n vertices.

To compute det(AAt), subtract the first column of AAt from all the other columns of
AAt. Then we get

n − 1 −n −n · · · −n

−1 n 0 · · · 0
−1 0 n · · · 0

. . . · · · .

. . . · · · .

. . . · · · .

−1 0 0 · · · n.

.

Now adding to the first row of the above matrix every one of the other rows, we get

1 0 0 · · · 0
−1 n 0 · · · 0
−1 0 n · · · 0

. . . · · · .

. . . · · · .

−1 0 0 · · · n.

.

The determinant of this matrix is nn−2. The theorem now follows since addition of any
two rows or any two columns of a matrix does not change the value of the determinant of
the matrix. �

Several proofs of Cayley’s theorem [6] are available in the literature. See Moon [7] and
Prüfer [8].

8.9 NUMBER OF SPANNING 2-TREES∗

In this section we relate the cofactors of the matrix AAt of a graph G to the number of
spanning 2-trees of the appropriate type. For this purpose, we need symbols to denote
2-trees in which certain specified vertices are required to be in different components. We
use the symbol Tijk,...,rst,... to denote spanning 2-trees in which the vertices vi, vj , vk, . . . are
required to be in one component and the vertices vr, vs, vt, . . . are required to be in the other
component of the 2-tree. The number of these spanning 2-trees in the graph G will be denoted
by τijk,...,rst,....

In the following, we denote by A an incidence matrix of the directed graph which is
obtained by assigning arbitrary orientations to the edges of the graph G. However, we shall
refer to A as an incidence matrix of G. We shall assume, without any loss of generality, that
vn is the reference vertex for A, and the ith row of A corresponds to vertex vi. ∆ij will denote
the (i, j) cofactor of AAt.

Let A−i denote the matrix obtained by removing from A its ith row. If G′ is the graph
obtained by short-circuiting (contracting) the vertices vi and vn in G, then we can verify the
following:

∗An acyclic spanning subgraph of a connected graph G that contains exactly two trees is called a spanning
2-tree of G.

C5955–C008.tex 205 2015/11/4 9:28am

206 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1. A−i is the incidence matrix of G′ with vn as the reference vertex.

2. A set of edges form a spanning tree of G′ if and only if these edges form a spanning
2-tree Ti,n of G.

Thus, there exists a one-to-one correspondence between the nonzero majors of A−i and the
spanning 2-trees of the type Ti,n.

Theorem 8.20 For a connected graph G,

∆ii = τi,n.

Proof. Clearly ∆ii = det(A−iA
t
−i). Proof is immediate since the nonzero majors of A−i

correspond to the spanning 2-trees Ti,n of G and vice versa. �

Consider next the (i, j) cofactor ∆ij of AAt which is given by

∆ij = (−1)i+j det(A−iA
t
−j). (8.21)

By the Binet–Cauchy theorem,

det(A−iA
t
−j) = Σ(product of the corresponding majors of A−i and At

−j). (8.22)

Each nonzero major of A−i corresponds to a spanning 2-tree of the type Ti,n, and each
nonzero major of A−j corresponds to a spanning 2-tree of the type Tj,n. Therefore the nonzero
terms in the sum on the right-hand side of (8.22) correspond to the spanning 2-trees of the
type Tij,n. Each one of these nonzero terms is equal to a determinant of the type det(F−iF

t
−j),

where F is the incidence matrix of a 2-tree of the type Tij,n.

Theorem 8.21 Let F denote the incidence matrix of a 2-tree Tij,n with vn as the reference
vertex. If the ith row of F corresponds to vertex vi, then

det(F−iF
t
−j) = (−1)i+j .

Proof. Let T1 and T2 denote the two components of Tij,n. Assume that vn is in T2. Then vi

and vj will be in T1. By interchanging some of its rows and the corresponding columns, we
can write the matrix FF t as

S =
[
C 0
0 D

]
,

where:
C is the degree matrix of T1
D is obtained by removing from the degree matrix of T2 the row and the column
corresponding to vn

Let row k′ of S correspond to vertex vk.
Interchanging some rows and the corresponding columns of a matrix does not alter the

values of the cofactors of the matrix. So
(i′, j′) cofactor of S = (i, j) cofactor of (FF t)

= (−1)i+j det(F−iF
t
−j).

(8.23)

By Theorem 8.18 all the cofactors of C have the same value equal to the number of spanning
trees of T1. So we have

(i′, j′) cofactor of C = 1.

C5955–C008.tex 206 2015/11/4 9:28am

Incidence, Cut, and Circuit Matrices of a Graph � 207

Furthermore,

det(D) = 1.

So

(i′, j′) cofactor of S = [(i′, j′) cofactor of C] det D = 1. (8.24)

Now, from (8.23) and (8.24) we get

det(F−iF
t
−j) = (−1)i+j . �

Proof of the above theorem is due to Sankara Rao et al. [9]. The following result is due
to Seshu and Reed [10].

Theorem 8.22 For a connected graph G,

∆ij = τij,n.

Proof. Since each nonzero term in the sum on the right-hand side of (8.22) is equal to a
determinant of the type given in Theorem 8.21, we get

det(A−i, At
−j) = (−1)i+jτij,n.

So

∆ij = (−1)i+j det(A−i, At
−j)

= τij,n. �

8.10 NUMBER OF DIRECTED SPANNING TREES∗ IN A DIRECTED GRAPH

In this section we discuss a method due to Tutte [11] for computing the number of directed
spanning trees in a given directed graph having a specified vertex as root. This method is
in fact a generalization of the method given in Theorem 8.17 to compute the number of
spanning trees of a graph, and it is given in terms of the in-degree matrix defined below.

The in-degree matrix K = [kpq] of a directed graph G = (V, E) without self-loops and
with V = {v1, v2, . . ., vn} is an n × n matrix defined as follows:

kpq =
{

−ω, if p ̸= q and there are ω parallel edges directed from vp to vq.
d−(vp), if p = q.

Let Kij denote the matrix obtained by removing row i and column j from K. Tutte’s
method is based on the following theorem.

Theorem 8.23 A direct graph G = (V, E) with no self-loops and with V = {v1, v2, . . ., vn}
is a directed spanning tree with vr as the root if and only if its in-degree matrix K has the
following properties:

∗A spanning tree in a directed graph is a directed spanning tree with root Vr if in the tree there is a
directed path from Vr to every vertex in the tree.

C5955–C008.tex 207 2015/11/4 9:28am

208 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1. kpp =
{

0, if p = r,
1, if p ̸= r.

2. det(Krr) = 1.

Proof. Necessity: Suppose the given directed graph G is a directed spanning tree with vr as
the root. Clearly G is acyclic. So we can label the vertices of G with the numbers 1, 2, . . ., n
in such a way that (i, j) is a directed edge of G only if i < j. Such a labeling is called a
topological sorting of the vertices of an acyclic graph. Then in such a numbering, the root
vertex would receive the number 1. If the ith row and the ith column of the new in-degree
matrix K ′ of G correspond to the vertex assigned the number i, then we can easily see that
K ′ has the following properties:

k′
11 = 0,

k′
pp = 1, for p ̸= 1,

k′
pq = 0, if p > q.

Therefore

det(K ′
11) = 1.

The matrix K ′ can be obtained by interchanging some rows and the corresponding
columns of K. Such an interchange does not change the value of the determinant of any
submatrix of K. So

det(Krr) = det(K ′
11) = 1.

Sufficiency: Suppose the in-degree matrix K of the graph G satisfies the two properties
given in the theorem. If G is not a directed tree, it contains a circuit C. The root vertex vr

cannot be in C, for this would imply that d−(vr) > 0 or that d−(v) > 1 for some other vertex
v in C, contradicting property 1. In a similar way, we can show that

1. C must be a directed circuit; and

2. No edge not in C is incident into any vertex in C.

Consider now the submatrix Ks of K consisting of the columns corresponding to the
vertices in C. Because of the above properties, each row of Ks corresponding to a vertex in
C has exactly one +1 and one −1. All the other rows in Ks contain only zero elements. Thus
the sum of the columns of Ks is zero. In other words, the sum of the columns of K which
correspond to the vertices in C is zero. Since vr is not in C, this is true in the case of the
matrix Krr too, contradicting property 2. Hence the sufficiency. �

We now develop Tutte’s method for computing the number τd of the directed spanning
trees of a directed graph G having vertex vr as the root. Assume that G has no self-loops.

For any graph g, let K(g) denote its in-degree matrix, and let K ′ be the matrix obtained
from K by replacing its rth column by a column of zeros. Denote by S the collection of all
the subgraphs of G in each of which d−(vr) = 0 and d−(vp) = 1 for p ̸= r. Clearly

|S| =
n∏

p=1
d−(vp).

C5955–C008.tex 208 2015/11/4 9:28am

Incidence, Cut, and Circuit Matrices of a Graph � 209

Further, for any subgraph g ∈ S, the corresponding in-degree matrix satisfies property 1
given in Theorem 8.23.

It is well known in matrix theory that the determinant of a square matrix is a linear
function of its columns. For example, if

P = [p1, p2, . . ., p′
i + p′′

i , . . ., pn]

is a square matrix with the columns p1, p2, . . ., p′
i + p′′

i , . . ., pn, then

det(P) = det[p1, p2, . . ., p′
i, . . ., pn] + det[p1, p2, . . ., p′′

i , . . ., pn]

Using the linearity of the determinant function and the fact that the sum of all the entries
in each column of the matrix K ′(G) is equal to zero, we can write det K ′(G) as the sum
of |S| determinants each of which satisfies the property 1 given in Theorem 8.23. It can be
seen that there is a one-to-one correspondence between these determinants and the in-degree
matrices of the subgraphs in S. Thus

det(K ′(G)) =
∑
g∈S

det(K ′(g)).

So

det(K ′
rr(G)) =

∑
g∈S

det(K ′
rr(g)).

Since

det(K ′
rr(G)) = det(Krr(G)).

and

det(K ′
rr(g)) = det(Krr(g)), for all g ∈ S,

we get

det(Krr(G)) =
∑
g∈S

det(K ′
rr(g)).

From Theorem 8.23 it follows that each determinant in the sum on the right-hand side of
the above equation is nonzero and equal to 1 if and only if the corresponding subgraph in S
is a directed spanning tree. Thus we have the following theorem.

Theorem 8.24 Let K be the in-degree matrix of a directed graph G without self-loops. Let
the ith row of K correspond to vertex vi of G. Then the number τd of directed spanning trees
of G having vr as its root is given by

τd = det(Krr),

where Krr is the matrix obtained by removing from K its rth row and its rth column. �

We now illustrate the above theorem and the arguments leading to its proof.
Consider the directed graph G shown in Figure 8.3. Let us compute the number of directed

spanning trees with vertex v1 as the root.

C5955–C008.tex 209 2015/11/4 9:28am

210 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

v1

v2
e2

e3

e4

e5

e6

e1

v3

Figure 8.3 Illustration of the proof of Theorem 8.24.

The in-degree matrix K of G is

K =

 1 −1 −2
−1 2 −1

0 −1 3

and

K ′ =

0 −1 −2
0 2 −1
0 −1 3

.

We can write det(K ′) as

det(K ′) =

∣∣∣∣∣∣∣
0 −1 −2
0 2 −1
0 −1 3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
0 −1 −2
0 1 −1
0 0 3

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
0 0 −2
0 1 −1
0 −1 3

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
0 −1 −1
0 1 0
0 0 1

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
0 −1 −1
0 1 0
0 0 1

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
0 −1 0
0 1 −1
0 0 1

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
0 0 −1
0 1 0
0 −1 1

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
0 0 −1
0 1 0
0 −1 1

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
0 0 0
0 1 −1
0 −1 1

∣∣∣∣∣∣∣ .

The six determinants on the right-hand side in the above equation correspond to the sub-
graphs on the following set of edges:

{e1, e5}, {e1, e6}, {e1, e3},

{e4, e5}, {e4, e6}, {e4, e3}.

Removing the first row and the first column from the above determinants, we get

det(K ′
11) =

∣∣∣∣∣ 2 −1
−1 3

∣∣∣∣∣ =
∣∣∣∣∣1 0
0 1

∣∣∣∣∣ +
∣∣∣∣∣1 0
0 1

∣∣∣∣∣ +
∣∣∣∣∣1 −1
0 1

∣∣∣∣∣
+

∣∣∣∣∣ 1 0
−1 1

∣∣∣∣∣ +
∣∣∣∣∣ 1 0
−1 1

∣∣∣∣∣ +
∣∣∣∣∣ 1 −1
−1 1

∣∣∣∣∣
= 5.

The five directed spanning trees with v1 as root are

{e1, e5}, {e1, e6}, {e1, e3}, {e4, e5}, {e4, e6}.

C5955–C008.tex 210 2015/11/4 9:28am

Incidence, Cut, and Circuit Matrices of a Graph � 211

8.11 DIRECTED SPANNING TREES AND DIRECTED EULER TRAILS

Let G be a directed Eulerian graph without self-loops. In this section we relate the number
of directed Euler trails in G to the number of directed spanning trees of G.

Let v1, v2, . . ., vn denote the vertices of G. Consider a directed Euler trail C in G. Let ej1

be any edge of G incident into v1. For every p = 2, 3, . . ., n, let ejp denote the first edge on C
to enter vertex vp after traversing ej1 .

Let H denote the subgraph of G on the edge set {ej2 , ej3 , . . ., ejn}.

Lemma 8.1 Let C be a directed Euler trail of a directed Eulerian graph G. The subgraph H
defined as above is a directed spanning tree of G with root v1.

Proof. Clearly in H, d−(v1) = 0 and d−(vp) = 1 for all p = 2, 3, . . ., n. Suppose H has a
circuit C ′. Then v1 is not in C ′, for otherwise either d−(v1) > 0 or d−(v) > 1 for some other
vertex v on C ′. For the same reason C ′ is a directed circuit. Since d−(v) = 1 for every vertex
v on C ′, no edge not in C ′ enters any vertex in C ′. This means that the edge e which is the
first edge of C to enter a vertex of C ′ after traversing ej1 does not belong to H, contradicting
the definition of H. Thus H has no circuits.

Now it follows that H is a directed spanning tree of G. �

Given a directed spanning tree H of an n-vertex directed Eulerian graph G without self-
loops, let v1 be the root of H and ej1 an edge incident into v1 in G. Let ejp for p = 2, 3, . . ., n
be the edge entering vp in H. We now describe a method for constructing a directed Euler
trail in G.

1. Start from vertex v1 and traverse backward on any edge entering v1 other than ej1 if
such an edge exists, or on ej1 if there is no other alternative.

2. In general on arrival at a vertex vp, leave it by traversing backward on an edge
entering vp which has not yet been traversed and, if possible, other than ejp . Stop
if no untraversed edges entering vp exist.

In the above procedure every time we reach a vertex vp ̸= v1, there will be an untraversed
edge entering vp because the in-degree of every vertex in G is equal to its out-degree. Thus
this procedure terminates only at the vertex v1 after traversing all the edges incident into v1.

Suppose there exists in G an untraversed edge (u, v) when the above procedure terminates
at v1. Since the in-degree of u is equal to its out-degree, there exists at least one untraversed
edge incident into u. If there is more than one such untraversed edge, then one of those will
be the edge y entering u in H. This follows from step 2 of the procedure. This untraversed
edge y will lead to another untraversed edge which is also in H. Finally we shall arrive at v1
and shall find an untraversed edge incident into v1. This is not possible since all the edges
incident into v1 will have been traversed when the procedure terminates at v1.

Thus all the edges of G will be traversed during the procedure we described above, and
indeed a directed Euler trail is constructed.

Since at each vertex vp there are (d−(vp) − 1)! different orders for picking the incoming
edge (with ejp at the end), it follows that the number of distinct directed Euler trails that
we can construct from a given directed spanning tree H and ej1 is

n∏
p=1

(d−(vp) − 1)!

Further, each different choice of H will yield a different ejp for some p = 2, 3, . . ., n, which
will in turn result in a different entry to vp after traversing ej1 in the resulting directed Euler
trail.

C5955–C008.tex 211 2015/11/4 9:28am

212 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Finally, since the procedure of constructing a directed Euler trail is the reversal of the
procedure for constructing a directed spanning tree, it follows that every directed Euler trail
can be constructed from some directed spanning tree.

Thus we have proved the following theorem due to Van Aardenne-Ehrenfest and de
Bruijn [12].

Theorem 8.25 The number of directed Euler trails of a directed Eulerian graph G without
self-loops is

τd(G)
n∏

p=1
(d−(vp) − 1)!

where τd(G) is the number of directed spanning trees of G with v1 as root. �

Since the number of directed Euler trails is independent of the choice of the root, we get
the following.

Corollary 8.4 The number of directed spanning trees of a directed Eulerian graph is the
same for every choice of root. �

Further Reading

Seshu and Reed [10], Chen [4], Mayeda [13], and Deo [14] are other references for the top-
ics covered in this chapter. Chen [4] also gives historical details regarding the results pre-
sented here.

The textbook by Harry and Palmer [15] is devoted exclusively to the study of enumera-
tion problems in graph theory, in particular, to those related to unlabeled graphs. See also
Biggs [16].

The problem of counting spanning trees has received considerable attention in electrical
network theory literature. Recurrence relations for counting spanning trees in special classes
of graphs are available. For example, see Myers [17] and [18], Bedrosian [19], Bose et al. [20],
and Swamy and Thulasiraman [21]. Berge [22] contains formulas for the number of spanning
trees having certain specified properties. For algorithms to generate all the spanning trees of
a connected graph see Gabow and Myers [23] and Jayakumar et al. [24] and [25].

Thulasiraman and Swamy [2] give a detailed discussion of applications of graphs in elec-
trical network theory.

References

[1] J. L. Gross, J. Ellen, and P. F. Zhang, Handbook of Graph Theory, CRC Press, New
York, 2013.

[2] M. N. S. Swamy and K. Thulasiraman, Graphs, Networks and Algorithms, Wiley-
Interscience, New York, 1981.

[3] F. E. Hohn, Elementary Matrix Algebra, Macmillan, New York, 1958.

[4] W. K. Chen, Applied Graph Theory, North-Holland, Amsterdam, the Netherlands, 1971.

[5] G. Kirchhoff, Uber die Auflosung der Gleichungen, auf welche man bei der untersuchung
der linearen verteilung galvanischer strome gefuhrt wird, Ann. Phys. Chem., 72 (1847),
497–508.

[6] A. Cayley, A theorem on trees, Quart. J. Math., 23 (1889), 376–378.

C5955–C008.tex 212 2015/11/4 9:28am

Incidence, Cut, and Circuit Matrices of a Graph � 213

[7] J. W. Moon, Various proofs of Cayley’s formula for counting trees, In F. Harary and L.
W. Beinke, editors, A Seminar on Graph Theory, Holt, Rinehart & Winston, New York,
1967, 70–78.

[8] H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Arch. Math. Phys., 27 (1918),
742–744.

[9] K. Sankara Rao, V. V. Bapeswara Rao, and V. G. K. Murti, Two-tree admittance
products, Electron. Lett., 6 (1970), 834–835.

[10] S. Seshu and M. B. Reed, Linear Graphs and Electrical Networks, Addison-Wesley,
Reading, MA, 1961.

[11] W. T. Tutte, The dissection of equilateral triangles into equilateral triangles, Proc.
Cambridge Phil. Soc., 44 (1948), 203–217.

[12] T. Van Aardenne-Ehrenfest and N. G. de Bruijn, Circuits and trees in oriented linear
graphs, Simon Stevin, 28 (1951), 203–217.

[13] W. Mayeda, Graph Theory, Wiley-Interscience, New York, 1972.

[14] N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice
Hall, Englewood Cliffs, NJ, 1974.

[15] F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, New York, 1973.

[16] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, England,
1974.

[17] B. R. Myers, Number of trees in a cascade of 2-port networks, IEEE Trans. Circuit
Theory, CT-18 (1967), 284–290.

[18] B. R. Myers, Number of spanning trees in a wheel, IEEE Trans. Circuit Theory, CT-18
(1971), 280–282.

[19] S. D. Bedrosian, Number of spanning trees in multigraph wheels, IEEE Trans. Circuit
Theory, CT-19 (1972), 77–78.

[20] N. K. Bose, R. Feick, and F. K. Sun, General solution to the spanning tree enumeration
problem in multigraph wheels, IEEE Trans. Circuit Theory, CT-20 (1973), 69–70.

[21] M. N. S. Swamy and K. Thulasiraman, A theorem in the theory of determinants and
the number of spanning trees of a graph, Can. Elec. Eng. J., 8 (1983), 147–152.

[22] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, the Netherlands, 1973.

[23] H. N. Gabow and E. W. Myers, Finding all spanning trees of directed and undirected
graphs, SIAM J. Comp., 7 (1978), 280–287.

[24] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy, Complexity of computation of
a spanning tree enumeration algorithm, IEEE Trans. Circuit and Systems, CAS-31
(1984), 853–860.

[25] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy, MOD-CHAR: An implementation
of Char’s spanning tree enumeration algorithm and its complexity analysis. IEEE Trans.
Circuit and Systems, CAS-36 (1989), 219–228.

C5955–C008.tex 213 2015/11/4 9:28am

C H A P T E R 9

Adjacency Matrix and Signal
Flow Graphs*
Krishnaiyan “KT” Thulasiraman

M. N. S. Swamy

CONTENTS

9.1 Introduction . 215
9.2 Adjacency Matrix of a Directed Graph . 215
9.3 Coates’ Gain Formula . 218
9.4 Mason’s Gain Formula . 222

9.1 INTRODUCTION

Signal flow graph theory is concerned with the development of a graph theoretic approach
to solving a system of linear algebraic equations. Two closely related methods proposed by
Coates [2] and Mason [3,4] have appeared in the literature and have served as elegant aids
in gaining insight into the structure and nature of solutions of systems of equations. In this
chapter we develop these two methods. Our development follows closely [5].

Coates’ and Mason’s methods may be viewed as generalizations of a basic theorem in
graph theory due to Harary [6], which provides a formula for finding the determinant of the
adjacency matrix of a directed graph. Thus, our discussion begins with the development of
this theorem. An extensive discussion of this topic may be found in Chen [7].

9.2 ADJACENCY MATRIX OF A DIRECTED GRAPH

Consider a directed graph G = (V, E) with no parallel edges. Let V = {v1, . . ., vn}. The
adjacency matrix M = [mij] of G is an n × n matrix defined as follows:

mij =
{

1, if (vi, vj) ∈ E

0, otherwise

The graph shown in Figure 9.1 has the following adjacency matrix:

M =

v1 v2 v3 v4

v1 1 1 1 0
v2 0 1 0 0
v3 1 0 0 1
v4 1 1 1 1

∗This chapter is an edited version of Chapter 8 in Reference 1.

C5955–C009.tex 215 2015/11/4 9:32am

215

216 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

In the following we shall develop a topological formula for det(M). Toward this end we
introduce some basic terminology. A 1-factor of a directed graph G is a spanning subgraph
of G in which the in-degree and the out-degree of every vertex are both equal to 1. It is easy
to see that a 1-factor is a collection of vertex-disjoint directed circuits. Because a self-loop
at a vertex contributes 1 to the in-degree and 1 to the out-degree of the vertex, a 1-factor
may have some self-loops. As an example, the three 1-factors of the graph of Figure 9.1 are
shown in Figure 9.2.

v1 v2

v3 v4

Figure 9.1 Graph G.

(a) (b)

v1 v2

v3 v4

v1 v2

v3 v4

v1 v2

v3 v4

(c)

Figure 9.2 Three 1-factors of the graph of Figure 9.1.

C5955–C009.tex 216 2015/11/4 9:32am

Adjacency Matrix and Signal Flow Graphs � 217

A permutation (j1, j2, . . ., jn) of integers 1, 2, . . ., n is even (odd) if an even (odd) number
of interchanges are required to rearrange it as (1, 2, . . ., n).

The notation (
1, 2, . . ., n

j1, j2, . . ., jn

)

is also used to represent the permutation (j1, j2, . . ., jn). As an example, the permutation
(4, 3, 1, 2) is odd because it can be rearranged as (1, 2, 3, 4) using the following sequence of
interchanges:

1. Interchange 2 and 4.

2. Interchange 1 and 2.

3. Interchange 2 and 3.

For a permutation (j) = (j1, j2, . . ., jn), εj1,j2,...,jn , is defined as equal to 1, if (j) is an even
permutation; otherwise, εj1,j2,...,jn is equal to −1.

Given an n × n square matrix X = [xij], we note that det X is given by

det(X) =
∑
(j)

εj1,j2,...,jnx1j1 ·x2j2 . . . xnjn

where the summation
∑

(j) is over all permutations of 1, 2, . . ., n [8].
The following theorem is due to Harary [6].

Theorem 9.1 Let Hi, i = 1, 2, . . ., p be the 1-factors of an n-vertex directed graph G. Let
Li denote the number of directed circuits in Hi, and let M denote the adjacency matrix
of G. Then

det(M) = (−1)n
p∑

i=1
(−1)Li

Proof. From the definition of a determinant, we have

det(M) =
∑
(j)

εj1,j2,...,jnm1j1 · m2j2 . . . mnjn (9.1)

Proof will follow if we establish the following:

1. Each nonzero term m1j1 · m2j2 . . . mnjn corresponds to a 1-factor of G, and conversely,
each 1-factor of G corresponds to a non-zero term m1j1 · m2j2 . . . mnjn .

2. εj1,j2,...,jn = (−1)n+L if the 1-factor corresponding to a nonzero m1j1 · m2j2 . . . mnjn has
L directed circuits.

A nonzero term m1j1 · m2j2 . . . mnjn corresponds to the set of edges (v1, vj1), (v2, vj2), . . .,
(vn, vjn). Each vertex appears exactly twice in this set, once as an initial vertex and once
as a terminal vertex of a pair of edges. Therefore, in the subgraph induced by these edges,
for each vertex its in-degree and its out-degree are both equal to 1, and this subgraph is a
1-factor of G. In other words, each nonzero term in the sum in (9.1) corresponds to a 1-factor
of G. The fact that each 1-factor of G corresponds to a nonzero term m1j1 · m2j2 . . . mnjn is
obvious.

C5955–C009.tex 217 2015/11/4 9:32am

218 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

As regards εj1,j2,...,jn , consider a directed circuit C in the 1-factor corresponding to
m1j1 · m2j2 . . . mnjn . Without loss of generality, assume that C consists of the w edges

(v1, v2), (v2, v3), . . ., (vw, v1)

It is easy to see that the corresponding permutation (2, 3, . . ., w, 1) can be rearranged as
(1, 2, . . ., w) using w − 1 interchanges. If the 1-factor has L directed circuits with lengths
w1, . . ., wL, the permutation (j1, . . ., jn) can be rearranged as (1, 2, . . ., n) using

(w1 − 1) + (w2 − 1) + · · · + (wL − 1) = n − L

interchanges. So,
εj1,j2,...,jn = (−1)n+L. �

As an example, for the 1-factors (shown in Figure 9.2) of the graph of Figure 9.1 the
corresponding Li are L1 = 3, L2 = 3, and L3 = 2. So, the determinant of the adjacency
matrix of the graph of Figure 9.1 is

(−1)4[(−1)3 + (−1)3 + (−1)2] = −1.

Consider next a weighted directed graph G in which each edge (vi, vj) is associated with
a weight wij . Then we may define the adjacency matrix M = [mij] of G as follows:

mij =
{

wij , if (vi, vj) ∈ E
0, otherwise

Given a subgraph H of G, let us define the weight w(H) of H as the product of the
weights of all edges in H. If H has no edges, then we define w(H) = 1. The following result
is an easy generalization of Theorem 9.1.

Theorem 9.2 The determinant of the adjacency matrix of an n-vertex weighted directed
graph G is given by

det(M) = (−1)n
∑
H

(−1)LH w(H),

where H is a 1-factor, w(H) is the weight of H, and LH is the number of directed circuits
in H. �

9.3 COATES’ GAIN FORMULA

Consider a linear system described by the equation

AX = Bxn+1 (9.2)

where A is a nonsingular n × n matrix, X is a column vector of unknown variables
x1, x2, . . ., xn; B is a column vector of elements b1, b2, . . ., bn; and xn+1 is the input variable.
It is well known that

xk

xn+1
=
∑n

i=1 bi∆ik

det A
(9.3)

where ∆ik is the (i, k) cofactor of A.

C5955–C009.tex 218 2015/11/4 9:32am

Adjacency Matrix and Signal Flow Graphs � 219

To develop Coates’ topological formulas for the numerator and the denominator of (9.3),
let us first augment the matrix A by adding −B to the right of A and adding a row of zeroes
at the bottom of the resulting matrix. Let this matrix be denoted by A′. The Coates flow
graph∗ GC(A′), or simply the Coates graph associated with matrix A′, is a weighted directed
graph whose adjacency matrix is the transpose of the matrix A′. Thus, GC(A′) has n + 1
vertices x1, x2, . . ., xn+1, and if aji . . . ̸= 0, then GC(A′) has an edge directed from xi to xj

with weight aji. Clearly, the Coates graph GC(A) associated with matrix A can be obtained
from GC(A′) by removing the vertex xn+1.

As an example, for the following system of equations 3 −2 1
−1 2 0

3 −2 2

x1

x2
x3

 =

 3
1

−2

x4 (9.4)

the matrix A′ is
3 −2 1 −3

−1 2 0 −1
3 −2 2 2
0 0 0 0

.
The Coates graphs GC(A′) and GC(A) are shown in Figure 9.3.

Because a matrix and its transpose have the same determinant value and because A is the
transpose of the adjacency matrix of GC(A), we obtain the following result from Theorem 9.2.

(a)

x1

x2

x3

x4

−1

3

−1

2

1

3 2

−2

−2

−3

x1

x2

x3

−1

−2

−2

3

1

3 2

2

(b)

x1

x2

x3

3

−3

2

x4(c)

2

Figure 9.3 (a) Coates graph GC(A′). (b) Graph GC(A). (c) 1-factorial connection H4,3 of the
graph GC(A).

∗In networks and systems literature, the Coates graph is referred to as a flow graph.

C5955–C009.tex 219 2015/11/4 9:32am

220 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 9.3 If a matrix A is nonsingular, then

det(A) = (−1)n
∑
H

(−1)LH w(H) (9.5)

where H is a 1-factor of GC(A), w(H) is the weight of H, and LH is the number of directed
circuits in H. �

To derive a similar expression for the sum in the numerator of (9.3), we first define the
concept of 1-factorial connection. A 1-factorial connection Hij from xi to xj in GC(A) is
a spanning subgraph of G which contains a directed path P from xi to xj and a set of
vertex-disjoint directed circuits which include all the vertices of GC(A) other than those
which lie on P . Similarly, a 1-factorial connection of GC(A′) can be defined. As an exam-
ple, a 1-factorial connection from x4 to x3 of the graph GC(A′) of Figure 9.3a is shown in
Figure 9.3c.

Theorem 9.4 Let GC(A) be the Coates graph associated with an n × n matrix A. Then

1. ∆ii = (−1)n−1∑
H(−1)LH w(H)

2. ∆ij = (−1)n−1∑
Hij

(−1)L′
H w(Hij), i ̸= j

where H is a 1-factor in the graph obtained by removing vertex xi from GC(A), Hij is a
1-factorial connection in GC(A) from vertex xi to vertex xj, and LH and L′

H are the numbers
of directed circuits in H and Hij, respectively.

Proof.

1. Note that ∆ii is the determinant of the matrix obtained from A by replacing its ith
column by a column of zeros except for the element in row i, which is 1. Also, the
Coates graph of the resulting matrix can be obtained from GC(A) by removing vertex
xi. Proof follows from these observations and Theorem 9.3.

2. Let Aα denote the matrix obtained from A by replacing its jth column by a column
of zeros, except for the element in row i, which is 1. Then it is easy to see that

∆ij = det Aα.

Now, the Coates graph GC(Aα) can be obtained from GC(A) by removing all edges inci-
dent out of vertex xj and adding an edge directed from xj to xi with weight 1. Then from
Theorem 9.3, we get

∆ij = det Aα

= (−1)n
∑
Hα

(−1)Lαw(Hα) (9.6)

where Hα is a 1-factor of GC(Aα) and Lα is the number of directed circuits in Hα.
Consider now a 1-factor Hα in GC(Aα). Let C be the directed circuit of Hα containing

xi. Because in GC(Aα), (xj , xi) is the only edge incident out of xj , it follows that xj also
lies in C. If we remove the edge (xj , xi) from Hα we get a 1-factorial connection, Hij = H.
Furthermore, L′

H = Lα − 1 and w(Hij) = w(Hα) because (xj , xi) has weight equal to 1.
Thus, each Hα corresponds to a 1-factorial connection Hij of GC(Aα) with w(Hα) = w(Hij)

C5955–C009.tex 220 2015/11/4 9:32am

Adjacency Matrix and Signal Flow Graphs � 221

and L′
H = Lα − 1. The converse of this is also easy to see. Thus in (9.6) we can replace Hα

by Hij and Lα by (L′
H − 1). Then we obtain

∆ij = (−1)n−1∑
Hij

(−1)L′
H w(Hij) �

Having shown that each ∆ij can be expressed in terms of the weights of the 1-factorial
connections Hij in GC(A), we now show that

∑
bi∆ik can be expressed in terms of the

weights of the 1-factorial connections Hn+1,k in GC(A′).
First, note that adding the edge (xn+1, xi) to Hik results in a 1-factorial connection

Hn+1,k, with w(Hn+1,k) = −biw(Hik). Also, Hn+1,k has the same number of directed cir-
cuits as Hik. Conversely, from each Hn+1,k that contains the edge (xn+1, xi) we can con-
struct a 1-factorial connection Hik satisfying w(Hn+1,k) = −biw(Hik). Also, Hn+1,k and
the corresponding Hik will have the same number of directed circuits. Thus, a one-to-one
correspondence exists between the set of all 1-factorial connections Hn+1,k in GC(A′) and
the set of all 1-factorial connections in GC(A) of the form Hik such that each Hn+1,k and
the corresponding Hik have the same number of directed circuits and satisfy the relation
w(Hn+1,k) = −biw(Hik). Combining this result with Theorem 9.4, we get

n∑
i=1

bi∆ik = (−1)n
∑

Hn+1,k

(−1)L′
H w(Hn+1,k). (9.7)

where the summation is over all 1-factorial connections Hn+1,k in GC(A′), and L′
H is

the number of directed circuits in Hn+1,k. From (9.5) and (9.7) we get the following
theorem.

Theorem 9.5 If the coefficient matrix A is nonsingular, then the solution of (9.2) is
given by.

xk

xn+1
=
∑

Hn+1,k
(−1)L′

H w(Hn+1,k)∑
H(−1)LH w(H)

(9.8)

for k = 1, 2, . . ., n, where Hn+1,k is a 1-factorial connection of GC(A′) from vertex xn+1 to
vertex xk, H is a 1-factor of GC(A), and L′

H and LH are the numbers of directed circuits in
Hn+1,k and H, respectively. �

Equation 9.8 is called the Coates’ gain formula. We now illustrate Coates’ method by
solving the system (9.4) for x2/x4. First, we determine the 1-factors of the Coates graph
GC(A) shown in Figure 9.3b. These 1-factors, along with their weights, are listed below. The
vertices enclosed within parentheses represent a directed circuit.

1-Factor H Weight w(H) LH

(x1)(x2)(x3) 12 3
(x2)(x1, x3) 6 2
(x3)(x1, x2) 4 2
(x1, x2, x3) 2 1

From the above we get the denominator in (9.8) as∑
H

(−1)LH w(H) = (−1)3 · 12 + (−1)2 · 6 + (−1)2 · 4 + (−1)1 · 2 = −4.

C5955–C009.tex 221 2015/11/4 9:32am

222 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

To compute the numerator in (9.8) we need to determine the 1-factorial connections H4,2
in the Coates graph GC(A′) shown in Figure 9.3a. They are listed below along with their
weights. The vertices in a directed path from x4 to x2 are given within parentheses.

1-Factor connection
H4,2 w(H4,2) L′

H

(x4, x1, x2)(x3) 6 1
(x4, x2)(x1)(x3) –6 2
(x4, x2)(x1, x3) –3 1
(x4, x3, x1, x2) –2 0

From the above we get the numerator in (9.8) as∑
H4,2

(−1)L′
H w(H4,2) = (−1)1 · 6 + (−1)2 · (−6) + (−1)1 · (−3) + (−1)0 · (−2) = −11.

Thus, we get
x2

x4
= 11

4
.

9.4 MASON’S GAIN FORMULA

Consider again the system of equations

AX = Bxn+1

We can rewrite the above as

xj = (ajj + 1)xj +
n∑

k=1
k ̸=j

ajkxk − bjxn+1, j = 1, 2, . . ., n,

xn+1 = xn+1

(9.9)

Letting X ′ denote the column vector of the variables x1, x2, . . ., xn+1, and Un+1 denote the
unit matrix of order n + 1, we can write (9.9) in matrix form as follows:

(A′ + Un+1)X ′ = X ′ (9.10)

where A′ is the matrix defined earlier in Section 9.3.
The Coates graph GC(A′ + Un+1) is called the Mason’s signal flow graph or simply the

Mason graph∗ associated with A′, and it is denoted by Gm(A′). The Mason graph Gm(A′)
and Gm(A) associated with the system (9.4) are shown in Figure 9.4. Mason’s graph elegantly
represents the flow of variables in a system. If we associate each vertex with a variable and
if an edge is directed from xi to xj , then we may consider the variable xi as contributing
(ajixi) to the variable xj . Thus, xj is equal to the sum of the products of the weights of
the edges incident into vertex xj and the variables corresponding to the vertices from which
these edges emanate.

Note that to obtain the Coates graph GC(A) from the Mason graph Gm(A) we simply
subtract one from the weight of each self-loop. Equivalently, we may add at each vertex
of the Mason graph a self-loop of weight −1. Let S denote the set of all such loops of
weight −1 added to construct the Coates graph GC from the Mason graph Gm(A). Note
that the Coates graph so constructed will have at most two and at least one self-loop at each
vertex.

∗In network and system theory literature Mason graphs are usually referred to as signal flow graphs.

C5955–C009.tex 222 2015/11/4 9:32am

Adjacency Matrix and Signal Flow Graphs � 223

x1

x2

x3

x4

−1

3

−1

2

1

4 3

−2

−2

−3

x1 x2

x3

−1

−2

−2

3

1

4 2

3

3

(a) 1 (b)

Figure 9.4 (a) Mason graph Gm(A′). (b) Mason graph Gm(A).

Consider now the Coates graph GC constructed as above and a 1-factor H in GC

having j self-loops from the set S. If H has a total of LQ + j directed circuits, then re-
moving the j self-loops from H will result in a subgraph Q of Gm(A) which is a collection of
LQ vertex disjoint directed circuits. Also,

w(H) = (−1)jw(Q)

Then, from Theorem 9.3 we get

det A = (−1)n
∑
H

(−1)LQ+jw(H)

= (−1)n

1 +
∑
Q

(−1)LQw(Q)

. (9.11)

So

det A = (−1)n

1 −
∑

j

Qj1 +
∑

j

Qj2 −
∑

j

Qj3 · · ·

. (9.12)

where each term in
∑

j Qji is the weight of a collection of i vertex-disjoint directed circuits
in Gm(A).

Suppose we refer to (−1)ndet A as the determinant of the graph Gm(A). Then, starting
from Hn+1,k and reasoning exactly as above we can express the numerator of (9.3) as

n∑
i=1

bi∆ik = (−1)n
∑

j

w(P j
n+1,k)∆j (9.13)

where P j
n+1,k is a directed path from xn+1 to xk of Gm(A′) and ∆j is the determinant of the

subgraph of Gm(A′) which is vertex-disjoint from the path P j
n+1,k. From (9.12) and (9.13)

we get the following theorem.

Theorem 9.6 If the coefficient matrix A in (9.2) is nonsingular, then

xk

xn+1
=
∑

j w(P j
n+1,k)∆j

∆
, k = 1, 2, . . ., n (9.14)

where P j
n+1,k is the jth directed path from xn+1 to xk of Gm(A′), ∆j is the determinant of

the subgraph of Gm(A′) which is vertex-disjoint from the jth directed path P j
n+1,k, and ∆ is

the determinant of the graph Gm(A). �

C5955–C009.tex 223 2015/11/4 9:32am

224 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Equation 9.14 is known as Mason’s gain formula. In network and system theory P j
n+1,k is

referred as a forward path from vertex xn+1 to xk. The directed circuits of Gm(A′) are called
the feedback loops.

We now illustrate Mason’s method by solving the system (9.4) for x2/x4. To compute
the denominator in (9.14) we determine the different collections of vertex-disjoint directed
circuits of the Mason graph Gm(A) shown in Figure 9.4. They are listed below along with
their weights.

Collection of Vertex-Disjoint
Directed Circuits of Gm(A) Weight No. of Directed Circuits

(x1) 4 1
(x2) 3 1
(x3) 3 1
(x1, x2) 2 1
(x1, x3) 3 1
(x1, x2, x3) 2 1
(x1)(x2) 12 2
(x1)(x3) 12 2
(x2)(x3) 9 2
(x2)(x1, x3) 9 2
(x3)(x1, x2) 6 2
(x1)(x2)(x3) 36 3

From the above we obtain the denominator in (9.14) as

∆ = 1 + (−1)1[4 + 3 + 3 + 2 + 3 + 2]
+ (−1)2[12 + 12 + 9 + 9 + 6] + (−1)336 = −4

To compute the numerator in (9.14) we need the forward paths in Gm(A′) from x4 to x2.
They are listed below with their weights.

j P j
4,2 Weight

1 (x4, x2) –1
2 (x4, x1, x2) 3
3 (x4, x3, x1, x2) –2

The directed circuits which are vertex-disjoint from P 1
4,2 are (x1), (x3), (x1, x3).

Thus

∆1 = 1 − (4 + 3 + 3) + 12 = 1 − 10 + 12 = 3

(x3) is the only directed circuit which is vertex-disjoint from P 2
4,2. So,

∆2 = 1 − 3 = −2.

No directed circuit is vertex-disjoint from P 3
4,2, so ∆3 = 1. Thus the numerator in (9.14) is

P 1
4,2∆1 + P 2

4,2∆2 + P 3
4,2∆3 = −3 − 6 − 2 = −11

and
x2

x4
= 11

4
.

C5955–C009.tex 224 2015/11/4 9:32am

Adjacency Matrix and Signal Flow Graphs � 225

References

[1] W. K. Chen (EIC), The Circuits and Filters Handbook, CRC Press, Boca Raton, FL,
1995.

[2] C. L. Coates, Flow graph solutions of linear algebraic equations, IRE Trans. Circuit
Theory, CT-6 (1959), 170–187.

[3] S. J. Mason, Feedback theory: Some properties of signal flow graphs, Proc. IRE, 41
(1953), 1144–1156.

[4] S. J. Mason, Feedback theory: Further properties of signal flow graphs, Proc. IRE, 44
(1956), 920–926.

[5] K. Thulasiraman and M. N. S. Swamy, Graphs: Theory and Algorithms, Wiley-
Interscience, New York, 1992.

[6] F. Harary, The determinant of the adjacency matrix of a graph, SIAM Rev., 4 (1962),
202–210.

[7] W. K. Chen, Applied Graph Theory, North-Holland, Amsterdam, the Netherlands, 1971.

[8] F. E. Hohn, Elementary Matrix Algebra, Macmillan, New York, 1958.

C5955–C009.tex 225 2015/11/4 9:32am

C H A P T E R 10

Adjacency Spectrum and the
Laplacian Spectrum of a Graph
R. Balakrishnan

CONTENTS

10.1 Introduction . 227
10.2 Spectrum of a Graph . 228
10.3 Spectrum of the Complete Graph Kn . 229
10.4 Spectrum of the Cycle Cn . 229

10.4.1 Coefficients of the Characteristic Polynomial of a Graph 230
10.5 Spectra of Regular Graphs . 230

10.5.1 Spectrum of the Complement of a Regular Graph . 231
10.5.2 Spectra of Line Graphs of Regular Graphs . 232

10.6 Spectrum of the Complete Bipartite Graph Kp,q . 234
10.7 Determinant of the Adjacency Matrix of a Graph . 235
10.8 Spectra of Product Graphs . 236
10.9 Laplacian Spectrum of a Graph . 240
10.10 Algebraic Connectivity of a Graph . 243

10.1 INTRODUCTION

In this chapter, we look at the properties of graphs from our knowledge of their eigenvalues.
The set of eigenvalues (with their multiplicities) of a graph G is the spectrum of its adjacency
matrix and it is the spectrum of G and denoted by Sp(G). We compute the spectra of some
well-known families of graphs—the family of complete graphs, the family of cycles, and
so forth. We present Sachs’ theorem on the spectrum of the line graph of a regular graph. We
also obtain the spectra of product graphs—Cartesian product, direct product, and strong
product of two graphs.

The properties of the spectra of graphs are based on [1]. For a comprehensive treatment
of spectral graph theory see [2–5]. Some applications of the Laplacian Matrix in random walk
routing and connections to electrical resistance networks are given in Chapter 11.

C5955–C0010.tex 227 2015/11/4 9:39am

227

228 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

10.2 SPECTRUM OF A GRAPH

Let G be a simple graph of order n with vertex set V = {v1, . . ., vn}. The adjacency matrix
of G (with respect to this labeling of V) is the n by n matrix A = (aij), where

aij =
{

1, if vi is adjacent to vj in G

0, otherwise

Thus A is a real symmetric matrix of order n. Hence

i. The spectrum of A, that is, the multiset of its eigenvalues is real.

ii. Rn has an orthonormal basis of eigenvectors of A.

iii. The sum of the entries of the ith row (column) of A is d(vi) = degree of vi in G.

The spectrum of A is called the spectrum of G and denoted by Sp(G). We note that Sp(G),
as defined above, depends on the labeling of the vertex set V of G. We now show that it is
independent of the labeling of G. Suppose we consider a new labeling of V . Let A′ be the
adjacency matrix of G with respect to this labeling. The new labeling can be obtained from
the original labeling by means of a permutation π of V (G). Any such permutation can be
effected by means of a permutation matrix P of order n (got by permuting the rows of In, the

identity matrix of order n. (For example if n = 3, the permutation matrix P =

0 1 0
0 0 1
1 0 0

takes v1, v2, v3 to v3, v1, v2, respectively, since

(
1 2 3

)0 1 0
0 0 1
1 0 0

 =
(
3 1 2

)
.
)

Let P = (pij). Now given the new labeling of V , that is, given the permutation π on
{1, 2, . . ., n}, and the vertices vi and vj , there exist unique α0 and β0, such that π(i) = α0 and
π(j) = β0 or equivalently pα0i = 1 and pβ0j = 1 while for α ̸= α0 and β ̸= β0, pαi = 0 = pβj .
Thus the (α0,β0)th entry of the matrix A′ = PAP −1 = PAP T (where P T stands for the
transpose of P) is

n∑
k,l=1

pα0kaklpβ0l = aij .

Hence vα0vβ0 ∈ E(G) if and only if vivj ∈ E(G). This proves that the adjacency matrix of
the same graph with respect to two different labelings are similar matrices. But then similar
matrices have the same spectra.

We usually arrange the eigenvalues of G in their nondecreasing order: λ1 ≥ λ2 ≥ · · · ≥ λn.
If λ1, . . ., λs are the distinct eigenvalues of G, and if mi is the multiplicity of λi as an eigenvalue
of G, we write

Sp(G) =
(

λ1 λ2 . . . λs

m1 m2 . . . ms

)
.

Definition 10.1 The characteristic polynomial of G is the characteristic polynomial of the
adjacency matrix of G with respect to some labeling of G. It is denoted by χ(G; λ).

Hence χ(G; λ) = det(xI − A) = det(P (xI − A)P −1) = det(xI − PAP −1) for any permu-
tation matrix of P , and hence χ(G; λ) is also independent of the labeling of V (G).

C5955–C0010.tex 228 2015/11/4 9:39am

Adjacency Spectrum and the Laplacian Spectrum of a Graph � 229

Definition 10.2 A circulant of order n is a square matrix of order n in which all the rows
are obtainable by successive cyclic shifts of one of its rows (usually taken as the first row).

For example, the circulant with first row (a1 a2 a3) is the matrix

a1 a2 a3
a3 a1 a2
a2 a3 a1

.

Lemma 10.1 Let C be a circulant matrix of order n with first row (a1 a2 . . . an). Then
Sp(C) = {a1 + a2ω + · · · + anω

n−1 : ω = an nth root of unity} = {a1 + ζr + ζ2r + · · · +
ζ(n−1)r, 0 ≤ r ≤ n − 1 and ζ = a primitive nth root of unity}.

Proof. The characteristic polynomial of C is the determinant D = det(xI − C). Hence

D =

∣∣∣∣∣∣∣∣∣∣
x − a1 −a2 . . . −an

−an x − a1 . . . −an−1
...

...
...

−a2 −a3 . . . x − a1

∣∣∣∣∣∣∣∣∣∣
.

Let Ci denote the ith column of D, 1 ≤ i ≤ n, and ω, an nth root of unity. Replace C1 by
C1 +C2ω+ · · ·+Cnω

n−1. This does not change D. Let λω = a1 +a2ω+ · · ·+anω
n−1. Then

the new first column of D is (x − λω,ω(x − λω), . . .,ωn−1(x − λω))T , and hence x − λω is
a factor of D. This gives D =

∏
ω:ωn=1(x − λω), and Sp(C) = {λω : ωn = 1}. �

10.3 SPECTRUM OF THE COMPLETE GRAPH Kn

For Kn, the adjacency matrix A is given by A =

0 1 1 . . . 1
1 0 1 . . . 1
...

...
...

...
1 1 1 . . . 0

, and so by Lemma 10.1,

λω = ω + ω2 + · · · + ωn−1

=
{

n − 1, if ω = 1
−1, if ω ̸= 1.

Hence Sp(Kn) =
(

n − 1 −1
1 n − 1

)
.

10.4 SPECTRUM OF THE CYCLE Cn

Label the vertices of Cn as 0, 1, 2, . . ., n − 1 in this order. Then i is adjacent to i ± 1(modn).
Hence

A =

0 1 0 0 . . . 0 1
1 0 1 0 . . . 0 0
...

...
...

...
...

1 0 0 0 . . . 1 0

is the circulant with the first row (0 1 0 . . . 0 1). Again by Lemma 10.1, Sp(Cn) =
{ωr + ωr(n−1) : 0 ≤ r ≤ n − 1, where ω is a primitive nth root of unity}. Taking
ω = cos(2π/n) + i sin(2π/n), we get λr = ωr + ωr(n−1) = (cos(2πr/n) + i sin(2πr/n)) +
(cos(2πr(n − 1)/n) + i sin(2πr(n − 1)/n)).

C5955–C0010.tex 229 2015/11/4 9:39am

230 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

This simplifies to the following:

i. If n is odd, Sp(Cn) =
(

2 2 cos 2π
n . . . 2 cos (n−1)π

n

1 2 . . . 2

)
.

ii. If n is even, Sp(Cn) =
(

2 2 cos 2π
n . . . 2 cos (n−2)π

n −2
1 2 . . . 2 1

)
.

10.4.1 Coefficients of the Characteristic Polynomial of a Graph

Let G be a connected graph on n vertices, and let χ(G; x) = det(xIn − A) = xn + a1xn−1 +
a2xn−2 + · · · + an be the characteristic polynomial of G. It is easy to check that (−1)rar =
sum of the principal minors of A of order r. (Recall that a principal minor of order r of A is
the determinant minor of A common to the same set of r rows and columns.)

Lemma 10.2 Let G be a graph of order n and size m, and let χ(G; x) = xn + a1xn−1 +
a2xn−2 + · · · + an be the characteristic polynomial of A. Then

i. a1 = 0

ii. a2 = −m

iii. a3 = −(twice the number of triangles in G).

Proof.

i. Follows from the fact that all the entries of the principal diagonal of A are zero.

ii. A nonvanishing principal minor of order 2 of A is of the form
∣∣∣01 1

0

∣∣∣ and its value
is −1. Since any 1 in A corresponds to an edge of G, we get (ii).

iii. A nontrivial principal minor of order 3 of A can be one of the following three types:∣∣∣∣∣∣∣
0 1 0
1 0 0
0 0 0

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

0 1 1
1 0 0
1 0 0

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

0 1 1
1 0 1
1 1 0

∣∣∣∣∣∣∣
Of these, only the last determinant is nonvanishing. Its value is 2 and corresponds to a
triangle in G. This proves (iii). �

10.5 SPECTRA OF REGULAR GRAPHS

In this section, we look at the spectra of some regular graphs.

Theorem 10.1 Let G be a k-regular graph of order n. Then

i. k is an eigenvalue of G.

ii. If G is connected, every eigenvector corresponding to the eigenvalue k is a multiple
of 1 (the all 1-column vector of length 1) and the multiplicity of k as an eigenvalue
of G is one.

iii. For any eigenvalue λ of G, |λ| ≤ k. (Hence Sp(G) ⊂ [−k, k].)

C5955–C0010.tex 230 2015/11/4 9:39am

Adjacency Spectrum and the Laplacian Spectrum of a Graph � 231

Proof.

i. We have A1 = k1, and hence k is an eigenvalue of A.

ii. Let x = (x1, . . ., xn)T be any eigenvector of A corresponding to the eigenvalue k so
that Ax = kx. We may suppose that x has a positive entry (otherwise take −x in
place of x), and that xj is the largest positive entry in x. Let vi1 , vi2 , . . ., vik

be the
k neighbors of vj in G. Taking the innerproduct of the jth row of A with x, we get
xi1 +xi2 +· · ·+xik

= kxj . This gives, by the choice of xj , xi1 = xi2 = · · · = xik
= xj .

Now start at vi1 , vi2 , . . ., vik
in succession and look at their neighbors in G. As

before, the entries xp in x corresponding to these neighbors must all be equal to xj .
As G is connected, all the vertices of G are reachable in this way step by step. Hence
x = xj(1, 1, . . ., 1)T , and every eigenvector x of A corresponding to the eigenvalue
k is a multiple of 1. Thus, the space of eigenvectors of A corresponding to the eigen-
value k is one-dimensional, and therefore, the multiplicity of k as an eigenvalue of G
is one.

iii. The proof is similar to (ii). Indeed if Ay = λy, y ̸= 0, and if yj is the entry in y
with the largest absolute value, we see that the equation

∑k
p=1 yip = λyi implies

that |λ||yj | = |λyj | = |
∑k

p=1 yip | ≤
∑k

p=1 |yip | ≤ k|yj |. Thus |λ| ≤ k. �

Corollary 10.1 If ∆ denotes the maximum degree of G, then for any eigenvalue λ
of G, |λ| ≤ ∆.

Proof. Considering a vertex vj of maximum degree ∆, and imitating the proof of (iii) above,
we get |λ||yj | ≤ ∆|yj |. �

10.5.1 Spectrum of the Complement of a Regular Graph

Theorem 10.2 Let G be a k-regular connected graph of order n with spectrum(
k λ2 λ3 . . . λs

1 m2 m3 . . . ms

)
. Then the spectrum of Gc, the complement of G, is given by

Sp(Gc) =
(

n − 1 − k −λ2 − 1 −λ3 − 1 . . . −λs − 1
1 m2 m3 . . . ms

)
.

Proof. As G is k-regular, Gc is n − 1 − k regular, and hence by Theorem 10.1 n − 1 − k is
an eigenvalue of Gc. Further the adjacency matrix of Gc is Ac = J − I − A, where J is the
all 1 matrix of order n, I is the identity matrix of order n and A is the adjacency matrix of
G. If χ(λ) is the characteristic polynomial of A,χ(λ) = (λ − k)χ1(λ). By Cayley–Hamilton
theorem, χ(A) = 0 and hence we have Aχ1(A) = kχ1(A). Hence every column vector of
χ1(A) is an eigenvector of A corresponding to the eigenvalue k. But by Theorem 10.1, the
space of eigenvectors of A corresponding to the eigenvalue k is generated by 1, G being
connected. Hence each column vector of χ1(A) is a multiple of 1. But χ1(A) is symmetric
and hence χ1(A) is a multiple of J , say, χ1(A) = αJ, α ̸= 0. Thus J and hence J − I − A are

C5955–C0010.tex 231 2015/11/4 9:39am

232 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

polynomials in A (remember: A0 = I). Let λ ̸= k be any eigenvalue of A (so that χ1(λ) = 0),
and Y an eigenvector of A corresponding to λ. Then

AcY = (J − I − A)Y

=
(
χ1(A)
α

− I − A

)
Y

=
(
χ1(λ)
α

− 1 − λ

)
Y (see note below)

= (−1 − λ)Y.

Thus AcY = (−1 − λ)Y , and therefore −1 − λ is an eigenvalue of Ac corresponding to the
eigenvalue λ(̸= k) of A.

Note: We recall that if f(λ) is a polynomial in λ, and Sp(A) =
(

λ1 λ2 . . . λs

m1 m2 . . . ms

)
,

then, Sp(f(A)) =
(

f(λ1) f(λ2) . . . f(λs)
m1 m2 . . . ms

)
.

10.5.2 Spectra of Line Graphs of Regular Graphs

We now establish Sachs’ theorem which determines the spectrum of the line graph of a regular
graph G in terms of Sp(G). Recall that the line graph L(G) of G is that graph whose vertex
set is in 1 − 1 correspondence with the edge set of G and two vertices of L(G) are adjacent
if and only if the corresponding edges of G are adjacent in G.

Let G be a labeled graph with vertex set V (G) = {v1, . . ., vn} and edge set E(G) =
{e1, . . ., em}. With respect to these labelings, the incidence matrix B = (bij) of G, which
describes the incidence structure of G as the m by n matrix B = (bij),

where

bij =
{

1, if ei is incident to vj ,
0, otherwise.

Lemma 10.3 Let G be a graph of order n and size m with A and B as its adjacency and inci-
dence matrices respectively. Let AL denote the adjacency matrix of the line graph of G. Then

i. BBT = AL + 2Im, and

ii. if G is k-regular, BT B = A + kIn.

Proof. Let A = (aij) and B = (bij). We have

i. (BBT)ij =
n∑

p=1
bipbjp

= number of vertices vp which are incident to both ei and ej

=

1, if ei and ej are adjacent
0, if i ̸= j and ei and ej are nonadjacent
2, if i = j.

ii. Proof of (ii) is similar. �

Theorem 10.3 (Sachs’ theorem) Let G be a k-regular graph of order n. Then
χ(L(G); λ) = (λ + 2)m−nχ(G; λ + 2 − k), where L(G) is the line graph of G.

C5955–C0010.tex 232 2015/11/4 9:39am

Adjacency Spectrum and the Laplacian Spectrum of a Graph � 233

Proof. Consider the two partitioned matrices U and V , each of order n + m (where B stands
for the incidence matrix of G):

U =
[

λIn −BT

0 Im

]
, V =

[
In BT

B λIm

]
.

We have

UV =
[

λIn − BT B 0
B λIm

]
and V U =

[
λIn 0
λB λIm − BBT

]
.

Now det(UV) =det(V U) gives:

λm det(λIn − BT B) = λndet(λIm − BBT). (10.1)

Replacement of λ by λ + 2 in Equation 10.1 yields

(λ + 2)m−n det((λ + 2)In − BT B) = det((λ + 2)Im − BBT). (10.2)

Hence, by Lemma 10.3,

χ(L(G); λ) = det(λIm − AL)
= det((λ + 2)Im − (AL + 2Im))
= det((λ + 2)Im − BBT)
= (λ + 2)m−n det((λ + 2)In − BTB) (by Equation 10.2)
= (λ + 2)m−n det((λ + 2)In − (A + kIn)) (by Lemma 10.3)
= (λ + 2)m−n det((λ + 2 − k)In − A)
= (λ + 2)m−n χ(G; λ + 2 − k). �

Sachs’ theorem implies the following: As χ(G; λ) =
n∏
1

(λ − λi), it follows that

χ(L(G); λ) = (λ + 2)m−n
n∏

i=1
(λ + 2 − k − λi)

= (λ + 2)m−n
n∏

i=1
(λ − (k − 2 + λi)).

Hence if

Sp(G) =
(

k λ2 . . . λs

1 m2 . . . ms

)
then

Sp(L(G)) =
(

2k − 2 k − 2 + λ2 . . . k − 2 + λs −2
1 m2 . . . ms m − n

)
.

It is easy to see that the Petersen graph P is isomorphic to (L(K5))c. Hence the spectrum of

P can be obtained by using Theorems 10.2 and 10.3: Sp(P) =
(

3 1 −2
1 5 4

)
. We use this

result to prove a well-known result on the Petersen graph.

Theorem 10.4 The complete graph K10 cannot be decomposed into (i.e., expressed as an
edge-disjoint union of) three copies of the Petersen graph.

C5955–C0010.tex 233 2015/11/4 9:39am

234 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

25

6

7

8

10

9

1

34

Figure 10.1 Petersen graph P .

Proof. [6] Assume the contrary. Suppose K10 is expressible as an edge-disjoint union of three
copies, say, P1, P2, P3 of the Petersen graph P (see Figure 10.1). Then

A(K10) = J − I = A(P1) + A(P2) + A(P3), (10.3)

where A(H) stands for the adjacency matrix of the graph H, and J, the all 1-matrix of order
10. (Note that each Pi is a spanning subgraph of K10 and that the number of edges of Pi,
namely 15, is a divisor of the number of edges of K10, namely 45, and that the degree of
any vertex v of P , namely 3, is a divisor of the degree of v in K10, namely 9.) It is easy to
check that 1 is an eigenvalue of P . Further, as P is 3-regular, the all 1-column vector 1 is an
eigenvector of P . Now R10 has an orthonormal basis of eigenvectors of A(P) containing 1.
Again the null space of (A(P) − 1.I) = A(P) − I is of dimension 5, and is orthogonal to 1.
(For P with the labeling of Figure 10.1, one can check that for A(P) − I, the null space is
spanned by the five vectors: (1 0 0 0 0 1 −1 0 0 −1)T , (0 1 0 0 0 −1 1 −1 0 0)T , (0 0 1 0 0 0 −
1 1 − 1 0)T , (0 0 0 1 0 0 0 − 1 1 − 1)T , (0 0 0 0 1 − 1 0 0 − 1 1)T .) The orthogonal
complement of 1 in R10 is of dimension 10 − 1 = 9. Hence the null spaces of A(P1) − I and
A(P2) − I must have a common eigenvector x orthogonal to 1. Applying the matrices on
the two sides of Equation 10.3 to x, we get (J − I)x = A(P1)x + A(P2)x + A(P3)x, that
is (as Jx = 0), −x = x + x + A(P3)x. Thus A(P3)x = −3x, and this means that −3 is an
eigenvalue of the Petersen graph, a contradiction.

Various proofs of Theorem 10.4 are available in literature. For a second proof, see [7]. �

10.6 SPECTRUM OF THE COMPLETE BIPARTITE GRAPH Kp,q

We now determine the spectrum of the complete bipartite graph Kp,q.

Theorem 10.5 Sp(Kp,q) =
(

0 √
pq −√

pq
p + q − 2 1 1

)
.

Proof. Let V (Kp,q) have the bipartition (X, Y) with |X| = p and |Y | = q. Then the adjacency
matrix of Kp,q is of the form:

A =
(

0 Jp,q

Jq,p 0

)
,

where Jr,s stands for the all 1-matrix of size r by s. Clearly, rank(A) = 2, as the maximum
number of independent rows of A is 2. Hence zero is an eigenvalue of A repeated p + q − 2

C5955–C0010.tex 234 2015/11/4 9:39am

Adjacency Spectrum and the Laplacian Spectrum of a Graph � 235

times (as the null space of A is of dimension p + q − 2). Thus the characteristic polynomial
of A is of the form λp+q−2(λ2 + c2).

(Recall that by Lemma 10.2, the coefficient of λp+q−1 in χ(G; λ) is zero.) Further (again
by the same Lemma), −c2 = the number of edges of Kp,q = pq. This proves the result. �

10.7 DETERMINANT OF THE ADJACENCY MATRIX OF A GRAPH

We now present the elegant formula given by Harary for the determinant of the adjacency
matrix of a graph in terms of certain of its subgraphs.

Definition 10.3 A linear subgraph of a graph G is a subgraph of G whose components are
either single edges or cycles.

Theorem 10.6 [8] Let A be the adjacency matrix of a simple graph G. Then

det A =
∑
H

(−1)e(H)2c(H),

where the summation is over all the spanning linear subgraphs H of G, and e(H) and c(H)
denote respectively the number of even components and the number of cycles in H.

Proof. Let G be of order n with V = {v1, . . ., vn}, and A = (aij). A typical term in the
expansion of det A is:

sgn(π)a1π(1)a2π(2) . . . anπ(n),

where π is a permutation on {1, 2, . . ., n} and sgn(π) = 1 or −1 according to whether π is
an even or odd permutation. This term is zero if and only if for some i, 1 ≤ i ≤ n, aiπ(i) = 0,
that is, if and only if π(i) = i or π(i) = j(̸= i) and vivj /∈ E(G). Hence this term is
nonzero if and only if the permutation π is a product of disjoint cycles of length at least
2, and in this case, the value of the term is sgn(π).1.1 . . . 1 = sgn(π). Each cycle (ij) of
length two in π corresponds to the single edge vivj of G while each cycle (ij . . . p) of length
r > 2 in π corresponds to a cycle of length r of G. Thus each nonvanishing term in the
expansion of det(A) gives rise to a linear subgraph H of G and conversely. Now for any
cycle C of Sn, sgn(C) = 1 or −1 according to whether C is an odd or even cycle. Hence
sgn(π) = (−1)e(H), where e(H) is the number of even components of H (i.e., components
which are either single edges or even cycles of the graph H). Moreover, any cycle of H has
two different orientations. Hence each of the undirected cycles of H of length ≥ 3 yields two
distinct even cycles in Sn. (For example, the 4-cycle (vi1vi2vi3vi4) gives rise to two cycles
(vi1 vi2 vi3 vi4) and (vi4 vi3 vi2 vi1) in H.) This proves the result. �

Corollary 10.2 [9] Let χ(G; x) = xn + a1xn−1 + · · · + an be the characteristic polynomial of
G. Then

ai −
∑
H

(−1)ω(H)2c(H),

where the summation is over all linear subgraphs H of order i of G, and ω(H) and c(H)
denote, respectively, the number of components and the number of cycle components of H.

Proof. Recall that ai = (−1)i∑
H det A(H), where H runs through all the induced subgraphs

of order i of G. But by Theorem 10.6,

det A(H) =
∑
Hi

(−1)e(Hi)2c(Hi),

where Hi is a spanning linear subgraph of H and e(Hi) stands for the number of even
components of Hi while c(Hi) stands for the number of cycles in Hi. The corollary follows
from the fact that i and the number of odd components of Hi have the same parity. �

C5955–C0010.tex 235 2015/11/4 9:39am

236 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

10.8 SPECTRA OF PRODUCT GRAPHS

In this section we determine spectra of the product graphs—Cartesian product, direct
product, and strong product—in terms of the spectra of their factor graphs. Our approach
is based on Cvetković [10] as described in [4]. We first recall the definitions of the Cartesian,
direct, and strong products of two graphs.

Denote a general graph product of two simple graphs by G ∗ H. We define the product
in such a way that G ∗ H is also simple. Given graphs G1 and G2 with vertex sets V1 and
V2, respectively, any product graph G1 ∗ G2 has as its vertex set, the Cartesian product
V (G1) × V (G2). For any two vertices (u1, u2), (v1, v2) of G1 ∗ G2, consider the following
possibilities:

i. u1 adjacent to v1 in G1 or u1 nonadjacent to v1 in G1,

ii. u2 adjacent to v2 in G2 or u2 nonadjacent to v2 in G2,

iii. u1 = v1 and/or u2 = v2.

We use, with respect to any graph, the symbols E, N, and = to denote adjacency (edge),
nonadjacency (no edge), and equality of vertices, respectively. We then have the following
structure table S for G1 ∗ G2 where the rows of S correspond to G1 and the columns to
G2 and

E = N

S :
E
=
N

 ◦ ◦ ◦
◦ = ◦
◦ ◦ ◦

where each ◦ in the double array S is E or N according to whether a general vertex (u1, u2)
of G1 ∗ G2 is adjacent or nonadjacent to a general vertex (v1, v2) of G1 ∗ G2. Since each ◦ can
take two options, there are in all 28 = 256 graph products G1 ∗ G2 that can be defined using
G1 and G2.

If S =

 a11 a12 a13
a21 = a23
a31 a32 a33

, then the edge-nonedge entry of S will correspond to the

nonedge-edge entry of the structure matrix of G2 ∗ G1. Hence the product ∗ is commutative,
that is, G1 and G2 commute under ∗ if and only if the double-array S is symmetric. Hence if

the product is commutative, it is enough if we know the five circled positions in

 ◦ ◦ ◦
= ◦

◦

to determine S completely. Therefore there are in all 25 = 32 commuting products.

We now give the matrix S for the Cartesian, direct, composition, and strong products.

Definition 10.4 Cartesian product, G1�G2.

E = N

S :
E
=
N

 N E N
E = N
N N N

Hence (u1, u2) and (v1, v2) are adjacent in G1�G2 if and only if either u1 = v1 and u2 is
adjacent to v2 in G2, or u1 is adjacent to v1 in G1 and u2 = v2.

C5955–C0010.tex 236 2015/11/4 9:39am

Adjacency Spectrum and the Laplacian Spectrum of a Graph � 237

Definition 10.5 Direct (or tensor or Kronecker) product, G1 × G2.

E = N

S :
E
=
N

 E N N
N = N
N N N

Hence (u1, u2) is adjacent to (v1, v2) in G1 × G2 if and only if u1 is adjacent to v1 in G1 and
u2 is adjacent to v2 in G2.

Definition 10.6 Strong (or normal) product G1�G2. By definition, G1�G2 = (G1�G2) ∪
(G1 × G2). Hence its structure matrix is given by

E = N

S :
E
=
N

 E E N
E = N
N N N

These three products can be checked to be associative.

Example 10.1 Let G1 and G2 be the two graphs given in Figure 10.2. Then the Cartesian,
direct, and strong products of G1 and G2 are given in Figure 10.3.

Let B be a set of binary n-tuples (β1,β2, . . .,βn) not containing (0, 0, . . ., 0).

Definition 10.7 Given a sequence of graphs G1, G2, . . ., Gn, the NEPS (noncomplete
extended P-sum) of G1, G2, . . ., Gn, with respect to B is the graph G with V (G) = V (G1) ×
V (G2) × · · · × V (Gn), and in which two vertices (x1, x2, . . ., xn) and (y1, y2, . . ., yn) are
adjacent if and only if there exists an n-tuple (β1,β2, . . .,βn) ∈ B with the property that
if βi = 1, then xiyi ∈ E(Gi) and if βi = 0, then xi = yi.

Example 10.2

i. n = 2 and B = {(1, 1)}. Here the graphs are G1 and G2.
The vertices (x1, x2) and (y1, y2) are adjacent in the NEPS of G1 and G2 with
respect to B if and only if x1y1 ∈ E(G1) and x2y2 ∈ E(G2). Hence G = G1 × G2,
the direct product of G1 and G2.

ii. n = 2 and B = {(0, 1), (1, 0)}. Here G is the Cartesian product G1�G2.

u1

u2

G1 : G2 :

v4

v2

v1

v3

Figure 10.2 Graphs G1 and G2.

C5955–C0010.tex 237 2015/11/4 9:39am

238 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(u1, v1) (u1, v2) (u1, v3) (u1, v4)

(u2, v1) (u2, v2) (u2, v3) (u2, v4)

G1 G2

(u1, v1) (u1, v2) (u1, v3) (u1, v4)

(u2, v1) (u2, v2) (u2, v3) (u2, v4)

G1 × G2

(u1, v1) (u1, v2) (u1, v3) (u1, v4)

(u2, v1) (u2, v2) (u2, v3) (u2, v4)

G1 G2

Figure 10.3 Product graphs of the graphs G1 and G2 given in Figure 10.2.

iii. n = 2 and B = {(0, 1), (1, 0), (1, 1)}. Here G = (G1�G2) ∪ (G1 × G2) = G1 � G2,
the strong product of G1 and G2.

Now given the adjacency matrices G1, . . . Gn, the adjacency matrix of the NEPS graph G
with respect to the basis B is expressible in terms of the Kronecker product of matrices
which we now define by the following definition.

Definition 10.8 Let A = (aij) be an m by n matrix and B = (bij) be a p by q matrix. Then
A ⊗ B, the Kronecker product of A with B, is the mp by nq matrix got by replacing each
entry aij of A by the double array aijB (where aijB is the matrix got by multiplying each
entry of B by aij).

It is well-known and easy to check that

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD), (10.4)

whenever the matrix products AC and BD are defined. Clearly this can be extended to any
finite product whenever the products are defined.

Remark 10.1 Let us look more closely at the product A1 ⊗ A2, where A1 and A2 are the
adjacency matrices of the graphs G1 and G2 of orders n and t, respectively. To fix any
particular entry of A1⊗A2, let us first label V (G1) = V1 and V (G2) = V2 as V1 = {u1, . . ., un},
and V2 = {v1, . . ., vt}. Then to fix the entry in A1 ⊗A2 corresponding to ((ui, uj), (vp, vq)), we
look at the double array (A1)(uiuj)A2 in A1 ⊗ A2, where (A1)(uiuj) := α stands for the (i, j)th
entry of A1. Then the required entry is just α{(p, q)th entry of A2}. Hence it is 1 if and only
if (A1)(uiuj) = 1 = (A2)(vpvq), that is, if and only if, uiuj ∈ E(G1) and vpvq ∈ E(G2) and
0 otherwise. In other words, A1 ⊗ A2 is the adjacency matrix of G1 × G2. By associativity,
A(G1) ⊗ · · · ⊗ A(Gr) is the adjacency matrix of the graph product G1 × · · · × Gr.

C5955–C0010.tex 238 2015/11/4 9:39am

Adjacency Spectrum and the Laplacian Spectrum of a Graph � 239

Our next theorem determines the adjacency matrix of the NEPS graph G in terms
of the adjacency matrices of Gi, 1 ≤ i ≤ n for all the three products mentioned
above.

Theorem 10.7 [10] Let G be the NEPS of the graphs G1, . . ., Gn with respect to the basis
B. Let Ai be the adjacency matrix of Gi, 1 ≤ i ≤ n. Then the adjacency matrix A of G is
given by

A =
∑

β=(β1,...,βn)∈B

Aβ1
1 ⊗ · · · ⊗ Aβn

n .

Proof. Label the vertex set of each of the graphs Gi, 1 ≤ i ≤ n, and order the vertices
of G lexicographically. Form the adjacency matrix A of G with respect to this ordering.
Then (by the description of Kronecker product of matrices given in Remark 10.1) we
have (A)(x1, . . ., xn)(y1, . . ., yn) =

∑
β∈B(Aβ1

1)(x1,y1) . . . (Aβn
n)(xn,yn), where (M)(x,y) stands

for the entry in M corresponding to the vertices x and y. But by lexicographic ordering,
(M)(x1,...,xn)(y1,...,yn) = 1 if and only if there exists a β = (β1, . . .,βn) ∈ B with (Aβi

i)(xi,yi) = 1
for each i = 1, . . ., n. This of course means that xiyi ∈ E(Gi) if βi = 1 and xi = yi if βi = 0
(the latter condition corresponds to Aβi

i = I). �

We now determine the spectrum of the NEPS graph G with respect to the basis B in terms
of the spectra of the factor graphs Gi.

Theorem 10.8 [10] Let G be the NEPS of the graphs G1, . . ., Gn with respect to the basis
B. Let ki be the order of Gi and Ai, the adjacency matrix of Gi. Let {λi1, . . ., λiki} be the
spectrum of Gi, 1 ≤ i ≤ n. Then

Sp(G) = {Λi1i2...in : 1 ≤ ij ≤ kj and 1 ≤ j ≤ n},

where Λi1i2...in =
∑

β=(β1,...,βn)∈B λβ1
1i1

. . ., λβn

nin
, 1 ≤ ij ≤ kj and 1 ≤ j ≤ n.

Proof. There exist vectors xij with Aixij = λijxij , 1 ≤ i ≤ n; 1 ≤ j ≤ kj . Now consider the
vector x = x1i1 ⊗ · · · ⊗ xnin . Let A be the adjacency matrix of G. Then from Theorem 10.7
and Equation 10.4 (rather its extension),

Ax =
(∑

β∈B
Aβ1

1 ⊗ · · · ⊗ Aβn
n

)
(x1i1 ⊗ · · · ⊗ xnin)

=
∑

β∈B

(
Aβ1

1 x1i1 ⊗ · · · ⊗ Aβn
n xnin

)
=
∑

β∈B

(
λβ1

1i1
x1i1 ⊗ · · · ⊗ λβn

nin
xnin

)

=
(∑

β∈B
λβ1

1i1
. . . λβn

nin

)
x

= Λi1i2 . . . inx.

Thus Λi1i2...in is an eigenvalue of G. This yields k1k2 . . . kn eigenvalues of G and hence all the
eigenvalues of G. �

Corollary 10.3 Let A1 and A2 be the adjacency matrices of G1 and G2, respectively, and
let Sp(G1) = {λ1, . . ., λn} and Sp(G2) = {µ1, . . .,µt}.

C5955–C0010.tex 239 2015/11/4 9:39am

240 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Then

i. A(G1 × G2) = A1 ⊗ A2; and

Sp(G1 × G2) = {λiµj : 1 ≤ i ≤ n, 1 ≤ j ≤ t}.

ii. A(G1�G2) = (In ⊗ A2) + (A1 ⊗ It); and

Sp(G1�G2) = {λi + µj : 1 ≤ i ≤ n, 1 ≤ j ≤ t}.

iii. A(G1 � G2) = (A1 ⊗ A2) + (In ⊗ A2) + (A1 ⊗ It); and

Sp(G1 � G2) = {λiµj + λi + µj : 1 ≤ i ≤ n, 1 ≤ j ≤ t}. �

10.9 LAPLACIAN SPECTRUM OF A GRAPH

In this section we discuss the Laplacian spectrum, that is, the spectrum of the Laplacian
matrix of a graph. The Laplacian spectrum has several applications—in physics, electrical
engineering, and computer science—to mention a few fields. For a comprehensive treatment
of the spectrum of the Laplacian matrix, see [11]

Let G, as before, be a simple graph with V = {v1, . . ., vn} as its vertex set and
E = {e1, . . ., em} as its edge set. Let D = D(G) be the n by n diagonal matrix
diag[d(v1), . . ., d(vn)], where d(vi) stands for the degree of the vertex vi in G.

Definition 10.9 The Laplacian matrix of G is the matrix Q(G) = D(G) − A(G), where
A(G) as usual stands for the adjacency matrix of G. The matrix Q(G) is often called the
Kirchoff matrix of G (see Theorem 10.11 below).

Definition 10.10 The Laplacian spectrum of G is the spectrum of the Laplacian matrix
Q(G) of G.

We usually write it in the nonincreasing order: {λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn}.

Definition 10.11 The characteristic polynomial of Q(G) is the polynomial µ(x) =
det (xI − Q).

It is clear that as in the case of the adjacency matrix A(G), the eigenvalues of Q(G) are also
real, Q(G) being a real symmetric matrix. Hence Rn has an orthonormal basis consisting of
eigenvectors of Q(G).

Now orient G in some way and get the oriented graph
−→
G . Let C be the n × m matrix

(cij), where

cij =

1, if vi is the head of the arc ej in

−→
G ;

−1, if vi is the tail of the arc ej in
−→
G ;

0, if vi is nonincident to the arc ej in
−→
G.

(10.5)

If R1, . . ., Rn are the row vectors of C, it is clear that

CCT =

 R1.R1 R1.R2 · · · R1.Rn
...

...
...

...
Rn.R1 Rn.R2 · · · Rn.Rn

 .

where . stands for scalar product of vectors.

C5955–C0010.tex 240 2015/11/4 9:39am

Adjacency Spectrum and the Laplacian Spectrum of a Graph � 241

Now Ri.Ri = d(vi), while for i ̸= j, Ri.Rj = ci1cj1 + ci2cj2 + · · · + cimcjm

=
{

0, if vivj /∈ E(G);
−1, if vivj ∈ E(G). (10.6)

(The last relation 10.6 is due to the fact that if vivj = ek ∈ E(G), one of cik, cjk is 1 and
the other is −1 while if p ̸= k, at least one of cip and cjp is zero.) Thus we have proved the
following theorem.

Theorem 10.9 Q = CCT . �

A consequence of Theorem 10.9 is the following: Let X ∈ Rn. Then the inner product
(QX, X) = (CCT X, X) = (CT X, CT X) ≥ 0 and so (QX, X) is a positive semidefinite
quadratic form. Consequently, all eigenvalues λi of Q are nonnegative. (Indeed, if λ is an
eigenvalue of Q and x, a corresponding eigenvector, then 0 ≤ (Qx, x) = (λx, x) = λ(x, x)
and so λ ≥ 0.) Further, as each row of Q adds up to zero, Q1 = 0, where 1 is the all 1-column
vector of length n and 0 is the zero vector of length n. Hence λn = 0.

It is also clear that

XT QX = XT CCT X

=
∑

1≤i<j≤n
(vi,vj)∈E(G)

(xi − xj)2, (10.7)

where X = (x1, . . ., xn)T .

Example 10.3 Let G be the underlying undirected graph of the oriented graph
−→
G of

Figure 10.4.

Then Q = D − A =

2 −1 −1 0

−1 2 −1 0
−1 −1 3 −1

0 0 −1 1

, and

e1 e2 e3 e4

C =

v1
v2
v3
v4

−1 0 1 0

1 −1 0 0
0 1 −1 −1
0 0 0 1

 .

It is easy to check that Q = CCT and also Equation 10.7.
We now proceed to establish Kirchoff’s matrix-tree theorem. Before we do that, we need

an auxiliary lemma which is known as Binet–Cauchy theorem.

e1 e2

v2

v1 e3 e4v3 v4

Figure 10.4 Oriented graph
→
G.

C5955–C0010.tex 241 2015/11/4 9:39am

242 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 10.10 (Binet–Cauchy theorem) If P and Q are l × t and t × l matrices,
respectively, with l ≤ t, then det(PQ) is the sum of the products of the corresponding major
determinants of P and Q. �

For example, if P =
[

a1 a2 a3
b1 b2 b3

]
and Q =

 c1 d1
c2 d2
c3 d3

, then

det PQ =
∣∣∣∣∣ a1 a2

b1 b2

∣∣∣∣∣
∣∣∣∣∣ c1 d1

c2 d2

∣∣∣∣∣+
∣∣∣∣∣ a1 a3

b1 b3

∣∣∣∣∣
∣∣∣∣∣ c1 d1

c3 d3

∣∣∣∣∣+
∣∣∣∣∣ a2 a3

b2 b3

∣∣∣∣∣
∣∣∣∣∣ c2 d2

c3 d3

∣∣∣∣∣ .
Theorem 10.11 (Kirchoff’s matrix-tree theorem) Let G be a connected graph. Then
the cofactors of all the entries of Q, the Kirchoff matrix of G, are equal and their common
value is the number of spanning trees of G.

Proof. Recall that the Kirchoff matrix of G is just the Laplacian matrix Q = CCT , where C
is the n × m matrix defined by (10.5).

Consider an n × (n − 1) submatrix P of C defined by a set of (n − 1) columns of C. Then
P is the incidence matrix of the oriented graph H defined by the n − 1 edges corresponding
to the (n − 1) columns of G.

Delete any row of P , say the row corresponding to the vertex vk. This results in a square
submatrix Pk of P of order (n − 1). We show that | det Pk| is 1 or 0 according as H is a tree
or not.

If H is not a tree, as H has n vertices and n − 1 edges, H must be disconnected. Further,
one of the components of H does not contain vk. The sum of the row vectors corresponding
to the vertex subset of this component is zero. Hence | det Pk| = 0.

We now assume that H is a tree. We now relabel the vertices and edges of H other than
vk as follows: Let u1 ̸= vk be an end vertex of H and let x1 be the pendant edge incident at
x1 in H; let u2 ̸= vk be an end vertex of the subtree H − u1 of H, and let x2 be the pendant
edge of H incident at u2 and so on. This relabeling of the vertices and edges of H determines
a new matrix P ′

k which is lower triangular (i.e., if P ′
k = (prs), then for s > r, prs = 0) and

every diagonal entry is 1 or −1; hence | det P ′
k| = 1.

To complete the proof of the theorem, we apply the Binet–Cauchy theorem. We first note
that if in a square matrix, each row and column adds up to zero, then all the cofactors of the
entries of the matrix are equal. Hence this is true for Q since in Q each row and column adds
up to zero. Therefore it suffices to show that the cofactor of the leading entry of Q is the
number of spanning trees of G. Now the cofactor of the leading entry of Q is the determinant
of the product C1CT

1 , where C1 is the matrix got by deleting the first row of C. C1 is then an
(n−1)×m matrix. By Binet–Cauchy theorem, det(C1CT

1) is equal to the sum of products of
the corresponding major determinants of C1 and CT

1 . A major determinant of C1 has value
1 or 0 according as the columns of C1 correspond to a spanning tree of G or not. Thus the
sum of their products is exactly the number of spanning trees of G. �

Illustration Let G be the graph of Example 10.3. The cofactor of the leading entry of

Q is

∣∣∣∣∣∣∣
2 −1 0

−1 3 −1
0 −1 1

∣∣∣∣∣∣∣ = 3. Hence the number of spanning trees of this graph is 3.

Corollary 10.4 (Cayley) The number of labeled trees with n vertices is nn−2.

C5955–C0010.tex 242 2015/11/4 9:39am

Adjacency Spectrum and the Laplacian Spectrum of a Graph � 243

Proof. The number of labeled trees with n vertices is just the number of span-
ning trees of a labeled complete graph Kn = the principal cofactor of Q(Kn) =

n − 1 −1 · · · −1
−1 n − 1 · · · −1
...

...
−1 −1 · · · n − 1

. By Lemma 10.1, this number is easily seen to be nn−2. �

10.10 ALGEBRAIC CONNECTIVITY OF A GRAPH

Since Q is singular, 0 is an eigenvalue of Q. What is the dimension of the eigenspace of 0?
If G is connected, rank(Q) = n − 1 by Theorem 10.11. It is clear that the eigenspace of Q is
then generated by the all 1-vector 1. In general, if G has ω components, the all 1-vector of
relevant length is an eigenvector of each of the components and hence the ω binary vectors
of length n, each having 1’s in the positions corresponding to each of the components and
zeros elsewhere form a basis for the eigenspace of 0. Thus the dimension of this eigenspace of
G (namely, the eigenspace of the eigenvalue 0) is ω. Hence G is connected if and only if 0 is
a simple eigenvalue of Q; that is, if and only if λn−1 ̸= 0. For this reason, λn−1 was called by
Fiedler [12] the algebraic connectivity of G. It is also called as the Fiedler value of G. Thus
if the characteristic polynomial of Q, namely, µ(x) = xn + a1xn−1 + · · · + aωxω, aω ̸= 0,
then the number of components of G is ω.

Corollary 10.5 Let λ1 ≥ λ2 ≥ · · · ≥ λn−1 > λn = 0 be the eigenvalues of the Kirchoff
matrix of a connected graph G of order n. Let δ and ∆ be the minimum and maximum
degrees of G respectively. Then

i.
∑n

i=1 λi = 2|E(G)|.

ii. λn−1 ≤ n
n−1∆.

iii. λ1 ≥ n
n−1δ.

iv. The number of spanning trees τ(G) of G is 1
nλ1λ2 · · · λn−1.

Proof.

(i) follows from the fact that
n∑

i=1
λi = trace of Q.

(ii) and (iii). From (i), λ1 + · · · + λn−1 + 0 = d1 + · · · + dn, where di is the degree of
the vertex vi. Since λ1 ≥ λ2 ≥ · · · ≥ λn−1,

(n − 1)λn−1 ≤ λ1 + · · · + λn−1 ≤ (n − 1)λ1 and

(n − 1)λn−1 ≤ d1 + · · · + dn−1 + dn ≤ (n − 1)λ1

and so (n − 1)λn−1 ≤ n∆ and nδ ≤ (n − 1)λ1.

(iv) As G is connected,

µ(x) = xn + a1xn−1 + · · · + an−1x + 0

C5955–C0010.tex 243 2015/11/4 9:39am

244 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

where an−1 ̸= 0. Hence λ1λ2 · · · λn−1 = (−1)n−1an−1. Now,

an−1 = coefficient of x in det(xI − Q)
= (−1)n−1{cofactor of d1 in Q + · · · + cofactor of dn in Q}
= (−1)n−1.n.τ(G) (by Theorem 10.11)

Consequently, τ(G) = 1
n(−1)n−1an−1 = 1

nλ1λ2 · · · λn−1. �

Lemma 10.4 The Laplacian spectrum of the complete graph Kn is zero repeated once and
n repeated n − 1 times.

Proof. Follows from the fact that

Q(Kn) =

n − 1 −1 −1 . . . −1
−1 n − 1 −1 . . . −1
...

...
...

−1 −1 −1 . . . n − 1

and by Lemma 10.1. �
Note:

1. Cayley’s theorem (Corollary 10.4) is a consequence of Lemma 10.4 and (iv) of
Corollary 10.5.

2. Lemma 10.4 implies that the Fiedler value of Kn is n.

Theorem 10.12 [13] The Laplacian spectrum of any simple graph G of order n is contained
in [0, n]. Further the multiplicity of n as a Laplacian eigenvalue of G is one less than the
number of components of Gc, the complement of G.

Proof. We have Q(G) + Q(Gc) = Q(Kn) and Q(G)1 = Q(Gc)1 = Q(Kn)1 = 0. Let x be any
nonzero vector orthogonal to 1 with Q(G)x = λx for some Laplacian eigenvalue λ of G. We
have by Lemma 10.4, Q(Gc)x = Q(Kn)x − Q(G)x = nx − λx = (n − λ)x which means that
n − λ is a Laplacian eigenvalue of Gc. Hence n − λ ≥ 0 and so λ ≤ n. Moreover λ = n if
and only if Q(Gc)x = 0 and the dimension of the space spanned by such vectors is one less
than the nullity of Q(Gc). (Recall that Q(Gc)1 = 0, the vector x is orthogonal to 1 and the
nullity of Gc is equal to the number of components of Gc.) �

Corollary 10.6 If G is of order n and n is an eigenvalue of Q(G), then Gc is disconnected.

Proof. If Gc is connected, by Theorem 10.12, n can not be a Laplacian eigenvalue of G. �
We now improve upon the inequalities of Corollary 10.5 by invoking the Courant-Weyl
inequalities [3,14].

Theorem 10.13 [3,14] Let A and B be real symmetric (more generally Hermitian) matrices
with spectra {λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A)} and {λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B)},
respectively. Let the spectrum of A + B be {λ1(A + B) ≥ λ2(A + B) ≥ · · · ≥ λn(A + B)}.
Then, for 1 ≤ i, j ≤ n, we have

i. If i + j − 1 ≤ n, then λi+j−1(A + B) ≤ λi(A) + λj(B),

C5955–C0010.tex 244 2015/11/4 9:39am

Adjacency Spectrum and the Laplacian Spectrum of a Graph � 245

ii. If i + j − n ≥ 1, then λi(A) + λj(B) ≥ λi+j−n(A + B),

iii. If B is positive semidefinite, then λi(A + B) ≥ λi(A). �

Theorem 10.14 [14] Let M be a positive semidefinite matrix with each row sum zero. Then
the second smallest eigenvalue of M is given by minX∈W XT MX, where W is the set of unit
vectors X orthogonal to the all 1-vector 1. �

An immediate consequence of Theorem 10.14 is the following:

Corollary 10.7 Let G be a graph of order n with Laplacian spectrum {λ1(G) ≥ λ2(G) ≥
· · · ≥ λn−1(G) > 0}. Then

λn−1(G) = min
X∈W

XT Q(G)X, X ∈ Rn,

where W is the set of unit vectors X orthogonal to the all 1-vector 1. �

A consequence of Corollary 10.7 is the following corollary.

Corollary 10.8 If a graph G is the edge-disjoint union of two spanning subgraphs G1 and
G2, then the Fiedler values of G1, G2, and G are related by

λn−1(G1) + λn−1(G2) ≤ λn−1(G).

Proof. Let W be the set of unit vectors X ∈ Rn orthogonal to the all 1-vector 1. Then,

λn−1(G) = min
X∈W

XT Q(G)X
= min

X∈W
XT [Q(G1) + Q(G2)]X

≥ min
X∈W

XT Q(G1)X + min
X∈W

XT Q(G2)X
= λn−1(G1) + λn−1(G2). �

We now present an improvement of (ii) of Corollary 10.5 by showing that the maximum
degree ∆ of G can be replaced by the minimum degree δ of G on the right.

Theorem 10.15 [12] Let G be a connected graph of order n with Laplacian spectrum {λ1 ≥
λ2 ≥ · · · ≥ λn−1 > 0}. Then

λn−1 ≤ n

n − 1
δ.

Proof. By Corollary 10.7,

λn−1 = min
X∈W

XT QX, Q = Q(G). (10.8)

Now consider the matrix
Q̃ = Q − λn−1(I − n−1J).

Let Y ∈ Rn so that Y = c11 + c2X, where c1, c2 ∈ R and X ∈ W . Then Q1 = 0 and Q̃1 = 0
as (I − n−1J)1 = 0. Therefore

Y T Q̃Y = c2
2XT Q̃X = c2

2(XT QX − λn−1)
≥ 0 (by Equation 10.8).

Thus Q̃ is also a positive semidefinite matrix and hence all diagonal entries of Q̃ are nonneg-
ative. This means that δ − λn−1(1 − n−1) ≥ 0, that is,

λn−1 ≤ n

n − 1
δ. �

In a similar manner, one can show that λ1 ≥ (n/(n − 1))∆.

C5955–C0010.tex 245 2015/11/4 9:39am

246 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

References

[1] R. Balakrishnan and K. Ranganathan. A Textbook of Graph Theory. Springer, New York,
Second (Revised and Enlarged) edition, 2012.

[2] N.L. Biggs. Algebraic Graph Theory. Cambridge University Press, Second edition, 1993.

[3] A.E. Brouwer and W.H. Haemers. Spectra of Graphs. Springer, New York, 2011.

[4] D.M. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs: Theory and Application.
Wiley, New York, Third (revised and enlarged) edition, 1998.

[5] C.D. Godsil and G. Royle. Algebraic Graph Theory. Springer-Verlag, New York, 2001.

[6] A.J. Schwenk and O.P. Lossers. Solutions of advanced problems. The American Mathe-
matical Monthly, 94 (1987), 885–887.

[7] D. Bryant. Another quick proof that K10 ̸= P + P + P . Bull. ICA, 34 (2002), 86.

[8] F. Harary. The determinant of the adjacency matrix of a graph. SIAM Rev., 4 (1962),
202–210.

[9] H. Sachs. Über teiler, Faktoren und Charakteristische Polynome von Graphen II. Wiss.
Z. Techn. Hochsch. Ilmenau, 13 (1967), 405–412.

[10] D. Cvetković. Graphs and Their Spectra. PhD thesis, Univ. Beograd Publ. Elektrotehn.
Fak., Ser. Mat. Fiz., 1971.

[11] J.J. Molitierno. Applications of Combinatorial Matrix Theory to Laplacian Matrices of
Graphs. Chapman & Hall/CRC Press, 2012.

[12] M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 23 (1973), 298–305.

[13] W.N. Anderson and T.D. Morley. Eigenvalues of the Laplacian of a graph. Linear Mul-
tilinear Algebra, 18 (1985), 141–145.

[14] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge,
1985.

C5955–C0010.tex 246 2015/11/4 9:39am

C H A P T E R 11

Resistance Networks, Random
Walks, and Network Theorems
Krishnaiyan “KT” Thulasiraman

Mamta Yadav

CONTENTS

11.1 Introduction . 247
11.2 Resistance Networks . 247
11.3 Topological Formulas for Resistance Network Functions . 249
11.4 Random Walks . 254
11.5 Kirchhoff Index of a Graph and the Graph Laplacian . 258

11.5.1 Formula for the Kirchhoff Index . 259
11.5.2 Kirchhoff Index Using Topological Formulas for Network Functions 262

11.6 Foster’s Theorems . 263
11.7 Arc-Coloring Theorem and the No-Gain Property . 265

11.1 INTRODUCTION

In this chapter we first discuss some aspects of electrical network analysis which depend heav-
ily on the theory of graphs. We then use these results in the discovery of certain fundamental
properties of networks (not necessarily electrical networks). In doing so we view a weighted
graph as an electrical resistance network with conductances (reciprocals of resistance values)
as weights of the edges. The main topics considered are topological formulas for network
functions, random walks, Kirchhoff Index of a graph, Foster’s theorems, the arc-coloring
lemma, and the no-gain property of resistance networks. Results to be presented make use
of the theory developed in Chapter 8.

11.2 RESISTANCE NETWORKS

An electrical network is an interconnection of electrical network elements such as resistances,
capacitances, inductances, and voltage and current sources. In this chapter, we will assume
that all the network elements in the networks to be considered are resistances. However, unless
explicitly stated all the results to be developed are applicable to any network of resistances,
capacitances, and inductances. Each network element is associated with two variables—the
voltage variable v(t) and the current variable i(t). We need to specify reference directions
for these variables because they are functions of time and may take on positive and negative
values in the course of time. This is done by assigning an arrow, called orientation, to each
network element (Figure 11.1). This arrow means that i(t) is positive whenever the current is

C5955–C0011.tex 247 2015/11/4 9:49am

247

248 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

i(t)

+
v(t)

Figure 11.1 Network element (representation).

in the direction of the arrow. Further we assume that the positive polarity of the voltage v(t)
is at the tail end of the arrow. Thus v(t) is positive whenever the voltage drop in a network
element is in the direction of the arrow.

Network elements are characterized by the physical relationships between the associated
voltage and current variables. Ohm’s law specifies the relationship between v(t) and i(t) as

v(t) = Ri(t)

where R is the resistance (in ohms) of the network element.
Note that for some of the network elements the voltage variables may be required to have

specified values and for some others the current variables may be specified. Such elements
are called, respectively, the voltage and current sources.

Two fundamental laws of network theory are Kirchhoff’s laws, that are stated as follows.

Kirchhoff’s Current Law (KCL) The algebraic sum of the currents flowing out of a vertex
is equal to zero.

Kirchhoff’s Voltage Law (KVL) The algebraic sum of the voltages around any circuit is
equal to zero.

For instance, for the network shown in Figure 11.2a the KCL and KVL equations are as
given below. In this figure element 5 is a voltage source and element 4 is a current source.

KCL equations
vertex a i1 − i5 + i6 = 0,

vertex c −i2 + i4 − i6 = 0,

vertex b −i1 + i2 + i3 = 0.

KVL equations

circuit {1, 3, 5} v1 + v3 + v5 = 0,

circuit {2, 4, 3} v2 + v4 − v3 = 0,

circuit {1, 6, 2} −v1 + v6 − v2 = 0.

d

a
b

c

6

+

5

3

1 2

4

d

a
b

c

6

1 2

35 4

(a) (b)

Figure 11.2 Directed graph representation of a network. (a) Network N . (b) Directed graph
of N .

C5955–C0011.tex 248 2015/11/4 9:49am

Resistance Networks, Random Walks, and Network Theorems � 249

Given an electrical network N , the problem of network analysis is to determine the element
voltages and currents that satisfy Kirchhoff’s laws and the Ohm’s law.

Notice that the equations which arise from an application of Kirchhoff’s laws are algebraic
in nature, and they depend only on the way the network elements are interconnected and
not on the nature of the network elements. There are several properties of an electrical
network which depend on the structure of the network. In studying such properties it will
be convenient to treat each network element as a directed edge associated with the two
variables v(t) and i(t). Thus, we may consider an electrical network as a directed graph in
which each edge is associated with the two variables v(t) and i(t), which are required to
satisfy Kirchhoff’s laws and the Ohm’s law.

For example, the directed graph corresponding to the network of Figure 11.2a is shown
in Figure 11.2b.

It is now easy to see that KCL and KVL equations for a network N can be written,
respectively, as

QcIe = 0 (11.1)

and
BcVe = 0, (11.2)

where Qc and Bc are the cut and circuit matrices of the directed graph associated with N,
and Ie and Ve are, respectively, the column vectors of element currents and voltages of N .

Since the all-vertex incidence matrix Ac is a submatrix of Qc and has the same rank as
Qc, we can use in Equation 11.1 the matrix Ac in place of Qc. Thus KCL equations can be
written as

AcIe = 0. (11.3)

Since the rank of Ac is n − 1, we can remove any row from Ac and use the resulting matrix
A called the incidence matrix (see Chapter 8). The vertex corresponding to the removed row
is called the reference or datum vertex.

In all our discussions in this chapter we denote both an electrical network and the
associated directed graph by the same symbol N . Most often a graph is also referred to
as a network, and vice versa. We may also refer to a vertex as a node.

11.3 TOPOLOGICAL FORMULAS FOR RESISTANCE NETWORK FUNCTIONS

In this section we derive topological formulas for resistance network functions.
Consider first a 1-port resistance network N . Let the network N have n+1 nodes denoted

by 0, 1, 2, . . ., n, and let the nodes 1 and 0 be, respectively, the positive and negative reference
terminals of the port (Figure 11.3). Let us now excite the network by connecting a current
source of value I1 across the port. Let V1, V2, . . ., Vn denote the voltages of the nodes 1,
2, . . ., n with respect to node 0. This means V0 = 0 and Vi is the voltage between the nodes i
and 0, (i.e., Vi = Vi −V0) for i ̸= 0. Also the A matrix does not contain the row corresponding
to the vertex 0.

N

0

1

−

+

V1

I1

Figure 11.3 A 1-port network.

C5955–C0011.tex 249 2015/11/4 9:49am

250 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Then we have
AIe = I, (11.4)

where

I =

I1
0
0
...
0

.

Let the network elements be labeled as e1, e2, . . ., em with ri denoting the resistance value of
element ei. Then the conductance of ei is given by gi = 1/ri.

Let G be the diagonal matrix with its (i, i) entry equal to gi. Then we can write

Ie = GVe. (11.5)

Suppose the end vertices of ei are k and l. Then the voltage across this element (voltage drop
from node k to node l) is given by Vk − Vl, assuming that the element is oriented from vertex
k to vertex l. So we can write

Ve = AtV (11.6)

where V is the vector of voltages V1, V2, . . ., Vn.
Combining (11.4) through (11.6) we get the node equations

AGAtV = I (11.7)

where

V =

V1
V2
...

Vn

.
Let

Y = AGAt

so that
Y V = I (11.8)

The matrix Y is called the node conductance matrix of the network with vertex 0 as the
reference.

Solving (11.8) for V1, we get

V1 = ∆11

∆
I1,

where
∆ = det Y

and
∆11 = (1, 1) cofactor of Y.

So the driving-point resistance across vertices 1 and 0 is given by

z = V1

I1
= ∆11

∆
, (11.9)

and the driving-point conductance across 1 and 0 is given by

y = 1
z

= ∆
∆11

. (11.10)

C5955–C0011.tex 250 2015/11/4 9:49am

Resistance Networks, Random Walks, and Network Theorems � 251

0

1

−

+

V1

I1 I2

−

+

V2

3

2

I2

Figure 11.4 A 2-port network.

To illustrate certain principles of network analysis, consider next a 2-port network
(see Figure 11.4). If the ports of N are excited by current sources of values I1 and I2,
then the node equations of N can be written as

Y V = I

where

I =

I1
I2

−I2
...
0

,

Solving for the node voltages V1, V2, and V3, we get

V1 = 1
∆

(∆11I1 + ∆21I2 − ∆31I2),

V2 = 1
∆

(∆12I1 + ∆22I2 − ∆32I2),

V3 = 1
∆

(∆13I1 + ∆23I2 − ∆33I2).

From the above relations we get[
V1

V2 − V3

]
= 1

∆

[
∆11 ∆21 − ∆31

∆12 − ∆13 ∆22 + ∆33 − ∆32 − ∆23

] [
I1
I2

]
(11.11)

= ZocI

Here Zoc is called the open circuit resistance matrix of the 2-port network. This is because
each element of Zoc is obtained by setting one of the port currents equal to zero (i.e., open-
circuiting the corresponding port).

Thus

z11 = V1

I1
|I2=0,

z12 = V1

I2
|I1=0,

z21 = V2

I1
|I2=0,

z22 = V2

I2
|I1=0.

C5955–C0011.tex 251 2015/11/4 9:49am

252 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Here z11 and z22 are called driving point resistances across the respective ports and z12 and
z21 are called transfer resistances between the ports. Note that since Y is symmetric, we have

∆ij = ∆ji.

So
Zoc = 1

∆

[
∆11 ∆12 − ∆13

∆12 − ∆13 ∆22 + ∆33 − 2∆23

]
. (11.12)

Now we recall from Chapter 8 that
∆ = W

∆11 = W1,0, (11.13)
where W is the sum of the conductance products of all the spanning trees in N and W1,0 is
the sum of the conductance products of all the spanning 2-trees of the type T1,0 (with 1 and
0 in separate trees of T1,0). We also have from Chapter 8 that

∆ij = Wij,0

where Wij,0 is the sum of the conductance products of all 2-trees Tij,0 (i and j in one tree
and 0 in the other tree). So

∆12 − ∆13 = W12,0 − W13,0. (11.14)
Since each spanning 2-tree T12,0 is either a spanning 2-tree T12,30 or a spanning 2-tree T123,0,
we get

W12,0 = W12,30 + W123,0. (11.15)
Similarly,

W13,0 = W13,20 + W123,0. (11.16)
Then

∆12 − ∆13 = W12,30 − W13,20. (11.17)
By a similar reasoning,

∆22 + ∆33 − 2∆23 = W2,0 + W3,0 − 2W23,0

= W23,0 + W2,30 + W23,0 + W3,20 − 2W23,0 (11.18)
= W2,30 + W3,20

= W2,3.

So we can write Zoc as

Zoc = 1
W

[
W1,0 W12,30 − W13,20

W12,30 − W13,20 W2,3

]
.

So the driving point resistance z11 across port 1 is given by

z1,0 = W1,0

W

Similarly, the driving point resistance z22 across 2 and 3 is given by W2,3/W . In general, the
driving port resistance across any pair of nodes i and j is given by Wi,j/W . We shall denote
by rij the driving port resistance across any pair of vertices i and j so that

rij = Wi,j

W
(11.19)

rij is also called the effective resistance across i and j.

C5955–C0011.tex 252 2015/11/4 9:49am

Resistance Networks, Random Walks, and Network Theorems � 253

We wish to emphasize that the formulas for z′
ijs in (11.11) are with respect to vertex 0 as

reference. On the other hand the formula in (11.19) does not explicitly involve the reference
vertex.

We conclude this section with the following facts that will be needed in the following
sections. We assume that the vertices are labeled as 1, 2, . . ., n.

1. The degree matrix K = [kij] of a simple undirected graph G = (V, E) is defined as

kii = d(vi), for all i ∈ V

kij = −1, if (i, j) ∈ E

= 0, otherwise

where d(vi) is the degree of vertex i.
Then K can be written as

K = AcA
t
c

where Ac is the all-vertex incidence matrix of G.

2. Let N be the resistance network N obtained by associating a 1 ohm resistance with
each edge of G. Then in electrical engineering literature the matrix K is called the
indefinite conductance matrix. In graph theory literature K is also known as the graph
Laplacian. Also, if the conductances are defined by gi, with G as the diagonal ma-
trix of edge conductances, then the graph Laplacian of the corresponding weighted
graph will be AcGAt

c. Here the degree of vertex i is the sum of the conductances
incident on i.

3. Let Kjj be the matrix obtained by removing the jth row and the jth column from K.
Then Kjj is the same as the matrix Y defined in (11.8) with vertex j as reference if all
the resistances have 1 ohm value.

4. By Theorem 8.21 all cofactors of K are equal to the number of spanning trees of N . In
particular

det Kjj = W. (11.20)

5. (i, i) cofactor of Kjj = Number of spanning 2-trees of the type Ti,j

= Wi,j (11.21)

6. (i, k) cofactor of Kjj = Number of spanning 2-trees of the type Tik,j

= Wik,j (11.22)

7. The effective resistance rij across i and j of N is given by

rij = (i, i) Cofactor of Y

determinant of Y

= (i, i) Cofactor of Kjj

determinant of Kjj

= (i, i) Cofactor of Kjj

W

= Wi,j

W

(11.23)

C5955–C0011.tex 253 2015/11/4 9:49am

254 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

11.4 RANDOM WALKS

A random v-walk on an undirected graph G is a walk that starts at vertex v, at each vertex
selects uniformly (i.e., with equal probability) one of the edges incident on v, moves along
that edge to the other end vertex of that edge, and repeats these actions at subsequent
vertices. Note that the probability that the walk, while at v, selects an edge is equal to
1/(d(v)) where the d(v) is the degree of v. Random walks arise in several applications. For
examples, see [1–3].

Two quantities of interest in the study of random walks are hitting time and commute
time. A random v-walk is said to hit a vertex w when it reaches w. The hitting time Hvw

is the expected number of steps taken by a random v-walk before hitting w. The commute
time Cvw between v and w is defined by

Cvw = Hvw + Hwv (11.24)

In this section, we establish certain connections between random walks and electrical resis-
tance networks.

Theorem 11.1 Let G = (V, E) be a simple connected undirected graph with its vertices
labeled as 1, 2, . . ., n. Consider any two distinct vertices say 1 and n. Let p1 denote the
probability that a random 1-walk on G hits n before returning to 1.

Then
p1 = 1

d(1)r1,n

Proof. Let px, for x ̸= 1, be the probability that a random x-walk on G hits n before hitting 1.
Clearly

pn = 1 (11.25)

and
pi = 1

d(i)
∑

(i,j)∈E
j ̸=1

pj , i ̸= n (11.26)

(11.26) can be rewritten as

d(i)p(i) −
∑

(i,j)∈E
j ̸=1

pj = 0, i ̸= n (11.27)

Then (11.25) and (11.27) can be written in matrix form as

K ′P =

0
0
...
0
1

where:

K ′ is the matrix obtained from the degree matrix K by setting to zero all nondi-
agonal elements of the first column and replacing the nth row by the row vector
[0 0 · · · 0 1].

P is the column vector of probabilities p1, p2, . . ., pn.

C5955–C0011.tex 254 2015/11/4 9:49am

Resistance Networks, Random Walks, and Network Theorems � 255

The matrix K ′ will appear as
d(1) × × × ×

0 ×
0 M ×
...

...
0 0 0 0 1

where M is the matrix obtained from the degree matrix K by removing its first and nth rows
and columns. Also the conductance matrix (with n as reference) is given by Y = Knn and
M is the same as the matrix obtained from Y by removing its first row and first column.

Then using Cramer’s rule we can solve (11.28) for p1 as

p1 = (n, 1) cofactor of K ′

determinant of K ′ ,

= (n, 1) cofactor of K ′

d(1) det M

= W

d(1)(1, 1) cofactor of Knn
, from (11.20)

= W

d(1)(1, 1) cofactor of Y

= W

d(1)W1,n

= 1
d(1)

× 1
r1, n

, from (11.23) �

To illustrate the definitions of matrices used in the proof of Theorem 11.1, consider the
undirected graph G shown in Figure 11.5. Here n = 5.

For G

K =

2 −1 −1 0 0

−1 3 −1 −1 0
−1 −1 4 −1 −1

0 −1 −1 3 −1
0 0 −1 −1 2

3 4

1 2

5

Figure 11.5 Graph G to illustrate the proof of Theorem 11.1.

C5955–C0011.tex 255 2015/11/4 9:49am

256 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

K ′ =

2 −1 −1 0 0
0 3 −1 −1 0
0 −1 4 −1 −1
0 −1 −1 3 −1
0 0 0 0 1

M =

 3 −1 −1
−1 4 −1
−1 −1 3

, Y =

2 −1 −1 0

−1 3 −1 −1
−1 −1 4 −1

0 −1 −1 3

W = determinant of Y

= 21
(1, 1) cofactor of Y = det M

= 24
So

r1,n = 24
21

and
p1 = 1

2
× 21

24
= 21

48
= 7

16
.

Theorem 11.2 In a simple connected undirected graph G(V, E) the commute time between
any two distinct vertices x and y is given by

Cxy = 2mrx,y

where m is the number of edges in G.

Proof. We assume that the vertices of G are labeled as 1, 2, . . ., n. For ease in presentation
we take x and y as the first vertex and nth vertex, respectively. It is easy to see that the
hitting times Hij satisfy the following system of equations.

Hin =
∑

(i,j)∈E
j ̸=n

1
d(i)

(1 + Hjn) i ̸= n (11.28)

This system of equations can be written as

d(i)Hin −
∑

(i,j)∈E
j ̸=n

Hjn = d(i) i ̸= n (11.29)

Equation 11.29 in matrix form becomes

KnnH = D (11.30)

where Knn is the matrix obtained from the degree matrix by removing its nth row and
column, H is the column vector of H1n, H2n, . . ., H(n−1)n and D is the column vector of
degrees d(1), d(2), . . ., d(n − 1).

Suppose we take the network N of 1 ohm resistances derived from G and inject a current
of value d(i) at each vertex i ̸= n. If we let Vi denote the voltage from vertex i to vertex n,
then the node equations of this network (see 11.7) will be

I = Y V (11.31)

C5955–C0011.tex 256 2015/11/4 9:49am

Resistance Networks, Random Walks, and Network Theorems � 257

where

I =

d(1)
d(2)

...
d(n − 1)

 and V =

V1
V2
...

V(n−1)

and Y is the node conductance matrix with vertex n as the reference. Since Y is the same
as Knn, we can see that H and V both satisfy the same set of equations. Thus

Vi = Hi,n for all i ̸= n.

Solving (11.31) for V1 we get

V1 = 1
∆

n−1∑
i=1

d(i)∆i,1

So

H1n = 1
∆

n−1∑
i=1

d(i)∆i,1

= 1
∆

n−1∑
i=1

d(i)Wi1,n

(11.32)

Similarly

Hn1 = 1
∆

n∑
i=2

d(i)Win,1

So

C1n = H1n + Hn1,

= 1
∆

(d(1)W1,n + d(n)Wn,1) + 1
∆

n−1∑
i=2

(d(i)Wi1,n + d(i)Win,1)

Since W1,n = Wi1,n + Win,1
we get

C1n = W1,n

∆

n∑
i=1

d(i)

= 2m
W1,n

∆

= 2m
W1,n

W
= 2mr1,n �

If Y is the node conductance matrix with vertex n as reference then it follows from (11.32)
that the hitting times Hk,n for all k ̸= n can be obtained as

Hk,n = 1
∆

n−1∑
i=1

d(i)∆i,k

Note that ∆i,k is the (i, k) cofactor of Y and is equal to Wik,n.
In other words, one can get H ′

ins for all i ̸= n, from the elements of Y and the vertex
degrees. Hkn is also called the first passage time taken by a random k-walk to hit n.

C5955–C0011.tex 257 2015/11/4 9:49am

258 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The cover time of G is defined as

C = max{Cv ∈ V }

where Cv is the expected number of steps taken by a random v-walk to hit every vertex of G.
Aleliunas et al. [4] have obtained a bound for C given by

C ≤ 2m(n − 1) (11.33)

11.5 KIRCHHOFF INDEX OF A GRAPH AND THE GRAPH LAPLACIAN

Kirchhoff Index Kf (G) of a connected undirected graph G is defined as

Kf (G) =
∑
i<j

rij (11.34)

Thus Kf (G) is the sum of the effective resistances across all pairs of vertices of the
1-ohm resistance network obtained from G. This concept was introduced by Klein and
Randić [5]. The problem of computing Kf (G) has been studied extensively using what
is known as the pseudoinverse of the degree matrix (Laplacian matrix) K defined in
Section 11.3.

The Moore–Penrose pseudoinverse of Laplacian matrix K(G) is denoted by K+(G) and
has the following basic properties

1. K(G)K+(G)K(G) = K(G)

2. K+(G)K(G)K+(G) = K+(G)

3. [K(G)K+(G)]t = K(G)K+(G)

4. [K+(G)K(G)]t = K+(G)K(G)

The Moore–Penrose pseudoinverse K+(G) can be computed as follows [6]:

K+(G) =
(

K (G) + J

n

)−1
− J

n
(11.35)

where J ∈ Rn×n is a matrix of all 1’s and n is the number of vertices of graph G.
The following properties of the Moore–Penrose pseudoinverse of the Laplacian matrix

were established by several authors [6].

Lemma 11.1 The Moore–Penrose pseudoinverse K+(G) of the Laplacian matrix K(G) of
a connected graph is a real and symmetric matrix. �

Lemma 11.2 The Laplacian matrix and its pseudoinverse satisfy the following relations

K(G)J = JK(G) = 0
K+(G)J = JK+(G) = 0 �

Lemma 11.3 If K(G) and K+(G) pertain to a connected graph G on n vertices, then

K(G)K+(G) = K+(G)K(G) = I − J

n
�

C5955–C0011.tex 258 2015/11/4 9:49am

Resistance Networks, Random Walks, and Network Theorems � 259

Theorem 11.3 If G is a connected graph, then the inverse of the matrix K(G) + J/n exists
and is equal to K+(G) + J/n.

Proof. Using Lemmas 11.2 and 11.3, and the fact that J2 = nJ , we have(
K (G) + J

n

)(
K+ (G) + J

n

)
= K (G) K+ (G) + J

n
K+ (G) + 1

n
K (G) J + 1

n2 J2

=
(

I − J

n

)
+ O + O + J

n
= I. �

It was proved by Klein and Randić [5] that the Kirchhoff Index can also be written as

Kf (G) = ntr(K+(G)) (11.36)

where n is the number of vertices and tr(K+(G)) denotes the trace function which can be
calculated by

tr(K+(G)) =
n∑

i=1
k+

ii

Gutman and Mohar [7] demonstrated that it is possible to calculate the Kirchhoff Index
without knowing the Moore–Penrose pseudoinverse of the Laplacian matrix. They obtained
the Kirchhoff Index from the eigenvalues of the Laplacian matrix of a graph G as

Kf (G) = n
n−1∑
i=1

1
µi

(11.37)

where µi’s are the nonzero eigenvalues of the Laplacian matrix K(G).
To avoid the computational efforts required to calculate the Moore–Penrose pseudoin-

verse of the Laplacian matrix, we next present a new formula for Kf (G).

11.5.1 Formula for the Kirchhoff Index

Let K be the Laplacian matrix of a connected graph G and as before K(i) be a submatrix
obtained by deleting ith row and ith column of the Laplacian matrix K. Note that K(i) is
the same as the node conductance Y , if vertex i is chosen as reference.

Let Z be the inverse of K(i), that is,

Z = K(i)−1

See [8] for a proof of the following theorem.

Theorem 11.4 Let K be the Laplacian matrix of a connected graph G with n vertices. Then

K+ = eT Ze

n2 J +
[

Z − (1/n)ZJ − (1/n)JZ −(1/n)Ze

−(1/n)eT Z O

]
(11.38)

where e is the left and right null vector to any Laplacian matrix and matrix Z is the inverse of
a reduced Laplacian matrix obtained by deleting the last (nth) row and the last (nth) column,
that is, Z = K(n)−1 = Y −1. The new formula for computing Kirchhoff Index is given in the
following theorem. �

C5955–C0011.tex 259 2015/11/4 9:49am

260 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 11.5
Kf (G) = nTr(Z) −

∑
k,l

zkl (11.39)

where Z is the inverse of the Laplacian matrix obtained by deleting any ith row and ith
column, and

∑
k,l zkl is the sum of all the elements of matrix Z (note Z = Y −1).

Proof. Using Equation 11.38 we can calculate the (i, j)th entry of pseudoinverse K+ of the
Laplacian matrix K in terms of the elements of the matrix Z.

k+
ij =

∑
k,l

zkl

n2 + zij − 1
n

∑
k

zkj − 1
n

∑
l

zil, i ̸= n, j ̸= n∑
k,l

zkl

n2 − 1
n

∑
k

zkj , i = n, j ̸= n∑
k,l

zkl

n2 − 1
n

∑
l

zil, i ̸= n, j = n∑
k,l

zkl

n2 , i = n, j = n

(11.40)

where:∑
k,l zkl is the sum of all the elements of the matrix Z∑
k zkj is the sum of the elements of the kth row of the matrix Z∑
l zil is the sum of the elements of the lth column of the matrix Z

Now using Equations 11.36 and 11.38, we get

Kf (G) = nTr(K+) = n
n−1∑
i=1

(k+
ii + k+

nn) (11.41)

The trace of the pseudoinverse K+ of the Laplacian matrix satisfies

Tr(K+) =
n−1∑
i=1

k+
ii + k+

nn (11.42)

From (11.40) we get

k+
ii =

∑
k,l zkl

n2 + zii − 2
n

∑
l

zil (11.43)

k+
nn =

∑
k,l zkl

n2 (11.44)

Now using (11.42) through (11.44), we get

Tr(K+) =
n−1∑
i=1

(∑
k,l zkl

n2 + zii − 2
n

∑
l

zil

)
+
∑

k,l zkl

n2 (11.45)

Note:
∑n−1

i=1 (
∑

l zil) =
∑

k,l zkl (sum of all elements of matrix Z)
Thus,

Tr(K+) = 1
n2 (n − 1)

∑
k,l

zkl +
n−1∑
i=1

zii − 2
n

∑
k,l

zkl +
∑

k,l zkl

n2

After simplification we get

Tr(K+) =
n−1∑
i=1

zii −
∑

k,l zkl

n
(11.46)

C5955–C0011.tex 260 2015/11/4 9:49am

Resistance Networks, Random Walks, and Network Theorems � 261

From (11.41) and (11.46), we get

Kf (G) = n
n−1∑
i=1

zii −
∑
k,l

zkl (11.47)

We know
n−1∑
i=1

zii = Tr(Z) (11.48)

The required result follows from (11.41) and (11.42) as

Kf (G) = nTr(Z) −
∑
k,l

zkl

�
The following example demonstrates the calculation of the Kirchhoff Index by first using the
Moore–Penrose pseudoinverse and then by using our new formula.

Kirchhoff Index Using Moore–Penrose Pseudoinverse:

As an example, Figure 11.6 shows a graph G with six nodes and its Laplacian matrix.
First we find the Moore–Penrose pseudoinverse of Laplacian matrix K given in Figure

11.6b by using formula (11.35)

K+ =

2 −1 0 −1 0 0

−1 2 −1 0 0 0
0 −1 3 −1 −1 0

−1 0 −1 3 −1 0
0 0 −1 −1 3 −1
0 0 0 0 −1 1

+ 1
6

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

−1

−1
6

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

K+ =

0.487 0.123 −0.074 0.017 −0.195 −0.362
0.123 0.487 0.017 −0.074 −0.195 −0.362

−0.074 0.017 0.275 0.002 −0.028 −0.195
0.017 −0.074 0.002 0.275 −0.028 −0.195

−0.195 −0.195 −0.028 −0.028 0.305 0.138
−0.362 −0.362 −0.195 −0.195 0.138 0.972

v3v2

v5 v6

2 −1 0 −1 0 0

−1 0 −1 3 −1 0

0 0 −1 −1 3 −1

0 0 0 0 −1 1

0 −1 3 −1 −1 0

−1 2 −1 0 0 0

L =

v1 v4

(a) (b)

Figure 11.6 (a) Graph G with six nodes. (b) Laplacian matrix of graph G.

C5955–C0011.tex 261 2015/11/4 9:49am

262 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The trace of Moore–Penrose pseudoinverse is

Tr(K+) =
n∑

i=1
kii = 2.801

Now using (11.36) we can calculate Kirchhoff Index Kf (G) as

Kf (G) = 6∗2.801 = 16.8

Let us next calculate Kirchhoff Index Kf (G) by using matrix Z (i.e., Z = K(n)−1).
The matrix Z of graph G for Laplacian matrix K in Figure 11.6 is

Z =

2.182 1.818 1.455 1.545 1
1.818 2.182 1.545 1.455 1
1.455 1.545 1.636 1.364 1
1.545 1.455 1.364 1.636 1

1 1 1 1 1

In order to find the Kirchhoff Index Kf (G), we calculate the trace of matrix Z and the sum
of all the elements of matrix Z.

Tr(Z) = 8.63∑
k,l

zkl = 35

Using (11.39), the Kirchhoff Index Kf (G) is

Kf (G) = 6∗8.63 − 35 = 16.8

11.5.2 Kirchhoff Index Using Topological Formulas for Network Functions

As we have seen before
rij = Wi,j

W
But

Wij = Wi,nj + Win,j

= {Wi,n − Wij,n} + {Wj,n − Wij,n}
= Wi,n + Wj,n − 2Wij,n

Dividing by W both sides of the above equation we get
Wij

W
= Wi,n

W
+ Wj,n

W
− 2Wij,n

W
ri,j = ri,n + rj,n − 2zij

Since each rj,n appears (n − 1) times on the right-hand side of the sum
∑

i,k>i ri,k we get

∑
i,k>i

ri,k = (n − 1)
n−1∑
j=1

rj,n − 2
∑
i,k>i

zik

= (n − 1)
n−1∑
j=1

rj,n +
n−1∑
j=1

rj,n −

n−1∑
j=1

rj,n + 2
∑
i,k>i

zik

Kf (G) = n

n−1∑
j=1

rj,n −

n−1∑
j=1

rj,n + 2
∑
i,k>i

zik

C5955–C0011.tex 262 2015/11/4 9:49am

Resistance Networks, Random Walks, and Network Theorems � 263

The above is the same as

Kf (G) = n
n−1∑
i=1

zii −
(∑

i,l

zil

)

11.6 FOSTER’S THEOREMS

Consider a resistance N . Let N have n nodes and m elements e1, e2, . . ., em. The resistance
and conductance of each ei will be denoted by zi and yi(= 1

zi
), respectively. Also, the two

nodes of each ei will be denoted by i1 and i2. If ri1,i2 denotes the effective resistance of N
across the pair of nodes i1 and i2, then we have the following theorem due to Foster [9].

Theorem 11.6 (Foster’s first theorem)

m∑
i=1

yiri1,i2 = n − 1. (11.49)

Proof. Let T denote the set of all the spanning trees of N and, for each i, let Ti denote the
set of all the spanning 2-trees of N separating the nodes i1 and i2. That is, Ti is the set of
all the spanning trees of type Ti1,i2 . Note that adding ei to a spanning 2-tree separating i1
and i2 will generate a spanning tree. Further, let w(t) denote the conductance product of
spanning tree t and w(ti) denote the conductance product of a spanning 2-tree ti separating
i1 and i2. It is easy to see that if t = ti ∪ ei then

w(t) = yiw(ti).

If
W (T) =

∑
t∈T

w(t)

and
W (Ti) =

∑
ti∈Ti

w(ti)

then it is known (see 11.23) that

ri1,i2 = W (Ti)
W (T)

.

Thus to prove the theorem, we need to show that

m∑
i=1

yiW (Ti) = (n − 1)W (T) (11.50)

or
m∑

i=1
yi

∑
ti∈Ti

w(ti) = (n − 1)
∑
t∈T

w(t).

Consider any tree conductance product w(t). We may assume, without loss of generality, that
the spanning tree t contains the elements e1, e2, . . ., en−1. Then for every i = 1, 2, . . ., n − 1,
t − ei is a spanning 2-tree ti separating the nodes i1 and i2. So for every i = 1, 2, . . ., n − 1

w(t) = yiw(ti)

for some spanning 2-tree ti. Thus, the conductance product w(t) appears exactly once in
each yiw(Ti), i = 1, 2, . . ., n − 1. In other words, each w(t) appears (n − 1) times in the sum

C5955–C0011.tex 263 2015/11/4 9:49am

264 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

v

y3

y2

y1

y4

y24 =
y2 y4

y1 + y2 + y3 + y4

3 4 3 4

1 2 1 2

Figure 11.7 Star-delta transformation.

on the left-hand side of (11.50). The theorem follows since each yiw(ti) corresponds to a
unique w(t). �
Next we state and prove Foster’s second theorem. This theorem is based on the operation of
star-delta transformation which we define as follows.

Consider a vertex v. Let y1, . . ., yk be the conductances of the edges incident on v, with
1, 2, . . ., k denoting the other end vertices of these edges. Star-delta transformation at v is the
operation of removing vertex v from N and adding a new element (i, j) with conductance
yiyj/d(v) for all k ≤ i, j ≤ k (see Figure 11.7).

The following theorem is by Foster [10].

Theorem 11.7 (Foster’s second theorem) Consider a resistance network N . For any
pair of conductances yi and yj incident on common vertex v, let rij denote the effective resis-
tance across the two remaining vertices of yi and yj. Let d(v) be the sum of the conductances
of the elements incident on v. Then∑

rijyij =
∑

rij
yiyj

d(v)
= n − 2 (11.51)

where the sum is extended over all pairs of adjacent elements (i.e., elements incident on a
common vertex v).

Proof. Consider any vertex v in N . Star-delta transformation at v results in a network N ′

with n − 1 vertices. Applying Foster’s First theorem to N ′ we get∑
v

rijyij +
∑

zkyk = n − 2 (11.52)

Here the first summation is over all pairs of elements of N ′ which reflect the original star
of conductances incident on vertex v. The second summation is over all conductances of N
that are not connected to v.

Note that yk is a conductance and zk is the effective resistance across the vertices of this
conductance.

Summing (11.52) over all the n vertices in N , we get∑
v

rijyij +
∑∑

zkyk = n(n − 2)

The first sum is over all adjacent pairs of conductances on a common vertex v in N . The
second sum is ∑∑

zkyk = (n − 2)
∑

ziyi (11.53)

C5955–C0011.tex 264 2015/11/4 9:49am

Resistance Networks, Random Walks, and Network Theorems � 265

because conductance yk appears exactly n − 2 times in the double summation. So∑
rijyij = n(n − 2) − (n − 2)

∑
ziyi

= n(n − 2) − (n − 2)(n − 1), applying Foster’s First theorem
= (n − 2)

This completes the proof. �

11.7 ARC-COLORING THEOREM AND THE NO-GAIN PROPERTY

We now derive a profound result in graph theory, the arc-coloring theorem for directed graphs,
and discuss its application in establishing the no-gain property of resistance networks. In the
special case of undirected graphs the arc-coloring theorem reduces to the painting theorem.
Both of these theorems by Minty [11] are based on the notion of painting a graph. Other
works of Minty relating to this are [12] and [13].

Given an undirected graph with edge set E, a painting of the graph is a partitioning of
E into three subsets, R, G, and B, such that |G| = 1. We may consider the edges in the set
R as being painted red, the edge in G as being painted green and the edges in B as being
painted blue.

Theorem 11.8 (Painting theorem) For any painting of a graph, there exists a circuit C
consisting of the green edge and no blue edges, or a cutset C∗ consisting of the green edge
and no red edges.

Proof. Consider a painting of the edge set E of a graph G. Assuming that there does not
exist a required circuit, we shall establish the existence of a required cutset.

Let E′ = R∪G and T ′ denote a spanning forest of the subgraph induced by E′, containing
the maximum number of red edges. (Note that the subgraph induced by E′ may not be
connected.) Then construct a spanning tree T of G such that T ′ ⊆ T .

Now consider any red edge y which is not in T ′. y will not be in T for otherwise it
would contradict the property that T ′ has the maximum number of red edges. Because the
fundamental circuit of y with respect to T is the same as the fundamental circuit of y with
respect to T ′, this circuit consists of no blue edges. Furthermore, this circuit will not contain
the green edge, for otherwise a circuit consisting of the green edge and no blue edges would
exist contrary to our assumption. Thus, the fundamental circuit of a red edge with respect to
T does not contain the green edge. Then it follows from Theorem 7.9 that the fundamental
cutset of the green edge with respect to T contains no red edges. Thus, this cutset satisfies
the requirements of the theorem. �
A painting of a directed graph with edge set E is a partitioning of E into three sets R, G,
and B, and the distinguishing of one element of the set G. Again, we may regard the edges
of the graph as being colored red, green, or blue with exactly one edge of G being colored
dark green. Note that the dark green edge is also to be treated as a green edge.

Next we state and prove Minty’s arc-coloring theorem.

Theorem 11.9 (Arc-coloring theorem) For any painting of a directed graph exactly one
of the following is true:

1. A circuit exists containing the dark green edge, but no blue edges, in which all the green
edges are similarly oriented.

2. A cutset exists containing the dark green edge, but no red edges, in which all the green
edges are similarly oriented.

C5955–C0011.tex 265 2015/11/4 9:49am

266 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

x

R

dg

B

G

Figure 11.8 Painting of a directed graph.

Proof. Proof is by induction on the number of green edges. If only one green edge exists,
then the result will follow from Theorem 11.8. Assume then that result is true when the
number of green edges is m ≥ 1. Consider a painting in which m + 1 edges are colored green.
Pick a green edge x other than the dark green edge (see Figure 11.8). Color the edge x red.
In the resulting painting there are m green edges. If a cutset of type 2 is now found, then
the theorem is proved. On the other hand if we color the edge x blue and in the resulting
painting a circuit of type 1 exists, then the theorem is proved.

Suppose neither occurs. Then, using the induction hypothesis we have the following:

1. A cutset of type 2 exists when x is colored blue.

2. A circuit of type 1 exists when x is colored red.

Now let the corresponding rows of the circuit and cutset matrices be

dg R B G x

Cutset +1 00. . . 0 0 1 −1. . . 01 1 1 1 . . . 0 ?
Circuit +1 −11. . . 0 −1 0 0 . . . 00 0 1 1 . . . 0 ?

Here we have assumed, without loss of generality, that +1 appears in the dark green
position of both rows.

By the orthogonality relation (Theorem 8.7) the inner product of these two row vectors
is zero. No contribution is made to this inner product from the red edges or from the blue
edges. The contribution from the green edges is a nonnegative integer p. The dark green edge
contributes 1 and the edge x contributes an unknown integer q which is 0, 1, or −1. Thus
we have 1 + p + q = 0. This equation is satisfied only for p = 0 and q = −1. Therefore, in
one of the rows, the question mark is +1 and in the other it is −1. The row in which the
question mark is 1 corresponds to the required circuit or cutset. Thus, either statement 1 or
2 of the theorem occurs. Both cannot occur simultaneously because the inner product of the
corresponding circuit and cutset vectors will then be nonzero. �

C5955–C0011.tex 266 2015/11/4 9:49am

Resistance Networks, Random Walks, and Network Theorems � 267

Theorem 11.10 Each edge of a directed graph belongs to either a directed circuit or to a
directed cutset but no edge belongs to both. (Note: A cutset is a directed cutset if all its edges
are similarly oriented.)

Proof. Proof will follow if we apply the arc-coloring theorem to a painting in which all the
edges are colored green and the given edge is colored dark green. �

We next present an application of the arc-coloring theorem in the study of electrical
networks. We prove what is known as the no-gain property of resistance networks. Our proof
is the result of the work of Wolaver [14] and is purely graph theoretic in nature.

Theorem 11.11 In a network of sources and (liner/nonliner) positive resistances the mag-
nitude of the current through any resistance with nonzero voltage is not greater than the sum
of the magnitudes of the currents through the sources.

Proof. Let us eliminate all the elements with zero voltage by considering them to be short-
circuits and then assign element reference directions so that all element voltages are positive.

Consider a resistance with nonzero voltage. Then, no directed circuit can contain this
resistance, for if such a directed circuit were present, the sum of all the voltages in the circuit
would be nonzero, contrary to Kirchhoff’s voltage law. It then follows from Theorem 11.10
that a directed cutset contains the resistance under consideration.

Pick a directed cutset that contains the considered resistance. Let the current through
this resistance be io. Let R be the set of all other resistances in this cutset and let S be the
set of all sources. Then, applying Kirchhoff’s current law to the cutset, we obtain

io +
∑
k∈R

ik +
∑
s∈S

±is = 0 (11.54)

Because all the resistances and voltages are positive, every resistance current is positive.
Therefore, we can write the above equation as

|io| +
∑
k∈R

|ik| +
∑
s∈S

±is = 0 (11.55)

and so
|io| ≤

∑
s∈S

∓is ≤
∑
s∈S

|is| (11.56)

Thus follows the theorem. �
The following result is the dual of the above theorem. Proof of this theorem follows in an
exactly dual manner, if we replace current with voltage, voltage with current, and circuit
with cutset in the proof of the above theorem.

Theorem 11.12 In a network of sources and (linear/nonlinear) positive resistances, the
magnitude of the voltage across any resistance is not greater than the sum of the voltages
across all the sources. �

Schwartz [15] and Talbot [16] are early papers that have discussed the no-gain properties of
resistance networks. Chua and Green [17] used the arc-coloring theorem to establish several
properties of nonlinear networks and nonlinear multiport resistive networks.

C5955–C0011.tex 267 2015/11/4 9:49am

268 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Summary and Related Works

Swamy and Thulasiraman [18] give a detailed account of the graph theoretic foundation of
electrical circuit analysis. Some of the early works on this are Seshu and Reed [19], Balabanian
and Bickart [20], Chen [21], Kim and Chien [22], and Mayeda [23]. See also Chapters 7
through 9.

For a discussion of spectral graph theory see Biggs [24], Chung [25], Molitierno [8], and
Chapter 10. Resistance distance and Kirchhoff Index of graph have been studied in several
works. For example, see [5,26–29]. For generalization of Foster’s theorem and several related
results see [30–33]. See also [34,35] for the relationship of Kirchhoff Index to network crit-
icality. References [2,36,40] give a detailed discussion of the connection between electrical
resistance networks and random graphs. Bollobas [37], Bondy and Murty [38], and West [39]
give a good good introduction to random graphs and random walks. For an extensive treat-
ment of random graphs see Bollobas [41]. Section 11.5 is based on Yadav and Thulasiraman
[42].

References

[1] S. Bornholdt and H. G. Schuster, Handbook of Graphs and Networks: From the Genome
to the Internet, Wiley-VCH, 2003.

[2] P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, Mathematical Asso-
ciation of America, 1984.

[3] M. E. J. Newman, Networks: An Introduction. Oxford University Press, 2010.

[4] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff, Random walks, uni-
versal traversal sequences, and the complexity of maze problems, in IEEE 20th Annual
Symposium on Foundations of Computer Science (San Juan, Puerto Rico), New York,
1979, 218–223.

[5] D. J. Klein and M. Randić, Resistance distance, J. Math. Chem., 12 (1993), 81–95.

[6] I. Gutman and W. Xiao, Generalizeed inverse of the laplacian matrix and some appli-
cations, Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.), 129 (2004), 15–23.

[7] I. Gutman and B. Mohar, The Quasi-Wiener and the Kirchhoff indices coincide, J.
Chem. Inf. Comput. Sci., 36 (1996), 982–985.

[8] J. J. Molitierno, Applications of Combinatorial Matrix Theory to Laplacian Matrices of
Graphs, Chapman & Hall/CRC Press, 2012.

[9] K. Thulasiraman, R. Jayakumar, and M. N. S. Swamy, Graph theoretic proof of a
network theorem and some consequences, Proc. IEEE, 71, (1983), 771–772.

[10] R. M. Foster, An extension of a network theorem contribution to applied mechanics,
IRE Trans. Circ. Th., 8 (1961), 75–76.

[11] G. J. Minty, On the axiomatic foundations of the theories of directed linear graphs,
electrical networks and network programming, J. Math. and Mech., 15 (1966), 485–520.

[12] G. J. Minty, Monotone networks, Proc. Roy. Soc., A, 257 (1960), 194–212.

[13] G. J. Minty, Solving steady-state non-linear networks of ‘Monotone’ elements, IRE Tras.
Circuit Theory, CT-8 (1961), 99–104.

C5955–C0011.tex 268 2015/11/4 9:49am

Resistance Networks, Random Walks, and Network Theorems � 269

[14] D. H. Wolaver, Proof in graph theory of the ‘No-Gain’ property of resistor networks,
IEEE Trans. Circuit Theory, CT-17 (1970), 436–437.

[15] R. J. Schwartz, A note on the transfer ratio of resistive networks with positive elements,
Proc. IRE, 43 (1955), 1670.

[16] A. Talbot, Some fundamental properties of networks without mutual inductance, Proc.
IEE (London)., 102 (1955), 168–175.

[17] L. O. Chua and D. N. Green, Graph-theoretic properties of dynamic nonlinear networks,
IEEE Trans. Circuits Syst., CAS-23 (1976), 292–312.

[18] M. N. Swamy and K. Thulasiraman, Graphs, Networks and Algorithms, Wiley-Inter-
science, 1981.

[19] S. Seshu and M. B. Reed, Linear Graphs and Electrical Networks, Addison-Wesley, Read-
ing, MA, 1961.

[20] N. Balabanian and T. A. Bickart, Electrical Network Theory, Wiley, New York, 1969.

[21] W. K. Chen, Applied Graph Theory, North-Holland, Amsterdam, the Netherlands, 1971.

[22] W. H. Kim and R. T. Chien, Topological Analysis and Synthesis of Communication
Networks, Columbia University Press, New York, 1962.

[23] W. Mayeda, Graph Theory, Wiley-Interscience, New York, 1970.

[24] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.

[25] F. R. K. Chung, Spectral Graph Theory, Wiley-Interscience, New York, 1970.

[26] D. Babić, D. J. Klein, I. Lukovits, S. Nikolić, and N. Trinajstić, Resistance-distance
matrix: A computational algorithm and its application, Int., J. Quantum Chem., 90(1)
(2002), 166–176.

[27] R. B. Bapat, I. Gutman, and W. Xiao, A simple method for computing resistance
distance, Z. Naturforsch, 58a (2003), 494–498.

[28] E. Bendito, A. Carmona, A. M. Encinas, and J. M. Gesto, A formula for the Kirchhoff
index. Int. J. Quantum Chem., 108 (2008), 1200–1206.

[29] J. L. Palacios, Closed-form formulas for Kirchhoff index. Int. J. Quantum Chem., 81
(2001), 135–140.

[30] Z. Cinkir, The Tau Constant of Metrized Graphs, PhD Thesis, University of Georgia,
Department of Mathematics, Athens, GA, 2007.

[31] J. L. Palacios, Foster’s formulas via probability and the Kirchhoff index, Method. Comp.
Appl. Probab., 6 (2004), 381–387.

[32] P. Tetali, Random walks and effective resistance of networks, J. Theor. Probab., 4 (1991),
101–109.

[33] P. Tetali, An extension of Foster’s theorem, Comb. Probab. Comput., 3 (1994), 421–427.

[34] A. Tizghadam and A. Leon-Garcia, A graph theoretical approach to traffic engineering
and network control problem, IEEE 21st Int. Teletraffic Cong., Paris, France, September
2009, 15–17.

C5955–C0011.tex 269 2015/11/4 9:49am

270 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[35] A. Tizghadam, Autonomic Core Network Management System, PhD Thesis, University
of Toronto, School of Electrical and Computer Engineering, April 2009.

[36] J. L. Palacios and J. M. Renom, Sum rules for hitting times of markov chains, Linear
Algebra. Appl., 433 (2010),491–497.

[37] B. Bollobas, Modern Graph Theory, Springer, 1998.

[38] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2007.

[39] D. B. West, Introduction to Graph Theory, Prentice Hall, 1996.

[40] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari, The electrical
resistance of a graph captures its commute and cover times, In Proceedings of the 21st
Annual ACM Symposium on Theory of Computing, Seattle, WA, 574–586.

[41] B. Bollobas, Random Graphs, Cambridge University Press, 2001.

[42] M. Yadav, and K. Thulasiraman, Network science meets circuit theory: Kirchhoff index
of a graph and the power of node-to-datum resistance matrix, In Circuits and Systems,
2015 IEEE International Symposium on, 854–857, 2015.

C5955–C0011.tex 270 2015/11/4 9:49am

IV
Structural Graph Theory

271

C H A P T E R 12

Connectivity
Subramanian Arumugam

Karam Ebadi

CONTENTS

12.1 Introduction . 273
12.2 Cut-Vertices, Cut-Edges, and Blocks . 273
12.3 Vertex Connectivity and Edge Connectivity . 276
12.4 Structural Results . 279
12.5 Menger’s Theorem and Its Applications . 280
12.6 Conditional Connectivity . 283
12.7 Criticality and Minimality . 287
12.8 Conclusion . 288

12.1 INTRODUCTION

The interconnection network of a distributed computer system can be modeled as a graph
in which the vertices are the processors and the edges are the communication links. It is
generally expected that the system must be able to work even if some of its vertices or edges
fail. This property of the system which is known as fault tolerance, requires that the graph
must have high connectivity and edge connectivity. Further there are several nice min-max
characterizations such as Menger’s theorem and these results are closely related to several
other key theorems in graph theory such as Ford and Fulkerson’s max-flow-min-cut theorem
and Hall’s theorem on matching. Thus connectivity is one of the central concepts of graph
theory both from theoretical and practical point of view. In this chapter we present basic
results on these concepts. We limit ourselves to finite simple graphs.

12.2 CUT-VERTICES, CUT-EDGES, AND BLOCKS

We start with a brief review of the basic concepts such as cut-vertex, cut-edge and blocks.

Definition 12.1 A cut-vertex of a graph G is a vertex whose removal increases the number
of components. A cut-edge of a graph G is an edge whose removal increases the number of
components.

Clearly if v is a cut-vertex of a connected graph G, then G − v is disconnected.
For the graph given in Figure 12.1, the vertices 1, 2, and 3 are cut-vertices. The edges

{1, 2} and {3, 4} are cut-edges. The vertex 5 is a non-cut-vertex.

Theorem 12.1 Let v be a vertex of a connected graph G. Then the following statements are
equivalent.

1. The vertex v is a cut-vertex of G.

C5955–C0012.tex 273 2015/11/4 9:56am

273

274 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1 2

5

3

4

Figure 12.1 Cut-vertices and cut-edges.

2. There exists a partition of V −{v} into subsets U and W such that for each u ∈ U and
w ∈ W, the vertex v is on every u−w path.

3. There exist two vertices u and w distinct from v such that v is on every u−w path.

Proof. (1) ⇒ (2): Since v is a cut-vertex of G, G − v is disconnected. Hence G − v has at
least two components. Let U consist of the vertices of one of the components of G−v and W
consist of the vertices of the remaining components. Clearly V − {v} = U ∪ W is a partition
of V − {v}.

Let u ∈ U and w ∈ W. Then u and w lie in different components of G − v. Hence there
is no u−w path in G − v. Therefore every u−w path in G contains v.

Trivially (2) ⇒ (3).
(3) ⇒ (1): Since v is on every u−w path in G there is no u−w path in G − v. Hence G − v

is not connected so that v is a cut-vertex of G. �

Theorem 12.2 Let x be an edge of a connected graph G. Then the following statements are
equivalent.

1. The edge x is a cut-edge of G.

2. There exists a partition of V into two subsets U and W such that for every vertex
u ∈ U and w ∈ W, the edge x is on every u−w path.

3. There exist two vertices u, w such that the edge x is on every u−w path. �

The proof is analogous to that of Theorem 12.1.

Theorem 12.3 An edge x of a connected graph G is a cut-edge if and only if x is not on
any cycle of G.

Proof. Let x be a cut-edge of G. Suppose x lies on a cycle C of G. Let w1 and w2 be any
two vertices in G. Since G is connected, there exists a w1 − w2 path P in G. If x is not on
P, then P is a path in G − x. If x is on P, replacing x by C − x, we obtain a w1 − w2 walk
in G − x. This walk contains a w1 − w2 path in G − x. Hence G − x is connected which is a
contradiction. Hence x is not on any cycle on G.

Conversely, suppose x = uv is not any cycle of G. Suppose x = uv is not a cut-edge of G.
Then G − x is connected. Hence there is a u − v path in G − x and this path together with
the edge x forms a cycle containing x, which is a contradiction. Hence x is a cut-edge of G. �

Theorem 12.4 Every nontrivial connected graph G has at least two vertices which are not
cut-vertices.

C5955–C0012.tex 274 2015/11/4 9:56am

Connectivity � 275

G

Blocks of G

Figure 12.2 Graph G and its blocks.

Proof. Choose two vertices u and v such that d(u, v) is maximum. We claim that u and v
are not cut-vertices.

Suppose v is a cut-vertex. Hence G − v has more than one component. Choose a vertex
w in a component that does not contain u. Then v lies on every u−w path and hence
d(u, w) > d(u, v) which is impossible. Hence v is not a cut-vertex of G. Similarly u is not a
cut-vertex of G. �

Definition 12.2 A connected nontrivial graph having no cut-vertex is a block. A block of a
graph is a subgraph that is a block and is maximal with respect to this property.

A graph and its blocks are given in Figure 12.2.
In the following theorem we give several equivalent conditions for a graph to be a block.

Theorem 12.5 Let G be a connected graph with at least three vertices. Then the following
statements are equivalent.

1. G is a block.

2. Any two vertices of G lie on a cycle.

3. Any vertex and any edge of G lie on a cycle.

4. Any two edges of G lie on a cycle.

Proof. (1)⇒(2): Suppose G is a block.
We shall prove by induction on the distance d(u, v) between u and v, that any two vertices

u and v lie on a cycle.
Suppose d(u, v) = 1. Hence u and v are adjacent. By hypothesis, G ̸= K2 and G has no

cut-vertices. Hence the edge x = uv is not a cut-edge and hence by Theorem 12.3. x is on a
cycle of G. Hence the vertices u and v lie on a cycle of G.

Now assume that the result is true for any two vertices at distance less than k and let
d(u, v) = k ≥ 2. Consider a u − v path of length k. Let w be the vertex that precedes v on
this path. Then d(u, w) = k − 1. Hence by induction hypothesis there exists a cycle C that
contains u and w. Now since G is a block, w is not a cut-vertex of G and so G−w is connected.

Hence there exists a u−v path P not containing w.

Let v′ be the last vertex common to P and C (see Figure 12.3). Since u is common to
P and C, such a v′ exists.

C5955–C0012.tex 275 2015/11/4 9:56am

276 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

P

vw

P
u

v′

Q

Figure 12.3 Figure for the proof of Theorem 12.5.

Now, let Q denote the u − v′ path along the cycle C not containing the vertex w. Then,
Q followed by the v′ − v path along P the edge vw and the w−u path along the cycle C edge
disjoint from Q form a cycle that contains both u and v. This completes the induction.

Thus any two vertices of G lie on a cycle of G.
(2) ⇒ (1): Suppose any two vertices of G lie on a cycle of G. Suppose v is a cut-vertex of

G. Then there exist two vertices u and w distinct from v such that every u−w path contains v.
Now, by hypothesis u and w lie on a cycle and this cycle determines two u−w paths and

at least one of these paths does not contain v which is a contradiction.
Hence G has no cut-vertices so that G is a block.
(2) ⇒ (3): Let u be a vertex and vw an edge of G.
By hypothesis u and v lie on a cycle C. If w lies on C, then the edge vw together with

the v − w path of C containing u is the required cycle containing u and the edge vw.
If w is not on C, let C ′ be a cycle containing u and w. This cycle determines two w − u

paths and at least one of these paths does not contain v. Denote this path by P.
Let u′ be the first vertex common to P and C (u′ may be u itself). Then the edge vw

followed by the w − u′ subpath of P and the u′ − v path in C containing u form a cycle
containing u and the edge vw.

(3) ⇒ (2) is trivial.
(3) ⇒ (4): The proof is analogous to the proof of (2) ⇒ (3).
(4) ⇒ (3) is trivial. �

12.3 VERTEX CONNECTIVITY AND EDGE CONNECTIVITY

We define two parameters of a graph, its connectivity and edge connectivity which measure
the extent to which it is connected.

Definition 12.3 The connectivity κ = κ(G) of a graph G is the minimum number of vertices
whose removal results in a disconnected or trivial graph. The edge connectivity λ = λ(G) of
G is the minimum number of edges whose removal results in a disconnected graph.

Example 12.1

1. The connectivity and edge connectivity of a disconnected graph is 0.

2. The connectivity of a connected graph with a cut-vertex is 1.

3. The edge connectivity of a connected graph with a cut-edge is 1.

4. The complete graph Kn cannot be disconnected by removing any number of vertices,
but the removal of n − 1 vertices results in a trivial graph. Hence κ(Kn) = n − 1.

C5955–C0012.tex 276 2015/11/4 9:56am

Connectivity � 277

5. The n-dimensional hypercube Qn is n-regular and it can be proved by induction on n
that κ(Qn) = n.

Theorem 12.6 For any graph G, κ ≤ λ ≤ δ.

Proof. We first prove λ ≤ δ. If G has no edges, λ = δ = 0. Otherwise removal of all the edges
incident with a vertex of minimum degree results in a disconnected graph. Hence λ ≤ δ.

Now to prove κ ≤ λ, we consider the following cases.

Case 1 G is disconnected or trivial.
In this case κ = λ = 0.

Case 2 G is a connected graph with a cut-edge x.
Then λ = 1. Further in this case G = K2 or one of the vertices incident with x is a cut-vertex.
Hence κ = 1 so that κ = λ = 1.

Case 3 λ ≥ 2.
Then there exist λ edges, the removal of which disconnects the graph and the removal of
λ − 1 of these edges results in a graph G with a cut-edge x = uv. For each of these λ − 1
edges select an incident vertex different from u or v. The removal of these λ − 1 vertices
removes all the λ − 1 edges. If the resulting graph is disconnected, then κ ≤ λ − 1. If not x
is a cut-edge of this subgraph and hence the removal of u or v results in a disconnected or
trivial graph. Hence κ ≤ λ and this completes the proof. �

Remark 12.1 The inequalities in Theorem 12.6 are often strict. For the graph given in
Figure 12.4, κ = 2, λ = 3, and δ = 4. In fact Chartrand and Harary [1] have proved that
given three positive integers a, b, and c with 0 < a ≤ b ≤ c, there exists a graph G with
κ(G) = a, λ(G) = b, and δ(G) = c.

Remark 12.2 There are several families of graphs for which λ = δ. For graphs with diameter
two and for graphs with δ ≥ [(n − 1)/2] we have λ = δ. For any cubic graph, we have κ = λ.

Remark 12.3 Let G be a connected graph of order n and size m. Since δ ≤ (2m/n), we
have κ ≤ (2m/n).

Definition 12.4 A graph G is said to be k-connected if κ(G) ≥ k and k-edge connected if
λ(G) ≥ k.

Thus a nontrivial graph is 1-connected if and only if it is connected. A nontrivial graph is
2-connected if and only if it is a block having more than one edge. Hence K2 is the only
block which is not 2-connected.

It follows from the Remark 12.3 that if G is a k-connected graph, then m ≥ ⌈kn/2⌉ .
Harary [2] proved that this bound is best possible by constructing a family of k-connected

Figure 12.4 Graph with κ = 2, λ = 3, and δ = 4.

C5955–C0012.tex 277 2015/11/4 9:56am

278 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

graphs on n vertices with m = ⌈kn/2⌉ for all positive integers k and n with k < n. Given
k < n, place n equally spaced vertices around a circle. If k is even, form Hk,n by joining each
vertex to the nearest k/2 vertices in each direction around the circle. If k is odd and n is
even, form Hk,n by joining each vertex to the nearest (k − 1)/2 vertices in each direction and
to the diametrically opposite vertex. If k and n are both odd, construct Hk,n from Hk−1,n by
joining i and i + (1/2)(n − 1) for 0 ≤ i ≤ (1/2)(n − 1), where V (Hk,n) = {0, 1, 2, . . ., (n − 1)}
and addition is modulo n. The graphs Hk,n are called Harary graphs. The graph Hk,n is a
k-connected graph of order n with m = ⌈kn/2⌉.

Proposition 12.1 Let e = uv be any edge of a k-connected graph G and let k ≥ 3. Then
the subgraph G − e is (k − 1)-connected.

Proof. Let W = {w1, w2, . . ., wk−2} be any set of k − 2 vertices in G − e. We claim that
(G − e) − W is connected. Let x and y be any two distinct vertices in (G − e) − W.

Suppose u or v ∈ W. Since G − W is 2-connected there is an x − y path P in G − W.
Clearly P cannot contain e and hence P is an x − y path in (G − e) − W. Now suppose that
neither u or v is in W. Then there are two cases to consider.

Case 1 {x, y} = {u, v}.
Since G is k-connected, |V (G)| ≥ k + 1. Let z ∈ G − {w1, w2, . . ., wk−2, x, y}. Since G is
k-connected there exists an x − z path P1 in G − {w1, w2, . . ., wk−2, y} and a z − y path P2
in G − {w1, w2, . . ., wk−2, x}. Neither of these paths contain the edge e and therefore their
concatenation is an x − y walk in G − {w1, w2, . . ., wk−2}.

Case 2 {x, y} ̸= {u, v}.
Suppose x ̸= u. Since G is k-connected, G − {w1, w2, . . ., wk−2, u} is connected. Hence
there is an x − y path P in G − {w1, w2, . . ., wk−2, u}. Clearly P is an x − y path in
G − {w1, w2, . . ., wk−2} that does not contain u and hence does not contain the edge e.
Thus P is an x − y path in (G − e) − {w1, w2, . . ., wk−2}. �

Theorem 12.7 Let G be a graph of order n with V (G) = {v1, v2, . . ., vn} and let d(v1) ≤
d(v2) ≤ · · · ≤ d(vn). Then G is k-connected if d(vr) ≥ r+k−1 for 1 ≤ r ≤ n−1−d(vn−k+1).

Proof. Suppose G satisfies the conditions of the theorem. If it is not k-connected, then there
exists a disconnecting set S such that |S| = s < k.

Then the graph G − S is not connected. Let H be a component of G − S of minimum
order h. Clearly the degree in H of each vertex of H is at most h − 1. Therefore, in G, the
degree of each vertex of H is at most h + s − 1. Thus

d(v) ≤ h + s − 1 < h + k − 1 for all v ∈ V (H). (12.1)

Therefore, by the conditions of the theorem,

h > n − 1 − d(vn−k+1). (12.2)

Since G − S has n − s vertices and H is a component of G − S of minimum order, we have

h ≤ n − s − h

or
h + s ≤ n − h.

Therefore,
d(v) ≤ h + s − 1 ≤ n − h − 1 for all v ∈ V (H). (12.3)

C5955–C0012.tex 278 2015/11/4 9:56am

Connectivity � 279

Since every vertex u ∈ V (G) − V (H) − S is adjacent to at most n − h − 1 vertices, we have

d(u) ≤ n − h − 1 for all u ∈ V (G) − V (H) − S. (12.4)

From 12.3 and 12.4 we conclude that all the vertices of degrees exceeding n − h − 1 are in S.
Thus there are at most s vertices of degrees exceeding n − h − 1. Therefore

d(vn−s) ≤ n − h − 1. (12.5)

Using 12.2 in 12.5, we get d(vn−s) < d(vn−k+1). Therefore n − s < n − k + 1 or s ≥ k, a
contradiction. �
The Cartesian product G�H of two graphs G and H is connected if and only if both G and H
are connected. Šacapan [3] proved that if G and H are two graphs with at least two vertices,
then

κ(G�H) = min{κ(G)|V (H)|, κ(H)|V (G)|, δ(G) + δ(H)}.

Xu and Yang [4] proved a similar result for edge connectivity, namely, if G and H are two
graphs with at least two vertices, then

λ(G�H) = min{λ(G)|V (H)|, λ(H)|V (G)|, δ(G) + δ(H)}.

12.4 STRUCTURAL RESULTS

We start with a structural characterization of 2-connected graphs.

Definition 12.5 Let H be a graph and let u, v ∈ V (H). Any nontrivial u − v path P with
V (P) ∩ V (H) = {u, v} is called a H-path.

We observe that the edge of any H-path of length 1 is not an edge of H.

Proposition 12.2 A graph G is 2-connected if and only if G can be constructed from a cycle
by successively adding H-paths to graphs H already constructed.

Proof. Clearly every graph constructed as described is 2-connected. Conversely, let G be
a 2-connected graph. Then G contains a cycle and let H be a maximal subgraph of G
constructible as above. Since any edge uv ∈ E(G) − E(H) with u, v ∈ V (H) defines a
H-path in G, it follows that H is an induced subgraph of G. Now, suppose H ̸= G. Since G
is connected, there exist v ∈ V (G) − V (H) and w ∈ V (H) such that v and w are adjacent
in G. Since G is 2-connected, G − w is connected and hence there exists a v − x H-path
P = (v, x1, x2, . . ., xk, x). Now P1 = (w, v, x1, x2, . . ., xk, x) is a H-path in G and hence H ∪P1
is a constructible subgraph of G, contradicting the maximality of H. �
The above construction of 2-connected graphs can also be expressed in terms of ear decom-
position.

An ear of a graph G is a maximal path whose internal vertices have degree 2 in G. An
ear decomposition of G is a decomposition P0, . . ., Pk such that P0 is a cycle and Pi for i ≥ 1
is an ear of P0 ∪ · · · ∪ Pi.

Whitney [5] has proved that a graph G is a 2-connected graph if and only if it has an ear
decomposition. Furthermore, every cycle in a 2-connected graph is the initial cycle in some
ear decomposition.

A closed ear in a graph G is a cycle C such that all vertices of C except one have degree
2 in G. A closed-ear decomposition of G is a decomposition P0, . . ., Pk such that P0 is a cycle
and Pi for i ≥ 1 is either an (open) ear or a closed ear in P0 ∪ · · · ∪ Pi.

C5955–C0012.tex 279 2015/11/4 9:56am

280 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

G H

v v1 v2

Figure 12.5 Expansion of a graph at a vertex.

A graph is 2-edge-connected if and only if it has a closed-ear decomposition, and every
cycle in a 2-edge-connected graph is the initial cycle in some such decomposition.

Thomassen [6] established that any 3-connected graph G with |V (G)| ≥ 5 contains an
edge e such that G/e is 3-connected, where G/e is the graph obtained from G by contracting
the edge e.

There is another graph operation which is in some sense an inverse to contraction. Let
G be a 3-connected graph and let v ∈ V (G) with deg(v) ≥ 4. Replace v by two vertices
v1 and v2, add the edge e = v1v2 and join v1, v2 to the neighbors of v in G in such a way that
deg(v1) ≥ 3 and deg(v2) ≥ 3 in the resulting graph H. The graph H is called an expansion
of G at v (see Figure 12.5).

Since there is some freedom in distributing the neighbors of v to v1 and v2, expansions
are not uniquely determined. However, the contraction H/e is isomorphic to G.

Let G be a 3-connected graph, v ∈ V (G) with deg(v) ≥ 4 and H be an expansion of G
at v. Then H is 3-connected. The above two results on contraction and expansion lead to the
following structural characterization of 3-connected graphs. Given any 3-connected graph G,
there exists a sequence G1, G2, . . ., Gk of graphs such that (i) G1 = K4, (ii) Gk = G, and
(iii) Gi+1 is obtained from Gi by adding an edge to Gi or by expanding Gi at a vertex of
degree at least four.

In the above construction we cannot stay within simple graphs since the graph obtained
from K4 in the above construction is not a simple graph. Tutte [7] has shown that by starting
with the class of all wheels, all simple 3-connected graphs can be constructed by means of
the above two operations without creating parallel edges.

This recursive construction of 3-connected graphs have been used to prove many inter-
esting theorems in graph theory.

12.5 MENGER’S THEOREM AND ITS APPLICATIONS

The following classical theorem of Menger is a cornerstone of the structural study of connec-
tivity and plays a vital role in the theory of graphs and applications. It has been established
that Menger’s theorem implies Ford and Fulkerson’s max-flow-min-cut theorem [8].

Theorem 12.8 (Menger) The minimum number of vertices whose removal from a graph
G disconnects two nonadjacent vertices s and t is equal to the maximum number of vertex-
disjoint s − t paths in G.

Proof. We proceed by induction on |E(G)| = m. The theorem is trivially true when m = 0
or 1. Assume that the theorem holds for all graphs of size less than m, where m ≥ 2, and let
G be a graph of size m with m ≥ 3. Let s and t be two nonadjacent vertices of G. If s and t
belong to different components of G, then the result follows. So we may assume that s and t
belong to the same component of G. Suppose that a minimum s − t separating set consists

C5955–C0012.tex 280 2015/11/4 9:56am

Connectivity � 281

of k ≥ 1 vertices. We claim that G contains k internally disjoint s − t paths. Since this is
obviously true if k = 1, we may assume that k ≥ 2. We now consider three cases.
Case 1 Some minimum s − t separating set X in G contains a vertex x that is adjacent to
both s and t.

Then X − x is a minimum s − t separating set in G − x consisting of k − 1 vertices. Since
the size of G − x is less than m, it follows by the induction hypothesis that G − x contains
k −1 internally disjoint s− t paths. These paths together with the path P = (s, x, t) produce
k internally disjoint s − t paths in G.

Case 2 For every minimum s − t separating set S in G, either every vertex in S is adjacent
to s and not to t or every vertex of S is adjacent to t and not to s.

In this case d(s, t) ≥ 3. let P = (s, x, y, . . ., t) be a s − t geodesic in G, where e = xy.
Every minimum s − t separating set in G − e contains at least k − 1 vertices. We show that
every minimum s − t separating set in G − e contains k vertices. Suppose that there is some
minimum s − t separating set in G − e with k − 1 vertices, say Z = {z1, z2, . . ., zk−1}. Then
Z ∪ {x} is a s − t separating set in G and therefore is a minimum s − t separating set in G.
Since x is adjacent to s (and not to t), it follows that every vertex zi(1 ≤ i ≤ k − 1) is also
adjacent to s and not adjacent to t. Since Z ∪ {y} is also a minimum s − t separating set
in G and each vertex zi(1 ≤ i ≤ k − 1) is adjacent to s but not to t, it follows that y is
adjacent to s. This, however, contradicts the assumption that P is a s − t geodesic. Thus k
is the minimum number of vertices in a s − t separating set in G − e. Since the size of G − e
is less than m, it follows by the induction hypothesis that there are k internally disjoint s − t
paths in G − e and hence in G as well.
Case 3 There exists a minimum s − t separating set W in G in which no vertex is adjacent
to both s and t and containing at least one vertex not adjacent to s and at least one vertex
not adjacent to t.

Let W = {w1, w2, . . ., wk}. Let Gs be the subgraph of G consisting of all s − wi paths
in G in which wi ∈ W is the only vertex of the path belonging to W. Let G′

s be the graph
constructed from Gs by adding a new vertex t′ and joining t′ to each vertex wi for 1 ≤ i ≤ k.
The graphs Gt and G′

t are defined similarly. Since W contains a vertex that is not adjacent
to s and a vertex that is not adjacent to t, the sizes of both G′

s and G′
t are less than m. So

G′
s contains k internally disjoint s − t′ paths Ai(1 ≤ i ≤ k), where Ai contains wi. Also, G′

t

contains k internally disjoint t − t′ paths Bi(1 ≤ i ≤ k), where Bi contains wi. Let A′
i be

the s − wi subpath of Ai and let B′
i be the wi − t subpath of Bi for 1 ≤ i ≤ k. The k paths

constructed from A′
i and B′

i for each i(1 ≤ i ≤ k) are internally disjoint s − t paths in G. �
Whitney [5] proved that a graph G of order at least three is 2-connected if and only if there
are two vertex disjoint u − v paths for any two distinct vertices u and v of G. The following
theorem gives a similar result for k-connected graphs.

Theorem 12.9 Let G be a graph of order n ≥ k + 1. Then G is k-connected if and only if
there are k vertex-disjoint s − t paths between any two vertices s and t of G.

Proof. Obviously, the theorem is true for k = 1. So we need to prove the theorem for k ≥ 2.

Necessity: If s and t are not adjacent, then the necessity follows from Theorem 12.8.
Suppose that s and t are adjacent and that there are at most k − 1 vertex-disjoint s − t

paths in G. Let e = st. Consider the graph G′ = G − e. Since there are at most k − 1
vertex-disjoint s − t paths in G, there cannot be more than k − 2 vertex-disjoint s − t paths
in G′. Thus there exists a set A ⊆ V − {s, t} of vertices, with |A| ≤ k − 2, whose removal
disconnects s and t in G′. Then

|V − A| = |V | − |A| ≥ k + 1 − (k − 2) = 3,

C5955–C0012.tex 281 2015/11/4 9:56am

282 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

and therefore, there is a vertex u in V − A different from s and t.

Now we show that there exists an s − u path in G′ that does not contain any vertex of A.
Clearly, this is true if s and u are adjacent. If s and u are not adjacent, then there are k
vertex-disjoint s − u paths in G, and hence there are k − 1 vertex-disjoint s − u paths in G′.
Since |A| ≤ k − 2 at least one of these k − 1 paths will not contain any vertex of A.

In a similar way we can show that in G′ there exists a u − t path that does not contain
any vertex of A.

Thus there exists in G′ an s−t path that does not contain any vertex of A. This, however,
contradicts that A is an s − t disconnecting set in G′.

Hence the necessity.
Sufficiency: Since there are k vertex-disjoint paths between any two distinct vertices of

G, it follows that G is connected. Further, at most one of these paths can be of length 1.
The union of the remaining k − 1 paths must contain at least k − 1 distinct vertices other
than s and t. Hence

|V | ≥ (k − 1) + 2 > k.

Suppose in G there is a disconnecting set A with |A| < k. Then the subgraph G′ of G on the
vertex set V − A contains at least two distinct components. If we select two vertices s and t
from any two different components of G′, then there are at most |A| < k vertex-disjoint s − t
paths in G, which is a contradiction. �

Lemma 12.1 Let G be a k-connected graph and let H be a graph obtained from G by adding
a new vertex y and joining it to at least k vertices of G. Then H is also k-connected.

Proof. The conclusion clearly holds if H is complete. Let S be a subset of V (H) with
|S| = k − 1. To complete the proof, it suffices to show that H − S is connected.

Suppose first that y ∈ S. Then H − S = G − (S\{y}). By hypothesis, G is k-connected
and |S\{y}| = k − 2. Hence H − S is connected.

Now suppose that y /∈ S. Since, by hypothesis, y has at least k neighbors in V (G) and
|S| = k − 1, there is a neighbor z of y which does not belong to S. Because G is k-connected,
G − S is connected. Furthermore, z is a vertex of G − S, and hence yz is an edge of H − S.
It follows that (G − S) + yz is a spanning connected subgraph of H − S. Hence H − S is
connected. �

The following useful property of k-connected graphs can be deduced from Lemma 12.1.

Proposition 12.3 Let G be a k-connected graph and let X and Y be subsets of V of cardi-
nality at least k. Then there exists in G a family of k pairwise disjoint (X, Y)-paths.

Proof. Let H be the graph obtained from G by adding two vertices x and y and joining x to
each vertex of X and y to each vertex of Y. By Lemma 12.1, H is k-connected. Therefore,
by Menger’s theorem, there exist k internally disjoint x−y-paths in H. Deleting x and y
from each of these paths, we obtain k disjoint paths Q1, Q2, . . ., Qk in G, each of which has
its initial vertex in X and its terminal vertex in Y. Every path Qi necessarily contains a
segment, Pi with initial vertex in X, terminal vertex in Y and no internal vertex in X ∪ Y.
The paths P1, P2, . . ., Pk are pairwise disjoint (X, Y)-paths. �

A family of k internally disjoint (x, Y)-paths whose terminal vertices are distinct is referred to
as a k-fan from x to Y. The following assertion is another consequence of Menger’s theorem.
Its proof is similar to the proof of Proposition 12.3.

C5955–C0012.tex 282 2015/11/4 9:56am

Connectivity � 283

Proposition 12.4 (Fan lemma) Let G be a k-connected graph, let x be a vertex of G and
let Y ⊆ V \{x} be a set of at least k vertices of G. Then there exists a k-fan in G from x
to Y. �

By Theorem 12.5 in a 2-connected graph any two vertices are connected by two internally
disjoint paths; equivalently, any two vertices in a 2-connected graph lie on a cycle. Dirac [9]
generalized this statement for k-connected graphs.

Theorem 12.10 Let S be a set of k vertices in a k-connected graph G, where k ≥ 2. Then
there is a cycle in G which includes all the vertices of S.

Proof. By induction on k. We have already observed that the assertion holds for k = 2. Now
let k ≥ 3. Let x ∈ S, and set T = S\x. Since G is k-connected, it is (k − 1)-connected.
Therefore, by the induction hypothesis, there is a cycle C in G which includes T. Set Y =
V (C). If x ∈ Y, then C includes all the vertices of S. Thus we may assume that x /∈ Y. If
|Y | ≥ k, the Fan lemma ensures the existence of a k-fan in G from x to Y. Because |T | = k−1,
the set T divides C into k −1 edge-disjoint segments. By the Pigeonhole principle, two paths
of the fan, P and Q, end in the same segment. The subgraph C ∪P ∪Q contains three cycles,
one of which includes S = T ∪ x. If |Y | = k − 1, the Fan lemma yields a (k − 1)-fan from x
to Y in which each vertex of Y is the terminus of one path, and we conclude as before. �
We give another application of Menger’s theorem. Let A = {A1, . . ., Am} be a collection
of subsets of X with

∪m
i=1 Ai = X. A system of distinct representatives (SDR) is a set of

distinct elements x1, . . ., xm such that xi ∈ Ai. A necessary and sufficient condition for the
existence of an SDR is that |

∪
i∈I Ai| ≥ |I| for all I ⊆ {1, . . ., m}. This can be proved using

Hall’s theorem. In fact Hall’s theorem was originally proved in the language of SDR and it
is equivalent to Menger’s theorem.

12.6 CONDITIONAL CONNECTIVITY

Harary [10] introduced the concept of conditional connectivity of a graph. Given a graph
theoretic property P , the conditional connectivity of G with respect to P is defined to be the
minimum cardinality of a set S of vertices such that every component of G − S has property
P and it is denoted by κ(G; P). Similarly we can define the conditional edge connectivity
λ(G; P) with respect to the property P . The conditional connectivity and conditional edge
connectivity with respect to several properties P have been investigated by several authors.
We shall discuss some of these concepts in this section.

Definition 12.6 Let G = (V, E) be a nontrivial graph. A subset S of E is called a restricted
edge-cut of G if G − S is disconnected and contains no isolated vertices. The restricted edge-
connectivity λ′(G) is defined to be the minimum cardinality of a restricted edge-cut of G.

The concept of restricted edge-connectivity was introduced by Esfahanian and Hakimi [11],
which provides a more accurate measure of fault-tolerance of networks than the classical
edge-connectivity (see [12]).

Definition 12.7 The degree of an edge e = uv in a graph G is defined by deg(e) = deg u +
deg v − 2. Also ξ(G) = min{deg(e) : e ∈ E} is the minimum edge-degree of G.

The following inequality has been proved in [11].

λ′(G) ≤ ξ(G) (12.6)

C5955–C0012.tex 283 2015/11/4 9:56am

284 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Any nontrivial graph G with λ′(G) = ξ(G) is optimal and otherwise G is nonoptional. Xu
and Xu [13] obtained several classes of optimal graphs.

For any two disjoint subsets X and Y of V, let [X, Y] denote the set of all edges in E
with one end in X and other end in Y. Let ∂(X) = [X, X] and d(X) = |∂(X)|. A proper
subset X of V is called a fragment of G if ∂(X) is a λ′-cut of G. Clearly if X is a fragment
of G, then X is also a fragment of G. Let

r(G) = min{|X| : X is a fragment of G}.

Then 2 ≤ r(G) ≤ (1/2)|V |. A fragment X is called an atom if |X| = r(G).

Theorem 12.11 [13] A nontrivial graph G is optimal if and only if r(G) = 2. �

Theorem 12.12 [13] Let G be a nonoptimal graph. If G is k-regular, then r(G) ≥ k ≥ 3. �

Theorem 12.13 [13] Let G be a connected vertex-transitive graph with degree k(≥ 3) and
let X be an atom of G. If G is nonoptimal, then

i. G[X] is a vertex-transitive subgraph of G with degree k − 1 containing a triangle.

ii. G has even order and there is a partition {X1, X2, . . ., Xm} of V such that G[Xi] ∼=
G[X] for each i = 1, 2, . . ., m, m ≥ 2. �

Theorem 12.14 [14] Let G be a connected vertex-transitive graph. If it either contains no
triangles or has odd order, then G is optimal. �

Corollary 12.1 [12] The k-cube Qk is optimal. �

The k-dimensional toroidal mesh C(d1, d2, . . ., dk), is the Cartesian product Cd1�Cd2� · · ·
�Cdk

, where Cd is the cycle on d vertices.

Corollary 12.2 The k-dimensional toroidal mesh C(d1, d2, . . ., dk) is optimal if di ≥ 4 for
each i = 1, 2, . . ., k. �

A circulant graph, denoted by G(n; a1, a2, . . ., ak), where 0 < a1 < · · · < ak ≤ (n/2), has
vertices 0, 1, 2, . . ., n − 1 and edge ij if and only if |j − i| ≡ at(mod n) for some t, 1 ≤ t ≤ k.
If ak ̸= (n/2), it is 2k-regular. Otherwise, it is (2k − 1)-regular.

Corollary 12.3 [15] Any connected circulant graph G(n; a1, a2, . . ., ak), n ≥ 4, is optimal if
either it contains no triangles or ak ̸= (n/2). �

The concept of k-restricted edge-connectivity was introduced by Fabrega and Fiol [16] and
is a natural generalization of restricted edge-connectivity.

Definition 12.8 An edge-cut S of a connected graph G is called a k-restricted edge-cut if
every component of G − S has at least k vertices. If G has at least one k-restricted edge-cut,
then λk(G) = min{|S| : S ⊆ E(G) is a k-restricted edge-cut of G} is called the k-restricted
edge-connectivity of G.

The concepts of minimum edge degree ξ(G), fragment, atom, and optimal graphs can also
be naturally extended in the context of k-restricted edge-cuts.

If [X, X] is a λk-cut, then X is called a k-fragment of G. Let rk(G) = min{|X| : X is a
k-fragment of G}. Obviously, k ≤ rk(G) ≤ (1/2)|V (G)|.

C5955–C0012.tex 284 2015/11/4 9:56am

Connectivity � 285

The minimum k-edge degree ξk(G) is defined by

ξk(G) = min{|[X, X]| : |X| = k and G[X] is connected}.

A λk-connected graph G with λk(G) = ξk(G) is said to be λk-optimal.
We now present several recent results on k-restricted edge-connectivity and λk-optimal

graphs.

Theorem 12.15 [17] Let G be a connected triangle-free graph of order n ≥ 4. If d(u)+d(v) ≥
2 ⌊(n + 2)/4⌋ + 1 for each pair u, v of vertices at distance 2, then G is λk-optimal. �

Theorem 12.16 [17] Let G be a λk-connected graph with λk(G) ≤ ξk(G) and let U be
a k-fragment of G. If there is a connected subgraph H of order k in G[U] such that
|[V (H), U\V (H)]| ≤ |[U\V (H), U]|, then G is λk-optimal. �

Theorem 12.17 [18] Let G be a λ2-connected and triangle-free graph with minimum degree
δ ≥ 1. If G is not λ2-optimal, then �

r2(G) ≥ max
{

3,
1
δ

((δ − 1)ξ2(G) + 2δ + 1)
}

.

Corollary 12.4 [19] Let G be a λ2-connected and triangle-free graph with minimum degree
δ ≥ 2. If G is not λ2-optimal, then �

r2(G) ≥
{

2δ − 1 if δ ≥ 3,
4 if δ = 2.

Bonsma et al. [20] investigated the concept of 3-restricted edge-connectivity, λ3-connected
graphs and λ3-optimal graphs.

Theorem 12.18 [20] A graph G is λ3-connected if and only if n ≥ 6 and G is not isomorphic
to the net N or to any graph of the family F in Figure 12.6. �

Theorem 12.19 [20] If G is a λ3-connected graph, then λ3(G) ≤ ξ3(G). �

Theorem 12.20 [18] Let G be a connected triangle-free graph of order n ≥ 6. If d(u)+d(v) ≥
2

[
n
4

]
+ 3 for each pair u, v of non adjacent vertices, then G is λ3-optimal. �

A graph G with |V (G)| ≥ 2k is called a flower if it contains a cut vertex u such that every
component of G − u has order at most k − 1.

N F

Figure 12.6 All graphs that are not λ3-connected.

C5955–C0012.tex 285 2015/11/4 9:56am

286 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 12.21 [21] Let G be a connected graph not isomorphic to a flower and k be a
positive integer with k ≤ δ(G) + 1. Then G is λk-connected and λk(G) ≤ ξk(G). �

Theorem 12.22 [22] Let G be a λk-connected graph with minimum degree δ. If λk(G) ≤
ξk(G), then rk(G) ≥ max{k + 1, δ − k + 1}. �

Theorem 12.23 [18] Let G be a λk-connected and triangle-free graph with minimum degree
δ and λk(G) ≤ ξk(G). If G is not λk-optimal, then rk(G) ≥ max{k + 1, 2δ − k + 1}. �

Theorem 12.24 [23] Let G be a bipartite graph of order n ≥ 2k. If δ(G) ≥ [(n + 2k)/4] ,
then G is λk-optimal. �

Corollary 12.5 [18] Let G be a connected and triangle-free graph of order n ≥ 2k. If δ(G) ≥
(1/2)

(
[n/2] + k

)
, then G is λk-optimal. �

Jianping [24] obtained a characterization of all connected graphs of order at least 10 which
contain 4-restricted edge-cuts.

Definition 12.9 Let P5 = uvxyz be a path of length 4. Let w be an arbitrary vertex of
another connected graph H of order 3. Then Ω8

4 is the collection of graphs obtained from one
of the following two different ways.

Method 1.

Step 1. Join the graph H and path P5 by adding two edges wv and wy to obtain a new graph
N. This step results in three distinct graphs according to the choice of H and w.

Step 2. Add at most one of the two edges wx and vy to the graph N.

Method 2.

Step 1. When H is a path with w as one of its pendants, join x to the degree 2 vertex of H
after performing step 1 of method 1.

Step 2. Add at most one edge between w and x.

Definition 12.10 Graphs in the collection Ω8
3 can be obtained as follows. Let A and B be

two connected graphs of order 3 and let C be an isolated edge. Take three arbitrary vertices,
one each from these three graphs, and join them into a 3-cycle.

Definition 12.11 The collection Ω9
3 consists of graphs obtained by joining three vertices,

one each from three arbitrary connected graphs of order 3, into a 3-cycle.

Theorem 12.25 A connected graph G of order at least 8 contains no 4-restricted-edge-cut
if and only if G ∈ Fn,4 ∪ Ω8

4 ∪ Ω8
3 ∪ Ω9

3, where Fn,4 is a flower. �

Corollary 12.6 Let G be a connected graph of order at least 10. Then G contains a
4-restricted-edge-cut if and only if G is not a flower. �

C5955–C0012.tex 286 2015/11/4 9:56am

Connectivity � 287

12.7 CRITICALITY AND MINIMALITY

A graph G is said to be critically k-connected if G is k-connected and G−v is not k-connected
for all v ∈ V. Kaugars [25] has shown that δ(G) = 2 for each critically 2-connected graph G.
Chartrand et al. [26] obtained a generalization of the above result.

Theorem 12.26 [26] If G is a critically k-connected graph with k ≥ 2, then δ(G) <
[(3k − 1)/2] . �

Entringer and Slater [27] have proved that every critically 3-connected graph contains at
least two vertices of degree 3 and that this result is best possible.

Maurer and Slater [28] generalized the concept of critically k-connected graphs. A graph
G is called k∗-connected if κ(G) = k. Thus a k∗-connected graph is k-connected but not
(k + 1)-connected. A k∗-connected graph G is said to be s-critical if for any subset S of V
with |S| ≤ s, we have κ(G − S) = k − |S|.

If G is s-critical but not (s + 1)-critical, then G is called s∗-critical. A graph which is
k∗-connected and s∗-critical is called (k∗, s∗)-graph.

For example, the complete graph Kn+1 is a (n∗, n∗)-graph and this is the only (n∗, n∗)-
graph. The graph Ct + Kp−2 is a (p∗, 1∗)-graph if p < t and is a (p∗, 2∗)-graph if p = t.

Maurer and Slater [28] obtained the following results on the existence and nonexistence
of (k∗, s∗)-graphs.

Proposition 12.5 The graph G2n obtained from the complete graph K2n by deleting the
edges of a perfect matching is a ((2n)∗, n∗)-graph. �

Proposition 12.6 If G is a (k∗, s∗)-graph and 1 ≤ t ≤ s, then G has an induced subgraph
which is a ((k − t)∗, (s − t)∗)-graph. �

Theorem 12.27 [28] In any 3-connected graph G, with G ̸= Kn, there are two adjacent
vertices, u and v, for which G − {u, v} is 2-connected. �

Corollary 12.7 [28] If k ≥ 3, then there does not exist a (k∗, (k − 1)∗)-graph. �

Theorem 12.28 [28] There does not exist a (5∗, 3∗)-graph. �

Corollary 12.8 [28] If k ≥ 5, then there does not exist a (k∗, (k − 2)∗)-graph. �

Theorem 12.29 [28] If k ≥ 7, then there does not exist a (k∗, (k − 3)∗)-graph. �

Proposition 12.7 [28] Suppose H = G−v is a (k∗, s∗)-graph. The following are equivalent.

i. κ(G) = k + 1.

ii. G is either a ((k + 1)∗, s∗)-graph or a ((k + 1)∗, (s + 1)∗)-graph.

iii. For each subset S of V (H) with |S| = s, v is connected to each component of H − S. �

Proposition 12.8 [28] Let G be a (k∗, s∗)-graph of order n, and let H be any disconnected
graph of order n − k. Then G + H is a (n∗, (s + 1)∗)-graph. �

C5955–C0012.tex 287 2015/11/4 9:56am

288 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Similar to the study of criticality and multiple criticality, Maurer and Slater [29] investigated
the concept of minimality and multiple minimality with respect to connectivity and edge-
connectivity. A graph G is s-minimal with respect to a graph parameter if the removal of any
j edges, 1 ≤ j ≤ s, reduces the value of that parameter by j. When s = 1, this corresponds
to the well-known concept of minimality. Let G be a graph with edge-connectivity λ(G) = k.
If G is s-minimal with respect to λ, then G is called a s-minimally k-edge connected graph,
or simply a (k, s)′-graph. Let G be a (k, s)′-graph. If s is the largest integer for which G is
s-minimal, then G is called a (k∗, s∗)′-graph.

For any graph G, let Gp be the graph obtained from G by replacing each edge of G by p
parallel edges. Maurer and Slater [29] determined all (k, s)′-graphs.

Theorem 12.30 [29] The only (k, s)′-graphs for s ≥ 2 are Cp
m for m ≥ 3 and Kp

2 for p ≥ 2.
Further Cp

m is a (2p∗, 2∗)′-graph and Kp
2 for p ≥ 2 is a (p∗, p∗)′-graph. �

Corollary 12.9 The only simple (k∗, s∗)′-graphs with s ≥ 2 are the cycles Cm, m ≥ 3, and
these are (2∗, 2∗)′-graphs. �

In case of vertex connectivity it turns out that the only s-minimally k-connected graphs,
s ≥ 2, are the cycle Cn, n ≥ 3, and these are 2-minimally 2-connected.

12.8 CONCLUSION

We have presented some of the key results dealing with connectivity of finite simple graphs.
Several textbooks and surveys, (see, e.g., [30–32]) are available on the subject. The def-
initions of connectivity and edge-connectivity have straightforward extensions to directed
graphs. It suffices to replace paths by directed paths throughout. The arc and vertex ver-
sions of Menger’s theorem can be proved for directed graphs as well. Maurer and Slater [29]
have extended the concept of multiply minimal connectedness to directed graphs and
obtained a few basic results. Every 2-edge connected graph admits a strongly connected
orientation. Nash-Williams [33] obtained a nice generalization of this result by proving that
every 2k-edge-connected graph has a k-arc-connected orientation.

References

[1] G. Chartrand and F. Harary, Graphs with prescribed connectivities, In P. Erdös and
G. Katona, editors, Theory of Graphs, Akadémiai Kiadó, Budapest, Hungary, (1968),
61–63.

[2] F. Harary, The maximum connectivity of a graph, Proc. Nat. Acad. Sci. U.S.A., 48
(1962), 1142–1146.

[3] S. Špacapan, Connectivity of Cartesian products of graphs, Appl. Math. Lett., 21 (2008),
682–685.

[4] J. M. Xu and C. Yang, Connectivity of Cartesian product graphs, Discrete Math., 306
(2006), 159–165.

[5] H. Whitney, Congruent graphs and the connectivity of graphs, Am. J. Math., 54 (1932),
150–168.

[6] C. Thomassen, Kuratowski’s theorem, J. Graph Theory, 5 (1981), 225–241.

[7] W. T. Tutte, A theory of 3-connected graphs, Indag. Math., 23 (1961), 441–455.

C5955–C0012.tex 288 2015/11/4 9:56am

Connectivity � 289

[8] L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Can. J. Math., 8
(1956), 399–404.

[9] G. A. Dirac, In abstrakten graphen vorhandene vollständige 4-Graphen und ihre
Unterteilungen, Math. Nachr., 22 (1960), 61–85.

[10] F. Harary, Conditional connectivity, Networks, 13 (1983), 347–357.

[11] A. H. Esfahanian and S. L. Hakimi, On computing a conditional edge connectivity of a
graph, Inf. Process. Lett., 27 (1988), 195–199.

[12] A. H. Esfahanian, Generalized measure of fault tolerance with application to n-cube
networks, IEEE Trans. Comput., 38(11) (1989), 1586–1591.

[13] J. M. Xu and K. L. Xu, On restricted edge-connectivity of graphs, Discrete Math., 243
(2002), 291–298.

[14] J. M. Xu, Restricted edge-connectivity of vertex-transitive graphs, Chin. J. Contemp.
Math., 21(4) (2000), 369–374.

[15] Q. L. Li and Q. Li, Reliability analysis of circulants, Networks, 31 (1998), 61–65.

[16] J. Fábrega and M. A. Fiol, On the extraconnectivity of graphs, Discrete Math., 155
(1996), 49–57.

[17] J. Yuan and A. Liu, Sufficient conditions for λk-optimality in triangle-free graphs,
Discrete Math., 310 (2010), 981–987.

[18] A. Holtkamp, D. Meierling, and L. P. Montejano, k-restricted edge-connectivity in
triangle-free graphs, Discrete Appl. Math., 160 (2012), 1345–1355.

[19] N. Ueffing and L. Volkmann, Restricted edge-connectivity and minimum edge-degree,
Ars Combin., 66 (2003), 193–203.

[20] P. Bonsma, N. Ueffing, and L. Volkmann, Edge-cuts leaving components of order at
least three, Discrete Math., 256 (2002), 431–439.

[21] Z. Zhang and J. Yuan, A proof of an inequality concerning k-restricted edge-connectivity,
Discrete Math., 304 (2005), 128–134.

[22] Z. Zhang and J. Yuan, Degree conditions for restricted-edge-connectivity and
isoperimetric-edge-connectivity to be optimal, Discrete Math., 307 (2007), 293–298.

[23] J. Yuan, A. Liu, and S. Wang, Sufficient conditions for bipartite graphs to be super-k-
restricted edge-connected, Discrete Math., 309 (2009), 2886–2896.

[24] O. Jianping, 4-restricted edge cuts of graphs, Australas. J. Combin., 30 (2004), 103–112.

[25] A. Kaugars, A theorem on the removal of vertices from blocks, Senior thesis, Kalamazoo
College, 1968.

[26] G. Chartrand, A. Kaugars, and D. R. Lick, Critically n-connected graphs, Proc. Amer.
Math. Soc., 32 (1979), 63–68.

[27] R. C. Entringer and P. J. Slater, A theorem on critically 3-connected graphs, Nanta
Mathematica, 11(2) (1977), 141–145.

C5955–C0012.tex 289 2015/11/4 9:56am

290 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[28] S. Maurer and P. J. Slater, On k-critical, n-connected graphs, Discrete Math., 20 (1977),
255–262.

[29] S. Maurer and P. J. Slater, On k-minimally n-edge-connected graphs, Discrete Math.,
24 (1978), 185–195.

[30] W. T. Tutte, Connectivity in Graphs, University of Toronto Press, London, 1966.

[31] A. Frank, Connectivity augmentation problems in network design, In J. R. Birge and
K. G. Murty, editors, Mathematical Programming: State of the Art 1994, The University
of Michigan, Ann Arbor, MI, (1994), 34–63.

[32] A. Frank, Connectivity and network flows, In R. Graham, M. Grötschel, and
L. Lovász, editors, Handbook of Combinatorics, Elsevier Science B.V., North Holland,
(1995), 111–177.

[33] C. S. J. A. Nash-Williams, On orientation, connectivity and odd-vertex pairings in finite
graphs, Can. J. Math., 12 (1960), 555–567.

C5955–C0012.tex 290 2015/11/4 9:56am

C H A P T E R 13

Connectivity Algorithms
Krishnaiyan “KT” Thulasiraman

CONTENTS

13.1 Introduction . 291
13.2 Menger’s Theorems and Maximum Flows in a Network . 291

13.2.1 Edge Version of Menger’s Theorem . 292
13.2.2 Vertex Analog of Menger’s Theorem . 293
13.2.3 Determining Connectivities in Undirected Graphs . 294

13.3 Edge Connectivity of Graphs . 295
13.3.1 Edge Connectivity of Undirected Graphs: Matula’s Algorithm 295
13.3.2 Edge Connectivity of Directed Graphs . 298

13.4 Global Minimum Cut in a Weighted Undirected
Graph: Stoer and Wagner’s Algorithm . 298

13.5 Vertex Connectivity in Undirected Graphs . 300
13.6 Gomory–Hu Tree . 301
13.7 Graphs With Prescribed Degrees . 308

13.1 INTRODUCTION

In this chapter we discuss algorithms to determine edge and vertex connectivities of a graph
and related issues. We begin with Menger’s theorems (see also Chapter 12) that relate max-
imum flow from a vertex s to a vertex t in a network to the maximum number of edge
(vertex)-disjoint s−t paths as well as the minimum number of edges (vertices) to be deleted
to disconnect s and t. This leads to natural maximum flow-based algorithms to determine
vertex and edge connectivities. We then discuss efforts to develop connectivity algorithms
that achieve better complexity results. In particular, we discuss Matula’s algorithm for edge
connectivity and Stoer and Wagner’s algorithm to determine a minimum cut in a weighted
graph. As regards vertex connectivity, we develop Even and Tarjan’s algorithm. We conclude
with a discussion of an algorithm for constructing the Gomory–Hu tree and results of inter-
est in the design of graphs meeting certain connectivity requirements. In the course of our
discussions we will develop certain results on connectivity that form the foundation of most
of the connectivity algorithms.

13.2 MENGER’S THEOREMS AND MAXIMUM FLOWS IN A NETWORK

In this section we revisit Menger’s theorems. In Chapter 12 graph theoretic proofs of these the-
orems were given. In this section we prove these results using maximum flow theory, thereby
establishing the connection between these two areas, namely graph theory and network flow
theory. We refer the reader to Chapter 4 for basic results and algorithms relating to the
maximum flow problem.

C5955–C0013.tex 291 2015/11/4 9:58am

291

292 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

13.2.1 Edge Version of Menger’s Theorem

Given a network N with the underlying directed graph G = (V, E). In the following, the
terms network and graph will be used interchangeably. Each edge e in G is associated with
a capacity c(e) = 1. A cut K = ⟨S, S⟩ is the set of edges that have one vertex in S and
the other in S. K is called an s−t cut if s ∈ S and t ∈ S. The sum of the capacities of the
edges in K directed from S to S is called the capacity of the cut denoted as c(K). Since each
capacity is equal to one, the capacity of K is equal to the number of edges directed from S
to S. An s−t cut with minimum capacity is called a minimum s−t cut. We would like to
determine the minimum number of edges to be removed to disconnect all the directed s−t
paths in G.

Let f∗ be a maximum flow in G from vertex s to vertex t with val(f∗) denoting the value
of this flow. Let K∗ = ⟨S∗, S

∗⟩ be a minimum s−t cut in N with c(K∗) denoting the capacity
of this cut. Let λ(s, t) = minimum number of edges to be removed to destroy all directed
s−t paths in G, and l(s, t) = maximum number of edge-disjoint directed s−t path in G.
We would like to prove that λ(s, t) = l(s, t) = val(f∗) = c(K∗). By the max-flow min-cut
theorem we know that

val(f∗) = c(K∗). (13.1)

Consider any s−t cut K = ⟨X, X⟩. Then the number of edges directed from X to X is the
capacity c(K). If we remove c(K) edges from G, then all the directed s−t paths will be
destroyed. So, we get

c(K∗) ≥ λ(s, t). (13.2)

Next, suppose that we pick a set of l edge-disjoint directed s−t paths. Then, we need to
remove at least one edge from each one of these paths to destroy all directed s−t paths. So,

λ(s, t) ≥ l(s, t). (13.3)

Finally, any flow f in a unit capacity network can be decomposed into unit flows along val(f)
edge-disjoint directed s−t paths. So,

val(f∗) ≤ l(s, t). (13.4)

Combining (13.2)–(13.4) we get

val(f∗) ≤ l(s, t) ≤ λ(s, t) ≤ c(K∗).

By (13.1), val(f∗) = c(K∗). So,

val(f∗) = l(s, t) = λ(s, t) = c(K∗).

Thus, we have proved the following theorems.

Theorem 13.1 Let N be a network with source s and sink t and in which each edge has
unit capacity. Then

1. The value of a maximum s−t flow in N is equal to the maximum number of edge-
disjoint directed s−t paths in N .

2. The minimum number of edges whose deletion destroys all directed s−t paths in G is
equal to the capacity of a minimum s−t cut in N . �

Theorem 13.2 [1] Let s and t be two vertices in a directed graph G. Then, the maximum
number of edge-disjoint directed s−t paths in G is equal to the minimum number of edges
whose removal destroys all directed s−t paths in G. �

C5955–C0013.tex 292 2015/11/4 9:58am

Connectivity Algorithms � 293

For an undirected graph G, let D(G) denote the directed graph obtained by replacing each
edge e of G by a pair of oppositely oriented edges having the same end vertices as e. It can
be shown that

1. There exists a one-to-one correspondence between the paths in G and the directed
paths in D(G).

2. For any two vertices s and t, the minimum number of edges whose deletion removes all
s−t paths in G is equal to the minimum number of edges whose deletion destroys all
directed s−t paths in D(G).

The undirected version of Theorem 13.2 now follows from the above observations.

Theorem 13.3 [1] Let s and t be two vertices in a graph G. Then the maximum number of
edge-disjoint s−t paths in G is equal to the minimum number of edges whose removal destroys
all s−t paths in G. �

Suppose that we treat a given directed graph G as a network N with each edge having unit
capacity. Given two vertices s and t, it follows from Theorems 13.1–13.3 that a maximum flow
in N will also yield a maximum set of edge-disjoint s−t paths in N . Similarly a minimum s−t
cut in N will determine a minimum set of edges whose deletion will destroy all s−t paths
in N . Thus, Menger’s theorem provides the main link between the maximum flow theory
and graph theory. As a result, maximum flow algorithms provide the foundation for many
algorithmic developments in graph theory.

13.2.2 Vertex Analog of Menger’s Theorem

To develop the vertex analog of Menger’s theorem we proceed as follows. Let s and t be any
two nonadjacent vertices in a directed graph G = (V, E). From G we construct a directed
graph G′ as follows:

1. Split each vertex v ∈ V \ {s, t} into two vertices v′ and v′′ and connect them by a
directed edge (v′, v′′).

2. Replace each edge of G having v ∈ V \ {s, t} as terminal vertex by a new edge having
v′ as terminal vertex.

3. Replace each edge of G having v ∈ V \ {s, t} as initial vertex by a new edge having v′′

as initial vertex.

A graph G and the corresponding graph G′ are shown in Figure 13.1. It is not difficult to see
the following:

1. Each directed s−t path in G′ corresponds to a directed s−t path in G that is obtained by
contracting (i.e., identifying the vertices of) all the edges of the type (v′, v′′); conversely,
each directed s−t path in G corresponds to a directed s−t path in G′ obtained by
splitting all the vertices other than s and t in the path.

2. Two directed s−t paths in G′ are edge-disjoint if and only if the corresponding directed
paths in G are vertex-disjoint.

3. The maximum number of edge-disjoint directed s−t paths in G′ is equal to the maxi-
mum number of vertex-disjoint directed s−t paths in G.

4. The minimum number of edges whose deletion removes all directed s−t paths in G′

is equal to the minimum number of vertices whose deletion destroys all directed s−t
paths in G.

C5955–C0013.tex 293 2015/11/4 9:58am

294 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

s

w z

t

(a)

s t

u′ u″ v′ v″

u v

(b) w′ w″ z′ z″

Figure 13.1 (a) Graph G. (b) Graph G′ after vertex splitting.

From these observations we get the following vertex analogs of Theorems 13.2 and 13.3,
respectively.

Theorem 13.4 [1] Let s and t be two nonadjacent vertices in a directed graph G. Then the
maximum number of vertex-disjoint directed s−t paths in G is equal to the minimum number
of vertices whose removal destroys all directed s−t paths in G. �

Theorem 13.5 [1] Let s and t be two nonadjacent vertices in a graph G. Then the maximum
number of vertex-disjoint s−t paths in G is equal to the minimum number of vertices whose
removal destroys all s−t paths in G. �

As we pointed out before, the maximum number of vertex-disjoint s−t paths in a directed
graph G can be computed by finding a maximum s−t flow in a network N (with G′ as the
underlying graph) in which each edge has unit capacity. As regards the minimum number of
vertices whose removal disconnects s and t in G cut in G, it can be computed by first finding
a minimum s−t cut in a network N (with G′ as the underlying graph) in which each newly
added edge is assigned unit capacity and all other edges are each assigned ∞ capacity. In
such an s−t cut ⟨S, S⟩ all edges directed from S to S will have unit capacity. In other words,
the edges in the cut will be of the form (v′, v′′), each one of which corresponding to vertex v
in G. Removal of the edges in ⟨S, S⟩ will disconnect s and t in G′. Equivalently, removal of
the corresponding vertices in G will disconnect s and t in G.

13.2.3 Determining Connectivities in Undirected Graphs

A network is called a 0−1 network if each edge has unit capacity. Also, a 0−1 network is of
type 1 if it has no parallel edges, and is of type 2 if the in-degree or the out-degree of each
vertex is equal to one. In Chapter 4 the following complexity results for Dinic’s maximum
flow algorithm have been established.

i. O(m3/2) if N is a 0−1 network.

ii. O(n2/3m) if N is of type 1.

iii. O(n1/2m) if N is of type 2.

C5955–C0013.tex 294 2015/11/4 9:58am

Connectivity Algorithms � 295

As before let λ(s, t) denote the minimum number of edges to be removed to destroy all
s−t paths in an undirected graph. Let κ(s, t) denote the minimum number of vertices whose
removal destroys all s-t paths in G. As we discussed in Section 13.2.1, λ(s, t) can be com-
puted by applying Dinic’s maximum flow algorithm on a 0−1 network, and κ(s, t) can be
computed by applying this algorithm on a 0−1 network of type 2. It follows from the complex-
ity results presented above that λ(s, t) and κ(s, t) can be computed in O(min{n2/3m, m3/2})
time and O(n1/2m) time, respectively.

The edge connectivity and vertex connectivity of a graph G denoted by λ(G) and κ(G)
are defined, respectively, as follows:

λ(G) = minimum {λ(s, t)|s, t ∈ V, s ̸= t} and

κ(G) = minimum {κ(s, t)|s, t ∈ V, s ̸= t and nonadjacent}.

Since both these parameters require maximum flow computations over O(n2) pairs of vertices
we get the following complexity result for computing λ(G) and κ(G).

Theorem 13.6

i. The edge connectivity λ(G) of an undirected graph can be computed in O(n2 min{n2/3m,
m3/2}) time.

ii. The vertex connectivity κ(G) of an undirected graph can be computed in O(n5/2m)
time. �

The question now arises if we can develop algorithms with better complexities for com-
puting λ(G) and κ(G). We address this question in the following sections.

13.3 EDGE CONNECTIVITY OF GRAPHS

In this section we develop algorithms to compute the edge connectivity of directed and
undirected graphs.

13.3.1 Edge Connectivity of Undirected Graphs: Matula’s Algorithm

In this section we develop Matula’s algorithm [2] for determining the edge connectivity of an
undirected graph.

In the previous section we pointed out that the edge connectivity of an undirected graph
can be computed using O(n2) maximum flow computations. We now show that with at most
n− 1 maximum flow computations one can determine edge connectivity.

Given an undirected graph G = (V, E), what we are looking for is a cut with the smallest
number of edges. Such a cut will be called a minimum cut. Consider a minimum cut ⟨S, S⟩
so that λ(G) = |⟨S, S⟩|. Then for any two vertices i and j such that i ∈ S and j ∈ S, we have
λ(i, j) = λ(G). This is because the minimum cut ⟨S, S⟩ is also a smallest cut that separates
i and j. So if we pick any vertex i in G then

λ(G) = min{λ(i, j)|j ∈ V \ {i}}.

Thus, λ(G) can be computed using at most n − 1 maximum flow computations, thereby
reducing by a factor of n the complexity given in Theorem 13.6. That is, λ(G) can be
computed in O(n min{n2/3m, m3/2}) time.

C5955–C0013.tex 295 2015/11/4 9:58am

296 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Next we develop Matula’s algorithm [2] that reduces the complexity of computing λ(G)
to O(mn).

A nonempty subset D of V is called a dominating set of G if every vertex v ∈ V is either
in D or adjacent to a vertex in D. Matula’s algorithm is based on the following theorem
where λ(G) is simply represented as λ.

Theorem 13.7 Let G = (V, E) be a graph with a minimum cut ⟨A, A⟩ such that |⟨A, A⟩| =
λ ≤ δ − 1, where δ is the minimum degree in G. Then every dominating set of G contains
vertices from both A and A, that is, |A ∩D| ̸= ∅ and |A ∩D| ̸= ∅.

Proof. The sum of the degrees of the vertices in A satisfies the following:

|A|δ ≤
∑
v∈A

degree(v) ≤ |A|(|A| − 1) + λ.

Rewriting the above we get

(|A| − δ)(|A| − 1) ≥ δ− λ ≥ 1.

This means that both the terms on the left-hand side are at least one. So |A| ≥ δ + 1
and A contains at least δ + 1 vertices. But by assumption the cut ⟨A, A⟩ has fewer than
δ edges. So one of the vertices in A is not adjacent to any vertex in A. So no dominating
set can contain only members of A. Similarly no dominating set can contain only members
of A. �

We now present Matula’s algorithm. We follow the presentation in [2]. The algorithm
uses a partition S, T , and U of the vertex set V of a graph G = (V, E). Sets T and U are
defined as follows.

T = Set of all vertices of V \ S∗ each of which is adjacent to a vertex of S.

U = Set of all vertices of V \ S that are not adjacent to any vertex in S.

The algorithm starts with S = {s0}. At the beginning of iteration i ≥ 1, let S =
{s0, s1, . . ., si−1}. The algorithm picks a vertex si that is in U . Note that si is not adja-
cent to any vertex in S. A min-cut ⟨A, A⟩ is determined such that S ⊂ A and si ∈ A. That
is, the cut ⟨A, A⟩ separates si from all vertices of S. si is then moved to S and any adjacent
vertices of si to T . When U becomes empty the algorithm returns the minimum cut obtained
over all iterations as the required minimum cut of the graph G. A formal presentation of the
algorithm is given in Figure 13.2.

Theorem 13.8 For any connected graph G with n vertices and m edges, Algorithm 13.1
determines the edge connectivity λ(G) in O(mn) time.

Proof. We need to prove that during some iteration of the algorithm a minimum cut of G is
identified.

Suppose λ = δ. Then the initial cut ⟨{p}, V \ {p}⟩ is a minimum cut and so the required
cut is identified at the first iteration itself.

Consider then the case when λ ≤ δ− 1. Let ⟨A, A⟩ be a minimum cut. Assume without
loss of generality that p ∈ A. We first show that S ⊂ A until a minimum cut is identified.
This is true initially because S = {s0} = {p} ⊂ A by our assumption. Assume for i ≥ 1 that
the set S = {s0, s1, . . ., si−1} ⊂ A. Then the vertex k = si that is picked at this iteration is

∗V \ S is the same as V − S.

C5955–C0013.tex 296 2015/11/4 9:58am

Connectivity Algorithms � 297

Algorithm 13.1 (Matula’s Edge Connectivity Algorithm)
Input: Given a connected undirected graph G = (V, E) with n ≥ 2 vertices and m edges.
Output: Edge connectivity λ of G and also a minimum cut ⟨A, A⟩.

begin
Let p be a minimum degree vertex in G and δ its degree;
S ← {p} and λ← δ;
A← {p} and A← V \ {p};
T ← Set of all vertices of V \ S each of which is adjacent to a vertex of S.
U ← V \ T \ S;
while U ̸= ∅ do

begin
Select a vertex k ∈ U ;
Compute λ(S, k) using the labeling algorithm for maximum flow
and the corresponding minimum cut ⟨B, B⟩ with
S ⊂ B, k ∈ B;
S ← S ∪ {k};
T ← T ∪ {w|w adjacent to k};
U ← U − T − k.
If λ > λ(S, k) then λ← λ(S, k) and ⟨A, A⟩ ← ⟨B, B⟩;

end
end

Figure 13.2 Determining edge connectivity.

an element of A or an element of A. If si ∈ A then S∪{si} ⊂ A. Otherwise si ∈ A. Then the
minimum cut ⟨B, B⟩ separating S and vertex k is also a minimum cut of the graph. That is,
λ(S, k) = λ(G) and the required minimum cut is identified. This minimum cut identification
must occur before termination, for otherwise, at termination the set S ⊂ A is a dominating
set containing no elements of A contradicting Theorem 13.7.

The complexity bound is dominated by the complexity of finding λ(S, k). This requires
finding a maximum s − k flow in a network N constructed as follows: First construct the
directed graph G′ by replacing each edge of G by two oppositely oriented edges. Then con-
struct a network N by adding a new vertex s, connecting s to all the vertices in S by edges
oriented away from s and assigning unit capacity to all the edges in N . An s− k maximum
flow in N can be constructed by the iterated applications of the labeling algorithm using
flow augmentation.

Let nT be the number of vertices of T adjacent to the vertex k, and nU be the number of
vertices of U adjacent to k. Then nT paths of length 2 from k to s can be identified in time
proportional to nT . The remaining |⟨B, B⟩|−nT flow augmenting paths can each be found in
O(m) time. Since each such path uses a distinct adjacent vertex of k in U , |⟨B, B⟩|−nT ≤ nU .
A cost of O(m) is required to move vertex k to S. So an overall cost of O((nU + 1)m) is
required to move k to S and nU vertices from U to T . This implies a cost of O(m) per vertex
removed from U , yielding O(mn) time for the algorithm. �
A graph G is k-edge connected if λ(G) ≥ k. Matula has also given another elegant algorithm
to determine if a graph G is k-edge connected. This algorithm is of time complexity O(kn2)
and is presented in Figure 13.3. The proof of correctness and complexity analysis of the
algorithm follow along the same lines as the proof of Theorem 13.8. The step which requires
checking the existence of a cut separating S and vertex v of cardinality less than or equal to
k − 1 can be accomplished by testing the existence k − 1 edge-disjoint paths from v to S.

C5955–C0013.tex 297 2015/11/4 9:58am

298 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Algorithm 13.2 (Testing k-edge connectivity)
Input: Given a connected undirected graph G = (V, E) with n ≥ 2 vertices and m edges.
Output: Determine if G is k-edge connected.

begin
If δ ≤ k − 1 then Stop (The graph is not k-edge connected);
select a vertex v of maximum degree in G;
S ← {v};
T ← Set of all vertices of V \ S each of which is adjacent to a vertex of S.
while S ∪ T ̸= V do
begin

select a vertex v ∈ S = V \ S such that v has maximum degree in the
induced subgraph ⟨S⟩;
If there is a cut separating S and v with S ⊂ B, v ∈ B and of

cardinality ≤ k − 1 then Stop (The graph is not k- edge connected);
else

S ← S ∪ {v};
T ← {w|w ∈ V \ S adjacent to some vertex in S}

end
end (The graph G is k-edge connected.)

Figure 13.3 Testing k-edge connectivity.

13.3.2 Edge Connectivity of Directed Graphs

Theorem 13.9 Let G = (V, E) be a directed graph with V = {v1, v2, . . ., vn}. Then

λ(G) = min{λ(v1, v2), λ(v2, v3), . . ., λ(vn, v1)}.

Proof. Consider any two vertices u and v such that λ(G) = λ(u, v). Then there is a set T of
edges whose removal will destroy all directed paths from u to v. Note that λ(u, v) = |T |. Let
X denote the set of all vertices w that are reachable from u by directed paths containing no
edge of T . Let Y denote the set of all vertices w such that each directed path u−w contains
some edge of T . Then ⟨X, Y ⟩ is a cut of G with u ∈ X and v ∈ Y . Now T disconnects every
x ∈ X and y ∈ Y . So, |T | = λ(G) ≤ λ(x, y) ≤ |T |. Thus λ(G) = λ(x, y). This means that
there exists some index i such that vi ∈ X and vi+1 ∈ Y and λ(G) = λ(vi, vi+1). �

The above theorem due to Schnorr [3] means that the edge connectivity of a directed
graph can be computed using n maximum flow computations. The time complexity of such
an algorithm is O(n min{n2/3m, m3/2}). In fact Mansour an Schieber [4] have shown that
this can be achieved in O(mn) time.

13.4 GLOBAL MINIMUM CUT IN A WEIGHTED UNDIRECTED
GRAPH: STOER AND WAGNER’S ALGORITHM

Consider a weighted undirected graph G = (V, E) with each edge e associated with a capacity
c(e) > 0. For ease of notation a cut ⟨S, S⟩ will be denoted by δ(S), the set of edges that
have exactly one vertex in the set S. Note that the capacity c(δ(S)) of a cut δ(S) is the
sum of the capacities of the edges in the cut. In this section we consider the problem of
determining a cut with minimum capacity in an undirected graph. Such a cut is called a
global minimum cut or simply, a minimum cut. Note that when the edge capacities are
all equal to unity, then the edge connectivity λ(G) is equal to the capacity of a minimum
cut of G.

C5955–C0013.tex 298 2015/11/4 9:58am

Connectivity Algorithms � 299

As pointed out in Section 13.2, a minimum cut can be obtained by picking a vertex s,
computing λ(s, v) for each v ̸= s and taking the minimum of the weights of these cuts. Such
a maximum flow-based approach will have a complexity of O(n4). We now discuss a much
simpler algorithm due to Stoer and Wagner [5]. This algorithm uses the operation of vertex
identification defined below.

Given two distinct vertices v and w in a graph G = (V, E), the graph Gvw resulting from
the identification (contraction) of v and w has vertex set V (Gvw) = V \ {v, w} ∪ {x} where
x is a new vertex and edge set E(Gvw) = E \ {set of all parallel edges connecting v and w}.
For each edge e ∈ E(Gvw) and end vertex p ∈ V , p is an end vertex of e in Gvw, if p ̸= v, w;
otherwise x is an end of e in Gvw. All edges in Gvw have the same capacities as in G. Note
that Gvw will not have self-loops (x, x) even when there are parallel edges in G.

The following theorem is the basis of Store and Wagner’s minimum cut algorithm.

Theorem 13.10 Let s and t be two vertices of a graph G. Then λ(G) = min{λ(Gst),
λ(G; s, t)}, where λ(G; s, t) is the capacity of a minimum s−t cut separating s and t in
G, and λ(G) is the capacity of a minimum cut of G.

Note: For the sake of convenience we use λ(G) to denote the capacity of a minimum cut
of G.

Proof. The result follows because

1. If there is a minimum cut of G separating s and t then λ(G) = λ(G; s, t);

2. Otherwise λ(G) = λ(Gst). �

This theorem suggests a recursive algorithm to compute λ(G). To achieve an efficient
algorithm, we need an algorithm to find two vertices s and t such that the computation of
λ(G; s, t) is easily achieved without the help of a maximum flow algorithm. This requires
ordering the vertices by what is known as the MA (maximum adjacency) ordering. An MA
ordering of G is an ordering of the vertices as v1, v2, . . ., vn of G such that

c(δ(Vi−1) ∩ δ(vi)) ≥ c(δ(Vi−1) ∩ δ(vj)) for 2 ≤ i < j ≤ n,

where Vi = {v1, v2, . . ., vi}.
Basically, we choose any vertex as v1 and at step i we select vi to be the vertex that has the

largest capacity of edges connecting it to the previously selected vertices. The time complexity
to find an MA ordering is no more than the time complexity of Prim’s minimum spanning
tree algorithm. It is shown in [6] that an MA ordering can be found in O(m + n log n).

To establish the main result we need the following.

Lemma 13.1 If p, q, r ∈ V , then λ(G; p, q) ≥ min{λ(G; p, r), λ(G; r, q)}.

Proof. Consider a minimum p − q cut δ(S) with p ∈ S. If r ∈ S, then δ(S) is an r − q cut
and so c(δ(S)) ≥ λ(G; r, q). Otherwise, δ(S) is a p− r cut and so c(δ(S)) ≥ λ(G; p, r). Hence
the result. �
In fact, using induction and Lemma 13.1 we can show the following.

Theorem 13.11 For vertices p1, p2, . . ., pk,

λ(G; p1, pk) ≥ min{λ(G; p1, p2), λ(G; p2, p3), . . ., λ(G; pk−1, pk)}. �

We follow the treatment in [7] for the proof of the following main result of this section.

Theorem 13.12 If v1, v2, . . ., vn is an MA ordering of G, then δ(vn) is a minimum vn−1−vn

cut of G.

C5955–C0013.tex 299 2015/11/4 9:58am

300 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. c(δ(vn)) ≥ λ(G; vn−1, vn) because δ(vn) is a vn−1 − vn cut of G. So we just need to
show that c(δ(vn)) ≤ λ(G; vn−1, vn). Proof is by induction on the number of edges and the
number of vertices. The result is trivially true for n = 2 or m = 0.

We consider two cases. In the following δ′ refers to the δ on graph G′.

Case 1 (vn−1, vn) is an edge of G. Let G′ be the graph obtained after deleting edge e in G. It
is easy to see that v1, v2, . . ., vn is still an MA ordering of G′. So by the induction hypothesis
c(δ′(vn)) = λ(G′; vn−1, vn). Then c(δ(vn)) = c(δ′(vn)) + c(e) = λ(G′; vn−1, vn) + c(e) =
λ(G; vn−1, vn). Thus the result is true in this case.

Case 2 vn−1 and vn are not adjacent in G. We will show that

c(δ(vn)) ≤ λ(G; vn−2, vn) (13.5)

and that
c(δ(vn)) ≤ λ(G; vn−1, vn−2). (13.6)

Combining these with the result of Lemma 13.1 will prove that c(δ(vn)) ≤ λ(G; vn−1, vn).
Consider first the inequality (13.5). Let G′ = G\ vn−1, be the graph obtained by deleting

the vertex vn−1. Again it is easy to see that v1, v2, . . ., vn−2, vn is an MA ordering of G′. Then
by the induction hypothesis we have

c(δ′(vn)) = λ(G′; vn−2, vn).

So
c(δ(vn)) = c(δ′(vn)) = λ(G′; vn−2, vn) ≤ λ(G; vn−2, vn).

To prove the inequality (13.6) we apply induction on G′ = G \ vn. Since v1, v2, . . ., vn−2, vn−1
is an MA ordering of G′ we get

c(δ(vn)) ≤ c(δ(vn−1)) = c(δ′(vn−1)) ≤ λ(G′; vn−2, vn−1) ≤ λ(G; vn−1, vn−2). �

Stoer and Wagner’s algorithm for the minimum cut problem in undirected graphs is
given in Figure 13.4. An example taken from [5] and shown in Figure 13.5 illustrates this
algorithm. In Figure 13.5 s and t refer to the last two vertices in an MA ordering. For this
graph, ⟨{3, 4, 7, 8}, {1, 2, 5, 6}⟩ is a min-cut with capacity = 4.

The correctness of this recursive algorithm follows from Theorems 13.10 and 13.12. The
time complexity of the algorithm is dominated by the time required for at most n applications
of an algorithm for determining an MA ordering. Since an MA ordering can be found in
O(m + n log n) [6], the overall time complexity of the algorithm is O(mn + n2 log n).

13.5 VERTEX CONNECTIVITY IN UNDIRECTED GRAPHS

It was pointed out in Theorem 13.6 that the vertex connectivity of a graph G can be com-
puted in O(n5/2m). We can do much better than this. In this section we state and prove the
correctness of an algorithm to compute κ(G), the vertex connectivity of a simple n-vertex
undirected graph G. This algorithm is due to Even and Tarjan [8]. Since the vertex connec-
tivity of an n-vertex complete graph is n− 1, we assume that the graph under consideration
is not complete.

Theorem 13.13 Algorithm 13.4 terminates with vertex connectivity κ(G) = α.

C5955–C0013.tex 300 2015/11/4 9:58am

Connectivity Algorithms � 301

Algorithm 13.3 (Stoer and Wagner’s min-cut algorithm)
Input: A connected undirected graph G = (V, E).
Output: A minimum cut A of G.

begin
M ←∞ (a very large number);
while G has more than one vertex do

begin
find an MA ordering v1, v2, . . ., vn of G;
if c(δ(vn)) < M do M ← c(δ(vn)) and A← δ(vn);
G← Gvn−1,vn

end
end while

return A, a minimum cut of G.
end

Figure 13.4 Stoer–Wagner’s min-cut algorithm.

Proof. Clearly after the first computation of κ(v1, vj) for some vj that is not adjacent to v1,
α satisfies

κ(G) ≤ α ≤ n− 2. (13.7)

From this point on, α can only decrease.
By definition κ(G) is the minimum number of vertices whose removal disconnects two

vertices in G. Let R denote such a set of vertices. Since |R| = κ(G), and p > α ≥ κ(G), at
least one of the vertices v1, v2, . . ., vp is not in R. Let vi be one such vertex. Then removing
from G the vertices in R will separate the remaining vertices into two sets such that each
path from a vertex of one set to a vertex of another set passes through at least one vertex
of R. So there exists a vertex v such that κ(vi, v) ≤ |R| = κ(G). Therefore α ≤ κ(G). Thus
α = κ(G). �

Theorem 13.14 The complexity of computing the vertex connectivity of an undirected G is
O(n1/2m2) where m and n are, respectively, the number of edges and the number of vertices
of G.

Proof. Each step of Algorithm 13.4 requires at most n maximum flow computations, each of
complexity O(n1/2m). At most p steps will be performed. So the complexity of this algorithm
is O(κ(G)n3/2m). But κ(G) ≤ 2m/n. So the complexity of the algorithm is O(n1/2m2). �

13.6 GOMORY–HU TREE

Consider a graph G = (V, E) with a nonnegative capacity c(e) associated with each edge e.
Let T be a spanning tree on the vertex set V with a label fe on each edge e in T . T is said to
be flow equivalent to G, if for any pair of vertices u and v in G, the capacity of a minimum
u− v cut is equal to the minimum label fe among the edges e in the path from u to v in T .
Suppose edge e∗ achieves this minimum for vertices u and v. Then the flow equivalent tree
T is called a Gomory–Hu tree of G if the cut defined by the two trees obtained when e∗

is deleted from T is a minimum u−v cut in G. In this section we develop an algorithm to
construct a Gomory–Hu tree [9].

First we establish certain conditions on the existence of a flow equivalent tree.

C5955–C0013.tex 301 2015/11/4 9:58am

302 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1 2 3 4

5 6 7 8

c(1, 2) = 2 3 4

3 2 2 2
2 2

3 1 3
(a)

1 2 3 4

5 6 7 8

3 4

3 2 2 2
2

2

2

3 1 3

t a b c

s f d e
(b)

2

a

3

d

4

e

1, 5

b

6

c

7

s

8

t

43

2 2 2
4 2

3 1 3

(c)

2

a

3

d

4

s

1, 5

b

6

c

7, 8

t

3 4

2 2
4 4

3 1

(d)

Figure 13.5 Example illustrating Stoer–Wagner’s min-cut algorithm. (a) Graph G with edge
capacities. (b) MA ordering 2, 3, 4, 7, 8, 6, 5, 1 of vertices of G. Here s = 5 and t = 1.
Capacity of minimum s−t cut = 5. (c) Graph after contracting 1 and 5 in the graph (b).
Now s = 7 and t = 8 in the MA ordering of the contracted graph. Capacity of mini-
mum s−t cut = 5. (d) Graph after contracting s and t in the graph (c). Now s = 4
and t = {7, 8} in the MA ordering of the contracted graph. Capacity of minimum s−t

cut = 7. (Continued)

Theorem 13.15 Given f(x, y) = f(y, x) for any x and y, 1 ≤ x ≤ n and 1 ≤ y ≤ n and
x < y. There exists an n-vertex connected graph G = (V, E) such that f(x, y) is the value of
a maximum x− y flow if and only if, for any three distinct vertices p, q, r ∈ V ,

f(p, q) ≥ min{f(p, r), f(r, q)}.

Proof. Necessary part of the theorem follows from Lemma 13.1.
Sufficiency: Treating f(x, y)’s as weights of the edges (x, y) of a complete graph, construct

a maximum spanning tree T of G. For any two vertices x and y, let q(x, y) denote the
minimum of the weights of the edges that lie on the unique path from x to y in T . q(x, y)
will be called the capacity of this path. Then q(x, y) ≥ f(x, y) for otherwise one can get

C5955–C0013.tex 302 2015/11/4 9:58am

Connectivity Algorithms � 303

2 3

1, 5

b

6

c

4

7, 8

t

3

2 6
4

3 1

(e)

(f)

(g)

3, 4

7, 8
2

a

t

1, 5

b

6

s

3

2
4

3

1

3, 4

6, 7, 8

2

a

1, 5

t

s
3

4 5

2

s

V \ 2 t

9

a s

(h)

Figure 13.5 (Continued) Example illustrating Stoer–Wagner’s min-cut algorithm. (e) Graph
after contracting s and t in the graph of Figure 13.5d. Now s = 3 and t = {4, 7, 8} in
the MA ordering of the contracted graph. Capacity of minimum s−t cut = 7. (f) Graph
after contracting s and t in the graph of Figure 13.5e. Now s = 6 and t = {3, 4, 7, 8} in the
MA ordering of the contracted graph. Capacity of minimum s−t cut = 4. (g) Graph after
contracting s and t in the graph of Figure 13.5f. Now s = {3, 4, 6, 7, 8} and t = {1, 5} in the
MA ordering of the contracted graph. Capacity of minimum s−t cut = 7. (h) Graph after
contracting s and t in the graph of Figure 13.5g. Now s = 2 and t = {1, 3, 4, 5, 6, 7, 8} in the
MA ordering of the contracted graph. Capacity of minimum s−t cut = 9.

a spanning tree with larger weight by removing an edge with capacity q(x, y) from T and
adding edge (x, y). Also for any path x = x1, x2, x3, . . ., xk = y,

f(x, y) = f(x1, xk) ≥ min{f(x1, x2), f(x2, x3), . . ., f(xk−1, xk)}.

So, f(x, y) ≥ q(x, y) and f(x, y) = q(x, y). Since the maximum x − y flow in T is uniquely
determined by the x − y path in T , its value is equal to q(x, y) = f(x, y), minimum of the
weights of the edges in the x− y path in T . Thus the tree T is the required graph realizing
f(x, y)’s as maximum flows. �

C5955–C0013.tex 303 2015/11/4 9:58am

304 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Algorithm 13.4 (Even’s vertex connectivity algorithm)
Input: A non-complete Undirected Graph G = (V, E)
Output: Connectivity κ(G) of G.

begin
Compute κ(v1, vj) for every vertex vj that is not adjacent to v1. Let α be the minimum
of these values;
Repeat this computation with v2, v3, . . ., each time updating the value of α;
Terminate with vp, once p exceeds the current value of α;
end /* At termination κ(G) = α.*/

Figure 13.6 Even’s vertex connectivity algorithm.

This theorem also demonstrates that a flow equivalent tree T can be constructed for a
given G. Such a tree may not be a Gomory–Hu tree. An interesting corollary of this theorem
is stated next.

Corollary 13.1 The smallest two of the three maximum flow values f(x, y), f(y, z), and
f(z, x) in a graph are equal. �
Next we proceed to develop an algorithm for constructing a Gomory–Hu tree. We follow the
treatment in [7].

Lemma 13.2 Let δ(A) and δ(B) be two cuts in a graph G = (V, E) with a capacity c(e) ≥ 0
associated with each edge e. Then

c(δ(A)) + c(δ(B)) ≥ c(δ(A ∪B)) + c(δ(A ∩B)).

Proof. Consider Figure 13.7 where the sets (A∩B), (A∩B), (A∩B), and (A∩B) are shown
as circles. The set of edges connecting two of these sets is shown by one single line with
total capacity marked on this edge. For example, the sum of the capacities of the edges that
connect (A ∩B) and (A ∩B) is equal to a. So,

c(δ(A)) = a + b + c + d, c(δ(B)) = b + c + e + f, c(δ(A ∩B)) = a + b + e

and c(δ(A ∪B)) = b + d + f . So

c(δ(A)) + c(δ(B)) ≥ c(δ(A ∪B)) + c(δ(A ∩B)). �

The inequality in Lemma 13.2 is called the submodular inequality.

A ∩ B

A ∩ B
−

A
−

 ∩ B
−

A
−

 ∩ B

d

a

e f

c

b

Figure 13.7 Illustration of the proof of Lemma 13.2.

C5955–C0013.tex 304 2015/11/4 9:58am

Connectivity Algorithms � 305

v
b

w

a

S

X

Figure 13.8 Illustration of Case 1 of Theorem 13.16.

Theorem 13.16 Let δ(S) be a minimum a − b cut for some vertices a, b ∈ V in a graph
G = (V, E) with a capacity c(e) ≥ 0 associated with each edge e. For any two vertices v and
w ∈ S, there exists a minimum v − w cut δ(T) such that T ⊂ S.

Proof. Let δ(X) be a minimum v−w cut. Suppose that both X∩S and X∩S are nonempty.
Without loss of generality assume that b ∈ X.

Case 1 a ∈ X (See Figure 13.8.) By the submodular inequality we have

c(δ(S)) + c(δ(X)) ≥ c(δ(S ∪X)) + c(δ(S ∩X)). (13.8)

Since δ(S ∪X) is an a− b cut and δ(S) is a minimum a− b cut

c(δ(S ∪X)) ≥ c(δ(S)). (13.9)

Combining (13.8) and (13.9) we get

c(δ(S ∩X)) ≤ c(δ(X)) = c(δ(X)).

So δ(S ∩X) is a minimum v − w minimum cut. Here T = S ∩X ⊂ S, as required.

Case 2 a ∈ X. Following the same line of arguments as for case 1 we can show that δ(S∩X)
is a minimum v − w minimum cut. �

This theorem has a very important implication. As in Theorem 13.16, let δ(S) be a minimum
a–b cut in G. Let s and t be any two vertices in S. Let G′ be the graph obtained after
contracting the vertices in S to a single vertex {S}. Then by theorem 13.16 if {T ∪ {S}} is
a minimum s–t cut in G′ then {T ∪S} is a minimum s–t cut in G. This result is the basis of
the Gomory–Hu tree construction algorithm in Figure 13.9 (see steps 3–5 in this algorithm).

Next, we prove that at termination of Algorithm 13.5 T is a Gomory–Hu tree. Let T be
the tree produced at some step in the algorithm, and let e be an edge in T joining sets R
and S in T . Vertices r ∈ R and s ∈ S will be called representatives for e if fe = f(r, s), the
capacity of a minimum r − s cut in G.

Theorem 13.17 At every stage in the Gomory–Hu Algorithm 13.5 there exist representatives
for each edge in the tree T .

C5955–C0013.tex 305 2015/11/4 9:58am

306 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Algorithm 13.5 (Gomory–Hu Tree Construction)

Initialization
1. Start with an empty tree T .
2. (a) Select any two vertices r and s in V , and determine a minimum r − s cut δ(S) =
⟨S, S⟩ in G. Let r ∈ R, s ∈ S.

(b) Add to tree T vertices labeled as R and S and an edge e connecting R and S.
Assign label fe = f(r, s), the capacity of δ(S). (Note: Each of R and S represents a
group of vertices.)
General Step (Expansion of T)
3. Pick any vertex A in the current tree T such that A represents at least two vertices
of G. In G, identify (contract) the vertices in the subtree rooted on each neighbor of A
in T . Let the resulting graph be denoted as GA. Note that the subtrees will appear as
contracted vertices in GA (see Figure 13.10).
4. Select any two vertices x and y in A and determine a minimum x− y cut δ(S) in GA.
Repeated application of Theorem 13.16 guarantees that the capacity of this minimum
cut is also the capacity of a minimum x − y cut in G. Also the set S may have some
contracted vertices representing the subtrees.
5. Split A into two vertices X and Y with X representing all vertices of S except the
contracted vertices contained in S. Add an edge e connecting X and Y with the capacity
of the minimum x−y cut as fe. Use the following rule to reconnect the different subtrees
to X and Y .

i. If a contracted vertex is in S, then connect the corresponding root to X in T ;
ii. Otherwise, connect the root to Y .

Note: While reconnecting the root the edge labels do not change.
End of General Step
6. The general step is repeated until every vertex in the current tree T represents only
one vertex.

Figure 13.9 Gomory–Hu tree construction.

Proof. Clearly this is true initially. The two vertices picked in the initialization step are the
representatives of the first edge added to T .

In the general step vertex A is split into two sets X and Y given by an x − y cut with
x ∈ X and y ∈ Y, and a tree edge connecting X and Y is added. The vertices x and y
are clearly representatives for this newly added tree edge. So we need only show that the
reconnected edges (whose vertices represent new sets) also have representatives. Consider the
edge h connecting B (a root) to X. The case connecting B to Y can be handled in a similar
manner. By assumption there exist representatives a ∈ A and b ∈ B such that fh = f(a, b).
If a ∈ X then a and b will continue to be representatives for h.

If a ∈ Y , we will show that x and b are representatives for h. That is, we will prove that
f(x, b) = f(a, b) (see Figure 13.11).

The minimum a − b cut that was used to obtain the edge h also separates x and b. So,
f(x, b) ≤ f(a, b). We will now show the reverse inequality.

Let G′ be the graph obtained by identifying (contracting) all vertices in Y , and let VY

denote the vertex in G′ denoting the set Y . Then by Theorem 13.16 we have

f(x, b) = f ′(x, b).

By Theorem 13.15,
f ′(x, b) ≥ min{f ′(x, VY), f ′(VY , b)}.

C5955–C0013.tex 306 2015/11/4 9:58am

Connectivity Algorithms � 307

x

e

X

B y Y

C D

E F

f (b, a) fe = c(x, y)

f (b, a)

A

B C

D

E F

(a)

A

FE

B

D

C

(b)

S

E F

B x

X

D y

Y

C

x–y cut

S
−

(d)(c)

Figure 13.10 Example illustrating Gomory–Hu tree construction. (a) Tree T , a ∈ A, b ∈ B.
(b) GA. (c) x−y cut δ(S), x, y ∈ A, X ∪ Y = A. (d) Expansion of vertex A.

X

x

Bb

A

a

x y

Bb

f (a, b) f (a, b)

f (x, y)

⇒

Y

y

a

Figure 13.11 Illustration of proof of theorem 13.17.

Since a ∈ Y we have
f ′(VY , b) ≥ f(a, b).

Also since the x− y cut that splits A into X and Y also separates a and b, we have

f ′(x, VY) ≥ f(x, y) ≥ f(a, b).

This leads to f(x, b) ≥ f(a, b). Thus f(x, b) = f(a, b) and x and b are representatives for the
reconnected edge h. �

C5955–C0013.tex 307 2015/11/4 9:58am

308 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 13.18 The tree constructed by Algorithm 13.5 is a Gomory–Hu tree.

Proof. Recall that a Gomory–Hu tree is defined as follows.
1. For any pair of vertices r and s in G, the capacity of a minimum r − s cut is equal to

the minimum label fe among the edges e in the path from r to s in T .

2. Suppose edge e∗ achieves this minimum for vertices r and s. Then the cut defined by
the two trees obtained when e∗ is deleted from T is a minimum r − s cut in G.

To prove that the tree T produced by the algorithm is a Gomory–Hu tree, let
v0, e1, v1, e2, v2, . . ., ek, vk be the path in T from vertex r to vertex s. Then by Theorem
13.11 and the fact that fei = f(vi−1, vi) (by Theorem 13.17) we have

f(r, s) ≥ min{fe1 , fe2 , . . ., fek
}.

Since each of the cuts corresponding to the edges e1, e2, . . ., ek separate r and s, we have

f(r, s) ≤ min{fe1 , fe2 , . . ., fek
}.

so f(r, s) = min{fe1 , fe2 , . . ., fek
}.

The second property follows because each edge e in T corresponds to a cut specified by
the two trees obtained when e is deleted from T , and this cut has capacity equal to fe. �

Gomory–Hu tree construction as in Algorithm 13.5 involves n − 1 minimum cut com-
putations and so is of complexity O(n4). The real difficulty in implementing the algorithm
lies in performing the identification (contraction) operations. Gusfield [10] gives an approach
that avoids this. This algorithm is simple, but its proof of correctness is very involved. If we
are interested only in a flow equivalent tree (that may not be a Gomory–Hu tree), then see
Gusfield [10] for a simpler algorithm. See also Jungnickel [11] for a discussion of this algo-
rithm. Ahuja et al. [12] discuss another algorithm due to Cheng and Hu [13] for Gomory–Hu
tree construction.

13.7 GRAPHS WITH PRESCRIBED DEGREES

A sequence (d1, d2, . . ., dn) of nonnegative integers is graphic if there exists an n-vertex graph
with vertices v1, v2, . . ., vn such that vertex vi has degree di.

In this section we first describe an algorithm to construct a simple graphs, if one exists,
having a prescribed degree sequence. We then use this algorithm to establish Edmonds’ theo-
rem on the existence of k-edge-connected simple graphs having prescribed degree sequences.

Consider a graphic sequence (d1, d2, . . ., dn) with d1 ≥ d2 . . . ≥ dn. Let di be the degree
of vertex vi. To lay off dk means to connect the corresponding vertex vk to the vertices

v1, v2, . . ., vdk
, if dk < k

or to the vertices
v1, v2, . . ., vk−1, vk+1, . . ., vdk+1, if dk ≥ k.

The sequence

(d1 − 1, . . ., ddk
− 1, ddk+1, . . ., dk−1, 0, dk+1, . . ., dn), if dk < k

or
(d1 − 1, . . ., dk−1 − 1, 0, dk+1 − 1, . . ., ddk+1 − 1, ddk+2, . . ., dn), if dk ≥ k

is called the residual sequence after laying off dk or simply the residual sequence.
Hakimi [14] and Havel [15] have given an algorithm for constructing a simple graph, if

one exists, having a prescribed degree sequence. This algorithm is based on a result that is
a special case (where k = 1) of the following theorem due to Wang and Kleitman [16].

C5955–C0013.tex 308 2015/11/4 9:58am

Connectivity Algorithms � 309

Theorem 13.19 If a sequence (d1, d2, . . ., dn) with d1 ≥ d2 ≥ . . . ≥ dn is the degree sequence
of a simple graph, then so is the residual sequence after laying off dk.

Proof. To prove the theorem we have to show that a graph having (d1, d2, . . ., dn) as its degree
sequence exists such that vertex vk is adjacent to the first dk vertices other than itself. If
otherwise, select from among the graphs with the degree sequence (d1, d2, . . ., dn) a simple
graph G in which vk is adjacent to the maximum number of vertices among the first dk

vertices other than itself. Let vm be a vertex not adjacent to vk in G such that

m ≤ dk, if dk < k

or
m ≤ dk + 1, if k ≤ dk.

In other words vm is among the first dk vertices other than vk. So vk is adjacent in G to some
vertex vq that is not among these first dk vertices. Then dm > dq (if equality, the order of q
and m can be interchanged), and hence vm is adjacent to some vertex vt, t ̸= q, t ̸= m, such
that vt and vq are not adjacent in G. If we now remove the edges (vm, vt) and (vk, vq) and
replace them by (vm, vk) and (vt, vq), we obtain a graph G′ with one more vertex adjacent
to vk among the first dk vertices other than itself violating the definition of G. �

From Theorem 13.19 we get the following algorithm which is a generalization of Hakimi’s
algorithm for realizing a sequence D = (d1, d2, . . ., dn) with d1 ≥ d2 ≥ . . . ≥ dn by a sim-
ple graph. Choose any dk ̸= 0. Lay off dk by connecting vk to the first dk vertices other
than itself. Compute the residual degree sequence. Reorder the vertices so that the residual
degrees in the resulting sequence are in nonincreasing order. Repeat this process until one of
the following occurs:

1. All the residual degrees are zero. In this case the resulting graph has D as its graph
sequence.

2. One of the residual degrees is negative. This means that the sequence D is not graphic.

To illustrate the preceding algorithm, consider the sequence

v1 v2 v3 v4 v5

D = (4 3 3 2 2).

After laying off d3, we get the sequence

v1 v2 v3 v4 v5

D′ = (3 2 0 1 2),

which, after reordering of the residual degrees, becomes

v1 v2 v5 v4 v3

D1 = (3 2 2 1 0).

We next lay off the degree corresponding to v5 and get

v1 v2 v5 v4 v3

D′
1 = (2 1 0 1 0).

Reordering the residual degrees in D′
1 we get

v1 v2 v4 v5 v3

D2 = (2 1 1 0 0).

C5955–C0013.tex 309 2015/11/4 9:58am

310 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

v1

v2

v3v4

v5

Figure 13.12 Graph with degree sequence (4, 3, 3, 2, 2).

Now laying off the degree corresponding to v1, we get

v1 v2 v4 v5 v3

D′
2 = (0 0 0 0 0).

The algorithm terminates here. Since all the residual degrees are equal to zero, the
sequence (4, 3, 3, 2, 2) is graphic. The required graph (Figure 13.12) is obtained by the
following sequence of steps, which corresponds to the order in which the degrees were
laid off:

1. Connect v3 to v1, v2, and v4.

2. Connect v5 to v1 and v2.

3. Connect v1 to v2 and v4.

Erdös and Gallai [17] have given a necessary and sufficient condition (not of an algorithmic
type) for a sequence to be graphic. See also Harary [18].

Suppose that in the algorithm we lay off at each step the smallest nonzero residual degree.
Then using induction we can easily show that the resulting graph is connected if

di ≥ 1 for all i (13.10)

and
n∑

i=1
di ≥ 2(n− 1). (13.11)

Note that (13.10) and (13.11) are necessary for the graph to be connected. In fact we prove
in the following theorem a much stronger result. This result is due to Edmonds [19]. The
proof given here is due to Wang and Kleitman [20].

Theorem 13.20 (Edmonds) A necessary and sufficient condition for a graphic sequence
(d1, d2, . . ., dn) to be the degree sequence of a simple k-edge-connected graph, for k ≥ 2, is
that each degree di ≥ k.

Proof. Necessity is obvious.

We prove the sufficiency by showing that the algorithm we have just described results in a
k-edge-connected graph when all the edges in the given graphic sequence are greater than or
equal to k. Note that at each step of the algorithm, we should lay off the smallest nonzero
residual degree.

C5955–C0013.tex 310 2015/11/4 9:58am

Connectivity Algorithms � 311

Proof is by induction. Assume that the algorithm is valid for all sequences in which each
degree di ≥ p with p ≤ k − 1.

To prove the theorem we have to show that in the graph constructed by the algorithm
every cutset ⟨A, A⟩ has at least k edges. Proof is trivial if |A| = 1 or |A| = 1. So assume that
|A| ≥ 2 and |A| ≥ 2.

We claim that in the connection procedure of the algorithm, one of the following three
cases will eventually occur at some step, say, step r. (Step r means the step when the rth
vertex is fully connected.)

Case 1 All the nonzero residual degrees are at least k.

Case 2 All the nonzero residual degrees are at least k − 1, and there is at least one edge
constructed by steps 1, . . ., r that lies in ⟨A, A⟩.

Case 3 All the nonzero residual degrees are at least k − 2, and there are at least two edges
constructed by steps 1, 2, . . ., r that lie in ⟨A, A⟩.

All these three cases imply that the cutset ⟨A, A⟩ has at least k edges by induction.
We prove this claim as follows.
Let vi be the vertex that is connected at step i. Without loss of generality we may assume

that v1 is in A. We now show that at some step in the connection procedure case 3 must
occur if cases 1 and 2 never occur. At step 1, v1 is fully connected. Then:

a. The smallest nonzero residual degrees are k − 1, because case 1 has not occurred.

b. The degrees of none of the vertices in A are decreased by 1 when v1 is connected,
because case 2 has not occurred.

Hence v2, the vertex to be connected at step 2, must be in A. (All vertices in A must have
degree at least k.) Now if v2 is connected and case 1 does not occur and no edge connects A
with A, then we shall still have (a) and (b) as before. Hence the next vertex to be connected
will still be in A.

Since the residual degrees are decreased at each step of the connection procedure, sooner
or later there must exist an r with vr in A, such that when vr is connected, an edge will
connect A with A. If case 2 does not occur, then one of the nonzero residual degrees among
the vertices of A not yet fully connected becomes k − 2. This means, by our connection
procedure, that vr must connect to every vertex in A, because vertices in A all have residual
degree equal to k, and since we connect vr to the vertices of the largest residual degree. Since
|A| ≥ 2, at this step case 3 occurs. �

Wang and Kleitman [16] have also established necessary and sufficient conditions for a graphic
sequence to be the degree sequence of a simple k-vertex-connected graph.

Summary and Related Works

The book [6] by Nagomochi and Ibaraki gives a comprehensive treatment of various aspects of
connectivity algorithms. Our treatment in Sections 13.4 and 13.6 follows closely the develop-
ments in the book [7] by Cook et al. Jungnickel [11], Korte and Vygen [21], and Ahuja
et al. [12] are other excellent references for the material covered in this chapter. See
Esfahanian [22] for a very readable exposition of several connectivity algorithms.

The idea of node contraction used by Stoer and Wagner [5] in their min-cut algorithm
was earlier considered in Paderberg and Rinaldi [23]. In contrast to node contraction, Karger
[24] used edge contraction to develop a randomized contraction algorithm for the min-cut

C5955–C0013.tex 311 2015/11/4 9:58am

312 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

problem. This is discussed in Chapter 35 of this book (see also Karger and Stein [25]).
Nagamochi and Ibaraki [26] have discussed edge connectivity problem in multigraph and
capacitated graphs.

As regards connectivity (i.e., vertex connectivity), algorithms for testing 2-connectivity
and strong connectivity have been discussed in Chapter 3 of this book. Hopcroft and
Tarjan [27] have developed an O(n) time algorithm to test 3-connectivity of an undirected
graph. For early algorithms to test if the connectivity of a graph is at least k, see Galil
[28], Even [29], and Kleitman [30]. Cheriyan and Thurimella [31] presented distributed and
parallel algorithms for the k-connectivity problem.

For a more detailed discussion of Gomory–Hu tree algorithm see Jungnickel [11], Ahuja
et al. [12], and Korte and Vygen [21]. For a detailed discussion of the problem of synthesizing
networks satisfying prescribed flow requests see Gomory and Hu [9]. See also Gondron and
Minoux [32]. Korte and Vygen [21] discuss several related network design algorithms.

Boesch [33] has several papers on the design of graphs having specific connectivity and
reliability properties. Some of the early papers that deal with this topic include Hakimi
[34], Boesch and Thomas [35], and Amin and Hakimi [36]. Frank and Frisch [37] is one
of the earliest works to discuss a variety of topics related to network design that are of
great interest to researchers in the modern area of communication networks. For some more
works see Krishnamoorthy et al. [38,39], Bermond et al. [40], Opatrny et al. [41], and Chung
and Garey [42]. See Chapter 42 of this book for appropriate algorithm related to certain
connectivity problem.

References

[1] K. Menger. Zur allgemeinen Kurventheorie. Fund. Math., 10 (1927), 96–115.

[2] D. W. Matula. Determining edge connectivity in O(mn). In Proceedings of the 28th
Annual Symposium on Foundations of Computer Science, Los Angeles, CA, 249–251,
1987.

[3] C. P. Schnorr. Bottlenecks and edge connectivity in unsymmetrical networks. SIAM
J. Compu., 8 (1979), 265–274.

[4] Y. Mansour and B. Schieber. Finding the edge connectivity of directed graphs.
J. Algorithms, 10 (1989), 76–85.

[5] M. Stoer and F. Wagner. A simple min-cut algorithm. JACM, 44(4) (1997), 585–591.

[6] H. Nagamochi and T. Ibaraki. Algorithmic Aspects of Graph Connectivity. Cambridge
University Press, Cambridge, 2008.

[7] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial
Optimization. Wiley-Interscience, New York, 1998.

[8] S. Even and R. E. Tarjan. Network flow and testing graph connectivity. SIAM J. Com-
put., 4 (1975), 507–512.

[9] R. E. Gomory and T. C. Hu. Multi-terminal network flows. J. SIAM, 9 (1961), 551–570.

[10] D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM J. Comput.,
19 (1990), 143–155.

[11] D. Jungnickel. Graphs, Networks and Algorithms. Springer-Verlag, Berlin, Germany,
2005.

C5955–C0013.tex 312 2015/11/4 9:58am

Connectivity Algorithms � 313

[12] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Upper Saddle River, NJ, 1993.

[13] C. K. Cheng and T. C. Hu. Ancestor tree for arbitrary multi-terminal cut functions. In
Proceedings of the 1st Integer Programming and Combinatorial Optimization Conference,
Waterloo, Canada, 1990.

[14] S. L. Hakimi. On the realizability of a Set of integers as degrees of the vertices of a
graph,. SIAM J. Appl. Math., 10 (1962), 496–506.

[15] V. Havel. A remark on the existence of finite graphs. Casopois Pest. Math., 80 (1955),
477–480.

[16] D. L. Wang and D. J. Kleitman. On the existence of n-connected graphs with prescribed
degrees (n ≥ 2). Networks, 3 (1973), 225–239.

[17] P. Erdös and T. Gallai. Graphs with prescribed degrees of vertices. Mat. Lapok, 11
(1960), 264–274.

[18] F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.

[19] J. Edmonds. Existence of k-edge-connected ordinary graphs with prescribed degrees.
J. Res. Nat. Bur. Stand. B., 68 (1964), 73–74.

[20] D. L. Wang and D. J. Kleitman. A note on n-edge connectivity. SIAM J. Appl. Math.,
26 (1974), 313–314.

[21] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer,
Berlin, Germany, 2010.

[22] A. Esfahanian, Connectivity algorithms. In Robin Wilson and Lowell Beineke, editors,
Structural Graph Theory, pages 268–281. Cambridge University Press, Cambridge, 2013.

[23] M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut prob-
lem. Mathematical Programming, 47 (1990), 19–36.

[24] D. R. Karger. Global min-cuts in RNC and other ramifications of a simple mincut algo-
rithm. In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms,
Austin, TX, pages 84–93, 1993.

[25] D. R. Karger and C. Stein. An Õ(n2) algorithm for minimum cuts. In Proc. 25th Symp.
Theor. Comput., San Diego, CA, 757–765, 1993.

[26] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs and capac-
itated graphs. SIAM J. on Discrete Maths, 5 (1992), 54–66.

[27] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM
J. Comput., 2 (1973), 135–158.

[28] Z. Galil. Finding the vertex connectivity of graphs. SIAM J. on Comput., 9 (1980),
197–199.

[29] S. Even. An algorithm for determining whether the connectivity of a graph is at least
k. SIAM J. Comput., 4 (1975), 393–396.

[30] D. J. Kleitman. Methods for investigating the connectivity of large graphs. IEEE Trans.
Circuit Theory, 16 (1969), 232–233.

C5955–C0013.tex 313 2015/11/4 9:58am

314 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[31] J. Cheriyan and R. Thurimella. Algorithms for parallel vertex connecitivity and sparse
certificates. In Proc. 24th ACM Symp. Theor. Comput., New Orleans, LA, 391–401,
1991.

[32] M. Gondron and N. Minoux. Graphs and Algorithms. Wiley, New York, 1984.

[33] F. T. Boesch, editor. Large-Scale Networks: Theory and Design. IEEE Press, New York,
1976.

[34] S. L. Hakimi. An algorihtm for construction of least vulnerable communication networks
or the graph with the maximum connectivity. IEEE Trans. Circuit Theory, CT-16
(1969), 229–230.

[35] F. T. Boesch and R. E. Thomas. On graphs of invulnerable communication nets. IEEE
Trans. Circuit Theory, CT-17 (1970), 183–192.

[36] A. T. Amin and S. L. Hakimi. Graphs with given connectivity and independence number
or networks with given measures of vulneralility and survivability. IEEE Trans. Circuit
Theory, CT-20 (1973), 2–10.

[37] H. Frank and I. T. Frisch. Communication, Transmission, and Transportation Networks.
Addison-Wesley, Reading, MA, 1971.

[38] V. Krishnamoorthy, K. Thulasiraman, and M. N. S. Swamy. Minimum-order graphs
with prescribed diameter, connectivity and regularity. Networks, 19 (1989), 25–46.

[39] V. Krishnamoorthy, K. Thulasiraman, and M. N. S. Swamy. Incremental distance and
diameter sequences of a graph: New measures of network performance. IEEE Trans.
Comput., 39 (1990), 230–237.

[40] J. C. Bermond, N. Homobono, and C. Peyrat. Large fault-tolerant inter-connection
networks. Graphs and Combinatorics, 5 (1989), 107–123.

[41] J. Opatrny, N. Srinivasan, and V. S. Alagar. Highly fault-tolerant communication net-
work models. IEEE Trans. Circuits and Sys., 30 (1989), 23–30.

[42] F. R. K. Chung and M. R. Garey. Diameter bounds for altered graphs. J. Graph Theory,
8 (1984), 511–534.

C5955–C0013.tex 314 2015/11/4 9:58am

C H A P T E R 14

Graph Connectivity
Augmentation
András Frank

Tibor Jordán

CONTENTS

14.1 Introduction . 315
14.1.1 Notation . 316

14.2 Edge-Connectivity Augmentation of Graphs . 316
14.2.1 Degree-Specified Augmentations . 318
14.2.2 Variations and Extensions . 320

14.3 Local Edge-Connectivity Augmentation of Graphs . 320
14.3.1 Degree-Specified Augmentations . 321
14.3.2 Node-to-Area Augmentation Problem . 323

14.4 Edge-Connectivity Augmentation of Digraphs . 323
14.4.1 Degree-Specified Augmentations . 325

14.5 Constrained Edge-Connectivity Augmentation Problems . 325
14.6 Vertex-Connectivity of Graphs . 329
14.7 Vertex-Connectivity Augmentation of Digraphs . 333

14.7.1 Augmenting ST-Edge-Connectivity . 335
14.8 Hypergraph Augmentation and Coverings of Set Functions . 337

14.8.1 Detachments and Augmentations . 340
14.8.2 Directed Hypergraphs . 341

14.1 INTRODUCTION

The problem of economically improving a network to meet given survivability requirements
occurs in a number of areas. A straightforward problem of this type is concerned with creating
more connections in a telephone or computer network so that it survives the failure of a given
number of cables or terminals [1]. Similar problems arise in graph drawing [2], statics [3],
and data security [4]. It is natural to model these networks by graphs or directed graphs and
use graph connectivity parameters to handle the survivability requirements. This leads to
the following quite general optimization problem.

Connectivity Augmentation Problem: Let G = (V, E) be a (directed) graph and let
r : V × V → Z+ be a function on the pairs of vertices of G. Find a smallest (or cheapest)
set F of new edges on vertex set V such that λ(u, v; G′) ≥ r(u, v) (or κ(u, v; G′) ≥ r(u, v))
holds for all u, v ∈ V in G′ = (V, E ∪ F).

C5955–C0014.tex 315 2015/11/4 10:12am

315

316 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Here λ(u, v; H) (κ(u, v; H)) denotes the local edge-connectivity (local vertex-connectivity,
respectively) in graph H, that is, the maximum number of pairwise edge-disjoint
(vertex-disjoint) paths from u to v in H. When the goal is to find a cheapest set of new
edges, it is meant with respect to a given cost function on the set of possible new edges.

The connectivity augmentation problem includes a large number of different subprob-
lems (e.g., G may be a graph or a digraph, or the requirements may involve edge- or
vertex-connectivity), which are interesting on their own, and whose solutions require dif-
ferent methods of combinatorial optimization. Some special cases can be solved by using
well-known techniques, even in the minimum cost version. For example, if there is only one
vertex pair u, v for which r(u, v) is positive then, after assigning zero costs to the edges in
E, we can use shortest path or minimum cost flow algorithms to find an optimal solution.
If r(s, v) = k for some integer k for all v ∈ V , where s is a designated vertex and the
graph is directed, then minimum cost s-arborescence or minimum cost matroid intersection
algorithms can be used in a similar way. However, the minimum cost versions (even in the
case when each edge cost is either one or ∞) are typically NP-hard. For example, a graph
H = (V, E) contains a Hamilton cycle if and only if the cheapest set of edges which makes
the edgeless graph on V 2-edge-connected has cost |V |, where the cost function is defined so
that the cost of each edge of H is equal to one, and all the other edge costs are ∞.

We shall focus on those efficiently solvable variants of the problem which are NP-hard in
the minimum cost setting but for which polynomial time algorithms and minimax theorems
are known when the addition of any new edge has the same unit cost. That is, we shall
be interested in augmenting sets of minimum size. In most cases it will be possible to add
(any number of parallel copies of) a new edge ab for all a, b ∈ V , but we shall also consider
tractable versions of some constrained augmentation problems, where the set of possible new
edges is restricted (e.g., where we wish to augment a bipartite graph preserving bipartite-
ness). A brief summary of generalizations to hypergraph augmentation problems and even
more abstract versions will also be given. A detailed analysis of the corresponding efficient
algorithms is not in the scope of this chapter. The reader is referred to the book of Nagamochi
and Ibaraki [5] for more details on the algorithmic issues. Further related survey articles and
book chapters can be found in Frank [6,7], Schrijver [8], and Szigeti [9]. NP-hard versions
and approximation algorithms are discussed in Khuller [10] and Gupta and Könemann [11].

14.1.1 Notation

Let G = (V, E) be a graph. We shall use dG(X) to denote the degree of a set X of vertices. The
degree of single vertex is denoted by dG(v). For two disjoint subsets X, Y ⊆ V the number of
edges from X to Y in G is denoted by dG(X, Y). When we deal with a directed graph D we use
ρD(X) and δD(X) to denote the in-degree and the out-degree of X, respectively. We omit the
subscript referrring to the (directed) graph when it is clear from the context. For simplicity
the directed edges (arcs) in a directed graph will also be called edges. In this case the notation
reflects the orientation of the edge, that is, a directed edge uv has a tail u and a head v.

A function f defined on the subsets of V is called submodular if it satisfies f(X)+f(Y) ≥
f(X ∩ Y) + f(X ∪ Y) for all pairs X, Y ⊂ V . We say that f is supermodular if −f is
submodular. The functions d, ρ, δ defined above are all submodular.

14.2 EDGE-CONNECTIVITY AUGMENTATION OF GRAPHS

The first papers on graph connectivity augmentation appeared in 1976, when Eswaran and
Tarjan [12] and independently Plesnik [13] solved the 2-edge- (and 2-vertex-)connectivity
augmentation problem. Although several graph synthesis problems (i.e., augmentation prob-
lems where the starting graph has no edges) had been solved earlier (see, e.g., Gomory and

C5955–C0014.tex 316 2015/11/4 10:12am

Graph Connectivity Augmentation � 317

Hu [14] and Frank and Chou [15]), these papers were the first to provide minimax theorems
for arbitrary starting graphs. The size of a smallest augmenting set which makes a graph
2-edge-connected can be determined as follows.

Let G = (V, E) be a graph. We say that a set U ⊆ V is extreme if d(X) > d(U) for all
proper nonempty subsets X of U . For example, {v} is extreme for all v ∈ V . It is not hard to
see that the extreme sets of G form a laminar family. (A set family F is laminar if for each pair
of members X, Y ∈ F we have that either X ∩Y = ∅ or one of them is a subset of the other.)

An extreme set with d(U) ≤ 1 satisfying d(X) ≥ 2 for all proper nonempty subsets X of U
is called 2-extreme. The subgraph G′ induced by a 2-extreme set U is 2-edge-connected, for if
there is a nonempty subset X ⊂ U for which dG′(X) ≤ 1, then 2+2 ≤ dG(X)+dG(U −X) =
dG′(X) + dG′(U − X) + dG(U) ≤ 1 + 1 + 1, which is not possible. Furthermore, the 2-
extreme sets are pairwise disjoint, since X ∩ Y ̸= ∅ would imply 1 + 1 ≥ dG(X) + dG(Y) ≥
dG(X − Y) + dG(Y − X) ≥ 2 + 2. Let t0(G) and t1(G) denote the number of 2-extreme sets
of degree 0 and 1 in G, respectively.

Theorem 14.1 [12] The minimum number γ of new edges whose addition to a graph G =
(V, E) results in a 2-edge-connected graph is t0(G) + ⌈t1(G)/2⌉.

Proof. Shrinking a 2-extreme subset into a single vertex does not affect the values t0 and
t1, and the minimal γ remains unchanged, as well. Therefore, we can assume that every
2-extreme set is a singleton, and hence G is a forest. In this case, t0 is the number of isolated
vertices, while t1 is the number of leaf vertices.

In a 2-edge-connected augmentation of G, there are at least 2 new edges incident to an
isolated vertex of G, and at least 1 new edge incident to a leaf vertex of G. Therefore, the
number of new edges is at least ⌈2t0 + t1/2⌉ = t0 + ⌈t1/2⌉.

To see that the graph can be made 2-edge-connected by adding t0 + ⌈t1/2⌉ new edges,
it suffices to show by induction that there is a new edge e such that the addition of e to G
decreases the value of t0 + ⌈t1/2⌉. Such an edge is said to be reducing.

Assume first that G is disconnected. Let u and v be two vertices of degree at most one
belonging to distinct components. A simple case-checking—depending on the degrees of u
and v—shows that the new edge e = uv is reducing.

Therefore, we can assume that G is actually a tree (and hence t0 = 0) which has at
least 2 vertices (and hence t1 ≥ 2). When t1 = 2, the tree is a path, and we obtain a 2-
edge-connected graph (namely, a cycle) by adding one edge connecting the end-vertices of
the path. In this case, γ = 1 = t0 + ⌈t1/2⌉.

If t1 = 3, then the tree consists of three paths ending at a common vertex. Let a, b, and c
denote the other end-vertices of these paths. By adding the two new edges ab and ac to the
tree, we obtain a 2-edge-connected graph, and hence γ = 2 = t0 + ⌈t1/2⌉.

The remaining case is when t1 ≥ 4. There is a path P in the tree connecting two leaf
vertices such that at least two edges leave V (P). (For example, a longest path including a
vertex of degree at least four or a longest path including two vertices of degree three will
suffice.) By adding the new edge e between the two end-vertices of P , we obtain a graph
G′ in which the value of t0 continues to be 0. Furthermore, the vertex-set of P + e is not
2-extreme in G′, since its degree is at least 2. Thus, the addition of e to G reduces the value
of t1 by exactly 2. Consequently, e is reducing. �

A different solution method is to (cyclically) order the 2-extreme sets as they are reached by
a DFS and then connect opposite pairs by the new edges.

Next we consider the k-edge-connectivity augmentation problem, where the goal is to make
the input graph k-edge-connected (k ≥ 2) by adding a smallest set of new edges. Kajitani
and Ueno [16] solved this problem for every k ≥ 1 in the special case when the starting graph
is a tree.

C5955–C0014.tex 317 2015/11/4 10:12am

318 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

First we extend the lower bound used in Theorem 14.1 to general graphs and higher
target connectivity as follows. A subpartition of V is a family of pairwise disjoint nonempty
subsets of V . Let G = (V, E) be a graph and k ≥ 2. Let

α(G, k) = max
{

t∑
1

(k − d(X)) : {X1, X2, . . ., Xt} is a subpartition of V

}
(14.1)

and let γ(G, k) be the size of a smallest augmenting set of G with respect to k-edge-
connectivity. Every augmenting set must contain at least k − d(X) edges entering X for
every X ⊂ V and every new edge can decrease this deficiency of at most two sets in any
subpartition. Thus γ(G, k) ≥ Φ(G, k), where Φ(G, k) = ⌈α(G, k)/2⌉. Theorem 14.1 implies
that γ(G, 2) = Φ(G, 2).

Watanabe and Nakamura [17] were the first to prove that γ = Φ for all k ≥ 2 by using
extreme sets and constructing an increasing sequence of augmenting sets F1, F2, . . ., Fk such
that for all 1 ≤ i ≤ k the set Fi is an optimal augmenting set of G with respect to i. Here
we present a different method which was first employed by Cai and Sun [18] (and suggested
already by Plesnik [13] for k = 2). This method is based on edge splitting. Let H = (V +s, E)
be a graph with a designated vertex s. By splitting off a pair of edges su, sv we mean the
operation that replaces su, sv by a new edge uv. The resulting graph is denoted by Huv.
A complete splitting at s is a sequence of splittings which isolates s. A complete splitting
exists only if dH(s) is even. The splitting off method adds a new vertex s and some new
edges incident with s to the starting graph and constructs the augmenting set by splitting
off all the edges from s. Frank [19] simplified and extended this method (and established the
link between generalized polymatroids and augmentation problems).

Let G = (V, E) be a graph. An extension G′ = (V + s, E′) of G is obtained from G
by adding a new vertex s and a set of new edges incident with s. An extension G′ is said
to be (k, s)-edge-connected if λ(x, y; G′) ≥ k holds for every pair x, y ∈ V . G′ is minimally
(k, s)-edge-connected if G′ − e is no longer (k, s)-edge-connected for every edge e incident
with s.

The following result of Lovász [20] is a key ingredient in this approach. Let H = (V +s, E)
be a (k, s)-edge-connected graph. We say that splitting off two edges us, sv is k-admissible
if Huv is also (k, s)-edge-connected. A complete k-admissible splitting at s is a sequence of
k-admissible splittings which isolates s. Observe that the graph on vertex set V , obtained
from H by a complete k-admissible splitting, is k-edge-connected.

Theorem 14.2 [20] Let H = (V + s, E) be a (k, s)-edge-connected graph for some k ≥ 2
and suppose that dH(s) is even. Then (a) for every edge su there exists an edge sv such that
the pair su, sv is k-admissible; (b) there exists a complete k-admissible splitting at s in H. �

Note that (b) follows by dH(s)/2 repeated applications of (a).

14.2.1 Degree-Specified Augmentations

Let G = (V, E) be a graph and let m : V → Z+ be a function. We say that m is a
k-augmentation vector if there exists a graph H = (V, F) for which G+H is k-edge-connected
and dH(v) = m(v) for every vertex v. Here G + H is the graph on vertex set V with edge set
E ∪ F . For a subset X ⊆ V we put m(X) =

∑
v∈X m(v).

Theorem 14.3 [19] Let G = (V, E) be a graph, k ≥ 2 an integer, and let m : V → Z+.
Then m is a k-augmentation vector if an only if m(V) is even and

m(X) ≥ k − dG(X) for every ∅ ⊂ X ⊂ V . (14.2)

Furthermore, it suffices to require (14.2) for the extreme subsets of V.

C5955–C0014.tex 318 2015/11/4 10:12am

Graph Connectivity Augmentation � 319

Proof. If m is a k-augmentation vector then there is a graph H = (V, F) for which G + H
is k-edge-connected and dH(v) = m(v) for every vertex v. We then have k ≤ dG+H(X) =
dG(X) + dH(X) ≤ dG(X) +

∑
[dH(v) : v ∈ X] = dG(X) + m(X), from which (14.2) follows.

Since m is a degree sequence, m(V) must be even.
To see sufficiency, add a new vertex s to G and m(v) parallel sv-edges for every vertex

v of G. It follows from (14.2) that for all X ⊂ V we have dG′(X) = dG(X) + m(X) ≥ k in
the extended graph G′. Thus G′ is (k, s)-edge-connected. Since m(V) is even, dG′(s) is even.
Hence we can apply Theorem 14.2 to G′ and conclude that there is a complete k-admissible
splitting at s resulting in a k-edge-connected graph on vertex-set V . This implies that G+H
is k-edge-connected, where H = (V, F) is the graph whose edge set F consists of the edges
arising from the edge splittings. Since dH(v) = m(v) for all v ∈ V , it follows that m is a
k-augmentation vector.

The last part of the theorem follows by observing that every set X ⊆ V has a nonempty
extreme subset U with d(U) ≤ d(X). �

We define a set X (∅ ⊂ X ⊂ V) to be tight with respect to a function m : V → Z+ satisfying
(14.2) if m(X) = k − dG(X).

Lemma 14.1 Let m : V → Z+ be a function satisfying (14.2) and let T be the subset of
vertices v for which m(v) > 0. Suppose that m is minimal in the sense that reducing m(v)
for any v ∈ T destroys (14.2). Then there is a subpartition {X1, . . ., Xt} of V consisting of
tight extreme sets which cover T .

Proof. The minimality of m implies that each vertex v ∈ T belongs to a tight set. Let
T (v) be a minimal tight set containing v. We claim that T (v) is extreme. For if not, then
there is a proper subset Z ⊂ T (v) with dG(Z) ≤ dG(T (v)). Then m(Z) ≥ k − dG(Z) ≥
k − dG(T (v)) = m(T (v)) = m(Z) + m(T (v) − Z), from which we obtain m(Z) = k − dG(Z)
and m(T (v) − Z) = 0. Hence Z is tight and v ∈ Z, contradicting the minimal choice of T (v).

Therefore each v ∈ T belongs to tight extreme set. Let {X1, . . . , Xt} denote the maximal
tight extreme sets. These sets are disjoint and cover T since the extreme subsets of V form
a laminar family. �
We are now ready to prove the following fundamental theorem, due to Watanabe and
Nakamura [17]. The proof below appeared in [19].

Theorem 14.4 [17] Let G = (V, E) be a graph and k ≥ 2 an integer. Then

γ(G, k) = Φ(G, k). (14.3)

Proof. We have already observed that γ(G, k) ≥ Φ(G, k). To see that equality holds choose
a function m : V → Z+ for which (14.2) holds and for which m(V) is as small as possible.

Claim 14.1 m(V) ≤ α(G, k).

Proof. By the minimality of m(V) we can apply Lemma 14.1 to obtain that there is a
subpartition {X1, . . ., Xt} of V consisting of tight extreme sets which cover every vertex v
with m(v) > 0. Thus m(V) =

∑t
i=1 m(Xi) =

∑t
i=1[k − dG(Xi)] ≤ α(G, k), as claimed. �

If m(V) is odd, increase m(v) by one for some v ∈ V to make sure that m(V) is even. Now
m is a k-augmentation vector by Theorem 14.3 and hence there is a graph H = (V, F) for
which G + H is k-edge-connected and dH(v) = m(v) for all v ∈ V . Since |F | = m(V)/2 ≤
⌈α(G, k)/2⌉ = Φ(G, k), the theorem follows. �

C5955–C0014.tex 319 2015/11/4 10:12am

320 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Note that the statement of the theorem of Watanabe and Nakamura fails to hold for k = 1.
This can be seen by choosing G to be the edgeless graph on four vertices. It is also worth
mentioning that the proof above gives rise to a polynomial algorithm since a minimally
(k, s)-edge-connected extension and a complete k-admissible splitting can be computed in
polynomial time by using maximum flow algorithms. For more efficient algorithms using
maximum adjacency orderings, see Nagamochi and Ibaraki [5].

Naor et al. [21] came up with yet another proof (and algorithm) for Theorem 14.4. Their
algorithm increases the edge-connectivity one by one and is based on extreme sets. They
use the Gomory–Hu tree of G to find the extreme sets. They also show how to employ the
cactus representation of minimum edge cuts [22] to find a smallest set F which increases
the edge-connectivity by one. Benczúr and Karger [23] show how the so-called extreme set
tree can be used to find a minimally (k, s)-edge-connected extension G′ of G and a complete
k-admissible splitting in G′.

14.2.2 Variations and Extensions

Frank [19] showed that, although finding an augmenting set with minimum total cost is NP-
hard, the k-edge-connectivity augmentation problem with vertex-induced edge costs can be
solved in polynomial time. In this version we are given a cost function c′ : V → Z+ on the
vertices of the input graph and the cost c(uv) of a new edge uv is defined to be c′(u) + c′(v).
Several degree constrained versions of the problem are also dealt with in [19]. One of these
results is the following characterization.

Theorem 14.5 [19] Let G = (V, E) be a graph, k ≥ 2 an integer, and let f ≤ g be two
nonnegative integer-valued functions on V . Then G can be made k-edge-connected by adding
a set F of new edges so that f(v) ≤ dF (v) ≤ g(v) holds for every v ∈ V if and only if
k − d(X) ≤ g(X) for every ∅ ̸= X ⊂ V and there is no partition P = {X0, X1, . . ., Xt} of V ,
where only X0 may be empty, for which f(X0) = g(X0), g(Xi) = k − d(Xi) for 1 ≤ i ≤ t,
and g(V) is odd. �

14.3 LOCAL EDGE-CONNECTIVITY AUGMENTATION OF GRAPHS

A function r : V ×V → Z+ is called a local requirement function on V . We shall only consider
symmetric functions, that is we shall assume that r(u, v) = r(v, u) for all u, v ∈ V when
we deal with undirected graphs. Given a local requirement function r, we say that a graph
H on vertex set V is r-edge-connected if λ(x, y; H) ≥ r(x, y) for all x, y ∈ V . In the local
edge-connectivity augmentation problem the goal is to find a smallest set F of new edges
whose addition makes the input graph G = (V, E) r-edge-connected.

The local edge-connectivity augmentation problem can also be solved by using the edge
splitting method. In this version we need a stronger splitting result (Theorem 14.6 below,
due to Mader), and a modified lower bound counting deficiencies of subpartitions.

Let G = (V, E) be a graph and let r be a fixed local requirement function on V . We
define a function R on the subsets of V as follows: we put R(∅) = R(V) = 0 and let

R(X) = max{r(x, y) : x ∈ X, y ∈ V − X} for all ∅ ̸= X ⊂ V. (14.4)

It is not difficult to check that R is skew supermodular, that is, for all X, Y ⊆ V we have
R(X) + R(Y) ≤ R(X ∩ Y) + R(X ∪ Y) or R(X) + R(Y) ≤ R(X − Y) + R(X − Y)
(or both).

C5955–C0014.tex 320 2015/11/4 10:12am

Graph Connectivity Augmentation � 321

By Menger’s theorem an augmented graph G′ of G is r-edge-connected if and only if
dG′(X) ≥ R(X) for every X ⊆ V . Let q(X) = R(X) − dG(X) for X ⊆ V and let

α(G, r) = max
{

t∑
i=1

q(Xi) : {X1, X2, . . ., Xt} is a subpartition of V

}
. (14.5)

An argument analogous to that of the uniform case shows that γ(G, r) ≥ Φ(G, r), where
γ(G, r) is the size of a smallest augmenting set and Φ(G, r) = ⌈α(G, r)/2⌉. Theorem 14.4
claims that this lower bound is achievable if r ≡ k ≥ 2. In the local version this does not
necessarily hold. For example, consider a graph with four vertices and no edges and let r ≡ 1.
On the other hand, if

r(u, v) ≥ 2 (14.6)
for all u, v ∈ V then, as we shall see, we do have the equality γ = Φ. In the rest of this section
we shall assume that (14.6) holds. In general G may contain some marginal components with
respect to r which need to be taken care of before one may assume (14.6). This reduction is
relatively easy but quite technical. Therefore we refer the reader to [19] for the details.

Let r be a local requirement function on V , let G = (V, E) be a graph and let G′ =
(V + s, E′) be an extension of G. We say G′ is (r, s)-edge-connected if λ(x, y; G′) ≥ r(x, y)
for every x, y ∈ V . Splitting off us, sv is r-admissible in G′ if λ(x, y; G′

uv) ≥ r(x, y) for all
x, y ∈ V .

Let rλ(x, y) = λ(x, y; G′) be a special requirement function defined on pairs x, y ∈ V .
Mader’s [24] deep result, which extends Theorem 14.2 to local edge-connectivities, is as
follows.

Theorem 14.6 [24] Let G′ = (V + s, E′) be a graph. Suppose that d(s) is even and there is
no cut-edge incident with s. Then there is a complete rλ-admissible splitting at s. �

14.3.1 Degree-Specified Augmentations

The next result is the local version of Theorem 14.3.

Theorem 14.7 [19] Let G = (V, E) be a graph, m : V → Z+ with m(V) even, and let r be
a local requirement function satisfying (14.6). There is a graph H = (V, F) for which

dH(v) = m(v) for all v ∈ V (14.7)

and
λG′(x, y) ≥ r(x, y) for all x, y ∈ V , (14.8)

where G′ = G + H, if and only if

m(X) ≥ R(X) − dG(X) for every X ⊆ V . (14.9)

Proof. If there is a graph H for which G′ satisfies (14.8), then dG(X) + dH(X) = dG′(X) ≥
R(X), from which m(X) ≥ dH(X) ≥ R(X) − dG(X), and hence (14.9) holds.

To prove sufficiency, add a new vertex s to G and m(v) parallel sv-edges for every vertex
v ∈ V . In the resulting graph G′, λG′(x, y) ≥ r(x, y) holds for every pair x, y ∈ V of vertices
due to (14.9). Observe that there is no cut-edge of G′ incident to s by (14.6). Therefore we
can apply Theorem 14.6, which asserts that there is a complete splitting at s that preserves
the local edge-connectivities in V . This means that H = (V, F) satisfies the requirements of
the theorem where F denotes the set of edges arising from the splittings. �
As in the global case, we can use the degree-specified version to deduce a min-max result on
the size of a smallest augmenting set.

C5955–C0014.tex 321 2015/11/4 10:12am

322 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 14.8 [19] Let G = (V, E) be a graph and let r be a local requirement function on
V satisfying (14.6). Then γ(G, r) = Φ(G, r).

Proof. We have already observed that γ(G, r) ≥ Φ(G, r). To prove that equality holds first
recall that R is a skew supermodular function. Hence q is also skew supermodular, that is,
for each pair of sets X, Y ⊂ V , at least one of the following two inequalities holds:

q(X) + q(Y) ≤ q(X ∩ Y) + q(X ∪ Y), (14.10)

q(X) + q(Y) ≤ q(X − Y) + q(Y − X). (14.11)

Let m : V → Z+ be chosen in such a way that (14.9) is satisfied and m(V) is minimal in the
sense that reducing any positive m(v) by one destroys (14.9). �

Claim 14.2 m(V) ≤ α(G, r).

Proof. By the minimality of m(V) every vertex v with m(v) > 0 belongs to a tight set where
a set X is tight if m(X) = q(X). Let F = {X1, . . ., Xt} be a system of tight sets which covers
each vertex v with m(v) > 0, in which |F| is minimal, and with respect to this, in which∑

[|Z| : Z ∈ F] is minimal.
Suppose that F contains two intersecting members X and Y . If (14.10) holds, then X ∪Y

is tight, in which case X and Y could be replaced by X ∪ Y , contradicting the minimality of
|F|. Therefore (14.11) must hold, which implies

m(X) + m(Y) = q(X) + q(Y) ≤ q(X − Y) + q(Y − X) ≤ m(X − Y) + m(Y − X)
= m(X) + m(Y) − 2m(X ∩ Y)

from which we can conclude that both X − Y and Y − X are tight and m(X ∩ Y) = 0. That
is, in F we could replace X and Y by X − Y and Y − X, contradicting the minimality of∑

[|Z| : Z ∈ F].
Therefore F must be a subpartition. Then

m(V) =
t∑
1

m(Xi) =
t∑
1

q(Xi) ≤ α(G, r),

as claimed. �

If m(V) is odd, increase m(v) by one for some v ∈ V to make sure that m(V) is even. Now
Theorem 14.7 applies and hence there is a graph H = (V, F) for which G + H is r-edge-
connected and dH(v) = m(v) for all v ∈ V . Since |F | = m(V)/2 ≤ ⌈α(G, r)/2⌉ = Φ(G, r),
the theorem follows. �

One may also consider the fractional version of Theorem 14.8, in which edges with fractional
capacities may be added and the goal is to find an augmenting set with minimum total
capacity. It can be shown that the minimum total capacity is equal to α(G, r)/2. Moreover,
the fractional optimum can be chosen to be half-integral.

We say that an increasing sequence of local requirements (r1, r2, . . ., rt) on V has the suc-
cessive augmentation property if, for any starting graph G = (V, E), there exists an increasing
sequence F1 ⊆ F2 ⊆ . . . ⊆ Ft of sets of edges such that G+Fi is an optimal augmentation of G
with respect to ri, for all 1 ≤ i ≤ t. The proof of Theorem 14.4 by Watanabe and Nakamura
[17] (and also Naor et al. [21]) implies that any increasing sequence of uniform requirements
has the successive augmentation property in the edge-connectivity augmentation problem.

C5955–C0014.tex 322 2015/11/4 10:12am

Graph Connectivity Augmentation � 323

By using an entirely different approach, Cheng and Jordán [25] generalized this to sequences
with the following property:

ri+1(u, v) − 1 = ri(u, v) ≥ 2, for all u, v ∈ V and, 1 ≤ i ≤ t − 1. (14.12)

The proof is based on the fact that if G′ = (V + s, E′) (G′′ = (V + s, E′′)) is a minimally
ri−1-edge-connected (minimally ri-edge-connected, respectively) extension of G such that G′

is a subgraph of G′′, then any ri−1-admissible splitting su, sv in G′ is ri-admissible in G′′.

Theorem 14.9 [9] Every increasing sequence (r1, r2, . . ., rt) of local requirements satisfy-
ing (14.12) has the successive augmentation property in the edge-connectivity augmentation
problem. �

A mixed graph D = (V, E ∪ A) has edges as well as directed edges. Bang-Jensen et al. [26]
extended Theorem 14.6 to mixed graphs and with the splitting off method, they generalized
Theorem 14.8 to the case when the edge-connectivity of a mixed graph is to be increased by
adding undirected edges only. See also [9] for a list of theorems of this type.

14.3.2 Node-to-Area Augmentation Problem

Let G = (V, E) be a graph and let W be a family of subsets of V , called areas. Let r : W → Z+
be a requirement function assigning a nonnegative integer to each area. The node-to-area
augmentation problem is to find a smallest set F of new edges for which G + F contains at
least r(W) edge-disjoint paths between v and W for all v ∈ V and W ∈ W . It generalizes
the k-edge-connectivity augmentation problem (make each vertex v a one-element area Wv

with requirement r(Wv) = k).
This problem was shown to be NP-hard when r(W) = 1 for all W ∈ W [27], but it turned

out to be polynomially solvable in the uniform case when r(W) = r ≥ 2 for all W ∈ W [28].
The most general result proved so far is due to Ishii and Hagiwara [29] who showed that the
problem can be solved even if r is not uniform but satisfies r(W) ≥ 2 for each W ∈ W .

For a proper subset X of V let

p(X) = max{r(W) : W ∈ W , X ∩ W = ∅ or W ⊆ X}.

It is easy to see, by using Menger’s theorem, that an augmented graph G′ = G + F
is a feasible solution if and only if dG′(X) ≥ p(X) for all proper subsets X of V .
Let α(G, W , r) = max{

∑t
1(p(Xi) − d(Xi)) : {X1, . . ., Xt} is a subpartition of V } and let

Φ(G, W , r) = ⌈α(G, W , r)/2⌉. Then we have γ(G, W , r) ≥ Φ(G, W , r). This inequality may
be strict but the gap can be at most one, and the instances with strict inequality (call them
exceptional configurations) can be completely characterized [29].

Theorem 14.10 Let G = (V, E) be a graph, let W be a family of subsets of V , and
let r : W → Z+ be a requirement function satisfying r(W) ≥ 2 for all W ∈ W. Then
γ(G, W , r) = Φ(G, W , r), unless G, W, and r form an exceptional configuration, in which
case γ(G, W , r) = Φ(G, W , r) + 1. �

A shorter proof of Theorem 14.10 was given later by Grappe and Szigeti [30]. The case when
the edge-connectivity requirement is given separately for each area-vertex pair remains open.

14.4 EDGE-CONNECTIVITY AUGMENTATION OF DIGRAPHS

Let γ(D, k) denote the size of a smallest set F of new (directed) edges which makes a
given directed graph D k-edge-connected. The first result on digraph augmentation is due

C5955–C0014.tex 323 2015/11/4 10:12am

324 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

to Eswaran and Tarjan [12], who solved the strong connectivity augmentation problem and
gave the following minimax formula for γ(D, 1).

Let D = (V, A) be a digraph and let Dc be obtained from D by contracting its strong
components. Dc is acyclic and it is easy to see that γ(D, 1) = γ(Dc, 1) holds. Thus we
may focus on acyclic input graphs. A vertex v with ρ(v) = 0 (δ(v) = 0) is a source (sink,
respectively). For a set X ⊂ V let X+ and X− denote the set of sources in X and the set of
sinks in X, respectively. It is clear that to make D strongly connected we need at least |V +|
(|V −|) new arcs.

Eswaran and Tarjan [12] proved the following min-max theorem.

Theorem 14.11 [12] Let Dc = (V, E) be an acyclic digraph. Then γ(Dc, 1) =
max{|V +|, |V −|}.

Proof. Let k = |V +|, l = |V −|, and let m = max{k, l}. We may suppose that m = l ≥ k.
We need to show that Dc can be made strongly connected by adding l new edges. We can
assume that there are no isolated vertices in Dc, since an isolated vertex v can be replaced
by a single edge vv′, where v′ is a new vertex, without changing γ, the number of sources,
or the number of sinks.

The proof is by induction on m. First suppose that there is a sink-vertex t which is not
reachable from some source vertex s. Then by adding the new edge ts to D we obtain a
digraph that is still acyclic. Moreover, m is decreased by one. Thus the theorem follows by
induction.

Next suppose that each sink vertex is reachable from each source vertex. Let s1, . . ., sk

denote the source vertices and t1, . . . , tℓ the sink vertices. By adding the edges t1s1, . . ., tksk

along with the edges tk+1s1, tk+2s1,. . ., tℓs1 (altogether ℓ new edges), we obtain a strongly
connected augmentation of Dc. This completes the proof. �
It follows that for arbitrary starting digraphs γ(D, 1) equals the maximum number of pairwise
disjoint sets X1, . . ., Xt in D with ρ(Xi) = 0 for all 1 ≤ i ≤ t (or δ(Xi) = 0 for all 1 ≤ i ≤ t).

We note that there is another version of the strong connectivity augmentation problem
which is nicely tractable. In this version only those edges uv are allowed to be added for
which u is reachable from v in the initial digraph. The solution for this problem is based on
a theorem of Lucchesi and Younger, see for example [7] and [31].

Kajitani and Ueno [16] solved the k-edge-connectivity augmentation problem for digraphs
in the special case when D is a directed tree (but k ≥ 1 may be arbitrary). The solution
for arbitrary starting digraphs is due to Frank [19], who adapted the splitting off method to
directed graphs and showed that, as in the undirected case, γ(D, k) can be characterized by
a subpartition-type lower bound. For a digraph D = (V, A) let

αin(D, k) = max
{

t∑
1

(k − ρ (Xi)) : {X1, . . ., Xt} is a subpartition of V

}
,

αout(D, k) = max
{

t∑
1

(k − δ (Xi)) : {X1, . . ., Xt} is a subpartition of V

}
.

It is again easy to see that γ(D, k) ≥ Φ(D, k), where Φ(D, k) = max{αin(D),αout(D)}.
An extension D′ = (V + s, A′) of a digraph D = (V, A) is obtained from D by adding a
new vertex s and a set of new edges, such that each new edge leaves or enters s. A digraph
H = (V + s, A) with a designated vertex s is (k, s)-edge-connected if λ(x, y; H) ≥ k for every
x, y ∈ V . Splitting off two edges us, sv means replacing the edges us, sv by a new edge uv.
Splitting off two edges us, sv is k-admissible in a (k, s)-edge-connected digraph H if Huv is
also (k, s)-edge-connected.

The next theorem, due to Mader [32], is the directed counterpart of Theorem 14.2.

C5955–C0014.tex 324 2015/11/4 10:12am

Graph Connectivity Augmentation � 325

Theorem 14.12 [32] Let D = (V +s, A) be a (k, s)-edge-connected digraph with ρ(s) = δ(s).
Then (a) for every edge us there exists an edge sv such that the pair us, sv is k-admissible,
(b) there is a complete k-admissible splitting at s. �

14.4.1 Degree-Specified Augmentations

With the help of Theorem 14.12 an optimal solution for the directed edge-connectivity aug-
mentation problem can be obtained following the steps of the solution in the undirected case.
Here we only state the key results and refer to [19] for the proofs.

Theorem 14.13 [19] Let D = (V, A) be a digraph and let min : V → Z+ and mout : V → Z+
be in- and out-degree specifications. There is a digraph H = (V, F) for which

ϱH(v) = min(v) and δH(v) = mout(v) for every v ∈ V (14.13)

and D + H is k-edge-connected if and only if min(V) = mout(V),

min(X) ≥ k − ϱD(X) for ∅ ̸= X ⊂ V (14.14)

and
mout(X) ≥ k − δD(X) for ∅ ̸= X ⊂ V. (14.15)

The directed counterpart of the theorem of Watanabe and Nakamura is as follows. �

Theorem 14.14 [19] Let D = (V, A) be a directed graph and let k ≥ 1. Then γ(D, k) =
Φ(D, k). �

Frank [19] also showed that the minimum cost version with vertex-induced cost functions is
also solvable in polynomial time. Cheng and Jordán [25] proved that the successive augmen-
tation property holds for any increasing sequence of uniform requirements in the directed
edge-connectivity augmentation problem as well.

The local edge-connectivity augmentation problem in directed graphs is NP-hard, even
if r(u, v) ∈ {0, 1} for all u, v ∈ V [19]. Bang-Jensen et al. [26] generalized Theorem 14.14 to
mixed graphs and special classes of local requirements. For instance, they showed that the
local version is solvable for Eulerian digraphs (i.e., for digraphs where ρ(v) = δ(v) for all
v ∈ V). The proofs of these results rely on an edge splitting theorem, which is a common
extension of Theorem 14.12 and a result of Frank [33] and Jackson [34] on splitting off edges
in Eulerian digraphs preserving local edge-connectivities. A different version of the mixed
graph augmentation problem was investigated by Gusfield [35].

14.5 CONSTRAINED EDGE-CONNECTIVITY AUGMENTATION PROBLEMS

In each of the augmentation problems considered so far it was allowed to add (an arbitrary
number of parallel copies of) any edge connecting two vertices of the input graph. It is natural
to consider (and in some cases the applications give rise to) variants where the set of new
edges must meet certain additional constraints. In general such constraints may lead to hard
problems. For example, Frederickson and Jaja [36] proved that, given a tree T = (V, E) and
a set J of edges on V , it is NP-hard to find a smallest set F ⊆ J for which T ′ = (V, E ∪ F) is
2-edge-connected. This problem remains NP-hard even if J is the edge-set of a cycle on the
leaves of T [37]. For some types of constraints, however, an optimal solution can be found in
polynomial time. In this section we consider these tractable problems.

Motivated by a question in statics, Bang-Jensen et al. [3] solved the following partition-
constrained problem. Let G = (V, E) be a graph and let P = {P1, P2, . . ., Pr}, r ≥ 2,

C5955–C0014.tex 325 2015/11/4 10:12am

326 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

be a partition of V . In the partition-constrained k-edge-connectivity augmentation problem
the goal is to find a smallest set F of new edges, such that every edge in F joins two
distinct members of P and G′ = (V, E ∪ F) is k-edge-connected. If G is a bipartite graph
with bipartition V = A ∪ B and P = {A, B} then the problem corresponds to optimally
augmenting a bipartite graph while preserving bipartiteness. By a theorem of Bolker and
Crapo [38] the solution of this bipartite version can be used to make a square grid framework
highly redundantly rigid by adding a smallest set of new diagonal rods.

Let γ(G, k, P) denote the size of a smallest augmenting set with respect to k and the
given partition P . Clearly, γ(G, k, P) ≥ γ(G, k). The case k = 1 is easy, hence we assume
k ≥ 2. For i = 1, 2, . . ., r let

βi = max

 ∑
Y ∈Y

(k − d(Y)) : Y is a subpartition of Pi

. (14.16)

Since no new edge can join vertices in the same member Pi of P , it follows that βi is a lower
bound for γ(G, k, P) for all 1 ≤ i ≤ r. By combining this bound and the lower bound of the
unconstrained problem we obtain γ(G, k, P) ≥ Φ(G, k, P), where

Φ(G, k, P) = max{⌈α(G, k)/2⌉,β1, . . .,βr}. (14.17)

Simple examples show that γ ≥ Φ + 1 may hold. Consider a four-cycle C4 and let P be the
natural bipartition of C4. Here we have Φ(C4, 3, P) = 2 and γ(C4, 3, P) = 3. Now consider
a six-cycle C6 and let P = {P1, P2, P3}, where the members of P contain pairs of opposite
vertices. For this graph and partition we have Φ(C6, 3, P) = 3 and γ(C6, 3, P) = 4.

On the other hand, Bang-Jensen et al. [3] proved that we always have γ ≤ Φ + 1 and
characterized all graphs (and partitions) with γ = Φ+1. The proof employed the splitting off
method. The first step was a complete solution of the corresponding constrained edge splitting
problem. Let H = (V + s, E) be a (k, s)-edge-connected graph and let P = {P1, P2, . . ., Pr}
be a partition of V . We say a splitting su, sv is allowed if it is k-admissible and respects
the partition constraints, that is, u and v belong to distinct members of P . If k is even, the
following extension of Theorem 14.2(b) is not hard to prove.

Theorem 14.15 [3] Let H = (V + s, E) be a (k, s)-edge-connected graph, for some even
integer k, let P = {P1, P2, . . ., Pr} be a partition of V , and suppose that d(s) is even. There
exists a complete allowed splitting at s if and only if d(s, Pi) ≤ d(s)/2 for all 1 ≤ i ≤ r.

For k odd, however, there exist more complicated obstacles that prevent a complete allowed
splitting at s. Let S denote the set of neighbors of s.

A partition A1 ∪ A2 ∪ B1 ∪ B2 of V is called a C4-obstacle if it satisfies the following
properties in H for some index i, 1 ≤ i ≤ r:

i. d(A1) = d(A2) = d(B1) = d(B2) = k;

ii. d(A1, A2) = d(B1, B2) = 0;

iii. S ∩ (A1 ∪ A2) = S ∩ Pi or S ∩ (B1 ∪ B2) = S ∩ Pi;

iv. d(s, Pi) = d(s)/2. �

C4-obstacles exist only for k odd. It is not difficult to see that if H contains a C4-obstacle,
then there exists no complete allowed splitting at s. A more special family of obstacles,
called C6-obstacles, can be defined when r ≥ 3, k is odd, and d(s) = 6, see [3]. These two
families suffice to characterize when there is no complete allowed splitting. Note that in the
bipartition constrained case only C4-obstacles may exist.

C5955–C0014.tex 326 2015/11/4 10:12am

Graph Connectivity Augmentation � 327

Theorem 14.16 [3] Let H = (V + s, E) be a (k, s)-edge-connected graph with d(s) even
and let P = {P1, P2, . . ., Pr} be a partition of V . There exists a complete allowed splitting at
vertex s in G if and only if

a. d(s, Pi) ≤ d(s)/2 for 1 ≤ i ≤ r,

b. H contains no C4- or C6-obstacle. �

Bang-Jensen et al. [3] show that there exists a (k, s)-edge-connected extension G′ = (V +s, E′)
of G = (V, E) with d(s) = 2Φ(G, k, P) for which Theorem 14.16(a) holds. If G′ satisfies
Theorem 14.16(b), as well, a complete allowed splitting at s yields an optimal augmenting
set (of size Φ(G, k, P)). Since γ ≤ Φ + 1, it remains to characterize the exceptions, that is,
those starting graphs G (and partitions) for which any extension G′ with d(s) = 2Φ(G, k, P)
contains an obstacle (and hence γ(G, k, P) = Φ(G, k, P) + 1 holds).

Let G = (V, E) be a graph. A partition X1, X2, Y1, Y2 of V is a C4-configuration if it
satisfies the following properties in G:

i. d(A) < k for A = X1, X2, Y1, Y2;

ii. d(X1, X2) = d(Y1, Y2) = 0;

iii. There exist subpartitions F1, F2, F ′
1, F ′

2 of X1, X2, Y1, Y2 respectively, such that for A
ranging over X1, X2, Y1, Y2 and F the corresponding subpartition of A, k − d(A) =∑

U∈F (k − d(U)). Furthermore for some i ≤ r, Pi contains every set of either F1 ∪ F2
or F ′

1 ∪ F ′
2.

iv. (k − d(X1)) + (k − d(X2)) = (k − d(Y1)) + (k − d(Y2)) = Φ(G, k, P).

As with C4-obstacles, k must be odd in a C4-configuration. A C6-configuration is more
specialized, since it only exists in graphs with r ≥ 3 and Φ = 3, see [3].

Theorem 14.17 [3] Let k ≥ 2 and let G = (V, E) be a graph with a partition P =
{P1, . . ., Pr}, r ≥ 2 of V . Then γ(G, k, P) = Φ(G, k, P) unless G contains a C4- or
C6-configuration, in which case γ(G, k, P) = Φ(G, k, P) + 1. �

If each member of P is a single vertex then we are back at Theorem 14.4. The following
special case solves the rigidity problem mentioned above. Let G = (V, E) be a bipartite
graph with bipartition V = A ∪ B, let P = {A, B}, and let

β′
1 =

∑
v∈A

max{0, k − d(v)},

β′
2 =

∑
v∈B

max{0, k − d(v)},

Θ(G, k, P) = max{⌈α(G, k, P)/2⌉,β′
1,β′

2}.

Theorem 14.18 [3] Let G = (V, E) be a bipartite graph with bipartition V = A ∪ B
and let P = {A, B}. Then γ(G, k, P) = Θ(G, k, P) unless k is odd and G contains a
C4-configuration, in which case γ(G, k, P) = Θ(G, k, P) + 1. �

The variant of the above problem, where the edges of the augmenting set F must lie within
members of a given partition, is NP-hard [3]. The status of this variant is open if the number
r of partition members is fixed, even if r = 2. The corresponding edge splitting problem, for
r = 2, has been solved in [39].

C5955–C0014.tex 327 2015/11/4 10:12am

328 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

A different application of Theorem 14.16 is concerned with permutation graphs. A per-
mutation graph Gπ of a graph G is obtained by taking two disjoint copies of G and adding
a matching joining each vertex v in the first copy to π(v) in the second copy, where π is a
permutation of V (G). Thus G has several permutation graphs. The edge-connectivity of any
permutation graph of G is at most δ(G) + 1, where δ(G) is the minimum degree of G. When
does G have a k-edge-connected permutation graph for k = δ(G) + 1?

Creating a permutation graph of G corresponds to performing a complete bipartition
constrained splitting in G′, where G′ is obtained from 2G by adding a new vertex s and
precisely one edge from s to each vertex of 2G. (For some graph H we use 2H to denote
the graph consisting of two disjoint copies of H.) If G is simple, it can be seen that G′ is
(k, s)-edge-connected. Thus Theorem 14.16 leads to the following characterization, due to
Goddard et al. [40]. An extension to hypergraphs was given later by Jami and Szigeti [41].

Theorem 14.19 [40] Let G be a simple graph without isolated vertices and let k = δ(G)+1.
Then there is a k-edge-connected permutation graph of G unless G = 2Kk, and k is odd. �

The partition constrained k-edge-connectivity augmentation problem has been investigated
for digraphs as well. Although the general case of this problem is still open, Gabow and
Jordán presented polynomial algorithms for several special cases, including the partition
constrained strong connectivity augmentation problem [42–44].

It is also natrual to consider the planarity-preserving k-edge-connectivity augmentation
problem. In this problem we are given a planar graph G = (V, E) and the goal is to find
a smallest set F of new edges for which G′ = (V, E ∪ F) is k-edge-connected and planar.
The complexity of this problem is still open, even for k = 2. (The corresponding problem for
2-vertex-connectivity is NP-hard [2].)

A typical positive result, due to Nagamochi and Eades [45], is as follows. For k = 2 it
was proved earlier by Kant [2]. For a simpler proof see [46].

Theorem 14.20 [45] Let G = (V, E) be outer-planar and let k be even or k = 3. Then G
can be made k-edge-connected and planar by adding Φ(G, k) edges. �

Another natural constrained augmentation problem, which has been investigated by several
authors, is the simplicity preserving k-edge-connectivity augmentation problem: given a simple
graph G = (V, E), find a smallest set F of new edges for which G′ = (V, E ∪ F) is k-edge-
connected and simple. Frank and Chou [15] solved this problem (even with local requirements)
in the special case where the starting graph G has no edges. Some papers on arbitrary
starting graphs G but with small target value k followed. Let us denote the size of a smallest
simplicity-preserving augmenting set F by γ(G, k, S). Clearly, we have γ(G, k, S) ≥ γ(G, k).
Following the algorithmic proof of Theorem 14.1, it can be checked that if G is simple, so
is the augmented graph G′. This proves γ(G, 2, S) = γ(G, 2). Watanabe and Yamakado [47]
proved that γ(G, k, S) = γ(G, k) holds for k = 3 as well. Taoka et al. [48] pointed out
that γ(G, k, S) ≥ γ(G, k) + 1 may hold if k ≥ 4, even if the starting graph G is (k − 1)-
edge-connected. On the other hand, they showed that for (k − 1)-edge-connected starting
graphs one has γ(G, k, S) ≤ γ(G, k) + 1 for k = 4, 5. Moreover, in these special cases, we
have γ(G, k, S) = γ(G, k), provided γ(G, k) ≥ 4. For general k, it was observed [21] that
γ(G, k, S) = γ(G, k) if G is (k−1)-edge-connected and the minimum degree of G is at least k.

Jordán [49] settled the complexity of the problem by proving that the simplicity-
preserving k-edge-connectivity augmentation problem is NP-hard, even if the starting graph
is (k − 1)-edge-connected. For k fixed, however, the problem is solvable in polynomial time.
This result of Bang-Jensen and Jordán [50] is based on the fact that if γ(G, k) is large
compared to k then γ(G, k, S) = γ(G, k) holds.

C5955–C0014.tex 328 2015/11/4 10:12am

Graph Connectivity Augmentation � 329

Theorem 14.21 [50] Let G = (V, E) be a simple graph. If γ(G, k) ≥ 3k4/2 then γ(G, k, S) =
γ(G, k). �

The algorithmic proof of Theorem 14.21 employed the splitting off method and showed
that if γ(G, k) is large then an optimal simplicity-preserving augmentation can be found in
polynomial time, even if k is part of the input. It is also proved in [50] that for any graph G
we have γ(G, k, S) ≤ γ(G, k)+2k2. Using this fact and some additional structural properties
lead to an O(n4) algorithm for k fixed. Most of these results have been extended to the local
version of the simplicity-preserving edge-connectivity augmentation problem [50].

In the reinforcement problem, which is the opposite of the simplicity preserving problem
in some sense, we are given a connected graph G = (V, E) and an integer k ≥ 2, and the
goal is to find a smallest set F of new edges for which G′ = (V, E ∪ F) is k-edge-connected
and every edge of F is parallel to some edge in E. This problem is also NP-hard [49].

We close this section by mentioning a constrained problem of a different kind. In the
simultaneous edge-connectivity augmentation problem we are given two graphs G1 = (V, E)
and G2 = (V, I), and two integers k, l ≥ 2 and the goal is to find a smallest set F of new
edges for which G′

1 = (V, E ∪F) is k-edge-connected and G′
2 = (V, I ∪F) is l-edge-connected.

For this problem Jordán [46] proved that the difference between a subpartition type lower
bound and the optimum is at most one. Furthermore, if k and l are both even then we have
equality. The status of the simultaneous augmentation problem is still open in the case when
k or l is odd. Ishii and Nagamochi [51] solved a similar simultaneous augmentation problem
where the goal is to make G1 and G2 k-edge-connected and 2-vertex-connected, respectively.

14.6 VERTEX-CONNECTIVITY OF GRAPHS

The vertex-connected versions of the augmentation problems are substantially more difficult
than their edge-connected counterparts. This will be transparent by comparing the corre-
sponding minimax theorems, the proof methods, as well as the hardness results and open
questions. The following observation indicates that the k-vertex-connectivity augmentation
problem, at least in the undirected case, has a different character. Suppose the goal is to
make G = (V, E) k-connected, optimally, where k = |V | − 2. Although this case may seem
very special, it is in fact equivalent to the maximum matching problem. To see this observe
that F is a feasible augmenting set if and only if the complement of G+F consists of indepen-
dent edges. Thus finding a smallest augmenting set for G corresponds to finding a maximum
matching in its complement. The case k = |V |−3, which is equivalent to finding a four-cycle
free 2-matching of maximum size, is still open.

As in the edge-connected case, if k is small, the k-connectivity augmentation problem can
be solved by considering the tree-like structure of the k-connected components of the graph.
If k = 2, the familiar concept of 2-connected components, or blocks, and the block-cutvertex
tree helps. For simplicity, suppose that G = (V, E) is connected. Let t(G) denote the number
of end-blocks of G and let b(G) denote the maximum number of components of G − v over
all vertices v ∈ V . Note that the end-blocks are pairwise disjoint. Since G′ is 2-connected if
and only if t(G′) = b(G′) − 1 = 0, and adding a new edge can decrease t(G) by at most two
and b(G) by at most one, it follows that at least Ψ(G) = max{⌈t(G)/2⌉, b(G) − 1} new edges
are needed to make G 2-connected. Eswaran and Tarjan [12] and independently Plesnik [13]
proved that this number can be achieved. See also Hsu and Ramachandran [52]. Finding
two end-blocks X, Y for which adding a new edge xy with x ∈ X and y ∈ Y decreases
Ψ(G) by one can be done, roughly speaking, by choosing the end-blocks corresponding to
the end-vertices of a longest path in the block-cutvertex tree of G.

C5955–C0014.tex 329 2015/11/4 10:12am

330 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 14.22 [12,13] Let G = (V, E) be a connected graph. Then G can be made
2-connected by adding max{⌈t(G)/2⌉, b(G) − 1} edges. �

The lower bounds used in Theorem 14.22 can be extended to k ≥ 3 and arbitrary starting
graphs G as follows. Let NG(X), or simply N(X) if G is clear from the context, denote
the set of neighbors of vertex set X in G. A nonempty subset X ⊂ V is a fragment if
V − X − N(X) ̸= ∅. It is easy to see that every set of new edges F which makes G k-
connected must contain at least k − |N(X)| edges from X to V − X − N(X) for every
fragment X. By summing up these “deficiencies” over pairwise disjoint fragments, we obtain a
subpartition-type lower bound, similar to the one used in the corresponding edge-connectivity
augmentation problem. Let

t(G, k) = max
{

r∑
i=1

(k − |N(Xi)|) : {X1, . . ., Xr} are pairwise disjoint fragments in V

}
.

(14.18)

Let γ(G, k) denote the size of a smallest augmenting set of G with respect to k. Since an edge
can decrease the deficiency k−|N(Xi)| of at most two sets Xi, we have γ(G, k) ≥ ⌈t(G, k)/2⌉.
For K ⊂ V let b(K, G) denote the number of components in G − K. Let

b(G, k) = max{b(K, G) : K ⊂ V, |K| = k − 1}. (14.19)

Since the deletion of K from the augmented graph must leave a connected graph, we have
that γ(G, k) ≥ b(G, k) − 1. Thus we obtain γ(G, k) ≥ Ψ(G, k), where we put

Ψ(G, k) = max{⌈t(G, k)/2⌉, b(G, k) − 1}. (14.20)

Theorem 14.22 implies that γ(G, 2) = Ψ(G, 2). Watanabe and Nakamura [53] proved that this
minimax equality is valid for k = 3, too. Hsu and Ramachandran [54] gave an alternative proof
and a linear time algorithm, based on Tutte’s decomposition theory of 2-connected graphs
into 3-connected components. This method was further developed by Hsu [55], who solved
the problem of making a 3-connected graph 4-connected by adding a smallest set of edges.
His proof relies on the decomposition of 3-conneced graphs into 4-connected components.

This approach, however, which relies on the decomposition of a graph into its k-connected
components, is rather hopeless for k ≥ 5. While k-edge-connected components have a nice
structure, k-connected components are difficult to handle. Furthermore, the successive aug-
mentation property does not hold for vertex-connectivity augmentation [25].

Although Ψ(G, k) suffices to characterize γ(G, k) for k ≤ 3, there are examples showing
that γ(G, k) can be strictly larger than Ψ(G, k). Consider for example the complete bipartite
graph Kk−1,k−1 with target k. For k ≥ 4 this graph has Ψ = k − 1 and γ = 2k − 4, showing
that the gap can be as large as k − 3. Jordán [56] showed that if the starting graph G is
(k − 1)-connected then this is the extremal case, that is, γ(G, k) ≤ Ψ(G, k) + k − 3. A
polynomial time algorithm to find an augmenting set with at most k − 3 surplus edges was
also given in [56]. This gap was later reduced to (k − 1)/2 with the help of two additional
lower bounds [57]. Cheriyan and Thurimella [58] gave a more efficient algorithm with the
same approximation gap and showed how to compute b(G, k) in polynomial time if G is
(k − 1)-connected. A near optimal solution can be found efficiently even if G is not (k − 1)-
connected. This was proved by Ishii and Nagamochi [59] and, independently, by Jackson and
Jordán [60]. The approximation gap in the latter paper is slightly smaller.

Theorem 14.23 [60] Let G = (V, E) be an l-connected graph. Then γ(G, k) ≤ Ψ(G, k) +
(k − l)k/2 + 4. �

C5955–C0014.tex 330 2015/11/4 10:12am

Graph Connectivity Augmentation � 331

Jackson and Jordán [60] adapted the edge splitting method for vertex-connectivity. This
method was subsequently employed to find an optimal augmentation in polynomial time, for
k fixed.

Given an extension G′ = (V + s, E′) of a graph G = (V, E), define d̄(X) = |NG(X)| +
d′(s, X) for every X ⊆ V , where d′ denotes the degree function in G′. We say that G′ is
(k, s)-connected if

d̄(X) ≥ k for every fragment X ⊂ V, (14.21)

and that it is minimally (k, s)-connected if the set of edges incident to s is inclusionwise
minimal with respect to (14.21). The following result from [60] gives lower and upper bounds
for γ(G, k) in terms of d′(s) in any minimally (k, s)-connected extension of G.

Theorem 14.24 [60] Let G′ = (V + s, E′) be a minimally (k, s)-connected extension of a
graph G. Then ⌈d′(s)/2⌉ ≤ γ(G, k) ≤ d′(s) − 1. �

Let G′ = (V +s, E′) be a minimally (k, s)-connected extension of G. Splitting off su and sv in
G′ is k-admissible if G′

uv also satisfies (14.21). Notice that if G′ has no edges incident to s then
(14.21) is equivalent to the k-connectivity of G. Hence, as in the case of edge-connectivity,
it would be desirable to know, when d(s) is even, that there is a sequence of k-admissible
splittings which isolates s. In this case, using the fact that γ(G, k) ≥ d′(s)/2 by Theorem
14.24, the resulting graph on V would be an optimal augmentation of G with respect to k.
This approach works for the k-edge-connectivity augmentation problem but does not always
work in the vertex connectivity case. The reason is that complete k-admissible splittings do
not necessarily exist. On the other hand, the splitting off results in [60,61] are ‘close enough’
to yield an optimal solution if k is fixed.

The obstacle for the existence of a k-admissible splitting can be described, provided d′(s)
is large enough compared to k. The proof of the following theorem is based on a new tripartite
submodular inequality for |N(X)|, see [60].

Theorem 14.25 [60] Let G′ = (V + s, E′) be a minimally (k, s)-connected extension of
G = (V, E) and suppose that d′(s) ≥ k2. Then there is no k-admissible splitting at s in G′ if
and only if there is a set K ⊂ V in G such that |K| = k −1 and G−K has d′(s) components
C1, C2, . . ., Cd′(s) (and we have d′(s, Ci) = 1 for 1 ≤ i ≤ d′(s)). �

Theorem 14.25 does not always hold if d′(s) is small compared to k. To overcome this dif-
ficulty, Jackson and Jordán [61] introduced the following family of graphs. Let G = (V, E)
be a graph and k be an integer. Let X1, X2 be disjoint subsets of V . We say (X1, X2) is a
k-deficient pair if d(X1, X2) = 0 and |V − (X1 ∪ X2)| ≤ k − 1. We say two deficient pairs
(X1, X2) and (Y1, Y2) are independent if for some i ∈ {1, 2} we have either Xi ⊆ V −(Y1 ∪Y2)
or Yi ⊆ V − (X1 ∪ X2), since in this case no edge can simultaneously connect X1 to X2
and Y1 to Y2. We say G is k-independence free if G does not have two independent k-
deficient pairs. Note that if G is (k − 1)-connected and (X1, X2) is a k-deficient pair then
V − (X1 ∪ X2) = N(X1) = N(X2). For example (a) (k − 1)-connected chordal graphs and
graphs with minimum degree 2k−2 are k-independence free, (b) all graphs are 1-independence
free and all connected graphs are 2-independence free, (c) a graph with no edges and at least
k + 1 vertices is not k-independence free for any k ≥ 2, (d) if G is k-independence free
and H is obtained by adding edges to G then H is also k-independence free, and (e) a k-
independence free graph is l-independence free for all l ≤ k. In general, a main difficulty in
vertex-connectivity problems is that vertex cuts can cross each other in many different ways.
In the case of an independence free graph G these difficulties can be overcome.

Theorem 14.26 [61] If G is k-independence free then γ(G, k) = Ψ(G, k). �

C5955–C0014.tex 331 2015/11/4 10:12am

332 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

If G is not k-independence free but t(G, k) is large, then the augmentation problem can
be reduced to the independence free case by adding new edges. This crucial property is
formulated by the next theorem.

Theorem 14.27 [61] Let G = (V, E) be (k − 1)-connected and suppose that t(G, k) ≥ 8k3 +
10k2−43k+22. Then there exists a set of edges F for G such that t(G+F, k) = t(G, k)−2|F |,
G + F is k-independence free, and t(G + F, k) ≥ 2k − 1. �

These results lead to the following theorem.

Theorem 14.28 [61] Let G be (k − 1)-connected. If γ(G, k) ≥ 8k3 + 10k2 − 43k + 21 then

γ(G, k) = Ψ(G, k). �

The min-max equality in Theorem 14.28 is not valid if we remove the hypothesis that G is
(k − 1)-connected. To see this consider the graph G obtained from the complete bipartite
graph Km,k−2 by adding a new vertex x and joining x to j vertices in the m set of the Km,k−2,
where j < k < m. Then b(G, k) = m, t(G, k) = 2m + k − 2j and γ(G, k) = m − 1 + k − j.
However, by modifying the definition of b(G, k) slightly, an analogous minimax theorem
can be obtained for augmenting graphs of arbitrary connectivity. For a set K ⊂ V with
|K| = k − 1 let δ(K, k) = max{0, max{k − d(x) : x ∈ K}} and b∗(K, G) = b(K, G) +δ(K, k).
Let b∗(G, k) = max{b∗(K, G) : K ⊂ V, |K| = k − 1}. It is easy to see that γ(G, k) ≥
b∗(G, k) − 1. Let

Ψ∗(G, k) = max{⌈t(G, k)/2⌉, b∗(G, k) − 1}.

Theorem 14.29 [61] Let G = (V, E) be l-connected. If γ(G, k) ≥ 3(k − l + 2)3(k + 1)3 then
γ(G, k) = Ψ∗(G, k). �

The lower bounds, in terms of k, are certainly not best possible in Theorems 14.27 through
14.29. These bounds, however, depend only on k. This is the essential fact in the solution for
k fixed. Note that by Theorem 14.24 one can efficiently decide whether γ(G, k) (or t(G, k))
is large enough compared to k. The proofs of these results are algorithmic and give rise to an
algorithm which solves the k-vertex-connectivity augmentation problem in polynomial time
for k fixed. If γ(G, k) is large, then the algorithm has polynomial running time even if k is not
fixed. This phenomenon is similar to what we observed when we investigated the algorithm
for the simplicity-preserving k-edge-connectivity augmentation problem.

Perhaps the most exciting open question of this area is the complexity of the k-vertex-
connectivity augmentation problem, when k is part of the input. A recent result of Végh [62]
settled the special case when the starting graph is (k − 1)-connected. To state the result we
need some new concepts.

Let G = (V, E) be a (k −1)-connected graph. A clump of G is an ordered pair C = (S, P)
where S ⊂ V , |S| = k −1, and P is a partition of V −S into nonempty subsets, called pieces,
with the property that no edge of G joins two distinct pieces in C. (Note that a piece is not
necessarily connected.) It can be seen that if C = (S, P) is a clump of G then, in order to
make G k-connected, we must add a set of at least |P| − 1 edges between the pieces of C,
where |P| is the number of pieces of P . We shall say that a clump C covers a pair of vertices
u, v of G if u and v belong to distinct pieces of C. A bush B of G is a set of clumps such that
each pair of vertices of G is covered by at most two clumps in B. Thus, if B is a bush in G,
then in order to make G k-connected, we must add a set of at least

def(B) =

1
2

∑
(S,P)∈B

(|P| − 1)

 (14.22)

C5955–C0014.tex 332 2015/11/4 10:12am

Graph Connectivity Augmentation � 333

edges between the pieces of the clumps in B. Two bushes B1 and B2 of G are disjoint if no
pair of vertices of G is covered by clumps in both B1 and B2. Thus, if B1 and B2 are disjoint
bushes, then the sets of edges which need to be added between the pieces of the clumps in
B1 and B2 are disjoint. We can now state the theorem.

Theorem 14.30 [62] Let G be a (k − 1)-connected graph. Then the minimum number of
edges which must be added to G to make it k-connected is equal to the maximum value of∑

B∈D def(B) taken over all sets of pairwise disjoint bushes D for G. �

The local vertex-connectivity augmentation problem is NP-hard even in the special case when
the goal is to find a smallest augmenting set which increases the local vertex-connectivity
up to k within a given subset of vertices of a (k − 1)-connected graph. However, there exist
solvable subcases and some remaining open questions. For instance, Watanabe et al. [63]
gave a linear-time algorithm for optimally increasing the connectivity to 2 within a specified
subset. The special case when the starting graph has no edges is an interesting open problem.

We close this section by a different generalization of the connectivity augmentation prob-
lem. In some cases it is desirable to make the starting graph G = (V, E) k-edge-connected as
well as l-vertex-connected at the same time, by adding a new set of edges F . In this multiple
target version l is typically small while k is arbitrary. We may always assume l ≤ k. Hsu and
Kao [64] solved a local version of this problem for k = l = 2. Ishii et al. [65–67] proved a
number of results for l ≤ 3 and presented near optimal polynomial time algorithms when l
as well as k can be arbitrary.

A typical result is as follows. Let k ≥ 2 and l = 2. By combining α(G, k) and t(G, 2)
define

α′(G, k, 2) = max

p∑

i=1
(k − d(Xi)) +

t∑
i=p+1

(2 − |N(Xi)|)

,

where the maximum is taken over all subpartitions {X1, . . ., Xp, Xp+1, . . ., Xt} of V for which
Xi is a fragment for p + 1 ≤ i ≤ t. Clearly, ⌈α′(G, k, 2)/2⌉ is a lower bound for this multiple
target problem. By applying the splitting off method (and a new operation called edge
switching), a common extension of Theorems 14.4 and 14.22 can be obtained.

Theorem 14.31 [66] G = (V, E) can be made k-edge-connected and 2-connected by adding
γ new edges if and only if max{⌈α′(G, k, 2)/2⌉, b(G, 2) − 1} ≤ γ. �

14.7 VERTEX-CONNECTIVITY AUGMENTATION OF DIGRAPHS

From several aspects, the directed k-edge-connectivity augmentation problem is less tractable
than its undirected version. This may suggest that the directed k-vertex-connectivity aug-
mentation problem is harder than the (still unsolved) undirected problem. Another sign of
this is the fact that after the basic result of Eswaran and Tarjan [12] on the case k = 1
(Theorem 14.11) almost no results appeared for nearly twenty years. An exception was the
following result of Masuzawa et al. [68] which solved the special case when the starting di-
graph D = (V, A) is an arborescence (i.e., a directed tree with a root vertex r such that
there is a directed path from r to every v ∈ V). Let γ(D, k) denote the size of a smallest
augmenting set with respect to the target vertex-connectivity k.

Theorem 14.32 [68] Let B = (V, A) be an arborescence. Then γ(B, k) =
∑

v∈V max{0, k −
δ(v)}. �

C5955–C0014.tex 333 2015/11/4 10:12am

334 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

In spite of the above general feeling a complete solution for the directed version has been
found. For arbitrary starting digraphs D = (V, A) there is a natural subpartition-type lower
bound for γ(D, k), similar to t(G, k). Let N−(X) and N+(X) denote the set of in-neighbors
and out-neighbors of vertex set X in D, respectively. We say X ⊂ V is an in-fragment if
V − X − N−(X) ̸= ∅. If V − X − N+(X) ̸= ∅ then X is called an out-fragment. Let

tin(D, k) = max
{

r∑
i=1

(k − |N−(X)|) : X1, . . ., Xr are pairwise disjoint in-fragments in V

}
,

tout(D, k) = max
{

r∑
i=1

(k − |N+(X)|) : X1, . . ., Xr are pairwise disjoint out-fragments in V

}
,

and let
Ψ(D, k) = max{tin(D, k), tout(D, k)}.

It is easy to see that γ(D, k) ≥ Ψ(D, k) holds. Theorem 14.11 shows that γ(D, 1) = Ψ(D, 1)
and Theorem 14.32 implies that γ(B, k) = Ψ(B, k) for every arborescence B and every k ≥ 1.
For k ≥ 2, however, Jordán [69] pointed out that γ(D, k) ≥ Ψ(D, k) + k − 1 may hold, even
if D is (k − 1)-connected. On the other hand, for (k − 1)-connected starting digraphs the gap
cannot be larger than k − 1 [69].

A stronger lower bound can be obtained by considering deficient pairs of subsets of V
rather than deficient in- or out-fragments. We say that an ordered pair (X, Y), ∅ ̸= X, Y ⊂ V,
X ∩ Y = ∅ is a one-way pair in a digraph D = (V, A) if there is no edge in D with tail in X
and head in Y . We call X and Y the tail and the head of the pair, respectively. The deficiency
of a one-way pair, with respect to k-connectivity, is defk(X, Y) = max{0, k −|V − (X ∪Y)|}.
Two pairs are independent if their tails or their heads are disjoint. For a family F of pairwise
independent one-way pairs we define defk(F) =

∑
(X,Y)∈F defk(X, Y). By Menger’s theorem

every augmenting set F with respect to k must contain at least defk(X, Y) edges from X to
Y for every one-way pair (X, Y). Moreover, these arcs are distinct for independent one-way
pairs. This proves γ(D, k) ≥ defk(F) for all families F of pairwise independent one-way pairs.
Frank and Jordán [70] solved the k-vertex-connectivity augmentation problem for digraphs
by showing that this lower bound can be attained.

Theorem 14.33 [70] A digraph D = (V, A) can be made k-connected by adding at most γ
new edges if and only if

defk(F) ≤ γ (14.23)
holds for all families F of pairwise independent one-way pairs. �

This result was obtained as a special case of a more general theorem on coverings of
bi-supermodular functions, see Theorem 14.47. We present a more direct proof in the next
subsection.

The minimax formula of Theorem 14.33 was later refined by Frank and Jordán [71].
Among others, it was shown that if defk(F) ≥ 2k2 − 1, then the tails or the heads of the
pairs in F are pairwise disjoint. This implies that if γ(D, k) ≥ 2k2 −1 then the simpler lower
bound Ψ(D, k) suffices. With the help of this refined version, one can deduce Theorem 14.32
from Theorem 14.33 as well. A related conjecture of Frank [6] claims that γ(D, k) = Ψ(D, k)
for every acyclic starting digraph D.

If D is strongly connected and k = 2 then a direct proof and a simplified minimax
theorem was given in [72] by applying the splitting off method. In a strongly connected
digraph D = (V, A) there are two types of deficient sets with respect to k = 2: in-fragments
X with |N−(X)| = 1 (called in-tight) and out-fragments X with |N+(X)| = 1 (called
out-tight).

C5955–C0014.tex 334 2015/11/4 10:12am

Graph Connectivity Augmentation � 335

Theorem 14.34 [72] Let D = (V, A) be strongly connected. Then γ(D, 2) = Ψ(D, 2) holds,
unless Ψ(D, 2) = 2 and there exist three in-tight (or three out-tight) sets B1, B2, B3, such that

B1 ∩ B2 ̸= ∅, |B3| = 1, and V − (B1 ∪ B2) = B3.

In the latter case D can be made 2-connected by adding 3 arcs. �

14.7.1 Augmenting ST-Edge-Connectivity

Theorem 14.33 can also be deduced from the solution of a directed edge-connectivity aug-
mentation problem involving local requirements of a special kind. We present this solution
in detail.

Let D = (V, A) be a digraph and let S and T be two nonempty (but not necessarily
disjoint) subsets of V . One may be interested in an augmentation of D in which every vertex
of T is reachable from every vertex of S. This generalizes the problem of making a digraph
strongly connected (S = T = V) which was solved by Eswaran and Tarjan (Theorem 14.11).
This generalization, however, leads to an NP-complete problem even in the special cases
when |S| = 1 or S = T . See [7] for the proof.

On the other hand, we shall show that if only ST -edges are allowed to be added, then the
augmentation problem is tractable even for higher edge-connectivity. An edge with tail s and
head t is an ST -edge if s ∈ S, t ∈ T . Let A∗ denote the set of all ST -edges, including loops,
and let m = |A∗|. Clearly, m = |S||T |. We say that a subset X of vertices is ST -nontrivial,
or nontrivial for short, if X ∩ T ̸= ∅ and S − X ̸= ∅, which is equivalent to requiring that
there is an ST -edge entering X. A digraph is k-ST -edge-connected if the number of edges
entering X ⊆ V is at least k for every nontrivial X. By Menger’s theorem, this is equivalent
to requiring the existence of k edge-disjoint st-paths for every possible choice of s ∈ S and
t ∈ T . Note that this property is much stronger than requiring only the existence of k
edge-disjoint paths from S to T .

We say that two sets X and Y are ST -crossing if none of the sets X ∩ Y ∩ T, S − (X ∪
Y), X − Y , and Y − X is empty. In the special case when S = T = V this coincides with
the standard notion of crossing. A family L is ST -crossing if both the intersection and the
union of any two ST -crossing members of L belong to L. If L does not include two ST -
crossing members, it is said to be ST -cross-free. A family I of sets is ST -independent or
just independent if, for any two members X and Y of I, at least one of the sets X ∩ Y ∩ T
and S − (X ∪ Y) is empty. Note that the relation between two sets can be of three types.
Either they are ST -crossing, or one includes the other, or they are ST -independent. A set F
of ST -edges (or the digraph (V, F)) covers L if each member of L is entered by a member
of F .

For an initial digraph D = (V, A) that we want to make k-ST -edge-connected, define the
deficiency function h on sets as follows. For a real number x we put x+ = max{x, 0}. Let

h(X) =
{

(k − ϱD(X))+ if X is ST -nontrivial
0 otherwise

(14.24)

Therefore, the addition of a digraph H = (V, F) of ST -edges to D results in a k-ST -edge-
connected digraph if and only if F covers h in the sense that ϱH(X) ≥ h(X) for every X ⊆ V .
For a set-function h and a family I of sets we use h(I) to denote

∑
[h(X) : X ∈ I].

Theorem 14.35 [70] A digraph D = (V, A) can be made k-ST -edge-connected by adding at
most γ new ST -edges (or equivalently, h can be covered by γ ST -edges) if and only if

h(I) ≤ γ for every ST -independent family I of subsets of V. (14.25)

C5955–C0014.tex 335 2015/11/4 10:12am

336 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Equivalently, the minimum number τh = τh(D) of ST -edges whose addition to D results in
a k-ST -edge connected digraph is equal to the maximum νh = νh(D) of the sum of h-values
over all families of ST -independent sets.

Proof. We prove the second form. Since one ST -edge cannot cover two or more sets from an
ST -independent family, we have νh ≤ τh. For the reverse direction we proceed by induction
on νh. If this value is 0, that is, there is if no deficient set, then D itself is k-ST -edge-connected
and hence no new edge is needed. So we may assume that νh is positive.

First suppose that there is an edge e ∈ A∗ for which νh(D′) ≤ νh(D) − 1 for D′ = D + e.
Then it follows by induction that D′ can be made k-ST -edge-connected by adding νh(D′)
ST -edges. But then the original D can be made k-ST -edge-connected by adding at most
νh(D′) + 1 ST -edges and hence we have τh(D) ≤ τh(D′) + 1 = νh(D′) + 1 ≤ νh(D) ≤ τh(D)
from which equality follows throughout and, in particular, τh(D) = νh(D). In this case we
are done.

Thus, it remains to consider the case when for every ST -edge e, there is an ST -
independent family Ie for which h(Ie) = νh and e does not enter any member of Fe. Let J ′

denote the union of all of these families Ie in the sense that as many copies of a set X are
put into J ′ as the number of edges e for which X is in Ie. Recall that m denotes the number
of ST -edges. Then we have h(J ′) = mνh and

every ST -edge enters at most m − 1 members. (14.26)

We may assume that the h-value of each member of J ′ is strictly positive since the members
of zero h-values can be discarded. Now we apply the following uncrossing procedure as long
as possible: if there are two ST -crossing members, replace them by their intersection and
union. When a new member has zero h-value, remove it. The submodularity of the in-degree
function implies that such an exchange operation preserves (14.26) and also that the h-value
of the revised system is at least h(J ′).

The above uncrossing procedure terminates after a finite number of steps since the number
of sets can never increase and hence it can decrease only a finite number of times. Moreover,
when this number does not decrease, the sum of squares of the sizes in the family must
strictly increase. Since the number of such steps is also finite, we can conclude that we arrive
at an ST -cross-free family J after a finite number of uncrossing operations. Therefore we
have h(J) ≥ h(J ′) = mνh.

We emphasize that a set X ⊆ V can occur in several copies in J . Let s(X) denote the
number of these copies. Evidently, the sum of the s-values over the subsets of V is exactly |J |.

Claim 14.3 The partial order on J defined by X ⊆ Y admits no chain of s-weight larger
than m − 1.

Proof. For a contradiction suppose that there is a chain C of s-weight at least m. Then there
are m (not necessarily distinct) members of J which are pairwise comparable. Since the
members of a chain of ST -nontrivial sets can be covered by a single ST -edge, this contradicts
property (14.26). �

We can apply the weighted polar-Dilworth theorem asserting that the maximum weight of a
chain is equal to the minimum number of antichains covering each element as many times as
its weight is. It follows that J contains m−1 antichains such that s(X) of them contain X for
every X ∈ J . Since h(J) ≥ mνh, the h-sum of at least one of these antichains is larger than
νh. However, J is ST -cross-free and hence this antichain is ST -independent, contradicting
the definition of νh. This contradiction completes the proof of the theorem. �

C5955–C0014.tex 336 2015/11/4 10:12am

Graph Connectivity Augmentation � 337

Note that in the special case when S = T = V , the members of an ST -independent family
I of nonempty proper subsets of V are either pairwise disjoint or pairwise co-disjoint. (To
see this suppose, for a contradiction, that I has two members which are disjoint and has
two members which are co-disjoint. This implies, since any two members of I are disjoint or
co-disjoint, that there is an X ∈ I which is disjoint from some Y ∈ I and co-disjoint from
some Z ∈ I. But then we must have Y ⊆ Z, contradicting the independence of I.) Thus in
the special case S = T = V Theorem 14.35 immediately implies Theorem 14.14. It is also
possible to deduce Theorem 14.33, although the proof is a bit technical, see [71].

Although it was possible to obtain a polynomial algorithm from the original proof of
Theorem 14.33, it was neither combinatorial nor very efficient. Using a different (but quite
complicated) approach, Benczúr and Végh [73] developed a combinatorial polynomial time
algorithm. In the special of the k-vertex-connectivity augmentation problem when the initial
digraph is (k − 1)-connected, [74] describes a much simpler algorithm. Enni [75] gave an
algorithmic proof of Theorem 14.35 in the special case when k = 1. Note that no strongly
polynomial algorithm is known for the capacitated version of Theorem 14.35.

14.8 HYPERGRAPH AUGMENTATION AND COVERINGS OF SET FUNCTIONS

Connectivity augmentation is about adding new edges to a graph or digraph so that it
becomes sufficiently highly connected. Applying Menger’s theorem, every augmentation
problem has an equivalent formulation where the goal is to add new edges so that each
cut receives at least as many new edges as its deficiency with respect to the given target.
Cut typically means a subset of vertices, but it may also be a pair or collection of subsets of
the vertex set. The deficiency function, say k − ρ(X) or R(X) − d(X), is determined by the
input graph and the connectivity requirements. This leads to a more abstract point of view:
given a function p on subsets of a ground-set V , find a smallest cover of p, that is, a smallest
set of edges F such that at least p(X) edges enter every subset X ⊂ V . Deficiency functions
related to connectivity problems have certain supermodular properties. This motivates the
study of minimum covers of functions of this type.

This is not just for the sake of proving more general minimax theorems. In some cases (e.g.,
in the directed k-connectivity augmentation problem) the only known way to the solution is
via an abstract result. In other cases (e.g., in the k-edge-connectivity augmentation problem)
generalizations lead to simpler proofs, algorithms, and extensions (to local requirements or
vertex-induced cost functions) by showing the background of the problem.

An intermediate step toward an abstract formulation is to consider hypergraphs. A hy-
pergraph is a pair G = (V, E) where V is a finite set (the set of vertices of G) and E is a finite
collection of hyperedges. Each hyperedge e is a set Z ⊆ V with |Z| ≥ 2. The size of e is |Z|.
Thus (loopless) graphs correspond to hypergraphs with edges of size two only. A hyperedge
of size two is called a graph edge. Let dG(X) denote the number of hyperedges intersecting
both X and V − X. A hypergraph is k-edge-connected if dG(X) ≥ k for all ∅ ̸= X ⊂ V . A
component of G is a maximal connected subhypergraph of G. Let w(G) denote the number
of components of G.

One possible way to generalize the k-edge-connectivity augmentation problem is to
search for a smallest set of graph edges whose addition makes a given hypergraph k-edge-
connected. Cheng [76] was the first to prove a result in this direction. He determined the
minimum number of new graph edges needed to make a (k − 1)-edge-connected hypergraph
G k-edge-connected, by invoking deep structural results of Cunningham [77] on decompo-
sitions of submodular functions. His result was soon extended to arbitrary hypergraphs by
Bang-Jensen and Jackson [78]. They employed and extended the splitting off method to
hypergraphs.

C5955–C0014.tex 337 2015/11/4 10:12am

338 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

A hypergraph H = (V + s, E) is (k, s)-edge-connected if s is incident to graph edges only
and dH(X) ≥ k for all ∅ ̸= X ⊂ V . Splitting off two edges su, sv is k-admissible if Huv is
also (k, s)-edge-connected. The extension of Theorem 14.2 to hypergraphs is as follows.

Theorem 14.36 [78] Let H = (V +s, E) be a (k, s)-edge-connected hypergraph with dH(s) =
2m. Then exactly one of the following statements holds.

i. There is a complete k-admissible splitting at s, or

ii. There exists a set A ⊂ E with |A| = k − 1 and w(H − s − A) ≥ m + 2.

Let G = (V, E) be a hypergraph. Let

α(G, k) = max
{

t∑
i=1

(k − d(Xi)) : {X1, . . ., Xt} is a subpartition of V

}
(14.27)

c(G, k) = max{w(G − A) : A ⊂ E, |A| = k − 1}. (14.28)

�
As in the case of graphs, ⌈α(G, k)/2⌉ is a lower bound for the size of a smallest augmentation.
Another lower bound is c(G, k) − 1. Note that if G is a graph, k ≥ 2, and G − A has c(G, k)
components C1, C2, . . ., Cc for some A ⊂ E with |A| = k − 1 and c ≥ 2 then

∑c
1(k − d(Ci)) =

kc −
∑c

1 d(Ci) ≥ kc − 2(k − 1) = 2(c − 1) + (k − 2)(c − 2) ≥ 2(c − 1), and hence α(G, k)/2 ≥
c(G, k) − 1.

Theorem 14.37 [78] The minimum number of new graph edges which makes a hypergraph
G k-edge-connected equals

max{⌈α(G, k)/2⌉, c(G, k) − 1}. (14.29)
�

Note that the successive augmentation property does not hold for hypergraphs [25]. Cosh [79]
proved the bipartition constrained version of Theorem 14.37. The general partition con-
strained version was solved by Bernáth et al. [80]. Király et al. [81] proved that the local
version of the hypergraph edge-connectivity augmentation problem (with graph edges) is
NP-hard, even if the starting hypergraph is connected and the maximum requirement is two.

One may also want to augment a hypergraph by adding hyperedges. The minimum
number of new hyperedges which make a given hypergraph G = (V, E) k-edge-connected
is easy to determine: add l copies of the hyperedge containing all vertices of V , where
l = max{k − dG(X) : ∅ ̸= X ⊂ V }. So it is natural to either set an upper bound on
the size of the new edges or to make the cost of a new hyperedge depend on its size. The
following extension of Theorem 14.37 is due to T. Király. In a t-uniform hypergraph each
hyperedge has size t.

Theorem 14.38 [82] Let H0 = (V, E0) be a hypergraph and t ≥ 2, γ ≥ 0 integers. There
is a t-uniform hypergraph H on vertex-set V with at most γ hyperedges so that H0 + H is
k-edge-connected (k ≥ 1) if and only if∑

X∈P
[k − dH0(X)] ≤ tγ for every subpartition P of V,

k − dH0(X) ≥ γ for every X ⊂ V,

w(H0 − E ′
0) − 1 ≤ (t − 1)γ for every E ′

0 ⊆ E0, |E ′
0| = k − 1. �

Szigeti [83] considered a different objective function and local requirements.

C5955–C0014.tex 338 2015/11/4 10:12am

Graph Connectivity Augmentation � 339

Theorem 14.39 [83] Let H0 = (V, E0) be a hypergraph and let r(u, v) be a local requirement
function. Then there is a hypergraph H = (V, E) so that λH0+H(u, v) ≥ r(u, v) for every
u, v ∈ V and so that

∑
[|Z| : Z ∈ E] ≤ γ if and only if∑

X∈P
[R(X) − dH0(X)] ≤ γ for every subpartition P of V. �

Benczúr and Frank [84] solved an abstract generalization of Theorem 14.37. Let V be a finite
set and let p : 2V → Z be a function with p(∅) = p(V) = 0. p is symmetric if p(X) = p(V −X)
holds for every X ⊆ V . We say that p is crossing supermodular if it satisfies the following
inequality for each pair of crossing sets X, Y ⊂ V :

p(X) + p(Y) ≤ p(X ∪ Y) + p(X ∩ Y). (14.30)

Recall that a set of edges F on V covers p if dF (X) ≥ p(X) for all X ⊂ V .
Now suppose p is a symmetric crossing supermodular function on V and we wish to

determine the minimum size γ(p) of a cover of p consisting of graph edges. A subpartition-
type lower bound is the following. Let

α(p) = max
{

t∑
i=1

p(Xi) : {X1, . . ., Xt} is a subpartition of V

}
.

Since an edge can cover at most two sets of a subpartition, we have γ(p) ≥ ⌈α(p)/2⌉. This
lower bound may be strictly less than γ(p). To see this consider a ground set V with 4
elements and let p ≡ 1. Here α(p) = 4 but, since every cover forms a connected graph
on V , we have γ(p) ≥ 3. This example leads to the following notions. We call a partition
Q = {Y1, . . ., Yr} of V with r ≥ 4 p-full if

p(∪Y ∈Q′Y) ≥ 1 for every non-empty subfamily Q′ ⊆ Q. (14.31)

The maximum size of a p-full partition is called the dimension of p and is denoted by dim(p).
If there is no p-full partition, then dim(p) = 0. Since every cover induces a connected graph
on the members of a p-full partition, we have γ(p) ≥ dim(p) − 1. Thus the minimum size of
a cover is at least Φ(p) = max{⌈α(p)/2⌉, dim(p) − 1}.

Theorem 14.40 [84] Let p : 2V → Z be a symmetric crossing supermodular function. Then
γ(p) = Φ(p). �

The proof of Theorem 14.40 yields a polynomial time algorithm to find a smallest cover,
provided a polynomial time submodular function minimization oracle is available. The defi-
ciency function of a (hyper)graph is symmetric and supermodular: Theorems 14.4 and 14.37
follow by taking p(X) = k − dG(X) for all X ⊂ V and p(∅) = p(V) = 0, where G is the
starting (hyper)graph, see [84]. The special case of Theorem 14.40 where p(X) ∈ {0, 1} for
all X ⊂ V follows also from a result of Fleiner and Jordán [85]. Bernáth et al. [86] solved the
partition-constrained version of this covering problem.

An abstract extension of Theorem 14.39 is as follows.

Theorem 14.41 [83] Let p : 2V → Z be a symmetric skew-supermodular function. Then

min
{∑

e∈F

|e| : F is a cover of p

}
= max

{
t∑
1

p(Xi) : {X1, . . ., Xr} is a subpartition of V

}
.

(14.32)
�

Theorem 14.39 follows by taking p(X) = q(X) = R(X) − dH0(X). If p is an even valued
skew-supermodular function, the minimum size of a cover consisting of graph edges can also
be determined.

C5955–C0014.tex 339 2015/11/4 10:12am

340 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

14.8.1 Detachments and Augmentations

We have seen that edge splitting results are important ingredients in solutions of connectivity
augmentation problems and hence generalizations of some augmentation problems lead to
extensions of edge splitting theorems. This works the other way round as well. Consider the
following operation. Let G = (V + s, E) be a graph with a designated vertex s. A degree
specification for s is a sequence S = (d1, . . ., dp) of positive integers with

∑p
j=1 dj = d(s).

An S-detachment of s in G is obtained by replacing s by p vertices s1, . . ., sp and replacing
every edge su by an edge siu for some 1 ≤ i ≤ p so that d(si) = di holds in the new
graph for 1 ≤ i ≤ p. If di = 2 for all 1 ≤ i ≤ p then an S-detachment corresponds to a
complete splitting in a natural way. Given a local requirement function r : V × V → Z+, an
S-detachment is called r-admissible if the detached graph G′ satisfies λ(x, y; G′) ≥ r(x, y)
for every pair x, y ∈ V .

Extending an earlier theorem of Fleiner [87] on the case when r ≡ k for some k ≥ 2,
Jordán and Szigeti [88] gave a necessary and sufficient condition for the existence of an
r-admissible S-detachment. We call r proper if r(x, y) ≤ λ(x, y; G) for every pair x, y ∈ V .

Theorem 14.42 [88] Let r be a local requirement function for G = (V + s, E) and suppose
that G is 2-edge-connected and r(u, v) ≥ 2 for each pair u, v ∈ V . Let S = (d1, . . ., dp)
be a degree specification for s with di ≥ 2, i = 1, . . ., p. Then there exists an r-admissible
S-detachment of s if and only if r is proper and

λ(u, v; G − s) ≥ r(u, v) −
p∑

i=1
⌊di/2⌋ (14.33)

holds for every pair u, v ∈ V . �

Theorem 14.42 implies Theorem 14.6 by letting r ≡ rλ and di ≡ 2. It also gives the following
extension of Theorem 14.8. By attaching a star of degree d to a graph G = (V, E) we mean
the addition of new vertex s and d edges from s to vertices in V . Let G = (V, E) be a graph
and suppose that we are given local requirements r(u, v) for each pair u, v ∈ V as well as
a set of integers d1, . . ., dp (dj ≥ 2). Can we make G r-edge-connected by attaching p stars
with degrees d1, d2, . . ., dp? Applying Theorem 14.42 to a minimally (r, s)-edge-connected
extension of G gives the following necessary and sufficient condition. Recall the definition of
q(X) from Section 14.2. For simplicity, we again assume that r satisfies (14.6).

Theorem 14.43 [88] Let G = (V, E) be a graph and let r(u, v), u, v ∈ V be a local require-
ment function satisfying (6). Then G can be made r-edge-connected by attaching p stars with
degrees d1, . . ., dp (dj ≥ 2, 1 ≤ j ≤ p) if and only if

t∑
i=1

q(Xi) ≤
p∑

j=1
dj (14.34)

holds for every subpartition {X1, . . ., Xt} of V and λ(u, v; G) ≥ r(u, v) −
∑p

j=1⌊dj/2⌋ for
every pair u, v ∈ V . �

With the help of Theorem 14.43 it is easy to deduce a minimax formula for the following
optimization problem: given G, r, and an integer w ≥ 2, determine the minimum number γ

for which G can be made r-edge-connected by attaching γ stars of degree w. If w = 2 then
we are back at Theorem 14.8.

C5955–C0014.tex 340 2015/11/4 10:12am

Graph Connectivity Augmentation � 341

14.8.2 Directed Hypergraphs

In this subsection we consider extensions of some of the previous results on augmentations
of directed graphs to directed hypergraphs and to directed covers of certain set functions.

A directed hypergraph (or dypergraph, for short) is a pair D = (V, A), where V is a finite
set (the set of vertices of D) and A is a finite collection of hyperarcs. Each hyperarc e is a set
Z ⊆ V , |Z| ≥ 2, with a specified head vertex v ∈ Z. We also use (Z, v) to denote a hyperarc
on set Z and with head v. The size of e is |Z|. Thus a directed graph (without loops) is
a dypergraph with hyperarcs of size two only. We say that a hyperarc (Z, v) enters a set
X ⊂ V if v ∈ X and Z − X ̸= ∅. Let ρ(X) denote the number of hyperarcs entering X. A
dypergraph D = (V, A) is k-edge-connected if ρ(X) ≥ k for every ∅ ̸= X ⊂ V . Berg et al. [89]
extended Theorem 14.12 to dypergraphs and, among others, proved the following extension
of Theorem 14.14.

Theorem 14.44 [89] Let D = (V, A) be a dypergraph. Then D can be made k-edge-connected
by adding γ new hyperarcs of size at most t if and only if

γ ≥
r∑
1

(k − ρ(Xi)) (14.35)

and

(t − 1)γ ≥
r∑
1

(k − δ(Xi)) (14.36)

hold for every subpartition {X1, X2, . . ., Xr} of V . �

Directed covers of set functions have also been investigated. Frank [6] proved the directed
version of Theorem 14.40. We say that a set F of directed edges on ground set V covers a
function p : 2V → Z if ρF (X) ≥ p(X) for all X ⊂ V .

Theorem 14.45 [6] Let p : 2V → Z be a crossing supermodular function. Then p can be
covered by γ edges if and only if

γ ≥
t∑
1

p(Xi) (14.37)

and

γ ≥
t∑
1

p(V − Xi) (14.38)

hold for every subpartition {X1, X2, . . ., Xt} of V . �

If p(X) ∈ {0, 1} for all X ⊂ V , the problem corresponds to covering a crossing family
of subsets of V by a smallest set of edges. Gabow and Jordán [43] solved the bipartition-
constrained version of this special case.

Since p(X) = k −ρ(X) is crossing supermodular, Theorem 14.45 implies Theorem 14.14.
The following generalization of the directed k-edge-connectivity augmentation problem can
also be solved by Theorem 14.45. Let D = (V, A) be a directed graph with a specified root
vertex r ∈ V and let k ≥ l ≥ 0 be integers. D is called (k, l)-edge-connected (from r) if
λ(r, v; D) ≥ k and λ(v, r; D) ≥ l for every vertex v ∈ V − r. Clearly, D is k-edge-connected
if and only if D is (k, k)-edge-connected. The extension, due to Frank [90], is as follows. Let
pkl(X) = max{k − ρ(X), 0} for sets ∅ ̸= X ⊆ V − r and let pkl(X) = max{l − ρ(X), 0} for
sets X ⊂ V with r ∈ X.

C5955–C0014.tex 341 2015/11/4 10:12am

342 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 14.46 [90] Let D = (V, A) be a digraph and let r ∈ V . D can be made (k, l)-edge-
connected from r by adding γ new arcs if and only if

γ ≥
t∑
1

pkl(Xi) (14.39)

and

γ ≥
t∑
1

pkl(V − Xi) (14.40)

hold for every partition {X1, X2, . . ., Xt} of V . �

Finally we state a result on directed covers of pairs of sets, due to Frank and Jordán [70],
which led to the solution of the k-vertex-connectivity augmentation problem for directed
graphs.

Let V be a ground set and let p(X, Y) be an integer-valued function defined on ordered
pairs of disjoint subsets X, Y ⊂ V . We call p crossing bi-supermodular if

p(X, Y) + p(X ′, Y ′) ≤ p(X ∩ X ′, Y ∪ Y ′) + p(X ∪ X ′, Y ∩ Y ′)

holds whenever X ∩ X ′, Y ∩ Y ′ ̸= ∅. A set F of directed edges covers p if there are at least
p(X, Y) arcs in F with tail in X and head in Y for every pair X, Y ⊂ V , X ∩ Y = ∅. Two
pairs (X, Y), (X ′, Y ′) are independent if X ∩ X ′ or Y ∩ Y ′ is empty.

Theorem 14.47 [70] Let p be an integer-valued crossing bi-supermodular function on V .
Then p can be covered by γ arcs if and only if

∑
(X,Y)∈F p(X, Y) ≤ γ holds for every family

F of pairwise independent pairs. �

Let D = (V, A) be a digraph. By taking p(X, Y) = k−|(V −(X ∪Y)| for one-way pairs (X, Y)
we can deduce Theorem 14.33. Furthermore, Theorem 14.47 implies Theorems 14.12, 14.14
and 14.35 as well as Edmonds’ matroid partition theorem, a theorem of Győri on covering
a rectilinear polygon with rectangles, and a theorem of Frank on Kt,t-free t-mathcings in
bipartite graphs, see [70,91] for more details. A recent application to the jump number of
two-directional orthogonal ray graphs can be found in [92].

The idea of abstract formulations may also lead to graph augmentation problems with
somewhat different but still connectivity related objectives. A recent result of Frank and
Király [93] solves the problem of optimally augmenting a graph G by adding a set F of edges
so that G + F is (k, l)-partition-connected. A graph G = (V, E) is called (k, l)-partition-
connected if the number of cross edges is at least k(|P|−1)+ l for all partitions P of V . With
this definition (k, k)-partition-connectivity is equivalent to k-edge-connectivity while (k, 0)-
partition-connectivity is equivalent, by a theorem of Tutte, to the existence of k-edge-disjoint
spanning trees.

Acknowledgments

This work was supported by the MTA-ELTE Egerváry Research Group on Combinatorial Op-
timization and the Hungarian Scientific Research Fund grants K81472, K115483, CK80124,
and K109240.

C5955–C0014.tex 342 2015/11/4 10:12am

Graph Connectivity Augmentation � 343

References

[1] M. Grötschel, C. L. Monma, and M. Stoer. Design of survivable networks. In Network
models, volume 7 of Handbooks in Operational Research and Management Science,
pages 617–672. M.O. Ball et al. (eds) North-Holland, Amsterdam, the Netherlands,
1995.

[2] G. Kant. Augmenting outerplanar graphs. J. Algorithms, 21(1) (1996), 1–25.

[3] J. Bang-Jensen, H. N. Gabow, T. Jordán, and Z. Szigeti. Edge-connectivity augmen-
tation with partition constraints. SIAM J. Discrete Math., 12(2) (1999), 160–207.

[4] M.-Y. Kao. Data security equals graph connectivity. SIAM J. Discrete Math., 9(1)
(1996), 87–100.

[5] H. Nagamochi and T. Ibaraki. Algorithmic aspects of graph connectivity. Encyclopedia
of Mathematics and Its Applications 123, Cambridge University Press, New York.

[6] A. Frank. Connectivity augmentation problems in network design. In Mathematical
Programming: State of the Art, pages 34–63. J.R. Birge and K.G. Murty (eds.), Uni-
versity of Michigan, Ann Arbor, MI, 1994.

[7] A. Frank. Connections in combinatorial optimization, volume 38 of Oxford Lecture
Series in Mathematics and Its Applications. Oxford University Press, Oxford, 2011.

[8] A. Schrijver. Combinatorial Optimization-Polyhedra and Efficiency, Algorithms and
Combinatorics, 24, Springer, 2003.

[9] Z. Szigeti. On edge-connectivity augmentation of graphs and hypergraphs. In Reearch
Trends in Combinatorial Optimization, pages 483–521. W. Cook, L. Lovász, J. Vygen
(eds.), Springer, Berlin, Germany, 2009.

[10] S. Khuller. Approximation algorithms for finding highly connected subgraphs. In Ap-
proximation Algorithms for NP-Hard Problems, D. Hochbaum, (ed.), PWS Publishing
Company, 1996.

[11] A. Gupta and J. Könemann. Approximation algorithms for network design: A survey.
Surv. Oper. Res. Manage. Sci., 16(1) (January 2011), 3–20.

[12] K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM J. Comput., 5(4)
(1976), 653–665.

[13] J. Plesnik. Minimum block containing a given graph. Arch. Math. (Basel), 27(6) (1976),
668–672.

[14] R. E. Gomory and T. C. Hu. Multi-terminal network flows. J. Soc. Ind. Appl. Math.,
9 (1961), 551–570.

[15] H. Frank and W. Chou. Connectivity considerations in the design of survivable net-
works. IEEE Trans. Circuit Theory, CT-17 (1970), 486–490.

[16] Y. Kajitani and S. Ueno. The minimum augmentation of a directed tree to a k-edge-
connected directed graph. Networks, 16(2) (1986), 181–197.

[17] T. Watanabe and A. Nakamura. Edge-connectivity augmentation problems. J. Comput.
Syst. Sci., 35(1) (1987), 96–144.

C5955–C0014.tex 343 2015/11/4 10:12am

344 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[18] G. R. Cai and Y. G. Sun. The minimum augmentation of any graph to a K-edge-
connected graph. Networks, 19(1) (1989), 151–172.

[19] A. Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM J. Dis-
crete Math., 5(1) (1992), 25–53.

[20] L. Lovász. Combinatorial Problems and Exercises. North-Holland Publishing Co.,
Amsterdam, the Netherlands, 1979.

[21] D. Naor, D. Gusfield, and C. Martel. A fast algorithm for optimally increasing the edge
connectivity. SIAM J. Comput., 26(4) (1997), 1139–1165.

[22] E. A. Dinic, A. V. Karzanov, and M. V. Lomonosov. The structure of a system of
minimal edge cuts of a graph. In Studies in Discrete Optimization (Russian), pages
290–306. A.A. Fridman (ed.), Izdat. Nauka, Moscow, Russia, 1976.

[23] A. A. Benczúr and D. R. Karger. Augmenting undirected edge connectivity in Õ(n2)
time. J. Algorithms, 37(1) (2000), 2–36.

[24] W. Mader. A reduction method for edge-connectivity in graphs. Ann. Discrete Math., 3
(1978), 145–164. Advances in Graph Theory, Cambridge Combinatorial Conf., Trinity
College, Cambridge, 1977.

[25] E. Cheng and T. Jordán. Successive edge-connectivity augmentation problems. Math.
Program., 84(3, Ser. B) (1999), 577–593. Connectivity Augmentation of Networks:
Structures and Algorithms, Budapest, Hungary, 1994.

[26] J. Bang-Jensen, A. Frank, and B. Jackson. Preserving and increasing local edge-
connectivity in mixed graphs. SIAM J. Discrete Math., 8(2) (1995), 155–178.

[27] H. Miwa and H. Ito. NA-edge-connectivity augmentation problems by adding edges.
J. Oper. Res. Soc. Jpn., 47(4) (2004), 224–243.

[28] T. Ishii, Y. Akiyama, and H. Nagamochi. Minimum augmentation of edge-connectivity
between vertices and sets of vertices in undirected graphs. Algorithmica 56(4) (2010),
413–436.

[29] T. Ishii and M. Hagiwara. Minimum augmentation of local edge-connectivity be-
tween vertices and vertex subsets in undirected graphs. Discrete Appl. Math., 154(16)
(November 1, 2006), 2307–2329.

[30] R. Grappe and Z. Szigeti. Covering symmetric semi-monotone functions. Discrete Appl.
Math. 156 (2008), 138–144.

[31] A. Frank, How to make a digraph strongly connected, Combinatorica 1 (1981), 145–153.

[32] W. Mader. Konstruktion aller n-fach kantenzusammenhängenden Digraphen. Eur. J.
Combin., 3(1) (1982), 63–67.

[33] A. Frank. On connectivity properties of Eulerian digraphs. In Graph Theory in Memory
of G. A. Dirac (Sandbjerg, 1985), pages 179–194. L.D. Andersen et al. (eds.), North-
Holland, Amsterdam, the Netherlands, 1989.

[34] B. Jackson. Some remarks on arc-connectivity, vertex splitting, and orientation in
graphs and digraphs. J. Graph Theory, 12(3) (1988), 429–436.

C5955–C0014.tex 344 2015/11/4 10:12am

Graph Connectivity Augmentation � 345

[35] D. Gusfield. Optimal mixed graph augmentation. SIAM J. Comput., 16(4) (1987),
599–612.

[36] G. N. Frederickson and J. Ja’Ja’. Approximation algorithms for several graph augmen-
tation problems. SIAM J. Comput., 10(2) (1981), 270–283.

[37] J. Cheriyan, T. Jordán, and R. Ravi. On 2-coverings and 2-packings of laminar families.
In Algorithms—ESA ’99 (Prague), pages 510–520. J. Nesetril (ed.), Springer, Berlin,
Germany, 1999.

[38] E. D. Bolker and H. Crapo. Bracing rectangular frameworks. I. SIAM J. Appl. Math.,
36(3) (1979), 473–490.

[39] J. Bang-Jensen and T. Jordán. Splitting off edges within a specified subset preserving
the edge-connectivity of the graph. J. Algorithms, 37(2) (2000), 326–343.

[40] W. Goddard, M. E. Raines, and P. J. Slater. Distance and connectivity measures in
permutation graphs. Discrete Math., 271(1–3) (2003), 61–70.

[41] N. Jami and Z. Szigeti. Edge-connectivity of permutation hypergraphs. Discrete Math.
312(17) (September 6, 2012), 2536–2539.

[42] H. N. Gabow and T. Jordán. How to make a square grid framework with cables rigid.
SIAM J. Comput., 30(2) (2000), 649–680.

[43] H. N. Gabow and T. Jordán. Incrementing bipartite digraph edge-connectivity.
J. Comb. Optim., 4(4) (2000), 449–486.

[44] H. N. Gabow and T. Jordán. Bipartition constrained edge-splitting in directed graphs.
Discrete Appl. Math., 115(1–3) (2001), 49–62.

[45] H. Nagamochi and P. Eades. Edge-splitting and edge-connectivity augmentation in
planar graphs. In Integer Programming and Combinatorial Optimization (Houston, TX,
1998), pages 96–111. R.E. Bixby, E.A. Boyd, and R.Z. Rios-Mercado (eds.), Springer,
Berlin, Germany, 1998.

[46] T. Jordán. Constrained edge-splitting problems. SIAM J. Discrete Math., 17(1) (2003),
88–102.

[47] T. Watanabe and M. Yamakado. A linear time algorithm for smallest augmentation to
3-edge-connect a graph. IEICE Trans. Fund. Jpn., E76-A (1993), 518–531.

[48] S. Taoka and T. Watanabe. The (σ+1)-edge-connectivity augmentation problem with-
out creating multiple edges of a graphs. Theoret. Comput. Sci. 1872/2000 (2000),
169–185.

[49] T. Jordán. Two NP-complete augmentation problems. Tech. Rep. PP-1997-08, Odense
University, Denmark, 1997.

[50] J. Bang-Jensen and T. Jordán. Edge-connectivity augmentation preserving simplicity.
SIAM J. Discrete Math., 11(4) (1998), 603–623.

[51] T. Ishii and H. Nagamochi. Simultaneous augmentation of two graphs to an l-edge-
connected graph and a biconnected graph. In Algorithms and Computation (Taipei,
2000), volume 1969 of Lecture Notes in Computer Science, pages 326–337. D.T. Lee
and S.-H. Teng (eds.), Springer, Berlin, Germany, 2000.

C5955–C0014.tex 345 2015/11/4 10:12am

346 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[52] T.-S. Hsu and V. Ramachandran. Finding a smallest augmentation to biconnect a
graph. SIAM J. Comput., 22(5) (1993), 889–912.

[53] T. Watanabe and A. Nakamura. A minimum 3-connectivity augmentation of a graph.
J. Comput. Syst. Sci., 46(1) (1993), 91–128.

[54] T.-S. Hsu and V. Ramachandran. A linear time algorithm for triconnectivity augmen-
tation. Proc. 32nd Annu. Symp. Found. Comput. Sci., 22(5) (1991), 548–559.

[55] T.-S. Hsu. On four-connecting a triconnected graph. J. Algorithms, 35(2) (2000), 202–
234.

[56] T. Jordán. On the optimal vertex-connectivity augmentation. J. Combin. Theory Ser.
B, 63(1) (1995), 8–20.

[57] T. Jordán. A note on the vertex-connectivity augmentation problem. J. Combin. The-
ory Ser. B, 71(2) (1997), 294–301.

[58] J. Cheriyan and R. Thurimella. Fast algorithms for k-shredders and k-node connectivity
augmentation. J. Algorithms, 33(1) (1999), 15–50.

[59] T. Ishii and H. Nagamochi. On the minimum augmentation of an l-connected graph
to a k-connected graph. In Algorithm Theory—SWAT 2000 (Bergen), pages 286–299.
Springer, Berlin, Germany, 2000.

[60] B. Jackson and T. Jordán. A near optimal algorithm for vertex connectivity augmen-
tation. In Algorithms and Computation (Taipei, 2000), volume 1969 of Lecture Notes
in Comput. Sci., pages 313–325. D.T. Lee and S.-H. Teng (eds.), Springer, Berlin,
Germany, 2000.

[61] B. Jackson and T. Jordán. Independence free graphs and vertex connectivity augmen-
tation. J. Combin. Theory Ser. B, 94(1) (2005), 31–77.

[62] L. A. Végh. Augmenting undirected node-connectivity by one. SIAM J. Discrete Math.,
25(2) (2011), 695–718.

[63] T. Watanabe, Y. Higashi, and A. Nakamura. Graph augmentation problems for a
specified set of vertices. In Algorithms (Tokyo, 1990), pages 378–387. Springer, Berlin,
Germany, 1990.

[64] T.-S. Hsu and M.-Y. Kao. A unifying augmentation algorithm for two-edge connectivity
and biconnectivity. J. Comb. Optim., 2(3) (1998), 237–256.

[65] T. Ishii, H. Nagamochi, and T. Ibaraki. Optimal augmentation of a 2-vertex-connected
multigraph to an l-edge-connected and 3-vertex-connected multigraph. J. Comb.
Optim., 4(1) (2000), 35–77.

[66] T. Ishii, H. Nagamochi, and T. Ibaraki. Multigraph augmentation under biconnectivity
and general edge-connectivity requirements. Networks, 37(3) (2001), 144–155.

[67] T. Ishii, H. Nagamochi, and T. Ibaraki. Augmenting a (k − 1)-vertex-connected multi-
graph to an l-edge-connected and k-vertex-connected multigraph. Algorithmica, 44(3)
(2006), 257–280.

C5955–C0014.tex 346 2015/11/4 10:12am

Graph Connectivity Augmentation � 347

[68] T. Masuzawa, K. Hagihara, and N. Tokura. An optimal time algorithm for the k-vertex-
connectivity unweighted augmentation problem for rooted directed trees. Discrete Appl.
Math., 17(1–2) (1987), 67–105.

[69] T. Jordán. Increasing the vertex-connectivity in directed graphs. In Algorithms—ESA
’93 (Bad Honnef, 1993), pages 236–247. T. Lengauer (ed.), Springer, Berlin, Germany,
1993.

[70] A. Frank and T. Jordán. Minimal edge-coverings of pairs of sets. J. Combin. Theory
Ser. B, 65(1) (1995), 73–110.

[71] A. Frank and T. Jordán. Directed vertex-connectivity augmentation. Math. Program.,
84(3, Ser. B) (1999), 537–553. Connectivity augmentation of Networks: Structures and
Algorithms (Budapest, 1994).

[72] A. Frank and T. Jordán. How to make a strongly connected digraph two-connected.
In Integer Programming and Combinatorial Optimization (Copenhagen, 1995), pages
414–425. E. Balas and J. Clausen (eds.), Springer, Berlin, Germany, 1995.

[73] A. A. Benczúr and L. Végh. Primal-dual approach for directed vertex connectivity
augmentation and generalizations. ACM Trans. Algorithms 4(2) (2008), 20.

[74] A. Frank and L. A. Végh. An algorithm to increase the node-connectivity of a digraph
by one. Discrete Optim., 5(4) (2008), 677–684.

[75] S. Enni. A 1-(S,T)-edge-connectivity augmentation algorithm. Math. Program., 84(3,
Ser. B) (1999), 529–535. Connectivity Augmentation of Networks: Structures and Al-
gorithms (Budapest, 1994).

[76] E. Cheng. Edge-augmentation of hypergraphs. Math. Program., 84(3, Ser. B) (1999),
443–465. Connectivity Augmentation of Networks: Structures and Algorithms (Bu-
dapest, 1994).

[77] W.H. Cunningham. Decomposition of submodular functions. Combinatorica, (3)
(1983), 53–68.

[78] J. Bang-Jensen and B. Jackson. Augmenting hypergraphs by edges of size two. Math.
Program., 84(3, Ser. B) (1999), 467–481. Connectivity Augmentation of Networks:
Structures and Algorithms (Budapest, 1994).

[79] B. Cosh. Vertex Splitting and Connectivity Augmentation in Hypergraphs. PhD Thesis,
Goldsmiths College, London, 2000.

[80] A. Bernáth, R. Grappe, and Z. Szigeti. Augmenting the edge-connectivity of a hyper-
graph by adding a multipartite graph. J. Graph Theory, 72(3) (March 2013), 291–312.

[81] Z. Király, B. Cosh, and B. Jackson. Local edge-connectivity augmentation in hyper-
graphs is NP-complete. Discrete Appl. Math., 158(6) (2010), 723–727.

[82] T. Király, Covering symmetric supermodular functions by uniform hypergraphs,
J. Comb. Theory, Ser. B, 91(2) (2004), 185–200.

[83] Z. Szigeti. Hypergraph connectivity augmentation. Math. Program., 84(3, Ser. B)
(1999), 519–527. Connectivity Augmentation of Networks: Structures and Algorithms
(Budapest, 1994).

C5955–C0014.tex 347 2015/11/4 10:12am

348 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[84] A. A. Benczúr and A. Frank. Covering symmetric supermodular functions by graphs.
Math. Program., 84(3, Ser. B) (1999), 483–503. Connectivity Augmentation of Net-
works: Structures and Algorithms (Budapest, 1994).

[85] T. Fleiner and T. Jordán. Coverings and structure of crossing families. Math. Program.,
84(3, Ser. B) (1999), 505–518. Connectivity Augmentation of Networks: Structures and
Algorithms (Budapest, 1994).

[86] A. Bernáth, R. Grappe, and Z. Szigeti. Partition constrained covering of a symmetric
crossing supermodular function by a graph. Proc. of the 21st Annu. ACM-SIAM Symp.
Discrete Algorithms, (2010), 1512–1520.

[87] B. Fleiner. Detachment of vertices of graphs preserving edge-connectivity. SIAM J.
Discrete Math., 18(3) (2004), 581–591.

[88] T. Jordán and Z. Szigeti. Detachments preserving local edge-connectivity of graphs.
SIAM J. Discrete Math., 17(1) (2003), 72–87.

[89] A. R. Berg, B. Jackson, and T. Jordán. Edge splitting and connectivity augmenta-
tion in directed hypergraphs. Discrete Math., 273(1–3) (2003), 71–84. EuroComb’01
(Barcelona).

[90] A. Frank. Edge-connection of graphs, digraphs, and hypergraphs. In More sets, graphs
and numbers, volume 15 of Bolyai Society Mathematical Studies, pages 93–141. E. Győri
et al. (eds.), Springer, Berlin, Germany, 2006.

[91] A. Frank. Restricted t-matchings in bipartite graphs. Discrete Appl. Math., 131(2)
(2003), 337–346. Submodularity.

[92] J. A. Soto and C. Telha. Jump number of two-directional orthogonal ray graphs. In
Proceedings of the IPCO, LNCS 6655, pages 389–403, O. Günlük and G. Woeginger
(eds.), Springer, New York, 2011.

[93] A. Frank and T. Király. Combined connectivity augmentation and orientation prob-
lems. Discrete Appl. Math., 131(2) (2003), 401–419. Submodularity.

C5955–C0014.tex 348 2015/11/4 10:12am

C H A P T E R 15

Matchings
Michael D. Plummer

CONTENTS

15.1 Introduction and Terminology . 349
15.2 Bipartite Matching: Theorems of König, Hall, and Frobenius 351
15.3 Tutte’s Theorem and Perfect Matching in General Graphs . 354
15.4 Sufficient Conditions for Perfect Matchings . 355
15.5 Maximum Matchings . 356
15.6 Gallai–Edmonds Structure Theorem . 357
15.7 Structure of Factor-Critical Graphs . 359
15.8 Ear Decompositions of Matching-Covered Graphs . 360
15.9 Brick Decomposition Procedure . 362
15.10 Determinants, Permanents, and the Number of Perfect Matchings 364
15.11 Applications of Matching: Chemistry and Physics . 366
15.12 Matching Extension . 367
15.13 f - and k-Factors . 368

15.1 INTRODUCTION AND TERMINOLOGY

A matching in a graph G is a set of independent edges; that is to say, a set of edges no two
of which share a vertex. It is no surprise that the study of such a simple concept should have
begun early in the history of graph theory. Nor is it surprising that the idea of a matching
should arise in many different contexts as well. One can take the position that there are two
main historical sources for the study of matchings. One can associate these sources with two
individuals: the Dane Julius Petersen in the area of regular graphs and the Hungarian Dénes
König in the area of bipartite graphs.

In 1891 Petersen [1] translated a problem in algebraic factorization due to David Hilbert
into a factorization problem for regular graphs. He then proved that any graph regular of
even degree can be factored (i.e., decomposed) into edge-disjoint spanning subgraphs regular
of degree two. He proceded to point out that, in contrast, factorization into subgraphs regular
of odd degree is a more difficult problem. He was able to show, however, that any connected
3-regular graph contains a perfect matching (i.e., a matching covering all of V (G)), provided
it contains no more than two cut edges. He then pointed out that the assumption of no more
than two cut edges was best possible by giving the example shown in Figure 15.1 below which
he attributed to Silvester.

Somewhat later, Petersen published the famous graph which was to bear his name (the
Petersen graph) as an example of a nonplanar cubic graph with no cut edges which could
not be decomposed into three disjoint perfect matchings [2] (see Figure 15.2).

C5955–C0015.tex 349 2015/11/4 10:50am

349

350 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Figure 15.1 Sylvester graph.

Figure 15.2 Petersen graph.

It is hard to overestimate the importance of this 10-vertex graph in the field of graph
theory as it undoubtedly has provided counterexamples to more conjectures than any other
graph. (See the book [3] and more recently the paper [4] in this context.)

König’s study of matchings in bipartite graphs also arose from a problem in algebra.
In particular, he translated a problem in the area of reducibility properties of determinants
originally solved by the German Frobenius into a problem on bipartite graphs and in so
doing provided a shorter proof [5]. He then extended this work in his twin papers [6,7]—one
in Hungarian and the other in German–proving that any k-regular bipartite graph is the
union of k disjoint perfect matchings.

Also in these two papers, König proved what has come to be known as König’s Edge
Coloring Theorem which states that in any bipartite graph the chromatic index is equal to
the maximum degree of the graph.

In a second set of twin papers [8,9], König proved yet another theorem of at least as
much importance in graph theory, in which he showed that in any bipartite graph the
size of any maximum matching is equal to the size of any smallest set of vertices which
together cover all the edges of the graph. This result, which is discussed below in Section
15.2, gave birth to the study of so–called minimax theorems in graph theory and allied
areas.

C5955–C0015.tex 350 2015/11/4 10:50am

Matchings � 351

Due to space limitations, we will be content with this necessarily brief historical intro-
duction to matching theory. For a much more detailed treatment of the history in this area,
see the Preface of [10,11].

Let us make a few comments on notation and terminology pertaining especially to this
chapter on matching. A matching M in G is said to be maximal if it is not a proper subset
of any other matching in G. A matching in G is said to be maximum if its cardinality is
greatest among all matchings in G. The cardinality of any maximum matching in G is called
the matching number of G and is denoted by ν(G). Of course, every maximum matching is
maximal, but the converse is not true in general. A matching is said to be perfect if it covers
all vertices of the graph and near-perfect if it covers all but exactly one vertex. A perfect
matching is often called a 1-factor. A set of edges in graph G is called an edge cover of G
if it covers all the vertices of G. The cardinality of any smallest edge cover in G is called
the edge covering number of G and is denoted by ρ(G). A set of vertices in graph G is said
to be independent if no two of its members are joined by an edge. The size of any largest
independent set in G is called the independence number of G and is denoted by α(G). A set
S of vertices in G is called a vertex cover of G if every edge of G has at least one end vertex
in S. The size of any smallest vertex cover is called the vertex covering number of G and is
denoted by τ(G).

These four parameters are not independent in general, but are related as shown in the
following theorem.

Theorem 15.1 If G is any graph, then

i. α(G) + τ(G) = |V (G)| and

ii. If G has no isolated vertices, then ν(G) + ρ(G) = |V (G)|.

Proof. The proof of (i) is immediate upon realizing that the complement of any vertex cover
is an independent set.

To prove (ii), let E be a smallest edge cover in G. Then by the minimality of E, it must
consist of |V (G)| − ρ(G) vertex-disjoint stars. But since there are no isolates, each of these
stars contains at least one edge, so selecting one edge from each star, one obtains a matching
M in G. Hence ν(G) ≥ |M | = |V (G)| − ρ(G); that is, ν(G) + ρ(G) ≥ |V (G)|.

On the other hand, let us choose a maximum matching M in G and let U denote the set
of vertices not covered by M . Then U is independent. Again since G has no isolated vertices,
for each of the |V (G)| − 2ν(G) vertices of set U we may choose an edge covering it. If S
denotes the collection of edges thus chosen, clearly M ∪ S is an edge cover for G. But then
ρ(G) ≤ |M ∪ S| = ν(G) + |V (G)| − 2ν(G) = |V (G)| −ν(G) and hence νG) +ρ(G) ≤ |V (G)|.
The result then follows. �
The two equations in parts (i) and (ii) of the preceding theorem are often referred to as the
Gallai identities (cf. [12]).

For any set S ⊆ V (G), we shall denote by N(S) the set of all vertices in G having a
neighbor in S. For any graph G, we shall denote by c(G) the number of components of G and
by co(G) the number of components of G of odd cardinality. The maximum degree in graph
G will be denoted by ∆(G). Other terminology and symbols will be introduced as needed.

15.2 BIPARTITE MATCHING: THEOREMS OF KÖNIG, HALL,
AND FROBENIUS

One of the earliest results on matching in bipartite graphs, and still one of the most important,
is due to König [8,9].

C5955–C0015.tex 351 2015/11/4 10:50am

352 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 15.2 If G is bipartite, then ν(G) = τ(G).

Proof. Since every cover must, in particular, cover every matching, we have τ(G) ≥ ν(G).
To obtain the reverse inequality, we delete edges from graph G as long as possible to

obtain a subgraph G′ with τ(G′) = τ(G). Hence τ(G′ − e) < τ(G) for every e ∈ E(G′).
We claim that G′ is a matching. Suppose not. Then there must exist two edges e and f

which share a common vertex x. Consider now the graph G′ − e. By the minimality of graph
G′, there is a cover Se in G′ − e covering the edges of G′ − e with |Se| < τ(G′) − 1. Clearly
neither end vertex of e lies in Se. Similarly, there is a cover Sf in G′ − f containing neither
end vertex of f with |Sf | = τ(G′) − 1 = |Se|.

Now form the induced subgraph G′′ of G′ where G′′ = G′[{x} ∪ (Se ⊕ Sf)], where “⊕”
denotes symmetric difference. Let s = |Se ∩ Sf |. Then |V (G′′)| = 2(τ(G′) − 1 − s) + 1. But
graph G′′, being a subgraph of G, is bipartite and so if we let T be the smaller of the two
partite sets for G′′, T covers G′′ and |T | ≤ τ(G′) − 1 − s.

But T ′ = T ∪ (Se ∩ Sf) covers G′. To see this, suppose that g is any edge in G′. If g ̸= e
and g ̸= f , then g is covered by both Se and Sf , for either it is covered by Se ∩ Sf or else it
joins Se − Sf to Sf − Se. In the latter instance, g is an edge of G′′ and hence covered by T .

So τ(G′) ≤ |T ′| = |T ∪ (Se ∩ Sf)| = |T | + |Se ∩ Sf | ≤ τ(G′) − 1 − s + s = τ(G′) − 1 and
we have a contradiction. Thus G′ is a matching as claimed.

But then τ(G) = τ(G′) = ν(G′) ≤ ν(G) and the proof is complete. �
Remark: König’s theorem is an example of a so-called minimax theorem. Other examples
include the max-flow-min-cut theorem and Menger’s theorem (Chapters 4, 5, and 12).

König’s minimax theorem, together with the following result of Philip Hall, can be said to
be the twin pillars upon which bipartite matching is built.

Theorem 15.3 [13] G = (A, B) bipartite, then exists matching of A into B iff |N(X)| ≥
|X|, for all X ⊆ A.

Proof. Clearly, if G has a matching of A into B, that is, if ν(G) = |A|, then for every A′ ⊆ A,
|N(A′)| ≥ |A′|.

To prove the converse, it is enough to prove that τ(G) = |A|, by König’s theorem.
Suppose, to the contrary, that τ(G) < |A|. Thus there is a minimum vertex cover of G
consisting of a set of vertices A′ ∪ B′, where A′ ⊆ A and B′ ⊆ B and |A′ ∪ B′| < |A|.
Hence |B′| < |A| − |A′| = |A − A′|. So |N(A − A′)| ≤ |B′| < |A − A′|, a contradiction. Thus
τ(G) = |A|. �
The statement that |N(X)| ≥ |X|, for all X ⊆ A in the statement of Hall’s theorem above
is often called Hall’s condition.

Remark: There are many versions of Hall’s theorem (cf. [10,11]). One immediate conse-
quence of Hall’s theorem is often called the Marriage Theorem or the Frobenius Theorem.

Corollary 15.1 [14] Bipartite graph G = (A, B) has a perfect matching iff |A| = |B| and
for each X ⊆ A, |X| ≤ |N(X)|.

Remark: It may be shown that the Marriage theorem is, in fact, equivalent to Hall’s theorem
and both are equivalent, in turn, to König’s theorem.

Remark: For a bipartite graph G = (A, B), the property of having a perfect matching is an
NP-property. That is, given a set of edges in G, it may be verified in polynomial time that
they are disjoint and cover all the vertices of G. Less obviously, the property of not having a
perfect matching is also an NP-property. To see this, use Hall’s theorem and simply exhibit a

C5955–C0015.tex 352 2015/11/4 10:50am

Matchings � 353

subset A′ ⊆ A such that |N(A′)| > |A′|. For this reason, the Frobenius-Hall result is referred
to as a good characterization of those bipartite graphs with perfect matchings. In contrast,
consider the existence of a Hamilton cycle in G (i.e., a cycle through all vertices of G). Given
a cycle it is polynomial to check that it contains all vertices of G. However, if a graph is not
Hamiltonian, there is no known way to verify this in polynomial time. It is crucial to note
that both in the matching and Hamiltonian cycle illustrations, how the candidate matching
(respectively, the candidate cycle) is obtained does not concern us.

The area of study known as computational complexity deals with such concepts in much more
depth than we can in our limited space here (cf. [10,11]).

Hall’s theorem has immediate application to the problem of coloring the edges of a
bipartite graph.

Theorem 15.4 Let G be a regular bipartite graph. Then G contains a perfect matching.

Proof. The regularity hypothesis immediately implies that Hall’s Condition is satisfied. �
An edge coloring of a graph G is an assignment of colors to the edges such that edges sharing a
common vertex must receive different colors. The edge-chromatic number χe(G) of the graph
G is the smallest number of colors necessary to color the edges of G. The preceding theorem
has the following immediate consequence.

Theorem 15.5 [6,7] If G is a bipartite graph regular of degree ∆, then χe(G) = ∆(G).

Proof. The proof is by induction on ∆(G). If ∆(G) = 1 the result is clear. So suppose
the result holds for all bipartite graphs regular of degree less than ∆(G). By the preceding
theorem, G contains a perfect matching M . Delete M from G to obtain a bipartite graph G′

which is regular of degree ∆(G) − 1. By the induction hypothesis, G′ can be edge-colored in
∆(G) − 1 colors. Then assigning a new color to the edges of the matching M we obtain the
desired edge coloring for G in ∆(G) colors. �
This result was used by König to prove a more general edge coloring result for all bipartite
graphs.

Theorem 15.6 [6,7] If G is bipartite, then χe(G) = ∆(G).

Proof. The proof is by induction on |E(G)|. Trivially, the result holds if |E(G)| = 0, so
suppose that |E(G)| ≥ 1 and that the result holds for all graphs with fewer edges than G.
Without loss of generality, let us suppose that if (A, B) is the bipartition of G, |A| ≤ |B|.
If |A| = 1, then clearly the result holds, so suppose |A| ≥ 2. Then one can choose an edge
xy ∈ E(G) such that ∆(G − xy) = ∆(G). So by the induction hypothesis, there is an edge
coloring of G − xy in ∆(G) colors. Let these colors be denoted c1, . . ., c∆.

In the graph G − xy each of x and y is incident with at most ∆ − 1 edges. Hence there
must be two colors ci and cj such that x meets no ci-edge and y meets no cj-edge. If ci = cj ,
color the missing edge xy with this color and we have the desired coloring of E(G) in ∆(G)
colors. So assume that ci ̸= cj . Without loss of generality, assume that vertex x is incident
with a cj-edge.

Starting with this edge, find a walk W consisting of edges colored alternately ci and cj of
maximal length. Clearly such a walk exists and moreover, by the definition of edge coloring,
it cannot use any vertex more than once; that is, W must be a path. We claim that W cannot
use vertex y. Suppose, to the contrary, that it does use vertex y. Then, since G is bipartite,
the edge of W incident with y must have color ci. Thus W is even. But then if one adds the
edge xy to W one obtains an odd cycle in the graph G, a contradiction.

C5955–C0015.tex 353 2015/11/4 10:50am

354 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Now interchange the colors ci and cj on the path W to obtain a new coloring of the edges
of G. By the choice of color ci and the fact that path W was chosen to be of maximal length,
it remains true that adjacent edges of G − xy are colored with different colors. But in this
new coloring, neither vertex x nor y is incident with an edge colored cj . So color edge xy
with color cj and we have obtained an edge coloring of E(G) in ∆(G) colors, as desired. �
Other settings for Hall’s theorem abound. In its original form, it was cast as a theorem from
set theory dealing with systems of distinct representatives. In the language of partially ordered
sets, it turns out to be equivalent to an important result known as Dilworth’s theorem which
states that in any finite poset, the size of any largest antichain equals the size of any small-
est partition of the poset into chains. In yet another setting, the König-Hall result implies
an important theorem in the theory of doubly stochastic matrices. A nonnegative square
matrix M is said to be doubly stochastic if all row and column sums are equal to 1. A per-
mutation matrix is a square matrix in which each row and each column contains exactly one
entry 1, while the other entries are all 0. This Birkhoff–von Neumann Theorem says that any
doubly stochastic matrix can be written as a convex combination of permutation matrices.

Two other extremely important graphical results are Menger’s Theorem [15] which is
central in the study of connectivity in graphs and the closely related Max-Flow Min-Cut
Theorem [16,17] which is basic to the theory of network flows. Interestingly, Hall’s theorem
is also equivalent to each of these! We will not go into details here, but refer the reader to
Chapters 4 and 12.
Remark: It is interesting to consider the generalization of Hall’s condition to nonbipartite
graphs. The condition then becomes

|S| ≤ |N(S)| for all S ⊆ V (G).

We give two applications of this condition. A graph is said to have the (weak) odd cycle
property if every pair of odd cycles either share at least one vertex or are joined by an edge.
Berge [18,19] proved the following result for graphs with this property. �

Theorem 15.7 Let G be an even graph satisfying the odd cycle property. Then G contains
a perfect matching if and only if |S| ≤ |N(S)|, for all S ⊆ V (G). �

Tutte [20] obtained the following result involving a certain generalization of perfect matching
called a perfect 2-matching. Given a graph G, a perfect 2-matching of G is a set of cycles and
edges such that every two elements of this set are vertex-disjoint and together they cover
V (G).

Theorem 15.8 A graph G has a perfect 2-matching if and only if |S| ≤ |N(S)|, for every
independent set of vertices S ⊆ V (G). �

15.3 TUTTE’S THEOREM AND PERFECT MATCHING IN GENERAL GRAPHS

For S ⊆ V (G), let co(G − S) denote the number of odd components of the graph G − S.
The proof of the following classical matching theorem of Tutte [21] is due to Lovász [22].

Theorem 15.9 A graph G contains a perfect matching if and only if for all S ⊆ V (G),
co(G − S) ≤ |S|.

Proof. (=⇒) Clear.
(⇐=) Suppose that for all S ⊆ V (G), co(G − S) ≤ |S|, but G does not contain a perfect

matching. If we set S = ∅, we have that co(G − S) = 0, so G is even. Moreover, |S| and
co(G − S) must have the same parity.

C5955–C0015.tex 354 2015/11/4 10:50am

Matchings � 355

Let us now successively add edges to G to obtain a graph G′ which has no perfect matching,
but for any edge e /∈ E(G′), G′ + e does contain a perfect matching. (Clearly this is possible
since G is a subgraph of the complete graph on |V (G)| vertices.) Let V1 consist of the set of
vertices in V (G) which are each adjacent to every other vertex in G and let V2 = V (G) − V1.
Finally, let G′′ = G[V2].

Claim: G′′ consists of vertex-disjoint complete graphs.

Suppose not. Then there are three vertices x, y, and z in V (G) such that x and y are adjacent,
y and z are adjacent, but x and z are not adjacent. Furthermore, since y ∈ V2, there must
be a fourth vertex w /∈ {x, y, z} such that w is not adjacent to y.

Now by definition G′ +xz contains a perfect matching M1 and G′ +yw contains a perfect
matching M2. Clearly xz ∈ M1 and yw ∈ M2, but xz /∈ M2 and yw /∈ M1. Moreover,
M1 ∪ M2 consists of disjoint even (in fact, alternating M1 − M2) cycles together with a set of
independent edges which are just the edges of M1 ∩ M2. Let C be a cycle in M1 ∪ M2 which
contains the edge xz.

We claim that C also contains the edge yw. For suppose not. Then construct a new
perfect matching of G′ from M1 by exchanging the edges of M1 in E(C) for those of M2 in
E(C). But then this new perfect matching contains neither xz nor yw and hence is a perfect
matching in G′, a contradiction.

Now since C is even, C − xz is a path of odd length. Without loss of generality, suppose
C − xz = P1 ∪ P2, where P2 contains the edge yw.

First suppose P1 has odd length. Then form a new matching M3 of V (C) using edge xy
and suitable edges from E(G). Then M3 ∪(M1 −E(C)) is a perfect matching of G containing
neither xz nor yw and hence is a perfect matching of G′, again a contradiction.

If, on the other hand, P1 has even length, form matching M3 using edge yz and suitable
edges of C. Then M3 ∪ (M1 − E(C)) is a perfect matching of G′, again a contradiction.

Thus the Claim is true; that is, G′′ consists of a disjoint union of cliques.
Now form a perfect matching for G as follows. For each odd component of G′[V2], take

a near-perfect matching together with a single edge joining the unmatched vertex of the
component with a distinct vertex of V1. To these matchings, add a perfect matching of each
even component of G′′[V2]. Since co(G − S) ≤ |S| by our initial assumption, the matching
so far constructed covers all components of G′′[V2]. Any remaining unmatched vertices of V1
remaining can be matched pair-wise, since |S| and co(G − S) have the same parity. So G has
a perfect matching, contrary to our initial assumption and the theorem is proved. �

15.4 SUFFICIENT CONDITIONS FOR PERFECT MATCHINGS

There are a number of known sufficient conditions for perfect matchings which involve other
graphical properties. We give a brief sample.

An induced subgraph of any graph G which is isomorphic to the complete bipartite graph
K1,3 is called a claw in G. A graph containing no claws is said to be claw-free. Las Vergnas [23]
and Sumner [24] independently proved the following theorem about matchings in claw-free
graphs.

Theorem 15.10 If G is a connected claw-free graph with an even number of vertices, then
G contains a perfect matching.

Proof. Suppose to the contrary that G has no perfect matching. Then by Tutte’s theorem,
there is a set S ⊆ V (G) such that co(G − S) > |S|. Such a set S is often called a Tutte set
in G. Among all Tutte sets in G let S0 be a smallest one. Since G is connected, S ̸= ∅, so

C5955–C0015.tex 355 2015/11/4 10:50am

356 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

choose a vertex x ∈ S. Then x must be adjacent to a vertex in an odd component of G − S,
for otherwise S − x would also be a Tutte set. Suppose x is adjacent to a vertex in exactly
one odd component C of G − S. Then S − x is a smaller Tutte set than S, a contradiction.
Suppose x is adjacent to exactly two odd components of G − S; call these components
C1 and C2. Then the subgraph induced by V (C1) ∪ V (C2) ∪ {x} is odd and once again S − x
is a smaller Tutte set than S. So x is adjacent to vertices in at least three odd components
of G − S and the existence of a claw follows. �
Next we define the toughness t(G) of a graph G as follows. If G = Kn, then t(G) = + ∞.
If G ̸= Kn for all n, then t(G) = min{|S|/c(G − S)} where we take the minimum over all
vertex cuts S in G. A graph G is said to be t-tough for all t such that t ≤ t(G). The proof of
the next theorem follows immediately from Tutte’s theorem.

Theorem 15.11 If |V (G)| is even and t(G) ≥ 1, then G has a perfect matching. �

Toughness deserves to be mentioned because of a well-known conjecture of Chvátal [25] which
remains unsettled.

Conjecture: There exists a constant t0 such that if G is any graph with t(G) ≥ t0, then G
contains a Hamilton cycle.

It is known that t0 = 2 is not sufficient here. In fact, we have the following result. A graph
is said to be traceable if it contains a Hamilton path.

Theorem 15.12 [26] For every ϵ > 0, there exists a (9/4) − ϵ-tough graph which is not
traceable. �

The binding number bind(G) of graph G is the minimum over all S, ∅ ̸= S ⊆ V (G) and
N(S) ̸= V (G), of the quantity |N(S)|/|S|. Anderson [27] related the binding number to
matchings via the following theorem.

Theorem 15.13 If bind(G) ≥ 4/3, then G has a perfect matching. �

That toughness and binding number are really quite different is graphically pointed out by
comparing Chvátal’s unsolved conjecture above with the following result of Woodall [28].

Theorem 15.14 If bind(G) ≥ 3/2, then G contains a Hamilton cycle. �

15.5 MAXIMUM MATCHINGS

Although a graph may or may not have a perfect matching, all graphs contain matchings
of maximum size, so-called maximum matchings. So what can be said about the size of a
maximum matching?

Note that König’s minimax equation does not necessarily hold in the case of nonbipartite
graphs. (Just consider G = K3.) However, Berge [18] obtained a minimax result involving
matchings for general graphs using the concept of deficiency of a graph. Given a graph G,
the deficiency of G is defined as def(G) = |V (G)| − 2ν(G); that is, def(G) is just the number
of vertices in G left unsaturated by any maximum matching.

Theorem 15.15 (Berge’s Deficiency Theorem): For any graph G, def(G) = max{co

(G − S) − |S|
∣∣S ⊆ V (G)}.

Proof. Define d = max{co(G − S) − |S|
∣∣S ⊆ V (G)}. Setting S = ∅ shows that d ≥ 0. Now

consider the join of G and Kd; that is, join every vertex of a complete graph of size d to

C5955–C0015.tex 356 2015/11/4 10:50am

Matchings � 357

every vertex of G. Denote this graph by G′. We claim that G′ satisfies Tutte’s condition and
therefore has a perfect matching.

Let us consider the subsets S′ ⊆ V (G′). If S′ = ∅, then co(G′ − S′) ≤ |S′| = 0, for
|V (G′)| is even and hence co(G′ − S′) = 0. Suppose next that ∅ ̸= S′, but S′ does not
contain all of Kd. Then G′ − S′ is connected; that is, it consists of exactly one component
and so 1 = co(G′ − S′) ≤ |S′|. Finally, suppose S′ contains Kd. Let S = S′ − V (Kd). Then
G′ − S′ = G − S and so co(G′ − S′) = co(G − S) ≤ |S| + d = |S′|. Hence G′ contains a perfect
matching as claimed.

Now let M ′ be such a perfect matching in G′. This matching can cover at most d vertices
in G, so if we delete these edges from M ′, we are left with a matching M in G covering at
least |V (G)| − d vertices. That is, 2ν(G) ≥ |V (G)| − d or

max{co(G − S) − |S|
∣∣S ⊆ V ()} ≥ |V (G)| − 2ν(G). (15.1)

But for every S ⊆ V (G), every matching fails in G to cover at least co(G − S) − |S| vertices
and hence every matching in G fails to cover at least max{co(G−S)−|S|

∣∣S ⊆ V (G)} vertices.
Thus, in particular, every maximum matching in G fails to cover at least max{co(G − S) −
|S|
∣∣S ⊆ V (G)} vertices. That is,

def(G) = |V (G)| − 2v(G) ≥ max{co(G − S) − |S|
∣∣S ⊆ V (G)}. (15.2)

But now combining (15.1) and (15.2), equality must hold. �
By virtue of Berge’s deficiency theorem, sometimes the quantity def(G) (and therefore also
v(G)) is said to be well-characterized. Suppose we are given a nonnegative integer d ≥
def(G). How can we demonstrate this to someone without knowing the value of def(G)?
If our challenger knows Berge’s theorem, we can proceed to convince him as follows. Let
r = (|V (G)| − d)/2. Suppose we can provide him with a matching M with |M |≥r. Then
def(G) = |V (G)| − 2v(G) ≤ |V (G)| − 2r = d and he is convinced.

On the other hand, suppose d ≤ def(G). If we can produce a set S ⊆ V (G) such that
co(G−S)−|S| ≥ d, then he knows, again, that def(G) = max{co(G−S)−|S|

∣∣S ⊆ V (G)} ≥
co(G − S) − |S| ≥ d and again he is convinced.

15.6 GALLAI–EDMONDS STRUCTURE THEOREM

Suppose G does not have a perfect matching and hence by Tutte’s theorem there is a set S
such that co(G − S) > |S|. Recall such an S is called a Tutte set in G. There may be many
different Tutte sets in G. Is there perhaps one Tutte set which is best in some sense? The
aim of the next work is to show that indeed among all the Tutte sets, there is a unique such
set which yields much information about the structure of G with respect to its maximum
matchings. This beautiful canonical decomposition theorem for graphs in terms of their
maximum matchings is independently due to Gallai [29,30] and Edmonds [31].

Let G be an arbitrary graph. We define three subsets of V (G) as follows: D(G) is the set
of all vertices v such that G contains a maximum matching missing v. A(G) = N(D(G)) −
V (D(G)) and C(G) = V (G) − (A(G) ∪ D(G)). Clearly, {D(G), A(G), C(G)} is a partition of
V (G). Now suppose that G = (A, B) is bipartite. For every set S ⊆ A, define the surplus of
S, σ(G), as |N(S)|−|S|. We then define the surplus of graph G, σ(G), by σ(G) = min{σ(A)

∣∣
A ̸= ∅}.

In Figure 15.3 below we illustrate a Gallai–Edmonds partition {D(G), A(G), C(G)}.

Definition 15.1 A graph G is said to be factor-critical (or hypomatchable) if G−v contains
a perfect matching for every v ∈ V (G).

C5955–C0015.tex 357 2015/11/4 10:50am

358 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

D(G):

C(G):

A(G):

Figure 15.3 Example of the partition {D(G), A(G), C(G)}.

Theorem 15.16 (Gallai–Edmonds Structure Theorem): Let G be an arbitrary graph
with D(G), A(G), and C(G) defined as above. Then:

a. Each component of the subgraph induced by D(G) is factor-critical;

b. The subgraph induced by C(G) has a perfect matching;

c. If B(G) is the bipartite graph obtained from G by deleting C(G) and the edges spanned
by A(G) and then contracting each component of D(G) to a separate single vertex, then
B(G) has positive surplus (when viewed from A); and

d. Every maximum matching of G is composed of a near-perfect matching of each compo-
nent of the graph spanned by D(G), a perfect matching of each component of the graph
spanned by C(G) and a complete matching of A(G) into D(G) each edge of which
matches a vertex of A(G) to a vertex in a different component of the graph spanned by
D(G), and

e. ν(G) = 1
2

(|V (G)| − c(D(G)) + |A(G)|),

where c(D(G)) denotes the number of components of the graph spanned by D(G). �

For two quite different proofs of this beautiful result, we refer the reader to [10,11] and to [32].
The latter of these derives the {D(G), A(G), C(G)} partition using the blossom algorithm
for maximum matching. (See Chapter 16 for details of the matching algorithm.) Since the
blossom algorithm is known to be polynomial, it follows that the Gallai–Edmonds partition
can be obtained in polynomial time.

Remark: The nontrivial parts of the proofs of Tutte’s theorem and Berge’s theorem are
easy corollaries of the Gallai–Edmonds theorem.

Remark: It follows that def(G) = c(D(G)) − |A(G)|, where c(D(G)) denotes the number
of components of the graph spanned by D(G).

Remark: It also follows that every edge incident with a vertex of D(G) lies in some maximum
matching of G, but no edge joining A(G) to C(G) belongs to any maximum matching of G.
Moreover, no edge spanned by A(G) belongs to any maximum matching either.

C5955–C0015.tex 358 2015/11/4 10:50am

Matchings � 359

Although the Gallai–Edmonds result provides much useful information about the structure
of any graph with respect to its maximum matchings, there are several degenerate cases
which require further scrutiny. If G is factor-critical, then V (G) = D(G) and hence A(G) =
C(G) = ∅. On the other hand, if G contains a perfect matching, then D(G) = A(G) = ∅ and
hence V (G) = C(G). We will discuss these two cases later.

Question: Can one determine the number Φ(G) of maximum (or perfect) matchings in a
graph G in an efficient way?

That this is highly unlikely has been demonstrated by Valiant [33] who showed that
the problem of determining Φ(G) is #P -complete. Informally this means that if one could
determine Φ(G) in polynomial time via some algorithm, then said algorithm could be con-
verted into a polynomial algorithm for solving a large number of problems for which no good
(i.e., polynomial) procedure is known.

If one recalls the Gallai–Edmonds decomposition {D(G), A(G), C(G)}, one might hope to
obtain Φ(G) if—and this is a big if —one could count the number of near-perfect matchings
in each component of D(G) and the number of perfect matchings in each component of C(G).
But given the known #P -completeness of computing Φ(G) exactly, it is likely we are also
doomed in this approach as well. So taking the half a loaf is better than none approach, one
might ask if, for an arbitrary graph G, we can bound Φ(G) by deriving bounds for the number
of near-perfect matchings in D(G) and the number of perfect matchings in C(G).

15.7 STRUCTURE OF FACTOR-CRITICAL GRAPHS

It is easy to see that every factor-critical graph is connected (in fact, 2-edge-connected),
has minimum degree at least two and is odd. On the other hand, factor-critical graphs may
contain cutvertices. (Consider two triangles sharing precisely one vertex.)

In fact, there is a nice iterative construction of any factor-critical graph. That such a
so-called ear structure exists is guaranteed by the next theorem due to Lovász [34].

Theorem 15.17 A graph is factor-critical if and only if it can be represented as P0 + P1 +
· · · + Pr, where P0 is a single vertex and for each i, Pi+1 is either a path of odd length having
its two distinct end vertices in common with P0 + · · · + Pi or else is an odd cycle having
precisely one vertex in common with P0 + · · · + Pi.

Proof. It is easy to see that a graph which possesses an ear decomposition as described must
be factor-critical.

To prove the converse, let G be factor-critical. Select any vertex v ∈ V (G) and set
P0 = v. Suppose u is a neighbor of v. Let Mu be a perfect matching of G − u and Mv, a
perfect matching of G − v. There must exist an Mu − Mv alternating path P joining u and
v and it must be of even length. Let P1 = P0 + P . (So P is our first ear.) If P1 spans V (G),
then we add each edge of E(G) − E(P) sequentially in any order as a separate single-edge
ear. We note that each Pi in our ear sequence is factor-critical.

So suppose P1 = P + uv does not span V (G). Since G is connected, there must exist an
edge ab which has exactly one end vertex, say a, on P1. Let Mb be a perfect matching of G−b.
Then there must be an Mv − Mb alternating path Q joining vertices b and v. Now traverse Q
from vertex b until the first vertex of P1 is reached. Call this vertex c. Let P2 = Q[b, c] + ab
be our second ear.

We continue this process, maintaining matching Mv as a reference matching until each
edge belongs to an ear. �
The following similar result holds for factor-critical graphs which are 2-connected. The proof
is omitted. A path is said to be open if its end vertices are distinct.

C5955–C0015.tex 359 2015/11/4 10:50am

360 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 15.18 [10,11,35] A 2-connected graph G is factor-critical of and only if it can be
represented as P0 + P1 + · · · + Pr, where P0 is a single vertex, P1 is an odd cycle and for each
i, Pi is an open path of odd length. Moreover, the intermediate graphs Gi = P0 + · · · + Pi are
each 2-connected factor-critical for each i = 1, . . ., r. �

Note that ear decompositions of factor-critical graphs are no means necessarily unique. How-
ever, in any such ear decomposition, the number of ears is |E(G)| − |V (G)| and hence is an
invariant of the graph G.

If G is 2-connected and factor-critical, then the ear decomposition described in the pre-
ceding theorem can be used to derive a lower bound on the number of near-perfect matchings
in G.

Theorem 15.19 [10,11,36] Every 2-connected factor-critical graph contains at least |E(G)|
near-perfect matchings.

Proof. Let G = P0 + · · · + Pr, r ≥ 0, be the ear decomposition guaranteed by the preceding
theorem. The proof is by induction on r. The result is obvious when r = 0. For each i > 0,
let Gi = Po + · · · + Pi. Suppose the theorem holds for Gi and consider Gi+1 = Gi + Pi+1. Let
Pi+1 = xu1 · · · ul−1y when l is odd and at least 3 or Pi+1 = xy when l = 1.

If M is any near-perfect matching of Gi, then M ′ = M ∪ {u1u2, . . ., ul−2ul−1} is a near-
perfect matching of Gi+1, so by the induction hypothesis there are |E(Gi)| = |E(Gi+1| − l
near-perfect matchings in Gi+1. If Mj is a perfect matching of Gi+1 − uj , for each j =
1, . . ., l − 1, we have an additional l − 1 near-perfect matchings of Gi+1.

It remains to construct one more near-perfect matching for Gi+1 which is different from
M ′ and from each of the Mjs. This matching will cover both x and y and contain every second
edge of ear Pi+1. Let Mx be a perfect matching of Gi −x and suppose the edge of Mx covering
y is denoted by yz which belongs to E(Gi). Then M0 = (Mx − {yz}) ∪ {xu1, u2u3, . . ., ul−1y}
is a perfect matching of Gi+1 − z and therefore near-perfect in Gi+1. �
Remark: Let us express the matchings in G as binary vectors of length |E(G)| in which
there is a 1 in slot i if and only if the corresponding edge ei belongs to the matching. Then
Pulleyblank [36] proved that the |E(G)| near-perfect matchings guaranteed by the preceding
theorem are, in fact, linearly independent over ℜ.

15.8 EAR DECOMPOSITIONS OF MATCHING-COVERED GRAPHS

One might hope, in view of the preceding theorem, that there might be an ear decomposition
approach to counting the number of perfect matchings in a general graph. In fact, there is
such a theory, but it turns out to be more complex than that for near-perfect matchings
discussed here. We will only outline its main features.

Since we are motivated by the problem of counting the number of different perfect match-
ings, we do not really care about edges which lie in no perfect matching. Accordingly, let us
define a graph G to be 1-extendable (or matching-covered) if every edge in G lies in some
perfect matching of G.

Clearly, a graph is 1-extendable if and only if all of its components are 1-extendable.
Henceforth, we will assume our 1-extendable graphs are connected. (In fact, it is easy to
see that a connected 1-extendable graph must, in fact, be 2-connected.) There are several
good references for ear decompositions of 1-extendable graphs (cf. [10,11,37,38]). First of all,
one can build up any 1-extendable graph starting with an edge and adding a sequence of
odd ears. However, it may not be the case that each intermediate graph in the sequence
is also 1-extendable. On the other hand, if one is willing to allow the addition of two ears
simultaneously, one can obtain a sequence of subgraphs each of which is itself 1-extendable.

C5955–C0015.tex 360 2015/11/4 10:50am

Matchings � 361

Lemma 15.1 [32] Let G be a connected 1-extendable graph and M a perfect matching in G.
Then for any two distinct vertices x and y of G, there is an M-alternating path from x to y
which starts with an edge of M .

Proof. Choose an x ∈ V (G) and define a set Sx to consist of x together with all vertices
of G which can be reached via an M -alternating path from x. It will suffice to show that
Sx = V (G). Suppose to the contrary that there is an edge st with s ∈ Sx and t /∈ Sx.

If edge st ∈ M , then t belongs to Sx, a contradiction. Hence st /∈ M . On the other hand,
since G is 1-extendable, there is another perfect matching M ′ of G which contains edge st.
Form the symmetric difference M ⊕ M ′. There must be an alternating cycle Cst in M ⊕ M ′

which contains edge st and contains vertices of Sx. Let Px be an alternating path of minimum
length from x to a vertex z of Cst, where, if x /∈ V (C), we begin this alternating path from
x with an M -edge. Then one of the two paths in Cst joining z to t together with path Px

forms an M -alternating path from x to t. This t ∈ Sx, a contradiction. So Sx = V (G) and
the proof is complete. �

Definition 15.2 Given a matching M in a graph G, an M-alternating path which begins
and ends with edges of M is an M+-path.

Lemma 15.2 Suppose x and y belong to V (G). Then G − x − y contains a perfect matching
if and only if G has a perfect matching M such that x and y are the end vertices of some
M+-path.

Proof. (⇐=) Let M be a perfect matching of G such that x and y are end vertices of some
M+-path Pxy. Let M0 = E(Pxy) − M and note that M ′ = (M − E(Pxy) ∪ M0) is the desired
perfect matching of G − x − y.

(=⇒) Conversely, suppose Mxy is a perfect matching of G − x − y. Then M ⊕ Mxy must
consist of some M −Mxy-alternating (even) cycles and exactly one M −Mxy-alternating path
joining x and y. �

Definition 15.3 Let G be a 1-extendable graph. We define a relation on V (G) by u ∼ v if
G − u − v does not contain a perfect matching.

Lemma 15.3 If G is 1-extendable, the relation ∼ is an equivalence relation on E(G).

Proof. Clearly we only need verify transitivity. Suppose M is a perfect matching in G and
suppose that for some x, y, and z ∈ V (G), x ∼ y and y ∼ z, but x ̸∼ z. Thus by Lemma
15.2, x and z are joined by an M+-path P .

By Lemma 15.1 there exists an M -alternating path from y to x which starts with an edge
of M . Choose a shortest such M -alternating P0 from y to any vertex p of P . Then either
P0 + P [p, x] or P0 + P [p, z] must be an M+-path. But then either y ∼ x or y ∼ z and we
have a contradiction. �
The partition of V (G) induced by the equivalence relation ∼ will be denoted by P(G). (The
above approach to the partition P(G) is that taken in [32]. This partition can be arrived at
in a quite different manner, however. See Section 5.2 of [10,11].)

As in our discussion of 2-connected factor-critical graphs, an ear is a path (sometimes
called an open ear). We now present the Two Ear Theorem for 1-extendable graphs.

Theorem 15.20 [10,11] Let G be a 1-extendable graph with canonical partition P(G). Then
there exists a sequence of 1-extendable subgraphs of G, {G0, G1, . . ., Gm = G} such that for
each i, 0 ≤ i < m, Gi+1 arises from Gi by adding either one or two ears. Moreover, in the

C5955–C0015.tex 361 2015/11/4 10:50am

362 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

case of a single-ear addition, the ear joins vertices in two different equivalence classes of
P(G), while in a two-ear addition, one ear joins two vertices of one class of P(G), but the
other joins two vertices in a different class of P(G).

Remark: That two-ear additions are sometimes necessary is shown by the complete
graph K4.

Remark: It should be noted that a 1-extendable graph can have more than one ear decom-
position and, in contrast to the factor-critical case, it need not even be true that two different
ear decompositions of the same graph contain the same number of ears.

Remark: In the construction of ear decompositions of a 1-extendable graph, each ear intro-
duces a new perfect matching. Hence since the number of ears of any ear decomposition is a
lower bound on the number of perfect matchings of the graph, it is of special interest to find
longest ear decompositions.

Remark: On the other hand, the number d of double-ear additions in an ear decomposition
also gives information on the number of perfect matchings.

Theorem 15.21 If a 1-extendable graph G has an ear decomposition containing d double
ears, then there exist |E(G)| − |V (G)| + 2 − d perfect matchings in G the incidence vectors
of which are linearly independent over ℜ. �

Hence we are also interested in ear decompositions which contain the fewest possible dou-
ble ears.

15.9 BRICK DECOMPOSITION PROCEDURE

In this section we describe very briefly a second approach to decomposing 1-extendable
graphs, the so called Brick Decomposition Procedure. The basic building blocks will be
1-extendable bipartite graphs and so-called bicritical graphs.

Definition 15.4 A connected graph G is bicritical if G − u − v contains a perfect matching
for every choice of distinct vertices u and v in V (G). It is easy to see that a bicritical graph
must be 2-connected.

Definition 15.5 A 3-connected bicritical graph is called a brick.

Examples of bricks include K4, C6 (the triangular pyramid), the Petersen graph, and all even
K2ns, for all n ≥ 2.

In this procedure too, the canonical partition P(G) plays an important role. More par-
ticularly, if P(G) contains a set S with |S| ≥ 2, the set can be used to form a certain
1-extendable bipartite graph which serves as a frame for the decomposition.

Next, let the components of G − S be H1, . . ., Hk. Form a new graph G′
S by contracting

each Hi to a separate single vertex and deleting all edges joining vertices in G[S]. Now, for
each i = 1, . . ., k, form graph H ′

i by contracting V (G) − V (Hi) to a single vertex ui. We then
have the following result.

Theorem 15.22 Let G, S, G′
S , H1, . . ., Hk, H ′

1, . . ., H ′
k be as described above. Then

a. G′
S is 1-extendable and bipartite,

b. H ′
i is 1-extendable for each i, and

c. P(H ′
i) = {{ui}} ∪ {T ∩ V (Hi)

∣∣T ∈ P(G)}. �

C5955–C0015.tex 362 2015/11/4 10:50am

Matchings � 363

If some H ′
i is not bicritical, this means that there must be some set Si ∈ P(H ′

i) with |Si| ≥ 2
and we can repeat the process on H ′

i starting with Si. The goal is to repeat this process as
long as possible until only bicritical graphs remain, keeping a census of the bicritical graphs
formed in all steps. We illustrate one step in this procedure in Figure 15.4

If one of these bicritical graphs, call it K, is not 3-connected, but only 2-connected, we
further decompose it into 3-connected bicritical graphs as follows. Let {x, y} be a cutset in
K and let the components of K − x − y be denoted K1, . . ., Kj . Then if e = xy, each of the
graphs Ki ∪ e is bicritical and we continue. If H ′ is not bicritical, the process is repeated on
H ′ based upon its canonical decomposition P(H ′) and so on (see Figure 15.5). Finally, when
we cannot proceed any further, we have assembled a list of bricks.

Although one may have a variety of paths to take to reach a final list of bricks for a given
1-extendable graph G, the following beautiful and somewhat surprising result holds.

Theorem 15.23 [39] The final list of bricks in any brick decomposition of a given
1-extendable graph is unique, up to multiple edges. �

Remark: There is a somewhat different decomposition procedure, called the Tight Cut
Decomposition Procedure, in which, although the procedure is different and the intermediate
graphs are different from the Brick Decomposition Procedure, the final catalog of bricks is
the same (cf. [37,39]).

Finally, the above decomposition methods help to prove the following theorem.

Theorem 15.24

a. If G is a 1-extendable graph with b(G) bricks in its brick decomposition, then the number
of linearly independent perfect matching vectors over ℜ=|E(G)| − |V (G)|+2 − b(G) [39].

S

H2H1

H′2H′1

Figure 15.4 One step in the brick decomposition procedure.

C5955–C0015.tex 363 2015/11/4 10:50am

364 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

y
e

x

Figure 15.5 Decomposition of a bicritical graph into bricks.

b. Every bicritical graph G has at least |V (G)|/2 + 1 perfect matchings [40].

c. Every cubic brick G has at least |V (G)|/2 + 2 perfect matchings [37]. �

Bricks have proven to have a rich and deep structure that is not yet fully understood.

We close this section by observing that we have derived lower bounds for the number of
perfect matchings in graphs which are bicritical. If one thinks a bit about the definition
of a bicritical graph, one might conclude that such graphs are in general those with the
largest number of perfect matchings. It therefore comes as something of a shock to find
that, in a sense, the opposite is true! In particular, we present the following result without
proof.

Theorem 15.25 [10,11] Let G be a k-connected graph containing a perfect matching. Then,
if G is not bicritical, G contains at least k! perfect matchings. �

15.10 DETERMINANTS, PERMANENTS, AND THE NUMBER
OF PERFECT MATCHINGS

In this section we continue to pursue the problem of counting the number of perfect matchings
in a graph. If the graphs in question belong to certain special classes, alternate tools for
attacking this problem have been developed. In particular, we will address the problem for
bipartite graphs and for regular graphs.

Let us begin with the bipartite case. If G is a simple balanced bipartite graph with bipar-
tition (A, B), A = {u1, . . ., un} and B = {w1, . . ., wn}, let us define the so-called biadjacency
matrix A(G) of G by:

aij =
{

1, if uiwj ∈ E(G);
0, otherwise.

C5955–C0015.tex 364 2015/11/4 10:50am

Matchings � 365

Note that every expansion term of det A(G) which is different from 0 corresponds to a perfect
matching in G. So if graph G has no perfect matching, it follows that det A(G) = 0. The
problem is that the converse of this statement is false, for terms of a determinant may cancel
each other as is well-known. However, if all the expansion terms had the same algebraic sign,
these terms would indeed count the number of perfect matchings. This observation motivates
the introduction of the permanent of a matrix. Let A be any n × n matrix. The permanent
of A is defined by

per A =
∑

a1π(1)a2π(2) . . . anπ(n),

where the summation is over all permutations π of the set {1, . . ., n}. So then clearly if A(G)
is the biadjacency matrix of a balanced bipartite graph as defined above, it follows that
perA(G) = Φ(G).

However, evaluating the permanent is more difficult in general than evaluating a deter-
minant, as many of the standard tricks used to evaluate a determinant do not carry over to
permanent evaluation. Nevertheless, there are some important results in permanent theory
which help us to obtain new bounds for Φ(G). Perhaps the most famous of these is van
der Waerden’s Conjecture dating back to 1926, and not proved until some 50 years later by
Falikman [41] and independently by Egoryc̆ev [42].

Theorem 15.26 Let A be a doubly stochastic n × n matrix. Then perA ≥ n!/nn, where
equality holds if and only if every entry of A is 1/n. �

The next result follows immediately.

Corollary 15.2 Suppose G is a k-regular bipartite graph on 2n vertices. Then

Φ(G) ≥ n!
(

k

n

)n

. �

A second important lower bound was proved for k = 3 by Voorhoeve [43] and later for general
k by Schrijver [44].

Theorem 15.27 Suppose G is a k-regular bipartite graph on 2n vertices. Then

Φ(G) ≥
(

(k − 1)(k−1)

kk−2

)n

. �

An upper bound for Φ(G) follows from another important result on permanents due to
Brègman [45].

Theorem 15.28 Suppose G is a k-regular simple bipartite graph on 2n vertices. Then

Φ(G) ≤ (k!)n/k. �

Note that if one did not demand that the bipartite graph be simple, the best one could hope
for as an upper bound would be kn which is demonstrated by the bipartite graph with n
components each consisting of two vertices joined by k parallel edges.

We would be remiss if we failed to mention one final approach to determining Φ(G) for
arbitrary G, the so-called Method of Pfaffians.

C5955–C0015.tex 365 2015/11/4 10:50am

366 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Let G be any (not necessarily bipartite) graph with n = |V (G)|. Orient each edge of G

in one of the two possible directions to obtain the oriented graph
−→
G . Now define the skew

adjacency matrix of G, As(
−→
G) by As(

−→
G) = (aij)x×n, where

aij =

1, if(ui, uj) ∈ E(

−→
G),

−1, if(uj , ui) ∈ E(
−→
G),

0, otherwise.

Note that the matrix As(
−→
G) is skew-symmetric. We now define a certain function of

any skew-symmetric matrix B = (bij) of size 2n × 2n called the Pfaffian of B. Let
P = {{i1, j1}, . . ., {in, jn}} be a partition of the set of positive integers {1, . . ., 2n} into
n (unordered) pairs. Now form the expression

bP = sgn
(

1 2 · · · 2n − 1 2n
i1 j1 · · · in jn

)
bi1j1 · · · binjn

where (
1 2 · · · 2n − 1 2n
i1 j1 · · · in jn

)

denotes a permutation of the integers 1, . . ., 2n and sgn is the sign of the permutation. (Note
that bP depends only upon the choice of the partition P .)

Now let us suppose that |V (G)| is even; that is, that |V (G)| = 2n, for some n. Note that
this assumption is a realistic one when we are trying to count perfect matchings, since a
graph must have |V (G)| even in order to have a perfect matching.

Finally, we define the Pfaffian of matrix B as pf B =
∑

P bP . It is an old result from
linear algebra (cf. [46,47]) that

Theorem 15.29 If B is any skew-symmetric matrix, then det B = (pf B)2. But then since
det B can be computed in polynomial time, so can pf B. �

Moreover, it follows from the definition that for any orientation
−→
G of graph G, |pf (As(

−→
G))| ≤

Φ(G). Hence if one can find among all orientations of G one which realizes equality here, we
can then use this orientation to compute exactly the number of perfect matchings in graph
G and do so in polynomial time.

But how do we find such an orientation? Does such an orientation even exist? If the graph
is planar, a Pfaffian orientation does always exist, and Kasteleyn [48,49] showed how to find
it. For arbitrary graphs, however, no method of finding such an orientation efficiently (or
even determining whether or not such an orientation exists) is known. In fact, the problem
is known to be NP-complete. However, if the graph under consideration is bipartite, there is
a polynomial algorithm to find such an orientation. This deep and important result is due to
Robertson et al. [50] and, independently, to McCuaig [51] (see also [52]).

15.11 APPLICATIONS OF MATCHING: CHEMISTRY AND PHYSICS

Chemists have found that certain chemical compounds can be synthesized only when the
graph of the compound has a perfect matching. (Chemists call perfect matchings Kekulé
structures.) Moreover, it seems that in at least some cases the more perfect matchings the
compound graph has, the more chemically stable it is. This has been shown to be true,

C5955–C0015.tex 366 2015/11/4 10:50am

Matchings � 367

for example, for the class of benzenoid hydrocarbons (cf. [53,54]). These can be modeled as
follows. First, one suppresses the hydrogen atoms. The remaining graph consists of planar
arrays of hexagons (rings of carbon atoms) such that any two of the hexagons either are
vertex-disjoint or share exactly one edge.

Physicists too have brought to bear ideas from matching theory to study problems
involving the Ising model of magnetic materials and the partition function from statistical
physics. For further discussion of these applications, as well as others, the reader is referred
to Chapter 8 of [10,11]. Kekulé structures are the subject of an entire book [55].

15.12 MATCHING EXTENSION

In this section of the chapter on matchings, we will be motivated by the following question:

Question: When can a small matching be extended to a perfect matching?

We have already met a version of this problem in Section 15.8 where we introduced the
idea of a matching-covered graph; that is, a graph in which every edge belongs to a perfect
matching. This idea admits a natural generalization.

Definition 15.6 Let n be a nonnegative integer and G, a connected graph with at least 2n+2
vertices. G is said to be n-extendable if (a) G contains a perfect matching when n = 0 and
(b) for n ≥ 1 every matching of size n extends to (i.e., is a subset of) a perfect matching.

Thus 1-extendable graphs are exactly the matching-covered graphs introduced in Section 15.8.
We now present two basic properties of n-extendability.

Theorem 15.30 [56] Suppose n ≥ 1 and |V (G)| ≥ 2n+2 is even. Then if G is n-extendable,
it is also (n − 1)-extendable.

Proof. Suppose G is n-extendable, but not (n − 1)-extendable. Hence there is a matching
M0 of size n − 1 which lies in no perfect matching in G. Let M be any perfect matching of
G. Then M ⊕ M0 consists of some even cycles together with at least two alternating paths
each of which begins and ends with edges from M . Let P be the set of edges in one of these
alternating paths. Then P ⊕ M0 is a matching of size n which can be extended to a perfect
matching F . Moreover, F will contain at least one edge e which does not belong to P ⊕ M0,
since |P ⊕ M0| = n and |V (G)| ≥ 2n + 2. So M0 ∪ e is a matching of size n which extends
to a perfect matching containing M0 and we have a contradiction. �
Remark: The reader may have wondered why we assumed that |V (G)| ≥ 2n + 2 in the
definition for n-extendability of graph G. Is it not more natural to assume merely that
|V (G)| ≥ 2n? Let us consider the graph K4 − e, the graph obtained by deleting any single
edge from K4. In this graph it is clearly true that any two independent edges belong to a
perfect matching, but there is a single edge which does not belong to any perfect matching.
That is, the statement in the above theorem fails to hold.

Theorem 15.31 [56] Suppose n is a positive integer. Then if G is n-extendable, it is (n+1)-
connected.

Proof. The proof proceeds by induction on n. The proof for n = 1 is left to the reader.
So suppose n ≥ 2 and that the result holds for all integers less than n. Let G be an

n-extendable graph. By the preceding theorem, G is then (n − 1)-extendable and hence by
the induction hypothesis, G is n-connected.

C5955–C0015.tex 367 2015/11/4 10:50am

368 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Suppose, on the other hand, that G is not (n + 1)-connected. Hence there must exist a
vertex cutset S with |S| = n. Let the components of G − S be denoted by C1, . . ., Ck, where
k ≥ 2. Note now that |V (C1)| + · · · + |V (Ck)| = |V (G)| − |S| ≥ 2n + 2 − n = n + 2 > n + 1,
and so we may apply a variation of Menger’s theorem due to Dirac [57] which says that there
must exist n vertex-disjoint paths each with one end vertex in S and the other in ∪k

i=1V (Ci).
But then there must exist a set L of n independent edges each joining S to ∪k

i=1V (Ci).
Suppose first that there is a Ci with |V (Ci)| ≥ n. Then Dirac’s theorem says that there

exist n vertex-disjoint paths in G joining S and V (Ci) and hence there must be a set L of n
independent edges joining Ci and S. But then these n edges cover S.

Now let e1 be any edge of L, e1 = c1s1, where c1 ∈ V (C1) and s1 ∈ S. The set S − {s1}
is not a cutset in G, so there must be a line e′

i joining s1 to a vertex in Cj for some j ̸= i.
Moreover, if L′ = (L − {e1}) ∪ {e′

1}, then L′ is also a set of n independent edges in G.
Let us first suppose that n is even. Then, since there is a perfect matching in G which

contains L, |V (Ci)| is also even. On the other hand, since L′ also extends to a perfect matching
in G, it follows that |V (Ci)| is odd and we have a contradiction. A similar contradiction is
reached if one assumes that n is odd.

So we may suppose that each of |V (C1)|, . . ., |V (Ck)| ≤ n − 1. Next assume that for
some i, 1 ≤ i ≤ k, there is a Ci with 2 ≤ |V (Ci)| ≤ n − 1. Let V (Ci) = {u1, . . ., um}. Let
R1 = {u1, . . ., um−1}. Then |V (G) − S − V (Ci)| = |V (G)| − |S| − |V (Ci)| ≥ 2n + 2 − n − m =
n − m + 2, so choose any set R2 ⊆ V (G) − S − V (Ci) such that |R2| = n − m + 1. Then
|R1 ∪ R2| = m − 1 + n − m + 1 = n and again using the result of Dirac, there are n disjoint
paths in G joining S to R1 ∪ R2. But then there must be a set L of n edges joining some
m − 1 vertices of Ci and some n − (m − 1) vertices of V (G) − S − V (Ci) to S.

Let u denote the single vertex of Ci not covered by L. Then L covers S and extends to
a perfect matching M of G. But then M cannot cover vertex u, a contradiction.

Thus for all i, 1 ≤ i ≤ k, |V (Ci)| = 1. But since G has a perfect matching, it follows that
k ≤ n. Hence |V (G)| ≤ 2n, a contradiction of the assumption that |V (G)| ≥ 2n + 2. �

In Section 15.9, we mentioned a method of decomposing a graph using its matchings which
is called the tight cut procedure. The atoms of this decomposition turn out to be graphs
of two types. Either they are bricks or 2-extendable bipartite graphs. (The latter are called
braces.) It turns out that the family of all 2-extendable graphs partitions nicely into bricks
and braces. We state this result without proof.

Theorem 15.32 [10,11] Let G be a 2-extendable graph. Then G is either a brick or a
brace. �

The study of n-extendable graphs has blossomed quite dramatically over the past several
decades. Space limitations dictate that we will not delve further into this area here, but
instead refer the interested reader to several surveys of this topic, namely [58–60].

15.13 f- AND k-FACTORS

One can generalize the notion of a matching in many different ways. Two of the most widely
studied are as follows. Given a graph G, let f be a function mapping V (G) into the nonnega-
tive integers. A spanning subgraph F of G is an f − factor of G if at every vertex v ∈ V (G),
degF (v) = f(v). An important special case here is when f(v) = k, a constant. Necessary and
sufficient conditions for a graph to admit an f -factor (k-factor) are known, but too compli-
cated to go into here. Instead, we conclude this topic, and with it this chapter, by referring
the reader to the survey articles [61,62], as well as the book [63].

C5955–C0015.tex 368 2015/11/4 10:50am

Matchings � 369

References

[1] J. Petersen, Die Theorie der regulären Graphen, Acta Math., 15 (1891), 193–220.

[2] J. Petersen, Sur le théorème de Tait, L’Intermediaire des Mathematiciens, 5 (1898),
225–227.

[3] D.H. Holton and J. Sheehan, The Petersen graph, Australian Mathematical Society
Lecture Series, 7, Cambridge University Press, Cambridge, 1993.

[4] D. Nelson, M. Plummer, N. Robertson, and X. Zha, On a conjecture concerning the
Petersen graph, Electron. J. Comb., 18(1) (2011), 20, 37.

[5] D. König, Line systems and determinants, Math. Termész. Ért., 33 (1915), 221–229
(in Hungarian).

[6] D. König, Über Graphen und ihre Andwendung auf Determinantentheorie und Mengen-
lehre, Math. Ann., 77 (1916), 453–465.

[7] D. König, Graphok és alkalmazásuk a determinánsok és a halmazok elméletére, Math.
Termész. Ért., 34 (1916), 104–119.

[8] D. König, Graphs and matrices, Mat. Fiz. Lapok, 38 (1931), 116–119 (in Hungarian).

[9] D. König, Über trennende Knotenpunkte in Graphen (nebst. Anwendungen auf Deter-
minanten und Matrizen), Acta Sci. Math. (Szeged), 6 (1933), 155–179.

[10] L. Lovász and M. Plummer, Matching theory. North-Holland Mathematics Studies,
121. Annals of Discrete Mathematics, 29. North-Holland Publishing Co., Amsterdam,
the Netherlands; Akademiai Kiado (Publishing House of the Hungarian Academy of
Sciences), Budapest, Hungary, 1986. xxvii+544 pp.

[11] L. Lovász and M. Plummer, Matching theory. Corrected reprint of the 1986 original,
AMS Chelsea Publishing, Providence, RI, 2009. xxxiv+554 pp.

[12] T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest. Eötvös
Sect. Math., 2 (1959), 133–138.

[13] P. Hall, On representatives of subsets, J. London Math. Soc., 10 (1935), 26–30.

[14] G. Frobenius, Über zerlegbare Determinanten, Sitzungsber. König. Preuss. Akad. Wiss.,
XVIII (1917), 274–277.

[15] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math., 10 (1927), 96–115.

[16] P. Elias, A. Feinstein, and C. Shannon, Note on maximum flow through a network, IRE
Trans. Inform. Theory, It-2 (1956), 117–119.

[17] L. Ford and D. Fulkerson, Maximal flow through a network, Canad. J. Math., 8 (1956),
399–404.

[18] C. Berge, Sur le couplage maximum d’un graphe, C.R. Acad. Sci. Paris Sér. I Math.,
247 (1958), 258–259.

[19] C. Berge, Graphs and hypergraphs, North-Holland, Amsterdam, the Netherlands, 1973.

[20] W.T. Tutte, The 1-factors of oriented graphs, Proc. Amer. Math. Soc., 4 (1953),
922–931.

C5955–C0015.tex 369 2015/11/4 10:50am

370 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[21] W.T. Tutte, The factorisation of linear graphs, J. London Math. Soc., 22 (1947),
107–111.

[22] L. Lovász, Three short proofs in graph theory, J. Combin. Theory Ser. B, 19 (1975),
269–271.

[23] M. Las Vergnas, A note on matchings in graphs, Colloque sur la Théorie des Graphes
(Paris, 1974), Cahiers Centre Études Rech. Opér., 17 (1975), 257–260.

[24] D. Sumner, 1-factors and anti-factor sets, J. London Math. Soc. Ser. 2, 13 (1976),
351–359.

[25] V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Math., 5 (1973), 215–228.

[26] D. Bauer, H. Broersma, and E. Schmeichel, Toughness in graphs—A survey, Graphs
Combin., 22 (2006), 1–35.

[27] I. Anderson, Sufficient conditions for matching, Proc. Edinburgh Math. Soc. 18 (1973)
129–136.

[28] D. Woodall, The binding number of a graph and its Anderson number, J. Combin.
Theory Ser. B, 15 (1973), 225–255.

[29] T. Gallai, Kritische Graphen II, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1963),
373–395.

[30] T. Gallai, Maximale Systeme unabhängiger Kanten, Magyar Tud. Akad. Mat. Kutató
Int. Közl., 9 (1964), 401–413.

[31] J. Edmonds, Paths, trees and flowers, Canad. J. Math., 17 (1965), 449–467.

[32] W.R. Pulleyblank, Matchings and extensions. Handbook of Combinatorics, Vol. 1, 2,
Elsevier, Amsterdam, the Netherlands, 1995, 179–232.

[33] L. Valiant, The complexity of computing the permanent, Theor. Comput. Sci., 8 (1979),
189–201.

[34] L. Lovász, A note on factor-critical graphs, Studia Sci. Math. Hungar., 7 (1972),
279–280.

[35] G. Cornuéjols and W.R. Pulleyblank, Critical graphs, matchings and tours or a hierarchy
of relations for the travelling salesman problem, Combinatorica, 3 (1983), 35–52.

[36] W.R. Pulleyblank, Faces of matching Polyhedra, University of Waterloo, Department
of Combinatorics and Optimization, PhD Thesis, 1973.

[37] M.H. de Carvalho, C.L. Lucchesi, and U.S.R. Murty, The Matching Lattice, Recent
Advances in Algorithms and Combinatorics, 125, CMS Books Math./Ouvrages Math.
SMC, 11, Springer, New York, 2003.

[38] D. Naddef and W.R. Pulleyblank, Ear decompositions of elementary graphs and GF2-
rank of perfect matchings, Bonn Workshop on Combinatorial Optimization (Bonn,
1980), Ann. Discrete Math., 16 (1982), 241–260.

[39] L. Lovász, The matching lattice, J. Combin. Theory Ser. B, 43 (1987), 187–222.

C5955–C0015.tex 370 2015/11/4 10:50am

Matchings � 371

[40] J. Edmonds, L. Lovász, and W.R. Pulleyblank, Brick decompositions and the matching
rank of graphs, Combinatorica, 2 (1982), 247–274.

[41] D. Falikman, A proof of the van der Waerden conjecture on the permanent of a doubly
stochastic matrix, Mat. Zametki, 29 (1981), 931–938 (in Russian). (English translation:
Mathematical Notes of the Academy of Sciences of the USSR, Consultants Bureau, New
York, 29 (1981), 475–479.)

[42] G. Egoryc̆ev, Solution of the van der Waerden problem for permanents, IFSO-13M,
Akad. Nauk. SSSR Sibirsk. Otdel. Inst. Fiz., Krasnoyarsk, preprint 1980 (in Russian).
(English translation: Soviet Math. Dokl., Amer. Math. Soc., Providence, RI, 23 (1982),
619–622.)

[43] M. Voorhoeve, A lower bound for the permanents of certain (0, 1) matrices, Nederl.
Akad. Wetensch. Indag. Math., 82 (1979), 83–86.

[44] A. Schrijver, Counting 1-factors in regular bipartite graphs, J. Combin. Theory Ser. B,
72 (1998), 122–135.

[45] L. Brègman, Certain properties of nonnegative matrices and their permanents, Dokl.
Akad. Nauk SSSR, 211 (1973) 27–30 (in Russian). (English translation: Soviet Math.
Dokl., 14 (1973) 945–949.)

[46] T. Muir, A Treatise on the Theory of Determinants, Macmillan, London, 1882.

[47] T. Muir, The Theory of Determinants, Macmillan, London, 1906.

[48] P. Kasteleyn, Dimer statistics and phase transitions, J. Math. Phys., 4 (1963), 287–293.

[49] P. Kasteleyn, Graph theory and crystal physics, Graph Theory and Theoretical Physics,
Frank Harary (ed.), Academic Press, New York, 1967, 43–110.

[50] N. Robertson, P. Seymour, and R. Thomas, Permanents, Pfaffian orientations and even
directed circuits, Ann. of Math., 150 (1999), 929–975.

[51] W. McCuaig, Pólya’s permanent problem, Electron. J. Comb., 11 (2004) Research
Paper, 79, 83.

[52] R. Thomas, A survey of Pfaffian orientations of graphs, International Congress of Math-
ematicians, Eur. Math. Soc., III Zürich (2006), 963–984.

[53] I. Gutman and B. Mohar, More difficulties with topological resonance energy, Chem.
Phys. Lett., 77 (1981), 567–570.

[54] I. Gutman, Topological properties of benzenoid molecules, Bull. Societe Chemique
Beograd, 47 (1982), 453–471.

[55] S.J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes
in Chemistry, 46 Springer-Verlag, Berlin, Germany, 1988. xv+348 pp.

[56] M. Plummer, On n-extendable graphs, Discrete Math., 31 (1980), 201–210.

[57] G. Dirac, Généralisations du théoreme de Menger, C.R. Acad. Sci. Paris, 250 (1960),
4252–4253.

[58] M. Plummer, Extending matchings in graphs: a survey, Discrete Math., 127 (1994),
277–292.

C5955–C0015.tex 371 2015/11/4 10:50am

372 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[59] M. Plummer, Extending matchings in graphs: An update, surveys in graph theory (San
Francisco, CA, 1995), Congr. Numer., 116 (1996), 3–32.

[60] M. Plummer, Recent progress in matching extension, Building bridges, Bolyai Soc. Math.
Stud., 19, Springer, Berlin, Germany (2008), 427–454.

[61] J. Akiyama and M. Kano, Factors and factorizations of graphs—A survey, J. Graph
Theory, 9 (1985), 1–42.

[62] M. Plummer, Graph factors and factorization: 1985–2003: A survey, Discrete Math., 307
(2007), 791–821.

[63] J. Akiyama and M. Kano, Factors and factorizations of graphs, Lecture Notes in Math.,
2031, Springer, Berlin, Germany, 2011. xii+353 pp.

C5955–C0015.tex 372 2015/11/4 10:50am

C H A P T E R 16

Matching Algorithms*
Krishnaiyan “KT” Thulasiraman

CONTENTS

16.1 Introduction . 373
16.2 Berge’s Alternating Chain Theorem . 373
16.3 Maximum Matching in General Graphs . 377

16.3.1 Edmonds’ Approach . 377
16.3.2 Gabow’s Algorithm . 379

16.4 Maximum Matchings in Bipartite Graphs . 385
16.4.1 Philosophy of Hopcroft and Karp’s Approach . 386
16.4.2 Flow-Based Approach . 388

16.5 Perfect Matching, Optimum Assignment, and Timetable Scheduling 388
16.5.1 Perfect Matching . 389
16.5.2 Optimal Assignment . 392
16.5.3 Timetable Scheduling . 394

16.6 Chinese Postman Problem . 395

16.1 INTRODUCTION

In this chapter we discuss algorithms for constructing a maximum matching (i.e., a
matching with the largest cardinality) in a graph and some related problems. We begin
with Berge’s alternating chain theorem which states that a matching M is maximum if and
only if there is no alternating path between any two unsaturated vertices relative to M . This
theorem is the basis of most maximum matching algorithms. We first discuss Edmonds’ ap-
proach for constructing a maximum matching in general graphs followed by Gabow’s O(n3)
implementation of Edmonds’ approach. We then discuss algorithms for constructing maxi-
mum matchings in bipartite graphs. Specifically, we discuss a result due to Hopcroft and Karp
which provides a basis for evaluating the complexity of maximum matching algorithms. We
conclude with a discussion of four related problems: perfect matchings in bipartite graphs,
Kuhn–Munkres’ algorithm for the optimum assignment problem, the timetable scheduling
problem, and the Chinese Postman problem.

16.2 BERGE’S ALTERNATING CHAIN THEOREM

In this section we present a fundamental result in the theory of matchings, namely, Berge’s
alternating chain theorem which gives a necessary and sufficient condition for a matching to
be maximum. We also establish some results relating to matchings in a general graph and
bipartite graphs that will be of interest in the algorithms to be developed in this chapter.

∗This chapter is an edited version of Sections 15.5 and 15.6 in Swamy and Thulasiraman [1].

C5955–C0016.tex 373 2015/11/4 8:15pm

373

374 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

v5
v4

e5

e6

e4e2

e3

e9 e8 e10

e11
e7

v6

v3

e12

v1 e1
v2

v7

Figure 16.1 Graph for illustrating Theorem 16.1.

Consider a graph G = (V, E) and a matching M in G. An alternating chain in G is a
trail whose edges are alternately in M and E −M . For example, the sequence of edges e1, e2,
e3, e4, e7, e6 is an alternating chain relative to the matching M = {e2, e4, e6} in the graph of
Figure 16.1. The edges in the alternating chain that belong to M are called dark edges and
those that belong to E − M are called light edges. Thus e1, e3, e7 are light edges, whereas
e2, e4, e6 are dark edges in the alternating chain considered above. Given a matching M ,
the vertices of the edges in M are said to be saturated in M . Other vertices are unsaturated
vertices.

Theorem 16.1 Let M1 and M2 be two matchings in a simple graph G = (V, E). Let G′ =
(V ′, E′) be the induced subgraph of G on the edge set

M1 ⊕ M2 = (M1 − M2) ∪ (M2 − M1).

Then each component of G′ is of one of the following types:

1. A circuit of even length whose edges are alternately in M1 and M2.

2. A path whose edges are alternately in M1 and M2 and whose end vertices are unsatu-
rated in one of the two matchings.

Proof. Consider any vertex v ∈ V ′.

Case 1 v ∈ V (M1 −M2) and v /∈ V (M2 −M1), where V (Mi −Mj) denotes the set of vertices
of the edges in Mi − Mj .

In this case v is the end vertex of an edge in M1 − M2. Since M1 is a matching, no other
edge of M1 − M2 is incident on v. Further, no edge of M2 − M1 is incident on v because
v /∈ V (M2 − M1). Thus in this case the degree of v in G′ is equal to 1.

Case 2 v ∈ V (M1 − M2) and v ∈ V (M2 − M1).
In this case a unique edge of M1 − M2 is incident on v and a unique edge of M2 − M1 is

incident on v. Thus the degree of v is equal to 2.
Since the two cases considered are exhaustive, it follows that the maximum degree in G′

is 2. Therefore the connected components will be of one of the two types described in the
theorem. �

For example, consider the two matchings M1 = {e5, e7, e9} and M2 = {e1, e10, e11} of
the graph G of Figure 16.1. Then

M1 ⊕ M2 = {e1, e5, e7, e9, e10, e11},

C5955–C0016.tex 374 2015/11/4 8:15pm

Matching Algorithms � 375

v5

v4

e9
e10

e11
e7

v6

v1 e1
e5

v2

v3

v7

Figure 16.2 Illustration of Theorem 16.1.

and the graph G′ will be as in Figure 16.2. It may be seen that the components of G′ are of
the two types described in Theorem 16.1.

In the following theorem we establish Berge’s [2] characterization of a maximum matching
in terms of an alternating chain.

Theorem 16.2 A matching M is maximum if and only if there exists no alternating chain
between any two unsaturated vertices.

Proof. Necessity: Suppose there is an alternating chain P between two unsaturated vertices.
Then replacing the dark edges in the chain by the light edges will give a matching M1 with

|M1| = |M | + 1,

contradicting that M is a maximum matching.
Note that M1 = (M − P) ∪ (P − M).
For example, in the graph of Figure 16.1, consider the matching M = {e2, e4}. There

is an alternating chain e5, e4, e11, e2, and e12 between the unsaturated vertices v3 and v7.
If we replace in M the dark edges e4 and e2 by the light edges e5, e11, and e12, we get the
matching {e5, e11, e12}, which has one more edge than M .

Sufficiency: Suppose M satisfies the conditions of the theorem. Let M ′ be a maximum
matching. Then it follows from the necessity part of the theorem that M ′ also satisfies the
condition of the theorem, namely, there is no alternating chain between any vertices that are
not saturated in M ′. We now show that |M | = |M ′|, thereby proving the sufficiency.

Since M = (M ∩ M ′) ∪ (M − M ′) and M ′ = (M ∩ M ′) ∪ (M ′ − M), it is clear that
|M | = |M ′| if and only if |M − M ′| = |M ′ − M |. Let G′ be the graph on the edge set
M ⊕ M ′ = (M − M ′) ∪ (M ′ − M).

Consider first a circuit in G′. By Theorem 16.1 such a circuit is of even length, and the
edges in this circuit are alternately in M − M ′ and M ′ − M . Therefore each circuit in G′ has
the same number of edges from both M − M ′ and M ′ − M .

Consider next a component of G′ that is a path. Again, by Theorem 16.1, the edges in
this path are alternately in M − M ′ and M ′ − M . Further the end vertices of this path are
unsaturated in M or M ′. Suppose the path is of odd length, then the end vertices of the
path will be both unsaturated in the same matching. This would mean that with respect to
one of these two matchings there is an alternating chain between two unsaturated vertices.
But this is a contradiction because both M and M ′ satisfy the condition of the theorem. So
each component of G′ that is a path has an even number of edges, and hence it has the same
number of edges from M − M ′ and M ′ − M.

C5955–C0016.tex 375 2015/11/4 8:15pm

376 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Thus each component of G′ has an equal number of edges from M − M ′ and M ′ − M .
Since the edges of G′ constitute the set (M − M ′) ∪ (M ′ − M), we get

|M − M ′| = |M ′ − M |,

and so, |M | = |M ′|. �
Given a matching M in a graph G, let P be an alternating chain between any two vertices

that are not saturated in M . Then as we have seen before, M ⊕ P is a matching with one
more edge than M . For this reason the path P is called an augmenting path relative to M .

Next we prove two interesting results on bipartite graphs using the theory of alternating
chains.

Consider a bipartite graph G = (X, Y, E) with maximum degree ∆. Let X1 denote the
set of all the vertices in X of degree ∆. If G′ is the bipartite graph (X1, Γ(X1), E′), where
E′ is the set of edges connecting X1 and Γ(X1), then it can be seen from Hall’s theorem (see
Chapter 15) that there exists in G′ a complete matching of X1 into Γ(X1). Such a matching
clearly saturates all the vertices in X1. Thus there exists a matching in G that saturates
all the vertices in X of degree ∆. Similarly, there exists a matching in G that saturates all
the vertices in Y of degree ∆. The question that now arises is whether in a bipartite graph
there exists a matching that saturates all the maximum degree vertices in both X and Y . To
answer this question, we need the following result due to Mendelsohn and Dulmage [3].

Theorem 16.3 (Mendelsohn and Dulmage) Let G = (X, Y, E) be a bipartite graph, and
let Mi be a matching that matches Xi ⊆ X with Yi ⊆ Y (i = 1, 2). Then there exists a
matching M ′ ⊆ M1 ∪ M2 that saturates X1 and Y2.

Proof. Consider the bipartite graph G′ = (X1 ∪ X2, Y1 ∪ Y2, M1 ∪ M2). Each vertex of this
graph has degree 1 or 2; hence each component of this graph is either a path or a circuit
whose edges are alternatively in M1 and M2. (See proof of Theorem 16.1.)

Each vertex y ∈ Y2 − Y1 has a degree 1 in G′. So it is in a connected component that is
a path Py from y to a vertex x ∈ X2 − X1 or to a vertex z ∈ Y1 − Y2. In the former case the
last edge of Py is in M2 and so M1 ⊕ Py matches X1 ∪ {x} with Y1 ∪ {y}. In the latter case
the last edge of Py is in M1 and so M1 ⊕ Py matches X1 with (Y1 − z) ∪ {y}. In either case
M1 ⊕ Py saturates Y1 ∩ Y2. Thus M1 ⊕ Py saturates y ∈ Y2 − Y1, and all the vertices in X1
and Y1 ∩ Y2.

If we let
P = ∪

y∈Y2−Y1
Py,

then we can see that M1 ⊕ P is a matching that saturates X1 and Y2. This is a required
matching M ′ ⊆ M1 ∪ M2. �

Theorem 16.4 In a bipartite graph there exists a matching that saturates all the maximum
degree vertices.

Proof. Consider a bipartite graph G = (X, Y, E). Let X ′ ⊆ X and Y ′ ⊆ Y contain all the
vertices of maximum degree in G. As we have seen before, there exists a matching M1 that
saturates all the vertices in X ′ and a matching M2 that saturates all the vertices in Y ′. So
by Theorem 16.3, there exists a matching M ′ ⊆ M1 ∪ M2 that saturates all the vertices in
X ′ and Y ′. This is a required matching saturating all the maximum degree vertices in G. �

Corollary 16.1 The set of edges of a bipartite graph with maximum degree ∆ can be parti-
tioned into ∆ matchings.

C5955–C0016.tex 376 2015/11/4 8:15pm

Matching Algorithms � 377

Proof. Consider a bipartite graph G = (X, Y, E) with maximum degree ∆. By Theorem 16.4
there exists a matching M1 that saturates all the vertices of degree ∆. Then the bipartite
graph G′ = (X, Y, E − M1) has maximum degree ∆−1. This graph contains a matching M2
that saturates every vertex of degree ∆−1. By repeating this process we can construct a
sequence of disjoint matchings M1, M2, . . ., M∆ that form a partition of E. �

16.3 MAXIMUM MATCHING IN GENERAL GRAPHS

In this section we discuss the problem of constructing a maximum matching in a general
graph. We first present a basic approach due to Edmonds [4] for constructing a maximum
matching. We then describe Gabow’s algorithm [5] which is an efficient implementation of
Edmonds’ algorithm.

16.3.1 Edmonds’ Approach

Edmonds’ algorithm is based on Berge’s theorem (Theorem 16.2) which states that a match-
ing is maximum if and only if there is no augmenting path relative to the matching. So, given
a graph and an initial matching M , we may proceed as follows to get a maximum matching.

Find an augmenting path P with respect to M . Get the matching M ⊕ P which has one
more edge than M . With respect to this new matching, find an augmenting path and proceed
as before. Repeat this until we get a matching with respect to which there is no augmenting
path. Then by Berge’s theorem such a matching is maximum.

Thus the problem essentially reduces to finding an augmenting path relative to a given
matching in an efficient way. The most important idea in this context is that of a blossom
introduced by Edmonds, and this is described below.

To find an augmenting path relative to a matching M , we have to start our search
necessarily at an unsaturated vertex, say u. If there exists an augmenting path P from u to
u′ (note that u′ is also an unsaturated vertex), then, in P , u′ is adjacent to either u or a
saturated vertex v. Such a vertex v will be at an even distance from u in the path P ; that
is, there exists an alternating path of even length from u to v. This implies that the search
for an augmenting path should be done only at a selected group of vertices, namely, those to
which there are alternating paths of even length from u.

For example, let v1, v2, . . ., vr be the vertices adjacent to u (Figure 16.3). If any one of
them is unsaturated, then we have found an augmenting path. Otherwise let u1, u2, . . ., ur

be their respective mates in the matching M . At this stage the selected group consists of the
vertices u, u1, u2, . . ., ur. We then pick a vertex, say u1, from the selected group which is not
yet examined. If u1 has a neighbor which is unsaturated, then we have found an augmenting
path.

Otherwise, suppose that u1 is not adjacent to any vertex in the selected group. If v′
1,

v′
2, . . ., v′

s are those vertices adjacent to u1, such that v′
i ̸= vj for all i and j, then their mates

u′
1, u′

2, . . ., u′
s also join the selected group of vertices.

If we find, while searching a vertex in the selected group, that it is adjacent to some
other vertex already in the selected group, then an odd circuit (i.e., a circuit of odd length)
is created. This circuit, which is a closed alternating path of odd length, is called a blossom.
For example, in Figure 16.4, the addition of the edge (u9, u7) creates a blossom (u2, v6, u6,
v9, u9, u7, v7, u2). Before the addition of this edge the selected group consisted of the vertices
u, u1, u2, . . ., u9. But once the blossom is created, the vertices v6, v7, and v9 also join the
selected group, because we can now find alternating paths of even length from u to these
vertices. For example, in Figure 16.4, (u, v2, u2, v7, u7, u9, v9) is an alternating path of even

C5955–C0016.tex 377 2015/11/4 8:15pm

378 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

v4 vrv1 v2 v3

u4 uru1 u2 u3

v′1 v′2 v′s

u′1 u′ u′2 s

u

Figure 16.3 Illustration of Edmonds’ approach.

length to v9. So once a blossom is created, we find that all the vertices of that blossom join
the selected group.

In Edmonds’ algorithm, once a blossom is created all the vertices in the blossom are
replaced by a single vertex called the pseudo vertex. All the edges that were adjacent to one
or more of the vertices in the blossom will now be incident on the pseudo vertex. This is
called the process of shrinking (also contracting) the blossom. Thus we get a reduced graph.
We will continue the search in the reduced graph for an augmenting path from vertex u. If
an augmenting path P is found then the current matching is updated to a new matching
M ′ = M ⊕ P which has one more edge than M . Also, vertex u will be saturated in the
new matching. Note that if an augmenting path is found in the reduced graph, then to find
this path we have to trace back carefully by expanding the blossoms (pseudo vertices) found
previously.

The above process is repeated until the searches have been completed starting from all
unsaturated vertices.

The correctness of Edmonds’ algorithm is based on the following facts:

1. Let M be a matching with vertex u unsaturated in M . Let P be an augmenting
path relative to M and M ′ = M ⊕ P . If there is no augmenting path relative to M
starting at vertex u, then there is no augmenting path relative to M ′ starting at u.

2. Suppose, during a search at vertex u, there exists no augmenting path starting at
u, then there exists no augmenting path starting at u in any of the subsequent
iterations. Here an iteration refers to the step when an augmenting path relative to

C5955–C0016.tex 378 2015/11/4 8:15pm

Matching Algorithms � 379

v1 v2 v3

u1 u2 u3

v4 v5 v6

u4 u5

v8 v9

u6

v7

u7

u8 u9

u

Figure 16.4 Blossom formation.

M is located and a new matching obtained using the augmenting path. This means
that no unsaturated vertex needs to be examined more than once.

3. An augmenting path starting at a vertex u exists in the original graph G if and only
if there is an augmenting path starting at u in the reduced graph after a blossom has
been contracted.

The expansion and shrinking operations required in Edmonds’ algorithm might lead to a
complexity of O(n4) where n is the number of vertices in a graph.

Gabow [5] discussed an implementation that avoids the shrinking and expansion opera-
tions by recording the pertinent structure of blossoms using an efficient labeling technique
and suitable arrays. This helps to achieve a complexity of O(n3). The labeling technique used
by Gabow is similar to those in the matching algorithms of Balinski [6], Witzgall [7], and
Kameda and Munro [8].

16.3.2 Gabow’s Algorithm

First we discuss the basic strategy and define the different arrays used in Gabow’s algorithm.
Let the given graph have n vertices and m edges. The algorithm begins by numbering

the vertices and the edges of the graph. The vertices are numbered from 1 to n, and the
edges are numbered as n + 2, n + 4, . . ., n + 2m. The number of edge (x, y) is denoted by
N(x, y). A dummy vertex numbered 0 is also used.

END is an array which has entries numbered from n + 1 to n + 2m. For each edge, there
are two consecutive entries in END containing the numbers of the end vertices of the edge.
Thus if edge (v, w) has number k(where k = n + 2i for some 1 ≤ i ≤ m), then END(k − 1) =

C5955–C0016.tex 379 2015/11/4 8:15pm

380 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

v and END(k) = w. So given the number of an edge, its end vertices can easily be determined
using this array.

Gabow’s algorithm constructs a number of matchings starting with an initial matching
which may be empty. It terminates with a maximum matching. A matching is stored in
an array called MATE. This array has an entry for each vertex. Edge (v, w) is matched if
MATE(v) = w and MATE(w) = v.

A vertex v is called outer with respect to a fixed unsaturated vertex u if and only if there
exists an alternating path of even length from u to v. It is clear that this path P (v) when
traced from v to u starts with a matched edge. Thus P (v) = (v, v1, . . ., u), where (v, v1) is a
matched edge.

If an edge joining an outer vertex v to an unsaturated vertex u′ ̸= u is scanned, then the
algorithm finds the augmenting path as

(u′) ∗ P (v) = (u′, v, v1, . . ., u),

where * denotes concatenation. If no such edge is ever scanned, then the vertex u is not in
an augmenting path.

LABEL is an array which has an entry for every vertex. The LABEL entry of an outer
vertex v is used to find the alternating path P (v).

The LABEL entry for an outer vertex is interpreted as a start label or a vertex label or
an edge label.

Start Label. The start vertex u has a start label. LABEL(u) is set to 0 in this case. Now the
alternating path P (u) = (u).

Vertex Label. If LABEL(v) = i, where 1 ≤ i ≤ n, then v is said to have a vertex label. In this
case v is an outer vertex, and LABEL(v) is the number of another outer vertex. Path
P (v) is defined as (v, MATE(v))*P (LABEL(v)).

Edge Label. If LABEL(v) = n + 2i, 1 ≤ i ≤ m, then v is said to have an edge label. Now
v is an outer vertex, and LABEL(v) contains the number of an edge joining two outer
vertices, say x and y. Thus LABEL(v) = N(x, y). The edge label N(x, y) of the vertex v
indicates that there is an alternating path P (v) of even length from v to the start vertex
u, which passes through the edge (x, y). The path P (v) can be defined in terms of paths
P (x) and P (y). If v is in path P (x), let P (x, v) denote the portion of P (x) from x to v
along P (x). Then P (v) = revP (x, v) ∗ P (y), where the first term denotes the reverse of
the path from x to v.

LABEL(v)< 0 when v is a nonouter vertex. To start with, all the vertices are nonouter and
we assign −1 as LABEL value to all the vertices.

The algorithm also uses an array called FIRST. If v is an outer vertex, FIRST(v) is the
first nonouter vertex in P (v). If the path P (v) does not contain a nonouter vertex, then
FIRST(v) is set to 0. FIRST(v)= 0 if v is nonouter.

An array called OUTER is used to store the outer vertices encountered during the search
for an augmenting path. The search graph is grown at the outer vertices in order of their
appearance during the search. A breadth-first search is done at these outer vertices.

Gabow’s algorithm (as presented below) consists of three procedures: PROC-EDMONDS,
PROC-LABEL, and PROC-REMATCH.

PROC-EDMONDS is the main procedure. It starts a search for an augmenting path
from each unsaturated vertex. It scans the edges of the graph, deciding to assign labels or to
augment the matching.

C5955–C0016.tex 380 2015/11/4 8:15pm

Matching Algorithms � 381

When the presence of an augmenting path is detected (step E3 in Algorithm 16.1), PROC-
REMATCH is invoked. This procedure computes a new matching which has one more edge
than the current matching.

If a blossom is created (step E4) while scanning the edge (x, y), then PROC-LABEL(x, y)
is invoked. Now x and y are outer vertices. PROC-LABEL performs the following:

1. The value of a variable JOIN is set to the first nonouter vertex which is in both P (x)
and P (y).

2. All nonouter vertices preceding JOIN in P (x) or P (y) now become outer vertices. They
are assigned the edge label N(x, y). This edge label indicates that to each one of these
vertices there is an alternating path of even length from the start vertex which passes
through the edge (x, y).

3. Now JOIN is the first nonouter vertex in P (x) as well as in P (y). So the entries of the
FIRST array corresponding to all the vertices which precede JOIN in P (x) or P (y) are
set to JOIN.

A description of Gabow’s algorithm now follows. In each step appropriate comments and
explanations are given in parentheses.

Algorithm 16.1 Maximum Matching (Gabow)

PROC-EDOMONDS
E0. (Initialize.) G is the given graph. Number the vertices of G from 1 to n and the

edges as n + 2, n + 4, . . ., n + 2m. Create a dummy vertex 0. For 0 ≤ i ≤ n, set
LABEL(i)= −1, FIRST(i) = 0, and MATE(i) = 0. (To start with, all the vertices
are nonouter and unsaturated.) Set u = 0.

E1. (Find an unsaturated vertex.) Set u = u + 1. If u > n, then HALT; now MATE
contains a maximum matching. Otherwise if vertex u is saturated, repeat step E1.
If u is unsaturated, add u to the OUTER array. Set LABEL(u) = 0. (Assign a start
label to u and begin a new search.)

E2. (Choose an edge.) Choose an edge (x, y) (where x is an outer vertex) which has not
yet been examined at x. If no such edge exists, go to step E7. (Note: Edges (x, y)
can be chosen in an arbitrary order. We adopt a breadth-first search: an outer vertex
x = x1 is chosen, and edges (x1, y) are chosen in succeeding executions of step E2.
When all such edges have been chosen, the vertex x2 that was labeled immediately
after x1 is chosen, and the process is repeated for x = x2. This breadth-first search
requires maintaining a list of outer vertices x1, x2, . . . The OUTER array is used
for this purpose.)

E3. (Presence of an augmenting path is detected.) If y is unmatched and y ̸= u, carry
out PROC-REMATCH(x, y) and then go to setp E7.

E4. (A blossom is created.) If y is outer, then carry out PROC-LABEL(x, y) and then
go to step E2.

E5. (Assign a vertex label.) Set v =MATE(y). If v is outer, go to step E6. If v is
nonouter, set LABEL(v) = x, FIRST(v) = y, and add v to the OUTER array.
(Now y is encountered for the first time in this search; its mate v is a new outer
vertex. This fact is noted in the OUTER array.) Then go to step E6.

E6. (Get next edge.) Go to step E2. (A closed alternating path of even length is obtained;
so edge (x, y) adds nothing.)

E7. (Stop the search.) Set LABEL(i) = −1, for 0 ≤ i ≤ n. Then go to step E1. (All the
vertices are made nonouter for the next search.)

C5955–C0016.tex 381 2015/11/4 8:15pm

382 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

PROC-LABEL(x, y)
L0. (Initialize.) Set r =FIRST(x) and s =FIRST(y). If r = s, then go to step L6. (There

is no nonouter vertex in the blossom.) Otherwise flag the vertices r and s. (Steps L1
and L2 find JOIN by advancing alternately along paths P (x) and P (y). Flags are
assigned to nonouter vertices r in these paths. This is done by setting LABEL(r) to
a negative edge number; that is, LABEL(r) = −N(x, y). This way, each invocation
of PROC-LABEL uses a distinct flag value.)

L1. (Switch paths.) If s ̸= 0, interchange r and s. (r is a flagged nonouter vertex,
alternately in P (x) and P (y).)

L2. (Get the nonouter vertex.) Set r =FIRST(LABEL(MATE(r))). (r is set to the next
nonouter vertex in P (x) or P (y).) If r is not flagged, flag r and go to step L1.
Otherwise set JOIN= r. (We have found the JOIN.) Go to step L3.

L3. (Label vertices in P (x), P (y); that is, all nonouter vertices between x and JOIN or
y and JOIN will be assigned edge labels, namely, N(x, y).) Set v = FIRST(x) and
do step L4; then set v = FIRST(y) and do step L4. Then go to step L5.

L4. (Label a nonouter vertex v.) If v ̸= JOIN, set LABEL(v) = N(x, y) and FIRST(v) =
JOIN, and add v to the OUTER array. Then set v = FIRST(LABEL(MATE(v))).
(Get the next nonouter vertex.) Repeat step L4. Otherwise (i.e., v = JOIN and
hence we have assigned edge labels to all the nonouter vertices in the concerned
path) continue as specified in step L3 (i.e., return to step L3).

L5. (Update FIRST.) For each outer vertex i, if FIRST(i) is outer, set FIRST(i) =
JOIN (i.e., JOIN is the new first nonouter vertex in P (i)).

L6. (Edge labeling is over.) End the procedure.

PROC-REMATCH(x, y)
R0. (Obtain the augmenting path.) Compute P (x) as described below:

1. If x has an edge label N(v, w), then compute P (v) and P (w). If x lies in P (v),
then

P (x) = (revP (v, x)) ∗ P (w).

Otherwise,
P (x) = (revP (w, x)) ∗ P (v).

2. If x has a vertex label, then

P (x) = (x, MATE(x)) ∗ P (LABEL(x)).

The augmenting path Pa is then given by

Pa = (y) ∗ P (x).

R1. (Augment the current matching.) Obtain a new matching by removing from the
current matching all the matched edges in Pa and adding to it all the un-
matched edges in Pa. (That is, if M is the current matching, then M ⊕ Pa is
the new matching.) Modify suitably the entries in the MATE array and end the
procedure.

It should be pointed out that in the above algorithm, a search for an augmenting path
is made from a vertex only once. Suppose that the search from an unsaturated vertex u
terminates without finding an augmenting path. Let Su denote this search. Then Hungarian
subgraph H for vertex u is the subgraph which consists of all the edges containing an outer

C5955–C0016.tex 382 2015/11/4 8:15pm

Matching Algorithms � 383

12

6
9

5 8 7

13 1115 2

1 4 14

16

3

10

12 6
9

5 8 7

13 11 2

1 4 14

16

3

10

(a) (b)

Figure 16.5 Illustration of Gabow’s implementation of Edmonds’ algorithm. (a) Graph to
illustrate Gabow’s algorithm. (b) Search graph at an intermediate step.

vertex of Su and all the vertices in these edges. Edmonds [4] has shown that we can ignore the
Hungarian subgraph H in searches after Su. This suggests that we can modify Algorithm 16.1
by changing step E2 as follows:

E2′ (Choose an edge.) Choose an edge. . . If no such edge exists, go to step E1.
Step E2′ now causes step E7, which unlabels vertices to be skipped after Su.
This modification speeds up the algorithm if the graph has no perfect matching. However,

it does not change the worst-case complexity of O(n3).
For further discussions regarding the complexity and the proof of the correctness of

Algorithm 16.1 (see [5]). Now we illustrate Gabow’s algorithm.
For the graph in Figure 16.5a, with the initial matching shown is dashed lines, Gabow’s

algorithm proceeds as follows.
The start vertex is 10. After completing the search at the outer vertices 10, 16, 13, 11,

and 2, the search graph will be as shown in Figure 16.5b. At this stage, the entries of the
LABEL and FIRST arrays are shown in Table 16.1.

The OUTER array contains the vertices 10, 16, 13, 11, 2, 12, 6, and 9, in that order.
When we search at vertex 12, we examine the edge (12, 6) and get the blossom (13, 5, 12, 6,
8, 13). Now the LABEL and FIRST entries get changed as follows:

LABEL(5) = LABEL(8) = N(12, 6);
FIRST(i) = 1, i = 5, 12, 6, 8.

Vertices 5 and 8 are now placed in the OUTER array.

C5955–C0016.tex 383 2015/11/4 8:15pm

384 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

TABLE 16.1 LABEL and FIRST
Arrays at an Intermediate Step

Vertex Number LABEL FIRST
1 −1 0
2 16 14
3 −1 0
4 −1 0
5 −1 0
6 13 8
7 −1 0
8 −1 0
9 11 7
10 0 0
11 16 4
12 13 5
13 16 1
14 −1 0
15 −1 0
16 10 3

TABLE 16.2 LABEL and FIRST Arrays
at an Intermediate Step

Vertex Number LABEL FIRST
1 N(9, 5) 3
2 16 14
3 −1 0
4 N(9, 5) 3
5 N(12, 6) 3
6 13 3
7 N(9, 5) 3
8 N(12, 6) 3
9 11 3
10 0 0
11 16 3
12 13 3
13 16 3
14 −1 0
15 −1 0
16 10 3

Next, when we search at vertex 6, we examine the edge (6, 5), and this creates another
blossom (6, 5, 12, 6). But all the vertices of this blossom are already outer, and so nothing
gets changed.

Then we search at vertex 9. The edge (9, 5) is examined and the blossom (9, 7, 11, 4, 16,
1, 13, 8, 6, 12, 5, 9) is created. This again changes the LABEL and FIRST entries for some
of the vertices. The resulting values are shown in Table 16.2.

Now the OUTER array contains the vertices 10, 16, 13, 11, 2, 12, 6, 9, 5, 8, 1, 7, and 4,
in that order.

All the vertices in the OUTER array up to 9 have now been searched. Search continues
with the remaining vertices. Searching at 5 and 8 does not add any new vertex to the

C5955–C0016.tex 384 2015/11/4 8:15pm

Matching Algorithms � 385

OUTER array. While searching at vertex 1, we examine the edge (1, 15) and find that 15 is
unsaturated. So an augmenting path is noticed. The augmenting path is (15)*P (1).

We now use the procedure given in step R0 to compute P (1). Vertex 1 has the edge label
N(9, 5). So to compute P (1), we need P (9) and P (5). Further, since vertex 5 has the edge
label N(12, 6) we need P (12) and P (6) to compute P (5).

Vertex 12 has a vertex label. So

P (12) = (12, MATE(12))∗P (LABEL(12))
= (12, 5)∗P (13)
= (12, 5)∗(13, MATE(13))∗P (LABEL(13))
= (12, 5, 13, 1)∗P (16)
= (12, 5, 13, 1)∗(16, MATE(16))∗P (LABEL(16))
= (12, 5, 13, 1, 16, 3, 10).

Similarly
P (6) = (6, 8, 13, 1, 16, 3, 10)

and
P (9) = (9, 7, 11, 4, 16, 3, 10).

Since vertex 5 lies on P (12),

P (5) = (revP (12, 5))∗P (6)
= (5, 12)∗(6, 8, 13, 1, 16, 3, 10)
= (5, 12, 6, 8, 13, 1, 16, 3, 10).

Now we find that vertex 1 lies on P (5). Therefore

P (1) = (revP (5, 1))∗P (9)
= (1, 13, 8, 6, 12, 5)∗(9, 7, 11, 4, 16, 3, 10)
= (1, 13, 8, 6, 12, 5, 9, 7, 11, 4, 16, 3, 10).

Thus the augmenting path is

(15)∗P (1) = (15, 1, 13, 8, 6, 12, 5, 9, 7, 11, 4, 16, 3, 10).

After the augmentation, we get a new matching consisting of the edges (15, 1), (13, 8),
(6, 12), (5, 9), (7, 11), (4, 16), (3, 10), and (14,2). Since all the vertices of the graph are
saturated in this matching, it is a maximum matching (in fact, a perfect matching).

16.4 MAXIMUM MATCHINGS IN BIPARTITE GRAPHS

The problem of finding a maximum matching in a bipartite graph has a wide variety of
applications. In view of these applications, the computational complexity of this problem is
of great interest. Hopcroft and Karp [9] have shown how to construct a maximum matching
in a bipartite graph in steps proportional to n5/2. The philosophy of their approach is based
on some interesting contributions they have made to the theory of matching. This is discussed
in the following subsection.

C5955–C0016.tex 385 2015/11/4 8:15pm

386 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

16.4.1 Philosophy of Hopcroft and Karp’s Approach

All maximum matching algorithms developed so far start with a matching (which may
not be maximum) and obtain, if it exists, a matching of greater cardinality by locat-
ing an augmenting path. The choice of an augmenting path can be made in an arbitrary
manner. The complexity of these algorithms is O(n3). Hopcroft and Karp have shown that if
the augmentation is done along a shortest path, then a maximum matching can be obtained
in O(n5/2) phases, where each phase involves finding a maximal set of vertex-disjoint shortest
augmenting paths relative to a matching. We now prove this result.

Let M be a matching. An augmenting path P is called a shortest path relative to M if P
has the smallest length among all the augmenting paths relative to M .

Lemma 16.1 Let M and N be two matchings in a graph G. If |M | = s and |N | = r with
r > s, then M ⊕ N contains at least r − s vertex-disjoint augmenting paths relative to M .

Proof. Consider the induced subgraph G′ of G on the edge set M ⊕ N . By Theorem 16.1
each (connected) component of G′ is either:

1. A circuit of even length, with edges alternately in M − N and N − M ; or

2. A path whose edges are alternately in M − N and N − M .

Let the components of G′ be C1, C2, . . ., Ck, where each Ci has vertex set Vi and edge set Ei.
Let

δ(Ci) = |Ei ∩ N | − |Ei ∩ M |.

Then δ(Ci) is −1 or 0 or 1 for every i; and δ(Ci) = 1 if and only if Ci is an augmenting path
relative to M . Now

k∑
i=1

δ(Ci) = |N − M | − |M − N | = |N | − |M | = r − s.

Hence there are at least r − s components of G′, such that δ(Ci) = 1. These components are
vertex-disjoint, and each is an augmenting path relative to M . �

Lemma 16.2 Let M be a matching. Let |M | = r and suppose that the cardinality of a
maximum matching is s. Then there exists an augmenting path relative to M of length at
most

2
⌊

r

s − r

⌋
+ 1

Proof. Let S be a maximum matching. Then by the previous lemma, M ⊕S contains at least
s − r vertex-disjoint (and hence edge-disjoint) augmenting paths relative to M . Altogether,
these paths contain at most r edges from M . So one of these paths will contain at most
⌊r/(s − r)⌋ edges from M, and hence at most

2
⌊

r

s − r

⌋
+ 1

edges altogether. �

Lemma 16.3 Let M be a matching, P a shortest augmenting path relative to M, and P ′ an
augmenting path relative to M ⊕ P . Then |P ′| ≥ |P | + |P ∩ P ′|.

C5955–C0016.tex 386 2015/11/4 8:15pm

Matching Algorithms � 387

Proof. Let N = M ⊕ P ⊕ P ′. Then N is a matching, and |N | = |M | + 2. So M ⊕ N contains
two vertex-disjoint augmenting paths P1 and P2 relative to M .

Since M ⊕ N = P ⊕ P ′, |P ⊕ P ′| ≥ |P1| + |P2|. But |P1| ≥ |P | and |P2| ≥ |P |, because
P is a shortest augmenting path. So |P ⊕ P ′| ≥ |P1| + |P2| ≥ 2|P |. Then from the identity
|P ⊕ P ′| = |P | + |P ′| − |P ∩ P ′|, we get |P ′| ≥ |P | + |P ∩ P ′|. �

Suppose that we compute, starting with a matching M0 = ϕ, a sequence of matchings M1,
M2, . . ., Mi, . . ., where Mi+1 = Mi ⊕ Pi and Pi is a shortest augmenting path relative to Mi.
Then from Lemma 16.3, |Pi+1| ≥ |Pi| + |Pi ∩ Pi+1|. Hence we have the following.

Lemma 16.4 |Pi| ≤ |Pi+1|. �

Theorem 16.5 For all i and j such that |Pi| = |Pj |, Pi and Pj are vertex-disjoint.

Proof. Proof is by contradiction.
Assume that |Pi| = |Pj |, i < j, and Pi and Pj are not vertex-disjoint. Then there exist k

and l such that i ≤ k < l ≤ j, Pk and Pl are not vertex-disjoint, and for each r, k < r < l,
Pr is vertex-disjoint from Pk and Pl. Then Pl is an augmenting path relative to Mk ⊕ Pk,
so |Pl| ≥ |Pk| + |Pk ∩ Pl|. But |Pl| = |Pk|. So |Pk ∩ Pl| = 0. Thus Pk and Pl have no edges
in common. But if Pk and Pl had a vertex v in common, then they would have in common
that edge incident on v which is in Mk ⊕ Pk. Hence Pk and Pl are vertex-disjoint, and a
contradiction is obtained. �
The main result of this section now follows.

Theorem 16.6 Let s be the cardinality of a maximum matching. The number of distinct
integers in the sequence |P0|, |P1|, . . ., |Pi|, . . . is less than or equal to 2 ⌊

√
s⌋ + 2.

Proof. Let r = ⌊s −
√

s⌋. Then |Mr| = r, and by Lemma 16.2,

|Pr| ≤ 2
⌊
s −

√
s
⌋
/(s −

⌊
s −

√
s
⌋
) + 1 ≤ 2

⌊√
s
⌋

+ 1.

Thus for each i < r, |Pi| is one of the ⌊
√

s⌋ + 1 positive odd integers less than or equal to
2⌊

√
s⌋ + 1. Also |Pr+1|, . . ., |Ps| contribute at most s − r = ⌈

√
s ⌉ distinct integers, and so

the total number of distinct integers in the sequence |P0|, |P1|, . . . is less than or equal to
⌊
√

s⌋ + 1 + ⌈
√

s ⌉ ≤ 2 ⌊
√

s⌋ + 2. �
In view of Lemma 16.4 and Theorems 16.5 and 16.6, we may regard the computation
of the sequence M0, M1, M2, . . . as consisting of at most 2 ⌊

√
s⌋ + 2 phases, such that

the augmenting paths found in each phase are vertex-disjoint and of the same length.
Since all the augmenting paths in a phase are vertex-disjoint, they are also augmenting
paths relative to the matching with which the phase is begun. This leads Hopcroft and
Karp to suggest the following alternate way of describing the computation of a maximum
matching.

Step 0 Start with a null matching M , that is, M = ϕ.

Step 1 Let l(M) be the length of a shortest augmenting path relative to M . Find a maximal
set of paths Q1, Q2, . . ., Qt with the following properties:

1. for each i, Qi is an augmenting path relative to M , and |Qi| = l(M).
2. The Qi are vertex-disjoint.

HALT if no such path exists.

Step 2 Set M = M ⊕ Q1 ⊕ Q2 ⊕ · · · ⊕ Qt; go to step 1.

C5955–C0016.tex 387 2015/11/4 8:15pm

388 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

It is clear from our previous discussion that steps 1 and 2 of the above computation will be
executed at most 2 ⌊

√
s⌋ + 2 times, that is, O(n1/2) times. Further, the complexity of the

computation depends crucially on the complexity of implementing step 1. In a general graph,
implementing this step is quite involved, since it requires generation of all the augmenting
paths relative to a given matching and then selecting from them a maximal set of shortest
paths which are vertex-disjoint.

However, in the special case of bipartite graphs, an O(n2) implementation of step 1 is
possible so that the complexity of the computation for such special graphs is O(n5/2). See
[9] for a discussion of such an algorithm.

This algorithm due to Hopcroft and Karp is similar to the flow based approach discussed
in the following section.

16.4.2 Flow-Based Approach

In this subsection we show how to construct a maximum matching in a bipartite graph by
finding a maximum flow in an appropriately constructed network.

Given a bipartite graph G = (V, E) with bipartition (X, Y), let us construct a network
N = (V ∗, E∗) as follows. N has vertex set V ∗ = V ∪ {s, t}. And N has a directed edge (s, x)
for each x ∈ X, a directed edge (y, t) for each y ∈ Y , and a directed edge (x, y) for each
undirected edge (x, y), x ∈ X, y ∈ Y of G. Also c(x, y) = 1 for every edge in N and s and
t are, respectively, the source and the sink of N . Clearly N has the property that for every
vertex except s and t, either the in-degree or the out-degree equals 1.

Consider now a matching M in G. Let us now define a flow f as follows. For each
(x, y) ∈ M , let f(x, y) = 1, f(s, x) = 1 and f(y, t) = 1. Then we can see that val(f) = |M |.
In other words each matching M in G defines an s − t flow of value |M |.

Let f be an s − t flow in N of value F . Then there are exactly F edges of the form
(s, x) for which f(s, x) = 1. For each such edge (s, x) there is exactly one vertex y ∈ Y such
that f(x, y) = 1. Since c(y, t) = 1 and (y, t) is the only outgoing edge at y, it follows that
f(y, t) = 1 and so there is no x′ ̸= x such that f(x′, y) = 1. In other words the edges (x, y)
with f(x, y) = 1 define a matching M of cardinality F .

Summarizing, there is a one-to-one correspondence between the set of matchings in G
and the set of s − t flows in N . Thus a maximum matching in G corresponds to a maximum
flow in N . Because of the special property of N mentioned above, we get the following. See
Chapter 4 (Theorem 4.19).

Theorem 16.7 A maximum matching in a bipartite graph G = (V, E) with n vertices and
m edges can be constructed in O(mn1/2) times. �

16.5 PERFECT MATCHING, OPTIMUM ASSIGNMENT, AND TIMETABLE
SCHEDULING

The optimal assignment and the timetable scheduling problems, the study of which involves
the theory of matching, are discussed in this section. Obtaining an optimal assignment
requires as a first step the construction of a perfect matching in an appropriate bipartite
graph. Recall that a matching which saturates all the vertices is called a perfect matching.
With this in view, we first discuss an algorithm for constructing a perfect matching in a
bipartite graph.

C5955–C0016.tex 388 2015/11/4 8:15pm

Matching Algorithms � 389

16.5.1 Perfect Matching

Consider the following personnel assignment problem in which n available workers are qual-
ified for one or more of n available jobs, and we are interested to know whether we can
assign jobs to all the workers, one job per worker, for which they are qualified. If we repre-
sent the workers by one set X = {x1, x2, . . ., xn} of vertices and the jobs by the other set
Y = {y1, y2, . . ., yn} of vertices of a bipartite graph G, in which xi is joined to yj if and only
if the worker xi is qualified for the job yj , then it is clear that the personnel assignment
problem is to find whether the graph G has a perfect matching or not.

One method of finding a solution for this problem would be to apply a bipartite maximum
matching algorithm and find a maximum matching. If this matching consists of n edges,
then it shows that the graph has a perfect matching, and the maximum matching obtained
is nothing but a perfect matching.

The main drawback of the above method is that if the graph does not have a perfect
matching, then we will know this only at the end of the procedure. Now we discuss an
algorithm which either finds a perfect matching of G or stops when it finds a subset S of X
such that |Γ(S)| < |S|, where Γ(S) is the set of vertices adjacent to those in S. Clearly, by
Hall’s theorem (see Chapter 15) there exists no perfect matching in the latter case.

The basic idea behind the algorithm is very simple. As usual, we start with an initial
matching M . If M saturates all the vertices in X, then it is the one that we are looking for.
Otherwise, as in the general case, we choose an unsaturated vertex u in X and systematically
search for an augmenting path P starting from u. While looking for such a path P , we keep
a count of the number of vertices selected from set X, the number of their neighbors, and
the number of vertices selected from set Y .

The bipartite nature of the graph assures us that we can get no odd circuit during
our search, and hence blossoms are not created. As we have seen in Section 16.3, a closed
alternating path of even length is not of help in augmenting the given matching M . Hence
the search graph which we develop is always a tree. This tree is called a Hungarian tree. At
any stage, if we find an augmenting path, we perform the augmentation and get the new
matching which saturates one more vertex in X and proceed as before. If such a path does
not exist, then we would have obtained a set S ⊆ X, violating the necessary and sufficient
condition for the existence of a perfect matching.

Let M be a matching in G, and let u be an unsaturated vertex in X. A tree H in G is
called an M—alternating tree rooted at u if:

1. u belongs to the vertex set of H; and

2. For every vertex v of H, the unique path from u to v in H is an M−alternating path
(i.e., an alternating path relative to M).

Let us denote by S the subset of vertices of X and by T the subset of vertices of Y which
occur in H.

The alternating tree is grown as follows. Initially, H consists of only the vertex u. It is
then grown in such a way that at any stage, there are two possibilities.

1. All the vertices of H except u are saturated (e.g., see Figure 16.6a).

2. H contains an unsaturated vertex different from u (e.g., see Figure 16.6b), in which
case we have an augmenting path and hence we get a new matching.

In the first case, either Γ(S) = T or T ⊂ Γ(S).

C5955–C0016.tex 389 2015/11/4 8:15pm

390 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

u u

(a) (b)

Figure 16.6 Examples of alternating trees.

1a. Γ(S) = T . Since |S| = |T | + 1 in the tree H, we get in this case |Γ(S)| = |S| − 1, and
so the set S does not satisfy the necessary and sufficient condition required by Hall’s
theorem. Hence we conclude that there exists no perfect matching in G.

1b. T ⊂ Γ(S). So there exists a vertex y in Y which does not occur in T , but which occurs
in Γ(S). Let this vertex y be adjacent to vertex x in S. If y is saturated with the vertex
z as its mate, then we grow H by adding the vertices y and z and the edges (x, y) and
(y, z). We are then back to the first case. If y is unsaturated, we grow H by adding the
vertex y and the edge (x, y), resulting in the second case. The path from u to y in H
is an augmenting path relative to M .

The method described above is presented in the following algorithm.

Algorithm 16.2 Perfect Matching

S1. Let G be a bipartite graph with bipartition (X, Y) and |X| = |Y |. Let M0 be the
null matching, that is, M0 = ϕ. Set i = 0.

S2. If all the vertices in X are saturated in the matching Mi, then HALT. (Mi is a perfect
matching in G.) Otherwise pick an unsaturated vertex u in X and set S = {u} and
T = ϕ.

S3. If Γ(S) = T , then HALT. (Now |Γ(S)| < |S| and hence there is no perfect matching
in G.) Otherwise select a vertex y from Γ(S) − T .

S4. If y is not saturated in Mi, go to step S5. Otherwise set z = mate of y, S = S ∪ {z}
and T = T ∪ {y}, and then go to step S3.

S5. (An augmenting P path is found.) Set Mi+1 = Mi
⊕

P and i = i+1. Go to step S2.

C5955–C0016.tex 390 2015/11/4 8:15pm

Matching Algorithms � 391

x5

x3

x2

y5

x4 y4

y3

y2

x2

x1

y3

y1

(a)

x5

x3 x3

x2

x2

x1

x1

y5

x4

x4

y4

y3

y3

y2 y2

y1

y1

(b)

x1 y1

(c) (d)

Figure 16.7 Illustration of Algorithm 16.2.

As an example, consider the bipartite graph G shown in Figure 16.7a. In this graph, the
edges of an initial matching M are shown in dashed lines. The vertex x1 is not saturated in
M . The M−alternating tree rooted at x1 is now developed. We terminate the growth of this
tree as shown in Figure 16.7b when we locate the augmenting path x1, y1, x2, y3. We then
augment M and obtain the new matching shown in Figure 16.7c.

Vertex x4 is not saturated in this new matching. So we proceed to develop the alternating
tree rooted at x4, with respect to the new matching. This tree terminates as shown in Figure
16.7d. Further growth of this tree is not possible since at this stage Γ(S) = T , where S =
{x1, x2, x3, x4} and T = {y1, y2, y3}. Hence the graph in Figure 16.7a has no perfect matching.

C5955–C0016.tex 391 2015/11/4 8:15pm

392 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

16.5.2 Optimal Assignment

Consider an assignment problem in which each worker is qualified for all the jobs. Here it is
obvious that every worker can be assigned a job (of course, we assume, as before, that there
are n workers and n jobs). In fact, any maximum matching performs this, and we have got
n! such matchings. A problem of interest in this case is to take into account the effectiveness
of the workers in their various jobs, and then to make that assignment which maximizes the
total effectiveness of the workers. The problem of finding such an assignment is known as the
optimal assignment problem.

The bipartite graph for this problem is a complete one; that is, if X = {x1, x2, . . ., xn}
represents the workers and Y = {y1, y2, . . ., yn} represents the jobs, then for all i and j, xi is
adjacent to yj . Also, we assign a weight wij = w(xi, yj) to every edge (xi, yj), which represents
the effectiveness of worker xi in job yj (measured in some units). Then the optimal assignment
problem corresponds to finding a maximum weight perfect matching in this weighted graph.
Such a matching is referred to as an optimal matching.

We now discuss a O(n4) algorithm due to Kuhn [10] and Munkres [11] for the optimal
assignment problem.

A feasible vertex labeling is a real-valued function f on the set X ∪ Y such that

f(x) + f(y) ≥ w(x, y), for all x ∈ X and y ∈ Y.

f(x) is then called the label of the vertex x.
For example, the following labeling is a feasible vertex labeling:

f(x) =max{w(x, y)}, if x ∈ X,
f(y) = 0, if y ∈ Y.

From this it should be clear that there always exists a feasible vertex labeling irrespective of
what the weights are.

For a given feasible vertex labeling f , let Ef denote the set of all those edges (x, y) of G
such that f(x) + f(y) = w(x, y). The spanning subgraph of G with the edge set Ef is called
the equality subgraph corresponding to f . We denote this subgraph by Gf .

The following theorem relating equality subgraphs and optimal matchings forms the basis
of the Kuhn–Munkres algorithm.
Theorem 16.8 Let f be a feasible vertex labeling of a graph G = (V, E). If Gf contains a
perfect matching M∗, then M∗ is an optimal matching in G.
Proof. Suppose that Gf contains a perfect matching M∗. Since Gf is a spanning subgraph
of G, M∗ is also a perfect matching in G. Let w(M∗) denote the weight of M∗, that is,

w(M∗) =
∑

e∈M∗

w(e).

Since each edge e ∈ M∗ belongs to the equality subgraph and the vertices of the edges of
M∗ cover each vertex of G exactly once, we get

w(M∗) =
∑

e∈M∗

w(e)

=
∑
v∈V

f(v).
(16.1)

On the other hand, if M is any perfect matching in G, then

w(M) =
∑
e∈M

w(e)

≤
∑
v∈V

f(v).
(16.2)

C5955–C0016.tex 392 2015/11/4 8:15pm

Matching Algorithms � 393

Now combining (16.1) and (16.2), we see that

w(M∗) ≥ w(M).

Thus M∗ is an optimal matching in G. �
In the Kuhn–Munkres algorithm, we first start with an arbitrary feasible vertex labeling
f and find the corresponding Gf . We will choose an initial matching M in Gf and apply
Algorithm 16.2. If a perfect matching is obtained in Gf , then, by Theorem 16.8, this matching
is optimal. Otherwise Algorithm 16.2 terminates with a matching M ′ that is not perfect,
giving an M ′-alternating tree H that contains no M ′-augmenting path and which cannot be
grown further in Gf . We then modify f to a feasible vertex labeling f ′ with the property
that both M ′ and H are contained in Gf ′ , and H can be extended in Gf ′ . We make such
a modification in the feasible vertex labeling whenever necessary, until a perfect matching
is found in some equality subgraph. Details of the Kuhn–Munkres algorithm are presented
below:

Algorithm 16.3 Optimal Assignment (Kuhn and Munkres)

S1. G is the given complete bipartite graph with bipartition (X, Y) and |X| = |Y |.
W = [wij] is the given weight matrix. Set i = 0.

S2. Start with an arbitrary feasible vertex labeling f in G. Find the equality subgraph
Gf and then select an initial matching Mi in Gf .

S3. If all the vertices in X are saturated in Mi, then Mi is a perfect matching, and
hence by Theorem 16.8, it is an optimal matching. So HALT. Otherwise let u be an
unsaturated vertex in X. Set S = {u} and T = ϕ.

S4. Let Γf (S) be the set of vertices which are adjacent in Gf to the vertices in S. If
Γf (S) ⊃ T , then go to step S5. Otherwise (i.e., if Γf (S) = T) compute

df = min
x∈S
y /∈T

{f(x) + f(y) − w(x, y)} (16.3)

and get a new feasible vertex labeling f ′ given by

f ′(v) =

f(v) − df , if v ∈ S

f(v) + df , if v ∈ T

f(v), otherwise
(16.4)

(Note that df > 0 and Γf (S) = T .)
Replace f by f ′ and Gf by Gf ′ .

S5. Select a vertex y from Γf (S)−T . If y is not saturated in Mi, go to step S6. Otherwise
set z = mate of y in Mi, S = S ∪ {z} and T = T ∪ {y}, and then go to step S4.

S6. (An augmenting path P is found.) Set Mi+1 = Mi ⊕ P and i = i + 1. Go to
step S3.

To illustrate the Kuhn–Munkres algorithm consider a complete bipartite graph G having the
following weight matrix W = [wij]:

W =

4 4 1 3
3 2 2 1
5 4 4 3
1 1 2 2

.

C5955–C0016.tex 393 2015/11/4 8:15pm

394 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

x4

x3

x2

y4

y3

y2

x4

x3

x2

y4

y3

y2

(a) (b)

x1 y1 x1 y1

Figure 16.8 Illustration of Algorithm 16.3.

An initial feasible vertex labeling f and G may be chosen as follows:

f(x1) = 4, f(x2) = 3, f(x3) = 5, f(x4) = 2;
f(y1) = f(y2) = f(y3) = f(y4) = 0.

The equality subgraph Gf is shown in Figure 16.8a. Applying Algorithm 16.2, we find that
Gf has no perfect matching because for the set S = {x1, x2, x3}, T = Γ(S) = {y1, y2}. Using
(16.3) we compute

df = 1.

The following new labeling f ′ is then obtained using (16.4):

f ′(x1) = 3, f ′(x2) = 2, f ′(x3) = 4, f ′(x4) = 2;
f ′(y1) = 1, f ′(y2) = 1, f ′(y3) = 0, f ′(y4) = 0.

The equality subgraph Gf is shown in Figure 16.8b. Using Algorithm 16.2 on Gf , we obtain
the perfect matching M consisting of the edges (x1, y2), (x2, y1), (x3, y3), and (x4, y4). This
matching is an optimal matching.

16.5.3 Timetable Scheduling

In a school there are p teachers x1, x2, . . ., xp and q classes y1, y2, . . ., yq. Given that teacher xi

is required to teach class yj for pij periods, we would like to schedule a timetable having the
minimum possible number of periods. This is a special case of what is known as the timetable
scheduling problem.

Suppose that we construct a bipartite graph G = (X, Y) in which the vertices in X
represent the teachers and those in Y represent classes, and vertex xi ∈ X is connected to
vertex yj ∈ Y by pij parallel edges. Since in any one period each teacher can teach at most one
class and each class can be taught by at most one teacher, it follows that a teaching schedule
for one period corresponds to a matching in G, and conversely each matching corresponds
to a possible assignment of teachers to classes for one period. Thus the timetable scheduling
problem is to partition the edges of G into as few matchings as possible.

By Corollary 16.1, the edge set of a bipartite graph can be partitioned into ∆ matchings.
The proof of this theorem also suggests the following procedure for determining a partition
having the smallest number of matchings:

C5955–C0016.tex 394 2015/11/4 8:15pm

Matching Algorithms � 395

Step 1 Let G be the given bipartite graph. Set i = 0 and G0 = G.

Step 2 Construct a matching Mi of Gi that saturates all the maximum degree vertices
in Gi.

Step 3 Remove Mi from Gi. Let Gi+1 denote the resulting graph. If Gi+1 has no edges, then
M0, M1, . . ., Mi is a required partition of the edge set of G. Otherwise set i = i + 1
and go to step 2.

Clearly, the complexity of this procedure depends on the complexity of implementing step 2,
which requires finding a matching that saturates all the maximum degree vertices in a bipar-
tite graph G = (X, Y). Such a matching may be found as follows. (See proof of Theorem 16.3.)

Let Xa denote the set of maximum degree vertices in X, and let Yb denote the set of
maximum degree vertices in Y . Let Ga denote the subgraph of G formed by the edges incident
on the vertices in Xa. Similarly Gb is the subgraph on the edges incident on the vertices Yb.

By Theorem 16.4 there is a matching Ma that saturates all the vertices in Xa. The
matching Ma is a maximum matching in Ga. Similarly in Gb there is a maximum matching
Mb that saturates all the vertices in Yb. Following the procedure used in the proof of Theorem
16.3, we can find from Ma and Mb a matching M that saturates the vertices in Xa an Yb.
Then M is a required matching saturating all the maximum degree vertices in G.

The complexity of finding Ma and Mb is the same as the complexity of finding a maximum
matching (see Theorem 16.7) which is O(n2.5), where n is the number of vertices in the
bipartite graph. It is easy to see that the complexity of constructing M from Ma and Mb

is O(n2). Thus the overall complexity of implementing step 2 is O(n2.5). This bound can
be improved since all that we need in step 2 is a matching that saturates all the maximum
degree vertices. Cole and Hopcroft [12] present such an algorithm of complexity O(m log n),
where m is the number of edges in the bipartite graph. An earlier algorithm for this problem
due to Gabow and Kariv [13] had complexity O(min {n2log n, m log2n}).

Since step 2 will be repeated ∆ times where ∆ is the maximum degree in G and ∆ ≤ n,
it follows that the complexity of constructing the required timetable is O(mn log n).

A more general problem follows. Let us assume that only a limited number of classrooms
are available. The question is: How many periods are now needed to schedule a complete
timetable?

Suppose that l lessons are to be given and that they have to be scheduled in a p-period
timetable. This timetable would require an average of ⌈l/p⌉ lessons to be given per period.
So it is clear that at least ⌈l/p⌉ rooms will be needed in some one period. Interestingly one
can always arrange l lessons in a p-period timetable so that at most ⌈l/p⌉ rooms are occupied
in any one period.

A discussion of the general form of the timetable scheduling problem and references
related to this may be found in Even, Itai, and Shamir [14].

16.6 CHINESE POSTMAN PROBLEM

A postman picks up mail at the post office, delivers it along a set of streets, and returns to
the post office. Of course, he must cover every street at least once, in either direction. The
question is: What route would enable the postman to walk the shortest distance possible?
This problem known as the Chinese postman problem was first proposed by the Chinese
mathematician Kwan [15].

If G denotes the weighted connected graph representing the streets and their lengths,
then the Chinese postman problem is simply that of finding a minimum weight closed walk
that traverses every edge of G at least once. We shall refer to such a minimum weight closed

C5955–C0016.tex 395 2015/11/4 8:15pm

396 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

walk as an optimal Chinese postman tour. Any closed walk traversing every edge at least
once will be referred to as a postman tour.

If G is Eulerian, then clearly any Euler trail of G is an optimal postman tour. Suppose
that G is not Eulerian. Then we can easily see that every postman tour of G corresponds to
an Euler trail in the (Eulerian) graph G∗ that has the same vertex set as G and that has
as many copies of an edge (i, j) as the number of times it appears in the walk. Conversely,
if G∗ is an Eulerian graph constructed by adding to G appropriate numbers of additional
copies of edges, then each Euler trail of G∗ will correspond to a postman tour of G. We can
consider G∗ as consisting of two types of edges: the original edges (the edges of G) and the
pseudo-edges (the parallel edges added to G to make it Eulerian). Our objective, therefore,
is to obtain a G∗ such that the sum of the weights of its pseudo-edges is as small as possible.
Note here that the weight of a pseudo-edge is the same as that of the corresponding edge.

In order to gain an insight into the structure of G∗, consider a vertex v whose degree in
G is odd. Clearly in G∗ an odd number of pseudo-edges must be incident on v. Let (u, v) be
one such pseudo-edge. If u is of even degree in G, then there must be a pseudo-edge (w, u)
incident on w, for otherwise the degree of u in G∗ will be odd. Continuing this argument, we
can see that in G∗ there is a path of pseudo-edges that starts at v and ends at a vertex whose
degree in G is odd. Thus, if G has 2k, k ≥ 1 odd degree vertices, then we can group these
vertices into k distinct pairs (v1, v2), (v3, v4), . . ., (v2k−1, v2k) such that in G∗ there is a path
of pseudo-edges between the vertices of each pair. These observations suggest the following
procedure to construct G∗ from G.

Pick any two vertices, say u and v, whose degrees in G are odd. Find an u − v path in
G and add to G pseudo-edges along this path. Clearly, in the resulting graph G′ both u and
v will have even degrees. Repeat this procedure, picking any two odd degree vertices in G′.
This procedure will terminate when we have obtained an Eulerian graph G∗ in which all
vertices have even degrees.

It should be easy to see that the sum W ∗ of the weights of pseudo-edges of the graph
G∗ (constructed as above) is equal to the sum of the weights of the paths chosen to add
the pseudo-edges. So, in order to minimize W ∗ it is necessary that the paths selected must
be shortest ones. Also, our choice of pairs of odd-degree vertices influences the value of
W ∗. In other words to minimize W ∗ we should group the odd-degree vertices into k pairs
(v1, v2), (v3, v4), . . ., (v2k−1, v2k) such that

W ∗ =
k∑

i=1
d(v2i−1, v2i)

is as small as possible. Recall that d(vi, vj) denotes the distance between vi and vj in G.
We can easily verify that the minimum value of W ∗ and the corresponding shortest paths

can be obtained by solving a maximum weight perfect matching problem in a complete
bipartite graph as described in S3 and S4 of the following algorithm due to Edmonds [16]
and Edmonds and Johnson [17].

Algorithm 16.4 Optimal Chinese Postman Tour (Edmonds and Johnson)

S0. Given a weighted connected graph G, an optimal Chinese postman tour is required.
S1. Identify all the odd-degree vertices of G. Let these be v1, v2, . . ., v2k, k ≥ 1. If there

are no odd-degree vertices in G, set G∗ = G and go to S5.
S2. Compute the shortest paths between all pairs of odd-degree vertices. Let d(vi, vj)

denote the distance between vi and vj .
S3. Construct a complete bipartite graph G′ with bipartition as follows:

C5955–C0016.tex 396 2015/11/4 8:15pm

Matching Algorithms � 397

X = {x1, x2, . . ., x2k},
Y = {y1, y2, . . ., y2k},

w(xi, yi) = 0,
w(xi, yj) = M − d(vi, vj) for i ̸= j,

where M is a large number.
S4. Find a maximum weight perfect matching in G

′ . For each (xi, yj) in this perfect
matching, add pseudo-edges to G along a shortest vi − vj path. Let G∗ denote the
resulting Eulerian graph.

S5. Construct an Euler trail of G∗. This trail defines an optimal Chinese postman tour.
HALT.

It is easy to show that no edge can appear in more than one of the shortest paths identified
in S4 in Algorithm 16.4. This means that no edge will be traversed more than twice in the
optimal Chinese postman tour.

Note that S2 can be carried our by Floyd’s algorithm for the all pairs shortest path
problem (see Chapter 2). Step S4 can be carried out by Algorithm 16.3 for the optimal
assignment problem. To carry out S5 we need an efficient algorithm to construct an Euler
trail in an Eulerian graph. An algorithm due to Fleury described in Wilson [18], which
achieves this, is described below.

Algorithm 16.5 Eulerian Trail (Fleury)

S0. Given an Eulerian graph G = (V, E), an Euler trail of G is required.
S1. Let i = 0 and select an arbitrary vertex v0 of G and define T0 : v0.
S2. Given that the trail Ti : v0, e1, v1, e2, . . ., ei, vi has been constructed, select an edge

ei+1 from

E − {e1, e2, . . ., ei}

subject to the following conditions:
a. ei+1 is incident on vi.
b. Unless there is no other choice, ei+1 is not a bridge of the graph

Gi = G − {e1, e2, . . ., ei}.

If no such edge ei+1 exists, then HALT.
S3. Define Ti+1 : v0, e1, v1, e2, . . ., ei+1, vi+1, where ei+1 = (vi, vi+1).
S4. Set i = i + 1 and go to S2.

Theorem 16.9 If G is Eulerian, then Fleury’s algorithm constructs an Eulerian trail of G.

Proof. Let G = (V, E) be an Eulerian graph. Suppose that Fleury’s algorithm starts with
vertex v0 of G and terminates with the trail

Tp : v0, e1, v1, e2, v2, . . ., ep, vp.

Note that whereas the vertices vi’s of Tp may not all be distinct, the edges ei’s are. We need
to show that Tp is an Eulerian trail of G. For i = 1, 2, . . ., p, let

Gi = G − {e1, e2, . . ., ei}.

First, we show that vp = v0. Since the algorithm terminates in vp, the degree of vp in Gp is
zero. If vp ̸= v0, then the degrees of vp and v0 in Tp will be odd because they are the terminal

C5955–C0016.tex 397 2015/11/4 8:15pm

398 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

vertices of Tp. This would then imply that the degree of vp in G is odd since the degree of
a vertex in G is equal to the sum of its degrees in Gp and Tp. A contradiction because G
is Eulerian and every vertex in G has even degree. Hence vp = v0 and Tp is a closed trail.
Furthermore, this means that every vertex vi has even degree in Tp and so every vertex of
Gp must also have even degree.

We next show that Tp contains every edge of G. Suppose that this is not true. Let S
denote the set of vertices of positive degree in Gp. Clearly S is nonempty and vp ∈ S̄, where
S̄ = V − S. Let vk be the last vertex of Tp that belongs to S. Since Tp terminates in vp ∈ S̄,
it follows that the edge ek+1 = (vk, vk+1) is the only edge of the cut

⟨
S, S̄

⟩
in Gk. In other

words ek+1 is a bridge of Gk.
For i = k, k + 1, . . ., p, let G′

i denote the subgraph of Gi induced by the vertex set S.
Since none of the edges ek+1, ek+2, . . ., ep have both their end vertices in S, it follows that
G′

k = G′
k+1 = · · · = G′

p. Also note that every vertex in G′
p has even degree because it is the

subgraph of Gp induced by vertices of positive degree. So, G′
p is Eulerian. Now consider any

edge e ̸= ek+1 of Gk incident on vk. It follows from step S2 of the algorithm that e is also a
bridge of Gk, for otherwise ek+1 would not have been picked at this step. Thus e is a bridge
of G′

k and also of G′
p. But G′

p has no bridges because it is Eulerian and every edge of an
Eulerian graph lies in a circuit of the graph.

Thus Tp is a closed trail and contains every edge of G. In other words Fleury’s algorithm
constructs an Eulerian trail of G. �

Summary and Related Works

In this chapter we have discussed algorithms for constructing a maximum matching (i.e., a
matching with the largest cardinality) in a graph and some related problems. For a more
detailed treatment of this topic, references Ahuja et al. [19], Applegate and Cook [20], Cook
et al. [21], Jungnickel [22], Korte and Vygen [23], and the references therein are highly
recommended. We have followed the treatment in Thulasiraman and Swamy [1,24].

Edmonds’ algorithm [4] discussed in Section 16.3.1 was the first polynomial time algo-
rithm for the maximum matching problem with a complextiy of O(n4). Several researchers
subsequently improved this algorithm to achieve better complexity results. One such algo-
rithm due to Gabow [5] and of complexity O(n3) is discussed in Section 16.3.2. The labeling
technique used in this algorithm is similar to those used in the matching algorithms of Balin-
ski [6], Witzgall and Zahn [7], and Kameda and Munro [8]. Witzgall and Zahn’s algorithm
is of complexity O(n2m), and Kameda and Munro’s algorithm is of complexity O(mn). An-
other algorithm of complexity O(n3) using the primal approach is in Cunningham and Marsh
[25]. Even and Kariv [26] gave an algorithm of complexity O(n5/2). Micali and Vazirani [27]
and Vazirani [28] gave an algorithm of complexity O(n1/2m). See also Ball and Derigs [29].
The theoretically fastest algorithm with complexity O(n1/2m log (n2/m)/ log n) is due to
Fremuth-Paeger and Jungnickel [30].

Hopcroft and Karp [9] gave an O(n5/2) algorithm for the maximum bipartite matching
problem. This is based on their complexity result discussed in Section 16.4.2. The O(n1/2m)
complexity of the maximum flow-based approach discussed in Section 16.4.3 follows from
the complexity of the maximum flow algorithms for 0-1 networks given in [31] and also dis-
cussed in Chapter 4. The theoretically fastest algorithm for the maximum bipartite matching
problem with complexity O(n1/2m log (n2/m)/ log n) is due to Feder and Motwani [32].

The Kuhn–Munkres algorithm [10,11,33] for the weighted bipartite matching problem
is also known as the Hungarian algorithm. The best known complexity of the assignment
problem is O(mn + n2 log n). See Fredman and Tarjan [34]. Megiddo and Tamir [35] discuss
an O(n log n) algorithm for a class of weighted matching problems that arise in certain

C5955–C0016.tex 398 2015/11/4 8:15pm

Matching Algorithms � 399

applications relating to scheduling and optimal assignment. Some of the other works on
perfect matchings and optimal assignments are [36–40]. See also References [41–43] for scaling
and auction algorithms for the optimal assignment and other network problems.

Edmonds [44] gave the first polynomial time algorithm for the weighted matching problem
in general graphs. Gabow [5] and Lawler [45] gave O(n3) implementations of this algorithm.
An O(n2m) implementation of the weighted matching algorithm is discussed in Applegate
and Cook [20]. Currently the fastest algorithm for this problem is of complexity O(mn + n2

log n) and due to Gabow [46]. See [47] for a scaling algorithm.
The complexity of the timetable scheduling algorithm discussed in Section 16.5.3 is O(mn

log n). A discussion of the general form of the timetable scheduling problem and related
references may be found in Even et al. [14].

The algorithm for the Chinese postman problem discussed in Section 16.6 is due to
Edmonds and Johnson [16,17]. For a variant of the Chinese postman problem (called the
rural Chinese postman) and its application in communication network protocol testing see
Aho et al. [48]. For some generalization of this problem and related algorithms see Orloff [49],
Papadimitriou [50], Lenstra and Rinooy-Kan [51], Frederickson [52], and Dror et al. [53].

A set J of vertices of a graph is a T−join if and only if the odd degree vertices of the
subgraph (V, J) are exactly the elements of T . Several optimization problems can be viewed
as special cases of the minimum weight T−join problem, including the Chinese postman
problem. Hadlock [54] provides a polynomial time algorithm for the maximum planar cut
problem by reducing the problem to an optimal T−join problem. An application of the
maximum planar cut problem in 2-layer layout of VLSI circuits is discussed in Chen et al.
[55] and Pinter [56]. A detailed exposition of several issues relating to T−join is given in
Cook et al. [21] and Korte and Vygen [23].

References

[1] M.N.S. Swamy and K. Thulasiraman, Graphs, Networks and Algorithms, Wiley-
Interscience, New York, 1981.

[2] C. Berge, Two theorems in graph theory, Proc. Nat. Acad. Sci. USA, 43 (1957), 842–844.

[3] N. S. Mendelsohn and A.L. Dulmage, Some generalizations of the problem of distinct
representatives, Can. J. Math., 10 (1958), 230–241.

[4] J. Edmonds, Paths, trees, and flowers, Can. J. Math., 17 (1965), 449–467.

[5] H.N. Gabow, An efficient implementation of Edmonds’ algorithm for maximum match-
ings on graphs, J. ACM, 23 (1976), 221–234.

[6] M.L. Balinski, Labelling to obtain a maximum matching, In Combinatorial Mathematics
and Its Applications, R.C. Bose and T.A. Dowling, editors, University of North Carolina
Press, Chappel Hill, NC, 585–602, 1967.

[7] D. Witzgall and C.T. Zahn, Modification of Edmond’s algorithm for maximum matching
of graphs, J. Res. Nat. Bur. Std., 69B (1965), 91–98.

[8] T. Kameda and I. Munro, A O(|V |.|E|) algorithm for maximum matching of graphs,
Computing, 12 (1974), 91–98.

[9] J.E. Hopcroft and R.M. Karp, An n5/2 algorithm for maximum matching in bipartite
graphs, SIAM J. Comput., 2 (1971), 225–231.

C5955–C0016.tex 399 2015/11/4 8:15pm

400 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[10] H.W. Kuhn, The Hungarian method for the assignment problem, Nav. Res. Log. Quart.,
2 (1955), 83–97.

[11] J. Munkres, Algorithms for the assignment and transportation problems, SIAM J. Appl.
Math., 5 (1957), 32–38.

[12] R. Cole and J. Hopcroft, On edge coloring bipartite graphs, SIAM J. Comput., 11
(1982), 540–546.

[13] H.N. Gabow and O. Kariv, Algorithms for edge coloring bipartite graphs and multi-
graphs, SIAM J. Comput., 11 (1982), 117–129.

[14] S. Even, A. Itai, and A. Shamir, On the complexity of time-table and multicommodity
flow problems, SIAM J. Comput., 15 (1976), 691–703.

[15] M.-K. Kwan, Graphic programming using even and odd points, Chin. Math., 1 (1962),
273–277.

[16] J. Edmonds, The Chinese postman problem, Oper. Res., 13(Supplement 1) (1965), 373.

[17] J. Edmonds and E.L. Johnson, Matching, Euler tours, and the Chinese postman, Math.
Prog., 5 (1975), 88–124.

[18] R.J. Wilson, Introduction to Graph Theory, Oliver & Boyd, Edinburgh, 1972.

[19] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows: Theory, Algorithms and
Applications, Prentice Hall, Upper Saddle River, NJ, 1993.

[20] D. Applegate and W. Cook, Solving large scale matching problems, In D.H. Johnson and
C.C. McGeoch, editors, Network Flows and Matching, American Mathematical Society,
Providence, pp. 557–576, Networks, 13 (1983), 475–493.

[21] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver, Combinatorial
Optimization, Wiley-Interscience, New York, 1998.

[22] D. Jungnickel, Graphs, Networks and Algorithms, Springer-Verlag, Berlin, Germany,
2005.

[23] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, Springer-
Verlag, New York, 1991.

[24] K. Thulasiraman and M.N.S. Swamy, Graphs: Theory and Algorithms, Wiley-
Interscience, New York, 1992.

[25] W.H. Cunningham and A.B. Marsh, A primal algorithm for optimal matching, Math.
Prog. Stud., 8 (1978), 50–72.

[26] S. Even and O. Kariv, An O(n2.5) algorithm for maximum matching in general graphs,
Proc. 16th Ann. Symp. Found. Comput. Sci., (1975), Berkeley, CA, 100–112.

[27] S. Micali and V.V. Vazirani, An O(
√

V · |E|) algorithm for finding maximum matchings
in general graphs, Proc. 21st Ann. Symp. Foundations Comput. Sci., IEEE, (1980),
Syracuse, NY, 17–27.

[28] V.V. Vazirani, A theory of alternating paths and blossoms for proving correctness of the
O(n1/2m) general graph matching algorithm, Combinatorica, 14 (1994), 71–109.

C5955–C0016.tex 400 2015/11/4 8:15pm

Matching Algorithms � 401

[29] M.O. Ball and U. Derigs, An analysis of alternative strategies for implementing matching
algorithms, Networks, 13 (1983), 517–549.

[30] C. Fremuth-Paeger and D. Jungnickel, Balanced Network Flows VIII, A revised theory
of phase ordered algorithms and the O(n5/2m log (n2/m)/log n) bound for the non-
bipartite cardinality matching problem, Networks, 41 (2003), 137–142.

[31] S. Even and R.E. Tarjan, Network flow and testing graph connectivity, SIAM. J. Com-
put., Nav. Res. Log. Quart., 4 (1975), 507–518.

[32] T. Feder and R. Motwani, Clique partitions, graph compression, and speeding up algo-
rithms, J. Comput. Sys. Sci., 51 (1995), 261–272.

[33] H.W. Kuhn, Variants of the Hungarian method for the assignment problem, Nav. Res.
Log. Quart., 3 (1956), 253–258.

[34] M. L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses on improved network
optimization algorithms, J. Ass. Comput. Mach., 34 (1987), 596–615.

[35] N. Megiddo and A. Tamir, An O(n log n) algorithm for a class of matching problems,
SIAM. J. Comput., 7 (1978), 154–157.

[36] R.M. Karp, An algorithm to solve the m × n assignment problem in expected time
O(mn log n) Netw., 10 (1980), 143–152.

[37] V. Derigs, A shortest augmenting path method for solving perfect matching problems,
Netw., 11 (1981), 379–390.

[38] M.D. Grigoriadis and B. Kalantari, A New class of heuristics for weighted perfect match-
ing, J. ACM, 35 (1988), 769–776.

[39] D. Avis, A survey of heuristics for the weighted matching problem, Networks, 13 (1983),
475–493.

[40] D. Avis and C.W. Lai, The probabilistic analysis of heuristic for the assignment problem,
SIAM J. Comput., 17 (1988), 732–741.

[41] D.P. Bertsekas, The auction method: A distributed relaxation method for the assignment
problem, Ann. Oper. Res., 14 (1988), 105–123.

[42] H.N. Gabow and R.E. Tarjan, Faster scaling algorithms for general graph matching
problems, J. ACM, 38 (1991), 815–853.

[43] J.B. Orlin and R.K. Ahuja, New scaling algorithms for the assignment and minimum
cycle mean problems, Math. Prog., 54 (1992), 41–56.

[44] J. Edmonds, Maximum matching and a polyhedron with 0, 1 vertices, J. Res. Nat. Bur.
Stand., 69 B (1965), 125–130.

[45] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart &
Winston, New York, 1976.

[46] H.N. Gabow, Data structures for weighted matching and nearest common ancestors
with linking, Proc. 1st Ann. ACM—SIAM Symp. Discrete Alg., SIAM, Philadelphia,
PA (1990), 434–443.

C5955–C0016.tex 401 2015/11/4 8:15pm

402 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[47] H.N. Gabow and R.E. Tarjan, Faster scaling algorithms for the network problems, SIAM,
J. Comput., 18 (1989), 1013–1036.

[48] A.V. Aho, A.T. Dahbura, D. Lee and M.U. Uyar, Technique for protocol conformance
test generation based on UIO sequences and rural Chinese postman tours, in Protocol
Specification, Testing and Verification, VIII , S. Aggarwal and K.K. Sabnani, Eds.,
Elsevier, North-Holland, New York, 1988, 75–86.

[49] C.S. Orloff, A fundamental problem in vehicle routing, Networks, 4 (1974), 35–64.

[50] C.H. Papadimitriou, On the complexity of edge traversing, J. ACM, 23 (1976), 544–554.

[51] J. Lenstra and A. Rinooy-Kan, On general routing problems, Networks, 6 (1976),
273–280.

[52] G.N. Frederickson, Approximation algorithms for some postman problems, J. ACM, 26
(1979), 538–554.

[53] M. Dror, H. Stern, and P. Trudeau, Postman tour on graphs with precedence relations
on arcs, Networks, 17 (1987), 283–294.

[54] F.O. Hadlock, Finding a maximum cut in a planar graph in polynomial time, SIAM J.
Comput., 19 (1975), 221–225.

[55] R.W. Chen, Y. Kajitani, and S.P. Chan, A graph theoretic via minimization algorithm
for two-layer printed circuit boards, IEEE Transactions Circ. Sys., 30 (1983), 284–299.

[56] R.Y. Pinter, Optimal layer assignment for interconnect, J. VLSI Comput. Sys., 1 (1984),
123–127.

C5955–C0016.tex 402 2015/11/4 8:15pm

C H A P T E R 17

Stable Marriage Problem
Shuichi Miyazaki

CONTENTS

17.1 Introduction . 403
17.2 Stable Marriage Problem . 404
17.3 Gale–Shapley Algorithm . 405
17.4 Extensions of Preference Lists . 406

17.4.1 Incomplete Preference Lists . 406
17.4.2 Preference Lists with Ties . 407
17.4.3 Incomplete Preference Lists with Ties . 409

17.5 Optimal Stable Matchings . 410
17.6 Stable Roommates Problem . 411
17.7 Hospitals/Residents Problem . 411
17.8 Other Variants . 412

17.8.1 HR Problem with Lower Quotas . 412
17.8.2 Student-Project Allocation Problem . 413

17.1 INTRODUCTION

Consider a bipartite graph G = (U, V, E), where U and V are sets of vertices and E is a set
of edges. A matching M of G is a subset of E such that each vertex appears at most once
in M . Bipartite matchings are sometimes characterized as the marriage between a man and
a woman: U and V represent the sets of men and women, respectively, and the existence of
an edge between m ∈ U and w ∈ V implies that m and w are acceptable to each other.

In the stable marriage problem, each person expresses not only the acceptability but also
a preference order of the members of the opposite gender. Furthermore, an output matching
must satisfy the stability condition, which intuitively means that there is no (man, woman)-
pair in which both individuals have an incentive to elope (formal definitions are given in
Section 17.2).

This problem was first introduced by Gale and Shapley in 1962 in their seminal paper [1],
and it has received much attention in many areas, including economics, mathematics, and
computer science, due to its inherent mathematical structure and rich applications to the
real world. Among the various applications, the most famous is to assign residents (medical
students) to hospitals according to the preference lists of both sides (via a suitable extension
from one-to-one assignment to many-to-one) [2–6]. Other applications have included assigning
students to schools [7–9], matching donors and recipients for kidney transplants [10–12],
constructing a table of matches in a chess tournament [13], and designing routing algorithms
in computer networks [14,15].

C5955–C0017.tex 403 2015/11/4 12:15pm

403

404 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

In this chapter, we give a brief survey of algorithmic results from the stable marriage
problem and its variants. For a more comprehensive survey, refer to the major textbooks on
this topic [16–19].

17.2 STABLE MARRIAGE PROBLEM

Although there are many variants, we will start with the simplest model. An instance of the
stable marriage problem consists of sets of men and women of equal size n. Each person has
a preference list, which orders all members of the opposite gender in order of the person’s
preference. Figure 17.1 is an example instance I1 of the stable marriage problem, where
n = 5, men are denoted by 1, 2, 3, 4, and 5, and women are denoted by a, b, c, d, and e.
Each person’s preference list is ordered from left to right. For example, man 3 most prefers
woman a and least prefers woman b.

A matching is a set of n pairs of a man and a woman such that each person appears
exactly once. For example, M1 = {(1, a), (2, b), (3, c), (4, d), (5, e)} illustrated in Figure 17.2
is a matching of I1.

For a matching M, we denote M(m) the partner of man m in M and, similarly, M(w) the
partner of woman w in M. In this case, we say that m is matched with w and w is matched with
m in M. For example, M1(2) = b and M1(e) = 5. Suppose that in a matching M, M(m) ̸= w
(i.e., (m, w) ̸∈ M), but m prefers w to M(m) and w prefers m to M(w). Then, (m, w) is
called a blocking pair for M. For example, (1, e) and (3, d) are blocking pairs for M1. Such
pairs are undesirable because they create an incentive to deviate from the given matching. In
this sense, a matching having a blocking pair is called unstable. A matching with no blocking
pair is called a stable matching. The stable marriage problem is the problem of finding a
stable matching for a given instance. For example, M2 = {(1, e), (2, c), (3, a), (4, d), (5, b)}
illustrated in Figure 17.3 is a stable matching for I1.

1: c e a d b a: 4 1 3 2 5
2: a b c d e b: 5 1 2 3 4
3: a d c e b c: 2 3 1 5 4
4: b e d a c d: 3 4 2 5 1
5: d a e b c e: 3 1 5 2 4

Figure 17.1 Instance I1.

1: c e a⃝ d b a: 4 1⃝ 3 2 5
2: a b⃝ c d e b: 5 1 2⃝ 3 4
3: a d c⃝ e b c: 2 3⃝ 1 5 4
4: b e d⃝ a c d: 3 4⃝ 2 5 1
5: d a e⃝ b c e: 3 1 5⃝ 2 4

Figure 17.2 Matching M1.

1: c e⃝ a d b a: 4 1 3⃝ 2 5
2: a b c⃝ d e b: 5⃝ 1 2 3 4
3: a⃝ d c e b c: 2⃝ 3 1 5 4
4: b e d⃝ a c d: 3 4⃝ 2 5 1
5: d a e b⃝ c e: 3 1⃝ 5 2 4

Figure 17.3 Matching M2.

C5955–C0017.tex 404 2015/11/4 12:15pm

Stable Marriage Problem � 405

17.3 GALE–SHAPLEY ALGORITHM

In their paper [1], Gale and Shapley proved that for any instance there exists at least one
stable matching, and they also proposed an efficient algorithm to find one in time O(n2)
(recall that n is the number of men in an input). This algorithm is called the Gale–Shapley
algorithm or GS algorithm (named for the authors) or the Deferred Acceptance algorithm
(named for the algorithm’s operation). Throughout this chapter, we simply call it the GS
algorithm.

We first give a rough sketch of the GS algorithm. During the execution of this algorithm,
each person takes one of two states: engaged (i.e., having a temporary partner) and free
(i.e., being unattached). At the beginning, all persons are free. At any step of the algorithm,
an arbitrary free man (say m) proposes to the woman (say w) at the top of his (current)
preference list. The woman w accepts this proposal if she is currently free, in which case m
and w become engaged. If w is currently engaged, she compares man m with her current
partner (say m′). If w prefers m′ to m, then w rejects m. In this case, m′ and w remain
engaged, and m remains free and deletes w from his list. Otherwise, if w prefers m to m′, she
accepts the proposal from m and rejects m′. In this case, m and w become newly engaged, m′

becomes free, and m′ deletes w from his list (note that w must be at the top of his current
list). This procedure continues as long as there is still a man who can make a proposal
(namely, being free and having a nonempty list); the algorithm terminates when there is no
such man. Since men make and women receive proposals, this version of the GS algorithm
is called the man-oriented GS algorithm. In the following, we give a pseudo-code of the GS
algorithm.

Gale–Shapley algorithm

1: M := ∅ and let all people be free.
2: while there is a free man whose preference list is nonempty do
3: Let m be an arbitrary free man with nonempty preference list.
4: Let w be the woman at the top of m’s current preference list.
5: if w is free then
6: M := M ∪ {(m, w)} and let m and w be engaged.
7: end if
8: if w is engaged then
9: Let m′ be the current partner of w, that is, m′ = M(w).

10: if w prefers m′ to m then
11: Delete w from m’s preference list.
12: else
13: M := M ∪ {(m, w)} \ {(m′, w)}. Let m′ be free and m be engaged. Delete w from

the preference list of m′.
14: end if
15: end if
16: end while
17: Output M .

It is not hard to see that the algorithm terminates in O(n2) steps, since no man proposes
to the same woman twice. If we apply the GS algorithm to I1 in Figure 17.1, we obtain the
matching M3 = {(1, c), (2, b), (3, a), (4, e), (5, d)}, which is a stable matching, unlike M2. This
implies that a stable matching is not necessarily unique. In fact, there are exponentially many
stable matchings in general [16,20,21]. Now we show the correctness of the GS algorithm.

C5955–C0017.tex 405 2015/11/4 12:15pm

406 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 17.1 The matching M output by the Gale–Shapley algorithm is a stable matching.

Proof. We first show that M is a matching. Clearly, no person is matched with two or more
persons in M . Supposing that a man m has no partner in M , then m was rejected by all n
women. Just after a woman w rejected m, w became engaged to a man better than m. After
that, she may change partner but can never become free again. Hence, in M , all women are
matched, while m is single; however, this is a contradiction, since there is an equal number
of men and women. Therefore, every man must be matched in M . These observations prove
that M is a one-to-one correspondence.

We then show the stability of M . Suppose, on the contrary, that M is unstable and there
is a blocking pair (m, w) for M . Since m prefers w to M(m), m must have been rejected
by w at some point in the algorithm. Just after this rejection, w was matched with a man
better than m. After this point, when w changes partner, she always changes to a better
man. Therefore, it is impossible for w to prefer m to M(w), contradicting the assumption
that (m, w) is a blocking pair. �

Although there is arbitrarity in the order of proposals by men, any execution of the GS
algorithm leads to the same stable matching, called the man-optimal stable matching, which
has a special property [1]. In this man-optimal stable matching, each man is matched with
the best woman he can obtain among all of the stable matchings, and thus the result is
desirable for all of the men simultaneously.

Theorem 17.2 The Gale–Shapley algorithm outputs the man-optimal stable matching. �

Interestingly, the man-optimal stable matching is the woman-pessimal stable matching, that
is, each woman is assigned the worst possible partner among all of the stable matchings [22].
Due to the symmetry of men and women, if we use the woman-oriented GS algorithm, then
we obtain the woman-optimal (and man-pessimal) stable matching.

The O(n2) running time of the GS algorithm is optimal in the sense that any algorithm
that always outputs a stable matching must know the contents of at least Ω(n2) positions of
the input preference lists [16,23].

17.4 EXTENSIONS OF PREFERENCE LISTS

Recall that in the stable marriage problem, each person’s preference list must include all
members of the opposite side. Also, a preference list must be strictly ordered. Apparently,
this is inconvenient for large-scale matching systems such as nation-wide medical intern
assignment. This motivates us to consider removing these restrictions and consider the use
of incomplete preference lists and ties. In the following subsections, we see how the problem
changes (or remains the same) when we allow each or both of these relaxations.

17.4.1 Incomplete Preference Lists

In this variant, each person’s preference list may be incomplete, that is, one can exclude some
members, with whom he/she does not want to be matched, from the preference list. We call
this variant SMI (stable marriage with incomplete lists). If a person p’s list includes a person
q, we say that q is acceptable to p. Here, a matching is a set of pairs (m, w) such that m
and w are acceptable to each other and each person appears at most once. Since here we are
considering incomplete lists, a matching may no longer be a perfect matching. Therefore, we
need to extend the definition of a blocking pair. If a person p is not included in a matching
M, we say that p is single in M.

C5955–C0017.tex 406 2015/11/4 12:15pm

Stable Marriage Problem � 407

1: a c b⃝ a: 2 1 3 4 5
2: c⃝ a b: 2 1⃝
3: b a c: 1 2⃝
4: c b d e⃝ d: 3 1 4
5: c d b e: 4⃝ 3

Figure 17.4 SMI instance I2 and its (unstable) matching M4.

1: a⃝ c b a: 2 1⃝ 3 4 5
2: c⃝ a b: 2 1
3: b a c: 1 2⃝
4: c b d⃝ e d: 3 1 4⃝
5: c d b e: 4 3

Figure 17.5 Stable matching M5.

For a matching M, (m, w) is a blocking pair if the following three conditions are met:
(1) M(m) ̸= w but m and w are acceptable to each other, (2) m is single in M or prefers
w to M(m), and (3) w is single in M or prefers m to M(w). The concept of a blocking
pair is the same as before: Both m and w can improve the situation by forming a couple,
assuming that a person prefers being matched with an acceptable partner to being single.
As an example, let us consider an SMI instance I2 and its (unstable) matching M4 given in
Figure 17.4. M4 includes several types of blocking pairs, that is, (1, c), (4, d), and (3, a).

As before, there is at least one stable matching in any instance, and one can be found by
the GS algorithm. For example, the matching M5 in Figure 17.5 is stable.

One important property of SMI is that we can partition the set of men (women) into two
sets: the set of men (women) who have partners in all stable matchings and the set of men
(women) who are single in all stable matchings [5,24,25]. (In Section 17.7, we revisit this
property in the context of the more general Hospitals/Residents problem.) As an example,
consider another stable matching M6 of I2 (Figure 17.6). Men 1, 2, and 4 and women a, c,
and d are matched in both M5 and M6, while men 3 and 5 and women b and e are single in
both matchings. This fact immediately implies that all stable matchings are of the same size.

17.4.2 Preference Lists with Ties

The other extension is to allow ties in preference lists, namely, two or more persons with the
same preference may be tied in a preference list. We call this variant SMT (stable marriage
with ties). We give an example instance I3 of SMT in Figure 17.7. Two or more persons in
the same tie are included in parentheses. For example, in man 5’s preference list, women d
and b are in the same tie, meaning that man 5 is indifferent between d and b.

1: a c⃝ b a: 2⃝ 1 3 4 5
2: c a⃝ b: 2 1
3: b a c: 1⃝ 2
4: c b d⃝ e d: 3 1 4⃝
5: c d b e: 4 3

Figure 17.6 Stable matching M6.

C5955–C0017.tex 407 2015/11/4 12:15pm

408 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1: a (c b d) e a: 2 1 3 4 5
2: c a e b d b: (2 1) 4 5 3
3: b a (e d) c c: 1 2 3 5 4
4: c b d (e a) d: (3 1 4) (2 5)
5: c (d b) e a e: 4 3 1 2 5

Figure 17.7 SMT instance I3.

1: a (c b d⃝) e a: 2⃝ 1 3 4 5
2: c a⃝ e b d b: (2 1) 4 5⃝ 3
3: b a (e⃝ d) c c: 1 2 3 5 4⃝
4: c⃝ b d (e a) d: (3 1⃝ 4) (2 5)
5: c (d b⃝) e a e: 4 3⃝ 1 2 5

Figure 17.8 Matching M7.

In SMT, there are three stability notions: weak stability, strong stability, and super-
stability; these depend on how stable the matchings are. We give the definitions of these
stabilities using a matching M7 (Figure 17.8) for I3. We say that w1 is at least as good as w2
for m, meaning that m prefers w1 to w2 or that m is indifferent between w1 and w2.

In the weak stability, a blocking pair of a matching M is defined as (m, w) such that
(1) M(m) ̸= w, (2) m prefers w to M(m), and (3) w prefers m to M(w). In our current
example, (5, c) is a blocking pair for M7, but neither (1, c) nor (3, d) is a blocking pair.
A matching with no such blocking pair is called a weakly stable matching.

In the strong stability, a blocking pair of a matching M is defined as a pair of p and q such
that (1) M(p) ̸= q, (2) p prefers q to M(p), and (3) p is at least as good as M(q) for q. Here,
person p, who must be strictly improved, may be either a man or a woman. For example,
(5, c) and (1, c) are blocking pairs for M7, but (3, d) is not. A matching with no such blocking
pair is called a strongly stable matching.

Finally, in the super-stability, a blocking pair of a matching M is defined as (m, w) such
that (1) M(m) ̸= w, (2) w is at least as good as M(m) for m, and (3) m is at least as
good as M(w) for w. In our example, (5, c), (1, c), and (3, d) are all blocking pairs for M7. A
matching with no such blocking pair is called a super-stable matching.

Note that a blocking pair in the weak stability is also a blocking pair in the strong
stability, and a blocking pair in the strong stability is a blocking pair in the super-stability.
Consequently, a super-stable matching is also a strongly stable matching, and a strongly
stable matching is also a weakly stable matching.

It is easy to see that a weakly stable matching always exists and can be found in polyno-
mial time [26]: Given an instance I of SMI, we construct another instance I ′ by breaking all
ties in I arbitrarily. As we have seen previously, I ′ (with no ties) has a stable matching, and
one can be found in time O(n2) by the GS algorithm. It is not hard to see that this matching
is a weakly stable matching for I.

In contrast, there is an instance that has no strongly stable matching (Figure 17.9 left)
as well as an instance that has a strongly stable matching but no super-stable matching
(Figure 17.9 right). However, there is an efficient way to confirm the existence of stable
matchings: There is a polynomial time algorithm that tests whether a super-stable (or
strongly stable) matching exists and finds one, if any, whose running time is O(n2) [26]
(or O(n3) [27]).

C5955–C0017.tex 408 2015/11/4 12:15pm

Stable Marriage Problem � 409

1: a b a: (1 2) 1: (a b) a: (1 2)
2: a b b: 1 2 2: (a b) b: (1 2)

Figure 17.9 SMT instance having no strongly stable matching (left) and SMT instance having
no super-stable matching (right).

17.4.3 Incomplete Preference Lists with Ties

Another extension allows both incompleteness and ties in preference lists, and we call it SMTI
(stable marriage with ties and incomplete lists). Definitions of blocking pairs (and hence sta-
bility) can be obtained by straightforwardly combining the definitions of Sections 17.4.1 and
17.4.2. Accordingly, we again have three stability notions: super, strong, and weak stabilities.
For example, in the strong stability, a blocking pair of a matching M is defined as (p, q) such
that (1) M(p) ̸= q, (2) p is single in M or prefers q to M(p), and (3) q is single in M or
p is at least as good as M(q) for q. (Here, we omit the formal definitions of the other two
stabilities.)

For the super and the strong stabilities, similar results as SMT hold; namely, not all
instances have a stable matching, but there is an algorithm that tests the existence of a
stable matching and finds one if one exists. The running times of the algorithms are O(a) for
the super-stability [28] and O(na) for the strong stability [27], where a is the total length of
all preference lists (which is 2n2 if all preference lists are complete). Moreover, under both
super and strong stabilities, SMTI has a similar property as SMI, that is, all stable matchings
have the same size.

For the weak stability, there exists at least one stable matching for any instance, and one
can be found in time O(a). This time, however, one instance can have stable matchings of
different sizes. For example, consider the example I4 in Figure 17.10. All three of the match-
ings {(1, c), (4, d)}, {(1, a), (2, c), (4, d)}, and {(1, a), (2, c), (4, e), (5, d)} are weakly stable for
I4, but their sizes are 2, 3, and 4, respectively.

When there are stable matchings of different sizes, it is natural to seek large ones. The
cases of super and strong stabilities are easy to handle: If there exists at least one stable
matching, one can be found in polynomial time, and trivially it is of maximum size because
all stable matchings have the same size. In contrast, the problem of finding weakly stable
matchings of the largest size, which we call MAX SMTI, is NP-hard [29,30].

Here, we briefly address the history of developing an approximation algorithm for MAX
SMTI. First of all, it is easy to construct a 2-approximation algorithm: By the definition of
stability, the sizes of minimum and maximum stable matchings differ by a factor of at most
two, so returning any stable matching is a 2-approximation algorithm, and as mentioned
previously, there is a polynomial time algorithm to find a weakly stable matching. There
has been a chain of research improving the approximation ratio [31–35], and the current
best approximation ratio is 1.5 [36–38]. On the negative side, there is no polynomial time

1: (a c) (b d) a: 1
2: c a e b: (2 1) 4
3: b a (e d) c: 1 2 3 5 4
4: c (b d e a) d: (5 3 1 4)
5: c (d b) e: 4

Figure 17.10 SMTI instance I4.

C5955–C0017.tex 409 2015/11/4 12:15pm

410 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

approximation algorithm with a ratio smaller than 33/29 unless P=NP, and no approximation
algorithm with a ratio smaller than 4/3 if the unique games conjecture (UGC) is true [39].

In the special case where ties can appear on one side only, for example, women’s preference
lists may contain ties while men’s preference lists must be strict, the situation is slightly
better: We have a polynomial time 25/17-approximation algorithm [40]. On the negative
side, the current best lower bound on the approximation ratio is 21/19 assuming P ̸=NP, and
is 5/4 assuming that UGC is true [41].

As a final remark in this subsection, Irving et al. [42] gave a border between the poly-
nomially solvable case and the NP-hard case in terms of the lengths of preference lists: If
all of the preference lists of one side are of length at most two, MAX SMTI is solvable in
polynomial time, while it is NP-hard even if the preference lists of both sides are of lengths
at most three.

17.5 OPTIMAL STABLE MATCHINGS

In this section, we assume that preference lists are strict and complete unless otherwise
mentioned. As we mentioned in Section 17.3, there may be several stable matchings. However,
the GS algorithm can find only two of them with extreme properties (Section 17.3), namely,
one is desirable for men but undesirable for women while the other is desirable for women
but undesirable for men. In this section, we consider how to find a good or fair stable
matching.

There are many optimization criteria for the quality of stable matchings, but here we
introduce just three of them. Let us define the rank of woman w in m’s preference list,
denoted rm(w), as the position of woman w in man m’s preference list, or more precisely,
one plus the number of women whom m prefers to w. Similarly, we define rw(m), the rank
of m in w’s list. Also, let X and Y be the sets of men and women, respectively. For a stable
matching M, define the regret cost r(M) as

r(M) = max
p∈X∪Y

{rp(M(p))},

which is the highest rank of the partner in M over all participants. Define the egalitarian
cost c(M) as

c(M) =
∑

p∈X∪Y

rp(M(p)),

which is the sum of the ranks of the partner in M over all participants. Finally, define the
sex-equality cost d(M) as

d(M) =
∑

m∈X

rm(M(m)) −
∑
w∈Y

rw(M(w)).

The minimum regret stable marriage problem (or the minimum egalitarian stable marriage
problem or the sex-equal stable marriage problem) is the problem of finding a stable matching
M that minimizes r(M) (or c(M) or |d(M)|) [16].

Since the number of stable matchings for one instance grows exponentially in general
(see Section 17.3), a naive algorithm that enumerates all of the stable matchings does not
work efficiently. Nevertheless, for the first and second problems, respectively, Gusfield [43]
and Irving et al. [44] proposed polynomial time algorithms by exploiting a partially ordered
set of rotations that is of polynomial size but contains information of all stable matchings. In
contrast, the sex-equal stable matching problem is NP-hard [45]. Iwama et al. gave approxi-
mation algorithms for the sex-equal stable matching problem and its variants [46]. Recently,

C5955–C0017.tex 410 2015/11/4 12:15pm

Stable Marriage Problem � 411

McDermid and Irving [47] considered the complexity of the sex-equal stable matching prob-
lem in terms of the lengths of preference lists, showing a border between P and NP-hard.
They also presented an exact exponential time algorithm for it.

If we allow ties in preference lists, the problem of finding an optimal weakly stable match-
ing in any of the above three problems becomes hard, even to approximate: For each problem,
there exists a positive constant ϵ such that there is no polynomial time ϵn-approximation
algorithm unless P = NP [48].

17.6 STABLE ROOMMATES PROBLEM

The stable roommates problem (SR) is a nonbipartite extension of the stable marriage prob-
lem, which is defined as follows: We are given an even number 2n of persons, each having a
preference list over all of the other, 2n − 1, persons. A matching is a set of n pairs in which
each person appears exactly once. Persons p and q form a blocking pair for a matching M
if they are not matched together in M but would both be improved if they were matched.
A matching without a blocking pair is a stable matching. In addition to a direct application
of assigning people to twin-rooms, SR has applications for pairing players in chess tourna-
ments [13] and pairwise kidney exchange among patient–donor pairs who are incompatible
[10–12].

In contrast to the case of stable marriage, there is an instance with no stable match-
ing even for complete preference lists without ties. The instance I5 in Figure 17.11, taken
from earlier works [1,16], consists of four persons. There are three matchings, {(1, 2), (3, 4)},
{(1, 3), (2, 4)}, and {(1, 4), (2, 3)}, but in any of them, the person who is matched with 4 forms
a blocking pair with one of the other two persons. For example, in the case of {(1, 3), (2, 4)},
(1, 2) is a blocking pair.

Irving [49] proposed a polynomial time algorithm to test whether there exists at least one
stable matching and, if so, to find one. In the case where there is no stable matching, it is
desirable to find a matching as stable as possible. In this context, the problem of finding a (not
necessarily stable) matching with the minimum number of blocking pairs was introduced, and
it was proved to be not only NP-hard but also hard to approximate [50].

If we allow ties in the lists, determining whether there is a weakly stable matching becomes
NP-complete even for complete preference lists [51], while the same problems under the super-
stability and the strong stability can still be solved in polynomial time [52,53].

17.7 HOSPITALS/RESIDENTS PROBLEM

The Hospitals/Residents problem (HR) is a many-to-one extension of the stable marriage
problem, where the two sets are usually referred to as residents and hospitals. Each resident
has a preference list over an acceptable set of hospitals, and each hospital has a preference over
an acceptable set of residents (hence, preference lists are usually incomplete). Furthermore,
each hospital hj has a quota cj , which specifies the maximum number of residents it can
accept. Figure 17.12 shows an example instance I6 of HR. There are six residents 1–6 and

1: 2 3 4
2: 3 1 4
3: 1 2 4
4: 1 2 3

Figure 17.11 SR instance I5 having no stable matching.

C5955–C0017.tex 411 2015/11/4 12:15pm

412 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1: a a[2]: 5 3 2 6 4
2: a c b[1]: 2 6 3 5
3: b a c c[3]: 2 1 3 6 4 5
4: a b c
5: c b a
6: a b c

Figure 17.12 HR instance I6.

three hospitals a, b, and c that have quotas of 2, 1, and 3, respectively. (In this example, the
sum of the quotas of all hospitals happens to be equal to the total number of residents, but
in general these sums may be different.)

A matching is an assignment of residents to hospitals (possibly, leaving some residents
unassigned). For a matching M, let M(r) be the hospital to which the resident r is assigned
(if any), and M(h) be the set of residents assigned to the hospital h. A matching must satisfy
|M(hj)| ≤ cj for each hospital hj .

The definition of a blocking pair is an extension of that for SMI by regarding a hospital as
single if the number of residents assigned to it is less than its quota; a resident ri and a hospital
hj form a blocking pair for M if (1) ri is not assigned to hj in M but ri and hj are acceptable
to each other; (2) ri is unassigned in M or ri prefers hj to M(ri); and (3) |M(hj)| < cj or
hj prefers ri to one of the residents in M(hj).

As for the stable marriage case, there always exists at least one stable matching in any
HR instance, and one can be found by the GS algorithm modified to fit the many-to-one
case. Furthermore, similarly to the stable marriage problem, there are two versions of the GS
algorithm, namely, the resident-oriented and the hospital-oriented versions, which find the
resident-optimal and the hospital-optimal stable matchings, respectively.

Here, we give one remark concerning the property we mentioned in Section 17.4.1. This
property can be generalized to HR, and it is known as the Rural Hospitals Theorem [5,24,25].

Theorem 17.3 In HR, the following conditions hold: (i) Each hospital is assigned the same
number of residents in all stable matchings, (ii) A hospital to which the number of assigned
residents is strictly less than its quota is assigned the same set of residents in all stable
matchings, and, (iii) The same set of residents are unassigned (equivalently, the same set of
residents are assigned) in all stable matchings. �

17.8 OTHER VARIANTS

Depending on the application, there are several different variants of the stable matching
problem. In this last section, we briefly show two of them.

17.8.1 HR Problem with Lower Quotas

In HR, each hospital declares its quota to specify an upper bound on the number of residents
assigned to it. In some cases, however, it may be convenient if we can declare not only an
upper bound but also a lower bound. For example, the shortage of hospital doctors in rural
areas is a critical issue, and it is sometimes necessary to guarantee a certain number of
residents for such hospitals. Furthermore, when determining the supervisors of students in
universities, it is quite common to expect the number of students assigned to each professor
to be somehow balanced, which again can be achieved by specifying both upper and lower
bounds on the number of students accepted by each professor. In this subsection, we show

C5955–C0017.tex 412 2015/11/4 12:15pm

Stable Marriage Problem � 413

two different models that incorporate a quota for lower bounds in HR. In the following, the
upper and the lower quotas of hospital hj are denoted by uj and lj , respectively.

In the first model, proposed by Biró et al. [54], we allow some hospitals to be closed.
In a matching M, each hospital hj must satisfy either |M(hj)| = 0 or lj ≤ |M(hj)| ≤ uj .
A hospital hj is called closed if |M(hj)| = 0, while it is open if lj ≤ |M(hj)| ≤ uj .

A resident ri and a hospital hj form a blocking pair for a matching M if the following
conditions are met: (1) ri and hj are acceptable to each other, (2) ri is either unassigned or
prefers hj to M(ri), (3) hj is open, and (4) either |M(hj)| < uj or hj prefers ri to one of
the residents in M(hj). A closed hospital hj and lj residents form a blocking coalition for M
if each resident ri is either unassigned or prefers hj to M(ri). Note that all the residents in
a blocking coalition have an incentive to collectively open the hospital hj . A matching with
neither a blocking pair nor a blocking coalition is stable.

Under this definition, there exist instances that have no stable matching, and deciding
whether there is a stable matching for a given instance is NP-complete, even for restricted
cases [54].

In the second model [55], every hospital must satisfy lj ≤ |M(hj)| ≤ uj . In general,
such a feasible matching need not exist; in their work [55], however, the authors imposed a
restriction on inputs to guarantee the existence of a feasible matching. The definition of the
blocking pair is the same as that for the original HR, and our aim in this problem is to seek
a stable matching. As in the case of the first model, there are instances that admit no stable
matching, but the existence of a stable matching can be determined in polynomial time.

Similarly to the problem we discussed in Section 17.6, we try to find a matching that is
as stable as possible in case there is no stable matching. Hamada et al. [55] considered two
problems: the problem of finding a matching with the minimum number of blocking pairs
and the problem of finding a matching with the minimum number of blocking residents (i.e.,
the residents who are included in a blocking pair). They showed that both problems are
NP-hard and that the first and second problems are approximable in polynomial time within
a factor of n1 + n2 and √

n1, respectively, where n1 and n2 denote the number of residents
and hospitals, respectively. They also showed that the first problem is hard to approximate
within (n1 + n2)1−ϵ for any constant ϵ unless P=NP, while the inapproximability of the
second problem is established under a stronger assumption.

17.8.2 Student-Project Allocation Problem

In many universities, it is common to require students to take certain project courses pro-
vided by lecturers. Students have preferences over available projects and want to take a
preferable one. Each project has its own capacity due to, for example, the limitation of avail-
able instruments, and also each lecturer has his/her own capacity. One lecturer may provide
more than one projects, but the sum of the capacities of the projects she offers need not be
equal to her capacity. In addition, each lecturer has a preference over students. Our goal is
to assign students to projects while satisfying the capacity constraints of both lecturers and
projects as well as achieving stability. This problem was modeled by Abraham et al. [56] as
the Student-Project Allocation problem (SPA).

Here, we give only informal definitions. A matching is an assignment of students to
projects satisfying all of the capacity constraints. The pair of a student s and a project p
form a blocking pair if (1) s can improve the current situation if he is assigned to p, and
(2) the lecturer who offers p has an incentive to accept s to p (possibly by rejecting a student
currently assigned to one of her projects). A matching without a blocking pair is a stable
matching. Abraham et al. [56] showed that there exists at least one stable matching for any
instance, and that all of the stable matchings have the same size, by proving a variant of

C5955–C0017.tex 413 2015/11/4 12:15pm

414 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

the Rural Hospitals Theorem. They also extended the GS algorithm to fit SPA, giving the
student-oriented and the lecturer-oriented versions.

The Student-Project Allocation problem with preferences over Projects (SPA-P) [57] is
a variant of SPA where lecturers have preference not over students but over the projects
they offer. This problem models the situation where lecturers are indifferent to the set of
students because they have no preliminary information on the students but they can rank
projects they offer according to academic interests and their desire to have more students in
higher-ranked projects. The rest of the input is the same as SPA: Students have preferences
over projects, and each project and each lecturer has a capacity.

A blocking pair is a pair of a student s and a project p such that (1) s can improve the
current situation if he is assigned to p, and (2) the lecturer who offers p has an incentive
to accept s to p. Note that condition (2) in this case implies that the lecturer can increase
the number of students assigned to her higher-ranked project. A set of two or more students
form a blocking coalition if all of them can improve their situation by swapping their assigned
projects. Note that since lecturers are indifferent to the set of students and are interested only
in the number of students assigned to each project, they do not resist this swap. A matching
having neither a blocking pair nor a blocking coalition is stable. Manlove and O’Malley [57]
showed that as in the case of SPA, there always exists a stable matching, but here the sizes
of stable matchings may differ. They showed that the problem of finding a maximum stable
matching is APX-hard and gave a polynomial time 2-approximation algorithm. These upper
and lower bounds for approximation were later improved to 1.5 and 21/19, respectively [58].

References

[1] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,” The
American Mathematical Monthly, 69 (1962), 9–15.

[2] Canadian Resident Matching Service, http://www.carms.ca/.

[3] Japan Residency Matching Program, http://www.jrmp.jp/.

[4] National Resident Matching Program, http://www.nrmp.org/.

[5] A. E. Roth, “The evolution of the labor market for medical interns and residents: A case
study in game theory,” Journal of the Political Economy, 92(6) (1984), 991–1016.

[6] Scottish Foundation Allocation Scheme, http://www.nes.scot.nhs.uk/sfas.

[7] A. Abdulkadiroǧlu, P. A. Pathak, and A. E. Roth, “The New York City high school
match,” American Economic Review, 95(2) (2005), 364–367.

[8] A. Abdulkadiroǧlu, P. A. Pathak, A. E. Roth, and T. Sönmez, “The Boston public
school match,” American Economic Review, 95(2) (2005), 368–371.

[9] C. P. Teo, J. V. Sethuraman, and W. P. Tan, “Gale-Shapley stable marriage problem
revisited: Strategic issues and applications,” Management Science, 47 (2001), 1252–1267.

[10] R. W. Irving, “The cycle roommates problem: A hard case of kidney exchange,” Infor-
mation Processing Letters, 103(1) (2007), 1–4.

[11] A. E. Roth, T. Sönmez, and M. U. Unver, “Kidney exchange,” Quarterly Journal of
Economics, 119(2) (2004), 457–488.

[12] A. E. Roth, T. Sönmez, and M. U. Unver, “Pairwise kidney exchange,” Journal of
Economic Theory, 125(2) (2005), 151–188.

C5955–C0017.tex 414 2015/11/4 12:15pm

Stable Marriage Problem � 415

[13] E. Kujansuu, T. Lindberg, and E. Mäkinen, “The stable roommates problem and chess
tournament pairings,” Divulgaciones Matemáticas, 7(1) (1999), 19–28.

[14] S. T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching output queue-
ing with a combined input output queued switch,” IEEE Journal on Selected Areas in
Communications, 17(6) (1999), 1030–1039.

[15] G. Nong and M. Hamdi, “On the provision of quality-of-service guarantees for input
queued switches,” IEEE Communications Magazine, 38(12) (2000), 62–69.

[16] D. Gusfield and R. W. Irving, The Stable Marriage Problem: Structure and Algorithms,
MIT Press, Boston, MA, 1989.

[17] D. E. Knuth, Mariages Stables, Les Presses de l’Université Montréal, 1976. (Translated
and corrected edition, Stable Marriage and Its Relation to Other Combinatorial Prob-
lems, CRM Proceedings and Lecture Notes, Vol. 10, American Mathematical Society,
1997.)

[18] D. F. Manlove, Algorithmics of Matching Under Preferences, World Scientific, 2013.

[19] A. E. Roth and M. Sotomayor, Two-Sided Matching: A Study in Game-theoretic Mod-
eling and Analysis, Cambridge University Press, Cambridge, 1990.

[20] R. W. Irving and P. Leather, “The complexity of counting stable marriages,” SIAM
Journal on Computing, 15 (1986), 655–667.

[21] E. G. Thurber, “Concerning the maximum number of stable matchings in the stable
marriage problem,” Discrete Mathematics, 248 (2002), 195–219.

[22] D. McVitie and L. B. Wilson, “The stable marriage problem,” Communications of the
ACM, 14 (1971), 486–490.

[23] C. Ng and D. S. Hirschberg, “Lower bounds for the stable marriage problem and its
variants,” SIAM Journal on Computing, 19(1) (1990), 71–77.

[24] D. Gale and M. Sotomayor, “Some remarks on the stable matching problem,” Discrete
Applied Mathematics, 11 (1985), 223–232.

[25] A. E. Roth, “On the allocation of residents to rural hospitals: A general property of
two-sided matching markets,” Econometrica, 54 (1986), 425–427.

[26] R. W. Irving, “Stable marriage and indifference,” Discrete Applied Mathematics, 48
(1994), 261–272.

[27] T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch, “Strongly stable matchings in
time O(nm) and extension to the hospitals-residents problem,” ACM Transactions on
Algorithms, 3(2), Article No. 15, (2007).

[28] D. F. Manlove, “Stable marriage with ties and unacceptable partners,” Research Report,
TR-1999-29, Computing Science Department, University of Glasgow, Glasgow, 1999.

[29] K. Iwama, D. F. Manlove, S. Miyazaki, and Y. Morita, “Stable marriage with incomplete
lists and ties,” Proc. ICALP, LNCS 1644, pp. 443–452, 1999.

[30] D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita, “Hard variants of
stable marriage,” Theoretical Computer Science, 276(1–2) (2002), 261–279.

C5955–C0017.tex 415 2015/11/4 12:15pm

416 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[31] R. W. Irving and D. F. Manlove, “Approximation algorithms for hard variants of the sta-
ble marriage and hospitals/residents problems,” Journal of Combinatorial Optimization,
16(3) (2008), 279–292.

[32] K. Iwama, S. Miyazaki, and K. Okamoto, “A (2 − c log N/N)-approximation algorithm
for the stable marriage problem,” Proc. SWAT, LNCS 3111, pp. 349–361, 2004.

[33] K. Iwama, S. Miyazaki, and N. Yamauchi, “A (2 − c 1√
N

)-approximation algorithm for
the stable marriage problem,” Algorithmica, 51 (2008), 342–356.

[34] K. Iwama, S. Miyazaki, and N. Yamauchi, “A 1.875-approximation algorithm for the
stable marriage problem,” Proc. SODA, pp. 288–297, 2007.

[35] Z. Király, “Better and simpler approximation algorithms for the stable marriage prob-
lem,” Algorithmica, 60(1) (2011), 3–20.

[36] E. McDermid, “A 3/2-approximation algorithm for general stable marriage,” Proc.
ICALP, LNCS 5555, pp. 689–700, 2009.

[37] Z. Király, “Linear time local approximation algorithm for maximum stable marriage,”
MDPI Algorithms, 6(3) (2013), 471–484.

[38] K. Paluch, “Faster and simpler approximation of stable matchings,” MDPI Algorithms,
7(2) (2014), 189–202.

[39] H. Yanagisawa, “Approximation algorithms for stable marriage problems,” PhD thesis,
Graduate School of Informatics, Kyoto University, Kyoto, Japan, 2007.

[40] K. Iwama, S. Miyazaki, and H. Yanagisawa, “A 25/17-approximation algorithm for the
stable marriage problem with one-sided ties,” Algorithmica, 68 (2014), 758–775.

[41] M. M. Halldórsson, K. Iwama, S. Miyazaki, and H. Yanagisawa, “Improved approxima-
tion results of the stable marriage problem,” ACM Transactions on Algorithms, 3(3),
Article No. 30, (2007).

[42] R. W. Irving, D. F. Manlove, and G. O’Malley, “Stable marriage with ties and bounded
length preference lists,” Proc. the 2nd Algorithms and Complexity in Durham Workshop,
Texts in Algorithmics, College Publications, 2006.

[43] D. Gusfield, “Three fast algorithms for four problems in stable marriage,” SIAM Journal
on Computing, 16(1) (1987), 111–128.

[44] R. W. Irving, P. Leather, and D. Gusfield, “An efficient algorithm for the ‘optimal’
stable marriage,” Journal of the ACM, 34 (1987), 532–543.

[45] A. Kato, “Complexity of the sex-equal stable marriage problem,” Japan Journal of
Industrial and Applied Mathematics, 10 (1993), 1–19.

[46] K. Iwama, S. Miyazaki, and H. Yanagisawa, “Approximation algorithms for the sex-
equal stable marriage problem,” ACM Transactions on Algorithms, 7(1) Article No. 2,
(2010).

[47] E. McDermid and R. W. Irving, “Sex-equal stable matchings: Complexity and exact
algorithms,” Algorithmica, 68 (2014), 545–570.

C5955–C0017.tex 416 2015/11/4 12:15pm

Stable Marriage Problem � 417

[48] M. M. Halldórsson, R. W. Irving, K. Iwama, D. F. Manlove, S. Miyazaki, Y. Morita, and
S. Scott, “Approximability results for stable marriage problems with ties,” Theoretical
Computer Science, 306 (2003), 431–447.

[49] R. W. Irving, “An efficient algorithm for the ‘stable roommates’ problem,” Journal of
Algorithms, 6(4) (1985), 577–595.

[50] D. J. Abraham, P. Biró, and D. F. Manlove, “ ‘Almost stable’ matchings in the room-
mates problem,” Proc. WAOA, LNCS 3879, pp. 1–14, 2005.

[51] E. Ronn,“NP-complete stable matching problems,” Journal of Algorithms, 11 (1990),
285–304.

[52] R. W. Irving and D. F. Manlove, “The stable roommates problem with ties,” Journal
of Algorithms, 43(1) (2002), 85–105.

[53] S. Scott, “A study of stable marriage problems with ties,” PhD thesis, University of
Glasgow, Glasgow, 2005.

[54] P. Biró, T. Fleiner, R. W. Irving, and D. F. Manlove, “The college admissions problem
with lower and common quotas,” Theoretical Computer Science, 411(34–36) (2010),
3136–3153.

[55] K. Hamada, K. Iwama, and S. Miyazaki, “The hospitals/residents problem with lower
quotas,” Algorithmica, DOI 10.1007/s00453-014-9951-z.

[56] D. J. Abraham, R. W. Irving, and D. F. Manlove, “Two algorithms for the Student-
Project Allocation problem,” Journal of Discrete Algorithms, 5(1) (2007), 73–90.

[57] D. F. Manlove and G. O’Malley, “Student-project allocation with preferences over
projects,” Journal of Discrete Algorithms, 6(4) (2008), 553–560.

[58] K. Iwama, S. Miyazaki, and H. Yanagisawa, “Improved approximation bounds for the
Student-Project Allocation problem with preferences over projects,” Journal of Discrete
Algorithms, 13 (2012), 59–66.

C5955–C0017.tex 417 2015/11/4 12:15pm

C H A P T E R 18

Domination in Graphs
Subramanian Arumugam

M. Sundarakannan

CONTENTS

18.1 Introduction . 419
18.2 Domination Number of a Graph—Basic Results and Bounds 420
18.3 Domination Chain . 423
18.4 Various Types of Domination . 426
18.5 Total Dominating Sets . 427
18.6 Connected Dominating Sets . 429
18.7 Paired-Dominating Sets . 430
18.8 Equivalence Domination . 432
18.9 Global Domination and Factor Domination . 434
18.10 Other Types of Domination . 435
18.11 Nordhaus–Gaddum Type Results . 436
18.12 Domatic Number . 437
18.13 Domination in Product Graphs . 439
18.14 Algorithmic Aspects . 441
18.15 Conclusion . 442

18.1 INTRODUCTION

One of the fastest growing areas within graph theory is the study of domination and related
subset problems such as independence, irredundance, and matching. The origin of the study
of dominating sets in graphs is the following problem of dominating queens: What is the
minimum number of queens to be placed on an n×n chessboard in such a way that every cell
in the board is either occupied by a queen or dominated by a queen, where a queen dominates
all those cells that can be reached in a single move? This number is the domination number
of the graph G whose vertex set V is the set of n2 cells of the n × n board and two vertices i
and j are adjacent if the queen at i can reach j in a single move. The term domination was
first introduced by Ore [1]. Domination and its several variants serve as natural models for
many optimization problems. Domination theory has many and varied applications in diverse
areas such as design and analysis of communication networks, social network theory, routing
problems, kernels of games, operations research, bioinformatics, computational complexity,
algorithm design, linear algebra, and optimization. The publication of a survey article by
Cockayne and Hedetniemi [2] in 1977, led to the modern study of domination in graphs. Since
then more than 1500 papers have been published on this topic. A comprehensive treatment
of the fundamentals of domination is given in the book by Haynes et al. [3] and surveys of
several advanced topics can be found in the book edited by Haynes et al. [4]. In this chapter

C5955–C0018.tex 419 2015/11/4 12:22pm

419

420 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

we present some of the basic results in domination, recent developments, and directions for
further research.

18.2 DOMINATION NUMBER OF A GRAPH—BASIC RESULTS AND BOUNDS

A vertex v in a graph G is said to dominate itself and each of its neighbors. Thus v dominates
all the vertices in its closed neighborhood N [v]. A set S of vertices of G is a dominating set
of G if every vertex of V \S is adjacent to at least one vertex of S. Obviously a set S ⊆ V is
dominating set if and only if S satisfies any one of the following equivalent conditions:

1. N [S] = V .

2. For every vertex v ∈ V − S, we have d(v, S) ≤ 1.

3. For every vertex v ∈ V − S, there exists a vertex u ∈ S such that v is adjacent to u.

4. For every vertex v ∈ V, we have |N [v] ∩ S| ≥ 1.

5. For every vertex v ∈ V − S, we have |N(v) ∩ S| ≥ 1.

We observe that any superset of a dominating set is also a dominating set and hence dom-
ination is a superhereditary property. Cockayne et al. [5] have proved that for any graph
theoretic property P which is superhereditary (hereditary) 1-minimality (1-maximality) is
equivalent to minimality (maximality). Thus a dominating set S of G is a minimal dominating
set of G if and only if S − {v} is not a dominating set of G for all v ∈ S.

Definition 18.1 The domination number γ(G) of a graph G is the minimum cardinality
of a dominating set in G. The upper domination number Γ(G) is the maximum cardinality
of a minimal dominating set of G

For the graph G given in Figure 18.1, the sets S1 = {v2, v3, v5}, S2 = {v1, v4}, and S3 =
{v1, v3, v5} are minimal dominating sets, γ(G) = 2 and Γ(G) = 3. For the complete graph
Kn, we have γ = Γ = 1. For the star K1,n−1 we have γ = 1 and Γ = n − 1.

For any graph G of order n we have 1 ≤ γ(G) ≤ n. Further γ(G) = 1 if and only if
∆(G) = n − 1 and γ(G) = n if and only if G = Kn. The following result shows that the
upper bound can be substantially improved for graphs having no isolated vertices.

Theorem 18.1 [1] If a graph G has no isolated vertices, then γ(G) ≤ (n/2).

Proof. We first prove that if S is a minimal dominating set of G, then V − S is a dominating
set of G. Suppose there exists a vertex v ∈ S such that v is not dominated by any vertex
in V − S. Since G has no isolated vertices, it follows that v is adjacent to a vertex w in S.
Hence S − {v} is a dominating set of G, contradicting the minimality of S. Thus V − S is a
dominating set of G. Hence γ(G) ≤ min{|S|, |V − S|} ≤ (n/2). �
The corona of two graphs G1 and G2 is the graph G = G1◦G2 formed from one copy of G1 and
|V (G1)| copies of G2, where the ith vertex of G1 is adjacent to every vertex in the ith copy
of G2. Walikar et al. [6] obtained a characterization of all graphs of even order n for which
γ = n/2. Payen and Xuong [7] and Fink et al. [8] independently obtained the same result.

v1 v4

v2 v3

G v5v6

Figure 18.1 Graph with γ = 2 and Γ = 3.

C5955–C0018.tex 420 2015/11/4 12:22pm

Domination in Graphs � 421

Theorem 18.2 For a graph G with even order n and no isolated vertices, γ(G) = (n/2) if
any only if the components of G are the cycle C4 or the corona H ◦ K1 for any connected
graph H.

Proof. It is easy to verify that if the components of G are C4 or H ◦ K1, then γ(G) = n/2.
Conversely, suppose γ(G) = (n/2). Without loss of generality, we assume that G is connected.
Let T = {T1, T2, . . . , Tp} be a minimal set of stars which cover all the vertices of G. Since
γ(G) = n/2, T must be a maximum matching and |T | = p = n/2. Let Ti = uivi, 1 ≤ i ≤ p.

Assume p ≥ 3. We claim that ui or vi is an end vertex. If not, there exists i such that
both ui and vi have degree at least 2. Then G has a dominating set of cardinality p − 1.
Thus γ(G) = p − 1 < n/2, a contradiction. This shows that G is of the form H ◦ K1 for some
connected graph H. Now if p ≤ 2, then G is K2 or P4 or C4. Obviously K2 = K1 ◦ K1 and
P4 = K2 ◦ K1. �

Cockayne et al. characterized graphs G of order n with γ(G) = ⌊n/2⌋ , which includes
Theorem 18.2 as a special case, when n is even. For details we refer to the book by Haynes
et al. ([3], pages 42–48).

Remark 18.1 Ore’s theorem states that if δ ≥ 1, then γ ≤ n/2. Several authors have
obtained improvements on the upper bound by restricting their attention to smaller families
of graphs. McCuaig and Shepherd [9] have proved that if G is connected and δ ≥ 2, then
γ ≤ 2n/5, except for a family of 7 graphs. Reed [10] again improved the bound by proving
that if G is connected and δ ≥ 3, then γ ≤ 3n/8. In this connection, a natural conjecture is
that for any connected graph G with δ ≥ k,γ ≤ kn/(3k − 1). Caro and Roditty [11] have
obtained a better bound, which settles the above conjecture for δ ≥ 7. The question still
remains open for δ = 4, 5, or 6. Cockayne et al. [12] improved the bounds for graphs with
some forbidden graphs. They have proved that if G is a connected graph which is K1,3-free
and K3 ◦ K1 free, then γ ≤ ⌈n/3⌉.

The following theorem gives lower and upper bounds for γ in terms of the order and the
maximum degree. The upper bound is attributed to Berge [13] and the lower bound to
Walikar et al. [6].

Theorem 18.3 For any graph G with order n and maximum degree ∆ we have
⌈n/(1 + ∆)⌉ ≤ γ ≤ n − ∆.

Proof. Let S be a γ-set of G. Since every vertex v in S dominates at most ∆ + 1 vertices
(including itself) it follows that n ≤ γ(∆+1). Hence γ ≥ ⌈n/(1 + ∆)⌉. Now, let v be a vertex
of maximum degree ∆. Then V − N(v) is a dominating set of cardinality n − ∆ and hence
γ ≤ n − ∆. �

It follows from the proof of Theorem 18.3 that γ = n/(1 + ∆) if and only if G has a γ-set S
such that |N(v)| = ∆ for all v ∈ S and N [u]∩N [v] = ∅ for any two distinct vertices u, v ∈ S.
For example, the collection of stars tK1,∆ and cycles C3t have γ = n/(1 + ∆).

Vizing [14] obtained an upper bound for the size m of a graph in terms of its order n and
domination number γ, which in turn gives a bound for γ in terms of m and n.

Theorem 18.4 [14] If G is a graph for which γ ≥ 2, then

m ≤ (n − γ)(n − γ + 2)
2

. (18.1)

C5955–C0018.tex 421 2015/11/4 12:22pm

422 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. The proof is by induction on n. When γ(G) = 2, the right side of (1) is (n − 2)n/2.
Since γ(G) = 2, we have ∆(G) ≤ n−2. Hence m = 1/2

∑
v∈V deg(v) ≤ 1

2n∆(G) ≤ 1
2n(n−2)

and the result follows.
Now, suppose γ(G) ≥ 3. When n = 3, G = K3. Hence m = 0 and the inequality is trivially

satisfied. We assume that the result is true for all graphs of order less than n. Let G be a
graph of order n with γ(G) ≥ 3. Let v ∈ V (G) and deg v = ∆(G). Then by Theorem 18.3,
|N(v)| = ∆(G) ≤ n − γ(G). Let |N(v)| = ∆(G) = n − γ(G) − r, where 0 ≤ r ≤ n − γ(G).
Let S = V − N [v]. Then |S| = n − ∆(G) − 1 = n − (n − γ(G) + r) − 1 = γ(G) − r − 1.

Let m1, m2, and m3 denote respectively the number of edges between N(v) and S, ⟨S⟩,
and ⟨N [v]⟩. Now, for any u ∈ N(v), the set S1 = (S − N(u)) ∪ {u, v} is a dominating set
of G. Hence γ(G) ≤ |S − N(u)| + 2 ≤ γ(G) + r − 1 − |S ∩ N(u)| + 2. Thus |N(u) ∩ S| ≤ r + 1
and hence m1 ≤ ∆(r + 1).

Now if D is a minimum dominating set of ⟨S⟩, then D ∪ {u} is a dominating set of G.
Hence γ(G) ≤ γ(⟨S⟩) + 1, so that γ(⟨S⟩) ≥ γ(G) − 1 ≥ 2. By induction hypothesis, we have

m2 ≤
[1

2
(|S| − γ(⟨S⟩))(|S| − γ(⟨S⟩) + 2

]
≤

[1
2

(γ(G) + r − 1 − (γ(G) − 1))(γ(G) + r − 1 − (γ(G) − 1) + 2
]

= 1
2

r(r + 2).

Now the vertex v is adjacent to ∆(G) vertices in N [v] and for each vertex u ∈ N(v) the
number of edges between S and N(v) incident with u is at most r + 1.

Hence m3 = |E(⟨N [v]⟩)| ≤ ∆(G) + 1
2∆(G)(∆(G) − r − 2).

Thus m = m1 + m2 + m3

≤ ∆(G)(r + 1) + 1
2

r(r + 2) + ∆(G) + 1
2

∆(G)(∆(G) − r − 2)

= ∆(G)(n − γ(G) − ∆(G) + 1)

+ 1
2

(n − γ(G) − ∆(G))(n − γ(G) − ∆(G) + 2)

+ ∆(G) + 1
2

∆(G)(2∆(G) − n + γ(G) − 2)

= 1
2

(n − γ(G))(n − γ(G) + 2) − 1
2

∆(G)(n − γ(G) − ∆(G))

≤ 1
2

(n − γ(G))(n − γ(G) + 2).

Hence the proof is complete by induction. �
For graphs with γ < n − ∆, Sanchis [15] improved the bound in Theorem 18.4.

Theorem 18.5 Let G be a graph with 2 ≤ γ ≤ n − ∆ − 1. Then

m ≤ 1
2

(n−γ)(n−γ+1). �

Theorem 18.6 For any graph G,

n − m ≤ γ(G) ≤ n + 1 −
√

1 + 2m.

Furthermore, γ(G) = n − m if and only if each component of G is a star or an isolated
vertex.

C5955–C0018.tex 422 2015/11/4 12:22pm

Domination in Graphs � 423

Proof. The inequality given in Theorem 18.4 can be rewritten as (n−γ)(n−γ+2)−2m ≥ 0.
Solving for n − γ and using the fact that n − γ ≥ 0, we get

n − γ ≥ −1 +
√

1 + 2m

which establishes the required upper bound.
Since γ(G) ≥ 1, the lower bound is obvious for m ≥ n−1. Assume that m ≤ n−1. Then

G is a graph with at least n − m components. The domination number of each component
of G is at least 1. Hence, γ(G) ≥ n − m with equality if and only of G has exactly n − m
components each with domination number equal to 1. Furthermore, G has n−m components
if and only if G is a forest. Hence γ = n − m if and only if each component of G is a star or
an isolated vertex. �
We now proceed to give a few more bounds for γ in terms of other graph theoretic parameters
such as diameter, girth, minimum degree, and covering number.

Theorem 18.7 For any connected graph G,⌈
diam(G) + 1

3

⌉
≤ γ(G).

Proof. Let S be a γ-set of G. Let P be a path of length diam(G). Clearly P includes at
most two edges from the induced subgraph ⟨N [v]⟩ for each v ∈ S. Also since S is a γ-set,
P includes at most γ(G) − 1 edges joining the neighborhood of the vertices of S. Hence
diam(G) ≤ 2γ(G) + γ(G) − 1 = 3γ(G) − 1 and the result follows. �
If G is a graph of diameter 2, then for any vertex v ∈ V (G), the open neighborhood N(v)
is a dominating set of G and hence γ(G) ≤ δ(G). Brigham et al. [16] have proved that if
γ(G) ≥ 3, then diam(G) ≤ 2. Further if G has no isolated vertices and diam(G) ≥ 3, then
γ(G) = 2. The length of a shortest cycle in a graph G is called the girth of G and is denoted
by g(G). Brigham and Dutton [17] obtained the following bounds for γ(G) in terms of g(G).

If δ(G) ≥ 2 and g(G) ≥ 5, then γ(G) ≤ ⌈n − ⌊g(G)/3⌋/2⌉ .

If g(G) ≥ 5, then γ(G) ≥ δ(G).

If g(G) ≥ 6, then γ(G) ≥ 2(δ(G) − 1).

If δ(G) ≥ 2 and g(G) ≥ 7, then γ(G) ≥ ∆(G).

18.3 DOMINATION CHAIN

In this section we discuss the relationship between domination, independence and irredun-
dance, leading to an inequality chain of six graph parameters. This inequality chain, which
was first observed by Cockayne et al. [18], has become one of the major focal points in the
study of domination in graphs.

Let P be a graph theoretic property of a set of vertices S of a graph. Any subset S of V
satisfying P is called a P -set and is otherwise called a P -set. A property P is called hereditary
(superhereditary) if whenever S is a P -set, then any subset (superset) of S is also a P -set.
A P -set S in G is called a minimal (maximal) P -set if every proper subset (superset) of S is a
P -set. Also S is called 1-minimal (1-maximal) if for every vertex v ∈ S, S−{v}(v ∈ V −S, S∪
{v}) is a P -set. For any hereditary (superhereditary) property, minimality (maximality) and
1-minimality (1-maximality) are equivalent.

C5955–C0018.tex 423 2015/11/4 12:22pm

424 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Let G = (V, E) be a graph. A subset S of V is called an independent set if no two
vertices in S are adjacent. Since independence is a hereditary property, an independent set S
is maximal if and only if S is 1-maximal. Thus, an independent set S is maximal if and only
if S ∪ {v} is not an independent set for all v ∈ V − S, or equivalently v is adjacent to at least
one vertex in S or equivalently S is a dominating set of G. Thus the maximality condition
for independence is the definition of dominating set and we have the following basic result.

Proposition 18.1 An independent set S is maximal independent if and only if it is inde-
pendent and dominating. �

Definition 18.2 The minimum cardinality of a maximal independent set is called the inde-
pendence domination number of G and is denoted by i(G). The independence number β0(G)
is the maximum cardinality of a maximal independence set in G.

Proposition 18.2 Every maximal independent set S in a graph G is a minimal dominating
set of G.

Proof. It follows from Proposition 18.1 that S is a dominating of G. Also if v ∈ S, then v
is not adjacent to any vertex in S − {v} and hence S − {v} is not a dominating set of G.
Hence S is 1-minimal and since domination is a superhereditary property, S is a minimal
dominating set of G. �

Corollary 18.1 For any graph G,

γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G). �

We now proceed to investigate the condition for minimality of a dominating set. Let S be a
minimal dominating set of G. Then S −{v} is not a dominating set of G for all v ∈ V −S and
hence there exists a vertex w ∈ V − (S − {v}) such that w is not dominated by any vertex
in S − {v}. Since w is dominated by S, it follows that N [w] ∩ S = {v}. We observe that w
may be equal to v in which case v is an isolated vertex in ⟨S⟩. This leads to the following
definition.

Definition 18.3 Let G = (V, E) be a graph. Let S ⊆ V and u ∈ S. A vertex v is called a
private neighbor of u with respect to S if N [v] ∩ S = {u}.

We denote by pn[u, S] the set of all private neighbors of u with respect to S. Any private
neighbor of u with respect to S is called an external private neighbor if u ∈ V \S. The set of
all external private neighbors of u with respect to S is denoted by epn(u, S). A dominating
set S is a minimal dominating set if and only if pn[v, S] ̸= ∅ for all v ∈ S or equivalently
every vertex in S has at least one private neighbor with respect to S.

Definition 18.4 Let G = (V, E) be a graph. A subset S of V is called an irredundant set if
pn[v, S] ̸= ∅ for all v ∈ S.

Clearly the minimality condition for a dominating set is the definition of an irredundant set.
Thus we have the following theorem.

Theorem 18.8 A dominating set S is a minimal dominating set if and only if it is domi-
nating and irredundant. �

C5955–C0018.tex 424 2015/11/4 12:22pm

Domination in Graphs � 425

1

2

3

4

6

7

8

9

10

G:

5 11

Figure 18.2 Graph with a maximal irredundant set which is not a dominating set.

Obviously, irredundance is a hereditary property and hence maximality of an irredundant
set is equivalent to 1-maximality. Thus an irredundant set S is maximal if and only if for
every vertex w ∈ V − S, there exists a vertex v ∈ S ∪ {w} such that pn[v, S ∪ {w}] = ∅.

Theorem 18.9 Every minimal dominating set in a graph G is a maximal irredundant set
of G.

Proof. It follows from Theorem 18.8 that every minimal dominating set S is irredundant. Now
suppose S is not a maximal irredundant. Then there exists a vertex u ∈ V − S for which
S1 = S ∪ {u} is irredundant. Hence pn[u, S ∪ {u}] ̸= ∅. Now, let w be a private neighbor of
u with respect to S ∪ {u}. Then w is not adjacent to any vertex in S and hence S is not a
dominating set of G, a contradiction. Thus S is a maximal irredundant set of G. �

Example 18.1 The converse of Theorem 18.9 is not true. For the graph G given in
Figure 18.2, S = {2, 3, 8, 9} is a maximal irredundant set, but not a dominating set.

Since every minimal dominating set is a maximal irredundant set, we have the following
inequality chain, which was first observed by Cockayne et al. [18].

Theorem 18.10 [18] For any graph G,

ir(G) ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G) ≤ IR(G). �

The above inequality chain is called the domination chain of G and has been the focus of
more than 100 papers. The following theorem gives a relation between γ(G) and ir(G).

Theorem 18.11 For any graph G,

γ(G)
2

< ir(G) ≤ γ(G) ≤ 2ir(G) − 1.

Proof. Let ir(G) = k and let S = {v1, v2, . . ., vk} be an ir-set of G. Let ui ∈ pn[vi, S] and
let S′ = {u1, u2, . . ., uk}. We observe that ui may be equal to vi. Let S′′ = S ∪ S′. Clearly
|S′′| ≤ 2k. We claim that S′′ is a dominating set of G. If there exists w ∈ V − S′′ such that
w is not dominated by S′′, then w ∈ pn[w, S ∪ {w}]. Further ui ∈ pn[vi, S ∪ {w}] and hence
S ∪ {w} is an irredundant set, which is a contradiction. Thus S′′ is a dominating set of G.
Now if ui = vi for some i, then γ(G) ≤ |S′′| ≤ 2k − 1 = 2ir(G) − 1. If ui ̸= vi, 1 ≤ i ≤ k,
then it follows from Theorem 18.9 that S′′ is not a minimal dominating set of G. Hence
γ(G) < |S′′| = 2k = 2ir(G). Thus γ(G) ≤ 2ir(G) − 1 and γ(G)/2 < ir(G). �

C5955–C0018.tex 425 2015/11/4 12:22pm

426 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

TABLE 18.1 Domination Sequence of Some Standard Graphs

Graph G ir(G) γ(G) i(G) β0(G) Γ(G) IR(G)

Kn 1 1 1 1 1 1
Path Pn ⌈n/3⌉ ⌈n/3⌉ ⌈n/3⌉ ⌈n/2⌉ ⌈n/2⌉ ⌈n/2⌉
Cycle Cn ⌈n/3⌉ ⌈n/3⌉ ⌈n/3⌉ ⌊n/2⌋ ⌊n/2⌋ ⌊n/2⌋
Petersen graph P 3 3 3 4 4 4
Complete bipartite
Ks,t, s, t ≥ 2 2 2 min{s, t} max{s, t} max{s, t} max{s, t}

Definition 18.5 An integer sequence 1 ≤ a ≤ b ≤ c ≤ d ≤ e ≤ f is called a domination
sequence if there exists a graph G for which ir(G) = a,γ(G) = b, i(G) = c,β0(G) = d,
Γ(G) = e, and IR(G) = f.

Cockayne and Mynhardt [19] obtained a complete characterization of domination sequences.

Theorem 18.12 [19] A sequence a, b, c, d, e, f of positive integers is a domination sequence
if and only if

1. a ≤ b ≤ c ≤ d ≤ e ≤ f ,

2. a = 1 implies that c = 1,

3. d = 1 implies that f = 1, and

4. b ≤ 2a − 1. �

Example 18.2 The domination chain of a few standard graphs is given in Table 18.1.

Observation 18.1 The domination chain has been formed starting from the concept of in-
dependence as seed property. Haynes et al. ([3], page 286) have suggested that almost any
property such as vertex cover, packing, ⟨S⟩ is acyclic, and so on can be used as a seed prop-
erty to generate a similar inequality chain. In [20] the concept of vertex cover has been used
as a seed property to form an inequality chain of six parameters which is called the covering
chain of G.

18.4 VARIOUS TYPES OF DOMINATION

Several domination parameters have been formed either by imposing a condition on the
subgraph induced by a dominating set S or on the method by which the vertices in V − S
are dominated. In fact Haynes et al. [3] in the appendix have listed around 75 models of
domination and many more models have been introduced since then. In the following sections
we present basic results on some of the most fundamental models of domination. For any
graph theoretic property P, Harary and Haynes [21] defined the conditional domination
number γ(G : P) to be the minimum cardinality of a dominating set S ⊆ V such that the
induced subgraph ⟨S⟩ has the property P.

If P is the property that ⟨S⟩ has no edges, then γ(G; P) is the independent domination
number i(G), which we have covered in the previous section. For any graph G, we have
γ(G) ≤ i(G). Allan and Laskar [22] obtained the following basic theorem giving a family
of graphs for which γ(G) = i(G). The graph K1,3 is called a claw and a graph G is called
claw-free if G does not contain K1,3 as an induced subgraph.

Theorem 18.13 [22] If a graph G is claw-free, then γ(G) = i(G).

C5955–C0018.tex 426 2015/11/4 12:22pm

Domination in Graphs � 427

N (S′) S

T

T ′

S′

Figure 18.3 Sets S, S′, T and T ′ in the proof of Theorem 18.13.

Proof. Let S be a γ-set in a claw-free graph G. Let S′ be a maximal independent subset of
S. Let T = V − N(S′) and let T ′ be a maximal independent subset of T . Since T ′ contains
no neighbor of S′, it follows that S′ ∪ T ′ is independent. Since S′ is maximal in S, we have
S ⊆ N(S′). Since T ′ is maximal in T , T ′ dominates T . Hence S′ ∪ T ′ is a dominating set of
G. It remains to show that |S′ ∪ T ′| ≤ γ(G) (see Figure 18.3).

Since S′ is a maximal independent set in S, T ′ is independent, and G is claw-free, it
follows that each vertex of S − S′ has at most one neighbor in T ′. Since S is dominating,
each vertex of T ′ has at least one neighbor in S − S′. Hence |T ′| ≤ |S − S′|, which gives
|S′ ∪ T ′| ≤ |S| = γ(G). �

Since γ(G) ≤ i(G) for any graph G, a proof of Allan and Laskar’s result can be obtained by
showing that in any claw-free graph, i(G) ≤ γ(G). Bollabas and Cockayne generalized this
inequality in [23] as follows.

Theorem 18.14 [23] If a graph G does not contain the star K1,k+1, k ≥ 2, as an induced
subgraph, then

i(G) ≤ (k − 1)γ(G) − (k − 2).

Proof. Let S be a γ-set of G and let I be a maximal independent set in ⟨S⟩. Let X be the
set of vertices in V − S not dominated by I and let Y be a maximal independent set in ⟨X⟩.
Since G is K1,k+1-free, each v ∈ S − I is adjacent to at most k − 1 vertices of Y. Therefore

|Y | ≤ (k − 1)|S − I|
Hence i(G) ≤ |Y | + |I| ≤ (k − 1)(γ(G) − |I|) + |I|

= (k − 1)γ(G) − (k − 2)|I|
≤ (k − 1)γ(G) − (k − 2). �

18.5 TOTAL DOMINATING SETS

A solution to the famous five Queens problem inspired Cockayne et al. [24] to introduce the
concept of total domination. They observed that in the solution shown in Figure 18.4, not
only are the squares without queens dominated by queens, but each queen is dominated by
another queen.

For total domination, a vertex v dominates just its open neighborhood N(v) and not
itself. Thus S is a total dominating set if V = N(S) and the total domination number is
γt(G) = min{|S| : S is a total dominating set of G}. Thus a dominating set S is a total
dominating set if and only if the subgraph induced by S has no isolated vertices.

For an application, we consider a computer network in which a core group of file servers
has the ability to communicate directly with every computer outside the core group. In ad-
dition, each file server is directly linked to at least one other back up file server. A smallest
core group with this property is a γt-set for the network.

C5955–C0018.tex 427 2015/11/4 12:22pm

428 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Q

Q

Q

Q

Q

Figure 18.4 Total dominating set solution to the Five Queens Problem.

Clearly any graph G with no isolated vertices has a total dominating set. We note that
γt(G) = n if and only if G ∼= mK2. It is easy to see that γ(G) ≤ γt(G) ≤ 2γ(G).

Example 18.3 For n ≥ 3

γt(Cn) = γt(Pn) =

n

2
, if n ≡ 0(mod 4)⌊
n

2

⌋
+ 1, otherwise

Cockayne et al. [24] obtained an upper bound for γt(G) in terms of its order for a connected
graph G.

Theorem 18.15 [24] If G is a connected graph with n ≥ 3 vertices, then γt(G) ≤ 2n/3.
Further γt(G) = 2n/3 if and only if G is C3, C6, or the 2-corona of some connected graph. �

Theorem 18.16

1. If G has n vertices and no isolates, then γt(G) ≤ n − ∆(G) + 1.

2. If G is connected and ∆(G) < n − 1, then γt(G) ≤ n − ∆(G). �

We remark that Archdeacon et al. [25] recently found an elegant one page graph theoretic
proof of the upper bound of n/2 when δ ≥ 3. Two infinite families of connected cubic graphs
with total domination number one half their orders are constructed in [26]. The result when
δ ≥ 2 has recently been strengthened by Lam and Wei [27].

Theorem 18.17 If G is a graph of order n with δ(G) ≥ 2 such that every component of the
subgraph of G induced by its set of degree-2 vertices has size at most one, then γt(G) ≤ n/2. �

For an exhaustive treatment of recent results on total domination, we refer to the book by
Henning and Yeo [30].

The known bounds for γt(G) in terms of δ and n are given in Table 18.2.

TABLE 18.2 Bounds on the Total Domination Number of a Graph G

Graph Constraint Upper Bound Reference
n ≥ 3 and δ(G) ≥ 1 γt(G) ≤ 2n/3 [24]
G is connected
G /∈ {C3, C5, C6, C10} and δ(G) ≤ 2 γt(G) ≥ 4n/7 [28]
G is connected
G δ(G) ≥ 3 γt(G) ≤ n/2 [25]
G δ(G) ≥ 4 γt(G) ≤ 3n/7 [29]

C5955–C0018.tex 428 2015/11/4 12:22pm

Domination in Graphs � 429

18.6 CONNECTED DOMINATING SETS

Sampathkumar and Walikar [31] introduced the concept of connected domination.

Definition 18.6 Let G be a connected graph. A dominating set S of G is called a connected
dominating set of G if the induced subgraph ⟨S⟩ is connected. The minimum cardinality of a
connected dominating set in G is called the connected domination number of G and is denoted
by γc(G).

Obviously γ(G) ≤ γt(G) ≤ γc(G) for any connected graph G with ∆(G) < n − 1. For the
complete bipartite graph Kr,s, r, s ≥ 2, we have γ = γt = γc = 2. On the other hand for the
cycle C12k we have, γ(C12k) = 4k < γt(C12k) = 6k < γc(C12k) = 12k − 2.

Sampathkumar and Walikar observed the following theorems.

Theorem 18.18 [31] If H is a connected spanning subgraph of G, then γc(G) ≤ γc(H). �

Theorem 18.19 [32] If G is a connected graph and n ≥ 3, then γc(G) = n − ϵT (G), where
ϵT (G) is the maximum number of end vertices in any spanning tree T of G.

Proof. Let T be a spanning tree of G with ϵT (G) end vertices and let L denote the set of end
vertices of T . Then T − L is a connected dominating set of G and hence γc(G) ≤ n −ϵT (G).
Conversely, let S be a γc-set of G. Since ⟨S⟩ is connected, ⟨S⟩ has a spanning tree TS . Now
since S is a dominating set of G, every vertex of V − S is adjacent to at least one vertex in
S. Let T be a spanning tree of G obtained by joining each vertex of V − S to exactly one
vertex in TS . Clearly T has at least n−γc(G) end vertices. Thus ϵT (G) ≥ n−γc(G), so that
γc(G) ≥ n − ϵT (G). Hence, γc(G) = n − ϵT (G). �

Corollary 18.2 Let G be a connected graph with n ≥ 3. Then γc(G) ≤ n − 2 and equality
holds if and only if G is a path or a cycle. �

Theorem 18.20 [31] For any connected graph G,

n/(∆(G) + 1) ≤ γc(G) ≤ 2m − n

with equality for the lower bound if and only if ∆(G) = n−1 and equality for the upper bound
if and only if G is a path.

Proof. Since n/(∆(G) + 1) ≤ γ(G) and γ(G) ≤ γc(G), the lower bound follows. Further this
lower bound is attained if any only if G has a vertex of degree n − 1. Now, γc(G) ≤ n − 2 =
2 (n − 1) − n and since G is connected, m ≥ n − 1. Hence γc(G) ≤ 2m − n. If G is a path,
then γc(G) = n − 2 = 2(n − 1) − n = 2m − n. Conversely, let γc(G) = 2m − n. Then it
follows from Theorem 18.19 that m ≤ n − 1. Since G is connected, m = n − 1 and G is a
tree. Let l(G) denote the number of leaves in G.

Then γc(G) = n − l(G)
= 2m − n

= 2(n − 1) − n

= n − 2.

Thus l(G) = 2 and G is a path. �

C5955–C0018.tex 429 2015/11/4 12:22pm

430 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

TABLE 18.3 Domination Parameters of Qn

Parameter/Graph Q1 Q2 Q3 Q4 Q5 Q6 Q7 Qn

γ 1 2 2 4 7 12 16 ≥ 2n−3 ∀ n ≥ 7
i 1 2 2 4 8 12 ? ≤ 2n−2 ∀ n ≥ 3
γt 2 2 4 4 8 14 ? ≤ 2n−2 − 2n−4 ∀ n ≥ 7
γc 1 2 4 6 10 18 ? ≤ 2n−2 + 4 ∀ n ≥ 7

Theorem 18.21 [32] For any connected graph G,

γc(G) ≤ n − ∆(G).

Proof. Let v be a vertex in G of maximum degree. Let T be a spanning tree of G in which
v is adjacent to each of its neighbors in G. Then T has at least ∆(G) end vertices and by
Theorem 18.19, γc(G) ≤ n − ∆(G). �

Corollary 18.3 [32] For any tree T,γc(T) = n − ∆(T) if and only if T has at most one
vertex of degree three or more. �

The concept of connected domination was extended to connected cut-free domination by
Joseph and Arumugam [33] who required that ⟨S⟩ not only be connected, but be 2-connected.
In [34] Joseph and Arumugam explored dominating sets with a required edge connectivity. A
set S is a 2-edge connected dominating set if it dominates G and the subgraph ⟨S⟩ is 2-edge
connected.

Remark 18.2 The n-cube Qn is the graph whose vertex set is the set of all n-dimensional
Boolean vectors, two vertices being adjacent if and only if they differ in exactly one coordi-
nate. We observe that Q1 = K2 and Qn = Qn−1�K2 if n ≥ 2. The n-cube has applications
in coding theory. It admits a decomposition into Hamiltonian cycles if n is even and into a
perfect matching and Hamiltonian cycles if n is odd. It has been successfully employed in
the architecture of massively parallel computers. A dominating set in Qn can be interpreted
as a set of processors from which information can be passed on to all the other processors.
The determination of the domination parameters of Qn is a significant unsolved problem.

The known values of some of the domination parameters for Qn are given in Table 18.3.
Some of these results are given in [35].

18.7 PAIRED-DOMINATING SETS

A matching in a graph G is a set of independent edges in G. A perfect matching M in G
is a matching in G such that every vertex of G is incident to an edge of M . A set S ⊆ V
is a paired-dominating set (PDS) if S is a dominating set and the induced subgraph ⟨S⟩
has a perfect matching. Paired-domination was introduced by Haynes and Slater [36,37] as
a model for assigning backups to guards for security purposes. Every graph without isolated
vertices has a PDS since the end vertices of any maximal matching form such a set. The
paired-domination number of G denoted by γpr(G) is the minimum cardinality of a PDS.

For example, for the graph Q3 in Figure 18.5, D1 = {v1, v2, v3, v4} with M1 = {v1v2, v3v4}
or D1 with M2 = {v1v4, v2v3} are paired-dominating sets.

Both total domination and paired-domination require that there be no isolated vertices,
and every paired dominating set is a total dominating set. Hence for any graph G without
isolated vertices, we have γ(G) ≤ γt(G) ≤ γpr(G). Haynes and Slater [36] obtained the
following upper bound for the paired-domination number of a connected graph.

C5955–C0018.tex 430 2015/11/4 12:22pm

Domination in Graphs � 431

v3
v4

v5 v6

v7v8

v1 v2Q3

Figure 18.5 Hypercube Q3 : γpr(Q3) = 4.

Theorem 18.22 [36] If G is a connected graph of order n ≥ 3, then γpr(G) ≤ n − 1 with
equality if and only if G is C3, C5, or a subdivided star. �

Theorem 18.23 [36] If a graph G has no isolated vertices, then

γpr(G) ≤ 2γ(G).

Proof. We first prove that there exists a γ-set S of G such that every vertex of S has a private
neighbor in V − S. Let S be a γ-set of G such that the number of vertices in ⟨S⟩ having
a private neighbor in V − S is maximum. If there exists a vertex u in S having no private
neighbor in V − S, then u is an isolated vertex in ⟨S⟩. Since G has no isolated vertices, u is
adjacent to a vertex v in V −S. Now S1 = (S −{u})∪{v} is a γ-set of G in which v has u as
its private neighbor in V − S1, contradicting the maximality of the number of vertices in S
having private neighbors in V − S. Thus every vertex of S has a private neighbor in V − S.
For each v ∈ S, choose a private neighbor v1 ∈ V − S. Then D = S ∪ {v1 : v ∈ S} is a paired
dominating set of G and hence γpr ≤ |D| = 2γ. �
The above bound is sharp as can be seen with Kn, K1,t, and graphs formed from a C3k with
vertices 0 to 3k−1 by adding at least one leaf adjacent to each vertex whose label is congruent
to 0 modulo 3. If every minimum dominating set is independent, we say that γ(G) strongly
equals i(G) and we write γ(G) ≡ i(G). For example, γ(C5) = i(C5) = 2 and each of the five
γ-sets is also an i-set. Haynes and Slater defined the concept of strong equality of parameters
and showed that graphs having γpr(G) = 2γ(G) also have γ(G) ≡ i(G).

Theorem 18.24 [36] If a connected graph G has n≥6 and δ(G)≥2, then γpr(G) ≤ 2n/3. �

The bound of Theorem 18.24 is sharp as can be seen with the cycle C6. Although there is
no known infinite family of graphs which achieves this upper bound, for the family of graphs
shown in Figure 18.6, γpr(G) approaches 2n/3 for large n.

Figure 18.6 γpr(G) approaches 2n/3 for large n.

C5955–C0018.tex 431 2015/11/4 12:22pm

432 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Observation 18.2 The following inequality chains summarize the relation between the
paired-domination number, domination number, and total domination number.

i. γ(G) ≤ γt(G) ≤ γpr(G) ≤ 2γ(G) ≤ 2i(G).

ii. 2 ≤ γt(G) ≤ γpr(G) ≤ 2γt(G).

iii. For any graph G without isolated vertices γ(G) ≤ γt(G) ≤ γpr(G) ≤ 2β1(G).

Theorem 18.25 [36] If a graph G has no isolated vertices, then

γpr(G) ≤ 2γt(G) − 2. �

In [38], Chellali and Haynes showed that if T is a tree of order n ≥ 3, then γpr(T) ≤
γt(T)+s−1,γt(T) ≤ n + s/2, and γpr(T) ≤ n + 2s − 1/2, where s is the number of support
vertices of T .

In [39], Erfang Shan et al. provided a constructive characterization of those trees with
equal total domination and paired-domination numbers and of those trees for which the
paired-domination number is twice the matching number.

18.8 EQUIVALENCE DOMINATION

An equivalence graph is a vertex disjoint union of complete graphs. The equivalence covering
number was first studied in [40]. Another concept which uses equivalence graph is subcoloring
[41–43]. The concept of equivalence graph also arises naturally in the study of domination in
claw-free graphs. It has been proved in [44] that if D is a minimal dominating set in a K1,3-free
graph, then D is a collection of disjoint complete subgraphs. Motivated by these observations,
in [45], Arumugam and Sundarakannan introduced the concept of equivalence set and several
new parameters using this concept. Further in [46] the concept of equivalence is used as a
seed properly to form an inequality chain of six parameters which is called the equivalence
chain of G.

A subset S of V is called an equivalence set if every component of the induced sub-
graph ⟨S⟩ is complete. The concept of equivalence set is a hereditary property and hence
an equivalence set S is maximal if and only if it is 1-maximal. The maximum cardinality
of an equivalence set of G is called the equivalence number of G and is denoted by βeq(G).
The minimum cardinality of a maximal equivalence set of G is called the lower equivalence
number of G and is denoted by ieq(G).

We observe that an equivalence set S is maximal if and only if for every u ∈ V −S, at least
one component of the induced subgraph ⟨S ∪{u}⟩ is not complete. Hence for every u ∈ V −S,
there exist two vertices v, w ∈ S such that ⟨{u, v, w}⟩ is a path P3. We use this maximality
condition for the definition of equivalence dominating set (EDS) or eq-dominating set. A
subset S ⊆ V is said to be an eq-dominating set of G if for every v ∈ V − S, there exist two
vertices u, w ∈ S such that the induced subgraph ⟨{u, v, w}⟩ is isomorphic to P3. The path
P3 may be formed in one of the two ways as shown in Figure 18.7.

Clearly any eq-dominating set of G is a dominating set of G. Further eq-domination
is a superheriditary property and an eq-dominating set S is minimal if and only if S is
1-minimal. The maximum cardinality of a minimal eq-dominating set of G is called the
upper eq-domination number of G and is denoted by Γeq(G). The minimum cardinality of an
eq-dominating set of G is called the eq-domination number of G and is denoted by γeq(G).

C5955–C0018.tex 432 2015/11/4 12:22pm

Domination in Graphs � 433

Su
w

v

Su

V

w

v

V

Figure 18.7 Structure of eq-dominating set.

An eq-dominating set S is minimal if and only if S − {u} is not an eq-dominating set
for every u ∈ S. Hence for any u ∈ S, there exists v ∈ V − (S − {u}) such that in the
induced subgraph ⟨(S − {u}) ∪ {v}⟩, the component containing v is complete. We use this
minimality condition of an eq-dominating set for the definition of equivalence irredundant set
or eq-irredundant set. A subset S ⊆ V is said to be an eq-irredundant set of G if for each vertex
u ∈ S, there exists v ∈ V − (S − {u}) such that in the induced subgraph ⟨(S − {u}) ∪ {v}⟩,
the component containing v is complete. Clearly eq-irredundance is a hereditary property
and hence an eq-irredundant set S is maximal if and only if S is 1-maximal. The maximum
cardinality of an eq-irredundant set of G is called the upper eq-irredunance number of G and
is denoted by IReq(G). The minimum cardinality of a maximal eq-irredundant set of G is
called the eq-irredundance number of G and is denoted by ireq(G).

Since the maximality condition for an equivalence set is the definition of an eq-dominating
set and the minimality condition for an eq-dominating set is the definition of an eq-
irredundant set, we have

ireq(G) ≤ γeq(G) ≤ ieq(G) ≤ βeq(G) ≤ Γeq(G) ≤ IReq(G).

This inequality chain is called the equivalence chain of G.
For the complete graph G = Kn, we have ireq = γeq = ieq = βeq = Γeq = IReq = n.

For the complete bipartite graph Ka,b, 2 ≤ a ≤ b, we have ireq = γeq = ieq = 2 and
βeq = Γeq = IReq = b.

Haynes et al. [47] introduced the concept of H-forming set in graphs. In particular a
subset S of V is a P3-forming set of G if each vertex u ∈ V − S is contained in a (not
necessarily induced) path P3 of ⟨S ∪ {u}⟩. The P3-forming number γ{P3}(G) and the upper
P3-forming number Γ{P3}(G) are defined to be the minimum and maximum cardinality of
a minimal P3-forming set respectively. For a graph G without isolated vertices, every total
dominating set is a P3-forming set, and so we have γ{P3}(G) ≤ γt(G).

Note that any eq-dominating set is a P3-forming set with the added restriction that the
3-paths are induced. Hence, every eq-dominating set is a P3-forming set and the following
result is immediate.

Proposition 18.3 For every graph G,γ{P3}(G) ≤ γeq(G). �

For any nontrivial tree T,γt(T) ≤ γ{P3}(T), which was proved by Haynes et al. in [47].
Chellali and Favaron [48] extended this result to chordal graphs.

Theorem 18.26 [48] Every nontrivial connected chordal graph G satisfies γt(G) =
γ{P3}(G). �

Proposition 18.3 and Theorem 18.26 yield the following corollary.

Corollary 18.4 For every nontrivial connected chordal graph G, γt(G) ≤ γeq(G). �

C5955–C0018.tex 433 2015/11/4 12:22pm

434 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 18.27 [49] Let G be a triangle-free graph without isolated vertices. Then every
minimal total dominating set of G is a minimal eq-dominating set.

Proof. Let D be a minimal total dominating set of G. Since G is triangle-free, for every
w ∈ V −D, there exist two adjacent vertices w′, w′′ in D such that {w, w′, w′′} induces a path
P3. Hence D is an eq-dominating set. Now, suppose D is not a minimal eq-dominating set.
Then there is a vertex u ∈ D such that D′ = D − {u} is an eq-dominating set. Since D′ is an
eq-dominating set, every vertex in V −D′ has a neighbor in D′, implying that epn(u, D) = ∅.
Since D is a minimal total dominating set, it follows that u is a private neighbor of a vertex,
say x in D. Thus x is an isolate in D′, and so u has at least two neighbors in D′. Then the
minimality of D as a total dominating set implies that epn(x, D) ̸= ∅. Let z ∈ epn(x, D).
Then z is not eq-dominated by D′, a contradiction. Thus D is a minimal eq-dominating
set of G. �

Corollary 18.5 If G is a triangle-free graph without isolated vertices, then

γ{P3}(G) = γeq(G) ≤ γt(G) ≤ Γt(G) ≤ Γeq(G) = Γ{P3}(G). �

Remark 18.3 Since trees T are both triangle-free and chordal graphs, by Corollaries 18.4
and 18.5, we have that γeq(T) = γt(T).

18.9 GLOBAL DOMINATION AND FACTOR DOMINATION

Sampathkumar [50] introduced the concept of global domination in graphs. Bringham and
Dutton [51] introduced the concept of factor domination, which includes global domination
as a particular case. A set D ⊆ V is a global dominating set of G if D is a dominating set of
both G and its complement G. The global domination number γg(G) of G is the minimum
cardinality of a global dominating set of G. A factor of G is a spanning subgraph of G.
A k-factoring of G is a set of k-factors f = {G1, G2, . . ., Gk} whose union is G. A factor
dominating set with respect to f is a set of vertices D which is a dominating set in each
factor Gi for 1 ≤ i ≤ k. The minimum cardinality of a factor dominating set with respect to
f is called the factor domination number of G and is denoted by γ(G, f).

Factor domination has several interesting applications in many network communication
problems. The communication network can be represented by a graph G where vertices of
G correspond to nodes of the network and edges correspond to links joining nodes which
can communicate directly and finally k-edge disjoint factors of G represent k private subnet-
works. Therefore, the factor domination number represents the minimum number of nodes
needed to send a message such that all other nodes receive the message in each such network
independently in one hop.

The concept of global domination is a special case of factor domination of Kn with
2-factoring. The global domination number of a few standard graphs are given below:

i. γg(Kn) = n.

ii. γg(Cn) =
{

3, if n = 3, 5
⌈n/3⌉, otherwise.

iii. γg(Wn) =
{

3, if n = 4
4, otherwise.

iv. γg(Kn1,n2,...,nr) = r.

C5955–C0018.tex 434 2015/11/4 12:22pm

Domination in Graphs � 435

Notice that in all the above examples, γg = max{γ,γ}. This leads one to ask whether there
might be other classes of graphs or other conditions under which γg = max{γ,γ}. In this
regard we have the following theorem.

Theorem 18.28 [51] If either G or G is a disconnected graph, then γg = max{γ,γ}.

Proof. Assume that G is disconnected. Then G has at least two components and hence γ(G) =
2. Also any dominating set of G is a dominating set of G since a dominating set of G must
contain at least one vertex from each component. Therefore, γg(G) = γ(G) = max{γ,γ}.�
Because of the above theorem, we assume that both G and G are connected. We state without
proof a few basic results on the global domination number.

Theorem 18.29 [51] If both G and G are connected graphs, then

a. γg = max{γ,γ} if diam(G) + diam(G) ≥ 7.

b. γg ≤ max{3,γ,γ} + 1 if diam(G) + diam(G) = 6.

c. γg ≤ max{γ,γ} + 2 if diam(G) + diam(G) = 5.

d. γg ≤ min{δ, δ} if diam(G) = diam(G) = 2. �

The global domination number is bounded from above by a variety of graphical invariants,
including the minimum degree δ, maximum degree ∆, clique number ω, matching number
β1, and vertex covering number α0.

Theorem 18.30 [51] If γg > γ, then γg ≤ ∆ + 1. �

Theorem 18.31 [51] Either γg = max{γ,γ} or γg ≤ min{∆, ∆} + 1. �

Theorem 18.32 [51] For any graph G, γg ≤ min{ω + γ,ω + γ} − 1. �

Corollary 18.6 [51] If G is a triangle-free graph, then γ ≤ γg ≤ γ + 1. �

18.10 OTHER TYPES OF DOMINATION

So far we have considered several types of domination obtained by imposing conditions on the
dominating set D. Several other domination parameters have been investigated by imposing
conditions on the dominated set V − D or on the method in which vertices in V − D are
dominated.

Fink and Jacobson [52] introduced the concept of k-domination. Let G = (V, E) be a
graph and let k be a positive integer. A subset D of V is called a k-dominating set of G if
every vertex v ∈ V − D is dominated by at least k vertices of D. The minimum cardinality
of a k-dominating set of G is called the k-domination number of G and is denoted by γk(G).
If k = 1, then γk(G) = γ(G).

The distance version of dominating set is more applicable to modeling real-world prob-
lems. Let G = (V, E) be a connected graph and let k be a positive integer. A subset D of
V is called a k-distance dominating set of G if for each u ∈ V − D, there exists v ∈ D such
that d(u, v) ≤ k. The minimum cardinality of a k-distance dominating set of G is called the
k-distance domination number of G and is denoted by γ≤k(G). We observe that γ≤k(G) is
γ(Gk) where Gk is the kth power of G. For a survey of distance domination, the reader may
refer to Chapter 12 of the book edited by Haynes et al. [3].

C5955–C0018.tex 435 2015/11/4 12:22pm

436 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Sampathkumar and Pushpalatha [53] introduced the concept of strong and weak domi-
nation in graphs. Let u and v be two adjacent vertices of a graph G. We say that u strongly
dominates v if deg u ≥ deg v. Similarly v weakly dominates u if deg v ≤ deg u. A subset
D of V is said to be a strong (weak) dominating set if every vertex in V − D is strongly
(weakly) dominated by at least one vertex in D. The strong (weak) domination number of
G is the minimum cardinality of a strong (weak) dominating set of G and is denoted by
γs(G)(γw(G)). For further results on these concepts we refer to [53].

Another important area in domination is the study of fractional version of domination
in graphs. For fractionalization of graph theoretic parameters one may refer to the book by
Scheinerman and Ullman [54]. Hedetniemi et al. [55] introduced the fractional version of the
concept of domination in graphs.

Let G = (V, E) be a graph. Let g : V → R be any function. For any subset S of V , let
g(S) =

∑
v∈S g(v). The weight of g is defined by |g| = g(V) =

∑
v∈V g(v).

A function g : V → [0, 1] is called a dominating function (DF) of the graph G = (V, E)
if g(N [v]) =

∑
u∈N [v] g(u) ≥ 1 for all v ∈ V .

A DF g of a graph G is minimal (MDF) if for all functions f : V → [0, 1] such that
f ≤ g and f(v) ̸= g(v) for at least one v ∈ V , f is not a DF of G.

The fractional domination number γf (G) and the upper fractional domination number
Γf (G) are defined as follows:

γf (G) = min{|g| : g is a dominating function of G} and

Γf (G) = max{|g| : g is a minimal dominating function of G}.

For a detailed survey of Linear Programming formulation for fractional parameters we refer
to Chapters 1 through 3 of the book edited by Haynes et al. [4].

18.11 NORDHAUS–GADDUM TYPE RESULTS

Nordhaus and Gaddum [56] obtained lower and upper bounds for the sum and product of
the chromatic number χ(G) and the chromatic number χ(G), where G is the complement
of G. In this section we present similar results for some of the domination parameters.
Jager and Payan [57] obtained the following Nordhaus–Gaddum type result for domination
number γ(G). Cockayane and Hedetniemi [2] determined graphs for which the upper bound
is attained.

Theorem 18.33 Let G be a graph of order n ≥ 3. Then

i. 3 ≤ γ(G) + γ(G) ≤ n + 1 and

ii. 2 ≤ γ(G) · γ(G) ≤ n.

Also γ(G) + γ(G) = n + 1 if and only if G = Kn or Kn.

Proof. If γ(G) = 1, then γ(G) ≥ 2 and if γ(G) = 1, then γ(G) ≥ 2. Hence the lower bounds
follow immediately. We now prove that γ(G)+γ(G) ≤ n+1 and γ(G) ·γ(G) ≤ n. If G has an
isolated vertex, then γ(G) = 1 and γ(G) ≤ n. If both G and G have no isolated vertices, then
by Theorem 18.1, γ(G) ≤ ⌊n/2⌋ and γ(G) ≤ ⌊n/2⌋ . Thus in all cases, γ(G) +γ(G) ≤ n + 1.
Also it follows from the above argument that γ(G) + γ(G) = n + 1 if and only if either G or
G has an isolated vertex. Hence either γ(G) = 1 and γ(G) = n or γ(G) = n and γ(G) = 1.
Thus either G = Kn or G = Kn. The converse is obvious.

C5955–C0018.tex 436 2015/11/4 12:22pm

Domination in Graphs � 437

We now proceed to prove that γ(G) · γ(G) ≤ n. For any subset X of V let
De(X) = {v ∈ V − X : v is adjacent to every vertex in X} and
Di(X) = {u ∈ X : u is adjacent to all the other vertices in X}.
Let de(X) = |De(X)| and di(X) = |Di(X)|. We observe that if de(X) = 0, then X is a

dominating set of G. Now, let γ(G) = k and let S = {x1, x2, . . ., xk} be a γ-set of G. Let
{B1, B2, . . ., Bk} be a partition of V such that xj ∈ Bj and all the other vertices in Bj are
adjacent to xj where 1 ≤ j ≤ k. We choose such a partition P for which

∑k
j=1 di(Bj) is

maximum. Suppose de(Bj) ≥ 1. Then there exists a vertex x ∈ Br, r ̸= j, such that x is
adjacent to every vertex in Bj . If x ∈ Di(Br), then S1 = (S −{xj , xr})∪{x} is a dominating
set of G and |S1| = |S| − 1 = γ − 1, a contradiction. Hence x /∈ Di(Br).

Now P ′ = {B′
1, B′

2, . . ., B′
k}, where B′

e = Bl for all l ̸= j, r, B′
j = Bj ∪ {x} and B′

r =
Br − {x}, is a partition of V and

∑k
j=1 di(B′

j) >
∑k

j=1 di(Bj) contradicting the choice of P.

Hence de(Bj) = 0 for all j, 1 ≤ j ≤ k, so that each Bj is a dominating set of G. Therefore
γ(G) ≤ |Bj |. Hence n =

∑k
j=1 |Bj | ≥ kγ(G) = γ(G)γ(G). �

Lasker and Peters [58] obtained an improvement in the upper bound for γ(G) + γ(G) when
both G and G are connected.

Theorem 18.34 [58] If G and G are connected, then γ(G) + γ(G) ≤ n and equality holds
if and only if G = P4. �

Joseph and Arumugam [59] obtained a substantial improvement when G and G have no
isolated vertices.

Theorem 18.35 [59] If G is a graph of order n ≥ 2 such that neither G nor G has isolated
vertices, then γ(G) + γ(G) ≤ (n + 4)/2.

Proof. It follows from Theorem 18.1 that γ(G) ≤ n/2 and γ(G) ≤ n/2. Hence the result
is obvious if either γ(G) = 2 or γ(G) = 2. Now, suppose γ(G) ≥ 4 and γ(G) ≥ 4. Since
γ(G) · γ(G) ≤ n, it follows that γ(G) ≤ n/4 and γ(G) ≤ n/4. Hence γ(G) + γ(G) ≤ n/2.
Hence we may assume that γ(G) = 3. Then 3 = γ(G) ≤ n/2 and so n ≥ 6. Also γ(G) ≤
n/γ(G) = n/3. Hence γ(G) + γ(G) ≤ 3 + n/3 ≤ 2 + n/2. �
A property of most graphs attaining the bound given in the above theorem is given in [59].
Cockayne et al. [60] characterized all graphs which attain the bound.

The proof technique of Theorem 18.35 has been used by several authors to improve the
upper bound for the sum of two parameters, in case the upper bound is n or n+1. For details
we refer to Haynes et al. ([3], pages 251–253).

18.12 DOMATIC NUMBER

The word domatic was created from the words dominating and chromatic. The concept of
domatic number d(G) of a graph is analogus to the chromatic number and was introduced
by Cockayne and Hedetniemi [2]. In fact d(G) is related to the domination number γ(G) in
the same way as chromatic number to independence number.

Definition 18.7 A domatic partition of a graph G = (V, E) is a partition of V into dom-
inating sets. The domatic number d(G) of G is the maximum order of a domatic partition
of G.

Since every graph G admits a trivial domatic partition {V (G)}, it follows that d(G) is
always well defined. We can similarly define total domatic number dt(G) and connected
domatic number dc(G). These concepts were introduced respectively by Cockayne et al. [4]
and Hedetniemi and Laskar [32].

C5955–C0018.tex 437 2015/11/4 12:22pm

438 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Observation 18.3 For any graph G, d ≤ δ + 1. Let v ∈ V (G) with deg v = δ and let
P = {S1, S2, . . ., Sd} be a domatic partition of maximum order. Since each Si is a dominating
set of G, it follows that Si must contain at least one vertex of N [v]. Since |N [v]| = δ + 1, it
follows that d = |P | ≤ δ + 1. �

By a similar argument we have dt(G) ≤ δ(G). Also if γ(G) ≥ 2, then dc(G) ≤ δ.

Definition 18.8 A graph G is domatically full if d(G) = δ(G) + 1.

Similarly we can define total domatically full graph and connected domatically full graph as
any graph which attains the upper bound given above.

Observation 18.4 Let {D1, D2, . . ., Dd} be a domatic partition of G of maximum order.
Since |Di| ≥ γ(G) for each i, it follows that n = |V | =

∑d
i=1 |Di| ≥ d(G)γ(G). Hence

d(G) ≤ n/γ(G). Similarly dt(G) ≤ n/γt(G) and dc(G) ≤ n/γc(G). �

Zelinka [61,62] obtained the following lower bounds for d(G) and dt(G).

Theorem 18.36 For any graph G, we have

i. d(G) ≥ ⌊n/(n − δ(G))⌋ and

ii. dt(G) ≥ ⌊n/(n − δ(G) + 1)⌋ .

Proof. Let D be any subset of V with |D| ≥ (n − δ(G)). Since |N(v)| ≥ δ + 1 for any
v ∈ V − D, it follows that N(v) ∩ D ̸= ∅. Hence D is a dominating set of G. Clearly we can
obtain ⌊n/(n − δ(G))⌋ distinct subsets S of G with |S| = n − δ(G) and each such set S is a
dominating set of G. Hence d(G) ≥ ⌊n/(n − δ(G))⌋ .

By a similar argument we see that any subset D of G with |D| ≥ n − δ(G) + 1 is a total
dominating set of G and hence (ii) follows. �
The following theorem gives a Nordhaus–Gaddum type result for the domatic number of a
graph.

Theorem 18.37 [2] Let G be any graph of order n. Then d(G) + d(G) ≤ n + 1 and equality
holds if and only if G = Kn or Kn.

Proof. Suppose γ(G) = 1. Then d(G) ≤ n and G has an isolated vertex v. Since every
dominating set of G contains v, it follows that d(G) = 1. Thus d(G) + d(G) ≤ n + 1.
The proof is similar if γ(G) = 1. If γ(G) ≥ 2 and γ(G) ≥ 2, then by Observation 18.4,
d(G) ≤ ⌊n/2⌋ and d(G) ≤ ⌊n/2⌋ . Hence d(G) + d(G) ≤ n. Further d(G) + d(G) = n + 1 if
and only if {d(G), d(G)} = {1, n}. Thus d(G) + d(G) = n + 1 if and only if G = Kn or Kn. �
The cycle C5 cannot be partitioned into independent dominating sets, whereas the cycle
C6 can be partitioned into three independent dominating sets. This naturally leads to the
following definition.

Definition 18.9 [2] A graph G is called idomatic if there exists at least one partition of V
into independent dominating sets. The maximum order of a partition of V into independent
dominating sets is called the idomatic number of G and is denoted by id(G).

Since any paired dominating set is of even order, it follows that the vertex set of any graph
G = (V, E) with |V | odd cannot be partitioned into paired dominating sets.

For a survey of results on various types domatic partitions we refer to Chapter 13 of
Haynes et al. [4].

C5955–C0018.tex 438 2015/11/4 12:22pm

Domination in Graphs � 439

18.13 DOMINATION IN PRODUCT GRAPHS

A natural problem for any graph invariant is to investigate how it behaves on graph products.
Since any product of two graphs G and H is in some way related to the factors G and H,
it is natural to expect that the value of the invariant on the product of G and H is related to
its values on G and H. In this section we explore this relationship for domination parameters.

Vizing [63] posed the following conjecture giving a lower bound for the domination number
of the Cartesian product G�H of two graphs G and H.

Vizing’s Conjecture. For any two graph G and H,

γ(G�H) ≥ γ(G) · γ(H).

Vizing’s conjecture is one of the main open problems in the area of domination theory. In
the absence of a proof of Vizing’s conjecture the following question naturally arises.
Question 1. Given a graph G determine all graphs H for which the Vizing’s conjecture is
true?

The above question naturally leads to the following definition.

Definition 18.10 A graph G is said to satisfy Vizing’s conjecture if γ(G�H) ≥ γ(G)γ(H)
for every graph H.

Most of the results supporting Vizing’s conjecture are of the following two types.

i. If H is a graph related to G in some way, and if G satisfies Vizing’s conjecture, then
H also does.

ii. Let P be a graph property. If G satisfies P , then G satisfies Vizing’s conjecture.

We proceed to present a few results illustrating the above two types of theorems.

Theorem 18.38 [64] Let K be an induced subgraph of G such that γ(K) = γ(G). If G
satisfies Vizing’s conjecture, then K also satisfies Vizing’s conjecture.

Proof. The result is trivial if K = G. Hence we assume that K is a proper subgraph of G.
Let e ∈ E(G) − E(K). We claim that G − e satisfies Vizing’s conjecture. Since K is an
induced subgraph of G − e it follows that γ(K) ≥ γ(G − e) ≥ γ(G). Further by hypothesis
γ(K) = γ(G). Hence γ(G − e) = γ(G). Now for any graph H, (G − e)�H is an induced
subgraph of G�H and hence

γ((G − e)�H) ≥ γ(G�H)
≥ γ(G)γ(H)(by hypothesis)
= γ(G − e)γ(H).

Hence G−e satisfies Vizing’s conjecture. Since K can be obtained from G−e by successively
removing edges, it follows that K also satisfies Vizing’s conjecture. �
Barcalkin and German [65] proved that Vizing’s conjecture is true for a large class of graphs.

Definition 18.11 Let G be a graph with γ(G) = k. If V (G) can be partitioned into k subsets
C1, C2, . . ., Ck such that each of the induced subgraphs ⟨Ci⟩ is complete, then the graph G is
said to be decomposable.

Theorem 18.39 [65] Any spanning subgraph K of a decomposable graph G with γ(K) =
γ(G) satisfies Vizing’s conjecture. �

C5955–C0018.tex 439 2015/11/4 12:22pm

440 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

In particular it follows from the above theorem that all trees and all cycles satisfy Vizing’s
conjecture. Hartnell and Rall [66] posed the following natural question.

Problem 18.1 Is there a constant c > 0 such that γ(G�H) ≥ cγ(G)γ(H)?

Theorem 18.40 [67] For any two graphs G and H, γ(G�H) ≥ 1
2γ(G)γ(H). �

Suen and Tarr [68] obtained an improvement of the above theorem by proving that
γ(G�H) ≥ 1

2γ(G)γ(H) + 1
2 min{γ(G),γ(H)}.

Brešar et al. [69] used Clark and Suen’s approach to obtain the following theorem for
claw-free graphs.

Theorem 18.41 [69] Let G be a claw-free graph. Then for any graph H without isolated
vertices, γ(G�H) ≥ 1

2β0(G)(γ(H) + 1) where β0(G) is the independence number of G. �

Since γ(G) ≤ β0(G), it follows from Theorem 18.41 that if G is a claw-free graph, then for
any graph H without isolated vertices,

γ(G�H) ≥ 1
2
γ(G)(γ(H) + 1).

Another way to tackle Vizing’s conjecture is to search for a counterexample. Suppose Vizing’s
conjecture is false. Then there exists a graph G such that γ(G�H) < γ(G)γ(H) for some
graph H. A graph G of smallest order with γ(G�H) < γ(G)γ(H) for some graph H is called
a minimal counterexample. Any minimal counterexample is connected and edge critical with
respect to domination. Further it has been proved in [69] that if G is a minimal counter-
example to Vizing’s conjecture, then for any pair of distinct vertices u and v, γ(Guv) < γ(G),
where Guv is the graph obtained from G by identifying the vertices u and v and then removing
any parallel edges.

There are several pairs of graphs G and H for which γ(G�H) = γ(G)γ(H). For example
γ(G�C4) = γ(G)γ(C4). Additional results regarding pairs of graphs with equality in Vizing’s
conjecture are given in [70].

Versions of Vizing’s conjecture for various domination-related parameters such as total,
fractional, paired, and independent dominations have been studied by different authors. It
was conjectured in [71] that γt(G�H) ≥ 1

2γt(G)γt(H) for any two graphs G and H without
isolated vertices. This conjecture was proved by Ho [72]. Henning and Rall [71] characterized
graphs for which γt(G�H) = 1

2γt(G)γt(H) when at least one of G or H is a nontrivial tree.

Theorem 18.42 [71] Let G be a nontrivial tree and let H be any graph without isolated
vertices. Then γt(G�H) = 1

2γt(G)γt(H) if and only if γt(G) = 2γ(G) and H consists of
disjoint copies of K2. �

The problem of characterizing all graphs G and H for which γt(G�H) = 1
2γt(G)γt(H)

is open.
For fractional domination Fisher et al. [73] established the following theorem.

Theorem 18.43 [73] For any two graphs G and H, γf (G�H) ≥ γf (G)γf (H). �

Brešar et al. [74] investigated Vizing-type result for paired-domination number γpr(G). For
any integer k ≥ 2, a k-packing in a graph G = (V, E) is a subset S of V such that d(u, v) > k
for all u, v ∈ S. The k-packing number ρk(G) is the maximum cardinality of a k-packing in G.
Brešar et al. [74] observed that the role played by 3-packing number for paired domination
is similar to that of the packing number for domination and obtained the following theorem.

C5955–C0018.tex 440 2015/11/4 12:22pm

Domination in Graphs � 441

Theorem 18.44 [74] Let G and H be graphs without isolated vertices. Then γpr(G�H) ≥
max{γpr(G)ρ3(H),γpr(H)ρ3(G)}. �

Further for any tree T, γpr(T) = 2ρ3(T) and hence we have the following corollary.

Corollary 18.7 [74] Let T be any nontrivial tree and let H be any graph without isolated
vertices. Then γpr(T�H) ≥ 1

2γpr(T)γpr(H) and this bound is sharp. �

Vizing-like bounds for upper domination number and upper total domination number were
established in [75] and [76], respectively.

Theorem 18.45 [75] For any graphs G and H, Γ(G�H) ≥ Γ(G)Γ(H). �

Theorem 18.46 [76] Let G and H be connected graphs of order at least 3 with γt(G) ≥
Γt(H). Then γt(G�H) ≥ 1

2Γt(G)(Γt(H) + 1) and this bound is sharp. �

Domination in graph products, other than the Cartesian product, is an area that has not
been fully explored.

18.14 ALGORITHMIC ASPECTS

Given a graph G = (V, E) with |V | = n, the natural question is to design an algorithm
for determining the domination number γ(G). One possible method is to list all possible
subsets of V in nondecreasing order of cardinality and check whether any of these subsets
is a dominating set. The value of γ(G) is simply the cardinality of the first dominating set
that we get in this method. This algorithm requires O(2n) steps in the worst case and hence
is of exponential time complexity. We shall prove that the decision problem corresponding
to γ(G) is NP-complete for arbitrary graphs and this indicates that it may not be possible
to construct a polynomial time algorithm for this problem.

A well known NP-complete problem is 3-SAT .
3-SAT

INSTANCE. A set U = {u1, u2, . . ., un} of Boolean variables and a set C =
{C1, C2, . . ., Cm} of 3-element sets where |Ci| = 3 and any element of Ci is either a
variable ui or its complement u′

i. Each Ci is called a clause.

QUESTION. Does there exist an assignment of True or False to the variables in U
such that at least one variable in each clause Ci is assigned the value True?

Such an assignment is called a satisfiable truth assignment.
The decision problem for the domination number of a graph takes the following form.

DOMINATING SET

INSTANCE. A graph G = (V, E) and a positive integer k.

QUESTION. Does G have a dominating set of size ≤ k?

C5955–C0018.tex 441 2015/11/4 12:22pm

442 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 18.47 [77] DOMINATING SET IS NP-complete.

Proof. If S ⊆ V and |S| ≤ k, then it can be easily verified in polynomial time whether S is a
dominating set of G. Hence DOMINATING SET ∈ NP. We now construct a reduction from
3-SAT to DOMINATING SET. Give an instance C of 3-SAT, we construct an instance G(C)
of DOMINATING SET as follows:

For each variable ui construct a triangle with vertices labeled ui, u′
i, vi. For each clause

Cj = {ui, uk, ue} create a single vertex labeled Cj and add edges uiCj , ukCj , and ueCj . Also
let k = n. Thus G(C), n is an instance of DOMINATING SET. We claim that C has a
satisfying truth assignment if and only if G(C) has a dominating set S with |S| ≤ n.

Suppose that C has a satisfying truth assignment. Let S = {ui : ui = True} ∪ {u′
i : ui =

False}. Since exactly one of ui, u′
i is in S for each i, 1 ≤ i ≤ n, we have |S| = n. Further

S contains one vertex from each of the triangles {ui, u′
i, vi} and have all the vertices of the

triangle are dominated by S. Since each clause Cj contains at least one variable whose value
is TRUE, it follows that each Cj is dominated by S. Hence S is a dominating set of G(C)
with |S| = n.

Conversely, suppose G(C) has a dominating set S with |S| ≤ n. Since each vi is either in
S or dominated by a vertex in S, each triangle {ui, u′

i, vi} must contain a vertex of S. Thus
|S| ≥ n and S contains no clause vertex Cj . Hence each Cj must be dominated by a vertex
in S. Hence the truth assignment defined by

value of ui =
{

True, if ui ∈ S
False, otherwise

gives a satisfying truth assignment for C.
Now the graph G(C) has 3n+m vertices and 3n+3m edges. Hence G(C) can be constructed

from any instance of 3-SAT in polynomial time. �

Observation 18.5 Since the dominating set S constructed in Theorem 18.47 is an indepen-
dent dominating set, the INDEPENDENT DOMINATING SET problem is also NP-complete.

Since the DOMINATING SET is NP-complete, the next natural question is to find whether
the domination number of a graph can be computed in polynomial time when restricted to
special classes of graphs. Several authors [78,79] have independently proved that DOMINAT-
ING SET remains NP-complete even when restricted to bipartite graphs.

Booth and Johnson [80] have shown that the DOMINATING SET remains NP-complete
when restricted to chordal graphs. For details of NP-completeness of other domination re-
lated parameters such as irredundance number ir(G), independence number β0(G), upper
domination number Γ(G), upper irredundance number IR(G), connected domination num-
ber γc(G), and total domination number γt(G), for arbitrary graphs and the complexity
status when restricted to special classes of graphs, we refer to Chapter 12 of Haynes et al. [3]
and to Chapters 8 and 9 of the book edited by Haynes et al. [4].

18.15 CONCLUSION

In this chapter we have covered some of the basic concepts in domination. Since domination
is a major area of current research in graph theory, we have not touched on several topics
such as domination in directed graphs, domination in hypergraphs, chessboard domination
problems, criticality, applications, and several other topics. The two books by Haynes et al.
[3,4] give a comprehensive treatment of fundamental concepts and several advanced topics.
A more recent book by Henning and Yeo [30] provides an up-to-date coverage of results on
total domination in graphs.

C5955–C0018.tex 442 2015/11/4 12:22pm

Domination in Graphs � 443

References

[1] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc, Prov-
idence, RI), 1962.

[2] E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Net-
works, 7 (1977), 247–261.

[3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs,
Marcel Dekker, New York, 1998.

[4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in graphs—Advanced
topics, Marcel Dekker, 1998.

[5] E. J. Cockayne, J. H. Hatting, S. M. Hedetniemi, S. T. Hedetniemi and A. A. McRae,
Using maximality and minimality conditions to construct inequality chain, Discrete
Math., 176(1–3) (1997), 43–61.

[6] H. B.Walikar, B. D. Acharya and E. Sampathkumar, Recent developments in the theory
of domination in graphs, MRI Lecture Notes in Math., 1 (1976).

[7] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory, 6 (1982),
23–32.

[8] J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, On graphs having domination
number half their order, Period. Math. Hungar, 16 (1985), 287–293.

[9] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J.
Graph Theory, 13 (1989), 749–762.

[10] B. Reed, Paths, stars and the number three, Combin. Probab. Comput., 5 (1996),
277–295.

[11] Y. Caro and Y. Roditty, Improved bounds for the product of the domination and chro-
matic numbers of a graph, Ars Combin., 56 (2000), 189–192.

[12] E. J. Cockayne, C. W. Ko and F. B. Shepherd, Inequalities concerning dominating sets
in graphs, Technical Report DM-370-IR, Dept. Math., Univ. Victoria, Canada, 1985.

[13] C. Berge, Theory of graphs and its applications, Methuen, London, 1962.

[14] V. G. Vizing, A bound on the external stability number of a graph, Dokl. Akad. Nauk
SSSR, 164 (1965), 729–731.

[15] L. A. Sanchis, Maximum number of edges in connected graphs with a given domination
number, Discrete Math., 87 (1991), 65–72.

[16] R. C. Brigham, P. Z. Chinn and R. D. Dutton, Vertex domination-critical graphs, Net-
works, 18 (1988), 173–179.

[17] R. C. Brigham and R. D. Dutton, Bounds on the domination number of a graph, Quart.
J. Math. Oxford Ser. 2, 41 (1990), 269–275.

[18] E. J. Cockayne, S. T. Hedetniemi and D. J. Miller, Properties of hereditary graphs and
middle graphs, Canad. Math. Bull., 21 (1978), 461–468.

C5955–C0018.tex 443 2015/11/4 12:22pm

444 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[19] E. J. Cockayne and C. M. Mynhardt, The sequence of upper and lower domina-
tion, independence and irredundance numbers of a graph, Discrete Math., 122 (1993),
89–102.

[20] S. Arumugam, S. T. Hedetniemi, S. M. Hedetniemi and L. Sathikala, The covering chain
of a graph, Util. Math., (To appear).

[21] F. Harary and T. W. Haynes, Conditional graph theory IV: Dominating sets, Util. Math.,
40 (1995), 179–192.

[22] R. B. Allan and R. C. Laskar, On domination and independent domination numbers of
a graph, Discrete Math., 23 (1978), 73–76.

[23] B. Bollabas and E. J. Cockayne, Graph theoretic parameters concerning domination,
independence and irredundance, J. Graph Theory, 3 (1979), 241–250.

[24] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs, Net-
works, 10 (1980), 211–219.

[25] D. Archdeacon, J. Ellis-Managhan, D. Fischer, D. Froncek, P. C. B. Lam, S. Seager,
B. Wei and R. Yuster, Some remarks on domination, J.Graph Theory, 46 (2004),
207–210.

[26] O. Favaron, M. A. Henning, C. M. Mynhardt and J. Puech, Total domination in graphs
with minimum degree three, J. Graph Theory, 34 (2000), 9–19.

[27] P. C. B. Lam and B. Wei, On the total domination number of graphs, Utilitas Math.,
72 (2007), 223–240.

[28] M. A. Henning, Graphs with large total domination number, J.Graph Theory, 35 (2000),
21–45.

[29] A. Yeo, Improved bound on the total domination in graphs with minimum degree four,
Manuscript, 2006.

[30] M. A. Henning and A. Yeo, Total domination in graphs, Springer, New York, 2013.

[31] E. Sampathkumar and H. B. Walikar, The connected domination numbers of a graph,
J. Math. Phys. Sci., 13 (1979), 607–613.

[32] S. T. Hedetniemi and R. C. Laskar, Connected domination graphs, In Graph theory and
combinatorics, B. Bollabas, editors, Academic Press, London, 209–218, 1984.

[33] J. P. Joseph and S. Arumugam, On connected cut free domination in graphs, Indian J.
Pure Appl. Math., 23 (1992), 643–647.

[34] J. P. Joseph and S. Arumugam, On 2-edge connected domination in graphs, Internat.
J. Management Systems, 12 (1996), 131–138.

[35] S. Arumugam and R. Kala, Domination parameters of hypercubes, J. Indian Math. Soc.,
65 (1998), 31–38.

[36] T. W. Haynes and P. J. Slater, Paired-domination in graphs, Networks, 32 (1998), 199–
206.

[37] T. W. Haynes and P. J. Slater, Paired-domination and the paired-domatic number,
Congr. Numer., 109 (1995), 65–72.

C5955–C0018.tex 444 2015/11/4 12:22pm

Domination in Graphs � 445

[38] M. Chellali and T. W. Haynes, Total and paired-domination numbers of a tree, AKCE
Int. J. Graphs Combin., 2 (2004), 69–75.

[39] Erfang Shan, Liying Kang and M. A. Henning, A characterization of trees with equal
total domination and paired-domination numbers, Austr. Journal of Combin., 30 (2004),
31–39.

[40] P. Duchet, Représentations, noyaus en théorie des graphes et hypergraphs, Thése, Paris
VI, France, 1979, 85–95.

[41] C. Mynhardt and I. Broere, Generalized colorings of graphs. In Graph theory with appli-
cations to algorithms and computer science, Y. Alavi, G. Chartrand, L. Lesniak, D. R.
Lick and C. E. Wall, editors, Wiley, New York, 583–594, 1985.

[42] M. O. Albertson, R. E. Jamison, S. T. Hedetmemi and S. C. Locke, The subchromatic
number of a graph, Discrete Math., 74 (1989), 33–49.

[43] J. Gimbel and C. Hartman, Subcolorings and the subchromatic number of a graph,
D̂iscrete Math., 272 (2003), 139–154.

[44] R. D. Dutton and R. C. Brigham, Domination in claw-free graphs, Congr. Numer., 132
(1998), 69–75.

[45] S. Arumugam and M. Sundarakannan, Equivalence dominating sets in graphs, Util.
Math., 91 (2013), 231–242.

[46] S. Arumugam and M. Sundarakannan, The equivalence chain of a graph, J. Combin.
Math. Combin. Comput., 80 (2012), 277–288.

[47] T. W. Haynes, S. T. Hedetniemi, M. A. Henning and P. J. Slater, H-forming sets in
graphs, Discrete Math., 262 (2003), 159–169.

[48] M. Chellali and D. Favaron, On k-star forming sets in graphs, J. Combin. Math. Combin.
Comput., 68 (2009), 205–214.

[49] S. Arumugam, M. Chellai and T. W. Haynes, Equivalence domination in graphs, Ques-
tiones Mathematicae, 36 (2013), 331–340.

[50] E. Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci., 23
(1989), 377–385.

[51] R. C. Brigham and R. D. Dutton, Factor domination in graphs, Discrete Math., 86
(1990), 127–136.

[52] J. F. Fink and M. S. Jacobson, n-domination in graphs, In Graph theory with applications
to algorithms and computer science, Y. Alavi and A.J. Schwenk, editors, 283–300, 1985.

[53] E. Sampathkumar and L. Pushpalatha, Strong weak domination and domination balance
in graph, Discrete Math., 161 (1996), 235–242.

[54] E. R. Scheinerman and D. H. Ullman, Fractional graph theory: A rational approch to
the theory of graphs, John Wiley & Sons, New York, 1997.

[55] S. M. Hedetniemi, S. T. Hedetniemi and T. V. Wimer, Linear time resource allocation
algorithms for trees, Technical report URI-014, Department of Mathematics, Clemson
University, SC, 1987.

C5955–C0018.tex 445 2015/11/4 12:22pm

446 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[56] E. A. Nardhaus and J. W. Gaddum, On complementary graphs, Amer. Math. Monthly,
63 (1956), 175–177.

[57] F. Jaeger and C. Payen, Relation du type Nordhauss-Gaddam pour le nombre
dábsorption dún graphe simple, C.R. Acad. Sci. Ser. A, 274 (1972), 728–730.

[58] R. Lasker and K. Peters, Vertex and edge domination parameters in graphs, Congr.
Numer., 48 (1985), 291–305.

[59] J. P. Joseph and S. Arumugam, A note on domination in graphs, International Journal
of Management and Systems, 11 (1995), 177–182.

[60] Xu Baogen, E. J. Cockayne, T. W. Haynes, S. T. Hedetniemi and Zhou Shangchao,
Extremal graphs for inequalities involving domination parameters, Discrete Math., 216
(13) (2000), 1–10.

[61] B. Zelinka, On k-domatic numbers of graphs, Czech. Math. J., 33 (1983), 309–313.

[62] B. Zelinka, Total domatic number and degrees of vertices of a graph, Math. Slovaca, 39
(1989), 7–11.

[63] V. G. Vizing, The Cartesian product of graphs, Vychisl. Sistemy, 9 (1963), 30–43.

[64] B. L. Hartnell and D. F. Rall, On Vizing’s conjecture, Congr. Numer., 82 (1991), 87–96.

[65] A. M. Barcalkin and L. F. German, The external stability number of the Cartesian
product of graphs, Bul. Akad, Stiince RSS Moldoven, 1 (1979), 5–8.

[66] B. L. Hartnell and D. F. Rall, Domination in Cartesian product: Vizing’s conjecture, In
domination in graph s-Advanced topics, T.W. Haynes, S.T. Hedetniemi, and P.J. Slater,
editors, New York: Dekker, 163, 189, 1998.

[67] W. E. Clark and S. Suen, An inequality related to Vizing’s conjecture, Electronic J.
Combin., 7 (Note 4) (2000), 3p.

[68] S. Suen and J. Tarr, An improved inequality related to Vizing’s conjecture, Manuscript
(2010).

[69] B. Brešar, P. Dorbee, W. Goddard, B. L. Hartnell, M. A. Henning, S. Klavzar and D. F.
Rall, Vizing’s conjecture: A survey and recent results, J. Graph Theory, 69 (1) (2011),
46–76.

[70] S. M. Khamis and Kh. M. Nazzal, Equality in Vizing’s conjecture fixing one factor of
the Cartesian product, Ars Combin., 96 (2010), 375–384.

[71] M. A. Henning and D. F. Rall, On the total domination number of Cartesian product
of graphs, Graphs Combin., 21(1) (2005), 63–69.

[72] P. T. Ho, A note on total domination number, Util. Math., 77 (2008), 97–100.

[73] D. C. Fisher, J. Ryan, G. Domke and A. Majumdar, Fractional domination of strong
direct products, Discrete Appl. Math., 50 (1) (1994), 89–91.

[74] B. Brešar, M. A. Henning and D. F. Rall, Paired domination of Cartesian products of
graphs, Util. Math., 73 (2007), 255–265.

[75] B. Brešar, On Vizing conjecture, Discuss Math. Graph Theor., 21 (1) (2001), 5–11.

C5955–C0018.tex 446 2015/11/4 12:22pm

Domination in Graphs � 447

[76] P. Dorbec, M. A. Henning and D. F. Rall, On the upper total domination number of
Cartesian products of graphs, J. Comb. Optim., 16 (1) (2008), 68–80.

[77] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of
NP-completeness, Freeman, New York, 1979.

[78] A. A. Bertossi, Dominating set for split and bipartite graphs, Inform. Process. Lett., 19
(1984), 37–40.

[79] G. J. Chang and G. L. Nemhauser, The k-domination and k-stability problems in sum-
free chordal graphs, SIAM J. Algebraic Discrete Methods, 5 (1984), 332–345.

[80] K. S. Booth and J. H. Johnson, Dominating sets in chordal graphs, SIAM J. Comput.,
11 (1982), 191–199.

C5955–C0018.tex 447 2015/11/4 12:22pm

C H A P T E R 19

Graph Colorings
Subramanian Arumugam

K. Raja Chandrasekar

CONTENTS

19.1 Introduction . 449
19.2 Vertex Colorings . 449
19.3 Edge Colorings . 461
19.4 Other Variants of Graph Colorings . 463

19.4.1 Complete Colorings and Achromatic Number . 463
19.4.2 Grundy Colorings in Graphs . 465
19.4.3 Dominator Colorings . 466
19.4.4 List Colorings and Choosability . 467
19.4.5 Total Colorings . 469

19.5 Conclusion . 469

19.1 INTRODUCTION

Graph coloring theory has a central position in discrete mathematics. Graph coloring deals
with the fundamental problem of partitioning a set into classes according to certain rules.
Timetabling, sequencing, and scheduling problems are basically of this nature and hence
graph coloring has interesting applications to several practical problems. Though many deep
and interesting results have been obtained on graph coloring during the past 100 years,
there are still many easily formulated, interesting, and challenging unsolved problems. In
this chapter we present basic results on various graph coloring concepts such as vertex, edge,
total, list, complete, and dominator colorings.

19.2 VERTEX COLORINGS

Definition 19.1 A proper coloring of a graph G is an assignment of colors to the vertices of
G in such a way that no two adjacent vertices receive the same color. The chromatic number
χ(G) is the minimum number of colors required for a proper coloring of G. A graph G with
chromatic number k is a k-chromatic graph.

The chromatic numbers of some graphs can be easily determined. For example, χ(C2k) = 2,
χ(C2k+1) = 3,χ(Kn) = n, and χ(Kn1,n2,...,nk

) = k. Also a 3-chromatic graph is given in
Figure 19.1.

In a given coloring of G, the set of all vertices which are assigned a particular color is
called a color class. Thus, if V1, V2, . . ., Vk are the color classes of a k-coloring of G, then each
Vi is independent and {V1, V2, . . ., Vk} forms a partition of V and the coloring is completely

C5955–C0019.tex 449 2015/11/4 8:18pm

449

450 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1

1

1
2 3

2 3

3 2

Figure 19.1 A 3-chromatic graph.

determined by this partition. Thus, the chromatic number of G is the minimum value k such
that V can be partitioned into k independent sets.

Obviously if G is a k-partite graph with partite sets V1, V2, . . ., Vk, then
{V1, V2, . . ., Vk} is a k-coloring of G and hence χ(G) ≤ k. Further χ(G) = k if and only
if G is k-partite and is not l-partite for any l < k. Consequently χ(G) = 1 if and only
if G is an empty graph and χ(G) = 2 if and only if G is a nontrivial bipartite graph.
However, for k ≥ 3 the problem of deciding whether χ(G) ≤ k is NP-complete ([1], page
191). We observe that if G is a disconnected graph with components G1, G2, . . ., Gr, then
χ(G) = max {χ(Gi) : 1 ≤ i ≤ r} and if G is a separable graph with blocks B1, B2, . . ., Bs,
then χ(G) = max {χ(Bi) : 1 ≤ i ≤ s}. Hence, we can confine ourselves to 2-connected graphs
while considering vertex colorings.

Coloring problems arise naturally in many practical applications. We give two examples
of such problems.

Examination scheduling: An university has to conduct annual examination for all
courses offered in the university. Obviously examinations in two different courses can-
not be held simultaneously if the two courses have students in common. The problem
of finding a schedule for the examination with minimum number of sessions can be
reduced to a graph coloring problem. We define a graph G whose vertex set is the set
of all courses and two courses are joined by an edge if they have students in common.
The required minimum number of sessions for the schedule of the examination is the
chromatic number of G.

Chemical storage: A set of n chemicals c1, c2, . . ., cn are to be stored in a warehouse.
Certain pairs of chemicals would cause explosion if they are in contact with each other
and hence must be stored in different compartments of the warehouse. Then the least
number of compartments into which the warehouse must be partitioned is the chromatic
number of the graph G, where V (G) = {c1, c2, . . ., cn}, and cicj ∈ E(G) if and only if
ci and cj cause explosion if they are in contact with each other.

We now proceed to give upper and lower bounds for the chromatic number of a graph. Two of
the most elementary bounds for the chromatic number of a graph G involve the independence
number α(G), which is the maximum cardinality of an independent set of vertices of G.

Theorem 19.1 If G is a graph of order n, then n/α(G) ≤ χ(G) ≤ n− α(G) + 1.

Proof. Suppose χ(G) = k. Let {V1, V2, . . ., Vk} be a χ-coloring of G. Then n = |V (G)| =∑k
i=1 |Vi| ≤ k α(G). Hence n/α(G) ≤ χ(G).

C5955–C0019.tex 450 2015/11/4 8:18pm

Graph Colorings � 451

Now, let U be an independent set of G such that |U | = α(G). Then C = {U} ∪ {{v} :
v ̸∈ U} is a proper coloring of G and hence χ(G) ≤ 1 + |V (G) − U | = n− α(G) + 1. �
Let v1, v2, . . ., vn be an ordering of the vertices of G. We color the vertices in this order and
assign to vi the smallest positive integer not already used to the neighbors vj of vi with j < i.
This method of coloring the vertices is called a greedy coloring of G.

Proposition 19.1 For any graph G, χ(G) ≤ ∆(G) + 1.

Proof. In any vertex ordering each vertex has at most ∆(G) earlier neighbors and hence the
greedy coloring uses at most ∆(G) + 1 colors. Hence χ(G) ≤ ∆(G) + 1. �
For specific vertex ordering greedy coloring gives better bounds.

Proposition 19.2 [2] Let G be a graph with degree sequence d1 ≥ d2 ≥ · · · ≥ dn and let
xi = min(di, i− 1). Then χ(G) ≤ 1 + maxi xi.

Proof. We order the vertices of G in the nonincreasing order of the degrees. The greedy
algorithm when applied to this ordering uses at most k colors, where k = 1 + maxi xi. �

Proposition 19.3 If G is a graph, then χ(G) ≤ 1 + maxH⊆G δ(H).

Proof. We order the vertices of G in such a way that deg vn = δ and for i < n, vi is a vertex
of minimum degree in the induced subgraph ⟨G− {vi+1, vi+2, . . ., vn}⟩. Applying the greedy
algorithm to this ordering, the result follows. �

Definition 19.2 A graph G is said to be k-critical if χ(G) = k and χ(G− v) = k− 1 for all
v ∈ V .

Proposition 19.4 If H is a k-critical graph, then δ(H) ≥ k − 1.

Proof. Let u be a vertex of H. Since H is k-critical, H−u is (k−1)-colorable. If dH(u) < k−1,
then there exists at least one color that does not appear on N(u) and assigning this color to
u, we obtain a proper (k − 1)-coloring of H, which is a contradiction. Hence d(u) ≥ k − 1
and δ(H) ≥ k − 1. �
In fact Dirac [3] has proved that if G is k-critical, then κ′ ≥ k − 1, where κ′ is the edge
connectivity of G and since κ′ ≤ δ, we get the above result as a corollary.

Definition 19.3 Let S be a vertex cut of a connected graph G and let the components of
G − S have vertex sets V1, V2, . . ., Vr. Then the induced subgraphs Gi = G[Vi ∪ S] are called
the S-components of G.

Theorem 19.2 In a k-critical graph no vertex cut is a clique.

Proof. Let G be a k-critical graph. Suppose G has a vertex cut S which is also a clique.
Let G1, G2, . . ., Gr be the S-components of G. Since G is k-critical, it follows that each Gi

is (k − 1)-colorable and since S is a clique, the vertices of S receive distinct colors in any
(k − 1)-coloring of G. Hence, we can find (k − 1)-colorings of G1, G2, . . ., Gr which agree on
S. These coloring together give a (k − 1)-coloring of G, which is a contradiction. �

Corollary 19.1 Every critical graph is a block. �

C5955–C0019.tex 451 2015/11/4 8:18pm

452 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

It follows from Theorem 19.2 that if G is k-critical and S = {u, v} is a vertex cut of G, then
u and v cannot be adjacent. An S-component G1 of G is said to be of type 1 if every (k− 1)-
coloring of G1 assigns the same color to u and v and is of type 2 if every (k − 1)-coloring of
G1 assigns different colors to u and v.

Dirac proved the following theorem for k-critical graphs with a 2-vertex cut.

Theorem 19.3 [3] Let G be a k-critical graph with a 2-vertex cut {u, v}. Then the following
conditions are satisfied.

i. G = G1 ∪G2, where Gi is a {u, v}-component of type i (i = 1, 2).

ii. Both G1 + uv and G2 · uv are k-critical, where G2 · uv denotes the graph obtained from
G2 by identifying u and v.

Proof.

i. Since G is k-critical, each {u, v}-component of G is (k − 1)-colorable. Further there
cannot exist (k − 1)-colorings of the {u, v}-components all of which agree on {u, v},
since such colorings together give a (k−1)-coloring of G. Hence, there exist two {u, v}-
components G1 and G2 such that no (k − 1)-coloring of G1 agrees with any (k − 1)-
coloring of G2.

Hence one component say G1 must be of type 1 and the other component say G2
must be of type 2. Since G1 and G2 are of different types, the subgraph G1 ∪G2 of G
is not (k − 1)-colorable. Now, since G is critical, it follows that G = G1 ∪G2.

ii. Now, let H1 = G1 + uv. Since G1 is of type 1, χ(H1) = k. We shall prove that H1 is
k-critical, by showing that χ(H1 − e) = k − 1 for every edge e of H1. This is obviously
true for e = uv. Now, let e ∈ E(H1) − uv. Since G2 is a subgraph of G − e, it follows
that in any (k− 1)-coloring of G− e, the vertices u and v must receive different colors.
The restriction of such a coloring to the vertices of G1 gives a (k−1)-coloring of H1 −e.
Thus H1 is k-critical. We can prove by a similar argument that G2 · uv is k-critical. �

The following theorem due to Brooks [4] shows that the bound given in Proposition 19.1 is
attained only for complete graphs and odd cycles.

Theorem 19.4 [4] If G is a connected graph other than a complete graph or an odd cycle,
then χ(G) ≤ ∆(G).

Proof. Let G be a connected graph that is neither an odd cycle nor a complete graph.
Suppose that χ(G) = k. We may assume that k ≥ 2. Let H be a k-critical subgraph of G.
Clearly H is nonseparable and ∆(H) ≤ ∆(G). Suppose that H = Kk or that H is an odd
cycle. Then G ̸= H. Since G is connected, ∆(G) > ∆(H). If H = Kk, then ∆(H) = k − 1
and ∆(G) ≥ k, so that χ(G) = k ≤ ∆(G). If H is an odd cycle, then ∆(G) > ∆(H) = 2,
which implies that ∆(G) ≥ 3 = k = χ(G). Hence we may assume that H is a k-critical graph
and is neither an odd cycle nor a complete graph. Then it follows that k ≥ 4. Let H have
order p. Since χ(H) = k ≥ 4 and H is not complete, it follows that p ≥ 5. We now consider
two cases depending on the connectivity of H.

Case i. H is 3-connected.

Let x and y be vertices of H such that dH(x, y) = 2 and suppose that (x,w, y) is a path
in H. Clearly the graph H − {x, y} is connected. Let x1 = w, x2, . . ., xp−2 be the vertices
of H − {x, y}, listed so that each vertex xi(2 ≤ i ≤ p − 2) is adjacent to at least one
vertex preceding it. Let xp−1 = x and xp = y. Now we assign the colors 1, 2, . . .,∆(H) to the

C5955–C0019.tex 452 2015/11/4 8:18pm

Graph Colorings � 453

vertices of H as follows. Consider the sequence: x1 = w, x2, . . ., xp−2, xp−1 = x, xp = y. Assign
the color 1 to the vertices xp−1 and xp. We successively color xp−2, xp−3, . . ., x2 with one of
the colors 1, 2, . . .,∆(H) that was not used in coloring adjacent vertices following it in the
sequence. Such a color is available, since each xi(2 ≤ i ≤ p−2) is adjacent to at most ∆(H)−1
vertices following it in the sequence. Since x1 = w is adjacent to two vertices colored 1
(namely, xp−1 and xp), a color is available for x1. Hence χ(G) = χ(H) ≤ ∆(H) ≤ ∆(G).

Case ii. κ(H) = 2.

Since H is k-critical, it follows by Proposition 19.4 that δ(H) ≥ k− 1. Since k ≥ 4, it follows
that δ(H) ≥ 3. Since H is not complete, δ(H) ≤ p − 2. Hence, there exists a vertex u in
H such that 3 ≤ degH(u) ≤ p − 2. Suppose that κ(H − u) = 2. Let v be a vertex with
dH(u, v) = 2. We may let x = u and y = v, and proceed as in Case (i).

On the other hand, if κ(H−u) = 1, then we consider two end-blocks B1 and B2 containing
cut vertices w1 and w2, respectively, of H − u. Since H is 2-connected, there exist vertices
u1 in B1 − w1 and u2 in B2 − w2 that are adjacent to u. Now let x = u1 and y = u2 and
proceed as in Case (i). �
Our next result, due to Nordhaus and Gaddum [5] is the best known result on the sum and
product of the chromatic numbers of a graph and its complement.

Theorem 19.5 [5] If G is a graph of order n, then

i. 2
√
n ≤ χ(G) + χ(G) ≤ n+ 1 and

ii. n ≤ χ(G)χ(G) ≤
(

n+1
2
)2
.

Proof. Suppose that χ(G) = k and χ(G) = l. Let a k-coloring C of G and an l-coloring C of
G be given. Using these colorings, we obtain a coloring of Kn. With each vertex v of G, we
associate the ordered pair (C(v), C(v)). Since any two vertices of G are either adjacent in G
or in G, they are assigned different colors and thus this is a coloring of Kn using at most kl
colors. Therefore,

n = χ(Kn) ≤ kl = χ(G) χ(G)

This establishes the lower bound in (ii). Since the geometric mean of two positive real numbers
never exceeds their arithmetic mean, it follows that

√
n ≤

√
χ(G) χ(G) ≤ χ(G) + χ(G)

2

Consequently,
2
√
n ≤ χ(G) + χ(G),

which proves the lower bound in (i).
Now, to prove the upper bound in (i), let p = maxH⊆G δ(H). Hence the minimum degree

of every subgraph of G is at most p. By Proposition 19.3, χ(G) ≤ 1 + p.
We claim that the minimum degree of every subgraph of G is at most n− p− 1. Assume,

to the contrary, that there is a subgraph H of G such that δ(H) ≥ n− p for the subgraph H
in G. Thus every vertex of H has degree p−1 or less in G. Let F be a subgraph of G such that
δ(F) = p. So every vertex of F has degree p or more. This implies that no vertex of F belongs
to H. Since the order of F is at least p+ 1, the order of H is at most n− (p+ 1) = n− p− 1.
This contradicts the fact that δ(H) ≥ n − p. Thus, the minimum degree of every subgraph
of G is at most n− p− 1. By Proposition 19.3, χ(G) ≤ 1 + (n− p− 1) = n− p and so

χ(G) + χ(G) ≤ (1 + p) + (n− p) = n+ 1.

C5955–C0019.tex 453 2015/11/4 8:18pm

454 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

This gives the upper bound in (i). Now

χ(G) χ(G) ≤
(
χ(G) + χ(G)

2

)2

≤
(
n+ 1

2

)2
. �

Definition 19.4 If χ(G) = k and every k-coloring of G induces the same partition on V (G),
then G is called uniquely k-colorable or uniquely colorable.

The complete graph Kn is uniquely n-colorable and Kn − e where e is any edge of Kn, is
uniquely (n− 1)-colorable. Any connected bipartite graph is uniquely 2-colorable.

Theorem 19.6 If G is uniquely k-colorable, then δ ≥ k − 1.

Proof. Let v be any vertex of G. In any k-coloring of G, v must be adjacent with at least
one vertex of every color different from that assigned to v. Otherwise, by recoloring v with
a color which none of its neighbors is having, a different k-coloring can be achieved. Hence
degree of v is at least k − 1 so that δ ≥ k − 1. �

Theorem 19.7 Let G be a uniquely k-colorable graph. Then in any k-coloring of G, the
subgraph induced by the union of any two color classes is connected.

Proof. If possible, let C1 and C2 be two color classes in a k-coloring of G such that the
subgraph induced by C1 ∪ C2 is disconnected. We may assume that the vertices in C1 are
colored 1 and those in C2 are colored 2. Let H be a component of the subgraph induced by
C1 ∪ C2. Obviously, no vertex of H is adjacent to a vertex in V (G) − V (H) that is colored
1 or 2. Hence, interchanging the colors of the vertices in H and retaining the original colors
for all other vertices, we get a different k-coloring for G. This gives a contradiction. �

Theorem 19.8 Every uniquely k-colorable graph is (k − 1)-connected.

Proof. Let G be a uniquely k-colorable graph. Consider a k-coloring of G. If possible, let G
be not (k−1)-connected. Hence there exists a set S of at most k−2 vertices such that G−S
is either trivial or disconnected. If G− S is trivial, then G has at most k − 1 vertices, which
is a contradiction. Hence G − S has at least two components. In the considered k-coloring,
there are at least two colors say c1 and c2 that are not assigned to any vertex of S.

If every vertex in a component of G − S has color different from c1 and c2, then by
assigning color c1 to a vertex of this component, we get a different k-coloring of G. Otherwise,
by interchanging the colors c1 and c2 in a component of G− S, a different k-coloring of G is
obtained. In any case, G is not uniquely k-colorable, giving a contradiction.

Hence G is (k − 1)-connected. �

Corollary 19.2 In any k-coloring of a uniquely k-colorable graph G, the subgraph induced
by the union of any r color classes, 2 ≤ r ≤ k, is (r − 1)-connected.

Proof. If the subgraph H induced by the union of any r color classes, 2 ≤ r ≤ k, had
different r-colorings, then these r-colorings will induce different k-colorings for G giving a
contradiction. Thus H is uniquely r-colorable. Hence H is (r − 1)-connected. �

Theorem 19.9 For any two graphs G and H, we have χ(G�H) = max (χ(G),χ(H)), where
G�H is the Cartesian product of G and H.

C5955–C0019.tex 454 2015/11/4 8:18pm

Graph Colorings � 455

Proof. Since the cartesian product G�H contains copies of G and H, it follows that
χ(G�H) ≥ max(χ(G),χ(H)). Now, let k = max(χ(G),χ(H)). Let g : V (G) → {1, 2, . . .,
χ(G)} and let h : V (H) → {1, 2, . . .,χ(H)} be proper colorings of G and H, respectively.

We now define f : V (G) × V (H) → {1, 2, . . ., k} by f(u, v) = (g(u) + h(v)) (mod k). We
claim that f is a proper coloring of G�H. Let (u, v) and (u′, v′) be two adjacent vertices.
Without loss of generality we assume that u = u′ and vv′ ∈ E(H). Hence g(u) = g(u′) and
h(v) ̸= h(v′). Hence (g(u) + h(v)) (mod k) ̸= (g(u′) + h(v′)) (mod k). Thus f is a proper
coloring of G�H and hence χ(G�H) = k. �

The study of graph coloring problems has its root at the famous four color conjecture, which
states that every map can be colored with four colors, subject to the usual condition that two
regions which share a common boundary must be assigned different colors. This problem,
from its first appearance in 1852 until its eventual solution in 1977, has been the motivation
for the developments of several concepts of graph colorings. There are several nice historical
accounts of the four color conjecture, see for example [6,7].

Given a map, we can define a graph G whose vertex set is the set of all regions of the map
(including the exterior region) and two vertices are joined by an edge if the corresponding
regions share a common boundary. Such a graph is obviously a planar graph and hence the
four color conjecture is equivalent to the statement that every planar graph is 4-colorable.
Several erroneous proofs of the four color problem have been reported in the literature. The
error in the first proof of Kempe [8] was pointed out by Heawood [9].

The final successful proof of the four color theorem by Appel and Haken [10] is the first
example of a mathematical proof relying heavily on the use of computers. Gardner [11] re-
marked that the proof of the four color theorem is an extraordinary achievement and however
to most of the mathematicians the proof is deeply unsatisfactory. Upto this date we don’t
have a short proof of the four color theorem in which all the details can be checked by hand.

Heawood [9] showed that one can always color the vertices of a planar graph with at most
five colors. This is known as the five color theorem.

Theorem 19.10 Every planar graph is 5-colorable.

Proof. We prove the theorem by induction on the number n of vertices. For any planar graph
having n ≤ 5 vertices, the result is obvious since the graph is n-colorable.

Now let us assume that all planar graphs with n vertices is 5-colorable for some n ≥ 5.
Let G be a planar graph with n + 1 vertices. Then G has a vertex v of degree 5 or less. By
induction hypothesis, the planar graph G − v is 5-colorable. Consider a 5-coloring of G − v
where ci, 1 ≤ i ≤ 5, are the colors used. If some color, say cj is not used in coloring vertices
adjacent to v, then by assigning the color cj to v the 5-coloring of G− v can be extended to
a 5-coloring of G.

Hence we have to consider only the case in which deg(v) = 5 and all the five colors are
used for coloring the vertices of G adjacent to v.

Let v1, v2, v3, v4 and v5 be the vertices adjacent to v colored c1, c2, c3, c4 and c5, respec-
tively. Let G13 denote the subgraph of G− v induced by those vertices colored c1 or c3. If v1
and v3 belong to different components of G13, then a 5-coloring of G− v can be obtained by
interchanging the colors of vertices in the component of G13 containing v1. (Since no vertex
of this component is adjacent to a vertex with color c1 or c3 outside this component, this
interchange of colors results in a coloring of G− v.) In this 5-coloring no vertex adjacent to
v is colored c1 and hence by coloring v with c1, a 5-coloring of G is obtained.

C5955–C0019.tex 455 2015/11/4 8:18pm

456 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

v5

v4

c1

c3

c1

v2

v

v1 c3

c1v3

Figure 19.2 The graph in the proof of Theorem 19.10

u2

u3

u4

u5

v1

v2

v3

v4

u

u1

v5

Figure 19.3 Mycielski’s construction for the cycle C5.

If v1 and v3 are in the same component of G13, then in G there exists a v1 −v3 path all of
whose vertices are colored c1 or c3. Hence there is no v2 − v4 path in G− v all whose vertices
are colored c2, c4 (refer Figure 19.2).

Hence if G24 denotes the subgraph of G− v induced by the vertices colored c2 or c4, then
v2 and v4 belong to different components of G24. Hence if we interchange the colors of the
vertices in the component of G24 containing v2, a new 5-coloring G − v results and in this,
no vertex adjacent to v is colored c2. Hence by assigning color c2 to v, we get a 5-coloring of
G. This completes the induction and the proof. �
Recall that the clique number ω(G) of a graph G is the order of a largest complete subgraph
of G. Obviously for every graph G, χ(G) ≥ ω(G). Hence if G contains a triangle, then
χ(G) ≥ 3. However, there exist triangle-free graphs with χ(G) ≥ 3. For example, the odd
cycles C2k+1, with k ≥ 2, have chromatic number 3 and are, of course, triangle-free.

It may be surprising that there exist triangle-free graphs with arbitrarily large chromatic
number. The following construction is due to Mycielski [12].

Theorem 19.11 For every positive integer k, there exists a k-chromatic triangle-free graph.

Proof. Since no graph with chromatic number 1 or 2 contains a triangle, the theorem is
obviously true for k = 1 and k = 2. To verify the theorem for k ≥ 3, we proceed by induction
on k. Since χ(C5) = 3 and C5 is triangle-free, the statement is true for k = 3.

Assume that there exists a triangle-free graph with chromatic number k, where k ≥ 3.
We show that there exists a triangle-free (k + 1)-chromatic graph. Let H be a triangle-free
graph with χ(H) = k, where V (H) = {v1, v2, . . ., vn}. We construct a graph G from H by
adding n+ 1 new vertices u, u1, u2, . . ., un, joining u to each vertex ui(1 ≤ i ≤ n) and joining
ui to each neighbor of vi in H (see Figure 19.3).

We claim that G is a triangle-free (k + 1)-chromatic graph. First, we show that G is
triangle-free. Since S = {u1, u2, . . ., un} is an independent set of vertices of G and u is

C5955–C0019.tex 456 2015/11/4 8:18pm

Graph Colorings � 457

adjacent to no vertex of H, it follows that u belongs to no triangle in G. Hence if there is a
triangle T in G, then two of the three vertices of T must belong to H and the third vertex
must belong to S, say V (T) = {ui, vj , vk}. Since ui is adjacent vj and vk, it follows that
vi is adjacent to vj and vk. Since vj and vk are adjacent, H contains a triangle, which is a
contradiction. Hence G is triangle-free.

Next, we show that χ(G) = k + 1. Since H is a subgraph of G and χ(H) = k, it follows
that χ(G) ≥ k. Let a k-coloring of H be given. Now assign the color to ui the same color that
is assigned to vi for 1 ≤ i ≤ n and assign the color k + 1 to u. This gives a (k + 1)-coloring
of G and so χ(G) ≤ k + 1. Hence either χ(G) = k or χ(G) = k + 1. Suppose that χ(G) = k.
Then there is a k-coloring of G with colors 1, 2, . . ., k, where u is assigned the color k, say.
Necessarily, none of the vertices u1, u2, . . ., un is assigned the color k; that is, each vertex of
S is assigned one of the colors 1, 2, . . ., k − 1. Since χ(H) = k, one or more vertices of H are
assigned the color k. For each vertex vi of H colored k, recolor it with the color assigned to
ui. This produces a (k − 1)-coloring of H, which is a contradiction. Thus χ(G) = k + 1. �

The above result has been extended significantly by Erdös [13] and Lovász [14].

Theorem 19.12 For any two integers k ≥ 2 and l ≥ 3, there exists a k-chromatic graph G
with g(G) ≥ l, where g(G) is the girth of G. �

Birkhoff [15] introduced chromatic polynomials as a possible means of attacking the four
color conjecture. This concept considers the number of ways of coloring a graph with a given
number of colors.

Let G be a labeled graph. A λ-coloring of G is a coloring of G which uses λ or fewer
colors. Two λ-colorings of G will be considered different if at least one of the labeled vertices
is assigned different colors. Let f(G, λ) denote the number of different λ-colorings of G.

For example, f(K1, λ) = λ and f(K2, λ) = λ2. If one could prove that f(G, 4) > 0 for a
planar graph, then this would give a positive answer to the four color problem.

Theorem 19.13 f(Kn, λ) = λ(λ− 1) · · · (λ− n+ 1).

Proof. The first vertex in Kn can be colored in λ different ways (as there are λ colors). For
each coloring of the first vertex, the second vertex can be colored in λ− 1 ways (as there are
λ − 1 colors remaining). For each coloring of the first two vertices, the third vertex can be
colored in λ− 2 ways and so on. Hence f(Kn, λ) = λ(λ− 1) · · · (λ− n+ 1). �

Remark 19.1 f(Kn, λ) = λn, since each of the n vertices of Kn may be colored indepen-
dently in λ ways.

Theorem 19.14 If G is a graph with k components G1, G2, . . ., Gk, then f(G, λ) =∏k
i=1 f(Gi, λ).

Proof. Number of ways of coloring Gi with λ colors is f(Gi, λ). Since any choice of λ-colorings
for G1, G2, . . ., Gk can be combined to give a λ-coloring for G, f(G, λ) =

∏k
i=1 f(Gi, λ). �

Definition 19.5 Let u and v be two vertices in a graph G. The graph obtained from G by
the removal of u and v and the addition of a new vertex w adjacent to those vertices to
which u or v was adjacent is called an elementary homomorphism of G. Thus an elementary
homomorphism of G is obtained by identification of two vertices of G.

C5955–C0019.tex 457 2015/11/4 8:18pm

458 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 19.15 If u and v are nonadjacent vertices in a graph G and hG denotes
the elementary homomorphism of G which identifies u and v, then f(G, λ) =
f(G + uv, λ) + f(hG, λ) where G + uv denotes the graph obtained from G by adding the
edge uv.

Proof.

f(G, λ) = number of λ-colorings of G
= (number of λ-colorings of G in which u and v get different colors)

+ (number of λ-colorings of G in which u and v get the same color)
= (number of λ-colorings of G+ uv) + (number of λ-coloringsof hG)
= f(G+ uv, λ) + f(hG, λ). �

Corollary 19.3 Let G be a graph and let e = uv be an edge of G. Then f(G, λ) = f(G −
e, λ) − f(hG, λ). �

Theorem 19.16 Let G be a graph of order n and size m. Then f(G, λ) is a polynomial in
λ of degree n with leading coefficient 1. Further the coefficient of λn−1 is −m, the constant
term is zero and the coefficients of f(G, λ) alternate in sign.

Proof. The proof is by induction on m. If m = 0, then G = Kn and f(G, λ) = λn, which
has the desired properties. We now assume that the result is true for all graphs whose size
is less than m, where m ≥ 1. Let G be a graph of size m and let e = uv be an edge of G. By
Corollary 19.3, we have

f(G, λ) = f(G− e, λ) − f(hG, λ). (19.1)

Now by induction hypothesis we have

f(G− e, λ) = λn − (m− 1)λn−1 + a2λ
n−2 − · · · + (−1)iaiλ

n−i + . . .

+ (−1)n−1an−1λ

and

f(hG, λ) = λn−1 − b1λ
n−2 + · · · + (−1)i−1bi−1λ

n−i + · · · + (−1)n−2bn−2λ.

Hence from (19.1), we have

f(G, λ) = λn −mλn−1 + (a2 + b1)λn−2 + · · · + (−1)i(ai + bi−1)λn−i + . . .

+ (−1)n−1(an−1 + bn−2)λ.

Thus f(G, λ) has all the desired properties and the theorem follows by induction. �

The polynomial f(G, λ) is called the chromatic polynomial of G. We observe that the chro-
matic polynomial of small graphs can be computed by repeated application of Theorem 19.15.

The following theorem shows that all trees of order n have the same chromatic polynomial.

Theorem 19.17 Let G be a graph of order n, n ≥ 2. Then G is a tree if and only if
f(G, λ) = λ(λ− 1)n−1.

C5955–C0019.tex 458 2015/11/4 8:18pm

Graph Colorings � 459

Proof. We prove the result by induction on n. For n = 2, G = K2 and hence f(G, λ) =
f(K2, λ) = λ(λ − 1) and the theorem holds. Assume that the chromatic polynomial of any
tree with n−1 vertices is λ(λ−1)n−2. Let G be a tree with n vertices. Let v be an end vertex
of G and let u be the unique vertex of G adjacent to v. By hypothesis, the tree G − v has
λ(λ − 1)n−2 for its chromatic polynomial. The vertex v can be assigned any color different
from that assigned to u. Hence v may be colored in λ − 1 ways for each coloring of G − v.
Thus, f(G, λ) = (λ− 1)f(G− v, λ) = (λ− 1)λ(λ− 1)n−2 = λ(λ− 1)n−1.

Conversely, let G be a graph with f(G, λ) = λ(λ− 1)n−1. It follows from Theorem 19.16
that the order of G is n and the size of G is n− 1. Further since λ2 is not a factor of f(G, λ),
it follows that G is connected. Hence G is a tree. �
Two graphs are called chromatically equivalent if they have the same chromatic polynomial.
It follows from Theorem 19.16 that two chromatically equivalent graphs must have the same
order and same size. Also it follows from Theorem 19.17 that any two trees of the same order
are chromatically equivalent. A graph G is chromatically unique, if f(H, λ) = f(G, λ) implies
that the graphs G and H are isomorphic. It is not known under what conditions two graphs
are chromatically equivalent or a given graph is chromatically unique. Several authors have
investigated the distribution of the roots of the chromatic polynomials both on the real line
and in the complex plane. For a comprehensive treatment chromatically equivalent graphs,
chromatically unique graphs and the distributions of the roots of chromatic polynomials we
refer to the book by Dong et al. [16].

We have already seen that the clique number ω(G) is a lower bound for the chromatic
number χ(G). There are many graphs such as Kn, Kn, and bipartite graphs for which χ(G) =
ω(G). Also there are many graphs whose chromatic number is larger than the clique number.
In fact Mycielski’s theorem proves the existence of graphs with large chromatic number and
having ω(G) = 2. In this context Berge [17] introduced the concept of perfect graphs.

Definition 19.6 A graph G is called perfect if χ(H) = ω(H) for every induced subgraph H
of G.

Clearly the complete graph Kn and the graph Kn are perfect. Also if G is a bipartite graph
and H is an induced subgraph of G then χ(H) = ω(H). Hence G is perfect.

Berge conjectured that a graph is perfect if and only if its complement is perfect.
Lovász [18] proved that this conjecture is true and the result is known as the perfect graph
theorem.

Theorem 19.18 (Perfect graph theorem) A graph is perfect if and only if its comple-
ment is perfect. �

It follows from Theorem 19.18 that the complement of a bipartite graph is perfect. We now
give another family of perfect graphs.

Definition 19.7 A graph G with V (G) = {v1, v2, . . ., vn} is an interval graph if there exists
a collection of n intervals [ai, bi], where ai < bi, such that vi and vj are adjacent if and only
if [ai, bi] ∩ [aj , bj] ̸= ∅.

Clearly every induced subgraph of an interval graph is an interval graph.

Theorem 19.19 Every interval graph is perfect.

Proof. Let G be an interval graph with V (G) = {v1, v2, . . ., vn}. Let {[ai, bi] : 1 ≤ i ≤ n} be
n closed intervals such that vi is adjacent to vj if and only if Ii ∩ Ij ̸= ∅, where Ii = [ai, bi].

C5955–C0019.tex 459 2015/11/4 8:18pm

460 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

We order the intervals Ii in such a way that a1 ≤ a2 ≤ · · · ≤ an. Let k be the number
of colors used for the vertex coloring of G by a greedy algorithm with respect to the above
ordering of the vertices of G. If k = 1, then G = Kn and hence G is perfect.

Suppose k ≥ 2. Let vt be the vertex which has been assigned the color k. This means
that the interval It = [at, bt] has nonempty intersection with k− 1 intervals Ij1 , Ij2 , . . ., Ijk−1 ,
where 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk−1 ≤ t. Hence aj1 ≤ aj2 ≤ · · · ≤ ajk−1 ≤ at. Since Iji ∩ It ̸= ∅,
for 1 ≤ i ≤ k − 1, it follows that at ∈ Ij1 ∩ Ij2 ∩ · · · ∩ Ijk−1 ∩ It. Hence the induced subgraph
G[U] = Kk, where U = {vj1 , vj2 , . . ., vjk−1 , vt}. Thus χ(G) ≤ k ≤ ω(G). Since χ(G) ≥ ω(G),
we have χ(G) = ω(G). Further since any induced subgraph H of G is also an interval graph,
we have χ(H) = ω(H). Thus G is perfect. �
There is another important class of perfect graphs. A chord of a cycle C in a graph G is an
edge that joins two nonconsecutive vertices of C. A graph is a chordal graph if every cycle of
length at least 4 has a chord.

It has been proved independently by Hajnal and Surányi [19] and Dirac [20] that every
chordal graph is perfect.

Lovász [21] proved that from a given perfect graph one can construct a class of perfect
graphs.

Definition 19.8 Let G be a graph and let v ∈ V (G). The replication graph Rv(G) of G with
respect to v is the graph obtained from G by adding a new vertex v′ and joining v′ to every
vertex in the closed neighborhood N [v].

Theorem 19.20 [21] Let G be a graph and let v ∈ V (G). If G is perfect, then Rv(G) is
perfect. �

Berge proposed the following deeper conjecture.

Strong perfect graph conjecture: A graph G is perfect if and only if neither G nor G
contains an induced odd cycle of length 5 or more.

Chudnovsky et al. [22] proved the above conjecture which is now known as the strong
perfect graph theorem.

Though the complete graph Kk need not be present in a graph G with χ(G) = k, it has
been conjectured that Kk may be indirectly present in G.

Clearly Kk is present in a graph G with χ(G) = k for k = 1, 2. Also if χ(G) = 3, then
G contains an odd cycle which can be thought of as a subdivision of K3. Dirac [23] showed
that a similar result is true for graphs with χ(G) = 4.

Theorem 19.21 Any 4-chromatic graph contains a subdivision of K4.

Proof. Let G be a 4-chromatic graph. We may assume without loss of generality that G
is critical. If n = 4, then G = K4 and the theorem is trivially true. We now proceed by
induction on n. We assume that the theorem is true for all 4-chromatic graphs of order less
than n. Let G be a 4-chromatic graph of order n, with n ≥ 5.

If G has a 2-vertex cut {u, v}, then by Theorem 19.3, G has two {u, v}-components G1
and G2 such that G1+uv is 4-critical. By induction hypothesis G1+uv contains a subdivision
of K4.

Now, let P be a u−v path in G2. Then G1 ∪P contains a subdivision of K4. Since G1 ∪P
is a subgraph of G, it follows that G contains a subdivision of K4.

Now, suppose that G is 3-connected. Since δ ≥ 3, G has a cycle C of length at least 4.
Let u and v be two nonconsecutive vertices on C. Since G− {u, v} is connected, there exists

C5955–C0019.tex 460 2015/11/4 8:18pm

Graph Colorings � 461

a path P in G − {u, v} connecting the two components of C − {u, v}. We assume that the
origin x and terminus y are the only vertices of P on C. Similarly there exists a path Q in
G − {x, y}. If P and Q have no common vertex, then C ∪ P ∪ Q is a subdivision of K4.
Otherwise let w be the first vertex in P on Q and let P ′ be the x − w section of P . Now
C ∪ P ′ ∪Q is a subdivision of K4. Hence in both cases G contains a subdivision of K4. �
Thus it follows that if 2 ≤ k ≤ 4, then every k-chromatic graph contains a subdivision of
Kk. Hajós [24] proposed the following conjecture.

Hajós conjecture: If G is a k-chromatic graph where k ≥ 2, then G contains a subdivision
of Kk.

Catlin [25] showed that Hajós conjecture is false for k ≥ 7. Hajós conjecture is still open
for k = 5 or 6.

Thomassen [26] showed that there is a connection between perfect graphs and Hajós
conjecture.

Theorem 19.22 A graph G is perfect if and only if every replication of G satisfies Hajós
conjecture. �

Definition 19.9 A graph H is called a minor of a graph G if H can be obtained from G by
a sequence of contractions, edge deletions, and vertex deletions in any order.

If a graph G contains a subdivision of a graph H, then H is a minor of G. In particular if
G is a k-chromatic graph containing a subdivision of Kk, then Kk is a minor of G. In this
context Hadwiger proposed the following conjecture much earlier than Hajós conjecture.

Hadwiger’s conjecture: Every k-chromatic graph contains Kk as a minor.

This conjecture first appeared in [27]. Wagner [28] proved that Hadwiger’s conjecture
for k = 5 is equivalent to the four color conjecture and hence Hadwiger’s conjecture can be
considered as a generalization of the four color conjecture. Robertson et al. [29] have proved
that Hadwiger’s conjecture is true for k = 6 by using the four color theorem. The conjecture
remains open for k > 6.

19.3 EDGE COLORINGS

In this section we consider the problem of coloring the edges of a graph.

Definition 19.10 An edge coloring of a graph G is an assignment of colors to the edges
of G such that adjacent edges are colored differently. A graph G is k-edge colorable if there
exists a l-edge coloring of G for some l ≤ k. The minimum k for which a graph G is k-edge
colorable is called the edge-chromatic number (or chromatic index) of G and is denoted by
χ′(G).

It follows immediately from the definition that χ′(G) = χ(L(G)) where L(G) is the line
graph of G. Also if deg v = ∆, then the ∆ edges incident at v must receive distinct colors
in any edge coloring of G and hence χ′(G) ≥ ∆(G). The following fundamental theorem by
Vizing [30] shows that χ′(G) = ∆(G) or ∆(G) + 1.

Let C be a k-edge coloring of G and let v ∈ V . We say that a color c is represented at v
if an edge incident at v is assigned the color c; otherwise c is missing at v.

C5955–C0019.tex 461 2015/11/4 8:18pm

462 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 19.23 [30] For any simple graph G, χ′(G) ≤ 1 + ∆(G).

Proof. The proof is by induction on m.
The result is trivial if m = 1. Assume that the result is true for all graphs G with

|E(G)| < m and let G be a graph with |E(G)| = m ≥ 2 and let ∆(G) = ∆. Let uv0
be an edge of G. By induction hypothesis G − uv0 admits a (∆ + 1)-edge coloring and let
{1, 2, . . .,∆ + 1} be the colors used. Since v0 is incident to at most ∆ − 1 edges in G− uv0,
there exists a color c1 missing at v0. If c1 is also missing at u, then by coloring uv0 with c1, we
get a (∆ + 1)-edge coloring of G. Suppose there exists an edge uv1 with color c1. Since v1 is
incident to at most ∆ edges, a color c2 is missing at v1. If c2 is missing at u, then recoloring
uv1 with c2 and coloring uv0 with c1, we obtain a (∆ + 1)-edge coloring of G. Hence we
may assume that there exists an edge uv2 with color c2. Continuing this process, we obtain
a sequence v1, v2, . . . of neighbors of u and a sequence of colors c1, c2, . . . such that uvi is
colored ci and ci+1 is missing at vi. Since the degree of u is finite, there exists a least positive
integer l such that cl+1 = ck for some k < l. Now, for 0 ≤ i ≤ k − 1, we recolor the edge uvi

with ci+1. There exists a color c0 missing at u and c0 ̸= ck. Let P be a maximal path with
origin vk−1 with edges alternately colored c0 and ck and we interchange colors c0 and ck on
P + uvk−1. If P does not contain vk, we have a (∆ + 1)-edge coloring of G. If P contains vk,
then recoloring the edge uvi with ci+1 for k ≤ i ≤ l, we get a (∆ + 1)-edge coloring of G. �

In view of Theorem 19.23, the set of all nonempty graphs can be divided naturally into two
classes.

A nonempty graph G is said to be of class 1 or class 2 accordingly as χ′(G) = ∆(G) or
χ′(G) = ∆(G) + 1. The natural problem is to determine whether a given graph is of class
1 or class 2 and this problem is NP-complete [31]. However, there are classes of graphs for
which we know if they are of class 1 or class 2. The cycle Cn is of class 1 if n is even and is
of class 2 if n is odd. Also the complete graph Kn is of class 1 if n is even and is of class 2 if
n is odd.

The following theorem due to König [32] shows that any nonempty bipartite graph is of
class 1.

Theorem 19.24 (König’s theorem) If G is a nonempty bipartite graph, then χ′(G) =
∆(G).

Proof. Suppose that the theorem is false. Then among the counter examples, let G be one
of minimum size. Thus G is a bipartite graph such that χ′(G) = ∆(G) + 1 and χ′(G− e) =
∆(G − e) for all e ∈ E(G). Now, let e = uv. Then ∆(G − e) = ∆(G), for otherwise G
is ∆(G)-edge colorable. Let C be a ∆(G)-edge coloring of G − e. If there exists a color c
which is missing at both u and v, then c can be assigned to e, thus giving a ∆(G)-edge
coloring of G, a contradiction. Thus, every color is represented either at u or at v. Now,
since degG−e(u) < ∆(G) and degG−e(v) < ∆(G), there is a color α and a color β such that
α is missing at u and β is missing at v. Clearly, α ̸= β and α is represented at v and β is
represented at u.

Let P be a path of maximum length having initial vertex v whose edges are alternately
colored α and β. The path P cannot contain u, for otherwise P has odd length, implying that
the initial and terminal edges of P are both colored α, a contradiction. Now interchanging
the colors α and β of the edges of P gives a new ∆(G)-edge coloring C′ of G − e in which
α is missing at both u and v. Now, assign the color α to the edge e in G and this gives a
∆(G)-coloring of G, which is a contradiction. �

Beineke and Wilson [33] obtained a simple sufficient condition for a graph to be of class 2.

C5955–C0019.tex 462 2015/11/4 8:18pm

Graph Colorings � 463

Theorem 19.25 Let G be a graph of size m. If m > ∆(G)β1(G), where β1(G) is the edge
independence number of G, then G is of class two.

Proof. Suppose G is of class 1, so that χ′(G) = ∆(G). Let {E1, E2, . . ., E∆} be an edge
coloring of G. Since |Ei| ≤ β1(G), it follows that m ≤ ∆(G)β1(G), which is a contradiction.
Thus G is of class 2. �

A graph G of order n and size m is called overfull if m > ∆(G) · ⌊n/2⌋.
Since β1(G) ≤ ⌊n/2⌋, it follows from Theorem 19.25 that every overfull graph is of class

two.
Hilton [34] and Chetwynd and Hilton [35] conjectured that a graph G of order n with

∆(G) > n/3 is of class two if and only if G contains an overfull subgraph H with ∆(G) =
∆(H).

As in the case of vertex colorings, the concept of minimal graphs with respect to edge
colorings is quite useful. A graph G with at least two edges is χ′-minimal if χ′(G − e) =
χ′(G) − 1 for every edge e of G. Vizing [36] obtained several fundamental results on χ′-
minimal graphs.

Theorem 19.26 [36] Let G be a connected graph of class two that is minimal with respect to
edge-chromatic number. Then every vertex of G is adjacent to at least two vertices of degree
∆(G). In particular, G contains at least three vertices of degree ∆(G). �

Theorem 19.27 [36] Let G be a connected graph of class two that is minimal with respect to
edge-chromatic number. If u and v are adjacent vertices with deg (u) = k, then v is adjacent
to at least ∆(G) − k + 1 vertices of degree ∆(G). �

Theorem 19.28 [36] Let G be a connected graph with ∆(G) = d ≥ 2. Then G is minimal
with respect to edge-chromatic number if and only if either

i. G is of class one and G = K1,d or

ii. G is of class two and G− e is of class one for every edge e of G. �

19.4 OTHER VARIANTS OF GRAPH COLORINGS

19.4.1 Complete Colorings and Achromatic Number

Let G be a graph with χ(G) = k and let {V1, V2, . . ., Vk} be a k-coloring of G. Then for
any two distinct color classes Vi and Vj , there exist two adjacent vertices u and v such that
u ∈ Vi and v ∈ Vj ; since otherwise the color classes Vi and Vj can be merged into a single
color class, giving a (k − 1)-coloring of G. This motivates the concept of complete coloring,
which was introduced by Harary et al. [37].

Definition 19.11 A complete coloring of a graph G is a proper coloring of G having the
property that for any distinct colors i and j there exist adjacent vertices u, v of G such that
u is colored i and v is colored j.

A complete coloring using k-colors is called a complete k-coloring of G. The largest
positive integer k for which G has a complete k-coloring is called the achromatic number of
G and its denoted by ψ(G).

C5955–C0019.tex 463 2015/11/4 8:18pm

464 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

3 11 2

4 1 3 2 41 2 3

Figure 19.4 Complete 3-coloring of P4 and a complete 4-coloring of P8.

31

4

5

1

4

2

3

5

2

1
3

4

2

3

1
4

3

1

4

2

C10 C11

Figure 19.5 Complete colorings of the cycles C10 and C11.

Trivially if χ(G) = k, then any k-coloring of G is a complete coloring and hence ψ(G) ≥ χ(G).
For the complete graph Kn, we have ψ(Kn) = χ(Kn) = n. However, a graph G may admit
a complete k-coloring, where k > χ(G).

For example, a complete 3-coloring of P4 and a complete 4-coloring of P8 are given in
Figure 19.4. Hell and Miller [38] determined the achromatic number of paths and cycles.

Theorem 19.29 [38] For each n ≥ 2, ψ(Pn) = max{k : (⌊k/2⌋)(k − 2) + 2 ≤ n}. �

It follows from Theorem 19.29 that, ψ(P4) = 3 and ψ(P8) = 4.

Theorem 19.30 [38] For each n ≥ 3, ψ(Cn) = max{k : k⌊k/2⌋ ≤ n} − s(n), where s(n) is
the number of positive integer solutions of n = 2x2 + x+ 1. �

It follows from Theorem 19.30 that, ψ(C10) = 5 and ψ(C11) = 4 and the corresponding
complete colorings are given in Figure 19.5.

Theorem 19.31 For the complete bipartite graph G = Kr,s, we have ψ(G) = 2.

Proof. Let ψ(G) = k. Clearly k ≥ 2. Suppose k ≥ 3. Then in any complete k-coloring of
G, there exist two vertices in the same partite set receiving distinct colors i and j. Now no
vertex in the other partite set can have color i or j and hence there does not exist adjacent
vertices with colors i and j, a contradiction. �
There exists a close relation between the achromatic number and the concept of homomor-
phism. A homomorphism from a graph G to a graph G′ is a function ϕ : V (G) → V (G′)
such that uv ∈ E(G) implies ϕ(u)ϕ(v) ∈ E(G′).

A graph H is called a homomorphic image of G if there exists a homomorphism ϕ of G
onto H. There is an alternative way to obtain homomorphic images of a graph G. Obviously
the only homomorphic image of the complete graph Kn is Kn. If G is not complete, then an
elementary homomorphism of G is obtained by identifying two nonadjacent vertices u and

C5955–C0019.tex 464 2015/11/4 8:18pm

Graph Colorings � 465

G1

G = P6

u2

u1

u5

G2 u2

u1

u4u3 u4u3

u2u1 u5 u6u4u3

Figure 19.6 Homomorphic images of P6.

v of G and the resulting graph G′ is a homomorphic image of G. The vertex obtained by
identifying u and v is denoted by either u or v.

Alternatively the mapping ε : V (G) → V (G′) defined by

ε(w) =
{
w, if w ∈ V (G) − {u, v}

v, if w ∈ {u, v}.

is an elementary homomorphism from G to G′. Now any homomorphic image H of a graph G
is obtained from G by a sequence of elementary homomorphisms. Some homomorphic images
of the graph G = P6 are given in Figure 19.6.

Since each homomorphic image of a graph G can be obtained from G by a sequence
of elementary homomorphisms, it follows that each homomorphic image H of G can be
obtained from a partition Π = {V1, V2, . . ., Vk} of V (G) into independent sets such that
V (H) = {v1, v2, . . ., vk} and vi is adjacent to vj in H if and only if some vertex of Vi is
adjacent to some vertex of Vj in G. In particular if Π is a complete k-coloring of G, then
H = Kk. Thus, the chromatic number χ(G) and the achromatic number ψ(G) are respec-
tively the smallest and the largest positive integer k, such that Kk is a homomorphic image
of G.

It is NP-hard to determine the achromatic number even for trees [39] but polynomial
time solvable for trees of bounded degree [40].

19.4.2 Grundy Colorings in Graphs

The concepts introduced by Grundy [41] while dealing with combinatorial games led to the
concept of Grundy coloring.

Definition 19.12 A Grundy coloring of a graph G is a proper vertex coloring of G (the
colors are taken as positive integers) having the property that for every two colors i and j
with i < j, every vertex with color j has a neighbor with color i. The maximum positive
integer k for which G has a Grundy k-coloring is called the Grundy chromatic number of G
or simply the Grundy number of G and it is denoted by Γ(G).

Since any Grundy coloring is both a proper coloring and a complete coloring, it follows that
χ(G) ≤ Γ(G) ≤ ψ(G). For the corona G = C5 ◦K1, a proper 3-coloring, a Grundy 4-coloring
and a complete 5-coloring are given in Figure 19.7.

In fact χ(G) = 3, Γ(G) = 4 and ψ(G) = 5.

C5955–C0019.tex 465 2015/11/4 8:18pm

466 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

5

3

2 4

1 5

3 2

4 1

1

2

4 1

3 2

1 1

1 2

1

2

3 1

1 2

2 1

1 2

ψ(G) = 5Γ(G) = 4χ(G) = 3

Figure 19.7 Complete and Grundy colorings.

For the complete bipartite graph G = Kr,s, we have Γ(G) = 2. In fact complete bipartite
graphs are the only connected graphs with Grundy number 2.

The algorithmic complexity of finding the Grundy number has not been determined so
far.

Christen and Selkow [42] have proved that given a graph G and an integer k with χ(G) ≤
k ≤ Γ(G), there is a Grundy k-coloring of G.

19.4.3 Dominator Colorings

Hedetniemi et al. [43] and Hedetniemi et al. [44] introduced the concepts of dominator parti-
tion and dominator coloring of a graph. A vertex v in a graph dominates itself and all vertices
adjacent to v. We say that a vertex v ∈ V is a dominator of a set S ⊆ V if v dominates every
vertex in S. A partition π = {V1, V2, . . ., Vk} is called a dominator partition if every vertex
v ∈ V is a dominator of at least one Vi. The dominator partition number πd(G) equals the
minimum k such that G has a dominator partition of order k. If we further require that π be
a proper coloring of G, then we have a dominator coloring of G. The dominator chromatic
number χd(G) is the minimum number of colors required for a dominator coloring of G. Some
basic results on dominator colorings are given in [45–49].

Since every vertex is a dominator of itself, the partition {{v1}, {v2}, . . ., {vn}} into sin-
gleton sets is a dominator coloring. Thus, every graph of order n has a dominator coloring
and therefore the dominator chromatic number χd(G) is well defined. A dominator coloring
of G using χd(G) colors is called a χd-coloring of G.

In a graph G, any vertex v of degree 1 is called a leaf or a pendant vertex and the unique
vertex u adjacent to v is called a support vertex . We observe that in any χd-coloring of G,
either {u} or {v} must appear as a color class.

We start with an example to illustrate the concept of dominator coloring.

Example 19.1 For the graph G given in Figure 19.8, C = {{v1}, {v3}, {v6}, {v8},
{v2, v4, v5, v7}} is a dominator coloring of G and hence χd(G) ≤ 5. Since in any χd-coloring
of G either a support vertex or a leaf adjacent to it appears as a singleton color class, it
follows that χd(G) ≥ 5. Hence χd(G) = 5.

Theorem 19.32 [47] Let G be a connected graph of order n ≥ 2. Then χd(G) = 2 if and
only if G is a complete bipartite graph of the form Ka,b, where 1 ≤ a ≤ b ≤ n and a+b = n.�

Theorem 19.33 [47] Let G be a connected graph of order n. Then χd(G) = n if and only
if G is the complete graph Kn. �

C5955–C0019.tex 466 2015/11/4 8:18pm

Graph Colorings � 467

v4

v1

v3

v2

v5 v6

v8 v7

Figure 19.8 Graph with χd(G) = 5.

Theorem 19.34 [47] For the cycle Cn, we have

χd(Cn) =

⌈
n

3

⌉
if n = 4⌈

n

3

⌉
+ 1 if n = 5⌈

n

3

⌉
+ 2 otherwise. �

Theorem 19.35 [49] For the path Pn, n ≥ 2, we have

χd(Pn) =

⌈
n

3

⌉
+ 1 if n = 2, 3, 4, 5, 7⌈

n

3

⌉
+ 2 otherwise. �

If {V1, V2, . . ., Vχd
} is a χd-coloring of G and if vi ∈ Vi, then S = {v1, v2, . . ., vχd

} is a
dominating set of G. Also if D is a γ-set of G, then C ∪ {{v} : v ∈ D}, where C is a proper
coloring of G−D gives a dominator coloring of G. These observations lead to the following
bounds for χd(G).

Theorem 19.36 [47] Let G be a connected graph. Then max{χ(G),γ(G)} ≤ χd(G) ≤
χ(G) + γ(G). �

Corollary 19.4 For any connected bipartite graph G, we have γ(G) ≤ χd(G) ≤ γ(G) + 2.�

Chellali and Maffray [46] have obtained a characterization of split graphs G with χd(G) =
γ(G) + 1. Arumugam et al. [50] have proved that the dominator coloring problem is NP-
complete even for split graphs.

19.4.4 List Colorings and Choosability

List coloring is a more general version of vertex coloring. This concept was introduced by
Vizing [51] and independently by Erdös et al. [52].

Definition 19.13 Let G be a graph and suppose for each v ∈ V (G), there is associated a set
L(v) of permissible colors. The set L(v) is called a color list for v. A list coloring of G is a
proper coloring c of G such that c(v) ∈ L(v) for each v ∈ V . A list coloring is also referred
to as a choice function. Let L = {L(v) : v ∈ V (G)}. If there exists a list coloring for L, then
G is said to be L-choosable or L-list colorable.

C5955–C0019.tex 467 2015/11/4 8:18pm

468 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

A graph G is said to be k-choosable or k-list colorable if G is L-choosable for every collection
L with |L(v)| ≥ k for all L ∈ L. The list chromatic number χl(G) is the least positive integer
k such that G is k-choosable.

Clearly χl(G) ≥ χ(G). Further if L(v) = {1, 2, . . .,∆ + 1}, then a greedy algorithm
produces a proper coloring of G and hence χl(G) ≤ 1+∆(G). Thus we have χ(G) ≤ χl(G) ≤
1 + ∆(G) for every graph G.

Similarly we can define list edge coloring and the list chromatic index χ′
l(G). Clearly

χl′(G) = χl(L(G)), where L(G) is the line graph of G. We start with the following result for
trees.

Theorem 19.37 Every tree T is 2-choosable. Further for a vertex u ∈ V (T) and for a
collection L = {L(v) : v ∈ V (T)} of color lists of size 2 where a ∈ L(u), there exists an L-list
coloring of T in which u is assigned the color a.

Proof. We prove the result by induction on n = |V (T)|. The result is obvious for n = 1
or 2. We now assume that the result is true for all trees of order k, where k ≥ 2. Let T
be a tree of order k + 1 and L = {L(v) : v ∈ V (T)} with |L(v)| = 2, for all v ∈ V (T).
Let u ∈ V (T) and let a ∈ L(u). Let x be an end vertex of T such that x ̸= u and let
L′ = {L(v) : v ∈ V (T) − {x}}. Let y be the neighbor of x in T . By induction hypothesis
there exists an L′-list coloring c′ of T − {x} in which u is colored a.

Now, let b ∈ L(x) and b ̸= c′(y). Then the coloring c defined by

c(v) =
{
b if v = x

c′(v) if v ̸= x

is an L-list coloring of T in which u is colored a. �
Graphs that are 2-choosable have been characterized. A theta graph consists of two vertices
u and v connected by three internally disjoint u-v paths. We denote by Θi,j,k the theta graph
whose three internally disjoint u− v paths have lengths i, j, and k. The core of a graph G is
obtained by successively removing end vertices until none remain.

Theorem 19.38 A connected graph G is 2-choosable if and only if its core is K1 or an even
cycle or Θ2,2,2k, for some k ≥ 1. �

Vizing [51] and independently Erdös et al. [52] conjectured that any planar graph is 5-
choosable. Thomassen [53] proved the above conjecture.

Theorem 19.39 [53] Every planar graph is 5-choosable. �

The above theorem gives a new proof of the five color theorem for planar graphs which
avoids the recoloring technique of Kempe and the proof is conceptually simpler than all the
previously known proofs.

For list edge coloring several researchers have independently posed the following conjec-
ture.

List coloring conjecture: For any graph G,

χ′
l(G) = χ′(G).

This conjecture is given in Bollabás and Harris [54].
Galvin [55] proved the list coloring conjecture for bipartite graphs.

C5955–C0019.tex 468 2015/11/4 8:18pm

Graph Colorings � 469

19.4.5 Total Colorings

We consider colorings that assign colors to both vertices and edges of the graph. Let G =
(V,E) be a graph. The total graph T (G) of G is the graph with V (T (G)) = V (G) ∪ E(G)
and two distinct vertices x and y of T (G) are adjacent if x and y are adjacent vertices of G
or adjacent edges of G or an incident vertex and edge.

The total coloring of a graph G is an assignment of colors to the vertices and the edges of
G such that distinct colors are assigned to any two adjacent elements of V (G) ∪ E(G). The
minimum number of colors required for a total coloring of G is called the total chromatic
number of G and is denoted by χ′′(G).

It follows from the definition that χ′′(G) = χ(T (G)).
Obviously χ′′(G) ≥ 1 + ∆(G), since the ∆-edges incident at a vertex v with deg(v) = ∆

along with v must be assigned different colors. Behzad [56] and Vizing [30] independently
conjectured an upper bound for the total chromatic number.

Total coloring conjecture: For every graph G,

χ′′(G) ≤ 2 + ∆(G).

This conjecture still remains open. However, we have the following theorem.

Theorem 19.40 For any graph G, χ′′(G) ≤ 2 + χ′
l(G), where χ′

l(G) is the list chromatic
index of G.

Proof. Let χ′
l(G) = k. Then χ(G) ≤ 1 + ∆(G) ≤ 1 + χ′(G) ≤ 1 + χ′

l(G) < 2 + χ′
l(G) = 2 + k.

Thus G is (k + 2)-colorable. Let c be a (k + 2)-coloring of G. For each edge e = uv of G, let
L(e) be a list of (k + 2) colors and let L′(e) = L(e) − {c(u), c(v)}. Clearly |L′(e)| ≥ k, for
each edge e. Since χ′

l(G) = k, it follows that there is a proper edge coloring c′ of G such that
c′(e) ∈ L′(e). Hence c′(e) ̸∈ {c(u), c(v)}. Now the total coloring c′′ of G defined by

c′′(x) =
{
c(x) if x ∈ V (G)

c′(x) if x ∈ E(G)

is a (k + 2)-total coloring of G. Thus χ′′(G) ≤ 2 + k = 2 + χ′
l(G). �

If the list coloring conjecture is true, then χ′
l(G) ≤ 1 + ∆(G) and so χ′′(G) ≤ 3 + ∆(G).

19.5 CONCLUSION

In this chapter we have presented a few basic results on graph colorings. There are sev-
eral other topics on graph colorings such as coloring graphs on surfaces, rainbow coloring,
circular chromatic number, fractional coloring, harmonious coloring, L(2, 1)-coloring, radio
coloring, fall coloring, b-coloring, and so on. For more details on these topics we refer to
the book by Chartrand and Zhang [57]. Jenson and Toft [58] have given an exhaustive
list of unsolved problems on graph colorings. For survey papers on specific topics we refer
to [59,60]. A recent monograph by Barenboim and Elkin [61] deals with distributed graph
coloring. The main theme of this monograph are graph colorings and maximal independent
sets. Several distributed graph coloring algorithms and a collection of open problems are
presented.

C5955–C0019.tex 469 2015/11/4 8:18pm

470 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

References

[1] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, CA, (1979).

[2] D.J.A. Welsh and M.B. Powell, An upper bound for the chromatic number of a graph
an its application to timetabling problems, The Computer Journal, 10 (1967), 85–86.

[3] G.A. Dirac, The structure of k-chromatic graphs, Fund. Math., 40 (1953), 42–55.

[4] R.L. Brooks, On coloring the nodes of a network, Proc. Camb. Philos. Soc., 37 (1941),
194–197.

[5] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Am. Math. Mon., 63
(1956), 175–177.

[6] R. Wilson, Four Colors Suffice: How the Map Problem Was Solved, Princeton University
Press, Princeton, NJ, 2002.

[7] N.L. Biggs, E.K. Lloyd and R.J. Wilson, Graph Theory 1736–1936, Second edition,
Clarendon Press, New York, 1986.

[8] A.B. Kempe, On the geographical problem of four colours, Am. J. Math., 2 (1879),
193–200.

[9] P.J. Heawood, Map colour theorem, Quart. J. Math., 24 (1890), 332–338.

[10] K. Appel and W. Haken, Every planar map is four colorable, Part I: Discharging, Illinois
J. Math., 21, (1977), 429–490.

[11] M.Gardner, Mathematical games, Sci. Am., 242(2) (1980), 14–21.

[12] J. Mycielski, Sur le coloriage des graphes, Colloq. Math., 3 (1955), 161–162.

[13] P. Erdös, Graph theory and probability, Can. J. Math., 13 (1961), 346–352.

[14] L. Lovász, On chromatic number of finite set-systems, Acta Mathematica Academiae
Scientiarum Hungarica, 79 (1967), 59–67.

[15] G.D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann.
Math., 14 (1912), 42–46.

[16] F.M. Dong, K.M. Koh and K.L. Teo, Chromatic Polynomials and Chromaticity of
Graphs, World Scientific, Singapore, 2005.

[17] C. Berge, Perfect Graphs, Six Papers on Graph Theory, Indian Statistical Institute,
Calcutta, India, 1963, 1–21.

[18] L. Lovász, A characterization of perfect graphs, J. Comb. Theory Ser. B, 13 (1972),
95–98.

[19] A. Hajnal and J. Surányi, Über die Auflösung von Graphen in vollständige Teilgraphen,
Ann. Univ. Sci. Budapest, Eötvös. Sect. Math., 1 (1958), 113–121.

[20] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961), 71–76.

[21] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math., 2
(1972), 253–267.

C5955–C0019.tex 470 2015/11/4 8:18pm

Graph Colorings � 471

[22] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph
theorem, Ann. Math., 164 (2006), 51–229.

[23] G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J.
Londan Math. Soc., 27 (1952), 85–92.

[24] G. Hajós, Über eine Konstruktion nicht n-färbbarer Graphen, Wiss. Z. Martin – Luther –
Univ. Halle – Wittenberg, Math. – Nat. Reihe., 10 (1961), 116–117.

[25] P.A. Catlin, Hajós’ graph coloring conjecture: Variations and counter examples, J. Comb.
Theory Ser. B, 26 (1979), 268–274.

[26] C. Thomassen, Some remarks on Hajós’ conjecture, J. Combin. Theor. Ser. B, 93 (2005),
95–105.

[27] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch.
ges Zürich, 88 (1943), 133–143.

[28] K. Wagner, Üer eine Eigenschaft der ebene Komplexe, Math. Ann., 114 (1937), 570–590.

[29] N. Robertson, P. Seymour and R. Thomas, Hadwiger’s conjecture for K5-free graphs,
Combinatorica, 14 (1993), 279–361.

[30] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz., 3
(1964), 25–30.

[31] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Computing, 2 (1981),
225–231.

[32] D. König, Über Graphen ihre Anwendung auf Determinantentheorie und Mengenlehre,
Math. Ann., 77 (1916), 453–465.

[33] L.W. Beineke and R.J. Wilson, On the edge-chromatic number of a graph, Discrete
Math., 5 (1973), 15–20.

[34] A.J. Hilton, Recent progress in edge-coloring graphs, Discrete Math., 64 (1987),
303–307.

[35] A.G. Chetwynd and A.J. Hilton, Star multigraphs with three vertices of maximum
degree, Math. Proc. Cambridge Philos. Soc., 100 (1986), 303–317.

[36] V.G. Vizing, Critical graphs with a given chromatic class, Metody Diskret. Analiz., 5
(1965), 9–17.

[37] F. Harary, S.T. Hedetniemi and G. Prins, An interpolation theorem for graphical
homomorphisms, Portugal. Math., 26 (1967), 453–462.

[38] P. Hell and D.J. Miller, Graphs with given achromatic number, Discrete Math., 16
(1976), 195–207.

[39] N. Cairnie and K. Edwards, Some results on the achromatic number, J. Graph Theory,
26 (1997), 129–136.

[40] N. Cairnie and K. Edwards, The achromatic number of bounded degree trees, Discrete
Math., 188 (1998), 87–97.

[41] P.M. Grundy, Mathematics and games, Eureka, 2 (1939), 6–8.

C5955–C0019.tex 471 2015/11/4 8:18pm

472 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[42] C.A. Christen and S.M. Selkow, Some perfect coloring properties of graphs, J. Combin.
Theory Ser. B, 27 (1979), 49–59.

[43] S.M. Hedetniemi, S.T. Hedetniemi, R. Laskar, A.A. McRae and C.K. Wallis, Dominator
partitions of graphs, J. Combin. Inform. System Sci., 34 (2009), 183–192.

[44] S.M. Hedetniemi, S.T. Hedetniemi, A.A. McRae and J.R.S. Blair, Dominator colorings
of graphs, Preprint, 2006, (Unpublished).

[45] S. Arumugam, J. Bagga and K. Raja Chandrasekar, On dominator colorings in graphs,
Proc. Indian Acad. Sci. (Math. Sci.), Springer, 122(4) (2012), 561–571.

[46] M. Chellali and F. Maffray, Dominator colorings in some classes of graphs, Graphs
Combin., 28 (2012), 97–107.

[47] R.M. Gera, On dominator coloring in graphs, Graph Theory Notes NY., LII (2007),
25–30.

[48] R. Gera, On the dominator colorings in bipartite graphs, Conference Proceedings of the
4th International Conference on Information Technology, IEEE Comp. Soc., (2007), 1–6.

[49] R. Gera, C. Rasmussen and S. Horton, Dominator colorings and safe clique partitions,
Congr. Numer., 181 (2006), 19–32.

[50] S. Arumugam, K. Raja Chandrasekar, N. Misra, G. Philip and S. Saurabh, Algorithmic
aspects of dominator colorings in graphs, Lecture Notes in Comput. Sci., Springer-Verlag,
7056 (2011), 19–30.

[51] V.G. Vizing, Coloring the vertices of a graph in prescribed colors (Russian), Metody
Diskret. Anal. v Teorii Kodov i Schem, 29 (1976), 3–10.

[52] P. Erdös, A.L. Rudin and H. Taylor, Choosability in graphs, Congr. Numer., 126 (1980),
125–157.

[53] C. Thomassen, 3-List coloring planar graphs of girth 5, J. Combin. Theory Ser. B, 64
(1995), 101–107.

[54] B. Bollobás and A.J. Harris, List colorings of graphs, Graphs Combin., 1 (1985),
115–127.

[55] F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser.
B, 63 (1995), 153–158.

[56] M. Behzad, Graphs and their chromatic numbers, PhD Thesis, Michigan State Univer-
sity, 1965.

[57] G. Chartrand and P. Zhang, Chromatic Graph Theory, Chapman & Hall, CRC Press,
Boca Raton, FL, 2009.

[58] T.R. Jensen and B. Toft, Graph Coloring Problems, Wiley-Interscience, Hoboken, NJ,
1995.

[59] B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs—A survey,
Graphs Combin., 20 (2004), 1–40.

[60] Z. Tuza, Graph colorings with local constraints—A survey, Math. Graph Theory, 17
(1997), 161–228.

[61] L. Barenboim and M. Elkin, Distributed Graph Coloring—Fundamentals and Recent
Developments, Morgan & Claypool Publishers, San Rafael, CA, 2013.

C5955–C0019.tex 472 2015/11/4 8:18pm

V
Planar Graphs

473

C H A P T E R 20

Planarity and Duality*
Krishnaiyan “KT” Thulasiraman

M. N. S. Swamy

CONTENTS

20.1 Introduction . 475
20.2 Planar Graphs . 475
20.3 Euler’s Formula . 477
20.4 Kuratowski’s Theorem and Other Characterizations of Planarity 480
20.5 Dual Graphs . 481
20.6 Planarity and Duality . 485

20.1 INTRODUCTION

In this chapter we discuss two important concepts in graph theory, namely, planarity and
duality. First we consider planar graphs and derive some properties of these graphs. Charac-
terizations of planar graphs due to Kuratowski, Wagner, Harary and Tutte, and to MacLane
are also discussed. We then discuss Whitney’s definition of duality of graphs which is given
in terms of circuits and cutsets and relate this concept to the seemingly unrelated concept
of planarity.

Duality has been of considerable interest to electrical network theorists. This interest is
due to the fact that the voltages and currents in an electrical network are dual variables.
Duality of these variables arises as a result of Kirchhoff’s laws. Kirchhoff’s voltage law is in
terms of circuits and Kirchhoff’s current law is in terms of cutsets.

Many of the results developed in Chapter 7 on circuit and cutset spaces of a graph will
be used in the developments of this chapter.

20.2 PLANAR GRAPHS

A graph G is said to be embeddable on a surface S if it can be drawn on S so that its edges
intersect only at their end vertices. A graph is said to be planar if it can be embedded on a
plane. Such a drawing of a planar graph G is called a planar embedding of G.

Two planar embeddings of a graph are shown in Figure 20.1. In one of these (Figure 20.1a)
all the edges are drawn as straight line segments, while in the other (Figure 20.1b) one of the
edges is drawn as a curved line. Note that the edge connecting vertices a and d in Figure 20.1b
cannot be drawn as a straight line if all the remaining edges are drawn as shown.

Obviously, if a graph has self-loops or parallel edges, then in none of its planar embeddings
all the edges can be drawn as straight line segments. This naturally raises the question

∗This chapter is an edited version of Chapter 7 in K. Thulasiraman and M.N.S. Swamy [1].

475

476 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

c
b d

a

e

a

eb

(a) c d(b)

Figure 20.1 (a,b) Two planar embeddings of a graph.

whether for every simple planar graph G there exists a planar embedding in which all the
edges of G can be drawn as straight line segments. The answer to this question is in the
affirmative, as stated in the following theorem.

Theorem 20.1 For every simple planar graph there exists a planar embedding in which all
the edges of the graph can be drawn as straight line segments. �

This result was proved independently by Wagner [2], Fary [3], and Stein [4].
If a graph is not embeddable on a plane, then it may be embeddable on some other surface.

However, we now show that embeddability on a plane and embeddability on a sphere are
equivalent; that is, if a graph is embeddable on a plane, then it is also embeddable on a sphere
and vice versa. The proof of this result uses what is called the stereographic projection of a
sphere onto a plane, which is described below.

Suppose that we place a sphere on a plane (Figure 20.2) and call the point of contact
the south pole and the diametrically opposite point on the sphere the north pole N. Let P

N

P

P ′

Figure 20.2 Stereographic projection.

Planarity and Duality � 477

(a) (b)

Figure 20.3 Basic nonplanar graphs (a) K5 and (b) K3,3.

be any point on the sphere. Then the point P ′ at which the straight line joining N and P,
when extended, meets the plane, is called the stereographic projection of P onto the plane.
It is clear that there is one-to-one correspondence between the points on a sphere and their
stereographic projections on the plane.

Theorem 20.2 A graph G is embeddable on a plane if and only if G is embeddable on a
sphere. �

Proof. Let G′ be an embedding of G on a sphere. Place the sphere on the plane so that the
north pole is neither a vertex of G′ nor a point on an edge of G′.

Then the image of G′ under the stereographic projection is an embedding of G on the
plane because edges of G′ intersect only at their end vertices and there is a one-to-one
correspondence between points on the sphere and their images under stereographic projection.
The converse is proved similarly. �
Two basic nonplanar graphs called Kuratowski’s graphs are shown in Figure 20.3. One of these
is K5, the complete graph on five vertices, and the other is K3,3. We call these graphs basic
nonplanar graphs because they play a fundamental role in an important characterization
of planarity due to Kuratowski (Section 20.4). The nonplanarity of these two graphs is
established in the next section.

Before we conclude this section, we would like to point out that Whitney [5] has proved
that a separable graph is planar if and only if its blocks are planar. So while considering
questions relating to the embedding on a plane, it is enough if we concern ourselves with
only nonseparable graphs.

20.3 EULER’S FORMULA

An embedding of a planar graph on a plane divides the plane into regions. A region is finite
if the area it encloses is finite; otherwise it is infinite.

For example, in the planar graph shown in Figure 20.4, the hatched region f5 is the infinite
region; f1, f2, f3, and f4 are the finite regions.

Clearly, the edges on the boundary of a region contain exactly one circuit, and this circuit
is said to enclose the region. For example, the edges e1, e8, e9, e10 and e13 form the region
f1 in the graph of Figure 20.4, and they contain the circuit {e1, e8, e9, e10}.

Note that in any spherical embedding of a planar graph, every region is finite. Suppose
we embed a planar graph on a sphere and place the sphere on a plane so that the north pole
is inside any chosen region, say, region f. Then under the stereographic projection the image
of f will be the infinite region. Thus a planar graph can always be embedded on a plane so
that any chosen region becomes the infinite region.

478 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

e1

f1

f3 f4

f2

f5
e14

e13

e9 e11

e10

e12

e5e6

e7

e8

e4

e3

e2

Figure 20.4 Regions of a planar embedding.

Let f1, f2, . . ., fr be the regions of a planar graph with fr as the infinite region. We denote
by Ci, 1 ≤ i ≤ r, the circuit on the boundary of region fi. The circuits C1, C2, . . ., Cr−1,
corresponding to the finite regions, are called meshes. It is easy to verify that the ring sum
(exclusive OR/symmetric difference denoted by ⊕) of any k ≥ 2 meshes, say, C1, C2, . . ., Ck,
is a circuit or union of edge-disjoint circuits enclosing the regions f1, f2, . . ., fk. Since each
mesh encloses only one region, it follows that no mesh can be obtained as the ring sum of
some of the remaining meshes. Thus the meshes C1, C2, . . ., Cr−1 are linearly independent.

Suppose that any element C of the circuit subspace of G encloses the finite regions f1,
f2, . . ., fk. Then it can be verified that

C = C1 ⊕ C2 ⊕ . . . ⊕ Ck.

For example, in the graph of Figure 20.4, the set C = {e1, e2, e3, e4, e5, e6, e7, e8} encloses
the regions f1, f2, f3, f4. Therefore,

C = C1 ⊕ C2 ⊕ C3 ⊕ C4.

Thus, every element of the circuit subspace of G can be expressed as the ring sum of some
or all of the meshes of G. Since the meshes are themselves independent, we get the following
theorem.

Theorem 20.3 The meshes of a planar graph G form a basis of the circuit subspace
of G. �

Following is an immediate consequence of this theorem.

Corollary 20.1 (Euler’s formula) If a connected planar graph G has m edges, n vertices,
and r regions, then

n − m + r = 2.

Planarity and Duality � 479

Proof. The proof follows if we note that by Theorem 20.3, the nullity μ of G is equal to
r − 1. �
In general it is not easy to test whether a graph is planar or not. We now use Euler’s formula
to derive some properties of planar graphs. These properties can be of help in detecting
nonplanarity in certain cases, as we shall see soon.

Corollary 20.2 If a connected simple planar graph G has m edges and n ≥ 3 vertices, then

m ≤ 3n − 6.

Proof. Let F = {f1, f2, . . ., fr} denote the set of regions of G.
Let the degree d(fi) of region fi denote the number of edges on the boundary of fi, bridges

being counted twice. (For example, in the graph of Figure 20.4, the degree of region f1 is 6.)
Noting the similarity between the definitions of the degree of a vertex and the degree of a
region, we get

∑

fi∈F

d(fi) = 2m.

Since G has neither parallel edges nor self-loops and n ≥3, it follows that d(fi) ≥ 3, for all
i, Hence ∑

fi∈F

d(fi) ≥ 3r.

Thus 2m ≥ 3r, that is,
r ≤ 2

3m.

Using this inequality in Euler’s formula, we get

n − m + 2
3m ≥ 2

or
m ≤ 3n − 6. �

Corollary 20.3 K5 is nonplanar.

Proof. For K5, n = 5 and m = 10. If it were planar, then by Corollary 20.2,

m = 10 ≤ 3n − 6 = 9;

a contradiction. Thus K 5 must be nonplanar. �

Corollary 20.4 K3,3 is nonplanar.

Proof. For K3,3, m = 9 and n = 6. If it were planar, then by Euler’s formula it has r = 9 −
6 + 2 = 5 regions.

In K3,3 there is no circuit of length less than 4. Hence the degree of every region is at
least 4. Thus,

2m =
r∑

i=1
d(fi) ≥ 4r

or
r ≤ 2m

4 ,

that is, r ≤ 4; a contradiction. Hence K3,3 is nonplanar. �

480 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Corollary 20.5 In a simple planar graph G there is at least one vertex of degree less than
or equal to 5.

Proof. Let G have m edges and n vertices. If every vertex of G has degree greater than 5,
then

2m ≥ 6n

or
m ≥ 3n.

But by Corollary 20.2,
m ≤ 3n − 6.

These two inequalities contradict one another. Hence the result. �

20.4 KURATOWSKI’S THEOREM AND OTHER CHARACTERIZATIONS
OF PLANARITY

Characterizations of planarity given by Kuratowski, Warner, Harary and Tutte, and MacLane
are presented in this section.

To explain Kuratowski’s characterization, we need the definition of the concept of home-
omorphism between graphs.

The two edges incident on a vertex of degree 2 are called series edges. Let e1 = (u, v)
and e2 = (v, w) be the series edges incident on a vertex v. Removal of vertex v and replacing
e1 and e2 by a simple edge (u, w) is called series merger (Figure 20.5a).

Adding a new vertex v on an edge (u, w) thereby creating the edges (u, v) and (v, w), is
called series insertion (Figure 20.5b).

Two graphs are said to be homeomorphic if they are isomorphic or can be made isomorphic
by repeated series insertions and/or mergers.

It is clear that if a graph G is planar, then any graph homeomorphic to G is also planar,
that is, planarity of a graph is not affected by series insertions or mergers.

We proved in the previous section that K5 and K3,3 are nonplanar. Therefore, a planar
graph does not contain a subgraph homeomorphic to K5 or K3,3. It is remarkable that
Kuratowski [6] could prove that the converse of this result is also true. In the following

u u

v

w w

u u

v

w w
(a) (b)

Figure 20.5 (a) Series merger. (b) Series insertion.

Planarity and Duality � 481

e1

e5

e4

e2

e3

Figure 20.6 Petersen graph.

theorem, we state this celebrated characterization of planarity. Proof of this may be found
in Harary [7].

Theorem 20.4 [6] A graph is planar if and only if it does not contain a subgraph homeo-
morphic to K5 or K3,3. �

See also Tutte [8] for a constructive proof of this theorem.
We now present another characterization of planarity independently proved by Wagner

[9] and by Harary and Tutte [10].

Theorem 20.5 A graph is planar if and only if it does not contain a subgraph contractible
to K5 or K3,3. �

Consider now the graph (known as the Petersen graph) shown in Figure 20.6. This graph does
not contain any subgraph isomorphic to K5 or K3,3, but is known to be nonplanar. So if we
wish to use Kuratowski’s criterion to establish the nonplanar character of the Petersen graph,
then we need to locate a subgraph homeomorphic to K5 or K3,3. However, the nonplanarity
of the graph follows easily from the above characterization, because the graph reduces to
K5 after contracting the edges e1, e2, e3, e4, and e5. MacLane’s characterization of planar
graphs is stated next.

Theorem 20.6 A graph G is planar if and only if there exists in G a set of basis circuits
such that no edge appears in more than two of these circuits. �

We know that the meshes of a planar graph form a basis of the circuit subspace of the graph,
and that no edge of the graph appears in more than two of the meshes. This proves the
necessity or Theorem 20.6. The proof of the sufficiency may be found in MacLane [11].

Another important characterization of planar graphs in terms of the existence of dual
graphs is discussed in Section 20.6.

20.5 DUAL GRAPHS

A graph G1 is a dual of a graph G2 if there is a one-to-one correspondence between the edges
of G1 and those of G2 such that a set of edges in G1 is a circuit vector of G1 if and only
if the corresponding set of edges in G2 is a cutset vector of G2. Duals were first defined by
Whitney [12], though his original definition was given in a different form.

482 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

e1

e5

e7 e8
e∗8

e∗5

e∗2e∗1

e∗4

e∗7

e4

e2
e3

e∗3

e6

e∗6

(a) (b)

Figure 20.7 Dual graphs: (a) graph G1 and (b) graph G2.

Clearly, to prove that G1 is a dual of G2 it is enough if we show that the vectors forming
a basis of the circuit subspace of G1 correspond to the vectors forming a basis of the cutset
subspace of G2.

For example, consider the graphs G1 and G2 shown in Figure 20.7. The edge ei of G1
corresponds to the edge e∗

i of G2. It may be verified that the circuits {e1, e2, e3}, {e3, e4, e5, e6},
and {e6, e7, e8} form a basis of the circuit subspace of G1, and the corresponding sets of edges
{e∗

1, e∗
2, e∗

3}, {e∗
3, e∗

4, e∗
5, e∗

6}, and {e∗
6, e∗

7, e∗
8} form a basis of the cutset subspace of G2. Thus

G1 is a dual of G2.
We next study some properties of the duals of a graph.

Theorem 20.7 Let G1 be a dual of a graph G2. Then a circuit in G1 corresponds to a cutset
in G2 and vice versa.

Proof. Let C∗ be a circuit in G1 and C be the corresponding set of edges in G2.
Suppose that C is not a cutset in G2. Then it follows from the definition of a dual that

C must be the union of disjoint cutsets C1, C2, . . ., Ck.
Let C∗

1, C∗
2, . . ., C∗

k be the sets of edges in G1 which correspond to the cutsets C1,
C2, . . ., Ck. Again from the definition of a dual it follows that C∗

1, C∗
2, . . ., C∗

k are circuits or
unions of disjoint circuits.

Since C∗ is the union of C∗
1, C∗

2, . . ., C∗
k, it is clear that C∗ must contain more than one

circuit. However, this is not possible, since C∗ is a circuit, and no proper subset of a circuit
is a circuit. Thus k = 1, or in other words, C is a cutset of G2.

In a similar way we can show that each cutset in G2 corresponds to a circuit in G1. �

Theorem 20.8 If G1 is a dual of G2, then G2 is a dual of G1.

Proof. To prove the theorem we need to show that each circuit vector of G2 corresponds to
a cutset vector of G1 and vice versa.

Let C be a circuit vector in G2, with C∗ denoting the corresponding set of edges in G1.
Since every circuit and every cutset have an even number of common edges, C has an even
number of common edges with every cutset vector of G2. Since G1 is a dual of G2, C∗ has
an even number of common edges with every circuit vector of G1. Therefore, C∗ is a cutset
vector of G1 (see Theorem 7.17). In a similar way, we can show that each cutset vector of G1
corresponds to a circuit vector of G2. Hence the theorem. �
In view of the above theorem we refer to graphs G1 and G2 as simply duals if any one of
them is dual of the other.

The following result is a consequence of Theorem 20.8 and the definition of a dual.

Planarity and Duality � 483

Theorem 20.9 If G1 and G2 are dual graphs, then the rank of one is equal to the nullity of
the other; that is

ρ(G1) = μ(G2)
and

ρ(G2) = μ(G1). �

Suppose a graph G has a dual. Then the question arises whether every subgraph of G has a
dual. To answer this question we need the following result.

Theorem 20.10 Consider two dual graphs G1 and G2. Let e = (v1, v 2) be an edge in G1,
and e∗ = (v∗

1 , v∗
2) be the corresponding edge in G2. Let G′

1 be the graph obtained by removing
the edge e from G1; let G′

2 be the graph obtained by contracting e∗ in G2. Then G′
1 and G′

2 are
duals, the one-to-one correspondence between their edges being the same as in G1 and G2.

Proof. Let C and C∗ denote corresponding sets of edges in G1 and G2, respectively.
Suppose C is a circuit in G′

1. Since it does not contain e, it is also a circuit in G1. Hence
C∗ is a cutset, say, 〈V ∗

a , V ∗
b 〉, in G2. Since C∗ does not contain e∗, the vertices v∗

1 and v∗
2 are

both in V ∗
a or in V ∗

b . Therefore C∗ is also a cutset in G′
2. Thus every circuit in G′

1 corresponds
to a cutset in G′

2.
Suppose C∗ is a cutset in G′

2. Since C∗ does not contain e∗, it is also a cutset in G2.
Hence C is a circuit in G1. Since it does not contain e, it is also a circuit in G′

1. Thus every
cutset in G′

2 corresponds to a circuit in G′
1. �

In the view of this theorem, we may say, using the language of electrical network theory, that
open-circuiting an edge in a graph G corresponds to short-circuiting the corresponding edge
in a dual of G.

A useful corollary of Theorem 20.10 now follows.

Corollary 20.6 If a graph G has a dual, then every edge-induced subgraph of G also has a
dual.

Proof. The result follows from Theorem 20.10, if we note that every edge-induced subgraph
H of G can be obtained by removing from G the edges not in H. �
To illustrate the above corollary, consider the two dual graphs G1 and G2 of Figure 20.7.
The graph G′

1 shown in Figure 20.8a is obtained by removing from G1 the edges e3 and e6. The
graph G′

2 of Figure 20.8b is obtained by contracting the edges e∗
3 and e∗

6 of G2. It may be
verified that G′

1 and G′
2 are duals.

Observing that series edges in a graph G correspond to parallel edges in a dual of G, we
get the following corollary of Theorem 20.10.

Corollary 20.7 If a graph G has a dual, then every graph homeomorphic to G also has a
dual. �

We now proceed to develop an equivalent characterization of a dual.
Let G be an n-vertex graph. We may assume without loss of generality that it is connected.

Let K∗ be the subgraph of G, and let G′ be the graph obtained by contracting the edges of
K∗. Note that G′ is also connected.

If K∗ has n∗ vertices and p connected components then G′ will have n− (n∗ −p) vertices.
Therefore, the rank of G′ is given by

ρ(G′) = n − (n∗ − p) − 1
= ρ(G) − ρ(K∗).

(20.1)

484 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

e1

e5

e7 e8

e∗8e∗5e∗2e∗1 e∗4e∗7e4

e2

(a) (b)

Figure 20.8 Dual graphs: (a) graph G′
1 and (b) graph G′

2.

Theorem 20.11 Let G1 and G2 be two graphs with a one-to-one correspondence between
their edges. Let H be any subgraph of G1 and H∗ the corresponding subgraph in G2. Let K∗

be the complement of H∗ in G2. Then G1 and G2 are dual graphs if and only if

μ(H) = ρ(G2) − ρ(K∗). (20.2)

Proof. Necessity: Let G1 and G2 be dual graphs. Let G′
2 be the graph obtained from G2 by

contracting the edges of K∗. Then by Theorem 20.10, H and G′
2 are dual graphs. Therefore,

by Theorem 20.9,
μ(H) = ρ(G′

2).

But by (20.1),
ρ(G′

2) = ρ(G2) − ρ(K∗).

Hence
μ(H) = ρ(G2) − ρ(K∗).

Sufficiency: Assume that (20.2) is satisfied for every subgraph H of G1. We now show that
each circuit in G1 corresponds to a cutset in G2 and vice versa.

Let H be a circuit in G1. Then μ(H) = 1. Therefore by (20.2),

ρ(K∗) = ρ(G2) − 1.

Since H is a minimal subgraph of G1 with nullity equal to 1, and K∗ is the complement of
H∗ in G2, it is clear that K∗ is a maximal subgraph of G2 with rank equal to ρ(G2) − 1. It
now follows from the definition of a cutset that H∗ is a cutset in G2.

In a similar way, we can show that a cutset in G2 corresponds to a circuit in G1. Thus
G1 and G2 are dual graphs. �
Whitney’s [12] original definition of duality was stated as in Theorem 20.11.

To illustrate this definition, consider the dual graphs G1 and G2 of Figure 20.7. A sub-
graph H of G1 and the complement K∗ of the corresponding subgraph in G2 are shown in
Figure 20.9. We may now verify that

μ(H) = ρ(G2) − ρ(K∗).

Planarity and Duality � 485

e1

e3

e7 e∗8
e∗5

e∗4

e6

e2

(a) (b)

Figure 20.9 Illustration of Whitney’s definition of duality. (a) Graph H,μ(H) = 1. (b) Graph
K∗, ρ(k∗) = 2.

20.6 PLANARITY AND DUALITY

In this section we characterize the class of graphs which have duals. While doing so, we relate
the two seemingly unrelated concepts, planarity and duality.

First we prove that every planar graph has a dual. The proof is based on a procedure for
constructing a dual of a given planar graph.

Consider a planar graph and let G be a planar embedding of this graph. Let f1, f2, . . .,
fr be the regions of G. Construct a graph G∗ defined as follows:

1. G∗ has r vertices v∗
1 , v∗

2 , . . ., v∗
r , vertex vi, 1 ≤ i ≤ r, corresponding to region fi.

2. G∗ has as many edges as G has.

3. If an edge e of G is common to the regions fi and fj (not necessarily distinct), then the
corresponding edge e∗ in G∗ connects vertices v∗

i and v∗
j . (Note that each edge e of G

is common to at most two regions, and it is possible that an edge may be in exactly
one region.)

A simple way to construct G∗ is to first place the vertices v∗
1 , v∗

2 , . . ., v∗
r , one in each region

of G. Then, for each edge e common to regions fi and fj , draw a line connecting v∗
i and v∗

j

so that it crosses the edge e. This line represents the edge e∗.
The procedure for constructing G∗ is illustrated in Figure 20.10. The continuous lines

represent the edges of the given planar graphG and the dashed lines represent those of G∗.
We now prove that G∗ is a dual of G.
Let C1, C2, . . ., Cr−1 denote the meshes of G, and C∗

1 , C∗
2 , . . ., C∗

r−1, denote the corre-
sponding sets of edges in G∗. It is clear from the procedure used to construct G∗ that the
edges in C∗

i are incident on the vertex v∗
i and form a cut whose removal will separate v∗

i from
the remaining vertices of G∗.

By Theorem 20.3, C1, C2, . . ., Cr−1 form a basis of the circuit subspace of G, and we know
that the incidence vectors C∗

1 , C∗
2 , . . ., C∗

r−1 form a basis of the cutset subspace of G∗. Since
there is a one-to-one correspondence between C

′
is and C∗′

i s, G and G∗ are dual graphs. Thus
we have the following theorem.

Theorem 20.12 Every planar graph has a dual. �

The question that immediately arises now is whether a nonplanar graph has a dual. The
answer is no and it is based on the next two lemmas.

486 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Figure 20.10 Construction of a dual.

Lemma 20.1 K3,3 has no dual.

Proof. First observe that

1. K3,3 has no cutsets of two edges.

2. K3,3 has circuits of length four or six only.

3. K3,3 has nine edges.

Suppose K3,3 has a dual G. Then these observations would, respectively, imply the following
for G:

1. G has no circuits of two edges; that is, G has no parallel edges.

2. G has no cutsets with less than four edges. Thus every vertex in G is of degree at
least 4.

3. G has nine edges.

The first two of the above imply that G has at least five vertices, each of degree at least 4.
Thus G must have at least (1/2) × 5 × 4 = 10 edges. However, this contradicts observation
3. Hence K3,3 has no dual. �

Lemma 20.2 K5 has no dual.

Proof. First observe that

1. K5 has no circuits of length one or two.

2. K5 has cutsets with four or six edges only.

3. K5 has 10 edges.

Planarity and Duality � 487

Suppose K5 has a dual G. Then by observation 2, G has circuits of lengths four and six only.
In other words, all circuits of G are of even length. So G is bipartite.

Since a bipartite graph with six or fewer vertices cannot have more than nine edges, it is
necessary that G has at least seven vertices. But by observation 1 the degree of every vertex
of G is at least 3. Hence G must have at least (1/2) × 7 × 3 > 10 edges. This, however,
contradicts observation 3. Hence K5 has no dual. �
The main result of this section now follows.

Theorem 20.13 A graph has a dual if and only if it is planar.

Proof. The sufficiency part of the theorem is the same as Theorem 20.12.
We can prove the necessity by showing that a nonplanar graph G has no dual. By Kura-

towski’s theorem, G has a subgraph H homeomorphic to K3,3 or K5. If G has a dual, then
by Corollary 20.6, H has a dual. But then, by Corollary 20.7, K3,3 or K5 should have a dual.
This, however, will contradict the fact that neither of these graphs has a dual. Hence G has
no dual. �
The above theorem gives a characterization of planar graphs in terms of the existence of dual
graphs and was originally proved by Whitney. The proof given here is due to Parsons [13].
Whitney’s original proof, which does not make use of Kuratowski’s theorem, may be found
in [14].

From the procedure given earlier in this section it is clear that different (though isomor-
phic) planar embeddings of a planar graph may lead to nonisomorphic duals. The following
theorem presents a property of the duals of a graph.

Theorem 20.14 All duals of a graph G are 2-isomorphic; every graph 2-isomorphic to a
dual of G is also a dual of G. �

The proof of this theorem follows from the definition of a dual and a result by Whitney on
2-isomorphic graphs [15].

Summary and Related Works

Whitney [5,12,15,16], and books by Seshu and Reed [14], Ore [17], Harary [7], Bondy and
Murty [18], and West [19] are recommended for further reading on planar graphs.

Two properties of a nonplanar graph G which are of interest are:

1. The minimum number of planar subgraphs whose union is G; this is called the thickness
of G.

2. The minimum number of crossings (or intersections) in order to draw a graph on a
plane; this is called the crossing number of G.

For several results on the thickness and the crossing numbers of a nonplanar graph, see
Harary [7], Bondy and Murty [18], and West [19]. See also Bose and Prabhu [20].

References

[1] K. Thulasiraman and M.N.S. Swamy, Graphs: Theory and Algorithms, Wiley-Inter-
science, New York, 1992.

[2] K. Wagner, Bemerkungen zum Vierfarbenproblem, Üeber. Deutsch. Math.-Verein, 46
(1936), 26–32.

488 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[3] I. Fary, On straight line representation of planar graphs, Acta Sci. Math. Szeged, 11
(1948), 229–233.

[4] S.K. Stein, Convex maps, Proc. Am. Math. Soc., 2 (1951), 464–466.

[5] H. Whitney, Non-separable and planar graphs, Trans. Am. Math. Soc., 34 (1932),
339–362.

[6] C. Kuratowski, Sur le Problème des courbes gauches en topologie, Fund. Math., 15,
(1930), 271–283.

[7] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.

[8] W.T. Tutte, How to draw a graph, Proc. Lond. Math.Soc., 13 (1963), 743–767.

[9] K. Wagner, Über eine Eigneschaft der ebenen Komplexe, Math. Ann., 114 (1937),
570–590.

[10] F. Harary and W.T. Tutte, A dual form of Kuratowski’s theorem, Can. Math. Bull., 8
(1965), 17–20.

[11] S. MacLane, A structural characterization of planar combinatorial graphs, Duke Math.
J., 3 (1937), 340–372.

[12] H. Whitney, Planar graphs, Fund. Math., 21 (1933), 73–84.

[13] T.D. Parsons, On planar graphs, Am. Math. Monthly, 78 (1971), 176–178.

[14] S. Seshu and M. B. Reed, Linear Graphs and Electrical Networks, Addison-Wesley, Read-
ing, MA, 1961.

[15] H. Whitney, 2-Isomorphic graphs, Am. J. Math., 55 (1933), 245–254.

[16] H. Whitney, A set of topological invariants for graphs, Am.J. Math. 55 (1933), 231–235.

[17] O. Ore, The Four Colour Problem, Academic Press, New York, 1967.

[18] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, Berlin, Germany, 2008.

[19] D.B.West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ, 2001.

[20] N.K. Bose and K. A. Prabhu, Thickness of graphs with degree constrained vertices,
IEEE Trans. Circ. Sys., CAS-24 (1975), 184–190.

C H A P T E R 21

Edge Addition Planarity
Testing Algorithm
John M. Boyer

CONTENTS

21.1 Introduction . 489
21.2 Overview of Edge Addition Planarity . 493
21.3 Walkdown . 495

21.3.1 Example of Walkdown Processing . 497
21.4 Proof of Correctness . 499
21.5 Efficient Implementation . 502

21.5.1 Graph Storage and Manipulation . 502
21.5.2 Sorted Child Lists and Forward Edge Lists . 503
21.5.3 Systematic Walkdown Invocation and Nonplanarity Detection 503
21.5.4 Pertinence Management with Walkup . 504
21.5.5 Future Pertinence Management . 505
21.5.6 Merging, Flipping, and Embedding Recovery . 505
21.5.7 External Face Management . 509
21.5.8 Coda . 510

21.6 Isolating an Obstruction to Planarity . 511
21.7 Drawing a Visibility Representation of a Planar Graph . 514

21.7.1 Computing Vertical Positions of Vertices . 514
21.7.1.1 Localized Sense of Up and Down . 515
21.7.1.2 Making the Localized Settings . 515
21.7.1.3 Postprocessing to Generate the Vertex Order 516

21.7.2 Computing Horizontal Positions of Edges . 518
21.7.3 Correctness and Performance . 519

21.8 Conclusion . 522

21.1 INTRODUCTION

A graph is a data structure comprising a set V of vertices and a set E of edges, each edge
corresponding to a pair of vertices called its endpoints. The number of vertices is denoted n,
and the number of edges is denoted m. An edge is incident to its endpoints, and the degree
of a vertex is the number of edges incident to the vertex. A walk is a sequence of vertices
(v0, v1, . . ., vk) and the edges (vi−1, vi) for 0 < i ≤ k. A path is a walk with no repeated
vertex. A cycle is a walk with no repeated vertex except v0 = vk. A vertex v is adjacent to a
vertex w, and has w as a neighbor , if there exists an edge (v, w) in E that associates v with
w. A graph is connected if, for every pair of vertices u and v, there exists a path from u to

489

490 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(a) (b)

Figure 21.1 (a) Nonplanar embedding of K4 and (b) planar embedding of K4.

v in the graph, and a connected component of a graph is a maximal connected subgraph. A
cut vertex of a graph is a vertex whose removal, along with its incident edges, increases the
number of connected components in the graph. A graph with no cut vertices is biconnected,
and a biconnected component of a graph is a maximal biconnected subgraph. A directed edge
(v, w) is an edge in which v is adjacent to w but w is not adjacent to v, and an edge is
undirected if both its endpoints are neighbors. A graph is undirected if, for each neighbor w
of each vertex v, the vertex v is also a neighbor of w. A graph is simple if it contains no
duplicate edges and no loops (edges with both endpoints at the same vertex). In this chapter,
graphs are assumed to be simple and undirected since edge direction, duplicate edges, and
loops are not significant concerns with respect to planarity and since input graphs can easily
be converted to simple undirected graphs.

A graph can be embedded in a plane by placing the vertices at distinct locations in the
plane, such as points, and placing a continuous curve in the plane, such as a line, to connect
the vertex endpoints of each edge. The embedding is planar if none of the edge embeddings
intersect, except at their common endpoints. A planar graph is a graph for which a planar
embedding exists. A planar embedding of a graph divides the plane into connected regions,
called faces, each bounded by edges of the graph. A region of finite area is called a proper
face and is bound by a cycle. The external face is bound by a walk and comprises the plane
less than the union of the proper faces, plus its boundary. The interior region of a face is its
region less its boundary. Figure 21.1a depicts an embedding of K4, a graph with four vertices
and six edges, and Figure 21.1b shows a planar embedding of K4.

The planar graph embedding problem is typically divided into a geometric component
and a combinatorial component. A planar drawing is a geometric planar embedding that
associates locations (point sets) of the plane with vertices and edges. There are many kinds
of planar drawings with different geometric characteristics, and the underlying combina-
torial component of planar graph embedding is independent of these differences. A com-
binatorial planar embedding is a consistent edge ordering for each vertex that determines
the bounding edges of the planar embedding faces. The sequential edge order of a vertex
is called its orientation because it corresponds to a clockwise (or counterclockwise) order
for the edges in a geometric planar embedding of the graph. Hence, the combinatorial pla-
nar embedding is an equivalence class of planar drawings described by the orientations of
each vertex ([1], p. 7). For any consecutive pair of edges ei and ej incident to a vertex v,
the entire boundary of the face containing the corner (ei, v, ej) can be traversed by start-
ing at e = ej and w = v then iteratively obtaining the next w as the neighbor indicated
by e and then the next e as the successor of e in the edge order of w. The iteration ends suc-
cessfully when it returns to v via the e becoming equal to ei. The boundaries of all faces can
be obtained in this way, and the edges can be marked as they are visited to ensure each edge
is used in only two face boundaries and only once per face boundary. Lastly, the number of
faces f produced by all m edges and n vertices in a connected component is governed by the

Edge Addition Planarity Testing Algorithm � 491

(a) (b)

Figure 21.2 Planar obstructions (a) K5 and (b) K3,3.

well-known Euler formula f = m − n + 2. Thus, a combinatorial planar embedding provides
a testable certification of the planarity of a graph.

It is also desirable to have a simple certificate of nonplanarity for a nonplanar graph,
in part so that the output of a planarity algorithm implementation can be checked for
correctness regardless of the input. Due to Euler’s formula above, it is known that any graph
with more than 3n − 6 edges is not planar since the boundary of each face must contain at
least three edges. For this reason, planarity processing is typically restricted on input to a
subgraph of at most 3n − 5 edges, but an excess of edges does not certify nonplanarity as
there are many nonplanar graphs with 3n − 6 or fewer edges. The first characterization of
planarity by Kuratowski [2] showed that it is always possible to create a simple certificate
of nonplanarity for nonplanar graphs. A series reduction replaces a degree two vertex v with
an edge connecting the two neighbors of v. An edge subdivision is the inverse of a series
reduction. A graph G has a subgraph homeomorphic to H if vertex and edge deletions can
be performed on G so that the remaining subgraph can be converted to H by performing
any sequence of series reductions or edge subdivisions. Kuratowski proved that a graph is
planar if and only if it contains no subgraph homeomorphic to either of two graphs, which
are denoted K5 or K3,3 and depicted in Figure 21.2. Essentially, any nonplanar graph must
contain a subgraph that structurally matches K5 or K3,3, except that the edges of the K5 or
K3,3 could be paths in the original graph.

In the subsequent planarity characterization by Wagner [3], the series reduction and edge
subdivision operations are replaced by the edge contraction operation, which removes an
edge e = (u, v) and replaces u and v and their incident edges with a single vertex w whose
neighbors are the vertices that were neighbors of u and v. Duplicate edges between w and
the common neighbors of u and v can be easily detected and reduced to single edges so
that the graph remains simple. A graph G contains a minor of a graph H, that is an H
minor, if a subgraph of G can be converted to H by applying zero or more edge contractions.
Wagner proved that a graph is planar if and only if it contains neither a K5 minor nor a K3,3
minor.

The edge addition planarity algorithm [4] described in this chapter constructs a combina-
torial planar embedding by adding each edge from the input graph while preserving planarity.
If the algorithm becomes unable to embed an edge while preserving planarity, then the proof
of correctness shows that the input graph contains a K5 minor or a K3,3 minor. Graph minors
are used in the proof because they allow the structural components leading to nonplanarity
to be more succinctly depicted. The proof provides an alternative planarity characteriza-
tion those of Kuratowski and Wagner because it not only presents a set of five nonplanar
graph minors, but it also proves by contradiction that the set is complete. For a nonplanar
graph, a post-processing step can be used to isolate a subgraph homeomorphic to K5 or K3,3.
This process is typically called Kuratowski subgraph isolation. Although graph minors are
more powerful for the mathematical characterization of the correctness of the algorithm, a

492 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

subgraph homeomorphic to K5 or K3,3 is a more easily validated certificate of nonplanarity
for a graph.

The first linear-time graph planarity test is due to Hopcroft and Tarjan [5] and was based
on a path addition technique. A particular cycle C is embedded first, and then each path P is
attached to C, either on the inside or the outside of C in order to avoid crossing previously
embedded paths whose attachment points to C may overlap those of P .

A conceptually simpler vertex addition planarity test had its start with Lempel et al.
[6]. A flip operation on a planar embedding of a biconnected component reverses the orien-
tations of the vertices in the biconnected component. The Lempel–Even–Cederbaum algo-
rithm begins by creating an st-numbering for a biconnected graph, which is a vertex ordering
wherein every vertex has a path of lower numbered vertices that connect to the least num-
bered vertex s and a path of higher numbered vertices leading to the last vertex t. Thus,
for each value of k from s to t, there must exist an embedding G̃k of the first k vertices
such that the remaining vertices can be embedded in a single face of G̃k. The adjustment
of a partial embedding G̃k to obtain G̃k+1 consists of permutations at cut vertices and flips
of biconnected components of G̃k. The Lempel–Even–Cederbaum planarity test was opti-
mized to linear time by a pair of contributions. Even and Tarjan [7] optimized st-numbering.
Booth and Lueker [8] developed a comprehensive data structure called a PQ-tree that could
efficiently track which parts of G̃k could be permuted or flipped in order to add a new
vertex while preserving planarity.

Achieving linear-time performance for either the Hopcroft–Tarjan method or the Lempel–
Even–Cederbaum method is considered to be quite complex (e.g., see [9,10]). There are other
planarity characterizations that also lead to complex linear-time planarity algorithms, such
as [11–13]. However, recent advancements in combinatorial planar embedding techniques have
yielded substantially simpler new vertex addition methods in which the st-numbering and
PQ-tree are replaced by depth-first search (DFS) and simpler data structures (see [14,15]
and [16,17]). These new vertex addition methods were rationalized with PQ-tree operations
in [18].

The planarity algorithm [4] described in this chapter is not a vertex addition method,
though its topmost level is guided by some of the same principles as the vertex addition
method in [14]. However, the processing model and proof of correctness are defined in terms
of edge addition as the atomic operation of combinatorial planar embedding. By comparison,
the path and vertex addition methods may be regarded as batch methods that have greater
complexity because they must determine whether a whole path or a vertex and all incident
edges can be added while preserving planarity. In this regard, the edge addition method is
more closely aligned to the task of planar embedding, which is fundamentally about ensuring
that an edge does not cross any other edge when it is embedded.

The remaining sections of this chapter provide a detailed exposition of the Boyer–Myrvold
edge addition planarity algorithm as follows. Section 21.2 provides the key definitions and
describes the top-level processing, while Section 21.3 presents the core method of the
algorithm, called the Walkdown. Section 21.4 provides the proof of correctness, Section 21.5
describes techniques for efficient implementation of the algorithm, and Section 21.6 provides
additional techniques for postprocessing a nonplanar graph to obtain a minimal subgraph
obstructing planarity, that is, a subgraph homeomorphic to K3,3 or K5. Section 21.7 describes
an augmentation to the edge addition planarity algorithm that produces a particular kind of
planar drawing for planar graphs. Lastly, Section 21.8 provides concluding remarks, including
information about a reference implementation and several related problems that can be solved
by the edge addition planarity method.

Edge Addition Planarity Testing Algorithm � 493

21.2 OVERVIEW OF EDGE ADDITION PLANARITY

The edges of a simple undirected input graph G are added one at a time to a combinatorial
planar embedding G̃ in such a way that planarity is preserved with each edge addition.
Throughout the process, G̃ is managed as a collection of planar embeddings of the biconnected
components that develop as each edge is embedded. Initially, a DFS is performed [19] to
number each vertex according to its visitation order and to distinguish a spanning tree
called a DFS tree in each connected component. Each undirected edge in a DFS tree is
called a tree edge, and each undirected edge not in a DFS tree is called a back edge. The
DFS tree of each connected component establishes parent, child, ancestor, and descendant
relationships among the vertices in the component. Each vertex has a lower DFS number
than its children and descendants and a higher number than its parent and ancestors, except
the DFS tree root is a vertex with no parent or ancestors. The vertex endpoints of a DFS
back edge share the ancestor–descendant relationship. A cut vertex r in G̃ separates at least
one DFS child c of r from the DFS ancestors (and any other DFS children) of r. A virtual
vertex is an extra vertex in G̃ (but not in G) that is used to represent r in the separate
biconnected component containing c. The virtual vertex is denoted rc, or simply r′ when the
child identity is unimportant. The virtual vertex rc is the root of the biconnected component
Brc that contains c.

For each DFS tree edge (v, c) of G, a singleton biconnected component (vc, c) is added
to G̃. Then, each back edge of G is added to G̃ in an order that is partially organized into
steps based on the depth-first index (DFI) order of the vertices. For each vertex v, each back
edge between v and a DFS descendant of v that can be added while preserving planarity is
embedded in G̃. Each DFS tree of vertices is processed in a bottom-up fashion by simply
using reverse DFI order. Thus, the back edges between a vertex v and its DFS ancestors are
embedded in the future steps in which those ancestors are processed.

A single new back edge (v, w) has the potential to eliminate cut vertices in G̃. To add
a back edge (v, w) to G̃, any previously separable biconnected components are first merged,
as is shown in the example in Figure 21.3. In the diagram, r is no longer a cut vertex once
an edge representing (v, w) is added, so the child biconnected component rooted by the
virtual vertex r′ is merged with the parent biconnected component containing the nonvirtual
vertex r. Then, the back edge (vc, w) is embedded to complete the biconnection. A back edge
(v, w) is always added incident to a virtual vertex vc, where c is a DFS ancestor of w, because
the back edge does not biconnect w and the parent of v. In some future step when a back
edge is added that biconnects w and the parent of v, then vc will be merged with v, and the
edge (vc, w) will become (v, w) due to that merge operation, just as the edges incident to r′

were transferred to r in the merge operation depicted in Figure 21.3.
The adjacency list nodes for a back edge (vc, w) are added to either the start or end of

the adjacency lists of vc and w so that the new edge appears along the external face of the
biconnected component. The new edge also forms a new proper face that includes any cut
vertex merge points and selected external face paths between vc and w. In order to select
the paths that form the new proper face, one or more biconnected component embeddings
may need to be flipped during the merge operation. The paths selected are those that do not
contain certain vertices that must remain on the external face boundary when the new back
edge is embedded. For example, in Figure 21.3, the child biconnected component is flipped so
that vertex y stays on the external face boundary. For efficiency, this operation is performed
in amortized constant time using a method described in Section 21.5.

The following are some operational definitions that are used to determine when a vertex
w must be kept on the external face boundary of a biconnected component in G̃. A vertex

494 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

w

y

w

yr′

r

x c

vc

r

x c

vc

(a) (b)

Figure 21.3 (a) Parent biconnected component with cut vertex r and child biconnected compo-
nent rooted by a virtual vertex r′. (b) Adding the back edge (v, w) and merging biconnected
components.

w is active if there is an unembedded back edge e for which w is either the descendant
endpoint or a cut vertex in G̃ on the DFS tree path between the endpoints of e. A vertex w
is inactive if it is not active, and it can become inactive during the embedding of any single
back edge. Since each back edge is embedded incident to a virtual vertex, extending into the
interior region of the external face region, and then incident to the descendant endpoint, the
algorithm keeps all active vertices on the external face boundaries of biconnected components
in G̃ so that a newly embedded edge does not cross an edge of an external face boundary.

A vertex w is pertinent in step v of edge addition processing if it is active due to an
unembedded back edge e incident to v. In this definition, the descendant endpoint of edge e
may be w or a descendant d of w, in which case w has a child biconnected component rooted
by a virtual vertex wc, where c is the root of a DFS subtree containing d. Similarly, a vertex
w is future pertinent in step v if it is active due to an unembedded back edge e incident to
a DFS ancestor u of v. Again, the descendant endpoint of edge e may be w or a descendant
d of w, in which case w has a child biconnected component rooted by a virtual vertex wc,
where c is the root of a DFS subtree containing d. A vertex is only pertinent if it is pertinent
but not future pertinent, and it is only future pertinent if it is future pertinent but not
pertinent.

In [4], a future pertinent vertex was called externally active because it had to be kept
on the external face throughout all edge additions in step v. This equivalence makes sense
for planarity, but extension algorithms can benefit from having a definition of externally
active that differs from future pertinence. For example, the edge addition planarity method
becomes an outerplanarity method by simply making all vertices externally active, and some
extensions that are based on the outerplanarity method still make use of future pertinence
as a separate phenomenon. Under both definitions of the term externally active, a stopping
vertex is externally active but not pertinent; this name refers to the fact that a stopping
vertex terminates an external face traversal of the main edge adding method called the
Walkdown, which is discussed in Section 21.3.

Edge Addition Planarity Testing Algorithm � 495

Algorithm: Edge Addition Planarity
1: Initialize embedding G̃ based on input graph G

2: For each vertex v from n − 1 down to 0
3: Establish pertinence for step v within G̃
4: For each successive DFS child c of v
5: Embed the tree edge (v, c) as a singleton biconnected component (vc, c)
6: Perform Walkdown to embed back edges from vc to descendants of c
7: if any back edge from v to a descendant of c was not embedded
8: Isolate planarity obstruction and return NONPLANAR
9: Postprocess planar embedding and return PLANAR

Figure 21.4 Top-level processing model of the edge addition planarity algorithm.

The definitions related to activity and pertinence are applicable to vertices, but not to
virtual vertices, which are automatically kept on the external face boundaries until they are
merged with the cut vertices they represent. There are, however, analogous definitions for
activity and pertinence for each whole biconnected component. A biconnected component is
active, pertinent, or future pertinent if it contains an active, pertinent, or future pertinent
vertex, respectively. Efficient methods of implementing these definitions are discussed in
Section 21.5. These definitions support the correct operation of the top-level edge addition
processing model presented in Figure 21.4.

Initialization includes performing the DFS, arranging the vertices into DFI order in linear
time, and calculating the least ancestor and lowpoint [19] of each vertex. The edge embedding
process is performed for each vertex v in reverse DFI order, beginning with establishing perti-
nence for step v. The DFS tree edges can be embedded either all at once during initialization
(as in [4]) or a DFS tree edge (v, c) can be embedded as a singleton biconnected component
(vc, c) immediately before embedding the back edges between v and descendants of c.

The back edges between v and its descendants are added systematically for each child c
by traversing the external faces of (vc, c) and its descendant biconnected components. This
traversal is performed by a method called Walkdown. The planarity of G̃ is preserved for each
edge addition that the Walkdown performs, and if the Walkdown is unable to traverse to the
descendant endpoint of any back edge, then the input graph is not planar [4] according to
the proof in Section 21.4.

If the Walkdown successfully embeds all back edges for each child c of each vertex v,
then a planar embedding is produced. For efficiency, especially of biconnected component
flip operations, the consistency of vertex orientation in G̃ is relaxed so that vertices can have
either a clockwise or counterclockwise orientation. Section 21.5 describes efficient techniques
for relaxed orientation and external face management, biconnected component flipping and
merging, and the postprocessing to recover a planar embedding. On the other hand, if the
Walkdown is unable to traverse to the descendant endpoint of any back edge during a step
v, then a subgraph homeomorphic to K3,3 or K5 is obtained using the techniques described
in Section 21.6.

21.3 WALKDOWN

To embed the back edges from a vertex v to its descendants in a DFS subtree rooted by child
c, the Walkdown is invoked on a biconnected component Bvc rooted by the virtual vertex vc.
The Walkdown performs two traversals of the external face of Bvc , corresponding to the two

496 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

opposing external face paths emanating from vc. The traversals perform the same operations
and are terminated by the same types of conditions, so the method of traversal will only be
described once.

A traversal begins at vc and proceeds in a given direction from vertex to vertex along
the external face boundary in search of the descendant endpoints of back edges. Whenever
a vertex is found to have a pertinent child biconnected component, the Walkdown descends
to its root and proceeds with the search. Once the descendant endpoint w of a back edge
is found, the biconnected component roots visited along the way must be merged (and the
biconnected components flipped as necessary) before the back edge (vc, w) is embedded.
An initially empty merge stack is used to help keep track of the biconnected component
roots to which the Walkdown has descended as well as information that helps determine
whether each biconnected component must be flipped when it is merged.

A Walkdown traversal terminates either when it returns to vc or when it encounters a
stopping vertex. If the Walkdown were to proceed to embed an edge after traversing past such
a stopping vertex, then the vertex would not remain on the external face. In planarity testing,
this would be problematic because the stopping vertex is future pertinent, and embedding
an edge corresponding to that future pertinence would cause a path from the stopping vertex
to cross the external face boundary. By comparison, a future pertinent vertex that is also
pertinent does not stop processing because the Walkdown can embed an edge directly to the
vertex or descend to one of its pertinent child biconnected components and merge it without
removing the vertex from the external face.

Observe that if a child biconnected component Bw′ is only pertinent, then after its root
is merged with w, the Walkdown traversal eventually visits the entire external face boundary
of Bw′ and returns to w. By comparison, once the Walkdown descends to a pertinent child
biconnected component that is also future pertinent, the traversal encounters a stopping
vertex before returning to w. To avoid prematurely encountering a stopping vertex, the
Walkdown enforces Rule 21.1.

Rule 21.1 When vertex w is encountered, first embed a back edge to w (if needed) and then
descend to all of its child biconnected components that are only pertinent (if any) before
descending to a pertinent child biconnected component that is also future pertinent.

A similar argument governs how the Walkdown chooses a direction from which to exit a
biconnected component root rs to which it has descended. Both external face paths emanating
from rs are searched to find the first active vertices x and y in each direction. The path along
which traversal continues is then determined by Rule 21.2.

Rule 21.2 When selecting an external face path from the root rs of a biconnected component
to the next vertex, preferentially select the path to a vertex that is only pertinent, if one exists,
and select an external face path to a pertinent vertex otherwise.

If both external face paths from rs lead to vertices that are only future pertinent, then
both are stopping vertices and the entire Walkdown (not just the current traversal) can be
immediately terminated due to a nonplanarity condition.

In general, the Walkdown fails to embed a back edge if it is blocked from traversing to a
pertinent vertex w by stopping vertices x and y appearing along each of the two external face
paths emanating from the root of a biconnected component. In the nonplanarity condition
above, the biconnected component is rooted by r′, where r is a descendant of v. In this
case, the merge stack will be nonempty, and r′ will be on the top of the stack. Otherwise,
the two Walkdown traversals were terminated at distinct stopping vertices x and y, and the
biconnected component Bvc still contains a pertinent vertex w. This second nonplanarity

Edge Addition Planarity Testing Algorithm � 497

u′

x p

v

c

i

w

x p

i

w

x p

i

w

q
w′

d

w′

d
r s

y t

v′

u′

v

c

v′

u′

v

c

v′

c′

p′

r′

p″
q

r s

y t

p′

r′

p″

x p q

i

w
w′

d

u′

v

c

v′

x p q

i

w

w′

d

u′

v

c

v′

r

r

s

s

y t

y t

x p q

i

w

w′

d

u′

v

c

v′

rs

y tr′

p″

w′

d

q

r s

y t

p′

r′

p″

(a) (b) (c)

(d) (e) (f)

Figure 21.5 Example of a Walkdown in step v. Square vertices are future pertinent due to
unembedded back edges (u, d), (u, s), (u, x), and (u, y). Back edges (v, p), (v, q), (v, t), (v, x),
and (v, y) are to be added in step v. (a) Embedding at the start of step v. (b) Merge at
c to add (v, x), then stop counterclockwise traversal. (c) Clockwise traversal visits p and
embeds (v, p). (d) Merge p and p′ and embed (v, q). (e) Flip biconnected component rooted
by p′′, merge p and p′′, merge r and r′, then embed (v, t). (f) Embed (v, y) and stop clockwise
traversal.

condition is detected when the merge stack is empty and the list of unembedded back edges
still contains an edge to a descendant of c. In Section 21.4, the proof of correctness associates
these two nonplanarity conditions with five minors of K3,3 and K5.

21.3.1 Example of Walkdown Processing

This section presents an example that demonstrates the key processing rules of the Walkdown
method. Figure 21.5a presents a partial embedding of a graph at the beginning of step

498 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

v and with the following edges still to embed: (u, d), (u, s), (u, x), (u, y), (v, p), (v, q),
(v, t), (v, x), and (v, y). Note that the vertex i is inactive and the biconnected compo-
nent rooted by w′ is not pertinent. The square vertices are future pertinent; some are also
pertinent, such as p, and others are only future pertinent, such as x and y. Now we will
discuss the actions performed by the Walkdown to embed the back edges from v to its
descendants.

The first traversal in the counterclockwise direction begins at v′, travels to c, then
descends to c′. The first active vertices along the two external face paths are x and p, both
of which are future pertinent and pertinent. The decision to proceed in the direction of x is
therefore made arbitrarily. At x, there is a back edge to embed, so the Walkdown first merges
c and c′ with no flip operation since the traversal direction was consistently counterclockwise
when entering c and exiting c′. After this merge, c becomes nonpertinent because it has no
more pertinent child biconnected components, and it is no longer future pertinent because
it has no separated DFS children with back edge connections to ancestors of v. Figure 21.5b
shows the result of the merge and the embedding of (v, x).

Once the back edge to x has been embedded, the Walkdown determines that x is a
stopping vertex, so the second Walkdown traversal commences in a clockwise direction from
v′ to c. In this example, c became inactive in the first traversal, so the second traversal
proceeds beyond c in the clockwise direction to p.

At p, the back edge (v, p) is embedded first, as shown in Figure 21.5c. Then, the Walkdown
descends to p′, rather than p′′, because Bp′ is only pertinent. Both paths lead to q, which
is only pertinent, so p and p′ are merged and the back edge (v, q) is embedded as shown
in Figure 21.5d. Since q becomes inactive, the Walkdown proceeds to its successor on the
external face, which is p.

In this second visitation of p, the Walkdown again tests whether a back edge to p must
be embedded, but since the back edge has already been embedded, the result is negative.
The Walkdown again tests for pertinent child biconnected components, but this time there
are none which are only pertinent, so the Walkdown descends to p′′. The two external face
paths from p′′ lead to future pertinent vertices r and s, but r is pertinent and s is not, so
the Walkdown selects the counterclockwise direction from p′′ to r. This is contrary to the
clockwise direction by which the Walkdown entered p, so the indication of a flip operation is
pushed onto the merge stack, along with p′′.

The Walkdown proceeds to r, where it finds r has no back edge to embed, but r does
have a pertinent child biconnected component, so the Walkdown descends to r′. The two
external face paths from r′ lead to y and t. While y is pertinent, it is also future pertinent,
whereas t is only pertinent. The clockwise path to t is selected, in opposition to the counter-
clockwise direction used to enter r. Thus, r′ and a flip indicator are pushed onto the merge
stack.

At t, the Walkdown determines that a back edge must be embedded. First, the merge stack
is processed. Br′ is flipped, and r′ is merged with r. Then, p′′ is popped and the component
comprised of Bp′′ merged with Br′ is flipped. Finally, the back edge (v, t) is embedded.
Notice that Br′ is logically flipped a second time, restoring its original orientation. All such
double flips are effectively eliminated using an efficient implementation technique described
in Section 21.5. The logical result of these operations is shown in Figure 21.5e.

The clockwise traversal then continues from vertex t, which is now inactive, to vertex
y. The back edge (v, y) is embedded as shown in Figure 21.5f. Once the back edge to y is
embedded, y is no longer pertinent since it has no pertinent child biconnected components.
Thus, y is a stopping vertex that terminates the second Walkdown traversal.

Edge Addition Planarity Testing Algorithm � 499

21.4 PROOF OF CORRECTNESS

In this section, we prove that the edge addition planarity algorithm described in Sections 21.2
and 21.3 correctly distinguishes between planar and nonplanar graphs. It is clear that the
algorithm maintains planarity of the biconnected components in G̃ during the addition of
each edge. Thus, a graph G is planar if all of its edges are added to G̃, and we focus on
showing that if the Walkdown is unable to embed a back edge between a virtual vertex vc

and a descendant of c, then the graph G is nonplanar.
The Walkdown halts when a traversal descends to the root of a pertinent biconnected

component if both external face paths are blocked by stopping vertices, as depicted in Figure
21.6a. Otherwise, if any back edge from vc to a descendant of c is not embedded, then both
Walkdown traversals were blocked by stopping vertices from reaching a pertinent vertex in
the biconnected component Bvc, as depicted in Figure 21.6b.

These configurations omit unimportant details such as virtual vertices, and unimportant
structure is eliminated using edge contraction and deletion. For example, in Figure 21.6,
all ancestors of v are edge contracted into u. Similarly, the future pertinence of x and y
and the pertinence of w may involve descendant biconnected components in addition to
unembedded back edges, and these descendants are edge contracted into x, y, and w. Hence,
the dashed edge (v, w) represents a back edge connection that the Walkdown was blocked
from completing. The dashed edges (u, x) and (u, y) represent the unembedded back edge
connections from x and y to ancestors of v. The edge (u, v) represents the DFS tree path
from v to the ancestors needed to complete the connections with x and y. Similarly, the edge
(v, r) in Figure 21.6a represents the DFS tree path between v and the root of the pertinent
biconnected component containing the stopping vertices x and y.

w

r

v

u

x y

w

B

v

u

x y

(a) (b)

Figure 21.6 Unembedded back edge configurations for the Walkdown. (a) A K3,3 minor occurs
if the Walkdown descends from v to the root r of a biconnected component, but stopping
vertices x and y block the external face paths to a pertinent vertex w. (b) Both Walkdown
traversals of the external face of a biconnected component B rooted by v encountered stopping
vertices, x and y, and could not reach the pertinent vertex w. Theorem 21.1 proves that this
configuration is accompanied by one of four additional structures that help to form a K3,3
minor or K5 minor.

500 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Since the graph minor Figure 21.6a is a K3,3, the input graph is clearly nonplanar. In the
case of the graph minor in Figure 21.6b, it is natural to ask why did the Walkdown halt
rather than embedding (v, w) before embedding (v, x) or (v, y) so that (v, w) is inside the
bounding cycle of B. In short, Rules 21.1 and 21.2 ensure that additional structure exists
either in the subgraph represented by (v, w) or within B that prevents the Walkdown from
embedding the connection from w to v inside B. An examination of the possibilities yields
additional nonplanarity minors depicted in Figure 21.7(b–e). Theorem 21.1 argues that one
of these five nonplanarity minors must exist if the Walkdown fails to embed a back edge,
and the absence of the conditions that give rise to these nonplanarity minors contradicts the
assumption that the Walkdown failed to embed a back edge.

Theorem 21.1 Given a biconnected component B with root vc, if the Walkdown fails to
embed a back edge from v to a descendant of c, then the input graph G is not planar.

Proof. By contradiction, suppose the input graph G is planar but the Walkdown halts without
embedding a back edge from v to a descendant of c. To do so, the Walkdown must encounter
two distinct stopping vertices, denoted x and y, that prevent traversal to a pertinent vertex,
denoted w. The stopping vertices and pertinent vertex cannot be in a biconnected component
rooted by a descendant r of v, since in that case the graph is nonplanar due to the K3,3 minor
depicted in Figure 21.7a. Hence, assume the Walkdown halted on stopping vertices in the
biconnected component containing vc. �

(a)

w

w

r

v

z

u

vv

u

x y

x yx yx y

(b)

v

w

ww

z

z

u

v

u

u

x y

(c) (d) (e)

Figure 21.7 Edge addition nonplanarity minors A, B, C, D, and E.

Edge Addition Planarity Testing Algorithm � 501

Figure 21.7b depicts the relevant additional structure that exists if w has a pertinent child
biconnected component that is also future pertinent. Embedding the pertinent connection
from w to v would place a future pertinent descendant of w, or one of x or y, inside the
bounding cycle of B. However, this condition cannot arise in a planar graph since the minor
in Figure 21.7b contains a K3,3.

Therefore, we consider conditions related to having an obstructing path inside B that
contains only internal vertices of B except for two points of attachment along the external
face: one along the path v, . . ., x, . . ., w, and the other along the path v, . . ., y, . . ., w. The
obstructing path, which is called an x–y path, contains neither v nor w. If such an x–y path
exists, then the connection from w to v would cross it if the connection were embedded
inside B. We use px and py to denote the points of attachment of the obstructing x–y path.

Figure 21.7c represents the condition in which the x–y path has a high point of attach-
ment, that is closer to v than the stopping vertex. The diagram depicts px attached closer to
v than x, but symmetrically, py could be attached closer to v than y. Given one high point
of attachment, the opposing point of attachment can be edge contracted into the stopping
vertex. None of these cases can occur in a planar graph since the graph minor in Figure 21.7c,
which characterizes these cases, contains a K3,3.

Thus, we consider the cases in which both x–y path attachment points are at or below
the respective stopping vertices. Without loss of generality, the stopping vertices x and y are
edge contracted into the respective points of attachment, px and py, of the x–y path.

Figure 21.7d depicts the condition of having a second path of vertices attached to v that
(other than v) contains vertices internal to B that lead to an attachment point z along the
x–y path. This second path cannot exist in a planar graph since the minor in Figure 21.7d
contains a K3,3.

In Figure 21.7e, a future pertinent vertex exists along the lower external face path strictly
between px and py. Without loss of generality, this vertex can be edge contracted into w.
This condition cannot occur in a planar graph due to the K5 minor in Figure 21.7e.

Since the input graph is assumed to be planar, the above nonplanarity conditions must
be absent. Due to the absence of the condition of Figure 21.7a, the two Walkdown traversals
must have ended on stopping vertices along external face paths in the biconnected component
B rooted by vc. Conjunctive to the contradictive assumption, B has a pertinent vertex w
along the lower external face path strictly between stopping vertices x and y. We address
two cases based on whether or not there is an obstructing x–y path.

If no obstructing x–y path exists, then at the start of step v all paths between x and y in
G̃ contain w. Thus, w is a DFS ancestor of x or y (or both), and it becomes a merge point
when its descendants (x or y or both) are incorporated into B. Due to processing Rule 21.1,
when the Walkdown first visits w, it first embeds a direct back edge from w to v if one
is required and processes the active child biconnected components that are only pertinent.
Thus, w must be pertinent due to a child biconnected component that is also future pertinent.
Yet, this contradicts the pertinence of w since otherwise the input graph is not planar due to
Figure 21.7b.

On the other hand, suppose there is an obstructing x–y path, but the conditions of
nonplanarity minors C, D, and E do not apply. The highest x–y path is the obstructing x–y
path that would be contained by a proper face cycle starting at vc if the internal edges to
vc were removed, along with any resulting separable components. The highest x–y path and
the lower external face path from its attachment points, px to py, formed the external face
of a biconnected component at the beginning of step v. Let r1 denote whichever of px or py

was the root of that biconnected component, and let r2 denote the other of px or py such
that r1 �= r2. Figure 21.8 illustrates an example in which px is r1.

502 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

w
w

r1

r1

r2

r2

v′

v′

px′

px py

py′

y′

x

x y

px

py

y

Figure 21.8 Example of contradiction to assumption of pertinence of w. If there had been
a vertex w that was only pertinent, then Walkdown processing Rule 21.2 would not have
selected the path from p′

y to px since px was not only pertinent but also future pertinent.

Since the condition of Figure 21.7c does not exist, r2 is equal to or an ancestor of one
of x or y and was therefore future pertinent when the Walkdown descended to r′

1. Moreover,
the first active vertex along the path that is now the highest x–y path was r2 because the
condition of Figure 21.7d does not exist. Descending from r′

1 along the path that is now the
lower external face path between px and py, the existence of a pertinent vertex w implies
that there are no future pertinent vertices along the path due to the absence of the condition
of Figure 21.7e. Thus, we reach a contradiction to the pertinence of w since processing Rule
21.2 stipulates that the Walkdown would have preferentially selected the path to w, which is
only pertinent, rather than r2. �

Theorem 21.2 Given a simple undirected graph G, the edge addition planarity algorithm
correctly determines that G is nonplanar or generates a combinatorial planar embedding if
G is planar.

Proof. If G is not planar, then eventually a Walkdown invocation must fail to embed an edge
because no mutation of G̃ perturbs planarity, nor the property that G̃ is a combinatorial
planar embedding, as follows. Adding a tree edge produces a single edge biconnected compo-
nent. Back edges are added into the interior region of the external face and to endpoints on
the external face boundaries of biconnected components. The flip of a planar embedding of
a biconnected component is also a planar embedding. A merge operation adds the adjacency
list of a virtual vertex to its nonvirtual counterpart; both are on external face boundaries, and
the resulting adjacency list order preserves planarity. Due to Theorem 21.1, the Walkdown
fails to embed an edge only if G is not planar. Thus, if G is planar, then all of its edges are
added to G̃, and G̃ is a combinatorial planar embedding of G. �

21.5 EFFICIENT IMPLEMENTATION

21.5.1 Graph Storage and Manipulation

The graph is represented by storing the list of neighbors, or the adjacency list, of each vertex
as a doubly linked list, with the vertex containing links to both the head and the tail of the
adjacency list. The adjacency list can be efficiently traversed and mutated regardless of the
vertex orientation. Each adjacency list node, or arc, indicates a neighbor vertex. The pair of
arcs representing an edge (v, w) are called twin arcs, and the one in v’s list indicates w while

Edge Addition Planarity Testing Algorithm � 503

the other in w’s list indicates v. The twin arcs are stored in consecutive array locations so it
takes constant time to traverse an edge since the location of an arc can be calculated given
the location of its twin arc.

During embedding, each cut vertex is represented by a virtual vertex in each biconnected
component containing one of its DFS children. An efficient implementation relies on constant
time traversal from a virtual vertex rc to its nonvirtual counterpart r. Since each virtual
vertex rc is uniquely associated with a specific DFS child c of the cut vertex r, the virtual
vertex can be stored at location c in an array of virtual vertices. In fact, since a virtual vertex
has an adjacency list whose arcs are the twins of arcs in nonvirtual vertices, it is expedient
to store the virtual vertices in the same array as the nonvirtual vertices by using positions 0
to n − 1 for vertices and positions n to 2n − 1 for virtual vertices. Then, given rc, the vertex
r is obtained by subtracting n to get c, then obtaining the DFS parent value associated
with c.

When a vertex is on the external face boundary of a biconnected component, it is con-
venient to have immediate access to the two arcs that attach the vertex to the external face
boundary. If the adjacency list is noncircular, then a vertex can be equipped with indicators
of both the first and last arcs of its adjacency list. Then, given a vertex w entered via arc
win, traversing to the next vertex x on the external face consists of exiting from the opposing
arc wout from among w’s first and last arcs, then obtaining xin as the twin arc of wout and
obtaining x from the neighbor field of wout. In Section 21.5.7, an optimization of this tech-
nique is presented that helps the Walkdown to avoid repeatedly traversing through paths of
inactive vertices.

21.5.2 Sorted Child Lists and Forward Edge Lists

Several operations are facilitated by equipping each vertex with a sorted DFS child list and
a forward arc list sorted by DFIs of the descendant endpoints. In the initial DFS, it is easy
to construct a sorted list of DFS children since the DFS children of each vertex are visited
in ascending DFI order. Similarly, when a back arc to an ancestor is found by DFS, the
companion forward arc can be added to the forward arc list of the ancestor endpoint. Again,
since vertices are visited in DFI order, the forward arc list of each vertex will be formed in
ascending order of the descendant DFIs.

The child list is a list of the DFS children, not a list of arcs indicating the children, so the
child list is not changed during embedding. The forward arc list contains the actual forward
arcs of the vertex, so when the Walkdown embeds a back edge from vc to a descendant d, the
forward arc indicating d is removed from the forward arc list of v in order to place it in the
adjacency list of vc. Note that the remaining elements of the forward arc list are still sorted
by the DFIs of the descendant endpoints.

21.5.3 Systematic Walkdown Invocation and Nonplanarity Detection

The sorted DFS child list provides the direct ability to perform the systematic iteration of
the DFS children indicated on Line 4 of the pseudo-code in Figure 21.4. The following Lines
5, 6, and 7 perform a constant time tree edge embedding, the invocation of the Walkdown,
and a test for nonplanarity.

Nonplanarity can be detected in constant time because the forward arc list is sorted
and only contains the forward arcs of unembedded edges. After the Walkdown has finished
processing for a particular child ci, there are two cases to consider. If there is no next DFS
child, then the graph is nonplanar if there are any forward arcs left in the forward arc list.
Otherwise, if there is a next DFS child cj , then it is compared to the descendant endpoint

504 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

d of the first element of the sorted forward arc list. If d < cj , then the graph is nonplanar
because d is in the DFS subtree of ci.

21.5.4 Pertinence Management with Walkup

To help manage pertinence, each vertex is equipped with a few extra data members. For each
back edge (v, d) to be embedded in step v, the pertinentEdge member of the descendant d is
used to store the forward arc from v to d. This member has the value NIL when not in use,
so when the Walkdown traverses to each vertex, a constant time query of the pertinentEdge
member detects whether to embed a back edge and provides the forward arc of the edge
to embed. The forward arc of (v, d) is removed from the forward arc list of v, embedded as
(vc, d), and then the pertinentEdge member of d is set to NIL.

Each vertex is also equipped with a member called pertinentRoots, which is used in each
cut vertex to store a list of the roots of the pertinent child biconnected components. The
roots of biconnected components that are only pertinent are stored at the front of the list,
and those that are both pertinent and future pertinent are stored at the back of the list.
Thus, after a Walkdown traversal processes the pertinentEdge member of a vertex w, it need
only obtain the first element, if any, of its pertinentRoots list. If the list is empty, then w has
become inactive and the Walkdown proceeds to the next vertex on the external face. If the
list is nonempty, then the first element will be the root of an only pertinent biconnected
component unless there are none.

The settings for pertinentEdge and pertinentRoots for each vertex are made in Line 3
of the pseudo-code in Figure 21.4. For each arc e in the forward arc list, a process called
Walkup is performed. The Walkup first sets the pertinentEdge member to e in the descendant
endpoint d indicated by e. Then, for each cut vertex r in G̃ between d and the current vertex
v, there is a child c of r that is ancestor to d. The Walkup ensures that rc is stored in the
pertinentRoots list of r.

The Walkup arrives at a first vertex w within a biconnected component in one of two
ways. Either w is the descendant endpoint d of a forward arc from v, or w is a cut vertex
r in G̃ along the DFS tree path between v and d. Either way, starting at a vertex w, the
Walkup traverses the external face of the biconnected component containing w in search of
the root r′. When it is found, it is placed in the pertinentRoots list of r, at the end if the
biconnected component is future pertinent and at the beginning otherwise. Then, the Walkup
reiterates this process by setting w equal to r, except it terminates when the biconnected
component root found by this process is v′. Two optimization techniques are used to ensure
that Walkup processing takes linear time in total.

The first optimization technique is visitation detection. As the Walkup visits vertices
along the external face paths of biconnected components, each is marked as visited in step
v. Then, if a Walkup invocation encounters a vertex w that is marked visited in step v, then
that invocation is terminated because a prior Walkup invocation for another forward arc of
v has already recorded all of the pertinent roots for all ancestors of w.

The second optimization technique is parallel face walking. When the Walkup starts at a
vertex w in a biconnected component, it simultaneously traverses both external face paths
emanating from w in search of the root of the biconnected component containing w. A single
loop advances two vertex variables so that the root r′ is found by the shorter external face
path. Later, when the Walkdown embeds the forward arc (v′, d), either the shorter or the
longer external face path will become part of a proper face in the embedding. Therefore, when
combined with visitation detection, this technique ensures that the total cost of all Walkup
processing is within a constant factor of the sum of the bounding cycle sizes of proper faces
in the embedding.

Edge Addition Planarity Testing Algorithm � 505

21.5.5 Future Pertinence Management

During embedding initialization, two additional values are calculated and stored for each
vertex. The least ancestor of a vertex v is the ancestor u with the lowest DFI that is directly
adjacent to v by a back edge. This value can be calculated during the initial DFS as
each back edge is identified. The lowpoint is the well-known value originally invented by
Tarjan [19] for helping to identify cut vertices in a graph. The lowpoint of a vertex is the
minimum of its least ancestor value and the lowpoint values of its DFS children. The lowpoint
values of vertices can be computed with a bottom-up traversal of the DFS tree (i.e., post-
order visitation). Furthermore, since outer loop of the edge addition planarity algorithm
performs a bottom-up traversal of the DFS tree, the initial calculation of the lowpoint value
for each vertex v could optionally be deferred until the edge addition planarity algorithm
processing begins for vertex v. This is typically more efficient for nonplanar graphs since
planarity is a rarity, and nonplanarity is often discovered without processing the whole input
graph.

Given the root rc of a biconnected component Brc , where r is a descendant of the current
vertex v, the biconnected component is determined to be future pertinent in constant time if
the lowpoint of c is less than v. Since some vertex in the DFS subtree rooted by c has a back
edge to an ancestor of v, and all back edges for ancestors of v are unembedded, Brc must
contain a future pertinent vertex and is therefore future pertinent. With this operation, it is
a constant time decision whether to place rc at the front or back of the pertinentRoots list
of r when the Walkup visits rc.

A vertex w is future pertinent in step v if its least ancestor value is less than v or if w
has a DFS child c for which there is a future pertinent biconnected component rooted by wc

in G̃. This operation is reduced to a constant time cost via the following optimization.
Each vertex is equipped with a futurePertinentChild member that is initially set equal

to the first child in the DFS child list of the vertex. This member is updated for a vertex at
two times during the embedding process. First, when a root wc is merged with its nonvirtual
counterpart w during a back edge embedding, if the futurePertinentChild value of w is c, then
the futurePertinentChild is advanced to the next child in the DFS child list of w (or becomes
NIL if there is no successor). Second, immediately before testing the future pertinence of
w, if the futurePertinentChild member of w indicates a child whose lowpoint is not less than
v, then the futurePertinentChild is advanced along the DFS child list of w until a child with
a lowpoint less than v is found or until the end of the child list is found, in which case the
futurePertinentChild member becomes NIL. The total cost of initializing and updating the
futurePertinentChild members of all vertices is linear. Yet, if a vertex w has any DFS child c
not in the same biconnected component (due to the first type of update) with a lowpoint less
than v (due to the second type of update), then it is indicated by the futurePertinentChild
member. Thus, a vertex is deemed future pertinent if its least ancestor value is less than
v or if it has a non NIL futurePertinentChild value c for which the lowpoint of c is less
than v.

21.5.6 Merging, Flipping, and Embedding Recovery

When adding a back edge (v′, w) to the embedding G̃, one or more descendant biconnected
components may be merged into the biconnected component Bv′ , and some may be flipped
in order to keep their future pertinent vertices on the external face boundary of Bv′ . Merging
a biconnected component root rc with its nonvirtual counterpart r has a cost commensurate
with the degree of rc, since each must be redirected to indicate r. If the edge used to enter r
does not form a proper face corner with the edge used to exit rc, then a flip operation is

506 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

performed to invert the orientation of rc and form the proper face corner. Then, the adjacency
list of rc is added to r in a constant time list union operation.

As described in Section 21.1, a combinatorial planar embedding provides a consistent
edge ordering for each vertex. To preserve a consistent orientation of vertices in G̃, the
adjacency lists of all vertices in the biconnected component could literally be inverted when
the root is inverted. However, it is easy to create graphs that would require O(n) vertices to
be inverted O(n) times with such a direct biconnected component flip operation. Instead, the
edge ordering in G̃ is relaxed such that the adjacency list order of each vertex is either the
desired forward edge ordering or a reversed edge ordering. Furthermore, when a biconnected
component rooted by rc is flipped, only the virtual vertex rc is inverted and otherwise the
DFS tree edge (r, c) is marked with an inversion sign of −1. The initial inversion sign for
each tree edge is +1. Thus, at any time in the embedding process, and particularly at Line
9 of the pseudo-code in Figure 21.4, a consistent orientation for the adjacency lists of each
vertex in each connected component can be obtained in a single DFS tree traversal that takes
the product of the inversion signs along the ancestor tree path for the vertex and inverts the
edge order of the vertex if the product is −1.

Via this scheme, the embedding G̃ can be regarded as providing a consistent edge order for
each vertex indirectly through the combination of its adjacency list order and the markings
on its ancestor tree edges. For efficiency, the edge marking could be implemented with a
single bit flag, in which case the multiply operation is replaced with exclusive-or. It is also
worth noting that marking the tree edge (r, c) conceptually flips not only the biconnected
component that was rooted by rc but also the entire DFS subtree rooted by c. If done literally,
there would be no harm since the descendant biconnected components would still be planar
embeddings, so there is also no harm in flipping the whole subtree indirectly with a constant
time cost for edge marking. Further, since each biconnected component root is merged only
once, it can be flipped at most once, after which its edges are added to a nonvirtual vertex
and do not participate in any further flip and merge operations. Hence, there is an amortized
constant cost per edge for all flip and merge operations performed during embedding, plus a
single linear-time cost for the post-processing step to eliminate the edge markings and impart
a consistent edge ordering on each vertex. Illustrations of the details of these processes are
provided in Figures 21.9 through 21.11.

2

1

1′

2

1′

0′

3

5 7

6

8
2′

57

6

8

434

1

0′

(a) (b)

Figure 21.9 (a,b) Overview of data structures for flip operation.

Edge Addition Planarity Testing Algorithm � 507

1′

1′,21′,3

2,1′2,3

3,24,2

2,4

6,5
6,7 6,8

8,6

8,5

8,2′

3,1′

1′,4

4,1′

2

7

6

6

2′,5

5,2′

5,6

2′,7 2′,8

2′

34

8

7,6

7,5 5,7 5,8

7,2′

Figure 21.10 Elaboration of data structures before flip operation.

Figure 21.9 presents an overview of the embedding of back edge (1, 7). Figure 21.9a
shows the state of the data structures during step 1 after embedding back edges (1, 3) and
(1, 4). Because vertex 4 is future pertinent, the first Walkdown traversal returns and the
second Walkdown traversal begins at 1′ such that back edge (1, 7) will be embedded around
the right-hand side of the diagram. However, since vertex 8 is also future pertinent, the
biconnected component rooted at 2′ must be flipped so that vertex 8 remains on the external
face boundary when edge (1, 7) is embedded. The result is shown in Figure 21.9b.

An elaboration of Figure 21.9a appears in Figure 21.10. The rounded rectangles repre-
sent adjacency list arcs, or edge records, and the double lines represent the constant-time
connection between twin arcs. The circles represent vertex structures, except that vertices
4 and 8 are represented by squares to indicate their future pertinence. The single lines
with black and white dots for endpoints represent the links that implement the doubly
linked adjacency list format. At this point of the embedding, all vertices still have the same
orientation, that is the adjacency list of each vertex can be traversed in counterclockwise
order by traversing the black dot links to exit the vertex structure and each edge record in
the adjacency list. On the last arc, the black dot link is NIL, but this indirectly indicates
the containing vertex, which can be obtained in constant time using the neighbor member
of the twin arc.

As stated previously, the first Walkdown traversal embeds edges (1, 3) and (1, 4), then
stops at vertex 4. The second Walkdown traversal starts along the right side of edge (1′, 2),

508 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1′

1′,2

2,1′

1′,7
1′,3

3, 1′
4,1′

1′,4

34

2,3

2,7

5,7

5,2

5,6

2,5
2,8

7, 2

7,5

3,2
4,2

2,4

7,1′2

75

6,5
6,8 6,7

6

8,6

8,5

8,2

8

7,6

5,8

Figure 21.11 Data structures after flip and back edge embedding.

and it descends to the pertinent child biconnected component rooted at 2′. Since vertex 7 is
only pertinent, the biconnected component must be flipped before merging so that vertex 8
remains on the external face boundary.

The results of the flip and merge operations can be seen in Figure 21.11. The merge
operation begins by changing all neighbor values for the twin arcs of the arcs in the adjacency
list of 2′ so that they contain 2. Next, the black dot and white dots links in the arcs of 2′ are
inverted. Then, the adjacency list of 2′ is attached into the adjacency list of vertex 2. The
arc (2, 7) is joined with (2, 1), and arc (2, 8) is receives a NIL since it now attaches vertex
2 to the external face boundary.

The diagram of Figure 21.11 shows that the biconnected component has been flipped
relative to Figure 21.10, but looking carefully at the sequence of arcs produced by any set
of black dot or white dot links shows that no work has been done on the adjacency lists of
vertices 5, 6, 7, and 8. For example, in vertex 5, following the black dot links produces the
same sequency of adjacency nodes to the neighbors 2, 7, 6, and then 8. Instead of inverting
the adjacency lists of vertices 5, 6, 7, and 8, the inversion sign mark is affixed to the tree
edge (2, 5).

The final change made in Figure 21.11 is the addition of the back edge (1, 7). The
Walkdown traversal exited vertex 1′ using arc (1′, 2), the new arc (1′, 7) is added between
vertex structure 1′ and arc (1′, 2). Since the Walkdown entered vertex 7 using the arc (7, 2′),

Edge Addition Planarity Testing Algorithm � 509

the new arc (7, 1′) is added between the vertex structure for 7 and the arc (7, 2). Thus, the
new edge was added along the the external face boundary and has formed a new proper face
in the embedding that includes the corner formed by arc (2, 1′), vertex 2, and arc (2, 7).

21.5.7 External Face Management

Based on the detail in Figure 21.11, it is evident that the optimized biconnected compo-
nent flipping technique has affected the structure of the external face boundary. A simple
counterclockwise walk of the external face boundary rooted at 1′ begins with vertex 1′ then
vertices 4, 2, 8, 6, 7 and back to 1′. In detail, the counterclockwise traversal can exit from
black dot links to proceed from vertex 1′ to vertex 4 and then vertex 2. This is because the
adjacency lists of vertices 1′, 4, and 2 have the same orientation. However, to continue in the
counterclockwise direction, the traversal must exit vertex 8 using the white dot link because
the adjacency list of vertex 8 has not been inverted.

To solve this problem, we switch focus from the link used to exit a vertex w, denoted
wout and instead maintain the link used to enter its successor s, denoted sin. Then, when it
is necessary to proceed past s on the external face boundary, the traversal simply selects sout
as the opposing link from sin. For example, if sin was stored as the first arc in s, then the
last arc in the adjacency list of s is chosen to be sout.

Generally, during embedding, only the two edges that affix a vertex to the external face
boundary are important, and the remainder of the adjacency list is preserved only for post-
processing to recover a combinatorial planar embedding or a minimal subgraph obstructing
planarity (see Section 21.6). When a new edge is added incident to a vertex, it is placed
between the two external face edges and becomes one of the two external face edges. It is
possible to represent the external face boundary using a pair of external face links for each
vertex and virtual vertex to indicate the next and previous vertices on the external face
boundary. These links provide an alternative to storing the two arcs of the edges that affix a
vertex to the external face boundary. In [4], special short-circuit edges were described rather
than external face linkages. Either way, a method of optimizing the traversal of the external
face is needed in order to avoid traversing paths of inactive vertices multiple times.

When the Walkdown descends to the root of a pertinent biconnected component, it must
obtain the first active vertices along both external face paths emanating from the root in order
to decide in which direction to continue the traversal. The path along the selected direction
will become part of a proper face, so the cost of traversing that path can be associated as
an additional amortized constant cost per edge of the proper faces of the embedding. The
opposing path remains on the external face boundary. It is possible to construct graphs in
which such a path contains O(n) inactive vertices and is traversed O(n) times, only to have
the Walkdown select the opposing path each time. Therefore, the Walkdown path selection
operation must be optimized to constant time, which can be done by maintaining external
face links throughout the edge addition process.

For a biconnected component with root rc, at the end of the Walkdown of rc in step r,
the stopping vertices x and y are known, along with the entry direction xin and yin for each.
The external face links for rc are set directly to x and y, which enables a future Walkdown
that descends to rc to immediately access x and y without traversing any intervening inactive
vertices. Likewise, the vertex rc is stored in the xin external face link of x and the yin external
face link of y, which eliminates the inactive vertices from the external face boundary in both
traversal directions (from rc to x or y and from x or y to rc).

Finally, in the special case where x and y are equal, the above technique is amended to
avoid creating an external face boundary with only two vertices. This is necessary because it is
challenging to determine whether a vertex is inversely oriented relative to the root rc if both of

510 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

its external face links indicate rc. However, one of the two paths from rc contains an inactive
vertex adjacent to the stopping vertex. If it is the first Walkdown traversal path from rc, then
we let x be the neighboring inactive vertex rather than the stopping vertex y. Otherwise,
we let y be the inactive vertex neighbor of the stopping vertex x. Then, the external face
boundary will contain three vertices. Despite the inactive vertex, a future Walkdown that
descends to rc will still make the correct decision to proceed in the direction of the active
vertex, and it will still do so in constant time.

21.5.8 Coda

The optimization techniques described in this section support the following theorem.

Theorem 21.3 The edge addition planarity algorithm produces a combinatorial planar
embedding of a simple undirected planar graph G in worst case O(n) time.

Proof. The initializations in Line 1 of Figure 21.4 are performed with well-known linear-time
methods, such as the DFS and lowpoint calculations. The iteration of vertices in Line 2 is
a total linear cost, as is the total cost of embedding the DFS tree edges. There is a total
linear cost for pre-computing the sorted DFS child lists and forward edge lists according
to the methods in Section 21.5.2. Various low-level operations are clearly constant time
per operation, such as traversing an edge (due to the twin arc storage mechanism) and
determining the exit edge of a vertex on the external face given the entry edge.

The pertinence in step v is efficiently established via the pre-computed forward edge list
and the Walkup method of Section 21.5.4. At constant cost per back edge, that is linear in
total, each forward edge to a descendant d of v is obtained and used as the starting point
for an invocation of the Walkup. The parallel face-walking ensures that the root of each
biconnected component is found at a cost no greater than twice the length of the path that
will become part of a proper face of G̃ when the edge (v, d) is embedded. Vertex visitation
by the Walkup is tracked in each step v to ensure that a biconnected component root r′ is
not added to the pertinentRoots list of r more than once but also to ensure that paths in
the biconnected components containing r and its ancestors are not traversed more than a
constant number of times in step v. Each setting of pertinentEdge is a constant-time cost
associated with a unique back edge, and each addition of a biconnected component root r′

to a pertinentRoots list can only occur once and is associated with a unique DFS child of r.
Using the pre-computed sorted DFS child lists, each DFS child c of v is obtained and

used to initiate the invocation of each Walkdown on vc in constant time per DFS tree edge,
for a total linear cost. During a vertex visitation by the Walkdown, testing the pertinent-
Edge setting and clearing the setting if an edge is embedded are constant-time operations.
Determining a child biconnect component to which a traversal must descend is a constant-
time decision because the Walkup stores the roots of only pertinent biconnected components
at the front of the list. Deciding the direction of traversal from the root of a biconnected
component is constant-time because the external face management technique ensures the
active vertices are immediate neighbors of the root on the external face boundary. All stack
manipulations related to descending to a child biconnected component are constant time.
Once the descendant endpoint of a back edge is found, the stack pop operations are con-
stant time, and the merge and flip operations are constant time due to the methods in
Section 21.5.6. Future pertinence testing and updating is held constant per test or update
by the methods in Section 21.5.5. Overall, once a back edge is embedded, constant work
is associated with each of the vertices and edges that become part of the newly formed
proper face.

Edge Addition Planarity Testing Algorithm � 511

The Walkdown traversals have additional cost to proceed beyond the descendant endpoint
of the last back edge embedded to find a stopping vertex. However, the cost of traversing
these paths can be associated with the formation of virtual proper faces formed by updating
the external face links, which removes the paths from the external face.

Finally, the sort orders of the DFS child list and the forward edge list ensure there is a
constant time test for whether the Walkdown embedded all of the back edges between v and
descendants of c. After all Walkdown operations have been performed, there is a final linear
cost to resolve the relaxed vertex orientations and produce a combinatorial planar embedding.
Thus, the overall performance for all operations is worse case O(m), where m ≤ 3n − 6 since
G is planar. �

21.6 ISOLATING AN OBSTRUCTION TO PLANARITY

The nonplanarity minors of Figure 21.7 can be used to find a Kuratowski subgraph in a
nonplanar graph (or a subgraph with at most 3n − 5 edges). The first step is to determine
which nonplanarity minor to use. Minors A–D can be used directly to find a subgraph
homeomorphic to K3,3. Minor E is a K5 minor, so a few further tests are performed afterward
to determine whether a subgraph homeomorphic to K3,3 or K5 can be obtained.

Once the input graph is found to be nonplanar, the vertices of G̃ can be consistently
oriented as described in Section 21.5, and the short-circuiting external face links described in
Section 21.5.7 can be discarded. When the nonplanarity condition is detected, the Walkdown
will have just returned from processing the biconnected component Bvc , and the merge stack
will be empty except in the case of nonplanarity minor A, wherein the root r′ of a blocked
descendant biconnected component will be at the top of the merge stack.

Based on the desired biconnected component root, r′ or vc, the two external face paths
from the selected root are searched for the stopping vertices x and y, then the lower external
face path (x, . . ., y) is searched for a pertinent vertex w that the Walkdown could not reach.

If the merge stack was nonempty, it is now possible to invoke the minor A isolator (the
isolators are described below). If the merge stack is empty, then we must choose one of minors
B, C, D, and E. If the last element of the pertinentRoots list of w exists and is the root of a
future pertinent biconnected component, then the minor B isolator is invoked. Otherwise, the
highest x–y path is obtained by temporarily deleting the internal edges incident to vc, then
traversing the proper face bordered by vc and its two remaining edges. Due to the removal
of edges, the boundary of the face will contain cut vertices, which can be easily recognized
and eliminated as their cut vertices are visited more than once during the face walk. Once
the x–y path is obtained, the internal edges incident to vc are restored.

If either px or py is attached high, then the minor C isolator is invoked. Otherwise,
nonplanarity minor D is detected by scanning the internal vertices of the x–y path for a
vertex z whose x–y path edges are not consecutive above the x–y path. If it exists, such a
vertex z may be directly incident to vc or it may have become a cut vertex during the x–y
path test. Either way, the nonplanarity minor D isolator if z is found, and otherwise the
nonplanarity minor E isolator is invoked.

Each isolator marks the vertices and edges to be retained, then deletes unmarked edges
and merges the biconnected components. The edges are added and marked to complete the
pertinent path from w to v and the future pertinence paths from x and y to ancestors of
v. Minors B and E also require an additional edge to complete the future pertinence path
for z. Finally, the tree path is added from v to the ancestor of least DFI associated with
the future pertinence of x, y, and (for minors B and E) z. Otherwise, we mark previously
embedded edges along DFS tree paths, the x–y path and v–z path, and the external face of
the biconnected component containing the stopping vertices.

512 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

To exemplify marking a future pertinence path, we consider the one attached to x (in
any of the nonplanarity minors). If the least ancestor directly attached to x by a back edge
(a value obtained during the lowpoint calculation) is less than v, then let ux be that least
ancestor, and let dx be x. Otherwise, let χ indicate the child of x with the least lowpoint
for which G̃ still contains the root xχ. Then, let ux be the lowpoint of χ, and let dx be the
least descendant endpoint greater than χ from among the endpoints of the forward arcs of
ux. Mark for inclusion the DFS tree path from dx to x, then add and mark the edge (ux, dx).
Future pertinence paths for y and (if needed) z are obtained in the same way.

Marking the pertinent path is similar, except that minor B requires the path to come
from the pertinent child biconnected component containing z. In the other cases, if the
pertinentEdge of w is not NIL, then let dw be w. If the pertinentEdge of w is clear or in the
case of minor B, then we obtain the last element wχ in the pertinentRoots list of w, then
scan the unembedded forward arc list of v for the neighbor dw with least DFI greater than χ.
Finally, mark the DFS tree path dw to w and add and mark the edge (v, dw).

To conclude the K3,3 isolation for minor A, we mark the DFS tree path from v to the
least of ux and uy, and we mark the external face boundary of the biconnected compo-
nent rooted by r. For minor B, we mark the external face boundary of the biconnected
component rooted by vc and the DFS tree path from max(ux, uy, uz) to min(ux, uy, uz).
The path from v to max(ux, uy, uz), excluding endpoints, is not marked because the edge
(u, v) in minor B is not needed to form a K3,3. For the same reason, minors C and D omit
parts of the external face boundary of the biconnected component rooted by vc, but both
require the tree path v to min(ux, uy). Minor C omits the short path from px to v if px

is attached high, and otherwise it omits the short path from py to v. Minor D omits the
upper paths (x, . . ., v) and (y, . . ., v). In all cases, the endpoints of the omitted paths are not
omitted.

For, the minor E isolator, we must determine whether to isolate a K3,3 homeomorph or
a K5 homeomorph. Four simple tests are applied, the failure of which implies that minor E
can be used to isolate a K5 homeomorph based on the techniques described above. The first
test to succeed implies the ability to apply the corresponding minor from Figure 21.12. Minor
E1 occurs if the pertinent vertex w is not future pertinent (i.e., a second vertex z is future
pertinent along the lower external face path strictly between px and py). If this condition
fails, then w = z. Minor E2 occurs if the future pertinence connection from w to an ancestor
uw of v is a descendant of ux and uy. Minor E3 occurs if ux and uy are distinct and at least
one is a descendant of uw. Minor E4 occurs if either px �= x or py �= y.

As with minors A–D, there are symmetries to handle and edges that are not required
to form a K3,3. For minors E1 and E2 it is easier to handle the edge omissions (and sym-
metries) because they reduce to minors C and A, respectively. Minor E3 does not require
(x, w) and (y, v) to form a K3,3, and minor E4 does not require (u, v) and (w, y) to form a
K3,3. Moreover, note that the omission of these edges must account for the fact that px or
py may have been edge contracted into x or y in the depiction of the minor (e.g., eliminat-
ing (w, y) in minor E4 corresponds to eliminating the path (w, . . ., py) but not (py, . . ., y)).
As for symmetries, minor E1 in Figure 21.12a depicts z between x and w along the path
(x, . . ., z, . . ., w, . . ., y), but z may instead appear between w and y. Also, Figure 21.12c depicts
minor E3 with ux an ancestor of uy, but uy could instead be an ancestor of ux. For minor
E4, Figure 21.12d depicts px distinct from x (and py can be equal to or distinct from y),
but if px = x, then py must be distinct from y. Finally, in the symmetric cases, the edges
to delete to isolate the K3,3 homeomorph are different but analogous to those indicated
above.

The techniques described in this section support the following theorem.

Edge Addition Planarity Testing Algorithm � 513

(a) (b)

w

v

z

u

uw

x

w

uxy

uy

uxw

px

v

x y

x

w

y

x

w

y

y

v

v

u

(c) (d)

Figure 21.12 Additional K3,3 minors from the K5 minor E in Figure 21.7: (a) minor E1,
(b) minor E2, (c) minor E3, and (d) minor E4.

Theorem 21.4 Given a simple undirected nonplanar graph G with n vertices, the edge addi-
tion planarity algorithm produces a subgraph homeomorphic to one of K3,3, or K5 in worst
case O(n) time.

Proof. Due to Theorem 21.2, G is correctly determined to be nonplanar in some step v due
to the Walkdown failing to embed at least one back edge while processing some biconnected
component B within the partial embedding G̃. As a corollary of Theorem 21.3, the perfor-
mance is linear in the number of edges embedded up to and including those embedded in step
v since planarity of G̃ is maintained until nonplanarity is discovered. A one-time additional
linear cost can be assumed for establishing pertinence for back edges not embedded in the
step v in which nonplanarity is discovered. The straightforward techniques above then isolate
a subgraph homeomorphic to K3,3 or K5. Thereafter, an additional one-time linear cost is
associated with isolating the Kuratowski subgraph as follows.

The stopping vertices x and y, the pertinent vertex w, the points of attachment px and py

of the x–y path (for minors C, D, and E), and the v–z path (for minor D) are all found with
a cost linear in the size of B. Determining the nonplanarity minor is then a set of constant
time decisions. In the case of minor E, a further set of constant-time decisions determines
which of minors E1 to E4 will be used or whether a subgraph homeomorphic to K5 will be
isolated. For an additional linear cost, we find and embed an edge incident to v and at most
three new edges incident to ancestors of v in order to complete the pertinent and future
pertinence path connections, and the DFS tree path is also embedded from v to the least of

514 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

the ancestors in the future pertinence paths. There is an additional linear cost to mark all
the DFS tree paths and paths within B that are associated with the particular Kuratowski
subgraph being isolated and to delete the unmarked edges previously embedded but not
needed to form the Kuratowski subgraph. Thus, the overall performance for all operations is
worse case O(m). Since any graph with more than 3n − 6 edges is nonplanar, by restricting
the input of G to a subgraph of O(n) edges with m at least min(m, 3n − 5), the worse case
O(n) performance is obtained. �

21.7 DRAWING A VISIBILITY REPRESENTATION OF A PLANAR GRAPH

A visibility representation of a planar graph is a general-purpose planar drawing in which
each vertex is mapped to a horizontal segment at a given vertical position, and each edge is
mapped to a vertical segment that is at a given horizontal position and that terminates at
the vertical positions associated with the endpoint vertices of the edge ([1], p. 25). This type
of planar drawing has sometimes been called a horvert diagram [20].

The dual of a combinatorial planar embedding G̃ is a combinatorial planar embedding H̃
that contains a vertex corresponding to each face of G̃ and an edge for each edge e of G̃ to con-
nect the pair of vertices in H̃ that represent the pair of faces in G̃ that include e in their bound-
aries. The first linear-time algorithms for producing visibility representations were presented
by Tamassia and Tollis [21] and by Rosenstiehl and Tarjan [22]. These algorithms take as
input an st-numbering, a combinatorial planar embedding, and its dual. Jayakumar et al. [20]
augmented the PQ-tree [8] planarity algorithm to also produce a visibility representation, the
stated benefits of which were removing the necessity of pre-computing the dual, reusing the
st-numbering, and using the PQ-tree information available while computing the combinato-
rial planar embedding rather than having a separate algorithm. Although this showed that
it was beneficial to extend an existing planarity algorithm and reuse the information it pro-
duces during planar embedding, the edge addition planarity algorithm derives simplicity in
part from eliminating st-numbering and the PQ-tree, so a different augmentation is required.

This section presents an extension to the core edge addition planarity method that
enables simple, efficient generation of visibility representations [23]. The method does not
pre-compute an st-numbering nor a planar graph dual, and the augmentations are simple
and geometrically intuitive because they are not encumbered by a batch vertex addition pro-
cessing model (e.g., [8,17]). Instead, information is cached at key steps related to adding an
edge or traversing an external face edge. The cached information indicates whether a vertex
shall appear locally above or below its DFS parent relative to a particular DFS ancestor.
In postprocessing, these local markings are converted into a global sense of up and down,
resulting in a vertex order. Then, the vertex positions are used to guide a computational
geometry sweep over the combinatorial planar embedding to assign horizontal positions to
edges. In a final trivial step, the vertex positions are used to assign spanning ranges to the
edges, and the edge positions are used to assign spanning ranges to the vertices.

21.7.1 Computing Vertical Positions of Vertices

Vertices are represented by horizontal segments at vertical positions in the visibility represen-
tation. The horizontal range for each vertex is computed later once the horizontal positions of
the edges are known (see Section 21.7.2). The vertical positions of the vertices are computed
using geometric positioning information collected during planar embedding. To maintain a
linear-time bound, the information collected is relaxed to be only relative positioning of each
vertex compared with its DFS parent and some DFS ancestor. A post-processing step resolves
the relative positioning information into a vertex order.

Edge Addition Planarity Testing Algorithm � 515

21.7.1.1 Localized Sense of Up and Down

To see the geometric intuition for vertex placement, consider the localized, relational posi-
tioning characteristics, for example in Figure 21.5. In a localized sense, v and its ancestors
are above the descendants of v. Then, the descendants that are future pertinent remain below
(in a localized sense) the vertices that are only pertinent or inactive. This is because the back
edges being embedded for v tend to surround vertices that are only pertinent or inactive as
the Walkdown traverses toward stopping vertices, whereas the back edges being embedded
do not surround future pertinent vertices. As vertices become surrounded by edges, they are
placed closer to v, whereas future pertinent vertices are placed farther away from v because
they will be extended horizontally to attach to back edges from the ancestors of v that will
be embedded in future steps of the planar embedder.

Of course, in a future step that processes an ancestor u of v, the biconnected component
containing v and a child c may be regarded as only pertinent (if it contains only back edge
connections to u), so it may be turned upside down, reversing the localized sense of above
and below for relative positions assigned in step v. In fact, such reversals of vertical geometric
orientation can occur any number of additional times before the planar embedder finishes
processing. If all reversals of the vertical direction were immediately and directly processed,
a total linear-time bound could not be achieved. Instead, the terms above and below are
relaxed during the planar embedding. A vertex whose relative positioning is determined in
step v is a descendant of v, and it is marked as being either between its DFS parent and v
or beyond its DFS parent relative to v.

21.7.1.2 Making the Localized Settings

Initially, each vertex is marked beyond its DFS parent relative to the DFS tree root. During
the planar embedding, each vertex is eventually positioned either between or beyond its
DFS parent relative to some ancestor, specifically the vertex v whose back edges are being
embedded at the time the decision is made. The decision is based on whether or not (beyond
or between) the parent is removed from the external face before all vertices in the DFS subtree
rooted by the given child vertex. To make this decision efficiently, we cache some information
that allows us to exploit some structural characteristics of biconnected components and the
result of merging them together.

Figure 21.13 depicts two DFS children f and g of a vertex r while they are still in separated
child biconnected components rooted by virtual copies of r. Note that the virtual vertex root
of a biconnected component has two edges emanating from it to other vertices on the external
face of the biconnected component. When a biconnected component is merged, one of those
edges becomes surrounded, but the other remains on the external face. For example, when
(v′, w) is added, the virtual vertex r′ is merged with r, transforming the edges incident to r′

into edges incident to r. The edge (r, w) no longer appears on the external face, but (r, x) does.
This edge is marked with the identity of the DFS child of the biconnected component root
vertex (f in this case). This marking helps to make a final determination later in processing
about the vertex placement of the child (f in this case) relative to its parent (r in this case)
and some ancestor of the parent.

In the example of Figure 21.13, the Walkdown embeds edge (v′, w) and then proceeds
along the external face until the stopping vertex x is encountered. The Walkdown then
proceeds down the right-hand side of the biconnected component from v′ to r and merges
the biconnected component containing r′′ and g so that the back edge (v′, z) can be embedded.
At this time, the identity of the DFS child g of r is cached on the external face edge (r, y)
and then Walkdown travesal continues until the stopping vertex y is encountered.

516 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

w z
f

w
f

g

f g

z
g

r

x y

x y

v′

r

v′

r′ r″

Figure 21.13 Child biconnected components rooted by r′ and r′′ are merged when back edges
(v′, w) and (v′, z) are added. During the merge, the edge incident to the virtual vertex root
that will remain on the external face is marked with the identity of the DFS child. Above,
(r, x) is marked with f , and (r, y) is marked with g. Initially, f and g are placed beyond r,
but one or both may be changed to between r and some ancestor of r when these marks
are resolved. Note that (r, x) and (r, y) may be edges or paths on the external face, so these
segments are marked using parallel data fields to those used in external face management.

Observe that in a planar graph r cannot have another pertinent child biconnected com-
ponent while both x and y are still future pertinent since it is easy to isolate a subgraph
homeomorphic to K3,3 in that case [14]. Another way to view this fact is that it is not possible
in a future Walkdown for an ancestor of v to reach r again without traversing either the edge
(r, x) or (r, y). If, during step u, the Walkdown traverses a marked edge from descendant (x or
y) to ancestor (r), then the DFS child (f or g, obtained from the marking on the edge) is
determined to be between its parent (r) and the current vertex (u). Similarly, if the Walkdown
traversal goes from the parent to the descendant, then the DFS child is placed beyond the
parent relative to the current vertex. Figure 21.14 depicts the main vertex placement cases
corresponding to the example of Figure 21.13.

Without loss of generality, Figure 21.14a depicts the resolution of the future pertinence of
x (and r, if any) occurring before that of y. The opposing case, in which x is future pertinent
after both r and y, is symmetric. The embedder traverses the edge (r, x) in the direction
from x to r, so the marking f on that edge is used to place f between r and ux. Assuming
r is not still future pertinent in step uy, then the edge (r, y) is traversed from r to y, so the
marking g on that edge is used to place g beyond r relative to ux. Figure 21.14b illustrates
the case in which r is future pertinent after both x and y. In this case, Walkdown traversals
will reach r as a stopping vertex in both directions, so that both children f and g are placed
between their parent r and the ancestor u.

As a final component of making the localized setting, when a vertex such as f is
marked as being between or beyond its parent r relative to the current vertex v, the DFS
child c of v whose subtree contains f is also stored in f . This is needed to help achieve
linear-time operation of the post-processing step that generates the vertex ordering (see
Section 21.7.1.3).

21.7.1.3 Postprocessing to Generate the Vertex Order

The vertical vertex order is a list of size n that provides an absolute positioning for the
vertices, that is vertices appearing earlier in the list appear above those later in the list. The
vertex order is constructed as a doubly linked list to allow O(1) insertion before or after any

Edge Addition Planarity Testing Algorithm � 517

xx

r

y

y

vv
11 2

2
33

ur

uxy

uy

uxr

f g

ww z

z
f

g
r

(a) (b)

Figure 21.14 (a) In embedding step ux, traversing from the descendant x of f to the parent r

of f results in placing f between its parent r and the ancestor ux. Traversing from the parent
r of g to the descendant y of g results in placing g beyond parent r relative to ancestor ux.
(b) Future pertinence at r can result in both children f and g being placed between r and
some ancestor.

node. Each vertex of the input graph receives a pointer to its node in the vertex order when
it is added to the vertex order.

The localized vertex placements collected for each biconnected component during planar
embedding are converted to the vertical vertex order using a pre-order traversal of each DFS
tree. When a vertex is visited to add it to the vertex order, all of its ancestors have already
been added to the vertex order.

The localized information includes a marking of between the DFS parent and a given
ancestor or beyond the DFS parent relative to the given ancestor. We convert the marking
into a decision to insert the vertex immediately above or below its DFS parent in the vertex
order. This conversion has one challenging aspect. Although the parent and the ancestor are
both in the vertex order, their relative positions in the vertex order cannot be determined in
constant time.

Three observations help to solve this problem. First, all ancestors of a vertex have been
marked above or below their parents. Second, a child vertex is added immediately above or
below its parent. Inductively, this means that the entire DFS subtree rooted by a child vertex
appears above or below the parent in the vertex order. Third, as the Walkdown operates over
a biconnected component B rooted by a virtual copy of v, the DFS child c of v in B is known.
When the Walkdown makes a localized vertex placement, this child vertex is also stored (see
Section 21.7.1.2).

Hence, the localized vertex placement information known for a vertex are (1) the DFS
parent, (2) a drawing flag set to between or beyond, (3) a DFS ancestor, and (4) the DFS
child of the ancestor whose DFS subtree contains the vertex. The key to positioning a vertex
is that the drawing flag of the ancestor’s child has already been set to above or below the
ancestor due to pre-order DFS traversal, and this setting controls whether the DFS parent
of a given vertex is above or below the ancestor. Thus, a vertex position can be assigned
as follows. If a vertex is between its DFS parent and the given ancestor, then the vertex
is inserted before (above) the parent if the parent is below the ancestor, and inserted after
(below) the parent otherwise. Symmetrically, if a vertex is beyond its DFS parent relative to

518 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

the given ancestor, then the vertex is inserted after (below) the parent if the parent is below
the ancestor, and inserted before (above) the parent otherwise.

21.7.2 Computing Horizontal Positions of Edges

The edge order is a list of size m that provides absolute horizontal edge positions. Edges
earlier in the list are to the left of those later in the list. The edge order is determined by a
geometric sweep over the combinatorial planar embedding. The edge order list develops in
the horizontal sweep line as it advances through the vertex order.

The method keeps track of a generator edge for each vertex, which is the first edge incident
to the vertex that is added to the edge order list. The generator edge provides the insertion
point along the horizontal sweep line for the edges emanating from the vertex to the vertices
that are below it (which have a greater vertex position number). The generator edge for each
vertex is initially nil.

To begin, the edges incident to each DFS tree root r are added to the edge order list in
the order of r’s adjacency list. For each edge e = (r, w), e is the generator edge of w. Then,
for each vertex v below a DFS tree root in vertex position order, we obtain the generator edge
e as the starting point of a cyclic traversal of v’s adjacency list, and the set of edges from v
to vertices with greater positions (i.e., below v) are added to the edge order list immediately
after e. For each edge (v, w), if w has no generator edge, then (v, w) is the generator edge
of w. Figure 21.15 illustrates the method on a sample graph whose combinatorial planar
embedding and vertex positions have already been determined.

0

3

4

6

13

12

10

8

7

14

9

5

2

11

1

0

3

4

6

13

12

10

8

7

14

9

5

2

11

1

a

b

c

d

e

f

g

h

i

j

k

l

m

n

Figure 21.15 Combinatorial planar embedding with vertices numbered by DFI and vertically
placed according to positions computed by the method of Section 21.7.1.3. The horizontal
edge positions are computed by a geometric sweep over the planar embedding guided by
vertex positions. At each step, edges from a vertex v to succeeding vertices in the vertex
order are added after the generator edge for v. If an edge added to the sweep line is the first
one incident to a vertex w, it becomes the generator edge for w.

Edge Addition Planarity Testing Algorithm � 519

0

3

13

10

7

14

1

6

9

11

2

5

8

4

12

Figure 21.16 Planar drawing of the resulting visibility representation.

Some of the steps of the edge positioning method on the example graph in Figure 21.15
are as follows. First, in step (a), the edge order list is initialized to the following edges
[(0, 14)(0, 3)(0, 1)]. These edges are the generator edges of the vertices labeled 14, 3, and 1.
In step (b), vertex 3 is visited, and the edges incident to later vertices, that is those with
higher vertex positions, are added after the generator edge for vertex 3. After step (b),
the edge order list is [(0, 14)(0, 3)(3, 7)(3, 4)(0, 1)]. Note that the numeric vertex labels are
based on the initial labeling and are unrelated to the vertex position order. Thus, because
vertex 10 has a later vertex position number than vertex 12, the processing of vertex 12 in
step (f) consists of obtaining the edge list location of the previously saved generator edge
(4, 12) and then adding the edge (12, 10) after it. The edge list at the end of step (f) is
[(0, 14)(0, 3)(3, 7)(3, 4)(4, 10)(4, 12)(10, 12)(4, 6)(6, 13)(12, 13)(8, 13)(0, 1)].

Given the edge positions, and the previously computed vertex positions, the visibility
representation is easily completed by assigning a vertical range to each edge based on the
span of its endpoints and a horizontal range to each vertex based on the span of the positions
of its incident edges. Figure 21.16 depicts a planar drawing of a visibility representation.

21.7.3 Correctness and Performance

The Edge Addition Planar Graph Drawing Algorithm generates visibility representations
by augmenting the processing of the Edge Addition Planarity Algorithm. Relative vertex
placement information is collected within each biconnected component during embedding,
and a postprocessing step determines exact vertical positions for all vertices. The key to
correctness is the vertex positioning method and its association to the combinatorial planar
embedding of the biconnected components, since obvious methods are then employed to
rationalize the vertex positions in the biconnected components, to derive the horizontal edge
positions based on the vertex positions and the combinatorial planar embedding, and then
to determine the horizontal ranges of vertices and the vertical ranges of edges.

For the purpose of assessing correctness, there is no need to defer absolute vertex posi-
tioning to postprocessing. As such, correct vertex positioning can be established as a property

520 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

of all biconnected components that is held invariant by the operations of the Edge Addition
Planar Graph Drawing Algorithm. Vertex positioning within a biconnected component is
deemed correct if the vertex positions can be used with the combinatorial planar embedding
to determine edge positions such that vertical edge lines intersect only the horizontal lines
corresponding to their vertex endpoints. Thus, we have the following theorem.

Theorem 21.5 Given a simple undirected planar graph G, the Edge Addition Planar Graph
Drawing Algorithm correctly generates a visibility representation for G.

Proof. The inductive anchor for the correct vertex positioning property is established in the
initial embedding of each DFS tree edge as a singleton biconnected component with vertex
position 0 for the root and 1 for the DFS child. Hence, we focus on the only other algorithm
actions defined to modify the state of the planar embedding or the vertex positioning: adding
a back edge and traversing an edge of the external face.

There are four atomic operations to consider. Adding a back edge (v′, w) decomposes into
a composite operation of merging a biconnected component and the final atomic operation
of embedding the back edge along the external face. Merging a biconnected component Br′

decomposes into two atomic operations: optionally flipping Br′ and attaching the biconnected
component root r′ to its nonvirtual counterpart r in the parent biconnected component of
Br′ . Finally, a last atomic operation is traversal of an external face edge marked f , which
may cause the vertex f to be changed so that it is placed between its DFS parent and the
current vertex v whose back edges are being embedded.

Flipping a biconnected component Br′ does not change vertex positions. It does change
the horizontal edge positions within Br′ , the changes directly correspond to changes made to
the combinatorial planar embedding of Br′ to logically invert its vertex orientations (which,
for assessing correctness, is assumed to occur but which, for efficiency, is mostly deferred to
postprocessing by the core edge addition planarity algorithm).

When merging the biconnected component root r′ with r, the relative vertex locations
within Br′ are not changed, and the DFS child endpoint of the biconnected component root
edge is not changed from the initial setting of beyond its parent. In the overall view of absolute
vertex positions, though, Br′ may be inverted if there is an odd number of between markings
on vertices on the path from r to the root of the parent biconnected component containing
r. However, this inversion corresponds to a half rotation within the plane that remains
in accord with the rotation scheme (adjacency list orders of vertices) of the combinatorial
planar embedding for Br′ . Thus, the horizontal positions of edges Br′ determined by the
sweep method will simply be reversed. As for attaching the adjacency list of vertex r′ to r,
this places the vertices of Br′ immediately above or below the position of r. The only effect
on vertex positions in Br′ is a simple additive adjustment. The horizontal positions of edges
within Br′ are unaltered, and their placement within the parent biconnected component is in
accord with the combinatorial planar embedding. Lastly, for vertices below r, and also r if Br′

is placed above it, the absolute positions are shifted downward to accommodate the positions
of vertices in Br′ . However, this only lengthens edges and does not perturb the positions that
would be determined for them by the sweep of the combinatorial planar embedding.

The direction of traversing an external face edge marked f enables the drawing algorithm
to determine whether a vertex f should be placed between its DFS parent r and v or beyond its
DFS parent r relative to v. Only for efficiency is this determination made when the external
face edge is traversed. To preserve the correct vertex positioning property, the traversal
direction can be regarded as equivalent in effect to being known and accommodated in the
earlier merge operation of Brf onto r, which is covered above.

Edge Addition Planarity Testing Algorithm � 521

Hence, all operations prior to visiting the descendant endpoint of the back edge (v′, w)
produce only vertex and edge position shifts and transpositions and widening of lines for
merge point vertices, but they do not perturb the property that every edge position is
such that the edge intersects only the lines for its vertex endpoints. The final operation of
embedding the back edge (v′, w) also makes no vertex position adjustments and embeds the
new edge along the external face in accord with its position in the combinatorial planar
embedding. The lines for the two vertex endpoints of the edge are horizontally extended to
meet the new vertical edge line. The vertex v′ is topmost in the biconnected component, so
its horizontal extension does not cross any vertical lines for edges. The vertex positioning
operations performed during the Walkdown traversal to the descendant endpoint w ensure
that preceding vertices along the external face are above w such that horizontal extension of
w also does not cross any edge lines.

Thus, for each successive embedding of G, beginning with the embedding of the DFS
tree edges and held invariant for each back edge addition, the correct vertex positioning
property is maintained for each biconnected component such that the vertex positions and
the embedding determine the edge positions needed for a correct visibility representation of
each biconnected component of G. �
In terms of run-time performance, the core edge addition planarity algorithm is O(n) and the
drawing method adds constant time operations during the planar embedding process while
deferring expensive work to linear-time post-processing steps. Thus we have the following
theorem.

Theorem 21.6 Given a simple undirected planar graph G with n vertices, the Edge Addition
Planar Graph Drawing Algorithm operates in worst case O(n) time.

Proof. The relative vertex placements are determined in total O(n) time as follows. When a
biconnected component root r′ is attached to its nonvirtual copy r, a constant time operation
is performed to mark the edge e incident to r′ that will remain on the external face. Later,
when the Walkdown traverses e, a constant time operation is performed to mark a DFS child
of r as either between r and v or beyond r relative to v. Once an edge e is marked by the
first operation, it is never incident to a biconnected component root again, and once the
Walkdown traverses that edge, it is removed from the external face.

The postprocessing to generate the absolute vertex positioning is O(n) as follows. First,
when a vertex f is placed relative to its parent r and the ancestor v, the child c of v whose
DFS subtree contains r is also stored, which is a constant-time cost since it is known in the
Walkdown. Then, the vertex order is computed in a linear-time postprocessing via a pre-order
traversal of the DFS tree, which uses constant time per vertex visitation to assess the four
pieces of information stored during relative vertex placement and then insert a node for the
vertex above or below the node for its DFS parent in a doubly linked list. As each vertex is
placed in the vertex order list, its representative node in the list is stored in the vertex so
that the node for a parent can be obtained in constant time when each of its DFS children
is processed.

The horizontal edge positions are computed in linear time via a vertex ordered sweep
over the combinatorial planar embedding. For each vertex, all of its edges are traversed
and each is processed in constant time. Those edges leading to lower numbered vertices
(processed earlier in the sweep) are ignored. Those leading to higher numbered vertices
are added in constant time to the sweep line after a generator edge for the vertex, which
is obtained in constant time. As a last constant time operation per edge, for each edge
leading to a vertex with no generator edge, the edge is stored as the generator edge of the
vertex.

522 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Finally, determining the horizontal and vertical ranges of the vertices and edges is a trivial
O(n) post-processing step. Thus, the Edge Addition Planar Graph Drawing Algorithm adds
worst case O(n) processing time to the core edge addition planarity algorithm. �

21.8 CONCLUSION

This chapter has presented the main ideas and optimization techniques of the Boyer–Myrvold
edge addition planarity algorithm [4]. A reference implementation is available from an online
open source code project [24]. It has been tested on all graphs on 12 or fewer vertices as well
as billions of randomly generated graphs. For each result, an integrity check is performed. For
a planar embedding, a face walk is performed to ensure that the number of faces is correct
and that each edge is used in only two face boundaries. For a Kuratowski subgraph, the result
is checked to ensure that there are only five vertices of degree four or six of degree 3, that the
remaining vertices are degree two or zero, that the degree two vertices appear along paths
between the higher degree vertices, that the paths form a K5 or K3,3 homeomorph, and that
the result is a subgraph of the input graph. An earlier version of the reference implementation
was found to be typically the fastest among several planarity algorithm implementations [15].
The current reference implementation of the edge addition planarity algorithm [24] is nearly
twice as fast now that it has more of the low-level implementation optimizations that were
included in some of the other algorithm implementations analyzed in [15].

The definitions and techniques of the edge addition planariy algorithm provide an
extensible framework for solving several planarity-related problems. The open source project
provides implementations of several such extensions, including the method for generating
visibility representation drawings of planar graphs [23] described in this chapter as well as
methods for outerplanar graph embedding and obstruction isolation and for a number of
subgraph homeomorphism problems [25].

References

[1] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for
the Visualization of Graphs. Prentice Hall, Upper Saddle River, NJ, 1999.

[2] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta Mathe-
maticae, 15 (1930), 271–283.

[3] K. Wagner. Über einer eigenschaft der ebener complexe. Mathematische Annalen, 14
(1937), 570–590.

[4] J. M. Boyer and W. J. Myrvold. On the cutting edge: Simplified O(n) planarity by edge
addition. Journal of Graph Algorithms and Applications, 8(3) (2004), 241–273. DOI:
10.7155/jgaa.00091; http://jgaa.info/08/91.html.

[5] J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the Association for
Computing Machinery, 21(4) (1974), 549–568.

[6] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs.
In P. Rosenstiehl, editor, Theory of Graphs, pages 215–232, New York, 1967. Gordon &
Breach.

[7] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer Science,
2 (1976), 339–344.

Edge Addition Planarity Testing Algorithm � 523

[8] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and Systems
Sciences, 13 (1976), 335–379.

[9] N. Chiba, T. Nishizeki, A. Abe, and T. Ozawa. A linear algorithm for embedding planar
graphs using PQ-trees. Journal of Computer and Systems Sciences, 30 (1985), 54–76.

[10] M. Jünger, S. Leipert, and P. Mutzel. Pitfalls of using PQ-trees in automatic graph
drawing. In G. Di Battista, editor, Proceedings of the 5th International Symposium on
Graph Drawing, volume 1353 of Lecture Notes in Computer Science, pages 193–204.
Springer-Verlag, September 1997.

[11] H. de Fraysseix. Trémaux trees and planarity. Electronic Notes in Discrete Mathematics,
31 (2008), 169–180.

[12] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Trémaux trees and planarity.
International Journal of Foundations of Computer Science, 17(5) (2006), 1017–1029.

[13] H. de Fraysseix and P. Rosenstiehl. A characterization of planar graphs by trémaux
orders. Combinatorica, 5(2) (1985), 127–135.

[14] J. Boyer and W. Myrvold. Stop minding your P’s and Q’s: A simplified O(n) pla-
nar embedding algorithm. Proceedings of the 10th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 140–146, 1999.

[15] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop minding your P’s
and Q’s: Implementing a fast and simple DFS-based planarity testing and embedding
algorithm. In G. Liotta, editor, Proceedings of the 11th International Symposium on
Graph Drawing 2003, volume 2912 of Lecture Notes in Computer Science, pages 25–36.
Springer-Verlag, Perugia, Italy, 2004.

[16] J. M. Boyer. Additional PC-tree planarity conditions. In J. Pach, editor, Proceedings
of the 12th International Symposium on Graph Drawing 2004, volume 3383 of Lecture
Notes in Computer Science, pages 82–88. Springer-Verlag, New York, 2005.

[17] W.-K. Shih and W.-L. Hsu. A new planarity test. Theoretical Computer Science, 223
(1999), 179–191.

[18] Bernhard Haeupler and Robert E. Tarjan. Planarity algorithms via PQ-trees. In
Patrice Ossona de Mendez, Michel Pocchiola, Dominique Poulalhon, Jorge Luis Ramrez
Alfonśın, and Gilles Schaeffer, editors, International Conference on Topological and
Geometric Graph Theory, volume 31 of Electronic Notes in Discrete Mathematics, pages
143–149. ScienceDirect, Strasbourg, France, 2008.

[19] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of Com-
puting, 1(2) (1972), 146–160.

[20] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy. Planar embedding: Linear-time
algorithms for vertex placement and edge ordering. IEEE Transactions on Circuits and
Systems, 35(3) (1988), 334–344.

[21] R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar
graphs. Discrete and Computational Geometry, 1(4) (1986), 321–341.

524 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[22] P. Rosenstiehl and R. Tarjan. Rectilinear planar layouts and bipolar orientations of
planar graphs. Discrete and Computational Geometry, 1(4) (1986), 343–353.

[23] J. M. Boyer. A new method for efficiently generating planar graph visibility represen-
tations. In P. Eades and P. Healy, editors, Proceedings of the 13th International Sym-
posium on Graph Drawing 2005, volume 3843 of Lecture Notes in Computer Science,
pages 508–511. Springer-Verlag, Limerick, Ireland, 2006.

[24] J. M. Boyer. Edge Addition Planarity Suite, version 3.0.0.3. July 2015, https://
github.com/graph-algorithms/edge-addition-planarity-suite/.

[25] J. M. Boyer. Subgraph homeomorphism via the edge addition planarity algorithm.
Journal of Graph Algorithms and Applications, 16(2) (2012), 381–410. DOI: 10.7155/
jgaa.00268; http://jgaa.info/16/268.html.

C H A P T E R 22

Planarity Testing Based
on PC-Trees
Wen-Lian Hsu

CONTENTS

22.1 Introduction . 525
22.2 Overview of S&H Planarity Test . 526
22.3 Creating the First C-Node . 527
22.4 Creating C -Nodes in General . 528
22.5 Embedding Algorithm . 529
22.6 Linear-Time Implementation . 529

22.1 INTRODUCTION

A planar graph is one which can be drawn on the plane without any crossing edge. Given
an undirected graph G, the planarity test is to determine whether there exists a clockwise
edge ordering around each vertex, such that the graph G can be drawn on the plane without
any crossing edge. Linear-time planarity test was first established by Hopcroft and Tarjan [1]
based on a path addition approach. The vertex addition approach, originally developed by
Lempel et al. [2], was later improved by Booth and Lueker [3] (hereafter, referred to as B&L)
to run in linear time using a data structure called PQ-tree. Several other approaches have also
been developed for simplifying the planarity test (see e.g., [4–8]) and the embedding algorithm
[9,10]. Shih and Hsu [11] (hereafter referred to as S&H) developed a linear-time test based
on PC-trees (a generalization of P-trees), which did not use any template. In fact, based on
this idea, Hsu [12] and Hsu and McConnell [13] further eliminated the template operations
of the original PQ-tree for the consecutive ones test, and used PC-tree for the circular ones
test directly. An earlier version [14] of Shih and Hsu [8] has been referred to as the simplest
linear-time planarity test by Thomas in his lecture notes [15]. In this chapter we shall describe
a PC-tree–based planarity test, which is much simpler than any previous version (c.f. [16]) of
S&H. A software for our planarity test is available at https://github.com/x1213/planarity-
algorithms/ in GitHub.

In S&H algorithm, a data structure called PC-tree was introduced, in which a P -node
denotes a node whose neighbors can be permuted arbitrarily, whereas the neighbors of a
C-node must observe a cyclic order or its reversal. One can associate a PC-tree to a planar
graph, in which a P -node is an original node of the graph; a C-node represents a bicon-
nected component Cw whose neighbors are the P -nodes on the boundary of Cw. Intuitively, a
PC-tree represents the relationships between biconnected components and regular nodes in
planar graphs as shown in Figure 22.1.

525

526 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Figure 22.1 Biconnected components and their corresponding C-nodes in the PC-tree.

We regard the left diagram of Figure 22.1 as the cycle view of the planar graph and the
right diagram as its tree view. PC-tree enables us to provide a more streamlined algorithm in
dealing with the biconnected components that are created, traversed, and merged during the
planarity test. As demonstrated in Theorem 22.1 in Section 22.4, C-nodes in many ways can
be treated as P -nodes conceptually, which allows us to quickly grasp the essence of planar
graphs and to easily identify Kuratowski subgraphs for non-planar graphs. Not only can PC-
tree be used in planarity test, it can also be extended to finding maximal planar subgraphs
in linear time [17] (a more updated version is coming up). PC-tree provides the needed
data structure in complexity reduction for both computer implementation and conceptual
understanding.

This chapter is arranged as follows. In Section 22.2 we give an overview of the S&H algo-
rithm. A more concrete description of our PC-tree algorithm is carried out in Section 22.3
when the first C-node is created. Section 22.4 discusses two important properties of planar
graphs as revealed by S&H algorithm and gives the recognition algorithm for the general
case. Section 22.5 is devoted to the embedding algorithm. A linear-time implementation
of the algorithm is provided in Section 22.6. Proofs of the theorems are included in
Appendix 22A.

22.2 OVERVIEW OF S&H PLANARITY TEST

In this section we give an overview of the planarity algorithm based on PC-trees. Since the
inception of S&H algorithm [11], there have been a few simplifications [13,16]. The version
presented here is by far the simplest. The basic notations, such as terminal path, essential
node, representative boundary cycle, stay the same. But the algorithms to identify them are
completely renovated. Some notations, such as partial, full nodes, are no longer used.

Let n be the number of vertices and m, the number of edges of the given graph G.
Construct a depth-first search (DFS) tree T for G. Note that every nontree edge of G must
be a back edge from a vertex to one of its ancestors. To simplify our discussion and proofs,
assume the given graph G is biconnected. This is certainly not a restriction since we can split
the graph into biconnected components along articulation vertices, which can be identified
in the DFS tree. Let 1, . . ., n be the vertex order resulting from a postorder traversal of T .
So the order of a child is always less than that of its parent. Denote the subtree of T with
root k by Tk. Initially, we include all edges of T , namely the DFS tree, in the embedding. All
nodes are P -nodes. At each iteration k, we add all back edges from descendants in Tk to k.
Such a back edge addition will produce biconnected components (abbreviated as components
later), which are then replaced by C-nodes. Components are created, traversed, and merged,
which are all managed by PC-tree operations. The creation of C-nodes for Gr is discussed
in two stages. In the next section, we consider the creation of the first C-node.

Planarity Testing Based on PC-Trees � 527

22.3 CREATING THE FIRST C-NODE

Before any back edge is added, every node in the current tree is a P -node. To introduce the
first C-node in the tree, let us consider the first iteration, say i, that there exists a back
edge to i. At this iteration, we shall add all back edges from the descendants to node i, and
update the embedding. A neighbor v of a vertex i is called its back neighbor if the edge (v, i)
is a back edge. A descendant k of i is called an i-descendant if Tk has a back neighbor of i.
Note that there may be several i-children and we could test the embedding of each i-child
subtree and related back edges independently for planarity. Let r denote an i-child. Below,
we concentrate on embedding all back edges to i from nodes in Tr.

In general, we regard the graph as undirected. Only when we refer to the parent–child
relationship the edge direction becomes important. Let u be a back neighbor of i in Tr. A back
edge traversal (BET) initiated from (u, i) is a traversal starting from i, through (u, i), and
following the parent pointers from u to r. A path from i formed through a BET is called an
i-path. Thus, there is at least one i-path from i to each i-descendant. In contrast, we shall
refer to any path from i to r, then to a node in Tr through tree edges an ir-path.

Every time a vertex or an edge is traversed, it is assigned the label i. Perform a BET for
every back edge of Tr from i. Terminate a traversal whenever it encounters a node previously
labeled i. After all BETs are performed, let the traversed node set be V ∗

r , which is exactly
the set of i-descendants in Tr, and the traversed edge set be E∗

r . The traversed subgraph
T ∗

r = (V ∗
r , E∗

r) forms a subtree of Tr. The set of back edges from the nodes of T ∗
r to node i is

denoted by βr,i. Since each node of V ∗
r is in a traversed cycle containing the edge (r, i), the

subgraph Gr = (V ∗
r ∪i, E∗

r ∪(r, i)∪βr,i) must be biconnected, which is called an i-component.
If G is planar, then Gr has a planar embedding with a boundary cycle.

The most important step in our recognition algorithm is to identify some nodes that
should be on the boundary cycle of Gr. Define a traversed node v in T ∗

r to be essential if
it is incident (in the undirected graph) to an un-traversed edge (v, v′). An essential node is
connected to an ancestor t of i through a t-path. Since an essential node cannot be embedded
inside Gr, it must lie on the boundary cycle. The proof of the following Lemma 22.1 will be
provided in Theorem 22.1.

Lemma 22.1 If G is planar and every node is a P -node in Tr, then all essential nodes must
lie on a path of the PC-tree. �

The shortest path including all essential nodes is called the terminal path, denoted by F ,
which can be identified efficiently by finding the least common ancestor of all essential nodes.
The two end nodes of F must be essential, referred to as the terminal nodes. When we embed
Gr, there could be many paths that can be used as part of the boundary path to connect the
terminal nodes to i. Exactly which path is used is immaterial for our recognition algorithm.
To avoid such trivial variations, we connect terminal nodes to i with two artificial edges.
These two artificial edges together with the terminal path F and node i form a cycle BC,
referred to as the boundary cycle for Gr. An important property is that BC is uniquely
determined. In the degenerate case, there could be only one essential node and the cycle BC
is reduced to an edge connecting this unique terminal node to i.

BC divides the plane into inside and outside. Since each node in Tr is a P -node, we can flip
all traversed subtrees to the inside of BC and flip the un-traversed ones to the outside. Since
the entire tree T ∗

r can be flipped to the inside, one can easily form a planar embedding for
Gr by connecting i to r and all its back neighbors in T ∗

r . We call this the internal embedding
of the component Gr with the boundary cycle BC.

Since only essential nodes are related to future embedding, we could delete the internal
nodes; extract a representative boundary cycle (RBC) from BC by contracting all nonessential

528 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

nodes. The edge connections in the RBC are called links, to be distinguished from the tree
edges or back edges. Define the corresponding C-nodes wr for Gr as follows: The parent of wr

is i, referred to as the head of this C-node, and the children of wr are the remaining nodes in
its RBC following their cyclic order. This completes the C-node construction for the subtree
Tr. Note that a tree path from u to v containing some C-nodes always contains a path of
P -nodes in the original graph by traversing one side of the boundary cycle of each C-node
on the tree path.

22.4 CREATING C-NODES IN GENERAL

Assume now the graph contains some C -nodes. We shall abuse the notation a little by still
assuming the current iteration is i, and the current subtree is Tr, which has a back edge to
i, except that now there could be some C-nodes in Tr. As far as node traversal is concerned,
C-nodes are no different from P -nodes. Hence, we can still perform all BETs as before. Denote
the new i-component by Gr. Define the essential nodes, the terminal path just as before. In
order to successfully embed Gr, we need to prove the following two theorems, which allow us
to find the boundary cycle efficiently through the PC-tree. Since the proofs essentially amount
to identifying Kuratowski subgraphs for nonplanar graphs (in linear time), we describe them
in Appendix 22A for interested readers.

Theorem 22.1 If G is planar, essential nodes of an i-component must lie on a path of the
PC-tree. �

Definition 22.1 The shortest path including all essential nodes in the PC-tree is called
the terminal path, denoted by F . The separating nodes of an intermediate C-node w on the
terminal path F are the two neighbors of w on F . �

Theorem 22.2 Let w be a C-node on the terminal path F . If G is planar, the traversed
neighbors of w form a consecutive path in the RBC of w. Furthermore, if w is an intermediate
node in F , such a path must end in the two separating nodes of w. �

By connecting i to the two ends of F with two artificial links, we obtain the boundary cycle
BC for Gr. Note that BC could consist of both P -nodes and C-nodes. By Theorem 22.2, the
RBC of each C-node in F can be divided into the traversed side and the un-traversed side.
Obtain the external boundary path Fr of Gr by following path F through all its P -nodes
and the un-traversed side of its C-nodes. In Figure 22.2, we illustrate the formation of Fr by
showing how to extract it from F . Now, P -nodes of Gr not in BC will be embedded inside;
un-traversed nodes not in Fr will be embedded outside. Delete all inside nodes and C-nodes
in BC. Extract an RBC from Fr by contracting all nodes of degree 2 so that each remaining
node in Fr must be incident to an un-traversed node not in BC. Only those nodes on the
RBC are relevant for future embedding. Edge connections in the RBC are referred to as links.
Note that RBC, useful for the cycle view, is not part of the PC-tree. We associate an RBC
to each C-node for implementation purpose.

Create the new C-node wr for Gr as follows: The parent of wr is i, called its head,
and the children of wr are the remaining nodes in the RBC following their cyclic order.
This completes the operations related to Tr in the ith iteration. If there is no violation to
the properties stated in both Theorems 22.1 and 22.2 at each iteration, the algorithm can
continue successfully until the end of the nth iteration, at which point a single biconnected
component is formed and the graph is declared planar.

Planarity Testing Based on PC-Trees � 529

Figure 22.2 Boundary path Fr and its un-traversed children subtrees.

Figure 22.3 Internal boundary path F ′
r and its traversed children subtrees.

22.5 EMBEDDING ALGORITHM

The internal embedding of the C-node wr can be carried out alongside the recognition
algorithm. Similar to the extraction of the external boundary path in the section above,
one can obtain the internal boundary path F ′

r of Gr by following path F through all its
P -nodes and the traversed side of its C-nodes as illustrated in Figure 22.3. Path F ′

r together
with all their traversed children form a PC-tree TGr . Embed TGr inside BC by embedding
the tree nodes observing the C-node constraint (note that each C-node can be embedded in
two possible ways). Finally, connect i to r and its back descendants in TGr . This completes
an internal embedding of Gr within BC. Store such an embedding for Gr. At the end of the
nth iteration, we get a single biconnected component and its internal embedding. From this
embedding, we can trace back and paste all stored sub-embeddings back (by identifying the
boundary cycle) recursively to form the final planar embedding of G.

22.6 LINEAR-TIME IMPLEMENTATION

The recognition algorithm described above could take O(n2) time in a brute-force imple-
mentation (as was probably carried out in [4]). This is because C-nodes can be merged and
the parent pointers could be changed quite often (O(n2) time in the worst case). A trick
similar to the one used in Booth and Lueker [3] that reduces the original O(n2) PQ-tree
operations to linear time can be applied here, which requires no parent pointers: drop the
parent–child relations for all C-nodes and consider the cycle view of the PC-tree. For each
C-node w with parent i, associate w to the two artificial links incident to i in its RBC.
Whenever the algorithm traverses to a node u that is on an RBC, we find its owner w′ using
a parallel search along the links of its RBC cycle: start traversing links of the cycle from the

530 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

two neighbors of u in both directions in parallel; whichever search first reaches an artificial
link associated with w′ will terminate both searches. In other words, it is useful to think
that each node of the PC-tree has a parent pointer in the algorithm and the proofs; but for
efficient implementation, we need to go around the RBC of each C-node to find the head of
w′ instead. Note that every P -node can be the heads of several (child) C-nodes; but it can
belong to at most one RBC (of its parent C-node if any), a property of the PC-tree.

That such an implementation takes linear time can be argued below.
It is clear that the running time can be divided into two parts:

a. The time spent in the BETs, which is bounded by (1) the number of edges traversed,
and (2) the number of links traversed and

b. The time it takes to create the new C-node.

In part (a)(1), every tree edge traversed will be included in a biconnected component. If it
is embedded inside, then we never have to look at it again; otherwise, this edge is on the
terminal path, which is also deleted and replaced by links in the RBC. So every tree edge
can be traversed at most once, and the total number of tree edges traversed is bounded by
O(n).

For part (a)(2), since the number of links in an RBC is no more than the number of
edges in a terminal path, the total number of links created is bounded by the total number
of tree edge traversed, which is O(n). Now, these links are traversed to identify the parent
C-node in a parallel search. Suppose it takes 2d link traversals to achieve that. Since one of
the two traversed link paths will be embedded inside, at least d − 1 nodes and d links will
be embedded inside and deleted. Hence, the total number of links traversed is at most 2n.
Therefore, the total time spent in (a) is O(n).

In part (b), it suffices to show that finding the boundary cycle BC and contracting all
nonessential nodes take time proportional to the number of tree nodes in the terminal path
since the latter is bounded above by the time spent in the BET of (a). Now, for each C-node
s in BC, we only need to connect from its separating nodes to their neighboring un-traversed
P -nodes in the RBC of s to form that part of BC (there is no need to traverse the un-traversed
P -nodes in between). So connecting through each C-node takes constant time. Hence, part
(b) takes O(n) time in total.

Therefore, the entire recognition algorithm takes O(n) time. It is easy to see from
Section 22.5 that, through backtracking, the embedding algorithm also takes O(n) time.
Furthermore, the reader can check that, in case the graph is nonplanar, finding Kuratowski
subgraphs also takes O(n) time from the proofs of Theorems 22.1 and 22.2.

APPENDIX 22A

Proof of Theorem 22.1. Suppose not. Assume there are three essential nodes v1, v2, and v3
such that v3 is not on the tree path between v1 and v2. Let q be the node on this path
closest to v3 in the PC-tree. Then there are three node-disjoint tree paths from q to v1, v2,
and v3, respectively. Now, there are also three node-disjoint paths from i to v1, v2, and v3,
respectively, through i-paths or an ir-path (in case a node vk, k ∈ 1, 2, 3, is located on the
ir-path from i to q; note there could be at most one such vk) as shown in Figure 22A.1a.
Consider the following two cases:

Case 1 Gr contains only P -nodes: Rearrange the structure in Figure 22A.1a as the basic
structure in Figure 22A.1b. Let Tv1 , Tv2 , and Tv3 have back edges to t1, t2, and t3, respectively,
with t1 ≤ t2 ≤ t3. There exist three node-disjoint paths through un-traversed nodes and

Planarity Testing Based on PC-Trees � 531

(a) (b)

q

i

v2 v3 v1 q

i

v2 v3 v1

q

v2 v3 v1 t2

i

q

v2v3

t3

t2

t1

v1

i

(c) (d)

Figure 22A.1 (a–d) K3,3 for Case 1.

these back edges from t2 to v1, v2, and v3 as shown in Figure 22A.1c. Together, they form a
graph homeomorphic to K3,3 with v1, v2, and v3 on one side, and i, q, t2 on the other as in
Figure 22A.1d.

Case 2 Gr contains both C-nodes and P -nodes: We can further divide this into the following
subcases depending on whether the v’s and q are C-nodes. Note, however, these subcases are
not mutually exclusive.

Case 2.1 Suppose an essential node, say v1, is a C-node that has an un-traversed child
n1 and two traversed children n2 and n3 on the path from q to i as shown in Figure
22A.2a. Since these children are on the RBC for v1, there exists a path from n2, through
n1, to n3 as shown in Figure 22A.2b. In this way, an essential C-node for v1, v2, or v3
can be regarded as an essential P -node. We can then follow the arguments in Case 1
for essential P -nodes to find a subgraph homeomorphic to K3,3.

Case 2.2 q is a C-node as illustrated in Figure 22A.3a. Let t1, t2, and t3 be three back
nodes from nodes in Tv1 , Tv2 , and Tv3 , respectively with t1 ≤ t2 ≤ t3, similar to Case 1.
Consider the following subcases:

Case 2.2.1 At least one of v1, v2, and v3 is not a neighbor of q. Without loss of
generality, assume v1 is not. Let u be the neighbor of q on the tree path from v1
to i. There is a basic structure as shown in Figure 22A.3b, where u plays the role

532 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

q

q

i i

v2

v2

v3

v3

v1

n1

n1

n2

n2

n3

n3

t2

t2

(a) (b)

Figure 22A.2 (a,b) K3,3 for Case 2.1.

v2
v2

v1 v1

v3

v3

i

u
u

q

i

(a) (b)

Figure 22A.3 (a,b) Basic structure in which q is a C-node in Case 2.2.

of q as in Case 1 Figure 22A.4d. We can similarly find a subgraph homeomorphic
to K3,3 with v1, v2, v3 on one side and i, u, t2 on the other.
Case 2.2.2 v1, v2, and v3 are neighbors of q. If t1 = t2, there are three node-disjoint
paths from t2 to v1, v2, and v3 through un-traversed nodes as in Figure 22A.4a.
Together with the tree path from t2 to i, they form a subgraph homeomorphic to
K5 in Figure 22A.4b. Otherwise, t1 < t2 and there are three node-disjoint paths
emanating from t2: one from t2 to t1 and two from t2 to v2 and v3, respectively,
through un-traversed nodes as in Figure 22A.5a. They form a subgraph homeo-
morphic to K3,3 with t1, v2, and v3 on one side, i, v1, and t2 on the other as in
Figure 22A.5b. �

Proof of Theorem 22.2. Suppose not. Consider the following two cases.

Case 1 The traversed neighbors are not consecutive. Then there are at least two traversed
neighbors, say u1 and u2, of w separated by two un-traversed neighbors v1 and v2 as in
Figure 22A.6a. Let Tv1 and Tv2 have back edges to t1 and t2, respectively. Without loss of

Planarity Testing Based on PC-Trees � 533

q

i

i

v2

v2v3
v3

v1

v1

t2

t3

t2t3

(a) (b)

Figure 22A.4 (a,b) K5 in Case 2.2.2.

q

i i

v2

v2v3
v3

v1
v1

t2

t2

t1

t1

(a) (b)

Figure 22A.5 (a,b) K3,3 in Case 2.2.2.

generality, assume t1 ≤ t2. Then we get a subgraph homeomorphic to K3,3 with i, v1, v2 on
one side and t1, u1, u2 on the other as in Figure 22A.6b.

Note that, the same holds for the case where w is the only terminal node. From now on,
we assume there are two terminal nodes.

Case 2 The traversed neighbors of w form a consecutive path, say H, in its RBC,
but the separating nodes are not the two end nodes of H. Consider the following two
sub-cases:

Case 2.1 w has only one separating node d (w is a terminal node of the terminal path
in the i-component). Node d is traversed but not at the end of H. Let u1 and u2 be the
two traversed neighbors of d. Pick any un-traversed node v1 in the RBC. Let v2 be the

534 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

i

i
v1

v1v2

t2

t1

t1

v2

u1

u1

u2
u2w

(a) (b)

Figure 22A.6 (a,b) K3,3 in Case 1.

i

t2

t1

i

i

t2

t1

t1

d

du1 u1

u1

v2

v1

v2

u2

dv1

v1

u2

u2

w w

(a) (b) (c)

Figure 22A.7 (a,b) A K3,3 in Case 2.1.

other terminal node. Without loss of generality, assume Tv1 and Tv2 have back-edges
to t1 and t2, respectively, with t1 ≤ t2 as in Figure 22A.7a. From t1, there are two
node-disjoint paths through these back edges, one to v1 and the other to d through t2,
v2, and tree edges as in Figure 22A.7b. Then we get a subgraph homeomorphic to K3,3
with i, d, v1 on one side and t1, u1, u2 on the other as in Figure 22A.7c.

Case 2.2 w has two separating nodes d1 and d2, which are not both at the ends of H.
We could assume d1 is not an end of H. Let u1 and u2 be the two traversed neighbors
of d1 in the RBC. Let v1 and v2 be the two terminal nodes of this i-component as
shown in Figure 22A.8a. (In case vk is a C-node, we could use one of its un-traversed
neighbors instead.) Without loss of generality, assume Tv1 and Tv2 have back-edges to
t1 and t2, respectively, and t1 ≤ t2. Similar to case 2.1, there are two node-disjoint

Planarity Testing Based on PC-Trees � 535

i

t2

t1

i

i

t2

t1

t1

d1d2

u1

v2v1

u2

w d1d2

d1d2

u1

u1

u2

u2w

(a) (b) (c)

Figure 22A.8 (a–c) A K3,3 in Case 2.2.

paths from t1 to d1 and d2, through v1 and v2, respectively, as in Figure 22A.8b. Then
we get a subgraph homeomorphic to K3,3 with i, d1, d2 on one side and t1, u1, u2 on the
other as in Figure 22A.8c. �

References

[1] J. Hopcroft and R. Tarjan, Efficient planarity testing, J. ACM, 21(4) (1974), 549–568.

[2] A. Lempel, S. Even, and I. Cederbaum, An algorithm for planarity testing of graphs, In
P. Rosenstiel (ed.)Theory of Graphs: International Symposium, Gordon & Breach, New
York, 1967, volume 67, 215–232.

[3] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms, J. Comp. Syst. Sci., 13(3) (1976),
335–379, December 1976.

[4] J. Boyer and W. Myrvold, Stop minding your p’s and q’s: A simplified O(n) planar
embedding algorithm, In Proc. 10th Ann. ACM-SIAM Symp. Discrete Algorithms, pages
140–146, Philadelphia, PA, 1999. Society for Industrial and Applied Mathematics.

[5] J. M. Boyer and W. J. Myrvold, On the cutting edge: Simplified O(n) planarity by edge
addition, J. Graph Algorithms and Appl., 8 (2004), 241–273.

[6] J. Small, A unified approach of testing, embedding and drawing planar graphs, In Proc.
ALCOM Int. Workshop Graph Draw., Sevre, France, 1993.

[7] H. Stamm-Wilbrandt, A simple linear-time algorithm for embedding maximal planar
graphs, In ALCOM Inte. Workshop Graph Draw., 92, 1993.

[8] S. G. Williamson, Depth-first search and kuratowski subgraphs, J. ACM, 31(4) (1984),
681–693.

[9] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa, A linear algorithm for embedding planar
graphs using PQ-trees, J. of Comput. Sys. Sci., 30(1) (1985), 54–76.

536 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[10] K. Mehlhorn and P. Mutzel, On the embedding phase of the hopcroft and Tarjan
planarity testing algorithm, Algorithmica, 16(2) (1996), 233–242.

[11] W.-K. Shih and W.-L. Hsu, A new planarity test, Theoretical Comput. Sci., 223(1–2)
(1999), 179–191.

[12] W.-L. Hsu, PC-trees vs. PQ-trees, Lecture Notes Comput. Sci., 2108 (2001), 207–217.

[13] W.-L. Hsu and R. McConnell, PQ trees, PC trees and planar graphs, In Dinesh P. Mehta
and Sartaj Sahni (eds.) Handbook of Data Structures and Applications, 2004.

[14] W.-K. Shih and W.-L. Hsu, A simple test for planar graphs, In Proc. Int. Workshop on
Discrete Math. Algorithms, 110–122. University of Hong Kong, 1993.

[15] R. Thomas, Planarity in linear time, Lecture Notes, Georgia Institute of Technology,
1997. http://www.math.gatech.edu/∼thomas/planarity.ps.

[16] W.-L. Hsu, An efficient implementation of the PC-tree algorithm of Shih & Hsu’s pla-
narity test, Technical report, Institute of Information Science, Academia Sinica, 2003.

[17] W.-L. Hsu, A linear time algorithm for finding a maximal planar subgraph based on
PC-trees, Lecture Notes Comput. Sci., 3595 (2005), 787–797.

C H A P T E R 23

Graph Drawing
Md. Saidur Rahman

Takao Nishizeki

CONTENTS

23.1 Introduction . 537
23.1.1 Drawing Styles . 538
23.1.2 Applications of Graph Drawing . 542

23.2 Straight Line Drawing . 543
23.2.1 Canonical Ordering . 544
23.2.2 Shift Algorithm . 546

23.3 Convex Drawing . 552
23.3.1 Canonical Decomposition . 553
23.3.2 Algorithm for Convex Grid Drawing . 556

23.4 Rectangular Drawing . 560
23.4.1 Rectangular Drawing and Matching . 562
23.4.2 Linear Algorithm . 564

23.5 Orthogonal Drawing . 567
23.5.1 Orthogonal Drawing and Network Flow . 570
23.5.2 Linear Algorithm for Bend-Optimal Drawing . 575

23.1 INTRODUCTION

A drawing of a graph can be thought of as a diagram consisting of a collection of objects
corresponding to the vertices of the graph together with some line segments correspond-
ing to the edges connecting the objects. People are using diagrams from ancient time to
represent abstract things like ideas, concepts, and so forth as well as concrete things like
maps, structures of machines, and so on. A graph may be used to represent any information
which can be modeled as objects and relationship between those objects. A drawing of a
graph is a sort of visualization of information represented by the graph. The graph in Figure
23.1a represents eight components and their interconnections in an electronic circuit, and
Figure 23.1b depicts a drawing of the graph. Although the graph in Figure 23.1a correctly
represents the circuit, the representation is messy and hard to trace the circuit for under-
standing and troubleshooting. Furthermore, in this representation one cannot lay the circuit
on a single layered PCB (printed circuit board) because of edge crossings. On the other hand,
the drawing of the graph in Figure 23.1b looks better and it is easily traceable. Furthermore
one can use the drawing to lay the circuit on a single layered PCB, since it has no edge
crossing. Thus, the objective of graph drawing is to obtain a nice representation of a graph
such that the structure of the graph is easily understandable, and moreover the drawing
should satisfy some criteria that arises from the application point of view.

537

538 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1 3

4

6

8

2

4

6 7

2

5

8
7

1 3

5

(b)(a)

Figure 23.1 (a,b) Example of graph drawing in circuit schematics.

The industrial need for graph drawing algorithms arose in the late 1960s when a large
number of elements in complex circuit designs made hand drawing too complicated [1–4].
Algorithms were developed to aid circuit design; an overview can be found in the book of
Lengauer [5]. The field of graph drawing with the objective of producing aesthetically pleasing
pictures became of interest in the late 1980s for presenting information of engineering and
production process [6,7].

The field of graph drawing has flourished very much in the last two decades. Recent
progress in computational geometry, topological graph theory, and order theory has consid-
erably affected the evolution of this field, and has widened the range of issues being inves-
tigated. A comprehensive bibliography on graph drawing algorithms [8] cites more than 300
papers written before 1993. From 1993, an international symposium on graph drawing is be-
ing held annually in different countries and the proceedings of the symposium are published
by Springer-Verlag in the LNCS series [9–20]. Several special issues of journals dedicated to
graph drawing have been assembled [21–26]. A few books on graph drawing have also been
published [4,27–30].

23.1.1 Drawing Styles

In this section we introduce some important drawing styles and related terminologies [29].
Various graphic standards are used for drawing graphs. Usually, vertices are represented

by symbols such as points or boxes, and edges are represented by simple open Jordan curves
connecting the symbols that represent the associated vertices. From now on, we assume that
vertices are represented by points if not specified. We now introduce the following drawing
styles.

Planar drawing: A drawing of a graph is planar if no two edges intersect in the drawing.
Figure 23.2 depicts a planar drawing and a nonplanar drawing of the same graph.
It is preferable to find a planar drawing of a graph if the graph has such a drawing.
Unfortunately not all graphs admit planar drawings. A graph which admits a planar
drawing is called a planar graph.

If one wants to find a planar drawing of a given graph, first he/she needs to test
whether the given graph is planar or not. If the graph is planar, then he/she needs
to find a planar embedding of the graph, which is a data structure representing adja-
cency lists: in each list the edges incident to a vertex are ordered, all clockwise or all
counterclockwise, according to the planar embedding. Kuratowski [31] gave the first
complete characterization of planar graphs. Unfortunately, the characterization does
not lead to an efficient algorithm for planarity testing. Linear-time algorithms for this

Graph Drawing � 539

a

b

c

d

e

b

c

d

e a

(a) (b)

Figure 23.2 (a) Planar drawing and (b) nonplanar drawing of the same graph.

Figure 23.3 Polyline drawing of a graph.

problem have been developed by Hopcroft and Tarjan [32] and Booth and Lueker [33].
Chiba et al. [34] and Mehlhorn and Mutzel [35] gave linear-time algorithms for finding
a planar embedding of a planar graph. Shih and Hsu [36] gave a simple linear-time
algorithm which performs planarity testing and finds a planar embedding of a planar
graph simultaneously. A planar graph with a fixed planar embedding is called a plane
graph.

Polyline drawing: A polyline drawing is a drawing of a graph in which each edge of the
graph is represented by a polygonal chain. A polyline drawing of a graph is shown in
Figure 23.3. A point at which an edge changes its direction in a polyline drawing is
called a bend. Polyline drawings provide great flexibility since they can approximate
drawings with curved edges. However, it may be difficult to follow edges with more
than two or three bends by the eye. Several interesting results on polyline drawings
can be found in [37–39].

Straight line drawing: A straight line drawing is a drawing of a graph in which each edge of
the graph is drawn as a straight line segment, as illustrated in Figure 23.4. A straight
line drawing is a special case of a polyline drawing, where edges are drawn without
bend. Wagner [40], Fáry [41], and Stein [42] independently proved that every planar
graph has a straight line drawing. A straight line drawing of a plane graph G is called
a convex drawing if the boundaries of all faces of G are drawn as convex polygons, as
illustrated in Figure 23.4b [6,43–47].

Orthogonal drawing: An orthogonal drawing is a drawing of a plane graph in which each
edge is drawn as a chain of horizontal and vertical line segments, as illustrated

540 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(a) (b)

Figure 23.4 (a) Straight line drawing and (b) convex drawing.

(b)(a)

(d)(c)

Figure 23.5 (a) Orthogonal drawing, (b) box-orthogonal drawing, (c) rectangular drawing, and
(d) box-rectangular drawing.

in Figure 23.5a. Many results have been published in recent years on both planar
orthogonal drawings [45,48–56] and nonplanar orthogonal drawings [57–59]. An orthog-
onal drawing is called an octagonal drawing if the outer cycle is drawn as a rectangle
and each inner face is drawn as a rectilinear polygon of at most eight corners [60].
Conventionally, each vertex in an orthogonal drawing is drawn as a point, as illus-
trated in Figure 23.5a. Clearly a graph having a vertex of degree five or more has
no orthogonal drawing, because at most four edges can be incident to a vertex in an
orthogonal drawing. A box-orthogonal drawing of a graph is a drawing such that each
vertex is drawn as a (possibly degenerate) rectangle, called a box, and each edge is
drawn as a sequence of alternate horizontal and vertical line segments, as illustrated
in Figure 23.5b. Every plane graph has a box-orthogonal drawing. Several results are
known for box-orthogonal drawings [61–63].

Rectangular drawing: A rectangular drawing of a plane graph G is a drawing of G in which
each vertex is drawn as a point, each edge is drawn as a horizontal or vertical line

Graph Drawing � 541

segment without edge-crossings, and each face is drawn as a rectangle, as illustrated in
Figure 23.5c [64–67]. A box-rectangular drawing of a plane graph G is a drawing of G on
the plane such that each vertex is drawn as a (possibly degenerate) rectangle, called a
box, and the contour of each face is drawn as a rectangle, as illustrated in Figure 23.5d
[68–70].

Grid drawing: A drawing of a graph in which vertices and bends are located at grid points
of an integer grid as illustrated in Figure 23.6 is called a grid drawing. The size of an
integer grid required for a grid drawing is measured by the size of the smallest rectangle
on the grid which encloses the drawing. The width W of the grid is the width of the
rectangle and the height H of the grid is the height of the rectangle. The grid size is
usually described as W ×H. The grid size is sometimes described by the half perimeter
W + H or the area W · H of the grid.

Visibility drawing: A visibility drawing of a plane graph G is a drawing of G where each
vertex is drawn as a horizontal line segment and each edge is drawn as a vertical line
segment. The vertical line segment representing an edge must connect points on the
horizontal line segments representing the end vertices [71–73]. Figure 23.7b depicts a
visibility drawing of the plane graph G in Figure 23.7a. A 2-visibility drawing is a
generalization of a visibility drawing where vertices are drawn as boxes and edges are
drawn as either a horizontal line segment or a vertical line segment [62]. Figure 23.7c
depicts a 2-visibility drawing of the plane graph G in Figure 23.7a.

(a) (b)

Figure 23.6 (a) Straight line grid drawing and (b) rectangular grid drawing.

i

g

fd

b

a

c

e

i

g
h

f
e

bd
c

a

i

f
g h

d
c

a

b

e

h

(b) (c)(a)

Figure 23.7 (a) Plane graph G, (b) visibility drawing of G, and (c) 2-visibility drawing of G.

542 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

23.1.2 Applications of Graph Drawing

Graph drawings have applications in almost every branch of science and technology
[4,28,29,74]. In [29] applications of graph drawings in computer networks, circuit schematics,
floorplanning, VLSI layout sofware engineering, bioinformatics, and so forth are illustrated.
In this section we will illustrate an application of graph drawing in VLSI floorplanning as
well as architectural floorplanning [29]. In a VLSI floorplanning problem, an input is a plane
graph F as illustrated in Figure 23.8a; F represents the functional entities of a chip, called
modules, and interconnections among the modules; each vertex of F represents a module,
and an edge between two vertices of F represents the interconnections between the two cor-
responding modules. An output of the problem for the input graph F is a partition of a
rectangular chip area into smaller rectangles as illustrated in Figure 23.8d; each module is
assigned to a smaller rectangle, and furthermore, if two modules have interconnections, then
their corresponding rectangles must be adjacent, that is, must have a common boundary. A
similar problem may arise in architectural floorplanning also. When building a house, the
owner may have some preference; for example, a bed room should be adjacent to a reading
room. The owner’s choice of room adjacencies can be easily modeled by a plane graph F , as
illustrated in Figure 23.8a; each vertex represents a room and an edge between two vertices
represents the desired adjacency between the corresponding rooms.

A rectangular drawing of a plane graph may provide a suitable solution of the floor-
planning problem described above. First, obtain a plane graph F ′ by triangulating all inner
faces of F as illustrated in Figure 23.8b, where dotted lines indicate new edges added to F .
Then obtain a dual-like graph G of F ′ as illustrated in Figure 23.8c, where the four vertices
of degree 2 drawn by white circles correspond to the four corners of the rectangular area.
Finally, by finding a rectangular drawing of the plane graph G, obtain a possible floorplan
for F as illustrated in Figure 23.8d.

In the floorplan above, two rectangles are always adjacent if the modules corresponding
to them have interconnections in F . However, two rectangles may be adjacent even if the
modules corresponding to them have no interconnections. For example, modules e and f have
no interconnection in F , but their corresponding rectangles are adjacent in the floorplan
in Figure 23.8d. Such unwanted adjacencies are not desirable in some other floorplanning
problems. In floorplanning of a multichip module (MCM), two chips generating excessive
heat should not be adjacent, or two chips operating on high frequency should not be adjacent
to avoid malfunctioning due to their interference [75,76]. Unwanted adjacencies may cause a
dangerous situation in some architectural floorplanning too [77]. For example, in a chemical
industry, a processing unit that deals with poisonous chemicals should not be adjacent to a
cafeteria.

b

c
d

e

g

f
a

b

ce f

g
d

a

b

c
d

e

g

f

a

b

c

d

e
f

g

a

(d)(c)(b)(a)

Figure 23.8 (a) Graph F , (b) triangulated graph F ′, (c) dual-like graph G, and (d) rectangular
drawing of G. (Figure taken from Nishizeki, T. and Rahman, M. S., Planar Graph Drawing,
World Scientific, Singapore, 2004.)

Graph Drawing � 543

a

b

c

d

e
g

f a

b

cd

e

f

g
a

b

c

d

e

f

g

(a) (b) (c)

Figure 23.9 (a) F , (b) G, and (c) box-rectangular drawing of G. (Figure taken from Nishizeki,
T. and Rahman, M S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

We can avoid the unwanted adjacencies if we obtain a floorplan for F by using a box-
rectangular drawing instead of a rectangular drawing, as follows. First, without triangulating
the inner faces of F , find a dual-like graph G of F as illustrated in Figure 23.9b. Then, by
finding a box-rectangular drawing of G, obtain a possible floorplan for F as illustrated in
Figure 23.9c. In Figure 23.9c rectangles e and f are not adjacent although there is a dead
space corresponding to a vertex of G drawn by a rectangular box. Such a dead space to
separate two rectangles in floorplanning is desirable for dissipating excessive heat in an MCM
or for ensuring safety in a chemical industry.

23.2 STRAIGHT LINE DRAWING

A straight line drawing of a plane graph is a drawing in which each edge is drawn as a straight
line segment without edge-crossings, as illustrated in Figure 23.4. Wagner [40], Fáry [41], and
Stein [42] independently proved that every planar graph G has a straight line drawing. Their
proofs immediately yield polynomial time algorithms to find a straight line drawing of a
given plane graph. However, the area of a rectangle enclosing a drawing on an integer grid
obtained by these algorithms is not bounded by any polynomial in the number n of vertices
in G. In fact, it remained as an open problem for long time to obtain a drawing of area
bounded by a polynomial. In 1990, de Fraysseix et al. [78] and Schnyder [79] showed by two
different methods that every planar graph of n ≥ 3 vertices has a straight line drawing on an
integer grid of size (2n − 4) × (n − 2) and (n − 2) × (n − 2), respectively. The two methods
can be implemented as linear-time algorithms, and are well known as the shift method and
the realizer method, respectively [29].

A natural question arises: what is the minimum size of a grid required for a straight
line drawing? de Fraysseix et al. showed that, for each n ≥ 3, there exists a plane graph of
n vertices, for example nested triangles, which needs a grid of size at least [2(n − 1)/3]
× [2(n − 1)/3] for any grid drawing [78,80]. It has been conjectured that every plane
graph of n vertices has a grid drawing on a [2n/3] × [2n/3] grid, but it is still an open
problem. On the other hand, a restricted class of graphs has a more compact grid draw-
ing. For example, if G is a 4-connected plane graph, then G has a more compact grid
drawing [81,82].

In this section, we describe a constructive proof for the theorem by de Fraysseix et al.
[78] that every plane graph G of n ≥ 3 vertices has a straight line grid drawing of size
(2n − 4) × (n − 2), and present a linear-time implementation of an algorithm for finding
such a drawing [83]. If G is not triangulated, then we obtain a triangulated plane graph
G′ from G by adding dummy edges to G. From a straight line grid drawing of G′ we can
immediately obtain a straight line grid drawing of G by deleting the dummy edges. Therefore

544 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

it is sufficient to prove that a triangulated plane graph G of n vertices has a straight line grid
drawing of size (2n−4)× (n−2). To construct such a drawing, de Fraysseix et al. introduced
an ordering of vertices called a canonical ordering and installed vertices one by one in the
drawing according to the ordering.

In Section 23.2.1 we present a canonical ordering, and in Section 23.2.2 we present the
algorithm of de Fraysseix et al. and a linear time implementation of the algorithm.

23.2.1 Canonical Ordering

For a cycle C in a graph, an edge joining two nonconsecutive vertices in C is called a chord
of C. For a 2-connected plane graph G, we denote by Co(G) the outer cycle of G, that is, the
boundary of the outer face of G. A vertex on Co(G) is called an outer vertex and an edge on
Co(G) is called an outer edge. A plane graph is internally triangulated if every inner face is
a triangle.

Let G = (V, E) be a triangulated plane graph of n ≥ 3 vertices, as illustrated in
Figure 23.10. Since G is triangulated, there are exactly three vertices on Co(G). One may
assume that these three vertices, denoted by v1, v2 and vn, appear on Co(G) counterclockwise
in this order. Let π = (v1, v2, . . ., vn) be an ordering of all vertices in G. For each integer k,
3 ≤ k ≤ n, we denote by Gk the plane subgraph of G induced by the k vertices v1, v2, . . ., vk.
Then Gn = G. We call π a canonical ordering of G if the following conditions (co1)–(co3)
hold for each index k, 3 ≤ k ≤ n:

(co1) Gk is 2-connected and internally triangulated;

(co2) (v1, v2) is an outer edge of Gk; and

(co3) if k + 1 ≤ n, then vertex vk+1 is located in the outer face of Gk, and all neighbors of
vk+1 in Gk appear on Co(Gk) consecutively.

3

6

10

9

7
8

11
12

5
4

16

1315

14

1 2

Figure 23.10 Canonical ordering of a triangulated plane graph of n = 16 vertices. (Figure taken
from Nishizeki, T. and Rahman, M. S. Planar Graph Drawing, World Scientific, Singapore,
2004.)

Graph Drawing � 545

w1 = v1 wt = v2
v2v1

Gk−1
w2

wp

wq

wp+1

wq−1

w = vk

(a) (b)

Figure 23.11 (a,b) Graph Gk and chords.

An example of a canonical ordering is illustrated for a triangulated plane graph of n = 16
vertices in Figure 23.10.

We now have the following lemma.

Lemma 23.1 Every triangulated plane graph G has a canonical ordering.

Proof. Obviously G has a canonical ordering if n = 3. One may thus assume that n ≥ 4.
Since G = Gn, clearly (co1)–(co3) hold for k = n. We then choose the n − 3 inner vertices
vn−1, vn−2, . . ., v3 in this order, and show that (co1)–(co3) hold for k = n − 1, n − 2, . . ., 3.

Assume for inductive hypothesis that the vertices vn, vn−1, . . ., vk+1, k + 1 ≥ 4, have
been appropriately chosen, and that (co1)–(co3) hold for k. If one can choose as vk a vertex
w �= v1, v2 on the cycle Co(Gk) which is not an end of a chord of Co(Gk), as illustrated in
Figure 23.11a, then clearly (co1)–(co3) hold for k − 1 since Gk−1 = Gk − vk. Thus it suffices
to show that there is such a vertex w.

Let Co(Gk) = w1, w2, . . ., wt, where w1 = v1 and wt = v2. If Co(Gk) has no chord, then
any of the vertices w2, w3, . . ., wt−1 is such a vertex w. One may thus assume that Co(Gk)
has a chord. Then Gk has a minimal chord (wp, wq), p + 2 ≤ q, such that none of the vertices
wp+1, wp+2, . . ., wq−1 is an end of a chord, as illustrated in Figure 23.11b where chords are
drawn by thick lines. Then any of the vertices wp+1, wp+2, . . ., wq−1 is such a vertex w. �

The following algorithm computes a canonical ordering of a triangulated plane graph G =
(V, E). For each vertex v, we keep the following variables:

• mark(v) =true if v has been added to the ordering, and false otherwise;

• out(v) = true if v is an outer vertex of a current plane graph, and false otherwise; and

• chords(v) = the number of chords of the outer cycle whose end vertex is v.

The algorithm is as follows.

Algorithm Canonical-Ordering(G)
begin
1 Let v1, v2, and vn be the vertices appearing on the outer

cycle counterclockwise in this order;
2 Set chords(x) = 0, out(x) = false, and mark(x) = false for

all vertices x ∈ V ;
3 Set out(v1) = true, out(v2) = true, and out(vn) = true;

546 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

4 for k = n down to 3 do
begin

5 Choose any vertex x such that mark(x) = false,
out(x) = true, chords(x) = 0, and x �= v1, v2;

6 Set vk = x and mark(x) = true;
7 Let Co(Gk−1) = w1, w2, . . ., wt, where w1 = v1 and wt = v2;
8 Let wp, wp+1, . . ., wq be the neighbors of vk which

have mark(wi) = false;
{They are consecutive on Co(Gk−1), as illustrated in Figure 23.12.}

9 For each vertex wi, p < i < q, set out(wi) = true, and
update the variable chords for wi and its neighbors.

end
end

The following lemma holds for Algorithm Canonical-Ordering [29].

Lemma 23.2 Algorithm Canonical-Ordering(G) computes a canonical ordering of a trian-
gulated plane graph G in time O(n). �

23.2.2 Shift Algorithm

In this section we describe the shift algorithm given by de Fraysseix et al. [78]. The algorithm
embeds G, one vertex at a time in a canonical order π = (v1, v2, . . ., vn) at each stage,
adjusting the current partial embedding. With each vertex vi, a set of vertices need to be
moved whenever the position of vi is adjusted. We denote by L(vi) the set of such vertices.
Note that vi ∈ L(vi).

We denote the current position of a vertex v by P (v); P (v) is expressed by its x- and
y-coordinates as (x(v), y(v)). If P1 = (x1, y1) and P2 = (x2, y2) are two grid points whose
Manhattan distance is even, then the straight line with slope +1 through P1 and the straight
line with slope −1 through P2 intersects at a grid point, which is denoted by μ(P1, P2).
Clearly

μ(P1, P2) =
(1

2(x1 − y1 + x2 + y2), 1
2(−x1 + y1 + x2 + y2)

)
(23.1)

Gk−1

wp
wq

wi

z

z

x = vk

w1 = v1 wt = v2

Figure 23.12 Gk.

Graph Drawing � 547

1

1

2

3
3

2

(b)(a)

Figure 23.13 (a) Graph G3 and (b) binary tree T for G3.

We are now ready to describe the drawing algorithm.
First we draw G3 by a triangle as follows. Set P (v1) = (0, 0), P (v2) = (2, 0), P (v3) =

(1, 1), and L(vi) = {vi} for i = 1, 2, 3 (see Figure 23.13a).
Assume that k − 1 ≥ 3 and we have embedded Gk−1 in such a way that the following

conditions hold:

(e1) P (v1) = (0, 0) and P (v2) = (2k − 6, 0);

(e2) x(w1) < x(w2) < · · · < x(wt), where Co(Gk−1) = w1, w2, . . ., wt, w1 = v1 and
wt = v2; and

(e3) each edge (wi, wi+1) on Co(Gk−1) is drawn by a straight line having slope either +1
or −1, as illustrated in Figure 23.14a.

We now explain how to install vk to a drawing of Gk−1. Let wp, wp+1, . . ., wq be the neigh-
bors of vk on Co(Gk−1), as illustrated in Figure 23.14a. We say that the vertex vk covers
the vertices wp+1, wp+2, . . ., wq−1. By (e3) the Manhattan distance between wp and wq is

(a)

w1 = v1

w1 = v1

wt = v2

wt = v2

wp+1 wq−1

wp+1 wq−1

(2k − 5,0)

(0,0) (2k − 6,0)

wt−1

wt−1

wq

wq

wp

wp

Gk−1

Gk−1

w2

w3

w2

w3

vk μ(wp, wq)

vk μ(wp, wq)

(−1,0)
(b)

Figure 23.14 (a) Gk before shift and (b) Gk after shift. (Figure taken from Nishizeki, T. and
Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

548 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

even, and hence μ(wp, wq) is a grid point. However, if we installed vk at μ(wp, wq), then the
straight line segment wpvk would overlap with wpwp+1, because wpwp+1 may have slope +1
as illustrated in Figure 23.14a. We thus shift vertices w1(= v1), w2, . . ., wp together with some
inner vertices to the left by one, as illustrated in Figure 23.14b. Similarly we shift vertices
wq, wq+1, . . ., wt(= v2) together with some inner vertices to the right by one. We then install
vk at the grid point μ(wp, wq) for the new positions of wp and wq. More precisely, we execute
the following Steps 1–4.

Step 1: for each v ∈
p⋃

i=1
L(wi) do x(v) = x(v) − 1;

Step 2: for each v ∈
t⋃

i=q
L(wi) do x(v) = x(v) + 1;

Step 3: P (vk) = μ(wp, wq)

Step 4: L(vk) = {vk} ∪ (
q−1⋃

i=p+1
L(wi))

Figure 23.14a depicts a drawing of Gk−1, and Figure 23.14b depicts a drawing of Gk obtained
by Steps 1–4. The Manhattan distance between wp and wq was even in the drawing of Gk−1.
Vertex wp is moved to the left by one by Step 1, and wq is moved to the right by one by Step 2.
Therefore the Manhattan distance between wp and wq is even in the drawing of Gk, and hence
μ(wp, wq) is a grid point as in Figure 23.14b. Vertices w1, w2, . . ., wp are moved to the left by
one, and wq, wq+1, . . ., wt are moved to the right by one. However, the positions of all vertices
wp+1, wp+2, . . ., wq−1 are unchanged by Steps 1 and 2; they are indicated by double circles
in Figure 23.14. Therefore the slopes of all edges (wp+1, wp+2), (wp+2, wp+3), . . ., (wq−2, wq−1)
have absolute value 1; these edges are drawn by thick solid lines in Figure 23.14. The slopes
of edges (wp, wp+1) and (wq−1, wq) have absolute values smaller than 1 in the drawing of
Gk as illustrated in Figure 23.14b. Thus all the vertices wp, wp+1, . . ., wq are visible from the
point μ(wp, wq), and hence one can draw all edges (vk, wp), (vk, wp+1), . . ., (vk, wq) by straight
line segments without edge crossings as illustrated in Figure 23.14b.

Clearly P (v1) = (−1, 0) in Figure 23.14b. Replace Steps 1 and 2 above by the following
Steps 1′ and 2′ to make P (v1) = (0, 0) by translating the drawing in Figure 23.14b to the
right by one.

Step 1′: for each v ∈
q−1⋃

i=p+1
L(wi) do x(v) = x(v) + 1;

Step 2′: for each v ∈
t⋃

i=q
L(wi) do x(v) = x(v) + 2.

Then (e1), (e2), and (e3) hold for Gk.
Figure 23.15a illustrates L(wi) for all outer vertices wi of G15 for the graph G in

Figure 23.10.
The following lemma ensures that Gk−1, 3 ≤ k ≤ n, remains to be a straight line

grid drawing after Steps 1′ and 2′ are executed and hence Gk is a straight line grid
drawing [29].

Lemma 23.3 Let Gk, 3 ≤ k ≤ n, be straight line grid embedded as described above. Let
Co(Gk) contain t′ vertices, and let δ1 ≤ δ2 ≤ · · · ≤ δt′ be any nondecreasing sequence of t′

nonnegative integers. If, for each i, we shift the vertices in L(wi) by δi to the right, then we
again obtain a straight line grid embedding of Gk. �

Graph Drawing � 549

(a)

1

3

6

10

9

78

1112

5
4

15 13

14
L(14)

L(15)

L(1) L(2)

L(13)

L(6)

2

1
15

9

13

14

6

8

7

12
11

5

10 4

2

3

(b)

10
9

8 7
4

12
11

5

L(w1)
w1 = 1

L(w2)
w2 = 15

L(w3)
w3 = 13

L(w4)
w4 = 14

L(w5)
w5 = 6

L(w6)
w6 = 2

3

(c)

Figure 23.15 (a) Graph G15 for G in Figure 23.10, (b) forest F , and (c) binary tree T . (Figure
taken from Nishizeki, T. and Rahman, M. S., Planar Graph Drawing, World Scientific,
Singapore, 2004.)

So, in the end we have a straight line embedding of G = Gn such that P (v1) = (0, 0) and
P (v2) = (2n − 4, 0). By (e3), P (vn) = (n − 2, n − 2). Therefore, the whole graph G is drawn
in a (2n − 4) × (n − 2) grid, as illustrated in Figure 23.16.

It is easy to implement the drawing algorithm described above in time O(n2). In the
remainder of this section we describe a linear-time implementation of the straight line drawing
algorithm in Section 23.2.2 [83].

We assume that G is already triangulated and embedded in the plane, and that a canonical
ordering π = (v1, v2, . . ., vn) of G is given. We view the family of sets L(w1), L(w2), . . ., L(wt)

1

9

10

8
7

3
4

13
14

16

5

12

6

15

11

2

Figure 23.16 Grid drawing of the plane graph in Figure 23.10. (Figure taken from Nishizeki, T.
and Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

550 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

for the outer vertices w1, w2, . . ., wt of graph Gk as a forest F in Gk consisting of trees
L(w1), L(w2), . . ., L(wt) rooted at the vertices w1, w2, . . ., wt. For G15 in Figure 23.15a the
forest F is drawn by thick solid lines in Figure 23.15a and is depicted also in Figure 23.15b.
The children of root wi of a tree L(wi) are the vertices that wi covers, that is, its neighbors
that leave the outer cycle when wi is installed. The forest F is represented by a binary tree
T as illustrated in Figure 23.15c. The root of T is w1(= v1). The w1’s right child is w2, he
w2’s right child is w3, and so on. The set L(wi) consists of wi and all nodes in the wi’s left
subtree in T . Thus, the subtree of T rooted at wi consists of the vertices in ∪j≥iL(wj). In
the left subtree of T rooted at wi, the left child of wi is the wi’s leftmost child in tree L(wi)
(if any), the left child’s right child in T is its next sibling to the right in tree L(wi) (if any),
the left child’s right child’s right child in T is its next next sibling to the right in tree L(wi)
(if any), and so on. For G3 in Figure 23.13a, T is illustrated in Figure 23.13b.

Since vk is embedded at a point μ(wp, wq), by Equation 23.1 we have

x(vk) = 1
2{x(wq) + x(wp) + y(wq) − y(wp)}, (23.2)

y(vk) = 1
2{[x(wq) − x(wp)] + y(wq) + y(wp)} (23.3)

and hence

x(vk) − x(wp) = 1
2{[x(wq) − x(wp)] + y(wq) − y(wp)}. (23.4)

The crucial observation is that, when we embed vk, it is not necessary to know the exact
position of wp and wq. If we know only their y-coordinates and their relative x-coordinates,
that is, x(wq) − x(wp), then by Equation 23.3 we can compute y(vk) and by Equation 23.4
we can compute the x-coordinate of vk relative to wp, that is, x(vk) − x(wp).

For each vertex v �= v1, the x-offset of v is defined as Δx(v) = x(v) − x(w), where w is
the parent of v in T . More generally, if w is an ancestor of v, then the x-offset between w
and v is Δx(w, v) = x(v) − x(w).

With each vertex v we store the following information:

• left(v) = the left child of v in T ;

• right(v) = the right child of v in T ;

• Δx(v) = the x-offset of v from its parent in T ; and

• y(v) = the y-coordinate of v.

The algorithm consists of two phases. In the first phase, we add new vertices one by one, and
each time we add a vertex we compute its x-offset and y-coordinate, and update the x-offsets
of one or two other vertices. In the second phase, we traverse the tree T and compute the
final x-coordinates by accumulating offsets.

The first phase is implemented as follows. First we initialize the values stored at v1, v2,
and v3 as follows (see Figure 23.13):

• Δx(v1) = 0; y(v1) = 0; right(v1) = v3; left(v1) = nil;

• Δx(v3) = 1; y(v3) = 1; right(v3) = v2; left(v3) = nil; and

• Δx(v2) = 1; y(v2) = 0; right(v2) = nil; left(v2) = nil.

Graph Drawing � 551

We then embed the other vertices, one by one, as follows.

1 for k = 4 to n do
begin

2 Let w1, w2, . . ., wt be the outer cycle Co(Gk−1) of Gk−1;
{See Figure 23.17a.}

3 Let wp, wp+1, . . ., wq be the neighbors of vk on Co(Gk−1);
4 Increase offset of wp+1 and wq by one; {cf. Steps 1′ and 2′.}
5 Calculate Δx(wp, wq) as

Δx(wp, wq) = Δx(wp+1) + Δx(wp+2) + · · · + Δx(wq);
6 Calculate Δx(vk) as

Δx(vk) = 1
2{Δx(wp, wq) + y(wq) − y(wp)};

{cf. Equation 23.4.}
7 Calculate y(vk) as y(vk) = 1

2{Δx(wp, wq) + y(wq) + y(wp)};
{cf. Equation 23.3.}

8 Calculate Δx(wq) as Δx(wq) = Δx(wp, wq) − Δx(vk);
9 if p + 1 �= q then

10 Calculate Δx(wp+1) as Δx(wp+1) = Δx(wp+1) − Δx(vk);
11 Set right(wp) = vk and right(vk) = wq;
12 if p + 1 �= q then
13 Set left(vk) = wp+1 and right(wq−1) = nil
14 else
15 Set left(vk) = nil;
16 end

Figure 23.17 illustrates the construction of T for Gk from T for Gk−1 by the algorithm above.

In the second phase, we compute the x-coordinate x(vi) for each vertex vi in G. Let Q
be the path from the root v1 to vi in tree T . Then x(vi) =

∑{Δ(x)| vertex x is on Q}.
One can compute x(vi) for all vertices vi by invoking Accumulate-Offset(v1,0); procedure
Accumulate-Offset is as follows.

procedure Accumulate-Offset(v:vertex; δ:integer);
begin

if v �= nil then begin
Set Δx(v) = Δx(v) + δ;
Accumulate-Offset(left(v); Δx(v));
Accumulate-Offset(right(v); Δx(v));

end
end

Clearly x(vi) = Δx(vi) for each vertex vi in G.
The first phase takes linear time, since adding a vertex vk takes at most time O(d(vk)).

The second phase, that is, Accumulate-Offset, takes time proportional to the number nodes
in T . Thus, the algorithm takes linear time in total.

552 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(a)

w1=v1

w1=v2

w1 = v1

w2

wp

wp

wp

vk
wp+1

wp+1

wp+1
wp+2

wp+2wq−1

wq−1

wq−1wq

wq

wq

wt = v2

w2

w1 = v1 wt = v2

Gk−1

Gk

vk

(b) (c)

Figure 23.17 (a) Graph Gk, (b) tree T for Gk−1, and (c) tree T for Gk. (Figure taken from
Nishizeki, T. and Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

23.3 CONVEX DRAWING

Some planar graphs can be drawn in such a way that each edge is drawn as a straight line
segment and each face is drawn as a convex polygon, as illustrated in Figures 23.4b and
23.18b. Such a drawing is called a convex drawing. The drawings in Figures 23.18d and f are
not convex drawings. Although not every planar graph has a convex drawing, Tutte showed
that every 3-connected planar graph has a convex drawing, and obtained a necessary and
sufficient condition for a plane graph to have a convex drawing [84]. Furthermore, he gave a
barycentric mapping method for finding a convex drawing of a plane graph, which requires
solving a system of O(n) linear equations [85]. The system of equations can be solved either in
O(n3) time and O(n2) space using the ordinary Gaussian elimination method, or in O(n1.5)
time and O(n log n) space using the sparse Gaussian elimination method [86]. Thus the
barycentric mapping method leads to an O(n1.5) time convex drawing algorithm for plane
graphs.

Chiba et al. gave two linear algorithms for the convex drawing problem of planar graphs:
drawing and testing algorithms [44]. One of them finds a convex drawing of a given plane
graph G if there is; it extends a given convex polygonal drawing of the outer cycle of G into
a convex drawing of G. The other algorithm tests the possibility for a given planar graph.
That is, it examines whether a given planar graph has a plane embedding which has a convex
drawing.

A convex drawing is called a convex grid drawing if it is a grid drawing. Every 3-connected
plane graph has a convex grid drawing on an (n−2)× (n−2) grid, and there is an algorithm
to find such a grid drawing in linear time [43].

Graph Drawing � 553

(c)

1 2

1 2

34

5

6

1
6

5

4
3

2

(a) (b)

1

3
4

6 2

5

1 2

3

4

5

6

34

5

6

(d) (e) (f)

Figure 23.18 (a–f) Plane graphs and drawings.

One may expect that the size of an integer grid required by a convex grid drawing will
be smaller than (n − 2) × (n − 2) for 4-connected plane graphs. Miura et al. presented an
algorithm which finds in linear time a convex grid drawing of any given 4-connected plane
graph G on an integer grid such that W + H ≤ n − 1 if G has four or more outer vertices
[87]. Since W + H ≤ n − 1, the area of the grid satisfies W · H ≤ n2/4.

In this section, we describe a linear algorithm for finding a convex grid drawing of a
3-connected plane graph on an (n − 2) × (n − 2) grid [43]. The algorithm is based on a
canonical decomposition of a 3-connected plane graph, which is a generalization of a canonical
ordering described in Section 23.2.1. In Section 23.3.1 we present a canonical decomposition,
and in Section 23.3.2 we present the algorithm.

23.3.1 Canonical Decomposition

We say that a plane graph G is internally 3-connected if G is 2-connected and, for any
separation pair {u, v} of G, u and v are outer vertices and each connected component of
G−{u, v} contains an outer vertex. In other words, G is internally 3-connected if and only if
it can be extended to a 3-connected graph by adding a vertex in an outer face and connecting
it to all outer vertices. If a 2-connected plane graph G is not internally 3-connected, then G
has a separation pair {u, v} of one of the three types illustrated in Figure 23.19, where the

u

v

I II
v

uu

v

Figure 23.19 Biconnected plane graphs which are not internally 3-connected.

554 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

w1

P1

P2

P3

P4 P5

w2

w3

w4

w5

w6

w9

w10

w11

w12

w13 = wt

w7 w8

Figure 23.20 Plane graph with chord-paths P1, P2, . . ., P5.

split component I contains a vertex other than u and v. If an internally 3-connected plane
graph G is not 3-connected, then G has a separation pair of outer vertices and hence G has
a “chord-path” when G is not a single cycle.

We now define a “chord-path”. Let G be a 2-connected plane graph, and let w1, w2, . . ., wt

be the vertices appearing clockwise on the outer cycle Co(G) in this order, as illustrated
in Figure 23.20. We call a path P in G a chord-path of the cycle Co(G) if P satisfies the
following (i)–(iv):

i. P connects two outer vertices wp and wq, p < q;

ii. {wp, wq} is a separation pair of G;

iii. P lies on an inner face; and

iv. P does not pass through any outer edge and any outer vertex other than the ends wp

and wq.

The plane graph G in Figure 23.20 has six chord-paths P1, P2, . . ., P5 drawn by thick lines.
A chord-path P is minimal if none of wp+1, wp+2, . . ., wq−1 is an end of a chord-path. Thus,
the definition of a minimal chord-path depends on which vertex is considered as the starting
vertex w1 of Co(G). P1, P2, and P5 in Figure 23.20 are minimal, while P3 and P4 are not
minimal.

Let {v1, v2, . . ., vp}, p ≥ 3, be a set of three or more outer vertices consecutive on Co(G)
such that d(v1) ≥ 3, d(v2) = d(v3) = · · · = d(vp−1) = 2, and d(vp) ≥ 3. Then we call the
set {v2, v3, . . ., vp−1} an outer chain of G. The graph in Figure 23.19 has two outer chains
{w4, w5} and {w8}.

We are now ready to define a canonical decomposition. Let G = (V, E) be a 3-connected
plane graph of n ≥ 4 vertices like one in Figure 23.22. For an ordered partition Π =
(U1, U2, . . ., Ul) of set V , we denote by Gk, 1 ≤ k ≤ l, the subgraph of G induced by
U1 ∪ U2 ∪ · · · ∪ Uk, while we denote by Gk, 0 ≤ k ≤ l − 1, the subgraph of G induced by
Uk+1 ∪ Uk+2 ∪ · · · ∪ Ul. Clearly Gk = G − Uk+1 ∪ Uk+2 · · · ∪ Ul, and G = Gl = G0. Let (v1, v2)
be an outer edge of G. We then say that Π is a canonical decomposition of G (for an outer
edge (v1, v2)) if Π satisfies the following conditions (cd1)–(cd3).

Graph Drawing � 555

(cd1) U1 is the set of all vertices on the inner face containing edge (v1, v2), and Ul is a
singleton set containing an outer vertex vn �∈ {v1, v2}.

(cd2) For each index k, 1 ≤ k ≤ l, Gk is internally 3-connected.

(cd3) For each index k, 2 ≤ k ≤ l, all vertices in Uk are outer vertices of Gk and the following
conditions hold:

a. if |Uk| = 1, then the vertex in Uk has two or more neighbors in Gk−1 and has at
least one neighbor in Gk when k < l, as illustrated in Figure 23.21a; and

b. If |Uk| ≥ 2, then Uk is an outer chain of Gk, and each vertex in Uk has at least
one neighbor in Gk, as illustrated in Figure 23.21b.

Figure 23.22 illustrates a canonical decomposition Π = (U1, U2, . . ., U8) of a 3-connected plane
graph of n = 15 vertices. We now have the following lemma on a canonical decomposition [29].

Lemma 23.4 Every 3-connected plane graph G of n ≥ 4 vertices has a canonical decompo-
sition Π, and Π can be found in linear time. �

Gk−1 Gk−1

Uk Uk

(a) (b)

Figure 23.21 (a,b) Gk with some edges joining Uk and Gk.

3

8 7

1 2

4 5

13

14

6

15

9 10

11
12

U8

U7

U6

U5

U3U4

U2

U1

Figure 23.22 A canonical decomposition of a 3-connected plane graph. (Figure taken from
Nishizeki, T. and Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

556 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

23.3.2 Algorithm for Convex Grid Drawing

In this section, we describe a linear algorithm for finding a convex grid drawing of a
3-connected plane graph [43].

Let G be a 3-connected plane graph, and let Π = (U1, U2, . . ., Ul) be a canonical decom-
position of G. The algorithm will add to a drawing the vertices in set Uk, one by one, in
the order U1, U2, . . ., Ul, adjusting the drawing at every step. Before giving the detail of the
algorithm we need some preparation.

We say that a vertex v ∈ Uk, 1 ≤ k ≤ l, has rank k. Let 2 ≤ k ≤ l, and let Co(Gk−1) =
w1, w2, . . ., wt, where w1 = v1 and wt = v2. The definition of a canonical decomposition
implies that there is a pair of indices a and b, 1 ≤ a < b ≤ t, such that each of wa and
wb has a neighbor in Gk−1 but any vertex wi, a < i < b, has no neighbor in Gk−1 and is
an inner vertex of G, as illustrated in Figure 23.23. (see also Figure 23.21). Then the path
wa, wa+1, . . ., wb is a part of an inner facial cycle F of G; F also contains two edges connecting
wa and wb with Gk−1, plus possibly some edges in Gk−1. Let c, a ≤ c < b, be an index such
that wc has the smallest rank among the vertices wa, wa+1, . . ., wb−1. If there are two or more
vertices with the smallest rank, then let wc be the leftmost one, that is, let c be the smallest
index of these vertices. Intuitively, the algorithm will work in such a way that, for any such
pair of indices a and b, either the vertex wc or wc+1 will have the smallest y-coordinate among
the vertices on the face F (see Figure 23.23). We denote the index c for a and b by μ+

k (a) and
μ−

k (b). Thus c = μ+
k (a) = μ−

k (b). The superscript + indicates a ≤ c, while the superscript
− indicates c < b. We often omit the subscript k for simplicity. Note that if b = a + 1 then
a = μ+

k (a) = μ−
k (b).

We denote the current position of a vertex v by P (v); P (v) is expressed by its x- and
y-coordinates as (x(v), y(v)). With each vertex v, a set of vertices need to be moved whenever
the position of v is adjusted. We denote by L(v) the set of such vertices.

We are now ready to describe the drawing algorithm.
First we draw Co(G1) = w1, w2, . . ., wt as follows. Set P (w1) = (0, 0), P (wt) = (t − 1, 0)

and P (wi) = (i − 1, 0) for all indices i = 2, 3, . . ., t − 1, as illustrated in Figure 23.24a for the
graph in Figure 23.22. Also set L(wi) = {wi} for each index i = 1, 2, . . ., t.

Then, for each index k = 2, 3, . . ., l, we do the following. Let Co(Gk−1) = w1, w2, . . ., wt

be the outer cycle of Gk−1 where w1 = v1 and wt = v2. Let Uk = {u1, u2, . . ., ur}. Uk is
either a singleton set or an outer chain of Gk, but in the algorithm we will treat both cases
uniformly.

Let wp and wq be the leftmost and rightmost neighbors of Uk in Gk−1 as illustrated in
Figures 23.25 and 23.26. Let α = μ+(p), and let β = μ−(q). If Uk is an outer chain, then

F

Gk−1w2

wf wa

wb wg

wc

−45°

−45°
90°

90°

w1 = v1 wt = v2

Figure 23.23 Gk−1 with some edges connecting Gk−1 and Gk−1. (Figure taken from Nishizeki,
T. and Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

Graph Drawing � 557

(d) (e)

(g)(f)

1 1
3 5

6
7

8

3

8

7

5
6

22

1 23 54 54
6

7

1 23
6

7

8 8

13 13

14

109

11 12

9 10 9 10

1211 1211

9

(a) (b) (c)

2
4

1
3

6

1 2
3 4 5

6

1 2
3 4 5

6
7 7

8

v1 v2

v1 v2

v1 v2 v1 v2

v1 v2

v1 v2

v1 v2 v1 v2

1
5 2

7

3 4 6

8

13

15
14

9 10

1211

5

10

4

(h)

Figure 23.24 (a–h) Drawing process of the plane graph in Figure 23.22. (Figure taken from
Nishizeki, T. and Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

all vertices wp+1, wp+2, . . ., wq−1 belong to the same inner face of Gk and none of them has
a neighbor in Gk and hence α = β, as illustrated in Figure 23.26a. If Uk is a singleton
set of a vertex u1 having three or more neighbors in Gk−1, then at least one of the ver-
tices wp+1, wp+2, . . ., wq−1 has a neighbor in Gk and hence α < β; in fact, wα and wβ will

558 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(a) w1 = v1 wt = v2

wp

wp

wα

wα

wβ

wβ

F1

F1

F2

u1

u1

Fz−1

Gk−1

Gk−1

wq = wβ+1

wq = wβ+1

−45°

Uk

Fz−1

(b) w1 = v1 wt = v2

Figure 23.25 (a) Gk before shift and (b) Gk after shift and install with ε = 0. (Figure taken
from Nishizeki, T. and Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore,
2004.)

belong to two different inner faces of Gk, to the first and last faces among those that are
created when adding u1 to Gk−1, as illustrated in Figure 23.25. We thus execute the following
steps.

Update
Set L(wp) =

α⋃
i=p

L(wi);

Set L(wq) =
q⋃

i=β+1
L(wi);

Set L(u1) = {u1} ∪ (
β⋃

i=α+1
L(wi));

Set L(ui) = {ui} for each index i, 2 ≤ i ≤ r;

Shift: For each vertex v ∈
t⋃

i=q
L(wi), set x(v) = x(v) + r;

Install Uk: Let ε be 0 if wp has no neighbor in Gk and 1 otherwise. For each i = 1, 2, . . ., r,
we set x(ui) = x(wp) + i − 1 + ε, and set y(ui) = y(wq) + x(wq) − x(wp) − r + 1 − ε. In other
words, we draw Uk horizontally in such a way that the slope of the segment urwq is −45◦.

Graph Drawing � 559

(a) wt = v2w1 = v1

wp

wp

F1

F1

u1 u2

u2u1

Gk−1

Gk−1

wβ+1

wβ+1

wα = wβ

wα = wβ

−45°

Uk

wq

wq

(b) w1 = v1 wt = v2

Figure 23.26 (a) Gk before shift, and (b) Gk after shift and install with ε = 1. (Figure taken
from Nishizeki, T. and Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore,
2004.)

Vertex u1 is placed above wp if wp has no neighbor in Gk, and at the next x-coordinate
otherwise. Note that in the last equation we use the new updated value of x(wq).

We call the algorithm above Algorithm Convex-Grid-Drawing. Figure 23.24 illustrates the
execution of Algorithm Convex-Grid-Drawing for the plane graph in Figure 23.22. The linear-
time implementation of Convex-Grid-Drawing can be achieved by using a data structure
presented in Section 23.2.2.

We now verify the correctness of Algorithm Convex-Grid-Drawing. Let 2 ≤ k ≤ l, and
let Co(Gk−1) = w1, w2, . . ., wt, where w1 = v1 and wt = v2. Then by induction on k it can
be proved that in the drawing of Gk−1, P (v1) = (0, 0), P (v2) = (| ∪k−1

i=1 Ui| − 1, 0), and any
line segment wiwi+1, 1 ≤ i ≤ t − 1, has slope in {−45◦, 0◦} ∪ [45◦, 90◦] as illustrated in Fig-
ure 23.23, where [45◦, 90◦] denotes the set of all angles θ, 45◦ ≤ θ ≤ 90◦. More specifically, the
following properties (a)–(c) hold on the slopes of line segments on Co(Gk−1) in the drawing of
Gk−1 [43].

a. Let wf , 1 ≤ f ≤ t, be the first vertex on Co(Gk−1) which has a neighbor in Gk−1, then
the slope of each line segment on the path w1, w2, . . ., wf is 90◦.

b. Let wg, 1 ≤ g ≤ t, be the last vertex on Co(Gk−1) which has a neighbor in Gk−1, then
the slope of each line segment on the path wg, wg+1, . . ., wt is −45◦.

c. For any triple of indices a, b and c as defined earlier and illustrated in Figure 23.23,
each of the first c − a line segments on the path wa, wa+1, . . ., wb has slope −45◦, while
each of the last b − c − 1 segments has slope 90◦. The remaining line segment wcwc+1
has slope in {−45◦, 0◦} ∪ [45◦, 90◦], and the slope is not 90◦ if c = a.

560 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

One can observe that, after the shift operation while adding Uk, all neighbors of Uk on
Co(Gk−1) are visible from the vertices in Uk. Hence the edges joining vertices in Uk and
vertices in Co(Gk−1) do not intersect themselves or edges on Co(Gk−1). Thus, adding Uk

does not distroy the planarity. One can observe also that the newly created inner faces are
convex polygons.

What remains to show is that we do not destroy the planarity and convexity when
we apply the shift operation. This is shown in the following lemma, which is similar to
Lemma 23.3 for straight line drawings [43]. We call a drawing of a plane graph internally
convex if all inner faces are drawn as convex polygons.

Lemma 23.5 (a) Each graph Gk, 1 ≤ k ≤ l, is straight-line embedded and internally convex.
(b) Suppose that Co(Gk) = w′

1, w′
2, . . ., w′

t′ , w′
1 = v1 and w′

t′ = v2, and that s is any index,
1 ≤ s ≤ t′, and δ is any nonnegative integer. If we shift all vertices in ∪t′

i=sL(w′
i) by δ to the

right, then Gk remains straight-line embedded and internally convex. �

The conditions (a) and (b) on the slopes of line segments on Co(Gk) imply that the outer
cycle Co(G) is drawn as an isosceles right triangle in the final drawing of G, as illustrated
in Figure 23.24h. Clearly x(v1) = 0, x(v2) = n − 1, and y(vn) = n − 1, and hence Algorithm
Convex-Grid-Drawing produces a convex drawing of a 3-connected plane graph G on an
(n − 1) × (n − 1) grid.

Using a canonical decomposition such that vn is adjacent to v2 and fixing the position of
vn carefully, one can obtain a convex grid drawing on an (n − 2) × (n − 2) grid.

23.4 RECTANGULAR DRAWING

A rectangular drawing of a plane graph G is a drawing of G in which each vertex is drawn as a
point, each edge is drawn as a horizontal or vertical line segment without edge-crossings, and
each face is drawn as a rectangle. Thus, a rectangular drawing is a special case of a convex
drawing. Figure 23.27b illustrates a rectangular drawing of the plane graph in Figure 23.27a.
In Section 23.1.2 we have seen applications of a rectangular drawing to VLSI floorplanning
and architectural floorplanning. In a rectangular drawing of G, the outer cycle Co(G) is
drawn as a rectangle and hence has four convex corners such as a, b, c and d drawn by white
circles in Figure 23.27. Such a convex corner is an outer vertex of degree two and is called
a corner of the rectangular drawing. Not every plane graph G has a rectangular drawing.
Of course, G must be 2-connected and the maximum degree Δ of G is at most four if G has

d

c
b

a

b c

a d
(b)(a)

Figure 23.27 (a) Plane graph and (b) its rectangular drawing for the designated corners a, b, c,

and d.

Graph Drawing � 561

a rectangular drawing. Miura et al. recently showed that a plane graph G with Δ ≤ 4 has
rectangular drawing D if and only if a new bipartite graph constructed from G has a perfect
matching, and D can be found in time O(n1.5/ log n) whenever G has D [88].

Since a planar graph with Δ ≤ 3 often appears in many practical applications, much
works have been devoted on rectangular drawings of planar graphs with Δ ≤ 3. Thomassen
gave a necessary and sufficient condition for a plane graph G with Δ ≤ 3 to have a rectangular
drawing when four outer vertices of degree two are designated as the corners [64]. Based on
this characterization Rahman et al. gave a linear-time algorithm to obtain a rectangular
drawing with the designated corners [66]. The problem of examining whether a plane graph
has a rectangular drawing becomes difficult when four outer vertices are not designated as
the corners. Rahman et al. gave a necessary and sufficient condition for a plane graph with
Δ ≤ 3 to have a rectangular drawing for some quadruplet of outer vertices appropriately
chosen as the corners, and present a linear time algorithm to find such a quadruplet [67].

Kozminski and Kinnen [89] established a necessary and sufficient condition for the exis-
tence of a rectangular dual of an inner triangulated plane graph, that is, a rectangular draw-
ing of the dual graph of an inner triangulated plane graph, and gave an O(n2) algorithm
to obtain it. Based on the characterization of [89], Bhasker and Sahni [65], and Xin He [90]
developed linear-time algorithms to find a rectangular dual. Kant and Xin He [91] presented
two more linear-time algorithms. Xin He [92] presented a parallel algorithm for finding a
rectangular dual. Lai and Leinwand [93] reduced the problem of finding a rectangular dual
of an inner triangulated plane graph G to a problem of finding a perfect matching of a new
bipartite graph constructed from G.

The outer face boundary must be rectangular in a rectangular drawing, as illustrated in
Figure 23.27b. However, the outer boundary of a VLSI chip or an architectural floor plan is
not always rectangular, but is often a rectilinear polygon of L-shape, T-shape, Z-shape, and
so forth as illustrated in Figures 23.28a–c. We call such a drawing of a plane graph G an inner
rectangular drawing if every inner face of G is a rectangle although the outer face boundary is
not always a rectangle. Miura et al. [88] reduced the problem of finding an inner rectangular
drawing of a plane graph G with Δ ≤ 4 to a problem of finding a perfect matching of a new
bipartite graph constructed from G.

A planar graph may have many embeddings. We say that a planar graph G has a rectan-
gular drawing if at least one of the plane embeddings of G has a rectangular drawing. Since
a planar graph may have an exponential number of embeddings, it is not a trivial problem
to examine whether a planar graph has a rectangular drawing or not. Rahman et al. gave a
linear-time algorithm to examine whether a planar graph G with Δ ≤ 3 has a rectangular
drawing or not, and find a rectangular drawing of G if it exists [94].

In Section 23.4.1 we present the result of Miura et al. on rectangular drawings of plane
graphs with Δ ≤ 4 [29,88]. In Section 23.4.2 we present the characterization of Thomassen
[64] an outline of the linear-time algorithm of Rahman et al. [66].

(c)(b)(a)

Figure 23.28 Inner rectangular drawings of (a) L-shape, (b) T-shape, and (c) Z-shape.

562 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

23.4.1 Rectangular Drawing and Matching

In this section, we consider rectangular drawings of plane graphs with Δ ≤ 4. We show that
a plane graph G with Δ ≤ 4 has rectangular drawing D if and only if a new bipartite graph
Gd constructed from G has a perfect matching, and D can be found in time O(n1.5/ log n) if
D exists [29,88]. Gd is called a decision graph.

We may assume without loss of generality that G is 2-connected and Δ ≤ 4, and hence
every vertex of G has degree two, three or four.

An angle formed by two edges e and e′ incident to a vertex v in G is called an angle of v
if e and e′ appear consecutively around v. An angle of a vertex in G is called an angle of G.
An angle formed by two consecutive edges on a boundary of a face F in G is called an angle
of F . An angle of the outer face is called an outer angle of G, while an angle of an inner face
is called an inner angle.

In any rectangular drawing, every inner angle is 90◦ or 180◦, and every outer angle is
180◦ or 270◦. Consider a labeling Θ which assigns a label 1, 2, or 3 to every angle of G,
as illustrated in Figure 23.29b. Labels 1, 2, and 3 correspond to angles 90◦, 180◦, and 270◦,
respectively. Therefore each inner angle has label either 1 or 2, exactly four outer angles have
label 3, and all other outer angles have label 2.

We call Θ a regular labeling of G if Θ satisfies the following three conditions (a)–(c):

a. For each vertex v of G, the sum of the labels of all the angles of v is equal to 4;

b. The label of any inner angle is 1 or 2, and every inner face has exactly four angles of
label 1; and

c. The label of any outer angle is 2 or 3, and the outer face has exactly four angles of
label 3.

2

2

2

xx x x

x
x

1

2
1 1

3

1
2

22

2 2

1
1

31

3
2

1 1

2
1

1
11

1

x

1

x

xxx
x

2

1 1
(a) (b)

3
ba

1

1

1

3
1

2

2

2

1 11

2
1
11 1

21
1

2

2
1
1 2

1 1

2

1 11
3 31

2

3

1
11

1 1

2

11

2

1 1

2

2

2d c

ba

d c

1 2

a b

d c(c)

Figure 23.29 (a) Plane graph G, (b) rectangular drawing D and regular labeling Θ of G, and
(c) decision graph Gd. (Figure taken from Nishizeki, T. and Rahman, M. S., Planar Graph
Drawing, World Scientific, Singapore, 2004.)

Graph Drawing � 563

A regular labeling Θ of the plane graph in Figure 23.29a and a rectangular drawing D
corresponding to Θ are depicted in Figure 23.29b. A regular labeling is a special case of an
orthogonal representation of an orthogonal drawing presented in [54].

Conditions (a) and (b) implies the following (i)–(iii):

i. If a noncorner vertex v has degree two, that is, d(v) = 2, then the two labels of v are
2 and 2.

ii. If d(v) = 3, then exactly one of the three angles of v has label 2 and the other two have
label 1.

iii. If d(v) = 4, then all the four angles of v have label 1.

If G has a rectangular drawing, then clearly G has a regular labeling. Conversely, if G has a
regular labeling, then G has a rectangular drawing, as can be proved by means of elementary
geometric considerations. We thus have the following fact.

Fact 23.1 A plane graph G has a rectangular drawing if and only if G has a regular labeling.

We now assume that four outer vertices a, b, c, and d of degree two are designated as corners.
Then the outer angles of a, b, c, and d must be labeled with 3, and all the other outer angles
of G must be labeled with 2, as illustrated in Figure 23.29a. Some of the inner angles of
G can be immediately determined, as illustrated in Figure 23.29a. If v is a noncorner outer
vertex of degree two, then the inner angle of v must be labeled with 2. The two angles of any
inner vertex of degree two must be labeled with 2. If v is an outer vertex of degree three,
then the outer angle of v must be labeled with 2 and both of the inner angles of v must be
labeled with 1. We label all the three angles of an inner vertex of degree three with x, because
one cannot determine their labels although exactly one of them must be labeled with 2 and
the others with 1. We label all the four angles of each vertex of degree four with 1. Label x
means that x is either 1 or 2, and exactly one of the three labels x’s attached to the same
vertex must be 2 and the other two must be 1 (see Figures 23.29a and b).

We now present how to construct a decision graph Gd of G. Let all vertices of G attached
label x be vertices of Gd. Thus, all the inner vertices of degree three are vertices of Gd, and
none of the other vertices of G is a vertex of Gd. We then add to Gd a complete bipartite
graph inside each inner face F of G, as illustrated in Figure 23.30 where Gd is drawn by

4 − n1
nx1

F

xx

1

x

Figure 23.30 Construction of Gd for an inner face F of G. (Figure taken from Nishizeki, T.
and Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

564 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

solid lines and G by dotted lines. Let nx be the number of angles of F labeled with x. For
example, nx = 3 in Figure 23.30. Let n1 be the number of angles of F which have been
labeled with 1. Then n1 is the number of vertices v on F such that either v is a corner vertex
or d(v) = 4. Thus, n1 = 2 for the example in Figure 23.30. One may assume as a trivial
necessary condition that n1 ≤ 4; otherwise, G has no rectangular drawing. Exactly 4 − n1
of the nx angles of F labeled with x must be labeled with 1 by a regular labeling. We add
a complete bipartite graph K(4−n1),nx

in F , and join each of the nx vertices in the second
partite set with one of the nx vertices on F whose angles are labeled with x. Repeat the
operation above for each inner face F of G. The resulting graph is a decision graph Gd of
G. The decision graph Gd of the plane graph G in Figure 23.29a is drawn by solid lines in
Figure 23.29c, where G is drawn by dotted lines. The idea of adding a complete bipartite
graph originates from Tutte’s transformation for finding an f -factor of a graph [95].

A matching of Gd is a set of pairwise nonadjacent edges in Gd. A maximum matching
of Gd is a matching of the maximum cardinality. A matching M of Gd is called a perfect
matching if an edge in M is incident to each vertex of Gd. A perfect matching is drawn by
thick solid lines in Figures 23.29c and 23.30.

Each edge e of Gd incident to a vertex v attached a label x corresponds to an angle α of
v labeled with x. A fact that e is contained in a perfect matching M of Gd means that the
label x of α is 2. Conversely, a fact that e is not contained in M means that the label x of
α is 1.

We now have the following theorem.

Theorem 23.1 Let G be a plane graph with Δ ≤ 4 and four outer vertices a, b, c and d
be designated as corners. Then G has a rectangular drawing D with the designated corners
if and only if the decision graph Gd of G has a perfect matching. D can be found in time
O(n1.5/ log n) whenever G has D.

Proof. We only show a proof for the time complexity; the proof for necessity and sufficiency
can be found in [29].

Clearly, Gd is a bipartite graph, and 4 − n1 ≤ 4. Obviously, nx is no more than the
number of edges on face F . Let m be the number of edges in G, then we have 2m ≤ 4n
since Δ ≤ 4. Therefore the sum 2m of the numbers of edges on all faces is at most 4n. One
can thus know that both the number nd of vertices in Gd and the number md of edges in
Gd are O(n). Since Gd is a bipartite graph, a maximum matching of Gd can be found either
in time O(√ndmd) = O(n1.5) by an ordinary bipartite matching algorithm [96–98] or in
time O(n1.5/ log n) by a recent pseudoflow-based bipartite matching algorithm using boolean
word operations on log n-bit words [99,100]. One can find a regular labeling Θ of G from a
perfect matching of Gd in linear time. It is easy to find a rectangular drawing of G from Θ in
linear time. �

23.4.2 Linear Algorithm

In this section, we present Thomassen’s theorem on a necessary and sufficient condition for a
plane graph G with Δ ≤ 3 to have a rectangular drawing when four outer vertices of degree
two are designated as the corners [64], and give a linear-time algorithm to find a rectangular
drawing of G if it exists [66].

Before presenting Thomassen’s theorem we recall some definitions. An edge of a plane
graph G is called a leg of a cycle C if it is incident to exactly one vertex of C and located
outside C. The vertex of C to which a leg is incident is called a leg-vertex of C. A cycle in G
is called a k-legged cycle of G if C has exactly k legs in G and there is no edge which joins two
vertices on C and is located outside C. Figure 23.31a illustrates 2-legged cycles C1, C2, C3,

Graph Drawing � 565

C5
C1

C3

C4

C6

C7

C2 C8

(a) (b)2−legged cycles 3−legged cycles

Figure 23.31 Good cycles C4, C6, and C7 and bad cycles C1, C2, C3, C5, and C8. (Figure taken
from Nishizeki, T. and Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore,
2004.)

and C4, while Figure 23.31b illustrates 3-legged cycles C5, C6, C7, and C8, where corners are
drawn by white circles.

If a 2-legged cycle contains at most one corner like C1, C2, and C3 in Figure 23.31a, then
some inner face cannot be drawn as a rectangle and hence G has no rectangular drawing.
Similarly, if a 3-legged cycle contains no corner like C5 and C8 in Figure 23.31b, then G has
no rectangular drawing. One can thus observe the following fact.

Fact 23.2 In any rectangular drawing D of G, every 2-legged cycle of G contains two or
more corners, every 3-legged cycle of G contains one or more corner, and every cycle with
four or more legs may contain no corner, as illustrated in Figure 23.32.

The necessity of the following Thomassen’s theorem [64] is immediate from Fact 23.2.

0 1 3

2−legged cycle

3−legged cycle

None

None

The number of corners contained in a cycle

None

42

k−legged cycle
k ≥ 4

Figure 23.32 Numbers of corners in drawings of cycles. (Figure taken from Nishizeki, T. and
Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

566 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 23.2 Assume that G is a 2-connected plane graph with Δ ≤ 3 and four outer
vertices of degree two are designated as the corners a, b, c, and d. Then G has a rectangular
drawing if and only if

(r1) Any 2-legged cycle contains two or more corners, and

(r2) Any 3-legged cycle contains one or more corners.

A cycle of type (r1) or (r2) is called good. Cycles C4, C6, and C7 in Figure 23.31 are good
cycles; the 2-legged cycle C4 contains two corners, and the 3-legged cycles C6 and C7 contain
one or two corners. On the other hand, a 2-legged or 3-legged cycle is called bad if it is not
good. Thus, 2-legged cycles C1, C2, and C3 and 3-legged cycles C5 and C8 are bad cycles.
Thus, Theorem 23.2 can be rephrased as follows: G has a rectangular drawing if and only if
G has no bad cycle. In particular, a 2-legged bad cycle is called a bad corner if it contains
exactly one corner like C3.

In the rest of this section we present an outline of a constructive proof of the sufficiency
of Theorem 23.2 [66]. The proof leads to a linear-time algorithm which we call Algorithm
Rectangular-Draw.

The union G = G′ ∪G′′ of two graphs G′ and G′′ is a graph G = (V (G′)∪V (G′′), E(G′)∪
E(G′′)).

In a given 2-connected plane graph G, four outer vertices of degree two are designated as
the corners a, b, c, and d. These four corners divide the outer cycle Co(G) of G into four paths,
the north path PN , the east path PE , the south path PS , and the west path PW , as illustrated
in Figure 23.33a. We will draw the north and south paths on two horizontal straight line seg-
ments and the east and west paths on two vertical line segments. We thus fix the embedding
of Co(G) as a rectangle. We call a rectangular embedding of Co(G) an outer rectangle.

A graph of a single edge, not in the outer cycle Co(G), joining two vertices in Co(G)
is called a Co(G)-component of G. A graph which consists of a connected component of
G − V (Co(G)) and all edges joining vertices in that component and vertices in Co(G) is also
called a Co(G)-component. The outer cycle Co(G) of the plane graph G in Figure 23.33a
is drawn by thick lines, and the Co(G)-components J1, J2, and J3 of G are depicted in
Figure 23.33b. Clearly the following lemma holds. �

Lemma 23.6 Let J1, J2, . . ., Jp be the Co(G)-components of a plane graph G, and let Gi =
Co(G) ∪ Ji, 1 ≤ i ≤ p, as illustrated in Figure 23.34. Then G has a rectangular drawing with
corners a, b, c, and d if and only if, for each index i, 1 ≤ i ≤ p, Gi has a rectangular drawing
with corners a, b, c, and d. �

J1

J2

J3

PN

PE

PS

PW

a

cd

b

(a) (b)

Figure 23.33 (a) Plane graph G and (b) Co(G)-components. (Figure taken from Nishizeki, T.
and Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

Graph Drawing � 567

(a)

...

PN

PE

PS

PW

a b

cd

G

J1 J2 Jp

PN

PE

PS

PW

a b

cd

J2

(b)

PN

PE

PS

PW

a b

cd

G1

J1

PN

PE

PS

PW

a b

cd

Jp

(c) G2 (d) Gp

Figure 23.34 (a) G, (b) G1, (c) G2, and (d) Gp. (Figure taken from Nishizeki, T. and Rahman,
M. S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

In the remainder of this section, because of Lemma 23.6, we may assume that G has
exactly one Co(G)-component J .

We now outline the proof of the sufficiency of Theorem 23.2. Assume that G has no bad
cycle. We divide G into two subgraphs having no bad cycle by slicing G along one or two
paths. For example, the graph G in Figure 23.35a is divided into two subgraphs G1 and
G2, each having no bad cycle, by slicing G along a path drawn by thick lines, as illustrated
in Figure 23.35b. We then recursively find rectangular drawings of the two subgraphs as
illustrated in Figure 23.35c, and obtain a rectangular drawing of G by patching them, as
illustrated in Figure 23.35d. However, the problem is not so simple, because, for some graphs
having no bad cycles like one in Figure 23.36a, there is no such path that the resulting two
subgraphs have no bad cycle. For any path, one of the resulting two subgraphs has a bad
3-legged cycle C, although C is not a bad cycle in G, as illustrated in Figure 23.36b where a
bad cycle C in a subgraph is indicated by dotted lines. For such a case, we split G into two or
more subgraphs by slicing G along two paths Pc and Pcc having the same ends on PN and PS .
For example, as illustrated in Figure 23.36c, the graph G in Figure 23.36a is divided into three
subgraphs G1, G2, and G3, each having no bad cycle, by slicing G along path Pc indicated
by dotted lines and path Pcc drawn by thick lines in Figure 23.36a. We then recursively find
rectangular drawings of G1, G2, and G3 as illustrated in Figure 23.36d, and slightly deform
the drawings of G1 and G2, as illustrated in Figure 23.36e. We finally obtain a rectangular
drawing of G by patching the drawings of the three subgraphs as illustrated in Figure 23.36f.

The algorithm Rectangular-Draw (G) finds only the directions of all edges in G. From
the directions the integer coordinates of vertices in G can be determined in linear time.

23.5 ORTHOGONAL DRAWING

An orthogonal drawing of a plane graph G is a drawing of G, with the given embedding, in
which each vertex is mapped to a point, each edge is drawn as a sequence of alternate horizon-
tal and vertical line segments, and any two edges do not cross except at their common end,
as illustrated in Figure 23.37. Orthogonal drawings have numerous practical applications in

568 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(a)

(b)

(c)

P

P

G1 G2

G1 G2

a b

cd

a b

cd

a b

cd

a b

cd

P

(d)

Figure 23.35 (a) G and P , (b) G1 and G2, (c) rectangular drawings of G1 and G2, and (d) rect-
angular drawing of G. (Figure taken from Nishizeki, T. and Rahman, M. S., Planar Graph
Drawing, World Scientific, Singapore, 2004.)

circuit schematics, data flow diagrams, entity relationship diagrams, and so forth [29]. Clearly
the maximum degree Δ of G is at most four if G has an orthogonal drawing. Conversely, ev-
ery plane graph with Δ ≤ 4 has an orthogonal drawing, but may need bends, that is, points
where an edge changes its direction in a drawing. For the cubic plane graph in Figure 23.37a,
two orthogonal drawings are depicted in Figures 23.37b and c, which have six and five bends,
respectively. If a graph corresponds to a VLSI circuit, then one may be interested in an
orthogonal drawing such that the number of bends is as small as possible, because bends

Graph Drawing � 569

Pc

C

(a) (b)

C

(d)

G1

G1

G3

G3

G2

G2
G1

G3

G2

(c)

Pcc

(e) (f)

Figure 23.36 (a) G, (b) splitting G along a single path Pcc, (c) splitting G along two paths Pcc

and Pc, (d) rectangular drawings of three subgraphs, (e) deformation, and (f) rectangular
drawing of G. (Figure taken from Nishizeki, T. and Rahman, M. S., Planar Graph Drawing,
World Scientific, Singapore, 2004.)

(a) (b) (c)

Figure 23.37 (a) Plane graph G, (b) orthogonal drawing of G with 6 bends, and (c) orthogonal
drawing of G with 5 bends.

increase the manufacturing cost of a VLSI chip. However, for a given planar graph G, if one
is allowed to choose its planar embedding, then finding an orthogonal drawing of G with the
minimum number of bends is NP-complete [101]. On the other hand, Tamassia [54] and Garg
and Tamassia [102] presented algorithms which find an orthogonal drawing of a given plane
graph G with the minimum number b(G) of bends in time O(n2 log n) and O(n7/4√

log n)
respectively, where G has a fixed planar embedding and one is not allowed to alter the planar

570 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

embedding. Such a drawing is called a bend-optimal orthogonal drawing of a plane graph G.
They reduce the problem of finding a bend-optimal orthogonal drawing of G to a minimum
cost flow problem. Rahman et al. [51] gave a linear algorithm to find a bend-optimal orthog-
onal drawing for 3-connected cubic plane graphs and Rahman and Nishizeki [103] gave a
linear algorithm to find a bend-optimal orthogonal drawing for plane graphs with Δ ≤ 3.

23.5.1 Orthogonal Drawing and Network Flow

In this section we describe a network flow model for finding a bend-optimal orthogonal
drawing of a plane graph with Δ ≤ 4 [54,102].

We first introduce some definitions and terminologies related to an orthogonal represen-
tation of a plane graph. In this section, we describe a network flow model for an orthogonal
drawing of a plane graph.

Let G be a plane connected graph with Δ ≤ 4. The topological structure of G can be
described by listing edges that appear on the contour of each face, and by specifying the outer
face. A planar representation P of a plane graph G is a set of circularly ordered edge lists
P (F), one for each face F . Edges in a list P (F) appear as they are encountered when going
around the contour of F in the positive direction, that is, having the face at one’s right. Note
that every edge of G appears exactly twice in lists. If this happens in the same list P (F),
the edge is called a bridge. For the plane graph G in Figure 23.38a, a planar representation
P is depicted in Figure 23.38c, and edge e7 is a bridge in G.

Let D be an orthogonal drawing of G like one in Figure 23.38b. Then each face of G
is drawn in D as a rectilinear polygon. Note that a facial polygon is not always a simple
polygon. There are two types of angles in D. We call an angle formed by two edges incident
to a vertex a vertex-angle, and call an angle formed by two line segments at a bend a bend-
angle. Clearly both a vertex-angle and a bend-angle are k · 90◦ for some integer k, 1 ≤ k ≤ 4.
We now have the following two facts.

Fact 23.3 The sum of the vertex-angles around any vertex is 360◦.

e1

e1
e2

e2e3
e3

e4
e4

e5

e5

e6 e6

F3 F3

F1

F1

P (F1) = (e1, e2, e6, e5)
P (F2) = (e3, e8, e7, e7, e6)
P (F3) = (e5, e8, e4,)
P (Fo) = (e1, e4, e3, e2)

R (F1) = ((e1, ε, 180), (e2, 0, 90), (e6, ε, 90), (e5, ε, 90))
R (F2) = ((e3, 00, 180), (e8, 0, 90), (e7, 10, 360), (e7, 10, 90), (e6, ε, 90))
R (F3) = ((e5, ε, 90), (e8, 1, 90), (e4, 00, 90))
R (Fo) = ((e1, ε, 180), (e4, 11, 90), (e3, 11, 180), (e2, 1, 180))

F2 F2

e7
e7

e8

e8

Fo

Fo

(a) G (b) D

(c) P (d) R

Figure 23.38 (a) Plane graph G, (b) orthogonal drawing D of G, (c) planar representation P of
G, and (d) orthogonal representation R of D. (Figure taken from Nishizeki, T. and Rahman,
M. S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

Graph Drawing � 571

Fact 23.4 The sum of the angles inside any facial polygon is (2p − 4)90◦, and the sum of
the angles of the outer facial polygon is (2p + 4)90◦, where p is the number of angles of the
polygon.

We now introduce a concept of an orthogonal representation R of an orthogonal drawing
D in terms of bends occurring along edges and of angles formed by edges. This orthogonal
representation is obtained by enriching the lists of the planar representation with information
about bends and angles formed by edges. An orthogonal representation R of D is a set of
circularly ordered lists R(F), one for each face F of G. Each element r of a list is a triple
(er, sr, ar); er is an edge, sr is a bit string, and ar is an integer in the set {90, 180, 270, 360}.
The bit string sr provides information about the bends along edge er; the kth bit of sr

describes the kth bend on the right side of er; bit 0 indicates a 90◦ bend, and bit 1 indicates
a 270◦ bend. An empty string ε is used to characterize a straight line edge. The number ar

specifies the angle formed in face F by edges er and er′ , where r′ is the element following
r in the circular list R(F). Figure 23.38d depicts an orthogonal representation R of the
orthogonal drawing D in Figure 23.38b. Clearly R preserves only the shape of D without
considering lengths of line segments, and hence describes actually an equivalence class of
orthogonal drawings of G with similar shape, that is, with the same lists of triples r for the
edges of G.

For a set R of circular lists to be an orthogonal representation of an orthogonal drawing
D of a plane graph G, the following properties are necessary and sufficient, as can be proved
by means of elementary geometric considerations.

(p1) There is some planar graph whose planar representation is given by the e-fields of the
lists in R.

(p2) For each pair of elements r and r′ in R with er = er′ , string sr′ can be obtained by
applying bitwise negation to the reversion of sr.

(p3) For each element r in R, define the rotation ρ(r) as follows:

ρ(r) = |sr|0 − |sr|1 +
(

2 − ar

90

)
(23.5)

where |sr|0 is the number of zeros in string sr and |sr|1 the number of ones. Then

∑

r∈R(F)
ρ(r) =

{
+4 if F is an inner face;
−4 if F is the outer face Fo.

(23.6)

(p4) For each vertex v ∈ V , the sum of the vertex-angles around v given by the a-fields in
R is equal to 360◦.

Property (p2) means that each edge must have consistent descriptions in the faces in which
it appears. Fact 23.4 implies Property (p3), which means that every face described by R is
a rectilinear polygon. Fact 23.3 implies Property (p4).

We say that an orthogonal drawing D of a plane graph G realizes an orthogonal represen-
tation R if R is a valid description for the shape of D. Figure 23.38d depicts an orthogonal
representation R of the plane graph G in Figure 23.38a, and Figure 23.38b depicts an orthog-
onal drawing D realizing R. Note that the number b(R) of bends in any orthogonal drawing
D that realizes R is

b(R) = 1
2

∑

F ∈F

∑

r∈R(F)
|sr|, (23.7)

572 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

where |sr| is the number of bits in string sr and F is the set of all faces in G.
We now introduce notations and terminologies related to flow networks. A flow network

N is a directed graph such that N has two disjoint nonempty sets of distinguished nodes
called its sources and sinks, and each arc e of N is labeled with three nonnegative integers

• A lower bound λ(e),

• A capacity μ(e), and

• A cost c(e).

A flow φ in N associates a nonnegative integer φ(e) with each arc e; φ(e) is called a flow
of arc e. The flow φ(e) of each arc e must satisfy λ(e) ≤ φ(e) ≤ μ(e). Furthermore, φ must
satisfy the so-called conservation law as follows. For each node u of N that is neither a source
nor a sink, the sum of the flows of the outgoing arcs from u must be equal to the sum of the
flows of the incoming arcs to u. Each source u has a production σ(u) ≥ 0 of flow, and each
sink u has a consumption −σ(u) ≥ 0 of flow. That is, for each u of the sources and sinks,
the sum of the flows of the outgoing arcs from u minus the sum of the flows of the incoming
arcs to u must be equal to σ(u).

The total amount of production of the sources is equal to the total amount of consumption
of the sinks.

The cost COST (φ) of a flow φ in N is the sum of c(e)φ(e) over all the arcs e of N .
The minimum cost flow problem is stated as follows. Given a network N , find a flow φ in
N such that the cost of φ is minimum.

In the remainder of this section we present a flow network N for an orthogonal drawing of
a plane graph G [29,54,102]. All angles in a drawing of G are viewed as commodities that are
produced by the vertices, are transported between faces by the edges through their bends,
and are eventually consumed by the faces in N . The nodes of N are vertices and faces of G.
Since all angles we deal with have measure k ·90◦ with 1 ≤ k ≤ 4, we establish the convention
that a unit of flow represents an angle of 90◦. We shall see Facts 23.3 and 23.4 express the
conservation of flow at vertices and faces, respectively. The formal description of N is given
below.

Let G = (V, E) be a plane graph of maximum degree Δ ≤ 4 with face set F . We construct
a flow network N from G as follows. The nodes of N are the vertices and faces of G. That
is, the node set U of N is U = UF ∪ UV . Each node uF ∈ UF corresponds to a face F of G,
while each node uv ∈ UV corresponds to a vertex v of G. Each node uv ∈ UV is a source and
has a production

σ(uv) = 4. (23.8)

Each node uF ∈ UF is a sink and has a consumption

−σ(uF) =
{

2p(F) − 4 if F is an inner face;
2p(F) + 4 if F is the outer face Fo

(23.9)

where p(F) is the number of vertex-angles inside face F (see Figures 23.39a and b). Thus,
every node in N is either a source or a sink. Clearly the total production is 4n, and the total
consumption is ∑

F �=Fo

(2p(F) − 4) + 2p(Fo) + 4 = 4m − 4f + 8

where n, m, and f are the numbers of vertices, edges, and faces of G, respectively. The total
consumption is equal to the total production 4n, according to Euler’s formula.

Graph Drawing � 573

(a) (b)

+4

+4

+4

+4

+4

+4

−6

−2

−12−4

(c) (d)

Figure 23.39 (a) Plane graph G, (b) nodes of N with their productions and consumptions, (c)
arcs in AV , and (d) arcs in AF . (Figure taken from Nishizeki, T. and Rahman, M. S., Planar
Graph Drawing, World Scientific, Singapore, 2004.)

The arc set of network N is A = AV ∪ AF .

i. AV consists of all arcs of type (uv, uF) such that vertex v is on face F (see Figure 23.39c);
the flow φ(uv, uF) in arc (uv, uF) represents the sum of vertex-angles at vertex v inside
face F , the lower bound λ(uv, uF) is equal to the number of vertex-angles at v inside face
F , the capacity is μ(uv, uF) = 4, and the cost is c(uv, uF) = 0 (see Figure 23.40); and

ii. AF consists of all arcs of type (uF , uF ′) such that face F shares an edge with face
F ′ (see Figure 23.39d); the flow φ(uF , uF ′) in arc (uF , uF ′) represents the number of
bends with an angle of 90◦ inside face F along the edges which are common to F and
F ′, and the lower bound is λ(uF , uF ′) = 0, the capacity is μ(uF , uF ′) = +∞, and the
cost is c(uF , uF ′) = 1 (see Figure 23.41).

F

uF

1

4

2

3

3

Figure 23.40 Face F and flows in arcs in AV . (Figure taken from Nishizeki, T. and Rahman,
M. S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

574 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

er1

er2

er3

uF
uF ′

F
F′

1

2

Figure 23.41 Faces F and F ′, and arcs e = (uF , uF ′) and e′ = (uF ′ , uF) in AF . (Figure taken
from Nishizeki, T. and Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore,
2004.)

The conservation rule implies that for each source uv ∈ UV

∑

F ∈F
φ(uv, uF) = 4 (23.10)

and for each sink uF ∈ UF

∑

F ′∈F
φ(uF , uF ′) −

(
∑

F ′∈F
φ(uF ′ , uF) +

∑

v∈V

φ(uv, uF)
)

= σ(uF). (23.11)

A plane graph G together with a transformation into a network N is illustrated in
Figure 23.39. The intuitive interpretation of the assignment above to the arcs is as follows.

1. Each unit of flow in network N represents an angle of 90◦; for each arc (uv, uF) ∈ AV ,
flow φ(uv, uF) represents the sum of the vertex-angles formed inside face F by the
edges incident to v, which is given by φ(uv, uF) · 90◦ (see Figure 23.40); for each arc
(uF , uF ′) ∈ AF , flow φ(uF , uF ′) represents the number of bends with an angle of
90◦ inside face F that appear along the edges separating face F from face F ′ (see
Figure 23.41).

2. The conservation rule at a vertex-node, Equation 23.10 means that the sum of vertex-
angles around each vertex must be equal to 360◦. The conservation rule at a face-node,
Equation 23.11, means that each face must be a rectilinear polygon.

3. The cost COST (φ) of the flow φ is equal to the number of bends of an orthogonal
representation corresponding to φ.

It is easy to see that every orthogonal representation R of G yields a feasible flow φ

in network N . Conversely, every feasible flow φ can be used to construct an orthogonal
representation R of G as in the following theorem.

Theorem 23.3 Let G be a plane graph, and let N be the network constructed from G. For
each integer flow φ in network N , there is an orthogonal representation R that represents
an orthogonal drawing D of G and whose number of bends is equal to the cost of the flow φ.
In particular, the minimum cost flow can be used to construct a bend-optimal orthogonal
drawing of G. �

Graph Drawing � 575

1 1

1

1 1

1

1

2

1

2

1

3

2

2

1

4

2

Figure 23.42 Minimum cost flow in network N associated with G in Figure 23.39a and the
corresponding orthogonal grid drawing of G. Arcs with zero flow are omitted. (Figure taken
from Nishizeki, T. and Rahman, M. S., Planar Graph Drawing, World Scientific, Singapore,
2004.)

Garg and Tamassia [102] have shown that the minimum cost flow problem in this specific
network can be solved in time O(n7/4√

log n). Figure 23.42 depicts a minimum cost flow
in the network constructed in Figure 23.39 and a realizing grid embedding for the derived
bend-optimal orthogonal representation. �

23.5.2 Linear Algorithm for Bend-Optimal Drawing

One can find a bend-optimal orthogonal drawing of a plane graph with Δ ≤ 4 in time
O(n7/4√

log n) as explained in Section 23.5.1. In a VLSI floorplanning problem, an input is
often a plane graph with Δ ≤ 3 [5]. In this section, we present a linear algorithm to find a
bend-optimal orthogonal drawing of a 3-connected cubic plane graph G [51], which depicts
the key idea behind a linear algorithm for plane graphs with Δ ≤ 3 [103].

Let G be a plane 3-connected cubic graph. We assume for simplicity’ sake that G has
four or more outer edges. Since G is 3-connected, G has no 1- or 2-legged cycle. In any
orthogonal drawing of G, every cycle C of G is drawn as a rectilinear polygon, and hence
has at least four convex corners, i.e., polygonal vertices of inner angle 90◦. Since G is cubic,
such a corner must be a bend if it is not a leg-vertex of C. Thus we have the following facts
for any orthogonal drawing of G.

Fact 23.5 At least four bends must appear on the outer cycle Co(G) of G.

Fact 23.6 At least one bend must appear on each 3-legged cycle in G.

The algorithm is outlined as follows.
For a cycle C in a plane graph G, we denote by G(C) the plane subgraph of G inside C

(including C).

576 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

a

b

cd

d c

a b

G G′(a) (b)

DD′(c) (d)

Figure 23.43 (a) G, (b) G′, (c) D′, and (d) D. (Figure taken from Nishizeki, T. and Rahman,
M. S., Planar Graph Drawing, World Scientific, Singapore, 2004.)

Let G′ be a graph obtained from G by adding four dummy vertices a, b, c, and d of
degree two, as corners, on any four distinct outer edges, one for each. Then the resulting
graph G′ has exactly four outer vertices of degree two designated as corners, and all other
vertices of G′ have degree three. Figure 23.43b illustrates G′ for the graph G in Figure 23.43a.
If G′ has a rectangular drawing D′ with the designated corners a, b, c, and d as illustrated
in Figure 23.43c, that is, G′ satisfies the condition in Theorem 23.2, then from D′ one can
immediately obtain an orthogonal drawing D of G with exactly four bends by replacing the
four dummy vertices with bends at the corners a, b, c, and d as illustrated in Figure 23.43d.
By Fact 23.5 D is a bend-optimal orthogonal drawing of G.

One may thus assume that G′ does not satisfy the condition in Theorem 23.2. Then G′

has a bad cycle, that is, a 2-legged cycle containing at most one corner or a 3-legged cycle
containing no corner. Since G is 3-connected, G has no 2-legged cycle. However, G′ has four
2-legged cycles, each passing through all outer vertices except one of the four corners. (One of
them is drawn by thick lines in Figure 23.43b.) Clearly all these four 2-legged cycles in G′ are
not bad, because each of them contains three corners. Thus every bad cycle in G′ is a 3-legged
cycle containing no corner. A bad cycle C in G′ is defined to be maximal if C is not contained
in the subgraph G′(C ′) of G′ inside C ′ for any other bad cycle C ′ in G′. In Figure 23.44a
C1, C2, . . ., C6 are the bad cycles, C1, C2, . . ., C4 are the maximal bad cycles in G′, and C5
and C6 are not maximal bad cycles since they are contained in G′(C4). The 3-legged cycle C7
indicated by a dotted line in Figure 23.44a is not a bad cycle in G′ since it contains a corner a.
We say that cycles C and C ′ in G′ are independent if G′(C) and G′(C ′) have no common
vertex. Since G is a plane 3-connected cubic graph, all maximal bad cycles in G′ are indepen-
dent of each other. Let C1, C2, . . ., Cl be the maximal bad cycles in G′. Let G′′ be the graph
obtained from G′ by contracting G′(Ci) into a single vertex vi for each maximal bad cycle Ci,

Graph Drawing � 577

C1

C2

C2

C1

C3

C3

G′ G″

C5
C4

C4

C7

C6

a

d

b

c

a

v2

b

v3

v3

c
d

v4

v4

v1

v1

Dummy vertex
Original vertex
Contracted vertex

(a) (b)

a

b

cd

b

c

a

d

v2

D(G′)D(G″)(c) (d)

Figure 23.44 (a) G′, (b) G′′, (c) rectangular drawing D(G′′) of G′′, and (d) orthogonal drawing
D(G′) of G′. (Figure taken from Nishizeki, T. and Rahman, M. S., Planar Graph Drawing,
World Scientific, Singapore, 2004.)

1 ≤ i ≤ l, as illustrated in Figure 23.44b. Clearly G′′ has no bad cycle, and hence by Theo-
rem 23.2 G′′ has a rectangular drawing. We first find a rectangular drawing of G′′, and then
recursively find a suitable orthogonal drawing of G′(Ci), 1 ≤ i ≤ l, with the minimum number
of bends, called a feasible drawing, and finally patch them to get an orthogonal drawing of G
(see Figure 23.44).

Further Reading

Due to numerous practical applications of graph drawing, researchers have worked on graph
drawing with various view-points, and as a result, the field of graph drawing has become very
wide. Although we have focused mainly on some important results on planar graph drawing
[29], the field has been enriched with many recent results on 3D drawing, dynamic drawing,
proximity drawing, symmetric drawing, simultaneous embedding, map labeling, and so on
[4,27,28,30]. Different classes of graphs such as planar graphs, hierarchical graphs, clustered
graphs, interval graphs, and so forth are investigated to produce graph drawings having some
desired properties. Aesthetic drawing styles for nonplanar graphs, such as confluent drawing

578 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[104,105], right angle crossings drawing [106,107], bar 1-visibility drawing [108], and so forth
have also been studied in recent years.

References

[1] T. C. Biedl, Orthogonal graph visualization: The three-phase method with applications,
PhD Thesis, RUTCOR, Rutgers University, New Brunswick, NJ, 1997.

[2] G. Kant, algorithms for drawing planar graphs, PhD Thesis, Faculty of Information
Science, Utrecht University, the Netherlands, 1993.

[3] M. S. Rahman, Efficient algorithms for drawing planar graphs, PhD Thesis, Graduate
School of Information Sciences, Tohoku University, Sendai, Japan, 1999.

[4] K. Sugiyama, Graph Drawing and Applications for Software and Knowledge Engineers,
World Scientific, Singapore, 2002.

[5] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley &
Sons, Chichester, 1990.

[6] N. Chiba, K. Onoguchi, and T. Nishizeki, Drawing planar graphs nicely, Acta Infor-
matica, 22 (1985), 187–201.

[7] R. Tamassia, G. Di Battista, and C. Batini, Automatic graph drawing and readability
of diagrams, IEEE Trans. Syst. Man Cybern. SMC-18 (1988), 61–79.

[8] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Algorithms for drawing graphs:
An annotated bibliography, Comp. Geom. Theory Appl., 4 (1994), 235–282.

[9] R. Tamassia and I. G. Tollies (editors), Graph Drawing (Proc. of GD ’94), Lect. Notes
in Computer Science, Springer, 894, 1995.

[10] F. J. Brandenburg (editor), Graph Drawing (Proc. of GD ’95), Lect. Notes in Computer
Science, Springer, 1027, 1996.

[11] S. North (editor), Graph Drawing (Proc. of GD ’96), Lect. Notes in Computer Science,
Springer, 1190, 1997.

[12] G. Di Battista (editor), Graph Drawing (Proc. of GD ’97), Lect. Notes in Computer
Science, Springer, 1353, 1997.

[13] S. H. Whiteside (editor), Graph Drawing (Proc. of GD ’98), Lect. Notes in Computer
Science, Springer, 1547, 1998.

[14] J. Kratochv́ıl (editor), Graph Drawing (Proc. of GD ’99), Lect. Notes in Computer
Science, Springer, 1731, 1999.

[15] J. Marks (editor), Graph Drawing (Proc. of GD’00), Lect. Notes in Computer Science,
Springer, 1984, 2001.

[16] M. T. Goodrich and S. G. Kobourov (editors), Graph Drawing (Proc. GD ’02), Lect.
Notes in Computer Science, Springer, 2528, 2002.

[17] G. Liotta (editor), Graph Drawing (Proc. of GD ’03), Lect. Notes in Computer Science,
Springer, 2912, 2004.

Graph Drawing � 579

[18] S. Hong, T. Nishizeki, and W. Quan (editors), Graph Drawing (Proc. of GD ’07), Lect.
Notes in Computer Science, Springer, 4875, 2008.

[19] U. Brandes and S. Cornelsen (editors), Graph Drawing (Proc. of GD ’10), Lect. Notes
in Computer Science, Springer, 6502, 2011.

[20] S. Wismath and A. Wolf (editors), Graph Drawing (Proc. of GD ’13), Lect. Notes in
Computer Science, Springer, 8242, 2013.

[21] I. F. Cruz and P. Eades (editors), Special issue on graph visualization, J. Vis. Lang.
Comput., 6(3) (1995).

[22] G. Di Battista and R. Tamassia (editors), Special issue on graph drawing, Algorithmica,
16(1) (1996).

[23] G. Di Battista and R. Tamassia (editors), Special issue on geometric representations
of graphs, Comput. Geom. Theory Appl., 9(1–2) (1998).

[24] G. Di Battista and P. Mutzel (editors), New trends in graph drawing: special issue
on selected papers from the 1997 symposium on graph drawing, J. Graph Algorithms
Appl., 3(4) (1999).

[25] G. Liotta and S. H. Whitesides (editors), Special issue on selected papers from the
1998 symposium on graph drawing, J. Graph Alg. Appl., 4(3) (2000).

[26] M. Kaufmann (editor), Special issue on selected papers from the 2000 symposium on
graph drawing, J. Graph Alg. Appl., 6(3) (2002).

[27] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing: Algorithms
for the Visualization of Graphs, Prentice Hall, Upper Saddle River, NJ, 1999.

[28] M. Kaufmann and D. Wagner (editors), Drawing Graphs: Methods and Models, Lect.
Notes in Compt. Sci., Springer, 2025, Berlin, Germany, 2001.

[29] T. Nishizeki and M. S. Rahman, Planar Graph Drawing, World Scientific, Singapore,
2004.

[30] R. Tamassia (editor), Handbook of Graph Drawing and Visualization, CRC Press, 2014.

[31] C. Kuratowski, Sur le probléme des courbes gauches en topologie, Fund. Math., 15
(1930), 271–283.

[32] J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach.,
21 (1974), 549–568.

[33] K. S. Booth and G. S. Lueker, Testing the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms, J. Comput. Syst. Sci., 13 (1976), 335–
379.

[34] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa, A linear algorithm for embedding planar
graphs using PQ-trees, J. Comput. Syst. Sci., 30 (1985), 54–76.

[35] K. Mehlhorn and P. Mutzel, On the embedding phase of the Hopcroft and Tarjan
planarity testing algorithm, Algorithmica, 16 (1996), 233–242.

[36] W. K. Shih and W.-L. Hsu, A new planarity test, Theoret. Comput. Sci., 223 (1999),
179–191.

580 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[37] N. Bonichon, B. L. Saëc, and M. Mosbah, Optimal Area Algorithm for Planar Poly-
line Drawings (Proc. of WG ’02), Lect. Notes in Computer Science, Springer, 2573,
pp. 35–46, 2002.

[38] E. Di Giacomo, W. Didimo, G. Liotta, and S. K. Wismath, Drawing Planar Graphs
on a Curve (Proc. WG ’03), Lect. Notes in Computer Science, Springer, 2880,
pp. 192–204, 2003.

[39] C. Gutwenger and P. Mutzel, Planar Polyline Drawings with Good Angular Resolution
(Proc. GD ’98), Lect. Notes in Compt. Sci., Springer, 1547, pp. 167–182, 1998.

[40] K. Wagner, Bemerkungen zum vierfarbenproblem, Jahresber. Deutsch. Math-Verien.,
46 (1936), 26–32.

[41] I. Fáry, On Straight Line Representations of Planar Graphs, Acta Sci. Math. Szeged,
11 (1948), 229–233.

[42] K. S. Stein, Convex maps, Proc. Am. Math. Soc., 2 (1951), 464–466.

[43] M. Chrobak and G. Kant, Convex grid drawings of 3-connected planar graphs, Inter.
J. Comput. Geom. Appl., 7(3) (1997), 211–223.

[44] N. Chiba, T. Yamanouchi, and T. Nishizeki, Linear algorithms for convex drawings of
planar graphs, J. A. Bondy and U. S. R. Murty (editors), Progress in Graph Theory,
Academic Press Canada, pp. 153–173, 1984.

[45] G. Kant, Drawing planar graphs using the canonical ordering, Algorithmica, 16 (1996),
4–32.

[46] X. Zhou and T. Nishizeki, Convex drawings of internally triconnected plane graphs on
0(n2) grids, Discrete Math. Algorithms Appl., 2(3) (2010), 347–362.

[47] D. Mondal, R. I. Nishat, S. Biswas, and M. S. Rahman, Minimum-segment convex
drawings of 3-connected cubic plane graphs, J. Comb. Optim., 25(3) (2013), 460–480.

[48] T. C. Biedl, New Lower Bounds for Orthogonal Graph Drawings (Proc. GD ’95), Lect.
Notes in Compt. Sci., Springer, 1027, pp. 28–39, 1996a.

[49] T. C. Biedl, Optimal orthogonal drawings of triconnected plane graphs, Proc. Scandina-
vian Workshop on Algorithm Theory, SWAT ’96, Lect. Notes in Compt. Sci., Springer,
1097, pp. 333–344, 1996b.

[50] G. Di Battista, G. Liotta, and F. Vargiu, Spirality and optimal orthogonal drawings,
SIAM J. Comput., 27(6) (1998), 1764–1811.

[51] M. S. Rahman, S. Nakano, and T. Nishizeki, A linear algorithm for bend-optimal
orthogonal drawings of triconnected cubic plane graphs, J. Graph Algorithms Appl.,
3(4) (1999), 31–62, http://jgaa.info.

[52] M. S. Rahman, T. Nishizeki, and M. Naznin, Orthogonal drawings of plane graphs
without bends, J. Graph Algorithms Appl., 7(4) (2003), 335–362, http://jgaa.info.

[53] J. A. Storer, On minimal node-cost planar embeddings, Networks, 14 (1984), 181–212.

[54] R. Tamassia, On embedding a graph in the grid with the minimum number of bends,
SIAM J. Comput., 16(3) (1987), 421–444.

Graph Drawing � 581

[55] R. Tamassia, I. G. Tollis, and J. S. Vitter, Lower bounds for planar orthogonal drawings
of graphs, Inf. Proc. Lett., 39 (1991), 35–40.

[56] X. Zhou and T. Nishizeki, Orthogonal drawings of series–parallel graphs with minimum
bends, SIAM J. Discrete Math., 22(4) (2008), 1570–1604.

[57] T. C. Biedl and G. Kant, A better heuristic for orthogonal graph drawings, Comput.
Geom. Theory Appl., 9 (1998), 159–180.

[58] A. Papakostas and I. G. Tollis, Improved Algorithms and Bounds for Orthogonal Draw-
ings (Proc. GD ’94), Lect. Notes in Computer Science, Springer, 894, pp. 40–51, 1995.

[59] A. Papakostas and I. G. Tollis, A Pairing Technique for Area Efficient Orthogonal
Drawings (Proc. GD ’96), Lect. Notes in Computer Science, Springer, 1190, pp. 355–
370, 1997.

[60] M. S. Rahman, K. Miura, and T. Nishizeki, Octagonal drawings of plane graphs with
prescribed face areas, Comput. Geom. Theory Appl., 42(3) (2009), 214–230.

[61] T. C. Biedl and M. Kaufmann, Area-efficient static and incremental graph drawings,
Proc. 5th European Symposium on Algorithms, Lect. Notes in Compt. Sci., Springer,
1284, pp. 37–52, 1997.

[62] U. Fößmeier, G. Kant, and M. Kaufmann, 2-visibility drawings of plane graphs (Proc.
GD ’96), Lect. Notes in Computer Science, Springer, 1190, pp. 155–168, 1997.

[63] A. Papakostas and I. G. Tollis, Efficient orthogonal drawings of high degree graphs,
Algorithmica, 26 (2000), 100–125.

[64] C. Thomassen, Plane representations of graphs, J. A. Bondy and U. S. R. Murty
(editors), Progress in Graph Theory, Academic Press Canada, pp. 43–69, 1984.

[65] J. Bhasker and S. Sahni, A linear algorithm to find a rectangular dual of a planar
triangulated graph, Algorithmica, 3 (1988), 247–278.

[66] M. S. Rahman, S. Nakano, and T. Nishizeki, Rectangular grid drawings of plane graphs,
Comput. Geom. Theory Appl., 10(3) (1998), 203–220.

[67] M. S. Rahman, S. Nakano, and T. Nishizeki, Rectangular drawings of plane graphs
without designated corners, Comput. Geom. Theory Appl., 21(3) (2002), 121–138.

[68] X. He, A simple linear time algorithm for proper box rectangular drawings of plane
graphs, J. Algorithms, 40(1) (2001), 82–101.

[69] M. S. Rahman, S. Nakano, and T. Nishizeki, Box-rectangular drawings of plane graphs,
J. Algorithms, 37 (2000), 363–398.

[70] M. M. Hasan, M. S. Rahman, and M. R. Karim, Box-rectangular drawings of planar
graphs, J. Graph Algorithms Appl., 17(6) (2013), 629–646.

[71] G. Kant, A more compact visibility representation, Int. J. Comput. Geom. Appl., 7(3)
(1997), 197–210.

[72] X. He, J. Wang, and H. Zhang, Compact visibility representation of 4-connected plane
graphs, Theor. Comput. Sci., 447 (2012), 62–73.

582 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[73] J. Wang and X. He, Visibility representation of plane graphs with simultaneous bound
for both width and height, J. Graph Algorithms Appl., 16(2) (2012), 317–334.

[74] M. Jünger and P. Mutzel (editors), Graph Drawing Software, Springer, Berlin,
Germany, 2004.

[75] N. Sherwani, Algorithms for VLSI Physical Design Automation, 2nd edition, Kluwer
Academic Publishers, Boston, MA, 1995.

[76] S. M. Sait and H. Youssef, VLSI Physical Design Automation: Theory and Practice,
World Scientific, Singapore, 1999.

[77] R. L. Francis and J. A. White, Facility Layout and Location, Prentice Hall, New Jersey,
1974.

[78] H. de Fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid,
Combinatorica, 10 (1990), 41–51.

[79] W. Schnyder, Embedding planar graphs on the grid, Proc. 1st ACM-SIAM Symp. on
Discrete Algorithms, San Francisco, CA, pp. 138–148, 1990.

[80] M. Chrobak and S. Nakano, Minimum-width grid drawings of plane graphs, Comput.
Geom. Theory Appl., 11 (1998), 29–54.

[81] X. He, Grid embedding of 4-connected plane graphs, Discrete Comput. Geom., 17
(1997), 339–358.

[82] K. Miura, S. Nakano, and T. Nishizeki, Grid drawings of 4-connected plane graphs,
Discrete Comput. Geom., 26(1) (2001), 73–87.

[83] M. Chrobak and T. H. Payne, A linear-time algorithm for drawing a planar graph on
a grid, Inf. Process. Lett., 54 (1995), 241–246.

[84] W. T. Tutte, Convex representations of graphs, Proc. Lond. Math. Soc., 10 (1960),
304–320.

[85] W. T. Tutte, How to draw a graph, Proc. Lond. Math. Soc., 13 (1963), 743–768.

[86] R. J. Lipton, D. J. Rose, and R. E. Tarjan, Generalized nested dissections, SIAM J.
Numer. Anal., 16(2) (1979), 346–358.

[87] K. Miura, S. Nakano, and T. Nishizeki, Convex grid drawings of four-connected plane
graphs, Proc. 11th Annual International Symposium on Algorithms and Computation,
Lect. Notes in Compt. Sci., Springer, 1969, pp. 254–265, 2000.

[88] K. Miura, H. Haga, and T. Nishizeki, Inner rectangular drawings of plane graphs, Proc.
of ISAAC, Lect. Notes in Compt. Sci., Springer, 3341, pp. 693–704, 2004.

[89] K. Kozminski and E. Kinnen, An algorithm for finding a rectangular dual of a planar
graph for use in area planning for VLSI integrated circuits, Proc. 21st DAC, Albu-
querque, NM, pp. 655–656, 1984.

[90] X. He, On finding the rectangular duals of planar triangular graphs, SIAM J. Comput.,
22(6) (1993), 1218–1226.

[91] G. Kant and X. He, Regular edge labeling of 4-connected plane graphs and its appli-
cations in graph drawing problems, Theoret. Comput. Sci., 172 (1997), 175–193.

Graph Drawing � 583

[92] X. He, An efficient parallel algorithm for finding rectangular duals of plane triangulated
graphs, Algorithmica, 13 (1995), 553–572.

[93] Y.-T. Lai and S. M. Leinwand, A theory of rectangular dual graphs, Algorithmica, 5
(1990), 467–483.

[94] M. S. Rahman, T. Nishizeki, and S. Ghosh, Rectangular drawings of planar graphs,
J. Algorithms, 50 (2004), 62–78.

[95] W. T. Tutte, A short proof of the factor theorem for finite graphs, Can. J. Math., 6
(1954), 347–352.

[96] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matching in bipartite
graphs, SIAM J. Comput., 2 (1973), 225–231.

[97] S. Micali and V. V. Vazirani, An O(
√|V |·|E|) algorithm for finding maximum matching

in general graphs, Proc. 21st Annual Symposium on Foundations of Computer Science,
pp. 17–27, 1980.

[98] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization, Prentice Hall,
Englewood Cliffs, NJ, 1982.

[99] D. S. Hochbaum and B. G. Chandran, Further below the flow decomposition barrier of
maximum flow for bipartite matching and maximum closure, Working paper, 2004.

[100] D. S. Hochbaum, Faster pseudoflow-based algorithms for the bipartite matching and
the closure problems, Abstract, CORS/SCRO-INFORMS Joint Int. Meeting, Banff,
Canada, p. 46, 2004.

[101] A. Garg and R. Tamassia, On the computational complexity of upward and rectilinear
planarity testing, SIAM J. Comput., 31(2) (2001), 601–625.

[102] A. Garg and R. Tamassia, A new minimum cost flow algorithm with applications to
graph drawing, Proc. of Graph Drawing ’96, Lect. Notes in Compt. Sci., Springer, 1190,
pp. 201–216, 1997.

[103] M. S. Rahman and T. Nishizeki, Bend-minimum orthogonal drawings of plane 3-graphs,
Proc. International Workshop on Graph Theoretic Concepts in Computer Science, Lect.
Notes in Computer Science, Springer, 2573, pp. 367–378, 2002.

[104] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y. Meng, Confluent drawings: vi-
sualizing non-planar diagrams in a planar way, J. Graph Algorithms Appl., 9(1) (2005),
31–52.

[105] G. Quercini and M. Ancona, Confluent drawing algorithms using rectangular dualiza-
tion, Proc. of GD 2010, Lect. Notes in Computer Science, Springer, 6502, pp. 341–352,
2011.

[106] W. Didimo, P. Eades, and G. Liotta, Drawing graphs with right angle crossings, The-
oret. Comput. Sci., 412(39) (2011), 5156–5166.

[107] E. N. Argyriou, M. A. Bekos, and A. Symvonis, The straight-line RAC drawing problem
is NP-hard, J. Graph Algorithms Appl., 16(2) (2012), 569–597.

584 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[108] S. Sultana, M. S. Rahman, A. Roy, and S. Tairin, Bar 1-visibility drawings of 1-planar
praphs, Proc. of ICAA, Lect. Notes in Computer Science, Springer, 8321, pp. 62–76,
2014.

[109] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, Cam-
bridge, MIT Press, MA, 1990.

[110] A. Lubiw, Some NP-complete problems similar to graph isomorphism, SIAM J. Com-
put., 10(1) (1981), 11–21.

[111] T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms, North-Holland,
Amsterdam, the Netherlands, 1988.

VI
Interconnection Networks

585

C H A P T E R 24

Introduction to Interconnection
Networks
S. A. Choudum

Lavanya Sivakumar

V. Sunitha

CONTENTS

24.1 Interconnection Networks . 588
24.1.1 Computing the Sum of n Numbers . 588
24.1.2 Computing the Product of Two Matrices . 589

24.2 Introduction to Hypercubes . 591
24.2.1 Alternative Definitions of Hypercubes . 592

24.2.1.1 Cartesian Product of Graphs . 592
24.2.1.2 Basic Algebraic Notions . 592
24.2.1.3 Cayley Graph . 593

24.2.2 Basic Properties of Hypercubes . 594
24.2.3 Characterizations of Hypercubes . 599

24.2.3.1 Characterizations through Splitting . 599
24.2.3.2 Characterizations through (0,2)-Graphs 600
24.2.3.3 Characterizations through Intervals . 602
24.2.3.4 Characterizations through Medians . 605
24.2.3.5 Characterizations through Projections . 607
24.2.3.6 Characterizations through Convex Sets . 608
24.2.3.7 Characterizations through Some Monotone Properties 609
24.2.3.8 Characterizations through Edge Colorings 612

24.3 Hypercube-Like Interconnection Networks . 612
24.3.1 Twisted Cube TQn . 612
24.3.2 k-Skip Enhanced Cube Qn,k . 614
24.3.3 Möbius Cube 0MQn, 1MQn . 615
24.3.4 Shuffle Cube ShQn . 615
24.3.5 Fibonacci Cube Γn . 615
24.3.6 k-Ary n-Cube Qk

n . 616
24.3.7 Augmented Cube AQn . 617
24.3.8 Hamming Graph/Generalized Base-b Cube H(b,n) . 618
24.3.9 de Bruijn Graph DG(d,k) . 618
24.3.10 Cube-Connected Cycles Graph CCCn . 619
24.3.11 Butterfly and Wrapped Butterfly Graph UBFn, WBFn 619
24.3.12 Degree Four Cayley Graph Gn . 620

C5955–C0024.tex 587 2015/11/4 12:33pm

587

588 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

24.3.13 k-Valent Cayley Graph Gk,n . 621
24.3.14 Star Graph S(n) . 622

24.1 INTERCONNECTION NETWORKS

Parallel computing, distributed computing, and cloud computing are evolutions of serial
computing. They use multiple resources to solve a single problem. These new paradigms
of computing are faster and cost effective. Their applications extend to various fields such
as global weather forecasting, genetic engineering, quantum chemistry, relativistic physics,
computational fluid dynamics, and turbulence.

At the basic level, a collection of processors and memory units interconnected by a net-
work of links is called a multiprocessor computing system. The network is called the inter-
connection network. These systems are further classified into parallel computing systems,
distributed computing systems, and cloud computing systems depending on the paradigms
employed in computing. This chapter is devoted to parallel computing systems and algo-
rithms to have a definite focus.

Parallel algorithms are so designed that they concurrently utilize the various units of
a parallel computer. During the computations, processors communicate among themselves
by passing messages through the links of the interconnection network. So, the interconnec-
tion network plays a central role in boosting the performance rate of a parallel computer.
There are two types of interconnection networks, namely direct/static and indirect/dynamic,
depending on whether the communicating devices are connected directly node to node or
via switches. The engineering aspects of the interconnection network and parallel computing
are extensively covered in the books [1–6]. In this chapter we give a brief survey of various
interconnection networks from a graph theoretical perspective.

Before we formally define these network models, let us look at the working of two examples
of parallel algorithms to get motivated.

24.1.1 Computing the Sum of n Numbers Using a Complete Binary Tree of Height log2n as a
Data Structure

The usual sequential algorithm requires n−1 steps to compute the sum of n numbers. How-
ever, using a parallel algorithm as illustrated in Figure 24.1, the sum can be computed in log2n
steps. Initially, the data is stored in the processors located at the leaves of the complete binary
tree. Two numbers are stored in each of the leaf processors. Each of these processors computes
the sum of the two numbers and routes the sum to its parent. The parents act identically as
their children, under the same instruction. The computation and routing are repeated until
the total sum reaches the output device. The processors located at each level compute the

3,4

1,2

0,1 0,2

3,1

1,2 0,1

Figure 24.1 Addition using complete binary tree.

C5955–C0024.tex 588 2015/11/4 12:33pm

Introduction to Interconnection Networks � 589

b4,4

b3,4

b2,4

b1,4

0

0

0

0

b4,3

b3,3

b2,3

b1,3

0

0

0

0

b4,2

b3,2

b2,2

b1,2

0

0

0

0

b4,1

b3,1

b2,1

b1,1

0 0 0 a1,4 a1,3 a1,2 a1,1

0 0 a2,4 a2,3 a2,2 a2,1 0

0 a3,4 a3,3 a3,2 a3,1 0 0

a4,4 a4,3 a4,2 a4,1 0 0 0

Figure 24.2 Matrix product using two-dimensional mesh.

sums parallely/concurrently. The synchronization of computation and routing are vital for
the successful implementation of the algorithm. The reader may also note that by changing
the strategy in data storage and routing, one can reduce the number of processors utilized.

24.1.2 Computing the Matrix Product C = [c i,j] of Two n × n Matrices A=[a i,j], B=[b i,j]
Using an n × n Mesh as a Data Structure

A sequential algorithm can be easily designed to compute AB in O(n3) steps, by directly
using the definition of the matrix product. However, using an n × n mesh one can calculate
AB in 3n−2 steps; see Figure 24.2. The ith row ai,1, ai,2, . . ., ai,n is processed through the ith
row of the mesh, and the jth column b1,j , b2,j , . . ., bn,j is processed through the jth column
of the mesh as shown in the figure. At each step k, the (i, j)th processor receives (i) ai,k

and bk,j concurrently; (ii) computes the product ai,kbk,j ; (iii) adds the product to the sum
ai,1b1,j + ai,2b2,j + · · · + ai,k−1bk−1,j , retains the consequent sum; and (iv) sends ai,k to the
right processor and bk,j to the processor one below it. At the end of the computation, ci,j is
available at the (i, j)th processor. The computation of ci,j is completed at step i + j + n − 2
and so, it is easy to see that C is computed after 3n − 2 steps.

Graphs serve as natural mathematical models to represent the interconnection networks,
where the vertices denote the processors and the edges denote the physical links between the
processors. So, the terminology of graphs is used for the interconnection networks too. Many
networks have been proposed because of their favorable graph theoretic properties. Among
these, mesh networks, torus networks, and hypercube networks have been widely studied.
Some of the well-known commercial parallel computers and their interconnection networks
are given in Table 24.1.

C5955–C0024.tex 589 2015/11/4 12:33pm

590 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

TABLE 24.1 Commercial Parallel Computers and Their Interconnection
Networks

Parallel Computers Interconnection Network

Intel Delta Linear Array
Intel Paragon, Transputers 2-D Mesh
MIT J-Machine 3-D Mesh
ILLIAC IV Torus
Intel/CMU iWarp 2-D Torus
Cray/SGI T3D,T3E 3-D Torus
CM5 (Thinking Machines) 4-ary Hypertree
nCUBE 10, nCUBE-2 (NCUBE), Binary hypercube
iPSC/862(Intel), Cosmic cube(Caltech),
CM200(Thinking Machines)

The problems arising in the study of interconnection network can be broadly classified
as follows:

1. Design and analysis of networks. In this problem, a network is designed and its suit-
ability for various tasks are then studied. To evaluate the performance of a network,
many graph theoretic concepts like diameter, connectivity, parallel paths, symmetry,
and recursive construction are used. A designer of interconnection networks has to take
into account the following criteria.

a. Communication speed—There should be fast communication among processors.
In graph theoretical terminology, this goal is achieved by keeping the diameter
small.

b. High robustness—The network should be least vulnerable to any disruption. This
goal is achieved by providing large connectivity.

c. Rich structure—The network must contain many types of subnetworks. This de-
mand is to be satisfied for the implementation of various kinds of algorithms.

d. Fixed degree—The network should have small average degree or fixed degree for
easy scalability.

2. Routing messages in a network. The process of sending data/messages in a network
from a source to a destination is called routing. One of the problem is finding optimal
routing paths in the designed network.

3. Design of algorithms. Under this topic, one designs the parallel algorithms and analyzes
their properties stated above.

4. Implementation of algorithms in a network. The computations involved in a parallel
algorithm A are represented by a graph G(A) called the computation graph (or algorith-
mic graph), where a vertex represents the data set allotted to the processor and an edge
represents the computation involving the two data sets. So, in graph theoretic terms,
the task of executing a parallel algorithm A in a parallel computer P is equivalent to
finding an embedding of G(A) into the interconnection network N(P) of the parallel
computer. If G(A) is a subgraph of N(P) then the algorithm performs very efficiently
without any communication delay. So, the performance of the algorithm depends on
the qualities of the embedding. We cover this significant topic in Chapter 26.

5. Fault tolerance. The ability of a system to continue operations correctly in the presence
of failures in one or many of its components is known as fault tolerance.

C5955–C0024.tex 590 2015/11/4 12:33pm

Introduction to Interconnection Networks � 591

The reader may easily notice that some of the above demands are conflicting. So some
trade-off is necessary in designing the network. The graphs of some of the networks are
described and analyzed with much detail by Hayes [3], Hsu and Lin [4], Hwang and Briggs [5],
Leighton [6], Quinn [2], and Xu [7,8]. Thus a large literature on interconnection networks is
already available. However, there seems to be no single source which contains information on
the various variations of the hypercube. In the next section, we will give various definitions
and properties of hypercubes. This is followed by a section on variants and generalizations
of hypercubes.

24.2 INTRODUCTION TO HYPERCUBES

Hypercubes and their various generalizations which include Hamming graphs are fundamental
objects in communication and coding theory; see [1,9]. In this section, we define hypercubes
in various ways and state their properties which are used in the following sections.

Notation: Qn, hypercube of dimension n; n is always assumed to be at least one.
Hypercubes are also called binary cube, n-cube, cube-connected network,
cosmic cube, binary n-cube, and Boolean n-cube.

Definition 24.1 For any integer n ≥ 1, the hypercube Qn of dimension n is the graph with
vertex set

V (Qn) = {X = x1x2 . . . xn : xi ∈ {0, 1}, 1 ≤ i ≤ n}

and edge set

E(Qn)= {(X, Y) : X = x1x2 . . . xn, Y = y1y2 . . . yn and xi ̸= yi for exactly one i, 1 ≤ i ≤ n}.

See Figure 24.3 for hypercubes of small dimensions.
So each vertex of Qn is a binary string X = x1x2 . . . xn with n bits xi = 0 or 1. Through-

out this article, we will follow this convention of denoting the vertices of Qn by capital letters
and the binary strings by the respective small letters. The complement of xi is denoted by

0

(a)

1

Q1 (b)

00 01

1110

Q2 (c)

000

100

110

010

101

001

111

011

Q3

0000

0100

0110

0010

0101

0001

0111

0011

1001

1101

1111

1011

1100

1000

1110

1010

Q4(d)

Figure 24.3 Hypercubes of dimensions (a) one, (b) two, (c) three, and (d) four.

C5955–C0024.tex 591 2015/11/4 12:33pm

592 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

P3 C4 P3 × C4

Figure 24.4 Cartesian product of P3 and C4.

xi, so 0 = 1 and 1 = 0. An edge (X, Y), where Y differs at position i from X, that is
Y = x1x2 . . . xi−1xixi+1 . . . xn, is called an edge of dimension i. In this case, we use Xi to
denote Y . Let N(X; Qn) = {Xi : 1 ≤ i ≤ n} denote the set of all neighbours of X. Two edges
of the same dimension are called parallel edges. Similarly, Xi1,i2,...,ik

denotes the vertex which
differs from X at positions i1, i2, . . ., ik. Furthermore, X denotes X1,2,...,n = x1x2 . . . xn and X∅
denotes X. Clearly, if π is any permutation of {i1, i2, . . ., ik} then Xi1,i2,...,ik

=
Xπ(i1),π(i2),...,π(ik).

24.2.1 Alternative Definitions of Hypercubes

Before we proceed to give alternative definitions of Qn, we require some terminology from
graph theory and set theory.

24.2.1.1 Cartesian Product of Graphs

Definition 24.2 Given p arbitrary graphs G1, G2, . . ., Gp, the Cartesian product of G1,
G2, . . ., Gp, denoted by G1 ×G2 ×· · ·×Gp, is the graph with vertex set V (G1)×V (G2)× ...×
V (Gp). Two vertices (u1, u2, . . ., up) and (v1, v2, . . ., vp) are adjacent in the product graph if
and only if for exactly one i, 1 ≤ i ≤ p, ui ̸= vi, and (ui, vi) ∈ E(Gi).

Figure 24.4 shows the Cartesian product of two graphs.

24.2.1.2 Basic Algebraic Notions

Let S be a nonempty set with n elements and let 2S denote the set of all subsets of S.
For X, Y ⊆ S, let X∆Y denote the symmetric difference of X and Y , that is, X∆Y :=
(X ∪ Y) \ (X ∩ Y)(= (X \ Y) ∪ (Y \ X)). It is easily verified that (2S , ∆) is a commutative
group with ∅ as the identity, and the inverse of any X is X itself.

Next, let Z2 = {0, 1}. Let (Z2, ⊕) be the group of integers modulo 2, that is, for X, Y ∈ Z2,

X ⊕ Y =
{

0, if X = Y
1, if X ̸= Y.

Let Zn
2 denote the n-fold Cartesian product of Z2. If X = (x1, x2, . . ., xn) and Y =

(y1, y2, . . ., yn) are two elements of Zn
2 , let X ⊕ Y denote the binary string (x1 ⊕ y1, x2 ⊕

y2, . . ., xn⊕yn). It is again easily verified that (Zn
2 , ⊕) is a commutative group with (0, 0, . . ., 0)

as the identity, and the inverse of any X is X itself.
If S = {s1, s2, . . ., sn} then the function f : 2S → Zn

2 defined by f(X) = (x1, x2, . . ., xn)
where

xi =
{

0, if si ∈ X
1, if si ̸∈ X

for all X ∈ 2S is a group homomorphism, that is, f(X∆Y) = f(X)⊕f(Y), for all X, Y ∈ 2S .

C5955–C0024.tex 592 2015/11/4 12:33pm

Introduction to Interconnection Networks � 593

24.2.1.3 Cayley Graph

Definition 24.3 Let Γ be a finite group and S be a set of generators of Γ satisfying the
following properties:

1. S does not contain the identity.

2. If g ∈ S, then g−1 /∈ S.

The Cayley graph G(Γ, S) is the undirected graph with vertex set consisting of the elements
of Γ. Two vertices g, h are joined by an edge iff g−1h ∈ S, and it is labeled g−1h.

Every vertex in Cayley graph G(Γ, S) has degree |S|. Many well-known graphs can be
shown to be isomorphic with Cayley graphs by choosing appropriate group Γ and the set of
generators S. For more such properties and importance of Cayley graphs we refer to Chapter
25. We are now ready to give alternative definitions of hypercubes.

Proposition 24.1

1. Let S be a nonempty set with n elements and let G be the graph with vertex set 2S,
where two vertices X and Y are adjacent if and only if |X∆Y | = 1. Then G ∼= Qn.

2. Qn
∼= K2 × K2 × · · · × K2︸ ︷︷ ︸

n times
.

3. For 1 ≤ k ≤ n − 1, Qn
∼= Qk × Qn−k; in particular, Qn

∼= K2 × Qn−1.

4. Qn is the Cayley graph G(Zn
2 , S) of the group (Zn

2 , ⊕) with
S = {10 . . . 0, 010 . . . 0, . . ., 00 . . . 01} as the generating set.

Proof.

1. The map f , defined above in the introductory remarks, is a graph isomorphism too,
since |X∆Y | = 1 if and only if f(X) and f(Y) differ in exactly one position.

2. Label the vertices of K2 with 0, 1 ∈ Z2. Then V (K2 × K2 × · · · × K2) = Zn
2 , and

by the definition of the Cartesian product of graphs, two vertices (x1, x2, . . ., xn) and
(y1, y2, . . ., yn) are adjacent in K2 × K2 × · · · × K2 if and only if for exactly one i
(1 ≤ i ≤ n) (i) xi ̸= yi and (ii) (xi, yi) is an edge in the ith copy K2 (a redundant
demand). Hence (2) holds.

3. A consequence of (2).

4. By definition, V (Qn) = Zn
2 . Let X, Y ∈ V (Qn). Suppose that X and Y are adjacent

in Qn where Y = Xi, for some i, 1 ≤ i ≤ n. So, X ⊕ Y −1 = X ⊕ Y = (0 . . . 010 . . . 0).
So, X ⊕ Y −1 ∈ S. Conversely, suppose X ⊕ Y −1 ∈ S. Then X ⊕ Y −1 = X ⊕ Y =
(0 . . . 010 . . . 0). Hence Y = Xi. So, X and Y are adjacent in Qn. �

In view of Proposition 24.1(1), the vertices of Qn may be labeled by the subsets of an n-set
and work with subsets rather than binary strings, for example, see Figure 24.5.

Proposition 24.1(3), is a useful recursive construction of Qn. For n ≥ 2, Qn is constructed
from Qn−1 in three steps as follows:

a. Take two copies of Qn−1, say Q0
n−1 and Q1

n−1.

b. Prefix each vertex of Q0
n−1 with 0 and each vertex of Q1

n−1 by 1.

c. Join 0X of Q0
n−1 and 1X of Q1

n−1 for every X ∈ Qn−1.

C5955–C0024.tex 593 2015/11/4 12:33pm

594 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

{2}

{2, 3}

{3}

{2, 4}

{4}

{2, 3, 4}

{3, 4}

{1, 4}

{1, 2, 4}

{1, 2, 3, 4}

{1, 3, 4}

{1, 2}

{1}

{1, 2, 3}

{1, 3}

Q4

0/

Figure 24.5 Hypercube of dimension four with vertices labeled by the subsets of {1, 2, 3, 4}.

Remark 24.1 The hypercubes Q2, Q3, and Q4 shown in Figure 24.3 are constructed fol-
lowing this procedure. Moreover, this construction is reversible, in the sense that there is a
perfect matching of 2n−1 edges in Qn whose deletion results in a graph with two components,
each isomorphic with Qn−1. This operation of splitting is called a canonical decomposition of
Qn and is denoted by Qn = Q0

n−1 ⊖ Q1
n−1. Splitting and the recursive construction is often

used in proving the structural properties of Qn by induction on n.

Further, in view of Proposition 24.1(3), Qn can be recursively constructed by adding a 0 and
a 1 at any position k in the corresponding copies of Qn−1. We denote this construction by
Qn = Q0,k

n−1 ⊖ Q1,k
n−1.

In a graph G, let d(X, Y ; G) denotes the distance between two vertices X and Y in G
and let diam(G) denote the diameter of G.

24.2.2 Basic Properties of Hypercubes

Proposition 24.2 The hypercube Qn has the following properties:

1. |V (Qn)| = 2n.

2. Qn is n-regular.

3. |E(Qn)| = n2n−1.

4. Qn is connected.

5. Qn is bipartite where each part contains exactly 2n−1 vertices.

6. For any i, 1 ≤ i ≤ n, no two edges of dimension i are adjacent; hence they are called
parallel edges.

7. For any i, 1 ≤ i ≤ n, there are 2n−1 edges of dimension i.

Proof. The statement (1) is obvious, and (3) is a consequence of (1) and (2). So, we prove
the remaining assertions.
2: For any vertex X, N(X; Qn) = {Xi : 1 ≤ i ≤ n}. Therefore, deg(X) = |N(X; Qn)| = n.
4: Let X and Y be any two vertices in Qn, where Y = Xi1,i2,...,ik

. Then

P = ⟨X, Xi1 , Xi1,i2 , . . ., Xi1,i2,...,ik
= Y ⟩

is an (X, Y)-path in Qn.

C5955–C0024.tex 594 2015/11/4 12:33pm

Introduction to Interconnection Networks � 595

5: Define S = {X ∈ V (Qn) : the number of 1’s in X is even} and T = {X ∈ V (Qn) :
the number of 1’s in X is odd}. Clearly, no two vertices in S (and T) are adjacent and hence
(S, T) is a bipartition of Qn. Further, it can be easily seen that |S| = |T | = 2n−1.
6: If (X, Xi) and (Y, Yi) are two distinct edges of dimension i, then their end-vertices either
differ in at least two positions or the given edges are connected by an edge of dimension not
equal to i.
7: For any fixed i, 1 ≤ i ≤ n, {(x1 . . . xi−1 0 xi+1 . . . xn, x1 . . . xi−1 1 xi+1 . . . xn) : {xj ∈
{0, 1}, 1 ≤ j ̸= i ≤ n} is the set of dimension i edges. This set contains exactly 2n−1 edges. �

Remark 24.2 The path P described in the proof of (4) is a shortest (X, Y)-path, since any
two successive vertices in any (X, Y)-path differ in exactly one position and so contains at
least k − 1 internal vertices.

Definition 24.4 Let U, V be binary strings of equal length. The Hamming distance H(U, V)
between U and V is the number of positions at which U and V differ.

Proposition 24.3 The following distance properties hold.

1. For any X, Y ∈ V (Qn), d(X, Y ; Qn) = H(X, Y),

2. diam(Qn) = n.

Proof.

1. Let k be the number of positions at which X and Y differ. Since the path P described
in the proof of Proposition 24.2(4), is a shortest (X, Y)-path, we have

d(X, Y ; Qn) = k = H(X, Y)

2. By (1), for any two vertices X, Y ∈ V (Qn), d(X, Y ; Qn) = H(X, Y) ≤ n. Therefore,
diam(Qn) ≤ n. Since d(X, X; Qn) = H(X, X) = n, we deduce that diam(Qn) = n. �

Proposition 24.4

1. In Qn, any two adjacent edges belong to exactly one cycle of length four.

2. K2,3 is not a subgraph of Qn.
Proof.

1. Let (X, Y) and (Y, Z) be two adjacent edges in Qn. Then Y = Xi for some i, 1 ≤ i ≤ n
and Z = Yj = Xi,j , 1 ≤ j ≤ n, i ̸= j. If A denotes Xj , then (X, A), (Z, A) ∈ E(Qn)
and hence C : ⟨X, Y, Z, A, X⟩ is a C4 containing (X, Y) and (Y, Z) in Qn (Figure 24.6).

Next, if possible, let C∗ : ⟨X, Y, Z, B, X⟩ be any other C4 containing (X, Y) and
(Y, Z) in Qn. Now, since (X, B) ∈ E(Qn) and B ̸= Y, A we have,

B = Xp, for some p, 1 ≤ p ≤ n, where p ̸= i, j. (24.1)

Z = Xi,jA = Xj

X Y = Xi

Figure 24.6 Illustration of existence of C4 containing two adjacent edges in Qn.

C5955–C0024.tex 595 2015/11/4 12:33pm

596 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Since (Z, B) ∈ E(Qn) and B ̸= Y, A, we deduce that, B = Zk = Xi,j,k where i, j, k are
distinct integers. This is a contradiction to Equation (24.1).

2. A consequence of (1). �

Proposition 24.5 [10] Let X, Y be any two adjacent vertices in Qn. Then, (i) |N(X; Qn)| =
|N(Y ; Qn)|, (ii) every vertex of N(X; Qn) is adjacent to exactly one vertex of N(Y ; Qn), and
(iii) every vertex of N(Y ; Qn) is adjacent to exactly one vertex of N(X; Qn).

Proof. Let Y = x1x2 . . . xk−1xkxk+1 . . . xn; w.l.g. let xk = 0. Then, X ∈ Q0,k
n−1 and Y ∈ Q1,k

n−1.
Further, N(X; Qn) \ {Y } ⊆ Q0,k

n−1 and N(Y ; Qn) \ {X} ⊆ Q1,k
n−1. The vertices of N(X; Qn)

and N(Y ; Qn) can be put in a one-to-one correspondence as required, by mapping Xi to Yi,
for 1 ≤ i ̸= k ≤ n. �

Proposition 24.6 Let X, Y be any two vertices of Qn. Then there exist d(X, Y)! paths of
length d(X, Y) (shortest paths/geodesics) between X and Y in Qn.

Proof. Let Y = Xi1,i2,...,ik
, where k = d(X, Y). Let Πj be a permutation of {i1, i2, . . ., ik}, 1 ≤

j ≤ k!. The path Pj = ⟨X, XΠj(i1), XΠj(i1),Πj(i2), . . ., XΠj(i1),Πj(i2),...,Πj(ik) = Y ⟩ is an (X, Y)-
path of length k. �

Definition 24.5 In a graph G, two (x, y)-paths are said to be parallel if they have no common
internal vertices.

In a multiprocessor computing system, computing involves exchange of data among several of
its processors. The data is transmitted from one processor to another through a sequence of
interlinked processors. Obviously, the transmission is faster if there are very few intermediate
processors and a large number of alternative parallel paths are available. Equivalently, the
demand is that in the graph of the interconnection network, the distance between two given
vertices be small and there be a large number of parallel paths connecting any two vertices.
Hypercube has these desirable properties.

Proposition 24.7 [10] Let X, Y be any two vertices of Qn. Then there exist d(X, Y) parallel
paths of length d(X, Y) between X and Y in Qn.

Proof. Let d(X, Y) = k and Y = Xi1,i2,...,ik
. The following are k parallel (X, Y)-paths each of

length k.

P1 : ⟨X, Xi1 , Xi1,i2 , . . ., Xi1,i2,...,ik
= Y ⟩

P2 : ⟨X, Xi2 , Xi2,i3 , . . ., Xi2,i3,...,ik
, Xi2,i3,...,ik,i1 = Y ⟩

P3 : ⟨X, Xi3 , Xi3,i4 , . . ., Xi3,i4,...,ik
, Xi3,i4,...,ik,i1 , Xi3,i4,...,ik,i1,i2 = Y ⟩

...
Pk : ⟨X, Xik

, Xik,i1 , Xik,i1,i2 , . . ., Xik,i1,i2,...,ik−1 = Y ⟩ �

Proposition 24.8 [10] Let X, Y be any two vertices of Qn. Then there exist n parallel paths
between X and Y , each of length at most d(X, Y) + 2.

Proof. If d(X, Y) = n, the result follows by Proposition 24.7. Next let d(X, Y) = k < n, and let
Y = Xi1,i2,...,ik

. Let {1, 2, . . ., n} \ {i1, i2, . . ., ik} = {j1, j2, . . ., jn−k}. That is, j1, j2, . . ., jn−k

C5955–C0024.tex 596 2015/11/4 12:33pm

Introduction to Interconnection Networks � 597

are the positions at which X and Y coincide. In addition to the k vertex disjoint paths
described in Proposition 24.7, we have the following n − k parallel paths between X and Y .

Pk+1 : ⟨X, Xj1 , Xj1,i1 , Xj1,i1,i2 , . . ., Xj1,i1,i2,...,ik
, Xi1,i2,...,ik

= Y ⟩
Pk+2 : ⟨X, Xj2 , Xj2,i2 , Xj2,i2,i3 , . . ., Xj2,i2,i3,...,ik

, Xj2,i2,i3,...,ik,i1 , Xi2,i3,...,ik,i1 = Y ⟩
Pk+3 : ⟨X, Xj3 , Xj3,i3 , Xj3,i3,i4 , . . ., Xj3,i3,i4,...,ik

, Xj3,i3,i4,...,ik,i1 , Xj3,i3,i4,...,ik,i1,i2 ,

Xi3,i4,...,ik,i1,i2 = Y ⟩
...

Pk+n−k : ⟨X, Xjn−k
, Xjn−k,ik

, Xjn−k,ik,i1 , Xjn−k,ik,i1,i2 , . . ., Xjn−k,ik,i1,i2,...,ik−1 ,

Xik,i1,i2,...,ik−1 = Y ⟩ �

Proposition 24.9 The vertex connectivity of Qn is n.

Proof. Follows by Menger’s theorem. �

Definition 24.6 A graph G is said to be

1. Vertex-symmetric if given any two vertices u, v there exists an automorphism f of G such
that f(u) = v,

2. Edge-symmetric if given any two edges (u, v), (x, y) there exists an automorphism f of G
such that f(u) = x and f(v) = y,

3. Pn-symmetric if give any two paths ⟨u1, u2, . . ., un⟩ and ⟨v1, v2, . . ., vn⟩, there exists an
automorphism f of G such that f(ui) = vi, 1 ≤ i ≤ n,

4. Cn-symmetric if given any two cycles ⟨u1, u2, . . ., un, u1⟩ and ⟨v1, v2, . . ., vn, v1⟩, there ex-
ists an automorphism f of G such that f(ui) = vi, 1 ≤ i ≤ n,

5. Distance-symmetric if given any two pairs of vertices {u, v} and {x, y} such that d(u, v) =
d(x, y), there exists an automorphism f of G such that f(u) = x and f(v) = y.

Proposition 24.10 The following symmetric properties hold for Qn.

1. Let X, Y be any two vertices of Qn and let Π be any permutation of {1, 2, . . ., n}. Then
there exists an automorphism f of Qn such that

a. f(X) = Y ,
b. f(Xi) = YΠ(i), 1 ≤ i ≤ n.

That is, given any two vertices X, Y (not necessarily distinct), there exists an automor-
phism which maps X onto Y , and maps the neighbors of X onto the neighbors of Y , with
an a priori given ordering of the neighbors.

2. Qn is vertex-symmetric.

3. Qn is edge-symmetric.

4. Qn is P3-symmetric.

5. Qn is C4-symmetric.

6. Qn is distance-symmetric.

C5955–C0024.tex 597 2015/11/4 12:33pm

598 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof.
(1): Define fX,Y,Π = f : V (Qn) → V (Qn) by f(A) = YΠ(i1),Π(i2),...,Π(ik) if A = Xi1,i2,...,ik

. It is
easily verified that f is an automorphism satisfying the required properties.
(2), (3), (4): Follow by (1).
(5): Follows by (4) and Proposition 24.4.
(6): Let X, Y, U, V be vertices with d(X, Y) = k = d(U, V). Let Y = Xi1,i2,...,ik

and V =
Uj1,j2,...,jk

. Define the permutation Π : {1, 2, . . ., n} → {1, 2, . . ., n} by Π(il) = jl, 1 ≤ l ≤ k
and Π(m) = m, m ∈ {1, 2, . . ., n} \ {i1, i2, . . ., ik}. With this Π, the map f = fX,U,Π defined
in (1) is an automorphism of Qn such that f(X) = U and f(Y) = V . �

Despite the properties (1) to (6), Qn is not Pm-symmetric for m > 3. This follows as there
can be no automorphism which maps a path ⟨A, B, C, . . ., D⟩ with d(A, D) = m(> 3) onto a
path ⟨U, V, X, . . ., Y ⟩ with d(U, Y) = 1.

The level decomposition of hypercubes has been fruitfully used by many researchers to
characterize hypercubes and derive their properties.

Definition 24.7 Let G be a simple connected graph with diam(G)=k and let x ∈ V (G).
The level decomposition of G with respect to x is the partition (N0(x), N1(x), . . .,
Nk(x)) of V (G) where Ni(x) = {y ∈ V (G) : d(x, y) = i}, 0 ≤ i ≤ k. The vertex sets
Ni(x) are called the levels.

Readers familiar with search algorithms will immediately recognize that N0(x), N1(x), . . .,
Nk(x) are the sets generated by the breadth search algorithm.

We now list some of the properties of such a level decomposition. Often, we will be using
these properties without actually referring to the list.

Proposition 24.11 For any vertex x, the level decomposition of G with respect to x has the
following properties.

1. N0(x) = {x} and N1(x) = N(x).

2. Every vertex in Ni+1(x) is adjacent with some vertex in Ni(x), 0 ≤ i ≤ k − 1.

3. No vertex in Ni+2(x) is adjacent with a vertex in Ni(x), 0 ≤ i ≤ k − 2.

4. Two vertices in Ni(x) may or may not be adjacent, 0 ≤ i ≤ k.

5. G is bipartite if and only if no two vertices in Ni(x) are adjacent, for every i, 0 ≤ i ≤ k.

6. G is distance-symmetric if and only if it is vertex symmetric and every automorphism
of G which fixes x permutes the elements of Ni(x), for every i, 1 ≤ i ≤ k. �

The level decomposition of a hypercube has a few more additional properties. Here, for a
subset of vertices U of the graph G, we denote the subgraph of G induced by the vertices in
U by [U].

Proposition 24.12 For any X ∈ V (Qn) and 0 ≤ i ≤ n, the following hold:

1. No two vertices in [Ni(X)] are adjacent.

2. Every vertex Y ∈ Ni(X) is adjacent with exactly i vertices in Ni−1(X).

3. Every vertex Y ∈ Ni(X) is adjacent with exactly n − i vertices in Ni+1(X).

4. Any two vertices Y, Z ∈ Ni(X) are mutually adjacent with at most one vertex Ni−1(X).

C5955–C0024.tex 598 2015/11/4 12:33pm

Introduction to Interconnection Networks � 599

5. Any two vertices Y, Z ∈ Ni(X) are mutually adjacent with at most one vertex in
Ni+1(X).

6. |Ni(X)| =
(n

i

)
.

7. Every 4-cycle in Qn intersects exactly three levels.

Proof.
(1): Follows since Qn is bipartite.
(2): Let Y = Xj1,j2,...,ji ∈ Ni(X). Then

N(Y) ∩ Ni−1(X) = {Xj1,j2,...,ji−1 , Xj1,j2,...,ji−2,ji , Xj1,j2,...,ji−3,ji−1,ji , . . ., Xj2,j3,...,ji}.

(3): A consequence of (1),(2) and that Qn is n-regular.
(4), (5): Let Y, Z ∈ Ni(X) be adjacent to a vertex in Ni−1(X). Then d(Y, Z) = 2. W.l.o.g,
let Y = Xj1,j2,...,ji and Z = Xj1,j2,...,ji−1,ji+1 . By Proposition 24.4, Y, Z are mutually adjacent
with exactly two vertices, namely Xj1,j2,...,ji−1 and Xj1,j2,...,ji,ji+1 . Among these two vertices,
Xj1,j2,...,ji−1 lies in Ni−1(X) and Xj1,j2,...,ji,ji+1 lies in Ni+1(X). So if Y, Z have a common
neighbor then they are mutually adjacent with exactly one vertex in Ni−1(X) and with
exactly one vertex in Ni+1(X).
(6): Ni(X) = {Y ∈ V (Qn) : Y = Xj1,j2,...,ji , where{j1, j2, . . ., ji} ⊆ {1, 2, . . ., n}}. Hence
|Ni(X)| =

(n
i

)
.

(7): A restatement of (4) and (5). �

24.2.3 Characterizations of Hypercubes

In the previous section, we observed many properties of hypercubes on bipartition, existence
of short parallel paths, level decomposition, absence of K2,3 and symmetry. So, all these
properties are necessary conditions for a graph to be a hypercube. Over the years, many
characterizations have been proved which show that a combination of these necessary con-
ditions and a few more additional conditions are sufficient for an arbitrary graph to be a
hypercube. In this section, we present some of these characterizations, some with proofs and
some without proofs. We have classified these characterizations into four broad types.

24.2.3.1 Characterizations through Splitting

Theorem 24.1 [10] A graph G is a hypercube if and only if

1. |V (G)| = 2n, for some n,

2. G is n-regular,

3. G is connected, and

4. Any two adjacent vertices x and y of G are such that (i) |N(x; G)| = |N(y; G)|, (ii)
every vertex of N(x; G) \ {y} is adjacent to exactly one vertex of N(y; G) \ {x}, and
(iii) every vertex of N(y; G) \ {x} is adjacent to exactly one vertex of N(x; G) \ {y}.

Proof. =⇒: Follows by Propositions 24.2 and 24.5.
⇐=: The converse is proved by induction on n. The only graph for n = 1 satisfying (1) to (4)
is K2 ∼= Q1. Assume that the implication is true for n − 1, and let G be a graph satisfying
(1) to (4). Consider any two adjacent vertices in G. Color them with red and blue and name
them as r and b. By (4), N(r; G) and N(b; G) are linked in a one-to-one fashion (and hence
N(r; G) ∩ N(b; G) = ∅). Color the vertices in N(r; G) in red (except b) and the vertices in
N(b; G) in blue (except r). Select a new edge whose ends are colored red and blue. As above,

C5955–C0024.tex 599 2015/11/4 12:33pm

600 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

color the neighbors of its ends. Continue this process of selecting a new edge and coloring the
neighbors of its ends till all the vertices have been colored. In the colored graph, the vertices
and edges have the following properties.

1. All the vertices of G have been colored either blue or red, since G is connected.

2. Since N(r; G) and N(b; G) are linked in a one-to-one fashion, exactly half the vertices
have received the color red and the other half have received the color blue.

3. By construction, each vertex of red color is connected to r. So, the red colored vertices
induce a connected subgraph say Gr of G. Similarly, let Gb be the connected subgraph
of G induced by the blue colored vertices.

4. On the removal of the edges of G which have one end vertex colored red and the other
blue, each vertex of G looses a degree and results in a spanning disconnected subgraph
of G with components Gr and Gb. The graph Gr satisfies the following properties:

a. |V (Gr)| = 2n−1,
b. Gr is regular of degree n − 1,
c. Gr is connected, and
d. Gr satisfies (4); for let (x, y) ∈ E(Gr) and let xb (or yb) be the unique vertex

of blue color adjacent to x (or y) in G. Then (x, y) ∈ E(G) ⇒ N(x; G) and
N(y; G) are linked in a one-to-one fashion ⇒ N(x; G) \ {xb} = N(x; Gr) and
N(y; G) \ {yb} = N(y; Gr) are linked in a one-to-one fashion.

All these properties hold for Gb as well. So, by induction hypothesis, Gr
∼= Qn−1 ∼= Gb. Hence

G = Gr ⊖ Gb
∼= Qn. �

24.2.3.2 Characterizations through (0,2)-Graphs

The class of (0, 2)-graphs is a subclass of strongly regular graphs widely studied in the theory
of combinatorial designs. Characterizations of hypercubes contained in this section state that
a (0,2)-graph satisfying a few more properties is a hypercube.

Definition 24.8 A (0,2)-graph is a connected graph in which any two vertices have zero or
exactly two common neighbors.

For example, while C4 is a (0, 2)-graph, K4 − e is not a (0, 2)-graph.

Proposition 24.13 A graph G is a (0, 2)-graph if and only if any two adjacent edges in G
belong to exactly one cycle of length four.

Proof. =⇒: Assume that G is a (0, 2)-graph and let (x, y), (y, z) be two adjacent edges. Since
G is a (0, 2)-graph and vertices x, z have y as a common neighbor, there exists exactly one
more vertex, say a which is adjacent to both x and z. Thus ⟨x, y, z, a, x⟩ is a unique 4-cycle
containing the edges (x, y) and (y, z).
⇐=: Let vertices x, z of G have a common neighbor, say y. Then (x, y), (y, z) being adjacent
edges of G lie in a unique 4-cycle. Let a be the vertex which completes the unique 4-cycle,
containing (x, y) and (y, z). Then N(x) ∩ N(z) = {y, a} and hence G is a (0, 2)-graph. �

Proposition 24.14 Every (0, 2)-graph is regular.

Proof. Let G be a (0, 2)-graph. We first show that if x and y are two adjacent vertices in G
then deg(x) = deg(y).

C5955–C0024.tex 600 2015/11/4 12:33pm

Introduction to Interconnection Networks � 601

Let a be a vertex in N(x) \ {y}. The vertices a and y have a common neighbor x. Since
G is a (0, 2)-graph, there is a unique vertex b ∈ N(y) \ {x} which is adjacent with a. Hence
|N(y) \ {x}| ≥ |N(x) \ {y}|. Similarly, the reverse inequality holds. So, deg(x) = deg(y).

Next, if x and y are nonadjacent vertices, let ⟨x = x1, x2, . . ., xp = y⟩ be an (x, y)-path.
Then deg(x1) = deg(x2) = · · · = deg(xp). �

Proposition 24.15 For n ≥ 2, Qn is a (0, 2)-graph.

Proof. A consequence of Propositions 24.4 and 24.13. �

Theorem 24.2 A graph G is a hypercube if and only if
1. G is connected,

2. G is a (0, 2)-graph (with degree of regularity, say, n),

3. For some x ∈ V (G) and for every i ≥ 0,

a. No two vertices in Ni(x) are adjacent.
b. every vertex in Ni(x) is adjacent with exactly i vertices in Ni−1(x).

Proof. =⇒: Follows by Propositions 24.2, 24.12, and 24.15.
⇐=: In view of Theorem 24.1, it is enough if we show that |V (G)| = 2n and that Theorem
24.1(4) holds.

At the outset, observe that G is bipartite, since no two vertices in Ni(x) are adjacent.
Moreover, every vertex in Ni(x) is adjacent with exactly n − i vertices in Ni+1(x), since G is
n-regular, and it satisfies (b).

Claim 1 |Ni(x)| =
(n

i

)
We prove the claim by induction on i. Since |N0(x)| = |{x}| = 1, the claim holds for i = 0.
Assuming that the claim is true for i, we prove it for i + 1. Let F be the set of edges in
[Ni(x), Ni+1(x)]. We count the number of edges emanating from Ni(x) to Ni+1(x) to obtain

|F | = |Ni(x)|(n − i).

Similarly, we count the number of edges emanating from Ni+1(x) to Ni(x),to obtain

|F | = |Ni+1(x)|(i + 1).

Combining the above two equations, we get

|Ni+1(x)| = |Ni(x)|n − i

i + 1

=
(

n

i

)
n − i

i + 1
(using induction hypothesis)

=
(

n

i + 1

)
We have completed the proof of Claim 1. It implies that

a. |V (G)| =
∑

i ≥0 |Ni(x; G)| =
∑n

i=0
(n

i

)
= 2n.

b. The diameter of G is n, since Nn+1 = ∅ and Nn ̸= ∅.

Claim 2 G satisfies Theorem 24.1(4).

Let y, z be two adjacent vertices of G. Since G is bipartite, y, z lie in two consecutive levels,
say Ni(x) and Ni−1(x), respectively. Let {z1, z2, . . ., zi−1} be the neighbors of z in Ni−2. Since

C5955–C0024.tex 601 2015/11/4 12:33pm

602 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

G is a (0, 2)-graph and z is a common neighbor of y and zj , 1 ≤ j ≤ i − 1, there exists yj

(say) in Ni−1 adjacent with y and zj . By Theorem 24.2(3a) it follows that z, y1, y2, . . ., yi−1
are the only neighbors of y in Ni−1(x). Let yi+1, yi+2, . . ., yn be the neighbors of y in Ni+1(x),
and y, zi+1, zi+2, . . ., zn be the neighbors of z in Ni(x). Since y is a common neighbor of z
and yk, i + 1 ≤ k ≤ n, we conclude as before that zk and yk are adjacent. Hence the claim.
So, G is a hypercube by Theorem 24.1. �
In the following we list other characterizations which involve (0, 2)-graphs. We omit the
proofs.

Theorem 24.3 [11] A graph G is a hypercube if and only if

1. G is connected (with diameter n, say),

2. G is bipartite, and

3. for any two vertices x and y in G, the number of shortest (x, y)-paths is d(x, y)! �

Theorem 24.4 [12] A graph G is a hypercube if and only if

1. G is connected (with δ(G) = n say),

2. every pair of adjacent edges lies in exactly one 4-cycle, and

3. |V (G)| = 2n. �

Proposition 24.16 [13] A graph G is a hypercube if and only if

1. G is connected,

2. G is a (0, 2)-graph (with degree of regularity n, say), and

3. |V (G)| = 2n. �

Proposition 24.17 [13] A graph G is a hypercube if and only if

1. G is connected (with diameter n, say),

2. G is a (0, 2) graph, and

3. G has a level decomposition such that every 4-cycle intersects exactly three levels. �

24.2.3.3 Characterizations through Intervals

In this section, characterizations do not forbid K2,3 but add a few distance properties.

Definition 24.9 For any two vertices x, y of a graph G, the interval between x and y is the
set

IG(x, y) := {z ∈ V (G) : there exists a shortest (x, y)-path containing z}.

Clearly,

a. If x, y are connected, then IG(x, y) = {z ∈ V (G) : d(x, z) + d(z, y) = d(x, y)}, and
x, y ∈ IG(x, y). In particular, if x = y then |IG(x, y)| = 1.

b. If x, y are not connected then IG(x, y) = ∅.

C5955–C0024.tex 602 2015/11/4 12:33pm

Introduction to Interconnection Networks � 603

Proposition 24.18 For X, Y ∈ V (Qn),

|N(X) ∩ I(X, Y)| = d(X, Y) = |N(Y) ∩ I(X, Y)|.

Proof. See Proposition 24.7 and its proof. �

Theorem 24.5 [14] A graph G is a hypercube if and only if
1. G is connected (with diameter n, say),

2. G is bipartite,

3. G is a (0, 2)-graph, and

4. If θ and θ̂ are two diametrical vertices of G, then for all u ∈ V (G)

|N(u) ∩ I(θ, u)| = d(θ, u). (24.2)

and
|N(u) ∩ I(u, θ̂)| = d(u, θ̂). (24.3)

Proof. =⇒: Follows by Propositions 24.2, 24.15, and 24.18.
⇐=: We verify that G satisfies the hypothesis of Theorem 24.2.

Claim 1 N(θ) ⊆ I(θ, θ̂).

Let x ∈ N(θ). Since d(θ, θ̂) = diam(G) = n, we have, d(x, θ̂) = n − 1 or n.
Case 1 d(x, θ̂) = n − 1.
Let P be a shortest (x, θ̂)-path in G. Then the path ⟨θ, x, P (x, θ̂)⟩ is a shortest (θ, θ̂)-path
containing x. Thus, x ∈ I(θ, θ̂).
Case 2 d(x, θ̂) = n.
Then ⟨P (θ, θ̂), Q(θ̂, x), θ⟩ is a closed walk of length 2n + 1 in G, where P and Q are shortest
paths. But every closed walk of odd length contains an odd cycle, a contradiction to (2). So,
this case does not arise.

Claim 2 deg(u) = n, for all u ∈ V (G).

We have

deg(θ) = |N(θ)| = |N(θ) ∩ I(θ, θ̂)|, (by Claim 1)
= d(θ, θ̂) (by substituting u = θ in (24.3))
= n.

Since every (0, 2)-graph is a regular graph , we conclude that G is n-regular.
Next consider a level decomposition of G w.r.t. θ. By (24.2), it follows that every vertex v

in Ni(θ) is adjacent with exactly i vertices in Ni−1(θ). So, by (24.3) and Claim 2, every vertex
v in Ni(θ) is adjacent with exactly n− i vertices in Ni+1(θ). We now appeal to Theorem 24.2
and conclude that G is a hypercube. �

Theorem 24.6 [11] A graph G is a hypercube if and only if
1. G is connected (with diameter n, say),

2. G is bipartite,

3. For all x, y ∈ V (G), |N(x) ∩ I(x, y)| = d(x, y).

C5955–C0024.tex 603 2015/11/4 12:33pm

604 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. =⇒: Follows by Propositions 24.2 and 24.18.
⇐=: Follows by Theorem 24.5. �
Next characterizations involve concepts associated with an interval in a graph. As before, we
first observe a necessary condition for a graph G to be a hypercube.

Proposition 24.19 Every interval in a hypercube induces a sub hypercube.

Proof. Let X, Y ∈ V (Qn) and let Y = Xi1,i2,...,ik
. Then I(X, Y) = {XT : T ⊆ {i1, i2, . . ., ik}}

and so [I(X, Y)] ∼= Qk. �

Definition 24.10 Let G be a connected graph and let u, v be vertices. An interval I(u, v)
is said to be end-regular, if both u and v have d(u, v) neighbors in the subgraph induced by
I(u, v). The graph G is said to be interval-regular if every interval is end-regular.

It follows by Proposition 24.19 that hypercubes are interval regular.

Proposition 24.20 A connected graph G is interval-regular if and only if for any two ver-
tices u and v of G at least one of u and v has d(u, v) neighbors in I(u, v).

Definition 24.11 A graph G is called antipodal if for every vertex u there exist a vertex u′

such that I(u, u′) = V (G). The vertex u′ is called the antipode of u.

Clearly:

• For every vertex x ∈ I(u, v), d(u, x; G) = d(u, x; [I(u, v)]).

• An antipodal graph is necessarily connected.

• In an antipodal graph, given u, its antipode u′ is unique.

• Hypercubes are antipodal.

Proposition 24.21 If I(u, v) is an interval in an antipodal graph G and x, x′ ∈ I(u, v) are
antipodal then d(u, v) = d(x, x′).

Proof. Since x, x′ ∈ [I(u, v)], we have d(u, x) + d(x, v) = d(u, v), and d(u, x′) + d(x′, v) =
d(u, v). Since x, x′ are antipodal, we have [I(x, x′)] = [I(u, v)], d(x, u) + d(u, x′) = d(x, x′),
and d(x, v) + d(v, x′) = d(x, x′). These equations imply that d(u, v) = d(x, x′). �
In the following characterizations, the statements 24.7(2) to 24.7(6) are due to Bandelt and
Mulder [15], and the statement 24.7(7) is due to Wenzel [16].

Theorem 24.7 For a connected bipartite graph G, the following statements are equivalent.

1. G is a hypercube.

2. Every interval in G induces a hypercube.

3. G is interval regular.

4. Every interval in G induces a (0, 2)-graph.

5. Every interval I(u, v) in G contains exactly 2d(u,v) vertices.

6. Every interval I(u, v) in G induces a graph with exactly d(u, v)2d(u,v)−1 edges.

7. Every interval in G is antipodal.

C5955–C0024.tex 604 2015/11/4 12:33pm

Introduction to Interconnection Networks � 605

Proof. We have already shown that (1) implies all other statements. So, we prove the reverse
implications.

(2) ⇒ (1): In view of Theorem 24.3, it is enough if we show that G satisfies 24.3(3). So, let
u, v ∈ V (G). Let H be the hypercube induced by I(u, v). Then,

the number of shortest (u, v)-paths in G = the number of shortest (u, v)-paths in H

= d(u, v; H)!, by Theorem 24.3
= d(u, v; G)!

(3) ⇔ (1): This equivalence is Theorem 24.6.
(4) ⇒ (3): We would like to use Proposition 24.20. So, we show that for any two vertices u, v
of G at least one of u and v has degree d(u, v) in [I(u, v)], by induction on d(u, v). If d(u, v)=1,
[I(u, v)] ∼= K2 and so the claim holds. Next we proceed to the induction step assuming that
d(u, v) = d. Let w be a neighbor of u in [I(u, v)]. Then d(w, v) = d − 1. Therefore by
induction hypothesis, deg(w; [I(w, v)]) = d−1 or deg(v; [I(w, v)]) = d−1. However, [I(w, v)]
is regular being a (0, 2)-graph. So, deg(w; [I(w, v)]) = d − 1 = deg(v; [I(w, v)]) and hence
deg(w; [I(u, v)]) = d. Therefore deg(u; [I(u, v)]) = d, since [I(u, v)] is regular.
(5) ⇒ (3): We show that every interval [I(u, v)] is end-regular by induction on d(u, v). For
d(u, v) ≤ 2, the assertion is obvious. So, let d(u, v) = d ≥ 3. Consider a level decomposition
of [I(u, v)] w.r.t. u and let x ∈ Ni(u), where 1 ≤ i ≤ d − 1; d(u, x) = i and d(x, v) = d − i.
We apply our induction hypothesis to the intervals [I(u, x)] and [I(x, v)] and infer that x has
exactly i neighbors in Ni−1(u) and exactly d − i neighbors in Ni+1(u). Hence counting the
edges between Ni−1(u) and Ni(u) in two ways, we get

|Ni−1(u)|(d − i + 1) = |Ni(u)|i, 1 ≤ i ≤ d − 1.

Putting i = 1 in the above equation, we get |N0|d = |N1|. But N0 = {u} and |N1| =
deg(u; [I(u, v)]). Therefore the claim is proved and we conclude that G is interval-regular.
(6) ⇒ (3): Proof is exactly as above.
(7) ⇒ (3): We prove the implication by induction on d(u, v) = d. For d = 1, the claim
is obvious. We next prove the claim for d = 2. Let x′ be the antipode of x in [I(u, v)].
By Proposition 24.21, d(x, x′) = d(u, v) = 2. So, [{u, v, x, x′}] is a 4-cycle. We next assert that
[I(u, v)] is the 4-cycle {u, v, x, x′}. On the contrary, if z ∈ [I(u, v)] − {u, v, x, x′}, we arrive
at a contradiction as follows: while (z, u), (z, v) ∈ E([I(u, v)]), (z, x), (z, x′) ̸∈ E([I(u, v)])
since G is bipartite. But then there is no shortest (x, x′)-path containing z in [I(x, x′)]; so
z ̸∈ I(x, x′) = I(u, v), a contradiction.

We now proceed to the anchor step. Let x be a neighbor of u in [I(u, v)] and let x′ be its
antipode. By induction hypothesis deg(u; [I(u, x′)]) = d − 1 and so deg(u; [I(x, x′)]) = d =
deg(u; [I(u, v)]). �

24.2.3.4 Characterizations through Medians

Definition 24.12 A simple graph G is called a median graph if G is connected, and if for
any three vertices u, v, and w of G there exists a unique vertex x, called the median of u, v,
and w, such that

d(u, x; G) + d(x, v; G) = d(u, v; G)
d(v, x; G) + d(x, w; G) = d(v, w; G)
d(w, x; G) + d(x, u; G) = d(w, u; G)

C5955–C0024.tex 605 2015/11/4 12:33pm

606 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

In other words, a simple connected graph is a median graph if for any three vertices u, v,
and w in G, there exists a unique vertex that lies simultaneously on a shortest (u, v)-path, a
shortest (v, w)-path, and a shortest (w, u)-path.

It is easily seen that (i) a median graph is bipartite, (ii) every tree is a median graph,
(iii) cycles of length greater than 4 are not median, and (iv) K2,3 is not median.

Proposition 24.22 For n ≥ 2, Qn is a median graph.

Proof. Let U, V, W ∈ Qn, and let V = US and W = UT where S, T ⊆ {1, 2, . . ., n}. Then,
d(V, W) = |S∆T |.

Claim X = US ∩ T is the unique median of U, V, W .

Let

S ∩ T = {i1, i2, . . ., iα},

S \ (S ∩ T) = {j1, j2, . . ., jβ},

T \ (S ∩ T) = {k1, k2, . . ., kγ}.

So, we can write:

S = {i1, i2, . . ., iα, j1, j2, . . ., jβ}
T = {i1, i2, . . ., iα, k1, k2, . . ., kγ}.

Then, d(U, X) = α, d(U, V) = α + β, d(U, W) = α + γ, d(V, W) = β + γ. Moreover,

⟨U, Ui1 , Ui1,i2 , . . ., Ui1,i2,...,iα = X, Ui1,i2,...,iα,j1 , Ui1,i2,...,iα,j1,j2 , . . ., Ui1,i2,...,iα,j1,j2,...,jβ = V ⟩

is a shortest (U, V)-path,

⟨U, Ui1 , Ui1,i2 , . . ., Ui1,i2,...,iα = X, Ui1,i2,...,iα,k1 , Ui1,i2,...,iα,k1,k2 , . . ., Ui1,i2,...,iα,k1,k2,...,kγ
= W ⟩

is a shortest (U, W)-path, and ⟨V = Ui1,i2,...,iα,j1,j2,...,jβ , Ui1,i2,...,iα,j1,j2,...,jβ−1 , . . ., Ui1,i2,...,iα,j1 ,
Ui1,i2,...,iα = X, Ui1,i2,...,iα,k1 , Ui1,i2,...,iα,k1,k2 , . . ., Ui1,i2,...,iα,k1,k2,...,kγ

= W ⟩ is a shortest
(V, W)-path. Clearly, X is unique. �

The following theorem characterizes median graphs; please refer [14,17,18] for its proof.

Theorem 24.8 [14] A graph G is a median graph if and only if G is a connected induced
subgraph of a hypercube Q such that for any three vertices of G their median in Q is also a
vertex of G. �

Theorem 24.9 The following statements are equivalent for a graph G.

1. G is a hypercube.

2. G is median and contains two diametrical vertices at least one of which has maximum
degree (say n) [17].

C5955–C0024.tex 606 2015/11/4 12:33pm

Introduction to Interconnection Networks � 607

3. G is median and regular (with regularity say n) [17].

4. G is median and diametrical (with diameter say n) [17]. (A connected graph G is
diametrical if each vertex of G has a unique diametrical vertex.)

5. G is median and a (0, 2)-graph [15].

Proof. We only prove (1) ⇔ (2). The other characterizations easily follow.
=⇒: Follows by Proposition 24.22 and the fact that G is regular.
⇐=: Let G satisfy (2). Let θ, θ̂ be two diametrical vertices of G with deg(θ) = n. Embed
G in an m-cube Q (m ≥ n) as in Theorem 24.8. Assume that the vertices of Q are labeled
by using the subsets of {1, 2, . . ., m} as in Proposition 24.1. Consider a level decomposition
(N0, N1, . . ., Nn) of Q with respect to the vertex labeled ∅. W.l.g, assume that θ of G is the
vertex ∅ of Q and that {1}, {2}, . . ., {n} are the neighbors of θ. We prove that every subset
of {1, 2, . . ., n} is a vertex of G, by induction on the cardinality of the subset. It then follows
that G ∼= Qn ⊆ Q.

For the inductive anchor, assume that all subsets A ⊆ {1, 2, . . ., n} with |A| ≤ i are
vertices of G, and that d(A, θ̂; G) = diam(G) − |A|, for all such sets. Note that when i = 1,
these assumptions are true.

Let A be a (i + 1)-element subset of {1, 2, . . ., n}. Let B, C be two distinct i-element
subsets of A. Then

B ∪ C = A, |B ∩ C| = i − 1, B, C ∈ Ni, B ∩ C ∈ Ni−1 and A ∈ Ni+1.

By induction hypothesis, B, C, B ∩ C ∈ V (G). Clearly, A is the median of B, C, and θ̂.
Therefore, by Theorem 24.8, A ∈ G and moreover

d(A, θ̂; G) = d(B, θ̂; G) − 1 = (diam(G) − |B|) − 1 = diam(G) − |A|. �

24.2.3.5 Characterizations through Projections

As in the last few sections, in this section too, the characterizations depend on the distance
properties.

Definition 24.13 Let G be a simple connected graph and S be a subset of vertices. The
projection of a vertex x over S is the set

P (x; S) := {s ∈ S : d(x, s) ≤ d(x, s′), for every s′ ∈ S}.

Definition 24.14 Let G be a simple connected graph and S be a subset of vertices. The
antiprojection of a vertex x over S is the set

AP (x; S) := {s ∈ S : d(x, s) ≥ d(x, s′), for every s′ ∈ S}.

Proposition 24.23 For all X, Y, Z in V (Qn), |AP (Z; I(X, Y))| = 1.

Proof. By Proposition 24.19, [I(X, Y)] ∼= Qd, where d = d(X, Y). W.l.g, let I(X, Y) = {X ∈
V (Qn) : xj = 0, d + 1 ≤ j ≤ n}. Then Z ′ = (z1z2 . . . zd00 . . . 0) is the unique vertex in
AP (Z; I(X, Y)). �

C5955–C0024.tex 607 2015/11/4 12:33pm

608 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proposition 24.24 If G is a connected graph such that

|AP (z; IG(x, y))| = 1, for all vertices x, y, and z. (24.4)

Then
1. G is bipartite.

2. K2,3 is not a subgraph of G.

3. G is a (0, 2)-graph.

4. For any x ∈ V (G), every 4-cycle intersects exactly three levels of the level decomposition
w. r. t. x.

Proof.
(1): If ⟨x1, x2, . . ., x2p+1, x1⟩ is a shortest odd cycle in G, then d(x1, xp+1) = p = d(x1, xp+2),
and I(xp+1, xp+2) = {xp+1, xp+2}. So, AP (x1; I(xp+1, xp+2)) = {xp+1, xp+2}, a contradiction
to (24.4).
(2): On the contrary suppose [{x, y}, {a, b, c}] = K2,3 ⊆ G. Since d(x, y) = 2 and G is
bipartite, {b, c} ⊆ AP (a; I(x, y)), a contradiction to (24.4).
(3): Let z be a common neighbor of x, y in G. Then there exists another common neighbor,
say r, of x, y; else I(x, y) = {x, y, z} and so AP (z; I(x, y)) = {x, y}, a contradiction to (24.4).
By (2), r is unique.
(4): Since G is bipartite by (1), every 4-cycle intersects two or three levels. If possible,
let ⟨a, b, c, d, a⟩ be a 4-cycle intersecting only two levels, say Ni(x) and Ni+1(x). W.l.g let
a ∈ Ni(x). Since G is bipartite, b, d ∈ Ni+1(x) and c ∈ Ni(x). But then since G is a (0, 2)-
graph by (3), I(a, c) = {a, b, c, d} and AP (x; I(a, c)) = {b, d}, a contradiction to (24.4). �

Theorem 24.10 [13] A connected graph G is a hypercube if and only if |AP (z; IG(x, y))| =
1, for all vertices x, y and z in G.

Proof. Follows by Propositions 24.23, 24.17, and 24.24. �

24.2.3.6 Characterizations through Convex Sets

Definition 24.15 Let G be a simple connected graph. A set of vertices C is said to be convex
if for any two vertices x, y of C the interval I(x, y) is contained in C.

The next proposition reveals a connection between convex sets and intervals in hypercubes.
It says that the intervals are the only convex sets in hypercubes. This property and a few
more obvious necessary conditions characterize hypercubes.
Proposition 24.25 A set of vertices C in a hypercube is convex if and only if C is an
interval.
Proof. =⇒: Let X, Y ∈ C be two vertices such that d(X, Y) = diam([C]) = d (say). We
claim that C = I(X, Y). Since C is convex, I(X, Y) ⊆ C. If there is a Z ∈ C \ I(X, Y), we
arrive at a contradiction as follows: By Proposition 24.19, H := [I(X, Y)] ∼= Qd. W.l.g, let
V (H) = {X ∈ V (Qn) : xj = 0, d + 1 ≤ j ≤ n}. Then zj = 1 for some j, d + 1 ≤ j ≤ n. Now
Z ′ = (z1z2 . . . zd00 . . . 0) ∈ V (H) and d(Z, Z ′) > d, a contradiction to the choice of X, Y .
Therefore C = I(X, Y).
⇐=: Let I(X, Y) be an interval in Qn. Let U, V ∈ I(X, Y). By Proposition 24.19, I(X, Y)
induces a sub-hypercube Qd of Qn of dimension d = d(X, Y) ≤ n. Again by Proposition 24.19,
I(U, V) induces a sub-hypercube in Qd. �
It can be easily verified that if U, V ∈ H := [I(X, Y)] ⊆ Qn, then IH(U, V) = IQn(U, V).

C5955–C0024.tex 608 2015/11/4 12:33pm

Introduction to Interconnection Networks � 609

Proposition 24.26 For every convex set C and every vertex X in Qn, |AP (X; C)| = 1.

Proof. Follows by Propositions 24.23 and 24.25. �

Proposition 24.27 If G is a connected graph such that

|AP (x; C)| = 1, for every convex set C and every vertex x in G, (24.5)

then G is bipartite.

Proof. If possible, let ⟨x1, x2, . . ., x2p+1, x1⟩ be a shortest odd cycle in G. Since (xp+1, xp+2) ∈
E(G), {xp+1, xp+2} is a convex set. Moreover, AP (x1; xp+1, xp+2) = {xp+1, xp+2}, a contra-
diction to (24.5). �

Theorem 24.11 [13] A graph G is a hypercube if and only if

1. G is connected,

2. G does not contain K2,3 as an induced subgraph, and

3. For every convex set C and every vertex x in G, | AP(x; C)| = 1.

Proof. =⇒: A consequence of Propositions 24.2, 24.4, and 24.26.
⇐=: We verify that G satisfies the conditions of Proposition 24.17, and conclude that G is a
hypercube.

Claim 1 G is a (0, 2)-graph.

Let z be a common neighbor of x, y in G. Then there exists another common neighbor, say
r, of x, y; else {x, y, z} is a convex set and so AP (z; {x, y, z}) = {x, y}—a contradiction to
(24.5). Since K2,3 is forbidden in G, r and z are the only common neighbors of x and y. This
proves the claim. Consider a level decomposition of G with respect to some x ∈ V (G).

Claim 2 Every 4-cycle intersects exactly three levels.

Since G satisfies (24.5), it is bipartite and so every 4-cycle intersects two or three levels.
If possible, let ⟨a, b, c, d, a⟩ be a 4-cycle intersecting only two levels, say Ni(x) and Ni+1(x).
W.l.o.g let a ∈ Ni(x). Since G is bipartite, b, d ∈ Ni+1(x) and c ∈ Ni(x). Also, since G
is a (0, 2)-graph, I(a, c) = {a, b, c, d} is a convex set and so AP (x; {a, b, c, d}) = {b, d}, a
contradiction to (24.5). �

24.2.3.7 Characterizations through Some Monotone Properties

Definition 24.16 Let G be a simple connected graph. An interval I(x, y) is said to be closed
if for all z ∈ V (G) \ I(x, y) there exists z′ ∈ I(x, y) such that d(z, z′) > d(x, y).

Remark 24.3 Let I(x, y) be a closed interval and z be a vertex in G. If for every u ∈ I(x, y),
d(z, u) ≤ d(x, y), then z ∈ I(x, y).

Definition 24.17 A simple graph G is said to be distance monotone if all its intervals are
closed.

C5955–C0024.tex 609 2015/11/4 12:33pm

610 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Remark 24.4 Any distance monotone graph G is connected; for if G is not connected, then
it contains an empty interval which is not closed.

Proposition 24.28 Every distance monotone graph G is bipartite.

Proof. If possible, let ⟨x1, x2, . . ., x2p+1, x1⟩ be a shortest odd cycle in G. Then d(x1, xp+1) =
p = d(x1, xp+2). So, xp+2 ̸∈ I(x1, xp+1). Further, for all u ∈ I(x1, xp+1), we have d(xp+2, u) ≤
p. Therefore, I(x1, xp+1) is not closed, a contradiction. �

Proposition 24.29 The hypercube Qn is distance monotone.

Proof. Let I(X, Y) be an interval in Qn. If d(X, Y) = n, then clearly I(X, Y)(= V (Qn)) is
closed. Next assume that d(X, Y) < n. By Theorem 24.19, H := [I(X, Y)] ∼= Qd where d =
d(X, Y). W.l.o.g, let V (H) = {X ∈ V (Qn) : xj = 0, d + 1 ≤ j ≤ n}. Let Z ∈ V (Qn) \ V (H).
Then zj = 1 for some j, d + 1 ≤ j ≤ n. Now Z ′ = (z1z2 . . . zd00 . . . 0) ∈ V (H) and further,
d(Z, Z ′) > d. �

Definition 24.18 A connected graph G is said to be interval monotone if each interval in
G is convex.

Proposition 24.30 Qn is interval monotone.

Proof. Follows by Proposition 24.25. �

Proposition 24.31 An interval monotone graph G does not contain K2,3 as an induced
subgraph.

Proof. If possible, let K2,3 ⊆ G and let [{a, b}, {x, y, z}] be the bipartition of K2,3. Then I(x, y)
is not convex: for a, b ∈ I(x, y), z ̸∈ I(x, y) whereas z ∈ I(a, b) and so I(a, b) ̸⊆ I(x, y). �

Theorem 24.12 [19] A connected graph G with minimum degree δ(G) = n ≥ 3 is a hyper-
cube if and only if

1. G is distance monotone, and

2. G is interval monotone.

Proof. =⇒: Follows by Propositions 24.29 and 24.30.

⇐=: Claim 1: For any four vertices x, a, b, c such that a, b, c are neighbors of x, there exists
y ∈ V (G) such that y is adjacent to both a and b but not to c.

Since G is bipartite (being a distance monotone graph), d(a, b) = d(a, c) = d(b, c) = 2.
Therefore, c ̸∈ IG(a, b). Since G is distance monotone, I(a, b) is closed. So, there exists
y ∈ I(a, b) such that d(c, y) > d(a, b) = 2. Now, since y ∈ I(a, b) and d(a, b) = 2, we deduce
that (a, y), (b, y) ∈ E(G). Further, d(c, y) > 2 and so (c, y) ̸∈ E(G). The claim is proved.

Using this claim, we next show that for any two vertices u, v, the interval I(u, v) induces a
(0, 2)-graph, so that G is a hypercube by Theorem 24.7. Let G′ denote the subgraph induced
by I(u, v).

If d(u, v; G′) = 1, then G′ ∼= K2 with V (G′) = {u, v} and so it is a (0, 2)-graph. Next,
let d(u, v) ≥ 2. Let a, b ∈ V (G′) have a common neighborx in G′. Since degG(x) ≥ 3, there

C5955–C0024.tex 610 2015/11/4 12:33pm

Introduction to Interconnection Networks � 611

exists c ∈ V (G) \ {a, b} adjacent to x. Then, by Claim 1, there exists y ∈ V (G) such that
(a, y), (b, y) ∈ E(G) and (c, y) ̸∈ E(G). Therefore y ∈ IG(a, b). Since G′ is convex (G being
interval monotone), IG(a, b) ⊆ V (G′). So, y ∈ V (G′). Therefore, x, y are common neighbors
of a, b in G′. These are the only common neighbors since K2,3 is forbidden in G and hence
in G′. That is, G′ is a (0, 2)-graph. �

Definition 24.19 A simple connected graph G is said to be interval distance monotone if
for any two vertices x, y in G, the interval I(x, y) induces a distance monotone graph.

Proposition 24.32 Qn is an interval distance monotone graph.

Proof. Follows by Propositions 24.19 and 24.29. �

Theorem 24.13 [20] A graph G with minimum degree δ(G) ≥ 3 is a hypercube if and
only if

1. G is distance monotone, and

2. G is interval distance monotone.

Proof. =⇒: Follows by Propositions 24.29 and 24.32.
⇐=: Our aim is to show that every interval in G is antipodal and then appeal to Theorem 24.7.
Let u, v ∈ V (G).

Claim 1 For any w ∈ I(u, v), there exists a w̃ ∈ I(u, v) such that d(w, w̃) = d(u, v).

Clearly, ũ = v and ṽ = u. So the claim holds if w ∈ {u, v}. Next, let w ̸∈ {u, v}; so d(u, v) ≥ 2.

Case 1 d(u, w) = 1. (If d(v, w) = 1, a similar proof holds.)

Let ⟨u, w, w1, . . ., v⟩ (it is possible that w1 = v) be a shortest (u, v)-path. Since δ(G) ≥ 3,
there exists a ∈ V (G) \ {u, w1} adjacent to w. Then as in Claim 1 of Theorem 24.12,
we can prove that there exists b ∈ V (G) adjacent to both u and w1 but not to a. Then
⟨u, b, w1, . . ., v⟩ is also a shortest (u, v)-path, hence b ∈ I(u, v). Clearly, w ̸∈ I(b, v); since
d(b, v) = d(u, v) − 1 = d(w, v). Since I(b, v) is closed ([I(u, v)] being distance monotone),
there exists w̃ ∈ I(b, v) such that d(w, w̃) > d(b, v) = d(u, v) − 1. Thus d(w, w̃) ≥ d(u, v).
Also, d(w, w̃) ≤ d(w, u) + d(u, b) + d(b, w̃) ≤ 1 + 1 + (d(u, v) − 2) = d(u, v).

Also, note that in this case, v, w̃ are adjacent.

Case 2 d(u, w) ≥ 2 and d(v, w) ≥ 2.

Let ⟨u, u1, . . ., w, . . ., v1, v⟩ be a shortest (u, v)-path. By Case 1, there exists ṽ1 ∈ I(u, v)
adjacent to u such that d(v1, ṽ1) = d(u, v). Clearly, ṽ1 ̸∈ I(u, w) and w ̸∈ I(v, ṽ1). Since
I(v, ṽ1) is closed, there exists a w̃ ∈ I(v, ṽ1) such that d(w, w̃) > d(v, ṽ1) = d(u, v) − 1.

The proof of Claim 1 is now complete. Next, let H = [IG(u, v)].

Claim 2 IH(w, w̃) = V (H), for any w, w̃ ∈ V (H) such that d(w, w̃; H) = d(u, v; H) =
diam(H).

Clearly, IH(w, w̃) ⊆ V (H). If possible, let y ∈ V (H) \ IH(w, w̃). Then there exists y′ ∈
IH(w, w̃) such that d(y, y′; H) > d(w, w̃; H) = diam(H), a contradiction.

By Claims 1 and 2, it follows that H is antipodal. We have thus proved that every interval
in G is antipodal. Therefore by Theorem 24.7, G is a hypercube. �

C5955–C0024.tex 611 2015/11/4 12:33pm

612 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 24.14 [20] A graph G with minimum degree δ(G) ≥ 3 is a hypercube if and
only if

1. G is bipartite, and

2. G is interval distance monotone.

Proof. =⇒: Follows by Propositions 24.2 and 24.32.
⇐=: Just notice that in the proof of the above theorem we have used the hypothesis that G
is distance monotone in only one instance that too to deduce that G is bipartite. �

24.2.3.8 Characterizations through Edge Colorings

Unlike the earlier characterizations, this does not use the distance concept and absence of
K2,3. It depends on edge colorings. Recall that, in Qn if we color an ith dimensional edge
with color i, we obtain a proper n-edge-coloring. Buratti [21] identified few more properties
of this edge-coloring to obtain the following interesting characterization. We omit its proof.

Theorem 24.15 [21] A graph G is a hypercube if and only if

1. G is connected,

2. G is regular (with degree of regularity, say n),

3. G admits a proper n-edge-coloring satisfying the following conditions:

C1: any two-colored path ⟨u, v, x, y, z⟩ of length four is closed; that is, it induces a
cycle ⟨u, v, x, y, z = u⟩ of length four, and

C2: any path whose edges have pairwise distinct colors is open. �

24.3 HYPERCUBE-LIKE INTERCONNECTION NETWORKS

In this section, we first present the definitions and properties of the variants and general-
izations of the hypercube. Following this we summarize the topological properties of these
networks in Table 24.2. A large number of interconnection networks can be defined using
Cartesian product of elementary graphs, like paths, cycles, complete graphs and complete
k-ary trees The Cartesian product of paths is called a mesh, the Cartesian product of cycles
is called a torus. See Figure 24.7 for a mesh and a torus.

Yet another general method of constructing interconnection networks is through Cayley
graphs. In fact hypercubes and several variations of hypercubes are Cayley graphs widely
studied in algebra and appearing in the theory of manifolds. They have several graph theo-
retical properties which are ideal for the design of interconnection networks. These include
large number of vertices, small vertex-regularity,vertex-symmetry and small diameter. They
also admit simple routing techniques. We end this section by defining some interconnection
networks which have fixed vertex degree and/or Cayley graphs.

24.3.1 Twisted Cube TQn

The twisted cubes are constructed by applying an operation called twist to some of the edges
of the binary hypercubes [22]. The twist is an operation defined on two edges (u, v) and (x, y)
which have no nodes in common. The operation consists of adding two new edges (u, x) and
(v, y) and deleting the edges (u, v) and (x, y).

C5955–C0024.tex 612 2015/11/4 12:33pm

Introduction to Interconnection Networks � 613

TABLE 24.2 Topological Properties of the Various Interconnection Networks

Network |V | |E| deg and κ Diameter Symmetry Cayley

TQn 2n n2n−1 n

⌈
n + 1

2

⌉
No No

QT
n , QC

n 2n n2n−1 n

⌈
n + 1

2

⌉
No No

TnQ 2n n2n−1 n n − 1 No No

CQn 2n n2n−1 n

⌈
n + 1

2

⌉
No No

GQn 2n n2n−1 n

⌈2n

3

⌉
No No

Qn,k 2n (n + 1)2n−1 n + 1
⌈

n

2

⌉
Yes Yes

0MQn 2n n2n−1 n

⌈
n + 2

2

⌉
No No

1MQn 2n n2n−1 n

⌈
n + 1

2

⌉
No No

ShQn 2n n2n−1 n ≃ n
4 Yes No

Γn fn
2(n − 1)fn − nfn−1

5

∆ = n − 2,⌊
n
8
⌋

≤ κ
≤
⌊

n−2
3
⌋ n − 2 No No

Qk
n

(k ≥ 3) kn nkn 2n n

⌊
k

2

⌋
Yes Yes

AQn 2n (2n − 1)2n−1 2n − 1
⌈

n

2

⌉
Yes Yes

H(b, n) bn 1
2(b − 1)nbn (b − 1)n n Yes Yes

DG(d, k) dk dk+1 2d k Yes No

CCCn n2n 3n2n−1 3 2n +
⌊

n
2
⌋

− 2
(n ≥ 4) Yes Yes

UBFn (n + 1)2n n2n+1 ∆ = 4,
κ = 2 2n No No

Gn
∼=

WBFn
n2n n2n+1 4

⌊3n

2

⌋
Yes Yes

Gk,n n(k − 1)n nk(k − 1)n

2
k

⌊5n
2
⌋

− 2
(k ≥ 6, n ≥ 4) Yes Yes

S(n) n! n!(n − 1)
2

n − 1
⌊3(n − 1)

2

⌋
Yes Yes

Note: |V |, number of vertices; |E|, number of edges; deg, degree of regularity (if regular); ∆,
maximum degree (if not regular); κ, vertex connectivity; symmetry, whether vertex symmetric
or not; Cayley, whether a Cayley graph or not; fn, the nth Fibonacci number.

Definition 24.20 (Recursive) Define TQ1 = Q1 and TQ2 = Q2. For n ≥ 3, TQn

is obtained by taking four copies of the twisted cube TQn−1, denoted by TQ00
n−2, TQ01

n−2,
TQ10

n−2, and TQ11
n−2 and adding edges between these copies as follows: For α,β ∈ {0, 1}, let

C5955–C0024.tex 613 2015/11/4 12:33pm

614 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(a) P3 × P4 C3 × C4(b)

Figure 24.7 (a) Mesh and (b) torus.

TQ4

0001

0000 0010

0011

0100

0101

0110

0111

1001

1000 1010

1011

1111

11101100

1101
001

000 010

011

100

101

110

111

TQ3
(a) (b)

Figure 24.8 Twisted cubes of dimension (a) three and (b) four.

V (TQαβ
n−2) = {αβx3x4 . . . xn : xi ∈ {0, 1}, 3 ≤ i ≤ n}. A vertex αβx3x4 . . . xn is connected to

αβx3x4 . . . xn, and αβx3x4 . . . xn if
∑n

i=3
xi = 0 (mod 2) and is connected to αβx3x4 . . . xn,

and αβx3x4 . . . xn if
∑n

i=3
xi = 1 (mod 2).

Twisted cubes of dimension 3 and 4 are given in Figure 24.8.
The following variants of the hypercube are some variations of the twisted cubes:

• X hypercube (twisted hypercube) QT
n , QC

n defined by Sung [23].

• Twisted n-cube TnQ defined by Esfahanian et al. [24].

• Multiply-twisted cube (crossed cube) CQn defined by Efe [25,26].

• Generalized twisted cube GQn defined by Chedid and Chedid [27].

24.3.2 k-Skip Enhanced Cube Qn,k

An efficient and widely used variant of the hypercube is the k-skip-enhanced cube,
wherein an edge is added between any two vertices X = x1x2 . . . xk xk+1 . . . xn and Y =
y1 y2 . . . yk yk+1 . . . yn provided xi = yi for 1 ≤ i ≤ k and xi = yi for k + 1 ≤ i ≤ n [28].
This process reduces the diameter of the network by a factor of 2. When k = 1, the 1-skip
enhanced cube was independently defined by El-Amawy and Latifi [29] and they called as
folded hypercube FQn.

C5955–C0024.tex 614 2015/11/4 12:33pm

Introduction to Interconnection Networks � 615

001

000 010

011

100

101

110

111

001

000
010

011

100

101

110

111

Q3,2Q3,1
(a) (b)

Figure 24.9 (a) 1- and (b) 2-skip-enhanced cubes of dimension three.

Definition 24.21 For 1 ≤ k ≤ n − 1, let Ek = {(x1x2 . . . xn, x1x2 . . . xk−1xkxk+1 . . . xn) :
xi ∈ {0, 1}, 1 ≤ i ≤ n}. Then the n-dimensional k-skip enhanced cube Qn,k, has the edge set
E(Qn,k) = E(Qn) ∪ Ek.

Enhanced cubes of dimension 3 for k = 1 and k = 2 are given in Figure 24.9.

24.3.3 Möbius Cube 0MQn, 1MQn

There are two types of Möbius cubes called the 0-Möbius cube and 1-Möbius cube [30].

Definition 24.22 Two vertices X = x1x2 . . . xn and Y = y1y2 . . . yn are joined in
0MQn iff y1y2 . . . yn = x1x2 . . . xn or there exists an integer i, 2 ≤ i ≤ n such that
y1 . . . yi−1yiyi+1 . . . yn = x1 . . . xi−1xixi+1 . . . xn. Similarly, two vertices X = x1x2 . . . xn and
Y = y1y2 . . . yn are joined in 1MQn iff y1y2 . . . yn = x1x2 . . . xn or there exists an integer i,
2 ≤ i ≤ n such that y1 . . . yi−1yiyi+1 . . . yn = x1 . . . xi−1xixi+1 . . . xn.

Mobius Cubes of dimension 4 are shown in Figure 24.10.

24.3.4 Shuffle Cube ShQn

Let X = x1x2 . . . xn where xi ∈ {0, 1}, 1 ≤ i ≤ n. Let pj(X) denote the j-prefix of
X, that is, pj(X) = x1x2 . . . xj , and si(X) denote the i-suffix of X, that is, si(X) =
xn−i+1xn−i+2 . . . xn. Let V00 = {0000, 0001, 0010, 0011}, V01 = {0100, 0101, 0110, 0111},
V10 = {1000, 1001, 1010, 1011} and V11 = {1100, 1101, 1110, 1111} [31].

Definition 24.23 (Recursive) Define ShQ1 = Q1, ShQ2 = Q2, ShQ3 = Q3, and
ShQ4 = Q4. For n ≥ 5, ShQn is obtained by taking sixteen copies of ShQn−4, say ShQi1i2i3i4

n−4
with ij ∈ {0, 1} for 1 ≤ j ≤ 4, and adding edges between these copies as follows: Let
V (ShQi1i2i3i4

n−4) = {i1i2i3i4x5x6 . . . xn : xi ∈ {0, 1}, 5 ≤ i ≤ n}, that is, for ij ∈ {0, 1},
1 ≤ j ≤ 4, p4(X) = i1i2i3i4 for all vertices X in ShQi1i2i3i4

n−4 . Vertices X = x1x2 . . . xn

and Y = y1y2 . . . yn in different subcubes of dimension n − 4 are adjacent in ShQn iff
(1) sn−4(X) = sn−4(Y), and (2) p4(X) ⊕2 p4(Y) ∈ Vs2(X), that is, (1)′ x5x6 . . . xn =
y5y6 . . . yn, and (2)′ (x1x2x3x4) ⊕2 (y1y2y3y4) ∈ Vxn−1xn.

An illustration of Shuffle cube of dimension 6 is shown in Figure 24.11.

24.3.5 Fibonacci Cube Γn

The Fibonacci cubes can have arbitrary number of vertices as against the other variations
of the hypercube which have 2n vertices. Further, these cubes are not regular [32]. Fibonacci
numbers are well studied in number theory. The Fibonacci numbers are recursively defined
by f0 = 0, f1 = 1, and, for n ≥ 2, fn = fn−1 + fn−2. It is known that any natural number
can be uniquely represented as a sum of Fibonacci numbers as follows: Let n ≥ 3. Let i be

C5955–C0024.tex 615 2015/11/4 12:33pm

616 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

0001

0000 0010

0011

0100

0101

0110

0111

1001

1000 1010

1011

1100

1101

1110

1111

0001

0000 0010

0011

0100

0101

0110

0111

1001

1000 1010

1011

1100

1101

1110

1111

0MQ4(a)

1MQ4(b)

Figure 24.10 (a,b) Möbius cubes of dimension four.

an integer and 0 ≤ i ≤ fn − 1. Then i =
∑n−2

j=2
bjfj , where bj ∈ {0, 1} for 2 ≤ j ≤ n − 1. The

sequence (bn−1, . . ., b3, b2)F is called the order-n Fibonacci code (or simply Fibonacci code)
of i. For example, the numbers from 0 to 4 = f5 − 1 are expressed in the Fibonacci code of
order-5 as 0 = (000)F , 1 = (001)F , 2 = (010)F , 3 = (100)F , 4 = (101)F .

Definition 24.24 Let N denote an integer, where 1 ≤ N ≤ fn for some n. Let IF and JF

denote the Fibonacci codes of i and j, respectively, where 0 ≤ i, j ≤ N − 1. The Fibonacci
cube of size N is a graph with vertex set {0, 1, . . . N − 1} with vertices i and j adjacent iff IF

and JF differ in exactly one position.

Fibonacci cubes of dimensions one to five are shown in Figure 24.12.

Definition 24.25 The Fibonacci cube Γn of order n is a Fibonacci cube with fn nodes.

We now give a method for constructing Fibonacci cube Γn using binary strings.

Definition 24.26 For n ≥ 3, the Fibonacci cube Γn of order n is a simple graph with fn

nodes. The nodes are labeled with binary strings of length n − 2 with no consecutive 1’s. Two
nodes of Γn are adjacent if and only if their labels differ in exactly one position.

24.3.6 k-Ary n-Cube Qk
n

A popular generalization of the hypercube is the k-ary n-cube Qk
n because many other

networks-like rings, meshes, tori, hypercubes, and Omega networks are all isomorphic to
a k-ary n-cube [33]. The vertices of Qk

n are labeled using n-tuples with components from the
set {0, 1, . . ., k−1}. There exists an edge between two vertices of Qk

n if and only if their labels
differ by 1 mod k in exactly one position. Consequently, a 2-ary n-cube/binary n-cube is Qn,
k-ary 1-cube is a ring on k vertices and a k-ary 2-cube is a k × k torus. A formal definition
of Qk

n is as follows.

Definition 24.27 The vertex set of Qk
n is {x1x2 . . . xn : xi ∈ {0, 1, . . ., k − 1}, 1 ≤ i ≤

n} and the edge set is {(x1x2 . . . xn, y1y2 . . . yn) : xi ≡ (yi − 1) mod k or xi ≡ (yi + 1)
mod k, for some i, and xj = yj , for all j ̸= i}.

C5955–C0024.tex 616 2015/11/4 12:33pm

Introduction to Interconnection Networks � 617

0000 0100 1000 1100

0001 0101 1001 1101

0010 0110 1010 1110

0011 0111 1011 1111

00

01

10

11

ShQ6

Figure 24.11 Shuffle cube of dimension six. For clarity, the edges incident with vertices in
ShQ0000

2 alone are drawn.

0 0 0 2

2 3 4

(a) Γ1 (b) Γ2 (c) Γ3 (d) Γ4

1 0 1

0 1

(e) Γ5

Figure 24.12 Fibonacci cubes of order (a) one, (b) two, (c) three, (d) four, and (e) five.

The k-ary n-cube Qk
n has kn vertices each with degree n for k = 2 and 2n for k ≥ 3.

So, it has nkn−1 edges of k = 2 and nkn edges for k ≥ 3. Its connectivity is n or 2n
according as k = 2 or k ≥ 3. It is a Cayley graph and so is vertex-symmetric. It is also
edge-symmetric.

24.3.7 Augmented Cube AQn

One of the recently proposed variant of the hypercube is the Augmented cube [34].

Definition 24.28 Augmented cube (AQn) of dimension n is defined recursively as follows:
AQ1 = K2 and AQn is obtained from two copies of AQn−1, denoted by AQ0

n−1 and AQ1
n−1

and adding 2 × 2n−1 edges as follows. Let V (AQ0
n−1) = {0un−1 . . . u2u1 : ui = 0 or 1} and

V (AQ1
n−1) = {1un−1 . . . u2u1 : ui = 0 or 1}. A vertex U = 0un−1 . . . u2u1 of AQ0

n−1 is joined
to a vertex V = 1vn−1 . . . v2v1 in AQ1

n−1 if and only if either (i) ui = vi, for all i, 1 ≤ i ≤ n−1
or (ii) ui = vi, for all i, 1 ≤ i ≤ n − 1.

C5955–C0024.tex 617 2015/11/4 12:33pm

618 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

0

1

00

01

10

11

000

001

010

011

100

101

110

111

AQ1(a) AQ2(b) AQ3(c)

Figure 24.13 Augmented cubes of dimension (a) one, (b) two, and (c) three.

00 10 20

01 2111

02 2212

00 10 20 30

01

02

03

11

12

13

21 31

22

23

32

33

H(3,2)(a) H(4,2)(b)

Figure 24.14 Hamming graphs of dimensions (a) three and (b) four with base two.

Augmented cubes of dimensions 1, 2, and 3 are shown in Figure 24.13.
In a manner analogous to the extension of Qn to AQn, there exists an extension of Qk

n to
the augmented k-ary n-cube [35].

24.3.8 Hamming Graph/Generalized Base-b Cube H(b,n)

The Hamming graphs or generalized base-b cubes were introduced in [36].

Definition 24.29 For any two positive integers b and n, the Hamming graph H(b,n) is
the Cartesian product of n complete graphs each with b vertices. So, H(b, n) has vertex set
{X : X = x1x2 · · · xn, where xi ∈ {0, 1, . . ., b − 1}, for 1 ≤ i ≤ n}, and edge set {(X, Y) :
X and Y differ in exactly one position}.

Hamming graphs are also Cayley graphs and hence they possess various symmetric properties
such as vertex symmetry, edge symmetry, distance symmetry, and distance regularity. Figure
24.14 shows Hamming graphs H(3,2) and H(4,2). In a recent work, Huang and Fang [37] have
shown that Hamming graphs are Hamiltonian connected and pancyclic, for b ≥ 3.

We now proceed to defining some more interconnection networks other than the general-
ization and variants of hypercubes which have fixed vertex degree and/or Cayley graphs.

24.3.9 de Bruijn Graph DG(d,k)

Definition 24.30 The de Bruijn network DG(d, k) is an undirected graph with V (DG(d, k))
= {X = ak−1ak−2 · · · a1a0 : ai ∈ {0, 1, . . ., d−1}, 0 ≤ i ≤ k−1} and E(DG(d, k)) = {(X, Y) :
X = 2Y + j (mod N) or Y = 2X + j (mod N), where N = dk and for 0 ≤ j ≤ d − 1}.

DG(2, k) is called the binary de Bruijn multiprocessor network [38]. See Figure 24.15 for the
graph DG(2,3).

C5955–C0024.tex 618 2015/11/4 12:33pm

Introduction to Interconnection Networks � 619

000 010 101 111

001 011

100 110

Figure 24.15 Binary de Bruijn network of dimension three.

The de Bruijn network DG(d, k) has dk vertices and diameter k. It is a regular graph
with degree 2d and connectivity 2d.

24.3.10 Cube-Connected Cycles Graph CCCn

An interconnection network which was proposed combining the principles of both paral-
lelism and pipelining are the cube-connected cycles [39]. Here the underlying topology is the
hypercube of dimension n and every vertex of the Qn is replaced by a cycle on n vertices.

Definition 24.31 Let n ≥ 3. The cube-connected cycles CCCn of dimension n is obtained
from Qn by replacing its vertices by cycles of length n. So it has n2n vertices. It is constructed
as follows:

1. The vertex x1x2 . . . xn of Qn is replaced by the n vertices (1, x1x2 . . . xn), (2, x1x2 . . . xn),
· · · (n, x1x2 . . . xn).

2. For i = 1, 2, . . ., n, the vertex (i, x1x2 . . . xn) is joined with the three vertices ((i − 1)
mod n, x1x2 . . . xn), ((i + 1) mod n, x1x2 . . . xn) and (i, x1x2 . . . xi−1xixi+1 . . . xn).

The cube-connected cycles graph CCCn of dimension n is a vertex-symmetric regular graph
of degree 3. It contains n2n vertices and 3n2n−1 edges. Its diameter is 6 if n = 3, and it is
2n + ⌊n

2 ⌋ − 2, if n ≥ 4. The cube-connected cycle, CCC3, is shown in Figure 24.16.
In a manner analogous to the construction of CCCn from Qn, one can construct a three

regular graph from AQn.

24.3.11 Butterfly and Wrapped Butterfly Graph UBFn, WBFn

Definition 24.32 Let n ≥ 3. The butterfly graph UBFn of dimension n is the graph with
vertex set {(h, x1x2 . . . xn) : 0 ≤ h ≤ n, and xi ∈ {0, 1}}. Vertices (i, x1x2 . . . xn) and
(j, y1y2 . . . yn) are adjacent if and only if j = i + 1 and either y1y2 . . . yn = x1x2 . . . xn

or y1y2 . . . yn = x1x2 . . . xjxj+1 . . . xn.

It has (n + 1)2n vertices and n2n+1 edges. Vertices labeled (0, x1x2 . . . xn) or (n, x1x2 . . . xn)
have degree 2 and the remaining vertices have degree 4. Its diameter is 2n. Its vertex con-
nectivity is 2 and edge connectivity is 2.

A wrapped butterfly graph WBFn of dimension n is obtained from UBFn by merging the
vertex labeled (0, x1x2 . . . xn) with the vertex labeled (n, x1x2 . . . xn). Consequently, WBFn

is a graph on n2n vertices, n2n+1 edges and each vertex has degree 4. Its diameter is n+⌊n/2⌋.
Its vertex connectivity as well as edge connectivity is 4. It is a Cayley graph [40] and hence
vertex symmetric. See Figure 24.17 for UBF3 and WBF3.

C5955–C0024.tex 619 2015/11/4 12:33pm

620 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

2

1

000

1 2

001

2

3

1

011

2

3

1

010

1 1

11

3

2

3

2

2

3

2

3

100 101

111110

3 3

Figure 24.16 Cube-connected cycle of dimension three.

000 001 010 011 100 101 110 111
0

1

2

3

000 001 010 011 100 101 110 111
0

1

2

(a) (b)U BF3 W BF3

Figure 24.17 (a) Butterfly and (b) wrapped butterfly graphs of dimension three.

24.3.12 Degree Four Cayley Graph Gn

A new class of interconnection networks was proposed as an alternative to the de Bruijn
graphs for VLSI implementation in terms of regularity [41].

Definition 24.33 The degree four Cayley graph Gn is defined as follows: Each vertex is
represented by a circular permutation of n symbols in lexicographic order where each symbol
may be present in either uncomplemented or complemented form. Let tk, 1 ≤ k ≤ n denote
the kth symbol in the set of n symbols. Let t∗

k denote that is, V (Gn) = {t∗
1t∗

2 . . . t∗
n : t∗

k ∈
{tk, t̄k}, 1 ≤ k ≤ n}. The edges of G, are defined by the following four generators in the
graph:

• g(a1a2 · · · an) = a2a3 · · · ana1

• f(a1a2 · · · an) = a2a3 · · · anā1

• g−1(a1a2 · · · an) = ana1 · · · an−1

• f−1(a1a2 · · · an) = āna1 · · · an−1

C5955–C0024.tex 620 2015/11/4 12:33pm

Introduction to Interconnection Networks � 621

cāb̄

b̄cā

bcā

cāb

ābc

abc

cab

bca

c̄ab

abc̄

bcā

c̄ab¯ ¯

b̄cā̄

c̄ab̄

abc¯ ¯

¯abc

b̄ca

ābc̄

¯cab

c̄ab¯
bca¯¯

ābc¯

ābc¯¯¯ ¯bca

Figure 24.18 Example of G3 on 24 nodes.

The degree four Cayley graph G3, is shown in Figure 24.18.
Gn is a symmetric regular graph with degree 4 on n2n vertices, n2n+1 edges. Its connectivity
is 4 and diameter is ⌊3n/2⌋. It has a higher connectivity than cube-connected cycles. Further
the constant degree of these networks were considered practically important when compared
to the logarithmic degree of hypercubes. Later in 1999, it was showed that this class of graph
is isomorphic to the wrapped butterfly by Wei et al. [40].

24.3.13 k-Valent Cayley Graph Gk,n

Definition 24.34 [42] A k-valent Cayley graph Gk,n is an undirected graph with N =
n(k−1)n vertices for any integers n ≥ 2 and k ≥ 3. Each node v of Gk,n has the form
s0s1 . . . sm−1s̃msm+1 . . . sn−1 corresponding to a string of n symbols selected from {0, 1, . . .,
k − 2} such that exactly one symbol s̃m is in marked form and the others are in unmarked
form. We sometimes use vm for representing a node v with the marked symbol on position
m. Let s∗

i = si or s̃i. Each edge is of the type (v, δ(v)), where δ ∈ {f, f−1, g1, g2, . . ., gk−2} is
a generator defined as follows:

• f(um) = v(m−1) (mod n), where um = s∗
0s∗

1 . . . s∗
n−1, v(m−1) (mod n) = s∗

1s∗
2 . . . s∗

n−1α
∗, and

α = (s0 + 1) (mod k − 1).

• f−1(um) = v(m+1) (mod n), where um = s∗
0s∗

1 . . . s∗
n−1, v(m+1) (mod n) = β∗s∗

1s∗
2 . . . s∗

n−2,
and β = (sn−1 − 1) (mod k − 1).

• gi(um) = vm, where um = s∗
0s∗

1 . . . s∗
n−1, vm = s∗

0s∗
1 . . . s∗

n−2γ
∗, and γ = (sn−1 + i)

(mod k − 1) for 1 ≤ i ≤ k − 2.

C5955–C0024.tex 621 2015/11/4 12:33pm

622 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

10̃

01̃ 00̃

11̃

0̃0 0̃1

1̃1 1̃0

Figure 24.19 Three valent Cayley graph on two symbols.

e
1324

b

f
2314 3124

c

g 2413 3214 2134 3142 d

1423 4213 1234 4132 1342

4123 1243 4231 1432 4312

b 2143 3241 2431 3412 e

c
2341 3421

f

d
4321

g

a

a

Figure 24.20 Star graph of dimension four.

The graph Gk,n is a symmetric regular graph with degree k on n(k − 1)n vertices and
1/2nk(k−1)n edges. Its vertex connectivity is k. The diameter is at most max{2n, ⌊5n/2⌋−2}.
Moreover, when k ≥ 6 and n ≥ 4 the diameter of Gk,n is ⌊5n/2 − 2⌋ and for k ≥ 6 and
n = 2, 3 the diameter of Gk,n is 2n. For k = 3, it can be easily verified that Gk,n is isomorphic
to the trivalent Cayley graph of Vadapalli and Srimani [43]. See Figure 24.19 for the graph
G3,2.

24.3.14 Star Graph S(n)

Let n ≥ 2. A permutation π = a1a2 . . . an of an n-set 1, 2, . . . n is called a transposition if
for some pair (i, j), i ̸= j, π(i) = j, π(j) = i, and π(k) = k, for every other k. It is denoted
by (i, j).

C5955–C0024.tex 622 2015/11/4 12:33pm

Introduction to Interconnection Networks � 623

Definition 24.35 [44] The star graph of dimension n, S(n) has n! vertices, each labeled
by a permutation a1a2 . . . an. The vertex a1a2 . . . an is joined to n − 1 transpositions
(a1, a2), (a1, a3), . . ., (a1, an).

The star graph S(n) of dimension n has n!(n − 1)/2 edges. Each vertex has degree n − 1. Its
diameter is ⌊3(n − 1)/2⌋. Its vertex connectivity is n − 1 and edge connectivity is n − 1. It
is a Cayley graph. The star graph S(4) is shown in Figure 24.20.

Akers and Krishnamurthy [44] also constructed bubble sort graphs and pancake graphs
as Cayley graphs on the set of permutations of an n-set. A remarkable feature of these
networks is that they have a large number (n!) of vertices but small degree (n − 1) of
regularity. A distinguishing feature of these networks is their diameter. The bubble sort graph
of dimension n has diameter n(n − 1)/2. The diameter of the pancake graph of dimension n
is O(n) and the exact value for large values of n is still unknown.

Some topologies like the alternating group graphs [45], split-stars [46] share some features
with the star graph. For instance, each of these graphs have a vertex set of size O(n!), vertex
degree O(n), and diameter O(n). A drawback of these topologies is the big difference between
the number of vertices of consecutive dimensions. The arrangement graphs [47], the (n, k)-
star [48] were some of the topologies that were introduced to circumvent the above mentioned
short comings. Any interested reader may refer to [49] to know about developments with
respect to these networks.

References

[1] J. Duato, S. Yalamanchili, and L.M. Ni. Interconnection Networks: An Engineering
Approach. Morgan Kaufmann, San Francisco, CA, 1st edition, 2002.

[2] M.J. Quinn. Parallel Computing—Theory and Practice. Tata McGraw-Hill, New Delhi,
2nd edition, 1994.

[3] J.P. Hayes. Computer Architecture and Organisation. McGraw-Hill, Singapore, 1988.

[4] L.-H. Hsu and C.K. Lin. Graph Theory & Interconnection Networks. Taylor & Francis
Group, New York, 2008.

[5] K. Hwang and F.A. Briggs. Computer Architecture and Parallel Processing. McGraw-
Hill, New York, 1984.

[6] F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes. Morgan Kauffmann, San Mateo, CA, 1992.

[7] J.-M. Xu. Topological Structure and Analysis of Interconnection Networks. Kluwer Aca-
demic Publishers, Dordrecht/Boston/London, 2001.

[8] J.-M. Xu. Theory and Application of Graphs, Network Theory and Applications Series,
Volume 10, Springer US, Springer Science + Business Media, New York, 2003.

[9] W. Imrich and S. Klavžar. Product Graphs: Structure and Recognition. Wiley-
Interscience Series in Discrete Mathematics and Optimization, USA, 2000.

[10] Y. Saad and M.H. Schultz. Topological properties of hypercubes. IEEE Transactions on
Computers, 37(7) (1988), 867–872.

[11] S. Foldes. A characterization of hypercubes. Discrete Mathematics, 17(2) (1977),
155–159.

C5955–C0024.tex 623 2015/11/4 12:33pm

624 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[12] J.-M. Laborde and S.P. Rao Hebbare. Another characterization of hypercubes. Discrete
Mathematics, 39 (1982), 161–166.

[13] A. Berrachedi and M. Mollard. Median graphs and hypercubes: Some new characteriza-
tions. Discrete Mathematics, 208–209 (1999), 71–75.

[14] H.M. Mulder. n-cubes and median graphs. Journal of Graph Theory, 4 (1980), 107–110.

[15] H.-J. Bandelt and H.M. Mulder. Infinite median graphs, (0, 2)-graphs and hypercubes.
Journal of Graph Theory, 7 (1983), 487–497.

[16] W. Wenzel. A sufficient condition for a bipartite graph to be a cube. Discrete Mathe-
matics, 259 (2002), 383–386.

[17] H.M. Mulder. The structure of median graphs. Discrete Mathematics, 24(2) (1978),
197–204.

[18] H.M. Mulder. (0, λ)-graphs and n-cubes. Discrete Mathematics, 28(2) (1979), 179–188.

[19] G. Burosch, I. Havel, and J.-M. Laborde. Distance monotone graphs and a new charac-
terization of hypercubes. Discrete Mathematics, 110(1–3) (1992), 9–16.

[20] M. Aı̈der and M. Aouchiche. Distance monotonicity and a new characterization of
hypercubes. Discrete Mathematics, 245 (2002), 55–62.

[21] M. Buratti. Edge-colourings characterizing a class of Cayley graphs and a new charac-
terization of hypercubes. Discrete Mathematics, 161(1–3) (1996), 291–295.

[22] P.A.J. Hilbers, M.R.J. Koopman, and J.L.A. van de Snepscheut. The twisted cube.
In Proceedings of the Parallel Architectures and Languages Europe, Volume I: Parallel
Architectures, pages 152–159. Springer-Verlag, 1987.

[23] Y.Y. Sung. X-hypercube: A better interconnection network. Proceedings of the 26th
Annual Southeast Regional ACM Conference, 1988.

[24] A.-H. Esfahanian, L.M. Ni, and B.E. Sagan. The twisted n-cube with application to
multiprocessing. IEEE Transactions on Computers, 40(1) (1991), 88–93.

[25] K. Efe. A variation of the hypercube with lower diameter. IEEE Transactions on Com-
puters, 40(1) (1991), 1312–1316.

[26] K. Efe. The crossed cube architecture for parallel computation. IEEE Transactions on
Parallel and Distributed Systems, 3(5) (1992), 513–524.

[27] F.B. Chedid and R.B. Chedid. A new variation on hypercubes with smaller diameter.
Information Processing Letters, 46(6) (1993), 275–280.

[28] N.-F. Tzeng and S. Wei. Enhanced hypercubes. IEEE Transactions on Computers, 40(3)
(1991), 284–294.

[29] A. El-Amawy and S. Latifi. Properties and performance of folded hypercubes. IEEE
Transactions on Parallel and Distributed Systems, 2(1) (1991), 31–42.

[30] P. Cull and S.M. Larson. The mobius cubes. IEEE Transactions on Computers, 44(5)
(1995), 647–659.

C5955–C0024.tex 624 2015/11/4 12:33pm

Introduction to Interconnection Networks � 625

[31] T.-K. Li, J.J.M. Tan, L.-H. Hsu, and T.-Y. Sung. The shuffle-cubes and their general-
ization. Information Processing Letters, 77(1) (2001), 35–41.

[32] W.J. Hsu. Fibonacci cubes-a new interconnection technology. IEEE Transactions on
Parallel and Distributed Systems, 4(1) (1993), 3–12.

[33] W.J. Dally. Performance analysis of k-ary n-cube interconnection networks. IEEE Trans-
actions on Computers, 39(6) (1990), 775–785.

[34] S.A. Choudum and V. Sunitha. Augmented cubes. Networks, 40 (2002), 71–84.

[35] Y. Xiang and I.A. Stewart. Augmented k-ary n-cubes. Information Sciences, 181(1)
(2011), 239–256.

[36] S. Lakshmivarahan and S.K. Dhall. A new hierarchy of hypercube interconnection
schemes for parallel computers. Journal of Supercomputing, 2 (1988), 81–108.

[37] C.-H. Huang and J.-F. Fang. The pancyclicity and the Hamiltonian-connectivity of
the generalized base-b hypercube. Computers and Electrical Engineering, 34(4) (2008),
263–269.

[38] M.R. Samatham and D.K. Pradhan. A multiprocessor network suitable for single-
chip vlsi implementation. ACM SIGARCH Computer Architecture News, 12(3) (1984),
328–339.

[39] F.P. Preparata and J. Vuillemin. The cube-connected cycles: A versatile network for
parallel computation. Communications of the ACM, 24(5) (1981), 300–309.

[40] D.S.L. Wei, F.P. Muga, and K. Naik. Isomorphism of degree four Cayley graph and
wrapped butterfly and their optimal permutation routing algorithm. IEEE Transactions
on Parallel and Distributed Systems, 10(11) (1999), 1290–1298.

[41] P. Vadapalli and P.K. Srimani. A new family of Cayley graph interconnection networks of
constant degree four. IEEE Transactions on Parallel and Distributed Systems, 7 (1996),
26–32.

[42] S.-Y. Hsieh and T.-T. Hsiao. The k-valent graph: A new family of Cayley graphs for
interconnection networks. International Conference on Parallel Processing, 1 (2004),
206–213.

[43] P. Vadapalli and P.K. Srimani. Trivalent Cayley graphs for interconnection networks.
Information Processing Letters, 54 (1995), 329–335.

[44] S. Akers and B. Krishnamurthy. A group-theoretic model for symmetric interconnection
networks. IEEE Transactions on Computers, 38 (1989), 555–566.

[45] J.S. Jwo, S. Lakshmivarahan, and S.K. Dhall. A new class of interconnection networks
based on the alternating group. Networks, 23(4) (1993), 315–326.

[46] E. Cheng, M.J. Lipman, and H.A. Park. An attractive variation of the star graphs: split-
stars. Technical report, Oakland University, Rochester, MI, 1998. Technical Report no.
98-3.

C5955–C0024.tex 625 2015/11/4 12:33pm

626 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[47] K. Day and A. Tripathi. Arrangement graphs: A class of generalized star graphs. Infor-
mation Processing Letters, 42 (1992), 235–241.

[48] W.K. Chiang and R.J. Chen. The star graph: A generalized star graph. Information
Processing Letters, 56 (1995), 259–264.

[49] E. Cheng and M.J. Lipman. Basic structures of some interconnection networks. Elec-
tronic Notes in Discrete Mathematics, 11 (2002), 140–156.

C5955–C0024.tex 626 2015/11/4 12:33pm

C H A P T E R 25

Cayley Graphs
S. Lakshmivarahan

Lavanya Sivakumar

S. K. Dhall

CONTENTS

25.1 Groups . 627
25.1.1 Definitions and Examples . 628
25.1.2 Subgroup . 633
25.1.3 Homomorphism, Isomorphism, and Automorphism . 634
25.1.4 Operations on Groups . 634
25.1.5 Generators of a Group . 635

25.2 Cayley Graphs . 636
25.3 Symmetry in Cayley Graphs . 642

25.3.1 Graph Symmetry . 643
25.3.2 Symmetry and Cayley Graphs . 647

25.4 Consequences of Vertex Transitivity . 648
25.5 Conclusion . 649

Theory of Cayley graphs provides a mathematical basis for the design of simple,
undirected, uniform scalable families of interconnection networks that constitute the

backbone of distributed memory parallel architectures. In this chapter, we provide a com-
prehensive introduction to the properties of Cayley graphs that directly affect the design of
basic algorithms for performing various communication tasks such as point-to-point, broad-
cast, personalized communication, and gossip, to name a few.

Since the theory of Cayley graphs is deeply rooted in the theory of finite groups, in
Section 25.1 we provide a short introduction to this latter theory. Cayley graphs are defined
in Section 25.2 and their properties are developed in Section 25.3.

25.1 GROUPS

In this section, we provide an elementary discussion of the concept of the important algebraic
system called groups along with several properties of interest that are critical to the analysis
of Cayley graphs. For more details on the group theoretic concept, we refer the reader to [1–3].

627

628 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

25.1.1 Definitions and Examples

Let Γ be a set and ∗ : Γ×Γ → Γ be a binary operation called the product, defined on Γ. That
is, for a, b ∈ Γ, a ∗ b ∈ Γ. The pair (Γ, ∗) is called a group if the following three properties
hold:

G1: For a, b, c ∈ Γ, a ∗ b ∗ c = (a ∗ b) ∗ c = a ∗ (b ∗ c), that is, ∗ is associative.

G2: There exists a distinguished element e ∈ Γ such that a ∗ e = e ∗ a = a, for all a ∈ Γ.
This element e is called the unit element.

G3: For every a ∈ Γ, there exists a b ∈ Γ such that a ∗ b = b ∗ a = e. Such an element b is
called inverse of a and is often denoted by a−1, that is, a ∗ a−1 = a−1 ∗ a = e.

In addition, if a ∗ b = b ∗ a, for all a, b ∈ Γ, then it is called a commutative (or abelian) group,
otherwise it is a noncommutative (or nonabelian) group. The number |Γ| of elements in Γ is
called the order of the group. Thus, a group (Γ, ∗) is called a finite or infinite group when
|Γ| < ∞ or |Γ| = ∞.

The concept of group is all pervasive and it arises in various shapes and forms. Here are
a few examples of interest.

Example 25.1 (Integer additive groups) Let Z = {. . ., −2, −1, 0, 1, 2, . . .} be the set of
all integers and consider the usual integer addition operation +. Clearly, (Z, +) is an infinite,
commutative, additive group. In this group, 0 (the number zero) is the unit element and for
any integer a, the negative of a, denoted by −a, is the inverse of a.

The pair (Zm, +m) where Zm = {0, 1, 2, . . ., m−1} and +m denote the (mod m) addition
of integers in Zm is a finite, commutative, additive group. Here, 0 is the unit element.

Finite groups can be easily representated as a table. Examples of group tables for (Z2, +2)
and (Z3, +3) are given in Tables 25.1 and 25.2.

Example 25.2 (Integer multiplicative groups) Let R+ = {a > 0|a ∈ R} be the set
of all positive real numbers with the usual operation of the multiplication of real numbers
denoted by ×. Clearly, (R+, ×) is an infinite, commutative, multiplicative group. For this
group, the number one, denoted by 1, is the unit element and the reciprocal of a, denoted by
(1/a) = a−1 is the inverse of a.

Let p be a prime integer and (Zp, ×p) be such that Zp = {1, 2, . . ., p − 1} and ×p

denotes the product (mod p) of integers in Zp. This is an example of a finite, multiplicative,
commutative group. The group table for (Z5, ×5) is given in Table 25.3.

Example 25.3 (Matrix groups) Let GL(2) denote the set of 2×2 real nonsingular matri-
ces and × denote the usual matrix–matrix product operation. Then (GL(2), ×) is an example
of an infinite, noncommutative multiplicative group with the identity matrix, denoted by I,
as its unit element and A−1, the inverse of the matrix A in GL(2) is the inverse of A.

As another example, consider O(2) the set of all 2 × 2 orthogonal matrices given by

A =
[

cos θ sin θ

− sin θ cos θ

]
for 0 ≤ θ < 2π.

It can be verified that O(2) is an example of an infinite, commutative, multiplicative matrix
group. It is well known that the action of the matrix A on a vector X is to rotate it by an
angle θ in the anticlockwise direction while keeping its length constant.

Cayley Graphs � 629

TABLE 25.1 Group table for (Z2, +2). 0 is the unit element and
each element is its own inverse, (i.e.) 1 +2 1 ≡ 0(mod 2). This +2
operation is also called exclusive-or operation

+2 0 1
0 0 1
1 1 0

TABLE 25.2 Group table for (Z3, +3). 0 is the unit element and
1−1 = 2 and 2−1 = 1

+3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

TABLE 25.3 Group table for (Z5, ×5). 1 is the unit element and
2−1 = 3, 3−1 = 2, 4−1 = 4, and 1−1 = 1

×5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

TABLE 25.4 Group table for (B2, +). 00 is the unit element and
each element is its own inverse

+ 00 01 10 11

00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

Example 25.4 (Binary groups) Let Bn denote the set of all n bit binary strings. Clearly
|Bn| = 2n. Let X = XnXn−1 . . . X2X1 and Y = YnYn−1 . . . Y2Y1 be two elements of Bn. Let
Z = ZnZn−1 . . . Z2Z1 and define Z = X + Y where Zi = Xi +2 Yi, for 1 ≤ i ≤ n with +2
defined as in Example 25.1 is called the bit-wise (mod 2) addition or exclusive-or addition.
It can be verified that the string 0n = 00 . . . 0︸ ︷︷ ︸

n times
is the unit element and each element is its

own inverse. An example of (B2, +) is given in Table 25.4.

An important and a useful concept is the notion of the Hamming weight of a binary string
which is defined as the number of 1 bits in the string. Similarly, the Hamming distance
between two strings is the number of bit positions in which they differ. Thus, the Hamming
weight of 0110 is 2 and Hamming distance between 0110 and 1011 is 3. Accordingly, we define
the parity of a binary string to be odd or even depending on if its Hamming weight is odd
or even. Thus, 0110 is of even parity.

630 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Example 25.5 (Symmetric permutation groups) Let A = {1, 2, . . ., n} and p:A→A
be a bijective (i.e., one-to-one and onto) function of A on itself. Such a map p is called
a permutation and has the property that if i �= j, then p(i) �= p(j). Let Sn denote the
set of all permutations of A. Clearly |Sn| = n!. A permutation p is usually denoted by a
two-dimensional array

p =
(

1 2 3 . . . i . . . n
p1 p2 p3 . . . pi . . . pn

)

where pi = p(i) for 1 ≤ i ≤ n. Let p, q ∈ Sn, then define the product operation,
denoted by ·, as p · q(i) = p(q(i)), 1 ≤ i ≤ n, which is simply the composition of
the two bijective functions in the right to left order. It can be verified that (Sn, ·) is
a finite noncommutative group with the identity permutation I as its unit element and

p−1 =
(

p1 p2 p3 . . . pi . . . pn

1 2 3 . . . i . . . n

)
called symmetric group.

Remark 25.1 One could have defined the product as p · q(i) = q(p(i)), 1 ≤ i ≤ n in the left
to right order and could develop a parallel theory of permutation group. Since the resulting
permutations are isomorphic, without loss of generality we adopt the natural right to left
composition.

Permutations can be represented in different ways. For example, p can be represented as
a single array given by

1 2 3 . . . i . . . n
p = p1 p2 p3 . . . pi . . . pn = p1p2p3 . . . pn.

Similarly, permutations can be represented using the so called cycle notation which is illus-
trated below. Let

p =
(

1 2 3 4 5 6 7 8 9 10
3 4 2 1 7 5 6 8 10 9

)
(25.1)

Using this p, we can define a graph with a directed edge from i to pi for all 1 ≤ i ≤ n.
The graph of this p is given in Figure 25.1 which is clearly the union of 4 subgraphs
each of which is a cycle. Accordingly, p is expressed as a product of 4 disjoint cycles
p = (1 3 2 4)(5 7 6)(8)(9 10) where C1 = (1 3 2 4), C2 = (5 7 6), C3 = e1 = (8) and
C4 = (9 10). The number of elements in a cycle Ci is denoted by |Ci|.

If |Ci| = k, then Ci is called a k-cycle. In the special case, when a cycle is of length 2 then
it is called a transposition. If a cycle is of length one, then it denotes a cycle from i to i and
is called an invariant under p and denoted by e (not to be confused with the unit element of
the group). Thus, the above permutation p is the product of two cycles—a 4-cycle C1 and

7

5

34

1

8
9 10

62

Figure 25.1 Graphical representation of a permutation p = (1 3 2 4)(5 7 6)(8)(9 10).

Cayley Graphs � 631

TABLE 25.5 Group table for (S3, ·) where the entries are computed as p · q(i) = p(q(i)), 1 ≤ i ≤ 3

p q
I (1 2) (1 3) (2 3) (1 2 3) (1 3 2)

I I (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
(1 2) (1 2) I (1 3 2) (1 2 3) (2 3) (1 3)
(1 3) (1 3) (1 2 3) I (1 3 2) (1 2) (2 3)
(2 3) (2 3) (1 3 2) (1 2 3) I (1 3) (1 2)

(1 2 3) (1 2 3) (1 3) (2 3) (1 2) (1 3 2) I
(1 3 2) (1 3 2) (2 3) (1 2) (1 3) I (1 2 3)

TABLE 25.6 Group table for the parity group S = {1, −1} under
multiplication. 1 is the unit element and each element is its own
inverse

× 1 –1

1 1 −1
−1 −1 1

a 3-cycle C2, one transposition C4 and one invariant C3. In general, a permutation is given
by p = C1C2 . . . Cke1e2 . . . el as a product of k disjoint cycles and l invariants. From this, we
obtain a basic relation

n =
k∑

i=1
|Ci| + l. (25.2)

When representing permutations using the cycle notation, it is customary to drop the
invariants. Thus the above permutation in Figure 25.1 is often denoted as p = (1 3 2 4)(5 7 6)
(9 10). The group table for (S3, ·) using the cycle notation is given in Table 25.5.

Let p be a permutation and consider two pairs (i, pi) and (j, pj). If pi > pj , for i < j, then
these two pairs are said to constitute an inversion in p. Thus, for the p in (25.1), the pairs
(3, 2) and (4, 1) are inversions with respect to the first pair (1, 3). Likewise, with respect to
the pair (4, 1) there is no inversion in p. If the total number of inversion in a permutation
p is an odd or even integer, then p is called an odd or even permutation. It can be verified
that the permutation p in (25.1) has 6 inversions and hence is an even permutation. Define
a function called the parity, PAR : Sn → {1, −1} where

PAR(p) =
{

1, if p is an even permutation
−1, if p is an odd permutation

(25.3)

Clearly, PAR partitions Sn into two subsets consisting of all even and odd permutations,
equivalently of all even and odd parity. It can be verified that the set S = {1, −1} under
the standard integer multiplication is a group described by the Table 25.6. It can be verified
that if p and q are permutations, then PAR(pq) = PAR(p)PAR(q).

For later reference, let An = {p ∈ Sn|PAR(p) = 1} denote the subset of all permutations
of even parity. It can be verified that (An, ·) also forms a group under the usual product of per-
mutations. This group is known as the alternating group. It can be verified that S3 represented
in Table 25.5 is the union of A3 and {(1 2), (1 3), (2 3)}, where A3 = {I, (1 2 3), (1 3 2)}.

Permutation groups arise naturally in the context of rigid body rotation. Consider an
equilateral triangle with vertices labeled inside the triangle as

3 2

1
1

3 2

632 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

3

1

2

3

1

2

3

1

1

2

1

Position 0 Position 0Position 1 Position 2

1

3

2

1

1

3

1

2

1

b bb
b

a a a

a a a

3 2 3 2 3 2 3 2

1 1 1 1

3 2 3 2 3 2 3 22 1 3 2

3 1 2 3
Position 3 Position 3Position 4 Position 5

Figure 25.2 Permutation group as rigid body rotation and reflection of an equilateral tri-
angle. The rotation a and reflection b generate a group called dihedral group, D3 =〈
a, b|a3 = I, b2 = I, and ba = a2b

〉
.

The three fixed positions labeled 1, 2, and 3 occur outside the triangle and initially the triangle
is located in such a way that inside node labels and the labels of the fixed outside positions
are the same. This arrangement corresponds to the initial position 0 in the Figure 25.2, and
is denoted by

e =
(

1 2 3
1 2 3

)
= I

which is the identity position.
Let the operation a denote the clockwise rotation of the triangle by 60◦ with respect

to the vertical axis passing through the centroid of the triangle. Clearly, this operation a
corresponds to a permutation

a =
(

1 2 3
3 1 2

)
.

Similarly, let the operation b denote the reflection of the triangle with respect to the vertical
axis perpendicular to the base passing through the vertex 1. Then b can be denoted by a
permutation

b =
(

1 2 3
1 3 2

)
.

The rotation a and reflection b generate a group called dihedral group

D3 =
〈
a, b|a3 = I, b2 = I and ba = a2b

〉
.

Clearly D3 = {e, a, a2, b, ab, a2b} and D3 = S3, the symmetric permutation group over 3
objects. The sequence of configuration of the equilateral triangle by repeated application of a
and b are given in Figure 25.2. By referring to the Figure 25.2, it is obvious that a3 = I and
b2 = I. We can also derive other relations. For example, starting from position 0 at the left
end of the first row we can reach, say position 5, in two ways. First applying the sequence
a2b (right to left) or by ba. Hence we get the relation ba = a2b. Similarly, we can verify that
ba2 = ab and ba−1 = ab. We invite the reader to discuss other relations and verify the group
table for D3 given in Table 25.7.

Cayley Graphs � 633

TABLE 25.7 Group table for the dihedral group D3

· e a a2 b ab a2b

e e a a2 b ab a2b
a a a2 e ab a2b b
a2 a2 e a a2b b ab
b b a2b ab e a2 a
ab ab b a2b a e a2

a2b a2b ab b a2 a e

25.1.2 Subgroup

Let (Γ, ∗) be a group and let G ⊆ Γ be a subset. If (G, ∗) satisfy the conditions G1 − G3,
then (G, ∗) is a group in its own right and is called the subgroup of (Γ, ∗).

Example 25.6 (Subgroups) Referring to Example 25.3 given above, it can be verified that
the set O(2) of all 2 × 2 orthogonal matrices form an infinite subgroup of the general linear
group GL(2), under the usual matrix–matrix multiplication.

Again referring to the Example 25.5, it can be checked that the set An consisting of all
even permutations form a finite subgroup of the symmetric group Sn.

Let (Γ, ∗) be a finite group and let a ∈ Γ such that a �= e. Define a2 = a ∗ a, a3 = a2 ∗ a,
and inductively aj = aj−1 ∗ a. Notice that aj ∈ Γ for each j. Since Γ is finite, a little
reflection reveals that there exists an integer k such that ak = e. Thus clearly, the subset
G = {a, a2, . . ., ak = e} forms a subgroup where the index of the powers are computed
(mod k). This subgroup generated by an element a �= e, is called the cyclic subgroup of Γ.
The smallest integer k for which ak = e is called the order of a and is denoted by ordΓ(a) = k.
Clearly, each element of the group has a unique order.

Example 25.7 (Cyclic subgroup) Consider the finite multiplicative group (Z5, ×5) in
Example 25.2. The order of each element is given below.

a 1 2 3 4
ord(a) 1 4 4 2

We now state several facts without proof. Let Γ be a group and G be a subgroup of Γ.

SG1: The order of a subgroup divides the order of the group, that is |G| | |Γ|, where m|n
denotes the fact that n is a multiple of m.

SG2: ordΓ(a) | |Γ|.
SG3: Define a left coset of G as

xG = {y = xa | a ∈ G and x ∈ Γ}.

Similarly, Gx is called the right coset. It can be verified that x1G �= x2G for x1 �= x2
and

Γ =
⋃

x∈Γ
xG

that is, Γ is disjoint union of the left cosets generated by the subgroup G of Γ. Similar
statement holds for right cosets as well.

SG4: If xG = Gx for all x, then G is called the normal subgroup of Γ.

634 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

25.1.3 Homomorphism, Isomorphism, and Automorphism

Let (Γ1, ∗1) and (Γ2, ∗2) be two (finite) groups, and let h : Γ1 → Γ2 be a function from Γ1 to
Γ2. If h satisfies the condition

h(a ∗1 b) = h(a) ∗2 h(b)

then h is called a homomorphism from Γ1 to Γ2. If the function h is one-to-one, then it is
called a monomorphism, and if it is onto, then it is called epimorphism. If h is one-to-one
and onto, then it is called an isomorphism. The function h is called an automorphism if it
defines an isomorphism of a group onto itself.

Example 25.8 (Homomorphism) Referring to the Example 25.5, the parity function
PAR : Sn → S = {−1, 1} is a homomorphism.

Let g ∈ Γ then the function hg : Γ → Γ is defined by

hg(x) = gxg−1

is an automorphism of Γ. For, if x, y ∈ Γ, then

hg(xy) = g(xy)g−1

= (gxg−1)(gyg−1)
= hg(x)hg(y).

Facts about homomorphisms h : Γ1 → Γ2.

H1: If e1 and e2 are unit elements of Γ1 and Γ2, respectively, then h(e1) = e2.
H2: h(x−1) = [h(x)]−1, for x ∈ Γ1.
H3: h(Γ1) = {y|y = h(x), for x ∈ Γ1} called the image of Γ1 is a subgroup of Γ2.
H4: Ker(h) = {x ∈ Γ1|h(x) = e2} is the set of preimage of e2 in Γ1, called the kernel of h,

is a subgroup of Γ1.

Set A(Γ) of all automorphisms of a group Γ, itself forms a group called the automorphism
group of Γ.

25.1.4 Operations on Groups

Given two groups, say (Γ1, ∗1) and (Γ2, ∗2), we can obtain a new group (Γ, ∗) by defining
binary operations on the two given groups. In this section we introduce the reader to two
types of group operations called the direct product and semidirect product of groups.

Direct product Let Γ = Γ1 × Γ2 = {(a, b)|a ∈ Γ1 and b ∈ Γ2}, the Cartesian product of
the sets Γ1 and Γ2. Clearly, |Γ| = |Γ1| × |Γ2|. We now define the product group, (Γ, ∗) as
follows: Let (a1, b1) and(a2, b2) be in Γ. Then

(a1, b1) ∗ (a2, b2) = (a1 ∗1 a2, b1 ∗2 b2)

defines the group operation on Γ. It can be verified that (e1, e2) is the identity in Γ, where e1
and e2 are the unit elements of Γ1 and Γ2 respectively, and (a, b)−1 = (a−1, b−1) where a−1

and b−1 are the inverses of a and b in (Γ1, ∗1) and (Γ2, ∗2), respectively.

Cayley Graphs � 635

Example 25.9 (Product group) Let (Z5, +5) and (Z7, +7) be two groups. Then

Z = {(a, b)|0 ≤ a < 5 and 0 ≤ b < 7}

and |Z| = 35. (0, 0) is the identity in Z and (2, 3) ∗ (4, 5) = (2 +5 4, 3 +7 5) = (1, 1) and
(2, 3)−1 = (3, 4).

As another example consider (Z5, +5) and (Z7, ×7) with Z = {(a, b)|0 ≤ a < 5 and 1 ≤ b <
7} and |Z| = 30. Clearly (0,1) is the identity, and (3, 2) ∗ (3, 5) = (3 +5 3, 2 ×7 5) = (1, 3) and
(3, 2)−1 = (2, 4).

Semidirect product We now define the semidirect product of two groups (Γ1, ∗1) and
(Γ2, ∗2). To this end, let A(Γ2) be an automorphism group of the (second) group (Γ2, ∗2). Since
identity is always an automorphism, clearly A(Γ2) is always nonempty. Let f : Γ1 → A(Γ2)
be a (group) homomorphism from the group (Γ1, ∗1) into the automorphism group A(Γ2).
That is, for any a ∈ Γ1, fa ∈ A(Γ2) is such that fa: Γ2 → Γ2 is an automorphism of Γ2 onto
itself, that is, fa(b) ∈ Γ2 for b ∈ Γ2.

Let Γ = Γ1 × Γ2 be the Cartesian product defined above. Define a new operation on Γ
as follows. For (a1, b1) and (a2, b2) in Γ, let

(a1, b1) ∗ (a2, b2) = (a1 ∗1 a2, fa−1
2

(b1) ∗2 b2).

It can be verified that Γ with this operation forms a group called the semidirect product of
Γ1 and Γ2 and denoted by Γ1 � Γ2. Clearly (e1, e2) is the identity and the inverse of (a, b)
is given by (a−1, fa(b−1)). For since fa is an automorphism on Γ, (a, b) ∗ (a−1, fa(b−1)) =
(a ∗1 a−1, fa(b) ∗2 fa(b−1)) = (e1, e2), see [4].

Example 25.10 (Semidirect product) Consider three integers (c, k, l) and let Γ1 = Zck

and Γ2 = Zc2l. For (a, b), (u, v) in Γ = Γ1 × Γ2 define

(a, b) ∗ (u, v) = (a + u, (1 − ucl)b + v)

where the first component is computed (mod ck) and the second (mod c2l). Thus,
(a, b)−1 = (−a, −b(1 + ucl)) and (0, 0) is the identity.

25.1.5 Generators of a Group

Let Ω ∈ Γ be such that every element of Γ can be expressed as product of elements of Ω,
then Ω is called a generator of Γ and is denoted by Γ = 〈Ω〉. Clearly Ω = Γ is a generator
and if Ω is a generator, and Ω ⊂ Ω1, then Ω1 is also a generator. This fact gives rise to the
notion of minimal generator of a group.

Example 25.11 (Generators)

a. Ω = {1} is a minimal generator of the additive group (Z6, +6) since 2 = 1 + 1, 3 =
1 + 1 + 1, 4 = 1 + 1 + 1 + 1, . . . and 0 = 1 + 1 + 1 + 1 + 1 + 1. It can be verified that
−1 ≡ 5 (mod 6) is also a generator for (Z6, +6) and hence Ω = {1, −1} is a generator
for this group.

b. Ω = {2} is a generator for (Z5, ×5), the multiplicative group (mod 5). Since 3 ≡ 2−1

(mod 5) is a generator for this group, it follows Ω = {2, 3} is also a generator for this
group.

636 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

c. Define gi = 0i10n−i+1, the binary string that has one 1-bit at position i and zero bits
at other positions and let Ω = {gi|1 ≤ i ≤ n}. It can be verified that Ω generates Bn,
the binary group.

d. Consider the permutation group Sn. Recall any p ∈ Sn can be expressed as p =
C1C2 . . . Cke1e2 . . . el. Let C = (a1 a2 a3 . . . ar) be a cycle of length r. Then it can be
verified that this cycle C can be expressed as the product of (r − 1) transpositions as
follows:

C = (a1 a2 a3 . . . ar) = (a1 ar)(a1 ar−1) . . . (a1 a3)(a1 a2)

Consequently, the permutation p in Example 25.5 can be factored using transpositions as
follows: Since 8 is an invariant,

p = (1 3 2 4)(5 7 6)(9 10)
= (1 4) (1 2) (1 3) (5 6) (5 7) (9 10).

Let
ΩCT = {(i j)|1 ≤ i < j ≤ n}

be the set of all transpositions and |ΩCT | = n(n − 1)/2. From the above discussion it readily
follows that ΩCT is a generator set for Sn, that is, Sn = 〈 ΩCT 〉 where the subscript CT
denotes the complete transposition set.

We now define two other smaller generator sets for Sn. Define [5,6]

ΩST = {(1 j)|1<j ≤ n}

and
ΩBS = {(i i + 1)|1 ≤ i < n}.

Clearly, |ΩST | = |ΩBS | = n − 1. It can be verified that any arbitrary transposition (i j) can
be expressed as a product of the members of ΩST as follows:

(i j) = (1 i) (1 j) (1 i) = (1 j) (1 i) (1 j)

Thus, every element in ΩCT can be expressed as a product of elements in ΩST . Hence it
follows

Sn = 〈 ΩCT 〉 = 〈 ΩST 〉.
Similarly it can be verified that any (1 i) can be expressed as product of the elements of
ΩBS and hence Sn = 〈 ΩBS 〉. For later reference ΩST is called the star generator and ΩBS

is called the bubble sort generator.

25.2 CAYLEY GRAPHS

In this section we provide the definition, examples and extensions of the concept of Cayley
graphs. For basic terminology of graphs, we refer to [7–9].

Let (Γ, ∗) be a finite group with e as its unit element, and Ω be its generator set, that is,
Γ = 〈 Ω 〉. In the following, for similarity in notations, we refer to the group (Γ, ∗) simply
as Γ. For reasons stemming from network design considerations, we first restrict our attention
to an important subclass of generators satisfying the following two conditions:

(c1) e �∈ Ω and

(c2) If g ∈ Ω, then g−1 ∈ Ω, that is, Ω is closed under the inverse.

Cayley Graphs � 637

Given the pair (Γ, Ω), define the Cayley graph G(Γ, Ω) = (V, E) where V = Γ and E =
{(x, y)g|x, y ∈ V and g ∈ Ω}. That is, the Cayley graph has |V | = |Γ| number of nodes
labeled by the elements of the group Γ. Further, any two nodes x and y are neighbors if and
only if y = x ∗ g for some g ∈ Ω. Thus, if Ω = {g1, g2, . . . gk}, then each node x has exactly k
neighbors yi = x ∗ gi, 1 ≤ i ≤ k. Further, from y = x ∗ g we readily obtain x = y ∗ g−1, that
is, if g leads to y from x, then g−1 leads to x from y. Thus, each generator g defines a two
way edge, which is represented by an undirected edge labeled by g.

From the above definition it follows that a Cayley graph is a uniform graph of degree |Ω|.
Since e �∈ Ω, there are no self loops at any node, and since gi ∈ Ω are all distinct, between
any two nodes there is at most one edge labeled by gi. Hence a Cayley graph defined above
is a simple, undirected, vertex and edge labeled uniform graph.

Referring to Section 25.1, indeed there are unending choices for groups. Further, given a
group, there are many generators satisfying the conditions (c1) − (c2). By picking a family
of groups indexed by n such as (Zn, +n), (Zp, ×p), (Bn, ∗), (Sn, ∗) to name a few, we can
ensure scalability as well.

Remark 25.2 While every Cayley graph is a uniform graph, the converse is not always true.
To this end, consider the set T of ten 2-element subsets of a given set S with five elements.
Thus, if S = {1, 2, 3, 4, 5}, then T = {12, 13, 14, 15, 23, 24, 25, 34, 35, 45} where ij = {i, j}
for simplicity in notation. Now construct a graph G = (V, E) with |V | = |T | where the ten
nodes are labeled by the subsets in T . Thus any two are neighbors if and only if the subsets
corresponding to their label do not have any common element. The resulting graph is called
the Petersen∗ graph with 10 nodes and 15 edges given in Figure 25.3.

If the Petersen graph were to be a Cayley graph, we would have to start with a group
Γ of order 10 with a generator set Ω such that |Ω| = 3. It can be shown [2] that the only
abelian group of order 10 is the product group (Z2, +2)× (Z5, +5) which is isomorphic to the
cyclic group (denoted by C10) of order 10. Further, the only nonabelian group of order 10 is
the Dihedral group D5. This latter group is generated by the following relation:

D5 = 〈 a, b|a5 = e, b2 = e, ba = a4b 〉

Next we show that this C10 admits a generator set Ω with |Ω| = 3.
Let the elements of C10 be labeled by the pair (i, j) denoted by ij, for 0 ≤ i < 2 and

0 ≤ j < 5. That is, C10 = {00, 01, 02, 03, 04, 10, 11, 12, 13, 14}. The generators are then given

35

12

34

13

45

23

15 24

25 14

Figure 25.3 Petersen graph.

∗Julius Petersen (1839–1910) was a Danish mathematician. Petersen graph was constructed by him in
1898. This graph provides a counter example to many claims in graph theory.

638 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

00

0104
10

11

1213

14

0203

Figure 25.4 Cayley Graph of the abelian group C10 ≡ (Z2, +2) × (Z5, +5).

by Ω = {01, 04, 10}. It can be easily verified that Ω is indeed a generator of size 3. Thus,
the Cayley graph obtained by the 3 element generator of C10 is given by Figure 25.4. As
will be seen in the next section (Example 25.17), the Petersen graph is not isomorphic to
this Cayley graph of C10. Similarly, one can easily see that the Cayley graph of D5 is again
not isomorphic to the Petersen graph. Thus, we conclude that the Petersen graph which is a
uniform graph is not a Cayley graph.

We now provide a number of examples of Cayley graphs.

Example 25.12 (n-node ring) Consider the finite additive group (Zn, +n) with Ω =
{1, −1} as its generator. Setting V = Zn, the n-nodes are labeled with integers 0 through
n − 1. Since i ± 1 = (i ± 1) (mod n), a node i is connected to node i + 1 and i − 1. Thus,
every n-node ring or cycle is a Cayley graph. Refer to Figure 25.5 for an example. Similarly,
one can define a p-node ring for p a prime integer using (Zp, ×p) by using a generator Ω with
two elements satisfying the condition (c1 − c2), see [10].

Example 25.13 (nm toroid) Consider a product group (Zn, +n) × (Zm, +m) with Ω =
{(1, 0), (−1, 0), (0, 1), (0, −1)}, see [10]. The nm nodes are labeled by the pair (i, j) = ij for
0 ≤ i < n and 0 ≤ j < m. Since Ω = 4, there are exactly four neighbors (when n, m > 2) for
each node; see Figure 25.6.

The east/west neighbors E and Ware obtained by using the generators (1, 0) and (−1, 0)
and the north/south neighbors N and S are obtained by using the generators (0, 1) and
(0, −1) respectively. The resulting Cayley graph of degree 4 on nm nodes is called a (two-
dimensional) toroid. Refer to Figure 25.7 for examples.

Remark 25.3 To visualize a toroid, hold a rectangular sheet of paper and roll it longitu-
dinally and form a tube. Then roll the tube to join them at their open ends. The resulting

1

1

1

4

1

1

0

3 1 2

Figure 25.5 5-Node ring as a Cayley graph of (Z5, +5).

Cayley Graphs � 639

W (−1, 0) E(1, 0)

(0, −1)

N (i, j + 1)

(i − 1, j) (i + 1, j)(i, j)

(0, 1)

S (i, j − 1)

Figure 25.6 Neighbors of two dimensional toroid.

00 10

01 11

00 10 20

01 2111

00 10 20

01 2111

02 2212

(a) (b) (c)

Figure 25.7 Examples of two-dimensional toroids.

object has a donut shape. The two-dimensional nm toroid is a graph that is drawn on the
surface of this donut. Also notice that the nm grid, a close relative of the nm toroid, is not
a Cayley graph.
Remark 25.4 (d-dimensional toroid) The concept of a toroid can be readily extended
to higher dimensions. For d = 3, let (Zn1 , +n1), (Zn2 , +n2), and (Zn3 , +n3) be three additive
groups where ni ≥ 2, for 1 ≤ i ≤ 3. Let Z = Zn1 × Zn2 × Zn3 = {(i, j, k)|0 ≤ i < n1, 0 ≤ j <
n2, 0 ≤ k < n3} with |Z| = n1n2n3 = n. Let Ω = {(±1, 0, 0), (0, ±1, 0), (0, 0, ±1)}, where
|Ω| = 6. Thus, each node labeled by a triple (i, j, k) has six neighbors. The east/west neighbors
(i ± 1, j, k) are obtained by using the generators (±1, 0, 0), the north/south neighbors (i, j ±
1, k) obtained by using the generators (0, ±1, 0) and the back/front neighbors (i, j, k ± 1)
obtained by using the generators (0, 0, ±1), respectively.

A very popular CRAY-research parallel process T-D3 is based on the 3-dimensional
toroidal network.

Example 25.14 (Supertoroid) Referring to the Example 25.10, consider the triple
(c, k, l) = (4, 1, 1). Let Γ1 = Zck = Z4 and Γ2 = Zc2l = Z16. consider the generator
Ω = {(1, 0), (−1, 0), (0, 1), (0, −1)}. Let (a, b) be a node where 0 ≤ a < 4 and 0 ≤ b < 16,
the four neighbors of (a, b) are then given by, see [4].

(a, b) ∗ (±1, 0) = (a ± 1, (1 ∓ cl)b) = (a + 1, −3b) and (a − 1, 5b)

and
(a, b) ∗ (0, ±1) = (a, b ± 1) = (a, b + 1) and (a, b − 1).

As an illustration consider the node (1, 1). Its four neighbors are shown in Figure 25.8.

640 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(0, 5)

(1, 1)

(−1, 0)

(2, −3) = (2, 13)

(1, 0)

(0, −1)

(1, 2)

(0, 1)

(1, 0)

Figure 25.8 Four neighbors of supertoroid.

(0,15)

(0,14)

(0,13)

(0,12)

(0,11)

(0,10)

(0,9)

(0,8)

(0,7)

(0,6)

(0,5)

(0,4)

(0,3)

(0,2)

(0,1)

(2,15)

(2,14)

(2,13)

(2,12)

(2,11)

(2,10)

(2,9)

(2,8)

(2,7)

(2,6)

(2,5)

(2,4)

(2,3)

(2,2)

(2,1)

(1,15)

(1,14)

(1,13)

(1,12)

(1,11)

(1,10)

(1,9)

(1,8)

(1,7)

(1,6)

(1,5)

(1,4)

(1,3)

(1,2)

(1,1)

(3,15)

(3,14)

(3,13)

(3,12)

(3,11)

(3,10)

(3,9)

(3,8)

(3,7)

(3,6)

(3,5)

(3,4)

(3,3)

(3,2)

(3,1)

n.(0,0) (2,0)(1,0) (3,0)

Figure 25.9 Supertoroid which is the Cayley graph of the semidirect product. The wrap around
edges are not shown for simplicity.

The resulting Cayley graph on 4 × 16 = 64 nodes of degree 4 is shown in Figure 25.9.

Example 25.15 (Binary hypercubes) Consider the graph (Bn, ∗) in Example 25.4 with
Ω = {g ∈ Bn| the Hamming weight of g = 1}. Consider a graph with |V | = 2n nodes each

Cayley Graphs � 641

labeled by an n-bit binary string. Let X = xnxn−1 . . . x2x1 and Y = ynyn−1 . . . y2y1 be two
node labels. Then

E = {(X, Y)g|H2(X, Y) = 1}
where H2(X, Y) denotes the Hamming distance between X and Y defined by

H2(X, Y) =
n∑

i=1
|xi − yi|

where |a| is the absolute value of a. That is, two nodes are neighbors if and only if their node
labels differ in only one bit position. For a given X, since Y can differ in each of the n-bits,
the degree of this graph is n. The resulting Cayley graph, called the binary hypercube of
dimension n, has N = 2n nodes with degree n = log2 N . Thus unlike the ring and toroid
which are constant degree Cayley graphs, in the binary hypercube the degree is logarithmic
in the size of the graph see [10–12]. Examples of binary hypercubes are given in Figure 25.10.

Remark 25.5 (Recursive structure of the binary hypercube) The binary hypercube
admits a nice recursive definition as well. Let us denote the n-dimensional binary hypercube
as (N, 2, n)-cube where N = 2n. This (N, 2, n)-cube can be obtained by taking two copies
of (N/2, 2, n − 1)-cubes. The node labels in each of the two n − 1 dimensional subcubes
are (n − 1)-bit strings. Let X = xn−1xn−2 . . . x2x1. Then there is one node in each of these
subcubes labeled X. To obtain (N, 2, n)-cube from these two (N/2, 2, n − 1)-cubes, first add
a prefix 0 to X to make it an n-bit string 0X = 0xn−1xn−2 . . . x2x1 in one cube and add a
prefix 1 to X to make it an n-bit string in the other cube. Since H2(0X, 1X) = 1, we join
0X and 1X by a new edge. By repeating this process to each of the 2n−1 nodes, we obtain
the (N, 2, n)-cube. This process is illustrated in Figure 25.11.

0 00 01

1110

000

010

001

011

100

110

101

111

1
(b)(a) (c)

Figure 25.10 (a-c) Examples of d-dimensional binary hypercube for 1 ≤ d ≤ 3.

0

00 01

10 11

00 01

1110

1

0 1
Two copies of
(2, 2, 1)-cubes

Prefix the nodes in one
subcube with 0 and

the other subcube with 1

Join the nodes
which differ in

one bit

Figure 25.11 Demonstration of the recursive construction of (4, 2, 2)-cube.

642 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(1 2)

(1 3)

(1 2)(1 3)

(1 2)

(1 3)(1 2)

(2 3)(2 3)

(1 2)

(2
 3)

(1 3)

(1 3)

132

312

213

(1 3)

312

213

123

132

123

231

321

(1 2)

231

321

(1 2)

(2 3)

(1 2)(2 3)

(1 2)

(2 3)

321

231

213

123

312

132

(b)(a)

(c)

Figure 25.12 Examples of Cayley graphs of permutation graphs. (a) Complete transposi-
tion graph on S3 using ΩCT = {(1, 2), (1, 3), (2, 3)}. (b) Star graph on S3 using ΩST =
{(1, 2), (1, 3)}. (c) Bubble sort graph on S3 using ΩBS = {(1, 2), (2, 3)}

Example 25.16 (Cayley graphs of permutation groups)
a. Complete transposition graph: Consider the symmetric group of n! permutations. From

Example 25.5 and Example 25.11(d), we know ΩCT = {(i, j)|1 ≤ i < j ≤ n} is a gen-
erator set for Sn. Since transpositions are their own inverse, ΩCT satisfy the conditions
(c1)−(c2). The resulting Cayley graph of uniform degree = n(n − 1)/2 is called the com-
plete transposition graph, see [6,13]. For n = 3, S3 = {I, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}
and ΩCT = {(1 2), (1 3), (2 3)}. The complete transposition graph is given in
Figure 25.12a.

b. Consider Sn with ΩST = {(1 j)|2 ≤ j ≤ n}. The resulting Cayley graph is called the
star graph. An example of the star graph for n = 3 is given in Figure 25.12b.

c. Consider Sn with ΩBS = {(i i+1)|1 ≤ i < n}. The resulting Cayley graph is called the
bubble sort graph. An example of the bubble sort graph on S3 is given in Figure 25.12c.

Remark 25.6: These Cayley graphs on permutation group readily admit a recursive struc-
ture. Thus, a complete transposition graph on S4 is built of 4-copies of S3.While each of four
subgraphs are generated using the generators {(1 2), (1 3), (2 3)}, the four subgraphs are
interconnected using the generators {(1 4), (2 4), (3 4)} resulting in a 24 node degree 6 graph
called the complete transposition graph on S4. Similarly one can recursively construct star
graphs and bubble sort graphs on S4.

25.3 SYMMETRY IN CAYLEY GRAPHS

In Section 25.1, we described the basic concepts of group isomorphism and group automor-
phism. In this section, we develop analogous concepts of isomorphisms and automorphisms
for graphs in general and Cayley graphs in particular.

Cayley Graphs � 643

O
a

b
c A

b
c

O

Y

X

O
δ

α

Z
B a x βC

Figure 25.13 Examples of objects with varying symmetry.

Intuitively speaking, isomorphic objects—be it graphs or groups—have identical struc-
tures. However, an automorphism of an object onto itself relates to underlying structural
symmetry of the object in question. Symmetry of an object relates to the ability to map
the object onto itself using simple operations including rotation, reflection, to name a few.
For example, consider a set of simple geometric figures—a circle, an equilateral triangle, an
isosceles triangle, and an arbitrary triangle as in Figure 25.13.

Anticlockwise rotation with respect to an axis through its center O perpendicular to the
plane of the circle by an angle θ, 0 ≤ θ < 2π maps the circle with center O onto itself.
Similarly, reflection of the circle with respect to any line such as a, b, c, and so on that passes
through the center O maps the circle onto itself. Stated in other words, the circle admits an in-
finitely many automorphisms A1 = {rotation by θ, 0 ≤ θ < 2π, reflection with respect to any
axis}. An anticlockwise rotation P of the equilateral triangle ABC by an angle 2π/3 = 120◦

with respect to an axis passing through the center O and perpendicular to the plane of the
triangle maps the equilateral triangle onto itself. The operation P 2 = P · P denotes the
rotation by 240◦ and P 3 = P 2 · P denotes the rotation by 360◦. Thus, P 3 = I, the identity
mapping of the triangle onto itself. Reflection R of the triangle ABC with respect to any one
of the axes a, b, or c that passes through the center O and a vertex also maps the triangle onto
itself. It can be verified that R2 = I. Thus, the set A2 = {P, P 2, P 3 = I, PR, P 2R, P 3R = R}
denotes a set of six automorphisms of the equilateral triangle ABC. Considering the isosceles
triangle XY Z, it can be verified the reflection R with respect to the vertical axis x passing
through the center O and the vertex X maps the triangle XY Z onto itself. In this case,
A3 = {R, R2 = I} are the two automorphisms. Similarly, it can be verified that A4 = {I},
the identity mapping is the only set of automorphism of the general triangle αβδ.

The above exercise naturally leads to an inescapable conclusion namely the more the
number of ways in which an object can be mapped onto itself, the more symmetric it is.
Thus, a circle is more symmetric compared to an equilateral triangle which is more symmetric
compared to an isosceles triangle which in turn is more symmetric compared to an arbitrary
triangle. That is, larger the set of automorphisms of an object more symmetric the underlying
object is.

Analysis of symmetry has a long and cherished history in science and engineering.
Examples include analysis and classification of symmetry in crystals in solid-state physics
and insistence of symmetry in engineering design and construction of Eiffel tower in Paris,
St. Louis arch, Golden Gate bridge in San Francisco, commercial aircrafts such as Boeing
747, ocean liners, great cathedrals, and temples all over the world, to name a few.

In this section we develop important concepts and tools needed to describe the inherent
symmetry in graphs, in particular Cayley graphs.

25.3.1 Graph Symmetry

We begin by introducing the notion of graph isomorphism. Let G1 = (V1, E1) and G2 =
(V2, E2) be two simple, regular connected graphs on same number of vertices, that is,

644 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

|V1| = |V2|. We say G1 is isomorphic to G2 if there exists a function f satisfying the fol-
lowing two conditions.

I1: There exists a bijective function α : V1 → V2, that is, α is a permutation of the node
labels of the two graphs and

I2: (x, y) ∈ E1 if and only if (α(x),α(y)) ∈ E2, that is, α in addition to being a permuta-
tion, also preserves the neighborhood.

Example 25.17 Referring to Figure 25.14, the graphs in Figure 25.14a are isomorphic to
each other by the bijection α as defined in the table, while the graphs in Figure 25.14b are
not isomorphic.

An isomorphism of a graph G = (V, E) onto itself is called (graph) automorphism. Stated
in other words, a graph automorphism is a permutation of its nodes that preserves the
neighborhood. Let A(G) denote the set of all automorphisms of a given graph G. Under
the usual operation of composition of bijective functions (which is the same as the com-
position of permutations described in Section 25.2), this set A(G) forms a group called
the automorphism group of the graph G. We say an automorphism group is regular if
|A(G)| ≥ |V |.

Example 25.18 Referring to equilateral triangle ABC in Figure 25.13, it can be verified
that

A(G) = {(ABC), (ACB), (BC), (AB), (CA), I}
is a regular automorphism group.

Now considering the isoceles triangle XY Z its automorphism group A(G) = {I, (Y Z)}
and for the arbitrary triangle A(G) = {I} are not regular.

4

1

2

3

c

a

d

b

α
1 d
2 b
3 c
4 a

25 14

35

12

34

13

45

23

15 24

1

2

34

5 a

b

cd

e

(a)

(b)

Figure 25.14 Examples of isomorphic and nonisomorphic graphs. (a) An example of isomorphic
graphs. (b) An example of nonisomorphic graphs.

Cayley Graphs � 645

Remark 25.7: An automorphism group of the circle with center at O is given by

A(G) =
{

T =
[

cos θ sin θ

− sin θ cos θ

]
, 0 ≤ θ < 2π

}

which is the orthogonal group O(2). This infinite group is a continuous group. This is an
example of the Lie group which in addition to the group structure also admits a rich topolog-
ical structure. Thus one can talk about the derivative of T with respect to θ. However, for the
other three objects in Figure 25.13, A(G) is finite, which represents the discrete symmetry
of these objects.

Given G = (V, E) and its A(G) we now characterize several important notions of graph
symmetry.

Vertex symmetry A graph G is said to be vertex symmetric or vertex transitive if for every
pair u, v of vertices, there exists an automorphism α (depending on u and v) such that
α(u) = v. Refer to Figure 25.15 for an illustration. In mapping u to v, the automorphism α

also maps every neighbor xi of u onto some neighbor yi of v.

Example 25.19 Consider a four node graph of degree 2 given by Figure 25.16.
Let P = (1234) denote the rotation by 2π/4 = 90◦ degrees and R = (24) denote

the reflection with respect to the diagonal connecting the vertices 1 and 3. Thus, A(G) =
{P, P 2, P 3, P 4 = I, PR, P 2R, P 3R, P 4R = R} is a regular automorphism group of this graph.
Indeed, this graph is vertex transitive. For example, if u = 1 and v = 3, then α = P 2 maps
u = 1 to v = 3. In this process, the neighbors 2 and 4 of u are mapped to 4 and 2, respectively,
which are the neighbors of v = 3.

Remark 25.8: It is immediate that while every vertex-transitive graph is an uniform
(regular) graph, the converse is not always true as the following example shows.

Example 25.20 Consider the regular graph on 12 vertices with degree 3 as shown in
Figure 25.17. It can be easily deduced that, this is an uniform graph but not vertex
transitive.

>
α

>
α

>

u

yk = α(xk)

v = α(u)

xk
α

x1 y1 = α(x1)

Figure 25.15 An illustration of vertex transitivity. Dotted lines refer to the map and solid lines
are edges in the graphs.

α = P 2

4

1 2

2

3 4

3 1

Figure 25.16 Example of vertex symmetry.

646 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

k

l
b d

f ha g

e jc i

Figure 25.17 Uniform (regular) graph on 12 vertices but not vertex transitive.

> α > α> α > α

u

x y

v

uk vk

xk yk

Figure 25.18 Illustration of edge transitivity.

Edge symmetry A graph G is edge transitive or edge symmetric if given any pair of edges
e1 = (u, v) and e2 = (x, y), there exists a (vertex) automorphism α ∈ A(G) such that
α(e1) = e2, that is, α(u) = x and α(v) = y. That is, there exists an automorphism α that
simultaneously maps u to x and v to y. In so doing, α also maps all the neighbors of u onto
the neighbors of x. Refer to Figure 25.18 for an illustration.

Example 25.21 The four node graph of degree 2 in Figure 25.16 is also edge transitive.
Thus, if e1 = (1, 2) and e2 = (1, 4), thus α = R = (2 4) is such that α(1) = 1 and α(2) = 4,
that is, α(e1) = α(e2).

Remark 25.9: It is to be recognized that edge transitivity neither implies nor implied by
vertex transitivity, that is these are two independent attributes of a graph. We illustrate this
with the following example.

Example 25.22 Referring to Figure 25.19, the graph in Figure 25.19a, with three nodes
has A(G) = {I, (1 2)} and is edge transitive, since α = (1 2) maps the edge (1, a) onto
(2, a). Since it is not uniform, it is not vertex transitive. The graph in Figure 25.19b on
ten nodes has A(G) = {P, P 2, P 3, P 4, P 5 = I, PR, P 2R, P 3R, P 4R, P 5R = R} where P =
(1 2 3 4 5)(a b c d e) and R = (1 a)(2 b)(3 c)(4 d)(5 e) and clearly is vertex transitive.
However, the edge e1 = (1, a) cannot be mapped onto e2 = (c, d). For the edge (c, d) is a part
of the 5-cycle a, b, c, d, e but the edge (1, a) is not a part of any 5-cycle. Hence it is not edge
transitive.

Remark 25.10: The following properties of the automorphisms are easily verified. Let α ∈
A(G). Then

A1: 1 ≤ |A(G)| ≤ n! where n = |V |, that is the order of the automorphism group can vary
widely.

A2: degree(u) = degree(α(u)), where u ∈ V.

Cayley Graphs � 647

1

2

a

1

2

34

5
a

b

cd

e

(a) (b)

Figure 25.19 Edge transitivity. (a) Edge transitive. (b) Non-edge transitive.

A3: Let (u0, u1, u2, . . ., uk) be a simple path/cycle in G. Then (α(u0),α(u1),α(u2), . . .,α(uk))
is also a simple path/cycle.

A4: d(u, v) = d(α(u),α(v)) where d(x, y) denotes the length of the shortest path (measured
by the number of edges) between x and y.

Distance symmetry Let D be the diameter of the graph which is defined as D =
max{d(x, y)| x, y ∈ V and x �= y}, that is, D is the maximum of the shortest distance
between any pair of nodes in G. Let 1 ≤ k ≤ D. The graph G is said to be k-distance
transitive if given a set of four vertices u, v, x, and y such that d(u, v) = d(x, y) = k, then
there exists α ∈ A(G) such that x = α(u) and y = α(v). If a graph is k-distance transitive
for every k, 1 ≤ k ≤ D, then it is called distance transitive.

Remark 25.11: It can be verified that vertex transitivity is simply zero-distance transitivity
and 1-distance transitivity implies edge transitivity and not vice versa.

25.3.2 Symmetry and Cayley Graphs

We now move onto analyzing the symmetry in Cayley graphs.
Let G = (V, E) be a Cayley graph of (Γ, Ω). We can exploit the properties of the group

to define vertex automorphisms of the associated Cayley graphs. Let a ∈ Γ be arbitrary but
fixed. Define a function La: Γ → Γ where fa(x) = ax, for all x ∈ Γ, called the left multipli-
cation of the elements of the group by a. Similarly, one can define the right multiplication
Ra: Γ → Γ where fa(x) = xa, for all x ∈ Γ. It can be verified both La and Ra define a
permutation of the elements of the group. From the definition of the Cayley graph, for each
g ∈ Ω, we have (x, y)g ∈ E only if y = x.g, that is g = x−1y. From this using a series of
algebraic manipulation we get

g = x−1y = x−1(a−1a)y = (ax)−1(ay) or (ay) = (ax) · g.

That is, if (x, y)g ∈ E, then (ax, ay)g ∈ E. Stated in other words left multiplication by an
element of the group is a graph automorphism. The above analysis naturally leads to the
following.

Fact: Every Cayley graph is vertex transitive. For, let u and v be two arbitrary nodes in
the Cayley graph G. Define a = vu−1. Then, La(u) = v. Let, (u, x)g ∈ E. Then g = u−1x =
u−1(a−1a)x = (au)−1(ax) and hence (au, ax)g ∈ E. From the arbitraryness of u, v and x, the
claim follows.

648 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Example 25.23
1. The binary hypercube is vertex transitive, edge transitive, and is also distance

transitive.

2. Petersen graph is vertex transitive, edge transitive and distance transitive but it is not
a Cayley graph.

3. The graph shown below

1
c b

a

3 2

is vertex transitive but not edge transitive.

Another result of interest is stated below:

Let h be a homomorphism, of the group Γ generated by S into itself such that h(S) = S.
Then h is a graph automorphism of the Cayley graph G(Γ, S).

25.4 CONSEQUENCES OF VERTEX TRANSITIVITY

Intuitively a vertex-transitive graph looks the same when viewed through any vertex. This
property has important consequences for developing many communication algorithms such
as shortest path, broadcast, and so forth.

Shortest path problem Let u, v ∈ V and d(u, v) = k, where 1 ≤ k ≤ D, D the
diameter of the Cayley graph G = (V, E). This implies there exists a sequence of gener-
ators gi1 , gi2 , . . ., gik

∈ Ω such that the shortest path is given by

u = u0
gi1→ u1

gi2→ u2 → · · · gik−1→ uk−1
gik→ uk = v

where
uj = u0 · gi1 · gi2 . . . gij

for 1 ≤ j ≤ k. That is
v = u · gi1 · gi2 . . . gik

from which we readily obtain

u−1v = e · gi1 · gi2 . . . gik
.

That is, for every shortest path specified by the sequence gi1 , gi2 , . . ., gik
between u and

v, there exists a corresponding shortest path from e to u−1v also specified by the same
sequence gi1 , gi2 , . . ., gik

and vice versa. Since u−1v span Γ as u and v are varied through Γ,
it is immediate that instead of developing the n(n − 1)/2 shortest paths between all possible
pairs of nodes, we only need to find (n − 1) shortest paths from e to every other node in G.
Hence the complexity of the shortest path is O(n) in Cayley graph instead of O(n2) in general
graphs. Further, we could use the same algorithm at each node.

Cayley Graphs � 649

Example 25.24 Referring to Example 25.16, consider the complete transposition graph on
S3 with ΩCT as the generator set. Let u = 123 and v = 231. A shortest path P1 between u
and v is then given by

P1 < u = 123 (1 3)−→ 321 (1 2)−→ 231 = v >.

We also observe that there are two more vertex-disjoint shortest paths, when we start with
another generator.

(Two paths are said to be vertex-disjoint, if the paths have no common internal vertices.)
That is, P2 < 123 (1 2)−→ 213 (2 3)−→ 231 > and P3 < 123 (2 3)−→ 132 (1 3)−→ 231 > are also

shortest paths between u and v.
While in the star graph, P1 is the only shortest path between u and v. Similarly, P2 is

the only shortest path between u and v in the bubble sort graph.

Remark 25.12: In addition to determining a shortest path between pairs of vertices, finding
vertex-disjoint paths in networks helps in reducing the congestion in network. Establishing
vertex-disjoint paths by itself is an interesting and daunting problem.

Example 25.25 As another example, consider a three-dimensional torus given by Z4 ×Z3 ×
Z4 on 48 nodes. Let u = (1, 2, 1) and v = (3, 1, 0). A shortest path of length 4 between u and
v is given by

P :< (1, 2, 1) (+1,0,0)−→ (2, 2, 1) (+1,0,0)−→ (3, 2, 1) (0,−1,0)−→ (3, 1, 1) (0,0,−1)−→ (3, 1, 0) >.

Alternatively, we also arrive at a shortest path by interchanging the generator (+1, 0, 0) and
the generator (0, 0, −1). This technique of finding shortest paths in a d-dimensional toroid is
well known as one-step greedy algorithm, where we move one step at a time along a particular
dimension and obtain the desired shortest path.

Broadcasting The broadcast problem is one wherein a single node, say e, in a Cayley graph
G = (V, E) wants to send the same piece of message to every other node in an optimal
time. A little reflection reveals that this can be accomplished by defining a minimum depth
spanning tree of the Cayley graph G. In principle, such a tree can be obtained by a breadth-
first search, where the depth of the resulting tree is D, the diameter of the graph.

Another interesting result is stated next. This result follows as a corollary to Propositions
24.7 and 24.8 given in Chapter 24.

Every pair of vertices in a n-dimensional hypercube is connected by n − 1 paths of
length at most n and a path of length at most n + 1, such that all these paths are
vertex-disjoint.

25.5 CONCLUSION

In this chapter after a brief review of some key concepts of finite groups, we have described
a large class of uniform, scalable graphs called Cayley graphs and their natural extension
called Cayley coset graphs [4,11,14]. These Cayley graphs enjoy several symmetry properties
which form the basis for the development of various communications algorithms; see [5,13].
Design of efficient Cayley graphs to serve as an interconnection network of parallel computing
systems also serves as an interesting application; see [10,12,14–17]. For more details about
interconnection networks, refer [8,9,18–21].

A recent development in the study of Cayley graphs is the generation of Cayley graph
expanders. Expanders are graphs which are sparse but nevertheless highly connected.

650 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Expanders have been useful in solving many fundamental problems in computer science
(including network design, complexity theory, coding theory, and cryptography) and in var-
ious pure mathematics (such as game theory, measure theory, group theory). Construction
of expanders has been a very daunting problem. Recently, it was proved that Cayley graphs
serve as an efficient class of graphs in efficiently (polynomial time) constructing expanders;
see [22]. In light of this work, new Cayley expanders (both deterministic and random) have
come into existence. For more details, we refer to [23,24].

References

[1] M.A. Armstrong, Groups and Symmetry, Springer-Verlag, New York, 1988.

[2] C.F. Gardiner, A First Course In Group Theory, Springer-Verlag, New York, 1980.

[3] S. Lang, Algebra, Third edition, Springer Science, New York, 1993.

[4] F.L. Wu, S. Lakshmivarahan and S.K. Dhall, Routing in a class of Cayley graphs of
semidirect products of finite groups, J. Parallel Dist. Comput., 60(5) (2000), 539–565.

[5] S. Lakshmivarahan, J.S. Jwo and S.K. Dhall, Symmetry in interconnection networks
based on Cayley graphs of permutation groups: A survey, Parallel Computing, 19(4)
(1993), 361–407.

[6] S. Akers and B. Krishnamurthy, A group-theoretic model for symmetric interconnection
networks, IEEE Trans. Comput., 38 (1989), 555–566.

[7] J.A. Bondy and U.S.R. Murty, Graph theory with applications, Elsevier, North-Holland,
1976.

[8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition, Wiley-
Interscience Series in Discrete Mathematics and Optimization, New York, 2000.

[9] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Aca-
demic Publishers, Dordrecht/Boston/London, 2001.

[10] S. Lakshmivarahan and S.K. Dhall, Ring, torus and hypercube architectures/algorithms
for parallel computing, Parallel Comput., 25(13–14) (1999), 1877–1906.

[11] S. Lakshmivarahan and S.K. Dhall, Analysis and Design of Parallel Algorithms: Arith-
metic and Matrix Problems, McGraw-Hill, New York, 1990.

[12] S. Lakshmivarahan and S.K. Dhall, A new hierarchy of hypercube interconnection
schemes for parallel computers, J. Supercomput., 2 (1988), 81–108.

[13] M.-C.H. Bertrand and D. Bertrand, Cayley graphs and interconnection networks, Kluwer
Academic Publishers, Boston, MA, 1997.

[14] J.-P. Huang, S. Lakshmivarahan and S.K. Dhall, Analysis of interconnection networks
based on simple Cayley coset graphs. In Parallel and Distributed Processing. Proc. of
the 5th IEEE Symp., 150–157, December 1993.

[15] P. Vadapalli and P.K. Srimani, Trivalent Cayley graphs for interconnection networks,
Inform. Process. Lett., 54 (1995), 329–335.

[16] P. Vadapalli and P.K. Srimani, A new family of Cayley graph interconnection networks
of constant degree four, IEEE Trans. Parallel Dist. Sys., 7 (1996), 26–32.

Cayley Graphs � 651

[17] J.S. Jwo, S. Lakshmivarahan and S.K. Dhall. A new class of interconnection networks
based on the alternating group. Networks, 23(4) (1993), 315–326.

[18] J. Duato, S. Yalamanchili and L.M. Ni, Interconnection networks: An engineering
approach, First edition, Morgan Kaufmann, San Francisco, CA, 2002.

[19] S.-Y. Hsieh and T.-T. Hsiao, The k-valent graph: A new family of Cayley graphs for
interconnection networks, Int. Conf. Parallel Process., 1 (2004), 206–213.

[20] L.-H. Hsu and C.K. Lin, Graph Theory and Interconnection Networks, Taylor & Francis
Group, New York, 2008.

[21] D.S.L. Wei, F.P. Muga and K. Naik, Isomorphism of degree four Cayley graph and
wrapped butterfly and their optimal permutation routing algorithm, IEEE Trans. Par-
allel Dist. Sys., 10(11) (1999), 1290–1298.

[22] N. Alon and Y. Roichman, Random Cayley graphs and expanders, Random Struct.
Algorithms, 5 (1997), 271–284.

[23] E. Rozenman, A. Shalev and A. Wigderson, A new family of Cayley expanders, In Proc.
36th Ann. ACM Symp. Theor. Comput., 445–454, New York, 2004. ACM.

[24] E. Rozenman, A. Shalev and A. Wigderson, Iterative construction of Cayley expander
graphs, Theor. Comput., 2(1) (2006), 91–120.

C H A P T E R 26

Graph Embedding and
Interconnection Networks
S.A. Choudum

Lavanya Sivakumar

V. Sunitha

CONTENTS

26.1 Embeddings and Quality Measures . 653
26.2 Embedding into Hypercubes . 656

26.2.1 Cubical Graphs . 657
26.2.2 Trees in Hypercubes . 662
26.2.3 Collection of Cycles, Paths, and Trees in Hypercubes 670

26.3 Embedding into Variants of Hypercubes . 674
26.3.1 Embedding into Augmented Cubes AQn . 674
26.3.2 Embedding into Crossed Cubes CQn . 680
26.3.3 Embedding into Twisted Cubes TQn . 681
26.3.4 Embedding into Enhanced Cubes Qn,k . 681
26.3.5 Embedding into Hamming Graphs H b,n . 681

26.4 Summary . 682

G raph embeddings are a subject of study in mathematics and computer science. In one
of the applications, they are mathematical models capturing the issues involved in the

implementation of parallel algorithms on a parallel computer. Theoretically too they are
significant: they generalize the fundamental concepts of graph isomorphism and subgraph
relation. This chapter is a brief report on fundamental problems and their progress with
emphasis on embeddings of various computational graphs into hypercubes and variants of
hypercubes.

26.1 EMBEDDINGS AND QUALITY MEASURES

We assume that the reader is familiar with the contents of Chapter 24.

C5955–C0026.tex 653 2015/11/4 12:39pm

653

654 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Definition 26.1 Let ℘(G) denote the set of all paths in a graph G. An embedding of a guest
graph G(V, E) into a host graph H(W, F) is a pair of functions (f, ρ) where f : V → W,
ρ : E → ℘(H), and ρ maps an edge (u, v) of G onto a path connecting f(u) and f(v) in H.

It is not necessary that the functions f or ρ be injective or surjective. However, we will be often
seeking the functions with these properties. They are practically more useful. An extensively
studied special case of (f, ρ) is one in which ρ maps (u, v) to a shortest (f(u), f(v))-path. We
write ρ(u, v), instead of ρ((u, v)) for the image of (u, v) under ρ. For brevity, an embedding
(f, ρ) may be denoted by f alone, when ρ is clear from the context, this is especially so when
ρ maps (u, v) onto a shortest (f(u), f(v))-path.

Several parameters are associated with an embedding (f, ρ) to measure its qualities. In
the following definitions, (f, ρ) is an embedding of a graph G(V, E) into a graph H(W, F).

Definition 26.2 The load of a vertex w in H is the number of vertices of G mapped onto
w; that is, load(w) = |f−1(w)|. The load of an embedding f is then defined as

load(f) := max{|f−1(w)| : w ∈ V (H)}.

In the context of parallel processing, an embedding which maps a set P of distinct nodes of
the guest graph onto a single node p of the host graph will reduce the parallel processing
intended to be performed by the distinct processors of P in the guest graph to a sequential
operation to be performed by the single processor p in the host graph in actual processing.
So, one aims to minimize the load factor.

Definition 26.3 The dilation of an edge e(u, v) in G is the length of the path ρ(u, v). It is
denoted by dil(e). The dilation of the embedding (f, ρ) is then defined as

dil(f, ρ) := max{dil(e) : e ∈ E(G)}.

When ρ is a map which associates an edge (u, v) with a shortest (f(u), f(v))-path, the above
definition of dilation can be rewritten as

dil(f) := max{d(f(u), f(v); H) : (u, v) ∈ E(G)}.

Clearly, there is a close relationship between dilation and computational latency in the host
graph. If t is the time required to pass a message from u to v through a link e(u, v) in the
guest graph, then t · dil(e) is the time required to pass the message from f(u) to f(v) in the
host graph.

A load-1 embedding is an injective map and a dilation-1 embedding preserves adjacency.
So, there is a load-1, dilation-1 embedding of G into H if and only if G is isomorphic to a
subgraph of H. Hence it is convenient to say that G is a subgraph of H whenever there is a
load-1, dilation-1 embedding of G into H.

Definition 26.4 The edge congestion of an edge e′ of H is defined as

ec(e′) := |{e ∈ E(G) : e′ ∈ ρ(e)}|.

The edge congestion of (f, ρ) is then defined as

ec(f, ρ) := max{ec(e′) : e′ ∈ E(H)}.

C5955–C0026.tex 654 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 655

Edge-congestion again leads to computational latency. For example, if a link (s, t) ∈ E(H)
is on two paths P1 = P (u, v) and P2 = P (x, y), and if the messages to be passed through
P1 and P2 reach the node s at the same time, then one of the messages has to wait until
the other passes through the link (s, t). (In such cases, the priority protocol is assigned a
priori.) The edge congestion may also lead to deadlock as the same link in the host graph
may have to serve the demands of a number of message routings. Clearly, a load-1, dilation-1
embedding has edge congestion-1.

When one aims to minimize the congestion ec(f, ρ), the map ρ need not necessarily
associate an edge (u, v) with a shortest (f(u), f(v))-path.

Definition 26.5 The node congestion of a node x ∈ V (H) is defined as

nc(x) := |{e ∈ E(G) : x ∈ ρ(e)}|.

The node congestion of (f, ρ) is then defined as

nc(f, ρ) := max{nc(x) : x ∈ V (H)}.

Again it is easy to see that higher the node congestion, higher the computational latency. An
illustration of embedding is given in Figure 26.1. Here vi ∈ V (G) is mapped into Vi ∈ V (H).

Definition 26.6 The expansion of an embedding f is defined as

exp(f) := |V (H)|
|V (G)|

.

Unlike the previous four measures, this is not related to the computational latency. Rather
it gives a measure of the number of unutilized processors by f in H. So, given f , it can be
used to select an appropriate H to bring down the overhead cost.

Clearly, a load-1 embedding has expansion at least 1. From a practical point of view, one
prefers to have an embedding with load-1, dilation-1, and expansion ε, where 1 ≤ ε < 2.
However, in many cases such an embedding may not exist. Note that there exists a load-1,
dilation-1, and expansion-1 embedding of a graph G into a graph H if and only if G is a
spanning subgraph of H.

These measures are worst-case measures. On the same lines average measures are also
defined. A central problem on graph embeddings can now be formulated.

Meta problem: Given two graphs G and H, find an embedding that maps G into H with
minimum load, minimum dilation, minimum node-congestion, minimum edge-congestion,
and minimum expansion.

v5v4

V5V4
v1 v2 v3

V3

V1, V2

HG

Figure 26.1 Embedding (f, ρ) of G into H with load 2, dilation 3, edge congestion 3, and node
congestion 2.

C5955–C0026.tex 655 2015/11/4 12:39pm

656 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

This is too general a problem to hope for a neat solution. For arbitrary graphs G and
H, there need not exist an embedding with all the parameters having minimum value. The
following is a well-known NP-complete decision problem which is related to the above meta
problem.

Problem 26.1 (Subgraph problem)

Input: Two graphs G and H.
Question: Is G a subgraph of H?

Linear arrays (i.e., paths) and cycles being most trivial topologies, their embeddings into
networks have gained a lot of importance. Through Sekanina’s [1,2] and Karaganis’s [3]
result on Hamiltonian-connectedness of cubes of connected graphs, it becomes evident that
cycles and hence linear arrays can be embedded with constant measures into any network.
Below, we present this result using the graph embedding terminologies.

Theorem 26.1 [1,2] A cycle C on n vertices can be embedded into an n-node connected
graph G with load-1, dilation ≤ 3, and edge-congestion ≤ 2.

Proof. Consider any spanning tree of G and traverse the tree in a depth-first order (prepost-
order). This traversal produces a listing of the vertices of G in a cyclic order (v0, v1, . . ., vn−1)
such that the distance between vk and v(k+1) mod n is at most 3, for 0 ≤ k < n. So, the load
and the dilation of the resulting embedding are 1 and ≤ 3, respectively. Since any edge of G
is traversed at most twice (once in each direction), the edge-congestion of the embedding is
at most two. �

26.2 EMBEDDING INTO HYPERCUBES

In this section, we discuss embeddings in which the hypercubes are host graphs. We begin
with an embedding of an arbitrary graph into a hypercube.

Theorem 26.2 [4,5] If G is a graph on n + 1 vertices, then there exists a subdivision G′ of
G such that G′ is isomorphic to a subgraph of Qn. In particular, Kn+1 can be embedded into
Qn with dilation 2.

Proof. Since every graph G on n+1 vertices is a spanning subgraph of Kn+1, in order to prove
the theorem, it is enough to prove that there exists a subdivision of Kn+1 which is isomorphic
to a subgraph of Qn. Let v1, v2, . . ., vn+1 be the vertices of Kn+1. For 1 ≤ i < j ≤ n, subdivide
the edge (vi, vj) of Kn+1 exactly once by introducing a new vertex vi,j on it. Let K ′ denote
this subdivision of Kn+1. Note that V (K ′) = {vi : 1 ≤ i ≤ n + 1} ∪ {vi,j : 1 ≤ i < j ≤ n}.
We use the following notation to denote some of the vertices of Qn:

0n := 0 . . . 0︸ ︷︷ ︸
n times

, 0n
x := 0 . . . 0︸ ︷︷ ︸

x−1 times

1 0 . . . 0︸ ︷︷ ︸
n−x times

, 0n
x,y := 0 . . . 0︸ ︷︷ ︸

x−1 times

1 0 . . . 0︸ ︷︷ ︸
y−x−1 times

1 0 . . . 0︸ ︷︷ ︸
n−y times

We now define a bijection f between V (K ′) and the set {0n} ∪ {0n
i : 1 ≤ i ≤ n} ∪ {0n

i,j : 1 ≤
i ̸= j ≤ n} as

f(vn+1) = 0n, f(vi) = 0n
i , 1 ≤ i ≤ n, f(vi,j) = 0n

i,j , 1 ≤ i < j ≤ n.

Clearly, this bijection yields an isomorphism between K ′ and a subgraph of Qn and in turn
a dilation-2 embedding from Kn+1 to Qn. �

C5955–C0026.tex 656 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 657

Although, from the above theorem, we have an embedding of any arbitrary graph into a
hypercube, the expansion (2n/(n + 1)) is too large to be of any practical use. Therefore, one
aims at finding better embeddings of graphs into hypercubes.

From the recursive construction of hypercubes, it follows that, there exists an embedding
from Qm to Qn with load-1 and dilation-1 whenever m ≤ n. The following result is about
embedding from Qm to Qn when m > n.

Theorem 26.3 [6] Hypercube Qm can be embedded into hypercube Qn with dilation-1 and
an optimal congestion of 2m−n, when m > n. �

Definition 26.7 Given a graph G, let n be the smallest integer such that 2n ≥ |V (G)|. Then

• Qn is called the optimal hypercube of G.

• Qn+1 is called the next-to-optimal hypercube of G.

Remark 26.1 The expansion of any embedding of a graph G into its optimal hypercube
will lie in the interval [1,2).

26.2.1 Cubical Graphs

Definition 26.8 A graph G is said to be cubical if it is a subgraph of Qn, for some n.

It is easy to see that every even cycle is cubical and that every tree is cubical. A standard
technique to show that such an elementary graph G, with a certain property P , is cubical is
by induction on the number of vertices in G. It involves the following four steps:

i. Delete certain edges of a matching M in G to obtain two smaller subgraphs G1 and
G2, both having property P . It is not always easy to find such an M .

ii. Choose a hypercube Qn of large dimension n and canonically decompose it into two
smaller hypercubes say Q0

n−1 and Q1
n−1.

iii. Embed G1 into Q0
n−1 and G2 into Q1

n−1. Here one uses symmetric properties of the
hypercubes, for convenience these properties are stated under Proposition 24.10 as
given in Chapter 24.

iv. Finally combine G1 and G2 by utilizing the edges of the perfect matching which exists
between Q0

n−1 and Q1
n−1.

As an illustration of this technique we prove the following result that every tree is cubical [7].

Theorem 26.4 Every tree Tn on n vertices is a subgraph of Qn−1, where n ≥ 2.

Proof. We prove the result by induction on n. Clearly, T2 is contained in Q1. So we proceed
to the induction step. Let (v, w) be an edge in Tn where n ≥ 3. By deleting (v, w), we obtain
two smaller trees, say T 1 and T 2, where v ∈ T 1 and w ∈ T 2. Decompose Qn−1 into smaller
hypercubes Q0

n−2 and Q1
n−2. By induction hypothesis, T 1 is a subgraph of Q0

n−2 and T 2 is
a subgraph of Q1

n−2. Since hypercubes are vertex-symmetric (see Proposition 24.10 as given
in Chapter 24), we can assume that v is mapped onto a vertex 0X of Q0

n−2 and that w is
mapped onto the vertex 1X of Q1

n−2. Since 0X and 1X are adjacent in Qn−1, we conclude
that Tn is isomorphic to a subgraph of Qn−1. �

C5955–C0026.tex 657 2015/11/4 12:39pm

658 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Observe that, embedding a graph G into Qn with load-1 and dilation-1 is equivalent to
labeling the vertices of G using n-bit binary strings such that the labels of the adjacent
vertices differ in exactly one position. For example, any path or an even cycle admits such a
labeling.

The next theorem states a few necessary conditions for a graph to be cubical; its proof
follows since hypercubes have these properties.

Theorem 26.5 If G is cubical then the following hold:

i. G is bipartite.

ii. K2,3 is not a subgraph of G.

iii. If G has bipartition [X, Y] and it is subgraph of Qn, for some n, then |X| ≤ 2n−1,
|Y | ≤ 2n−1.

iv. ∆(G) ≤ n.

v. Given any vertex v of G, the number of vertices at distance at most d from v is
≤

(n
0
)

+
(n

1
)

+ · · · +
(n

d

)
. �

However, the problem of deciding whether a given graph G is cubical is NP-complete.

Theorem 26.6 [8] Given an arbitrary undirected graph G with maximum degree at most
four, it is NP-complete to decide whether G is cubical. �

If the maximum degree of G is at most two, then every component of G is a path or a cycle
and so, one can decide in linear time whether G is cubical. However, the time complexity of
the following decision problem is unknown.

Problem 26.2

Input: A graph G with maximum degree three.
Question: Is G cubical?

Theorem 26.7 [9] Given an undirected graph G and positive integers k and n, it is NP-
complete to decide whether G is embeddable into Qn with load-1 and dilation-k. The problem
is NP-complete even when k = 1. That is, given n, the problem of deciding whether G is a
subgraph of Qn is NP-complete. �

For similar results on NP-completeness of congestion-1 embeddings we refer to [10]. Following
theorem characterizes cubical graphs.

Theorem 26.8 [11] A graph G is a subgraph of Qn if and only if there exists a proper n-edge
coloring of G such that:

1. In every open path of G, at least one color appears an odd number of times;
(open path := origin and terminus are nonadjacent in G).

2. In every cycle of G, no color appears an odd number of times.

C5955–C0026.tex 658 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 659

Proof. Assume, without loss of generality, that G is connected.
First let G ⊆ Qn; for x ∈ V (G), let X denote the corresponding vertex in Qn. Define
C : E(G) → {1, 2, 3, . . ., n} by C(e(x, y)) = i, if X and Y differ in position i. Clearly,
C is a proper n-edge coloring of G. Moreover, if P := ⟨v1, v2, . . ., vt⟩ is a path in G and
θ(P) = {i : there are odd number of edges on P colored i}, then the vertices (x1x2 . . . xn)
and (z1z2 . . . zn) are related as follows:

zi =
{

xi, if i ∈ θ(P),
xi, if i ∈ {1, 2, . . ., n} \ θ(P).

It now easily follows that C satisfies (1) and (2).
Next to prove the converse, let C : E(G) → {1, 2, 3, . . ., n} be a proper n-edge coloring of

G satisfying (1) and (2). Define f : E(G) → V (Qn) by f(e) = (0 . . . 010 . . . 0), where 1 appears
in the jth position if C(e) = j. Choose a vertex x0 in G and define ϕ : V (G) → V (Qn) by

ϕ(x0) = (00 . . . 0),
and

ϕ(x) = f(e1) ⊕ f(e2) ⊕ · · · ⊕ f(er),
if⟨x0e1x1e2 . . . xr−1erxr(= x)⟩ is a (x0, x) − path P in G.

Observe that if θ(P) = {j : j appears an odd number of times on the edges of P}, then
ϕ(x) = (z1z2 . . . zn) where

zi =
{

1, if i ∈ θ(P),
0, if i ∈ {1, 2, . . ., n} \ θ(P).

Using this observation it is straight forward to verify that ϕ(x) is independent of the choice
of (x0, x)-path (i.e., ϕ is well defined) and that ϕ is a embedding of G into Qn with load-1
and dilation-1. �

See Livingston and Stout [9] for more details on cubical graphs.

Theorem 26.9 [12] If a graph G on n vertices is cubical, then G ⊆ Qn−1.

Proof. Let p be the smallest integer such that G ⊆ Qp. For any i, there is at least one
edge of G in [Q0,i

p−1, Q1,i
p−1]; else G ⊆ Q0,i

p−1 (or Q1,i
p−1), a contradiction to the minimality of p.

So, by deleting the edges of G which are along the dimension i, we increase the number of
components. By successively deleting the edges of dimension i = 1, 2, . . ., n − 1, every time
we increase the number of components in the residual of G. So, after at most n − 1 steps,
the number of components in the residual graph H of G is n, that is no edge of G remains.
Hence, every edge of G is an edge of dimension i in Qp, for some i ∈ {1, 2, . . ., n − 1}. We
conclude that G ⊆ Qn−1. �

The above theorem motivates the following concept.

Definition 26.9 If k is the smallest integer such that G is a subgraph of Qk, then k is called
the cubical dimension of G and it is denoted by cd(G).

The problem of finding cd(G) does not get easier with the knowledge that G is cubical.

Theorem 26.10 [9] The problem of finding the cubical dimension of an arbitrary cubical
graph is NP-complete. �

C5955–C0026.tex 659 2015/11/4 12:39pm

660 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Clearly, a graph is cubical if and only if its components are cubical. However, if a cubical
graph G has components G1, G2, . . ., Gk then the problem of expressing cd(G) as a function
of cd(Gi), 1 ≤ i ≤ k, seems to be difficult. However, one can use the recursive definitions of
a hypercube to derive rough bounds.

In the next theorem, we list a few known results on cubical dimension.

Theorem 26.11 For any cubical graph G on p vertices, the following inequalities hold.

1. ⌈log p⌉ ≤ cd(G) ≤ p − 1.

2. If G is a connected cubical graph (with δ(G) ≥ 2), then cd(G) ≤ 2(p − 1)/3 [9].

3. If G is a 2-connected cubical graph then cd(G) ≤ p/2 [8]. �

Note that, if a graph G on p vertices is a subgraph of Qn, then 2n ≥ p, that is n ≥ ⌈log p⌉,
and hence the lower bound of Theorem 26.11(1) follows immediately. Further, the upper
bound of Theorem 26.11(1) follows by Theorem 26.9.

Remark 26.2 Each of the bounds given by the above theorem is tight in the following sense.

1. There are graphs whose cubical dimensions attain the bounds of Theorem 26.11(1).
For example, cd(Pp) = ⌈log p⌉ and cd(K1,p−1) = p − 1.

A tighter lower bound can be obtained by looking at the bipartite sets X, Y of G: If
G ⊆ Qn, then |X| ≤ 2n−1 and |Y | ≤ 2n−1. For example, for any connected bipartite
graph G[X, Y] where |X| = 9, |Y | = 6, we deduce that cd(G) ≥ 5 = ⌈log p⌉ + 1.

2. There are cubical graphs on p nodes with cubic dimension 2(p − 1)/3. However, a
tighter bound can be given for graphs with no cut-vertices.

3. There are 2-connected graphs on p nodes with cubic dimension p/2.

Both Havel and Morávek [11] and Garey and Graham [12] independently introduced critical
graphs to obtain structural description of cubical graphs. A few results and open problems
are found in both.

Definition 26.10 A graph G is said to be Q-critical if G is not cubical but every proper
subgraph of G is cubical.

Clearly, every odd cycle is Q-critical. Some examples of bipartite Q-critical graphs are shown
in Figure 26.2.

Theorem 26.12 [11,12] For any integer g, there exists a bipartite Q-critical graph with
smallest cycle having length greater than g. �

Problem 26.3 [12] Does every Q-critical graph have a vertex of degree 2?

Problem 26.4 [12] How to combine two Q-critical graphs to obtain a new Q-critical graph?

In a load-1 and dilation-1 embedding, we demand that the map preserve the adjacency.
We can further demand that the map preserve the distance between any two vertices, as in
isometric embeddings in classic analysis.

C5955–C0026.tex 660 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 661

Figure 26.2 Examples of bipartite Q-critical graphs.

Definition 26.11 A graph G is said to be isometrically embeddable into Qn if there exists
a one-one function f : V (G) → V (Qn) such that dist(u, v; G) = dist(f(u), f(v); Qn), for all
u, v ∈ V (G). A graph isometrically embeddable into a hypercube of some dimension is called
a partial hypercube.

Several characterizations of isometrically embeddable graphs are known. We list some in
Theorem 26.13. These in turn have led to algorithms for their recognition (see [13]).

Theorem 26.13 Let G be a connected bipartite graph. Then the following statements are
equivalent.

a. G is isometrically embeddable in a hypercube.

b. For a pair of vertices v1, v2 in G, let c(v1, v2) = {x ∈ V (G) : dist(x, v1) < dist(x, v2)}.
Then for every edge (v1, v2) of G and for all x, z ∈ c(v1, v2), d(x, y) + d(y, z) =
d(x, z) ⇒ y ∈ c(v1, v2); that is, for every edge e with end vertices v1, v2, both c(v1, v2)
and c(v2, v1) are convex [14].

c. The relation θ(G), defined on E(G) as follows, is transitive. If e = (x, y) and f = (u, v)
are two edges, then e θ f iff d(x, u)+d(y, v) ̸= d(x, v)+d(y, u). (In general, θ is reflexive
and symmetric but need not be transitive) [15].

d. The distance matrix of G has exactly one positive eigenvalue [16]. �

Clearly, every isometrically embeddable graph is cubical. However, the converse is not true;
that is, there are cubical graphs which are not partial hypercubes. For instance, the graph
shown in Figure 26.3 is cubical as is evident through the labeling but it is not isometri-
cally embeddable into a hypercube because its distance matrix has more than one positive
eigenvalue.

The strict hierarchy of hypercubes to bipartite graphs is shown in Figure 26.4 and the
time-complexity for recognizing them is shown in Table 26.1.

C5955–C0026.tex 661 2015/11/4 12:39pm

662 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

00000

00001

00010

00100

10001

10010

10100

10000

01000 11000

Figure 26.3 Cubical graph which is not a partial hypercube.

Hyper cubes

Median graphs

Partial cubes

Cubical graphs

Bipartite graphs

Figure 26.4 Hierarchy of graphs.

TABLE 26.1 Time Complexity for Recognition for the Hierarchy of
Graphs

Class of Graphs with n
Vertices and m Edges Time Complexity for Recognition

Hypercubes O(m + n) [13]
Median graphs O((m log n)1.41) [17]
Partial cubes O(mn)
Cubical graphs NP-complete
Bipartite graphs O(m + n)

26.2.2 Trees in Hypercubes

Tree embeddings have received maximum attention. From a programming perspective, trees
form an important class of computational structures. They naturally arise in the design of
sequential and parallel algorithms which require basic operations like merging, sorting, and
searching. Despite the easy proof that every tree is cubical (see Theorem 26.4), the following
problems are open and consequent decision problems are known to be NP-complete.

Problem 26.5 Which trees are subgraphs of Qn?

Theorem 26.14 [18] Given a tree T and an integer n, it is NP- complete to decide if T is
a subgraph of Qn. �

C5955–C0026.tex 662 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 663

Problem 26.6 [18] Given k (≥ 3) and n, find the complexity of the problem of embedding
a tree T with ∆(T) = k into Qn. The problem is open even for k = 3.

To illustrate the difficulties involved in embedding trees in hypercubes we state and prove a
few basic theorems. Before that we introduce some necessary definitions and notations.

Definition 26.12 A bipartite graph is called equibipartite or equipartite if its two parts are
of equal order.

Hypercubes are equibipartite graphs; see Proposition 24.2 as given in Chapter 24.

Definition 26.13

1. A rooted tree is a tree in which a vertex is arbitrarily chosen and designated as its root.

2. A k-ary tree is a rooted tree with root having degree at most k, and every other vertex
having degree at most k + 1.

3. A vertex of degree one is called a leaf. All other vertices are called internal vertices.

4. The maximum distance between the root and a leaf is called the height of the tree.

5. The complete k-ary tree is a k-ary tree in which the root has degree k, every internal
vertex has degree k + 1, and all the leaves are at the same distance from the root.

6. If ⟨v0, v1, . . .⟩ is a path in a k-ary tree where v0 is the root, then vi+1 is called a child
of vi, vi+t is called a descendent of vi, and vi is called an ancestor of vi+t.

Any tree T with ∆(T) ≤ k + 1 is a k-ary tree; designate a vertex of degree at most k as its
root. In a k-ary tree every vertex has at most k children. A complete k-ary tree of height h
has 1 + k + k2 + · · · + kh = (kh+1 − 1)/(k − 1) vertices (k ̸= 1).

A 2-ary tree is often called a binary tree. In the following, CBTn denotes a complete
binary tree; it has 2n − 1 vertices and height n − 1. Although CBTn has 2n − 1 vertices and
Qn has 2n vertices, it is not a subgraph of Qn. The proof uses the fact that Qn is equibipartite
where as CBTn is not equibipartite.

Theorem 26.15 [19] CBTn is not a subgraph of Qn, for every n ≥ 3.

Proof. Consider the level decomposition [N0(r), N1(r), . . ., Nn−1(r)] of CBTn where Ni(r)
denotes the set of vertices at distance i from the root r. Then, S = N0(r) ∪ N2(r) ∪ · · ·
and T = N1(r) ∪ N3(r) ∪ · · · are the two bipartite sets of CBTn with one part containing
more than 2n−1 vertices. Hence CBTn ̸⊆ Qn. See Figure 26.5 for an illustration showing
CBT3 ̸⊆ Q3. �

Theorem 26.16 [19] CBTn is a subgraph of Qn+1, for n ≥ 1.

Proof. Let G(n; r, u, v) be the tree on 2n + 1 vertices obtained from CBTn with root r, by
adding two new vertices u, v and two new edges (r, u), (u, v). We prove that this supergraph
G(n; r, u, v) of CBTn is a subgraph of Qn+1, by induction on n.
The case n = 1 is obvious. Assume that the theorem holds for n − 1 and consider a canonical
decomposition Q

′

n ⊖Q
′′

n of Qn+1. By induction hypothesis, G(n−1; r′, u′, v′) is a subgraph of
Q′

n. Let the path < r′, u′, v′> of the tree be mapped onto the path <R′, U ′, V ′> in Q′
n. Using

induction hypothesis and P3-symmetry of Q
′′

n, we can embed another copy of G(n−1; r′, u′, v′)

C5955–C0026.tex 663 2015/11/4 12:39pm

664 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

in Q′′
n where the path < r′, u′, v′ > is mapped onto the path <U ′′, V ′′, W > in Q′′

n, such that
U ′′ and V ′′ are the unique vertices of Q′′

n that are adjacent to U ′ and V ′ in Qn+1. Now,
we combine these two embeddings by adding the edges (U ′, U ′′), (V ′, V ′′) and deleting the
edges (U ′′, V ′′) and (V ′′, W) to obtain G(n; r, u, v) where < r, u, v > is mapped onto the path
<U ′, V ′, V ′′ >; refer to Figure 26.6 for an illustration of the proof. �

Corollary 26.1 For n ≥ 3, cd(CBTn) = n + 1.

Proof. Follows from Theorems 26.15 and 26.16 �

Definition 26.14 In CBTn let r be the root and x, y be its children. The tree obtained by
subdividing the edge (r, y) with a new vertex s is called a double rooted complete binary tree
with roots r and s. It is denoted by D(n; x, r, s, y) or D(n); see Figure 26.7.

Clearly, every D(n) is equibipartite and contains 2n vertices. It has been discovered several
times that D(n) spans Qn.

Theorem 26.17 For every n ≥ 1, the double rooted complete binary tree on 2n vertices
spans Qn.

Proof. Theorem is proved by induction on n. The base case of n = 1 can be easily verified.
Let D(n − 1; e, f, g, h) be a vertex disjoint copy of D(n − 1; a, b, c, d). Let Qn = Q

′

n−1 ⊖Q
′′

n−1
be a canonical decomposition of Qn. If A′ is a vertex of Q′

n−1, then we shall denote by A′′, the
unique vertex of Q′′

n−1 adjacent to A′ in Qn. By induction hypothesis D(n − 1; e, f, g, h) and

r

CBT3 Q3

Figure 26.5 CBT3 is not a subgraph of Q3, since one part of CBT3 has five vertices.

CBTn−1 CBTn−1

V ′

U′

R′

W

V ″

U″

G (n − 1; r ′, u ′, v ′) ⊆ Q′n−1 G (n − 1; r ′, u ′, v ′) ⊆ Q″n−1

Figure 26.6 Illustration to explain the induction step of the proof of Theorem 26.16.

C5955–C0026.tex 664 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 665

r

x y

000 100

010 101

011 111110 001

s

(a) (b)

Figure 26.7 (a) Double rooted complete binary tree D(3) and (b) an embedding showing
D(3) ⊆ Q3.

D(n − 1; a, b, c, d) are embeddable into Q′
n−1 and Q′′

n−1, respectively. Let the path ⟨e, f, g, h⟩
be mapped onto a path ⟨E′, F ′, G′, H ′⟩ of Q′

n−1. By the P3-symmetry of Q′′
n−1, one can choose

an embedding of D(n − 1; a, b, c, d) into Q′′
n−1 such that the path ⟨a, b, c, d⟩ is mapped onto

the path ⟨F ′′, G′′, H ′′, Y ⟩ of Q′′
n−1.

Deleting the edges (G′, H ′), (F ′′, G′′) and adding the edges (F ′, F ′′), (G′, G′′), (H ′, H ′′)
we get a double rooted complete binary tree on 2n vertices with roots G′, G′′; see Figure 26.8
for an illustration of the induction step. �

Corollary 26.2 CBTn has a load-1 and dilation-2 embedding into Qn, where exactly one
edge has dilation-2.

Proof. The construction of D(n) from CBTn shows that CBTn has a load-1 and dilation-2
embedding into D(n), with only one edge with dilation 2. So, appealing to Theorem 26.17
we have the corollary. �

Theorem 26.18 [20] CBTn has a load-2 and dilation-1 embedding into Qn−1 where n ≥ 2.

Proof. Let f : D(n; a, b, c, d) → Qn be the load-1 and dilation-1 embedding described in the
proof of Theorem 26.17. Without loss of generality, let f(b) = 0n and f(c) = 0j−1 1 0n−j ; there
is no loss of generality here, since Qn is edge-symmetric. Let p : Qn → Qn−1 be the embedding
defined by p(X) = X(−j), for every X in Qn, where X(−j) denotes the binary string obtained
by deleting the jth co-ordinate of X. It is now easy to verify that p ◦ f : D(n) \ {c} → Qn−1
is a load-2 and dilation-1 embedding of CBTn into Qn−1. �

CBTn−2

CBTn−2

CBTn−2

CBTn−2

D (n − 1; e, f, g, h) ⊆ Q′n−1

D (n − 1; a, b, c, d) ⊆ Q″n−1

E′ F ′ G′ H′

F ″ G″ H ″ Y

Figure 26.8 Illustration to explain the induction step in the proof of Theorem 26.17.

C5955–C0026.tex 665 2015/11/4 12:39pm

666 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

These and similar results lead to a long standing conjecture of Havel.

Conjecture 26.1 [21] Every equipartite binary tree on 2n vertices spans Qn. Equivalently,
every binary tree with bipartition [X, Y] such that |X| ≤ 2n−1 and |Y | ≤ 2n−1 is a subgraph
of Qn.

In support of the conjecture, several kinds of binary trees with additional constraints have
been shown to be embeddable into hypercubes. Two kinds of techniques have been employed
to obtain these embeddings.

Technique 1: Given a binary tree T on 2n vertices (satisfying a certain property P), first
show that there exists a small set S of independent edges whose deletion yields a tree T ′

on 2n−1 vertices satisfying P , and a forest T
′′ on 2n−1 vertices. Embed T ′ into Q′

n−1 by
induction and embed T

′′ into Q′′
n−1. Some effort is required to find a proper S and to embed

(inductively) the forest T
′′ into Q

′′

n−1.
Finally, combine T ′ and T ′′ by using the edges of the perfect matching that joins Q′

n−1
and Q

′′

n−1 to obtain a copy of T in Qn. Here one uses the symmetric properties of hypercubes.
See the proof of Theorem 26.4.

Technique 2: Instead of showing that T is a spanning subgraph of Qn, identify a spanning
subgraph G′ of Qn where G′ is a supergraph of T . Some effort is required to guess this
intermediate graph G′ and then further efforts are required to show that G′ ⊆ Qn. See the
proof of Theorem 26.16.

To illustrate these techniques we outline proofs of two more theorems. First theorem is
proved using Technique 1, and the second theorem is proved using Technique 2. Both the
theorems prove Havel’s conjecture for special classes of trees called caterpillars. There are
various definitions of caterpillars in the literature. In the following, we unify these.

Definition 26.15 A k-caterpillar C is a tree having maximum degree k and a path P such
that all the vertices of degree k lie on P , and by deleting the vertices of P we obtain a
collection of paths. If such a path Qi is incident with the vertex vi of P , then Li =< vi, Qi >
is called a leg of C. The path P is called a spine of C. A 3-caterpillar is called a binary
caterpillar; see Figure 26.9 for a binary caterpillar.

Theorem 26.19 [22] Let n ≥ 2. Every equipartite binary caterpillar on 2n vertices in which
every leg has length at most one is a spanning subgraph of Qn.

Proof. The proof uses induction on n and the canonical decomposition Qn = Q′
n−1 ⊖ Q′′

n−1.
Crucial assertions are the following:

Figure 26.9 Binary caterpillar.

C5955–C0026.tex 666 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 667

1. On the spine of C there exist at most two edges whose deletion results in a balanced
caterpillar T ′ on 2n−1 vertices, and a balanced forest T ′′ on 2n−1 vertices with at most
two components.

2. T ′ can be embedded in Q′
n−1 such that the ends of its spine are at distance at most

two in Q′
n−1.

3. T ′′ can be embedded in Q′′
n−1 such that the ends attached to T ′ in C are at distance

at most two in Q′′
n−1.

4. Using the symmetric properties of Q′
n−1 and Q′′

n−1, the embeddings of T ′ and T ′′ can
be combined to get an embedding of C in Qn. �

Definition 26.16 Take two paths ⟨a1, a2, . . ., ak⟩ and ⟨b1, b2, . . ., bk⟩ and join each pair of
vertices ai, bi, 1 ≤ i ≤ k, with a new path Pi. The resulting graph is called a ladder, and the
paths Pi are called its rungs; see Figure 26.10.

Theorem 26.20 [23] Every binary caterpillar C on 2n vertices in which every leg has even
length is a spanning subgraph of Qn.

Outline of the Proof:

1. At the outset observe that C is equipartite which is a necessary condition for embed-
dability of C in a hypercube.

2. It is first shown that every ladder L on 2n vertices in which every rung has even length
spans Qn.

(This is done by induction on n. L is carefully divided into two ladders L1 and L2
each on 2n−1 vertices, by deleting certain edges and adding certain edges. Consider
the canonical decomposition of Qn into two subcubes Q′

n−1 and Q′′
n−1. By induction,

embed L1 into Q′
n−1 and L2 into Q′′

n−1. Retrieve the deleted edges of L from the perfect
matching that combines Q′

n−1 and Q′′
n−1.)

3. Join the end vertices of the legs of C by a path to obtain a ladder L.

4. It follows by (2) that C is a spanning subgraph of Qn. �

We next address the following problem.

b1 b2 b3 b4 b5

a1 a2 a3 a4 a5

Figure 26.10 Ladder with rungs consisting of 5, 3, 3, 5, 7 vertices.

C5955–C0026.tex 667 2015/11/4 12:39pm

668 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Problem 26.7 If a binary tree tree T is not a subgraph of Qn, then what is the minimum
load, minimum dilation, minimum congestion, and minimum expansion required to embed T
into Qn.

A central theorem on this topic is the following.

Theorem 26.21 [24] Every binary tree on N nodes, 2n < N ≤ 2n+1, can be embedded into
an (n + 1)-dimensional hypercube with load-1 and every other parameter, namely dilation,
node congestion, edge congestion, bounded by a constant. �

Theorem 26.22

a. Every binary tree can be embedded with load-1, dilation-8, and constant node congestion
into its optimal hypercube [25].

b. Every binary tree can be embedded with load-1 and dilation-6 into its optimal hypercube
[26].

c. Every binary tree can be embedded in a hypercube with load-1, dilation-3, and expansion
O(1) [26].

d. Every binary tree can be dynamically embedded (i.e., recursively level by level) in a
hypercube with load-1, dilation-9, constant node congestion, constant edge congestion,
and nearly optimal expansion [27]. �

Theorem 26.23 [28] Every N-node binary tree is a subgraph of the hypercube with
O(N log N) nodes. �

This is an improvement over an earlier result of Afrati et al. [8], who showed that every
N -node binary tree is a subgraph of the hypercube with O(N2) nodes.

We next list more open problems in this area.

Conjecture 26.2 [29] Any binary tree is embeddable into its optimal hypercube with dilation
at most 2.

Remark 26.3 Any binary tree can be embedded into (optimal) equibipartite binary tree
with load-1 and dilation-2. So, if Conjecture 26.1 is true, then the above Conjecture 26.2 is
true.

Conjecture 26.3 [30] Any binary tree is a subgraph of its next-to-optimal hypercube.

Conjecture 26.4 [24] Every N-node binary tree is a subgraph of an O(N)-node hypercube.

Conjecture 26.5 [31] Any tree T with ∆(T) ≤ 5 can be embedded into its optimal hypercube
with load-1 and dilation-2.

In the above conjecture, the condition ∆(T) ≤ 5 is essential. For any n ≥ 5, n ̸= 6, Dvořák
et al. [24] have constructed a tree Tn with ∆(Tn) = 6, |V (Tn)| = 2n which has no embedding
in Qn with load-1 and dilation-2.

Definition 26.17 A rooted binary tree is said to be a height-balanced tree or AVL-tree if
for every nonleaf vertex v, the heights of the subtrees rooted at the left and right child of v
differ by 0 or 1. This difference is called the balance-factor of v.

C5955–C0026.tex 668 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 669

In the design of efficient algorithms, an appropriate choice of a data structure often reduces
the time complexity of algorithms. When a data structure with a hierarchical relationship
among its various elements is represented as an AVL-tree, several operations like search,
insertion and deletion can be performed with least time complexity. Clearly, an AVL-tree in
which each nonleaf vertex has balance-factor 0 is a complete binary tree. An AVL-tree in
which every nonleaf vertex has balance-factor 1 is called a Fibonacci tree.

The problem of embedding AVL-trees in hypercubes was initiated by Choudum and
Indhumathi in [32] and several subclasses of AVL-trees were optimally embedded in [32] and
[33]. However, the problem of optimally embedding an arbitrary AVL-tree into a hypercube
remains open.

We conclude this section with a catalogue of results proved in support of above conjec-
tures.

1. For any k-ary tree T of height h, kh/e ≤ cd(T) ≤ k(h + 1)/2 + h − 1 [34]. (If h = 2,
then cd(T) = (3k + 1)/2.)

2. Every equipartite tree on 2n vertices with at most one vertex of degree greater than
two spans Qn [35]. These trees are called starlike trees.

3. Every equipartite binary tree on 2n vertices with exactly two vertices of degree three
spans Qn [36].

4. Every equipartite caterpillar on 2n vertices with exactly two vertices on the spine spans
Qn [37]. These trees are called double starlike trees.

5. Every equipartite binary caterpillar on 2n vertices with every leg of length at most two
spans Qn [38].

6. Every equipartite binary caterpillar on 2n vertices with at most n − 3 vertices on the
spine spans Qn [39].

7. Any caterpillar is embeddable into its optimal hypercube with dilation-2 [31,40].

8. There exists a load-1, dilation-2 embedding of a level-1 hierarchical caterpillar into its
optimal hypercube [40].

9. An m-sequential k-ary tree can be embedded into its optimal hypercube with dilation
at most 2 [41].

10. Complete ternary (3-ary) tree of height h can be embedded with load-1, dilation-3, and
congestion-3 into Qd(h), where d(h) = ⌈1.6h⌉ + 1 [42].

11. Complete ternary tree of height h can be embedded with load-1, dilation-2, congestion-2
into Qd(h), where [43]

d(h) =
{

⌈(1.6)h⌉, if h = 2 (mod 5) or h = 4 (mod 5)
⌈(1.6)h⌉ + 1, if h = 0 (mod 5) or h = 1 (mod 5) or h = 3 (mod 5)

For various particular values of h, this result proves one of the conjectures of Havel [36]
specific to the class of complete ternary trees.

C5955–C0026.tex 669 2015/11/4 12:39pm

670 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

26.2.3 Collection of Cycles, Paths, and Trees in Hypercubes

In a multiprocessor computing system, computing involves exchange of data among sev-
eral of its processors. The data is transmitted from one processor to another through a
sequence/collection of interlinked processors. Obviously, the transmission is faster if a large
number of alternative cycles/paths/trees are available. Equivalently, the demand is that in the
graph of the interconnection network, there be a large number of distinct cycles/paths/trees.
The presence of multiple copies can be viewed as embedding a collection. The availability
of such alternatives may also help in circumventing faults of vertices and/or edges. In this
section, we give some results in support of the claim that hypercube has these desirable
properties.

It is well known that Qn is Hamiltonian. However, it may come as a surprise to know that
Q4 has 1344 distinct Hamilton cycles. In fact, there exists at least n! distinct Hamilton cycles
in Qn [44]. The exact number of distinct Hamilton cycles in Qn, for an arbitrary n, is still
open; see [45] and the references there in to know the bounds. However, the counts for the
number of distinct Hamilton cycles are 1, 1, 6, 1344, 906545760, 14754666598334433250560 for
hypercubes of dimension 1, 2, 3, 4, 5, 6; see Sequence A0066037 in The On-Line Encyclopedia
of Integer Sequences [46]. Knowing that there exist a large number of distinct Hamilton cycles
in hypercubes, a natural question that arises is “How many (edge) disjoint Hamilton cycles
can one find in a hypercube?” The answer to this question is as follows.

Theorem 26.24 [47] In Qn, there exist ⌊n/2⌋ disjoint Hamiltonian cycles.

Proof. The proof is dependent on the following results on Hamiltonian decomposition of
cartesian product of cycles.

• There exist two disjoint Hamilton cycles in Cp × Cq [48].

• There exist three disjoint Hamilton cycles in Cp × Cq × Cr [49].

One can now use induction on m and prove that Ci1 × Ci2 × . . . × Cim contains m disjoint
Hamilton cycles.

We now prove the result on existence of ⌊n/2⌋ disjoint Hamilton cycles in Qn. One can
easily verify the result for small values of n. We therefore assume that n ≥ 4.
Case 1 n is even.
In this case, Qn = C4 × C4 × . . . × C4︸ ︷︷ ︸

n/2 times
, so Qn has n/2 disjoint Hamilton cycles.

Case 2 n is odd.
In this case, consider Qn = Q′

n−1⊖Q′′
n−1. Then by Case 1, each of the Qn−1 contains (n − 1)/2

disjoint Hamilton cycles. Remove an edge from each Hamilton cycle of Q′
n−1 in such a way

that the removed edges do not have any vertex in common. Remove the corresponding edges
from each Hamilton cycle of Q′′

n−1. Now, use the perfect matching that exists between Q′
n−1

and Q′′
n−1 to obtain (n − 1)/2 = ⌊n/2⌋ Hamilton cycles in Qn. �

Note that, from the above proof we only learn that there exist disjoint Hamilton cycles
in hypercubes. But for practical purposes, one would be interested in simple algorithms to
construct these cycles; see [50–52] for such algorithms.

When one considers non-Hamilton cycles/paths, in addition to distinctness and/or (edge)
disjointness, one can also ask about existence of vertex-disjoint copies. We next discuss the
presence of vertex-disjoint copies of paths in hypercubes.

C5955–C0026.tex 670 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 671

Definition 26.18 In a graph G, two (x, y)-paths are said to be parallel if they have no
common internal vertices. In general, any two paths are said to be parallel or vertex-disjoint
if they have no common vertices.

Proposition 26.1 [53] Let X, Y be any two vertices of Qn. Then there exist d(X, Y) parallel
paths of length d(X, Y) between X and Y in Qn. �

Proposition 26.2 [53] Let X, Y be any two vertices of Qn. Then there exist n parallel paths
between X and Y , each of length at most d(X, Y) + 2. �

In the context of routing in parallel computers, finding vertex disjoint paths between a given
set of source–destination pairs of vertices is another interesting study that has attracted
various researchers.

Problem 26.8 Given a set U = {u1, u2, . . ., uk} of nodes and a set A = {a1, a2, . . ., ak}
of non-negative integers, find sufficient conditions the sets U and A should satisfy for the
existence of a family F = {P(1), P(2), . . ., P(k)} of vertex disjoint paths, where each P(i) is a
ui-path with ai vertices.

The initial results were proved in [21] for k = 2 and [35] when A is a set of even integers.
Here, an u-path of order p refers to a path with origin u and containing p number of vertices.
The terminus of a path P is denoted by t(P).

Theorem 26.25 [21] Given any two distinct vertices u1, u2 in Qn, and any two positive
integers a1, a2 such that a1+a2 = 2n and let u1, u2 be such that dist(u1, u2) is odd, whenever
a1, a2 are odd, there exist two vertex disjoint paths P(1) and P(2), where P(i) is an ui-path of
order ai (i = 1, 2). �

Nebeský [35] proved a similar result on the existence of paths of even order as follows.

Theorem 26.26 [35] Let k and n be integers such that (1) 1 ≤ k ≤ n, if 1 ≤ n ≤ 3, and
(2) 1 ≤ k < n, if n ≥ 4. Let:

i. u1, u2, . . ., uk be distinct vertices of Qn,

ii. a1, a2, . . ., ak be positive even integers with a1 + a2 + · · · + ak = 2n, and

iii. W1, W2, . . ., Wk be subsets of V (Qn) such that |Wi| ≤ n − k, 1 ≤ i ≤ k.

Then there exist vertex-disjoint paths P(1), P(2), . . ., P(k) in Qn, where P(i) is an ui-path of
order ai and t(P(i)) ̸∈ Wi, i = 1, 2, . . ., k. �

Recently, Choudum et al. [54] generalized both these results to the existence of paths both
of even and odd order.

Theorem 26.27 [54] Let n and k be integers as in Theorem 26.26 and let m be an integer
such that m ≤ ⌊k/2⌋. Let

i. u1, u2, . . ., uk be distinct vertices of Qn such that (u1, u2), (u3, u4), . . ., (u2m−1, u2m) are
edges of the same dimension,

ii. a1, a2, . . ., a2m be positive odd integers and a2m+1, . . ., ak be positive even integers such
that a1 + a2 + · · · + ak = 2n,

C5955–C0026.tex 671 2015/11/4 12:39pm

672 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

iii. W1, W2, . . ., Wk be subsets of V (Qn) such that |Wi| ≤ n−k, and if ai = 1, then ui ̸∈ Wi,
for 1 ≤ i ≤ k.

Then there exist vertex-disjoint paths P(1), P(2), . . ., P(k) in Qn, where P(i) is an ui-path of
order ai and t(P(i)) ̸∈ Wi, 1 ≤ i ≤ k. �

Remark 26.4 In Theorem 26.27, it is assumed that the edges (u1, u2), . . ., (u2m−1, u2m)
have the same dimension. A generalization of the theorem under a weaker assumption that
dist(u2i−1, u2i) (1 ≤ i ≤ m), is odd would be more useful for applications.

The above remark with the weaker assumption has been proved for m = 1 in [54]. In this
direction, a more general problem can also be formulated as follows.

Problem 26.9 Given two sets of vertices S = {u1, u2, . . ., uk} and T = {v1, v2, . . ., vk} in
Qn and a set A = {a1, a2, . . ., ak} of integers, find sufficient conditions that S, T, and A
should satisfy for the existence of a family F = {P(1), P(2), . . ., P(k)} of vertex disjoint paths,
where each P(i) is a (ui, vi)-path with ai vertices.

In this spirit, there already exist various results. We state a few. Here the conditions on the
sets S, T , and A are stated.

Theorem 26.28

1. For S = {u1, u2, . . ., uk} and T = {v1, v2, . . ., vk} with k = ⌈n/2⌉ and each ai ∈ A is
such that ai ≤ 2n [55].

2. For S = {u1, u2, . . ., uk} and T = {v1, v2, . . ., vk} with k = ⌈n/2⌉ and each ai ∈ A is
such that ai ≤ n + log2 n + 1 [56].

3. For S = {u1, u2, . . ., uk}, T = {v1, v2, . . ., vk} and W = {w1, w2 . . . wq} such that W ∩
S = ∅, W ∩ T = ∅, k ≤ n/2 and 2k + q ≤ n + 1 [57].

4. For S = {u1, u2, . . ., uk} and T = {v1, v2, . . ., vk} such that col(ui) ̸= col(vi) and k ≤
n − 1. Here the paths P(i) can be of arbitrary length [58]. �

Recently Caha and Koubek [59] characterized the existence of vertex disjoint paths as follows.

Theorem 26.29 [59] Given two sets of nodes S = {u1, u2, . . ., uk} and T = {v1, v2, . . ., vk}
in Qn, there exists a family F = {P(1), P(2), . . ., P(k)} of vertex disjoint paths, where each P(i)
is a (ui, vi)-path if and only if col(ui) ̸= col(vi) for every i, 1 ≤ i ≤ k, k ≤ n − 1. �

The complexity issue related to the k-pairwise edge disjoint shortest paths problem was stud-
ied by Gu and Peng [56] where they give an O(n2 log∗ n) time algorithm. Further Gonzalez
and Serena in [60,61] presented an efficient algorithm for the case when every source point
is at a distance at most two from its destination, and for pairs at a distance at most three
they showed that the problem is NP-complete.

We next consider the availability of a collection of spanning trees in hypercubes. We know
that the number of edges in Qn is n2n−1 and the number of edges in a spanning tree of Qn is
2n − 1. Consequently, there can exist at most ⌊n2n−1/(2n − 1)⌋ = ⌊n/2⌋ edge-disjoint span-
ning trees. A construction for identifying n edge-disjoint spanning trees in Q2n is available
through the following result while no such construction is as yet available for Q2n−1.

Theorem 26.30 [62] There exists an embedding of n edge-disjoint spanning trees in Q2n,
with the remaining n edges forming a path. �

C5955–C0026.tex 672 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 673

One can also consider imposing some kind of vertex-disjointness on the collection of spanning
trees. Independent spanning trees are one such collection.

Definition 26.19 Two spanning trees T1 and T2 of a connected graph G are said to be
independent if they are rooted at the same vertex, say r, and for each vertex v ̸= r, the two
paths P(1) ⊆ T1 and P(2) ⊆ T2 from r to v are parallel. A set of spanning trees of G is said
to be independent if they are pairwise independent.

In [63], it is shown that Qn has n independent spanning trees rooted at any vertex. Note
that this result is optimal since Qn is n-regular.

It can now be asked whether these disjoint trees are isomorphic. That is, can Qn be
decomposed into T where T is a tree? The following results are available in this direction.

Theorem 26.31 [64,65] If T is any tree having n edges, then Qn can be decomposed into
2n−1 edge-disjoint induced subgraphs, each of which is isomorphic to T . �
The above result has been generalized as follows.
Theorem 26.32 [66] Qn can be decomposed into 2n−1 arbitrary (p + q)-trees with p + q =
n + 1, where a (p + q)-tree is a tree which has a bipartition with p vertices in one part and q
vertices in the other. �
If we consider K1,k, that is the star with k edges, then the following holds.
Theorem 26.33 [67] Qn can be decomposed into K1,k if and only if k ≤ n and k divides the
number of edges of Qn. �
When we progress from trees with n edges to more than n edges, we have the following result.

Theorem 26.34 [68] Qn decomposes into copies of any tree with n + 6 edges. �
A related result by Horak et al. [69] is that Qn can be decomposed into any graph with n
edges each of whose blocks is either an even cycle or an edge. We next look at decomposing
Qn into a spanning tree.

Definition 26.20 A binomial tree of height 0, B0, is a single vertex. For all h > 0, a
binomial tree of height h, Bh, is a tree formed by joining the roots of two binomial trees of
height h − 1 with a new edge and designating one of these roots to be the root of the new tree.

It is clear that Bn has 2n vertices. Often, broadcasting of messages in hypercubes is done
through binomial trees. This is possible because of the following theorem.

Theorem 26.35 Bn is a spanning subgraph of Qn.

Proof. The result can be easily proved using induction along with the vertex-symmetry
property of hypercube. �
Johnsson and Ho investigated the presence of multiple copies of binomial trees in hypercubes
and have concluded the following theorem.
Theorem 26.36 [70] There exists an edge-disjoint embedding of n spanning binomial trees
in Qn. �
Note that, the above result is based on the understanding that two spanning tree are edge-
disjoint if they share no common directed edges (directed from parent to child). However, if
the direction is dropped then we have the following theorem.

Theorem 26.37 [71] Qn can be decomposed into n edge-disjoint trees on 2n−1 edges, all of
which are isomorphic to BTn, where BTn is the tree obtained by adding a new vertex to Bn−1
and providing an edge between this new vertex and the root of Bn−1. �

C5955–C0026.tex 673 2015/11/4 12:39pm

674 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

26.3 EMBEDDING INTO VARIANTS OF HYPERCUBES

In this section, we provide some results on embedding into some variants of hypercubes. In
particular, the role of computation graphs (such as paths, cycles, meshes, and trees) as guest
graphs has received maximum attention from the researchers.

26.3.1 Embedding into Augmented Cubes AQn

Out of our own interest in augmented cubes and the fact that many researchers have studied
augmented cubes, we present an exhaustive coverage of the embedding results on augmented
cubes.

From the definition of the augmented cubes, it easily follows the following theorem.

Theorem 26.38 For n ≥ 1,

1. Qn is a spanning subgraph of AQn.

2. Qn,k is a spanning subgraph of AQn for every k. �

The following result can lead to identifying some good embeddings into hypercubes via the
augmented cubes.

Theorem 26.39 There exists a dilation 2 embedding of AQn into Qn. �

Definition 26.21 The graph obtained from a complete binary tree by adding edges to connect
consecutive vertices on the same level of the tree is called an X-tree.

Definition 26.22 The one-dimensional multigrid also called the linear multigrid, consists
of 2n − 1 nodes arranged in n levels, with the ith level containing a 2i-node linear array (the
top level is level 0 and the last level is n−1). In addition, the jth node on level i is connected
to the 2jth node on level i + 1 for every j, 1 ≤ j ≤ 2i, 0 ≤ i ≤ n − 2.

Theorem 26.40 [38,72]

1. For n ≥ 3, AQn contains two edge disjoint complete binary trees on 2n − 1 vertices
both rooted at a given vertex.

2. For n ≥ 3, two copies of the binomial tree of height n can be embedded into AQn such
that one of the following properties is satisfied.

a. The roots of the copies are mapped onto distinct vertices and the embeddings are
edge disjoint.

b. The roots of the copies are mapped onto a single vertex of AQn and the embeddings
have exactly one edge in common.

3. For n ≥ 2, the X-tree on 2n − 1 vertices and hence the linear multigrid on 2n − 1
vertices is a subgraph of AQn.

4. For n ≥ 3, AQn contains n − 1 edge disjoint spanning trees. �

Conjecture 26.6 Any binary tree is a subgraph of its optimal augmented cube.

C5955–C0026.tex 674 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 675

If the above conjecture is true, then in view of Theorem 26.39, it follows that Conjecture
26.2 is also true.

We now look at embedding linear arrays and cycles in AQn. It is well known that
hypercubes are Hamiltonian. Combining this with the fact that Qn is a spanning subgraph of
AQn, it follows that AQn is also Hamiltonian. The Hamiltonicity property of AQn has been
strengthened by Hsu et al. [73] by assuming that some vertices and/or edges can become
faulty.

Theorem 26.41 [73]

1. AQ2 is 1 fault-tolerant Hamiltonian and not k fault-tolerant Hamiltonian for k ≥ 2.

2. AQ3 is 2 fault-tolerant Hamiltonian and not k fault-tolerant Hamiltonian for k ≥ 3.

3. For n ≥ 4, the fault-tolerant Hamiltonicity of AQn is exactly 2n − 3. �

If it is assumed that only edges become faulty, then AQ3 can tolerate up to 3 faulty edges
and still contain a Hamilton cycle [74]. This is an improvement over the above result for
AQ3. In addition to edge-faults, if it is assumed that each vertex is incident to at least two
fault-free edges then Hsieh and Cian [75] have shown that AQn can tolerate up to 4n − 8
faulty edges to retain Hamiltonicity; they also give a worst-case scenario in which there is no
Hamilton cycle in AQn when there are 4n − 7 faulty edges.

Theorem 26.42 [75] Under the conditional fault-assumption, AQn (n ≥ 3) with faulty edges
up to 4n − 8 contains a fault-free Hamilton cycle. Moreover, this is optimal with respect to
the number of faulty edges tolerated. �

Though AQn as well as Qn are Hamiltonian and hence contain a Hamilton path, one distin-
guishing feature is their Hamiltonian connectedness—existence of a Hamilton path between
every pair of vertices. Hypercube being bipartite, there cannot exist a Hamilton path between
two vertices belonging to the same part. In this respect, AQn is superior due to the following
result.

Theorem 26.43 [76] For any three distinct vertices x, y and z of AQn (n ≥ 2) and for any
l, where dAQn(x, y) ≤ l ≤ 2n − 1 − dAQn(y, z), there exists a Hamiltonian path R(x, y, z; l)
from x to z such that dR(x,y,z;l)(x, y) = l. �

Note that the above result not only shows that there exists in AQn a Hamiltonian path
between any pair of distinct vertices x, z (i.e., AQn is Hamiltonian connected) but it also
shows that a third vertex y can be introduced into the Hamiltonian path at a required
position. The Hamiltonian connected property of AQn has been strengthened as shown by
the following theorem.

Theorem 26.44

1. AQ3 is 1-fault-tolerant Hamiltonian connected and is not 2-fault Hamiltonian connected
[73].

2. For n ≥ 4, AQn is 2n − 4-fault-tolerant Hamiltonian connected and is not 2n − 3-fault
Hamiltonian connected [73].

3. AQ3 is 2-edge-fault-tolerant Hamiltonian connected [74]. �

Owing to bipartiteness, there exist no odd cycles in Qn and Qn,k when n ≡ k(mod 2).

Theorem 26.45 [38,72] For n ≥ 2, AQn is pancyclic.

C5955–C0026.tex 675 2015/11/4 12:39pm

676 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. Since Qn contains a 2k cycle, say C2k, for every k, 2 ≤ k ≤ 2n−1 and since Qn is a
spanning subgraph of AQn, it follows that AQn also contains C2k. Further, these cycles are
induced by n-bit 2k-element Gray code sequences. The first three elements in these sequences
are 0n, 0n−11 and 0n−211. In AQn, 0n and 0n−211 are adjacent. So, C2k − {0n−11} is a 2k − 1
cycle in AQn. �
Some results on pancyclicity of augmented cubes under faults are the following.

Theorem 26.46

1. AQ3 is not 3-fault-tolerant pancyclic but is 2-fault-tolerant pancyclic [77].

2. AQn is (2n − 3)-faults tolerant pancyclic for n ≥ 4. Further, the number of faults
tolerated is optimal [77].

3. For n ≥ 2, AQn contains cycles of all length from 3 to 2n even when any (2n−3) edges
are deleted from AQn [74]. �

In Theorem 26.45, we have shown that AQn is pancyclic. Since AQn is vertex symmetric it
follows that AQn is vertex-pancyclic. An alternate proof for this result is provided in [78]
using the following property.

Theorem 26.47 [78] For any two distinct vertices u, v, there exists a uv-path of length 2n−2
in AQn, where n ≥ 3. �

When it comes to vertex-pancyclicity in the presence of faults, we have the following theorem.

Theorem 26.48 [79] For n ≥ 2, every vertex in AQn lies on a fault-free cycle of every
length from 3 to 2n, even if there are up to n − 1 edge faults. �

It has also been shown that this result is optimal. That is, AQn is not n-edge fault-tolerant
vertex-pancyclic. Consequently, AQn is not n fault-tolerant vertex-pancyclic.

Lai et al. [80] have shown that AQn is panconnected (Theorem 26.49).

Theorem 26.49 [80] For any two distinct vertices x, y ∈ AQn, there exists a path Pl(x, y)
of length l joining x and y for every l satisfying d(x, y) ≤ l ≤ 2n − 1. �

As an extension to the above theorem, one would also like to see if the path Pl(x, y) can be
further extended by including the vertices not in Pl(x, y) into a Hamiltonian path from x to
a fixed vertex z or a Hamiltonian cycle. This possibility has been explored in [76] with the
outcome being available in the form of Theorem 26.43 and Theorem 26.50.

Theorem 26.50 [76] There exists a Hamiltonian cycle S(x, y; l) such that dS(x,y;l)(x, y) = l
for any two distinct vertices x and y and for any dAQn(x, y) ≤ l ≤ 2n−1. �

Definition 26.23 A graph G is panpositionably Hamiltonian if for any two distinct vertices
x and y of G, it contains a Hamiltonian cycle C such that dC(x, y) = l for any interger l
satisfying dG(x, y) ≤ l ≤ |V (G)|/2.

Corollary 26.3 AQn is panpositionably Hamiltonian.

Ma et al. [74] rediscovered the panconnectedness property of AQn while studying its edge-
fault-tolerant pancyclicity. On panconnectedness of AQn in the presence of faults we have
the following theorem.

C5955–C0026.tex 676 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 677

Theorem 26.51 [81] For n ≥ 3, AQn − f, is panconnected for any vertex f ∈ AQn. �

The above result is a weaker form of the following result.

Theorem 26.52 [82] For n ≥ 3, AQn − f is panconnected if f is a vertex or an edge of
AQn. �

In addition to the above result, Chan [82] has also shown that AQn − F is not panconnected
if |F | ≥ 2 where F ⊆ V (AQn) ∪ E(AQn). A related result is the following theorem.

Theorem 26.53 [83] If AQn (n ≥ 3) has at most 2n − 5 faulty vertices and/or edges, then
for any two distinct fault-free vertices u and v with distance d in AQn, there exist fault-free
uv-paths of every length from d + 2 to 2n − f − 1, where f is the number of faulty vertices in
AQn. �

The above result is the best possible in the sense that

a. In AQn (n ≥ 4), there exist a pair u, v of vertices with distance d (in particular,
d = 1) and a set F of faulty vertices with |F |≤2n−5 such that there exists no uv-path
of length d + 1, and

b. In AQn, if F is a set of faulty vertices with |F | = 2n − 4, then there exist two distinct
fault-free vertices u and v with distance d = 1, such that there exists no fault-free
uv-path of length l for some l ∈ {d + 2, d + 3, . . ., 2n − f − 1}.

Note that the optimality of the above result is due to d = 1. Excluding this case, for
d ≥ 2 or n ≥ 4, it would be worthwhile to investigate whether AQn is (2n − 4)-fault-
tolerant panconnected for some large d ≥ 2 or n ≥ 4. Also note that this will not violate
the optimality of Theorem 26.52 because there again the optimality is based on adjacent
vertices.

The panpositionable panconnected property of a graph—a refinement of the pancon-
nected property—is defined as follows.

Definition 26.24 Let x, y, and z be any three distinct vertices in a graph G. Then G is said
to be panpositionably panconnected if for any l1, where dG(x, z) ≤ l1 ≤ |V (G)|−dG(y, z)−1,
it contains a path P such that x is the beginning vertex of P , z is the (l1+1)th vertex of P , and
y is the (l1 + l2 +1) th vertex of P for any integer l2 satisfying dG(x, y) ≤ l2 ≤ |V (G)|− l1 −1.

Theorem 26.54 [84]

1. AQ2 is panpositionably panconnected.

2. AQn, for n ≥ 3, is almost panpositionably panconnected. That is, for any three distinct
vertices x, y, z, for any d(x, z) ≤ l1 ≤ 2n − d(y, z) − 1, and for any d(y, z) ≤ l2 ≤
2n − l1 − 1, there exists an xy-path P in AQn, such that x is the beginning vertex of
P , z is the (l1 + 1)th vertex of P , and y is the (l1 + l2 + 1)th vertex of P , except for
the case that l1 = l2 = 2 when there just exists a vertex w distinct from x, y, z with
{y, w} = N(x) ∩ N(z) and {x, w} = N(y) ∩ N(z). �

Corollary 26.4 [84] Let n ≥ 2.

1. Let u, v, w be any three distinct vertices in AQn. Then dAQn−{w}(u, v) = dAQn(u, v).

2. AQn is panconnected.

C5955–C0026.tex 677 2015/11/4 12:39pm

678 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

3. Let w be any vertex of AQn. Then AQn − {w} is panconnected.

4. Let (u1, v1) and (u2, v2) be any two distinct edges in AQn. Then there exists a Hamil-
tonian cycle C in AQn such that (u1, v1) ∈ E(C) and (u2, v2) ∈ E(C).

5. Let (u1, v1) and (u2, v2) be any two vertex-disjoint edges of AQn. Let l1, l2 be any two
integers such that 1 ≤ l1, l2 ≤ 2n − 3 with l1 + l2 ≤ 2n − 2. Then AQn has two vertex-
disjoint paths, P1 and P2, such that P1 is a u1v1-path of length l1 and P2 is a u2v2-path
of length l2 except for the following two cases: (a) l1 = 2 or l2 = 2 with {u2, v2} =
N(u1)∩N(v1); (b) 4 ≤ l1 ≤ 5 or 4 ≤ l2 ≤ 5 with {u2, v2} = V (AQn)−(N(u1)∪N(u2)).

It is well known that a panconnected graph is also edge-pancyclic. Thus, as a consequence
of Theorem 26.49, AQn is edge pancyclic. Hsu et al. [85] give a constructive proof for the
edge-pancyclicity of AQn by giving an algorithm to generate cycles of length from 3 to 2n

containing a pre-chosen edge (u, v) ∈ AQn. Using Theorem 26.51 we can conclude that AQn

is 1-vertex fault-tolerant edge-pancyclic for n ≥ 3. As a consequence of Theorem 26.48, we
find that AQn is not n-edge fault-tolerant edge-pancyclic.

The proofs for most of the results stated above rely on the following 2H property of AQn

discovered by Hsu et al. [73].

Definition 26.25 [73] A graph G has property 2H, if for any two pairs of {w, x} and {y, z}
of four distinct vertices of G, there exist two disjoint paths P1 and P2 of G such that (1) P1
joins w to x, (2) P2 joins y to z, and (3) P1 ∪ P2 span G.

Theorem 26.55 [73] Let n be a positive integer with n ≥ 4. Then AQn has property 2H.�

Balanced-pancyclicity, geodesic-pancyclicity are some graph properties arising out of embed-
dings of paths and cycles on interconnection networks. Not many interconnection networks
possess these strong properties. The following discussions are about these properties holding
for augmented cubes.

Whenever we have a cycle passing through two vertices u and v of a graph, it would be
of interest to see if the lengths of two disjoint paths between u and v in this cycle are as
equal as possible. The balanced-pancyclic property of a graph captures the existence of such
cycles. It would also be of interest to see if this cycle contains a shortest uv-path. The weakly
geodesic pancyclic and geodesic pancyclic properties of a graph capture the existence of such
cycles. That is, geodesic pancyclic properties are an enhancement of cycle embedding using
shortest path(s) as a part of the cycle.

Definition 26.26 A graph G is called balanced pancyclic if for every pair u, v of distinct
vertices and for every integer l satisfying max{2dG(u, v), 3} ≤ l ≤ |V (G)|, there exists a
cycle C of length l with dC(u, v) = ⌊l/2⌋.

Theorem 26.56 [86] AQn is balanced pancyclic for n ≥ 2. �

Definition 26.27

1. A graph G is said to be weakly geodesic pancyclic if for each pair u, v of distinct
vertices and for each integer l with max{2dG(u, v), 3} ≤ l ≤ |V (G)|, there exists a
cycle of length l that contains a shortest uv-path.

2. A graph G is said to be geodesic pancyclic if for each pair u, v of distinct vertices, every
shortest uv-path lies on every cycle of length l where max{2dG(u, v), 3} ≤ l ≤ |V (G)|.

C5955–C0026.tex 678 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 679

Note that a geodesic pancyclic graph is also weakly geodesic pancyclic but the converse is
not true. Further, a weakly geodesic pancyclic graph is edge pancyclic.

Theorem 26.57 [86] AQn is weakly geodesic pancyclic for n ≥ 2. �

Note that, in [86], the term geodesic pancyclic has been used to refer to the concept of weakly
geodesic pancyclicity.

Theorem 26.58 [81] The augmented cube AQn, n ≥ 2, is geodesic pancyclic. �

We now consider the embedding of copies of linear arrays in AQn.
Since AQn, for n ≥ 4, is (2n − 1) connected, it follows that there exist 2n − 1 parallel

paths between any pair of vertices. Chen et al. [87] studied the existence of parallel paths in
the presence of faults.

Theorem 26.59 [87] Let n ≥ 4 and F ⊂ V (AQn).

1. If |F | ≤ 4n−9, then AQn−F has a connected component containing at least 2n−|F |−1
vertices.

2. If |F | ≤ 2n − 7, then each pair of vertices u and v in AQn − F is connected by
min{degAQn−F (u), degAQn−F (v)} vertex-disjoint paths in AQn − F . �

Through the connectivity of a graph, we get to learn about the existence of parallel paths in
the graph. It would be interesting to see if these parallel paths span the graph. The spanning
connectivity of a graph measures the existence of such parallel paths.

Definition 26.28

1. A w-container C(u, v) between vertices u and v of a κ-connected graph G is a set of w
internally disjoint paths between u and v.

2. A w-container C(u, v) of G is a w∗-container if it contains all the vertices of G.

3. A graph G is w∗-connected if there exists a w∗-container between any two distinct
vertices.

4. The spanning connectivity, κ∗(G), of a w∗-connected graph G (w ≤ κ) is the largest
integer k such that G is i∗-connected, for all i, 1 ≤ i ≤ k.

5. A graph G is super spanning connected if κ∗(G) = κ(G), where κ(G) is the vertex
connectivity of G.

Remark 26.5

1. A graph G is 1∗-connected if and only if it is Hamiltonian connected,

2. A graph G is 2∗-connected if it is Hamiltonian,

3. An 1∗-connected graph, except K1 and K2, is 2∗-connected.

Theorem 26.60 [88] AQn is super spanning connected if and only if n ̸= 3. �

C5955–C0026.tex 679 2015/11/4 12:39pm

680 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The above theorem says that, for n ̸= 3, AQn contains 2n − 1 internally disjoint paths
P(1)(u, v), P(2)(u, v), . . ., P(2n−1)(u, v) between any pair of vertices u, v such that P(1)(u, v) ∪
P(2)(u, v) ∪ . . . ∪ P(2n−1)(u, v) = V (AQn).

Though the connectivity of a connected graph allows us to determine the minimum num-
ber of vertices/edges to be removed to disconnect the graph, we cannot determine whether
the resultant components have an isolated vertex or not. The super connectivity measures
the extent to which vertices/edges have to be removed to ensure that there are no isolated
vertices.

Definition 26.29 Let G be a graph.

1. A subset S ⊂ V (G) (respectively, F ⊂ E(G)) is called a super vertex-cut (respectively,
super edge-cut) if G − S (respectively, G − F) is not connected and every component
contains at least two vertices.

2. The super connectivity (respectively, super edge-connectivity) of G is the minimum
cardinality over all super vertex-cuts (respectively, super edge-cuts) in G if any, and,
+∞ otherwise.

It has been shown that for n ≥ 3, the super connectivity as well as the super edge-connectivity
of Qn is 2n − 2.

Theorem 26.61 [89,90]

1. Super connectivity of AQn is 4n − 8, for n ≥ 6.

2. Super edge-connectivity of AQn is 4n − 4, for n ≥ 5. �

From the above theorem it follows, for n ≥ 6 (respectively, n ≥ 5) at least 4n − 8 vertices
(respectively, 4n − 4 edges) of AQn are to be removed to get a disconnected graph that
contains no isolated vertices.

The discussions above are only about the existence of parallel paths in AQn and do not
provide any insight into the length of these paths. To permit some embeddings, it may be
important to know the lengths of these paths. We have the 2H property of AQn (see Theorem
26.55) and the following result in this direction.

Theorem 26.62 [72] For n ̸= 3, between any two vertices x, y ∈ AQn, there exist 2n − 1
vertex disjoint (x, y)-paths of length at most ⌈n/2⌉ + 1. �

26.3.2 Embedding into Crossed Cubes CQn

In this section, we present some of the recent results on embeddings into crossed cubes. Yang
and Megson [91], studied the existence of cycles between two chosen vertices in the crossed
cubes.

Theorem 26.63 [91] For any two distinct vertices X and Y on CQn, such that dist(X, Y) =
d and for each integer l satisfying 2d + 6 ≤ l ≤ 2n, CQn contains a cycle of length l that
passes through the two vertices. �

Recently, Wang [92] studied the embedding of Hamiltonian cycle and presented an algorithm
to generate Hamiltonian cycles for a given link permutation.

The embeddability of meshes into crossed cubes as studied by Fan and Jia [93] lead to
the following result.

C5955–C0026.tex 680 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 681

Theorem 26.64 [93] A mesh of size 2 × 2n−1 is embeddable into an n-dimensional crossed
cube with unit dilation and unit expansion. Further, two disjoint meshes each of size 4×2n−3

are embeddable into an n-dimensional crossed cube with unit dilation and unit expansion. �

Dong et al. [94] studied the embeddability of 3-dimensional meshes into crossed cubes.

Theorem 26.65 [94] For n ≥ 4, a family of two disjoint 3-dimensional meshes of size 2×2×
2n−3 can be embedded in an n-dimensional crossed cube with unit dilation and unit expansion.
Further, for n ≥ 6 a family of four disjoint 3-dimensional meshes of size 4 × 2 × 2n−5 can be
embedded in an n-dimensional crossed cube with unit dilation and unit expansion. �

26.3.3 Embedding into Twisted Cubes TQn

In a recent paper, Fan et al. [95] studied the optimal embedding of paths of all possible
lengths between two arbitrary distinct nodes in twisted cubes.

Theorem 26.66 [95] Let n ≥ 3. Given any two distinct vertices U and V in TQn, there
exists a path of length l between U and V , where l is any integer satisfying dist(U, V) + 2 ≤
l ≤ 2n − 1. Further, for n ≥ 3, there exist two nodes U and V such that no path of length
dist(U, V) can be embedded between U and V with dilation 1. �

Yang [96] presents an algorithm to construct n edge-disjoint spanning trees in TQn. Fur-
thermore ⌈n/2⌉ of these trees are independent. Note that, here the edge-disjointness is with
respect to edges of the trees being directed from parent to child when rooted at the same ver-
tex. Since TQn is n-regular, this result is optimal with respect to the number of edge-disjoint
spanning trees.

26.3.4 Embedding into Enhanced Cubes Qn,k

Embeddings into a particular class of enhanced cubes, namely the folded hypercubes (Qn,1),
has gained maximum attention. Sunitha [38] studied the embeddability of the complete binary
trees into Qn,n−1—another particular class.

Theorem 26.67 [38] A complete binary tree on 2n − 1 vertices can be embedded into the
n − 1-skip enhanced cube Qn,n−1. �

Choudum and Usha Nandhini [97], studied the embeddability of the complete binary trees
into the general class of enhanced cubes Qn,k.

Theorem 26.68 [97] Complete binary tree on 2n −1 vertices is a subgraph of enhanced cube
Qn,k, when n ̸≡ k (mod 2). �

In particular, this result settles a conjecture of Wang [98] that the complete binary tree on
2n − 1 vertices is a subgraph of the folded cube Qn,1, when n is even.

26.3.5 Embedding into Hamming Graphs Hb,n

In this section, we will present some of the results relating embedding into the generalized
hypercubes (or the base-b cubes or Hamming graphs). The authors in [99] studied the em-
beddability of linear arrays, cycles, and meshes into the base-b cube, H(b, n).

Theorem 26.69 [99] The following classes of graphs are known to be embeddable in gener-
alized hypercubes with dilation-1:

C5955–C0026.tex 681 2015/11/4 12:39pm

682 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1. Linear arrays of length l, 1 ≤ l ≤ bn can be embedded into H(b, n).

2. A 2-dimensional mesh on bt×bm vertices can be embedded onto H(b, n) where n = t+m.

3. Complete binary tree on 22k − 1 vertices can be embedded onto a base-4 k-cube. �

Recently, the authors in [100] have studied the embeddablity of complete k-ary trees into
these cubes.

Theorem 26.70 [100] Complete k-ary tree of height h is a subgraph of base-k cube of di-
mension h + 1, for k ≥ 3. �

For the embeddability of complete binary trees the following results are known.

Theorem 26.71 [100]

1. Complete binary tree of height h is a subgraph of the base-3 cube of dimension n, where
⌈(log3 2)(h + 1)⌉ ≤ n ≤ ⌈(2/3)(h + 1)⌉.

2. In general, complete binary tree of height h can be embedded as a subgraph into the
base-b cube, whose dimension n(b, k, h) is given by: ⌈(h + 1)/log2b⌉ ≤ n(b, 2, h) ≤
⌈(h + 1)/⌊log2 b⌋⌉ for every b ̸= 2l, and ⌈(h + 1)/log2 b⌉ ≤ n(b, 2, h) ≤ ⌈(h + 2)/log2 b⌉
for every b = 2l.

3. Further, a complete binary tree of height h can be embedded with load-1, dilation-2 into

its optimal base-b cube, H(b, n), where n =
{

⌈(h + 1)/⌊log2 b⌋⌉ if b is not a power of 2,
⌈(h + 2)/log2b⌉ , if b is a power of 2.

�

Apart from these classes of computation graphs, the embeddability of other classes of graphs
into generalized hypercubes remains open.

26.4 SUMMARY

In this chapter, we have surveyed some of the results on embedding various classes of
computational structures, such as meshes and trees, into interconnection networks mainly
hypercubes and its variants. There are also studies related to embedding into many other
classes of host graphs like star graphs, alternating group graphs, matching composition net-
works, de Bruijn graphs, and Mobiüs cubes.

The problem of embedding has also been studied in the context of fault tolerance of
networks. Here, given a set of faulty vertices/edges in the host graph, the problem is to embed
the guest graph into the host graph avoiding the fault set. The fault-tolerant embedding of
various guest graphs such as paths, cycles, meshes, torus, and trees are also studied in detail
by many authors. A recent survey article by Xu and Ma [101], also covers many results in
the fault-tolerant embedding of paths and cycles in hypercubes.

References

[1] M. Sekanina. On an ordering of the set of vertices of a connected graph. Publications
of the Faculty of Science, University of Brno, 412 (1960), 137–142.

[2] M. Sekanina. On an algorithm for ordering of graphs. Canadian Mathematical Bulletin,
14 (1971), 221–224.

[3] J.J. Karaganis. On the cube of a graph. Canadian Mathematical Bulletin, 11 (1968),
295–296.

C5955–C0026.tex 682 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 683

[4] J. Hartman. The homeomorphic embedding of Kn in the m-cube. Discrete Mathemat-
ics, 16 (1976), 157–160.

[5] M. Winkler. Proof of the squashed cube conjecture. Combinatorica, 3 (1983), 135–139.

[6] A.K. Gupta, A.J. Boals, N.A. Sherwani, and S.E. Hambrusch. A lower bound on em-
bedding large hypercubes into small hypercubes. Congressus Numerantium, 78 (1990),
141–151.

[7] V.V. Firsov. On isometric embedding of a graph into a boolean cube. Cybernetics, 1
(1965), 112–113.

[8] F.N. Afrati, C.H. Papadimitriou, and G. Papageorgiou. The complexity of cubical
graphs. Information and Control, 66 (1985), 53–60.

[9] M. Livingston and Q.F. Stout. Embedding in hypercubes. Mathematical and Computer
Modelling, 11 (1988), 222–227.

[10] Y.M. Kim and T.H. Lai. The complexity of congestion-1 embedding in a hypercube.
Journal of Algorithms, 12(2) (1991), 246–280.

[11] I. Havel and J. Morávek. B-valuations of graphs. Czechoslovak Mathematical Journal,
22(97) (1972), 338–351.

[12] M.R. Garey and R.L. Graham. On cubical graphs. Journal of Combinatorial Theory,
Series B, 18(1) (1975), 84–95.

[13] W. Imrich and S. Klavžar. On the complexity of recognizing Hamming graphs and
related classes of graphs. European Journal of Combinatorics, 17 (1996), 209–221.

[14] D.Z. Djokovic. Distance-preserving subgraphs of hypercubes. Journal of Combinatorial
Theory, Series B, 14(3) (1973), 263–267.

[15] P.M. Winkler. Isometric embedding in products of complete graphs. Discrete Applied
Mathematics, 7(2) (1984), 221–225.

[16] R.L. Roth and P.M. Winkler. Collapse of the metric hierachy for bipartite graphs.
European Journal of Combinatorics, 7(4) (1986), 371–375.

[17] W. Imrich and S. Klavžar. Product Graphs: Structure and Recognition. Wiley-
Interscience Series in Discrete Mathematics and Optimization, 2000.

[18] A. Wagner and D.G. Corneil. Embedding trees in a hypercube is NP-complete. SIAM
Journal on Computing, 19(3) (1990), 570–590.

[19] I. Havel and P. Liebl. On imbedding the dichotomic tree into the cube. C̆asopis pro
Pĕstováńı Matematiky, 97 (1972), 201–205.

[20] B. Monien and H. Sudbourough. Embedding one interconnection network into another.
Computing Supplementary, 7 (1990), 257–282.

[21] I. Havel. On Hamilton circuits and spanning trees of hypercubes. C̆asopis pro Pĕstováńı
Matematiky, 109 (1984), 135–152.

[22] I. Havel and P. Liebl. One-legged caterpillars span hypercubes. Journal of Graph The-
ory, 10 (1986), 69–77.

C5955–C0026.tex 683 2015/11/4 12:39pm

684 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[23] S. Bezrukov, B. Monien, W. Unger, and G. Wechsung. Embedding ladders and cater-
pillars into the hypercube. Discrete Applied Mathematics, 83 (1998), 21–29.

[24] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg. Efficient embeddings
of trees in hypercubes. SIAM Journal of Computing, 21 (1992), 151–162.

[25] V. Heun and E.W. Mayr. A new efficient algorithm for embedding an arbitrary binary
tree into its optimal hypercube. Journal of Algorithms, 20(2) (1996), 375–399.

[26] B. Monien and H. Sudbourough. Simulating binary trees on hypercubes. In Proceedings
of the 3rd Aegean Workshop on Computing, volume 319 of Lecture Notes in Computer
Science, pages 170–180, 1988. Technical Report, tr-rsfb-99-064 ed.: University of Pader-
born, Germany, 1999.

[27] V. Heun and E.W. Mayr. Efficient dynamic embeddings of binary trees into hypercubes.
Journal of Algorithms, 43 (2002), 51–84.

[28] A.S. Wagner. Embedding arbitrary binary trees in a hypercube. Journal of Parallel
and Distributed Computing, 7(3) (1989), 503–520.

[29] S.N. Bhatt and I.C.F. Ipsen. How to embed trees in hypercubes. Technical report, Yale
University, 1985.

[30] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg. Optimal simulations
of tree machines. Proceedings of the 27th Annual IEEE Symposium of Foundations of
Computer Science, pages 274–282, 1986.

[31] T. Dvořák, I. Havel, J.M. Laborde, and P. Liebl. Generalized hypercubes and graph
embeddings with dilation. Rostocker Mathematisches Kolloqium, 39 (1990), 13–20.

[32] S.A. Choudum and R. Indhumathi. On embedding subclasses of height-balanced trees
in hypercubes. Information Sciences, 179(9) (2009), 1333–1347.

[33] S.A. Choudum and R. Indhumathi. Embedding height balanced trees and Fibonacci
trees in hypercubes. Journal of Applied Mathematics and Computing, 30 (2009), 39–52.

[34] I. Havel and P. Liebl. Embedding the polytomic tree into the n-cube. C̆asopis pro
Pĕstováńı Matematiky, 98 (1973), 307–314.

[35] L. Nebeský. Embedding m-quasistars into n-cubes. Czechoslovak Mathematical Jour-
nal, 38 (1988), 705–712.

[36] I. Havel. On certain trees in hypercube. In R. Bodendick and R. Henn, editors, Top-
ics in Combinatorics and Graph Theory, pages 353–358. Physica-Verlag, Heidelberg,
Germany, 1990.

[37] M. Kobeissi and M. Mollard. Disjoint cycles and spanning graphs of hypercubes. Dis-
crete Mathematics, 288 (2004), 73–87.

[38] V. Sunitha. Augmented cube: A new interconnection network. PhD thesis, Department
of Mathematics, IIT (Madras), India, 2002.

[39] S.A. Choudum and S. Lavanya. Embedding a subclass of trees into hypercubes. Discrete
Mathematics, 311 (2011), 866–871.

C5955–C0026.tex 684 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 685

[40] V. Sunitha. Embedding some hierarchical caterpillars into hypercube. Electronic Notes
in Discrete Mathematics, 22 (2005), 385–389.

[41] I. Rajasingh, B. Rajan, and R.S. Rajan. On embedding of m-sequential k-ary trees into
hypercubes. Applied Mathematics, 3 (2010), 499–503.

[42] A.K. Gupta, D. Nelson, and H. Wang. Efficient embeddings of ternary trees into
hypercubes. Journal of Parallel and Distributed Computing, 63(6) (2003), 619–629.

[43] S.A. Choudum and S. Lavanya. Embedding complete ternary trees into hypercubes.
Discussiones Mathematicae Graph Theory, 28 (2008), 463–476.

[44] M.S. Chen and K.G. Shin. Processor allocation in an n-cube multiprocessor using gray
codes. IEEE Transactions of Computers, 36 (1987), 1396–1407.

[45] T. Feder and C. Subi. Nearly tight bounds on the number of Hamiltonian cycles of the
hypercube and generalizations. Information Processing Letters, 109 (2009), 267–272.

[46] John Tromp. Number of Hamiltonian cycles in the binary n-cube, or the number of
cyclic n-bit gray codes. http://oeis.org/A0066037, 2010.

[47] B. Alspach, J.C. Bermond, and D. Sotteau. Decomposition into cycles I: Hamilton
decompositions. In Gena Hahn, ed., Cycles and Rays, pages 9–18. Kluwer Academic,
Dordrecht, Holland, 1990.

[48] A. Kotzig. Every cartesian product of two circuits is decomposable into two Hamil-
tonian circuits. Technical report, Centre de Recherches Mathematiques, Montreal,
Canada, 1973.

[49] M.F. Foregger. Hamiltonian decompositions of product of cycles. Discrete Mathematics,
24 (1978), 251–260.

[50] D.W. Bass and I.H. Sudborough. Hamilton decompositions and (n/2)-factorizations of
hypercubes. Journal of Graph Algorithms and Applications, 6 (2002), 174–194.

[51] K. Okuda and S.W. Song. Revisiting Hamiltonian decomposition of the hypercube. In
Proceedings of the 13th Symposium on Integrated Circuits and Systems Design, Manaus,
Brazil, pages 18–24, 2000.

[52] S.W. Song. Towards a simple construction method for Hamiltonian decomposition of
the hypercube. DIMACS series in Discrete Mathematics and Theoretical Computer
Science, 21 (1995), 297–306.

[53] Y. Saad and M.H. Schultz. Topological properties of hypercubes. IEEE Transactions
on Computers, 37(7) (1988), 867–872.

[54] S.A. Choudum, S. Lavanya, and V. Sunitha. Disjoint paths in hypercubes with pre-
scribed origins and lengths. International Journal of Computer Mathematics, 87(8)
(2010), 1692–1708.

[55] S. Madhavapeddy and I.H. Sudbourough. A topological property of hypercubes: Node
disjoint paths. In Proceedings of the 2nd IEEE Symposium on Parallel and Distributed
Processing, Dallas, TX, pages 532–539, 1990.

[56] Q.-P. Gu and S. Peng. An efficient algorithm for the k-pairwise disjoint paths problem
in hypercubes. Journal of Parallel and Distributed Computing, 60 (2000), 764–774.

C5955–C0026.tex 685 2015/11/4 12:39pm

686 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[57] T.F. Gonzalez and D. Serena. n-cube network: Node disjoint shortest paths for maximal
distance pairs of vertices. Parallel Computing, 30(8) (2004), 973–998.

[58] T. Dvořák, P. Gregor, and V. Koubek. Spanning paths in hypercubes. In DMTCS
Proceedings, pages 363–368, 2005.

[59] R. Caha and V. Koubek. Spanning multi-paths in hypercubes. Discrete Mathematics,
301 (2007), 2053–2066.

[60] T.F. Gonzalez and D. Serena. Complexity of k-pairwise disjoint shortest paths in
the undirected hypercubic network and related problems. In Proceedings of the
International Conference on Parallel and Distributed Computing and Systems, pages
61–66, 2002.

[61] T.F. Gonzalez and D. Serena. Pairwise edge disjoint shortest paths in the n-cube.
Theoretical Computer Science, 369(1–3) (2006), 427–435.

[62] B. Barden, R.L. Hadas, J. Davis, and W. Williams. On edge-disjoint spanning trees in
hypercubes. Information Processing Letters, 70 (1999), 13–16.

[63] K. Obokata, Y. Iwasaki, F. Bao, and Y. Igarashi. Independent spanning trees of product
graphs and their construction. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Science, E79-A (1996), 184–193.

[64] J.F. Fink. On the decomposition of n-cubes into isomorphic trees. Journal of Graph
Theory, 14 (1990), 405–411.

[65] M. Ramras. Symmetric edge-decompositions of hypercubes. Graphs and Combinatorics,
7 (1991), 65–87.

[66] M.S. Jacobson, M. Truszczynski, and Z. Tuza. Decompositions of regular bipartite
graphs. Discrete Mathematics, 89 (1991), 17–27.

[67] D.E. Bryant, S. El-Zanati, C.V. Eynden, and D.G. Hoffman. Star decompositions of
cubes. Graphs and Combinatorics, 17 (2001), 55–59.

[68] S. El-Zanati, C.V. Eynden, and S. Stubbs. On the decomposition of Cayley graphs into
isomorphic trees. Australasian Journal of Combinatorics, 22 (2000), 13–18.

[69] P. Horak, J. Sira, and W. Wallis. Decomposing cubes. Journal of the Australian Math-
ematical Society, Series A 61 (1996), 119–128.

[70] S.L. Johnsson and C.T. Ho. Optimum broadcasting and personalized communication
in hypercubes. IEEE Transactions on Computers, 38 (1989), 1249–1268.

[71] S. Wagner and M. Wild. Partitioning the hypercube Qn into n isomorphic edge-disjoint
trees. Preprint, http://hdl.handle.net/10019.1/16108, 2011.

[72] S.A. Choudum and V. Sunitha. Augmented cubes. Networks, 40 (2002), 71–84.

[73] H.C. Hsu, L.C. Chiang, J.J.M. Tan, and L.H. Hsu. Fault Hamiltonicity of augmented
cubes. Parallel Computing, 31 (2005), 131–145.

[74] M. Ma, G. Liu, and J.M. Xu. Panconnectivity and edge-fault-tolerant pancyclicity of
augmented cubes. Parallel Computing, 33 (2007), 36–42.

C5955–C0026.tex 686 2015/11/4 12:39pm

Graph Embedding and Interconnection Networks � 687

[75] S.Y. Hsieh and Y.R. Cian. Conditional edge-fault Hamiltonicity of augmented cubes.
Information Sciences, 180 (2010), 2596–2617.

[76] C.M Lee, Y.H. Teng, J.J.M. Tan, and L.H. Hsu. Embedding Hamiltonian paths in aug-
mented cubes with a required vertex in a fixed position. Computers and Mathematics
with Applications, 58 (2009), 1762–1768.

[77] W.W. Wang, M.J. Ma, and J.M. Xu. Fault-tolerant pancyclicity of augmented cubes.
Information Processing Letters, 103 (2007), 52–56.

[78] S.Y. Hsieh and J.Y. Shiu. Cycle embedding of augmented cubes. Applied Mathematics
and Computation, 191 (2007), 314–319.

[79] J.S. Fu. Edge-fault-tolerant vertex-pancyclicity of augmented cubes. Information Pro-
cessing Letters, 110 (2010), 439–443.

[80] P.L. Lai, J.W. Hsue, J.J.M. Tan, and L.H. Hsu. On the panconnected properties of the
augmented cubes. In Proceedings of the International Computer Symposium, Taipei,
Taiwan, pages 1249–1251, 2004.

[81] H.C. Chan, J.M. Chang, Y.L. Wang, and S.J. Horng. Geodesic-pancyclicity and fault-
tolerant panconnectivity of augmented cubes. Applied Mathematics and Computation,
207 (2009), 333–339.

[82] H.C. Chan. Geodesic-pancyclic graphs. PhD thesis, Department of Computer Science
and Information Technology, National Taiwan University of Science and Technology,
Taiwan, 2006.

[83] H. Wang, J. Wang, and J.M. Xu. Fault-tolerant panconnectivity of augmented cubes.
Frontiers of Mathematics in China, 4 (2009), 697–719.

[84] T.L. Kung, Y.H. Teng, and L.H. Hsu. The panpositionable panconnectedness of aug-
mented cubes. Information Sciences, 180 (2010), 3781–3793.

[85] H.C. Hsu, P.L. Lai, C.H. Tsai, and T.K. Li. Efficient algorithms for embed-
ding cycles in augmented cubes. In Proceedings of the 10th International Sympo-
sium on Pervasive Systems, Algorithms and Networks, Kaohsiung, Taiwan, pages
596–600, 2009.

[86] H.C. Hsu, P.L. Lai, and C.H. Tsai. Geodesic pancyclicity and balanced pancyclicity of
augmented cubes. Information Processing Letters, 101 (2007), 227–232.

[87] Y.C. Chen, M.H. Chen, and J.J.M. Tan. Maximally local connectivity on augmented
cubes. In Proceedings of the 9th International Conference on Algorithms and Architec-
tures for Parallel Processing, pages 121–128, Springer-Verlag, Berlin, Germany, 2009.

[88] T.Y. Ho, C.K. Lin, and L.H. Hsu. The super spanning connectivity of the augmented
cubes. Proceedings of the 23rd Workshop on Combinatorial Mathematics and Compu-
tation Theory, pages 53–61, 2006.

[89] M. Ma, G. Liu, and J.M. Xu. The super connectivity of augmented cubes. Information
Processing Letters, 106 (2008), 59–63.

[90] M. Ma, X. Tan, J.M. Xu, and G. Liu. A note on “the super connectivity of augmented
cubes.” Information Processing Letters, 109 (2009), 592–593.

C5955–C0026.tex 687 2015/11/4 12:39pm

688 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[91] X. Yang and G.M. Megson. On the double-vertex-cycle-connectivity of crossed cubes.
International Journal of Parallel, Emergent and Distributed Systems, 19(1) (2004),
11–17.

[92] D. Wang. On embedding Hamiltonian cycles in crossed cubes. IEEE Transactions on
Parallel and Distributed Systems, 19(3) (2008), 334–346.

[93] J. Fan and X. Jia. Embedding meshes into crossed cubes. Information Sciences, 177(15)
(2007), 3151–3160.

[94] Q. Dong, X. Yang, J. Zhao, and Y.Y. Tang. Embedding a family of disjoint 3D meshes
into a crossed cube. Information Sciences, 178(11) (2008), 2396–2405.

[95] J. Fan, X. Jia, and X. Lin. Optimal embeddings of paths with various lengths in twisted
cubes. IEEE Transactions on Parallel and Distributed Systems, 18(4) (2007), 511–521.

[96] M.C. Yang. Constructing edge-disjoint spanning trees in twisted cubes. Information
Sciences, 180 (2010), 4075–4083.

[97] S.A. Choudum and R. Usha Nandini. Complete binary trees in folded and enhanced
cubes. Networks, 43(4) (2004), 266–272.

[98] D. Wang. On embedding binary trees into folded cubes. Congressus Numerantium, 134
(1998), 89–97.

[99] S. Lakshmivarahan and S.K. Dhall. A new hierarchy of hypercube interconnection
schemes for parallel computers. Journal of Supercomputing, 2 (1988), 81–108.

[100] S.A. Choudum and S. Lavanya. Complete k-ary trees and Hamming graphs. Aus-
tralasian Journal of Combinatorics, 45 (2009), 15–24.

[101] J.-M. Xu and M. Ma. Survey on path and cycle embedding in some networks. Frontiers
of Mathematics in China (2009).

C5955–C0026.tex 688 2015/11/4 12:39pm

VII
Special Graphs

689

C H A P T E R 27

Program Graphs*
Krishnaiyan “KT” Thulasiraman

CONTENTS

27.1 Introduction . 691
27.2 Program Graph Reducibility . 691
27.3 Dominators in a Program Graph . 698

27.1 INTRODUCTION

A program graph is a directed graph G with a distinguished vertex s such that there is
a directed path from s to every other vertex of G. In other words, every vertex in G is
reachable from s. The vertex s is called the start vertex of G. We assume that there are
no parallel edges in a program graph. The flow of control in a computer program can be
modeled by a program graph in which each vertex represents a block of instructions which
can be executed sequentially. Such a representation of computer programs has proved very
useful in the study of several questions relating to what is known as the code-optimization
problem. For many of the code-optimization methods to work, the program graph must have
a special property called reducibility (see [1–9]). Two other concepts of interest in the study of
program graphs are: dominators and dominator tree. The dominator tree of a program graph
provides information about what kinds of code motion are safe. In this chapter we discuss
algorithms to test the reducibility of a program graph and to generate a dominator tree. These
algorithms make extensive use of depth-first search (DFS). For background information on
DFS see Chapter 3.

27.2 PROGRAM GRAPH REDUCIBILITY

Reducibility of a program graph G is defined in terms of the following two transformations
on G:

S1 Delete self-loop (v, v) in G.

S2 If (v, w) is the only edge incident into w, and w ̸= s, delete vertex w. For every edge
(w, x) in G add a new edge (v, x) if (v, x) is not already in G. (This transformation is
called collapsing vertex w into vertex v.)

For example collapsing vertex 5 into vertex 4 in the program graph of Figure 27.1a results
in the graph shown in Figure 27.1b.

A program graph is reducible if can be transformed into a graph consisting of only the
vertex s by repeated applications of the transformations S1 and S2. For example, the graph
in Figure 27.1a is reducible. It can be verified that this graph can be reduced by collapsing
the vertices in the order 5, 8, 4, 3, 10, 9, 7, 6, 2.

∗This chapter is an edited version of Sections 14.5 and 14.6 in M.N.S. Swamy and K. Thulasiraman,
Graphs, Networks and Algorithms, Wiley-Interscience, 1981.

C5955–C0027.tex 691 2015/11/4 1:29pm

691

692 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

2

3

4 (3)

8 (2)
5 (3)

(2)

(1)

1 (0)

6 (2) 7 (2) 9 (2) 10 (2)

1

2

3

4.5

8

6 7 9 10

(a) (b)

Figure 27.1 (a) Rreducible program graph G. HIGHPT1 values are given in parentheses.
(b) Graph obtained after collapsing in G vertex 5 into vertex 4.

Cocke [5] and Allen [4] were the original formulators of the notion of reducibility, and
their definition is in terms of a technique called interval analysis. The definition given above
is due to Hecht and Ullman [10], and it is equivalent to that of Cocke and Allen.

If a graph G is reducible, then it can be shown [10] that any graph G′ obtained from
G by one or more applications of the transformations S1 and S2 is also reducible. Thus the
order of applying transformations does not matter in a test for reducibility. Further, some
interesting classes of programs such as go-to-less programs give rise to graphs which are
necessarily reducible [10], and most programs may be modeled by a reducible graph using a
process of node splitting [11].

Suppose we wish to test the reducibility of a graph G. This may be done by first deleting
self-loops using transformation S1 and then counting the number of edges incident into each
vertex. Next we may find a vertex w with only one edge (v, w) incident into it and apply
transformation S2, collapsing w into v. We may then repeat this process until we reduce the
graph entirely or discover that it is not reducible. Clearly each application of S2 requires
O(n) time, where n is the number of vertices in G and reduces the number of vertices by 1.
Thus the complexity of this algorithm is O(n2). Hopcroft and Ullman [12] have improved
this to O(m log m), where m is the number of edges in G. Tarjan [13,14] has subsequently
given an algorithm which compares favorably with that of Hopcroft and Ullman.

Hecht and Ullman [10,15] have given several useful structural characterizations of program
graphs. One of these is given in the following theorem.

Theorem 27.1 Let G be a program graph with start vertex s. G is reducible if and only if
there do not exist distinct vertices v ̸= s and w ̸= s, directed paths P1 from s to v and P2
from s to w, and a directed circuit C containing v and w, such that C has no edges and only
one vertex in common with each of P1 and P2 (see Figure 27.2).

Proof. Proof of the above theorem may be found in [16] and [10]. �
We discuss in this section Tarjan’s algorithm for testing the reducibility of a program graph.
This algorithm uses DFS and is based on a characterization of reducible program graphs
which we shall prove using Theorem 27.1. Our discussion here is based on [13].

C5955–C0027.tex 692 2015/11/4 1:29pm

Program Graphs � 693

v

P1 P2

w

s

Figure 27.2 Basic non-reducible graph.

Let G be a program graph with start vertex s. Let T be a DFS tree of G with s as the
root. Henceforth we refer to vertices by their depth-first numbers.

Theorem 27.2 G is reducible if and only if G contains no directed path P from s to some
vertex v such that v is a proper ancestor in T of some other vertex on P.

Proof. Suppose G is not reducible. Then there exist vertices v and w, directed paths P1 and
P2, and circuit C which satisfy the condition in Theorem 27.1. Assume that v < w. Let C1 be
the part of C from v to w. Then C1 contains some common ancestor u of v and w. Then the
directed path consisting of P2 followed by the part of C from w to u satisfies the condition
in the theorem.

Conversely, suppose there exists a directed path P which satisfies the condition in the
theorem. Let then v be the first vertex on P which is a proper ancestor of some earlier vertex
on P. Suppose w is the first vertex on P which is a descendant of v. Let P1 be the part of
T from s to v, and let P2 be the part of P from s to w. Also let C be the directed circuit
consisting of the part of P from w to v followed by the path of tree edges from v to w.
Then we can see that v, w, P1, P2 and C satisfy the condition in Theorem 27.1. So G is not
reducible. �

For any vertex v, let HIGHPT1(v) be the highest numbered proper ancestor of v such that
there is a directed path P from v to HIGHPT1(v) and P includes no proper ancestors of v
except HIGHPT1(v). We define HIGHPT1(v) = 0 if there is no directed path from v to a
proper ancestor of v. As an example, in Figure 27.1a we have indicated in parentheses the
HIGHPT1 values of the corresponding vertices.

Note that in HIGHPT1(v) calculation we may ignore forward edges since if P is a directed
path from v to w and P contains no ancestors of v except v and w, we may substitute for
each forward edge in P a path of tree edges or a part of it and still have a directed path from
v to w which contains no ancestors of v except v and w. Tarjan’s algorithm is based on the
following DFS characterization of program graphs.

Theorem 27.3 G is reducible if and only if there is no vertex v with an edge (u, v) incident
into v such that w < HIGHPT1(v), where w is the highest numbered common ancestor of u
and v.

C5955–C0027.tex 693 2015/11/4 1:29pm

694 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. Suppose G is not reducible. Then by Theorem 27.2 there is a directed path P from s
to v with v a proper ancestor of some other vertex on P. Choose P as short as possible. Let
w be the first vertex on P which is a descendant of v. Then all the vertices except v which
follow w on P are descendants of v in T. In other words, the part of P from w to v includes
no proper ancestors of w except v. So HIGHPT1(w) ≥ v. Thus w, HIGHPT1(w), and the
edge of P incident into w satisfy the condition in the theorem.

Conversely, suppose the condition in the theorem holds. Then the edge (u, v) is not a
back edge because in such a case the highest numbered common ancestor w of u and v is
equal to v, and so w = v ≥ HIGHPT1(v). Thus (u, v) is either a forward edge or a cross edge.
Let P1 be a directed path from v to HIGHPT1(v) which passes through no proper ancestors
of v except HIGHPT1(v). Then the directed path consisting of the tree edges from s to u
followed by the edge (u, v) followed by P1 satisfies the condition in Theorem 27.2. So G is
not reducible. �
Now it should be clear that testing reducibility of a graph G using the above theorem involves
the following main steps:

1. Perform a DFS of G with s as the root.

2. Calculate HIGHPT1(v) for each vertex v in G.

3. For cross edges, check the condition in Theorem 27.3 during the HIGHPT1 calculation.

4. For forward edges, check the condition in Theorem 27.3 after the HIGHPT1 calculation.

Note that, as we observed earlier, forward edges may be ignored during the HIGHPT1 calcu-
lation. Further as we observed in the proof of Theorem 27.3, back edges need not be tested
for the condition in Theorem 27.3.

To calculate HIGHPT1 values, we first order the back edges (u, v) by the number of v.
Then we process the back edges in order, from highest to lowest v. Initially all vertices are
unlabeled. To process the back edge (u, v), we proceed up the tree path from u to v, labeling
each currently unlabeled vertex with v. (We do not label v itself.) If a vertex w gets labeled,
we examine all cross edges incident into w. If (z, w) is such a cross edge (see Figure 27.3),
we proceed up the tree path from z to v, labeling each unlabeled vertex with v. If z is

zw

v

u

Figure 27.3 Illustration of HIGHPT1 calculation.

C5955–C0027.tex 694 2015/11/4 1:29pm

Program Graphs � 695

not a descendant of v, then G is not reducible by Theorem 27.3, and the calculation stops.
We continue labeling until we run out of cross edges incident into just labeled vertices; then
we process the next back edge. When all the back edges are processed, the labels give the
HIGHPT1 values of the vertices. Each unlabeled vertex has HIGHPT1 equal to zero.

We now describe Tarjan’s algorithm for testing reducibility. In this algorithm we use n
queues, called buckets, one for each vertex. The bucket BUCKET(w) corresponding to vertex
w contains the list of back edges (u, w) incident into vertex w. While processing back edge
(u, w) we need to keep track of certain vertices from which u can be reached by directed
paths. The set CHECK is used for this purpose.

Algorithm 27.1 Program graph reducibility (Tarjan)

S1. Perform a DFS of the given n-vertex program graph G. Denote vertices by their DFS
numbers. Order the back edges (u, v) of G by the number of v.

S2. For i = 1, 2, . . ., n
HIGHPT1(i) ← 0,
BUCKET (i) ← the empty list.

S3. Add each back edge (u, w) to BUCKET (w).
S4. w ← n− 1.
S5. Test if BUCKET(w) is empty. If yes, go to step S6; otherwise go to step S7.
S6. w ← w − 1. If w < 1, go so step S16; otherwise go to step S5.
S7. (Processing of a new back edge begins.) Delete a back edge (x, w) from BUCKET(w)

and CHECK ← {x}.
S8. Test if CHECK is empty. If yes (processing of a back edge is over.) go to step S5;

otherwise go to step S9.
S9. Delete u from CHECK.

S10. Test if u is a descendant of w. If yes, go to step S11; otherwise go to step S17.

S11. Test if u = w. If yes, go to step S8; otherwise go to step S12.

S12. Test if HIGHPT1(u) = 0. If yes, go to step S13; otherwise go to step S15.

S13. HIGHPT1(u) ← w.

S14. For each cross edge (u, v) add v to CHECK.

S15. u ← FATHER(u). Go to step S11.

S16. If u ≥ HIGHPT1(v) for each forward edge (u, v) (the graph is reducible), then
HALT. Otherwise go to step S17.

S17. HALT. The graph is not reducible.

Note that step S10 in Algorithm 27.2 requires that we be able to determine whether a vertex
w is a descendant of another vertex u. Let ND(u) be the number of descendants of vertex u
in T. Then we can show that w is a descendant of u if and only if u ≤ w < u + ND(u). We
can calculate ND(u) during the DFS in a straightforward fashion.

The efficiency of Algorithm 27.2 depends crucially on the efficiency of the HIGHPT1
calculation. To make the HIGHPT1 calculation efficient, in Algorithm 27.2 we need to avoid
examining vertices which have already been labeled. Tarjan suggests a procedure to achieve
this. The following observation forms the basis of this procedure:

C5955–C0027.tex 695 2015/11/4 1:29pm

696 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Suppose at step S12 we are examining a vertex u for labeling. Let at this stage, u′ be
the highest unlabeled proper ancestor of u. This means that all the proper ancestors of u
except u′, which lie between u′ and u in T, have already been labeled. Thus u′ is the next
vertex to be examined. Furthermore when u is labeled, then all the vertices for which u is
the highest unlabeled proper ancestor will have u′ as their highest unlabeled proper ancestor.

To implement the method which follows from the above observation, we shall use sets
numbered 1 to n. A vertex w ̸= 1 will be in the set numbered v, that is, SET(v), if v is the
highest numbered unlabeled proper ancestor of w. Since vertex 1 never gets labeled, each
vertex is always in a set. Initially a vertex is in the set whose number is its father in T. Thus
initially add i to SET(FATHER(i)) for i = 2, 3, . . ., n.

To carry out step S15, we find the number u′ of the set containing u and let that be
the new u. Further when u becomes labeled, we shall combine the sets numbered u and u′

to form a new set numbered u′. Thus u′ becomes the highest numbered unlabeled proper
ancestor of all the vertices in the old SET(u).

It can now be seen that replacing steps S12 through S15 in Algorithm 27.2 by the following
sequence of steps will implement the method described above. Of course, SETs are initialized
as explained earlier.

S12′. u′← the number of the set containing u.

S13′. Test if HIGHPT1(u) = 0. If yes, go to step S14′; otherwise go to step S16′.

S14′. (a) HIGHPT1(u) ← w; and
(b) SET(u′) ← SET(u) ∪ SET(u′)

S15′. For each cross edge (v, u) add v to CHECK.

S16′. u ← u′. Go to step S11.

It can be verified that the HIGHPT1 calculations modified as above require O(n) set unions,
O(m+n) executions of step S12′, and O(m+n) time exclusive of set operations. If we use the
algorithm described in Fischer [17] and Hopcroft and Ullman [18] for performing disjoint set
unions and for performing step S12′, then it follows from the analysis given in Tarjan [19]
that the reducibility algorithm has complexity O(mα(m, n)), where α(m, n) is a very slowly
growing function which is related to a functional inverse of Ackermann’s functions A(p, q),
and it is defined as follows:

α(m, n) = min
{

z ≥ 1|A
(

z, 4
⌈

m

n

⌉)
> log2n

}
.

The definition of Ackermann’s function is

A(p, q) =

2q, p = 0
0, q = 0 and p ≥ 1
2, p ≥ 1 and q = 1
A(p− 1, A(p, q − 1)), p ≥ 1 and q ≥ 2

(27.1)

Note that Ackermann’s function is a very rapidly growing function. It it easy to see that
A(3,4) is a very large number, and it can be shown that α(m, n) ≤ 3 if m ̸= 0 and log2n <
A(3,4). The algorithm is also described in Aho et al. [20] and Horowitz and Sahni [21].

Algorithm 27.2 is noncontructive, that is, it does not give us the order in which ver-
tices have to be collapsed to reduce a reducible graph. However, as we shall see now, this
information can be easily obtained as this algorithm progresses.

C5955–C0027.tex 696 2015/11/4 1:29pm

Program Graphs � 697

During DFS let us assign to the vertices, numbers called SNUMBERs, from n to 1 in the
order in which scanning at a vertex is completed. It can be easily verified that

1. If (v,w) is a tree edge, then SNUMBER(v) < SNUMBER(w).

2. If (v,w) is a cross edge, then SNUMBER(v) < SNUMBER(w).

3. If (v,w) is a back edge, then SNUMBER(v) > SNUMBER(w).

4. If (v,w) is a forward edge, then SNUMBER(v) > SNUMBER(w).

As an example, in Figure 27.4 we have shown in parentheses the SNUMBERs of the corre-
sponding vertices of the graph in Figure 27.1a.

Suppose we apply the reducibility algorithm, and each time we label a vertex v let us
associate with it a pair (HIGHPT1(v), SNUMBER(v)). When the algorithm is finished, let
us order the vertices so that a vertex labeled (x1, y1) appears before a vertex labeled (x2, y2)
if and only if x1 > x2 or x1 = x2 and y1 < y2. This order of vertices is called reduction order.
Note that an unlabeled vertex v is associated with the pair (0, SNUMBER(v)).

Suppose va, vb, vc, . . . is a reduction order for a reducible program graph G. Let T
be a DFS tree of G with vertex s as the root. Using Theorem 27.3 and the properties of
SNUMBERs outlined earlier, it is easy to show that the tree edge (u, va) is the only edge
incident into va. Suppose we collapse va into u and let G′ be the resulting reducible graph.
Also let T ′ be the tree obtained from T by contracting the edge (u, va). Then clearly T ′ is
a DFS tree of G ′. Further

1. A cross edge of G corresponds to nothing or to a cross edge or to a forward edge of G′.

2. A forward edge of G corresponds either to nothing or to a forward edge of G′.

3. A back edge of G corresponds either to nothing or to a back edge of G′.

1 (1)

2 (2)

3 (3)

4 (4)

5 (8)
8(5)

(10) 6 7 (9) 9 (7) 10 (6)

Figure 27.4 Graph of Figure 27.1a with SNUMBER values in parentheses.

C5955–C0027.tex 697 2015/11/4 1:29pm

698 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

It can now be verified that the relative HIGHPT1 values of the vertices in G′ will be the
same as those in G. This is also true for the SNUMBERs. Thus vb, vc, . . . will be a reduction
order for G′. Repeating the above arguments, we get the following theorem.

Theorem 27.4 If a program graph G is reducible, then we may collapse the vertices of G in
the reduction order using the transformation S2 (interspersed with the applications of S1).�

For example, it can be verified from the HIGHPT1 values given in Figure 27.1a and the
SNUMBER values given in Figure 27.4 that the sequence 4, 5, 3, 8, 10, 9, 7, 6, 2 is a
reduction order for the graph in Figure 27.1a.

27.3 DOMINATORS IN A PROGRAM GRAPH

Let G be a program graph with start vertex s. If, in G, vertex v lies on every directed
path from s to w, then v is called a dominator of w and is denoted by DOM(w). If v is
a dominator of w and every other dominator of w also dominates v, then v is called the
immediate dominator of w, and it is denoted by IDOM(w). For example, in the program
graph G shown in Figure 27.5a vertex 1 is the immediate dominator of vertex 9.

It can be shown that every vertex of a program graph G = (V, E), except for the start
vertex s, has a unique immediate dominator. The edges {(IDOM(w), w)|w ∈ V − {s}} form

1311
109

7

1

52

128643

1

2 (1) 7 (1)

3 (2)
6 (2)

4 (2)
9 (1) 10 (1)

12 (11)

11 (1)

13 (7)

8 (7)

5 (1)

(a)

(b)

Figure 27.5 (a) Program graph. (b) Dominator tree of graph in (a).

C5955–C0027.tex 698 2015/11/4 1:29pm

Program Graphs � 699

a directed tree rooted at s, called the dominator tree of G, such that v dominates w if and
only if v is a proper ancestor of w in the dominator tree. If G represents the flow of control
in a computer program, then the dominator tree provides information about what kinds of
code motion are safe. The dominator tree of the program graph in Figure 27.5a is shown in
Figure 27.5b.

We now develop an algorithm due to Lengauer and Tarjan [22] for finding the dominator
tree of a program graph. This algorithm is a simpler and faster version of an algorithm
presented earlier by Tarjan [23].

Let G be a program graph with start vertex s. Let T be a DFS tree of G. In the following
we shall identify the vertices of G by their DFS numbers. Furthermore, the notation x

∗→ y

means that x is an ancestor of y in T , x
+→ y means that x

∗→ y in T and x ̸= y, and x→ y
means that x is the father of y in T .

The following two lemmas are crucial in the development of the algorithm.

Lemma 27.1 If v and w are vertices of G such that v < w, than any directed path from v
to w must contain a common ancestor of v and w in T. �

Lemma 27.2 Let w ̸= s, v
∗→ w, and P be a directed path from s to w. Let x be the last

vertex on P such that x < v, and let y be the first vertex following x on P and satisfying
v

∗→ y
∗→ w. If Q : x = v0, v1, v2, . . ., vk = y is the part of P from x to y, then vi > y for

1 ≤ i ≤ k − 1. �

Let us now define for each vertex w ̸= s,
SDOM(w) = min {v| there is directed path v = v0, v1, v2, . . ., vk = w such that vi > w

for 1 ≤ i ≤ k − 1}.
SDOM(w) will be called the semi-dominator of w. It easily follows from the above defi-

nition that
SDOM(w) < w. (27.2)

In Figure 27.5a the continuous edges are tree edges and the dashed edges are nontree edges
with respect to a DFS. The semi-dominator of each vertex is shown in parentheses next to
the vertex.

As a first step, Lengauer and Tarjan’s algorithm computes semi-dominators of all the
vertices. The semi-dominators are then used to compute the immediate dominators of the
vertices.

The following theorem provides a way to compute semi-dominators.

Theorem 27.5 For any vertex w ̸= s,

SDOM(w) = min({v|(v, w) ∈ E and v < w} ∪ {SDOM(u)|u > w and there is an edge
(v, w) such that(u ∗→ v)}) (27.3)

Proof. Let x equal the right-hand side of (27.3). It can be shown using the definition of
semi-dominators that SDOM(w) ≤ x.

To prove that SDOM(w) ≥ x, let y = SDOM(w), and let y = v0, v1, . . ., vk = w be a
directed path such that vi > w for 1 ≤ i ≤ k − 1. If k = 1, then (y, w) ∈ E, and y < w
by (27.2). Thus SDOM(w) = y ≥ x. Suppose k > 1. Let j be minimum such that j ≥ 1
and vj

∗→ vk−1. Such a j exists since k − 1 is a candidate for j. We now claim vi>vj for
1 ≤ i ≤ j − 1.

C5955–C0027.tex 699 2015/11/4 1:29pm

700 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Suppose to the contrary that vi < vj for some 1 ≤ i ≤ j−1. Then choose the i such that
1 ≤ i ≤ j − 1 and vi is minimum. Then by Lemma 27.1 vi

∗→ vj , contradicting the choice
of j. This proves the claim.

The claim implies that SDOM(w) = y ≥ SDOM(vj). Since vj>w, vj
∗→ vk−1 and (vk−1,

w)∈ E it follows from (27.3) that SDOM(vj) ≥ x. So SDOM(w) ≥ x. Thus whether k = 1 or
k > 1, we have SDOM(w) ≥ x, and the theorem is proved. �
We now need a way to compute immediate dominators from semi-dominators. Toward this
end we proceed as follows.

The next three lemmas are easy to prove. Proof of Lemma 27.4 uses Lemma 27.1.

Lemma 27.3 For any vertex w ̸= s, IDOM(w) +→ w. �

Lemma 27.4 For any vertex w ̸= s, let v = SDOM(w). Then v +→ w. �

Lemma 27.5 For any vertex w ̸= s, let v = SDOM(w). Then IDOM(w) ∗→ v. �

Lemma 27.6 Let vertices v, w satisfy v ∗→ w. Then either v ∗→ IDOM(w) or IDOM(w) ∗→
IDOM(v).

Proof. Let x be any proper descendant of IDOM(v) which is also a proper ancestor of v.
Then there is a directed path from s to v which avoids x. By concatenating this path with
the path in T from v to w, we obtain a directed path from s to w which avoids x. Thus
IDOM(w) must be either a descendant of v or an ancestor of IDOM(v). �
Using the foregoing lemmas we next prove two results which provide a way to compute
immediate dominators and semi-dominators.

Theorem 27.6 Let w ̸= s and let v = SDOM(w). Suppose every u for which v +→ u ∗→ w
satisfies SDOM(u) ≥ SDOM(w). Then IDOM(w) = v.

Proof. By Lemma 27.5, IDOM(w) ∗→ v. So to prove that IDOM(w) = v, it suffices to show
that v dominates w.

Consider any directed path P from s to w. Let x be the last vertex on this path such
that x < v. If there is no such x, then v = s dominates w. Otherwise let y be the first
vertex following x on the path and satisfying v ∗→ y ∗→ w. Let Q:x = v0, v1, v2, . . ., vk = y
be the part of P from x to y. Then by Lemma 27.2 vi > y for 1 ≤ i ≤ k − 1. This together
with the definition of semi-dominators implies that SDOM(y) ≤ x < v = SDOM(w). So
SDOM(y) < SDOM(w).

By the hypothesis of the theorem, SDOM(u) ≥ SDOM(w) for every u satisfying v +→ u
∗→ w. So y cannot be a proper descendant of v. Since y satisfies v ∗→ y ∗→ w, it follows that

y = v, and v lies on P. Since the choice of P was arbitrary, v dominates w. �

Theorem 27.7 Let w ̸= s, and let v = SDOM(w). Let u be a vertex for which SDOM(u) is
minimum among vertices u satisfying v +→ u ∗→ w. Then SDOM(u) ≤ SDOM(w) and IDOM
(u) = IDOM(w).

Proof. Let z be the vertex such that v → z ∗→ w. Then SDOM(u) ≤ SDOM(z) ≤ v =
SDOM(w).

By Lemma 27.5, IDOM(w) is an ancestor of v and hence a proper ancestor of u. Thus
by Lemma 27.6, IDOM(w) ∗→ IDOM(u). To prove that IDOM(u) = IDOM(w), it suffices to
show that IDOM(u) dominates w.

C5955–C0027.tex 700 2015/11/4 1:29pm

Program Graphs � 701

Consider any directed path P from s to w. Let x be the last vertex on P satisfying
x < IDOM(u). If there is no such x, then IDOM(u) = s dominates w. Otherwise let y be
the first vertex following x on P and satisfying IDOM(u) ∗→ y ∗→ w. As in the proof of
Theorem 27.6, we can show using Lemma 27.2 that SDOM(y) ≤ x. Since by Lemma 27.5
IDOM(u) ≤ SDOM(u), we have SDOM(y) ≤ x < IDOM(u) ≤ SDOM(u). So SDOM(y) <
SDOM(u).

Since u has a minimum semi-dominator among the vertices on the tree path from z to w,
y cannot by a proper descendant of v. Furthermore, y cannot be both a proper descendant of
IDOM (u) and an ancestor of u, for if this were the case, the directed path consisting of the
tree path from s to SDOM(y) followed by a path SDOM(y) = v0, v1, v2, v3, . . ., vk = y such
that vi > y, for 1 ≤ i ≤ k− 1, followed by the tree path from y to u would avoid IDOM(u),
but no path from s to u avoids IDOM(u).

The only remaining possibility is that IDOM(u) = y. Thus IDOM(u) lies on the directed
path P from s to w. Since the choice of P was arbitrary, IDOM(u) dominates w. �

The following main result is an immediate consequence of Theorems 27.6 and 27.7.

Theorem 27.8 Let w ̸= s and let v = SDOM(w). Let u be the vertex for which SDOM(u)
is minimum among vertices u satisfying v

+→ u
∗→ w. Then

IDOM(w) =
{

v, if SDOM(u) = SDOM(w)
IDOM(u), otherwise.

�

We are now ready to describe the dominator algorithm of Lengauer and Tarjan.
Following are the main steps in this algorithm.

Algorithm 27.2 Dominators (Lengauer and Tarjan)

S1. Carry out a DFS of the given program graph G = (V, E) with the start vertex as
the root.

S2. Compute the semi-dominators of all vertices by applying Theorem 27.5. Carry out
the computation vertex by vertex in the decreasing order of their DFS numbers.

S3. Implicitly define the immediate dominator of each vertex by applying Theorem 27.8.

S4. Explicitly define the immediate dominator of each vertex, carryisg out the computa-
tion vertex by vertex in the increasing order of their DFS numbers.

Implementation of Step S1 is straightforward. In the following we denote vertices by their
DFS numbers assigned in Step S1.

In our description of steps S2, S3, and S4 we use the arrays FATHER, SEMI, BUCKET,
and DOM, defined below.

SEMI(w):

1. Before the semi-dominator of w is computed,

SEMI(w) = w.

2. After the semi-dominator of w is computed,

SEMI(w) = SDOM(w).

BUCKET(w): It is a set of vertices whose semi-dominator is w.

C5955–C0027.tex 701 2015/11/4 1:29pm

702 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

DOM(w):

1. Afters step S3, if the semi-dominator of w is its immediate dominator, then DOM(w)
is the immediate dominator of w. Otherwise DOM(w) is a vertex v such that v < w
and the immediate dominator of v is also the immediate dominator of w.

2. After step S4, DOM(w) is the immediate dominator of w.

After carrying out step S1, the algorithm carries out steps S2 and S3 simultaneously, process-
ing the vertices w ̸= 1 in the decreasing order of their DFS numbers. During this computation,
the algorithm maintains a forest contained in the DFS tree of G. The forest consists of ver-
tex set V and edge set {(FATHER(w), w) | vertex w has been processed}. The algorithm
uses one procedure to construct the forest and another to extract information from it. These
procedures are:

LINK(v, w): Add edge (v, w) to the forest.

EVAL(v):

1. If v is the root of a tree in the forest, then EVAL(v) = v.

2. Otherwise, let r be the root of the tree in the forest which contains v, and let u be
a vertex for which SEMI(u) is minimum among vertices satisfying r +→ u ∗→ v. Then
EVAL(v) = u.

To process a vertex w, the algorithm computes the semi-dominator of w by applying Theorem
27.5. Thus the algorithm assigns

SEMI(w) = min{SEMI(EVAL(v))|(v, w) ∈ E}.

After this computation, SEMI(w) is a semi-dominator of w. This follows from Theorem 27.5
and the definition of EVAL(v).

After computing SEMI(w), the algorithm adds w to BUCKET(SEMI(w)) and adds a
new edge to the forest using LINK(FATHER(w),w). This completes step S2 for w.

The algorithm then carries out step S3 by considering each vertex in BUCKET
(FATHER(w)).

Let v be such a vertex. The algorithm implicitly computes the immediate dominator of v
by applying Theorem 27.8. Let u = EVAL(v). Then u is the vertex satisfying FATHER(w) +→
u ∗→ v whose semi-dominator is minimum. If SEMI(u) = SEMI(v), then FATHER(w) is the
immediate dominator of v and the algorithm assigns DOM(v) = FATHER(w). Otherwise u
and v have the same immediate dominator, and the algorithm assigns DOM(v) = u. This
completes step S3 for v.

In step S4 the algorithm examines vertices in the increasing order of their DFS numbers,
filling in the immediate dominators not explicitly computed in step S3.

Thus step S4 is as follows:

For each i = 2, 3, . . ., n, if DOM(i) ̸= SEMI(i), then let
DOM(i) = DOM(DOM(i)).

For an illustration of the dominator algorithm consider the program graph shown in
Figure 27.5a. Just before vertex 11 is processed, the forest will be as in Figure 27.6a. The
entries of the SEMI array at this stage are shown in parentheses next to the corresponding
vertices. Let us now process vertex 11.

C5955–C0027.tex 702 2015/11/4 1:29pm

Program Graphs � 703

11 (11)

1 (1)

7 (7)

6 (6)

(8) 8

(2) 2

(3) 3

(4) 4

(5) 5
(10) 10(9) 9

12 (11) 13 (7)

11 (1)

13 (7)

7 (7)

1 (1)

(6) 6

(8) 8

(2) 2

(3) 3

(4) 4

(10) 10(9) 9

12 (11)(5) 5

(a)

(b)

Figure 27.6 Illustration of Algorithm 27.2.

The edges (1,11) and (7,11) are incident into 11. So

SEMI(11) = min{SEMI(EVAL(1)), SEMI(EVAL(7))}

Now EVAL(1) = 1 because vertex 1 is a tree root in the forest. For the same reason,
EVAL(7) = 7. Thus

SEMI(11) = min{SEMI(1), SEMI(7)}
= min{1, 7}
= 1.

The algorithm now adds the edge (7, 11) to the forest and the vertex 11 to
BUCKET(SEMI(11)) = BUCKET(1). The new forest with the SEMI array entries is shown
in Figure 27.6b. This completes step S2 for vertex 11.

The algorithm now considers BUCKET(FATHER(11)) = BUCKET(7). Vertex 13 is the
only one whose semi-dominator is equal to 7. So BUCKET(7) = {13}. Now EVAL(13) =
11, since SEMI(11) is minimum along vertices u satisfying 7 +→ u

∗→ 13 (see Figure 27.6b).
Since SEMI(13) ̸= SEMI(11), the algorithm sets DOM(13) = 11. This completes step S3 for
vertex 11.

C5955–C0027.tex 703 2015/11/4 1:29pm

704 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

After steps S2 and S3 have been carried out for every vertex w ̸= 1, the semi-dominaters
of all the vertices will be available. At this stage, the entries of the DOM array and the
semi-dominators will be as given below:

Vertex DOM Semi-Dominator(SEMI)
2 1 1
3 2 2
4 2 2
5 1 1
6 2 2
7 1 1
8 7 7
9 1 1

10 1 1
11 1 1
12 11 11
13 11 7

For every vertex w ̸= 13, DOM(w) = SEMI(w). So for all vertices w except 13, IDOM(w) =
DOM(w). For vertex 13, we compute

DOM(13) = DOM(DOM(13))
= DOM(11)
= 1.

So IDOM(13) = 1. This completes step S4 of the algorithm and we get the dominator tree
shown in Figure 27.5b.

Clearly, the complexity of the above algorithm depends crucially on the implementation of
LINK and EVAL instructions. Tarjan [24] discusses two methods which use path compression.
One of these is described below.

To represent the forest built by the LINK instructions, the algorithm uses two arrays,
ANCESTOR and LABEL. Initially ANCESTOR(v) = 0 and LABEL(v) = v for each v. In
general, ANCESTOR(v) = 0 only if v is a tree root in the forest; otherwise, ANCESTOR(v)
is ancestor of v in the forest.

The algorithm maintains the labels so that they satisfy the following property. Let v
be any vertex, let r be the root of the tree in the forest containing v, and let v = vk,
vk−1, . . ., v0 = r be such that ANCESTOR(vi) = vi−1 for 1 ≤ i ≤ k. Let x be a vertex such
that SEMI(x) is minimum among vertices x ∈ {LABEL(vi)|1 ≤ i ≤ k}. Then we have the
following property.

x is a vertex such that SEMI(x) is minimum among vertices x satisfying

r
+→ x

∗→ v.

To carry out LINK(v, w), the algorithm assigns ANCESTOR(w) = v. To carry out EVAL(v),
the algorithm follows ancestor pointers and determines the sequence v = vk, vk−1, . . ., v0 = r
such that ANCESTOR(vi) = vi−1 for 1 ≤ i ≤ k. If v = r, then the algorithm sets EVAL(v) =
v. Otherwise the algorithm sets ANCESTOR(vi) = r for 2 ≤ i ≤ k, simultaneously updating
labels as follows (to maintain the property mentioned before):

If
SEMI(LBBEL(vi−1)) < SEMI(LABEL(vi)),
then
LABEL(vi) ← LABEL(vi−1).

C5955–C0027.tex 704 2015/11/4 1:29pm

Program Graphs � 705

Then the algorithm sets EVAL(v) = LABEL(v).
Tarjan [24] has shown that the complexity of implementing (n−1) LINKs and (m+n−1)

EVALs using the method described above is O(m log n). If we use the more sophisticated
implementation of LINK and EVAL instructions, also described in [24], then the algorithm
would require O(mα(m, n)) time, where α(m, n) is the functional inverse of Ackermann’s
function defined in the previous section.

For other dominator algorithms see Aho and Ullman [25] and Purdom and Moore [26].

References

[1] A.V. Aho and J.D. Ullman, The Theory Of Parsing, Translation And Compiling, Volume
II: Compiling, Prentice Hall, Englewood Cliffs, NJ, 1973.

[2] A.V. Aho, J.E. Hopcroft, and J.D. Ullmann, On finding the least common ancestors in
trees, SIAM J. Comput., 5 (1976), 115–132.

[3] F.E. Allen, Program Optimization. Annual Review in Automatic Programming, Vol. 5,
Pergamon, New York, 1969.

[4] F.E. Allen, Control flow analysis, SIGPLAN Notices, 5 (1970), 1–19.

[5] J. Cocke, Global common subexpression elimination, SIGPLAN Notices, 5 (1970),
20–24.

[6] M.S. Hecht, Flow Analysis of Computer Programs, Elsevier, New York, 1977.

[7] K. Kennedy, A global flow analysis algorithm, Int. J. Comput. Math., 3 (1971), 5–16.

[8] M. Schaefer, A Mathematical Theory of Global Program Optimization, Prentice Hall,
Englewood Cliffs, NJ, 1973.

[9] J.D. Ullman, Fast algorithms for the elimination of common subexpressions, Acta Inf.,
2 (1973), 191–213.

[10] M.S. Hecht and J.D. Ullman, Flow graph reducibility, SIAM J. Comput., 1 (1972),
188–202.

[11] J. Cocke and R.E. Miller, Some analysis techniques for optimizing computer programs,
In Proc. 2nd Int. Conf. Sys. Sci., Honolulu, HI, 1969.

[12] J.E. Hopcroft and J.D. Ullman, An nlogn algorithm for detecting reducible graphs, In
Proc. 6th Ann. Princeton Conf. Inform. Sci. Sys., Princeton, NJ, 119–122, 1972.

[13] R.E. Tarjan, Testing flow graph reducibility, Proc. 5th Ann. ACM Symp. Theor.
Comput., 96–107, 1973.

[14] R.E. Tarjan, Testing flow graph reducibility, J. Comput. Sys.Sci., 9 (1974), 355–365.

[15] M.S. Hecht and J.D. Ullman, Characterizations of reducible flow graphs, J. ACM, 21
(1974), 367–375.

[16] J.M. Adams, J.M. Phelan, and R.H. Stark, A note on the Hecht-Ullman characterization
of non-reducible flow graphs. SIAM J. Comput., 3 (1974), 222–223.

[17] M. Fischer, Efficiency of equivalence algorithm, In Complexity of Computer Computa-
tions, R.E. Miller and J.W. Thatcher, editors, Plenum Press, New York, 153–168, 1972.

C5955–C0027.tex 705 2015/11/4 1:29pm

706 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[18] J.E. Hopcroft and J.D. Ullman, Set merging algorithms, SIAM J. Comput., 2 (1973),
294–303.

[19] R.E. Tarjan, On the efficiency of a good but not linear set union algorithm, J. ACM,
22 (1975), 215–225.

[20] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[21] E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science Press,
Potomac, MD, 1976.

[22] T. Lengauer and R.E. Tarjan, A fast algorithm for finding dominators in a flow graph,
Trans. on Prog. Lang. and Sys., 1 (1979), 121–141.

[23] R.E. Tarjan, Finding dominators in directed graphs, SIAM J. Comput., 3 (1974), 62–89.

[24] R.E. Tarjan, Applications of path compression on balanced trees, J. ACM, 26 (1979),
690–715.

[25] A.V. Aho and J.D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading,
MA, 1977.

[26] P.W. Purdom and E.F. Moore, Algorithm 430: Immediate predominators in a directed
graph, Comm. ACM., 15 (1972), 777–778.

C5955–C0027.tex 706 2015/11/4 1:29pm

C H A P T E R 28

Perfect Graphs
Ch́ınh T. Hoàng*

R. Sritharan†

CONTENTS

28.1 Introduction . 708
28.2 Notation . 710
28.3 Chordal Graphs . 710

28.3.1 Characterization . 710
28.3.2 Recognition . 712
28.3.3 Optimization . 715

28.4 Comparability Graphs . 715
28.4.1 Characterization . 715
28.4.2 Recognition . 718

28.4.2.1 Transitive Orientation Using Modular Decomposition 720
28.4.2.2 Modular Decomposition . 720
28.4.2.3 From the Modular Decomposition Tree to Transitive

Orientation . 721
28.4.2.4 How Quickly Can Comparability Graphs Be Recognized? . . 722

28.4.3 Optimization . 725
28.5 Interval Graphs . 726

28.5.1 Characterization . 727
28.5.2 Recognition . 728
28.5.3 Optimization . 728

28.6 Weakly Chordal Graphs . 729
28.6.1 Characterization . 729
28.6.2 Recognition . 731
28.6.3 Optimization . 732
28.6.4 Remarks . 733

28.7 Perfectly Orderable Graphs . 733
28.7.1 Characterization . 735
28.7.2 Recognition . 735
28.7.3 Optimization . 738

28.8 Perfectly Contractile Graphs . 741
28.9 Recognition of Perfect Graphs . 742
28.10 χ-Bounded Graphs . 744

∗Acknowledges support from NSERC of Canada.
†Acknowledges support from the National Security Agency, Fort Meade, Maryland.

C5955–C0028.tex 707 2015/11/4 8:20pm

707

708 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

28.1 INTRODUCTION

This chapter is a survey on perfect graphs with an algorithmic flavor. Our emphasis is on
important classes of perfect graphs for which there are fast and efficient recognition and
optimization algorithms. The classes of graphs we discuss in this chapter are chordal, com-
parability, interval, perfectly orderable, weakly chordal, perfectly contractile, and χ-bound
graphs. For each of these classes, when appropriate we discuss the complexity of the recog-
nition algorithm and algorithms for finding a minimum coloring, and a largest clique in the
graph and in its complement.

In the late 1950s, Berge [1] started his investigation of graphs G with the following
properties: (i) α(G) = θ(G), that is the number of vertices in a largest stable set is equal to
the smallest number of cliques that cover V (G) and (ii) ω(G) = χ(G), that is the number
of vertices in a largest clique is equal to the smallest number of colors needed to color G. At
about the same time, Shannon [2] in his study of the zero-error capacity of communication
channels asked: (iii) what are the minimal graphs that do not satisfy (i)?, and (iv) what is
the zero-error capacity of the chordless cycle on five vertices? In today’s language, the graphs
G all of whose induced subgraphs satisfy (ii) are called perfect.

In 1959, it was proved [3] that chordal graphs (graphs such that every cycle of length at
least four has a chord) satisfy (i), that is complements of chordal graphs are perfect. In 1960,
it was proved [1] that chordal graphs are perfect. These two results led Berge to propose
two conjectures which after many years of work by the graph theory community were proved
to hold.
Theorem 28.1 (Perfect graph theorem) If a graph is perfect, then so is its complement.

�

Theorem 28.2 (Strong perfect graph theorem) A graph is perfect if and only if it does
not contain an odd chordless cycle with at least five vertices, or the complement of such a
cycle. �

Perfect graphs are prototypes of min-max characterizations in combinatorics and graph the-
ory. The theory of perfect graphs can be used to prove well known theorems such as the
Dilworth’s theorem on partially ordered sets [4], or the König’s theorem on edge coloring of
bipartite graphs [5]. On the other hand, algorithmic considerations of perfect graphs have
given rise to techniques such as clique cutset decomposition, and modular decomposition.
Question (iv) was answered completely in [6]; in the process of doing so, the so-called Lovász’s
theta function Θ were introduced. Theta function satisfies ω(G) ≤ Θ(G) ≤ χ(G) for any
graph G. Thus, a perfect graph G has ω(G) = Θ(G) = χ(G). Subsequently, [7] gave a poly-
nomial time algorithm based on the ellipsoid method to compute Θ(G) for any graph G. As
a consequence, a largest clique and an optimal coloring of a perfect graph can be found in
polynomial time. Furthermore, the algorithm of [7] is robust in the sense of [8]: given the
input graph G, it finds a largest clique and an optimal coloring, or says correctly that G
is not perfect; [7] is also the first important paper in the now popular field of semidefinite
programming (see [9]).

This paper is a survey on perfect graphs with an algorithmic flavor. Even though there are
now polynomial time algorithms for recognizing a perfect graph and for finding an optimal
coloring—and a largest clique—of such a graph, they are not considered fast or efficient.
Our emphasis is on important classes of perfect graphs for which there are fast and efficient
recognition and optimization algorithms. The purpose of this survey is to discuss these classes

C5955–C0028.tex 708 2015/11/4 8:20pm

Perfect Graphs � 709

of graphs, named below, together with the complexity of the recognition problem and the
optimization problems. The reader is referred to [10–12] for background on perfect graphs.

Chordal graphs form a class of graphs among the most studied in graph theory. Besides
being the impetus for the birth of perfect graphs, chordal graphs have been studied in contexts
such as matrix computation and database design. Chordal graphs have given rise to well
known search methods such as lexicographic breadth-first search and maximum cardinality
search. We discuss chordal graphs in Section 28.3.

Comparability graphs (the graphs of partially order sets) are also among the earliest
known classes of perfect graphs. The well-known Dilworth’s theorem—stating that in a par-
tially ordered set, the number of elements in a largest anti-chain is equal to the smallest
number of chains that cover the set—is equivalent to the statement that complements of com-
parability graphs are perfect. Early results of [13] and [14] imply polynomial time algorithms
for comparability graph recognition. But despite much research, there is still no linear-time
algorithm for the recognition problem. It turns out that recognizing comparability graphs
is equivalent to testing for a triangle in a graph, via an O(n2) time reduction. We discuss
comparability graphs in Section 28.4.

Interval graphs are the intersection graphs of intervals on a line. Besides having obvious
application in scheduling, interval graphs have interesting structural properties. For example,
interval graphs are precisely the chordal graphs whose complements are comparability graphs.
We discuss interval graphs is Section 28.5.

Weakly chordal graphs are graphs without chordless cycles with at least five vertices and
their complements. This class of graphs generalizes chordal graphs in a natural way. For
weakly chordal graphs, there are efficient, but not linear time, algorithms for the recognition
and optimization problems. We discuss weakly chordal graphs in Section 28.6.

An order on the vertices of a graph is perfect if the greedy (sequential) coloring algo-
rithm delivers an optimal coloring on the graph and on its induced subgraphs. A graph is
perfectly orderable if it admits a perfect order. Chordal graphs and comparability graphs
admit perfect orders. Complements of chordal graphs are also perfectly orderable. Recogniz-
ing perfectly orderable graphs is NP-complete; however, there are many interesting classes of
perfectly orderable graphs with polynomial time recognition algorithms. We discuss perfectly
orderable graphs in Section 28.7.

An even-pair is a set of two nonadjacent vertices such that all chordless paths between
them have an even number of edges. If a graph G has an even-pair, then by contracting this
even-pair we obtain a graph G′ satisfying ω(G) = ω(G′) and χ(G) = χ(G′). Furthermore, if
G is perfect, then so is G′. Perfectly contractile graphs are those graphs G such that, starting
with any induced subgraph of G by repeatedly contracting even-pairs we obtain a clique.
Weakly chordal graphs and perfectly orderable graphs are perfectly contractile. We discuss
perfectly contractile graphs in Section 28.8.

Recently, a polynomial time algorithm for recognizing perfect graphs was given in [15].
We give a sketch of this algorithm in Section 28.9.

A graph G is χ-bound if there is a function f such that χ(G) ≤ f(ω(G)). Perfect graphs
are χ-bound. Identifying sufficient conditions for a graph to be χ-bound is an interesting
problem. It is proved in [16] that a graph is χ-bound if it does not contain an even chordless
cycle. One many ask a similar question for odd cycles [17]: Is it true that a graph is χ-bound
if it does not contain an odd chordless cycle with at least five vertices? In Section 28.10, we
discuss this question and related conjectures.

We give the definitions used in this chapter in Section 28.2.

C5955–C0028.tex 709 2015/11/4 8:20pm

710 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

28.2 NOTATION

For graph G = (V, E) and x ∈ V , NG(x) is the neighborhood of x in G; we omit the subscript
G when the context is clear. Let d(x) denote |N(x)|. For S ⊆ V , G[S] denotes the subgraph
of G induced by S, and G − S denotes G[V − S]; for x ∈ V , we use G − x for G − {x}.
ω(G) is the number of vertices in a largest clique in G. α(G) is the number of vertices in a
largest stable set in G. χ(G) is the chromatic number of G. θ(G) is the smallest number of
cliques that cover the vertices of G. A clique is maximal if it is not a proper subset of another
clique. For A, B ⊆ V such that G[A] and G[B] are connected, S ⊆ V is a separator for A
and B provided A and B belong to different components of G− S. Further, S is a minimal
separator for A and B if no proper subset of S is also a separator for A and B. We will also
call a set C of vertices a cutset if C is a separator for some sets A, B of V ; C is a minimal
cutset if no proper subset of C is a cutset.

We use n to refer to |V | and m to refer to |E|.
In a bipartite graph G = (X, Y, E), X and Y are the parts of the partition of the vertex-set

and E is the set of edges. A matching is a set of pairwise non-incident edges.
A set C of V is anti-connected if C spans a connected subgraph in the complement G of

G. For a set X ⊂ V , a vertex v is X-complete if v is adjacent to every vertex of X. An edge
is X-complete if both its endpoints are X-complete. A vertex v is X-null if v has no neighbor
in X.

Ck denotes the chordless cycle with k vertices. A hole is the Ck with k ≥ 4. An anti-hole
is the complement of a hole. Pk denotes the chordless path with k vertices. Kt denotes the
clique on t vertices. The K3 is sometimes called a triangle. The complement of a C4 is denoted
by 2K2. The claw is the tree on four vertices with a vertex of degree 3.

For problems A and B, A ≼ B via an f(m, n) time reduction means that an instance of
problem A can be reduced to an instance of problem B using an algorithm with the worst
case complexity of f(m, n); A ≡ B via f(m, n) time reductions means that we have A ≼ B
as well as B ≼ A via f(m, n) time reductions.

Let O(nα) be the complexity of the current best algorithm to multiply two n×n matrices.
It is currently known that α < 2.376 [18].

28.3 CHORDAL GRAPHS

Definition 28.1 A graph is chordal (or, triangulated) if it does not contain a chordless cycle
with at least four vertices.

Chordal graphs can be used to model various combinatorial structures. For example, they
are the intersection graphs of subtrees of a tree as we will see later. See [19] for applications
of chordal graphs to sparse matrix computations. Chordal graphs are among the earliest
known classes of perfect graphs [3,20,21]. We will now discuss the combinatorial structures
of chordal graphs.

28.3.1 Characterization

Definition 28.2 A vertex is simplicial if its neighborhood is a clique.

Theorem 28.3 [21] A graph G is chordal if and only if each of its induced subgraphs is a
clique or contains two nonadjacent simplicial vertices. �

To prove Theorem 28.3, we need the following two lemmas.

Lemma 28.1 Any minimal cutset of a chordal graph G is a clique.

C5955–C0028.tex 710 2015/11/4 8:20pm

Perfect Graphs � 711

Proof. Suppose C is a minimal cutset of G and A1, A2 are two distinct components of G−C.
Further, suppose for x ∈ C and y ∈ C, xy /∈ E(G). As C is a minimal cutset of G, each of
x, y has a neighbor in Ai, i = 1, 2. Let Pi, i = 1, 2, be a shortest path connecting x and y
in G[Ai ∪ C] such that all the internal vertices of Pi lie in Ai. Then, G[V (P1) ∪ V (P2)] is a
hole, a contradiction. �

Lemma 28.2 Let G be a graph with a clique cutset C. Consider the induced subgraphs G1, G2
with G = G1∪G2 and G1∩G2 = C. Then, G is chordal if and only if G1, G2 are both chordal.

Proof. If G is chordal, then as G1 and G2 are induced subgraphs of a chordal graph, they
themselves are chordal; this proves the only if part. For the if part, suppose each of G1,
G2 is chordal, but G has a hole L. Then, L must involve a vertex from each of G1 − C,
G2 − C. Therefore, C contains a pair of nonadjacent vertices from L, contradicting C being
a clique. �

Proof of Theorem 28.3. The if part is easy: If G is a graph and x is a simplicial vertex of G,
then G is chordal if and only if G− x is. Now, we prove the only if part by induction on the
number of vertices. Let G be a chordal graph. We may assume G is connected, for otherwise
by the induction hypothesis, each component of G is a clique or contains two nonadjacent
simplicial vertices, and so G contains two nonadjacent simplicial vertices. Let C be a minimal
cutset of G. By Lemma 28.1, C is a clique. Thus, G has two induced subgraphs G1, G2 with
G = G1 ∪G2 and G1 ∩G2 = C. By the induction hypothesis, each Gi has a simplicial vertex
vi ∈ Gi − C (since C is a clique, it cannot contain two nonadjacent simplicial vertices). The
vertices v1, v2 remain simplicial vertices of G, and they are nonadjacent. �

Definition 28.3 For a graph G and an ordering v1v2 · · · vn of its vertices, let Gi denote
G[{vi, · · ·, vn}]. An ordering σ = v1v2 · · · vn of vertices of G is a perfect elimination scheme
(p.e.s.) for G if each vi is simplicial in Gi.

Theorem 28.4 [21,22] G is chordal if and only if G admits a perfect elimination scheme.

Proof. For any vertex v in a chordal graph G, G − v is also chordal; this together with
Theorem 28.3 prove the only if part. Since no hole has a simplicial vertex, the if part
follows. �

Corollary 28.1 A chordal graph G has at most n maximal cliques whose sizes sum up to at
most m.

Proof. By induction on the number of vertices of G. Let x be a simplicial vertex of G. Then,
{x}∪N(x) is the only maximal clique of G containing x. By the induction hypothesis, G−x
has at most n− 1 maximal cliques whose sizes sum up to at most m− d(x). Then, the result
follows. �

Definition 28.4 Let F be a family of nonempty sets. The intersection graph of F is the
graph obtained by identifying each set of F with a vertex, and joining two vertices by an edge
if and only if the two corresponding sets have a nonempty intersection.

Theorem 28.5 [23,24] A graph is chordal if and only if it is the intersection graph of subtrees
of a tree.

C5955–C0028.tex 711 2015/11/4 8:20pm

712 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. By induction on the number of vertices. We prove the if part first. Let G = (V, E)
be a graph that is the intersection graph of a set S of subtrees of a tree T , that is, every
vertex v of V is a subtree Tv of T , and two vertices v, u ∈ V are adjacent if and only if
Tv and Tu intersect. We may assume G is connected, for otherwise, we are done by the
induction hypothesis. By Lemma 28.2, and the induction hypothesis, we only need prove G
is a clique, or contains a clique cutset. We may assume G is not a clique, and let u, v be
two nonadjacent vertices of G. Then, Tu ∩ Tv = ∅. Let P = x1, . . ., xp be the path in T with
x1 ∈ Tu, xp ∈ Tv such that all interior vertices of P are not in Tu ∪ Tv. Since T is a tree,
P is unique; furthermore, all paths with one endpoint in Tu and the other endpoint in Tv

must contain all vertices of P . Thus, x1x2 is a cut-edge of T . Let S ′ be the set of all subtrees
of S that contains the edge x1x2. Then in G, the set C of vertices that corresponds to the
subtrees of S ′ forms a clique. We claim C is a cutset of G. In G, consider a path from u to v;
let the vertices of this path be u = t1, t2, . . ., v = tk. Some subtree Tti must contain the edge
x1x2 (because it is the cut-edge of T). Thus, the vertex that corresponds to Tti is in C. We
have established the if part.

Now, we prove the only if part. Let G = (V, E) be a chordal graph. We will prove that
there is a tree T and a family S of subtrees of T such that (i) the vertices of T are the
maximal cliques of G, and (ii) for each v ∈ V , the set of maximal cliques of G containing
v induces a subtree of T . The proof is by induction on the number of vertices. Suppose
that G is disconnected. Then, the induction hypothesis implies for each component Ci of G,
there is a tree Ti satisfying (i) and (ii). Construct the tree T from the trees Ti by adding a
new root vertex r and joining r to the root of each Ti. It is easy to see that T satisfies (i)
and (ii). So, G is connected. We may assume G is not a clique, for otherwise we are easily
done. Consider a simplicial vertex v of G. As v is simplicial in G, it is not a cut vertex of
G and therefore, G − v is connected. By the induction hypothesis, the graph G − v is the
intersection graph of a set B of subtrees of a tree TB satisfying (i) and (ii). Let K be a
maximal clique of G − v containing NG(v) and let tk be the vertex of TB that corresponds
to K. If K = NG(v), then we simply add v to tK to get the tree T from TB. Otherwise,
let K ′ = NG(v) ∪ {v}. Let T be the tree obtained from TB by adding a new vertex tK′

and the edge tktK′ . Let TK be the subtree formed by the single vertex tK′ . We construct
S as follows. Add TK to S; for each tree Tu ∈ B, if Tu corresponds to a vertex in NG(v),
then add the tree Tu ∪ {tKtK′}; otherwise, add Tu to S. It is seen that (i) and (ii) hold for
T and S. �

28.3.2 Recognition

Given G, an approach to testing whether G is chordal is: first generate an ordering σ of
vertices of G that is guaranteed to be a perfect elimination scheme for G when G is chordal;
then, verify whether σ is indeed a perfect elimination scheme for G. The first linear-time
algorithm to generate a perfect elimination scheme of a chordal graph is given in [25]; it uses
the lexicographic breadth-first search (LexBFS). We present the maximum cardinality search
algorithm for the same purpose.

The maximum cardinality search algorithm (MCS), introduced in [26], is used to construct
an ordering of vertices of a given graph; the ordering is constructed incrementally right to
left (if a comes before b in the order, then we consider a to be to the left of b). An arbitrary
vertex is chosen to be the last in the ordering. In each remaining step, from the vertices
still not chosen (unlabeled vertices), one with the most neighbors among the already chosen
vertices (labeled vertices) is picked with the ties broken arbitrarily.

C5955–C0028.tex 712 2015/11/4 8:20pm

Perfect Graphs � 713

Algorithm 28.1 MCS

input: graph G
output: ordering σ = v1v2 · · · vn of vertices of G

vn ← an arbitrary vertex of G;
for i← n− 1 downto 1 do

vi ← unlabeled vertex adjacent to the most in {vi+1, · · ·, vn};
end for

Theorem 28.6 [26] Algorithm MCS can be implemented to run in O(m + n) time.

Proof. We keep the array set[0] · · · set[n − 1] where set[j] is a doubly linked list of all the
unlabeled vertices that are adjacent to exactly j labeled vertices. Thus, initially every vertex
belongs to set[0]. For each vertex, we maintain the array index of the set it belongs to as
well as a pointer to the node containing it in the set[i] lists. Finally, we maintain last, the
largest index such that set[last] is nonempty. In the ith iteration of the algorithm, a vertex in
set[last] is taken to be vi and vi is deleted from set[last]. For every unlabeled neighbor w of vi,
if w belongs to set[i], then we move w from set[i] to set[i + 1]. As each set is implemented as
a doubly linked list, a single addition or deletion can be done in constant time, and hence all
of the above operations can be done in O(d(vi)) time. Finally, in order to update the value
of last, we increment last once and then we repeatedly decrement the value of last until
set[last] is nonempty. As last is incremented at most n times and its value is never less than
–1, the overall time spent manipulating last is O(n) and we have the claimed complexity. �

Definition 28.5 For vertices x, y of graph G and an ordering σ of vertices of G, x <σ y
denotes that x precedes y in σ.

Lemma 28.3 [26] Let σ be the output of algorithm MCS on chordal graph G. Then, G does
not have a chordless path P = (x = u0)u1 · · · uk−1(uk = y) with k ≥ 2 such that ui <σ x,
1 ≤ i ≤ k − 1, and x <σ y.

Proof. Suppose such a path existed; from all such chordless paths, pick P so that the position
of x in σ is as much to the right as possible. Given the logic of the algorithm MCS, as
uk−1 <σ x <σ y, uk−1y ∈ E(G), and xy /∈ E(G), there must exist a vertex z such that
x <σ z, xz ∈ E(G), and uk−1z /∈ E(G)). Let j be the largest index less than k-1 such that
ujz ∈ E(G); such a j exists as xz ∈ E(G). Let P ′ be the path zuj · · · uk−1y. As G is chordal
and P ′ has at least four vertices, zy /∈ E(G). Now, whether x <σ z <σ y holds or x <σ y <σ z
holds, existence of the chordless path P ′ violates the choice of P , a contradiction. �

Theorem 28.7 [26] If G is chordal, then the output σ = v1v2 · · · vn produced by the algorithm
MCS is a perfect elimination scheme for G.

Proof. Suppose not, and let i be the smallest such that vi is not simplicial in Gi. Then, there
exist vj and vk such that vi <σ vj <σ vk, vivj ∈ E(G), vivk ∈ E(G), and vjvk /∈ E(G). Then,
the chordless path P = vjvivk contradicts Lemma 28.3. �

C5955–C0028.tex 713 2015/11/4 8:20pm

714 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Algorithm 28.2 chordal-recognition

input: graph G
output: yes when G is chordal and no otherwise

Run algorithm MCS on G to get σ = v1v2 · · · vn;
if σ is a perfect elimination scheme for G then

output yes
else

output no
end if

Next, we discuss how to verify in linear time [25] whether σ = v1v2 · · · vn is a perfect elimina-
tion scheme for G. The key idea in [25] is that part of the work involved in checking whether
vi is simplicial in Gi can be handed over to an appropriate vertex vj such that vi <σ vj . In
particular, let vj be the smallest neighbor of vi such that vi <σ vj . Let L(vi) = {vk | vj <σ vk

and vivk ∈ E(G)}. In other words, L(vi) is the set of those neighbors of vi that follow vj in σ.
If vj is simplicial in Gj and vj is adjacent to every vertex in L(vi), then vi is simplicial in

Gi. On the other hand, if either vj is not simplicial in Gj or vj is not adjacent to some vertex
in L(vi) (making vi not simplicial in Gi), then σ is not a perfect elimination scheme for G.
Further, part of the work involved in checking whether vj is simplicial in Gj can likewise be
deferred to a later vertex.

In the following, the list bba(vk) is the list of vertices that vk better be adjacent to; it is
the concatenation of the L(vi) lists handed over to vk by the vi’s preceding it in σ.

Algorithm 28.3 pes-verification

input: graph G and ordering σ = v1v2 · · · vn of vertices of G
output: yes when σ is a p.e.s. for G and no otherwise

for i← 1 to n do
Initialize bba(vi) to an empty list;

end for
for i← 1 to n− 1 do

if vi is not adjacent to some vertex in bba(vi) then
output no;
stop

end if
Let vj be the smallest neighbor of vi such that vi <σ vj ;
L(vi)← {vk | vj <σ vk and vivk ∈ E(G)};
Append L(vi) to bba(vj)

end for
output yes

Theorem 28.8 [25] Algorithm pes-verification can be implemented to run in O(m+n) time.

Proof. Assume that the array v[1] · · · v[n] stores σ. In order to check whether vi is adjacent
to every vertex in bba(vi): use a boolean array flag[1] · · · flag[n] that is initialized in the
first step of the entire algorithm. Now, mark the neighbors of vi in the array flag. Then,
traverse the list bba(vi) and check for each member of bba(vi) whether the corresponding

C5955–C0028.tex 714 2015/11/4 8:20pm

Perfect Graphs � 715

entry in flag is marked. Finally, unmark the neighbors of vi in flag. Thus, this operation
takes O(|bba(vi)| + d(vi)) time. As a vertex vk hands over an L(vk) list at most once, the
total size of all bba lists is O(m+n) and the overall time spent on this operation is O(m+n).
The rest of the operations can easily be implemented in O(m + n) time. �

28.3.3 Optimization

For a chordal graph, a largest clique and an optimal coloring can be found in linear time
using the combined results in [25,27]. Even the weighted versions of these problems can be
solved efficiently. This will be discussed in the context of the more general class of perfectly
orderable graphs in Section 28.7.

The known optimization algorithms for chordal graphs use the clique cutset property. For
a general graph, there are polynomial time algorithms [28,29] to find a clique cutset if one
exists in the graph. [28,30] discuss optimization algorithm for classes of graphs, more general
than chordal, using the clique cutset decomposition.

28.4 COMPARABILITY GRAPHS

Definition 28.6 A graph G = (V, E) is a comparability graph if there is a partially ordered
set (P,≺) such that V = P and two vertices of G are adjacent if and only if the corresponding
elements of P are comparable in the relation ≺.

Definition 28.7 An orientation of a graph is transitive if whenever a→ b, b→ c are arcs,
a→ c is an arc.

An ordered graph (G,≺) corresponds to an orientation in a natural way: for vertices a, b, we
orient a→ b if a ≺ b. Now, we can redefine the notion of a comparability graph as follows.

Definition 28.8 A graph is a comparability graph if it admits an orientation that is both
acyclic and transitive.

28.4.1 Characterization

Several theorems on comparability graphs have become folklore. We start with a classical
theorem of [13] that as we will see later implies a polynomial time algorithm to recognize a
comparability graph.

Theorem 28.9 [13] If a graph admits a transitive orientation, then it admits an acyclic and
transitive orientation. �

Definition 28.9 A subset M of vertices of a graph G = (V, E) is a module if any vertex
outside of M is either adjacent to every vertex in M or adjacent to no vertex in M . Trivially,
{x} for any x ∈ V , and V are modules. Module M is nontrivial if |M | ≥ 2 and M ⊂ V .

To prove Theorem 28.9, we need the following.

Theorem 28.10 [13] If a graph admits a cyclic transitive orientation, then it contains a
nontrivial module.

Proof. Let G be a graph and let
−→
G be transitive orientation of G containing a directed cycle C.

We may assume C is a shortest cycle and thus chordless. Since
−→
G is transitive, C has length

three. We may assume G has at least four vertices, for otherwise the theorem is trivially
true. Let the vertices of C be a, b, c in the cyclic order, with a→ b, b→ c, c→ a. A vertex x

C5955–C0028.tex 715 2015/11/4 8:20pm

716 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

outside C cannot have exactly one neighbor in C, for otherwise x and some two vertices in C

violate the transitivity of
−→
G . There must be a vertex v adjacent to exactly two vertices of C,

for otherwise C is a nontrivial module of G. We may assume v is adjacent to b, c. Let X be
the set of vertices that are adjacent to b, c such that X is anti-connected, a, v ∈ X, and X is
maximal with respect to this property. Since X is anti-connected, and a→ b, c→ a, it follows
that every x ∈ X has x→ b, c→ x. We may assume X is not a module of G, for otherwise
we are done. Thus, there is a vertex u ̸∈ X such that A = N(u) ∩ X and B = X − A are
not empty. As X is anti-connected, there are vertices x ∈ A, x′ ∈ B with xx′ ̸∈ E(G). Vertex
u must be adjacent to b, or c, for otherwise {u, x, b, c} violate the transitivity of

−→
G . The

maximality of X means u cannot be adjacent to both b and c. We may assume ub ∈ E(G),
uc ̸∈ E(G). Now, {u, b, x′} or {u, b, c} violates the transitivity of

−→
G . �

Lemma 28.4 Let G be a graph with a nontrivial module X and x be a vertex in X. Let G1
be the subgraph of G induced by (V (G)−X)∪{x}, let G2 be the subgraph of G induced by X.
Then G is a comparability graph if and only if both G1 and G2 are.

Proof. We obviously need only to prove the if part. Assume both G1 and G2 admit acyclic
transitive orientations

−→
G1 and

−→
G2. An acyclic transitive orientation

−→
G of G can be constructed

as follows. Consider adjacent vertices a, b of G. If a→ b is an arc in G1 or G2, then let a→ b

be an arc of
−→
G . Otherwise, we may assume a ∈ G1 − x, b ∈ X − x. If a→ x is an arc of G1,

then let a → b be an arc of −→G , else let b → a be an arc of −→G . It is easy to verify that −→G is
an acyclic transitive orientation. �
Lemma 28.4 implies the following.
Corollary 28.2 A minimally noncomparability graph cannot contain a nontrivial module. �

Proof of Theorem 28.9. We prove by contradiction. Let G be a graph such that every tran-
sitive orientation of G is cyclic. Therefore, G is not a comparability graph, and so G con-
tains an induced subgraph H that is minimally noncomparability. Therefore, every transitive
orientation of H is cyclic. By Theorem 28.10, H contains a proper module, contradicting
Corollary 28.2. �

Definition 28.10 Let G = (V, E) be a graph. The corresponding knotting graph is given
by K[G] = (VK , EK) where VK and EK are defined as follows. For each vertex v of G there
are copies v1, v2, . . ., viv in VK , where iv is the number of components of G[N(v)]. For each
edge vw of E, there is an edge viwj in EK , where v is contained in the jth component of
G[N(w)]) and w is contained in the ith component of G[N(v)].

An illustration of the knotting relation is shown in Figure 28.1. It is easy to see that if G is
a comparability graph, then its knotting graph K(G) is bipartite. The converse is also true.

Figure 28.1 Graph and its knotting graph.

C5955–C0028.tex 716 2015/11/4 8:20pm

Perfect Graphs � 717

Theorem 28.11 [14] A graph is a comparability graph if and only if its knotting graph is
bipartite. �

A characterization of comparability graphs by forbidden induced subgraphs is given in [14]
(see [31] for an English translation of [14]).

Definition 28.11 A sequence σ = {y1W1y2 . . . y2n+1W2n+1y1} is an asteroid, more exactly
a (2n + 1)-asteroid, if the yi are pairwise distinct vertices, each Wi is a path with endpoints
yi, yi+1, and yi has no neighbor in Wi+n (subscripts are taken modulo 2n + 1).

Theorem 28.12 [14] A graph G is a comparability graph if and only if its complement G
contains no asteroid. �

By characterizing all minimal asteroids, a list of all minimal non-comparability graphs can
be found.

Theorem 28.13 [14] A graph G is a comparability graph if and only if G does not contain
as induced subgraphs any of the four graphs shown in Figure 28.2 or the complements of the
14 graphs shown in Figure 28.3. �

2

3

2n

2n + 1

2n

2n + 1

1

1

2

2

3

2n

2n + 1 1

2

3

2n − 1

2n 1

C2n+1 (n ≥ 2) J 2
1

n+1 (n ≥ 2) J 2
2

n+1 (n ≥ 2) J 2
3

n (n ≥ 3)

Figure 28.2 Four graphs with non-bipartite knotting graphs.

2

3

2n − 1

2n 1

1 2 n

Fn (n ≥ 1)

1 2 n

En (n ≥ 1)

1 2 n

Dn (n ≥ 2)C2n (n ≥ 3)

Figure 28.3 Fourteen graphs containing a 3-asteroid.

C5955–C0028.tex 717 2015/11/4 8:20pm

718 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The reader may verify that the graphs in Figure 28.2 have nonbipartite knotting graphs, and
the graphs in Figure 28.3 contain a 3-asteroid.

Definition 28.12 Given a partial order (P,≺), a chain is a set of pairwise comparable
elements, an anti-chain is a set of pairwise incomparable elements.

A proof of the following well-known theorem is presented later.

Theorem 28.14 [4] In a partially ordered set (P,≺), the size of a largest anti-chain is equal
to the smallest number of chains needed to cover all elements of P . �

Let (P,≺) be a partial order, and let
−→
G be the transitive orientation of the comparability

graph G of (P,≺). Because of transitivity, a directed path of
−→
G induces a clique. Thus, a chain

of P corresponds to a clique of G. And, an anti-chain of P corresponds to a stable set of G.
Thus, Theorem 28.14 is equivalent to the statement that the complements of comparability
graphs are perfect.

28.4.2 Recognition

Consider the problem of determining whether a given graph G is a comparability graph.
Equivalently, the problem asks if G can be oriented so that the resulting directed graph is
acyclic and transitive. First, we consider an algorithm for the problem with the complexity
of O(mn). Then, we discuss a more efficient algorithm.

Suppose G is a comparability graph, xy is an edge of G, and some transitive orientation−→
G of G contains x→ y. Then, reversing the direction of every arc in

−→
G also yields a transitive

orientation of G. Therefore, if we were to test whether G admits a transitive orientation, it
is enough to pick an arbitrary edge xy of G and determine whether there exists a transitive
orientation of G that contains x→ y.

Suppose xyz is a P3 of G. If a transitive orientation of G contains x → y, then it must
contain z → y also; in this situation, we say that x→ y forces z → y. Now, the forced choice
of z → y might in turn force the orientation of some other edges. The implication class of
x → y consists of all the arcs that are forced, in one or more steps, by the initial choice of
x → y. Clearly, for some edge uv, if the implication class of x → y contains u → v as well
as v → u, then G cannot be a comparability graph. Conversely, it can be shown [11] that if
the implication class of x → y does not contain u → v as well as v → u, for any edge uv,
then all the edges oriented thus far can be deleted from G, and the process can be repeated
on the remaining graph until it has no edges left.

Theorem 28.15 [11] Algorithm comparability-recognition-1 is correct and it can be imple-
mented to run in O(mn) time. �

Algorithm comparability-recognition-1 produces an acyclic transitive orientation when the
input graph is a comparability graph. Since the proof of its correctness is involved, we will
not give it here. In this context, we note Theorem 28.9 already implies a simple polyno-
mial time algorithm for recognizing comparability graphs: a graph G is a comparability
graph if and only if for each edge xy, the implication class of x → y does not contain both
u → v and v → u for some vertices u, v. Since the number of P3 of a graph is O(nm)
(each edge can be extended to at most n P3), it is not difficult to see that all implica-
tion classes of G can be enumerated in O(nm) time, and so this simple algorithm runs in
O(nm) time.

C5955–C0028.tex 718 2015/11/4 8:20pm

Perfect Graphs � 719

Algorithm 28.4 comparability-recognition-1

input: graph G
output: yes when G is a comparability graph and no otherwise

i = 1;
while G has edges left do

Pick edge xy and orient it x→ y;
Enumerate the implication class Di of x→ y;
if some u→ v and v → u are in Di then

output no;
stop

end if
Let Ei be the set of underlying edges of members of Di;
G = G− Ei;
i = i + 1

end while
output yes

Suppose we had an algorithm that can transitively orient a given comparability graph. Then,
we can combine that with an algorithm to verify whether a given orientation of a graph is
acyclic and transitive to obtain an algorithm to recognize comparability graphs. This is the
basis for the algorithm comparability-recognition-2.

Algorithm 28.5 comparability-recognition-2

input: graph G
output: yes when G is a comparability graph and no otherwise

Run on G an algorithm for transitively orienting a comparability graph to obtain the
directed graph H;
if H is acyclic and transitive then

output yes
else

output no
end if

First, we consider the second step of the algorithm comparability-recognition-2, where it is
verified whether a given directed graph H is acyclic and transitive. The acyclicity of H can
be verified in linear time using standard search algorithms. Having done that, by considering
each P3 of H, one can easily verify in O(nm) time whether H is transitive. A faster algorithm
can be derived using multiplication of Boolean matrices. The following is folklore.

Theorem 28.16 It can be verified in O(nα) time whether a given directed acyclic graph G
is transitive.

Proof. Let A be the adjacency matrix of G. Set each entry on the main diagonal of A to 1.
Then, G is transitive if and only if A = A2, where A2 is computed via multiplication of
Boolean matrices. �
In contrast to the verification step, a given comparability graph can be transitively oriented
in linear time [32]. Next, we discuss the ideas behind the algorithm.

C5955–C0028.tex 719 2015/11/4 8:20pm

720 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

28.4.2.1 Transitive Orientation Using Modular Decomposition

The overall idea of the algorithm is to first decompose the given comparability graph using
a technique called modular decomposition, store the result of the decomposition using a
unique tree structure, and then orient the edges of the graph via a post order traversal of
the decomposition tree. We note that modular decomposition of graphs in general has many
other applications.

Suppose M is a nontrivial module in graph G = (V, E). Then, G can be decomposed into
G1 = G[V −M ∪ {x}] and G2 = G[M], where x is any vertex in M . By Lemma 28.4, G
is a comparability graph if and only if G1 and G2 are. Therefore, the notion of modules is
directly relevant to the problems of recognizing comparability graphs and finding a transitive
orientation of a comparability graph. Lemma 28.4 shows when G is a comparability graph,
it is easy to construct a transitive orientation of G from transitive orientations of G1 and
G2. Therefore, when G is a comparability graph that has a nontrivial module, one can find
a transitive orientation of G by recursively solving the problem on G1 and G2; thus, the
problem essentially reduces to finding a transitive orientation of a comparability graph that
has no nontrivial modules. In this case, the problem is solved using the fact [14] that such a
graph admits a unique transitive orientation (i.e., the transitive orientation and its reversal
are the only possible ones). The notion of modular decomposition of a graph, described next,
is a systematic procedure to decompose a graph into modules and record the result as a
unique tree structure.

28.4.2.2 Modular Decomposition

The graph is decomposed recursively into subsets of vertices each of which is a module of the
graph. The procedure stops when every subset has a single vertex. The result is represented
as a tree.

Definition 28.13 A module which induces a disconnected subgraph in the graph is a parallel
module. A module which induces a disconnected subgraph in the complement of the graph is
a series module. A module which induces a connected subgraph in the graph as well as in the
complement of the graph is a neighborhood module.

If the current set Q of vertices induces a disconnected subgraph, Q is decomposed into its
components. A node labeled P (for parallel) is introduced, each component of Q is decom-
posed recursively, and the roots of the resulting subtrees are made children of the P node. If
the complement of the subgraph induced by current set Q is disconnected, Q is decomposed
into the components of the complement. A node labeled S (for series) is introduced, each
component of the complement of Q is decomposed recursively, and the roots of the resulting
subtrees are made children of the S node. Finally, if the subgraph induced by the current
set Q of vertices and its complement are connected, then Q is decomposed into its maximal
proper submodules (a proper submodule M of Q is maximal if there does not exist module
M ′ of Q such that M ⊂M ′ ⊂ Q); it is known [14] that in this case, each vertex of Q belongs
to a unique maximal proper submodule of Q. A node labeled N (for neighborhood) is intro-
duced, each maximal proper submodule of Q is decomposed recursively, and the roots of the
resulting subtrees are made children of the N node. A graph and its modular decomposition
tree are shown in Figure 28.4.

Theorem 28.17 [32] The modular decomposition tree of a graph is unique and it can be
constructed in O(m + n) time. �

C5955–C0028.tex 720 2015/11/4 8:20pm

Perfect Graphs � 721

•1

•
2

•

•
4

•

•6 •

7

•

8

•
9

•

•
N

•

1

• S • P • N

•

2

•

3

•

4

•

5

•

6

•

7

•

8

• S

• •

3 5 10 9 10

Figure 28.4 Graph and its modular decomposition tree.

28.4.2.3 From the Modular Decomposition Tree to Transitive Orientation

Definition 28.14 Let M be the module corresponding to a node of the modular decompo-
sition tree. The quotient graph of M is the graph obtained as follows: take a representative
vertex of the graph from the subtree rooted at each child of M in the decomposition tree, and
then construct the subgraph induced by the set of chosen vertices.

We note that the choice of the representative vertex is irrelevant. The reader is referred to
Figure 28.5 where the quotient graph of the root node of the decomposition tree in Figure 28.4
is shown. Vertex vi corresponds to the subtree containing the representative vertex i of the
graph.

Let us now consider the problem of transitively orienting a comparability graph, given its
modular decomposition tree T . We do a post order traversal of T . Suppose we are at node D
of T and all the subtrees of D have already been processed (and hence any edge of the graph
with both endpoints in the same subtree of D is already oriented), our goal is to orient any
edge of the graph whose endpoints are in different subtrees of D. In order to accomplish this,
we construct the quotient graph H of D. We then transitively orient H. Suppose x, y are
vertices of the graph that are in different subtrees of D such that vi corresponds to the subtree
of D containing x while vj corresponds to the subtree containing y. We add x → y to the
transitive orientation of the graph if and only if vi → vj is in the transitive orientation of H.

For example, consider the transitive orientation of the quotient graph shown in
Figure 28.5. As it contains v4 → v3, each of 4 → 2, 5 → 2, 4 → 3, and 5 → 3 will be
added to the transitive orientation of the graph.

The remaining issues to be addressed are construction of the quotient graphs and finding
a transitive orientation of each of the quotient graphs. It is easily seen that the sum of the
sizes of all the quotient graphs is O(m + n). However, this does not automatically imply
that they can all be constructed efficiently. It is shown in [32] that all the required quotient
graphs can be constructed in O(m+n) time. Now, let us consider the problem of transitively
orienting a quotient graph. The quotient graph of an S node is a complete graph; in this case,
we can take any permutation R of the vertices and orient the edges so that R is a topological
sort of the resulting orientation. The quotient graph of a P node has no edges.

Now, let H be the quotient graph of an N node. Clearly, H itself does not have any
nontrivial modules. Therefore, as noted earlier, H admits a unique transitive orientation.

• • • • • • • •
v1 v3 v4 v10 v1 v3 v4 v10

Figure 28.5 Quotient graph of the module corresponding to the root of the tree in Figure 28.4
and its transitive orientation. v1 represents {1}, v3 represents {2, 3}, v4 represents {4, 5},
and v10 represents {6, 7, 8, 9, 10}.

C5955–C0028.tex 721 2015/11/4 8:20pm

722 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The idea of vertex partitioning is employed in [32] to transitively orient H in linear time
and we explain this next. Suppose we are given a partition of V (H) such that for blocks X
and Y of the partition every edge of H with an endpoint in X and another in Y is already
oriented in a way consistent with some transitive orientation of H (however, an edge with
both endpoints inside a block may not yet be oriented). Now, suppose u ∈ X is adjacent to
some vertices in Y and also is nonadjacent to some vertices in Y . Then, we can split Y into
Y1 (neighbors of u) and Y2 (nonneighbors of u) and replace the block Y of the partition with
Y1 and Y2. Further, for v ∈ Y1 and w ∈ Y2 such that v and w are adjacent, as uvw is a P3
and the edge uv is already oriented, orientation of the edge vw is forced. In other words, we
can now orient every edge of H with an endpoint each in Y1 and Y2. As a result, we would
have more blocks in the partition satisfying the property that any edge with endpoints in two
different blocks of the partition is already oriented (and any edge with both endpoints in the
same block may not yet be oriented). Observe that if a block Y had more than one vertex,
then there must be a vertex in a block different from Y that splits Y ; for otherwise, Y will
be a nontrivial module in H. Therefore, as H contains no nontrivial modules, the process
will terminate with each block containing exactly one vertex and all the edges in H will be
oriented. The only remaining issue is finding the initial partition. It is shown in [32] that a
source vertex s of a transitive orientation of H can be found in linear time, again, using a
version of vertex partitioning. Once s is found, we can start with X = {s} and Y = V (H)−X
as the blocks of the initial partition, with any edge incident on s oriented away from s.

Theorem 28.18 [32] A transitive orientation of a comparability graph can be found in
O(m + n) time. �

Corollary 28.3 Comparability graphs can be recognized in O(nα) time.

28.4.2.4 How Quickly Can Comparability Graphs Be Recognized?

Next, we consider the feasibility of recognizing comparability graphs in better time than
O(nα).

Definition 28.15 A dag is a directed acyclic graph.
An h2dag G = (X, Y, Z, E) is a dag (of height two) in which {X, Y, Z} is a partition of

the set of vertices of G, E is the set of arcs of G, each of X, Y , Z is a stable set, arcs between
X and Y are oriented X to Y , arcs between Y and Z are oriented Y to Z, and arcs between
X and Z are oriented X to Z. Further, X = {xi | 1 ≤ i ≤ |X|}, Y = {yi | 1 ≤ i ≤ |Y |}, and
Z = {zi | 1 ≤ i ≤ |Z|}.

In a tripartite graph G = (X, Y, Z, E), {X, Y, Z} is a partition of the set of vertices of G,
E is set of edges of G, and each of X, Y , Z is a stable set.

Consider the following problems:

Problem-Comparability
Instance: Graph G.
Question: Is G a comparability graph?

Problem-Transitivity

Instance: dag G.
Question: Is G transitively oriented?

C5955–C0028.tex 722 2015/11/4 8:20pm

Perfect Graphs � 723

Problem-h2Transitivity

Instance: h2dag G.
Question: Is G transitively oriented?

Problem-Triangle

Instance: Graph G.
Question: Does G contain a triangle?

Problem-tripartiteTriangle

Instance: Tripartite graph G.
Question: Does G contain a triangle?

Lemma 28.5 [32] Problem-Comparability ≼ Problem-Transitivity via an O(m + n) time
reduction.

Proof. Follows from Theorem 28.18. �

Lemma 28.6 [33] Problem-Transitivity ≼ Problem-Comparability via an O(m + n) time
reduction.

Proof. Let G = (V, E) be the given dag with |E| ≥ 1. Construct graph H as follows: let
X = {xi | i ∈ V }, Y = {yi | i ∈ V }, and Z = {zi | i ∈ V }. Then, V (H) = {t}∪X∪Y ∪Z∪{s}
and E(H) = {txi | xi ∈ X}∪{zis | zi ∈ Z}∪{xiyj | i→ j ∈ E}∪{yizj | i→ j ∈ E}∪{xizj |
i→ j ∈ E}. �
In other words, H has two special vertices t and s and a copy in each of X, Y , and Z for
every vertex i ∈ V . Corresponding to every arc i → j in G, H has three edges. Finally, t is
adjacent to every vertex in X and s is adjacent to every vertex in Z. Next, we verify that G
is transitive if and only if H is a comparability graph.

Suppose G is transitively oriented. Construct an orientation of H as follows: for every xi,
add the arc xi → t. For every zi, add the arc s → zi. If i → j is an arc in G, then add the
arcs xi → yj , yi → zj , and xi → zj . If the resulting orientation had a violation of transitivity,
then we must have xi → yj → zk (as only a vertex in Y can have an incoming as well as an
outgoing arc), but no xi → zk. This would then imply that G has i→ j → k but no i→ k,
making it not transitive. Thus, the resulting orientation of H is transitive and therefore, H
is a comparability graph.

Now, suppose H is a comparability graph and consider a transitive orientation of H.
As the reversal of a transitive orientation is also a transitive orientation, we can assume that
for some xi, we have the arc xi → t. This forces the arc xj → t, for every xj ∈ X. This in
turn forces every edge between X and Y to be oriented from X to Y and also forces every
edge between X and Z to be oriented from X to Z. As |E| ≥ 1, there must be some edge
xizj in H and hence the arc xi → zj must be in the transitive orientation of H. This forces
the arc s→ zj , which in turn forces the arc s→ zi, for every zi ∈ Z. Finally, as there cannot
be a directed path with two arcs from s to a vertex in Y , every edge between Y and Z is
oriented from Y to Z. In order to verify that G must be transitive, suppose G had i→ j → k.
Then, H has the P3 xiyjzk and given the discussion above, the transitive orientation of H
has xi → yj → zk, and hence has the arc xi → zk also. Therefore, H has the edge xizk, and
given the construction of H, G has the arc i→ k.

C5955–C0028.tex 723 2015/11/4 8:20pm

724 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Corollary 28.4 Problem-Comparability ≡ Problem-Transitivity via O(m + n) time
reductions. �

Lemma 28.7 [33] Problem-Transitivity ≼ Problem-h2Transitivity via an O(m + n) time
reduction.

Proof. Let G = (V, E) be the given dag. Construct h2dag H = (X, Y, Z, F) as follows:
X = {xi | i ∈ V }, Y = {yi | i ∈ V }, Z = {zi | i ∈ V }, and F = {xi → yj | i → j ∈
E} ∪ {yi → zj | i → j ∈ E} ∪ {xi → zj | i → j ∈ E}. It is seen that G has violation
i→ j → k of transitivity if and only if H has violation xi → yj → zk of transitivity. �

Note that we trivially have Problem-h2Transitivity ≼ Problem-Transitivity.

Lemma 28.8 [34] Problem-Triangle ≼ Problem-tripartiteTriangle via an O(m + n) time
reduction.

Proof. Given G = (V, E) construct the tripartite graph H = (X, Y, Z, F) as follows: X =
{xi | i ∈ V }, Y = {yi | i ∈ V }, Z = {zi | i ∈ V }, and F = {xiyj , xjyi | ij ∈ E} ∪ {yizj , yjzi |
ij ∈ E} ∪ {xizj , xjzi | ij ∈ E}. As H is a tripartite graph, any triangle of H must involve
a vertex from each of X, Y , and Z. It is then seen that {i, j, k} form a triangle in G if and
only if {xi, yj , zk} form a triangle in H. �

Note that we trivially have Problem-tripartiteTriangle ≼ Problem-Triangle.

Lemma 28.9 [34] Problem-h2Transitivity ≼ Problem-tripartiteTriangle via an O(n2) time
reduction.

Proof. Let G = (X, Y, Z, E) be the given h2dag. Construct tripartite graph H = (X, Y, Z, F)
where F = {xiyj | xi → yj ∈ E} ∪ {yizj | yi → zj ∈ E} ∪ {xizj | xi → zj /∈ E}. It is
seen that xi → yj → zk is a violation of transitivity in G if and only if {xi, yj , zk} form a
triangle in H. �

Lemma 28.10 [34] Problem-tripartiteTriangle ≼ Problem-h2Transitivity via an O(n2) time
reduction.

Proof. Let G = (X, Y, Z, E) be the given tripartite graph. Construct the h2dag H =
(X, Y, Z, F) where F = {xi → yj | xiyj ∈ E} ∪ {yi → zj | yizj ∈ E} ∪ {xi → zj | xizj /∈ E}.
It is seen that{xi, yj , zk} form a triangle in G if and only if xi → yj → zk is a violation of
transitivity in H. �

Corollary 28.5 Problem-tripartiteTriangle ≡ Problem-h2Transitivity via O(n2) time
reductions. �

Thus, we have the following theorem.

Theorem 28.19 Problem-Comparability ≡ Problem-Transitivity ≡ Problem-Triangle via
O(n2) time reductions. �

We note that the current best algorithm to test for a triangle in a graph with Ω(n2) edges
runs in O(nα) time.

C5955–C0028.tex 724 2015/11/4 8:20pm

Perfect Graphs � 725

28.4.3 Optimization

In this section, we consider the problems of finding a largest clique, a minimum coloring, a
largest stable set, and a minimum clique cover of a comparability graph.

Theorem 28.20 A largest clique and a minimum coloring of a comparability graph G can
be computed in O(m + n) time.

Proof. Let
−→
G be a transitive orientation of G; from Theorem 28.18,

−→
G can be computed in

O(m + n) time. Observe that a directed path of
−→
G corresponds to a clique of G and vice

versa.
For a vertex v of

−→
G , let height(v) = 0 if there is no arc in

−→
G leaving v; otherwise,

height(v) = 1 + max{height(w) | v → w is an arc in
→
G}. Now, height(v) can be computed

in O(m + n) time for all the vertices in
−→
G as follows: compute a topological sort R of

−→
G , then process the vertices of

−→
G by scanning R once from right to left (from largest to

smallest), and compute height(v) when vertex v is processed. During that computation, for
every vertex v that has an arc leaving it in −→G , we also record next(v) = vertex w such that
height(v) = 1 + height(w).

Then, a longest directed path in
−→
G , which corresponds to a largest clique of G, can be

found starting from a vertex v of largest height, following to vertex next(v), and repeating the
process. Further, by assigning color h to all the vertices with height h, a minimum coloring
of G can also be found. That the coloring found is optimal follows from the fact that the
number of colors used equals the size of a largest clique of G. �
Consider the following problems:

Problem-bipartiteStable

Instance: Bipartite graph G and positive integer k.
Question: Is there a stable set of size at least k in G?

Problem-bipartiteMatching

Instance: Bipartite graph G and positive integer k.
Question: Is there a matching of size at least k in G?

Problem-comparabilityStable

Instance: Comparability graph G and positive integer k.
Question: Is there a stable set of size at least k in G?

Theorem 28.21 [5,35] In a bipartite graph, the size of a largest matching equals the size of
a smallest vertex cover. �

The proof of the following theorem is adopted from [36].

Theorem 28.22 [37,38] Let
−→
G be a transitive orientation of the comparability graph G =

(V, E). Construct bipartite graph B = (X, Y, F) where X = {x′ | x ∈ V }, Y = {x′′ | x ∈ V },
and F = {x′y′′ | x → y is an arc in

→
G}. Suppose M is a largest matching in B. Then,

α(G) = θ(G) = n− |M | where n = |V |.

C5955–C0028.tex 725 2015/11/4 8:20pm

726 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof [36,38]. For x, y ∈ V with x′y′′ ∈M , refer to y as successor of x, and to x as predecessor
of y. As M is a matching, every x ∈ V has at most one predecessor and at most one successor.

Every u ∈ V defines a unique sequence Ku = u−p, . . ., u−2, u−1, u = u0, u1, u2, . . ., us

where ui+1 is successor of ui, ui−1 is predecessor of ui, u−p has no predecessor, and us has
no successor. It then follows from transitivity of

−→
G that whenever i < j, we have the arc

ui → uj in
−→
G . This in turn implies that no two elements of Ku are the same.

Clearly, every x′y′′ ∈ M appears as ui
′ui+1

′′ for some ui, ui+1 in a specific sequence Ku.
Let the total number of such sequences be k and the length of the ith sequence be ri. Then,∑k

i=1 ri = n and
∑k

i=1(ri− 1) = |M |. It then follows that k = n−|M |. As each Ku is a chain
in
−→
G , and hence corresponds to a clique of G, we have that θ(G) ≤ k.
In order to show that θ(G) ≥ k also holds, we construct a stable set in G of size k based

on M . From Theorem 28.21, B has a vertex cover R of size |M |. Let S = {x ∈ V | x′ /∈ R

and x′′ /∈ R}. Note that for x, y ∈ S, the arc x → y cannot be in
−→
G ; otherwise, as x′ /∈ R

and y′′ /∈ R, x′y′′ ∈ F is not covered by R. Therefore, S is a stable set of G and hence
θ(G) ≥ |S|. However, as each x ∈ R prevents only one vertex of G from being a member
of S, |S| ≥ n − |R| = n − |M |, and therefore |S| ≥ k. Thus, we have θ(G) ≥ |S| ≥ k also.
Finally, as θ(G) ≥ α(G) and α(G) ≥ |S| also hold, we have k ≥ θ(G) ≥ α(G) ≥ |S| ≥ k,
and we conclude that θ(G) = α(G) = k = n− |M |. �

Theorem 28.23 Problem-bipartiteStable ≡ Problem-bipartiteMatching ≡ Problem-compara-
bilityStable via O(m + n) time reductions.

Proof. That Problem-bipartiteStable ≡ Problem-bipartiteMatching follows from Theorem
28.21. As every bipartite graph is a comparability graph, we have Problem-bipartiteStable
≼ Problem-comparabilityStable. That Problem-comparabilityStable ≼ Problem-bipartite-
Matching follows from Theorem 28.22. �
Given the current best time bounds of O(n1.5√

m/log n) [39] and O(n2.5/log n) [40] for com-
puting a largest matching in a bipartite graph, we have the following:

Corollary 28.6 A largest stable set and a smallest clique cover of a comparability graph can
be computed in O(min(n1.5√

m/log n, n2.5/log n)) time. �

Now, we present a proof of Theorem 28.14.

Proof of Theorem 28.3 [38]. Construct transitive orientation
−→
G of the comparability graph

G of (P,≺) by adding arc x→ y to
−→
G if and only if x ≺ y. As a chain of (P,≺) corresponds

to a clique of G and an anti-chain of (P,≺) corresponds to a stable set of G, the proof follows
from Theorem 28.22. �

28.5 INTERVAL GRAPHS

Definition 28.16 Graph G = (V, E) is an interval graph if every v ∈ V can be mapped to
an interval Iv on the real line such that xy ∈ E if and only if Ix ∩ Iy ̸= ∅. When G is an
interval graph, the collection {Iv | v ∈ V } is an interval model for G. For v ∈ V , vL and vR

denote the left and right endpoints, respectively, of Iv.

It is known that in an interval model for an interval graph, the endpoints can be assumed to
be distinct. Thus, the 2n endpoints can be represented by the integers 1 through 2n. Further,
for a cost of O(n) using bin-sort, one can assume the endpoints are given in increasing order.

C5955–C0028.tex 726 2015/11/4 8:20pm

Perfect Graphs � 727

28.5.1 Characterization

Theorem 28.24 [41] For a graph G = (V, E) the following statements are equivalent:
i. G is an interval graph.

ii. G is chordal and G is a comparability graph.

iii. There is an ordering R of the maximal cliques of G such that for every v ∈ V , the
maximal cliques containing v are consecutive in R.

Proof.

(i) ⇒ (ii) Let {Iv | v ∈ V } be an interval model for G. Suppose v1v2v3 · · · vk, k ≥ 4 is a
chordless cycle in G. For 1 ≤ i ≤ k − 1, let pi be a point in Ivi ∩ Ivi+1 . Given that
v1v2 · · · vk−1 is a chordless path, we can assume p1 < p2 < · · · < pk−1. Then, it is
impossible for Iv1 to intersect Ivk

. Therefore, G is chordal.
For x, y ∈ V , xy /∈ E if and only if either xR < yL holds or yR < xL holds. For xy /∈ E,
orient x → y in G if xR < yL. It is easily verified that the resulting orientation is
acyclic and transitive. Therefore, G is a comparability graph.

(ii) ⇒ (iii) Suppose A and B are distinct maximal cliques of G. Then, there must exist
x ∈ A and y ∈ B such that xy /∈ E; otherwise, A ∪ B is also a clique of G. Now,
consider a transitive orientation of G. For w, x ∈ A and y, z ∈ B such that xy /∈ E and
wz /∈ E, if we have x→ y in G, then we must have w → z in G. Suppose not, and we
have x → y and z → w in G. Clearly, w ̸= x and y ̸= z or else, there is a violation of
transitivity in G. Further, as G is chordal, either xz /∈ E or wy /∈ E; say, xz /∈ E. Then,
there is no way to orient the edge xz in G to avoid a violation of transitivity. Thus, the
edges of G that go across A, B are all oriented either from A to B, or from B to A.
Now, for distinct maximal cliques A, B, and C of G and w ∈ A, x, y ∈ B, and z ∈ C,
suppose we have w → x and y → z in G. Then, we claim wz /∈ E and w → z in G.
Suppose not. As G is transitively oriented, we can assume x ̸= y. Further, xz ∈ E and
wy ∈ E; otherwise, we have x → z or w → y, and the transitivity of G is violated.
Now, wyxz is a chordless cycle in G. So, we have wz /∈ E. Now, we must have w → z
in G or else, z → w → x is a violation of transitivity in G.
Now, consider the ordering R of the maximal cliques of G where A < B in R if there
exist x ∈ A and y ∈ B such that we have x → y in G; from the claim above, such a
total ordering exists. In order to verify that R is the required ordering: for maximal
cliques A, B, and C with A < B < C in R, suppose x ∈ A, x ∈ C, but x /∈ B. As B
is a maximal clique and x /∈ B, there must exist y ∈ B such that xy /∈ E. As A < B
in R, we must have x→ y in G. However, this contradicts B < C which dictates that
we have y → x in G.

(iii) ⇒ (i) Consider an ordering R = K1K2 · · ·Kp of the maximal cliques of G as stated in
the theorem. For v ∈ V , let KvL

be the left most maximal clique in R that contains
v. Similarly, let KvR

be the right most maximal clique in R that contains v. Set Iv =
[vL, vR]. It is easily verified that {Iv | v ∈ V } is an interval model for G. �

Definition 28.17 A set {x, y, z} of pair-wise nonadjacent vertices of G is an asteroidal
triple if there exists a path between any two of them that does not involve a neighbor of the
third.

Theorem 28.25 [42] G is an interval graph if and only if G is chordal and G does not
contain an asteroidal triple. �

C5955–C0028.tex 727 2015/11/4 8:20pm

728 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

28.5.2 Recognition

As chordal graphs and complements of comparability graphs can be recognized in polynomial
time, a direct consequence of Theorem 28.24 is that interval graphs can be recognized in
polynomial time; further, an interval model for an interval graph can also be constructed
in polynomial time. The first O(m + n) time algorithm to recognize interval graphs was
given in [43] and we describe the ideas employed there next. Given input graph G = (V, E),
we first test whether G is chordal (recall that every interval graph is chordal). If G is chordal,
then we use the algorithms in [25,27] to generate all the maximal cliques of G; by Corol-
lary 28.1 G has at most n maximal cliques whose sizes sum up to at most m. The remaining
task is to determine whether an ordering of all the maximal cliques of G, as stipulated in
Theorem 28.24, exists. In [43] the data structure PQ-tree was used to solve the following
problem in O(m + n) time: given a finite set X with |X| = n and a collection S1, · · ·, Sk of
subsets of X with |S1| + · · · + |Sk| = m, determine if there is an ordering of members of X
such that for each Si the members of Si occur consecutively in the ordering. In order to use
this algorithm for the recognition of interval graphs, we just have to let X = V and let the
set of maximal cliques of the chordal graph G to be the collection Si of subsets.

Subsequently, several linear-time algorithms have been designed to recognize interval
graphs; some of these algorithms employ some variation of PQ-trees where as the rest avoid
the use of such data structures. In [44], the algorithm from [43] is simplified with the use of
modified PQ-trees. An algorithm that relies on modular decomposition of chordal graphs is
given in [45]. We remarked in the section on chordal graphs that the algorithm LexBFS [25]
can be used to generate a perfect elimination scheme of a chordal graph. An algorithm to
recognize interval graphs using LexBFS is given in [46]. The final algorithm that we comment
on relies on the following characterization of interval graphs which has been observed by
multiple researchers.

Theorem 28.26 [47–49] G = (V, E) is an interval graph if and only if vertices of G can be
ordered v1v2 · · · vn such that for vi, vj, vk with i < j < k, if vivk ∈ E then vjvk ∈ E.

Proof. For an interval graph G with an interval model where the endpoints are distinct, an
ordering of vertices of G according to the right endpoints of their intervals gives the desired
ordering. Conversely, given such an ordering, one can derive an interval model for G by taking
the interval for vi to be [vif

, vi] where vif
is the left most neighbor of vi in the ordering. �

In [50], a (very complicated) linear-time algorithm is given which employs six passes of
LexBFS with various rules for breaking ties when choices have to be made. When the input is
an interval graph, the algorithm is guaranteed to produce an ordering satisfying the conditions
of Theorem 28.26. In order to test whether a given graph is an interval graph, we run the
algorithm in [50] to get an ordering of vertices, and then verify if the ordering satisfies the
conditions of Theorem 28.26.

28.5.3 Optimization

As interval graphs are chordal, given the adjacency lists for an interval graph, each of a
largest clique, a largest stable set, an optimal vertex coloring, and a smallest vertex cover,
as will be discussed in Section 28.7, can be computed in O(m + n) time. However, when the
interval model for an interval graph is given as input, it is possible to solve the problems
more efficiently. Next, we illustrate this with algorithms for computing a largest clique and
an optimal vertex coloring.

We will assume that the 2n endpoints in the interval model of the given interval graph
G = (V, E) are distinct and they are given in sorted order; recall that the endpoints can be
sorted in O(n) time. The algorithms scan the endpoints of the intervals from left to right

C5955–C0028.tex 728 2015/11/4 8:20pm

Perfect Graphs � 729

(i.e., from the smallest to the largest). We open an interval when its left endpoint is scanned
and we close it when its right endpoint is scanned. Further, an interval itself is open if its
left endpoint has been scanned and its right endpoint is yet to be scanned.

First, we consider the problem of computing a largest clique. As a set of pair-wise
intersecting intervals must share a common point, the problem reduces to considering each
endpoint and computing how many intervals contain that endpoint. In order to do this effi-
ciently, we scan the endpoints from left to right keeping track of the set K of intervals open
at any point. The set K can be recorded in a boolean vector of size n. For a vertex v, when
we scan vL, Iv is added to K and it is deleted from K when vR is scanned. This provides the
set up to compute ω(G) in O(n) time. One can then scan the endpoints again from left to
right stopping when |K| = ω(G). The set K at this point corresponds to a maximum clique
of G. Thus, a maximum clique of G can be found in O(n) time.

Next, we consider the problem of optimal vertex coloring. We scan the endpoints from
left to right and color a vertex v when vL is scanned. Let k, initially set to zero, record the
number of colors used at any point. The list freed-colors contains colors assigned to intervals
that have already closed, that is, those whose right endpoints have already been scanned;
initially, freed-colors is empty. For a vertex v, when vL is scanned, if freed-colors is nonempty,
then we remove any color c from freed-colors and assign it to v. If freed-colors is empty, then
we increase k by 1 and assign the color k to v (i.e., v is given a new color). When vR is
scanned, the color assigned to v is added to freed-colors.

It is easily seen that the coloring is proper and that the algorithm can be implemented
to run in O(n) time. In order to verify that the coloring is optimal, observe that every time
a new color k is assigned to a vertex v, as freed-colors is empty, each of the colors 1 through
k− 1 has been assigned to an interval that is currently open. Hence each of those k− 1 open
intervals contains vL and v belongs to a clique of size k in the graph.

The reader is referred to [51] for a detailed exposition on interplay between representation
of graphs and complexity of algorithms.

28.6 WEAKLY CHORDAL GRAPHS

A long hole is a chordless cycle with at least five vertices and a long anti-hole is the comple-
ment of a long hole.

Definition 28.18 A graph is weakly chordal (also called weakly triangulated) if it does not
contain any long holes or long anti-holes.

It is seen from the definition that the complement of a weakly chordal graph is also weakly
chordal. Further, the class of weakly chordal graphs is a proper generalization of the class of
chordal graphs.

28.6.1 Characterization

Definition 28.19 Let G be a graph and x, y be nonadjacent vertices of G. {x, y} is a two-
pair of G if either every induced path between x and y has exactly two edges or x and y belong
to different components of G. A co-pair of a graph is a two-pair of the complement of the
graph.

Weakly chordal graphs were characterized [52] via the presence of two-pairs. As weakly
chordal graphs are closed under complementation, the presence of a co-pair also characterizes
weakly chordal graphs.

Theorem 28.27 [52] G is a weakly chordal graph if and only if for every induced subgraph
H of G, either H induces a stable set or H has a co-pair. �

C5955–C0028.tex 729 2015/11/4 8:20pm

730 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

To prove Theorem 28.27, we will need to establish a preliminary result. We first start with
a definition.

Definition 28.20 A handle in a graph G is a proper vertex-subset H with size at least two
such that G[H] is connected, some component J ̸= H of G−N(H) satisfies N(J) = N(H),
and each vertex of N(H) is adjacent to at least an endpoint of each edge of G[H]. J is called
a co-handle of H. �
Note that N(H) is a minimal separator of H and J .

Theorem 28.28 [53,54] A graph has a handle if and only if the graph has a P3, and a handle
and its co-handle can be found in polynomial time. �

When vertex-subset H of G with |H| ≥ 2 induces a component of G, as N(H) = ∅, H is
trivially a handle of G; any other component of G can be considered a co-handle of H. In
this case, it is easily seen that when G is a weakly chordal graph, any co-pair of G[H] is a
co-pair of G also. Next, we prove that this holds for any handle H of G when G is a weakly
chordal graph.

Lemma 28.11 [55] Suppose H is a handle of a weakly chordal graph G and {x, y} is a
co-pair of G[H]. Then, {x, y} is a co-pair of G.

Proof. Let J be a co-handle of H in G, I = N(H) = N(J), and R = V (G)−H − I. Suppose
{x, y} is a co-pair of G[H] but not a co-pair of G.

Then, there exists an induced path P = x . . . y with at least four vertices in G. As each
vertex in R is adjacent to both x and y in G, P does not involve any vertex in R; therefore,
P has at least a vertex from I. Now, P cannot have a segment uvw such that u and w are in
H but v is in I, for otherwise, vertex v of I is not adjacent in G to any endpoint of the edge
uw of G[H], contradicting H being a handle of G. Thus, at least two consecutive vertices of
P are in I and P involves at least an edge of G with both endpoints in I.

In G, consider a segment P ′ = x2x3x4 . . . xr of P with r ≥ 4 such that x2 and xr are in
H but x3 through xr−1 are in I. Observe that x3 is not adjacent to x4 in G. Since I is a
minimal separator for H and J in G, and G has no long holes, in G every two nonadjacent
vertices of I must have a common neighbor in J . In particular, x3 and x4 are adjacent in G
to some vertex x1 of J . Thus in G x1 is adjacent to x2, x1 is not adjacent to x3, x1 is not
adjacent to x4, and x1x2x3x4 is a P4. Let xk be the first vertex in P ′ after x4 such that x1
is adjacent to xk in G; such an xk exists as x1 is adjacent to xr in G. Then, {x1, x2, . . ., xk}
induces a long hole in G, contradicting G being weakly chordal. �

Proof of Theorem 28.27. For one direction, if G is not weakly chordal, then it contains induced
subgraph H such that H induces either a long hole or a long anti-hole. It is seen that neither
does H induce a stable set nor it contains a co-pair of H.

For the other direction, as an induced subgraph of a weakly chordal graph is also weakly
chordal, it suffices to prove the theorem for the given weakly chordal graph G. Let G be a
weakly chordal graph with at least one edge. Let G = H0, H1, · · ·, Hp, p ≥ 0, be a sequence of
subsets of V (G) such that Hi is a handle of G[Hi−1], for 1 ≤ i ≤ p, and G[Hp] has no handle.
Then, by Theorem 28.28, G[Hp] has no P3, and is a complete multipartite graph. Therefore,
every edge of G[Hp] induces a co-pair of G[Hp]. Then, by Lemma 28.11, every edge of G[Hp]
induces a co-pair of G[Hp−1], since Hp is a handle of G[Hp−1]. Continuing this argument,
every edge of G[Hp] induces a co-pair of G.

The current best recognition and optimization algorithms for weakly chordal graphs ex-
ploit the presence of two-pairs and co-pairs.

C5955–C0028.tex 730 2015/11/4 8:20pm

Perfect Graphs � 731

28.6.2 Recognition

An algorithm to test for the presence of a long hole in a graph is to check whether a P3 of a
graph extends into a long hole. As all the P3’s of a graph can be generated in O(nm) time,
this can be implemented to run in O(nm2) time. By running this algorithm on the graph
and then on the complement, weakly chordal graphs can be recognized in O(n5) time. Later,
we discuss more efficient algorithms for the same problem.

More generally, whether a Pk, k ≥ 2, of a graph extends into a hole of size at least
k + 3 can be tested in O(nα) time [56], where O(nα) refers to the current best complexity of
multiplying two n × n Boolean matrices, by testing whether an auxiliary directed graph in
transitive. The algorithm is as follows: given the Pk T = v1 · · · vk of G, first we discard from
G all the neighbors of v2 through vk−1 that are not on T . Now, let A = N(v1)−N(vk)−V (T),
B = N(vk)−N(v1)− V (T), and D1, · · ·, Dr be the components of G− (A ∪B ∪ V (T)). Let
M be the set formed by adding a vertex mi corresponding to each Di. Now, construct the
directed graph H on the vertex-set A ∪M ∪ B. For x ∈ A, add the directed edge x → mi

provided x is adjacent in G to some vertex in Di. Similarly, for x ∈ B, add the directed edge
mi → x provided x is adjacent in G to some vertex in Di. Finally, for x ∈ A and y ∈ B,
add the directed edge x → y provided x and y are adjacent in G. It can be seen that G
has a hole of size at least k + 3 through T if and only if H is not transitive. As whether a
directed acyclic graph is transitive can be tested in O(nα) time (cf. Theorem 28.16) we get
the desired result. Thus, as the number of Pk’s in a graph is O(nk), we can check whether a
graph has a hole of size at least t, t ≥ 5, in time O(nt−3+α).

Using the above mentioned algorithm on the graph and then on the complement of the
graph, weakly chordal graphs can be recognized in O(n2+α) time which is currently O(n4.376)
[18]. For the specific case of finding long holes in a graph, an O(m2) time algorithm is known
[57]. By using this on the graph and then on the complement, weakly chordal graphs can be
recognized in O(n4) time. The current best algorithms to recognize weakly chordal graphs
run in O(m2) time [55,58]. However, one of them requires O(m2) space [58] while the other
[55] uses linear amount of space.
Lemma 28.12 [59] Suppose {x, y} is a co-pair of graph G. Let H be the graph obtained from
G by deleting the edge xy but not its endpoints. Then, G is weakly chordal if and only if H
is weakly chordal. �

Algorithm 28.6 wc-recognition

input: graph G
output: yes when G is weakly chordal and no otherwise

found ← true;
while found and G has at least one edge do

if G has co-pair {x, y} then
Delete edge xy from G

else
found ← false

end if
end while
if G has no edges then

output yes
else

output no
end if

C5955–C0028.tex 731 2015/11/4 8:20pm

732 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 28.29 [55] Algorithm wc-recognition can be implemented to run in O(m2) time
using O(m + n) space. �

28.6.3 Optimization

Definition 28.21 For a graph G and a pair {x, y} of nonadjacent vertices in G, the graph
G/xy is obtained from G by contracting the pair {x, y} as follows: delete vertices x and y
and introduce vertex (xy) and edges (xy)u for all u in NG(x) ∪NG(y).

Definition 28.22 Two nonadjacent vertices x, y in a graph G form an even-pair if every
induced path between them has an even number of edges.

Our interest in even-pairs is motivated by the following two observations.

Lemma 28.13 [60] Let G be any graph with an even-pair {x,y}. Then

i. ω(G/xy) = ω(G);

ii. χ(G/xy) = χ(G).

Proof. We will establish (i) first. Let K be clique in G/xy. For simplicity, write z = (xy). If
z /∈ K, then K is also a clique in G. Suppose z ∈ K. Then, either x or y must be adjacent
in G to every vertex in K − {z}. Otherwise, there exist u, v ∈ K such that xu ∈ E(G),
xv /∈ E(G), yu /∈ E(G), and yv ∈ E(G) so that xuvy is a P4 in G; this contradicts {x, y}
being an even-pair of G. Thus, G also has a clique of size |K| and ω(G/xy) ≤ ω(G). Now
suppose K is a clique in G. Clearly, at most one of x ∈ K, y ∈ K holds. Further, if x ∈ K
(y ∈ K), then K−{x}∪{z} (K−{y}∪{z}) is a clique in G/xy. Therefore, ω(G) ≤ ω(G/xy)
also holds and ω(G) = ω(G/xy).

To prove (ii), consider a coloring of G/xy. It gives a coloring of G by assigning to x, y the
color of (xy). So, we have χ(G/xy) ≥ χ(G). Now, we will prove χ(G/xy) ≤ χ(G). Consider
a coloring of G. If x, y have the same color, then this color can be assigned to (xy), and
we are done. So, assume x has color 1 and y has color 2. Let B be the bipartite graph
induced by vertices of colors 1 and 2. x and y must belong to different components of B,
for otherwise there is an induced odd path in B between the two vertices, a contradiction to
the assumption that {x, y} is an even-pair. Interchange colors 1 and 2 in the component of
B containing x. In the new coloring, x and y have the same color, implying as above, that
χ(G/xy) ≤ χ(G). �
The proof of Lemma 28.13 gives a simple algorithm that given a largest clique of G/xy
produces a largest clique of G, and given a coloring of G/xy with k colors, produces a
coloring of G with k colors. If, on subsequent graphs, we can always find an even-pair to
contract until we obtain a clique, we could produce a largest clique and an optimal coloring
of the original graph. The following lemma shows this is indeed the case for weakly chordal
graphs.

Lemma 28.14 [52] Suppose G is a weakly chordal graph and {x, y} is a two-pair of G. Then,
G/xy is weakly chordal. Further, ω(G) = ω(G/xy) and χ(G) = χ(G/xy).

Proof. We show that if G/xy is not weakly chordal, then G is not weakly chordal. Clearly,
G/xy cannot have a long hole or long anti-hole that does not involve z = (xy). Suppose
zv2 · · · vk, for k ≥ 5, is a long hole in G/xy. Then, as G is weakly chordal and given the
construction of G/xy, neither x nor y is adjacent in G to each of v2, vk. Also, each of v2, vk

C5955–C0028.tex 732 2015/11/4 8:20pm

Perfect Graphs � 733

is adjacent in G to at least one of x, y. Without loss of generality, assume that xv2 ∈ E(G),
xvk /∈ E(G), yvk ∈ E(G), and yv2 /∈ E(G). Then, xv2 · · · vky is chordless path in G with at
least five edges, contradicting {x, y} being a two-pair of G.

Suppose zv2 · · · vk, is a long anti-hole in G/xy where the ordering of the vertices corre-
sponds to the cyclic ordering of the vertices along the long hole in the complement. As C5
is isomorphic to C5, we can assume k ≥ 6. One of x, y must be adjacent in G to each of
v3, v4. Otherwise, given the construction of G/xy, we can assume xv3 ∈ E(G), xv4 /∈ E(G),
yv4 ∈ E(G), and yv3 /∈ E(G). Then, xv3vkv4y a chordless path in G with four edges, con-
tradicting {x, y} being a two-pair of G. Assume x is adjacent in G to each of v3, v4 and let
r be the smallest index such that r ≥ 5 and xvr /∈ E(G); such an r exists as xvk /∈ E(G).
Then, xv2v3v4 · · · vr is a long anti-hole in G, a contradiction. Since two-pairs are even-pairs,
the rest of the lemma follows from Lemma 28.13. �

Algorithm 28.7 wc-optimization

input: weakly chordal graph G
output: χ(G) and ω(G)

while G is not a complete graph do
find two-pair {x, y} of G;
replace G by G/xy

end while
χ(G) = |V (G)|;
ω(G) = |V (G)|;
output χ(G) and ω(G)

Theorem 28.30 [55] Algorithm wc-optimization can be implemented to run in O(mn) time
using O(m + n) space. �

For a weakly chordal graph G, α(G) and θ(G) can be computed by running the algorithm
wc-optimization on G.

28.6.4 Remarks

An O(m2) time algorithm to find a long hole in a given graph is given in [57]. An O(m2)
time algorithm to recognize weakly chordal graphs using O(m2) space is given in [58]; unlike
the algorithm described here, the one in [58] does not use the idea of a two-pair at all. The
weighted versions of the clique, coloring, stable set, and clique cover problems can be solved
on weakly chordal graphs in O(n4) time [52,59]. A consequence of algorithm wc-recognition
is that graph G is a weakly chordal if and only if an empty graph can be derived from G
by repeatedly removing a co-pair. As an interesting contrast, it is proved in [61] that graph
G is chordal if and only if G can be derived from an empty graph by repeatedly adding an
edge between vertices that form a two-pair. Efficient algorithms for finding a two-pair in a
graph are given in [62] and [63]. The fact that weakly chordal graphs are perfect was first
established in [64].

28.7 PERFECTLY ORDERABLE GRAPHS

A natural way to color a graph is to impose an order < on its vertices and then scan the
vertices in this order, assigning to each vertex vi the smallest positive integer not assigned

C5955–C0028.tex 733 2015/11/4 8:20pm

734 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

to a neighbor vj of vi with vj < vi. This method, referred to as the greedy algorithm, does
not necessarily produce an optimal coloring of the graph (i.e., one using the smallest possible
number of colors). However, on a perfectly ordered graph, the algorithm does produce an
optimal coloring.

Definition 28.23 Given an ordered graph (G, <), the ordering < is called perfect if for
each induced ordered subgraph (H, <) the greedy algorithm produces an optimal coloring of
H. The graphs admitting a perfect ordering are called perfectly orderable. An obstruction in
an ordered graph is a chordless path with vertices a, b, c, d, edges ab, bc, cd with a < b and
d < c.

Several well known classes of graphs (in particular, chordal and comparability graphs) are per-
fectly orderable. It is easy to see that a perfectly ordered graph cannot contain an obstruction.
It was shown [65] that this condition is also sufficient.

Theorem 28.31 [65] A graph is perfectly orderable if and only if it admits an obstruction-
free ordering. �

We will need the following lemma.

Lemma 28.15 Let G be a graph and let C be a clique of G such that each w ∈ C has a
neighbor p(w) ̸∈ C such that the set S consisting of the vertices p(w) form a stable set of G.
If there is an obstruction-free order < such that p(w) < w for all w ∈ C, then some p(w) is
C-complete.

Proof. By induction on the number of vertices in C. The induction hypothesis implies that,
for each w ∈ C, there is a vertex f(w) ∈ C such that the vertex p(f(w)) is adjacent to all of
C, except possibly w. In fact, we may assume p(f(w)) is not adjacent to w, for otherwise we
are done. Thus, the mapping f is one-to-one and therefore onto, that is f is a bijection. Let
v be the smallest vertex in C in the order <. There are vertices a, b such that v = f(b) and
b = f(a). Now, p(v), a, b, p(b) form an obstruction, a contradiction. �

Proof of Theorem 28.31. The ‘only if’ part is trivial. We will prove the ‘if’ part by induction on
the number of vertices. Let G be a graph with an obstruction-free order <. By the induction
hypothesis, we only need to prove the greedy algorithm delivers an optimal coloring on G.
Let k be the number of colors used on G. We will prove G contains a clique on k vertices.
This obviously shows the coloring produced by the greedy algorithm is optimal. Let i be the
smallest integer such that there is a clique C on vertices vi+1, . . ., vk such that each vj has
color j, for j = i + 1, . . ., k. We may assume i > 0, for otherwise we are done. Properties of
the greedy algorithm imply that each vj has a neighbor p(vj) with color i with p(vj) < vj ,
for each vj ∈ C. But Lemma 28.15 implies some p(vj) is C-complete, a contradiction to our
choice of i. �
The proof of Theorem 28.31 shows that perfectly orderable graphs are perfect. In study-
ing perfectly orderable graphs, the following two problems arise naturally: to decide on the
complexity of recognizing perfectly orderable graphs and to find a subgraph characteriza-
tion of perfectly orderable graphs (by subgraph characterization, we mean characterization
by minimal forbidden induced subgraphs). The subgraph characterization problem is open
but appears to be very difficult. It was proved in [66] that the problem of recognizing per-
fectly orderable graph is NP-complete. However, many classes of perfectly orderable graphs,
together with their polynomial recognition algorithms, have been found. We will discuss some
of these classes in this chapter. For a survey on perfectly orderable graphs, see [67].

C5955–C0028.tex 734 2015/11/4 8:20pm

Perfect Graphs � 735

28.7.1 Characterization

As mentioned before, there is no known characterization by forbidden induced subgraphs of
perfectly orderable graphs. We will discuss several subclasses of perfectly orderable graphs
that have been much studied.

Definition 28.24 For a P4 with vertices a, b, c, d, edges ab, bc, cd, the vertices a, d are end-
points, c, d are midpoints of the P4. A vertex is soft if it is not a midpoint or an endpoint of
a P4. A graph G is brittle if each of its induced subgraphs contains a soft vertex.

Observation 28.1 Brittle graphs are perfectly orderable.

Proof. By induction on the number of vertices. Let G be a brittle graph with a soft vertex
v. Let v1 < v2 < . . . < vn−1 be a perfect order of G − v. If v is not the endpoint of a P4,
then v < v1 < v2 < . . . < vn−1 is a perfect order of G. If v is not a midpoint of a P4, then
v1 < v2 < . . . < vn−1 < v is a perfect order of G. �

Corollary 28.7 Chordal graphs, their complements, and comparability graphs are perfectly
orderable.

Proof. Observe that a simplicial vertex is soft and that a soft vertex of a graph remains soft
in the complement. Thus, chordal graphs are brittle; by Observation 28.1, they and their
complements are perfectly orderable. Since a transitive orientation of a graph contains no
obstruction, comparability graphs are perfectly orderable. �

28.7.2 Recognition

It is proved in [66] that the problem of recognizing perfectly orderable graphs is NP-complete.
We have seen that chordal graphs and their complements are perfectly orderable. Since weakly
chordal graphs are a generalization of these two classes, it is of interest to investigate the
complexities of recognizing weakly chordal perfectly orderable graphs. In [68], it is shown that
this problem is NP-complete by modifying the argument of [66]. Since [68] is an unpublished
technical report, we will reproduce the proof here.

Theorem 28.32 It is NP-complete to determine if a weakly chordal graph is perfectly
orderable.

Proof. We will reduce the 3SAT problem to our problem. Given a 3SAT formula E with
clauses C0, C1, . . ., Cm−1 and variables v0, v1, . . ., vn−1 where each clause Ci contains literals
ci0, ci1, ci2, we construct a weakly chordal graph G(E) such that E is satisfiable if and only
if G(E) is perfectly orderable.

For each clause Cj = (cj0, cj1, cj2), we define the clause graph G(Cj) as in shown in
Figure 28.6. For each variable vi, we define the variable graph G(vi) as shown in Figure
28.7. In the graph G(vi), the chordless path between Ai and Bi has 2m vertices v(i, j, 1) for
j = 0, 1, 2, . . ., 2m− 1.

Next, we obtain the graph G′(vi) (see Figure 28.8) from G(vi) by

• If Cj contains vi, adding vertices v(i, 2j, 2), v(i, 2j, 3) and edges v(i, 2j, 1)v(i, 2j, 2),
v(i, 2j, 2)v(i, 2j, 3).

• If Cj contains vi, adding vertices v(i, 2j + 1, 2), v(i, 2j + 1, 3) and edges v(i, 2j +
1, 1)v(i, 2j + 1, 2), v(i, 2j + 1, 2)v(i, 2j + 1, 3).

C5955–C0028.tex 735 2015/11/4 8:20pm

736 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

C(j,0,0)

C(j,2,0) C(j,1,0)

C(j,0,3)

C(j,0,2)

C(j,2,3)

C(j,2,2)

C(j,2,1)

C(j,1,3)

C(j,1,2)

C(j,1,1)

C(j,0,1)

Figure 28.6 Clause graph G(Cj).

Ai

v(i,0,1) v(i,1,1) v(i,2,1) v(i,2m − 2,1) v(i,2m − 1,1)

Bi

Figure 28.7 Graph G(vi).

Ai

v(i,0,1) v(i,1,1) v(i,2,1) v(i,2m − 2,1)v(i,2m − 1,1)

Bi

v(i,1,2)

v(i,1,3)

v(i,2m − 1,2)

v(i,2m − 1,3)

Figure 28.8 Graph G′(vi).

The graph G(E) is obtained by

i. Taking m disjoint G(Cj), 0 ≤ j ≤ m− 1;

ii. Taking n disjoint G′(vi), 0 ≤ i ≤ n− 1;

iii. For k = 1, 2, 3,

identifying v(i, 2j, k) with c(j, l, k) if cjl = vi;
identifying v(i, 2j + 1, k) with c(j, l, k) if cjl = vi;
for each c(j, l, 0), 0 ≤ j ≤ m − 1, l = 0, 1, 2, adding the edge xc(j, l, 0) for all
vertices x not in G(Cj).

A vertex is of type k if it is of the form c(j, l, k) for some j and some l. We denote by Vk the
set of vertices of type k, 0 ≤ k ≤ 3. Our construction is similar to [66], except that G(vi)
is a chordless cycle in [66]. Figure 28.9 shows the interaction between a clause graph and a
variable graph; for clarity we do not show all edges coming out of the vertices of type 0.

Remark 28.1 A vertex c(j, l, 0) (of type 0) is nonadjacent to exactly four vertices of G(E):
they are c(j, l, k), 1 ≤ k ≤ 3 and c(j, l + 1 mod 3, 2).

C5955–C0028.tex 736 2015/11/4 8:20pm

Perfect Graphs � 737

Figure 28.9 A portion of the graph G(E).

Figure 28.10 Obstruction.

It is a routine but tedious matter to prove that G(E) is weakly chordal. For detail, see [68].
For the rest of the proof, we will show that G(E) is perfectly orderable if and only if E

is satisfiable. It will be more convenient to work with orientations instead of orders. For an
ordered graph, we may construct an oriented graph on the same vertex set as follows: If ab
is an edge and a < b, then we add the arc a→ b. Thus, an obstruction is a P4 with vertices
a, b, c, d and arcs a → b, b → c, d → c (see Figure 28.10). An orientation −→G of a graph G is
perfect if it is acyclic and does not contain an induced obstruction. It is a routine matter to
verify the following observation.

Observation 28.2 The graph G(vj) admits a perfect orientation, but any perfect orientation
of G(vj) is alternating on the path from Aj to Bj. �

From now on, the argument of [66] carries through, for the sake of completeness we will
complete the proof.

Claim 28.1 If G(E) admits a perfect orientation, then E is satisfiable.

Proof. For each i, 0 ≤ i ≤ n− 1, if the vertex v(i, 0, 1) is a source in G(vi), then the variable
vi is assigned value true; otherwise, it is assigned value false. Note that, by Observation 28.2,
v(i, 0, 1) being a source (resp., sink) in G(vi) implies all v(i, 2j, 1) are sources (resp., sink)
in G(vi).

Consider the graph G(Cj) with Cj = (cj0, cj1, cj2). If all three vertices c(j, l, 1), 0 ≤ l ≤ 2,
are sinks in the three corresponding graphs G(vi) where cjl = vi, or cjl = vi, then we have
c(j, l, 2)→ c(j, l, 3), and thus c(j, l, 0)→ c(j, l + 1 mod 3, 0) for 0 ≤ l ≤ 2; but then

−→
G is not

acyclic, a contradiction. Thus, some c(j, l, 1) is a source in G(vi) with cjl = vi or cjl = vi.
If cjl = vi, then c(j, l, 1) = v(i, 2j, 1) implying v(i, 0, 1) is a source in G(vi), and thus vi is
true. Similarly, if cjl = vi, then v(i, 0, 1) is a sink, and thus vi is false. In both cases, Cj is
satisfied. �

Claim 28.2 If E is satisfiable, then G(E) admits a perfect orientation.

Proof. Suppose there is a truth assignment of the variables v0, v1, . . ., vn−1 that satisfies E.
For each variable graph G(vi), we assign a perfect orientation such that v(i, 0, 1) is a source
if and only if vi is true. Such orientation exists by Observation 28.2.

Consider a clause graph G(Cj) with Cj = (cj0, cj1, cj2). Suppose cjl is the ith variable,
that is cjl = vi or vi (0 ≤ j ≤ 2). Then c(j, l, 1) = v(i, 2j, 1) or v(i, 2j + 1, 1). If c(j, l, 1)
is a source in G(vi), then direct c(j, l, 3) → c(j, l, 2); otherwise, direct c(j, l, 2) → c(j, l, 3),
and c(j, l− 1 mod 3, 0)→ c(j, l, 0). Since Cj contains a true literal, some c(j, l, 0) is a source,

C5955–C0028.tex 737 2015/11/4 8:20pm

738 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

and it follows that V0 contains no directed cycle. Extend the partial orientation of V0 into
an acyclic orientation.

Now, for each edge ab, we direct a → b if a ∈ V0, b ̸∈ V0; or if a ∈ V1, b ∈ V2. Every
edge of G has been directed. Call the resulting directed graph

−→
G . It is easy to see that

−→
G is

acyclic.
Suppose

−→
G contains an obstruction P with vertices a, b, c, d and arcs a→ b, b→ c, d→ c.

Because V0 is a clique, P contains at most two vertices of type 0.
If P contains no vertex of type 0, then P must lie entirely in some G′(vi) because V0

is a cutset of G(E). But, clearly the orientation of every G′(vi) is perfect, a contradiction.
Suppose P contains one vertex of type 0. The arcs a → b, d → c imply b, c ̸∈ V0 by our
construction. So, we may assume that a ∈ V0 (for the rest of the proof, we will not argue
on the direction of the arc b→ c). This means a = c(j, l, 0) for some j and l. Since cd is an
edge, we have {c, d} ⊂ {c(j, l, k) | 1 ≤ k ≤ 3}. Therefore, b ∈ G(vi) for some i such that vi

or vi is a literal of the clause Cj . Thus, b is the vertex next to c(j, l, 1) = v(i, r, 1) (r = 2j,
or r = 2j + 1) on the path from Ai to Bi of G(vi). It follows that c = c(j, l, 1), d = c(j, l, 2).
But our construction implies c(j, l, 1)→ c(j, l, 2), a contradiction.

Now, we may assume that P contains two vertices of type 0. Since V0 is a clique, one of
the two middle vertices of P must be of type 0. We may assume b ∈ V0. Since a→ b, a must
be in V0. From Remark 28.1, P is the P4 (i) c(j, l, 0)c(j, l−1 mod 3, 0)c(j, l, 1)c(j, l, 2), or (ii)
c(j, l, 0)c(j, l − 1 mod 3, 0)c(j, l, 3)c(j, l, 2). In case (i), our construction implies c(j, l, 1) →
c(j, l, 2), a contradiction. In case (ii), the arc c(j, l, 2)→ c(j, l, 3) implies c(j, l, 1) is a sink in
G′(vi) (for some appropriate i), and our construction implies c(j, l− 1 mod 3, 0)→ c(j, l, 0),
a contradiction. �

28.7.3 Optimization

In this section, we consider the problems of finding a largest clique, a minimum coloring,
a largest stable set, and a minimum clique-cover of perfectly ordered graphs. We note that
these four problems (even in their weighted versions) for perfect graphs have been solved in
[7]. This algorithm does not exploit the combinatorial structure of a perfect graph, instead
it uses deep properties of the ellipsoid method. Thus, it is of interest to optimize the graphs
discussed in this chapter by using combinatorial structures.

Theorem 28.33 [69] Given a graph G and a perfect order on G, one can find in O(n+m)
time a minimum coloring and a largest clique of G.

Proof. Let the vertices of G be v1, . . ., vn and the perfect order be v1 < . . . < vn. We will
show that the greedy coloring algorithm can be implemented in linear time on G. Vertices
are colored in the order given by <. Suppose we are about to process vertex vj . We find the
smallest integer t such that no neighbor x of vj has color t, and assign color t to vj . The
index t can be computed by traversing the adjacency list of vj and computing the number ai

of neighbors of vj with color i; t is the smallest index such that at = 0 (we may assume all
the ai are initially set to 0). At most d(vj) number ai are modified in computing t. After vj

is colored, we reset these ai to 0. So, the cost of coloring vj is O(d(vj)). Thus, we can color
G in time O(n + m).

From the proof of Theorem 28.31, we can extract a largest clique of G in linear time. Let
k be the number of colors used by the greedy algorithm. We will show how to find a clique
C with k vertices. Start with a vertex x of color k, put x in C. We go backward in < to
enlarge C. Suppose C contains vertices wi, wi+1, . . ., wk with i > 1 and wj having color j,
j = i, . . ., k. Let Si−1 be the set of vertices of color i− 1. The proof of Theorem 28.31 implies
there is a vertex s ∈ Si−1 that is C-complete and so can be added to C. Such vertex can be
found by scanning the adjacency list of every vertex x in Si−1 and computing the number of

C5955–C0028.tex 738 2015/11/4 8:20pm

Perfect Graphs � 739

neighbors of x in C. The adjacency list of each vertex of G is scanned at most once, so the
algorithm runs in linear time. �

Theorem 28.34 [69] Given a graph G and a perfect order on its complement G, one can
find in O(n + m) time a largest stable set and a minimum clique cover of G.

Proof. Let the vertices of G be v1, . . ., vn and the perfect order on the complement of G be
v1 < . . . < vn. To stay within the linear-time bound, we will obviously not construct G. We
process the vertices in this order and produce a coloring of G. Let the variable bi count the
number of vertices of color i. Suppose we are processing vertex vj . Then vj can be colored i
if in G, vj is not adjacent to any vertex of color i, that is, in G, vj is adjacent to bi vertices
of color i. This condition can be tested by scanning the adjacency list of vj . If such color
i exist, then we would choose the smallest such i for vj ; otherwise, we color vj with a new
color. The cost of coloring vj is O(d(vj)), so we can color G in O(n + m) time. This coloring
is a partition of G with a minimum number of cliques.

Now we show how to find a largest stable set of G. Let k be the number of colors used
on G by the greedy algorithm. We will show how to find a stable set S of G with k vertices.
Start with a vertex x of color k, put x in S. We go backward in < to enlarge S. Suppose
S contains vertices wi, wi+1, . . ., wk with i > 1 and wj having color j, j = i, . . ., k. Let Si−1
be the set of vertices of color i − 1. The proof of Theorem 28.31 implies there is a vertex
s ∈ Si−1 that is S-null and so can be added to S. Such vertex s can be found by scanning
the adjacency list of every vertex s in Si−1. The adjacency list of each vertex of G is scanned
at most once, so the algorithm runs in linear time. �
Several classes C of perfectly orderable graphs have the property that if G is in C then not
only that G is perfectly orderable, but its complement G also is (for example, brittle graphs,
and therefore chordal graphs). Theorem 28.34 is useful for optimizing these graphs.

Corollary 28.8 [27] There is a linear-time algorithm for finding a largest clique, a minimum
coloring, a largest stable set, and a minimum clique cover for a chordal graph.

Proof. Let G be a chordal graph with a perfect elimination scheme <. Then < is a perfect order
on G, and the reverse of < is a perfect order on G. The result follows from Theorems 28.33
and 28.34. �
A linear-time algorithm to recognize a co-chordal graph (complement of a chordal graph)
and to construct a perfect order of such a graph is given in [70]. Thus, we have the following
corollary.

Corollary 28.9 [70] There is a linear-time algorithm for finding a largest clique, a minimum
coloring, a largest stable set, and a minimum clique cover for a co-chordal graph. �

Actually, for a perfectly ordered graph, there are algorithms to solve more general optimiza-
tion problems. Consider the following.

Minimum weighted coloring. Given a weighted graph G such that each vertex x has a
weight w(x) which is a positive integer. Find stable sets S1, S2, . . ., Sk and integers
I(S1), . . ., I(Sk) such that for each vertex x we have w(x) ≤ Σx∈SiI(Si) and that the
sum of the numbers I(Si) is minimized. This sum is called the weighted chromatic
number and denoted by χw(G).

Maximum weighted clique. Given a weighted graph G such that each vertex x has a weight
w(x) which is a positive integer. Find a clique C such that Σx∈Cw(x) is maximized.
This sum is called the weighted clique number and denoted by ωw(G).

C5955–C0028.tex 739 2015/11/4 8:20pm

740 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Definition 28.25 A stable set of a graph G is strong if it meets all maximal cliques of G.
(Here, as usual, Maximal is meant with respect to set-inclusion, and not size. In particular, a
maximal clique may not be a largest clique.) A graph is strongly perfect if each of its induced
subgraphs contains a strong stable set.

Theorem 28.35 [65] Perfectly orderable graphs are strongly perfect. And if a perfect order
on G is given, then a strong stable set of G can be found in linear time.

Proof. By induction on the number of vertices. We only need to prove that a graph G with
a perfect order < contains a strong stable set. Let S be the set of vertices colored with color
1 by the greedy algorithm. Assume that S is not a strong stable set, for otherwise we are
done. So, consider a maximal clique C such that no vertex in C has color 1. Properties of the
greedy algorithm implies each vertex w ∈ C has a neighbor p(w) of color 1 with p(w) < w.
But then Lemma 28.15 implies some p(w) is C-complete, a contradiction. The fact that S
can be found in linear time follows from Theorem 28.33. �

Theorem 28.36 [71] If there is a polynomial time algorithm A to find a strong stable set
of a strongly perfect graph then there is a polynomial time algorithm B to find a minimum
weighted coloring and maximum weighted clique of a strongly perfect graph. If algorithm A
runs in time O(f(n)) then algorithm B runs in time O(nf(n)). Moreover if algorithm A is
strongly polynomial then so is algorithm B.

Proof. For a perfect graph G, it is known that χw(G) = ωw(G). Let G be a strongly perfect
(and therefore, perfect) graph with a weight function w on its vertices. We will show the
problem on G can be transformed to the problem on a smaller graph G′ with an O(f(n))-
time reduction. Suppose we can find a strong stable set S of G in O(f(n)) time. Let x
be a vertex in S with the smallest weight among all vertices of S. Define a new weigh
function w′(v) = w(v) − w(x) for each v ∈ S, and w′(v) = w(v) for each v ∈ G − S.
Let X = {v|w′(v) = 0}. Since x ∈ X, X is not empty. Consider the graph G′ = G − X.
Since every maximal clique of G meets S, we have ωw(G) = ωw′(G′) + w(x), and thus,
χw(G) = χw′(G′) + w(x). Suppose S1, . . ., Sk is a minimum weighted coloring of G′ with
weights I(Si). Then S1, . . ., Sk, S is a minimum weighted coloring of G with weights I(Si)
for i = 1, . . ., k, and I(S) = w(x). Similarly, if C ′ is a maximum weighted clique of G′, then
a maximum weighted clique of G can be found as follows. If C ′ ∩ (S −X) ̸= ∅, then C = C ′;
otherwise, C = C ′ ∪ {y} where y is a vertex in X that is (C ′)-complete, y exists because S
is a strong stable set (note that for C, we use the original weight function w).

We may recursively apply the above reduction until we get a trivial graph in at most
n steps. Since the complexity of our procedure does not depend on the size of the number
w(v), the reduction is strongly polynomial. �

Theorems 28.35 and 28.36 implies the following.

Corollary 28.10 Given a graph G and a perfect order on G, maximum weighted clique and
minimum weighted coloring can be solved in O(nm) time. �

For comparability and chordal graphs, these two problems can be solved even faster.

Theorem 28.37 [71] If G is a comparability graph or a chordal graph, then maximum
weighted clique and minimum weighted coloring can be solved in O(n2) time. �

Space-efficient algorithms for maximum weighted clique and minimum weighted coloring of
co-chordal graphs are given in [70]. Theorem 28.36 shows that the problem of finding a

C5955–C0028.tex 740 2015/11/4 8:20pm

Perfect Graphs � 741

strong stable set of a strongly perfect graph is of some consequence. However, no polynomial
algorithm for solving this problem is known. Finding a strong stable set of an arbitrary graph
is NP-hard [71].

28.8 PERFECTLY CONTRACTILE GRAPHS

Recall the definition of an even-pair in Section 28.6. Even-pairs play a central role in the
study of perfect graphs, as illustrated by the following two results.

Lemma 28.16 [60] Let G be a perfect graph with an even-pair {x, y}. Then G/xy is
perfect. �

Lemma 28.17 [72] No minimal imperfect graph contains an even-pair. �

From the above, it is of interest to know which perfect graphs contain even-pairs.

Definition 28.26 A graph G is even-contractile if there is a sequence G0 = G, G1, . . ., Gk

such that Gk is a clique, and for i ≤ k − 1, Gi+1 is obtained from Gi by a contraction of
some even-pair of Gi.

An even-contractile graph G has χ(G) = ω(G) by Lemma 28.13. But this class seems to
be difficult to characterize; perhaps because the class is not hereditary. Now, consider the
following definition from [73].

Definition 28.27 A graph is perfectly contractile if each of its induced subgraphs is even-
contractile.

By Lemma 28.13, perfectly contractile graphs are perfect. Most classes of graphs discussed
in this chapter are perfectly contractile. Lemma 28.14 implies the following.

Theorem 28.38 [52] Weakly chordal graphs are perfectly contractile. �
A graph is called a Meyniel graph if each of its odd cycle with at least five vertices has two
chords. Perfection of Meyniel graphs was established in [74]. Note that chordal graphs are
Meyniel graphs.

Theorem 28.39 [75] Meyniel graphs are perfectly contractile. �

Theorem 28.40 [76] Perfectly orderable graphs perfectly contractile. �

Definition 28.28 A prism is a graph that consists of two vertex-disjoint triangles (cliques of
size three) and three vertex-disjoint paths, each of length at least one and having an endpoint
in each triangle, with no other edge than those in the two triangles and in the three paths. A
prism is odd if all three paths are odd.

The following beautiful and challenging conjecture was proposed in [77].

Conjecture 28.1 [77] A graph is perfectly contractile if and only if it contains no odd hole,
no anti-hole, and no odd prism.

Definition 28.29 A graph is an Artemis graph if it contains no odd hole, no anti-hole, and
no prism.

Validity of Conjecture 28.1 was partially established by the following remarkable result.

Theorem 28.41 [78] Artemis graphs are perfectly contractile. �
An O(n2m) time algorithm to color an Artemis graph is given in [79]. Note that weakly
chordal graphs and perfectly orderable graphs are Artemis graphs. An O(n9) time algorithm
for recognizing an Artemis graph is given in [80].

C5955–C0028.tex 741 2015/11/4 8:20pm

742 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

28.9 RECOGNITION OF PERFECT GRAPHS

In this section, we give a sketch of a polynomial time algorithm to recognize a perfect graph.
By the strong perfect graph theorem, the problem is equivalent to determining if a graph
is Berge (graphs with no odd holes and no odd anti-holes). A polynomial time algorithm to
solve this problem is given in [15]. The algorithm can be divided into three phases. In the
first phase, given a graph G, the algorithm looks for one of five configurations. Each of these
five configurations can be detected in time O(n9) or faster. If G contains one of these, then G
is not Berge; otherwise, every shortest odd hole of G has a special property called amenable.
Given an odd hole C of length at least seven, a set X of vertices is a near-cleaner if it contains
all vertices that have two neighbors of distance at least three in C and X ∩ C is a subset of
the vertex set of some path of length three of C. Amenable odd holes are those odd holes
such that all near-cleaners have some special adjacency property (definitions not given here
will be given later). If the first phase does not produce an odd hole or odd antihole, the
second phase will generate O(n5) sets that are guaranteed to contain all near-cleaners of
some amenable odd hole if one exists. Finally, the third phase provides an O(n4) algorithm
that given a graph and a near-cleaner for a shortest odd hole finds an odd hole. Now, we
describe the algorithm in more detail.

Definition 28.30 A pyramid is an induced subgraph formed the union of a triangle
{b1, b2, b3}, a fourth vertex a, and three induced paths P1, P2, P3, satisfying:

• For i = 1, 2, 3, the endpoints of Pi are a, bi.

• For i ≤ i < j ≤ 3, a is the only vertex in both Pi, Pj, and bibj is the only edge between
Pi − a and Pj − a.

• a is adjacent to at most one of b1, b2, b3.

Definition 28.31 A jewel is the graph formed by a cycle with vertices v1, v2, . . ., v5 and edges
vivi+1 (with the subscript taken modulo 5) and an induced path P such that v1v3, v2v4, v1v4
are nonedges, v1, v4 are the endpoints of P , and there is no edges between {v2, v3, v5} and the
interior vertices of P .

Definition 28.32 A configuration of type T1 is the hole on five vertices.

Definition 28.33 A configuration of type T2 is a sequence v1, v2, v3, v4, P, X such that

• v1, v2, v3, v4 induce a P4 with endpoints v1, v4,

• X is an anticomponent of the set of all {v1, v2, v4}-complete vertices,

• P is an induced path in G \ (X ∪ {v2, v3}) between v1, v4, and no interior vertex of P
is X-complete or adjacent to v2 or adjacent to v3.

Definition 28.34 A configuration of type T3 is a sequence v1, . . ., v6, P, X such that

• v1, . . ., v6 are distinct vertices

• v1v2, v3v4, v1v4, v2v3, v3v5, v4v6 are edges, and v1v3, v2v4, v1v5, v2v5, v1v6, v2v6, v4v5 are
nonedges

• X is an anticomponent of the set of all {v1, v2, v5}-complete vertices, and v3, v4 are not
X-complete

C5955–C0028.tex 742 2015/11/4 8:20pm

Perfect Graphs � 743

• P is an induced path of G \ (X ∪ {v1, v2, v3, v4}) between v5, v6, and no interior vertex
of P is X-complete or adjacent to v1 or adjacent to v2

• If v5v6 is an edge, then v6 is not X-complete

In [15], it is shown that a pyramid can be detected in O(n9) time, a jewel in O(n6) time, a
configuration of type T1 in O(n5) time (obviously), a configuration of type T2 or T3 in O(n6)
time.

Theorem 28.42 [15] If G or G contains a pyramid, a jewel, or a configuration of type T1,
T2, or T3, then G is not Berge. �

Given a hole C of length at least seven, a vertex x is C-major if x has two neighbors in C
whose distance in C is at least three. A hole C of G is amenable if (i) C is a shortest odd
hole of length at least seven of G, and (ii) for every anticonnected set X of C-major vertices,
there is an X-complete edge in C.

Theorem 28.43 [15] If G contains no pyramid, and no configuration of type T1, T2, or T3,
and both G, G contains no jewel, then every shortest odd hole of G is amenable. �

Recall that a set X of vertices is a near-cleaner for an odd hole C of length at least seven
if it contains all C-major vertices, and X ∩ C is a subset of the vertex set of some path of
length three of C.

Theorem 28.44 [15] There is an O(n5) algorithm which given a graph G outputs O(n5)
subsets of V (G) such that if C is an amenable odd hole of G, then one of the subsets is a
near-cleaner for C. �

Theorem 28.45 [15] There is an O(n4) algorithm which given a graph G containing no
pyramid or jewel, and a subset X of V (G) outputs an odd hole, or determines that there is
no shortest odd hole C of G such that X is a near-cleaner for C. �

The steps needed to recognize a perfect graph are described in Algorithm 28.8. There are
two bottlenecks to making the algorithm run faster than O(n9) time.

Algorithm 28.8 perfect graph recognition

input: graph G
output: a determination that G is Berge or not

(1) Determine if G or G contains a pyramid, or a jewel, or a configuration of type T1,
T2, or T3. If it does, output G is not Berge, and stop
(2) Produce O(n5) subsets X of V (G) using Theorem 28.44. These subsets contain all
near-cleaners of some odd hole of G, if such an odd hole exists
(3) For each subset X of (2), run the algorithm of Theorem 28.45. If an odd hole is
produced, output G is not Berge, and stop
(4) Run (2) and (3) with G replaced by G
(5) Output G is Berge

The first one is that as of present, there is no algorithm to detect a pyramid in time faster
than O(n9). The second involves the near-cleaners. It is not known if given a near-cleaner,
one can find an odd hole in time faster than O(n4). It is also not known if a graph can have
fewer than O(n5) near-cleaners.

C5955–C0028.tex 743 2015/11/4 8:20pm

744 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

28.10 χ-BOUNDED GRAPHS

Definition 28.35 A graph G is χ-bounded if there is a function f such that χ(G) ≤
f(ω(G)).

We have seen that perfect graphs are χ-bounded. One may wonder about sufficient conditions
on the holes of a graph for it to be χ-bounded. Some interesting conditions have been found.

Theorem 28.46 [16] If a graph G is even hole-free, then G contains a vertex whose neigh-
borhood can be partitioned into two cliques. In particular, G satisfies χ(G) ≤ 2ω(G)− 1. �

References [81–83] give two different polynomial time algorithms (of high complexity) for
finding an even hole in a graph.

It is reasonable to expect that graphs without odd holes have bounded chromatic number.
Before discussing this matter, we will need a definition.

Definition 28.36 A k-division of a graph G with at least one edge is a partition of V (G) into
k sets V1, . . ., Vk such that no Vi contains a clique with ω(G) vertices. A graph is k-divisible
if each induced subgraph of G with at least one edge admits a k-division.

It is easy to see the following.

Lemma 28.18 A k-divisible graph G has χ(G) ≤ kω(G)−1. �

Consider the following conjectures.

Conjecture 28.2 [84] A graph is 2-divisible if and only if it is odd hole-free.

The above conjecture implies that an odd hole-free graph G has χ(G) ≤ 2ω(G)−1, and thus is
χ-bounded. The conjecture is known to hold for claw-free graphs [84], 2K2-free graphs [17],
and K4-free graphs [85]. The problem of recognizing odd hole-free graphs is open.

We now mention a number of conjectures related to χ-bounded graphs and forbidden
subgraphs.

Conjecture 28.3 [84] Let F be any forest on k vertices. Then any graph G that does not
contain F as induced subgraph is k-divisible.

It is not known if Conjecture 28.3 holds for claw-free graphs.

Definition 28.37 Let G be a graph with at least one hole. The hole number h(G) of G is
the length of the longest hole in G.

Conjecture 28.4 [84] Let G be a graph with at least one hole. Then G is (h(G)−2)-divisible.

The following special case of Conjecture 28.4 is still open.

Conjecture 28.5 [84] If G is a triangle-free graph with at least one hole, then χ(G) ≤
h(G)− 2.

C5955–C0028.tex 744 2015/11/4 8:20pm

Perfect Graphs � 745

References

[1] C. Berge. Les problèmes de colorations en théorie des graphes. Publications de l’Institut
de Statistique de l’Université de Paris, IX (1960), 123–160.

[2] C. E. Shannon. The zero-error capacity of a noisy channel. IRE Trans. Inform. Th, 2
(1956), 8–19.

[3] A. Hajnal and J. Surányi. Uber die auflösung von graphen in vollständige teilgraphen.
Ann. Univ. Sci. Budapest Eötvös. Sect. Math, 1 (1958), 113–121.

[4] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathe-
matics, 51 (1950), 161–166.

[5] D. König. Graphs and matrices. Mat. Lapok, 38 (1931), 116–119.

[6] L. Lovász. On the shannon capacity of a graph. IEEE Trans. Inform. Th. IT, 25 (1979),
1–7.

[7] M. Grötschel, L. Lovász, and A. Schrijver. Polynomial algorithms for perfect graphs. In
Berge and Chvátal, editors, Topics on Perfect Graphs, pages 325–356. North-Holland
Mathematics Studies, 1984.

[8] V. Raghavan and J. Spinrad. Robust algorithms for restricted domains. Journal of
Algorithms, 48 (2003), 160–172.

[9] B. A. Reed. A gentle introduction to semi-definite programming. In Perfect Graphs,
pages 67–92.

[10] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications, Society for Industrial and Applied
Mathematics, 1999.

[11] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New
York, 1980.

[12] J. L. Ramı́rez-Alfonśın and B. A. Reed, editors. Perfect Graphs. Wiley, 2001.

[13] A. Ghouila-Houri. Caractérisation des graphes non orientés dont on peut orienter les
arêtes de manière à obtenir le graphe d’une relation d’ordre. C. R. Acad. Sci. Paris,
254 (1962), 1370–1371.

[14] T. Gallai. Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hungar, 18 (1967),
25–66.

[15] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and K. Vuskovic. Recognizing berge
graphs. Combinatorica, 25 (2005), 143–186.

[16] L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed, and P. Seymour. Bisimplicial
vertices in even-hole-free graphs. Journal of Combininatorial Theory Series B, 98 (2008),
1119–1164.

[17] C. T. Hoàng and C. McDiarmid. A note on the divisibility of graphs. In Congressus
Numerantium 136, pages 215–219. Proceedings of the 30th Southeastern International
Conference on Combinatorics, Graph Theory, and Computing, 1999.

C5955–C0028.tex 745 2015/11/4 8:20pm

746 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[18] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9 (1990), 251–280.

[19] J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and clique trees. In
Graph Theory and Sparse Matrix Computation, pages 1–29. Springer, New York, 1993.

[20] P. Buneman. A charactarization of rigid circuit graphs. Discrete Mathematics, 9 (1990),
205–212.

[21] G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25 (1961), 71–76.

[22] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific Journal
of Mathematics, 15 (1965), 835–855.

[23] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory Series B, 16 (1974), 47–56.

[24] J. R. Walter. Representations of chordal graphs as subtrees of a tree. Journal of Graph
Theory, 2 (1978), 265–267.

[25] D. J. Rose, R. E. Tarjan, and G. S. Leuker. Algorithmic aspects of vertex elimination
on graphs. SIAM Journal on Computing, 5 (1976), 266–283.

[26] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM
Journal on Computing, 13 (1984), 566–579.

[27] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum cover by cliques
and maximum independent set of a chordal graphs. SIAM Journal on Computing, 1
(1972), 180–187.

[28] R. E. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55(2) (1985),
221–232.

[29] S. H. Whiteside. An algorithm for finding clique cut-sets. Information Processing Letters,
12(1) (1981), 31–32.

[30] S. H. Whitesides. A method for solving certain graph recognition and optimization
problems, with applications to perfect graphs. In Topics on Perfect Graphs. Annals of
Discrete Mathematics, pages 281–297.

[31] F. Maffray and M. Preissmann. A translation of gallai’s paper:‘transitiv orientierbare
graphen’. In Perfect Graphs, pages 25–66.

[32] R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive orientation.
Discrete Mathematics, 201 (1999), 189–241.

[33] J. P. Spinrad. On comparability and permutation graphs. SIAM Journal on Computing,
14 (1985), 658–670.

[34] J. P. Spinrad. Problems (14a) and (14b). In Efficient Graph Representations. 2003.

[35] E. Egerváry. On combinatorial properties of matrices. Mat. Lapok, 38 (1931), 16–28.

[36] V. Chvátal. Linear programming. W. H. Freeman and Company, New York, 1983.

C5955–C0028.tex 746 2015/11/4 8:20pm

Perfect Graphs � 747

[37] G. B. Dantzig and D. R. Fulkerson. Minimizing the number of tankers to meet a fixed
schedule. Naval Research Logistics Quarterly, 1 (1954), 217–222.

[38] D. R. Fulkerson. Note on dilworth’s decomposition theorem for partially ordered sets.
In Proceedings of the American Mathematical Society, pages 701–702, 1956.

[39] H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum cardinality match-
ing in a bipartite graph in time o(n1.5

√
m

log n). Information Processing Letters, 37 (1991),
237–240.

[40] T. Feder and R. Motwani. Clique partitions, graph compression, and speeding up algo-
rithms. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
pages 123–133, 1991.

[41] P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and interval
graphs. Canadian Journal of Mathematics, 16 (1964), 539–548.

[42] C. G. Lekkerkerker and J. Boland. Representation of a finite graph by a set of intervals
on the real line. Fund. Math, 51 (1962), 45–64.

[43] K. S. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using pq-tree algorithms. Journal of Computer and System Science,
13 (1976), 335–379.

[44] N. Korte and R. H. Möhring. An incremental linear-time algorithm for recognizing
interval graphs. SIAM Journal on Computing, 18 (1989), 68–81.

[45] W. L. Hsu and T. H. Ma. Fast and simple algorithms for recognizing chordal compara-
bility graphs and interval graphs. SIAM Journal on Computing, 28 (1999), 1004–1020.

[46] M. Habib, R. McConnell, C. Paul, and L. Viennot. LEX BFS and partition refinement,
with applications to transitive orientation, interval graph recognition, and consecutive
ones testing. Theoretical Computer Science, 234 (2000), 59–84.

[47] S. Olariu. An optimal greedy heuristic to color interval graphs. Information Processing
Letters, 37 (1991), 65–80.

[48] G. Ramalingam and C. Pandurangan. A uniform approach to domination problems on
interval graphs. Information Processing Letters, 27 (1988), 271–274.

[49] A. Raychaudhuri. On powers of interval and unit interval graphs. Congressus Numer-
antium, 59 (1987), 235–242.

[50] D. G. Corneil, S. Olariu, and L. Stewart. The LBFS structure and recognition of interval
graphs. SIAM Journal on Discrete Mathematics, 23 (2009/10), 1905–1953.

[51] J. P. Spinrad. Efficient Graph Representations. Fields Institute Monographs, American
Mathematical Society, 2003.

[52] R. B. Hayward, C. T. Hoàng, and F. Maffray. Optimizing weakly triangulated graphs.
Graphs and Combinatorics, 5 (1989), 339–349.

[53] R. B. Hayward. Meyniel weakly triangulated graphs i. Co-perfect orderability. Discrete
Applied Mathematics, 73 (1997), 199–210.

C5955–C0028.tex 747 2015/11/4 8:20pm

748 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[54] R. B. Hayward. Meyniel weakly triangulated graphs ii: A theorem of dirac. Discrete
Applied Mathematics, 78 (1997), 283–289.

[55] R. B. Hayward, J. P. Spinrad, and R. Sritharan. Improved algorithms for weakly chordal
graphs. ACM Transactions on Algorithms, 3(2) (2007).

[56] J. P. Spinrad. Finding large holes. Information Processing Letters, 39 (1991), 227–229.

[57] S. D. Nikolopoulos and L. Palios. Hole and antihole detection in graphs. In Proceedings of
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 843–852, 2004.

[58] A. Berry, J. P. Bordat, and P. Heggernes. Recognizing weakly triangulated graphs by
edge separability. Nordic Journal on Computing, 7 (2000), 164–177.

[59] J. P. Spinrad and R. Sritharan. Algorithms for weakly triangulated graphs. Discrete
Applied Mathematics, 19 (1995), 181–191.

[60] J. Fonlupt and J. P. Uhry. Transformations which preserve perfectness and h-perfectness
of graphs. Annals of Discrete Mathematics, 16 (1982), 83–85.

[61] A. Berry, A. Sigayret, and C. Sinoquet. Maximal sub-triangulation as improving phylo-
genetic data. Technical report, RR-02-02, LIMOS, Clermont-Ferrand, France, 2002.

[62] S. Arikati and C. Rangan. An efficient algorithm for finding a two-pair, and its appli-
cations. Discrete Applied Mathematics, 31 (1991), 71–74.

[63] D. Kratsch and J. P. Spinrad. Between o(mn) and o(nα). In Proceedings of the 14th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 158–167, 2003.

[64] R. B. Hayward. Weakly triangulated graphs. Journal of Combinatorial Theory Series
B, 39 (1985), 200–209.

[65] V. Chvátal. Perfectly ordered graphs. In C. Berge and V. Chvátal, editors, Topics on
Perfect Graphs, pages 63–65, Annals of Discrete Mathematics, Vol. 21, 1984.

[66] M. Middendorf and F. Pfeiffer. On the complexity of recognizing perfectly orderable
graphs. Discrete Mathematics, 80 (1990), 327–333.

[67] C. T. Hoàng. Perfectly orderable graphs: a survey. In J. L. Ramirez Alfonsin and
B. A. Reed, editors, Perfect Graphs, pages 139–166. John Wiley & Sons, 2001.

[68] C. T. Hoàng. The complexity of recognizing weakly triangulated graphs that are per-
fectly orderable. Technical Report Report No. 90638, Institute for Discrete Mathematics,
University of Bonn, Germany, 1990.

[69] V. Chvátal, C. T. Hoàng, N. V. R. Mahadev, and D. deWerra. Four classes of perfectly
orderable graphs. Journal of Graph Theory, 11 (1987), 481–495.

[70] C. T. Hoàng. Recognition and optimization algorithms for co-triangulated graphs. Tech-
nical report, Institute for Discrete Mathematics, University of Bonn, Germany, Report
No. 90637, 1990.

[71] C. T. Hoàng. Efficient algorithms for minimum weighted colouring of some classes of
perfect graphs. Discrete Applied Mathematics, 55 (1994), 133–143.

[72] H. Meyniel. A new property of critical imperfect graphs and some consequences. Euro-
pean Journal of Combinatorics, 8 (1987), 313–316.

C5955–C0028.tex 748 2015/11/4 8:20pm

Perfect Graphs � 749

[73] M. E. Bertschi. Perfectly contractile graphs. Journal of Combinatorial Theory Series B,
50 (1990), 222–230.

[74] H. Meyniel. On the perfect graph conjecture. Discrete Mathematics, 16(4) (1976), 339–
342.

[75] A. Hertz. A fast algorithm for coloring meyniel graphs. Journal of Combinatorial Theory
Series B, 50 (1990), 231–240.

[76] A. Hertz and D. de Werra. Perfectly orderable graphs are quasi-parity graphs: A short
proof. Discrete Mathematics, 68 (1988), 111–113.

[77] H. Everett, C. M. H. de Figueiredo, C. Linhares-Sales, F. Maffray, O. Porto, and B.
Reed. Even pairs. In Perfect Graphs, pages 67–92.

[78] F. Maffray and N. Trotignon. A class of perfectly contractile graphs. Journal of Combi-
natorial Theory Series B, 96 (2006), 1–19.

[79] B. Lévêque, F. Maffray, B. Reed, and N. Trotignon. Coloring artemis graphs. Theoretical
Computer Science, 410 (2009), 2234–2240.

[80] F. Maffray and N. Trotignon. Algorithm for perfectly contractile graphs. SIAM Journal
on Discrete Mathematics, 19 (2005), 553–574.

[81] M. Chudnovsky, K. Kawarabayashi, and P. Seymour. Detecting even holes. Journal of
Graph Theory, 48 (2005), 85–111.

[82] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vuškov́ıc. Even-hole-free graphs, part i:
Decomposition theorem. Journal of Graph Theory, 39 (2002), 6–49.

[83] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vuškov́ıc. Even-hole-free graphs, part ii:
Recognition algorithm. Journal of Graph Theory, 40 (2002), 238–266.

[84] C. T. Hoàng and C. McDiarmid. On the divisibility of graphs. Discrete Mathematics,
242 (2002), 145–156.

[85] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. K4-free graphs with no
odd holes. Journal of Combinatorial Theory Series B, 100 (2010), 313–331.

[86] C. Berge and V. Chvátal, editors. Topics on Perfect Graphs. Annals of Discrete Math-
ematics, Vol. 21. North Holland, Amsterdam, the Netherlands, 1984.

[87] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph
theorem. Annals of Mathematics, 64 (2006), 51–229.

[88] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Math, 2
(1972), 253–267.

C5955–C0028.tex 749 2015/11/4 8:20pm

C H A P T E R 29

Tree-Structured Graphs
Andreas Brandstädt

Feodor F. Dragan

CONTENTS

29.1 Graphs with Tree Structure, Related Graph Classes,
and Algorithmic Implications . 752

29.2 Chordal Graphs and Variants . 753
29.2.1 Chordal Graphs . 753
29.2.2 Some Subclasses of Chordal Graphs . 756

29.3 α-Acyclic Hypergraphs and Their Duals . 757
29.3.1 Motivation from Relational Database Theory . 757
29.3.2 Some Basic Hypergraph Notions . 759
29.3.3 Hypergraph 2-Coloring . 763
29.3.4 Kőnig Property . 764
29.3.5 α-Acyclic Hypergraphs and Tree Structure . 764
29.3.6 Graham’s Algorithm, Running Intersection Property, and Other

Desirable Properties Equivalent to α-Acyclicity . 767
29.3.7 Dually Chordal Graphs, Maximum Neighborhood Orderings, and

Hypertrees . 770
29.3.8 Bipartite Graphs, Hypertrees, and Maximum

Neighborhood Orderings . 773
29.3.9 Further Matrix Notions . 775

29.4 Totally Balanced Hypergraphs and Matrices . 776
29.4.1 Totally Balanced Hypergraphs versus β-Acyclic Hypergraphs 776
29.4.2 Totally Balanced Matrices . 778

29.5 Strongly Chordal and Chordal Bipartite Graphs . 779
29.5.1 Strongly Chordal Graphs . 779

29.5.1.1 Elimination Orderings of Strongly Chordal Graphs 779
29.5.1.2 Γ-Free Matrices and Strongly Chordal Graphs 782
29.5.1.3 Strongly Chordal Graphs as Sun-Free Chordal Graphs . . . 783

29.5.2 Chordal Bipartite Graphs . 786
29.6 Tree Structure Decomposition of Graphs . 788

29.6.1 Cographs . 788
29.6.2 Optimization on Cographs . 790
29.6.3 Basic Module Properties . 791
29.6.4 Modular Decomposition of Graphs . 793
29.6.5 Clique Separator Decomposition of Graphs . 794

29.7 Distance-Hereditary Graphs, Subclasses, and γ-Acyclicity . 794
29.7.1 Distance-Hereditary Graphs . 794
29.7.2 Minimum Cardinality Steiner Tree Problem in Distance-Hereditary

Graphs . 799

751

752 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

29.7.3 Important Subclasses of Distance-Hereditary Graphs 801
29.7.3.1 Ptolemaic Graphs and Bipartite Distance-Hereditary

Graphs . 801
29.7.3.2 Block Graphs . 802
29.7.3.3 γ-Acyclic Hypergraphs . 802

29.8 Treewidth and Clique-Width of Graphs . 803
29.8.1 Treewidth of Graphs . 803
29.8.2 Clique-Width of Graphs . 805

29.9 Complexity of Some Problems on Tree-Structured Graph Classes 807
29.10 Metric Tree-Like Structures in Graphs . 808

29.10.1 Tree-Breadth, Tree-Length, and Tree-Stretch of Graphs 808
29.10.2 Hyperbolicity of Graphs and Embedding Into Trees 810

29.1 GRAPHS WITH TREE STRUCTURE, RELATED GRAPH CLASSES,
AND ALGORITHMIC IMPLICATIONS

The aim of this chapter is to present various aspects of tree structure in graphs and hyper-
graphs and its algorithmic implications together with some important graph classes having
nice and useful tree structure. In particular, we describe the hypergraph background and the
tree structure of chordal graphs (introduced in Chapter 28) and some graph classes which
are closely related to chordal graphs such as chordal bipartite graphs, dually chordal graphs,
and strongly chordal graphs as well as important subclasses.

As already defined in Chapter 28, a graph is chordal if each of its induced cycles has only
three vertices (i.e., each cycle with at least four vertices has a so-called chord). The study
of chordal graphs goes back to [1], and the many aspects of chordal graphs are described
in surveys and monographs such as [2–5] and others. The interest in chordal graphs and
related classes comes from applications in computer science, in particular, relational database
schemes [6,7], matrix analysis, models in biology, statistics, and others. Chordal graphs are
closely related to the famous concept of treewidth introduced by Robertson and Seymour [8]
but appears also under the name of partial k-trees in [9, 10] (see, e.g., [11]). The notion of
treewidth plays a central role in algorithmic and complexity aspects on graphs.

Chordal graphs appear in the literature under different names such as triangulated graphs
(Chapter 4 of [4]), rigid-circuit graphs, perfect elimination graphs and others. Most of the
applications are due to the tree structure of chordal graphs which can be described in terms
of so-called clique trees (arranging the maximal cliques of the graph in a tree).

The hypergraph-theoretical background of chordal graphs is given by α-acyclic hyper-
graphs which play an important role in the theory of relational database schemes. Various
desirable properties of such schemes can be expressed in terms of various levels of acyclic-
ity of hypergraphs [6,7]: Chordal graphs correspond to α-acyclic hypergraphs, dually chordal
graphs correspond to the dual hypergraphs of α-acyclic hypergraphs, strongly chordal graphs
correspond to β-acyclic hypergraphs (which are equivalent to totally balanced hypergraphs),
ptolemaic graphs correspond to γ-acyclic hypergraphs, and block graphs correspond to Berge-
acyclic hypergraphs. Actually, tree structure of hypergraphs was captured as arboreal hyper-
graphs by Berge [12,13]; a hypergraph is α-acyclic if and only its dual is arboreal.

We discuss also another width parameter of graphs, namely clique-width, and its rela-
tionship to treewidth as well as its algorithmic applications. Very similar to treewidth, it is
known that whenever a problem is expressible in a certain kind of Monadic Second-Order
Logic, and one deals with a class of graph whose clique-width is bounded by a constant
then the problem is efficiently solvable on this class. This is one of the main reasons for the

Tree-Structured Graphs � 753

great interest in treewidth and clique-width of (special) graphs. In general, it is NP-hard to
determine the clique-width of a graph, and for many important graph classes, the clique-
width is unbounded. For some interesting classes, however, clique-width is bounded.

Finally, we discuss some other graph parameters, namely, the tree-length and the tree-
breadth of a graph, the tree-distortion and the tree-stretch of a graph, the Gromov’s
hyperbolicity of a graph. All these parameters try to capture and measure tree likeness
of a graph from a metric point of view. The smaller such a parameter is for a graph, the
closer graph is to a tree metrically. Graphs for which such parameters are bounded by small
constants have many algorithmic advantages; they allow efficient approximate solutions for
a number of optimization problems. Note also that recent empirical and theoretical work has
suggested that many real-life complex networks and graphs arising in Internet applications,
in biological and social sciences, in chemistry and physics have tree-like structures from a
metric point of view.

29.2 CHORDAL GRAPHS AND VARIANTS

In this section, we collect some notions and well-known facts on chordal graphs which are
described in Chapter 28 (see also the monograph [4] and the survey [3] as well as [5] for
details). In order to make this section self-contained, we briefly repeat some of the basic
definitions and properties. Throughout this section, let G = (V, E) be a finite undirected
graph which is simple (i.e., loop-free and without multiple edges).

29.2.1 Chordal Graphs

Definition 29.1 A graph is chordal if it does not contain any chordless cycle with at least
four vertices.

Obviously, trees and forests are chordal since they are cycle-free for any cycle length. Chordal
graphs have a nice separator property which was found by Dirac [14].

Definition 29.2

i. The vertex set S ⊆ V is a separator (or cutset) for nonadjacent vertices a, b ∈ V
(a−b-separator) if a and b are in different connected components in G[V \ S].

ii. S is a minimal a–b-separator if S is an a-b-separator and no proper subset of S is
an a−b-separator.

iii. S is a (minimal) separator if there are vertices a, b such that S is a (minimal)
a−b-separator.

Theorem 29.1 [14] A graph G is chordal if and only if every minimal separator in G induces
a clique. �

Definition 29.3

i. A vertex v ∈ V is simplicial in G if N(v) induces a clique in G.

ii. An ordering (v1, . . ., vn) of the vertices of V is a perfect elimination ordering (p.e.o.)
of G if for all i ∈ {1, . . ., n}, the vertex vi is simplicial in the remaining subgraph
Gi := G[{vi, . . ., vn}].

Obviously, the notion of a simplicial vertex generalizes leaves in trees.

754 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Lemma 29.1 [14] Every chordal graph with at least one vertex contains a simplicial vertex.
If G is not a clique then G contains at least two nonadjacent simplicial vertices. �

Corollary 29.1 [14,15] G is chordal if and only if G has a perfect elimination ordering.
Moreover, every simplicial vertex of a chordal graph G can be the first vertex of a perfect
elimination ordering of G.

For a collection T of subtrees of a tree T , let the vertex intersection graph GT of T be the
graph having the elements of T as its vertices, and two subtrees t and t′ from T are adjacent
in GT if they share a vertex in T .

Proposition 29.1 The vertex intersection graph of a collection of subtrees in a tree is
chordal.

Proof. Let G = (V, E) be the vertex intersection graph of a collection of subtrees in a tree
T . Suppose G contains a chordless cycle (v0, v1, . . . , vk−1, v0) with k > 3 corresponding to
the sequence of subtrees T0, T1, . . . , Tk−1, T0 of the tree T ; that is, Ti ∩ Tj �= ∅ if and only if
i and j differ by at most one modulo k. All arithmetic will be done modulo k.

Choose a point ai from Ti ∩ Ti+1 (i = 0, . . . , k − 1). Let bi be the last common point on
the (unique) simple paths from ai to ai−1 and ai to ai+1. These paths lie in Ti and Ti+1,
respectively, so that bi also lies in Ti and Ti+1. Let Pi+1 be the simple path connecting bi to
bi+1 in T . Clearly Pi ⊆ Ti, so Pi∩Pj = ∅ for i and j differing by more than 1 mod k. Moreover,
Pi ∩ Pi+1 = {bi} for i = 0, . . . , k − 1. Thus,

⋃
i Pi is a simple cycle in T , contradicting the

definition of a tree. �
The tree structure of chordal graphs is described in terms of so-called clique trees of the
maximal cliques of the graph; see Theorem 29.2. Let C(G) denote the family of ⊆-maximal
cliques of G. A clique tree T of G has the maximal cliques of G as its nodes, and for every
vertex v of G, the maximal cliques containing v form a subtree of T . This property will
be generalized in the hypergraph chapter; it can be taken for defining α-acyclicity of a
hypergraph (see Definition 29.17). The existence of a clique tree characterizes chordal graphs:

Theorem 29.2 [16–18] A graph is chordal if and only if it has a clique tree.

Proof. “⇐=”: Assume that G has a clique tree T . If T has only one node then G is a clique
and thus chordal. Now let T have k > 1 nodes and assume as induction hypothesis that the
assertion is true for clique trees with less than k nodes. Let C be a leaf node in T , let C ′ be
its neighbor in T , let VC be the subset of G vertices occuring only in C, and let T ′ be the
clique tree restricted to V \ VC . �
VC must be nonempty since otherwise, C ⊂ C ′ which is impossible by maximality of the
cliques. Now start a p.e.o. of G with the vertices of VC and then continue with a p.e.o. for
G − VC which must exist since T ′ has less nodes than T .

“=⇒”: For this direction, we use a version described by Spinrad in [19]: Assume that G is
chordal and let σ = (v1, . . ., vn) be a p.e.o. of G. We construct a clique tree for the subgraph
Gi = G[vi, . . ., vn] for all vertices, starting with i = n and ending with i = 1. Let Ci be the
clique consisting of vi and all neighbors vj of vi, j > i. After each vertex vi is processed, vi

is given a pointer to the clique Ci in the tree. We note that vertices may be added to this
clique later in the algorithm, but vi will always point to a clique which contains Ci.

Let vi be the next vertex considered, and assume we know the clique tree on the graph
induced by vertices vi+1, . . ., vn. We need to add Ci to the clique tree. Let vj be the first (i.e.,
leftmost) vertex of Ci on the right of vi in σ. If |Ci| = |Cj | + 1, and the clique pointed to

Tree-Structured Graphs � 755

by vj is equal to Cj then we add vi to this clique; in other words, Ci replaces Cj in the tree.
Otherwise, add Ci as a new node of the tree. Connect Ci to the tree by adding an edge from
Ci to the clique pointed to by vj .

To see that the algorithm is correct, it is sufficient to look at two cases. Either Cj is a
maximal clique in Gi+1 = G[{vi+1, . . ., vn}] or it is not. If Cj is a maximal clique, it clearly
must be replaced by Ci if Cj is contained in Ci, which occurs if Ci = Cj ∪ {vi}, and the
algorithm does this correctly. If Cj is not a maximal clique in Gi+1 or Ci does not contain
Cj , then Ci cannot contain any maximal clique of Gi+1, and must be added as a new node.
All elements of Ci − vi are in the clique pointed to by vj , so the subtrees generated by the
occurrences of all vertices remain connected. �
A consequence of Theorem 29.2 and Proposition 29.1 is as follows.
Corollary 29.2 [16–18] A graph is chordal if and only if it is the intersection graph of
certain subtrees of a tree.
Since a p.e.o. of a chordal graph can be determined in linear time (see, e.g., [4,20]), the proof
of Theorem 29.2 implies the following.
Theorem 29.3 Given a chordal graph G = (V, E), a clique tree of G can be constructed in
linear time O(|V | + |E|). �
Interestingly, a clique tree of a chordal graph G gives also the minimal separators of G.
Lemma 29.2 [21,22] Let G = (VG, EG) be a chordal graph with clique tree T = (C(G), ET).
Then S ⊆ VG is a minimal separator in G if and only if there are maximal cliques Qi, Qj of
G with QiQj ∈ ET such that S = Qi ∩ Qj. �
The specific structure of chordal graphs allows to solve various problems efficiently which
is well described in [4]; as another example we give here a linear-time algorithm by András
Frank [23] for maximum weight independent set (MWIS) on chordal graphs.

Let G = (V, E) be a chordal graph with perfect elimination ordering (v1, . . ., vn) of G
and ω : V −→ R+ a nonnegative weight function on V . The algorithm of Frank efficiently
constructs a maximum weight stable set I of G in the following way:

(0) I := ∅; all vertices in V are unmarked

(1) for i := 1 to n do

if ω(vi) > 0 then mark vi and let ω(u) := max(ω(u) −ω(vi), 0) for all vertices
u ∈ Ni(vi).

(2) for i := n downto 1 do

if vi is marked then let I := I ∪ {vi} and unmark all vertices u ∈ N(vi).

Theorem 29.4 [23] The algorithm described above is correct and runs in linear time. �
It is clear that the algorithm runs in linear time. For the correctness, we need the following
(inductive) argument: As in the algorithm, let (v1, . . ., vn) be a p.e.o. of G and ω a weight
function on V . Now let ω′ be the weight function resulting from step (1) of the algorithm
for the simplicial vertex v1. We claim the following proposition.
Proposition 29.2 αω(G) = αω′(G − v1) + ω(v1).
This is clear by the following argument: If v1 is in a maximum weight stable set S in G then
none of its neighbors are in S, and the claim holds. Otherwise, if v1 /∈ S then exactly one
of its neighbors, say vi, i > 1, is in S (otherwise S would not be a maximal stable set), and
now ω′(vi) = ω(vi) − ω(v1) holds.

756 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

29.2.2 Some Subclasses of Chordal Graphs

As mentioned in Chapter 28, interval graphs are a very important subclass of chordal graphs.
Here is another subclass of chordal graphs which plays an important role in various contexts:

Definition 29.4 A graph is a split graph if its vertex set can be partitioned into a clique
and a stable set. Such a partition is called a split partition.

It is easy to see that the complement of a split graph is a split graph as well, and split graphs
are chordal. In what follows, we say a vertex x sees a vertex y if x is adjacent to y; otherwise
we say x misses y.

Theorem 29.5 [24] The following conditions are equivalent:

i. G is a split graph.

ii. G and G are chordal.

iii. G contains no induced 2K2 = C4, C4, C5 (i.e., G is (2K2, C4, C5)-free).

Proof. “(ii) ⇐⇒ (iii)”: If G and G are chordal then obviously G contains no induced 2K2, C4
and C5. In the other direction, note that for every k ≥ 6, Ck contains a 2K2, and C5 = C5.
Thus, if G contains no induced 2K2, C4 and C5 then G and G are chordal.

“(i) =⇒ (ii)”: If the vertex set V of G has a partition into a clique Q and a stable set
S then obviously, every vertex in S is simplicial in G. Thus, a p.e.o. of G can start with all
vertices of S and finish with all vertices of Q. Similar arguments hold for G, and thus G and
G are chordal.

“(i) ⇐= (ii)”: Suppose that G and G are chordal (or, equivalently, G contains no induced
2K2, C4, and C5).

If there is a vertex v ∈ V which is simplicial in G and G then N [v] is a clique and N [v]
is a stable set giving the desired split partition.

If there is a vertex v ∈ V which is neither simplicial in G nor simplicial in G then let
a, b ∈ N(v) be vertices with ab /∈ E and let c, d ∈ N [v] with cd ∈ E. Since G is 2K2-free, a
sees c or d, and similarly, b sees c or d but since G is C4-free, a and b do not have a common
neighbor in c, d. Thus, say, a sees c but not d and vice versa for b but now v, a, b, c, d induce
a C5 in G which is a contradiction.

Thus, every vertex v ∈ V is either simplicial in G or simplicial in G. Let V1 := {v ∈ V | v
is simplicial in G} and V2 := {v ∈ V | v is simplicial in G}. Note that V = V1 ∪ V2 is a
partition of V . Now, if V1 is a stable set and V2 is a clique then this gives the desired split
partition. Suppose to the contrary that V1 contains an edge xy ∈ E. Then since G is 2K2-free,
the set of nonneighbors of x and y form a stable set, and since x and y are simplicial, the set
of neighbors of x and y form a clique which gives the desired split partition. �

Theorem 29.5 does not immediately give a linear-time recognition of split graphs. The follow-
ing nice characterization of split graphs in terms of their degree sequence leads to linear-time
recognition of split graphs:

Theorem 29.6 [25,26] Let G have the degree sequence d1 ≥ d2 ≥ . . . ≥ dn and ω := max{i |
di ≥ i − 1}. Then G is a split graph if and only if Σω

i=1di = ω(ω − 1) + Σn
i=ω+1di. �

See [25,26] for more details.

Tree-Structured Graphs � 757

Finally, another interesting subclass of chordal graphs should be mentioned which will
be discussed in more detail in the section on strongly chordal graphs and on β-acyclicity.
Assume that G is a chordal graph. A chord xixj in a cycle C = (x1, x2, . . ., x2k, x1) of even
length 2k is an odd chord if the distance in C between xi and xj is odd.

Farber [27] defined strongly chordal graphs in terms of strong elimination orderings rather
than odd chords in even cycles (see Definition 29.33), but he showed that chordal graphs
having odd chords in even cycles are exactly the strongly chordal graphs (see Theorem
29.34).

Chordal graphs can be generalized in a natural way by placing a variety of restrictions
on the number and type of chords with respect to a cycle. A fairly general scheme is given
in the following definition (which was motivated by relational database schemes).

Definition 29.5 [28] For k ≥ 4 and � ≥ 1, a graph G is (k, �)-chordal if each cycle in G of
length at least k contains at least � chords.

Thus chordal graphs are the (4,1)-chordal graphs. Further conditions can be placed on the
parity of the cycles (chords in odd cycles), the parity of the cycle distance of the end vertices of
chords (odd chords), requiring crossing and/or parallel chords, requiring all these conditions
for G and G, and requiring these conditions in bipartite graphs (where all cycles are of even
length). Thus, for example, the (5,2)-odd-crossing-chordal graphs are the graphs such that
every odd cycle of length at least five has at least two crossing chords.

See [3] for more details and Theorem 29.45 for a characterization of (5,2)-chordal graphs.

29.3 α-ACYCLIC HYPERGRAPHS AND THEIR DUALS

29.3.1 Motivation from Relational Database Theory

Fagin [7] gives a very nice introduction into acyclic database schemes (of various degrees,
namely α-, β-, and γ-acyclicity) and their equivalence to desirable properties of relational
databases. Since Fagin’s introduction is mostly informal and we need some definitions, we
follow the presentation in papers such as [29] for this subsection.

A (relational) database scheme as introduced by Codd [30] can be thought of as a collec-
tion of table skeletons, or, alternatively, as a set of subsets of attributes, or column names in
the tables. These attribute subsets form the hyperedges of a finite hypergraph. A relational
database corresponds to a family of relations over the attributes.

Let V = {v1, . . ., vn} be a finite set of distinct symbols called attributes or column names
(name, first name, age, birthday, citizenship, married, home address, telephone number, etc).

Let Y ⊆ V . A Y -tuple is a mapping that associates a value (from a certain universe
U) with each attribute in Y . For instance, if Y = {name, age, citizenship, married} then a
Y -tuple is a 4-tuple such as (Higgins, 48, Canada, no).

If X ⊆ Y and t is a Y -tuple, then the projection t[X] denotes the X-tuple obtained by re-
stricting t to X. For instance, if X = {name, citizenship} and t = (Higgins, 48, Canada, no)
then t[X] = (Higgins, Canada).

A Y -relation is a finite set of Y -tuples. If r is a Y -relation and X ⊆ Y then by the
projection r[X] of r onto X, we mean the set of all tuples t[X], where t ∈ r.

If V is a set of attributes, then we define a relational database scheme (database scheme
for short) E = {E1, . . ., Em} to be a set of subsets of V , that is, (V, E) is a hypergraph over
vertex set V .

Intuitively, for each i, the set Ei of attributes is considered to be the set of column names
for a relation; the Ei’s are called relation schemes. If r1, . . ., rm are relations, where ri is a
relation over Ei, i ∈ {1, . . ., m}, then we call {r1, . . ., rm} a database over E.

758 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The join r1 �� r2 of two relations r1 and r2 with attribute sets E1 and E2, respectively,
is the set of all tuples t with attribute set E1 ∪ E2 for which the projection t[Ei] is in ri,
i = 1, 2.

Example 29.1
r1 : A B r2 : B C r3 : A C

0 0 0 0 0 1
1 1 1 1 1 0

r1 �� r2 : A B C r1 �� r3 : A B C r2 �� r3 : A B C
0 0 0 0 0 1 1 0 0
1 1 1 1 1 0 0 1 1

More generally, the join r1 �� . . . �� rm of the relations r1, . . ., rm, m ≥ 2, with attribute sets
E1, . . ., Em, respectively, is the set of all tuples t with attribute set E1 ∪ . . . ∪ Em, such that
for each i ∈ {1, . . ., m}, the projection t[Ei] of tuple t onto attributes Ei fulfills t[Ei] ∈ ri.

The join of all three relations in Example 29.1 is empty: r1 �� r2 �� r3 = ∅.
We say that a relation r with attributes E1 ∪ . . . ∪ Em obeys the join dependency ��

{E1, . . ., Em} if r = r1 �� . . . �� rm, where ri = r[Ei] for each i ∈ {1, . . ., m}.
A highly desirable property of a relational database r1, . . ., rm, m ≥ 2, is that the entries

in it are conflict-free. In general, the attribute sets are not pairwise disjoint, and it easily
might happen that an entry in one of the relations is updated while the same entry in another
relation is not. Pairwise consistency captures conflict-freeness for every two of the relations,
and global consistency, roughly saying, means that all of them together are conflict-free. If
the relations are globally consistent then they are pairwise consistent but not vice versa as
Example 29.1 shows; surprisingly, it turns out that the equivalence of pairwise and of global
consistency corresponds to a hypergraph acyclicity property of the underlying attribute sets.

More formally, let r and s be relations with attributes R and S, respectively, and let
Q = R ∩ S, that is, Q is precisely the set of attributes that r and s have in common. We
say that r and s are consistent if r[Q] = s[Q], that is, the projections of r and s onto their
common attributes are the same.

Example 29.2
r1 : A B C r2 : A D E

0 1 2 0 3 4
1 2 3 0 5 6
2 3 4 3 4 5

r1 �� r2 : A B C D E
0 1 2 3 4
0 1 2 5 6

In Example 29.2, r1 and r2 have only A as common attribute, and the projection r1[A] is
{0, 1, 2} while the projection r2[A] is {0, 3}; thus, r1 and r2 are not consistent.

In Example 29.1, each pair ri, rj of relations, i, j ∈ {1, 2, 3}, is consistent.

Definition 29.6 Let {r1, . . ., rm} be an arbitrary database over E = {E1, . . ., Em}.

i. {r1, . . ., rm} is pairwise consistent if for all i, j ∈ {1, . . ., m}, ri and rj are consistent.

ii. {r1, . . ., rm} is globally consistent if there is a relation r over the attribute set
E1 ∪ . . . ∪ Em such that for each i ∈ {1, . . ., m}, ri = r[Ei]. Then r is called
universal for {r1, . . ., rm}.

Tree-Structured Graphs � 759

Thus, {r1, . . ., rm} is globally consistent if and only if there is a (universal) relation r such
that each ri is the projection of r onto the corresponding attribute set of ri. Such a universal
relation need not be unique, but it is known that if there is such a universal relation r, then
also r1 �� . . . �� rm is such a universal relation.

Lemma 29.3 If r is a universal relation for r1, . . ., rm with attribute sets E1, . . ., Em then r
⊆ r[E1] �� . . . �� r[Em] = r1 �� . . . �� rm.

It is clear that if {r1, . . ., rm} is globally consistent then it is pairwise consistent but in
general, the converse is false as the relations r1, r2, r3 in Example 29.1 show which are
pairwise consistent but not globally consistent.

Honeyman et al. [31] have shown the following theorem.

Theorem 29.7 [31] The global consistency of a relational database is an NP-complete
problem. �

In [29], it is shown that for a relational database scheme, pairwise consistency implies global
consistency if and only if it is α-acyclic (see Theorem 29.17).

29.3.2 Some Basic Hypergraph Notions

A pair H = (V, E) is a (finite) hypergraph if V is a finite vertex set and E is a collection
of subsets of V (the edges or hyperedges of H). Hypergraphs are a natural generalization
of undirected graphs; unlike edges, hyperedges are not necessarily two-elementary. In many
cases, hyperedges containing exactly one vertex (so-called loops) are excluded. Equivalently,
a hypergraph H = (V, E) with V = {v1, . . ., vn} and E = {e1, . . ., em} can be described by its
n × m vertex-hyperedge incidence matrix M(H) with entries mij ∈ {0, 1} and mij = 1 ⇐⇒
vi ∈ ej for i ∈ {1, . . ., n} and j ∈ {1, . . ., m}.

Subsequently, we collect some basic notions and properties—see, for example, [13].

Definition 29.7 A hypergraph H = (V, E) is simple if it has no repeated edges. Moreover,
if no hyperedge e ∈ E is properly contained in another hyperedge e′ ∈ E then H is called a
Sperner family or clutter.

In the database community (see, e.g., [29]), clutters are called reduced hypergraphs.

Definition 29.8 Let H = (V, E) be a finite hypergraph.

i. The subhypergraph induced by the subset A ⊆ V is the hypergraph H[A] = (A, EA)
with edge set EA = {e ∩ A | e ∈ E}.

ii. The partial hypergraph given by the edge subset E ′ ⊆ E is the hypergraph with the
vertex set

⋃ E ′ and the edge set E ′.

Note that both restrictions A ⊂ V and E ′ ⊂ E can be combined in a subhypergraph H ′[A] =
(A, E ′

A) with edge set E ′
A = {e ∩ A | e ∈ E ′ ⊂ E} called partial subhypergraph in [13].

The partial hypergraphs [13] are called subhypergraphs in [6]. Since this may cause
confusion, we also use the name edge-subhypergraphs for partial hypergraphs and vertex-
subhypergraphs in case (i).

Dualization is a classical concept which is well-known from geometry; there, points
and hyperplanes exchange their role. Here, dualization means that vertices and hyperedges
exchange their role.

760 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Definition 29.9 Let H = (V, E) be a finite hypergraph. For v ∈ V , let Ev = {e ∈ E | v ∈ e}.
The dual hypergraph H∗ = (E , E∗) of H has vertex set E and hyperedge set {Ev | v ∈ V }.

If the hypergraph H is given in terms of its incidence matrix M(H) then the incidence matrix
of the dual of H is the transposal of M(H): M(H∗) = (M(H))T .

Evidently, the dual of the dual of H is isomorphic to H itself since the twofold transposal
of a matrix is the matrix itself.

Proposition 29.3 (H∗)∗ ∼ H.

Graphs and hypergraphs are closely related to each other. The next definition represents two
examples.

Definition 29.10 Let H = (V, E) be a finite hypergraph.

i. The 2-section graph 2SEC(H) of H has the vertex set V , and two vertices u, v are
adjacent if u and v are contained in a common hyperedge: ∃e ∈ E such that u, v ∈ e.

ii. The line graph L(H) = (E , F) is the intersection graph of E, that is, for any e, e′ ∈ E
with e �= e′, ee′ ∈ F ⇐⇒ e ∩ e′ �= ∅.

The 2-section graph of H is denoted by [H]2 in [13]; the line graph is also called representative
graph in [13]. Again, these notions have different names in different communities; the 2-section
graph is also called adjacency graph in [32], primal graph [33], or Gaifman graph [34] and has
no name but is denoted by G(H) in [29]. The line graph is also called dual graph in [35].

The following isomorphism is easy to see.

Proposition 29.4 2SEC(H) ∼ L(H∗).

A subfamily E ′ ⊆ E is called pairwise intersecting if for all e, e′ ∈ E ′, e ∩ e′ �= ∅.

Definition 29.11 Let H = (V, E) be a hypergraph.

i. H is conformal if every clique C in 2SEC(H) is contained in a hyperedge e ∈ E.

ii. H has the Helly property if every pairwise intersecting subfamily E ′ ⊆ E has
nonempty total intersection:

⋂ E ′ �= ∅.

The following is easy to see.

Proposition 29.5 H has the Helly property if and only if H∗ is conformal.

The next theorem gives a polynomial time criterion for testing the Helly property of a
hypergraph. It is closely related to an earlier criterion for conformality given by Gilmore
which will be mentioned in Theorem 29.9.

For a hypergraph H = (V, E) and for any 3-elementary set A = {a1, a2, a3} ⊆ V , let EA

denote the set of all hyperedges e ∈ E such that |e ∩ A| ≥ 2.

Theorem 29.8 [13,36] A hypergraph H = (V, E) has the Helly property if and only if for all
3-elementary sets A = {a1, a2, a3} ⊆ V , the total intersection of all hyperedges containing at
least two vertices of A is nonempty:

⋂ EA �= ∅.

Tree-Structured Graphs � 761

Proof. “=⇒”: Let H be a hypergraph with the Helly property, and let {e1, . . ., ek} ⊆ E be the
hyperedges for which |ei ∩ A| ≥ 2, i ∈ {1, . . ., k}. Then for all i �= j, i, j ∈ {1, . . ., k}, ei ∩ ej

is nonempty and thus, their total intersection is nonempty since H has the Helly property.
“⇐=”: Now assume that {e1, . . ., e�} ⊆ E is a collection of pairwise intersecting hyper-

edges. If � = 2 then obviously their total intersection is nonempty; thus let � > 2. We assume
inductively that the assertion of nonempty total intersection is true for less than � hyperedges
with pairwise nonempty intersection.

Then by the induction hypothesis, e1 ∩ . . . ∩ e�−1 �= ∅; let a1 ∈ e1 ∩ . . . ∩ e�−1. Moreover,
e2 ∩ . . . ∩ e� �= ∅; let a2 ∈ e2 ∩ . . . ∩ e�. Finally e1 ∩ e� �= ∅; let a3 ∈ e1 ∩ e�.

Let A := {a1, a2, a3}. It is easy to see that in the case |A| < 3 we are done. Now let
|A| = 3. Thus every ei, i = 1, . . ., �, contains at least two elements from the 3-elementary set
A, and by the assumption, their total intersection is nonempty. �

An obvious consequence of Theorem 29.8 is as follows:

Corollary 29.3 Testing the Helly property for a given hypergraph can be done in polynomial
time.

Corollary 29.4 Every collection of subtrees of a tree has the Helly property.

Proof. Let T be a tree with at least three vertices (otherwise the assertion is obviously
fulfilled), and let a, b, c be any three vertices in T . We consider the set of all subtrees of T
containing at least two of the vertices a, b, c. Let P (x, y) denote the uniquely determined
path in the tree T between x and y. Let x0 denote the last vertex in P (a, b) ∩ P (b, c) (this
intersection contains at least vertex b). Then P (a, c) consists of P (a, x0) followed by P (x0, c).
Thus the three paths P (a, b), P (b, c) and P (a, c) have vertex x0 in common, that is, x0 is
contained in every subtree of T which contains at least two of the vertices a, b, c. Thus, by
Theorem 29.8, every system of subtrees has the Helly property. �

A nice inductive proof of Corollary 29.4 is given in a script by Alexander Schrijver: The
induction is on |V (T)|. If |V (T)| = 1 then the assertion is trivial. Now assume |V (T)| ≥ 2,
and let S be a collection of pairwise intersecting subtrees of T . Let t be a leaf of T . If there
exists a subtree of T consisting only of t, the assertion is trivial. Hence we may assume that
each subtree in S containing t also contains the neighbor of t in T . So, after deleting t from
T and from all subtrees in S, this collection is still pairwise intersecting, and the assertion
follows by induction.

Actually, Theorem 29.8 is formulated in a more general way in [13]; there are various
interesting generalizations of the Helly property.

According to Proposition 29.5, Theorem 29.8 can be dualized as follows.

Theorem 29.9 (Gilmore, see [13]) Let H = (V, E) be a hypergraph. H is conformal if
and only if for all 3-elementary edge sets A = {e1, e2, e3} ⊆ E of hyperedges, there is a
hyperedge e ∈ E with (e1 ∩ e2) ∪ (e1 ∩ e3) ∪ (e2 ∩ e3) ⊆ e.

Proof. “=⇒”: Obviously, (e1 ∩ e2) ∪ (e1 ∩ e3) ∪ (e2 ∩ e3) is a clique in the 2-section graph
2SEC(H) of H. By conformality, there is a hyperedge e with (e1∩e2)∪(e1∩e3)∪(e2∩e3) ⊆ e.

“⇐=”: Let A = {e1, e2, e3} ⊆ E and let Eu be a hyperedge in H∗ containing at least
two of e1, e2, e3. Then u ∈ (e1 ∩ e2) ∪ (e1 ∩ e3) ∪ (e2 ∩ e3) and thus also u ∈ e. Thus,
e is in the total intersection of all hyperedges Eu which contain at least two of e1, e2, e3.
Then by Theorem 29.8, H∗ has the Helly property and thus, by Proposition 29.5, H is
conformal. �

762 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

There is a third type of graphs derived from a hypergraph H = (V, E), namely the bipartite
vertex-edge incidence graph I(H) (which is a reformulation of the incidence matrix of H in
terms of a bipartite graph). The two color classes of I(H) are the sets V and E , respectively,
and a vertex v and an edge e are adjacent if and only if v ∈ e. More formally:

Definition 29.12 Let H = (V, E) be a finite hypergraph. In the bipartite incidence graph
I(H) = (V, E , I) of H, v ∈ V and e ∈ E are adjacent if and only if v ∈ e.

In the other direction, namely from graphs to hypergraphs, the most basic constructions are
the following:

Definition 29.13 Let G = (V, E) be a graph.

i. The clique hypergraph C(G) consists of the ⊆-maximal cliques of G.

ii. The neighborhood hypergraph N (G) consists of the closed neighborhoods N [v] of
all vertices v in G.

iii. The disk hypergraph D(G) consists of the iterated closed neighborhoods N i[v], i ≥ 1,
of all vertices v in G, where N1[v] := N [v] and N i+1[v] := N [N i[v]].

Note that in general, the neighborhood hypergraph N (G) is not simple since different vertices
can have the same closed neighborhood in G. The following is easy to see.

Proposition 29.6 N (G) is self-dual, that is, (N (G))∗ ∼ N (G).

Moreover, the 2-section graph of C(G) is isomorphic to G and thus, C(G) is conformal. Note
that a hypergraph uniquely determines its 2-section graph but not vice versa.

Lemma 29.4 Every conformal Sperner hypergraph H = (V, E) is the clique hypergraph of
its 2-section graph 2SEC(H): H = C(2SEC(H)).

Proof. Let H be conformal and Sperner. We show:

1. For every e ∈ E , e is a maximal clique in 2SEC(H):
Obviously, e is a clique in 2SEC(H) and thus, there is a maximal clique C ′ in 2SEC(H)
with e ⊆ C ′. Since H is conformal, there is an e′ ∈ E with C ′ ⊆ e′, that is, e ⊆ C ′ ⊆ e′

and since H is Sperner, e = C ′ = e′ follows.

2. For every maximal clique C in 2SEC(H), C ∈ E holds:
By conformality of H, there is e ∈ E with C ⊆ e, and since e is a clique in 2SEC(H), there
is a maximal clique C ′ in 2SEC(H) with e ⊆ C ′, that is, C ⊆ e ⊆ C ′. By maximality of
C, C = e = C ′ follows. �

For a graph G = (V, E), let G2 = (V, E2) with xy ∈ E2 for x �= y if and only if dG(x, y) ≤ 2,
that is, either xy ∈ E or there is a common neighbor z of x and y.

The following is easy to see.

Proposition 29.7 G2 ∼ L(N (G)).

For graph G = (V, E), let B(G) = (V ′, V ′′, F) denote the bipartite graph with two disjoint
copies V ′ and V ′′ of V , and for v′ ∈ V ′ and w′′ ∈ V ′′, v′w′′ ∈ F if and only if either v = w
or vw ∈ E.

The following is easy to see.

Tree-Structured Graphs � 763

Proposition 29.8 B(G) ∼ I(N (G)).

The line graph of C(G) is the classical clique graph operator in graph theory.

Definition 29.14 Let G be a graph.

i. The clique graph K(G) of G is defined as K(G) = L(C(G)).

ii. G is a clique graph if there is a graph G′ such that G is the clique graph of G′, that
is, G = K(G′).

Theorem 29.10 [37] A graph G is a clique graph if and only if some class of complete
subgraphs of G covers all edges of G and has the Helly property. �

See [3,5] and in particular the survey [38] by Szwarcfiter for more details on clique graphs.
Recognizing whether a graph is a clique graph is NP-complete [39].

29.3.3 Hypergraph 2-Coloring

A hypergraph H = (V, E) is 2-colorable if its vertex set V has a partition V = V1 ∪ V2 such
that every hyperedge e ∈ E has at least one vertex from each of the sets V1 and V2. See
[13] for the more general notion of hypergraph coloring. The Hypergraph 2-Coloring Problem
(also called Bicoloring Problem, Set Splitting Problem [SP4] in [40]) is the question whether
a given hypergraph is 2-colorable.

Lovász [41] has shown that the Hypergraph 2-Coloring Problem is NP-complete even for
hypergraphs whose hyperedges have size at most 3 (see [40]); the original reduction in [41]
is from the graph coloring problem (which has been shown to be NP-complete in [42]) to
hypergraph 2-coloring.

The following nice reduction from the satisfiability problem SAT to the hypergraph
2-coloring problem was given in [43].

Let F = C1 ∧ . . . ∧ Cm be a Boolean expression in conjunctive normal form (CNF for
short) with clauses C1, . . ., Cm and variables x1, . . ., xn. Each clause consists of a disjunction
of literals, that is, unnegated or negated variables.

Let HF = (VF , EF) be the following hypergraph for F :

The vertex set VF = {x1, . . ., xn} ∪ {¬x1, . . ., ¬xn} ∪ {f} where f is a new symbol
different from the variable symbols.

The edge set EF of HF consists of the following edges:

i. For all i ∈ {1, . . ., n}, let Xi = {xi, ¬xi},
ii. For all j ∈ {1, . . ., m}, let Yj be the set of all literals in Cj plus, additionally, the

element f .

We show that F is satisfiable if and only if HF is 2-colorable:
Given a truth assignment which satisfies F , we associate with it the following 2-coloring

V1 ∪ V2. If xi has truth value 1 then xi ∈ V1 and ¬xi ∈ V2 and vice versa if xi has truth value
0. The element f belongs to V2. Now, for each i ∈ {1, . . ., n}, the edge {xi, ¬xi} intersects
both V1 and V2. An edge Yi intersects V2 on f and intersects V1 since it has a true literal.

On the other hand, given a 2-coloring V1 ∪ V2 of HF , with, say f ∈ V2 we assign true to
each xi in V1 and false to those in V2. This gives a truth assignment since the edges {xi, ¬xi}
meet both V1 and V2. The edge Yj of every clause Cj meets V1 on an element other than f
which ensures that every clause is satisfied. This shows the following theorems.

764 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 29.11 [41] The 2-coloring problem for hypergraphs is NP-complete. �

Based on Theorem 29.11, in [41], Lovász has shown the following theorem.

Theorem 29.12 [41] The 3-coloring problem for graphs is NP-complete. �

See [44] for another proof of the NP-completeness of the 3-coloring problem.

29.3.4 Kőnig Property

The following definition generalizes the fundamental notions of matching and vertex cover
in graphs to the corresponding notions in hypergraphs.

Definition 29.15 Let H = (V, E) be a hypergraph.

i. An edge set E ′ ⊆ E is called matching if the edges of E ′ are pairwise disjoint. The
matching number ν(H) is the maximum number of pairwise disjoint hyperedges of
H. This parameter ν(H) is also frequently called packing number of H.

ii. A transversal of E is a subset U ⊆ V such that U contains at least one vertex of
every e ∈ E. The transversal number τ(H) is the minimum number of vertices in
a transversal of H.

iii. H has the Kőnig Property if ν(H) = τ(H).

Note that for every hypergraph, ν(H) ≤ τ(H) holds. A well-known theorem of Kőnig states
that for bipartite graphs G, ν(G) = τ(G) holds. This justifies the name Kőnig property and
is closely related to the celebrated max-flow min-cut theorem by Ford and Fulkerson.

29.3.5 α-Acyclic Hypergraphs and Tree Structure

Unlike the case of graphs, there is a bewildering diversity of cycle notions in hypergraphs,
and some of them play an important role in connection with desirable properties of relational
database schemes [6,7,29,32,45]. Thus, for example, the desirable property of a relational
database scheme that pairwise consistency should imply global consistency turns out to be
equivalent to α-acyclicity of the scheme [6,29]; as shown in Theorems 29.16 and 29.17, a rela-
tional database scheme has this property if and only if it is α-acyclic. Moreover, α-acyclicity
is equivalent to many other desirable properties of such schemes. The most important prop-
erty of an α-acyclic hypergraph for applications in databases and other fields seems to be
the existence of a join tree for α-acyclic hypergraphs:

Definition 29.16 Let H = (V, E) be a hypergraph.

i. Tree T is a join tree of H if the node set of T is the set of hyperedges E and for every
vertex v ∈ V , the set Ev of hyperedges containing v forms a subtree in T .

ii. H is α-acyclic if H has a join tree.

Note that in this way, α-acyclicity of a hypergraph is defined without referring to any cycle
notion in hypergraphs.

Tarjan and Yannakakis [20] gave a linear-time algorithm for testing α-acyclicity of a given
hypergraph.

Tree structure in hypergraphs has been captured in the hypergraph community as arboreal
hypergraphs [13] (as well as its dual version, the co-arboreal hypergraphs) and tree-hypergraphs
in [46]. We call arboreal hypergraphs hypertrees.

Tree-Structured Graphs � 765

Definition 29.17 A hypergraph H = (V, E) is a hypertree if there is a tree T whose set of
nodes is V and such that every hyperedge e ∈ E induces a subtree in T .

Note that in [33], Gottlob et al. define the notion of hypertrees in a completely different way.
The following properties are easy to see:

Proposition 29.9 Let H = (V, E) be a hypergraph.

i. H is a hypertree if and only if its dual H∗ is α-acyclic.

ii. If H is a hypertree then every edge-subhypergraph of H is a hypertree as well but
not necessarily every vertex-subhypergraph of H.

iii. If H is α-acyclic then every vertex-subhypergraph of H is α-acyclic as well but not
necessarily every edge-subhypergraph of H.

The fact that α-acyclic hypergraphs may contain hyperedge cycles of a certain kind (there are
various cycle definitions in hypergraphs), and the fact that edge-subhypergraphs of α-acyclic
hypergraphs are not necessarily α-acyclic are somewhat counterintuitive in comparison with
cycles in graphs and led Goodman and Shmueli [32] to the name tree schema for α-acyclic
hypergraphs (see also [47] for a discussion).

The following theorem gives an important characterization of hypertrees (α-acyclic
hypergraphs, respectively).

Theorem 29.13 [48–50] A hypergraph H is a hypertree if and only if H has the Helly
property and its line graph L(H) is chordal.

Proof. “=⇒”: Let H = (V, E) be a hypertree and let T be a tree with vertex set V such that
for all e ∈ E , T [e] induces a subtree in T . By Corollary 29.4, every hypertree H has the Helly
property. By Proposition 29.1, L(H) is chordal.

“⇐=”: A dual variant of the assertion is the following: If H is conformal and 2SEC(H)
is chordal then H is α-acyclic. Without loss of generality we may assume that no hyperedge
of H is contained in another one. By Lemma 29.4, H is the clique hypergraph of its 2-section
graph, and by Theorem 29.2, the chordal graph 2SEC(H) has a clique tree. Thus, H is
α-acyclic. �
By Propositions 29.4 and 29.5, Theorem 29.13 can also be formulated in the following equiv-
alent way.

Corollary 29.5 H is α-acyclic if and only if H is conformal and 2SEC(H) is chordal.

See Definition 29.15 for the Kőnig property. As a consequence of Theorem 29.13, we obtain.

Corollary 29.6 Hypertrees have the Kőnig property.

Proof. Let H = (V, E) be a hypertree. Then by Theorem 29.13, H has the Helly property and
there is a p.e.o. (e1, . . ., em) of the edge set E of L(H). Since e1 is simplicial in L(H), the set E1
of hyperedges intersecting e1 is pairwise intersecting. By the Helly property, there is a vertex
v in the intersection of E1. Now assume inductively that the hypergraph H ′ = (V, E \ E1)
fulfills already the condition τ(H ′) = ν(H ′). A maximum packing of H consists of a packing
of H ′ and one additional hyperedge from E1, and a minimum transversal of H consists of a
minimum transversal of H ′ and additionally the vertex v. Thus, also τ(H) = ν(H) holds. �
The α-acyclicity of a hypergraph H can also be characterized in terms of an inequality
concerning the weighted line graph of H. This was shown by Acharya and Las Vergnas in
the hypergraph community (see Theorem 29.14) but was also discovered by Bernstein and
Goodman [51] in the database community.

766 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

a f e

db

c

e1 e3

e4

e2

1

2

2
1 1

2

Figure 29.1 A 3-sun with its four maximal cliques e1 = {a, b, f}, e2 = {b, c, d}, e3 = {d, e, f}
and e4 = {b, d, f} and the weighted line graph of them.

Definition 29.18 Given a hypergraph H = (V, E) with E = {e1, . . ., em}, let Lw(H) denote
the weighted line graph of H whose nodes are the hyperedges of H which are pairwise con-
nected and the edges are weighted by w(eiej) = |ei ∩ej |. For any edge set F of L(H), let w(F)
denote the sum of all edge weights in F . Let wH denote the maximum weight of a spanning
tree in Lw(H). For a spanning tree T of Lw(H), let Tv denote the subgraph of T induced by
the hyperedges containing v, let N(Tv) denote its node set and E(Tv) its edge set.

If T is a spanning tree of Lw(H) then obviously for every vertex v ∈ V , the following
inequality holds (Figure 29.1):

1 ≤ |N(Tv)|−|E(Tv)|. (29.1)
Since any tree with k ≥ 2 nodes has k − 1 edges, equality holds in (29.1) exactly when Tv

is a subtree of T . The following lemma summarizes what is implicitly contained in Theorem
29.14.

Lemma 29.5 [52] Let H = (V, E) be a hypergraph with E = {e1, . . ., em} and let Lw(H) be
as in Definition 29.18. Then a spanning tree T of Lw(H) is a join tree of H if and only if

|V | =
m∑

j=1
|ej | −

∑

ij∈E(T)
|ei ∩ ej |. (29.2)

Proof. Suppose T is a spanning tree of Lw(H). For each v ∈ V , the subgraph Tv consisting
of all hyperedges containing v satisfies 1 ≤ |N(Tv)| − |E(Tv)| as described in (29.1), with
equality if and only if, for all v ∈ V , Tv is connected. Summing over all v ∈ V in (29.1)
proves that inequality

|V | ≤
m∑

j=1
|ej | −

∑

ij∈E(T)
|ei ∩ ej | (29.3)

holds, and equality holds in (29.3) if and only if the spanning tree T is a join tree. �
Note that the result of summing the right hand side of (29.1) is Σm

j=1|ej | − w(T) for the
spanning tree T of Lw(H). Thus also

|V | ≤
m∑

j=1
|ej | − max{w(T) | T spanning tree of Lw(H)} =

m∑

j=1
|ej | − wH (29.4)

with equality in (29.4) if and only if H has a join tree.
Inequality (29.4) led to the following parameter (see [53–55]):

Definition 29.19 Let H = (V, E) be a hypergraph and wH as in Definition 29.18. The
cyclomatic number μ(H) of H is defined as

μ(H) =
m∑

j=1
|ej | − |V | − wH .

Tree-Structured Graphs � 767

Note that the cyclomatic number of a hypergraph can be efficiently determined by any
maximum spanning tree algorithm. Now, the following theorem is a simple corollary of
Lemma 29.5.

Theorem 29.14 [53] A hypergraph H satisfies μ(H) = 0 if and only if H is α-acyclic. �

Note that Lemma 29.5 respectively Theorem 29.14 suggests a way how to find a join tree
of an α-acyclic hypergraph, namely, taking any maximum spanning tree (determined, e.g.,
by Kruskal’s greedy algorithm) of the weighted line graph Lw(H). Independently, this has
been discovered in the database community by Bernstein and Goodman [51] and rediscovered
several times; see Chapter 2 of the monograph by McKee and McMorris [5].

However, this is not the most efficient way to construct a clique tree of a given chordal
graph; Theorem 29.3 gives a linear-time algorithm for constructing a clique tree.

29.3.6 Graham’s Algorithm, Running Intersection Property, and Other Desirable
Properties Equivalent to α-Acyclicity

In this subsection, we collect some properties which are equivalent to α-acyclicity of a
hypergraph. Some of these conditions are desirable properties of relational database schemes
as mentioned in the introduction. Beeri et al. [29] give a long list of such equivalences; we
mention here only some of them and give a few proofs which might be suitable for a first
glance at this field of research.

In Corollary 29.1 we have seen: A graph G is chordal if and only if G has a p.e.o.
A generalization of this for α-acyclic hypergraphs is known under the name Graham’s

Algorithm (or Graham Reduction):

Definition 29.20 [56,57] Let H = (V, E) be a hypergraph.

i. Graham’s Algorithm on H applies the following two operations to H repeatedly as
long as possible:

1. If a vertex v ∈ V is contained in exactly one hyperedge e ∈ E then delete v
from e.

2. If a hyperedge e is contained in another hyperedge e′ then delete e.

ii. Graham’s Algorithm succeeds on H if repeatedly applying the two operations leads
to empty hypergraph, that is, to E = {∅}.

Graham’s algorithm is also called GYO algorithm since Yu and Ozsoyoglu [57] came to exactly
the same algorithm. Vertices which occur in only one edge are frequently called ear vertices
(isolated vertices in [29]) and edges containing such a vertex are frequently called ears (knobs
in [29]). Note that any ear node in H is simplicial in the 2-section graph of H.

Theorem 29.15 [29,32] H is α-acyclic if and only if Graham’s algorithm succeeds on H.

Proof. “=⇒”: Let H be α-acyclic, that is, by Corollary 29.5, H is conformal and 2SEC(H)
is chordal. If H is not Sperner then the (possibly repeated) application of rule (2) leads to a
Sperner hypergraph H ′ which is conformal and for which 2SEC(H ′) is chordal. By Lemma
29.4, H ′ is isomorphic to the maximal clique hypergraph C(2SEC(H ′)).

768 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Let (v1, . . ., vn) be a p.e.o. of 2SEC(H ′). Then v1 is simplicial and thus contained in only
one hyperedge of H ′, that is, v1 can be deleted by rule (1). Now the same argument can be
repeated and shows the assertion.

“⇐=”: Assume that Graham’s Algorithm succeeds on H. Then, the repeated application
of rules (1) and (2) defines a vertex ordering σ = (v1, . . ., vn) of V (i.e., the ordering in
which by rule (1), the vertices get deleted). We claim that σ is a p.e.o. Indeed, for each
i ∈ {1, . . ., n}, when (1) is applicable to vi, this vertex is contained in only one hyperedge
and thus is simplicial in the remaining 2-section graph.

We finally show that H is conformal: Let C be a clique in 2SEC(H) and let vi be its
leftmost element in σ. Then, when eliminating this vertex by rule (1), vi is contained in only
one hyperedge, say e, and all its neighbors in the 2-section graph are in e including C, that
is, C ⊆ e which means that H is conformal. �
Note that Graham’s algorithm produces a perfect elimination ordering of the 2-section graph
of H if H is α-acyclic.

The Running Intersection Property is another notion from the database community which
turns out to be equivalent to α-acyclicity of a hypergraph:

Definition 29.21 [29] Let H = (V, E) be a hypergraph. H has the running intersection
property if there is an ordering (e1, e2, . . ., em) of E such that for all i ∈ {2, . . ., m}, there is
a j < i such that ei ∩ (e1 ∪ . . . ∪ ei−1) ⊆ ej.

Theorem 29.16 [29,32] A hypergraph is α-acyclic if and only if it has the running inter-
section property.

Proof. “=⇒”: If the hypergraph H = (V, E) is α-acyclic then it has a join tree T . Select a
root for T . Let (e1, . . ., em) be an ordering of E by increasing depth. Thus, if ej is the parent
of ei, then j < i. Clearly, each path from ei to any of e1, . . ., ei−1 must pass through ei’s
parent ej . Now if v ∈ V is a vertex in ei ∩ ek for some k < i, then all hyperedges along the
T -path between ei and ek contain v. Since this path passes through ej , it follows that v ∈ ej

which implies ei ∩ (e1 ∪ . . . ∪ ei−1) ⊆ ej . Thus, H has the running intersection property.
“⇐=”: Let H = (V, E) be a hypergraph and let (e1, . . ., em) be an ordering of E fulfilling

the running intersection property. The proof is by induction on the number m of hyperedges.
The basis m = 2 is trivial. (e1, . . ., em−1) also has the running intersection property, and by
induction hypothesis, there is a join tree T ′ for e1, . . ., em−1. Let T be obtained from T ′ by
adding node em and edge emej for a j such that em ∩ (e1 ∪ . . . ∪ em−1) ⊆ ej . Obviously, T is
a join tree for e1, . . ., em. �
For the next theorem, we need a few more definitions.

A path between two vertices u, v ∈ V in hypergraph H = (V, E) is a sequence of k ≥ 1 edges
e1, . . ., ek ∈ E such that u ∈ e1, v ∈ ek and for all i = 1, . . ., k − 1, ei ∩ ei+1 �= ∅.

H is connected if for all pairs u, v ∈ V , there is a path between u and v in H.
The connected components of H are the maximal connected vertex-subhypergraphs of H.
For a reduced hypergraph H = (V, E) and two edges e, e′ ∈ E , e ∩ e′ is an edge-intersection-

separator, e.i.-separator for short (called an articulation set in [29]) if the reduced vertex-
subhypergraph H[V \ (e ∩ e′)] has more connected components than H.

A hypergraph H = (V, E) is edge-intersection-separable, e.i.-separable for short (called acyclic
in [29]) if for each U ⊆ V , if the reduction of H[U] is connected and has more than one
edge (i.e., is nontrivial) then it has an edge-intersection-separator.

A hyperedge subset F ⊆ E is closed if for each e ∈ E , there is an edge f ∈ F such that
e ∩ ⋃ F ⊆ f .

Tree-Structured Graphs � 769

A reduced hypergraph H = (V, E) is closed-e.i.-separable (called closed-acyclic in [29]) if for
each U ⊆ V , if H[U] is connected and has more than one edge and its set of edges is
closed then it has an e.-i.-separator. A hypergraph is closed-e.i.-separable if its reduc-
tion is.

Note that in this definition, separators are always intersections of edges.
In [58], it is shown that a hypergraph is acyclic if and only if it is closed-acyclic, that is,

e.i.-separable and closed-e.i.-separable are equivalent notions. This has the advantage that it
is not necessary to deal with partial edges that are not edges.

Recall that in Section 29.3.1, pairwise and global consistency, semijoins and full reducers,
monotone join expressions, and monotone sequential join expressions are defined.

Apparently, there is a close connection between the Helly property of a hypergraph and
the equivalence between pairwise and global consistency of a relational database scheme (see
Definition 29.6): A relational database r1, . . ., rm over scheme E = {e1, . . ., em} is pairwise
consistent if for every pair i, j ∈ {1, . . ., m}, ri, rj is consistent. Let Ri, i ∈ {1, . . ., m}, denote
the set of relations over at least the attributes ei such that the projection to ei is ri. In other
words, pairwise consistency means that for all i, j ∈ {1, . . ., m}, the intersection Ri ∩ Rj is
nonempty. Global consistency means that the intersection

⋂m
i=1 Ri is nonempty.

The next theorem is part of the main theorem in [29] which contains various other con-
ditions. See the same paper for a detailed discussion of other papers where parts of these
equivalences were shown.

Theorem 29.17 [29] Let E be a hypergraph. The following conditions are equivalent:

i. E has the running intersection property.

ii. E has a monotone sequential join expression.

iii. E has a monotone join expression.

iv. every pairwise consistent database over E is globally consistent.

v. E is closed-e.i.-separable.

vi. every database over E has a full reducer.

vii. the GYO reduction algorithm succeeds on E.

viii. E has a join tree (i.e., E is α-acyclic).

Proof. In Theorems 29.16 and 29.17, it is already shown that conditions (i), (vii), and (viii)
are equivalent.

(i) =⇒ (ii): Assume that E has the running intersection property. Let (e1, e2, . . ., em)
be an ordering of E such that for all i ∈ {2, . . ., m}, there is a ji < i such that
ei ∩ (e1 ∪ . . . ∪ ei−1) ⊆ eji . Now we show that (. . . ((e1 �� e2) �� e3) . . . �� em) is a
monotone, sequential join expression: If r = {r1, . . ., rm} is a pairwise consistent
database over E = {e1, e2, . . ., em}, then the join r1 �� . . . �� ri (which we abbrevi-
ate as qi) is consistent with ri+1 (1 ≤ i < n).

An easy inductive argument shows that rk = qi[ek] whenever k ≤ i. In particu-
lar, let k = ji+1, and let V := ei+1 ∩ (e1 ∪ . . . ∪ ei). Since V ⊆ em, it follows that
rk[V] = qi[V]. But also ri+1[V] = rk[V] since ri+1 and rk are consistent. Hence
ri+1[V] = qi[V]. So ri+1 is consistent with qi which was to be shown.

(ii) =⇒ (iii): This is immediate since every monotone sequential join expression is a
monotone join expression.

770 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(iii) =⇒ (iv): Assume that E has a monotone join expression. We must show that
every pairwise consistent database over E is globally consistent. Let r be a pairwise
consistent database over E . It is not hard to see that since no tuples are lost in
joining together the relations in r as dictated by the monotone join expression, it
follows that every member of r is a projection of the final result �� r. Hence r is
globally consistent, which was to be shown.

(iv) =⇒ (v): Details are described in [29].

(v) =⇒ (i): Details are described in [29]—GYO reduction succeeds.

(iv) =⇒ (vi): Assume that every pairwise consistent database over E is globally con-
sistent. Let r1, . . ., rm be a database over E . We have to show that r1, . . ., rm has
a full reducer, that is, after finitely many semijoins ri � rj , we obtain a globally
consistent database. Note that when further semijoin operations do not change
anything, the resulting relations are pairwise consistent. By assumption, these are
also globally consistent which means that we have a full reducer.

(vi) =⇒ (iv): Assume that every database over E has a full reducer. Let r1, . . ., rm be
a pairwise consistent database over E . By assumption, it has a full reducer but in
the case of pairwise consistent relations, the input and output of the full reducer is
the same, that is, the result of the full reducer is the database r1, . . ., rm itself, and
the result of a full reducer is guaranteed to be globally consistent. Thus, r1, . . ., rm

is globally consistent. �

29.3.7 Dually Chordal Graphs, Maximum Neighborhood Orderings, and Hypertrees

Theorem 29.2 says that a graph is chordal if and only if it has a clique tree, that is, a graph G
is chordal if and only if its hypergraph C(G) of maximal cliques is α-acyclic (or co-arboreal).
The dual variant of this means that C(G) is a hypertree; the corresponding graph class called
dually chordal graphs was studied in [59–61] and has remarkable properties. In particular,
the notion of maximum neighbor and maximum neighborhood ordering (used in [60,62,63])
has many consequences for algorithmic applications and is somehow dual to the notion of
a simplicial vertex. For the next definition, we need the notation of neighborhood in the
remaining subgraph.

Let G = (V, E) be a graph and (v1, . . ., vn) be a vertex ordering of G. For all i ∈ {1, . . ., n},
let Gi := G[{vi, . . ., vn}] and Ni[v] be the neighborhood of v in Gi: Ni[v] := N [v]∩{vi, . . ., vn}.

Definition 29.22 Let G = (V, E) be a graph.

i. A vertex u ∈ N [v] is a maximum neighbor of v if for all w ∈ N [v], N [w] ⊆ N [u],
that is, N2[v] = N [u]. (Note that possibly u = v in which case v sees all vertices
of G.)

ii. A vertex ordering (v1, v2, . . ., vn) of V is a maximum neighborhood ordering of
G if for all i ∈ {1, . . ., n}, vi has a maximum neighbor in Gi, that is, there is a
vertex ui ∈ Ni[vi] such that for all w ∈ Ni[vi], Ni[w] ⊆ Ni[ui] holds.

iii. A graph is dually chordal if it has a maximum neighborhood ordering.

Note that dually chordal graphs are not a hereditary class; adding a universal vertex makes
every graph dually chordal. The following characterization of dually chordal graphs shows
that these graphs are indeed dual (in the hypergraph sense) with respect to chordal graphs:

Tree-Structured Graphs � 771

Theorem 29.18 [59,61] For a graph G, the following conditions are equivalent:

i. G has a maximum neighborhood ordering.

ii. There is a spanning tree T of G such that every maximal clique of G induces a
subtree of T .

iii. There is a spanning tree T of G such that every disk of G induces a subtree of T .

iv. N (G) is a hypertree.

v. N (G) is α-acyclic.

Proof. Let G = (V, E) be a graph.
(i) =⇒ (ii): By induction on |V |. Let x be the leftmost vertex in a maximum neighborhood

ordering of G and let y be a maximum neighbor of x, that is, N2[x] = N [y]. If x = y, that
is, N2[x] = N [x], then x sees all other vertices of G; let T be a star with central vertex x
which fulfills (ii). Now assume that x �= y; by induction hypothesis, there is a spanning tree
of the graph G − x fulfilling (ii) for G − x. Among all such spanning trees, choose a tree T
in which y is adjacent to a maximum number of vertices from N(x).

Claim 29.1 In T , y sees all vertices of N(x) \ {y}.

Proof of Claim 29.1. Assume to the contrary that there is a vertex z ∈ N(x) \ {y} which is
nonadjacent to y in T . Consider the T -path y − . . . − v − z connecting y and z. Let Tv (Tz,
respectively) be the connected component of T obtained by deleting the T -edge vz such that
Tv contains v (Tz contains z, respectively). Adding to these subtrees Tv, Tz a new edge yz,
we obtain the tree T ′. Since y and z are adjacent in G − x, T ′ is a spanning tree of G − x.
Now we show that T ′ fulfills condition (ii) as well.

Let Q be a maximal clique of G − x. If z /∈ Q then Q is completely contained in one
of the subtrees Tv, Tz, that is, Q induces one and the same subtree in both T and T ′. Now
suppose that z ∈ Q. Since N [z] ⊆ N [y] = N2[x], we have y ∈ Q by maximality of Q. Let
u1, u2 be any two vertices of Q. If both belong to the same subtree Tv or Tz then u1 and u2
are connected by the same path in T and T ′, and we are done. Now let u1 be in Tv and u2
be in Tz. In Tv, the vertices y and u1 are connected by a T -path P1 consisting of vertices
from Q. In a similar way, the vertices z and u2 are connected by a T -path P2 in Tz. Gluing
together these paths P1 and P2 with the edge yz, we obtain a T ′-path connecting u1 and
u2 in T ′. Hence any maximal clique Q of G − x induces a subtree in T ′, that is, T ′ satisfies
condition (ii) as well. This, however, contradicts to the choice of T ; thus, in T , y sees all
vertices of N(x) \ {y} which shows Claim 29.1.

Now let T be a spanning tree fulfilling the claim for G − x. Let T ∗ be the tree obtained
from T by adding a leaf x adjacent to y. Obviously, T ∗ fulfills condition (ii).

(ii) =⇒ (iii): Let T be a spanning tree of G such that every clique of G induces a subtree
in T . We claim that every disk N r[z] induces a subtree in T as well. In order to prove this,
it is sufficient to show that the vertex z and every vertex v ∈ N r[z] are connected by a
T -path consisting of vertices from N r[z]. Let v = v1 − v2 − . . . − vk − vk+1 = z be a shortest
G-path between v and z. By Qi we denote a maximal clique of G containing the edge vivi+1,
i ∈ {1, . . ., k}. From the choice of T , it follows that vi and vi+1 are connected by a T -path
Pi ⊆ Qi. The vertices of P =

⋃k
i=1 Pi induce a subtree T [P] of T . Thus, v and z are connected

by a T -path p. Since for all vertices w ∈ Qi, for the G-distances d(z, w) ≤ d(z, vi) ≤ r holds,

772 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

every clique Qi is contained in the disk N r[z]. Thus, the claim follows from the obvious
inclusion

p ⊆ P ⊆
k⋃

i=1
Qi ⊆ N r[z]

(iii) =⇒ (iv) is obvious.
(iv) ⇐⇒ (v) is obvious by the self-duality of the neighborhood hypergraph N (G) and

the duality between hypertree and α-acyclicity.
(iv) =⇒ (i): Let N (G) be a hypertree. Then by Theorem 29.13, N (G) has the Helly

property and L(N (G)) is chordal. Let σ = (e1, . . ., em) be a perfect elimination order-
ing of L(N (G)). Since the hyperedges ei of N (G) are the closed neighborhoods, σ =
(N [v1], . . ., N [vn]). Suppose inductively that there is a maximum neighborhood ordering for
G − v1. It suffices to show that v1 has a maximum neighbor u1. Since N [v1] is simplicial
in L(N (G)), the closed neighborhoods intersecting N [v1] are pairwise intersecting. By the
Helly property of N (G), there is a vertex u1 in the intersection of all such closed neighbor-
hoods including N [v1] itself, that is, there is a vertex u1 with N2[v1] = N [u1]. Thus, u1 is a
maximum neighbor of v1.

The equivalence of (i) and (iv) can be shown in an easy direct way as follows: We know
already (iv) =⇒ (i). By Theorem 29.13, we can also show the other direction

(i) =⇒ (iv): Let G have the maximum neighborhood ordering σ = (v1, . . ., vn). We have
to show that N (G) has the Helly property and L(N (G)) is chordal.

Let N [x1], . . ., N [xk] be a collection of pairwise intersecting closed neighborhoods in G.
Without loss of generality, let x1 be the leftmost vertex of x1, . . ., xk in σ. Then x1 has
a maximum neighbor u1, that is, there is a vertex u1 for which N2[x1] = N [u1]. Then
u1 ∈ ⋂k

i=1 N [xi], and thus, N (G) has the Helly property.
Now we show that N [v1] is simplicial in L(N (G)): Let N [x] and N [y] be closed neighbor-

hoods intersecting N [v1]. Let v1 have a maximum neighbor u1, that is, N2[v1] = N [u1]. Since
x, y ∈ N2[v1], it follows that u1 ∈ N [x]∩N [y] and thus, N [v1] is simplicial in L(N (G)). Induc-
tively, it follows that σ = (N [v1], . . ., N [vn]) is a perfect elimination ordering of L(N (G)). �
Since L(N (G)) is isomorphic to G2 (recall Proposition 29.7), Theorem 29.18 implies the
following corollary.

Corollary 29.7 Graph G is dually chordal if and only if G2 is chordal and N (G) has the
Helly property.

Another characterization which follows from the basic properties is the following.

Corollary 29.8 Graph G is dually chordal if and only if G = L(H) for some α-acyclic
hypergraph H.

As a corollary of Theorem 29.18, dually chordal graphs can be recognized in linear time since
α-acyclicity of N (G) can be tested in linear time [20]. Parts of Theorem 29.18 were found also
by Szwarcfiter and Bornstein [64] and later again by Gutierrez and Oubiña [65]; in particular,
it was shown in [64] that dually chordal graphs are the clique graphs of intersection graphs
of paths in a tree. This implies that dually chordal graphs are the clique graphs of chordal
graphs (in the sense of Definition 29.14). See [63,66] for algorithmic applications of maximum
neighborhood orderings and [3] for more structural details. In [19], a linear-time algorithm
for constructing a special (canonical) maximum neighborhood ordering for a dually chordal
graph is described.

New characterizations of dually chordal graphs in terms of separator properties are given
by De Caria and Gutierrez in [67–70]. Another new characterization was found by Leitert
in [71].

Tree-Structured Graphs � 773

In [72], Moscarini introduced the concept of doubly chordal graphs, that is, the graphs
which are chordal and dually chordal. This class was introduced for efficiently solving the
Steiner problem (motivated by database theory); this can be done, however, also for the larger
class of dually chordal graphs (see [63]) and also for the class of homogeneously orderable
graphs which contain the dually chordal graphs [73]:

doubly chordal ⊂ dually chordal ⊂ homogeneously orderable

29.3.8 Bipartite Graphs, Hypertrees, and Maximum Neighborhood Orderings

For bipartite graphs B = (X, Y, E), the one-sided neighborhood hypergraphs are of funda-
mental importance. Let

N X(B) = {N(y) | y ∈ Y } as well as

N X(B) = {N(x) | x ∈ X}.

Note that (N X(B))∗ = N Y (B) and vice versa.
Motivated by database schemes, the following concepts were introduced.

Definition 29.23 [28] Let B = (X, Y, E) be a bipartite graph.

i. B is X-conformal if for all S ⊆ Y with the property that all vertices of S have
pairwise distance 2, there is an x ∈ X with S ⊆ N(x).

ii. B is X-chordal if for every cycle C in B of length at least 8, there is a vertex x ∈ X
which is adjacent to at least two vertices of C whose distance in C is at least 4.

Analogously, define Y -conformal and Y -chordal for bipartite graphs.

These notions are justified by the following simple facts.

Proposition 29.10 [28] Let B = (X, Y, E) be a bipartite graph.

i. B is X-conformal ⇐⇒ N Y (B) is conformal ⇐⇒ N X(B) has the Helly property.

ii. B is X-chordal ⇐⇒ 2SEC(N Y (B)) is chordal ⇐⇒ L(N X(B)) is chordal.

Corollary 29.9 The following conditions are equivalent:

i. B is X-chordal and X-conformal;

ii. N Y (B) is α-acyclic;

iii. N X(B) is a hypertree.

Maximum neighborhood orderings can be defined for bipartite graphs as well. For this we
need the following notations: Let B = (X, Y, E) be a bipartite graph, and let (y1, . . ., yn) be
a vertex ordering of Y . Then let BY

i = B[X ∪ {yi, yi+1, . . ., yn}] and let Ni(x) denote the
neighborhood of x in the remaining subgraph BY

i .

Definition 29.24 Let B = (X, Y, E) be a bipartite graph.

i. For y ∈ Y , a vertex x ∈ N(y) is a maximum neighbor of y if for all x′ ∈ N(y),
N(x′) ⊆ N(x) holds.

774 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

ii. A linear ordering (y1, . . ., yn) of Y is a maximum X-neighborhood ordering of B if
for all i ∈ {1, . . ., n}, there is a maximum neighbor xi ∈ Ni(yi) of yi:
for all x ∈ N(yi), Ni(x) ⊆ Ni(xi) holds.

Analogously, maximum Y -neighborhood orderings are defined.

Theorem 29.19 [59] Let B = (X, Y, E) be a bipartite graph. The following conditions are
equivalent:

i. B has a maximum X-neighborhood ordering;

ii. B is X-conformal and X-chordal.
Moreover, (y1, . . ., yn) is a maximum X-neighborhood ordering of B if and only if (y1, . . ., yn)
is a p.e.o. of 2SEC(N Y (B)).

Proof. (i) =⇒ (ii): Let σ = (y1, . . ., yn) be a maximum X-neighborhood ordering of Y .
(a) B is X-conformal: Assume that the vertices in S ⊆ Y have pairwise distance 2. Let

yj ∈ S be the leftmost vertex of S in σ and let x be a maximum neighbor of yj in BY
j . Since

every y′ ∈ S has a common neighbor x′ ∈ X with yj , also x is adjacent to y′ which implies
S ⊆ N(x). Thus, B is X-conformal.

(b) B is X-chordal: Let C = (xi1 , yi1 , . . ., xik
, yik

), k ≥ 4, be a cycle in B. If C has a
chord then it has an X-vertex which fulfills the condition. Now assume that C is a chordless
cycle. Let yi1 = yj be the leftmost Y -vertex of C in (y1, . . ., yn). Since yik

∈ Nj(xi1) \ Nj(xi2)
and yi2 ∈ Nj(xi2) \ Nj(xi1), the sets Nj(xi1) and Nj(xi2) are incomparable with respect to
set inclusion. Thus, neither xi1 nor xi2 are maximum neighbors of yi1 . Let x be a maximum
neighbor of yi1 = yj . Then yi1 , yi2 , yik

∈ Nj(x). Thus, B is X-chordal.
(ii) =⇒ (i): Let B be X-conformal and X-chordal. Then by Proposition 29.10, the line

graph G′ = L(N X(B)) is chordal and N X(B) has the Helly property. Let (y1, . . ., yn) be a
p.e.o. of G′. Thus NG′ [y1] is a a clique, that is, for all y, y′ ∈ NG′ [y1], N(y) ∩ N(y′) �= ∅.
By the Helly property of N X(B), the total intersection of all N(y) such that N(y) ∩
N(y1) �= ∅ is nonempty: there is a vertex x ∈ X in all these neighborhoods. Now, x
is a maximum neighbor of y1, and the same argument can be repeated with the smaller
graph B − y1. �

Corollary 29.10 Let B = (X, Y, E) be a bipartite graph. The following conditions are equiv-
alent:

i. B has a maximum X-neighborhood ordering.

ii. N X(B) is a hypertree.

iii. N Y (B) is α-acyclic.

Theorems 29.18 and 29.19 imply the following connection between maximum neighborhood
orderings in graphs and in bipartite graphs.

Corollary 29.11 [59] A graph G has a maximum neighborhood ordering if and only if B(G)
has a maximum X-neighborhood ordering (maximum Y -neighborhood ordering, respectively).

Proof. Recall that by Proposition 29.8, B(G) is isomorphic to the bipartite incidence graph
of N (G). By Theorem 29.18, G has a maximum neighborhood ordering if and only if N (G) is
a hypertree. Now, it is easy to see that the underlying tree of N (G) immediately leads to the
fact that N X(B(G)) is a hypertree as well, and for symmetry reasons the same happens for
N Y (B(G)). Conversely, if N X(B(G)) is a hypertree then the underlying tree immediately
leads to an underlying tree for N (G). �

Tree-Structured Graphs � 775

29.3.9 Further Matrix Notions

As already mentioned, a hypergraph H = (V, E) can be described by its incidence matrix.
The notion of a hypertree (see Definition 29.17) is also close to what is called subtree matrix
in [74].

Definition 29.25

i. A Γ matrix has the form

1 1
1 0

ii. A subtree matrix is the incidence matrix of a collection of subtrees of a tree, that
is, it is a (0, 1)-matrix with rows indexed by vertices of a tree T and columns in-
dexed by some subtrees of T and with an entry of 1 if and only if the corresponding
vertex is in the corresponding subtree.

iii. An ordered (0, 1)-matrix M is supported Γ if for every pair r1 < r2 of row indices
and c1 < c2 of column indices whose entries form a Γ, there is a row index r3 > r2
with M(r3, c1) = M(r3, c2) = 1. One says that row r3 supports the Γ.

Theorem 29.20 [74] A (0, 1)-matrix is a subtree matrix if and only if it is a matrix with
supported Γ ordering.

Proof. “=⇒”: Let M be a subtree matrix for a collection S of subtrees of a tree T . Pick
a vertex r of T and order the vertices of T by decreasing distance from r (breaking ties
arbitrarily). The distance between r and a subtree S is the minimum distance between r and
any vertex from S. Also order the subtrees from S by decreasing distance from r.

We claim that this is a supported Γ ordering of M , for suppose vertices v1 < v2 and
subtrees t1 < t2 form a Γ in M : For i ∈ {1, 2}, let ri be the vertex of ti closest to r. Then
r1 ≥ v2 since v2 is in t1. We claim that r1 supports the Γ: Since r1 is in t1, M(r1, t1) = 1. We
have to show that r1 is also in t2, that is, M(r1, t2) = 1. If r1 = v1 or r1 = r2, we are done.
Now suppose that r1 �= v1 and r1 �= r2.

Since t1 < t2, r2 is closer to r than r1 but t1 and t2 contain a common vertex v1, and thus
also r1 is on the T path between v1 and r2, that is, r1 is in subtree t2 and supports the Γ.

“⇐=”: If the ordered n × m matrix M is supported Γ, create a tree T on vertex set
{1, 2, . . ., n} by setting for i ∈ {1, 2, . . ., n − 1}

f(i) =
{

min{k | M(i, k) = 1} if there exists j > i, M(j, k) = 1
not defined otherwise

and b(i) = max{j | M(j, f(i)) = 1} and creating the edges (i, b(i)) if f(i) exists and (i, n)
otherwise. We claim that T defined in this way is a tree: Since b(i) > i when f(i) (and thus
also b(i)) exists, and the edges (i, n) otherwise, T is obviously cycle-free, and for the same
reason, T is connected.

Finally, we show that each column of M is the incidence vector of a subtree of T . It
suffices to show that for i < j, M(i, k) = M(j, k) = 1 implies M(b(i), k) = 1: If this were not
true then f(i) < k and rows i, b(i) and columns f(i), k would form an unsupported Γ in M . �
Note that Theorem 29.20 gives a characterization of hypertrees and of α-acyclic hypergraphs
in terms of a matrix property. This also gives corresponding characterizations of chordal as
well as of dually chordal graphs.

776 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Definition 29.26 A (0, 1)-matrix M is doubly lexically ordered if the rows (columns,
respectively) form a lexicographically increasing sequence from top to bottom (from left to
right, respectively) where for rows (columns, respectively), the rightmost position (lowest
position, respectively) has highest priority.

Theorem 29.21 [74] Every (0, 1)-matrix M can be doubly lexically ordered by some suitable
permutations of rows and columns.

Proof. Let M = (Mij) be an m × n matrix. We form a m · n vector d(M) as follows: The
entries of M will be ordered with respect to i + j, and for the same i + j with respect to j:

d(M) = M11, M21, M12, M31, M22, M13, M41, . . ., Mmn

d1 d3 d6 · . . .
d2 d5 ·
d4 ·
·
. . . dm·n

Claim 29.2 If two rows (columns, respectively) of M are permuted which do not appear in
lexical order then the result d(M) will be lexically larger (with highest priority at dm·n).

Proof.of Claim 29.2. Let k, l be row indices of M with k < l and the property that the kth
row is lexically larger than the lth row.

Let j ∈ {1, . . ., n} be the largest index for which Mkj �= Mlj ; then Mkj > Mlj . After
permuting the kth and lth row, the part of d(M) which was Mlj becomes Mkj and the parts
on its right hand side do not change their value, and analogously for columns. This shows
Claim 29.2.

By Claim 29.2, an ordering of M which maximizes d(M), is a doubly lexical ordering
of M . �
Theorem 29.21 holds also for other ordered matrix entries instead of {0, 1}.

There is an efficient way for finding a doubly lexical ordering: Let L := n + m+ number
of 1’s in a (0, 1)-matrix M .

Theorem 29.22 [75] A doubly lexical ordering of an m × n matrix M over entries {0, 1}
can be determined in O(L log L) steps. �

29.4 TOTALLY BALANCED HYPERGRAPHS AND MATRICES

29.4.1 Totally Balanced Hypergraphs versus β-Acyclic Hypergraphs

Fagin [6,7] defined β-acyclic hypergraphs in connection with desirable properties of rela-
tional database schemes. Recall that for α-acyclic hypergraphs, edge-subhypergraphs are not
necessarily α-acyclic.

Definition 29.27 [6,7] A hypergraph H = (V, E) isβ-acyclic if each of its edge-subhypergraphs
is α-acyclic, that is, for all E ′ ⊆ E, E ′ is α-acyclic.

Fagin [6] gives a variety of equivalent notions of β-acyclicity in terms of certain forbidden
cycles in hypergraphs (one of them goes back to Graham [56]) which Fagin in [6] shows to
be equivalent.

Actually, β-acyclic hypergraphs appear under the name totally balanced hypergraphs much
earlier in hypergraph theory (as it will turn out in Theorems 29.25 and 29.27).

Tree-Structured Graphs � 777

Definition 29.28 [12,76] Let H = (V, E) be a hypergraph.

i. A sequence C = (v1, e1, v2, e2, . . ., vk, ek) of distinct vertices v1, v2, . . ., vk and dis-
tinct hyperedges e1, e2, . . ., ek is a special cycle (or chordless cycle or induced cycle
or, in [77], unbalanced circuit) if k ≥ 3 and for every i, 1 ≤ i ≤ k, vi, vi+1 ∈ ei

(index arithmetic is done modulo k) and ei ∩ {v1, . . ., vk} = {vi, vi+1}. The length
of cycle C is k.

ii. H is balanced if it has no special cycles of odd length k ≥ 3.

iii. H is totally balanced if it has no special cycles of any length k ≥ 3.

Special cycles are called weak β-cycles by Fagin in [6], and a hypergraph is called β-acyclic
if it has no weak β-cycles. Actually, [6] mentions four other conditions and shows that all
five are equivalent.

We will see in Theorem 29.27 that a hypergraph is β-acyclic if and only if it is totally
balanced. Totally balanced hypergraphs are a natural generalization of trees.

Balanced hypergraphs are a natural generalization of bipartite graphs. See the monograph
of Berge [13] for many properties and characterizations of balanced hypergraphs, and in
particular, the following theorems.

Theorem 29.23 [13] A hypergraph is balanced if and only if its vertex-subhypergraphs are
2-colorable. �

Theorem 29.24 [78] A hypergraph is balanced if and only if its vertex- and edge-
subhypergraphs have the Kőnig property. �

Corollary 29.12 [13] Balanced hypergraphs have the Helly property and are conformal.

In this subsection, we focus on totally balanced hypergraphs.

Proposition 29.11 Let H = (V, E) be a totally balanced hypergraph. Then the following
holds:

i. The dual H∗ of H and any vertex- or edge-subhypergraph of H are totally balanced.

ii. H has the Helly property.

iii. L(H) is a chordal graph.

Proof. Let H = (V, E) be a totally balanced hypergraph.

i. By definition, it immediately follows that the dual H∗ and any vertex- or edge-
subhypergraph of a totally balanced hypergraph H is totally balanced.

ii. Since the Helly property is satisfied by any hypergraph without special cycle of
length three (see Theorem 29.8), H must have the Helly property.

iii. L(H) is a chordal graph since H contains no special cycle. �

Recall that vertex-subhypergraphs of hypertrees are not necessarily hypertrees. The next
theorem gives a characterization of totally balanced hypergraphs in terms of hypertrees.

Theorem 29.25 [36,46] A hypergraph H is totally balanced if and only if every vertex-
subhypergraph of H is a hypertree.

778 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. Let H = (V, E) be a hypergraph. By Proposition 29.11, we have:
i. The dual of H and any vertex- or edge-subhypergraph are totally balanced.

ii. H has the Helly property.

iii. L(H) is a chordal graph.
Now by Theorem 29.13, H (and every vertex-subhypergraph of H) must be a hypertree and
vice versa. �
Actually, Lehel [46] gives a complete structural characterization of totally balanced hyper-
graphs in terms of certain tree sequences. Lehel’s result implies the following characterization
of totally balanced hypergraphs which was originally found by Brouwer and Kolen [79] and
nicely corresponds to the existence of simple vertices in strongly chordal graphs.

Theorem 29.26 [46,79] A hypergraph H is totally balanced if and only if every vertex-
subhypergraph H ′ has a vertex v (a so-called nested point) such that the hyperedges of H ′

containing v are linearly ordered by inclusion. �

By simple duality arguments, the next theorem follows immediately from Theorem 29.25.

Theorem 29.27 [80] A hypergraph H is totally balanced if and only if H is β-acyclic. �

29.4.2 Totally Balanced Matrices

Definition 29.29 Let Bk denote the k×k square (0, 1)-matrix consisting of rows with exactly
two consecutive 1’s beginning with 10 . . . 01, then 110 . . . and so on; 00 . . . 11 is the last row.

For example, B4 is the following matrix:

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

Thus, a hypergraph is totally balanced if and only if its incidence matrix contains no square
submatrix Bk for k ≥ 3 (in any row and column order), and correspondingly for balanced
hypergraphs and odd k ≥ 3. Obviously, the dual of a balanced (totally balanced, resp.)
hypergraph is balanced (totally balanced, respectively).

Lubiw in [74] defines totally balanced matrices in the following way.
Definition 29.30

i. For n ≥ 3, a cycle matrix is an n × n (0, 1)-matrix with no identical rows and
columns which has exactly two 1’s in each row and in each column such that no
proper submatrix has this property.

ii. A totally balanced matrix is a (0, 1)-matrix with no cycle submatrices.
Recall Definition 29.25 for the notion of a Γ submatrix.

Definition 29.31 An ordered (0, 1)-matrix M is Γ-free if M has no Γ submatrix.

Theorem 29.28 [81–83] A (0, 1)-matrix is totally balanced if and only if it has a Γ-free
ordering. �

This is shown in [74] as a consequence of the existence of doubly lexical orderings and the
following.

Tree-Structured Graphs � 779

Observation 29.1 If a (0, 1)-matrix has a cycle submatrix then for any ordering of the
matrix there is a Γ submatrix (formed by a topmost, leftmost 1 of the cycle submatrix; the
other 1 in its row in the cycle; and the other 1 in its column in the cycle).

Theorem 29.29 [74] Any doubly lexical ordering of a totally balanced matrix is Γ-free. �

For example, the matrix B4 from Definition 29.29 has the following doubly lexical ordering
which is not Γ-free:

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

(resulting from the matrix B4 by first permuting rows 1 and 2 and then permuting columns
3 and 4).

29.5 STRONGLY CHORDAL AND CHORDAL BIPARTITE GRAPHS

29.5.1 Strongly Chordal Graphs

The subsequently defined strongly chordal graphs are an important subclass of chordal graphs
for many reasons. Originally, they were introduced by Farber [27] as a subclass of chordal
graphs for which the domination problem ([GT2] in [40]), which remains NP-complete for
chordal graphs and even for split graphs [84], can be solved efficiently. Chang and Nemhauser
[85,86] independently studied the same class and also showed that some problems such as
domination can be solved efficiently. Later on, this has been extended to larger classes and
other problems (see, e.g., [63,66,73,87]).

The motivation from the database community is the fact that strongly chordal graphs
are the 2-section graphs of β-acyclic hypergraphs (as it will turn out in Theorem 29.32 as a
consequence of Theorem 29.27).

29.5.1.1 Elimination Orderings of Strongly Chordal Graphs

Farber [27] defined strongly chordal graphs in terms of so-called strong elimination orderings
which are closely related to neighborhood matrices of these graphs:

Definition 29.32 Let σ = (v1, . . ., vn) be an ordering of the vertex set V of G. The neigh-
borhood matrix Nσ(G) (N(G) if σ is understood) of G is the n × n matrix with entries

nij =
{

1 if vi ∈ N [vj]
0 otherwise

Note that this matrix is symmetric and the main diagonal has values 1:

vi ∈ N [vj] ⇐⇒ vj ∈ N [vi]

(N(G) is the incidence matrix of the closed-neighborhood hypergraph N (G)).
The subsequent Definition 29.33 must be read as follows: If in the (0, 1) neighborhood

matrix of graph G, for i < j and k < �, the entries in row i and column k, in row i and
column � as well as in row j and column k are 1, then the entry in row j and column � must
be 1 as well (i.e., rows i < j and columns k < � do not form a Γ—see Definition 29.25).

780 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

lk

i

j

Figure 29.2 Selected rows and columns.

Definition 29.33 [27] Let G = (V, E) be a graph.

i. A vertex ordering (v1, . . ., vn) of G is a strong elimination ordering (st.e.o.) if for
all i, j, k and � with i < j, k < � for vk, v� ∈ N [vi] holds: if vj ∈ N [vk] then also
vj ∈ N [v�].

ii. G is strongly chordal if G has a st.e.o.

Obviously, every st.e.o. is also a p.e.o. (let i = k in condition (i)); thus, strongly chordal
graphs are chordal.

Observation 29.2 Let σ = (v1, . . ., vn) be an ordering of the vertex set V of graph G. Then
σ is a st.e.o. of G if and only if the corresponding neighborhood matrix Nσ(G) is Γ-free.

Proof. Let (v1, . . ., vn) be a st.e.o. We consider the ith and the jth row as well as the kth and
the lth column of the matrix, i < j, k < l.

Figure 29.2 schematically indicates the selected rows and columns.
If nik = 1, nil = 1 and njk = 1 then vk ∈ N [vi], vl ∈ N [vi], vj ∈ N [vk] and thus also

vj ∈ N [vl], that is, njl = 1.
Conversely, if the submatrix 11

10 is forbidden then obviously (v1, . . ., vn) is a st.e.o.

Observation 29.2 describes an important matrix aspect of strongly chordal graphs. We will
also show that strongly chordal graphs are the hereditarily dually chordal graphs. For this,
we need the following notion:

Definition 29.34 [27] Let G = (V, E) be a graph.

i. A vertex v ∈ V is called simple if the set of closed neighborhoods {N [u] | u ∈ N [v]}
is linearly ordered with respect to set inclusion.

ii. A vertex ordering (v1, . . ., vn) of V is a simple elimination ordering (si.e.o.) if for all
i ∈ {1, . . ., n}, vi is simple in Gi = G[{vi, . . ., vn}].

It is easy to see that every simple vertex is also simplicial, that is, whenever a graph has a
simple elimination ordering, it is chordal.

For proving Theorem 29.30, we need the following property.

Lemma 29.6 Let v be simple in G = (V, E) and u0 ∈ N [v] be a vertex with smallest
neighborhood N [u0]. Then also u0 is simple in G.

Tree-Structured Graphs � 781

Proof. Assume that u0 is not simple. Then let x, y ∈ N [u0] be two vertices with incomparable
neighborhoods N [x], N [y]. Since {N [u] | u ∈ N [v]} is linearly ordered with respect to ⊆, for
all u ∈ N [v] N [u0] ⊆ N [u] holds, in particular for u = v, N [u0] ⊆ N [v]. Thus, v has two
neighbors with incomparable neighborhood—contradiction. �

Theorem 29.30 [27] A graph G has a st.e.o. if and only if every induced subgraph of G
contains a simple vertex.

Proof. “=⇒”: If G has a st.e.o. (v1, . . ., vn) then also every induced subgraph of G has such
an ordering by Definition 29.33. We show that v1 is simple.

Let vk, vl ∈ N [v1] with k < l and vj ∈ N [vk] with 1 < j. By Definition 29.33, it follows
immediately that vj ∈ N [vl]. Thus, N [vk] ⊆ N [vl], and v1 is simple (which means that the
st.e.o. is also a si.e.o.).

“⇐=”: Assume that every induced subgraph of G contains a simple vertex. We re-
cursively construct a st.e.o. (v1, . . ., vn) of G as follows: For every 1 ≤ i ≤ n, choose in
Gi = G({vi, . . ., vn}) a simple vertex vi with smallest |Ni[vi]|.

We claim that this ordering is a st.e.o. Since the vertex vi is simple in Gi, that is, for
their neighbors from Ni[vi], the neighborhoods are linearly ordered with respect to ⊆, we
have the following.

The vertices from Ni[vi] appear in (v1, . . ., vn) in the same order (this follows by Lemma
29.6 for Gi). Now, for i < j and k < l let vk, vl ∈ N [vi] and vj ∈ N [vk].
Case 1 i < k. Then vi is simple in Gi and vk, vl ∈ Ni[vi] with k < l. Thus, Ni[vk] ⊆ Ni[vl]
and therefore also vj ∈ N [vl].
Case 2 i = k. In this case, the assertion is fulfilled since any simple vertex is simplicial.
Case 3 i > k. Then vk is simple in Gk and vi, vj ∈ Nk[vk], i < j. Thus, Nk[vi] ⊆ Nk[vj].
From vl ∈ N [vi], l > k, it follows that vl ∈ Nk[vi], thus also vl ∈ Nk[vj] and finally
vj ∈ N [vl]. �

Corollary 29.13 The following conditions are equivalent:
i. G is strongly chordal.

ii. G has a si.e.o.

iii. G is hereditarily dually chordal, that is, every induced subgraph of G is dually
chordal.

iv. N (G) is β-acyclic (i.e., by Theorem 29.27, totally balanced).

Proof. Theorem 29.30 shows the equivalence of (i) and (ii).
For the equivalence of (ii) and (iii), assume first that G has a si.e.o. Then every induced

subgraph of G has a si.e.o. as well, and note that a si.e.o. is also a maximum neighborhood
ordering which means that every induced subgraph of G is dually chordal. Conversely, let
G be a hereditarily dually chordal graph. Let v1 have a maximum neighbor u1, that is, the
neighborhood of u1 is largest among all N [u], u ∈ N [v1]. Then a straightforward discussion
shows that also the subgraph of G induced by N [v1] − u1 has a maximum neighborhood
ordering and so on which leads to a linear ordering of neighborhoods w.r.t. v1, that is, v1 is
simple. Now the same can be repeated for G[{v2, . . ., vn}] which shows the equivalence.

The equivalence of (iii) and (iv) is a simple consequence of Theorem 29.18. �
The equivalence of (i) and (iv) has been obtained independently by Iijima and Shibata
[88]; they showed that a graph is sun-free chordal (see Theorem 29.33) if and only if its
neighborhood matrix is totally balanced.

782 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

6

5

1 4
2 3

Net

Figure 29.3 The net.

29.5.1.2 Γ-Free Matrices and Strongly Chordal Graphs

Definition 29.33 implies a useful characterization of strongly chordal graphs by matrices.
Observation 29.2 leads to the fastest known recognition algorithms for strongly chordal

graphs by using doubly lexical orderings of matrices as given in Definition 29.26 (which per-
mute rows and columns in a suitable way)—see the subsequent Theorem 29.31 and Corollary
29.14.

Example 29.3 Take the graph G from Figure 5.1 with vertices 1, . . ., 6, edges
12, 23, 25, 34, 35, 56 and vertex ordering σ1 = (1, 2, 3, 4, 5, 6) (Figure 29.3).

The adjacency matrix M of this graph corresponding to σ1:

1 2 3 4 5 6
1 1 1 0 0 0 0
2 1 1 1 0 1 0
3 0 1 1 1 1 0
4 0 0 1 1 0 0
5 0 1 1 0 1 1
6 0 0 0 0 1 1

M is not Γ-free and not doubly lexically ordered (e.g., the third and fifth row together
with the second and fourth column form a Γ, and likewise the fourth and fifth row to-
gether with the third and fourth column) and not doubly lexically ordered (e.g., the third
column from the left is larger than the fourth column).

A strong elimination ordering for G is σ2 = (1, 4, 6, 2, 3, 5). The adjacency matrix M ′ of
G resulting from this ordering σ2 is as follows:

1 4 6 2 3 5
1 1 0 0 1 0 0
4 0 1 0 0 1 0
6 0 0 1 0 0 1
2 1 0 0 1 1 1
3 0 1 0 1 1 1
5 0 0 1 1 1 1

M ′ is doubly lexically ordered.

Theorem 29.21 holds also for other ordered matrix entries instead of {0, 1}.
Recall Theorem 29.22 for an efficient way for finding a doubly lexical ordering. An effi-

cient (but not linear-time) recognition of strongly chordal graphs results from the following
property.

Tree-Structured Graphs � 783

Theorem 29.31 [74] A graph G is strongly chordal if and only if any doubly lexical ordering
of its neighborhood matrix N(G) is Γ-free. �

The connection to Γ-free matrices has been used by Paige and Tarjan in [75] as well as by
Spinrad in [89] (see also [19]) to design fast (but not linear-time) recognition algorithms for
strongly chordal graphs.

Corollary 29.14 Recognition of strongly chordal graphs can be done in time O(m · log n).

It is an open problem whether strongly chordal graphs can be recognized in linear time.
Recall that a hypergraph is defined to be totally balanced if it contains no special cycle

(Definition 29.28), and recall Corollary 29.13; this has been expressed in terms of totally
balanced matrices.

Recall also (see Definition 29.30) that a (0, 1)-matrix M is totally balanced if M contains
no submatrix which is the vertex-edge incidence matrix of a cycle of length ≥ 3 of an
undirected graph.

Example 29.4 The vertex-edge incidence matrix of C3 with vertices v1, v2, v3 and edges
e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v1, v3} is

v1 v2 v3
e1 1 1 0
e2 0 1 1
e3 1 0 1

By Corollary 29.13, G is strongly chordal if and only if its closed neighborhood hypergraph
N (G) is totally balanced. Thus, the next theorem is no surprise:

Theorem 29.32 [27] A graph G is strongly chordal if and only if its neighborhood matrix
N(G) is totally balanced. �

29.5.1.3 Strongly Chordal Graphs as Sun-Free Chordal Graphs

Strongly chordal graphs have a variety of different characterizations, among them one in
terms of forbidden induced subgraphs. Recall that we say a vertex x sees a vertex y if x is
adjacent to y; otherwise we say x misses y.

Definition 29.35

i. A k-sun is a chordal graph G with 2k vertices, k ≥ 3, whose vertex set is par-
titioned into two sets W = {w0, . . ., wk−1} and U = {u0, . . ., uk−1}, such that
U = {u0, . . ., uk−1} induces a cycle (the central clique of the sun), W is a stable
set and for all i ∈ {0, . . ., k − 1}, wi sees exactly ui and ui+1 (index arithmetic
modulo k).

ii. A complete k-sun is a k-sun where G[U] is a clique.

See, for example, Figure 29.4 for 3-sun and complete 4-sun.

784 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Figure 29.4 3-sun and complete 4-sun.

As shown in [27,85], the following holds.

Lemma 29.7 In a chordal graph, every k-sun contains a complete k′-sun for some k′ ≤ k.

Proof. [85] Let U = {u1, . . ., un} and W = {w1, . . ., wn} describe the partition of the vertex
set of an n-sun G. Since G is chordal and the degree of every vertex wi in G is 2, its two
neighbors ui and ui+1 are adjacent. The proof is by induction on n. If n = 3 and n = 4 then
the claim is obviously fulfilled. Suppose that n > 4 and that Lemma 29.7 holds for all suns
on fewer than 2n vertices and suppose that G is an n-sun which is not complete. Let u1 miss
uj for some j with 1 < j < n. Since u1 sees u2 and un, there exist k and l such that u1 sees
uk and ul but misses up for any p with k < p < l. In that case,

G′ := G[{u1, uk, uk+1, . . ., ul, wk, . . ., wl−1}]

is a smaller sun for which U ′ := {uk, uk+1, . . ., ul} and W ′ := {u1, wk, wk+1, . . ., wl−1} gives
the required partition. By induction, G′ (and hence G) contains a complete sun. �

Lemma 29.8 [90] Let p ≥ 3 be an integer and suppose G is a graph in which every cycle of
length k, for 4 ≤ k ≤ 2p, has a chord. Then, N (G) has an induced special cycle Cp if and
only if G has an induced p-sun.

Proof. Clearly, if K is some induced subgraph of G, N (K) is isomorphic to an induced
partial subhypergraph of N (G). Thus, the if part of Lemma 29.8 is easy and left to the
reader.

The converse is proved by contradiction: Suppose that every cycle of G with length k,
4 ≤ k ≤ 2p, has a chord and suppose G has no induced sun while N (G) has an induced
special cycle Cp with p vertices and p hyperedges. Thus, by definition, there exists a set
A = {a1, . . ., ap} and a set B = {b1, . . ., bp} with the following properties:

1. (a1, N [b1], . . ., ap, N [bp]) is a special cycle in N (G).

2. N [bj]∩A = {aj , aj+1} for every j, 1 ≤ j ≤ p (index arithmetic modulo p). (2) is clearly
equivalent to

3. For j �= i or i + 1, ai �= bj and aibj is not an edge of G.

(Note that so far, we do not know whether A ∩ B = ∅.)

Claim 29.3 If (v1, v2, . . ., vq) is a cycle C of G (4 ≤ q ≤ 2p), then either v2vq is a chord of
C or C has a chord of the form v1vk for some k, 3 ≤ k ≤ q − 1

The proof easily follows from the assumption that every cycle of length k, for 4 ≤ k ≤ 2p,
has a chord.

Tree-Structured Graphs � 785

Claim 29.4 G contains an edge of the form aiaj (i �= j).

Otherwise, by (1), A ∩ B = ∅. Thus (a1, b1, a2, b2, . . ., ap, bp) is a cycle of length 2p in G
which must have a chord. Claim 29.3 together with (3) implies that such a chord is an edge
between two vertices from B, and since every cycle of length k, for 4 ≤ k ≤ 2p, has a chord,
it turns out that bkbk+1 is a chord of this cycle for each k (1 ≤ k ≤ p). Hence A ∪ B induces
a (chordal) subgraph of G which is a sun of order p: B is the central clique, and A is the
stable set. The contradiction proves Claim 29.4.

Claim 29.5 If aiaj is an edge of G, then aiai+1 is also an edge of G.

By symmetry, we may suppose i = 1. Let j be the smallest integer for which a1 sees aj .
If j > 2, the vertices a1, b1, a2, aj are different. (a2, b2, a3, b3, . . ., aj−1, bj−1, aj) is a walk not
passing through a1 or b1, by (3). This walk induces a minimal path, say P , from a2 to aj .
By (3) and the definition of j, the cycle (a1, b1, P) with length ≥ 4 has no chord containing
a1. Hence b1 must see aj (Claim 29.3), in contradiction with (3). So, j = 2.

Claim 29.6 (a1, . . ., ap) is a cycle of G.

Claim 29.6 is an easy consequence of the previous claim.

Claim 29.7 ai �= bj for all i, j, that is, A ∩ B = ∅.

Otherwise N [bj] would contain ai−1, ai and ai+1 (Claims 29.5 and 29.6), in contradiction with
(2) (i.e., the definition of a special cycle).

Claim 29.8 G contains some edge bibj.

Otherwise, A ∪ B would induce a p-sun with central clique A and stable set B.
For obtaining the final contradiction, we observe that in the last claim i and j play a

symmetrical role. So, we may assume without loss of generality that G contains an edge of
the form b1bj with j �= 2 (the arguments for j = 2 are similar). Then G has the following
cycle:

(b1, a2, a3, a4, . . ., aj , bj)

and, by Claim 29.3, some edge b1ai(3 ≤ i ≤ j) or the edge bja2 must exist, contradicting (3).

Theorem 29.33 [27] A graph G is strongly chordal if and only if G is sun-free chordal.

Proof. Theorem 29.33 follows by Lemma 29.8 and Corollary 29.13. �

A similar characterization of dually chordal graphs was obtained in [60]: A graph G is dually
chordal if and only if G is a Helly graph containing no isometric complete k-suns for k ≥ 4.
Recall that G is a Helly graph if its disk hypergraph D(G) is Helly. A subgraph S of G is
isometric if dS(x, y) = dG(x, y) for all vertices x and y of S.

An odd chord vivj in an even cycle (v1, . . ., v2k) is a chord with odd |i − j|.

Theorem 29.34 [27] A graph G is strongly chordal if and only if it is chordal and every
even cycle of length at least 6 in G has an odd chord.

786 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. Let G be a chordal graph. If every even cycle of length at least 6 has an odd chord,
then G contains no induced k-sun, k ≥ 3. Thus, by Theorem 29.33, G is strongly chordal.

Conversely, we use Theorem 29.32: If G is strongly chordal then its neighborhood matrix
N(G) is totally balanced. If there is a cycle (v1, v2, . . ., v2k) in G without odd chord then
the submatrix of N(G) consisting of the rows corresponding to v1, v3, . . ., v2k−1 and the
columns corresponding to v2, v4, . . ., v2k is precisely the incidence matrix of a cycle of length k.
Consequently, G is not strongly chordal. �

Finally, we give yet another characterization.

Corollary 29.15 [27] Graph G is strongly chordal if and only if C(G) is totally balanced.

Proof. By Theorems 29.18 and 29.25 and Corollary 29.13, G is strongly chordal if and only
if C(G) is totally balanced. �

It follows from the basic properties that G is strongly chordal if and only if G = L(H) for
some totally balanced hypergraph H.

Recall that for a clique tree T of G, the intersections Q ∩ Q′ of maximal cliques for
which QQ′ ∈ E(T) form the minimal vertex separators in G. Let S(G) denote the separator
hypergraph of G. It can be considered as the first derivative of a chordal graph. McKee [91]
discusses this concept in detail.

Theorem 29.35 [92] Graph G is strongly chordal if and only if G is chordal and its separator
hypergraph S(G) is totally balanced. �

29.5.2 Chordal Bipartite Graphs

The most natural variant of chordality for bipartite graphs is the following.

Definition 29.36 [93] A bipartite graph is chordal bipartite if each of its cycles of length at
least six has a chord.

In the terminology of Definition 29.5, this means that a bipartite graph is chordal bipartite if
and only if it is (6, 1)-chordal. Note that chordal bipartite does not mean chordal and bipartite
(as the name might suggest); if graph G is chordal and bipartite, G is a forest, whereas C4
is chordal bipartite.

Thus, a better name for chordal bipartite graphs would have been weakly chordal bipartite
since graph G is chordal bipartite if and only if it is bipartite and weakly chordal, that is,
every cycle in G and in G of length at least five has a chord. See Chapter 28 and [94] for the
important class of weakly chordal graphs and their perfection.

Chordal bipartite graphs have various characterizations in terms of elimination orderings
and tree structure properties of related hypergraphs; see for example Theorem 29.36 and
[3,4] for more details. They are closely related to strongly chordal graphs.

Theorem 29.36 A bipartite graph B = (X, Y, E) is (6, 1)-chordal (i.e., chordal bipartite)
if and only if every induced subgraph of B is X-conformal, Y -conformal and X-chordal,
Y -chordal.

Proof. “=⇒”: Let B = (X, Y, E) be bipartite (6, 1)-chordal. Then every induced subgraph B′

of B is also bipartite (6, 1)-chordal.

Tree-Structured Graphs � 787

We first show that B is X- and Y -chordal. If C is a cycle of length at least 8 in B′ then C has
a chord {x, y}, x ∈ X, y ∈ Y . Let x1, x2 ∈ X be the neighbors of y in C and let y1, y2 ∈ Y
be the neighbors of x in C. Let C1, C2 denote the subcycles defined by the chord {x, y}
subdividing C. Without loss of generality, assume |C1| ≤ |C2|. Moreover, assume without
loss of generality that x2, y2 are in C2. Then y und y2 have distance at least 4 in C and x
is a neighbor of both vertices. Likewise, x and x2 have distance at least 4 in C and y is a
neighbor of both vertices. Thus, B′ is X-chordal and Y -chordal.

Now we show that B is X- and Y -conformal. Let S ⊆ Y be a vertex set with pairwise
distance 2 in B′. We show inductively the existence of a vertex x ∈ X with S ⊆ N(x): For
|S| = 2 and |S| = 3, the assertion is obviously fulfilled (for |S| = 3, the existence of a chord
in any cycle of length 6 is used).

Now, by induction hypothesis, let the assertion be fulfilled for all S′, |S′| ≤ k, with
pairwise distance 2 and let S ⊆ Y , |S| = k + 1 be a vertex set with pairwise distance 2.
Then for every k-elementary subset Si ⊆ S, i ∈ {1, . . .,

(k+1
k

)} (note
(k+1

k

)
= k + 1) there is a

vertex xi for which Si ⊆ N(xi). If there is an i with S ⊆ N(xi) then the assertion is fulfilled.
Otherwise, we can assume that the vertices x1, . . ., xk+1 have exactly one nonneighbor in S:
Without loss of generality, let

xi /∈ N
(
y

i+2(mod k+1)

)

Now there is a C6 (x1, y1, x2, y3, xk, y4)—contradiction. Thus, there is an index i such that
S ⊆ N(Xi). Analogously, one shows Y -conformality of B′.

“⇐=”: If every induced subgraph of B is X-conformal, Y -conformal, X-chordal, and
Y -chordal then B cannot contain chordless cycles of length at least 6 since chordless cycles
of length 6 are neither X- nor Y -conformal and chordless cycles of length at least 8 are
neither X- nor Y -chordal. �
By Corollary 29.9, Theorem 29.36 implies the following.

Corollary 29.16 A bipartite graph B = (X, Y, E) is (6, 1)-chordal (i.e., chordal bipartite)
if and only if N X(B) and N Y (B) are β-acyclic.

Strongly chordal graphs are closely related to chordal bipartite graphs.

Definition 29.37 Let G = (V, E) be a graph.

i. The bipartite copy B(G) = (V ′, V ′′, F) of G is defined as follows: For every vertex
v ∈ V , there are two copies v′ ∈ V ′ and v′′ ∈ V ′′, and x′y′′ ∈ F if either x = y or
xy ∈ E.

ii. BC(G) denotes the bipartite incidence graph I(C(G)).

Note that B(G) is isomorphic to the bipartite incidence graph I(N (G)). It follows from the
basic properties that a graph is chordal bipartite if and only if it is the bipartite incidence
graph of a totally balanced hypergraph.

Lemma 29.9 [27] A graph G is strongly chordal if and only if BC(G) is chordal bipartite.

Proof. Lemma 29.9 is an obvious consequence of Theorem 29.36 and Corollary 29.15. �
A similar connection is given in the following lemma.

Lemma 29.10 [95] A graph G is strongly chordal if and only if B(G) is chordal bipartite.

788 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. Lemma 29.10 is an obvious consequence of Corollary 29.13, Corollary 29.11, Corollary
29.10, and Theorem 29.36. �
For a bipartite graph B = (X, Y, E), let splitX(B) denote the one-sided completion when X
becomes a clique. Another relation between chordal bipartite and strongly chordal graphs is
the following (see also [59]).

Lemma 29.11 [96] A bipartite graph B = (X, Y, E) is chordal bipartite if and only if
splitX(B) is strongly chordal. �

Lemma 29.11 is a simple consequence of the following more general property.

Proposition 29.12 [59] Let B = (X, Y, E) be a bipartite graph. Then

i. N X(B) has the Helly property if and only if C(splitX(B)) has the Helly property;

ii. L(N X(B)) is chordal if and only if L(C(splitX(B))) is chordal.

Spinrad [19] gives simple direct proofs of Lemmas 29.10 and 29.11 in terms of Γ-free matrices
and discusses the relationship between fast recognition of strongly chordal graphs and fast
recognition of chordal bipartite graphs; linear time for recognizing chordal bipartite graphs
would imply linear time for recognizing strongly chordal graphs but not vice versa (a linear-
time algorithm for recognizing chordal bipartite graphs as claimed in [97] turned out to
contain a flaw). Linear-time recognition of strongly chordal graphs (chordal bipartite graphs,
respectively) is still an open problem. See [98] for other characterizations of chordal bipartite
graphs in terms of intersection graphs of compatible subtrees, and [99] for a relationship
between dismantlable lattices and chordal bipartite graphs.

29.6 TREE STRUCTURE DECOMPOSITION OF GRAPHS

Various kinds of decomposition of graphs such as modular decomposition and clique separa-
tor decomposition lead to decomposition trees and algorithmic applications. In this section,
we first describe cographs and modular decomposition (cographs are the completely de-
composable graphs with respect to modular decomposition) and then mention some other
decompositions, and in particular clique separator decomposition.

29.6.1 Cographs

In this subsection, we describe an auxiliary class, the cographs, which occur in many places
and which are fundamental for distance-hereditary graphs and for clique-width. See [3] for
additional information.

For disjoint vertex sets A, B ⊆ V , the join operation (denoted by �1) adds edges between all
pairs x, y with x ∈ A, y ∈ B, and the co-join operation (denoted by �0) adds nonedges between
all pairs x, y with x ∈ A and y ∈ B. These notions are closely related to connectedness of
a graph and its complement: G is disconnected if and only if G is decomposable into the
co-join of two subgraphs, and G is disconnected if and only if G is decomposable into the
join of two subgraphs. Subsequently we also use �1 and �0 in order to denote the relationship
between disjoint vertex sets.

Definition 29.38 Graph G is a cograph (complement-reducible graph) if G can be con-
structed from single vertices by a finite number of join and co-join operations.

See [3,100–102] for properties of this graph class.

Tree-Structured Graphs � 789

Theorem 29.37 G is a cograph if and only if G is P4-free.

Proof. “=⇒”: By induction on the number of vertices in G. For single vertices, the assertion
is obviously true. Now, let G = G1�1 G2 and G1, G2 being P4-free. If G would contain a P4
P = abcd then P has vertices from G1 and G2. Assume first that P has exactly one vertex
from G1. If a ∈ V (G1), b, c, d ∈ V (G2) then ac /∈ E contradicts to the join between G1 and
G2, if b ∈ V (G1), a, c, d ∈ V (G2) then bd /∈ E contradicts to the join between G1 and G2. Now
assume that P has exactly two vertices from each of G1, G2. If a, d ∈ V (G1), b, c ∈ V (G2)
then ac /∈ E contradicts to the join between G1 and G2, if b, d ∈ V (G1), a, c ∈ V (G2) then
ad /∈ E contradicts to the join between G1 and G2, and if a, b ∈ V (G1), c, d ∈ V (G2) then
ac /∈ E contradicts to the join between G1 and G2. In every case, there is a nonedge of the
P4 between G1 and G2, and thus G = G1�1 G2 is again P4-free.

In the same way one can show that G = G1�0 G2 is again P4-free if G1 and G2 are P4-free.
“⇐=”: Let G be a P4-free graph. We will show that then G is decomposable with respect

to the operations �1, �0 into subgraphs G1, G2, that is, either G or G is disconnected. Assume
that not every P4-free graph would have this property. Then let G = (V, E) be a smallest
P4-free graph not having this property, that is, G is P4-free connected and co-connected but
for every v ∈ V , either G−v is disconnected or G − v is disconnected. Note that in this case,
G has at least four vertices.

Case 1 G−v is disconnected. Let H1, . . ., Hk, k ≥ 2, be the connected components of G−v,
that is, there are no edges between Hi and Hj for i �= j, i, j ∈ {1, . . ., k} but since G is
connected, v has edges to each of H1, . . ., Hk. Let xi be a neighbor of v in Hi. Since G is
also co-connected, v has at least one nonneighbor in V \ {v}. Without loss of generality, let
y ∈ H1 be a vertex with vy /∈ E. Since H1 is connected, there is a path Px1y between x1
and y in H1. Let x′y′ be the first edge on this path for which vx′ ∈ E but vy′ /∈ E holds.
Since vx1 ∈ E, vy /∈ E, the existence of such an edge is guaranteed. But now the vertices
x2, v, x′, y′ induce a P4 in G—contradiction.

Case 2 The case that G − v is disconnected can be handled in the same way as the previ-
ous case. �
Theorem 29.37 implies that the property of being a cograph is a hereditary property, that
is, if G is a cograph then every induced subgraph G′ of G is a cograph as well.

The recursive generation of cographs by the two operations join and co-join is described
in a tree structure—the cotree. This tree has the vertices of the graph as its leaves, and
the internal nodes are labeled with �1 and �0 according to the operations. If G = G1�1 G2
(G = G1�0 G2, respectively) then the root vertex of the cotree of G carries the label �1 (�0 ,
respectively), and its two children are the root nodes of G1, G2, respectively.

A cotree is not necessarily a binary tree; for example, a clique with k vertices is represented
by one �1 node with the k vertices as its children.

In [102], it is described how to recognize in linear time O(n + m) whether a given input
graph G is a cograph; starting with a single vertex, the algorithm tries to incrementally
construct a cotree T of G, that is, in every step, a new vertex is added and the new cotree is
constructed if the graph is still a cograph; otherwise, an induced P4 in G is given as output.
The algorithm is performed by a complicated marking procedure which cannot be described
here. However, it has a remarkable property: It does not only give the correct Yes/No answer
to the recognition problem; if the answer is Yes then the algorithm gives a certificate namely
a cotree, and it is easily checkable whether the cotree indeed represents the graph, and if the
answer is No, it gives a certificate for this answer, that is, in the case of cograph recognition
a P4 in the input graph. Such recognition algorithms are called certified algorithms and are
known for various graph classes [103].

790 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

A simpler recognition of cographs is described in [104] which time bound, however is O(n+
m log n) (and not linear). In [105], a simple multisweep LexBFS algorithm for recognizing
cographs in linear time is given.

29.6.2 Optimization on Cographs

Various algorithmic graph problems being NP-complete in general, can be solved efficiently
in a bottom-up procedure along the cotree of a cograph. As examples, we describe this for
the problems MAXIMUM STABLE SET and MAXIMUM CLIQUE.

Let G = (V, E) be a graph. A vertex set U ⊆ V is stable (independent) if for all x, y ∈ U ,
xy /∈ E. U ⊆ V is a clique if U is stable in G. If G = (V, E) is a graph with vertex weight
function w then for U ⊆ V , w(U) := Σx∈U w(x).

Let αwG be the maximum weight of a stable set in G, and let ωwG be the maximum
weight of a clique in G. Now, obviously the values of αw(G) and ωw(G) can be computed
recursively for G = G1�1 G2 and G = G1�0 G2:

• If G = G1�1 G2 then
ωw(G) = ωw(G1) + ωw(G2)

and
αw(G) = max(αw(G1),αw(G2)).

• If G = G1�0 G2 then
ωw(G) = max(ωw(G1),ωw(G2))

and
αw(G) = αw(G1) + αw(G2).

This implies linear-time algorithms for these two problems on cographs.
As a further example, we show how to color cographs in an optimal way. The coloring

problem of a graph is how to assign a minimum number of colors to the vertices such that
adjacent vertices get different colors. The chromatic number χ(G) of the graph G is the
minimum number of colors needed to color G. Obviously, for every graph G, ω(G) ≤ χ(G)
holds. A graph is called χ-perfect if for every induced subgraph G′ of G (including G itself),
ω(G′) = χ(G′) holds. Let κ(G) = χ(G). Obviously, α(G) ≤ κ(G) holds. A graph is called
κ-perfect if for every induced subgraph G′ of G (including G itself), α(G′) = κ(G′) holds.
The following theorem is a celebrated result by Laszló Lovász (see, e.g., Chapter 28):

Theorem 29.38 (Perfect graph theorem) A graph is χ-perfect if and only if it is
κ-perfect.

Now, G is called perfect if G is χ-perfect (κ-perfect).

Corollary 29.17 A graph G is perfect if and only if its complement graph G is perfect.

Corollary 29.18 Cographs are perfect.

Proof. We show inductively on the number of vertices that cographs are perfect. For one-
vertex graphs, the claim is obviously fulfilled. Now assume first that G = G1�1 G2 and
ω(Gi) = χ(Gi) holds for i ∈ {1, 2}. Since there is a join between G1 and G2, χ(G) =
χ(G1) + χ(G2) = ω(G1) + ω(G2) = ω(G) which shows the claim.

Tree-Structured Graphs � 791

Now assume that G = G1�0 G2 and ω(Gi) = χ(Gi) holds for i ∈ {1, 2}. Since there is
a co-join between G1 and G2, χ(G) = max(χ(G1),χ(G2)) = max(ω(G1),ω(G2)) = ω(G)
which again shows the claim. Thus, cographs are perfect. �
See Chapter 28 for many other important subclasses of perfect graphs.

Another remarkable property of cographs is the fact that they are transitively orientable.
Hereby a graph G = (V, E) is called transitively orientable if its edge set E can be oriented
as E′ in such a way that for all oriented edges (x, y), (y, z) ∈ E′, (x, z) ∈ E′ holds. One can
easily show by induction that cographs have this property. Hereby, for G = G1�1 G2, the edges
of the join are oriented from G1 to G2 – this obviously gives again a transitive orientation
if it is assumed that G1 and G2 are already transitively oriented—and for a co-join, there is
nothing to show.

Subsequently, the modular decomposition of arbitrary graphs is described which gener-
alizes cographs and cotrees and gives a strong algorithmic tool for many problems. See [106]
for the connection between transitive orientation, cographs and modular decomposition.

29.6.3 Basic Module Properties

Let G = (V, E) be a graph. A vertex set M ⊆ V is a module in G if its vertices are
indistinguishable from outside M . More formally: For all u ∈ V \ M , either {u}�0 M or
{u}�1 M . Sets A and B overlap if A \ B �= ∅, B \ A �= ∅, and A ∩ B �= ∅.

Theorem 29.39 (Basic module properties) Let G be a graph and let M(G) denote the
set of modules in G. Then the following properties hold:

i. ∅, V and {v} for all v ∈ V are modules (the trivial modules);

ii. If M1, M2 ∈ M(G) then M1 ∩ M2 ∈ M(G);

iii. If M1, M2 ∈ M(G) and M1 ∩ M2 �= ∅ then M1 ∪ M2 ∈ M(G);

iv. If M1 and M2 are overlapping modules then M1 \M2 ∈ M(G), M2 \M1 ∈ M(G),
(M1 \ M2) ∪ (M2 \ M1) ∈ M(G);

v. If M is a module in G and U ⊆ V then M ∩ U is a module in G[U].

Proof.
i. This property is obviously fulfilled.
ii. Let M1 and M2 be modules in G. If their intersection is empty then due to (i), the

assertion is fulfilled. Now assume that M1 ∩M2 �= ∅. If M1 ⊆ M2 or M2 ⊆ M1 then again the
assertion holds true. Now assume that M1 and M2 are overlapping modules. Vertices outside
M1 ∩ M2 cannot distinguish two vertices from M1 ∩ M2: if a vertex x /∈ M1 ∪ M2 would
distinguish vertices a, a′ ∈ M1 ∩ M2, that is, xa ∈ E, xa′ /∈ E then this would contradict to
the module property of M1 (M2, respectively); if a vertex x ∈ M1 \ M2 would distinguish
vertices a, a′ ∈ M1 ∩ M2, that is, xa ∈ E, xa′ /∈ E then this would contradict the module
property of M2, and the same holds for x ∈ M2.

iii. Let M1 ∩ M2 �= ∅ with a ∈ M1 ∩ M2. If M1 ⊆ M2 or vice versa then the assertion is
trivial. Now assume that M1 and M2 are overlapping modules. Due to condition (ii), vertices
in M1 ∩ M2 cannot be distinguished from outside. The same holds for two vertices in M1
(M2, respectively). Now assume that vertices a′ ∈ M1 \ M2 and a′′ ∈ M2 \ M1 could be
distinguished by x /∈ M1 ∪ M2: xa′ ∈ E and xa′′ /∈ E. Since xa′ ∈ E and a, a′ ∈ M1, also
xa ∈ E holds but since a, a′′ ∈ M2, it follows that xa′′ ∈ E—contradiction. Thus M1 ∪ M2 is
a module.

792 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

iv. We first show that M1 \M2 is a module. Assume to the contrary that there are vertices
a, a′ ∈ M1 \ M2 and x /∈ M1 \ M2 such that ax ∈ E, a′x /∈ E. Then x ∈ M1 since M1 is
a module, that is, x ∈ M1 ∩ M2. Let b ∈ M2. Since x, b ∈ M2 and M2 is a module, also
ab ∈ E and a′b /∈ E holds but now b /∈ M1 is a vertex outside M1 distinguishing vertices
a, a′ ∈ M1—contradiction. Analogously, M2 is a module.

Now we show that Δ := (M1 \ M2) ∪ (M2 \ M1) is a module: Let a, a′ ∈ Δ. Since M1 \ M2
(M2 \ M1) is a module, we can assume that a ∈ M1 \ M2 and a′ ∈ M2 \ M1. Due to (iii),
M1 ∪M2 is a module. Thus, a and a′ cannot be distinguished from outside M1 ∪M2. Assume
that there is a vertex x /∈ Δ, x ∈ M1 ∩ M2 such that xa ∈ E, xa′ /∈ E. Since x, a ∈ M1,
a′ /∈ M1 and M1 a module, aa′ /∈ E holds. Since x, a′ ∈ M2, a /∈ M2 and M2 a module,
aa′ ∈ E holds—contradiction.

v. If M ⊆ U then the assertion is obviously fulfilled. Assume now that M \ U �= ∅. If
M ∩ U = ∅ then again the assertion is obviously fulfilled. Now assume that M ∩ U �= ∅ and
M ∩ U is no module in G[U], that is, there are vertices a, a′ ∈ M ∩ U and a vertex v ∈ U \ M
distinguishing a and a′ from outside M but then M is no module—contradiction. �

Theorem 29.40 In a connected and co-connected graph G, the nontrivial ⊆-maximal mod-
ules are pairwise disjoint.

Proof. Let M1 and M2 be nontrivial modules in G being maximal with respect to set inclusion
and assume that M1 ∩ M2 �= ∅. This implies that they are overlapping modules. Then
according to Theorem 29.39 (iii), M1 ∪ M2 is a module. If M1 ∪ M2 �= V then M1 and M2
are not maximal—thus M1 ∪M2 = V . Note that vertices from M1 \M2 are either completely
adjacent to M2 or completely nonadjacent to M2, and the same holds for vertices from
M2 \ M1. Let M+

1 := {x : x ∈ M1 \ M2 and x has a join to M2}, M−
1 := {x : x ∈ M1 \ M2

and x has a cojoin to M2, and define the sets M+
2 and M−

2 in a completely analogous way.
Obviously, M1 \ M2 = M+

1 ∪ M−
1 and M2 \ M1 = M+

2 ∪ M−
2 . If one of the sets M+

1 , M−
1 ,

M+
2 , and M−

2 is empty then G is not connected or not co-connected. Thus, all of these sets
are nonempty. Now let x ∈ M+

1 , x′ ∈ M−
1 and y ∈ M+

2 . The fact that xy ∈ E and M1 is a
module implies that x′y ∈ E but now x′ is adjacent to a vertex from M2—contradiction. �
A graph is prime if it contains no nontrivial module. The characteristic graph G∗ of G is the
graph obtained by contracting the maximal modules of G to one vertex.

Theorem 29.41 The characteristic graph G∗ of a connected and co-connected graph G is
prime.

Proof. By Theorem 29.40, the maximal nontrivial modules in G = (V, E) are pairwise disjoint
and thus define a partition of V into equivalence classes. Let v∗ denote the equivalence class
of a vertex v. Let G∗ = (V ∗, E∗) and U ⊆ V ∗ and denote by Kx the equivalence class in V
belonging to x ∈ V ∗. Then the expansion E(U) of U is the union of the equivalence classes
belonging to U , that is, the vertex set E(U) =

⋃
x∈U Kx. We first claim that for a module

M in G∗, its expansion E(M) is a module in G. Assume to the contrary that there are
a, b ∈ E(M) and x /∈ E(M) such that ax ∈ E and bx /∈ E. Then obviously, a and b are not in
the same class in E(M) since the classes are modules. This means that a∗ �= b∗, a∗, b∗ ∈ M
and x∗ /∈ M but now M is no module—contradiction. This shows the claim.

Now assume that M is a nontrivial module in G∗. If M consists only of vertices whose
classes are one-elementary then E(M) = M and M is a module in G; thus, after shrinking
the modules in G, M cannot have more than one element. If M contains at least one vertex
u whose class U is a nontrivial module in G then U ⊂ E(M) but U is a maximal module in
G and E(M) is a module in G—contradiction. Thus, G∗ is a prime graph. �

Tree-Structured Graphs � 793

29.6.4 Modular Decomposition of Graphs

Theorems 29.39 and 29.40 lead to the following tree structure of a given graph G: Every
vertex in G is contained in a unique (possibly one-elementary) maximal module different
from V , and these modules define a partition of V . The modular decomposition tree has V
as its root and the maximal modules smaller than V are the children of V in the tree. Then
the children of an inner vertex M are the maximal modules in G[M] smaller than M . Thus,
if the inner vertex M of the modular decomposition tree has the partition M1, M2, . . ., Mk

into its maximal modules then M1, M2, . . ., Mk are the children of M . Note that the leaf
descendants of M are the vertices of M , and the edges in M between Mi and Mj are given by
a sequence of join and co-join operations between the modules Mi and the vertices outside
Mi. The graphs being completely decomposable by join and co-join are the cographs.

The following decomposition theorem is implicitly contained in the seminal paper by
Tibor Gallai [107].

Theorem 29.42 (Modular decomposition theorem) Let G = (V, E) be an arbitrary
graph. Then precisely one of the following conditions is satisfied:

1. G is disconnected (i.e., decomposable by the co-join operation);

2. G is disconnected (i.e., decomposable by the join operation);

3. G and G are connected: There is some U ⊆ V and a unique partition P of V such that

a. |U | ≥ 4,
b. G[U] is a maximal prime subgraph of G, and
c. for every class S of the partition P, S is a module and |S ∩ U | = 1.

Each vertex of G forms a leaf of the decomposition tree. Each module M of G occuring as
a node in the tree contains exactly the vertices that are leaves of the subtree rooted at M .
According to the Decomposition Theorem, the tree has three kinds of nodes:

• Parallel nodes (co-join operation);
• Series nodes (join operation);
• Prime nodes.

Linear-time algorithms for finding the modular decomposition tree are given in [108,109] and
in [106]. See [110,111] for simpler linear-time algorithms.

The modular decomposition is of crucial importance in many algorithmic applications;
see [112] for many aspects of modular decomposition. Since for many algorithmic problems
the operations join and co-join are easy to handle (cf. the case of cographs), it is important
to look at prime graphs. There are some cases where prime graphs have simple structure.

A nice example for a graph class having simple prime graphs with respect to modular
decomposition are P4-sparse graphs.

A graph G = (V, E) is P4-sparse [113] if every five vertices induce at most one P4 in
G. Thus, cographs are P4-sparse, and the only one-vertex extensions of a P4 in a P4-sparse
graph G are the bull, gem and co-gem, that is, G is P4-sparse if and only if all the other seven
one-vertex extension (such as P5, C5, etc.) are forbidden induced subgraphs in G. Obviously,
the complement of a P4-sparse graph is P4-sparse.

A graph is a thin spider if its vertex set can be partitioned into a clique Q and a stable
set S such that the edges between Q and S form a matching, every vertex in S has exactly

794 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

one neighbor in Q, and at most one vertex in Q has no neighbor in S (the head of the spider).
Obviously, thin spiders are prime graphs and P4-sparse. A graph is a thick spider if it is the
complement of a thin spider; it is a spider if it is a thin or thick spider (these graphs were
called turtles in [113]).

Theorem 29.43 [113] A graph is P4-sparse if and only if its prime graphs are spiders.

Various structural and algorithmic consequences are given in [113–117].
A lot of research has been done in generalizing, refining and modifying modular decom-

position. Split (or join) decomposition was introduced and studied by Cunningham [118]. A
graph is split decomposable if its vertex set has a partition into A1, A2 and B1, B2 such that
A = A1 ∪ A2, B = B1 ∪ B2, and the set of all edges between A and B forms a join A1�1 B1.
The decomposition is discussed in detail in the monograph [19] by Spinrad, mentioning the
linear-time algorithm for split decomposition by Dahlhaus [119]. A simplified linear-time
algorithm for split decomposition is given in [120].

The class of graphs such that every induced subgraph on at least four vertices is decom-
posable by the join decomposition is of particular interest. It turns out that these are exactly
the distance-hereditary graphs which are the central topic of the next section.

Another interesting concept is the homogeneous decomposition where a third operation
is added which is a combination of join and co-join. This approach is based on a different
kind of connectedness—the p-connectedness—and is described in [121].

29.6.5 Clique Separator Decomposition of Graphs

A clique separator of a graph G is a separator of G which is a clique in G. For a chordal graph
G which is not a clique and a simplicial vertex v in G, obviously N(v) is a clique separator
of G. Clique separator decomposition of a graph is generalizing chordal graphs by repeatedly
choosing a clique separator in G until there is no longer a clique separator in the resulting
subgraphs; such subgraphs are called atoms of G. Note that such decomposition trees are not
uniquely determined. Obviously, chordal graphs are those graphs whose atoms are cliques.
This kind of decomposition was introduced in [122,123] and has a number of algorithmic
applications described in [122] among them efficiently solving the MWIS problem on a graph
class whenever it is efficiently solvable on the atoms of the class. This refers to the weight
modification approach described in the algorithm of Frank for the same problem on chordal
graphs—see Theorem 29.4.

Various examples of such classes were studied: In [124], a subclass of hole-free graphs,
namely hole- and paraglider-free graphs, is characterized by the structure of their atoms.
Among others, this is motivated by a result of Alekseev [125] showing that atoms of
(P5,paraglider)-free graphs are 3K2-free which implies polynomial time for MWIS on this
class. For P5-free graphs, the complexity of the MWIS problem was open for a long time;
meanwhile, it has been shown by Lokshtanov et al. [126] that it is polynomially solvable for
P5-free graphs. For hole-free graphs, the complexity of the MWIS problem is open.

29.7 DISTANCE-HEREDITARY GRAPHS, SUBCLASSES, AND γ-ACYCLICITY

29.7.1 Distance-Hereditary Graphs

Distance-hereditary graphs are another fundamental generalization of trees. They are closely
related to γ-acyclic hypergraphs (see Definition 29.44) and have bounded clique-width. Orig-
inally, they were defined via a distance property.

Tree-Structured Graphs � 795

Definition 29.39 [127] A graph G is distance hereditary if for each connected induced sub-
graph F of G, the distance functions dG in G and dF in F coincide.

Definition 29.40 A u-v-geodesic is a u-v-path α such that l(α) = dG(u, v). Let Φ be a cycle
of G. A path α is an essential part of Φ if α ⊂ Φ and 1/2l(Φ) < l(α).

Theorem 29.44 [127] The following conditions are equivalent:

i. G is distance hereditary.

ii. Every induced path of G is geodesic.

iii. No essential part of a cycle of G is induced.

iv. Each cycle of G of length ≥ 5 has at least two chords, and each 5-cycle of G has
a pair of crossing chords.

v. Each cycle of G of length ≥ 5 has a pair of crossing chords.

Proof. Howorka [127] has shown that (i) ⇐⇒ (ii) ⇐⇒ (iii) =⇒ (iv) =⇒ (v) =⇒ (iii); here,
we give his proof.

(i) =⇒ (ii): Let α be an induced path of a distance-hereditary graph G and let u and v
be the endpoints of α. Then dG(u, v) = dα(u, v) = l(α). Hence α is a geodesic.

(ii) =⇒ (i): Suppose that F is a connected induced subgraph of G. Let u, v be arbitrary
vertices of F , and let α be a u-v-geodesic of F . Thus naturally, α is an induced path of F
and, consequently, also an induced path of G. Hence, by assumption, α is a u-v-geodesic
of G. Thus dF (u, v) = l(α) = dG(u, v). This proves that G is distance hereditary.

(ii) =⇒ (iii): Since an essential part of a cycle cannot be a geodesic, (ii) clearly implies (iii).
(iii) =⇒ (ii): Let G be a graph satisfying (iii). Let u �= v be vertices of G and assume

that α = (u = a0, a1, . . ., am = v) is a u–v-path of G which is not a geodesic. Consider
any u-v-geodesic β = (u = b0, b1, . . ., bn = v), n < m. Let i be the largest index for which
bi = ai, 0 ≤ i < n. Let t be the least index > i for which bt ∈ α. Thus bt = aj for
some j > t. Consequently, the path δ = (ai, ai+1, . . ., aj) is an essential part of the cycle
(ai, ai+1, . . ., aj = bt, bt−1, . . ., bi = ai). By assumption, δ is not induced. Hence α is not
induced. This completes the proof.

(iii) =⇒ (iv): Let Φ = (a0, a1, . . ., an = a0), n ≥ 5, be a cycle of a graph G satisfying
(iii). By considering any essential part of Φ of length ≤ n − 2, we see from (iii) that Φ must
have at least one chord, say aiaj . Since, in turn, (ai+1, ai+2, . . ., ai−1) is an essential part of
Φ, then Φ must have a chord distinct from aiaj . This proves that each cycle of G of length
≥ 5 has at least two chords. An easy verification shows that if (iii) holds then a 5-cycle of G
must have a pair of crossing chords.

(iv) =⇒ (v): Assume that G satisfies (iv). We will prove by induction that each n-cycle
of G, n ≥ 5, has a pair of crossing chords. By assumption, the assertion is true for n = 5.
Let n > 5 and suppose that each cycle of length m, 5 ≤ m < n, has a pair of crossing
chords. Consider an n-cycle Φ = (a0, a1, . . ., an = a0) and let aiaj and aras be two distinct
chords of Φ. If they do not cross one another, we may assume without loss of generality that
0 ≤ i ≤ j ≤ r ≤ s ≤ n. Consider the cycles (ai, aj , aj+1, . . ., ai) and (ar, as, as+1, . . ., ar).
Since n ≥ 6, at least one of them has length ≥ 5 and hence, by induction hypothesis, it must
have a pair of crossing chords. This same pair is, of course, a pair of crossing chords of Φ.
This completes the proof.

796 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(a) (b) (c)

Figure 29.5 House (a), domino (b), and gem (c) are not distance-hereditary.

(v) =⇒ (iii): Let G be a graph satisfying (v). We will prove by induction on n that no
essential part of an n-cycle of G is induced. This is trivially true if n = 3 or n = 4. Assume that
n > 4 and that the assertion is true for all cycles of length < n. Let Φ = (a0, a1, . . ., an = a0)
be a cycle of G and let α be an essential part of Φ, say α = (a0, a1, . . ., ak), where n/2 < k < n.
Let aiaj and aras be a pair of crossing chords of Φ. Without loss of generality we may
assume that 0 ≤ i < j < n, 0 ≤ r < s < n and i < r. If j ≤ k then aiaj joins two
vertices of α; hence α is not induced. If i ≥ k then α is an essential part of the cycle
(a0, a1, . . ., ak, . . ., ai, aj , . . ., an = a0) of length < n. Hence, by induction hypothesis, α is not
induced. We may assume therefore that 0 ≤ i < k < j < n. Applying the same argument to
aras, we obtain 0 ≤ r < k < s < n. Since the chords aiaj and aras cross one another, it follows
that 0 ≤ i < r < k < j < s < n. Denote α′ = (a0, a1, . . ., ar) and α′′ = (ai, ai+1, . . ., ak). We
claim that either α′ is an essential part of the cycle (as, as+1, . . ., ar, as) or α′′ is an essential
part of the cycle (ai, ai+1, . . ., aj , ai). We have indeed: l(α′) + l(α′′) ≥ k + 1 ≥ n − k + 2 >
n−s+j −k +2 = (n−s+1)+(j −k +1) and so, either l(α′) > n−s+1, or l(α′′) > j −k +1,
which proves our claim. It follows now from an induction hypothesis that either α′ or α′′

is not an induced path. Hence α cannot be induced. This completes the inductive step and
proves the theorem. �

Chordless cycles with at least five vertices are called holes. Obviously, holes are not distance
hereditary. Recall that, in connection with relational database schemes, (k, l)-chordal graphs
were defined (see Definition 29.5) (see Figure 29.5 for house, domino, and gem).

Theorem 29.45 Let G be a graph.

i. G is (5, 2)-chordal if and only if G is (house, hole, domino)-free.

ii. G is distance-hereditary if and only if G is (house, hole, domino, gem)-free [128].

Proof. (i): Obviously, every (5, 2)-chordal graph is (house, hole, domino)-free. For the other
direction, let G be (house, hole, domino)-free, and let C = (x1, . . ., xk), k ≥ 5, be a cycle in
G. If k = 5 then C is no C5 and no house, that is, C must have at least two chords. If k = 6
then C is no C6 and no domino, and since G is C5-free, C must have at least two chords. If
k ≥ 7 then C has a chord xixj since G is hole-free. A cycle C ′ consisting of an essential part
of C together with the chord xixj has length at least 5 and thus has another chord (since G
is hole-free) which shows the assertion.

(ii): Obviously, every distance-hereditary graph is (house, hole, domino, gem)-free. For
the other direction, let G be (house, hole, domino, gem)-free, and let C = (x1, . . ., xk), k ≥ 5,
be a cycle in G. By Theorem 29.44, (v), it is sufficient to show that C has two crossing
chords. If k = 5 then C is no C5, no house and no gem, that is, C must have two crossing
chords. If k = 6 then C is no C6 and no domino, and since G is C5- and gem-free, C must
have two crossing chords. If k ≥ 7 then C has a chord xixj since G is hole-free. A cycle C ′

consisting of an essential part of C together with the chord xixj has length at least 5 and
thus, by an induction hypothesis, has two crossing chords which shows the assertion. �

Tree-Structured Graphs � 797

For most of the algorithmic applications, a characterization of distance-hereditary graphs in
terms of three simple operations is crucial which is described in the next theorem:

Theorem 29.46 [128] A connected graph G is distance-hereditary if and only if G can be
generated from a single vertex by repeatedly adding a pendant vertex, a false twin or a true
twin.

Proof. Assume first that graph G can be generated from a single vertex by repeatedly adding
a pendant vertex, a false twin or a true twin. Then it can easily be seen that G must be
(house, hole, domino, gem)-free.

For the other direction, we give the short proof of Theorem 29.46 contained in [129].
Actually, [128] is claiming more namely that every distance-hereditary graph with at least
two vertices contains either a pair of twins or two pendant vertices. In [130], an even slightly
stronger version is given (and an incorrectness of the proof in [128] is corrected).

Let G be a distance-hereditary graph, thus having crossing chords in each cycle of length
at least 5. It suffices to show that G has a pendant vertex or a pair of twins since every
induced subgraph of G is again distance hereditary. This is trivially fulfilled if G is a disjoint
union of cliques. We may assume that some component H of G is not a clique. Let Q be a
minimal cutset of H and R1, . . ., Rm be the components of H − Q. Suppose that |Q| ≥ 2;
we show that Q is a homogeneous set. If not, there are two vertices p, q ∈ Q and a vertex
r ∈ V (H) − Q with rp ∈ E and rq �∈ E. Let r ∈ R1. Since Q is a minimal cutset of H, vertex
q has a neighbor s ∈ R1. Note that there is an r-s-path P1 in R1. We choose s so that P1
is as short as possible. Similarly p has a neighbor t ∈ R2 and q has a neighbor u ∈ R2. We
choose t and u so that a shortest t-u-path P2 in R2 has smallest length (possibly t = u). The
vertices s, q, u, t, p, r and the paths P1 and P2 form a cycle C of length at least 5. The only
possible chords of C join p to q or to some vertices of P1. Thus, C has no crossing chords, a
contradiction.

Now if x is any vertex in R1 which is adjacent to Q, it must be adjacent to all vertices of
Q and thus Q is P4-free (otherwise, G has a gem). We know that a nontrivial P4-free graph
has a pair of twins. They will also be twins in G because Q is homogeneous.

Now suppose that every minimal cutset contains only one vertex. Let R be a terminal
block of H, that is, a maximal 2-connected subgraph of H that contains just one cut-vertex,
say x, of H. If |R| = 2, the vertex in R − x is a pendant vertex of G. If |R| ≥ 3 and
R − x ⊆ N(x), the set R − x must induce a P4-free subgraph. So R contains a pair of twins,
and clearly they are also twins in G.

If R \ N(x) �= ∅, N(x) ∩ R is a cutset of H and so it contains a minimal cutset of size
one but then R is not 2-connected, a contradiction which proves the theorem. �
For a distance-hereditary graph G, a pruning sequence of G describes how G can be generated
(dismantled, respectively) by repeatedly adding (deleting, respectively) a pendant vertex, a
false twin or a true twin. Pruning sequences and pruning trees are a fundamental tool for
most of the efficient algorithms on distance-hereditary graphs. There is a more general way,
however, to efficiently solve problems on graph classes captured in the notion of clique-width
described in the section on clique-width.

Definition 29.41 Let G be a graph with vertices v1, . . ., vn, and let S = (s2, . . ., sn) be a
sequence of tuples of the form ((vi, vj), type), where j < i and type ∈ {leaf, true, false}. S is
a pruning sequence for G, if for all i, 2 ≤ i ≤ n, the subgraph of G induced by {v1, . . ., vi} is
obtained from the subgraph of G induced by {v1, . . ., vi−1} by adding vertex vi and making it
adjacent only to vj if type = leaf , making it a true twin of vj if type = true, and making
it a false twin of vj if type = false.

798 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

By Theorem 29.46, a graph is distance hereditary if and only if it has a pruning sequence.

Definition 29.42 Let G be a graph with vertices v1, . . ., vn, and let S = (s2, . . ., sn) be a
pruning sequence for G. The pruning tree corresponding to S is the labeled ordered tree T
constructed as follows:

1. Set T1 as the tree consisting of a single root vertex v1, and set i := 1.

2. Set i := i + 1. If i > n then set T := Tn and stop.

3. Let si = ((vi, vj), leaf) (respectively, si = ((vi, vj), true), or si = ((vi, vj), false)),
then set Ti as the tree obtained from Ti−1 by adding the new vertex vi and making
it a rightmost son of the vertex vj, and labeling the edge connecting vi to vj by leaf
(respectively by true or false).

4. Go back to step (2) above.

A linear-time recognition algorithm for distance-hereditary graphs using pruning sequences
was claimed already in [129]; however, their algorithm contained a flaw. Damiand et al. [104]
used the following characterization given by Bandelt and Mulder for linear-time recognition
of distance-hereditary graphs.

Theorem 29.47 [128] Let G be a connected graph and L1, . . ., Lk be the distance levels of a
hanging from an arbitrary vertex v of G. Then G is a distance-hereditary graph if and only
if the following conditions hold for any i ∈ {1, . . ., k}:

i. If x and y belong to the same connected component of G[Li] then Li−1 ∩ N(x) =
Li−1 ∩ N(y).

ii. G[Li] is a cograph.

iii. If u ∈ Li and vertices x and y from Li−1 ∩ N(u) are in different connected
components X and Y of G[Li−1] then X ∪ Y ⊆ N(u) and Li−2 ∩ N(x) = Li−2 ∩
N(y).

iv. If x and y are in different connected components of G[Li] then sets Li−1 ∩ N(x)
and Li−1 ∩ N(y) are either disjoint or comparable with respect to set inclusion.

v. If u ∈ Li and vertices x and y from Li−1 ∩ N(u) are in the same connected
component C of G[Li−1] then the vertices of C which are nonadjacent to u are
either adjacent to both x and y or to none of them.

The next theorem gives yet another characterization of distance-hereditary graphs. It will be
used in the following subsection.

Theorem 29.48 [128,131] For a graph G, the following conditions are equivalent:

1. G is distance-hereditary,

2. For each vertex v of G and every pair of vertices x, y ∈ Li(v), that are in the same
connected component of the graph G[V \ Li−1(v)], we have

N(x) ∩ Li−1(v) = N(y) ∩ Li−1(v).

Here, L1(v), . . ., Lk(v) are the distance levels of a hanging from vertex v of G.

For many other graph classes defined in terms of metric properties in graphs, related convexity
properties and connections to geometry, see the recent survey by Bandelt and Chepoi [132].

Tree-Structured Graphs � 799

29.7.2 Minimum Cardinality Steiner Tree Problem in Distance-Hereditary Graphs

For a given graph G = (V, E) and a set S ⊆ V (of target vertices), a Steiner tree T (S, G)
is a tree with the vertex set S ∪ S′ (i.e., T (S, G) spans all vertices of S) and the edge set
E′ such that S′ ⊆ V and E′ ⊆ E. The minimum cardinality Steiner tree problem asks for a
Steiner tree with minimum |S ∪ S′|.

An O(|V ||E|) time algorithm for the minimum cardinality Steiner tree problem on
distance-hereditary graphs was presented in [131]. Later, in [133], a linear-time algorithm
was obtained as a consequence of a linear-time algorithm for the connected r-domination
problem on distance-hereditary graphs. Here, we present a direct linear-time algorithm for
the minimum cardinality Steiner tree problem.

Algorithm ST-DHG (Find a minimum cardinality Steiner tree in a distance-hereditary
graph)

Input: A distance-hereditary graph G = (V, E) and a set S ⊆ V of target vertices.
Output: A minimum cardinality Steiner tree T (S, G).

begin
pick an arbitrary vertex s ∈ S and build in G the distance levels

L1(s), . . ., Lk(s)
of a hanging from vertex s;
for i = k, k − 1, . . . , 2 do

if S ∩ Li(s) �= ∅ then
find the connected components A1, A2, . . . , Ap of G[Li(s)];
in each component Aj pick an arbitrary vertex xj ;
order these components in nondecreasing order with respect to
d′(Aj) = |N(xj) ∩ Li−1(s)|;
for all components Aj taken in nondecreasing order with respect to
d′(Aj) do

set B := N(xj) ∩ Li−1(s);
if (S ∩ Aj �= ∅ and S ∩ B = ∅) then

add an arbitrary vertex y from B to set S;
T (S, G) := a spanning tree of a subgraph G[S] of G induced by vertices S;

end

Clearly, this is a linear-time algorithm. The correctness proof is based on Theorem 29.47,
Theorem 29.48 and the following claims.

Let G = (V, E) be a distance-hereditary graph, S ⊆ V be a set of target vertices, and
s ∈ S be an arbitrary vertex from S.

Claim 29.9 There exists a minimum cardinality Steiner tree T (S, G) such that dT (S,G)(x, s) =
dG(x, s) for any vertex x of T (S, G).

Proof. Let L1(s), . . ., Lk(s) be the distance levels of a hanging of G from vertex s ∈ S. It is
enough to show that there exists a minimum cardinality Steiner tree T (S, G) such that if
T (S, G) is rooted at s then for any vertex x of T (S, G) the following property holds:

(P ∗) if x belongs to Li(s) (i ∈ {1, . . . , k}) then its parent x∗ in T (S, G) belongs to Li−1(s).

Let T (S, G) be a minimum cardinality Steiner tree with maximum number of vertices satis-
fying property (P ∗) and let x be a vertex of T (S, G) not satisfying (P ∗) and with maximum
dG(x, s). Assume x belongs to Li(s). Consider the (x, s)-path P (x, s) in T (S, G) and let

800 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

y ∈ P (x, s) be the vertex closest to x in P (x, s) with y ∈ Li(s) and y∗ ∈ Li−1(s), where y∗ is
the parent of y in T (S, G). From choices of vertices x and y, we conclude that the subpath of
P (x, s) between vertices x and y lays entirely in Li(s)∪Li+1(s). By Theorem 29.48, vertices x
and y∗ must be adjacent in G. Hence, we can modify tree T (S, G) by removing edge xx∗ and
adding edge xy∗. The new tree obtained spans all vertices of S and has the same vertex-set.
Since T (S, G) was chosen to have maximum number of vertices satisfying property (P ∗),
such a vertex x ∈ Li(s) with x∗ /∈ Li−1(s) cannot exist, proving the claim. �
Let A1, A2, . . . , Ap be the connected components of G[Li(s)]. By Theorem 29.48, N(x) ∩
Li−1(s) = N(y) ∩ Li−1(s) for every pair of vertices x, y ∈ Aj , j ∈ {1, . . . , p}. Hence, N(Aj) ∩
Li−1(s) = N(xj) ∩ Li−1(s) for any vertex xj ∈ Aj . Denote d′(Aj) := |N(Aj) ∩ Li−1(s)|.
Assume, without loss of generality, that d′(A1) ≤ d′(A2) ≤ · · · ≤ d′(Ap). Let Bj := N(u) ∩
Li−1(s) = N(Aj) ∩ Li−1(s), where u is an arbitrary vertex of Aj .

Claim 29.10 For any vertices x, y ∈ Bj, N(x) \ (Bj ∪ A1 ∪ · · · ∪ Aj−1) = N(y) \ (Bj ∪ A1 ∪
· · · ∪ Aj−1).

Proof. We have u ∈ Li(s), x, y ∈ Li−1(s) ∩ N(u) and every vertex of Aj is adjacent to both
x and y. By Theorem 29.48, any vertex z ∈ Li−2(s) either adjacent to both x and y or to
none of them. Since d′(Aj) ≤ d′(Aj′) for j′ > j, by Theorem 29.47(iv), any vertex from
Aj+1 ∪· · ·∪Ap = Li(s)\ (A1 ∪· · ·∪Aj) is adjacent to both or neither one of x and y. Assume
now that there is a vertex z ∈ Li−1(s) \ Bj which is adjacent to x but not to y. Since path
(z, x, u, y) lays in Li(s) ∪ Li−1(s), by Theorem 29.48, there must exist a vertex w in Li−2(s)
adjacent to all y, x, z. But then, it is easy to see that the vertices u, x, y, z, w induce either a
house or a gem in G, which is impossible. �
Let now i be the largest number such that Li(s) ∩ S �= ∅ and, as before, A1, A2, . . . , Ap be
the connected components of G[Li(s)] with d′(A1) ≤ d′(A2) ≤ · · · ≤ d′(Ap). Let also j be
the smallest number such that Aj ∩ S �= ∅. Set B := N(Aj) ∩ Li−1(s). We know that any
vertex of Aj ∩ S is adjacent to all vertices of B.

Claim 29.11 Let S ∩B �= ∅, x ∈ S ∩Aj and y ∈ S ∩B. T ′ is a minimum cardinality Steiner
tree of G for target set S \{x} if and only if T , obtained from T ′ by adding vertex x and edge
xy, is a minimum cardinality Steiner tree of G for target set S.

Proof. By Claim 29.9, for G and target set S, there exists a minimum cardinality Steiner
tree T where vertex x is a leaf and its neighbor x∗ in T belongs to Li−1(s), that is, to B.
If x∗ �= y, we can get a new minimum cardinality Steiner tree for G and target set S by
replacing edge xx∗ in T with edge xy. We can do that since vertex y is in T and vertices x
and y are adjacent in G. �

Claim 29.12 Let S ∩ B = ∅, x ∈ S ∩ Aj, and y is an arbitrary vertex from B. T ′ is a
minimum cardinality Steiner tree of G for target set S ∪ {y} \ {x} if and only if T , obtained
from T ′ by adding vertex x and edge xy, is a minimum cardinality Steiner tree of G for target
set S.

Proof. By Claim 29.9, for G and target set S, there exists a minimum cardinality Steiner tree
T such that dT (v, s) = dG(v, s) for any vertex v of T . In particular, vertex x is a leaf and
its neighbor x∗ in T belongs to Li−1(s), that is, to B. Furthermore, any neighbor of x∗ in T
must belong to Aj ∪ Aj+1 ∪ · · · ∪ Ap or to Li−2(s). If x∗ �= y, we can get a new minimum
cardinality Steiner tree for G and target set S by replacing in T vertex x∗ with y and any

Tree-Structured Graphs � 801

edge ux∗ of T with edge uy. We can do that since, by Claim 29.10, vertex y is adjacent in
G to every vertex u to which vertex x∗ was adjacent in T (recall, u ∈ Aj ∪ Aj+1 ∪ · · · ∪ Ap ∪
Li−2(s)). �
Thus, we have the following theorem.

Theorem 29.49 [133] The minimum cardinality Steiner tree problem in distance-hereditary
graphs can be solved in linear O(|V | + |E|) time. �

29.7.3 Important Subclasses of Distance-Hereditary Graphs

29.7.3.1 Ptolemaic Graphs and Bipartite Distance-Hereditary Graphs

In this subsection, we describe the chordal and distance-hereditary graphs.
The ptolemaic inequality (∗) in metric spaces is defined as follows.

Definition 29.43 [134] A connected graph G is ptolemaic if, for any four vertices u, v, w, x
of G,

(∗) d(u, v)d(w, x) ≤ d(u, w)d(v, x) + d(u, x)d(v, w).

Theorem 29.50 [135] Let G be a graph. The following conditions are equivalent:

i. G is ptolemaic.

ii. G is distance hereditary and chordal.

iii. G is chordal and does not contain an induced gem.

iv. For all distinct nondisjoint cliques P and Q of G, P ∩ Q separates P \ Q and
Q \ P .

The equivalence of (ii) and (iii) follows from Theorem 29.45: If G is distance-hereditary then
obviously G is gem-free. Conversely, if G is gem-free chordal then G is (house, hole, domino,
gem)-free and by Theorem 29.45, it is distance-hereditary.

Ptolemaic graphs are characterized in various other ways; see, for example, [136] where
the laminar structure of maximal cliques of ptolemaic graphs is described. This is closely
related to Bachman Diagrams as described in [6].

Recall that G is chordal if and only if C(G) is α-acyclic and G is strongly chordal if and
only if C(G) is β-acyclic. A similar fact holds for ptolemaic graphs (see Definition 29.44 for
γ-acyclicity).

Theorem 29.51 [80] Graph G is ptolemaic if and only if the hypergraph C(G) of its maximal
cliques is γ-acyclic. �

Theorems 29.45 and 29.44 imply the following corollary.

Corollary 29.19 A graph is bipartite distance-hereditary if and only if it is bipartite (6, 2)-
chordal.

Proof. Obviously, bipartite (6, 2)-chordal graphs are (house, hole, domino, gem)-free and
thus, by Theorem 29.45, are distance-hereditary. Conversely, let G be a bipartite distance-
hereditary graph. Then, by Theorem 29.45, every cycle of length at least 5 has two (crossing)
chords which shows the assertion. �

802 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

29.7.3.2 Block Graphs

There is an even more restrictive subclass of chordal distance-hereditary graphs, namely the
block graphs which can be defined as the connected graphs whose blocks (i.e., 2-connected
components) are cliques. Let K4 − e denote the clique of four vertices minus an edge (also
called diamond).

Buneman’s four-point condition (∗∗) for distances in connected graphs requires that for
every four vertices u, v, x and y the following inequality holds:

(∗∗) d(u, v) + d(x, y) ≤ max {d(u, x) + d(v, y), d(u, y) + d(v, x)}.

It characterizes the metric properties of trees as Buneman [137] has shown. A connected
graph is a tree if and only if it is triangle-free and fulfills Buneman’s four-point condition
(∗∗).

Theorem 29.52 [138] Let G be a connected graph. The following conditions are equivalent:

i. G is a block graph.

ii. G is (K4 − e)-free chordal.

iii. G fulfills Buneman’s four-point condition (∗∗). �

Theorem 29.53 [13] G is a block graph if and only if C(G) is Berge-acyclic. �

There are various other characterizations of block graphs—see for example [3] for a survey.

29.7.3.3 γ-Acyclic Hypergraphs

The basic subject of this subsection are γ-acyclic hypergraphs. Fagin [6,7] gives various
equivalent definitions of γ-acyclicity.

Definition 29.44 [6,7] Let H = (V, E) be a hypergraph.

i. A γ-cycle in a hypergraph H = (V, E) is a sequence C = (v1, E1, v2, E2, . . ., vk, Ek),
k ≥ 3, of distinct vertices v1, v2, . . ., vk and distinct hyperedges E1, E2, . . ., Ek such
that for all i, 1 ≤ i ≤ k, vi ∈ Ei ∩ Ei+1 holds and for all i, 1 ≤ i < k, vi �∈ Ej for
j �= i, i + 1 holds (index arithmetic modulo k).

ii. A hypergraph is γ-acyclic if it has no γ-cycle.

Note that the only difference to special cycles is the condition 1 ≤ i < k instead of 1 ≤ i ≤ k.
Fagin [6] gives some other variants of γ-acyclicity and shows that all these conditions are
equivalent. A crucial property among them is the following separation property:

Theorem 29.54 A hypergraph H = (V, E) is γ-cyclic if and only if there is a nondisjoint
pair E, F of hyperedges such that in the hypergraph that results by removing E ∩F from every
edge, what is left of E is connected to what is left of F . �

This leads to the following tree structure of separators in γ-acyclic hypergraphs (it has been
rediscovered under various names in subsequent papers on ptolemaic graphs, e.g., in [136]).

Tree-Structured Graphs � 803

Definition 29.45 [6,139–141] For a hypergraph H = (V, E), we define:

i. Bachman (H) is the hypergraph obtained by closing E under intersection, that is,
S is in Bachman(H) if it is the intersection of some hyperedges from H (including
the hyperedges from E themselves).

ii. The Bachman diagram of H is the following undirected graph with Bachman (H)
as its node set, and with an edge between two nodes S, T if S is a proper subset
of T , that is, S ⊂ T and there is no other W in Bachman (H) with S ⊂ W ⊂ T .

iii. A Bachman diagram is loop-free if it is a tree.

The tree property of the Bachman diagram is closely related to uniqueness properties in
data connections; see [6] for a detailed discussion of various properties which are equivalent
to γ-acyclicity and related work on desirable properties of relational database schemes.

The main theorem on γ-acyclicity is the following:

Theorem 29.55 [6] Let H = (V, E) be a connected hypergraph. The following are equivalent:

1. H is γ-acyclic.

2. Every connected join expression over H is monotone.

3. Every connected, sequential join expression over H is monotone.

4. The join dependency �� H implies that every connected subset of H has a lossless join.

5. There is a unique relationship among each set of attributes for each consistent database
over H.

6. The Bachman diagram of H is loop-free.

7. H has a unique minimal connection among each set of its nodes. �

29.8 TREEWIDTH AND CLIQUE-WIDTH OF GRAPHS

29.8.1 Treewidth of Graphs

Treewidth of a graph measures the tree-likeness of a graph. Treewidth of trees has value one,
and if the treewidth of a graph class is bounded by a constant, this has important conse-
quences for the efficient solution of many problems on the class. Treewidth was introduced
by Robertson and Seymour in the famous graph minor project by Robertson and Seymour
(see, e.g., [142–145] and is one of the most important concepts of algorithmic graph theory.
It also came up as partial k-trees which have many applications (see e.g., [9]). A good survey
is given by Bodlaender [11] and Kloks [146].

We first define k-trees recursively.

Definition 29.46 Let k ≥ 1 be an integer. The following graphs are k-trees:

i. Any clique Kk with k vertices is a k-tree.

ii. Let G = (V, E) be a k-tree, let x /∈ V be a new vertex and let C ⊆ V be a clique
with k vertices. Then also G′ = (V ∪ {x}, E ∪ {ux | u ∈ C}) is a k-tree.

iii. There are no other k-trees.

804 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

It is easy to see that for k = 1, the k-trees are exactly the trees, and for any k, k-trees are
chordal with maximum clique size k + 1 if the graph is no clique. More exactly, all maximal
cliques have size k + 1 in this case. See [147] for simple characterizations of k-trees.

Definition 29.47 Graph G′ = (V, E′) is a partial k-tree if there is a k-tree G = (V, E) with
E′ ⊆ E.

Obviously, every graph with n vertices is a partial n-tree, and every k-tree is a partial k-tree.
The following parameter is of tremendous importance for the efficient solution of algorithmic
problems on graphs.

Definition 29.48 The treewidth tw(G) of a given graph G is the minimum value k for
which G is a partial k-tree.

Determining the treewidth of a graph is NP-hard [9].
Treewidth was defined in a different way by Robertson and Seymour (see, e.g., [142–145])

via tree decompositions of graphs:

Definition 29.49 A tree decomposition of a graph G = (V, E) is a pair D = (S, T) with
the following properties:

i. S = {Vi | i ∈ I} is a finite collection of subsets of vertices (sometimes called
bags).

ii. T = (I, F) is a tree with one node for each subset from S.

iii.
⋃

i∈I Vi = V .

iv. For all edges (v, w) ∈ E, there is a subset (i.e., a bag) Vi ∈ S such that both v
and w are contained in Vi.

v. For each vertex x ∈ V , the set of tree nodes {i | x ∈ Vi} forms a subtree of T .

Condition (v) corresponds to the join tree condition of α-acyclic hypergraphs and to the
clique tree condition of chordal graphs. Thus, a graph is chordal if and only if it has a tree
decomposition into cliques.

The width of a tree decomposition is the maximum bag size minus one. It is not hard to
see that the following holds (see, e.g., [146]):

Lemma 29.12 The treewidth of a graph equals the minimum width over all of its tree
decompositions. �

The fundamental importance of treewidth for algorithmic applications is twofold: First of
all, many problems can be solved by dynamic programming in a bottom-up way along a tree
decomposition (or equivalently, an embedding into a k-tree) of the graph, and the running
time is quite good for small k. The literature [10,148] give many examples for this approach.
Second, there is a deep relationship to Monadic Second-Order Logic described in various
papers by Courcelle [149] (and in many other papers of this author; see also Bodlaender’s
tourist guide [11]). Roughly speaking, the following holds.

Whenever a problem Π is expressible in Monadic second-order logic and C is a graph class
of bounded treewidth (with given tree decomposition for each input graph) then problem Π
can be efficiently solved on every input graph from C.

As an example, consider 3-colorability of a graph (which is well known to be NP-
complete):

Tree-Structured Graphs � 805

∃W1 ⊆ V ∃W2 ⊆ V ∃W3 ⊆ V ∀v ∈ V (v ∈ W1 ∨v ∈ W2 ∨v ∈ W3)∧∀v ∈ V ∀w ∈ V (vw ∈
E ⇒ (¬(v ∈ W1 ∧ w ∈ W1) ∧ ¬(v ∈ W2 ∧ w ∈ W2) ∧ ¬(v ∈ W3 ∧ w ∈ W3))).

The detour via logic, however, leads to astronomically large constant factors in the running
time of such algorithms. Therefore it is of crucial importance to have a tree decomposition
of the input graph with very small width. We know already that the problem of determining
treewidth is NP-complete.

Theorem 29.56 [150] For each integer k ≥ 1 there is a linear-time algorithm which for given
graph G either determines that tw(G) > k holds or otherwise finds a tree decomposition with
width k. �

Some classes of graphs (cactus graphs, series-parallel graphs, Halin graphs, outerplanar
graphs, etc.) have bounded treewidth. See [11] for more information.

Thorup [151] gives important examples of small treewidth in computer science applica-
tions.

Another closely related graph parameter called tree-length is proposed by Dourisboure
and Gavoille [152]. It measures how close a graph is to being chordal. The tree-length of
G is defined using tree decompositions of G (see Definition 29.49). Graphs of tree-length k
are the graphs that have a tree decomposition where the distance in G between any pair of
vertices that appear in the same bag of the tree decomposition is at most k. We discuss this
and related parameters in Section 29.10.

29.8.2 Clique-Width of Graphs

The notion of clique-width of a graph, defined by Courcelle et al. (in the context of graph
grammars) in [153], is another fundamental example of a width parameter on graphs which
leads to efficient algorithms for problems expressible in some kind of Monadic second-order
logic.

More formally, the clique-width cw(G) of a graph G is defined as the minimum number
of different integer labels which allow to generate graph G by using the following four kinds
of operations on vertex-labeled graphs:

i. Creation of a new vertex labeled by integer l.

ii. Disjoint union of two (vertex-labeled and vertex-disjoint) graphs (i.e., co-join).

iii. Join between the set of all vertices with label i and the set of all vertices with
label j for i �= j (i.e., all edges between the two sets are added).

iv. Relabeling of all vertices of label i by label j.

A k-expression for a graph G of clique-width k describes the recursive generation of G by
repeatedly applying these operations using at most k different labels.

Obviously, any graph with n vertices can be generated using n labels (for each vertex a
specific one). Thus cw(G) ≤ n if G has n vertices.

Clique-width is more powerful than treewidth in the sense that if a class of graphs has
bounded treewidth then it also has bounded clique-width but not vice versa [154]—the
clique-width of cliques of arbitrary size is two whereas their treewidth is unbounded. In
particular, an upper bound for the clique-width of a graph is obtained from its treewidth as
follows.

806 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 29.57 [155] For any graph G, cw(G) ≤ 3 · 2tw(G)−1. �

Similarly as for treewidth, the concept of clique-width of a graph has attracted much attention
due to the fact that there is a similarly close connection to Monadic second-order logic. In
[156], Courcelle et al. have shown that every graph problem definable in LinMSOL(τ1) (a
variant of Monadic second-order logic using quantifiers on vertex sets but not on edge sets)
is solvable in linear time on graphs with bounded clique-width if a k-expression describing
the input graph is given.

The problems maximum weight stable set, maximum weight clique, k-coloring for fixed
k, Steiner tree, and domination are examples of LinMSOL(τ1) definable problems whereas
coloring and Hamiltonian circuit are not.

Theorem 29.58 [156] Let C be a class of graphs of clique-width at most k such that there is
an O(f(|E|, |V |)) algorithm, which for each graph G in C, constructs a k-expression defining
it. Then for every LinMSOL(τ1) problem on C, there is an algorithm solving this problem in
time O(f(|E|, |V |)). �

Moreover, for some other problems which are not expressible in this way, there are polynomial
time algorithms for classes of bounded clique-width [157–159].

It is not hard to see that the class of cographs is exactly the class of graphs having
clique-width at most 2, and a 2-expression can be found in linear time along the cotree of a
cograph:

Proposition 29.13 The clique-width of graph G is at most 2 if and only if G is a cograph.

Clique-width is closely related to modular decomposition as the following proposition shows:

Proposition 29.14 [154,156] The clique-width of a graph G is the maximum of the clique-
width of its prime subgraphs, and the clique-width of the complement graph G is at most twice
the clique-width of G.

It is easy to see that the clique-width of thin spiders is at most 4. Thus, a simple consequence
of Proposition 29.14 is that the clique-width of P4-sparse graphs is bounded.

The fact that the clique-width of distance-hereditary graphs is at most three (which, at
first glance, does not seem to be surprising but the proof is quite technical) is based on
pruning sequences (see Theorem 29.46).

Theorem 29.59 [160] The clique-width of distance-hereditary graphs is at most 3, and cor-
responding 3-expressions can be constructed in linear time.

In the same paper [160] it is shown that unit interval graphs have unbounded clique-width.
For very similar reasons, bipartite permutation graphs have unbounded clique-width [161].
Various other classes of bounded and unbounded clique-width are described in [162–167] and
many other papers. See [168] for recent results on graph classes of bounded clique-width.

In [169], Fellows et al. show that determining clique-width is NP-complete. The recogni-
tion problem for graphs of clique-width at most three is solvable in polynomial time [170].
For any fixed k ≥ 4, the problem of recognizing all graphs with clique-width at most k in
polynomial time is open.

The notion of NLC-width introduced by Wanke [171] is closely related to clique-width.
The NLC-width of a graph is not greater than its clique-width, and the clique-width of a
graph is twice its NLC-width [172]. Computing the NLC-width of a graph is NP-complete
[173]. The graphs of NLC-width 1 are the cographs, and the class of graphs of NLC-width at

Tree-Structured Graphs � 807

most 2 can be recognized in polynomial time [174]. Similarly as for clique-width (with k ≥ 4),
recognition of NLC-width at most k is open for k ≥ 3.

Oum and Seymour [175,176] investigated the important concept of rank-width and its
relationship to clique-width, treewidth and branchwidth. Oum showed that a graph has
rank-width 1 if and only if it is distance hereditary.

29.9 COMPLEXITY OF SOME PROBLEMS ON TREE-STRUCTURED
GRAPH CLASSES

The most prominent classes with tree structure in this chapter are chordal and dually chordal
graphs, strongly chordal graphs and chordal bipartite graphs as well as distance-hereditary
graphs. In the following, we describe a variety of complexity results for some problems on
these classes. See also [19] for a final chapter on such results.

Recall that the recognition problem for chordal and dually chordal graphs is solvable in
linear time, while the recognition of strongly chordal and of chordal bipartite graphs can be
done in time O(min(n2, m log n)) (see [19]). Recall also that distance-hereditary graphs can
be recognized in linear time [104,129].

The graph isomorphism problem was shown to be isomorphism-complete, that is as hard
as in the general case, for strongly chordal graphs and chordal bipartite graphs [177]. The
graph isomorphism problem for distance-hereditary graphs is solvable in linear time [136]
(a first step for this was done in [178]); see also [179].

The four basic problems independent set [GT20], clique [GT19], chromatic number [GT4],
and partition into cliques [GT15] (see [40]), are known to be polynomial-time solvable for
perfect graphs [180,181] and thus for chordal graphs as well as strongly chordal graphs and
chordal bipartite graphs. In some cases, there are better time bounds using prefect elimination
orderings and similar tools. For dually chordal graphs, however, these four problems are
NP-complete [63].

Hamiltonian circuit ([GT37] of [40]) is NP-complete for strongly chordal graphs and for
chordal bipartite graphs [182] (and thus it is NP-complete for chordal as well as for dually
chordal graphs).

Dominating set [GT2] and Steiner tree [ND12] [40] are solvable in linear time for dually
chordal graphs [63] and thus for strongly chordal graphs while they are NP-complete for
chordal graphs (even for split graphs [84]) and for chordal bipartite graphs [183].

For a given graph G = (V, E), the maximum induced matching problem asks for a maxi-
mum set of edges having pairwise distance at least 2. While it is well known that the maximum
matching problem is solvable in polynomial time, the maximum induced matching problem
was shown to be NP-complete even for bipartite graphs [184,185]. For chordal graphs and for
chordal bipartite graphs, however, it is solvable in polynomial time [184,186] and for chordal
graphs, it is solvable in linear time [187]. It is NP-complete for dually chordal graphs [188].
Maximum induced matching can be generalized to hypergraphs and is solvable in polynomial
time for α-acyclic hypergraphs but NP-complete for hypertrees [188].

For a given hypergraph H = (V, E), the exact cover problem ([SP2] of [40]) asks for the
existence of a subset E ′ ⊆ E such that every vertex of V is in exactly one of the sets in E ′.
The exact cover problem is NP-complete even for 3-regular hypergraphs [42]. In [188], it is
shown that the exact cover problem is NP-complete for α-acyclic hypergraphs but solvable
in linear time for hypertrees.

For a given graph G = (V, E), the efficient domination problem asks for the existence
of a set of closed neighborhoods of G forming an exact cover of V ; thus, the efficient domi-
nation problem for G corresponds to the Exact Cover problem for the closed neighborhood
hypergraph of G. It was introduced by Biggs [189] under the name perfect code.

808 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The efficient domination problem is NP-complete for chordal graphs [190] and for chordal
bipartite graphs [191]. In [188], it is shown that the efficient domination problem is solvable
in linear time for dually chordal graphs.

For a given graph G = (V, E), the efficient edge domination problem is the efficient dom-
ination problem for the line graph L(G). It appears under the name dominating-induced
matching problem in various papers; see for example [192]. The efficient edge domination
problem is solvable in linear time for chordal graphs [188] and for dually chordal graphs [188]
as well as for chordal bipartite graphs (and even solvable in polynomial time for hole-free
graphs) [194].

For distance-hereditary graphs, there is a long list of papers showing that certain problems
are efficiently solvable on this class. Most of these papers were published before the clique-
width aspect was found. Theorem 29.58 covers many of these problems; on the other hand, it
might be preferable to have direct dynamic programming algorithms using the tree structure
of distance-hereditary graphs since the constant factors in algorithms using Theorem 29.58
are astronomically large (and similarly for graphs of bounded treewidth). However, various
problems such as Hamilton cycle (HC) and variants cannot be expressed in MSOL; see also
the algorithm for Steiner tree on distance-hereditary graphs.

The four basic problems can be solved in time O(n) if a pruning sequence of the input
graph is given [129].

HC was shown to be solvable in time O(n3) [195,196], in time O(n2) [197] and finally in
time O(n + m) for the HC problem [198,199] for HC and variants giving a unified approach.
In [199], a detailed history of the complexity results for HC on distance-hereditary graphs
is given. For the subclass of bipartite distance-hereditary graphs, a linear-time algorithm for
HC was given already in [200].

The dominating set problem was solved in linear time in [201,202] for distance-hereditary
graphs. The efficient domination and efficient edge domination problems are expressible in
MSOL and thus efficiently solvable for distance-hereditary graphs.

29.10 METRIC TREE-LIKE STRUCTURES IN GRAPHS

There are few other graph parameters measuring tree likeness of a (unweighted) graph from
a metric point of view. Two of them are also based on the notion of tree-decomposition of
Robertson and Seymour [145] (see Definition 29.49).

29.10.1 Tree-Breadth, Tree-Length, and Tree-Stretch of Graphs

The length of a tree-decomposition T of a graph G is λ := maxi∈I maxu,v∈Vi dG(u, v) (i.e.,
each bag Vi has diameter at most λ in G). The tree-length of G, denoted by tl(G), is the
minimum of the length over all tree-decompositions of G [152]. As chordal graphs are exactly
those graphs that have a tree decomposition where every bag is a clique [16–18], we can
see that tree-length generalizes this characterization and thus the chordal graphs are exactly
the graphs with tree-length 1. Note that tree-length and treewidth are not related to each
other graph parameters. For instance, a clique on n vertices has tree-length 1 and treewidth
n − 1, whereas a cycle on 3n vertices has treewidth 2 and tree-length n. One should also
note that many graph classes with unbounded treewidth have bounded tree-length, such
as chordal, interval, split, AT-free, and permutation graphs [152]. Analysis of a number
of real-life networks, taken from different domains like Internet measurements, biological
datasets, web graphs, social and collaboration networks, performed in [203,204] shows that
those networks have sufficiently large treewidth but their tree-length is relatively small.

Tree-Structured Graphs � 809

The breadth of a tree-decomposition T of a graph G is the minimum integer r such that
for every i ∈ I there is a vertex vi ∈ V with Vi ⊆ N r[vi] (i.e., each bag Vi can be covered
by a disk N r[vi] := {u ∈ V (G) : dG(u, vi) ≤ r} of radius at most r in G). Note that
vertex vi does not need to belong to Vi. The tree-breadth of G, denoted by tb(G), is the
minimum of the breadth over all tree-decompositions of G [205]. Evidently, for any graph G,
1 ≤ tb(G) ≤ tl(G) ≤ 2tb(G) holds. Hence, if one parameter is bounded by a constant for a
graph G then the other parameter is bounded for G as well.

Note that the notion of acyclic (R, D)-clustering of a graph introduced in [206] combines
tree-breadth and tree-length into one notion. Graphs admitting acyclic (D, D)-clustering are
exactly graphs with tree-length at most D, and graphs admitting acyclic (R, 2R)-clustering
are exactly graphs with tree-breadth at most R. Hence, all chordal, chordal bipartite, and
dually chordal graphs have tree-breadth 1 [206].

In view of tree-decomposition T of G, the smaller parameters tl(G) and tb(G) of G are,
the closer graph G is to a tree metrically. Unfortunately, while graphs with tree-length 1
(as they are exactly the chordal graphs) can be recognized in linear time, the problem of
determining whether a given graph has tree-length at most λ is NP-complete for every fixed
λ > 1 (see [207]). Judging from this result, it is conceivable that the problem of determining
whether a given graph has tree-breadth at most ρ is NP-complete, too. 3-Approximation
algorithms for computing the tree-length and the tree-breadth of a graph are proposed in
[152,204,205].

Proposition 29.15 [152] There is a linear-time algorithm that produces for any graph G a
tree-decomposition of length at most 3tl(G) + 1.

Proposition 29.16 [204,205] There is a linear-time algorithm that produces for any graph
G a tree-decomposition of breadth at most 3tb(G).

It follows from results of [208] and [152] also that any graph G with small tree-length or
small tree-breadth can be embedded to a tree with a small additive distortion.

Proposition 29.17 For any (unweighted) connected graph G = (V, E) there is an un-
weighted tree H = (V, F) (on the same vertex set but not necessarily a spanning tree of
G) for which the following is true:

∀u, v ∈ V, dH(u, v) − 2 ≤ dG(u, v) ≤ dH(u, v) + 3 tl(G) ≤ dH(u, v) + 6 tb(G).

Such a tree H can be constructed in O(|E|) time.

Previously, these type of results were known for chordal graphs and dually chordal graphs
[209], k-chordal graphs [210], and δ-hyperbolic graphs [211].

Graphs with small tree-length or small tree-breadth have many other nice properties.
Every n-vertex graph with tree-length tl(G) = λ has an additive 2λ-spanner with O(λn +
n log n) edges and an additive 4λ-spanner with O(λn) edges, both constructible in polynomial
time [212]. Every n-vertex graph G with tb(G) = ρ has a system of at most log2 n collective
additive tree (2ρ log2 n)-spanners constructible in polynomial time [213]. Those graphs also
enjoy a 6λ-additive routing labeling scheme with O(λ log2 n) bit labels and O(log λ) time
routing protocol [214], and a (2ρ log2 n)-additive routing labeling scheme with O(log3 n) bit
labels and O(1) time routing protocol with O(log n) message initiation time (by combining
results of [213] and [215]). See appropriate papers for more details.

Here we elaborate a little bit more on a connection established in [205] between the
tree-breadth and the tree-stretch of a graph (and the corresponding tree t-spanner problem).

810 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The tree-stretch ts(G) of a graph G = (V, E) is the smallest number t such that G admits
a spanning tree T = (V, E′) with dT (u, v) ≤ tdG(u, v) for every u, v ∈ V. T is called a tree
t-spanner of G and the problem of finding such tree T for G is known as the tree t-spanner
problem. Note that as T is a spanning tree of G, necessarily dG(u, v) ≤ dT (u, v) and E′ ⊆ E.
It is known that the tree t-spanner problem is NP-hard [216]. The best known approximation
algorithms have approximation ratio of O(log n) [205,217].

The following two results were obtained in [205].

Proposition 29.18 [205] For every graph G, tb(G) ≤ �ts(G)/2� and tl(G) ≤ ts(G).

Proposition 29.19 [205] For every n-vertex graph G, ts(G) ≤ 2tb(G) log2 n. Furthermore,
a spanning tree T of G with dT (u, v) ≤ (2tb(G) log2 n) dG(u, v), for every u, v ∈ V, can be
constructed in polynomial time.

Proposition 29.19 is obtained by showing that every n-vertex graph G with tb(G) = ρ

admits a tree (2ρ log2 n)-spanner constructible in polynomial time. Together with Proposition
29.18, this provides a log2 n-approximate solution for the tree t-spanner problem in general
unweighted graphs.

29.10.2 Hyperbolicity of Graphs and Embedding Into Trees

δ-Hyperbolic metric spaces have been defined by Gromov [218] in 1987 via a simple
4-point condition: for any four points u, v, w, x, the two larger of the distance sums
d(u, v) + d(w, x), d(u, w) + d(v, x), d(u, x) + d(v, w) differ by at most 2δ. They play an impor-
tant role in geometric group theory, geometry of negatively curved spaces, and have recently
become of interest in several domains of computer science, including algorithms and network-
ing. For example, (a) it has been shown empirically in [219] (see also [220]) that the Internet
topology embeds with better accuracy into a hyperbolic space than into an Euclidean space
of comparable dimension, (b) every connected finite graph has an embedding in the hyper-
bolic plane so that the greedy routing based on the virtual coordinates obtained from this
embedding is guaranteed to work (see [221]).

A connected graph G = (V, E) equipped with standard graph metric dG is δ-hyperbolic
if the metric space (V, dG) is δ-hyperbolic. More formally, let G be a graph and u, v, w and
x be its four vertices. Denote by S1, S2, S3 the three distance sums, dG(u, v) + dG(w, x),
dG(u, w) + dG(v, x) and dG(u, x) + dG(v, w) sorted in nondecreasing order S1 ≤ S2 ≤ S3.
Define the hyperbolicity of a quadruplet u, v, w, x as δ(u, v, w, x) = S3−S2

2 . Then the hyper-
bolicity δ(G) of a graph G is the maximum hyperbolicity over all possible quadruplets of G,
that is,

δ(G) = max
u,v,w,x∈V

δ(u, v, w, x).

δ-Hyperbolicity measures the local deviation of a metric from a tree metric; a metric is a
tree metric if and only if it has hyperbolicity 0. Note that chordal graphs have hyperbolicity
at most 1 [222], while k-chordal graphs have hyperbolicity at most k/4 [223].

The best known algorithm to calculate hyperbolicity has time complexity of O(n3.69),
where n is the number of vertices in the graph; it was proposed in [224] and involves matrix
multiplications. Authors of [224] also propose a 2-approximation algorithm for calculating
hyperbolicity that runs in O(n2.69) time and a 2 log2 n-approximation algorithm that runs in
O(n2) time.

According to [211], if a graph G has small hyperbolicity then it can be embedded to a
tree with a small additive distortion.

Tree-Structured Graphs � 811

Proposition 29.20 [211] For any (unweighted) connected graph G = (V, E) with n vertices
there is an unweighted tree H = (V, F) (on the same vertex set but not necessarily a spanning
tree of G) for which the following is true:

∀u, v ∈ V, dH(u, v) − 2 ≤ dG(u, v) ≤ dH(u, v) + O(δ(G) log n).

Such a tree H can be constructed in O(|E|) time.

Thus, the distances in n-vertex δ-hyperbolic graphs can efficiently be approximated
within an additive error of O(δ log n) by a tree metric and this approximation is sharp
(see [211,218,225]). An earlier result of Gromov [218] established similar distance approxi-
mations, however Gromov’s tree is weighted, may have Steiner points and needs O(n2) time
for construction.

It is easy to show that every graph G admitting a tree T with dG(x, y) ≤ dT (x, y) ≤
dG(x, y) + r for any x, y ∈ V is r-hyperbolic. So, the hyperbolicity of a graph G is an
indicator of an embedability of G in a tree with an additive distortion.

Graphs and general geodesic spaces with small hyperbolicities have many other algo-
rithmic advantages. They allow efficient approximate solutions for a number of optimization
problems. For example, Krauthgamer and Lee [226] presented a PTAS for the traveling sales-
man problem when the set of cities lie in a hyperbolic metric space. Chepoi and Estellon [227]
established a relationship between the minimum number of balls of radius r + 2δ covering a
finite subset S of a δ-hyperbolic geodesic space and the size of the maximum r-packing of S
and showed how to compute such coverings and packings in polynomial time. Chepoi et al.
gave in [211] efficient algorithms for fast and accurate estimations of diameters and radii of
δ-hyperbolic geodesic spaces and graphs. Additionally, Chepoi et al. showed in [228] that
every n-vertex δ-hyperbolic graph has an additive O(δ log n)-spanner with at most O(δn)
edges and enjoys an O(δ log n)-additive routing labeling scheme with O(δ log2 n) bit labels
and O(log δ) time routing protocol.

The following relations between the tree-length and the hyperbolicity of a graph were
established in [211].

Proposition 29.21 [211] For every n-vertex graph G, δ(G) ≤ tl(G) ≤ O(δ(G) log n).

Combining this with results from [205] (see Propositions 29.18 and 29.19), one gets the
following inequalities.

Proposition 29.22 [229] For any n-vertex graph G, δ(G) ≤ ts(G) ≤ O(δ(G) log2 n).

This proposition says, in particular, that every δ-hyperbolic graph G admits a tree
O(δ log2 n)-spanner. Furthermore, such a spanning tree for a δ-hyperbolic graph can be con-
structed in polynomial time (see [205]).

The problem of approximating a given graph metric by a simpler metric is well motivated
from several different perspectives. A particularly simple metric of choice, also favored from
the algorithmic point of view, is a tree metric, that is, a metric arising from shortest path
distance on a tree containing the given points. In recent years, a number of authors consid-
ered problems of minimum distortion embeddings of graphs into trees (see [208,230–232]),
most popular among them being a noncontractive embedding with minimum multiplicative
distortion.

Let G = (V, E) be a graph. The (multiplicative) tree-distortion td(G) of G is the smallest
number α such that G admits a tree (not necessarily a spanning tree, possibly weighted and
with Steiner points) with

∀u, v ∈ V, dG(u, v) ≤ dT (u, v) ≤ α dG(u, v).

812 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The problem of finding, for a given graph G, a tree T = (V ∪ S, F) satisfying dG(u, v) ≤
dT (u, v) ≤ td(G)dG(u, v), for all u, v ∈ V , is known as the problem of minimum distortion
noncontractive embedding of graphs into trees. In a noncontractive embedding, the distance
in the tree must always be larger that or equal to the distance in the graph, that is, the tree
distances dominate the graph distances.

It is known that this problem is NP-hard, and even more, the hardness result of [230]
implies that it is NP-hard to approximate td(G) better than γ, for some small constant γ.
The best known 6-approximation algorithm using layering partition technique was recently
given in [208]. It improves the previously known 100-approximation algorithm from [232] and
27-approximation algorithm from [231].

The following interesting result was presented in [208].

Proposition 29.23 [208] For any (unweighted) connected graph G = (V, E) with n vertices
there is an unweighted tree H = (V, F) (on the same vertex set but not necessarily a spanning
tree of G) for which the following is true:

∀u, v ∈ V, dH(u, v) − 2 ≤ dG(u, v) ≤ dH(u, v) + 3 td(G).

Such a tree H can be constructed in O(|E|) time.

Surprisingly, a multiplicative distortion is turned into an additive one. Moreover, while a
tree T = (V ∪ S, F) satisfying dG(u, v) ≤ dT (u, v) ≤ td(G)dG(u, v), for all u, v ∈ V , is NP-
hard to find, tree H of Proposition 29.23 is constructible in O(|E|) time. Furthermore, H is
unweighted and has no Steiner points.

By adding at most n = |V | new Steiner points to tree H and assigning proper weights to
edges of H, the authors of [208] achieve a good noncontractive embedding of a graph G into
a tree.

Proposition 29.24 [208] For any (unweighted) connected graph G = (V, E) there is a
weighted tree H ′

� = (V ∪ S, F) for which the following is true:

∀u, v ∈ V, dG(x, y) ≤ dH′
�
(x, y) ≤ 3td(G)(dG(x, y) + 1).

Such a tree H ′
� can be constructed in O(|V ||E|) time.

As pointed out in [208], tree H ′
� provides a 6-approximate solution to the problem of minimum

distortion noncontractive embedding of an unweighted graph into a tree.
We conclude this section with one more chain of inequalities establishing relations between

the tree-stretch, the tree-length, and the tree-distortion of a graph.

Proposition 29.25 [229] For every n-vertex graph G, tl(G) ≤ td(G) ≤ ts(G) ≤
2td(G) log2 n.

Proposition 29.25 says that if a graph G is noncontractively embeddable into a tree with
distortion td(G) then it is embeddable into a spanning tree with stretch at most 2td(G) log2 n.
Furthermore, a spanning tree with stretch at most 2td(G) log2 n can be constructed for G in
polynomial time.

References

[1] A. Hajnal and J. Surányi, Über die Auflösung von Graphen in vollständige Teilgraphen,
Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 1 (1958), 113–121.

Tree-Structured Graphs � 813

[2] J.R.S. Blair and B. Peyton, An introduction to chordal graphs and clique trees, In
Graph Theory and Sparse Matrix Computation, A. George, J.R. Gilbert, and J.W.H.
Liu (Eds.), Springer, New York, 1993, 1–29.

[3] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph classes: A survey, SIAM Monographs
on Discrete Math. Appl., Vol. 3, SIAM, Philadelphia, PA, 1999.

[4] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New
York 1980; 2nd edition: Ann. Discrete Math. 57, Elsevier Science B.V., Amsterdam,
the Netherlands, 2004.

[5] T.A. McKee and F.R. McMorris, Topics in intersection graph theory, SIAM Mono-
graphs on Discrete Math. and Appl. Vol. 2, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1999.

[6] R. Fagin, Degrees of Acyclicity for hypergraphs and relational database schemes,
Journal ACM 30 (1983), 514–550.

[7] R. Fagin, Acyclic database schemes (of various degrees): A painless introduction,
Proc. CAAP83 8th Colloquium on Trees in Algebra and Programming, G. Ausiello
and M. Protasi (Eds.), Springer LNCS 159 (1983), pp. 65–89.

[8] N. Robertson and P.D. Seymour, Graph minors. I. Excluding a forest, J. Comb. Theory
(B) 35 (1983), 39–61.

[9] S. Arnborg, D.G. Corneil, and A. Proskurowski, Complexity of finding embeddings in
a k-tree, SIAM J. Alg. Discr. Meth. 8 (1987), 277–284.

[10] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems
restricted to partial k-trees, Discrete Applied Math. 23 (1989), 11–24.

[11] H.L. Bodlaender, A tourist guide through treewidth, Acta Cybernetica 11 (1993), 1–23.

[12] C. Berge, Graphs and Hypergraphs, American Elsevier Publishing Co., North-Holland,
1973.

[13] C. Berge, Hypergraphs, Elsevier Publishing Co., North-Holland, 1989.

[14] G. Dirac, On rigid circuit graphs, Abhandl. Math. Seminar Univ. Hamburg 25 (1961),
71–76.

[15] D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pacific
J. Math. 15 (1965), 835–855.

[16] A. Buneman, A characterization of rigid circuit graphs, Discrete Math. 9 (1974),
205–212.

[17] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs,
J. Comb. Theory (B) 16 (1974), 47–56.

[18] J.R. Walter, Representations of Rigid Cycle Graphs, PhD dissertation, Wayne State
University, Detroit, MI, 1972.

[19] J.P. Spinrad, Efficient Graph Representations, Fields Institute Monographs, American
Mathematical Society, Providence, RI, 2003.

814 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[20] R.E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,
SIAM J. Computing 13 (1984), 566–579; Addendum SIAM J. Computing 14 (1985),
254–255.

[21] W.W. Barrett, C.R. Johnson, and M. Lundquist, Determinantal formulae for matrix
completions associated with chordal graphs, Linear Algebra Appl. 121 (1989), 265–289.

[22] C.-W. Ho and R.C.T. Lee, Counting clique trees and computing perfect elimination
schemes in parallel, Inf. Proc. Letters 31 (1989), 61–68.

[23] A. Frank, Some polynomial algorithms for certain graphs and hypergraphs, In Pro-
ceedings of the 5th British Combinatorial Conference (1975), Congressus Numerantium
XV (1976), 211–226.

[24] S. Főldes and P.L. Hammer, Split graphs, In 8th South–Eastern Conf. on Combina-
torics, Graph Theory and Computing, F. Hoffman, L. Lesniak-Foster, D. McCarthy,
R.C. Mullin, K.B. Reid, and R.G. Stanton (Eds.), Louisiana State University, Baton
Rouge, LA (1977), Congressus Numerantium 19 (1977), 311–315.

[25] P.L. Hammer and B. Simeone, The splittance of a graph, Combinatorica 1 (1981),
275–284.

[26] R.I. Tyshkevich, O.I. Melnikow, and V.M. Kotov, On graphs and degree sequences:
The canonical decomposition (in Russian), Kibernetika 6 (1981), 5–8.

[27] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983),
173–189.

[28] G. Ausiello, A. D’Atri, and M. Moscarini, Chordality properties on graphs and minimal
conceptual connections in semantic data models, J. Comput. Syst. Sci. 33 (1986),
179–202.

[29] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, On the desirability of acyclic database
schemes, J. ACM 30 (1983), 479–513.

[30] E.F. Codd, A relational model of data for large shared data banks, Communications
of the ACM 13 (1970), 377–387.

[31] P. Honeyman, R. E. Ladner, and M. Yannakakis, Testing the universal instance
assumption, Inf. Proc. Letters 10 (1980), 14–19.

[32] N. Goodman and O. Shmueli, Syntactic characterization of tree database schemas,
J. ACM 30 (1983), 767–786.

[33] G. Gottlob, N. Leone, and F. Scarcello, Hypertree decompositions: A survey, In Proc.
MFCS 2001, J. Sgall, A. Pultr, and P. Kolman, (Eds.), LNCS 2136, Springer, Mariánské
Lázně, Czech Republic, 2001, 37–57.

[34] H. Gaifman, On local and nonlocal properties, In Logic Colloquium’81 (J. Stern ed.,)
Elsevier, North-Holland, Amsterdam, the Netherlands, 1982, 105–135.

[35] D. Maier, The Theory of Relational Databases, Computer Science Press, Rockville, MD,
1983.

[36] H.J. Ryser, Combinatorial configurations, SIAM J. Appl. Math. 17 (1969), 593–602.

Tree-Structured Graphs � 815

[37] F.S. Roberts and J. H. Spencer, A characterization of clique graphs, J. Comb.
Theory (B) 10 (1971), 102–108.

[38] J. L. Szwarcfiter, A survey on clique graphs, In Recent Advances in Algorithmic Combi-
natorics, C. Linhares-Sales and B. Reed (Eds.), CMS Books in Mathematics, Springer,
2003, 109–136.

[39] L. Alcón, L. Faria, C.M.H. de Figueiredo, and M. Gutierrez, Clique graph recognition
is NP-complete, F. Fomin (ed.), WG 2006, Lecture Notes in Comp. Sci. 4271 (2006),
269–277; full version in: The complexity of clique graph recognition. Theor. Comp. Sci.
410(21–23) (2009), 2072–2083.

[40] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman & Co., San Francisco, CA, 1979.

[41] L. Lovász, Coverings and colorings of hypergraphs, In Proc. 4th Southeastern Conf. on
Combinatorics, Graph Theor. Comput., Util. Math. Publ., Congr. Numerantium VIII
(1973), 3–12.

[42] R.M. Karp, Reducibility among combinatorial problems, In Complexity of Computer
Computations, R.E. Miller and J.W. Thatcher (Eds.), Plenum Press, New York, 1972,
85–103.

[43] N. Linial and M. Tarsi, Deciding hypergraph 2-colorability by H-resolution, Theor.
Comp. Sci. 38 (1985), 343–347.

[44] M.R. Garey, D.S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph
problems, Theor. Comp. Sci. 1 (1976), 237–267.

[45] R. Fagin and M.Y. Vardi, The theory of data dependencies—A survey, Mathematics of
Information Processing, In Proc. Symp. Appl. Math., M. Anshel, W. Gewirtz, (Eds.)
Vol. 34 (1986), 19–71, American Mathemaical Society, Providence, RI.

[46] J. Lehel, A characterization of totally balanced hypergraphs, Discrete Math. 57 (1985),
59–65.

[47] M.C. Golumbic, Algorithmic aspects of intersection graphs and representation hyper-
graphs, Graphs and Combinatorics 4 (1988), 307–321.

[48] P. Duchet, Propriété de Helly et problèmes de représentation, Colloqu. Internat. CNRS
260, Problemes Combinatoires et Theorie du Graphs, Orsay, France (1976), 117–118.

[49] C. Flament, Hypergraphes arborés, Discrete Math. 21 (1978), 223–226.

[50] P.J. Slater, A characterization of SOFT hypergraphs, Canad. Math. Bull. 21 (1978),
335–337.

[51] P.A. Bernstein and N. Goodman, Power of natural semijoins, SIAM J. Comput. 10
(1981), 751–771.

[52] T.A. McKee, How chordal graphs work, Bull. ICA 9 (1993), 27–39.

[53] B.D. Acharya and M. las Vergnas, Hypergraphs with cyclomatic number zero, trian-
gulated graphs, and an inequality, J. Comb. Theor. (B) 33 (1982), 52–56.

816 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[54] P. Hansen and M. Las Vergnas, On a property of hypergraphs with no cycles of length
greater than two, In Hypergraph Seminar, Lecture Notes in Math. 411 (1974), 99–101.

[55] M. Lewin, On hypergraphs without significant cycles, J. Comb. Theor. (B) 20 (1976),
80–83.

[56] M.H. Graham, On the universal relation, Tech. Report, University of Toronto, Ontario,
Canada, 1979.

[57] C.T. Yu and M.Z. Ozsoyoglu, An algorithm for tree-query membership of a distributed
query, Proc. 1979 IEEE COMPSAC, IEEE, New York, 1979, 306–312.

[58] R. Fagin, A.O. Mendelzon, and J.D. Ullman, A simplified universal relation assumption
and its properties, ACM Trans. Database Syst. 7 (1982), 343–360.

[59] A. Brandstädt, F.F. Dragan, V.D. Chepoi, and V.I. Voloshin, Dually chordal graphs,
Technical report SM-DU-225, University of Duisburg 1993; extended abstract in: Pro-
ceedings of WG 1993, LNCS 790, 237–251, 1993; full version in SIAM J. Discr. Math.
11 (1998), 437–455.

[60] F.F. Dragan, HT-graphs: Centers, connected r-domination and steiner trees, Comp.
Sci. J. Moldova 1 (1993), 64–83.

[61] F.F. Dragan, C.F. Prisacaru, and V.D. Chepoi, Location problems in graphs and the
Helly property (in Russian) (1987) (appeared partially in Diskretnaja Matematika 4
(1992), 67–73).

[62] H. Behrendt and A. Brandstädt, Domination and the use of maximum neighborhoods,
Technical report SM-DU-204, University of Duisburg, Germany, 2002.

[63] A. Brandstädt, V.D. Chepoi, and F.F. Dragan, The algorithmic use of hypertree struc-
ture and maximum neighbourhood orderings, Technical report SM-DU-244, University
of Duisburg 1994; extended abstract in: Proceedings of WG 1994, LNCS 903, 65–80,
1994; full version in Discrete Applied Math. 82 (1998), 43–77.

[64] J.L. Szwarcfiter and C.F. Bornstein, Clique graphs of chordal and path graphs, SIAM
J. Discrete Math. 7 (1994) 331–336.

[65] M. Gutierrez and L. Oubiña, Metric characterizations of proper interval graphs and
tree-clique graphs, J. Graph Theor. 21 (1996), 199–205.

[66] A. Brandstädt, V.D. Chepoi, and F.F. Dragan, Clique r-domination and clique
r-packing problems on dually chordal graphs, SIAM J. Discrete Math. 10 (1997),
109–127.

[67] P. De Caria, A Joint Study of Chordal and Dually Chordal Graphs, PhD thesis, Uni-
versidad Nacional de la Plata, Argentina, 2012.

[68] P. De Caria and M. Gutierrez, On minimal vertex separators of dually chordal graphs:
Properties and characterizations, Discrete Appl. Math. 160 (2012), 2627–2635.

[69] P. De Caria and M. Gutierrez, Comparing trees characteristic to chordal and dually
chordal graphs, Electronic Notes in Discrete Math. 37 (2011), 33–38.

[70] P. De Caria and M. Gutierrez, On the correspondence between tree representations of
chordal and dually chordal graphs, Discrete Appl. Math. 164 (2014), 500–511.

Tree-Structured Graphs � 817

[71] A. Leitert, Das Dominating Induced Matching Problem für azyklische Hypergraphen,
Diploma thesis, University of Rostock, Germany, 2012.

[72] M. Moscarini, Doubly chordal graphs: Steiner trees and connected domination, Netw.
23 (1993), 59–69.

[73] A. Brandstädt, F.F. Dragan, and F. Nicolai, Homogeneously orderable graphs, Theor.
Comput. Sci. 172 (1997), 209–232.

[74] A. Lubiw, Doubly lexical orderings of matrices, SIAM J. Comput. 16 (1987), 854–879.

[75] R. Paige and R.E. Tarjan, Three partition refinement algorithms, SIAM J. Comput.
16 (1987), 973–989.

[76] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam, the
Netherlands, 1979.

[77] L. Lovász and M.D. Plummer, Matching Theory, North-Holland, Amsterdam, the
Netherlands, Math. Studies Vol. 29, 1986.

[78] C. Berge and M. Las Vergnas, Sur un théorème du type Kőnig pour hypergraphes,
Annals NY Acad. Sci. 175 (1970), 32–40.

[79] A.E. Brouwer and A. Kolen, A super-balanced hypergraph has a nest point, Report
ZW 146/80, Mathematisch Centrum, Amsterdam, the Netherlands, 1980.

[80] A. D’Atri and M. Moscarini, On hypergraph acyclicity and graph chordality, Inf. Proc.
Letters 29 (1988), 271–274.

[81] R.P. Anstee and M. Farber, Characterizations of totally balanced matrices, J. Algo-
rithms 5 (1984), 215–230.

[82] A.J. Hoffman, A.W.J. Kolen, and M. Sakarovitch, Totally balanced and greedy matri-
ces, SIAM J. Alg. Discrete Meth. 6 (1985), 721–730.

[83] A. Lubiw, Γ-free matrices, Master’s thesis, Department of Combinatorics and Opti-
mization, University of Waterloo, Canada, 1982.

[84] A.A. Bertossi, Dominating sets for split graphs and bipartite graphs, Inf. Proc. Letters
19 (1984), 37–40.

[85] G.J. Chang, Labeling algorithms for domination problems in sun-free chordal graphs,
Discrete Appl. Math. 22 (1988), 21–34.

[86] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problem on sun-
free chordal graphs, SIAM J. Alg. Discrete Meth. 5 (1984), 332–345.

[87] G.J. Chang, M. Farber, and Z. Tuza, Algorithmic aspects of neighbourhood numbers,
SIAM J. Discrete Math. 6 (1993), 24–29.

[88] K. Iijima and Y. Shibata, A bipartite representation of a triangulated graph and its
chordality, Deptartment of Computer Science, Gunma University, Maebashi, Japan,
CS 79–1, 1979.

[89] J.P. Spinrad, Doubly lexical ordering of dense 0–1 matrices, Inf. Proc. Letters 45
(1993), 229–235.

818 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[90] A.E. Brouwer, P. Duchet, and A. Schrijver, Graphs whose neighborhoods have no
special cycles, Discrete Math. 47 (1983), 177–182.

[91] T.A. McKee, Strong clique trees, neighborhood trees, and strongly chordal graphs,
J. Graph Theor 33 (2000), 125–183.

[92] S. Ma and J. Wu, Characterizing strongly chordal graphs by using minimal relative
separators, Combinatorial Designs and Applications, W.D. Wallis, H. Shen, W. Wei,
and L. Shu (Eds.): Lecture Notes in Pure and Applied Mathematics 126, Marcel Dekker,
New York, 1990, 87–95.

[93] M.C. Golumbic and C.F. Goss, Perfect elimination and chordal bipartite graphs,
J. Graph Theor. 2 (1978), 155–163.

[94] R.B. Hayward, Weakly triangulated graphs, J. Comb. Theory (B) 39 (1985), 200–208.

[95] A. Brandstädt, Classes of bipartite graphs related to chordal graphs, Discrete Appl.
Math. 32 (1991), 51–60.

[96] E. Dahlhaus, Chordale Graphen im besonderen Hinblick auf parallele Algorithmen,
Habilitation Thesis, Universität Bonn, Germany, 1991.

[97] R. Uehara, Recognition of chordal bipartite graphs, Proceedings of ICALP, Lecture
Notes in Comp. Sci. 2380 (2002), 993–1004.

[98] J. Huang, Representation characterizations of chordal bipartite graphs, J. Combinato-
rial Theor. B 96 (2006) 673–683.

[99] A. Berry and A. Sigayret, Dismantlable lattices in the mirror, Proc. ICFCA 2013,
44–59.

[100] D.G. Corneil, H. Lerchs, and L. Stewart-Burlingham, Complement reducible graphs,
Discrete Appl. Math. 3 (1981), 163–174.

[101] D.G. Corneil, Y. Perl, and L.K. Stewart, Cographs: Recognition, applications, and
algorithms, Congressus Numer. 43 (1984), 249–258.

[102] D.G. Corneil, Y. Perl, and L.K. Stewart, A linear recognition algorithm for cographs,
SIAM J. Comput. 14 (1985), 926–934.

[103] D. Kratsch, R.M. McConnell, K. Mehlhorn, and J. Spinrad, Certifying algorithms for
recognizing interval graphs and permutation graphs, SIAM J. Comput. 36(2) (2006),
326–353.

[104] G. Damiand, M. Habib, and Ch. Paul, A simple paradigm for graph recognition:
Application to cographs and distance-hereditary graphs, TCS 263 (2001), 99–111.

[105] A. Bretscher, D.G. Corneil, M. Habib, and C. Paul, A simple linear time LexBFS
cograph recognition algorithm, Conference Proceedings of International Workshop on
Graph-Theoretic Concepts in Computer Science, In Lecture Notes in Comp. Sci. 2880,
Hans L. Bodlaender (Ed.), Elspeet, the Netherlands, 2003, 119–130.

[106] R.M. McConnell and J.P. Spinrad, Modular decomposition and transitive orientation,
Discrete Math. 201 (1999), 189–241.

Tree-Structured Graphs � 819

[107] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hung. 18 (1967),
25–66.

[108] A. Cournier and M. Habib, A new linear algorithm for modular decomposition,
LIRMM, University Montpellier (1995), Preliminary version in: Trees in Algebra and
Programming—CAAP, LNCS 787 (1994), 68–84.

[109] E. Dahlhaus, J. Gustedt, and R.M. McConnell, Efficient and practical modular decom-
position, J. Algorithms 41(2) (2001), 360–387.

[110] M. Habib, F. de Montgolfier, and C. Paul, A simple linear time modular decomposi-
tion algorithm for graphs, using order extension, Proc. 9th Scandinav. Workshop on
Algorithm Theory, Lecture Notes in Comp. Sci. 3111 (2004), 187–198.

[111] M. Tedder, D.G. Corneil, M. Habib, and C. Paul, Simpler linear-time modular
decomposition via recursive factorizing permutations, 35th International Colloquium on
Automata, Languages and Programming, Lecture Notes in Comput. Sci. 5125 (2008),
634–645.

[112] R.H. Möhring and F.J. Radermacher, Substitution decomposition for discrete struc-
tures and connections with combinatorial optimization, Annals of Discrete Math. 19
(1984), 257–356.

[113] C.T. Hoàng, A class of perfect graphs, MSc Thesis, School of Computer Science, McGill
University, Montreal, Canada, 1983.

[114] B. Jamison and S. Olariu, A tree representation for P4-sparse graphs, Discrete Appl.
Math. 35(2) (1992), 115–129.

[115] B. Jamison and S. Olariu, Recognizing P4-sparse graphs in linear time, SIAM J. Com-
put. 21(2) (1992), 381–406.

[116] B. Jamison and S. Olariu, Linear time optimization algorithms for P4-sparse graphs,
Discrete Appl. Math. 61(2) (1995), 155–175.

[117] C.T. Hoàng, Perfect graphs, PhD thesis, School of Computer Science, McGill University,
Montreal, Canada, 1985.

[118] W.H. Cunningham, Decomposition of directed graphs, SIAM J. Algebraic and Discrete
Meth. 3 (1982), 214–228.

[119] E. Dahlhaus, Parallel algorithms for hierarchical clustering and applications to split
decomposition and parity graph recognition, J. Algorithms 36 (2000), 205–240.

[120] P. Charbit, F. de Montgolfier, and M. Raffinot, A simple linear time split decomposition
algorithm of undirected graphs, CoRR abs/0902.1700, 2009.

[121] L. Babel and S. Olariu, On the p-connectedness of graphs—A survey, Discrete Appl.
Math. 95 (1999), 11–33.

[122] R.E. Tarjan, Decomposition by clique separators, Discrete Math. 55 (1985), 221–232.

[123] S.H. Whitesides, A method for solving certain graph recognition and optimization
problems, with applications to perfect graphs, In Topics on Perfect Graphs, Berge, C.
and V. Chvátal (Eds.), North-Holland, Amsterdam, the Netherlands, 1984.

820 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[124] A. Brandstädt, V. Giakoumakis, and F. Maffray, Clique-separator decomposition of
hole-free and diamond-free graphs, Discrete Appl. Math. 160 (2012), 471–478.

[125] V.E. Alekseev, On easy and hard hereditary classes of graphs with respect to the
independent set problem, Discrete Appl. Math. 132 (2004), 17–26.

[126] D. Lokshtanov, M. Vatshelle, and Y. Villanger, Independent set in P5-free graphs in
polynomial time, Tech. Report 2013, Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms.

[127] E. Howorka, A characterization of distance-hereditary graphs, Quart. J. Math. Oxford
Ser. 2(28) (1977), 417–420.

[128] H.-J. Bandelt and H.M. Mulder, Distance-hereditary graphs, J. Combin. Theor. (B)
41 (1986), 182–208.

[129] P.L. Hammer and F. Maffray, Completely separable graphs, Discrete Appl. Math. 27
(1990), 85–99.

[130] H.-J. Bandelt, A. Henkmann, and F. Nicolai, Powers of distance-hereditary graphs,
Discrete Math. 145 (1995), 37–60.

[131] A. D’Atri and M. Moscarini, Distance-Hereditary Graphs, Steiner Trees, and Connected
Domination, SIAM J. Comput. 17 (1988), 521–538.

[132] H.-J. Bandelt and V.D. Chepoi, Metric graph theory and geometry: A survey, Con-
temporary Mathematics 453, 2006, Surveys on Discrete and Computational Geometry,
Twenty Years Later, AMS-IMS-SIAM Joint Summer Conference, Snowbird, UT, J.E.
Goodman, J. Pach, and R. Pollack (Eds.), American Mathematical Society, June 18–22,
2006, 49–86.

[133] A. Brandstädt and F.F. Dragan, A linear-time algorithm for connected r-domination
and Steiner Tree on distance-hereditary graphs, Netw. 31 (1998), 177–182.

[134] D.C. Kay and G. Chartrand, A characterization of certain ptolemaic graphs, Canad.
J. Math. 17 (1965), 342–346.

[135] E. Howorka, A characterization of ptolemaic graphs, J. Graph Theor. 5 (1981), 323–331.

[136] R. Uehara and T. Uno, Laminar structure of ptolemaic graphs and its applications,
Proc. ISAAC 2005, X. Deng, D. Du (Eds.), Lecture Notes in Comp. Sci. 3827 (2005),
186–195; Discrete Appl. Math. 157 (2009), 1533–1543.

[137] A. Buneman, A note on the metric properties of trees, J. Comb. Theory (B) 1 (1974),
48–50.

[138] E. Howorka, On metric properties of certain clique graphs, J. Comb. Theory (B) 27
(1979), 67–74.

[139] C.W. Bachman, Data structure diagrams, Data Base 1(2) (1969), 4–10.

[140] Y.E. Lien, On the equivalence of database models, J. ACM 29(2) (1982), 333–363.

[141] M. Yannakakis, Algorithms for Acyclic Database Schemes, In Proc. of Int. Conf. on
Very Large Data Bases, C. Zaniolo, C. Delobel (Eds.), Cannes, France, 1981, 82–94.

Tree-Structured Graphs � 821

[142] N. Robertson and P.D. Seymour, Graph minors. III. Planar tree-width, J. Comb.
Theor.(B) 36 (1984), 49–64.

[143] N. Robertson and P.D. Seymour, Graph width and well-quasi ordering: A survey,
Progress in Graph Theory, J. Bondy and U. Murty (Eds.), Academic Press, New York,
1984, 399–406.

[144] N. Robertson and P.D. Seymour, Graph minors—A survey, Surveys in Combinatorics,
I. Anderson (Ed.), London Mathematical Society, Lecture Note Series 103, Invited
papers for the 10th British Combinatorial Conference, Cambridge University Press,
1985, 153–171.

[145] N. Robertson and P.D. Seymour, Graph minors. II. Algorithmic aspects of tree width,
J. Algorithms 7 (1986), 309–322.

[146] T. Kloks, Treewidth—Computations and approximations, Lecture Notes in Comput.
Sci. 842 (1994), 1–209.

[147] D.J. Rose, On simple characterizations of k-trees, Discrete Math. 7 (1974), 317–322.

[148] S. Arnborg, J. Lagergren, and D. Seese, Easy problems for tree-decomposable graphs,
J. Algorithms 12 (1991), 308–340.

[149] B. Courcelle, The monadic second-order logic of graphs III: Tree-decompositions, minor
and complexity issues, Informatique Theorique et Applications 26 (1992), 257–286.

[150] H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small
treewidth, SIAM J. Comput. 25 (1996), 1305–1317.

[151] M. Thorup, All structured programs have small tree width and good register allocation,
Information and Computation 142(2) (1988), 159–181.

[152] Y. Dourisboure and C. Gavoille, Tree-decompositions with bags of small diameter,
Discrete Math. 307 (2007), 2008–2029.

[153] B. Courcelle, J. Engelfriet, and G. Rozenberg, Handle-rewriting hypergraph grammars,
J. Comput. Syst. Sci. 46 (1993), 218–270.

[154] B. Courcelle and S. Olariu, Upper bounds to the clique width of graphs, Discrete Appl.
Math. 101 (2000), 77–114.

[155] D.G. Corneil and U. Rotics, On the relationship between clique-width and treewidth,
Internat. Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes
in Comput. Sci. 2204 (2001), 78–90; SIAM J. Computing 34 (2005), 825–847.

[156] B. Courcelle, J.A. Makowsky, and U. Rotics, Linear time solvable optimization prob-
lems on graphs of bounded clique width, Theor. Comput. Syst. 33 (2000), 125–150.

[157] W. Espelage, F. Gurski, and E. Wanke, How to solve NP-hard graph problems on clique-
width bounded graphs in polynomial time, Internat. Workshop on Graph-Theoretic
Concepts in Computer Science, Lecture Notes in Comput. Sci. 2204 (2001), 117–128.

[158] D. Kobler and U. Rotics, Edge dominating set and colorings on graphs with fixed
clique-width, Discrete Appl. Math. 126 (2002), 197–221.

822 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[159] M.U. Gerber and D. Kobler, Algorithms for vertex partitioning problems on graphs
with fixed clique-width, Theor. Comput. Sci. 1–3 (2003), 719–734.

[160] M.C. Golumbic and U. Rotics, On the clique-width of perfect graph classes, Int.
J. Foundations Comput. Sci. 11 (2000), 423–443.

[161] A. Brandstädt and V.V. Lozin, On the linear structure and clique width of bipartite
permutation graphs, RUTCOR Research Report, Rutgers University, New Brunswick,
NJ, 29–2001 (2001); Ars Combinatoria (2003) 273–281.

[162] A. Brandstädt, F.F. Dragan, H.-O. Le, and R. Mosca, New graph classes of bounded
clique width, Theor. Comput. Syst. 38 (2005), 623–645.

[163] A. Brandstädt, J. Engelfriet, H.-O. Le, and V.V. Lozin, Clique-width for four-vertex
forbidden subgraphs, Theor. Comput. Syst. 39 (2006), 561–590.

[164] A. Brandstädt, Hoàng-Oanh Le, and R. Mosca, Gem- and co-gem-free graphs have
bounded clique width, Internat. J. Foundat. Computer Science 15 (2004), 163–185.

[165] A. Brandstädt, Hoàng-Oanh Le, and R. Mosca, Chordal co-gem-free graphs and
(P5,gem)-free graphs have bounded clique width, Discrete Appl. Math. 145 (2005),
232–241.

[166] H.-O. Le, Contributions to clique-width of graphs, Dissertation, University of Rostock,
Germany, 2003.

[167] J.A. Makowsky and U. Rotics, On the clique-width of graphs with few P4’s, Int.
J. Foundat. Comput. Sci. 10 (1999), 329–348.

[168] M. Kamiński, V.V. Lozin, and M. Milanič, Recent developments on graphs of bounded
clique-width, Discrete Appl. Math. 157 (2009), 2747–2761.

[169] M.R. Fellows, F.A. Rosamond, U. Rotics, and S. Szeider, Clique-width is NP-complete,
SIAM J. Alg. Discr. Math. 23(2) (2009), 909–939.

[170] D.G. Corneil, M. Habib, J.M. Lanlignel, B. Reed, and U. Rotics, Polynomial time recog-
nition of clique-width ≤ 3 graphs, Proceedings of LATIN, Lecture Notes in Comput.
Sci. 1776 (2000), 126–134.

[171] E. Wanke, k-NLC graphs and polynomial algorithms, Discrete Appl. Math. 54 (1994),
251–266.

[172] Ö. Johansson, Clique decomposition, NLC decomposition, and modular
decomposition—Relationships and results for random graphs, Congressus Nu-
merantium 132 (1998), 39–60.

[173] F. Gurski and E. Wanke, Line graphs of bounded clique-width, Discrete Math. 307
(2007), 2734–2754.

[174] V. Limouzy, F. de Montgolfier, and M. Rao, NLC2 recognition and isomorphism, Pro-
ceedings of WG 2007, Lecture Notes in Comput. Sci. 4769 (2007), 86–98.

[175] S.-I. Oum, Approximating rank-width and clique-width quickly, ACM Transactions on
Algorithms 5 (2008), 1–20.

Tree-Structured Graphs � 823

[176] S.-I. Oum and P.D. Seymour, Approximating clique-width and branch-width, J. Comb.
Theory (B) 96 (2006), 514–528.

[177] R. Uehara, S. Toda, and T. Nagoya, Graph isomorphism completeness for chordal
bipartite graphs and strongly chordal graphs, Discr. Appl. Math. 145 (2005), 479–482.

[178] A. D’Atri, M. Moscarini, and H.M. Mulder, On the isomorphism problem for distance-
hereditary graphs, Econometric Institute Tech. Report EI9241, A Rotterdam School of
Economics, 1992.

[179] S.-I. Nakano, R. Uehara, and T. Uno, A new approach to graph recognition and appli-
cations to distance-hereditary graphs, J. Comput. Sci. Technol. 24(3) (2009), 517–533.

[180] M. Grötschel, L. Lovász, and A. Schrijver, Polynomial algorithms for perfect graphs,
Ann. Discr. Math. 21 (1984), 325–356.

[181] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer, 1988.

[182] H. Müller, Hamilton circuits in chordal bipartite graphs, Discr. Math. 156 (1996),
291–298.

[183] P. Damaschke, H. Müller, and D. Kratsch, Domination in convex and chordal bipartite
graphs, Inf. Proc. Letters 36 (1990), 231–236.

[184] K. Cameron, Induced matchings, Discr. Appl. Math. 24 (1989), 97–102.

[185] L.J. Stockmeyer and V.V. Vazirani, NP-completeness of some generalizations of the
maximum matching problem, Inform. Process. Lett. 15 (1982), 14–19.

[186] K. Cameron, R. Sritharan, and Y. Tang, Finding a maximum induced matching in
weakly chordal graphs, Discrete Math. 266 (2003), 133–142.

[187] A. Brandstädt and C.T. Hòang, Maximum induced matching for chordal graphs in
linear time, Algorithmica 52(4) (2008), 440–447.

[188] A. Brandstädt, A. Leitert, and D. Rautenbach, Efficient dominating and edge domi-
nating sets for graphs and hypergraphs, extended abstract in: Proceedings of ISAAC,
Taiwan, 2012; LNCS 7676, 267–277.

[189] N. Biggs, Perfect codes in graphs, J. Combinatorial Theor. (B) 15 (1973), 289–296.

[190] C.-C. Yen and R.C.T. Lee, The weighted perfect domination problem and its variants,
Discrete Appl. Math. 66 (1996), 147–160.

[191] C.L. Lu and C.Y. Tang, Weighted efficient domination problem on some perfect graphs,
Discr. Appl. Math. 117 (2002), 163–182.

[192] D.M. Cardoso, N. Korpelainen, and V.V. Lozin, On the complexity of the dominating
induced matching problem in hereditary classes of graphs, Discr. Appl. Math. 159
(2011), 521–531.

[193] C.L. Lu, M.-T. Ko, and C.Y. Tang, Perfect edge domination and efficient edge domi-
nation in graphs, Discr. Appl. Math. 119 (2002), 227–250.

824 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[194] A. Brandstädt, C. Hundt, and R. Nevries, Efficient edge domination on hole-free graphs
in polynomial time, Extended abstract in: Conference Proceedings LATIN, LNCS 6034
(2010), 650–661.

[195] F. Nicolai, Strukturelle und algorithmische Aspekte distanz-erblicher Graphen und
verwandter Klassen, Dissertation, Gerhard-Mercator-Universität Duisburg, Germany,
1994.

[196] F. Nicolai, Hamiltonian problems on distance-hereditary graphs, Schriftenreihe des
Fachbereichs Mathematik der Universität Duisburg SM-DU-255 (1994); corrected ver-
sion 1996.

[197] R.-W. Hung, S.-C. Wu, and M.-S. Chang, Hamiltonian cycle problem on distance-
hereditary graphs, J. Inform. Sci. Engg. 19 (2003), 827–838.

[198] S.-Y. Hsieh, C.-W. Ho, T.-S. Hsu, and M.-T. Ko, The Hamiltonian problem on distance-
hereditary graphs, Discr. Appl. Math. 154 (2006), 508–524.

[199] R.-W. Hung and M.-S. Chang, Linear-time algorithms for the Hamiltonian problems
on distance-hereditary graphs, Theor. Comput. Sci. 341 (2005) 411–440.

[200] H. Müller and F. Nicolai, Polynomial time algorithms for the Hamiltonian problems
on bipartite distance-hereditary graphs, Inf. Proc. Lett. 46 (1993), 225–230.

[201] M.S. Chang, S.C. Wu, G.J. Chang, and H.G. Yeh, Domination in distance-hereditary
graphs, Discrete Appl. Math. 116 (2002), 103–113.

[202] F. Nicolai and T. Szymczak, Homogeneous sets and domination: A linear time algo-
rithm for distance-hereditary graphs, Schriftenreihe des Fachbereichs Mathematik der
Universität Duisburg SM-DU-336 (1996); Netw. 37 (2001), 117–128.

[203] F. de Montgolfier, M. Soto, and L. Viennot, Treewidth and hyperbolicity of the Inter-
net, Proceedings of the 10th IEEE International Symposium on Networking Computing
and Applications, NCA 2011, August 25–27, 2011, Cambridge, MA. IEEE Computer
Society, 2011, 25–32.

[204] M. Abu-Ata and F.F. Dragan, Metric tree-like structures in real-life networks: An
empirical study, Manuscript 2013.

[205] F.F. Dragan and E. Köhler, An approximation algorithm for the tree t-spanner problem
on unweighted graphs via generalized chordal graphs, approximation, randomization,
and combinatorial optimization. algorithms and techniques. Proceedings of the 14th
International Workshop, APPROX 2011, and 15th International Workshop, RANDOM,
Princeton, NJ, August 17–19, 2011, Lecture Notes in Computer Science 6845, Springer,
171–183; Algorithmica (in print 2014).

[206] F.F. Dragan and I. Lomonosov, On compact and efficient routing in certain graph
classes, Discrete Appl. Math. 155 (2007), 1458–1470.

[207] D. Lokshtanov, On the complexity of computing tree-length, Discrete Appl. Math. 158
(2010), 820–827.

[208] V.D. Chepoi, F.F. Dragan, I. Newman, Y. Rabinovich, and Y. Vaxes, Constant approx-
imation algorithms for embedding graph metrics into trees and outerplanar graphs,
Discrete & Computational Geometry 47 (2012), 187–214.

Tree-Structured Graphs � 825

[209] A. Brandstädt, V.D. Chepoi, and F.F. Dragan, Distance approximating trees for
chordal and dually chordal graphs, J. Algorithms 30 (1999), 166–184.

[210] V.D. Chepoi and F.F. Dragan, A note on distance approximating trees in graphs,
European J. Combin. 21 (2000), 761–766.

[211] V.D. Chepoi, F.F. Dragan, B. Estellon, M. Habib, and Y. Vaxes, Diameters, centers,
and approximating trees of δ-hyperbolic geodesic spaces and graphs, Proceedings of the
24th Annual ACM Symposium on Computational Geometry, June 9–11, 2008, College
Park, MD, pp. 59–68.

[212] Y. Dourisboure, F.F. Dragan, C. Gavoille, and C. Yan, Spanners for bounded tree-
length graphs, Theor. Comput. Sci. 383 (2007) 34–44.

[213] F.F. Dragan and M. Abu-Ata, Collective additive tree spanners of bounded tree-
breadth graphs with generalizations and consequences, SOFSEM: Theory and Practice
of Computer Science, Lecture Notes in Comput. Sci. 7741 (2013), 194–206.

[214] Y. Dourisboure, Compact routing schemes for generalised chordal graphs, J. Graph
Algorithms Appl. 9 (2005), 277–297.

[215] F.F. Dragan, C. Yan, and I. Lomonosov, Collective tree spanners of graphs, SIAM J.
Discrete Math. 20 (2006), 241–260.

[216] L. Cai and D.G. Corneil, Tree spanners, SIAM J. Discrete Math. 8 (1995), 359–387.

[217] Y. Emek and D. Peleg, Approximating minimum max-stretch spanning trees on un-
weighted graphs, SIAM J. Comput. 38 (2008), 1761–1781.

[218] M. Gromov, Hyperbolic groups, In Essays in Group Theory, S.M. Gersten (Ed.), MSRI
Series 8 (1987), 75–263.

[219] Y. Shavitt and T. Tankel, On internet embedding in hyperbolic spaces for overlay
construction and distance estimation, In INFOCOM, 2004.

[220] I. Abraham, M. Balakrishnan, F. Kuhn, D. Malkhi, V. Ramasubramanian, and K.
Talwar, Reconstructing approximate tree metrics, Proceedings of the 26th Annual ACM
Symposium on Principles of Distributed Computing, Portland, OR, August 12–15, 2007,
ACM, pp. 43–52.

[221] R. Kleinberg, Geographic routing using hyperbolic space, In INFOCOM, 2007, pp.
1902–1909.

[222] G. Brinkmann, J. Koolen, and V. Moulton, On the hyperbolicity of chordal graphs,
Ann. Comb. 5 (2001), 61–69.

[223] Y. Wu and Ch. Zhang, Hyperbolicity and chordality of a graph, Electr. J. Comb. 18
(2011), P43.

[224] H. Fournier, A. Ismail, and A. Vigneron, Computing the Gromov hyperbolicity of a
discrete metric space, CoRR abs/1210.3323 (2012), http://arxiv.org/abs/1210.3323.

[225] C. Gavoille and O. Ly, Distance labeling in hyperbolic graphs, In ISAAC, 2005,
pp. 171–179.

826 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[226] R. Krauthgamer and J.R. Lee, Algorithms on negatively curved spaces, In Proceedings
of the 47th FOCS, Berkeley, CA, 2006, pp. 119–132.

[227] V. Chepoi and B. Estellon, Packing and covering δ-hyperbolic spaces by balls, In
APPROX-RANDOM, 2007, pp. 59–73.

[228] V.D. Chepoi, F.F. Dragan, B. Estellon, M. Habib, Y. Vaxès, and Y. Xiang, Additive
spanners and distance and routing labeling schemes for δ-hyperbolic graphs, Algorith-
mica 62 (2012), 713–732.

[229] F.F. Dragan, Tree-like structures in graphs: A metric point of view, In Graph-Theoretic
Concepts in Computer Science—39th International Workshop, Lübeck, Germany, June
19–21, 2013, Springer, Lecture Notes in Comp. Sci. 8165, 1–4.

[230] R. Agarwala, V. Bafna, M. Farach, B. Narayanan, M. Paterson, and M. Thorup, On
the approximability of numerical taxonomy (fitting distances by tree metrics), SIAM
J. Comput. 28 (1999), 1073–1085.

[231] M. Bădoiu, E.D. Demaine, M.T. Hajiaghayi, A. Sidiropoulos, and M. Zadimoghad-
dam, Ordinal embedding: Approximation algorithms and dimensionality reduction, In
Proceedings of the 11th International Workshop on Approximation Algorithms for Com-
binatorial Optimization Problems, Boston, MA, August 25–27, 2008, Springer, Lecture
Notes in Computer Science 5171, 21–34.

[232] M. Bădoiu, P. Indyk, and A. Sidiropoulos, Approximation algorithms for embedding
general metrics into trees, In Proceedings of the 18th Annual ACM-SIAM Symposium
on Discrete Algorithms, New Orleans, LA, January 7–9, 2007, ACM/SIAM, 512–521.

VIII
Partitioning

827

C H A P T E R 30

Graph and Hypergraph
Partitioning
Sachin B. Patkar

H. Narayanan

CONTENTS

30.1 Overview of the Partitioning Problem . 830
30.1.1 Some Definitions . 831

30.2 Class of Graph Partition Problems and Combinatorial Approaches 832
30.2.1 Bipartitioning Algorithm of Stoer, Wagner, and Frank 833

30.2.1.1 Justification . 833
30.2.2 Multiway Cut . 834
30.2.3 Minimum Cost Multicut Problem . 835

30.3 Submodular Optimization-Based Partitioning Algorithms . 837
30.3.1 Finding Densest Cluster . 838
30.3.2 Principal Lattice of Partitions . 839
30.3.3 Improving Ratio-Cut Using Principal Partition . 842

30.3.3.1 Algorithm to Improve Ratio-Cut . 843
30.3.3.2 Justification of Algorithm . 844

30.4 Iterative and Multilevel Partitioning Algorithms . 845
30.4.1 K–L Algorithm . 845

30.4.1.1 Some Definitions . 845
30.4.1.2 Important Features of the K–L Algorithm 845

30.4.2 F–M Algorithm . 847
30.4.2.1 Drawback of Iterative Move-Based Algorithms 847

30.4.3 Multilevel Partitioning . 848
30.4.3.1 Multilevel Steps . 848
30.4.3.2 Coarsening . 849
30.4.3.3 V -Cycle Refinement . 849
30.4.3.4 Connectivity-Based Clustering Algorithm 849

30.5 Spectral Approaches for Partitioning . 849
30.5.1 Hall’s Approach and Its Variations . 849

30.5.1.1 Spectral Bipartitioning Algorithm of Hall 854
30.5.2 Another View of Spectral Approach to Graph Bisection 854

30.5.2.1 Dealing with Fixed Vertices . 854
30.5.3 Partitioning into k Blocks: Barnes’ Approach . 854
30.5.4 Ratio-Cut Bipartitioning Using Eigenspectrum . 857
30.5.5 Spectral Bound Involving Multiple Eigenvectors . 857
30.5.6 Simple Eigenvector-Based Clustering . 859

30.5.6.1 Algorithm . 859

C5955–C0030.tex 829 2015/11/4 1:00pm

829

830 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

30.5.6.2 Theoretical Motivation . 860
30.5.7 Graph Partitioning Using Multiple Eigenvectors . 860
30.5.8 Multilevel Spectral Partitioning . 861

30.5.8.1 Multilevel Spectral Partitioning Algorithm 861
30.5.9 Eigenvalue-Based Hypergraph Reordering and Partitioning 862

30.6 Simulated Annealing and Graph Bisection . 864
30.7 Specific Variations of Graph/Hypergraph Partitioning . 866

30.7.1 Efficient Network Flow-Based Minimum Cost Balanced Partitioning . . . 867
30.7.1.1 Modeling a Net in a Flow-Network . 867
30.7.1.2 Optimal Minimum Netcut Algorithm . 868
30.7.1.3 Most r-Balanced Minimum Netcut Bipartition: An

NP-Complete Problem . 868
30.7.1.4 Minimum Cost Balanced Bipartition . 868
30.7.1.5 Efficient Implementation . 869

30.7.2 Optimal Replication for Minimum k-Cut Partitioning 869
30.7.2.1 Vertex Replication . 870
30.7.2.2 Minimum k-Cut Replication Problem . 870

30.1 OVERVIEW OF THE PARTITIONING PROBLEM

It is often desirable to break up a large problem into parts in such a way as to distribute the
workload in a balanced manner and also to optimize the volume of communication between
the processes carrying out the computation. Often this gets modeled as a graph/hypergraph
partitioning problem.

Two examples from critical diverse domains are the following. The graph partitioning
problem is of interest in areas such as CAD for VLSI circuits (computer-aided design for very
large-scale integrated circuits) [1–4], and efficient parallel implementations of finite element
methods [5–7]. Both these kind of problems present massive-sized instances and therefore a
divide and conquer style of approach needs to be taken for scalability. Specifically in case
of automated placement of VLSI netlist, the netlist is partitioned in such a way that it is
effective to perform the placement on the parts which are of manageable size. Further the
cost of patching up the placement of these sublists into that of the original is attempted to
be minimized. The cost of the partitioning in such a problem is related to wirelengths.

On the other hand, in the case of finite element method the core workhorse performs a
large number of invocations of the multiplication of a large sparse matrix with a vector. And
this multiplication (SpMxV) is typically solved in a distributed fashion after partitioning
the domain variables in such a manner the volume of communication between the processes
collaborating on the SpMxV is minimized. Furthermore a realistic constraint is that the
computational load should be balanced across multiple processes.

In this chapter, we aim to describe a wide variety of ideas and algorithms for graph
and hypergraph partitioning problems. Given the vast literature available on this subject,
it is impossible to cover a full spectrum of the ideas in this chapter, and therefore the
reader is also referred to several survey articles which together cover a wide range of themes
and paradigms in this subject [1,3,4,8–11]. Forthcoming sections are organized according to
different major paradigms to which the graph/hypergraph partitioning approaches belong.
Section 30.2 describes a couple of approaches based on combinatorial techniques or on
mathematical programming techniques. Essential ideas underlying techniques based on
submodular function optimization [12–15] are brought out in Section 30.3. In Section 30.4,

C5955–C0030.tex 830 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 831

the classical iterative algorithms of Kernighan–Lin (K–L) and Fiduccia–Mattheyses (F–M)
for graph and hypergraph partitioning are outlined. Further the same section also briefly out-
lines multilevel approaches, which contribute most efficient and practical algorithms for very
large-scale partitioning. Spectral graph theory contributes a large variety of techniques for
graph partitioning. Furthermore, there are interesting applications of ideas based on eigen-
spectra of matrices that are relevant to hypergraph partitioning too. These spectral ideas are
described in Section 30.5. Section 30.6 outlines simulated annealing approach to graph par-
titioning and Section 30.7 describes a couple of approaches which deal with certain practical
variants of graph/hypergraph partitioning problems which occur in the domain of VLSI CAD.

We assume reader’s familiarity with standard concepts, definitions and notation in graph
theory, algorithms, complexity analysis, and combinatorial optimization [16,17]. Similarly for
linear/matrix algebra and computations relevant to this chapter, the reader may refer to any
standard text of choice (e.g., [18]) and for more specific topics, texts such as [19] are recom-
mended. Also the concept of a hypergraph is of primary relevance to this chapter (quite simply
put, a hypergraph is a generalization of the concept of graph, wherein rather than edges which
connect at most two vertices, a hyperedge may connect an arbitrary number of vertices).

Given a graph or a hypergraph H, k-partition of H is an assignment of all the nodes
(vertices) of H to k disjoint nonempty blocks. A 2-partition is also called a bipartition. The
k-partitioning problem seeks to minimize a specified cost function of such a partitioning.
Often this cost function simply measures the weight of edges or hyperedges that have been
cut across the blocks of the partition. One also typically imposes constraints on the parti-
tions for example, fixing vertices in specific blocks, ensuring weight of each block to be within
certain bounds, and so forth. This increases the complexity of the problem further. As an
illustration of the point, note that for the case of k = 2, the graph 2-partitioning problem is
the well known min-cut (minimum 2-cut) problem that has elegant solutions (network flow
based and otherwise). But when one demands that the 2 parts be equal in size, the result-
ing problem turns out to be NP-complete [20,21]. However due to its criticality in several
practical applications, heuristic algorithms for such graph/hypergraph partitioning problems
have been developed possessing near-linear runtime performance. The standard graph parti-
tioning problem (partitioning vertex set of an edge weighted graph into k equal sized parts,
such that the weight of the cut edges is minimum) was shown to be NP-complete [20,21]
for fixed k ≥ 3. Due to this intractability researchers have concentrated on heuristics and
approximation algorithms for this problems, that is, algorithms that often find good quality
but not necessarily optimal solutions.

30.1.1 Some Definitions

A hypergraph H(V, E) is described by a collection V of vertices (or nodes) and, the collection
E of hyperedges. Each hyperedge e ∈ E is itself a subset of vertices from V . A graph is a
special case of the concept of hypergraph where an hyperedge is merely an edge described by
its (at most!) 2 endpoints. Hypergraphs are very useful for modeling VLSI circuit. A VLSI
circuit is usually described by its netlist. A netlist is a representation of the vlsi cells and the
signal nets connecting them. Each signal net listed in the netlist can naturally be represented
as a hyperedge incident on the vertices representing the cells connected by the signal net.
A netlist can thus be represented as a hypergraph, a cell becomes a node and the nets are
hyperedges of the corresponding hypergraph. Partitioning procedure divides a given circuit
into a number of divisions to meet some specified objective. A net is said to be cut if not all
the vertices connected by this net are in the same part of the partition.

Network flow theory is of paramount importance in combinatorial optimization [16,17,
22,23]. A multitude of graph (and hypergraph) partitioning approaches rely significantly on

C5955–C0030.tex 831 2015/11/4 1:00pm

832 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

network flow ideas, and many such ideas are described in this chapter. We assume familiarity
of the reader with the concepts of flow (and its maximization) in a capacitated flow net-
work, the notion of (source–sink) cuts in the flow network and their (forward) capacity. The
celebrated maximum flow, minimum cut duality in network flow theory is often employed
in solving several problems efficiently. One word of caution: when we refer to a cut in the
context of a flow network, we mean the set of flow network arcs which when removed sep-
arate the source s and the sink t (usual notation!). Often we would associate cuts in a
graph/hypergraph with (s − t) cuts in a flow network.

Submodular function optimization [13,14] plays an important role in graph partitioning.
We need the following definitions for later use. Let S be a finite set and let f : 2S−→ℜ. The
function f is said to be a submodular function iff f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y)∀X,
Y ⊆ S. If the inequality is reversed, one gets the definition of supermodular functions. In
other words, f is supermodular iff −f is submodular. And the function f is modular if the
inequality is satisfied as equality.

30.2 CLASS OF GRAPH PARTITION PROBLEMS AND COMBINATORIAL
APPROACHES

In this section, we aim to illustrate through a few important general variations of graph
partitioning problems, important combinatorial solution approaches. Some of them are based
on clever ordering schemes, some on simple approximation algorithms for such NP-complete
problems. On the other hand, several approaches are based on mathematical programming
and duality theory. Our choice of the algorithms to highlight this, is not canonical. There
are several other equally interesting and powerful ideas elsewhere in the vast literature on
this subject. A few of the other notable combinatorial approaches are due to Nagamochi and
Ibaraki [24], Karger [25,26], Leighton and Rao [27], Cheng and Hu [28], Gomory and Hu [29],
and due to Goldschmidt and Hochbaum [30].

Definition 30.1 (Minimum k-cut) A k-cut is a set of edges whose removal disconnects
graph into at least k connected components. Minimum k-cut is a k-cut of least weight.

Definition 30.2 (Minimum multiway cut) A multiway cut is a set of edges whose re-
moval separates the given set of terminals {s1, s2, . . ., si, . . ., sk} from each other.

It is NP-complete to find minimum weight multiway cut for k ≥ 3 (note that for k = 2
it reduces to max-flow-min-cut [16,31] problem that is in P). However the problem of finding
minimum k-cut, though NP-complete when k is part of the input, is solvable in time poly-
nomial in n for fixed k (specifically the result of [30] gives an O(nk2/2) algorithm). In this
sense minimum k-cut is an easier problem than minimum weight multiway cut problem.

Definition 30.3 (Minimum multicut) A multicut is a set of edges whose removal sepa-
rates the terminals si from ti for all i = 1, 2, . . ., k (note that si’s need not be distinct and
also ti’s need not be distinct). Minimum multicut is a such a multicut of smallest weight.

It is easy to observe that minimum multiway cut problem may be formulated as a minimum
multicut separating each pair of vertices among the terminals listed for the multiway cut
problem. The number of pairs whose vertices are to be separated in the multicut instance is
quadratically many compared to that in the corresponding original multiway cut problem.
However as the multiway problem is NP-complete for even fixed k ≥ 3, so is the multicut
problem.

C5955–C0030.tex 832 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 833

30.2.1 Bipartitioning Algorithm of Stoer, Wagner, and Frank

The problem of finding a bipartition (i.e., a 2-partition) of vertex set of a graph with minimum
cost of the cut edges has been well researched. In the absence of constraints on the sizes of
the block sizes (excepting that the blocks are non-empty), it is well known that the problem
is solvable using |V | invocations of max-flow-min-cut algorithm which builds a Gomory–Hu
cut-tree [29]. However currently there are more efficient algorithms available. One of the
radically different one to appear was due to Nagamochi & Ibaraki [24]. Their formidable
algorithm was simplified independently by Stoer and Wagner [32] and Frank.

Algorithm 30.1 The Stoer–Wagner and Frank algorithm

Input An undirected edge-weighted graph.
Output A minimum 2-cut

• Select a vertex v0 at random.

• In the kth iteration, do the following. Let v1, . . ., vk−1 be the sequence of vertices
selected so far.

– Find vk, a vertex that maximizes weighted connectivity with the set
{v1, . . ., vk−1}.

• When this phase terminates the vertices of the current graph would be enumer-
ated as v1, . . ., vn−1, vn. The set of edges incident on vn (star of vn) is a cut that
we call the cut of the phase.

• Shrink vn, vn−1 into a single node.

• Repeat the above steps for the resulting graph. Let the new sequence of vertices
be v̂1, . . ., v̂n−2, v̂n−1.

• The cut of this phase is the one that separates v̂n−1 from the earlier set of vertices.
Proceed in this manner for (n − 1) phases.

• Minimum among the cuts of phases is the desired minimum 2-cut.

30.2.1.1 Justification

We claim that the cut of a phase has the minimum weight among all those separating the
last vertex of the phase from the last but one vertex. For instance the first phase gives a
cut of minimum weight which separates vn from vn−1. We defer the proof of this claim.
If there exists a minimum 2-cut of the graph that also separates vn from vn−1 then cut of
this phase is one such. Otherwise any min 2-cut of the original graph would persist as a
minimum 2-cut even after fusing vn and vn−1 into a single vertex. The algorithm now has to
work on a graph with (n −1) vertices. The algorithm is clearly valid when there are only two
vertices. Therefore by induction, the algorithm finds a minimum 2-cut, provided the above
claim about the cut of the phase is true.

Claim 30.1 Among all cuts which separate vn−1 and vn, the cut of the phase has minimum
weight.

Proof. Let C be any cut separating vn−1 and vn. We will use the following notation. w(C)
denotes the cost of the edges in C, and w(X, p) denote the weight of the edges connecting

C5955–C0030.tex 833 2015/11/4 1:00pm

834 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

vertex p to a set of vertices X, furthermore let Au denote the set of vertices appearing before
u in the sequence generated by the current phase. Note that when we select vn in the phase,
we just crossed the cut C (i.e., vn−1 and vn are on opposite sides of C). To use induction, we
will consider, in the sequence of vertices generated by the phase, those vertices whenever the
sequence just crosses the cut C. We call such vertices active (more formally, a vertex vi is said
to be active w.r.t. C, if the previous vertex vi−1 in the sequence generated by the phase is
on the other side of C). Using induction on the sequence of active vertices, we will show that
w(Au, u) ≤ w(Cu), where Cu denotes the cut induced by C on the subgraph on Au ∪ {u}.
Clearly, for the first active vertex, say u1, w(Au1 , u1) = w(Cu1). To prove it for arbitrary
active vertex, say v, let u be the preceding active vertex. w(Av, v) = w(Av\Au, v)+w(Au, v).
But w(Au, v) ≤ w(Au, u) due to the scheme of ordering the vertices. Furthermore the set of
edges connecting Av\Au and v is disjoint from Cu and are both contained in Cv. Therefore
w(Cv) ≥ w(Av\Au, v) + w(Cu). Combining these observations, we obtain w(Av, v) ≤ w(Cv).
Hence the proof of the claim. �
Queyranne [33] generalized this to arbitrary symmetric submodular functions. An equivalent
description may also be found in [14]. This allows us to handle hypergraph extension of
min-cut problem. Similar algorithm to find hypergraph min-cut has also been proposed by
[14,34].

A brief idea of the approach [33] based on symmetric submodular function minimization
is described next.

Let B ≡ (VL, VR, E) be a bipartite graph. Let X, Y be disjoint subsets of VL. We define
C(X, Y) as follows

C(X, Y) ≡ 1
2

[|Γ(X)| + |Γ(Y)| − |Γ(X ∪ Y)|] (30.1)

(here Γ(X), for X ⊆ VL, denotes the set of nodes of VR that are neighbors of X). The min-cut
problem in this situation is to find X ⊂ VL s.t. C(X, VL − X) is minimum. A line-by-line
translation of Stoer–Wagner algorithm works in this case (weight of edges between disjoint
vertex sets X, Y is replaced in this case by C(X, Y)).

30.2.2 Multiway Cut

Here we describe the approach of Saran and Vazirani [35] for the variation of graph partition-
ing problem called Multiway Cut. This approach illustrates how simple ideas can be used to
provide approximation algorithm for NP-complete problems. The presentation follows that
of [35].

Let S = {s1, s2, . . . sk} ⊆ V be a set of given terminals. A multiway cut is defined as
the set of edges whose removal disconnects the terminals from each other. The problem is to
find such a set of minimum weight. The isolating cut for a terminal si is one whose removal
disconnects si from the other terminals. The problem of finding a minimum weight multiway
cut is NP-complete for k ≥ 3 [20,21] (clearly for k = 2, the problem is the polynomial time
solvable max-flow-min-cut problem [16,31]).

Algorithm to Find 2-Approximate Multiway Cut
For i = 1, 2, . . . k. find a minimum weight isolating cut Ci for si.
Discard the heaviest of these cuts. The union of the remaining, say C, is output

as the desired multiway cut guaranteed to be within twice the optimal.

The first step of the algorithm can be done by fusing terminals except si into a single node,
and then, using maximum flow, find a min-cut separating si from the (super-)node created
by this fusion.

C5955–C0030.tex 834 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 835

Theorem 30.1 (Saran–Vazirani multiway cut) The above algorithm achieves an appr-
oximation guarantee of (2 − 2/k) compared to the optimal multiway cut.

Proof. Suppose A is an optimal multiway cut in G. Consider A as the union of k cuts
corresponding to the k connected components containing one terminal each. Let Ai be the
cut of the component containing si. Therefore A =

∪
Ai Noting that each edge of Ai belongs

to two of the cuts Ai, we get
k∑

i=1
w(Ai) = 2w(A). (30.2)

Since Ai is an isolating cut for si and Ci is the minimum weight isolating cut for si, we
therefore have w(Ci) ≤ w(Ai). The algorithm discards the heaviest of the cuts Ci. Hence

w(C) ≤ k − 1
k

k∑
i=1

w(Ci) ≤ k − 1
k

k∑
i=1

w(Ci) (30.3)

that is,

w(C) ≤ 2(1 − 1
k

)w(A). (30.4)

�

Example 30.1 Let there be 2k vertices, k of which form a cycle, say C, and that there is a
distinct vertex attached to each vertex of the cycle C. For e ∈ C, w(e) = 1, else w(e) = 2−ε,
where 0 < ε < 1. Then the optimal multiway cut is given by the cycle edges, having weight k,
whereas the cut C by the above algorithm has weight (k −1)(2−ε). Please refer Figure 30.1.
Here we have considered k = 4.

30.2.3 Minimum Cost Multicut Problem

Here we aim to find a smallest cost subset C of edges of an edge-weighted graph so that,
for a given collection of k pairs of terminals (si, ti) 1 ≤ i ≤ k, si and ti are separated into
different components after removal of C.

1

2 − ε 2 − ε

2 − ε2 − ε

1

11

p s

rq

Figure 30.1 Example.

C5955–C0030.tex 835 2015/11/4 1:00pm

836 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Following discussion is mainly based on the result of Garg et al. [36]. Other notable work
on similar problems include that of [27,28,37] (also see [38]).

Let Pi denote the set of paths between si and ti. The following can be easily seen to be
an integer programming formulation of this problem [36].

min
∑
e∈E

cede

subject to∑
e∈P

de ≥ 1 P ∈ Pi and 1 ≤ i ≤ k

de ∈ {0, 1} ∀e ∈ E (30.5)

The edges with de = 1 are taken as cut edges. The constraints ensure that every path between
each terminal pair has at least one edge with de = 1. Therefore such edges, when removed,
disconnect each pair of terminals, and hence form a multicut.

We shall consider the Linear Programming relaxation of the problem obtained by relaxing
the constraint de ∈ {0, 1} to 0 ≤ de ≤ 1.

The peculiar thing about the above formulation is the potentially exponentially many
constraints. The reason one considers this formulation is for developing insights into an
approximation approach due to its naturalness in describing the problem and its dual in terms
of paths and edges. Furthermore using the famous result of Groetschel, Lovasz, and Schrijver,
polynomial solvability is still guaranteed due to the existence of an efficient separation oracle
for this problem [15]. Note that the constraints simply say that the shortest path between
any pair (si, ti) of vertices to be disconnected, should be at least 1. Checking feasibility of
these exponentially many constraints is therefore easily done using a shortest path algorithm.
Furthermore, in case of infeasibility, one can obtain as a proof of it, obtain a pair for which
the shortest path is of length less than one. This describes a separation oracle for the above
formulation.

A feasible solution, d, of the linear programming relaxation can be interpreted as length
of the edges (not the costs c that are specified in the input). The constraints ensure that the
distance between any two vertices, si and ti, to be separated is at least one.

One can think in terms of dealing with a pipe system with edges as pipes and the vertices
as the junctions. The cost ce can be interpreted as cross-sectional area and their length equal
to the value of de. Then the optimum cost of the relaxed solution equals the minimum total
volume of the pipes under the constraint that each pair of terminals are separated by distance
at least 1.

Let ropt denote the optimum value of the relaxed multicut problem, and let opt denote
the minimum cost of a multicut. Clearly

ropt ≤ opt. (30.6)

The approximation algorithm of Garg et al. [36] finds a multicut with cost ≤ β ropt ≤ β opt,
for some β = O(log k).

This algorithm uses a variation of the idea of pipe volumes. It proceeds to iteratively
find disjoint spherical regions centered on terminals in a manner such that the volume of
the pipes contained fully or partially in the spherical region and the volume associated with
the central terminal is large compared to a multiple of the cost of the cut pipes (which is
just cross-sectional areas of the pipes cut). Let Vol(B(si, r)) denote the volume of the ball of
radius r centered at a chosen terminal, w.l.o.g, say si. Precise definition follows.

C5955–C0030.tex 836 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 837

Vol(B(si, r)) =
∑

e={u,v},u,v∈B(si,r)
c(u, v)d(u, v)

+
∑

e=(u,v),u∈B(si,r),v /∈B(si,r)

c(u, v)d(u, v)(r − di(u))
di(v) − di(u)

+ ropt

k

here di(u) denotes the shortest distance from terminal si and u, according to the solution d
of the relaxed linear program above. Note that the center could also be ti. This definition of
volume is intuitively justified (volume of the pipes completely or partly contained in the ball
of radius r), except the artifact ropt/k. We will indicate the reason later.

Interestingly, the volume of the spherical region as a function of the radius is piecewise
differentiable and has its derivative lower bounded by the cost of the edges cut by the region.

dVol(B(si, r))
dr

≥
∑

e∈C(r)
ce ∗ de (30.7)

(here C(r) denotes the set of edges/pipes cut by the ball of radius r).
In [36], the authors use this relationship to show existence of radius less than 1/2 at which

derivative of the volume is bounded by a chosen multiple of the volume itself. As the cuts of
such spherical regions (of the above radii, less than 1/2) together would form the required
multicut, its cost is therefore bounded by the same multiple of the total volume of the pipe
system (including the artificial volumes of the centers of the regions). The terminal node
volumes are set to ropt/k, and therefore the cost of the multicut produced with the help of
the above disjoint spherical regions is bounded above by a multiple ropt, say β ∗ ropt, which
is what needs to be shown. The choice of β should be such as to guarantee the existence of
r̂ < 1/2 for which

dVol(B(si, r))
dr

|r=r̂ ≤ βVol(B(si, r)). (30.8)

The need of artificial volume ropt/k associated with the centers of the regions is also for the
purpose of establishing existence of such r̂.

Note that a ball of radius less than half, centered at an si, can not contain its mate
ti, for the reason that the distance separating each pair of terminals is at least 1. There-
fore such spherical regions grown by the algorithm of [36] form a multicut within O(log k)
approximation factor of the optimal one. Details may be found in [36,38].

30.3 SUBMODULAR OPTIMIZATION-BASED PARTITIONING ALGORITHMS

In this section, a few applications of submodular function optimization to partitioning domain
are presented. Submodular, supermodular and modular functions are defined in section 30.1.

Some well known examples of submodular functions are given below:

1. The function, |V|(.) : 2E −→ ℜ, defined as |V|(X) ≡ the cardinality of the set of
endpoints of the given subset of edges X, is a submodular function.

2. Similarly |δ|(.) : 2V −→ ℜ, where |δ|(U) is the size of the edges crossing U , is also
submodular.

We begin with the NP-complete problem of finding dense enough clusters in a graph. This
problem is a well-studied one [28,39,40]. The NP-completeness of this problem is clearly

C5955–C0030.tex 837 2015/11/4 1:00pm

838 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

associated with the NP-completeness of the problem of finding maximum complete subgraph
(cliques) in a given graph. The following idea is similar to the one in [40]. This illustrates
typical use of network flow techniques to optimize certain natural submodular functions. The
paper of Picard and Queyeranne [41] is a good source of useful ideas involving network flows
and submodular function optimization.

30.3.1 Finding Densest Cluster

Let E(.) : 2V −→ R is defined as E(U) = the set of edges having both the endpoints in the
vertex set U . Let wt(e) be the (non-negative) weight of edge e and let wt(X) denote the
sum of the weights of edges in X ⊆ E. The function |E(.)| : 2V −→ R is a supermodular
function. The function wt(E(.)) : 2V −→ R (which represents the weight of all the edges
having both the endpoints in the given vertex subset) is also a supermodular function as
weights are nonnegative.

Given an (nonnegative) edge-weighted graph G(U, F, wt(.)) and µ ≥ 0, we define a flow
network FL(U, F, wt(.),µ) as follows: it consists of source s, sink t and a directed bipartite
graph (U, F, A), (where U and F are the left and right node sets of the bipartite graph and A is
the following set of arcs (ie. directed edges) A = {(u, e)|u ∈ U, e ∈ F, e incident on u in G}),
along with the following set of additional arcs, {(s, u) | u ∈ U} ∪ {(e, t) | e ∈ F}.
The capacities on arcs are as follows, cap(s, u) = 1 . . . if u ∈ U , cap(e, t) = µ ∗ wt(e)
∀e ∈ F and cap(u, e) = ∞ ∀(u, e) ∈ A.

Any (s−t)-cut partitions the node set of the flow network in two parts one of which has
the source as one of its members and the other, the sink as one of its members. The set of
nodes containing the source (sink) is called s-part (t-part) of the (s−t)-cut.

Canonical (s−t)-cut: Given U ′ ⊆ U in FL(U, F, wt(.),µ), we define canonical cut(U ′) as
the one whose t-part is {t} ∪ U ′ ∪ E(U ′). We call such a cut a canonical (s−t)-cut.

Note that the capacity of a canonical cut, say canonical cut(U ′) U ′ ⊆ U , is µ ∗ |F | − µ ∗
wt(E(U ′)) + |U ′|. Using this and typical arguments about the properties of a minimum cut,
it is not difficult to see that there exists a canonical cut(Û) that is a minimum (s−t)-cut,
and indeed Û solves maxU ′⊆U (µ ∗ wt(E(U ′)) − |U ′|).

As f(U ′) = (µ ∗ wt(E(U ′)) − |U ′|), µ ≥ 0, is a supermodular function, it follows from the
properties of submodular and supermodular functions that the collection of subsets which
maximize the function f(.) form a lattice under the usual operations of union and intersection
[13,14]. In particular there exist unique minimum (smallest) and maximum (largest) sets in
such a collection.

Algorithm to Find a Cluster of Largest Density
We wish to compute a subset Û of the set V̂ , that solves

max
W ⊆V̂ , W ̸=∅

wt(E(W))
|W |

(i.e., Û has maximum density).

Optimization of wt(E(U))−k∗|U | over the subsets of the given set of nodes can be performed
using the network flow model described earlier.

The above scheme generalizes in a straightforward manner to hypergraphs too.

C5955–C0030.tex 838 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 839

Algorithm FindDensestCluster
Initialize U0 = V̂ and i = 0
repeat

di = wt(E(Ui))
|Ui|

Find largest Ui+1 ⊆ Ui s.t.
wt(E(Ui+1)) − di|Ui+1| = maxW ⊆Ui, W ̸=∅(wt(E(W)) − di|W |)

until Ui+1 = Ui

Output Ui as the required Û

Theorem 30.2 Û output by the above algorithm is a nonempty subset of V̂ that maximizes

wt(E(Ŵ))
|W |

over the nonempty subsets of V̂ .

Proof. Let i be such that Ui ̸= ∅ and Ui+1 = Ui. According to the algorithm, Û = Ui. We
have, wt(E(Û))/|Û | = di. We need to prove that di = maxW ⊆V̂ ,W ̸=∅ wt(E(W))/|W |. Suppose
the contrary. Let d = maxW ⊆V̂ ,W ̸=∅ wt(E(W))/|W |. Clearly, d > di+1. Let Ŵ be a subset of
V̂ such that

wt(E(Ŵ))
|Ŵ |

= d. (30.9)

Note that V̂ = U0 ⊇ U1 ⊇ U2 ⊇ · · · ⊇ Ui = Û .
Let j be the smallest index such that Ŵ ̸⊆ Uj . Note that j ≤ i and therefore d > dj−1.

By the supermodularity of wt(E(.)) − dj−1|.|,

wt(E(Ŵ ∪ Uj)) − dj−1|Ŵ ∪ Uj | + (wt(E(Ŵ ∩ Uj)) − dj−1|Ŵ ∩ Uj |)
≥ wt(E(Ŵ) − dj−1|Ŵ | + wt(E(Uj)) − dj−1|Uj | (30.10)

But wt(E(Ŵ)) − d|Ŵ | ≥ wt(E(Ŵ ∩ Uj)) − d|Ŵ ∩ Uj | due to optimality of Ŵ . Therefore

wt(E(Ŵ)) − wt(E(Ŵ ∩ Uj)) ≥ d(|Ŵ | − |Ŵ ∩ Uj |) > dj−1(|Ŵ | − |Ŵ ∩ Uj |).

Hence wt(E(Ŵ ∪ Uj)) − dj−1|Ŵ ∪ Uj | > wt(E(Uj)) − dj−1|Uj | which is a contradiction, since
Ŵ ∪ Uj ⊆ Uj−1. �

30.3.2 Principal Lattice of Partitions

In [42], the authors use strategies related to the principal lattice of partitions of a submodular
function, for solving a generic partitioning problem (see also [14]).

A natural way of associating a set function with a function defined over partitions of the
underlying set of the former is as follows: Let f(·) be a real-valued set function on the subsets
of S. The partition associate of f(·) denoted by f(·), is defined as f(Π) ≡

∑
Ni∈Π f(Ni). We

often need to consider functions such as f − λ, which are defined as (f − λ)(X) = f(X) − λ.
Note that the partition associate of such a biased function satisfies, by definition, f − λ(Π) =
f(Π) − λ ∗ |Π|.

C5955–C0030.tex 839 2015/11/4 1:00pm

840 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Partitioning problems generally involve the maximization or minimization of the partition
associate of a set function. Quite often they are NP-complete. However, submodularity or
supermodularity of the underlying function often makes these problems tractable.

The collection of partitions that minimize (f − λ)(·) for some λ ∈ ℜ is called the principal
lattice of partitions of f(·).

For describing the principal lattice of partitions of f(·) we need the following additional
defintions. We say Π1 ≥ Π2 (equivalently, Π1 is coarser than Π2 or Π2 is finer than Π1) iff
every block of Π2 is contained in some block of Π1. The partition Π1 ∨ Π2 (Π1 ∧ Π2) is the
least upper bound (greatest lower bound) of the partitions Π1 and Π2 in the partial order
(≥). In other words, Π1 ∨ Π2 is the unique finest partition, coarser than both Π1 and Π2.
Similarly we can describe Π1 ∧ Π2 to be the unique coarsest partition that is finer than both
Π1 and Π2. We use the notation Π0 to denote the partition into singleton sets.

i. Property PLP1

The collection of partitions that are optimum for a particular λ is closed under join (∨)
and meet (∧) operations naturally defined on the partitions. Thus there a unique max-
imal (coarsest) and a unique minimal (finest) partition minimizing (f − λ)(·) denoted
by Πλ, Πλ respectively.

ii. Property PLP2

If λ1 > λ2, then Πλ1 ≤ Πλ2 .

iii. Property PLP3

We need the following definition.

Definition 30.4 A number λ for which more than one partition minimizes (f − λ)(·) is
called a critical PLP value of f(·).

This property states that the number of critical PLP values of f(·) is bounded by |S|.

iv. Property PLP4

If λ1 > · · · > λt is the complete decreasing sequence of critical PLP values of f(·),
then, Πλi = Πλi+1 for i = 1, . . ., t − 1.

v. Property PLP5

Let λ1 > · · · > λt be the complete decreasing sequence of critical values of the PLP. If
λi > σ > λi+1. Then Πλi = Πσ = Πσ = Πλi+1 .

The sequence Π0 = Πλ1 , Πλ2 , . . ., Πλt , Πλt = {S} is called the principal sequence of partitions
of f(·).

The importance of the PLP for the ‘partition associate minimization with number of
blocks specified’ problem lies in the following easy fact.

Let Π be a partition of S in the PLP of a submodular function f(·). If Π′ is any other
partition of S with the same number of blocks as Π then f̄(Π) ≥ f̄(Π′), the equality holding
if and only if Π′ is also a partition in the PLP of f(·).

C5955–C0030.tex 840 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 841

We now give a simple strategy for producing an approximation algorithm for finding a
k-block partition that minimizes |δ|(.) function, that is, to find a k-block partition of the
vertex set that approximately minimizes the cost of the cut induced.

First build the principal sequence of partitions of the cut-size function |δ|(.), which is a
well known submodular function (see [14,42]) for the algorithms to find this sequence). The
main subroutine is to minimize |δ|(X) − λ|X| among all subsets of a given set which have
a specified element as a member. This problem can be converted easily to a network flow
problem.

Let Π1 = {N1, N2, . . . Nt, S2, S3, . . . Sm} , Π2 = {S1, S2, . . . Sm} be partitions minimizing
|δ|(.) − λ|.| for some λ, such that |Π2| ≤ k ≤ |Π1| (Π1 is a refinement of Π2).

Let for simplicity of presentation, |δ|λ denote the function |δ(.)| − λ|.|.
Consider the subgraph G1 of Gfus.Π1 (i.e., the graph obtained from G by fusing the vertices

within each of the blocks of Π1), induced on its supernodes corresponding to {N1, N2, . . . Nt}.
Select k − m vertices of the least degree in G1 (without loss of generality, assume that these
are {N1, N2, . . . Nk−m}). Fuse the remaining vertices of G1 into a single vertex M . Select the
partition

Π ≡ {N1, N2, . . . Nk−m, M, S2, S3 . . . Sm} (30.11)

as the required approximate optimal partition. We now prove a desirable property of this
partition.

Theorem 30.3 (2-approximate partition) Let Πopt be the k-block partition that mini-
mizes |δ|(.). Then

|δ|(Πopt) − |δ|(Π2) ≥ k − m

t − 1
(|δ|(Π1) − |δ|(Π2)) (30.12)

|δ|(Π) − |δ|(Π2)
|δ|(Πopt) − |δ|(Π2)

≤ 2(t − 1)
t

(30.13)

Proof. Recall Π1, Π2 both minimize |δ|λ(.). So |δ|(Πopt) − λk ≥ |δ|(Π2) − λm. That is

|δ|(Πopt) − |δ|(Π2) ≥ λ(k − m). (30.14)

But |δ|(Π1) − λ|Π1| = |δ|(Π2) − λ|Π2|. Thus, λ = (|δ|(Π1) − |δ|(Π2))/(t − 1). Substituting in
Equation 30.14 yields Equation 30.12.

To prove Equation 30.13, let G2 be the graph with vertex set {N1, N2, . . . Nk−m, M}
and note that |E(G2)| ≤ 2|E(G1)|(k − m)/t (from the choice of N1, N2, . . . Nk−m). Now we
note that |δ|(Π1) − |δ|(Π2) = |E(G1)| and |δ|(Π) − |δ|(Π2) = |E(G2)|. Using this in Equation
30.12, we obtain the required result. �

Corollary 30.1
|δ|(Π)

|δ|(Πopt)
≤ 2(n − 1)

n
(30.15)

Proof. We have
|δ|(Π)

|δ|(Πopt)
= |δ|(Π) − |δ|(Π2) + |δ|(Π2)

|δ|(Πopt) − |δ|(Π2) + |δ|(Π2)
(30.16)

We obtain the result of Equation 30.15 using Equation 30.13 and noting that t ≤ n. �

C5955–C0030.tex 841 2015/11/4 1:00pm

842 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

30.3.3 Improving Ratio-Cut Using Principal Partition

In [43], optimization of submodular functions is employed to design new heuristics and
approximate algorithms for ratio-cut problem. Later such ideas were explored further in
[44,45].

Although typically the bipartitions are required to be balanced (in the sense of both the
parts having similar weights of their vertex sets), very often it may be desired to have a
possibly unbalanced partition that is more natural (in the sense of the small value of ratio
of the cut value of a block to its weight). The above mentioned naturalness is captured by
the well-known concept of ratio-cut (see [26,46,47]).

The ratio-cut for ∅ ̸= W ⊂ V is defined as follows:

ratio − cut(W) = we(δ(W))
wv(W) ∗ wv(V − W)

Note that the notion of the ratio-cut as defined above is really associated with the correspond-
ing bipartition. We also call ratio-cut(W) as the ratio-cut of the corresponding bipartitions,
that is (W, V − W) or (V − W, W). In [46], the authors use the concept of scaled cost which
specializes to the concept of ratio-cut for 2-partition.

The approach of [43] formulates a ratio-optimization problem and solves it using theory of
principal partition. Ratio-optimization problems have also been widely researched in several
different contexts (see [13,48–51]).

In [43] the authors use an intuitive generalization of the concept of Gain(.) to arbitrary
subsets of V1 or V2. Given a graph G(V, E, wv, we), and a bipartition (V1, V2) and a subset U
of either V1 or V2, GGain(U) = the amount of reduction in the cut value if U is moved across
to the other block. The concept of GGain (read, generalized-gain) leads to a formulation
involving the tractable problem of minimization of submodular functions. Main ideas used
in this work are from the theory of Principal Partition [13,14] and from the literature on
fractional programming [52].

Let g : 2S −→ R be a submodular function and let w(·) be a weight function on S. Then
the principal partition of (g, w) (or of g, if w is clear from the context), is the collection of
all sets which minimize g(X) − λ ∗ w(X), X ⊆ S, λ real. (See [12–14] for more details.)

Note that, for U ⊆ V1, GGain(U) = we(δ(V1)) − we(δ(V1 − U)). Similarly for U ⊆ V2,
GGain(U) = we(δ(V2)) − we(δ(V2 − U)). We define averageGain in a natural way as follows:

averageGain(U) = GGain(U)/wv(U).

Consider the natural problem of finding nonempty Û ⊆ V1 that maximizes the averageGain
over all nonempty subsets of V1. and similarly for V2.

Let µ1 denote the maximum averageGain attained over the nonempty subsets of V1,
similarly µ2.

Since the above problem is a ratio-optimization problem, ideas from [52] and [13] tell us
to consider the following problem. For each real λ, find subsets that solve

min
U⊆V1

(we(δ(U)) − λ ∗ wv(U)).

This is the problem of computing the principal partition of (we(δ(.)), wv(.)) The case of V2
is identical.

Proposition 30.1 λ̂ = µ1 iff λ̂ is such that ∃ a proper subset Z ⊂ V1 satisfying

min
U⊆V1

(we(δ(U)) − λ̂ ∗ wv(U))

= we(δ(V1)) − λ̂ ∗ wv(V1)
= we(δ(Z)) − λ̂ ∗ wv(Z).

C5955–C0030.tex 842 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 843

Next one notes the significance of the concept of maximum averageGain in the context of
the ratio-cut.

Proposition 30.2 Let G(V, E, wv, we) be a graph with a given bipartition (V1, V − V1).
Let Û be a nonempty proper subset of V1 such that µ1 = we(δ(V1))−we(δ(V1−Û))

wv(Û) . Then
ratio-cut(V1 − Û) < ratio-cut(V1).

Proof.
we(δ(V1)) − we(δ(V1 − Û))

wv(Û)
≥ we(δ(V1)) − we(δ(V1 − V1)).

wv(V1)

This may be rewritten as

we(δ(V1)) − we(δ(V1 − Û))
wv(V1) − wv(V1 − Û)

≥ we(δ(V1)).
wv(V1)

The above implies we(δ(V1−Û))
wv(V1−Û) ≤ we(δ(V1))

wv(V1) . This clearly implies that ratio-cut(V1 − Û) <

ratio-cut(V1), as wv(V − V1) < wv(V − (V1 − Û)). �

30.3.3.1 Algorithm to Improve Ratio-Cut

As the algorithm is based on principal partition, we need some relevant properties of it.
Some relevant properties of principal partition. Consider, in particular, the principal partition
of (we(δ(.)), wv(.)) (with the function we(δ(.)) defined on the subsets of V1). Let fλ denotes
the function we(δ(.)) − λ ∗ wv(.), defined on subsets of V1.

i. There is a unique maximal set Xλ and a unique minimal set Xλ at which fλ reaches
the minimum over the subsets of V1. We call these sets critical sets in the principal
partition of (we(δ(.)), wv) for G(V, E, wv, we) and V1 ⊆ V . Thus every subset that
minimizes fλ is contained in Xλ and contains Xλ.

ii. If λ1 < λ2, it can be shown that Xλ1 ⊆ Xλ2 . Thus all the critical sets form a nested
sequence w.r.t. inclusion.

iii. For not more than |V1| values of λ, Xλ ̸= Xλ. Such values are called critical values in
the above principal partition of (we(δ(.)), wv).

iv. Let λ1 < λ2 < λ3 · · · < λt be the sequence of all critical values.
Then Xλi = Xλi+1 for i = 1, 2, . . ., t − 1, and Xλ1 = ∅, Xλt = V1. The sequence
Xλ1 ⊂ Xλ2 ⊂ . . . ⊂ Xλt ⊂ Xλt is called the principal sequence of function we(δ(.)) for
G(V, E, wv, we) and V1 ⊆ V .

The definition of the largest critical value in the above mentioned principal sequence yields
the following corollary to Proposition 30.1.

Corollary 30.2 µ1 is equal to the largest critical value in the Principal Partition of
(we(δ(.)), wv(.)) for G(V, E, wv, we) and V1 ⊆ V .

Also note the the following useful and simple fact: All the critical values associated with the
principal partition of (we(δ(.)), wv(.)) for G(V, E, wv, we) and V1 ⊆ V are nonnegative.

C5955–C0030.tex 843 2015/11/4 1:00pm

844 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

A high level description of the algorithm that attempts to improve ratio-cut is as follows:

i. Let V1, V2 denote the two blocks of the given bipartition.

a. Compute the Principal Sequence of wv(δ(.)) for the given G(V, E, wv, we) and
V1 ⊆ V .

b. Compute the Principal Sequence of wv(δ(.)) for the given G(V, E, wv, we) and
V2 ⊆ V .

ii. For each of the nonempty subsets, say X, in either of the above two principal sequences,
if (X, V − X) is not the same as (V1, V2) and (V2, V1) then output (X, V − X) as a
bipartition whose ratio-cut is strictly lower (i.e., better) than that of (V1, V2).

iii. For each pair of nonempty subsets (one from each of the above two principal sequences),
compute a minimum cut separating these two subsets. Let (Y, V − Y) be the minimum
cut obtained. Output (Y, V −Y) if it is not already output and is different from (V1, V2)
and (V2, V1). The ratio-cut of the above bipartition (Y, V − Y) is strictly lower than
that of (V1, V2).

Note that it could happen that above algorithm may fail to find an improved bipartition,
as there exists a possibility of nonexistence of any nonempty proper subsets (of V1 and V2,
respectively) in either of the two principal sequences used in the above algorithm.

30.3.3.2 Justification of Algorithm

One can show that any critical set that is nonempty and a proper subset of V1 will help us
in improving the ratio-cut.

Lemma 30.1 Let G(V, E, wv, we) be a given graph and let V1 ⊆ V . Let U ′ be a subset that
minimizes we(δ(.)) − λ ∗ wv(.) over the subsets of V1. If ∅ ̸= U ′ ⊂ V1 then, ratio-cut(U ′) <
ratio-cut(V1).

Proof. We have

0 = we(δ(∅)) − λ ∗ wv(∅) ≥ we(δ(U ′)) − λ ∗ wv(U ′) ≤ we(δ(V1)) − λ ∗ wv(V1) (30.17)

From the above we get, (
λ − we (δ (U ′))

wv (U ′)

)
≥ 0. (30.18)

Rewriting part of equation 30.17 we get,(
λ − we (δ (U ′))

wv (U ′)

)
∗ wv (U ′) ≥

(
λ − we (δ (V1))

wv (V1)

)
∗ wv (V1) (30.19)

As (λ − we(δ(U ′))
wv(U ′)) ≥ 0 and wv(V1) > wv(U ′) ≥ 0 (due to positivity of weights), we get(

λ − we (δ (U ′))
wv (U ′)

)
≥
(
λ − we (δ (V1))

wv (V1)

)
(30.20)

thus implying,
we(δ(U ′))

wv(U ′)
≤ we(δ(V1))

wv(V1)
. (30.21)

Now, as U ′ is a proper subset of V1, and the weights are positive, ratio-cut(U ′) <
ratio-cut(V1). �

C5955–C0030.tex 844 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 845

30.4 ITERATIVE AND MULTILEVEL PARTITIONING ALGORITHMS

Among the earliest algorithms for graph and hypergraph partitioning problems were those
of iterative and move-based flavor. We briefly ilustrate, in this section, the most well-known
among these. Further, this section outlines the multilevel paradigm that has yielded practical,
efficient algorithms for large-scale instances of partitioning problems.

30.4.1 K–L Algorithm

Arguably the most well-known and the earliest algorithm for graph partitioning is the algo-
rithm of Kernighan and Lin (1970) [53] (usually called K–L algorithm). The algorithm is a
clever improvement on the basic local search procedure that is typically successful in finding
significantly better quality bipartitions.

The K–L algorithm also formed the basis for the practical improvised algorithm of Fiduc-
cia and Mattheyses [54], whose data structures supported a modification of K–L algorithm
to facilitate linear-time execution (per pass) and applicability to a more general setting of
hypergraphs.

The K–L algorithm starts with an arbitrary bipartition (usually bisection, i.e., a balanced
bipartition) of the vertices of the given undirected graph. The algorithm proceeds in a series
of passes. At every basic step of each pass, it determines a pair of vertices, one from each
block, whose swap (exchange) across the bipartition results in the largest decrease or the
smallest increase (in case there is no cost decrease) in the cost of the edges cut. The vertices
in this pair are then locked for this pass and listed in a data structure. The locking is necessary
to prevent this move-based process from looping indefinitely. The pass continues till all the
vertices are locked. The best cut encountered during the sequence of these swap steps in the
pass is then committed.

30.4.1.1 Some Definitions

Let (A, B) denote the partition of the vertices of the graph. We wish to improve upon this
given partition.

• External edge cost. Ext(a) measures the cost of the connection from a vertex a to the
block not containing the vertex a. That is, for a ∈ A, Ext(a) =

∑
y∈B c(a, y). Here

c(a, y) denotes the cost of edge (a, y).

• Internal edge cost. Int(a) measures the cost of the connection from a vertex a within
the block containing the vertex a. Hence we define for a ∈ A, Int(a) =

∑
z∈A c(a, z).

• Gain in the cost when a vertex x moves to the other side is denoted by gain(x)x, so
gain(x) = Ext(x) − Int(x). The gain when a pair of vertices a ∈ A and b ∈ B are
swapped, equals gain(a, b) = gain(a) + gain(b) − 2∗c(a, b).

30.4.1.2 Important Features of the K–L Algorithm

Some important charecteristics of this algorithm are:

• During each pass of the algorithm, every vertex moves exactly once, either from A to
B or from B to A.

• At the beginning of a pass, each vertex is unlocked, meaning that it is free to be
swapped; after a vertex is swapped it becomes locked.

C5955–C0030.tex 845 2015/11/4 1:00pm

846 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

• K–L algorithm iteratively swaps the pair of unlocked vertices with the highest gain.

• Pretend to swap the highest gain pair of unlocked nodes ai, bi even if the gain is not
positive.

• The swapping process is iterated until all nodes become locked, and the lowest-cost
bipartition observed during the pass is returned. More precisely, we find j such that∑

1≤i≤j gain(ai, bi) is maximum. The swaps until the jth step are committed that is,
the bipartition (A, B) is updated. The sum

∑
1≤i≤j gain(ai, bi) is the total gain during

this pass of the algorithm.

• Another pass is then executed using this bipartition as its starting bipartition; the
algorithm terminates when a pass fails to find a solution with lower cost than its
starting solution.

• Due to the basic step of swapping of vertices, typically K–L algorithm is used for
balanced bipartitions (or bisections) of graphs.

The Algorithm
K–L Algorithm

Input An initial balanced bipartition of G(V, E)
Output Balanced bipartition A and B with small cut cost
Bipartition G into A and B such that |A| = |B|, A ∩ B = ∅, and A ∪ B = V .
repeat

Compute gain(v), ∀v ∈ V
for all i = 1 to n do

Find a pair of unlocked vertices vai ∈ A and vbi ∈ B
whose exchange makes it the largest decrease or smallest increase in the cut
cost.

Mark vai and vbi as locked
store the gain gain(ai, bi) and compute updated values of gain(v) for all
unlocked v ∈ V

end for
Find k, such that

Gk =
∑k

i=1 gain(ai, bi) is maximized
if Gk > 0 then

Swap the pairs (va1 , vb1), (va2 , vb2), . . . (vak
, vbk

)
end if

until Gk ≤ 0

A simple illustration of K–L algorithm is shown in Figure 30.2. Notice that each edge has
unit weight in the example but the weights can be different in general. Table 30.1 displays
the moves executed according to the algorithm. From the table, one notes that we get a
minimum cost cut for j = 2. That is,

∑
1≤i≤j gain(ai, bi) is maximum.

It is important to note the ability of the K–L heuristic to climb out of local minima.
This is due to the fact that it swaps the pair of nodes with highest gain even if this gain is
negative. However, if we consider all solutions reachable within a single pass of the algorithm
to be neighbors of the current solution, the K–L algorithm is still seen to be greedy. A simple
(Figure 30.2) implementation of K–L requires O(n3) time per pass since finding the highest-
gain swap involves evaluating O(n2) swaps.

C5955–C0030.tex 846 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 847

p

q

t

s

r

v

w

u

p

t

r

u

s

w
v

q

r

t

s

w

u

q

p

v

Figure 30.2 Simple example for K–L algorithm.

TABLE 30.1 Simple Example: Moves according to K–L
Algorithm

Step Vertex pair Cost reduction Cut cost
0 – 0 5
1 {s,v} 3 2
2 {t,u} 1 1
3 {q,w} −2 3
4 {p,r} −2 5

30.4.2 F–M Algorithm

The F–M algorithm is a near linear-time heuristic [54] with respect to the size of the hy-
pergraph (equivalently, a netlist in the context of VLSI) which improve upon a given initial
k-partition [8,54].

The F–M method applies a sequence of linear-time passes to iteratively improve a given
initial partition [10]. The initial solution may even be produced by a simple randomized
algorithm. The algorithm is not typically sensitive to choice of initial partition. All the
vertices are moved exactly once in the whole process (one at a time, and not an exchange of
a pair), that is, they are locked once they are moved from one part to the other. An important
distinction between K–L and F–M algorithms is that the former is based on swaps and the
latter on moves of the vertices. At the initial stage of the algorithm all vertices are free to
move. For every move the change in cost which is called as gain, is calculated efficiently
with the help of a clever bucket-based data structures employed for book-keeping of gain
values [54]. The move with the highest gain is chosen. During the moves it is ensured that
the partition does not get too unbalanced. Otherwise, all the vertices would move to one of
the parts, since that is the trivial best solution with minimum cut if we ignore balancing
constraint to such a ridiculous extent. Also note that movement of vertices across the blocks
of partition might lead to changes in the gain of the adjacent vertices, therefore gains are to
be updated after every iteration for all the affected vertices.

For details regarding the implementation and the data structures used for the F–M algo-
rithm, the reader is referred to [8,54].

30.4.2.1 Drawback of Iterative Move-Based Algorithms

A major drawback of the traditional iterative procedures like K–L and F–M heuristics is
that the performance of these procedures degrades as the size of the circuit increases [8].
Therefore, for large circuit sizes, multilevel partitioning approaches have become popular.

C5955–C0030.tex 847 2015/11/4 1:00pm

848 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Original hypergraph Partitioned hypergraph

Figure 30.3 Schematic: Flat partitioning of a hypergraph.

Coarsening

or clustering

Lowest level partitioning

Refining

Original hypergraph Hypergraph partitioned

Figure 30.4 Schematic: multilevel approach.

30.4.3 Multilevel Partitioning

The evidence suggests that multilevel hypergraph partitioning schemes often gives high qual-
ity solutions to the partitioning problem for large graph/hypergraph partitioning problems
[10] as compared to other heuristic approaches. The state-of-the-art fast hypergraph parti-
tioner packages like hmetis and UCLAPack are based on the multilevel approach [7].

The multilevel partitioning algorithms have become popular because of the good quality
of partitions they give in shorter execution times [7,55].

The idea of multilevel approach is to represent a very large hypergraph (for which the
conventional iterative algorithms like F–M, K–L may execute for significantly long time)
through a series of coarser hypergraphs. The hypergraph are coarsened in such a way that
the information of the parent graph is inherited/encapsulated/embedded in the series of
children hypergraphs. At the end a good partition of the coarsest hypergraph is computed
and used as an initial partition for the parent hypergraph to refine it further, with the help of,
say, a variant of F–M algorithms. This process is applied in an iterative way till one reaches
back the original hypergraph through the refinement process.

The schematic in Figure 30.4 shows the multilevel approach and in contrast to the flat
partitioning approach shown in Figure 30.3.

30.4.3.1 Multilevel Steps

The multilevel approach has, in general, three steps/phases described below.

i. Coarsening phase. In this phase the original hypergraph is reduced to a coarser graph
iteratively until a small hypergraph of size less than a few hundred vertices is obtained.

ii. Partitioning. In this step the coarsest hypergraph which inherits the traits of the orig-
inal hypergraph, is then partitioned using the algorithms which are effective on small
sized graphs/hypergraphs [8].

C5955–C0030.tex 848 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 849

iii. Refinement. In this step the partitioning of the coarsest hypergraph is projected to the
hypergraph one level up (the finer hypergraph), and then the projected partition is
refined using variations of move-based iterative partitioning algorithms (in a few cases,
certain spectral techniques are used too [56]). Thus a better partition is obtained for
the hypergraph, one level above, is obtained. This procedure is applied iteratively till
one obtains a refined partitioning solution for original hypergraph.

30.4.3.2 Coarsening

Coarsening or clustering procedure is one of the critical steps in the multilevel approach and
different clustering approach may lead to different quality of partitions. Also the performance
of the partitioning algorithm as a whole depends upon the clustering approach used.

The coarsening is done by merging of the vertices, chosen intelligently with concerns for
time efficiency, resulting in a smaller, coarser hypergraph. A typical procedure for coarsening
is based on maximal matching of the vertex set [4,7,16].

30.4.3.3 V-Cycle Refinement

The V -cycle refinement idea aims to further increase the quality of the partition obtained from
the multilevel approach. The procedure runs primarily in two phases, namely, the coarsening
and the uncoarsening phase.

The complete multilevel partition is run for the hypergraph to get an initial solution for
the hypergraph this solution works as an initial partition for the second run of the multilevel.
In the coarsening phase the vertices coarsened belong to only one of the partitions. This can
be termed as restricted coarsening [7] and this basically preserves the initial partition. The
uncoarsening phase is the same as of the multilevel approach in which local improvement
methods are used to improve upon the given partition.

30.4.3.4 Connectivity-Based Clustering Algorithm

Typically in multilevel partitioning approaches the clustering approach uses the edge-
coarsening based on collapsing pairs of vertices (e.g., the endpoints of a maximal match-
ing). However, the drawback is that it is likely to ignore the natural clusters in a graph.
Figure 30.5 explains the idea of naturally occurring clusters in a graph and how the edge
coarsening which gives importance to an unclustered vertex with the highest connectivity
gives a poorer result. In their approach [57], the authors propose to use clustering approach
(first step of the multilevel approach) that is based on finding natural clusters in the graph,
that is parts of the graph which are heavily connected.

30.5 SPECTRAL APPROACHES FOR PARTITIONING

In this section we describe various elegant approaches to graph/hypergraph partitioning
problems based on eigenvalues and eigenvectors of matrices associated with graphs and
hypergraphs. Due to limitation of space many other interesting ideas of similar flavor could
not be presented here.

30.5.1 Hall’s Approach and Its Variations

Among the very early use of spectral ideas in graph partitioning and related areas were
those of Hall and its variations. They made interesting use of the eigenspectrum of the
adjacency matrix A and the Laplacian matrix L = D − A (where D is the diagonal matrix

C5955–C0030.tex 849 2015/11/4 1:00pm

850 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Probable clustering form edge coarsening

Natural (intuitive) clusters

Figure 30.5 Edge coarsening versus coarsening of natural clusters.

containing degrees of the corresponding nodes). Hall [58] showed that the eigenspectrum
of the Laplacian of graph G can be used to solve 1-dimensional quadratic cost placement
problem. This problem requires us to find a nontrivial placement of nodes of G along
x-axis such that, sum of the squares of the distance between the locations of nodes that
are neighbors in G is minimized. That is,

min 1
2

n∑
i=1

n∑
j=1

aij(xi − xj)2

subject to
n∑

i=1
x2

i = 1

(30.22)

Here, xi denotes the location of ith node. And the constraint
∑n

i=1 x2
i = 1 is to disallow

trivial solution to the optimization problem (in fact, we will require additional constraint for
obtaining nontrivial solution, as will be seen later!). In the matrix notation, this problem can
be rephrased as follows.

min xT Lx
such that, xT x = 1 (30.23)

The following theorem describes certain properties of the Laplacian matrix L = D−A, where
A is the adjacency matrix and D is the diagonal matrix containing the degrees of the nodes.

Theorem 30.4 (Properties of Laplacian) Given an undirected graph G, its node-arc
incidence matrix N and Laplacian matrix L have following properties.

1. L is symmeteric matrix and hence, posseses real eigenvalues and real, orthogonal eigen-
vectors.

2. Le = 0, where e denotes [1, . . ., 1]T ,

3. L = NNT independent of signs chosen in columns of N .

C5955–C0030.tex 850 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 851

4. If v is an eigenvector of L for eigenvalue λ, then

λ = ||NT v||22
||v||22

=

∑
e = (i, j)(vi − vj)2∑

i v2
i

5. Eigenvalues of L are nonnegative. 0 ≤ λ1 . . . ≤ λn.

6. The number of connected components of G equals the multiplicity of 0 eigenvalue. In
particular, λ2 ̸= 0 if and only if G is connected.

Proof.

i. Symmetry follows from the definition of L: since G is an undirected graph, (i, j) is an
edge iff (j, i) is an edge. From standard matrix algebra, we know that the eigenspectrum
of real symmetric matrix is real valued and the eigenvectors form an orthonormal basis.

ii. The ith entry of Le is just the sum of the entries of the ith row of L. This is due to
cancellation of the contribution of the degree of node i, that is Lii, by terms Lij = −1
together for each edge incident on i.

iii.

(NNT)ii =
∑

e : edge e incident on i
(±1)2

= degree of node i

and (NNT)ij =
∑

all edges e = (i, j)
(−1) × (+1)

= −1 if an edge e = (i, j) exists

iv.

Lv = λv

vT Lv = λvT v, (v ̸= 0)
vT NNT v = λvT v

λ = ||NT v||22
||v||22

λ =
∑

(vi − vj)2∑
i v2

i

v. Nonnegativity of eigenvalues of L clearly follows from above.

vi. λ = 0 implies vi = vj for each edge e = (i, j). Hence, for any node k reachable from
i, vk = vi = c. Therefore, within each connected component of graph, the components
of the eigenvector v are constant. Therefore it is easy to see that there are exactly d
independent eigenvectors, corresponding to these d connected components. Next, due
to L being symmetric, it posseses full eigenspectrum, and therefore the number of
independent eigenvectors corresponding to λ = 0 equals the multiplicity of 0 as an
eigenvalue. Hence, if G is connected then then number of connected component is 1
and consequently only one eigenvalue should be zero. Therefore, λ2 ̸= 0. �

C5955–C0030.tex 851 2015/11/4 1:00pm

852 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Let U be the n × n matrix whose columns are the orthonormal eigenvectors of L. Therefore
our problem can be restated as

min xT UΛUT x
such that, xT UUT x = 1 (30.24)

(here Λ denotes the diagonal matrix with eigenvalues of L). So we need to solve
min yT Λy

such that, yT y = 1 (30.25)

That is,
min

∑n
i=1 λiy

2
i

such that,
∑n

i=1 y2
i = 1 (30.26)

Clearly the solution to above is [1, 0, 0, . . ., 0]T , and the value at this optimum is λ1 which is
zero. This is clearly not of any interest.

To make things slightly more interesting, we impose one more constraint, namely, xT [1,
1, . . ., 1]T = 0 in other words,

∑
xi = 0. This transforms the problem as follows.

min xT Lx
such that, xT x = 1 and

∑
xi = 0 (30.27)

Note that,
∑

xi = 0 can be written as xT u1 = 0 where, u1 = 1/
√

n[1, 1, . . ., 1]T is the nor-
malized eigenvector of L corresponding to λ1 = 0, Therefore the problem can be rephrased as

min
(

vT Bv

vT v

)
such that, v ̸= 0 and vT u1 = 0

(30.28)

Following theorem solves this rephrased version of the problem.

Theorem 30.5 (Second smallest eigenvalue of Laplacian) Let λ1 ≤ λ2 . . . ≤ λn be the
eigenvalues of a real symmetric matrix B with v1, v2, . . ., vn as corresponding orthonormal
eigenvectors. Then,

λ2 = min
(

vT Bv

vT v

)
such that, v ̸= 0 and vT u1 = 0

(30.29)

Thus we have solved the following minor variation

min xT Lx such that,
n∑

i=1
x2

i = n,
n∑

i=1
xi = 0 (30.30)

Interestingly, if we were to restrict xi values to only +1 and −1, then we have,

min xT Lx (30.31)

such that,
n∑

i=1
x2

i = n,
n∑

i=1
xi = 0 (30.32)

and xi ∈ {−1, +1} ∀i = 1, . . ., n (30.33)

Equivalently, we have

min xT Lx (30.34)

such that,
n∑

i=1
xi = 0 (30.35)

and xi ∈ {−1, +1} ∀i = 1, . . ., n (30.36)

C5955–C0030.tex 852 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 853

which is a discrete optimization problem, a continuous relaxation of which was solved above
using the eigenspectrum idea. The reason for our interest in this discrete optimization prob-
lem is that it is indeed graph bisection problem.

Theorem 30.6 Let x be a vector representing a bipartition {V+, V−} of the node set of graph
G xi = 1 iff i ∈ V+ and −1 iff i ∈ V−, then the number of edges cut across {V+, V−}, denoted
by, say Ec, equals 1

4xT Lx = 1
4
∑

(i,j)∈E(xi − xj)2.

Proof. Consider:

xT Lx

=
∑

i

∑
j

Lijxixj

=
∑
i=j

Liix
2
i +

∑
i̸=j

Lijxixj

=
∑
i=j

Lii +
∑
i ̸=j

i, j ∈V+

Lijxixj +
∑
i ̸=j

i, j ∈V−

Lijxixj +
∑

i ̸=j

i ∈V+

j ∈V−

Lijxixj

=
∑

i

degree(i) +
∑
i ̸=j

i, j ∈V+

−1 +
∑
i ̸=j

i, j ∈V−

−1 +
∑

i ̸=j

i ∈V+

j ∈V−

1

=

2(number of edges in G)

−2(number of edges connecting nodes in V+ to nodes in V+)
−2(number of edges connecting nodes in V− to nodes in V−)
+2(number of edges connecting nodes in V− to nodes in V+)

= 4(number of edges connecting nodes in V− to nodes in V+)

Hence,

Ec = 1
4

xT Lx

Further,

xT Lx = xT NNT x

=
∑

e=(i,j)((NT x)e)2

=
∑

e=(i,j)(xi − xj)2

where e denotes an edge of the graph and N is the node-arc incidence matrix of the
graph. �

The above discrete optimization problem is a well-known NP-complete problem [20,21] and
therefore the insights and the lower bound provided by the above continuous relaxation
(which is variation of Hall’s quadratic 1-dim placement problem) are of importance.

C5955–C0030.tex 853 2015/11/4 1:00pm

854 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

30.5.1.1 Spectral Bipartitioning Algorithm of Hall

The spectral bipartitioning algorithm based on this analysis is as follows: Compute eigenvector
µ2 corresponding to the second smallest eigenvalue of L and sets xi to one if µ2(i) ≥ 0 and xi

to be zero, otherwise. This vector x may be interpreted as the one which maximizes x ·µ2. In
other words, x is the indicator vector projecting maximally onto µ2. The nodes of graph are
separated into 2 blocks depending upon the 0 − 1 values of the corresponding components of
the indicator vector x. The quality of the bipartition can be compared with the lower bound
described in the theorem below, which summarizes the prior discussion based around the
second smallest eigenvalue of the Laplacian.

Theorem 30.7 (Second smallest eigenvalue) Minimum number of edges cut by a bal-
anced partition of the node set of G is bounded below by n

4λ2(L). �

30.5.2 Another View of Spectral Approach to Graph Bisection

The graph bisection problem may be stated as

min xT Lx (30.37)

such that,

xi = ±1 and
|V |∑
i

xi = 0 (30.38)

This discrete problem is NP-complete, hence it makes sense to study a tractable continuous
relaxation of it, for instance the following one: min xT Lx such that xT x = 1, and xT e = 0 (e
denotes the vector with all components 1). This continuous constrained optimization problem
can be solved using Lagrangean technique. The following Lagrangean is to be considered for
the stationarity analysis of its saddle point

F(x; λ) = xT Lx − λ(xT x − 1).

The usual analysis involving taking partial derivatives of the above w.r.t. x and equating them
to 0 yields necessary conditions for optimal solution as λx = Lx that is λ is an eigenvalue of
L and x is corresponing eigevector. The cost of the original objective function turns out to
be xT Lx = λ under the constraint that x is of unit length. Therefore we seek smallest eligible
eigenvalue and corresponding eigenvector of L. Since λ1 = 0 gives x = e which violates the
constraint that xT e = 0, the second smallest eigenvalue λ2 gives valid optimal solution for
the above problem. Note the equivalence of this approach with the earlier analysis that also
results in the technique and lower bound for the graph bisection that is based on the second
smallest eigenvalue and the corresponding eigenvector of L.

30.5.2.1 Dealing with Fixed Vertices

Hendrickson et al. [59] extended this standard bisection method to include information about
fixed vertices. Fixed vertices are the vertices which may not be assigned to any other than the
specified block. Their Lagarangean formulation results in a generalized eigenvalue problem
whose instances tend to get solved effectively by Lanczos-like approaches [59].

30.5.3 Partitioning into k Blocks: Barnes’ Approach

In general one considers the problem of finding a partition of the vertex set of G into k blocks.
Sometimes block sizes are also specified, say m1 ≥ m2 . . . ≥ mk. Donath and Hoffman [60]

C5955–C0030.tex 854 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 855

derived a lower bound on the size of the set of edges cut by a k-partition with prescribed
block sizes.

Theorem 30.8 (Donath–Hoffman bound): Let λ1 ≤ λ2 . . . ≤ λn be the eigenvalues of
the Laplacian. Let m1 ≥ m2 . . . ≥ mk be prescribed block sizes. Then the number of edges cut
by a k-partition that satisfies the prescribed block sizes is bounded below by 1

2
∑k

i=1 λimi. �

Later Bopanna (see [4]) and Rendl and Wolkowitz [61] were among those who improved
Donath–Hoffman’s bound. Barnes [62] worked with adjacency matrix directly rather than
Laplacian. He relates minimum k-cut (with specified block sizes) problem to that of approx-
imating the adjacency matrix by an n × n partition indicator matrix in the Frobenius norm.
Barnes’ technique involves use of k eigenvectors corresponding to first k eigenvectors of the
adjacency matrix.

We outline here Barnes’ approach to graph partitioning. Let Π be 0-1 matrix with k
columns and n rows, each column indicating the nodes belonging to the block of a k-partition
it represents. Thus Π represents the k-partition of the node set of the graph. P = Π ΠT is
n × n matrix representing the same partition. P has interesting and simple structure due
to which its eigenspectrum is easy to find. Indeed the n eigenvalues are mi ≥ m2 ≥ . . . ≥
mk ≥ 0 . . . ≥ 0 where, m1, . . ., mk are block sizes. It is interesting to consider the Frobenius
distance between the adjacency matrix and the n × n partition matrix P .

||A − P ||2F
= trace((A − P)T (A − P))
= trace(AT A) + trace(P T P) − 2 trace(P T A)

=
n∑

i=1
λ2

i +
k∑

h=1
m2

h − 2 trace(P T A)

=
n∑

i=1
λ2

i +
k∑

h=1
m2

h − 2
n∑

i=1
(P i.Ai)

Here P i and Ai denote ith column of P and A, respectively,

=
n∑

i=1
λ2

i +
k∑

h=1
m2

h − 4(number of uncut edges)

Thus we see that finding a partition matrix that is closest, in Frobenius norm, to the adjacency
matrix is equivalent to solving the problem of finding k-partition with the prescribed block
sizes, that minimizes the number of cut edges. Additional interesting information about the
Frobenius distance between A and P is obtained using the well-known Hoffman–Wielandt’s
inequality, which is stated as follows.

Theorem 30.9 (Hoffman–Wielandt inequality): Let A and B be real, symmetric n × n
matrices with eigenvalues α1 ≥ α2 . . . ≥ αn and β1 ≥ β2 . . . ≥ βn. Then ||A − P ||2F ≥∑n

i=1(αi − βi)2

We use Hoffman–Wielandt inequality for the adjacency matrix A and a partition matrix P ,
to get

||A − P ||2F ≥
k∑

i=1
(λi − mi)2 +

n∑
i=k+1

λ2
i

C5955–C0030.tex 855 2015/11/4 1:00pm

856 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

where, λ1 ≥ λ2 . . . ≥ λn are eigenvalues of A. Using this and relationship between the
Frobenius distance and the number of uncut edges we get the following Donath–Hoffman’s
upper bound on the number of uncut edges.

4(|E| − |Ec|) ≤ 2
k∑

i=1
λimi

where Ec denotes the set of edges cut across the partition.
Therefore this gives a lower bound on the number of cut edges in terms of eigenvalues of

the adjacency matrix.
Next we analyze ||A − P ||2F in terms of eigenspectra of A and P .

A = UΛUT and P = V MV T

Λ = diag(λ1, λ2, . . ., λn)
M = diag(m1, m2, . . ., mk)
U = matrix with orthonormal eigenvectors of A as columns
V = matrix with orthonormal eigenvectors of P as columns

P , being of simple structure allows eigenvectors to be found by inspection. P = ΠΠT =
ΠM−1/2MM−1/2ΠT and m1, m2, . . ., mk, 0, . . ., 0 are the eigenvalues of P . Therefore, ΠM−1/2

is the matrix whose columns are the orthonormal eigenvectors of P . Thus, V = ΠM−1/2.
Further noting that Frobenius norm is invariant under orthogonal linear transformation and
that U and its transpose are orthogonal matrices, we get the following.

||A − P ||2F = ||UΛUT − V MV T ||2F
= ||Λ − UT V MV T U ||2F

If V were such that UT V = [Ik 0]T , then it can be seen that Donath–Hoffman lower bound
is attained. Therefore, we would like to find V such that ||UT V − [Ik 0]T ||2F is as small as
possible.

||UT V − [Ik 0]T ||2F = ||V − U [Ik 0]T ||2F

=
k∑

j=1
||vj − uj ||2

=
k∑

j=1
(2 − 2

n∑
i=1

vijuij)

= 2k − 2
∑∑

vijuij

where, uij and vij are the ith components of the jth column vectors, uj and vj , of U and V
respectively. Clearly, jth column of V is

vj = ± 1
√

mj
[x1j , x2j , . . ., xnj]T

where [x1j , x2j , . . ., xnj]T denotes jth column of Π. Therefore V that minimizes ||UT V −
[Ik 0]T ||2F is obtained by

min −
k∑

j=1
sgn(vj)

n∑
i=1

(
uij√
mj

)
xij

C5955–C0030.tex 856 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 857

subject to,
n∑

i=1
xij = mj j = 1, . . ., k

k∑
j=1

xij = 1 i = 1, . . ., n

xij ≥ 0 i = 1, . . ., n; j = 1, . . ., k

This is the transportation problem [16]. Note that the term sgn(vj) in the objective function
of the above transportation problem is the sign chosen for vj .

Since, m1, m2, . . ., mk are integers, an extreme integer valued solution to the above
transportation problem will be integer valued [16]. Also

∑k
j=1 xij = 1 implies xij ∈ {0, 1}.

Thus we will get a partition matrix P from V MV T . But how are the signs in the
vj = ±1/

√
mj [x1j , x2j , . . ., xnj]T to be chosen? Clearly the most desirable choice is one for

which the corresponding transportation problem has smallest optimum. We need to therefore
solve 2k such instances of transportation problems.

30.5.4 Ratio-Cut Bipartitioning Using Eigenspectrum

The following interesting result of Hagen and Kahng [63] relates second smallest eigenvalue
of the Laplacian to a cost metric called ratio-cut. This measure, 2-ratio-cut is defined as
follows. Ratio-cut cost of a bipartition H, K is the ratio |Ec|/|H||K|. Here Ec denotes the
set of edges cut across the bipartition.

Theorem 30.10 [63] Given a graph G(V, E) with A as its adjacency matrix and L = D−A
as its Laplacian the 2nd smallest eigenvalue of the Laplacian gives a lower bound on the ratio-
cut cost of any bipartition.

|Ec|
|H||K|

≥ λ2(L)
|V |

where, Ec is the set of edges cut by the bipartition H, K of V and λ2(L) is the second smallest
eigenvalue of the Laplacian.

Proof. Let H, K be an optimum bipartition of V in the sense of the above ratio-cut metric.
Let p = |H|/|V | and q = |K|/|V |. Thus, p, q ≥ 0 and p+q = 1. Define a vector x with xi = q
if i ∈ H and xi = −p if i ∈ K. Then x ⊥ [1 . . . 1]T , that is, x is perpendicular to the first
eigenvector (i.e., corresponding to the smallest eigenvalue of L). xT Lx can be seen to equal
|Ec|, the number of edges cut in H, K bipartition. Furthermore, |H||K| = pq|V |2 = |V |||x||22.
Therefore, λ2(L) = miny⊥[1...1]T ,y ̸=0 yT Ly/yT y ≤ |Ec||V |/|H||K|. Therefore, |Ec|/|H||K| ≥
λ2(L)/|V |. �

Using this result one develops intuition of use of the eigenvector corresponding to the second
smallest eigenvector of the Laplacian to design heuristic for finding good bipartition in the
sense of the above defined ratio-cut.

30.5.5 Spectral Bound Involving Multiple Eigenvectors

Chan et al. [64] extended the ideas of Hall [58], Pothen et al. [65], and Hagen et al. [63] using
the following main theoretical result.

Theorem 30.11 (k-smallest eigenvalues of Laplacian) Subject to the condition that k
columns of n×k matrix Y are orthonormal, trace of Y T LY is minimized, when the k columns

C5955–C0030.tex 857 2015/11/4 1:00pm

858 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

of Y are the eigenvectors of L corresponding to the k-smallest eigenvalues of L. And the
minimum value is

∑k
i=1 λi where λ1 ≤ λ2 . . . ≤ λn are the eigenvalues of L.

Proof. Let U denote n × n matrix with the normalized eigenvectors of L as columns in order
of λ1 ≤ λ2 . . . ≤ λn. Let Uk denote the n × k submatrix of U consisting of first k columns.

trace(UT
k LUk) = trace(UT

k UΛUT UK)

= trace(
[

Ik 0
]

Λ
[

Ik

0

]
)

=
k∑

i=1
λi

We prove by contradiction. Let Z be n × k matrix that violates the theorem, that is
trace(ZT LZ) <

∑k
i=1 λi and let k be smallest such integer. Clearly k cannot be 1 as

xT Lx ≥ 0 = λ1 due to positive semidefiniteness of L. So, k ≥ 2 and will be able to use
inductive assertion for k − 1 and below. Let y ∈ sp(Z) be a unit vector (in the linear span
of columns of Z) that maximizes yT Ly. Extend y to an orthonormal basis, say Y that is
Y T Y = Ik = ZT Z and sp(Y) = sp(Z). We now show that there exists orthonormal W such
that Y = ZW . This is seen as follows. We begin with assumption that W exists and show
that it is orthogonal matrix. Let Ẑ be orthogonal basis of the complement of sp(Y) in ℜn.
Therefore, [Y Ẑ] is orthonormal basis columns of ℜn and so is [Z Ẑ]. Clearly,

[Y Ẑ] = [Z Ẑ]
[

W 0
0 I

]

Therefore,
[

W 0
0 I

]
is orthogonal and hence W is also orthogonal k × k matrix. Due to

similarity transformation trace(ZT LZ) = trace(Y T LY), therefore trace(Y T LY) <
∑k

i=1 λi.
Let Yy be Y with column y removed.

trace(Y T LY) = trace(Yy
T

LYy) + yT Ly

So,
k∑

i=1
λi >

k−1∑
i=1

λi + yT Ly.

Therefore, λk > yT Ly = max
x∈sp(Z)=sp(Y),||x||=1

xT Lx.

Therefore, λk > yT Ly = max
x∈sp(Z)

xT Lx

xT x
≥ min

s:k-dim
max
x∈S

xT Lx

xT x
= λk.

The last equality is due to Courant–Fischer min-max theorem. Hence, we get a contradic-
tion. Having shown that if W exists then it is orthogonal, to complete the proof we need
to show that such W indeed exists. Due to independence of columns of Y there exists W̃1
matrix composed of elementary column operations, such that Y W̃1 = [Ik

Y1
]. Similarly for W̃2

i.e ZW̃2 = [Ik

Z1
]. Furthermore Y1 = Z1 since column spaces of [Ik

Y1
] and [Ik

Z1
] are identical

to column spaces of Y and Z, respectively. So [Ik

Y1
]Ŵ = [Ik

Z1
] for some invertible matrix Ŵ ,

which must be Ik therefore Y1 = Z1 And hence Y W̃1 = ZW̃2 and therefore Y = ZW , where
W = W̃2W̃1

−1. This completes the proof. �

For completeness, we include a version of Courant–Fischer min-max theorem with a proof.

C5955–C0030.tex 858 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 859

Theorem 30.12 (Courant–Fischer min-max theorem) If A ∈ ℜn×n is symmetric, then

λk(A) = max
dim(S)=k

min
0 ̸=y∈S

yT Ay

yT y

for k = 1, . . ., n.

Proof. Let QT AQ = diag(λi) be the Schur decompsition of A. Hence, λk = λk(A) and
Q = [q1, q2, . . ., qn]. We define vector space Sk = span({q1, q2, . . ., qk}).

max
dim(S)=k

min
0 ̸=y∈S

yT Ay

yT y
≥ min

0̸=y∈Sk

yT Ay

yT y
= qk

T Aqk = λk(A)

We establish reverse inquality to show that they are actually equal. Let S be any
k-dimensional subspace and note that it must intersect the n − k + 1-dim subspace
span({qk, . . ., qn}) nontrivially. If y = αkqk + · · · + αnqn is in this intersection, then

min
0̸=y∈S

yT Ay

yT y
≤ yT Ay

yT y
≤ λk(A)

Since this holds for all k-dimensional subspaces,

max
dim(S)=k

min
0 ̸=y∈S

yT Ay

yT y
≤ λk(A)

Hence the proof. �

Motivated by the above characterization of eigenvectors of k-smallest eigenvalues of
the Laplacian yielding columns of a suitable constrained minimizer Y of trace(Y T LY),
Chan et al. [64] proposed a new metric for k-ratio-cuts as follows: k ratio cut(Π) =∑k

h=1 w(Eh)/|Vh|, where w(Eh) denotes the weight of edges crossing the kth cluster/block of
vertex partition Π = {V1, V2, . . ., Vk}. They showed that the sum of the k smallest eigenvalues
of the Laplacian is a lower bound on the optimal such ratio cut cost over k-block partitions
of the vertex set. The same authors extended these ideas in the setting of partitioning for
multiple FPGAs [66].

30.5.6 Simple Eigenvector-Based Clustering

30.5.6.1 Algorithm

Alpert and Kahng [67] proposed a simple but effective algorithm based on spectral meth-
ods for clustering hypergraphs. For a given hypergraph H(V, E) over the n nodes V =
{v1, v2, . . ., vn}, each hyperedge e ∈ E can be regarded as a subset of two or more nodes
from V , with |e| representing the number of nodes incident on e. Then n × n adjacency
matrix A = (aij) of the H can be defined using clique net model. If vi and vj both are
in hyperedge (net) e then for entry aij , f(|e|) is added. A typical choice for a weight func-
tion is : f(|e|) = 6/|e|(|e| + 1). The weighted degree matrix D is defined as dii =

∑n
j=1aij ,

that is degree of the ith node. First d eigenvectors (corresponding to d smallest eigenvalues)
µ1,µ2, . . .,µd of Laplacian matrix L = D−A, are computed, where 2d is number of clusters in
which H is to be partitioned. Based on these d eigenvectors d-digit binary code is calculated
for each node vi. Let µij denote the ith entry of the jth eigenvector of L. The bit j of code[i]

C5955–C0030.tex 859 2015/11/4 1:00pm

860 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

is set to 1 if µij ≥ 0 and 0 otherwise. Finally, nodes having same binary code are assigned
the same cluster.

30.5.6.2 Theoretical Motivation

The idea of this algorithm is sort of generalization of well-known spectral bipartitioning
algorithm. The spectral bipartitioning algorithm computes eigenvector µ2 corresponding to
the second smallest eigenvalue of L and uses it to define a 0 − 1 vector x to describe a
bipartition. To be precise, the spectral bipartitioning algorithm of Hall sets ith compo-
nent of x to one if the corresponding component of µ2 is ≥ 0 and to zero, otherwise.
Recall that x is the indicator vector projecting maximally onto µ2. The optimality of µ2
It is well-known that µ2 is an optimal vector y for the following quadratic optimization
problem.

f(x) =
n∑

i=1

n∑
j=1

aij(yi − yj)2 (30.39)

under the constraints that ||y||2 = 1 and
∑n

i=1 yi = 0. And the x computed above by Hall’s
algorithm is the nearest legal discrete solution to this problem. Similarly Chan et al. [64]
showed the generalized result that the d best nondiscrete solutions to the above equation
are given by µ1,µ2, . . .,µd under the constraint that all solutions are mutually orthogonal.
Indeed the indicator vector for these vectors are the binary code in this algorithm. Let xh

be the indicator vector for block Vh of the clustering (partition). It is easy to see that the
clustering obtained by the above simple algorithm maximizes

∑k
h=1

∑d
j=1 |xh · µj |, where k

is the number of blocks (clusters). That is the clustering found will maximize the cumulative
projection of the indicator vectors of the clusters onto the eigenvectors corresponding to the
d smallest nonzero eigenvalues of the Laplacian L.

Hence, the above algorithm may be regarded as a natural extension of the simple spectral
bipartitioning algorithm due to Hall [58].

30.5.7 Graph Partitioning Using Multiple Eigenvectors

Various researchers including Alpert et al. [67] as well as Frankle and Karp [68] investigated
the approach of using multiple eigenvectors of the Laplacian to map the graph partitioning
problem to a clustering or a partitioning problem on the collection of vectors obtained using
eigenvectors (not eigenvectors themselves necessarily, though!).

Since, the collection of eigenvectors {µj : j = 1 . . . n}, of the Laplacian L of a graph form
an orthonormal n-dimensional basis, any 0 − 1 vector indicating a cluster (i.e. a subset of
nodes) can be expressed as a sum of projections on these eigenvectors.

x =
∑

j=1,...,n

(µj
T x)µj

Given any k-partition Π = {V1, V2, . . ., Vk} with m1(= |V1|), m2(= |V2|) and so forth, the
cost of the partition satisfies, for suitably large number H (to be clarified later!),

H ∗ n − (2(cost of partition Π))
= H

∑
h=1,...,k

mh −
∑

h=1,...,k

xh
T Lxh

C5955–C0030.tex 860 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 861

where, xh is 0 − 1 indicator vector for Vh that is xh(i) = 1 if i ∈ Vh and 0 otherwise.

H ∗ n − 2(cost (Π)) = H
∑

h=1,...,k

(
∑

j=1,...,n

(µj · xh)2) −
∑

h=1,...,k

xh
T UΛUT xh

= H
∑

h=1,...,k

(
∑

j=1,...,n

(µj · xh)2) −
∑

h=1,...,k

(UT xh)T Λ(UT xh)

=
∑

h=1,...,k

(
∑

j=1,...,n

H(µj · xh)2) −
∑

h=1,...,k

∑
j=1,...,n

(
√
λjµj · xh)2

=
∑

h=1,...,k

(
∑

j=1,...,n

(H − λj)(µj · xh)2)

=
∑

h=1,...,k

(
∑

j=1,...,n

(
√

H − λjµj · xh)2

=
∑

h=1,...,k

||MT xh||22

where, the jth column of M is the scaled version (scaled by
√

H − λj), of the jth eigenvector
of L (i.e., µj). Denoting jth column of M by Mj , we know Mj =

√
H − λjµj . Therefore the

problem of finding a k-partition is equivalent to the following.
Find a k-partition Π for which the n × k matrix X, consisting of columns which are the

indicators of the blocks of Π, maximizes ||MT X||F , that is the Frobenius norm of MT X.
The equivalence is evident from the following.

||MT X||F
2 =

∑
h=1,...,k

||MT xh||22

=
∑

h=1,...,k

||
∑
q∈Vh

(row q of M)||22

Thus, we have an equivalent vector partitioning problem on the collection of vectors which
are the rows of M . Recall that, H = U(

√
diag(H) − Λ).

30.5.8 Multilevel Spectral Partitioning

Plenty of evidence points to efficiency and quality of multilevel partitioning schemes for large
graphs. The methodology of multilevel partitioning has been described earlier Section 30.4.3.

Now we present brief outline of an adaptation of multilevel paradigm in the context of
spectral technique from the work of Barnard and Simon [56]. They use a coarsening scheme
based around maximal independent subsets.

30.5.8.1 Multilevel Spectral Partitioning Algorithm

• Coarsen the graph using Maximal independent sets, and partition the coarsened graph.

• Project the partition of the coarsened graph back to that of the original and refine
using Rayleigh quotient iterations.

An independent set of a graph G(V, E) is defined as a subset VI of V such that, no two nodes
in VI are connected by an edge. A maximal independent set of a graph is a maximal such
set. A simple greedy algorithm can be used to compute maximal independent set.

Coarsening can be done using the generated maximal independent set VI . This is done
by building domains Di around each node in i ∈ VI . The edges Ec are then the edges which
connects such domains. The algorithm for selecting Ec is as follows.

C5955–C0030.tex 861 2015/11/4 1:00pm

862 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Ec = {∅}. Unmark all edges in E.
for nodes i = 1 to |VI | do

Di = ({i}, ∅)
end for
repeat

Choose an unmarked edge e = (i, j) from E
if exactly one of i and j (say i) is in some Dk then

Mark e. Add j and e to Dk

else if i and j are in different Dk’s (say Dki and Dkj then
Mark e. Add an edge (ki, kj) to Ec

else if both i and j are in the same Dk then
Mark e. Add it to Dk

else
Leave e unmarked

end if
until No unmarked edges

This coarsened graph Gc is then partitioned using spectral methods. The eigenvector µc,
associated with the second smallest eigenvalue of Laplacian of Gc, is then used to approximate
eigenvector µ of Laplacian of G. For nodes which are in VI , corresponding components of µc

are used for µ. For the nodes which are not in VI , average of corresponding components of
neighbors that are in VI is taken.

This averaging method is not guaranteed to yield good results. Hence, further refinement
is necessary. Natural idea is to use Rayleigh quotient iterations, which will refine the eigen-
vector so that it approximates actual eigenvector more closely. The algorithm is as follows: ρ
is called as Rayleigh quotient, which is a good approximation of eigenvalue of the Laplacian
L of G. ρ would converge to an eigenvalue of L and µ would become the corresponding
eigenvector.

30.5.9 Eigenvalue-Based Hypergraph Reordering and Partitioning

Otten [69] proposed an elegant scheme for reordering nodes and hyperedges of a hypergraph
in such a way that layout of the resulting hypergraph would be more efficient. This ordering
would naturally provide a heuristic for partitioning the nodes of the hypergraph.

Rayleigh quotient iterations
i = 0
Choose starting vetcor µ0 = µc (after expansion and normalization)
repeat

i = i + 1; ρi = µi−1
T Lµi−1;

µi = (L − ρiI)−1µi−1; µi = µi

||µi||2 ;
until convergence

This scheme does not require us to model the hypergraph (representing typically a VLSI
netlist) as a graph. Instead it works on the genuine representation of the hypergraph itself.
Indeed, the scheme uses a net connectivity matrix Q, an m×n matrix where m is the number
of nodes and n is the number of nets or hyperedges of the given hypergraph. If a node i is
connected to net (hyperedge) j, then, the entry qij is marked 1, otherwise 0. In [70], this
scheme of Otten is used at the core of a multilevel partitioning approach.

C5955–C0030.tex 862 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 863

It may be intuitively noted that if the rows and columns of the net connectivity matrix Q
are independently permuted such that the nonzeros of Q tend to be clustered near its diagonal
region, then the placement of the nodes according to the permutation of the rows would yield
an effective placement of nodes in terms of the total span of the nets connecting these nodes.
This ordering of nodes also yields heuristically good quality partitioning consistent with the
ordering itself.

Otten [69] related this problem of matrix (or hypergraph) reordering, to that of maxi-
mizing rT Qk, over a collection of permutation vectors r and k of size m and n respectively
(a permutation vector is a vector of length n whose entries form a permutation of {1, . . ., n}).

Example 30.2 To illustrate the above idea, an example taken from [70] is taken
Consider a matrix Q given as

Q =

 1 0 0 1
1 1 1 0
1 0 1 1

then r and k are later shown to be derived from

r =
[

0.59 −0.29 −0.16
]T

k =
[

0.05 −0.29 −0.22 0.59
]T

In order to sort r and k from smallest to largest, r is reordered according to coordinates
[2 3 1]T and k according to coordinates [2 3 1 4]T . If the rows can columns of Q are reordered
based on the above reordering index, the reordered matrix will look like

Q =

 1 1 1 0
0 1 1 1
0 0 1 1

and the reordered matrix product (ropt)TQoptkopt is 0.54 which is observed to be the max-
imum value.

Problem formulation. The matrix reordering technique can be considered as the following
optimization problem

maxr,k rTQk
such that(C−1

r r)T(C−1
r r) = 1

To solve this problem a method based on eigenvalues is proposed in [69] First define diagonal
matrices Ck, Cr

Ckjj = 1√∑m
i=1 qij

j = 1, 2. . ., n

Crii = 1√∑m
j=1 qij

i = 1, 2. . ., n

Note that the square of the reciprocals the diagonal entries of Ck are the number of nodes of
the nets and for Cr, the reciprocal of the square of ith diagonal entry represents the number
of nets incident on ith node (or a cell, as in VLSI netlist).

C5955–C0030.tex 863 2015/11/4 1:00pm

864 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Also, E and F are defined as
E = CrQCk

F = C2
r QC2

kQT = CrEET C−1
r

Otten argued that the eigenvector solutions of Fv = λv satisfy certain iterative averaging
process which aims to identify good r and k. It was also noted in [2,69] that, in order to
maximize rTQk, we should work with largest or near-largest eigenvalue λ of F .

As F and EET are similar, that is F = CrEET C−1
r , they have the same eigenvalues

and related eigenvectors (v is an eigenvector of F if and only if Cr
−1v is an eigenvector

of EET). Due to symmetric, positive-definite nature of EET , the eigenvalues of F are real
and nonnegative too. Furthermore, it can be easily seen that row sums of F equal to 1,
and therefore, the nonnegative matrix F has 1 as its dominant eigenvalue. However, this
dominant eigenvalue has trivial eigenvector (all 1’s) and hence of no use for a permutation
to be inferred from it.

Premultiply the above eigenvalue equation for F by C−1
r , we get

C−1
r Fr = λC−1

r r

Substituting F = C2
r QC2

kQT = CrEETC−1
r , the equation becomes

EETC−1
r r = λC−1

r r

If we restrict r such that C−1
r r is of unit magnitude, multiplying the previous equation by

(C−1
r r)T leads to

(C−1
r r)TEETC−1

r r = (C−1
r r)Tλ(C−1

r r) = λ

= (rT)Q(C2
kQTr) = λ.

This has form
rTQk

where
k = C2

kQTr

Note that k here is derived from r which in turn is obtained from solving the eigenvalue
problem and obtaining the eigenvector corresponding to the appropriate eigenvalue of F. So
for reordering r and k the second largest eigenvector of F is chosen and the rows and columns
of the matrix are reordered according to the r and k found with respect to the eigenvector
corresponding to the second largest eigenvalue.

30.6 SIMULATED ANNEALING AND GRAPH BISECTION

Simulated annealing is a Monte Carlo-based metaheuristic for optimization. It is based on
the manner in which metals recrystallize (settles to an optimum configuration) in the process
of annealing. Annealing is analogous to combinatorial problems; the state of the metal is like
the current configuration and the energy function to be minimized is the objective function.

Often in optimization problems, local search based technique tends to get trapped at
a local minima. Simulated annealing technique, inspired by the metropolis method [71],
provides a way to escape from them. The main idea of simulated annealing is roughly as
follows: Generate (sample) one random neighboring solution. If the new solution is better,
go to this solution (as one would in the ordinary local search). However even if the new
solution is worse, give it a chance with a certain probability, accept the worse solution for the
sake of hoping to avoid getting trapped at a local optimum. The probability of accepting the

C5955–C0030.tex 864 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 865

neighboring solution that is worse than the current should indeed be governed by the amount
of degradation certainly as the intuition would guide us. This apparently counterintuitive idea
allows the algorithm to from a local optimum.

Over the time, the role of the above counterintuitive step should be curbed as we hope
to converge to a global optimum. This policy is implemented using a parameter called tem-
perature, which is progressively decreased according to a cooling schedule. The probability
to accept a worse solution is gradually reduced as the temperature is reduced. Analogous to
physical phenomenon, at a high temperature more random movements are likely, however
with lowering of temperature things tend to settle down in a downhill groove, as would in a
typical local search. It is hoped that algorithm finds some region around a global optimum
while the temperature is hot, and fine-tune the rough choice of solution during the later
cooler phase. For a good discussion of Simulation Annealing, reader is referred to Aarts and
Korst [72].

Let us now describe in some detail the adaptation of metropolis algorithm at the core
of simulated annealing. In general metropolis algorithm generates a sample according to an
arbitrary probability distribution, however for simulated annealing we use it for sampling
from Boltzmann probability distribution (probability of x, the cost or energy, is proportional
to exp(−x/(kT)). Therefore the generated sample is very highly likely to be the minimum
cost (or energy) solution.

Each solution (configuration) in the metropolis algorithm can be regarded as a state
in a Markov chain. The transition probabilities are determined by the probability of gen-
erating the neighboring solution (for example, uniform distribution) and the probability
of acceptance exp(−∆/kT). This Markov chain turns out to be ergodic. The metropolis
algorithm simulates the above ergodic Markov chain. Being ergodic, its simulation would
yield its stationary distribution. In fact Boltzmann distribution happens to be the stationary
distribution of this ergodic Markov chain. This can be proved using the observation that
the so called detailed balance conditions are satisfied by it (Boltzmann’s distribution) for
this chain.

Simulated annealing works by running the metropolis algorithm while gradually decreas-
ing the value of T over the course of the execution. The exact way in which T is updated is
called a cooling schedule. The key idea of simulated annealing is to start at a high temper-
ature, and slowly lower the temperature. At a given temperature, we run Metropolis for a
while.

Metropolis algorithm
Choose arbitrarily an initial solution S
repeat

Generate a new random neighboring solution S′

Let ∆ = cost(S′) − cost(S).
if ∆ < 0 /* downhill move */ then

set S = S′.
else

/* uphill move */, with probability proportional to exp(− ∆
kT), set S = S′.

end if
until convergence

There are some interesting facts about annealing. For example, you can prove that if you
lower the temperature slowly enough, you will find the global minimum with arbitrarily high
probability. However these optimal annealing schedules may note be very useful in practice.

C5955–C0030.tex 865 2015/11/4 1:00pm

866 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Simulated annealing
Get an initial solution S
Get an initial temperature T > 0
while not yet frozen do

repeat
Pick a random neighbor S′ of S
Let ∆ = cost(S′) − cost(S)
if ∆ ≤ 0 /* (downhill move) */ then

Set S = S′

else
/* (uphill move) */ Set S = S′ with probability exp(− ∆

kT)
end if

until L times
Set T = rT (reduce temperature)

end while
Return S

Next we describe the straightforward scheme of adapting simulated annealing metaheuristic
to graph bisection problem.

A solution/configuration would be any bipartition {V1, V2} of the vertex set (not neces-
sarily a vertex bisection). Neighborhood is defined as follows: two bipartitions are neighbors
of each other if one can be obtained from the other through transfer of a single vertex from
one of the parts of to the other (rather than by exchanging two vertices). Finally the cost
of a bipartition {V1, V2} is defined to be the size of cut edges cut across the bipartition and
α times the square of the difference in the sizes of V1 and V2. The parameter α is called
the imbalance factor. We may note that this scheme does allow for unbalanced partitions
as solutions, however they are penalized according to the square of the imbalance. Such a
penalty function approach is common and effective in adaptations of simulated annealing.
This could be attributed to the intuition that the extra solutions that get facilitated provide
new escapes out of local optima. Furthermore for our graph partitioning problem the penalty
based relaxation approach working with possibly unbalanced bipartitions has another ben-
efit. Neighborhoods are smaller (n neighbors vs. n2/4 as would be the case if we were to
explore only balanced bipartitions through exchange of a pair of vertices). The experiments
reported by Johnson et al. [73] indicate that, under usual cooling rates such as r = 0.95,
temperature lengths that are significantly smaller than the neighborhood size tend to give
poor results. Therefore smaller neighborhood size may imply shorter execution time.

Several results relating to convergence of simulated annealing under suitable cooling
schedules are available, for example in Gelfand and Mitter [74,75] or Hajek [76]. Essentially,
convergence is guaranteed by a cooling schedule where the temperature Tk is decreased as
Γ/log k, for sufficiently large Γ. However due to practical computational time constraints,
the cooling is done much faster than this suggestion.

30.7 SPECIFIC VARIATIONS OF GRAPH/HYPERGRAPH PARTITIONING

In this section we illustrate how specific variants of the generic graph/hypergraph parti-
tioning algorithms are treated. Such variants result from technological and other practical
constraints. A large volume of research has been done for such problems [1,3]. We discuss
two such problems and proposed approaches for them.

C5955–C0030.tex 866 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 867

30.7.1 Efficient Network Flow-Based Minimum Cost Balanced Partitioning

30.7.1.1 Modeling a Net in a Flow-Network

A logic netlist N(V, S) has nodes V which represent cells (e.g., gates and registers), and
the nets S which represent signal connections. More formally, a (directed) net n = (v :
v1, v2 . . . vl) consists of a driving cell v and the driven cells {v1, v2, . . ., vl}. In Figure 30.6, net
a is {p1 : q1, q2}, driven by cell p1 and driving q1 and q2. In our subsequent description of
essence of the flow-based bisection approach of Yang and Wong [77], we shall always assume
that the cuts separate specified source and sink cells.

The netcut(X, X) of the bipartition {X, X) (here X denotes complement of the subset X
of cells) is the set of those nets incident on nodes (cells) both in X and in X. A netcut(X, X)
is a minimum netcut if |netcut(X, X)| is minimum. In Figure 30.6, (the nets driven by
p1, p2, q1, q2, and q3 are denoted by a, b, c, d, and e, respectively), we see that netcut(X, X) =
{b, e}, netcut(Y, Y) = {c, a, b, e}. (X, X) in this case happens to be a minimum netcut.

Yang and Wong [77] described how the problem of finding a minimum netcut in a given
netlist N can be transformed to the problem of finding a cut of minimum capacity in a
suitably defined capacitated flow-network.

One constructs the flow network FN = (V ′, A) from a given netlist N(V, S) as follows:
V ′ contains all nodes in V , along with two special nodes called split nodes n1 and n2 for
each net n ∈ S. The set of arcs of FN is formed by the infinite capacity arcs (u, n1) and
(n2, u) for each cell u incident on the net n. In addition, for each net n ∈ S, unit capacity
bridging arc (n1, n2) is added to FN . Two distinguished nodes s,t respectively denote the
specified source and sink of FN . The node weights in FN are same as the weights of the
corresponding nodes in N . However for the split nodes of FN , which represent the nets of
N , zero weights are assigned.

It is easy to see that |V ′| < 3|V | and |A| < 2|S| + 3|V |. Also note that the directions of
the nets (drivers and driven cells) are not considered in the construction of FN . That is, one
may as well think of signal nets as ordinary undirected hyperedges.

We will now argue that the problem of finding a minimum netcut in N can be reduced
to the problem of finding a cut with minimum capacity in FN .

p2

p1

p3

q3

q2

q1

Y′Y

X X′

a

b

c

d

e

Figure 30.6 Logic circuit and its netcuts.

C5955–C0030.tex 867 2015/11/4 1:00pm

868 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Lemma 30.2

i. For every subset X of cells of N (ie. X ⊆ V), FN has a cut(X ′, X ′) of capacity
|netcut(X, X)|. In fact X ′ = X

∪
delXN1, where delXN1 is the collection of first of

split nodes, n1, for the nets n ∈ netcut(X, X).

ii. For any cut (X ′, X ′) in FN of finite capacity C, then there exists X ⊆ S for which
|netcut(X, X)| ≤ C. �

Corollary 30.3 Let (X ′, X ′) be a cut of minimum capacity C in FN , and let X = X ′∩V .
Then netcut(X, X) is a minimum netcut in N and |netcut(X, X)| = C.

30.7.1.2 Optimal Minimum Netcut Algorithm

The above lemma and the corollary, cleary justify the following algorithm for finding a
bipartition of a netlist N = (V, S) w.r.t. two specified nodes (cells) s and t, that minimizes
the number of crossing nets.

Algorithm MinNetCut
1. Construct the flow network FN = (V ′, A) as illustrated earlier.
2. Find a maximum flow in FN from s to t.
3. Find a cut (X ′, X ′) of minimum capacity in FN

as described in the maxflow-mincut theorem.
4. Set X = X ′∩V , Return netcut(X, X) as a minimum netcut in N .

Using simple incremental Ford-Fulkerson style max-flow algorithm [31] we can guarantee the
following.

Theorem 30.13 Algorithm MinNetCut finds the minimum netcut in O(|V ||S|) time.

30.7.1.3 Most r-Balanced Minimum Netcut Bipartition: An NP-Complete Problem

Minimum netcut bipartition may often yield unbalanced components. So one is naturally
interested in finding a minimum netcut that is the most r-balanced among all minimum
netcuts defined by a maximum flow, that is, among all possible minimum netcuts (X, X)
find one such that |w(X) − r ∗ W | is as close to 0 as possible, where W is the total weight.
It is not difficult to show that this problem is also NP-complete.

Further note that this problem is different from the more familiar NP-complete minimum
cost balanced bipartition. While the latter fixes the weights of the two partitions and tries to
minimize the number of crossing nets, the first one requires that the number of crossing nets
is minimum and tries to find such a (minimum netcut) partition {X, X} for which w(X) is
as close to rW as possible.

30.7.1.4 Minimum Cost Balanced Bipartition

Yang and Wong [77] proposed the heuristic flow-balanced-bipartition (FBB), for finding an
r-balanced bipartition minimizing the number of crossing nets. Given a netlist N = (V, S),
FBB randomly picks a pair of nodes s and t in N , and then tries to find an r-balanced
bipartition that separates s and t, minimizing the number of crossing nets. Let W be the
total weight of the nodes in N . For the two blocks of the required bipartition, a deviation in
weight from (1 − ε)rW to (1 + ε)rW is allowed.

C5955–C0030.tex 868 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 869

Algorithm FBB
1. Randomly pick a pair of nodes s and t in N .

Create the flow network FN for netlist N .
repeat

2. Maximize flow in the flow network. Find mincut {X̃ ′, X̃ ′} as follows.
Let X̃ ′ be the nodes reachable from s through the search for augmenting paths
in the flow network, and X̃ ′ be the rest of nodes.
Let X ′ denote the subset of nodes V ′ of original flow network FN , corresponding
to X̃ ′.
Let X = X ′∩V , that is the cells of N inside X ′.

if (1 − ε)rW ≤ w(X) ≤ (1 + ε)rW then
3.a. Stop and return X as the answer. break

end if
if w(X) < (1 − ε)rW then

4.a. Collapse all nodes in X̃ ′ to s.
4.b. Collapse to s a node v ∈ X̃ ′ incident on a forward arc across {X̃ ′, X̃ ′} .
continue

end if
if w(X) > (1 + ε)rW then

5.a. Collapse all nodes in X̃ ′ to t.
5.b. Collapse to t a node v ∈ X̃ ′ incident on a forward arc across {X̃ ′, X̃ ′} .
continue

end if
until true

30.7.1.5 Efficient Implementation

Instead of repeatedly applying Algorithm MinNetCut in step 2 of Algorithm FBB to compute
a max-flow and a minimum netcut from scratch everytime, Yang and Wong [77] employ
incremental flow computations to keep the total complexity almost of the same order as that
of a single max-flow-min-cut computation. They utilize the maximum flow found in step 2
of Algorithm FBB as an initial flow in the modified (collapsed) flow network in the next
iteration. The required bounds on the sizes of the max-flows and the number of collapsing
steps are consequences of |V ′| < 3|V | and |A| < 2|S| + 3|V |.

30.7.2 Optimal Replication for Minimum k-Cut Partitioning

The idea of vertex replication can be used to reduce the size of a cut in an already partitioned
graph. That is, we can improve upon the given partition in the sense of cost of the cut, however
at the expense of more area (block sizes). This work is motivated by the increase in mapping
large logic networks into multiple FPGAs. Often the number of pins on an FPGA is not large
enough to permit high utilization of its gate capacity after partitioning. Vertex replication
technique has the following potential benefits.

1. Replication can reduce the number of FPGAs required to implement a design.

2. It can reduce the number of wires interconnecting the FPGAs.

3. It can reduce the number of inter-chip wires along a path in a design, resulting in
increased performance.

We describe below main ideas of [78,79] for tackling optimum vertex replication problem.

C5955–C0030.tex 869 2015/11/4 1:00pm

870 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

30.7.2.1 Vertex Replication

Let G = (V, E) be a directed graph and Π = {V1, V2, . . ., Vk} be a partition of V into k
disjoint subsets.

Vertex replication is a transformation on directed graphs. For any vertex u ∈ Vi, the
replication of u into Vj yields the transformed graph G′ = (V ′, E′), with V ′ = V

∪
uj . The

transformed graph is obtained by adding an vertex uj to Vj and E′ is obtained starting with
E performing the following modifications.

1. Every cut edge (u, v), where v ∈ Vj is replaced by an edge (uj , v).

2. ∀ edge (v, u), E′ contains a new edge (v, uj).

Subsequent replication of uj into Vi and further replications of u into Vj are defined to be
null operations.

We define
in(Vi) = |(u, v) ∈ E : u ̸∈ Vi, v ∈ Vi| (30.40)

that is, the number of directed edges entering Vi. As each cut edge is incident into exactly
one component, we have

cutsize(Π) =
∑

i

in(Vi) (30.41)

30.7.2.2 Minimum k-Cut Replication Problem

Given a directed graph G = (V, E), and a k-partition Π = {V1, V2 . . . Vk} of V , the problem
is to determine a collection {V ∗

ij : 1 ≤ i, j ≤ k}, that minimizes the cutsize(Π∗), where Π∗ is
the partition that results when V ∗

ij is replicated from Vi to Vj for all i and j (Figure 30.7).
We present the essential ideas proposed for this problem by Hwang and El Gamal [78].

The core idea can be effectively illustrated using the case of k = 2, that is, replication for
improving a bipartitioning.

Our objective is to improve a given bipartition (V1, V2) using replication technique. The
following approach will also generalize to a more general optional replication problem in the
settings of the k-partitions.

Suppose we need to choose V12 ⊂ V1 (note the notation for proper subset rather than
just a subset) and V21 ⊂ V2 such that in the graph, that results after the replication of V12
in V2 and V21 in V1, the altered cut is minimum.

Note that the resulting graph differs from the original exactly in the removal of arcs
belonging to the sets out(V12, V2) and out(V21, V1) from the original graphs (recall that

u

2

4

4

2

4

u
u′

4

Figure 30.7 Replication reduces the cut size.

C5955–C0030.tex 870 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 871

out(X, Y) denotes the set of arcs starting at a node in X and terminating at a node Y).
The resulting cut consists of the disjoint subsets of arcs, namely, those entering the block
V2
∪

V12 (i.e. V2 after replication of V12) and those entering V1
∪

V21. The former can be seen
to be identical to the subset in(V2

∪
V21) of original graph G and the arcs in the latter are

in 1 − 1 correspondence with those belonging to in(V1
∪

V21) of G. Then our task is to find
V12 ⊂ V1 and V21 ∈ V2 which minimize |in(V2

∪
V12)|+ |in(V1

∪
V21)|. Noting the separability,

the above is equivalent to

min
V12⊂V1

|in(V2
∪

V12)| + min
V21⊂V2

|in(V1
∪

V21)|

(here the in(.) function is defined for G). Therefore the problem decouples into independent
problems. Let us analyze without loss of generality, just one of them, say minV12∈V1 |in(V2

∪
V12)|.

It is quite apparent that this problem can be solved by employing max-flow-min-cut
technique [16,31]. Indeed the problem

min
V12⊂V1

|in(V2
∪

V12)|

can be easily seen to be equivalent to

min
u∈V1

[minimum capacity cut in flow network FGu]

where FGu is as follows. The nodes of FGu are those of G along with two new special nodes s
and t (source and sink of the flow network). The arcs of FGu consist of those of G each given
unit capacity and the arc (s, u) as well as (v, t) for each v ∈ V2, all with infinite capacity each.

The justification of the above equivalence rests on the simple observation that minimum
cut in FGu must be of finite capacity and therefore arcs crossing from the s-side to t-side. As
a result, any mincut of FGu must contain u on the source-side and whole of V2 on the sink
side. Hence the capacity of such a mincut must be |in(V ′∪V2)| for some V ′ ⊂ V1, u /∈ V ′.
Therefore repeated applications of max-flow-min-cut algorithms would solve the optimal
replication problem for the case of 2-partitions. In fact, this approach readily generalizes to
the setting of k-partitions. Details may be found in [78].

References

[1] C.J. Alpert and A.B. Kahng, Recent Directions in Netlist Partitioning: A Survey,
Integration VLSI J., 19(1–2) (1995), 1–81.

[2] L. Behjat, D. Kucar and A. Vannelli, A Novel Eigenvector Technique for Large Scale
Combinatorial Problems in VLSI Layout, J. Comb. Optim. 6(3) (2002), 271–286.

[3] S-J. Chen and C-K. Cheng, Tutorial on VLSI Partitioning, VLSI Design, 11(3) (2000),
175–218.

[4] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley &
Sons, New York, 1990.

[5] B. Hendrickson and T.G. Kolda, Graph Partitioning Models for Parallel Computing,
Parallel Comput., 26 (2000), 1519–1534.

[6] B. Hendrickson and R. Leland, An Improved Graph Partitioning Algorithm for Map-
ping Parallel Computations, SIAM J. Sci. Comput., 16(2) (1995), 452–469.

[7] G. Karypis and V. Kumar, Multilevel k-way Hypergraph Partitioning, Proc. Design
Automat. Conf., (1999), 343–348.

C5955–C0030.tex 871 2015/11/4 1:00pm

872 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[8] P.-O. Fjallstrom, Algorithms for Graph Partitioning: A Survey, Linkoping Elect. Art.
Comput. Inform. Sci., 3(10) (1998).

[9] D. Kucar, S. Areibi and A. Vannelli, Hypergraph Partitioning Techniques, Special Issue
of Dynam. Contin., Discrete Impulsive Syst. J., 11(2–3) (2004), 341–369.

[10] D.A. Papa and I.L. Markov, Hypergraph Partitioning and Clustering, in Approximation
Algorithms and Metaheuristics, T. Gonzalez, ed., CRC Press, 2007, pp. 61-1–61-19.

[11] A. Pothen, Graph Partitioning Algorithms with Applications to Scientific Computing,
Parallel Numerical Algorithms, Kluwer Academic Press, 1997, pp. 323–368.

[12] J. Edmonds, Submodular Functions, Matroids and Certain Polyhedra, Proc. Calgary
Intl. Conf. Combinatorial Structures, (1970), 69–87.

[13] S. Fujishige, Submodular Functions and Optimization, Annals of Discrete Mathematics,
North Holland, Amsterdam, the Netherlands, 1991.

[14] H. Narayanan, Submodular Functions and Electrical Networks, Annals of Discrete
Mathematics-54, North Holland, 1997.

[15] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, 2003.

[16] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart &
Winston, New York, 1976.

[17] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice Hall, Upper Saddle River, NJ, 1982.

[18] G.H. Golub and C.F. van Loan, Matrix Computations, Johns Hopkins Studies in Math-
ematical Sciences, 1996.

[19] F. Chung, Spectral Graph Theory, vol. 92, in CBMS Regional Conference Series in
Mathematics, American Mathematical Society, 1997.

[20] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman & Co., New York, 1979.

[21] M.R. Garey, D.S. Johnson and L. Stockmeyer, Some Simplified NP-complete Problems,
Proc. ACM Symp. Theor. Comput., 1974, pp. 47–63.

[22] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, Englewood Cliffs, NJ, 1993.

[23] A.V. Goldberg and R.E. Tarjan, A New Approach to the Maximum Flow Problem,
J. Assoc. Comput. Mach., 35(4) (1988), 921–940.

[24] H. Nagamochi and T. Ibaraki, Computing Edge-connectivity in Multigraphs and
Capacitated Graphs, SIAM J. Discrete Math., 5(1) (1992), 54–66.

[25] D.R. Karger, Global Min-cuts in RNC, and Other Ramifications of a Simple Min-out
Algorithm, Proc. 4th Ann. ACM-SIAM Symp. Discrete Algorithms, 1993, pp. 21–30.

[26] D.R. Karger and C. Stein, A New Approach to the Minimum Cut Problem, J. ACM,
43(4) (1996), 601–640.

C5955–C0030.tex 872 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 873

[27] F.T. Leighton and S. Rao, Multicommodity Max-Flow Min-Cut Theorems and Their
Use in Designing Approximation Algorithms, J. Assoc. Comput. Mach., 46(6) (1999),
787–832.

[28] C.-K. Cheng and T.C. Hu, Maximum Concurrent Flows and Minimum Cuts, Algorith-
mica, 8(3) (1992), 233–249.

[29] R. Gomory and T.C. Hu, Multi-Terminal Network Flows, J. SIAM, 9 (1961), 551–570.

[30] O. Goldschmidt and D. Hochbaum, Polynomial Algorithm for the k-Cut Problem, 29th
Ann. Symp. Found. Comput. Sci., 1988, pp. 444–451.

[31] L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks, Princeton University Press,
Princeton, NJ, 1962.

[32] M. Stoer and F. Wagner, A Simple Min-Cut Algorithm, J. ACM, 44(4) (1997), 585–591.

[33] M. Queyranne, A Combinatorial Algorithm for Minimizing Symmetric Submodular
Functions, Proc. 6th Ann. ACM-SIAM Symp. Discrete Algorithms, 1995, pp. 98–101.

[34] W.K. Mak and D.F. Wong, A Fast Hypergraph Min-Cut Algorithm for Circuit Parti-
tioning. Integration, VLSI J., 30(1) (2000), 1–11.

[35] H. Saran and V.V. Vazirani, Finding k-Cuts within Twice the Optimal, SIAM J. Com-
put., 24(1) (1995), 101–108.

[36] N. Garg, V.V. Vazirani and M. Yannakakis, Approximate Max-Flow Min-(Multi)Cut
Theorems and Their Applications, SIAM J. Comput., 25(2) (1996), 235–251.

[37] Y. Aumann and Y. Rabani, An O(log k) Approximate Min-Cut Max-Flow Theorem
and Approximation Algorithm, SIAM J. Comput., 27 (1998), 291–301.

[38] V.V. Vazirani, Approximation Algorithms, Springer, 2004.

[39] Y. Asahiro, K. Iwama and H. Tamaki, Greedily Finding a Dense Subgraph, J. Alg., 34
(2000), 203–221.

[40] D.J.-H. Huang and A.B. Kahng, When Clusters Meet Partitions: New Density-
Based Methods for Circuit Decomposition, Proc. European Design Test Conf., 1995,
pp. 60–64.

[41] J.C. Picard and M. Queyeranne, Selected Applications of Minimum Cuts in Networks,
INFOR-Canada J. Oper. Res. Inform. Process., 20(4) (1982), 394–422.

[42] H. Narayanan, S. Roy and S.B. Patkar, Approximation Algorithms for Min-k-Overlap
Problems, Using the Principal Lattice of Partitions Approach, J. Algorithms, 21(2)
(1996), 306–330.

[43] S.B. Patkar and H. Narayanan, Improving Graph Partitions Using Submodular Func-
tions, Discrete Appl. Math., 131(2) (2003), 535–553.

[44] R. Andersen and K. Lang, An Algorithm for Improving Graph Partitions, Proc. 19th
ACM-SIAM Symp. SODA, 2008, pp. 651–660.

[45] M. Narsimhan and J. Bilmes, Local Search for Balanced Submodular Clustering,
IJCAI , (2007), 981–986.

C5955–C0030.tex 873 2015/11/4 1:00pm

874 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[46] C.J. Alpert, S-Z. Yao, and A.B.Kahng, Spectral Partitioning with Multiple Eigenvec-
tors, Discrete Appl. Math., 90 (1999), 3–26.

[47] E. Cheng and W. Cunningham, A Faster Algorithm for Computing the Strength of a
Network, Inform. Process. Lett., 49(4) (1994), 209–212.

[48] H.N. Gabow, Algorithms for Graphic Polymatroids and Parametric S-Sets, J. Algo-
rithms, 26 (1998), 48–86.

[49] Y.C. Wei and C.K. Cheng, Towards Efficient Hierarchical Designs by Ratio Cut Par-
titioning, Proc. Int. Conf. Comput.-Aided Design, 1989, pp. 298–301.

[50] D. Gusfield, Computing the Strength of a Graph, SIAM J. Comput., 20 (1991),
639–654.

[51] S.B. Patkar and H. Narayanan, Fast On-Line/Off-Line Algorithms for Optimal Rein-
forcement of a Network and Its Connections with Principal Partition, Proc. 20th Ann.
Found. Softw. Tech. Theoretical Comput. Sci., LNCS-1974, Springer, 2000, pp. 94–105.

[52] W. Dinkelbach, On Nonlinear Fractional Programming, Manage. Sci., 13 (1967),
492–498.

[53] B. Kernighan and S. Lin, An Effective Heuristic Procedure for Partitioning Graphs,
Bell Syst. Tech. J., (1970), 291–308.

[54] C. M. Fiduccia and R. M. Mattheyses, A Linear-Time Heuristic for Improving Network
Partitions, Proc. 19th Conf. Design Automation, 1982, pp. 175–181.

[55] Y. Saab, An Effective Multilevel Algorithm for Bisecting Graphs and Hypergraphs,
IEEE Trans. Comput., 53(6) (2004), 641–652.

[56] S.T. Barnard and H.D. Simon, Fast Multilevel Implementation of Recursive Spectral
Bisection for Partitioning Unstructured Problems, Concurrency—Practice and Experi-
ence, 6(2) (1994), 101–117.

[57] J. Li and L. Behjat, A Connectivity Based Clustering Algorithm with Application to
VLSI Circuit Partitioning, IEEE Trans. Circ. Syst.-II: Express Briefs 53(5) (2006),
384–388.

[58] M. Hall, An r-Dimensional Quadratic Placement Algorithm, Manage. Sci., 17 (1970),
219–229.

[59] B. Hendrickson, R. Leland and R. van Driessche, Enhancing Data Locality Using Ter-
minal Propagation, Proc. 29th Ann. Hawaii Int. Conf. Syst. Sci., 1996, pp. 565–574.

[60] W.E. Donath and A.J. Hoffman, Lower Bounds for the Partitioning of Graphs, IBM
J. Res. Dev. 17 (1973), 420–425.

[61] F. Rendl and H. Wolkowicz, A Projection Technique for Partitioning the Nodes of a
Graph, Ann. Oper. Res. 58 (1995), 155–179.

[62] E. R. Barnes, An Algorithm for Partitioning the Nodes of a Graph, Siam J. Alg.
Discrete Methods, 3(4) (1982), 541–550.

[63] L. Hagen and A.B. Kahng New Spectral Methods for Ratio Cut Partitioning and
Clustering, IEEE Trans. CAD, 11(9) (1992), 1074–1085.

C5955–C0030.tex 874 2015/11/4 1:00pm

Graph and Hypergraph Partitioning � 875

[64] P.K. Chan, M.D.F. Schlag and J.Y. Zien, Spectral K-Way Ratio-Cut Partitioning and
Clustering, IEEE Trans. CAD, 13(9) (1994), 1088–1096.

[65] A. Pothen, H.D. Simon and K.-P. Liou, Partitioning Sparse Matrices with Eigenvectors
of Graphs, SIAM J. Matrix Anal. Appl., 11(3) (July 1990), 430–452.

[66] P.K. Chan, M.D.F. Schlag and J.Y. Zien, Spectral-Based Multiway FPGA Partitioning,
IEEE Trans. Comput.-Aided Design Integrat. Circ. Syst., 15(5) (1996), 554–560.

[67] C.J. Alpert and A.B. Kahng, Simple Eigenvector-Based Circuit Clustering Can Be
Effective, IEEE Int. Symp. on Circ. Syst., IV (1996), 683–686

[68] J. Frankle and R.M. Karp, Circuit Placements and Cost Bounds by Eigenvector
Decomposition, IEEE Conf. Comput. Aided Design, 1986, pp. 414–417.

[69] R.H.J.M. Otten, Eigensolutions in Top-Down Layout Design, IEEE Symp. Circ. Syst.,
(1982), 1017–1020.

[70] B. Schiffner, J. Li and L. Behjat, A Multilevel Eigenvalue Based Circuit Partitioning
Technique, IWSOC, 2005, pp. 312–316.

[71] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Equation of State
Calculations by Fast Computing Machines, J. Chem. Phys., 21(6) (1953), 1087–1092.

[72] E. Aarts and J. Korst, Simulated Annealing and the Boltzmann Machine, John Wiley
& Sons, New York, 1990.

[73] D.S. Johnson, C.R. Aragon, L.A. McGeoch and C. Schevon, Optimization by Simulated
Annearling: An Experimental Evaluation, Part I, Graph Partitioning, Oper. Res., 37
(1989), 865–892.

[74] S.B. Gelfand and S.K. Mitter, Analysis of Simulated Annealing for Optimization, Proc.
24th IEEE Conf. Decision Contr., 2 (1985), 779–786.

[75] S.B. Gelfand and S.K. Mitter, Simulated Annealing with Noisy or Imprecise Measure-
ments, J. Optim. Theor. Appl., 69 (1989), 49–62.

[76] B. Hajek, Cooling Schedules for Optimal Annealing. Math. Oper. Res., 13 (1988),
311–329.

[77] H. Yang and D.F. Wong, Efficient Network Flow Based Min-Cut Balanced Partitioning,
IEEE Trans. CAD Integr. Circ. Syst., 15(12) (1996), 1533–1540.

[78] J. Hwang and A. El Gamal, Optimal Replication for Min-Cut Partitioning, Proc. IEEE
Int. Conf. Comput. Aided Design, 1992, pp. 432–435.

[79] J. Hwang and A. El Gamal, Min-Cut Replication in Partitioned Networks, IEEE Trans.
Comput.-Aided Design, 14 (January 1995), 96–106.

C5955–C0030.tex 875 2015/11/4 1:00pm

IX
Matroids

877

C H A P T E R 31

Matroids
H. Narayanan

Sachin B. Patkar

CONTENTS

31.1 Introduction . 880
31.2 Axiom systems for Matroids . 880

31.2.1 Independence and Base Axioms . 880
31.2.2 Examples of Matroids . 881
31.2.3 Base Axioms . 882
31.2.4 Rank Axioms . 884
31.2.5 Circuit Axioms . 886

31.3 Dual Matroid . 887
31.4 Minors of Graphs, Vector Spaces, and Matroids . 889

31.4.1 Restriction and Contraction of Graphs . 889
31.4.2 Restriction and Contraction of Vector Spaces . 890
31.4.3 Minors of Dual Vector Spaces . 891
31.4.4 Representative Matrices of Minors of Vector Spaces . 892
31.4.5 Minors of Matroids . 893
31.4.6 Notes . 896

31.5 Convolution . 896
31.5.1 Introduction . 896
31.5.2 Polymatroid Rank Functions . 897
31.5.3 Formal Properties of the Convolution Operation . 897
31.5.4 Connectedness for f∗g . 899

31.6 Principal Partition . 901
31.6.1 Introduction . 901
31.6.2 Basic Properties of Principal Partition . 901
31.6.3 Principal Partition of Contraction and Restriction . 904
31.6.4 Principal Partition of the Dual . 905
31.6.5 Principal Partition and the Density of Sets . 905
31.6.6 Outline of Algorithm for Principal Partition . 906
31.6.7 Notes . 906

31.7 Matroid Union . 907
31.7.1 Matroid Union Algorithm . 907
31.7.2 Complexity of the Matroid Union Algorithm . 910
31.7.3 Matroid Union Theorem . 911
31.7.4 Fundamental Circuits and Coloops of M1 ∨M2 . 912
31.7.5 Union of Matroids and the Union of Dual Matroids . 912
31.7.6 Matroid Union and Matroid Intersection . 914

C5955–C0031.tex 879 2015/11/4 1:07pm

879

880 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

31.7.7 Applications of Matroid Union and Matroid Intersection 915
31.7.7.1 Representability of Matroids . 915
31.7.7.2 Decomposition of a Graph into Minimum Number of

Subforests . 915
31.7.7.3 Rado’s Theorem . 916

31.7.8 Algorithm for Construction of the Principal Sequence of a Matroid
Rank Function . 916

31.7.9 Example . 918
31.7.9.1 Principal Sequence of (r(·), | · |) Where r(·) Is the Rank

Function of a Graph . 918

31.1 INTRODUCTION

Matroids are important combinatorial structures both from the point of view of theory and
from that of applications. Whitney [1] introduced matroids as a generalization of the concept
of linear independence in the context of matrices. The idea was arrived at independently also
by Van der Waerden in [2]. Matroid theory is one of the areas that straddles across several
branches of discrete mathematics such as combinatorics, graph theory, finite fields, algebra,
and coding theory. One of the subjects to which applications were found early was electrical
network theory [3]. In this chapter we give a brief sketch of the theory with electrical networks
in mind.

31.2 AXIOM SYSTEMS FOR MATROIDS

A matroid can be defined in several equivalent ways. Each of these is based on an axiom
system. The primitive objects of each axiom system can be identified with either the primitive
or some derived objects of every other axiom system. We restrict ourselves to finite underlying
sets even though it is possible to define infinite matroids. The concept of maximality and
minimality (with respect to set inclusion) is often used in matroid theory.

We may note that, in general, maximal and minimal members of a collection of sets may
not be largest or smallest in terms of size.

Example: Consider the collection of sets {{a, b, c}, {g}, {e, f}, {a, b, c, d, e, f}}. The mini-
mal members of this collection are {a, b, c}, {g}, {e, f}, that is, these do not contain proper
subsets which are members of this collection. The maximal members of this collection are
{g}, {a, b, c, d, e, f}, that is, these are not proper subsets of other sets which are members of
this collection.

However, in the key concept of collection of independent sets in matroids, maximality
implies the maximum size property.

31.2.1 Independence and Base Axioms

Independent sets of a matroid correspond to subforests (or, dually, subcoforests) of graphs
and to independent sets of columns of matrices.

I. Independence Axioms

Definition 31.1 (Matroid: Independence Axioms) A matroidM on S is a pair (S, I),
where S is a finite set and I is a family of subsets of S, always containing the empty subset,
called independent sets, that satisfies the following:

I1 if I1 ∈ I and I2 ⊆ I1, then I2 ∈ I.

C5955–C0031.tex 880 2015/11/4 1:07pm

Matroids � 881

I2 maximally independent sets contained in a subset of S have the same cardinality.
(equivalently axiom I2 can be replaced by the following)
I2′ if X, X ′ are independent and |X ′| > |X|, then there exists e′ ∈ (X ′ −X) such that
X ∪ e′ is independent.
A base of the matroid M≡ (S, I), is a maximally independent subset of M contained
in S. The complement, relative to S, of a base is called a cobase of M.

It follows immediately from the above that all bases of a matroid have the same cardinality.
Indeed, as we shall soon see, matroids can also be defined using an axiom system that describes
the collection of bases.

31.2.2 Examples of Matroids

Theorem 31.1 (Polygon and bond matroids) Let G(V, E) be an undirected graph. Let
If be the collection of subforests and let Ic be the collection of subcoforests of G (denoting by
forest, a spanning forest of the graph). Then (E, If), (E, Ic) are matroids. Further, the bases
of either matroid are cobases of the other.

Proof. We will only prove that the collection If satisfies independence axioms. The proofs
of the statements for Ic will follow directly from the definition of dual matroid that we will
encounter later. That the independence axioms are satisfied by If , follows from the facts
given below:

• Maximal intersection of a forest of G with T, T ⊆ E, is a forest of the subgraph of G
on T .
• All forests of the subgraph of G on T have the same cardinality. �

The matroid (E, If) is called the polygon matroid of G, and is denoted byM(G). The matroid
(E, Ic) is called the bond matroid of G, and is denoted by M∗(G).

Let V be a vector space over the field of real numbers with components indexed by
the elements of S. Let R, R∗ be representative matrices (i.e., their rows constitute bases) of
V ,V⊥, respectively. Since the column dependence structure of all representative matrices of a
vector space is the same (due to non-singularity of elementary row operations), it makes sense
to consider an arbitrary representative matrix to study linear independence of columns. Let
I be the collection of independent column sets of R (identified with corresponding subsets
of S) and let I∗ be the collection of independent column sets of R∗.

Theorem 31.2 (Vectorial matroid) Let (S, I), (S, I∗) be matroids. Further, bases of each
matroid are cobases of the other.

Proof. (S, I) satisfies independent axioms, which from the fact that maximally independent
subsets of columns of any submatrix of R (R∗) have the same cardinality. Further if (I:K)
is a standard representative matrix of V then (−KT : I) is a standard representative matrix
of V⊥. Since there is a standard representative matrix corresponding to each maximally
independent subset of columns, we conclude that bases of either of (S, I), (S, I∗) are cobases
of the other. �
We say that (S, I) ((S, I∗)) is the matroid (dual matroid) associated with V and denote it by
M(V) (M∗(V)).

Theorem 31.3 (Matroid union) [4,5] Let G(V, E) be an undirected graph and let k be a
positive integer. Let Ik∪ be the collection of unions of k forests (not necessarily edge-disjoint)
of G. Then (E, Ik∪) is a matroid.

C5955–C0031.tex 881 2015/11/4 1:07pm

882 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. Let I12 be the collection of all sets of the form X ∪ Y , where X1, X2 are independent
respectively in the matroids M1, M2. We prove that M12 ≡ (S, I12) is a matroid. The
hereditary axiom (Axiom I1) is clearly satisfied. Therefore it suffices to prove Axiom I2′ to
conclude that M12 ≡ (S, I12) is a matroid. (This result [as Theorem 31.38] is discussed in
detail later. The present proof follows the one in [6].) The theorem would then follow imme-
diately since by Theorem 31.1 the collection of forests of a graph constitute the independent
sets of a matroid. Let Za = X1 ∪X2 and Zb = Y1 ∪ Y2 with X1, Y1 independent in M1 and
X2 and Y2 independent in M2. Further let the division of Za into X1 ∪X2 be such that the
cross sum |X1 ∩ Y2| + |X2 ∩ Y1| is a minimum among all such divisions. Now if |Zb|>|Za|,
either |Y1|>|X1| or |Y2|>|X2|, let |Y2|>|X2|. Then there exists e ∈ (Y2−X2) such that e∪X2
is independent in M2. If e ∈ X1 then the division of Za as (X1 − e) ∪ (X2 ∪ e) would yield
a lower cross sum than the division X1 ∪ X2, a contradiction. Hence e ̸∈ X1 and therefore
e ∈ (Zb − Za). Thus we have e ∪ Za = X1 ∪ (X2 ∪ e) is in the collection I12 confirming
Axiom I2′. �
Let G(V, E) be an undirected graph. A matching of G is a subset of edges no two of which
have a common endpoint. We say that a set of vertices U and a matching X meet iff the set
of the endpoints of the edges in X include all the vertices of U . Let Im be the collection of
subsets of those vertices which meet a matching.

Theorem 31.4 [7] (Matching matroid) (V, Im) is a matroid.

Proof. Let T ⊆ V (G) and let I1, I2 be two maximal subsets of T in the collection Im. We will
show that |I2|=|I1|. There exist matchings M1, M2 which meet I1, I2. Consider the subgraph
of G on M1 ∪ M2 (the vertex set of this subgraph may contain vertices outside T). Each
component of this subgraph is either a circuit or a path. If a node of T has degree two in
the above subgraph, then it must belong to both I1 and I2 (using the fact that both these
are maximal subsets of T in the collection Im). So vertices in T , which are in components as
circuits, are in I1 ∩ I2. Now let |I2 |>|I1 |. Then in one of the components, that is a path, the
subset of nodes of I2 is of larger size than the subset of nodes of I1 in the same component.
Once again, the middle T nodes, in such components, must belong to I1 ∩ I2. This means
one of the end nodes, say v, of the path is in I2− I1 and the other end node is not in I1− I2.
If we modify M1 by dropping the edges of M1 in this path and adding the edges of M2,
the new matching M ′

1 will meet T in I1 ∪ v. Hence, I1 ∪ v ∈ Im, a contradiction. Therefore
|I1 |=|I2 | . �

31.2.3 Base Axioms

In this subsection, we characterize matroids through an axiom system for bases (i.e., max-
imally independent sets). We also consider an abstraction of the concept of a circuit. Note
that a circuit of a graph is not contained in any forest and is the minimal such subset of
edges. This motivates us to define a circuit of a matroid (S, I) to be a minimal subset of S
not contained in any independent set, equivalently, we could say that a circuit is a minimal
dependent (or non-independent) subset of the matroid.

We will now arrive at a characterizing property of bases of a matroid. Let B1, B2 be
two bases of the matroid M ≡ (S, I). Let e ∈ B2 − B1. Therefore B1 ∪ e, not being in-
dependent, contains a circuit (a minimal dependent set). We will prove uniqueness of this
circuit. By contrast, let C1, C2 be two circuits contained in B1 ∪ e. Clearly e ∈ C1 ∩ C2
and {e} is not a circuit as e is an element inside a base. A maximally independent subset
of C1∪C2 containing e, cannot have the cardinality exceed | C1∪C2 | −2. On the other hand
C1 ∪ C2 − e is stated to be independent. This violates the Axiom I2 for C1 ∪ C2. Therefore

C5955–C0031.tex 882 2015/11/4 1:07pm

Matroids � 883

C1 = C2. (The unique circuit contained in e ∪ B1 is referred to as the fundamental circuit
(f-circuit) of e with respect to B1 and denoted by L(e, B1).) Now L(e, B1) has a nonempty
intersection with B1−B2 since {e} itself is not a circuit and since B2 is independent, L(e, B1)
cannot be contained in it. Let e′ ∈ L(e, B1)∩ (B1−B2). Let B1

′ ≡ e∪ (B1− e′). Clearly B1
′

is also a base as it contains no circuit and has the same cardinality as B1. On the other hand
for any e′′ ∈ B1, (B1 − e′′) ∪ e is independent provided e′′ ∈ L(e, B1). We therefore have the
following theorem.

Theorem 31.5 Let B1, B2 be bases of a matroid M on S. Let e ∈ B2 −B1. Then,

1. e∪B1 contains a unique circuit L(e, B1). This circuit has a nonempty intersection with
B1 −B2.

2. If e′ ∈ B1, then (B1 − e′) ∪ e is a base of M iff e′ ∈ L(e, B1). �

This consequence of independent axioms for collection of bases would, as we shall soon see,
indeed characterize the collection of bases of a matroid. In fact, the following dual observation
also leads to an alternative axiomatic characterization for the collection of bases.

Let B1, B2 be bases of a matroid and let e1 ∈ B1 − B2. B2 is a maximally independent
subset of B1 ∪B2− e1. Further as |B1| = |B2|, B1− e1 is not maximally independent in this
set. Hence, by Axiom I2′, there exists e2 ∈ B2 − B1 so that (B1 − e1) ∪ e2 is independent
and, therefore, a base of M. We therefore have the following.

Theorem 31.6 Let B1, B2 be bases of M. and let e1 ∈ B1 − B2. Then there exists e2 ∈
B2 −B1, such that (B1 − e1) ∪ e2 is a base of M.

As remarked earlier, Theorems 31.5 and 31.6 can be used to generate axiom systems for
matroids.

Theorem 31.7 (Base axioms) Let a collection B of subsets of S satisfy the following
equivalent axioms

Axiom B If B1, B2 are members of B and if e2 ∈ B2−B1, then there exists e1 ∈ B1−B2
so that (B1 − e1) ∪ e2 is a member of B.
Axiom B′ If B1, B2 are in B and if e1 ∈ B1 − B2 then there exists e2 ∈ B2 − B1 so
that (B1 − e1) ∪ e2 is in B.

Then the collection I of subsets of the sets in B is a collection of independent subsets of a
matroid (S, I). (In other words B is the collection of bases of a matroid.)

Proof. When Axiom B is satisfied, to prove that (S, I) is a matroid, we only need to prove
that maximal subsets in I contained in a given subset T (denoted say BT) of S have the same
cardinality. If BT 1, BT 2 are two such subsets we take an element e2 ∈ BT 2 −BT 1 and add it
to BT 1 and drop a suitable element in BT 1−BT 2 as in the argument to prove Theorem 31.5.
The resulting set is also in BT and has the same cardinality as BT 1. Repeatedly using the
argument will finally give us a set in BT containing BT 2 with the same cardinality as BT 1.
Clearly this must be BT 2 itself.

Let us now consider the (Axiom B′) case. Let B satisfy Base Axioms B′. We need to
only show that maximal subsets, from the collection I, contained in T ⊆ S have the same
cardinality.

Case 1 T = S. If B1, B2 are bases (i.e., members of B) and e ∈ B1 − B2, we can find an
e′ ∈ B2 − B1 so that (B1 − e) ∪ e′ is a base. If we repeat this procedure we would finally

C5955–C0031.tex 883 2015/11/4 1:07pm

884 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

get a base Bk ⊆ B2 so that | Bk |=| B1 | . But one base cannot properly contain another.
So Bk = B2 and | B2 |=| B1 | .

Case 2 T ⊂ S. Suppose X ≡ {x1, . . ., xk} and Y ≡ {y1, . . ., ym} are maximal subsets of T ,
from the collection I, with k < m. Let X be contained in a base Bx and Y in a base By. Let

Bx ≡ {x1, . . ., xk, pk+1, . . ., pr}

By ≡ {y1, . . ., ym, qm+1, . . ., qr}

(Note that pi’s and qj ’s are outside T .) Since k < m, there exists pt ∈ Bx − By. Therefore,
there exists z in By − Bx so that (Bx − pt) ∪ z is a base. Clearly z cannot be one of the
yi for otherwise it would violate maximality of X. Say, z = qs. We thus have a new base
B′

x ≡ (Bx−pt)∪qs. Note the progress, (By−B′
x)∩ (S−T) ⊂ (By−Bx)∩ (S−T). Repeating

this procedure we would finally arrive at a base Bf
x so that Bf

x ∩ (S − T) ⊃ By ∩ (S − T).
Any further attempted exchange using one of the remaining p elements from Bf

x would result
in violation of maximality of X as a subset of T from the collection I. The only way to avoid
this contradiction is to have k = m. Therefore we conclude that the maximal subsets of T ,
belonging to the collection I, have the same cardinality.

31.2.4 Rank Axioms

In this subsection we discuss characterization of matroids through an axiom system for the
rank function.

LetM be a matroid on S. The rank of a subset T ⊆ S is defined as the cardinality of the
maximally independent set contained in T. This number is well defined since all maximally
independent subsets of T have the same cardinality. The rank of T is denoted by r(T). r(S)
is also called the rank of M and is denoted also by r(M).

Clearly r(·) takes value 0 on ∅. Moreover the rank function is clearly an integral, increasing
function on subsets of S. Also r(X ∪ e) − r(X) ≤ 1 ∀ X ⊆ S, e ∈ S. We have the following
properties of rank function which will motivate axiom systems for matroids in terms of rank
function.

Theorem 31.8 Let r(·) be the rank function of a matroid on S, X ⊆ S and e1, e2 ∈ S.

1. r(X ∪ e1) = r(X ∪ e2) = r(X), implies r(X ∪ e1 ∪ e2) = r(X).

2. r(X ∪ e)− r(X) ≥ r(Y ∪ e)− r(Y) whenever X ⊆ Y ⊆ S − e.

3. r(·) is submodular, that is,

r(X) + r(Y) ≥ r(X ∪ Y) + r(X ∩ Y) ∀ X, Y ⊆ S.
Proof.

i. Let BX be a maximal independent subset of X. Clearly BX is also a maximally inde-
pendent subset of X ∪ e1 as well as of X ∪ e2 as their ranks are same. Suppose BX

is not a maximally independent subset of X ∪ e1 ∪ e2. This means either BX ∪ e1 or
Bx ∪ e2 must be independent. But this is a contradiction.

ii. Consider any maximally independent subset BX of X. One can grow it into a maximally
independent subset BY of Y . r(X ∪ e)− r(X) ≥ 0 and r(Y ∪ e)− r(Y) can be seen to
be 0 or 1. It suffices to consider the case where r(Y ∪ e) − r(Y) = 1. Then BY is not
maximally independent in Y ∪ e. Therefore BY ∪ e must be independent, which implies
Bx ∪ e must also be independent (by Axiom I1). Therefore r(X ∪ e)− r(X) = 1. Thus
rank function always satisfies r(X ∪ e)− r(X) ≥ r(Y ∪ e)− r(Y).

C5955–C0031.tex 884 2015/11/4 1:07pm

Matroids � 885

iii. Let Y −X = {e1, . . ., ek}. We then have

r(Y)− r(X ∩ Y) = r((X ∩ Y) ∪ e1)− r(X ∩ Y)
+ r((X ∩ Y) ∪ e1 ∪ e2)− r((X ∩ Y) ∪ e1) + · · ·
+ r((X ∩ Y) ∪ e1 · · · ∪ ek)− r((X ∩ Y) ∪ e1 ∪ · · · ∪ ek−1)
≥ r(X ∪ e1)− r(X) + · · ·
+ r(X ∪ e1 ∪ · · · ∪ ek)− r(X ∪ e1 ∪ · · · ∪ ek−1)
≥ r(X ∪ Y)− r(X). �

Example 31.1 For the polygon matroid M(G) (independent set ≡ subforest), the rank
function of the matroid is the same as the rank function of the graph. For the bond matroid
M∗(G), the rank function is the nullity function ν(·) of the graph, where ν(A), A ⊆ E(G), is
the number of edges in a coforest of G × A (the graph obtained by fusing the endpoints of
edges outside A and removing them).

An important property of matroid rank functions is that they are submodular. Next we
describe and justify an axiom system for matroids based on the rank function. The axioms
will all be properties of rank function that follow from being a matroid rank function. We
show that certain combinations of these properties as axioms ensure matroid-ness.

Theorem 31.9 (Rank axioms) Let S be a finite set and let r(·) be an integer valued
submodular function on subsets of S satisfying in addition

r(∅) = 0

0 ≤ r(X ∪ e)− r(X) ≤ 1 ∀ X ⊆ S, e ∈ S.

Define I to be the collection of all subsets X of S satisfying r(X) =| X | . Let members of I
be called independent. Then (S, I) is a matroid (satisfying the Independent Axioms).

Proof.

i. Let Y ∈ I and X ⊆ Y . We need to show that X ∈ I.
We are given that r(∅) = 0 and r(A ∪ e) ≤ r(A) + 1 ∀ A ∈ S. Therefore, r(X) ≤| X |
and r(Y) − r(X) ≤| Y | − | X | . So r(X) <| X |, implies r(Y) <| Y |, which is a
contradiction. Thus r(X) =| X |, that is, X ∈ I.

ii. Let B1, B2 be two maximal members of I contained in a subset T of S. We need to
establish that | B1 |=| B2 |

For each ei ∈ T − B1, r(B1) ≤ r(B1 ∪ ei) <| B1 | +1, since B1 is a maximal subset of T
such that r(B1) = |B1|. Therefore, r(B1 ∪ ei) = r(B1) ∀i ∈ T − B1. For any U, V satisfying
r(B1 ∪ U) = r(B1 ∪ V) = r(B1), we have, using submodularity of r(·) that

r(B1 ∪ U) + r(B1 ∪ V) ≥ r(B1 ∪ U ∪ V) + r(B1 ∪ (U ∩ V)).

Note that LHS above is 2r(B1) and RHS is greater or equal to 2r(B1) (r(·) is an increasing
function), therefore

r(B1 ∪ U ∪ V) = r(B1 ∪ (U ∩ V)) = r(B1).
Using this inductively we can prove that

r(B1 ∪ e1 ∪ · · · ∪ ek) = r(B1),

where {e1, . . ., ek} = T −B1. Hence, r(B1) = r(T).
Similarly r(B2) = r(T).
Therefore | B1 |= r(B1) = r(B2) =| B2 |. �

C5955–C0031.tex 885 2015/11/4 1:07pm

886 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

We call a set function r(·), satisfying the properties stated in Theorem 31.9, a matroid rank
function.

31.2.5 Circuit Axioms

Circuits of matroids satisfy the conditions given in the following theorem. We will use these
conditions to define an axiom system for matroids using circuits as primitive objects.

Theorem 31.10 Let M ≡ (S, I) be a matroid and let C1, C2 be non-disjoint circuits of
M with ec as one of the common elements. There exists an e1 ∈ C1 − C2, (as circuits
cannot be contained in one another, due to their minimality). Then there exists a circuit
C3 ⊆ C1 ∪ C2 − ec so that e1 ∈ C3.

The following lemma will be used for the proof of the theorem.

Lemma 31.1 Let M, C1, C2 be as in Theorem 31.10. Then there exists a circuit C ′
3 ⊆

C1 ∪ C2 − ec.

Proof. We use properties of rank function of the matroid. Recall that a set X is independent
iff r(X) = |X|, and by the definition of a circuit, r(Ci) = |Ci| − 1, i = 1, 2.
r(C1 ∪ C2) + r(C1 ∩ C2) ≤ r(C1) + r(C2) = |C1| − 1 + |C2| − 1.
Therefore

r(C1 ∪ C2) + |C1 ∩ C2| ≤ |C1 ∪ C2|+ |C1 ∩ C2| − 2,

since r(C1 ∩ C2) = |C1 ∩ C2|. This implies r(C1 ∪ C2) ≤ |C1 ∪ C2| − 2, therefore
r(C1∪C2−ec) ≤ r(C1∪C2) ≤ |C1∪C2−ec|−1, which proves that there exists a circuit inside
C1 ∪ C2 − ec. �

Proof of Theorem 31.10 The result is clearly true when the union of the two circuits has size 3
and, trivially, when it is 2. We now use induction on the size of the union of the two circuits.
Suppose that the result is true when the size of the union of the two circuits is less than n.

Let | C1 ∪ C2 |= n, ec ∈ C1 ∩ C2 and e1 ∈ C1 − C2. By the above lemma (Lemma 31.1),
one is guaranteed existence of a circuit C ′

3 ⊆ C1 ∪ C2 − ec. If e1 ∈ C ′
3 we are done.

So assume that e1 ̸∈ C ′
3. We have, C ′

3 ̸⊆ C1 and C ′
3 ⊆ C1 ∪ C2. So C ′

3 ∩ C2 ̸⊆ C1 ∩ C2.
Let e2 ∈ C ′

3 ∩ C2 − C1 ∩ C2.
Consider C2 ∪ C ′

3. We aim to use induction hypothesis on it, for which we need to show
that its size is less than n. But this follows from the observation that e1 ̸∈ C2 ∪ C ′

3. Further
e2 ∈ C ′

3∩C2 and ec ∈ C2−C ′
3. By the induction hypothesis there is a circuit C ′

2 ⊆ C2∪C ′
3−e2

so that ec ∈ C ′
2.

Now consider C1 ∪C ′
2. We have ec ∈ C ′

2 ∩C1 and e1 ∈ C1 −C ′
2. Further e2 ̸∈ C1 ∪C ′

2 so
that | C1 ∪ C ′

2 |< n and we can apply induction hypothesis. Therefore, there exists a circuit
C3 ⊆ C1 ∪ C ′

2 − ec so that e1 ∈ C3. �

Example 31.2 For the polygon matroidM(G) of G (independent set ≡ subforest), a circuit
of the matroid is the same as a circuit of the graph. For the bond matroidM∗(G) (independent
set ≡ subcoforest), a circuit of the matroid is the same as a cutset of the graph. For the
vectorial matroid (associated with the columns of a representative matrix), a circuit is a
minimal dependent set of columns.

Theorem 31.11 (Circuit axioms)
Let S be a finite set. Let C denote a family of subsets (called circuits) of S satisfying the

following axioms.
Axiom C1 No member of C is a proper subset of another.

C5955–C0031.tex 886 2015/11/4 1:07pm

Matroids � 887

Axiom C2 Let C1, C2 ∈ C and let ec ∈ C1 ∩C2 and e1 ∈ C1 −C2. Then there exists C3 ∈ C
so that C3 ⊆ C1 ∪C2− ec and e1 ∈ C3. Let I be the class of subsets of S that do not contain
a member of C. Then (S, I) satisfies the axioms I1 and I2 of a matroid. (This also justifies
denoting a matroid M as a pair (S, C) describing collection of circuits as primitive objects.)

Proof. We will show that maximal subsets of T ⊆ S that are in I (i.e., that do not contain
a circuit) have the same cardinality. For readability, during the course of the proof we will
call members of I independent and maximal members, bases although this terminology is
justified only after the proof is complete.

Let B1, B2 be two maximal independent sets contained in T. If B1 ̸= B2, clearly B1 ̸⊇ B2.
Let e2 ∈ B2 − B1. Then e2 ∪ B1 contains a circuit. Claim is that this circuit is unique. For
otherwise if C1, C2 are two such circuits since both have e2 as a member, then by the circuit
axioms there exists a circuit C3 ⊆ C1 ∪ C2 − e2. This is impossible as it would imply that a
circuit C3 is a subset of the base B1.

Define L(e2, B1) to be the unique circuit contained in e2 ∪B1. Since {e2} is not a circuit
(element e2 is inside the base B2) we must have L(e2, B1)∩B1 is nonempty. Also L(e2, B1) is
not a subset of B2. Therefore, there exists an e1 ∈ L(e2, B1)∩(B1−B2). Then B′

1 ≡ e2∪B1−e1
is independent.

We claim that B′
1 is also maximally independent. For, let e′ ∈ T − B′

1. For the case
e′ = e1, we note that e′ ∪ B′

1 contains L(e2, B1), thereby not violating maximality of B′
1. So

consider e′ ̸= e1. Now e′∪B1 contains a circuit L(e′, B1). If this circuit does not contain e1, we
have L(e′, B1) ⊆ e′ ∪B′

1, again not violating maximality of B′
1. Suppose it contains e1. Then

L(e2, B1) and L(e′, B1) have the element e1 in common. Hence, L(e2, B1) ∪ L(e′, B1) − e1
contains a circuit. This circuit is contained in e′ ∪B′

1.

Therefore, we conclude that e′ ∪ B′
1 is not independent for every e′ ∈ T − B′

1. We now
have a maximally independent subset B′

1 of T which has the same cardinality as B1. However
B′

1 also satisfies | B2 − B′
1 |<| B2 − B1 |. Repeating this procedure we would arrive at a

maximally independent subset Bk of T that has the same cardinality as B1 and also contains
B2. But this implies Bk = B2 and hence, | B1 |=| B2 |. �

31.3 DUAL MATROID

Matroids occur naturally in pairs. This pairing is analogous to that of complementary
orthogonal vector spaces.

Consider a vector space V on S. We remind the reader that dot product of two vectors
f , g on S denoted by < f , g > over a field F is defined by < f , g >≡

∑
e∈S f(e).g(e). We say

f , g are orthogonal if their dot product is zero. V⊥, the space complementary orthogonal to
V , is the collection of all vectors on S that are orthogonal to every vector in V . Let M(V)
denote the matroid on S whose independent sets are the linearly independent column sets
of a representative matrix (i.e., rows constitute a basis) of V . Note that column dependence
structure of all representative matrices of V is identical. Whenever we have a set of columns
as a base of this matroid we know that we can build a standard representative matrix with
identity matrix corresponding to this set as below.

B S −B

R ≡
[

I
... K

]
. (31.1)

C5955–C0031.tex 887 2015/11/4 1:07pm

888 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Then we know that
B S −B

R∗ ≡
[
−KT

... I
]
, (31.2)

is a representative matrix of V⊥. It is thus clear that the bases of M(V⊥) are cobases of
M(V) and vice versa. This situation can be shown to hold also for arbitrary matroids and
the pairs of matroids are said to be dual to each other.

Theorem 31.12 LetM≡ (S, I) be a matroid. Then,M∗ ≡ (S, I∗), where X ∈ I∗ iff S−X
contains a base of M, is a matroid. M∗ is called the dual matroid. Further, (M∗)∗ =M.

Proof. It suffices to prove that the collection of complements of the bases of M satisfy
either of the equivalent base Axioms B or B′. This is indeed easy to see due to the duality
evident between the Axioms B and B′. �

Example 31.3 If V is a vector space on S then (M(V))∗ =M(V⊥). IfM(G) is the polygon
matroid associated with the graph G, then we know thatM(G) =M(Vv(G)), where Vv(G) is
the space of all vectors spanned by the rows of the incidence matrix of the directed graph G
and (M(G))∗ =M((Vv(G))⊥). Thus matroid (M(G))∗ is the bond matroid associated with
G, for which the independent subsets are subcoforests. When the graph G is planar there
exists a graph G∗ so that Vv(G∗) = (Vv(G))⊥. It would follow that M(G∗) = (M(G))∗.

The circuit of the matroid M∗ is called a bond of M. The following theorem gives some
characterizations of a bond.

Theorem 31.13 Let M ≡ (S, I) be a matroid. A subset K ⊆ S is a bond of M iff any of
the following equivalent conditions hold:

1. K is a circuit of M∗.

2. K is a minimal set intersecting every base of M.

3. K is a minimal set which meets no circuit of M in just a single element.

We need the following lemma to prove the theorem.

Lemma 31.2 Let L be independent inM≡ (S, I) and let K be independent inM∗. Further
let L ∩K = ∅. Then there exists a base of M that contains L and does not intersect K.

Proof. Independence of K in M∗ implies S −K contains a base B of M. Now, L is given
to be independent in M and is also a subset of S −K. So there exists a subset B′, that is
maximally independent in M containing L and also a subset of S − K. Axiom I2 tells us
that | B′ |=| B |. Hence B′ is the desired base of M. �
Proof of Theorem 31.13. Condition (i) is the definition of a bond. We will show that each of
the conditions (ii) and (iii) is equivalent to (i).

(i) ⇔ (ii): K is a minimal set that is not contained in any base of M∗, equivalently, that
intersects every base of M (since bases of M are complements of bases of M∗).
(i) ⇔ (iii): First we will show (i) implies (iii). We begin by showing the minimality (with
respect to the intersection property of [iii]) of a circuit of the dual. Suppose K is a circuit
of M∗. Let X ⊂ K. Then X is independent in M∗. Let B∗

X be a base of M∗ containing X.
Let BX be the complement of B∗

X . BX is a base of M and BX ∩X = ∅. Let e ∈ X and let

C5955–C0031.tex 888 2015/11/4 1:07pm

Matroids � 889

L(e, BX) be the unique circuit of M contained in e ∪ BX . This circuit intersects X in {e}.
Thus every proper subset of K meets some circuit of M in exactly a single element.

Now we show that when a circuit of the dual meets a circuit of the original matroid,
they intersect in at least two elements. Suppose K meets a circuit C of M. Let e ∈ C ∩K.
C−e and K−e are independent in the matroid and its dual, respectively. Suppose C and K
intersect in just the element e. This implies (C−e)∩(K−e) = ∅. Now, by Lemma 31.2, there
exists a base B ofM that contains C − e but does not intersect K − e. We must have either
e ∈ B or e ∈ (S − B). This would imply either C ⊆ B or in the latter case, K ⊆ (S − B)
contradicting the independence of B in M and S − B in M∗ respectively. Therefore C − e
and K − e must intersect, implying |C ∩K| > 1.

It remains to show that (iii) implies (i). Let K ⊆ S be such that it does not meet any
circuit of M in just a single element. Such K cannot be contained in a cobase of M, for,
if e ∈ S − B, for a base B of M, then the fundamental circuit of matroid M, formed by e
with B intersects (S − B) only in e. Hence, K is dependent in M∗. We only need to show
that K is a minimally dependent subset of the dual. Suppose the contrary, that is, there
exists a proper subset K ′ of K that is a circuit of the dual matroid. However, as already
seen, any circuit K ′ of M∗ does not meet any circuit of M in just a single element. This
would contradict minimality (with respect to the intersection property) of K. Therefore K
is a circuit of M∗. �

31.4 MINORS OF GRAPHS, VECTOR SPACES, AND MATROIDS

Given a matroid, there are some natural ways of deriving matroids on subsets of the
underlying sets which we will call minors of the original matroid. In this section we mo-
tivate and define this notion by first studying the most important instances of graphs and
vector spaces.

31.4.1 Restriction and Contraction of Graphs

Let G(V, E) be a graph and let T ⊆ E.

Definition 31.2 The graph G open (E− T) is the subgraph of G with T as the set of edges
and the whole V (G) as the vertex set. That is, to obtain G open (E − T) we remove (delete)
edges in E − T , however, leaving their endpoints in place.

The restriction of G to T , denoted by G ·T, is the subgraph of G obtained by deleting isolated
vertices from G open (E − T). Thus, G · T is the subgraph of G on T . In case of a directed
graph G, we retain original directions.

Definition 31.3 The graph G short (E− T), is built by first building G open T . We then
get connected components. Let V1, . . ., Vk be the vertex sets of the connected components of
G open T . The set {V1, . . ., Vk} is the vertex set and T is the edge set of G short (E−T). (The
reader may imagine {V1, . . ., Vk} as a set of supernodes enclosed by surfaces.) An edge e ∈ T
would have Vi, Vj as its endpoints in G short (E−T) iff the endpoints of e in G lie in Vi, Vj.
If G is directed, Vi, Vj would be the positive and negative endpoints of e in G short (E − T)
provided the positive and negative endpoints of e in G lie in Vi, Vj , respectively.

(In other words, G short (E − T) is obtained from G by short circuiting the edges in
(E − T) (fusing their end points) and removing them.)

The contraction of G to T, denoted by G×T , is obtained from G short (E−T) by deleting
the isolated vertices of the latter.

C5955–C0031.tex 889 2015/11/4 1:07pm

890 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

An immediate consequence of the above definitions is that the union of a forest of
G short (E − T) (i.e., of G × T) and a forest of G open T (i.e., of G · (E − T)) is a
forest of G. We therefore have the following theorem.

Theorem 31.14 r(G) = r(G × T) + r(G · (E − T)).

We denote (G × T1) · T2, T2 ⊆ T1 ⊆ E(G) by G × T1 · T2 and (G · T1)× T2. T2 ⊆ T1 ⊆ E(G)
by G · T1 × T2. Graphs denoted by such expressions are called minors of G. It is easy to
see that when we short a set A ⊆ E(G) and open a disjoint set B ⊆ E(G), then the final
graph does not depend on the order in which these operations are carried out. Also note that
G×T (G ·T) differs from G short (E−T) (G open (E−T)) only in that the isolated vertices
are omitted. We therefore have the following theorem. (In the statement below equality refers
to isomorphism.)

Theorem 31.15 Let G be a graph and X2 ⊆ X1 ⊆ E(G). Then

1. G ×X1 ×X2 = G ×X2,

2. G ·X1 ·X2 = G ·X2,

3. G ×X1 ·X2 = G · (E − (X1 −X2))×X2.

Proof. To prove each statement of the above theorem we only need to note that the graph
minors on both LHS and RHS are obtained by shorting and opening the same sets. In
statement (i), on both sides E−X2 is shorted. In the statement (ii) E−X2 is opened. In the
more interesting statement of (iii), on both sides, the shorted set is E −X1 and the subset
of edges opened is X1 −X2. �
The following result shows that construction of minors is essentially a two step process. The
proof is by a routine application of Theorem 31.15.

Theorem 31.16 Any minor of the form G × X1 · X2 × X3 . . . Xn, X1 ⊇ . . . ⊇ Xn (the
graph being obtained by starting from G and performing the operations from left to right in
succession), can be simplified to a minor of the form G ·X ′ ×Xn or G ×X

′ ·Xn. �

The next two results are about circuits and cutsets of minors in terms of the corresponding
subsets in the original graph. The routine proofs are omitted.

Theorem 31.17
1. C ⊆ T is a circuit of G · T iff C is a circuit of G.

2. C ⊆ T is a circuit of G × T iff C is a minimal intersection of circuits of G with T
(equivalently, iff C is an intersection of a circuit of G with T but no proper subset of
C is such an intersection).

Theorem 31.18
1. B ⊆ T is a cutset of G · T iff it is a minimal intersection of cutsets of G with T .

2. A subset B of T is a cutset of G × T iff it is a cutset of G.

31.4.2 Restriction and Contraction of Vector Spaces

There are natural operations on vector spaces that are analogous to the operations of opening
and shorting edges in a graph. We describe them now. Let V be a vector space on S and let
T ⊆ S.

C5955–C0031.tex 890 2015/11/4 1:07pm

Matroids � 891

Definition 31.4 The restriction of V to T , denoted by V .T , is defined as follows:

V .T ≡ {fT : fT = f/T, f ∈ V}.

The contraction of V to T , denoted by V × T , is defined as follows:

V × T ≡ {f ′
T : f ′

T = f/T, f ∈ V and f/(S − T) = 0}.

It is easily seen that V · T , V × T are vector spaces.
We denote (V × T1) · T2 by V × T1 · T2, as in the case of graphs. Such vector spaces are

called minors of V . We say we open T when we restrict V to (S − T) and say we short T
when we contract V to (S − T).

The order in which we open and short disjoint sets of elements is unimportant. This is
stated formally below.

Theorem 31.19 Let T2 ⊆ T1 ⊆ S. Then

1. V · T1 · T2 = V · T2,

2. V × T1 × T2 = V × T2,

3. V × T1 · T2 = V · (S − (T1 − T2))× T2.

Proof of 3. LHS ⊆ RHS
Let fT2 ∈ V ×T1 ·T2. Then there exists a vector fT1 ∈ V ×T1 such that fT1/T2 = fT2 and a

vector f ∈ V with f/(S − T1) = 0 such that f/T1 = fT1 . Now let f ′ denote f/(S − (T1− T2)).
Clearly f ′ ∈ V · (S − (T1 − T2)). Now f ′/(S − T1) = 0. Hence, f ′/T2 ∈ V · (S − (T1 −
T2))× T2. Thus, V × T1 · T2 ⊆ V · (S − (T1 − T2))× T2. The reverse containment is similarly
proved. �

Remark 31.1 Observe that a typical vector of both LHS and RHS is obtained by restricting
a vector of V , that takes zero value on S − T1, to T2. We now have as in the case of graphs.

Theorem 31.20 Any minor of the form V × T1 · T2 × T3 . . . Tn, T1 ⊇ T2 ⊇ . . . ⊇ Tn, can be
simplified to a minor of the form

V · T ′ × Tn or V × T ′ · Tn.

31.4.3 Minors of Dual Vector Spaces

We now relate the minors of V to the minors of the complementary orthogonal space V⊥. We
remind the reader that V⊥ ≡ {g :< g, f >= 0, f ∈ V}, and that for any finite dimensional
vector space V ′ (V ′⊥)⊥ = V ′. In the following results we see that the contraction (restriction)
of a vector space corresponds to the restriction (contraction) of the orthogonal complement.
We say that contraction and restriction are (orthogonal) duals of each other.

Theorem 31.21 Let V be a vector space on S and let T ⊆ S. Then,

1. (V · T)⊥ = V⊥ × T.

2. (V × T)⊥ = V⊥ · T.

C5955–C0031.tex 891 2015/11/4 1:07pm

892 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. i. Let gT ∈ (V ·T)⊥. For any f on S let fT denote f/T. Now if f ∈ V , then fT ∈ V ·T
and < gT , fT > = 0.

Let g on S be defined by g/T ≡ gT , g/S − T ≡ 0. If f ∈ V we have

< f , g > = < fT , gT > + < fS−T , gS−T > = 0 + < fS−T , 0S−T > = 0.

Thus g ∈ V⊥ and therefore, gT ∈ V⊥ × T . Hence, (V ·T)⊥ ⊆ V⊥ × T .
Next let gT ∈ V⊥ × T . Then there exists g ∈ V⊥ so that g/S − T = 0 and g/T = gT .

Let fT ∈ V · T . There exists f ∈ V so that f/T = fT . Now 0 = < f , g > = < fT , gT > + <
fS−T , 0S−T > = < fT , gT >. Hence, gT ∈ (V · T)⊥. We conclude that V⊥ × T ⊆ (V · T)⊥.
This proves that (V · T)⊥ = V⊥ × T.

ii. We have (V⊥ · T)⊥ = (V⊥)⊥ × T .
For any finite dimensional vector space V ′ we know that (V ′⊥)⊥ = V ′. Hence, ((V⊥ ·T)⊥)⊥ =
V⊥ · T and (V⊥)⊥ = V . Hence, V⊥ · T = (V × T)⊥. �

The following corollary is immediate.

Corollary 31.1 (V × P · T)⊥ = V⊥ · P × T, T ⊆ P ⊆ S.

31.4.4 Representative Matrices of Minors of Vector Spaces

As defined earlier, the representative matrix R of a vector space V on S has the vectors of a
basis of V as its rows. We now describe how to construct a representative matrix containing
representative matrices of V ·P and V × (S−P) as its submatrices. In such a case, V ·P and
V × (S − P) are said to become visible in R.

Theorem 31.22 Let V be a vector space on S. Let P ⊆ S. Let R be a representative matrix
as shown below

P S − P

R =
[

RP P RP 2
0 R22

]
(31.3)

where the rows of RP P are linearly independent. Then RP P is a representative matrix for
V ·P and R22, a representative matrix for V × (S − P).

Proof. The rows of RP P are restrictions of vectors on S to P . If fP is any vector in V ·P
there exists a vector f in V so that f/P = fP . Now f is a linear combination of the rows of
R. Hence, f/P (= fP) is a linear combination of the rows of RP P . Further it is given that
the rows of RP P are linearly independent. It follows that RP P is a representative matrix of
V ·P.

It is clear from the structure of R (the zero in the second set of rows) that any linear
combination of the rows of R22 belongs to V × (S − P). Further if f is any vector in V so
that f/P = 0 then f must be a linear combination only of the second set of rows of R. For,
if the first set of rows are involved in the linear combination, since rows of RP P are linearly
independent, f/P cannot be zero. We conclude that if f/(S − P) is a vector in V × (S − P),
it is linearly dependent on the rows of R22. Now rows of R are linearly independent. We
conclude that R22 is a representative matrix of V × P . �

The following corollary is immediate.

Corollary 31.2 r(V) = r(V ·P) + r(V × (S − P)) , P ⊆ S.

C5955–C0031.tex 892 2015/11/4 1:07pm

Matroids � 893

31.4.5 Minors of Matroids

In this subsection we generalize the notion of minors of graphs and vector spaces to matroids.
Let M ≡ (S, I) be a matroid and X ⊆ S. The restriction (or reduction) of M to X,

denoted by M · X, is the matroid on the ground set X whose independence family is the
collection of all subsets of X which are members of I. We define the contraction of M to
X (which we shall denote by M× X), as the matroid on X whose independent sets are
precisely those Y ⊆ X which satisfy the property that Y ∪ BS−X ∈ I whenever BS−X is a
base of M · (S − X). Indeed it is clear from the definition that M · X is a matroid. That
M×X is also a matroid needs to be proved and this we do below.

Before we proceed to its proof, we define the notion of minor of a matroid. A minor of
M is a matroid of the form (M×X1) ·X2 or (M·X1)×X2, X2 ⊆ X1 ⊆ S. Since there is no
room for confusion we omit the bracket while denoting minors. We need the following useful
lemma.

Lemma 31.3 Let M be a matroid on S and let Y ⊆ X ⊆ S. Suppose B′
1, B′

2 are two bases
of M · (S −X) and Y ∪B′

1 is independent in M. Then so is Y ∪B′
2.

Proof. Suppose the contrary. Then there exist bases B′
1, B′

2 ofM· (S−X) so that Y ∪B′
1 is

independent, but Y ∪B′
2 is dependent and |B′

1 −B′
2| is a minimum for these conditions. For

e ∈ B′
2 − B′

1, e ∪ B′
1 contains the unique circuit L(e, B′

1) of M · (S −X). There must exist
e′ of (B′

1 −B′
2) inside L(e, B′

1). So B′
3 = (B′

1 − e′) ∪ e is a base ofM· (S −X). There exists
a base B1 of M containing Y ∪ B′

1. Therefore e ∪ B1 contains the unique circuit L(e, B1).
Observe that L(e, B1) is the same as L(e, B′

1) (this follows as circuits of M · (S − X) are
the same as circuits of M contained in (S − X)). As L(e, B1) = L(e, B′

1), it follows that
B3 ≡ (B1 − e′) ∪ e is a base of M. Now, Y ∪ B′

3 is independent in M, being a subset of
B3. But note that B′

3 and B′
2 violate the minimum size assumption about B′

1 and B′
2 (since

|B′
3 −B′

2| < |B′
1 −B′

2|). We conclude therefore that Y ∪B′
2 is independent in M. �

To prove that M× X, given by (S, I ′
X), is a matroid, we will verify that it satisfies the

independent axioms. If Y ∈ I ′
X and Z ⊆ Y it is clear from the definition of I ′

X that Z ∈ I ′
X .

Therefore Axiom I1 holds. Now we prove that Axiom I2 holds. Let X1 ⊆ X and let Z1, Z2
be maximal members of I ′

X which are subsets of X1. Then Z1, Z2 are maximal with respect
to the property that Z1, Z2 ⊆ X1 and Z1 ⊎ B′, Z2 ⊎ B′ are independent in M, for each
base B′ of M · (S − X). We would be done if we show that |Z1 ⊎ B′| = |Z2 ⊎ B′| (from
which |Z1| = |Z2| would follow). It suffices to show that Z1 ⊎B′, Z2 ⊎B′ are both maximally
independent subsets of X1 ⊎ (S −X) in M. Suppose without loss of generality, let Z1 ⊎ B′

not be a maximally independent subset of X1⊎ (S−X) inM. Let W be a proper superset of
it that is independent inM and is as well a subset of X1⊎ (S−X). Due to maximality of B′

and independence of W , W ∩(S−X) = B′, and therefore W ∩X1 would be a proper superset
of Z1. But (W ∩X1)∪B′ is independent which implies that W ∩X1 is also a member of I ′

X

(note that we use Lemma 4.1 which assures us testing with any one base B′ ofM· (S −X)
is adequate). This would however violate maximality of Z1 as a member of I ′

X . Therefore
Z1 ⊎ B′ and similarly Z2 ⊎ B′ are maximally independent subsets of X1 ⊎ (S − X) in M.
Thus, |Z1 ⊎B′| = |Z2 ⊎B′| and therefore, |Z1| = |Z2| as required.

Theorem 31.23 Let M be a matroid on S and let X ⊆ S. Then

1. The union of a base of M×X and a base of M · (S −X) is a base of M.

2. r(M×X) + r(M· (S −X)) = r(M).

C5955–C0031.tex 893 2015/11/4 1:07pm

894 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. i and ii. Let B1 be a base of M× X and let B2 be a base of M · (S − X). By the
definition ofM×X, B2∪B1 is independent inM. Hence, r(M×X) ≤ r(M)−r(M·(S−X)).

Next, B2∪B1 can be extended to a base B ofM. By the definition ofM·(S−X), we must
have B2 = B∩(S−X). As (B∩X)∪B2 is independent inM, by the definition ofM×X and
Lemma 31.3, B ∩X is independent inM×X. Hence, r(M×X) ≥ r(M)− r(M· (S−X)).
Therefore that r(M×X) = r(M)− r(M · (S −X)) and B1 ∪B2 is a base of M. �

We next study the relation between primitive notions (such as bases, circuits, bonds) asso-
ciated with a matroid and those associated with restrictions and contractions of a matroid.
We begin with bases.

Theorem 31.24 Let M be a matroid on S and X ⊆ S. Then

1. BX is a base of M·X iff it is a maximal intersection of a base of M with X.

2. B′
X is a base of M×X iff it is a minimal intersection of a base of M with X.

Proof.

i. BX is a maximal intersection of a base of M with X iff it is a maximal subset of X
that is independent in M, that is, iff BX is a base of M ·X.

ii. Let BS−X be a base ofM· (S −X). By the definition ofM×X and Lemma 31.3 BX

is a base ofM×X iff BX ∪BS−X is a base ofM, that is, iff a base B ofM intersects
X in BX and intersects (S −X) maximally among all bases of M, that is, iff a base
B of M intersects X in BX and this intersection is minimal among all bases of M. �

We next characterize circuits of minors.

Theorem 31.25 Let M be a matroid on S and let X ⊆ S. Then

1. CX is a circuit of M ·X iff it is a circuit of M contained in X.

2. CX is circuit of M×X iff it is a minimal nonvoid intersection of a circuit of M with
X.

Proof.

i. Independent sets ofM·X are just the independent sets ofM contained in X. Hence,
CX is a minimal dependent set ofM·X iff it is a minimal dependent set ofM contained
in X.

ii. We use the following observation. If C is a circuit ofM intersecting X, then C ∩X is
dependent in M× X. (This follows as otherwise, the disjoint union (C ∩ X) ∪ (C ∩
(S −X)) which is indeed C, would be independent in M.)

Let CX be a circuit of M× X. Let B′ be a base of M · (S − X). Therefore CX ∪ B′ is
dependent in M, but (CX − e) ∪ B′ is independent in M for any e ∈ CX . Let C be the
unique circuit of M containing e, contained in e ∪ (CX − e) ∪ B′. Note that C ∩X ⊆ CX .

C5955–C0031.tex 894 2015/11/4 1:07pm

Matroids � 895

But C ∩X is dependent in M×X by the above observation. Therefore due to CX being a
circuit of M×X, we conclude that CX = C ∩X.

We still need to prove that CX is a minimal nonvoid intersection of a circuit ofM with X.
If CX = C ∩X were not minimal such, then there would exist nonvoid C ′

X = C ′ ∩X, C ′ a
circuit ofM such that C ′

X ⊂ CX (proper!). But then C ′
X would be dependent inM×X by

the above observation, contradicting that CX is a circuit of M×X.
Next we prove the other implication, that is, a minimal nonvoid intersection C ∩ X of

a circuit C of M with X is a circuit of M× X. Suppose the contrary, then there exists a
circuit C ′

X ofM×X, that is properly contained in C∩X. But then by the above there exists
a circuit C ′ of M such that C ′ ∩X = C ′

X , contradicting that C ∩X is a minimal nonvoid
intersection of a circuit of M with X. �
The next result speaks of the rank function of minors. The routine proof is omitted (the
expression for rank function of contraction follows from Lemma 31.3).

Theorem 31.26 Let M be a matroid on S and let X ⊆ S. Let r(·), rr(·), rc(·) be the rank
functions of M,M ·X,M×X respectively. Then

1. rr(Y) = r(Y), Y ⊆ X,

2. rc(Y) = r(Y ∪ (S −X))− r(S −X), Y ⊆ X. �

A minor of a general form could be obtained from the original matroid by a sequence of
restrictions and contractions. As in the case of graphs we can simplify these operations to a
single contraction followed by a single restriction or vice versa. The following result is needed
for such simplification.

Theorem 31.27 Let M be a matroid on S and let Y ⊆ X ⊆ S. Then,

1. M ·X · Y =M · Y.

2. M×X × Y =M× Y.

3. M×X · Y =M · (S − (X − Y))× Y.

Proof.

i. Immediate from the definition of restriction.
ii. A base of M× Y is a minimal intersection of a base of M with Y , while a base of
M× X × Y is a minimal intersection of a base of M× X with Y . To construct the
former base, one could begin with a maximally independent set of M within S − Y
and extend it to a base of M using a set BY of elements from Y . BY would then
be a base of M× Y . But this could have been done by first choosing a maximally
independent set BS−X within S −X of M, extending it to a maximally independent
set BS−Y of M within S − Y , and then growing it further using BY . Thus BY is a
base of M×X × Y . On the other hand, starting with a base BY of M×X × Y , one
can see that its union with a maximally independent set BS−Y of M within S − Y
gives a base ofM. Therefore BY is a minimal intersection of a base ofM with Y and
therefore a base of M× Y .

A more routine proof uses Theorem 31.28 proved below.

(M∗ · Y)∗ = (M∗ ·X · Y)∗ = (M∗ ·X)∗ × Y = (M∗)∗ ×X × Y =M×X × Y.

But (M∗ · Y)∗ = (M∗)∗ × Y =M× Y. We conclude that M×X × Y =M× Y.

C5955–C0031.tex 895 2015/11/4 1:07pm

896 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

iii. Let Z be an independent set of M × X · Y. Then, by the definition of restriction,
Z ⊆ Y and Z is independent in M× X. Let BS−X be a base of M · (S − X). Then
by the definition of contraction, Z ∪ BS−X is independent in M. By the definition
of restriction Z ∪ BS−X must be independent in M · (S − (X − Y)). Now BS−X is
a base of M · (S − X) = M · (S − (X − Y)) · (S − X). Hence, Z is independent in
M · (S − (X − Y)) × Y (note that (S − X) ∪ Y = S − (X − Y) since Y ⊆ X). It
is easy to see that the above sequence of implications can be reversed. Hence, if Z is
independent inM· (S− (X −Y))×Y then Z is also independent inM×X ·Y. Thus,

M×X · Y =M · (S − (X − Y))× Y. �

LetM be a matroid on S and let S ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xn. From Theorem 31.27, it is clear
thatM×X1 ·X2×X3 . . . Xn can be written in the formM×P ·Xn for a suitable P ⊇ Xn.

Now we relate the minors of the dual matroid to the duals of the minors of the original
matroid.

Theorem 31.28 Let M be a matroid on S. Let X ⊆ S. Then
1. (M×X)∗ =M∗ ·X,

2. (M ·X)∗ =M∗ ×X.

3. The rank of X in M∗ equals |X| − r(M×X) = |X| − (r(M)− r(M· (S −X))).

Proof.
i. BX is a base ofM×X iff it is a minimal intersection of a base ofM with X, that is,

iff it is the complement of a maximal intersection of a cobase ofM with X, that is, iff
it is the complement of a maximal intersection of a base of M∗ with X, that is, iff it
is the complement of a base of M∗ ·X.

ii. By the definition of dual, dual of the dual of a matroid is the original matroid itself.
Hence, using (i) above, (M∗ ×X)∗ = (M∗)∗ ·X =M·X

i.e., M∗ ×X = (M∗ ×X)∗∗ = (M·X)∗.

iii. Immediate from (i) above. �

31.4.6 Notes

The reader interested in making a serious study of matroid theory would do well to begin by
referring to [8] where the key foundation papers in matroid theory are reproduced. A terse
but readable account of matroid theory, as seen in the 1960s by a master, is available in [9].
Matroids seen from the unifying perspective of combinatorial geometries is available in [10].
The first comprehensive textbook on matroids is [11]. More recent books are [12–14].

31.5 CONVOLUTION

31.5.1 Introduction

The convolution operation popularized by Edmonds [15] is fundamental to the study of
submodular functions and is extremely useful for both studying the structure of matroids and
generating new matroids. Indeed, the well-known concept of principal partition associated
with submodular functions in terms of a given weight function and the union matroid of
two matroids, to name just two important instances, are best understood using convolution.
In this section we begin with a description of polymatroid rank functions and use this as a
framework for presenting results on convolution, and principal partition.

C5955–C0031.tex 896 2015/11/4 1:07pm

Matroids � 897

31.5.2 Polymatroid Rank Functions

It is convenient to state the basic results for convolution in terms of polymatroid rank func-
tions which are a simple generalization of matroid rank functions.

We remind the reader that a function f(·) : 2S −→ ℜ is said to be submodular if for every
pair of subsets X, Y of S we have f(X) + f(Y) ≥ f(X ∪Y) + f(X ∩Y). It is supermodular if
the inequality is reversed and modular if the inequality is replaced by an equality. A weight
function g(·) on subsets of S satisfies g(X) ≡

∑
ei∈X g(ei), X ⊆ S, with g(∅) = 0. A modular

function can be seen to differ from a weight function only in that, for the latter, the value
on null set is zero. Indeed if g(·) is modular we have g(X) =

∑
e∈X(g(e)− g(∅)) + g(∅).

We saw in Section 31.2.4 that a matroid rank function r(·) on subsets of S is increasing,
submodular with r(∅) = 0, integral and satisfies r(e) = 0 or 1 for all e ∈ S. A polymatroid
rank function f(·) on subsets of S is increasing, submodular with r(∅) = 0, the remaining
conditions being omitted.

We define restriction, contraction, and dual of a polymatroid rank function essentially as
in the case of a matroid rank function. The restriction f(·)/T of f(·) to T, T ⊆ S, is defined
by f/T (X) ≡ f(X), X ⊆ T. The contraction f ⋄ T (·) of f(·) to T, T ⊆ S, is defined by
f ⋄ T (X) ≡ f(X ∪ (S − T))− f(S − T), X ⊆ T .

The dual f∗(·) of f(·) on subsets of S is defined relative to a positive weight function g(·)
on subsets of S just as r∗(·) is defined relative to the | · | function (see Theorem 31.28):

f∗(X) ≡ g(X)− [f(S)− f(S −X)], X ⊆ S.

It is easily verified that f∗∗(·) = f(·). Further, if f(e) ≤ g(e), ∀e ∈ S, it will follow that f∗(·)
is a polymatroid rank function whenever f(·) is.

Just as in the case of matroid rank functions, contraction and restriction operations turn
out to be duals of each other for polymatroid rank functions.

We have, for X ⊆ T ,

(f ⋄ T)∗(X) = g(X)− [f ⋄ T (T)− f ⋄ T (T −X)]
= g(X)− [f(S)− f(S − T)− f((S − T) ∪ (T −X)) + f(S − T)]
= g(X)− [f(S)− f((S − T) ∪ (T −X))]
= g(X)− [f(S)− f(S −X)] = f∗/T (X).

Since f∗∗(·) = f(·), it will follow that (f/T)∗(X) = (f∗ ⋄ T)(X).

31.5.3 Formal Properties of the Convolution Operation

Definition 31.5 Let f(·), g(·) : 2S −→ ℜ . The lower convolution of f(·) and g(·), denoted
by f∗g(·), is defined by

f∗g(X) ≡ minY ⊆X [f(Y) + g(X − Y)].

The collection of subsets Y , at which f(Y) + g(X − Y) = f∗g(X), is denoted by Bf,g(X).
But if X = S, we will simply write Bf,g.

It is clear that f∗g(·) = g∗f(·). We now have the following elementary but important result.

Theorem 31.29 If f(·) is submodular on subsets of S and g(·) is modular, then
f∗g(·) is submodular.

We need the following lemma for the proof of the theorem.

C5955–C0031.tex 897 2015/11/4 1:07pm

898 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Lemma 31.4 Let g(·) be a modular function on the subsets of S.Let A, B, C, D ⊆ S such
that A ∪B = C ∪D, A ∩B = C ∩D. Then

g(A) + g(B) = g(C) + g(D).

Proof. Both LHS and RHS in the statement of the lemma are equal to∑
e∈A∪B

(g(e)− g(∅)) +
∑

e∈A∩B

(g(e)− g(∅)) + 2(g(∅)). �

Proof of Theorem 31.29. Let X, Y ⊆ S. Further let

f∗g(X) = f(ZX) + g(X − ZX), f∗g(Y) = f(ZY) + g(Y − ZY).

Then,
f∗g(X) + f∗g(Y) = f(ZX) + g(X − ZX) + f(ZY) + g(Y − ZY).

We observe that, since ZX ⊆ X, ZY ⊆ Y,

(X − ZX) ∪ (Y − ZY) = (X ∪ Y − (ZX ∪ ZY)) ∪ (X ∩ Y − (ZX ∩ ZY))

and
(X − ZX) ∩ (Y − ZY) = ((X ∪ Y)− (ZX ∪ ZY)) ∩ (X ∩ Y − (ZX ∩ ZY)),

we must have, by Lemma 31.4,

g(X − ZX) + g(Y − ZY) = g(X ∪ Y − (ZX ∪ ZY)) + g(X ∩ Y − (ZX ∩ ZY)).

Hence, f∗g(X) + f∗g(Y)
≥ f(ZX ∪ ZY) + f(ZX ∩ ZY) + g(X ∪ Y − (ZX ∪ ZY)) + g(X ∩ Y − (ZX ∩ ZY)). Thus,

f∗g(X) + f∗g(Y) ≥ f∗g(X ∪ Y) + f∗g(X ∩ Y),

which is the desired result. �

Remark 31.2 It is clear that if g(·) is not modular, but only submodular, then g(X−ZX)+
g(Y−ZY) need not be greater or equal to g(X∪Y−(ZX∪ZY))+g(X∩Y−(ZX∩ZY)). Thus the
above proof would not hold if g(·) is only submodular. Indeed the following counterexample
shows the convolution of two submodular functions need not be submodular. Let B1, B2 be
bipartite graphs on VL ≡ {a, b, c}, VR ≡ {a′, b′, c′, d′} with adjacency functions Γ1, Γ2 defined
as follows:

Γ1(a) = {a′, b′, d′}, Γ1(b) = {a′, b′, d′}, Γ1(c) = {b′, c′, d′},

Γ2(a) = {a′, b′, c′}, Γ2(b) = {a′, b′, d′}, Γ2(c) = {b′, c′}.

It may be verified that

|Γ1|∗|Γ2|(a) = 3, |Γ1|∗|Γ2|(a, b) = 3, |Γ1|∗|Γ2|(a, c) = 3, |Γ1|∗|Γ2|(a, b, c) = 4.

Hence
|Γ1|∗|Γ2|(a, b, c)− |Γ1|∗|Γ2|(a, c) > |Γ1|∗|Γ2|(a, b)− |Γ1|∗|Γ2|(a).

This shows that |Γ1|∗|Γ2|(·) is not submodular. But it is easily seen that |Γ1(·)|, |Γ2(·)| are
submodular.

C5955–C0031.tex 898 2015/11/4 1:07pm

Matroids � 899

Theorem 31.30 Let f(·), g(·) be arbitrary set functions on subsets of S.

1. Then f∗g(X ∪ e)− f∗g(X)
≤ min[maxY ⊆X(f(Y ∪ e)− f(Y)), maxY ⊆X(g(Y ∪ e)− g(Y))], X ⊆ S, e ∈ S.

2. Let f(·), g(·) be increasing. Then f∗g(·) is increasing.

3. Let f(·), g(·) be integral. Then so is f∗g(·).

4. Let f(·) be an integral polymatroid rank function and let g(·) = | · |. Then f∗g(·) is a
matroid rank function [15].

Proof.

i. Let f∗g(X) = f(Z) + g(X − Z), where Z ⊆ X. Then

f∗g(X ∪ e) ≤ min[f(Z ∪ e) + g(X − Z), f(Z) + g((X − Z) ∪ e)].

The proof is now immediate.

ii. Let, without loss of generality

f∗g(X ∪ e) = f(Z ∪ e) + g(X − Z), Z ⊆ X, e ∈ (S −X).

But then
f∗g(X) ≤ f(Z) + g(X − Z) ≤ f(Z ∪ e) + g(X − Z).

iii. The proof is immediate from the definition of convolution.

iv. We need to show that f∗g(·) is an integral polymatroid rank function that takes
value atmost one on singletons. We have, f(·), g(·) are increasing, integral, submod-
ular, taking value zero on the null set and further g(·) is a weight function with
g(e) = 1 ∀e ∈ S. From Theorem 31.29 it follows that f∗g(·) is submodular. It is
clear that f∗g(∅) = 0. The remaining properties for being a matroid rank function
follow from the preceding sections of the present theorem. �

Theorem 31.31 Let ρ(·) be an integral polymatroid rank function on subsets of S. A set
X ⊆ S is independent in the matroid whose rank function is ρ∗ | · | iff ρ(Y) ≥| Y | ∀Y ⊆ X.

Proof. Let r(·) ≡ ρ∗ | · |. A set X ⊆ S is independent iff r(X) = |X|, that is, iff (ρ∗ | · |)
(X) =| X |, that is, iff

minY ⊆X(ρ(Y)+ | X − Y |) =| X | .

Clearly this would happen iff ρ(Y) ≥| Y | ∀Y ⊆ X. �

31.5.4 Connectedness for f∗g

Let f(·) be submodular on subsets of S with f(ϕ) = 0. We say that T is a separator for S iff

f(T) + f(S − T) = f(S).

We then have the following result.

Theorem 31.32 Let f(·) be submodular on subsets of S with f(ϕ) = 0 and let T be a
separator of f(·). Suppose X ⊆ T , Y ⊆ S − T . Then, f(X) + f(Y) = f(X ∪ Y).

C5955–C0031.tex 899 2015/11/4 1:07pm

900 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

By submodularity,
f(Y) + f(T) ≥ f(Y ∪ T)

i.e., f(Y) + f(S)− f(S − T) ≥ f(Y ∪ T)

i.e., f(Y ∪ T) + f(S − T) ≤ f(Y) + f(S).

But by submodularity again,

f(Y ∪ T) + f(S − T) ≥ f(S) + f(Y).

We conclude that f(Y ∪ T) + f(S − T) = f(S) + f(Y), that is, f(Y ∪ T) = f(S) − f(S −
T) + f(Y) = f(T) + f(Y). We could now repeat the argument working with X in place of
Y , Y in place of T and obtain

f(X ∪ Y) = f(X) + f(Y). �

Thus when f(·) is submodular with f(ϕ) = 0 on subsets of S and T is a separator, f(·)
behaves as though it is the direct sum of its restrictions on subsets of T and subsets of S−T
since

f(X) = f(X ∪ T) + f(X ∩ (S − T)).

The above discussion is particularly relevant when we consider f∗g, where f(·) is submodular
with f(ϕ) = 0 and g(·) is a positive weight function on subsets of S.

Suppose
f∗g(S) = f(T) + g(S − T).

We claim f∗g(S) = f∗g(T) + f∗g(S − T). To see this suppose f∗g(T) = f(T1) + g(T − T1),
T1 ⊆ T and f∗g(S − T) = f(T2) + g(S − T − T2), T2 ⊆ S − T . We then have

f(T) + g(S − T) ≥ f(T1) + g(T − T1) + f(T2) + g(S − T − T2), . . . (∗).

By submodularity of f(·),

f(T) + g(S − T) ≥ f(T1 ∪ T2) + g((T − T1)∪ (S − T − T2)) = f(T1 ∪ T2) + g(S − (T1 ∪ T2)).

However,

f(T) + g(S − T) = min
X ⊆ S

f(X) + g(S −X).

Hence, f(T) + g(S − T) = f(T1 ∪ T2) + g(S − (T1 ∪ T2)), and the inequality (∗) above is
an equality. The only way this can happen is if f(T) = f(T1) + g(T − T1) and g(S − T) =
f(T2)+g(S−T−T2). It follows that f∗g(T) = f(T) and f∗g(S−T) = g(S−T) and therefore

f∗g(S) = f∗g(T) + f∗g(S − T),

proving the claim. Thus, T , S − T are separators of f∗g.
When f(·) is an integral polymatroid rank function and g(·) = | · |, if f∗g(S) = f(T) +

g(S − T), the matroidMf∗g whose rank function is f∗g has T ,S − T as separators. Further
f∗g(S − T) = |S − T | so that (S − T) is independent. Now consider any base b ofMf∗g. We
have b = b ∩ T ∪ (b ∩ (S − T)). However

f∗g(b ∩ T ∪ (S − T)) = f∗g(b ∩ T) + f∗g(S − T)) = |b ∩ T |+ |S − T |.

It is thus clear that b ∩ T ∪ (S − T) is independent. Since b is maximally independent in
Mf∗g, we conclude that b∩ (S − T) = S − T . Thus S − T is a subset of every base ofMf∗g,
that is, S − T is a set of coloops (elements which do not belong to any circuit) of Mf∗g.

C5955–C0031.tex 900 2015/11/4 1:07pm

Matroids � 901

On the other hand, suppose (S −K) is the set of all coloops of Mf∗g. It is clear that

f∗g(S) = f∗g(K) + |S −K| = f∗g(K) + f∗g(S −K).

Thus K, (S−K) are separators of f∗g. We claim f∗g(K) = f(K). For, if f∗g(K) = f(K1) +
g(K −K1) and K1 ⊂ K, we have f∗g(S) = f(K1) + g((S −K)∪ (K −K1)). But this means
(S −K) ∪ (K −K1) is a set of coloops which contradicts the fact (S −K) is the set of all
coloops of Mf∗g.

We summarize the above discussion in the following theorem.

Theorem 31.33 Let f∗g(S) = f(T) + g(S − T), T ⊂ S.

1. If f(·) is submodular on subsets of S with f(ϕ) = 0, then T, S − T are separators of
f∗g(·).

2. If f(·) is an integral polymatroid rank function and g(·) = | · |, the matroidMf∗g whose
rank function is f∗g has T ,S − T as separators and S − T as a set of coloops. Also, if
S − T is the set of all coloops of Mf∗g, then f∗g(S) = f(T) + g(S − T).

31.6 PRINCIPAL PARTITION

31.6.1 Introduction

The principal partition of a graph was defined by Kishi and Kajitani in their seminal paper
[16] and was originally an offshoot of their work on maximally distant trees. A graph was
decomposed into three minors according to how strongly subsets of edges can be covered by
unions of two trees or two cotrees. The extensions of this concept can be in two directions:
toward making the partition finer or toward making the functions involved more general.
Our present description favors the former approach and is mainly aimed at describing the
principal partition of a matroid [17,18]. However, the results are best stated in terms of
convolution of polymatroid rank functions with positive weight functions. Essentially, we
study the collection of all minimizing T such that λf∗g(S) = λf(T) + g(S−T), λ ≥ 0 where
f(·) is a polymatroid rank function and g(·), a positive weight function on subsets of S. The
algorithms for building this structure for a matroid rank function are based on the matroid
union algorithm which finds the maximal union of bases from two different matroids.

31.6.2 Basic Properties of Principal Partition

Definition 31.6 Let f(·), g(·) be a polymatroid rank function and a positive weight function
respectively on the subsets of a set S. The collection of all sets in Bλf,g

(i.e., the collection
of sets X ⊆ S which minimize λf(X) + g(S −X) over subsets of S) ∀λ, λ ≥ 0, is called the
principal partition (PP) of (f(·), g(·)).

We denote Bλf,g by Bλ when f(·), g(·) are clear from the context. We denote the maximal
and minimal members of Bλ by Xλ, Xλ, respectively.

We now list the important properties of the principal partition of (f(·), g(·)).
Property PP1
The collection Bλf,g, λ ≥ 0, is closed under union and intersection and thus has a unique
maximal and a unique minimal element.
Property PP2
If λ1 > λ2 ≥ 0, then Xλ1 ⊆ Xλ2 .

C5955–C0031.tex 901 2015/11/4 1:07pm

902 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Definition 31.7 A non-negative value λ for which Bλ has more than one subset as a member
is called a critical value of (f(·), g(·)).

Property PP3
The number of critical values of (f(·), g(·)) is bounded by |S|.

Property PP4
Let (λi), i = 1, . . ., t be the decreasing sequence of critical values of (f(·), g(·)). Then, Xλi =
Xλi+1 for i = 1, . . ., t− 1.

Property PP5
Let (λi) be the decreasing sequence of critical values. Let λi > σ > λi+1. Then Xλi = Xσ =
Xσ = Xλi+1 .

Definition 31.8 Let f(·) be a polymatroid rank function and let g(·) be a positive weight
function on subsets of S. Let (λi), i = 1, . . ., t be the decreasing sequence of critical values
of (f(·), g(·)). Then the sequence Xλ1 , Xλ2 , . . ., Xλt , Xλt = S is called the principal sequence
of (f(·), g(·)). A member of Bλ would be alternatively referred to as a minimizing set corre-
sponding to λ in the principal partition of (f(·), g(·)).

Remark 31.3 A word about the terminology is in order. For convenience, we have defined
the principal partition to be the collection of all minimizing sets of the expression λf(X) +
g(S −X). Literally speaking, this is not a partition. However, there is a natural associated
partition which is simply the collection of all minimal sets of the form X1−X2, where X1, X2
minimize λf(X) + g(S−X), for a critical value λ. The coarser partition associated with the
principal sequence is Xλ1

, Xλ2
−Xλ1

, . . ., Xλt −Xλt
.

Proof of the properties of the principal partition.

i. PP1: Define h(X) ≡ λf(X) + g(S − X)∀X ⊆ S, λ ≥ 0. Observe that the function
g′(·), defined through g′(X) ≡ g(S −X)∀X ⊆ S, is submodular. Thus h(·) is the sum
of two submodular functions and is therefore submodular. The collection of sets on
which this function reaches a minimum is called the principal structure of h(·) [19].
If T1, T2 minimize h(·), since h(T1) + h(T2) ≥ h(T1 ∪ T2) + h(T1 ∩ T2), it follows that
T1 ∪ T2, T1 ∩ T2 also minimize h(·). Thus the principal structure of h(·) is closed under
union and intersection and therefore has a unique minimal and a unique maximal set.
The principal structure of h(·) is precisely the same as Bλ.

ii. PP2: Observe that minimizing λif(X)+g(S−X)∀X ⊆ S, λi ≥ 0, i = 1, 2, is equivalent
to minimizing f(X) + (λi)−1g(S − X) ∀X ⊆ S, λi ≥ 0, i = 1, 2. (Here +∞ × 0,
corresponding to λi = 0 and g(∅) = 0, is treated as zero.) So we may take the sets
which minimize the latter expression to be the sets in Bλi ,i = 1, 2. Define pi(X) ≡
f(X) + (λi)−1g(S−X) ∀X ⊆ S, λi ≥ 0, i = 1, 2. As in the case of hi(·), pi(·), i = 1, 2 is
also submodular. Let Z1 minimize p1(·). We will now show that p2(Z1) < p2(Y) ∀Y ⊂
Z1. Let Y ⊂ Z1. We have,

p2(Z1) = p1(Z1) + ((λ2)−1 − (λ1)−1)g(S − Z1)

and
p2(Y) = p1(Y) + ((λ2)−1 − (λ1)−1)g(S − Y).

Since g(·) is a positive weight function, S − Z1 ⊂ S − Y and
((λ2)−1 − (λ1)−1) > 0, we must have ((λ2)−1 − (λ1)−1)g(S − Z1) < ((λ2)−1 − (λ1)−1)

C5955–C0031.tex 902 2015/11/4 1:07pm

Matroids � 903

g(S − Y). Since p1(Y) ≥ p1(Z1), it follows that p2(Y) > p2(Z1). Now let Z ⊆ S
minimize p2(·). Applying the submodular inequality for p2 on Z, Z1, it would follow
that if Z ∪ Z1 is not the same as Z, then p2(Z ∩ Z1) ≤ p2(Z1), with (Z ∩ Z1) ̸= Z1
which would be a contradiction. It follows that Z ⊇ Z1.

iii. PP3: If Bλ has more than one set as a member then |Xλ| > |Xλ|. So if λ1, λ2 are
critical values and λ1 > λ2, by Property PP2, we must have |Xλ1 | < |Xλ2 |. Thus the
sequence Xλi , where (λi) is the decreasing sequence of critical values cannot have more
than |S| elements.

iv. PP4: We need the following lemma.

Lemma 31.5 Let λ > 0. Then, for sufficiently small ϵ > 0, the only set that minimizes λ−ϵ
is Xλ.

Proof. Since there are only a finite number of (f(X), g(S −X)) pairs, for sufficiently small
ϵ > 0 we must have the value of (λ− ϵ)f(X)+g(S−X) lower on the members of Bλ than on
any other subset of S. We will now show that, among the members of Bλ,Xλ takes the least
value of (λ−ϵ)f(X)+g(S−X), ϵ > 0. This would prove the required result. If λ is not a critical
value this is trivial. Let λ be a critical value and let X1, Xλ be two distinct sets in Bλ. Since
X1 ⊂ Xλ, we have, g(S−X1) > g(S−Xλ). But, λf(X1)+g(S−X1) = λf(Xλ)+g(S−Xλ).
So, λf(X1) < λf(Xλ). Since λ > 0, we must have, −ϵf(X1) > −ϵf(Xλ), ϵ > 0. It follows
that, (λ− ϵ)f(X1) + g(S −X1) > (λ− ϵ)f(Xλ) + g(S −Xλ). �

Proof of PP4 : By Lemma 31.5, for sufficiently small values of ϵ > 0, Xλi would continue to
minimize (λi − ϵ)f(X) + g(S −X). As ϵ increases, because there are only a finite number of
(f(X), g(S − X)) pairs, there would be a least value, say σ, at which Xλi and atleast one
other set minimize (λi − σ)f(X) + g(S −X). Clearly, the next critical value λi+1 = λi − σ.
Since λi > λi − σ, by Property PP2, we must have Xλi ⊆ Xλi−σ. Hence we must have,
Xλi = Xλi−σ = Xλi+1 , as desired.

Proof of PP5 : This is clear from the above arguments.

Informally, the situation is as follows. Suppose we start with λ = +∞. Here X∞ would
be the null set and X∞, the set of elements e for which f(e) is zero. As we reduce λ, a point
would be reached, say when λ = λ1, where Xλ1 becomes a proper superset of X∞. This
would be the next critical value. Between∞ and λ1, Xλ = Xλ = X∞. As we lower λ further,
Xλ = Xλ = Xλ1 , till the next critical value λ2 is reached. The last critical value λk will
be such that Xλk = S. When λ = 0, it is clear that the minimum of λf(X) + g(S − X) is
reached only at S. It follows that all critical values have to be positive.

A characterization of principal partition would be useful for justifying algorithms for its
construction. We will describe one such characterization in Theorem 31.34 below. This is a
routine restatement of the properties of principal partition (PP).

Theorem 31.34 Let f(·) be a polymatroid rank function on subsets of S and let g(·) be
a positive weight function on subsets of S. Let Bλ denote Bλf,g. Let λ1, . . ., λt be a strictly
decreasing sequence of numbers such that

1. Each Bλi , i = 1, . . ., t has atleast two members,

2. Bλi ,Bλi+1 , i = 1, . . ., t− 1 have atleast one common member set,

3. ∅ belongs to Bλ1 , while S belongs to Bλt .

C5955–C0031.tex 903 2015/11/4 1:07pm

904 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Then λ1, . . ., λt is the decreasing sequence of critical values of (f(·), g(·)) and therefore the
collection of all the sets which are member sets in all the Bλi , i = 1, . . ., t is the principal
partition of (f(·), g(·)).

Proof. We note that, by definition, λ1, . . ., λt are some of the critical values and, in the present
case, ∅ = Xλ1 , Xλ2 , . . ., Xλt , Xλt = S is a subsequence of the principal sequence. Let λ′

1, . . ., λ′
k

be the critical values and let Y0, . . ., Yk = S be the principal sequence of (f(·), g(·)). Since
the principal sequence is increasing, it follows that Y0 = ∅. By Property PP2 of (f(·), g(·)),
the only member set in Bλ, when λ > λ′

1, is Y0. Further when λ < λ′
1, Y0 is not in Bλ. Hence

λ1 = λ′
1. Next by Property PP5, when λ′

1 > λ > λ′
2, the only member in Bλ is Y1 which is

the maximal set in Bλ′
1
. Since Bλ2 has atleast two sets we conclude that λ2 ≤ λ′

2. We know
that Bλ1 and Bλ2 have a common member which by Property PP2 can only be Y1. But for
λ < λ′

2, by Property PP5, Y1 cannot be a member of Bλ. Hence λ2 = λ′
2. By repeating this

argument, we see that t must be equal to k and λi = λ′
i, i = 1, . . ., t. �

31.6.3 Principal Partition of Contraction and Restriction

There is a simple relationship between the principal partition of a polymatroid rank function
and its restrictions and contractions relative to sets in the principal partition.

If the function is f ⋄ T (·), S − T ⊆ Xλ1 then the principal partition for λ < λ1 remains
essentially that of f(·) except that we have X − (S − T) as minimizing set in place of X, a
superset of S − T . On the other hand if the function is f(·)/T , where T ⊇ Xλ1 , then the
principal partition for λ ≥ λ1, is identical to that of f(·). We formalize these ideas below.

Theorem 31.35 Let f(·) be a polymatroid rank function and g(·) a positive weight function
on subsets of S.

1. Let (S − T) ⊆ Xλ1 . Let λ < λ1. Then for X̂ ⊇ Xλ1 , λf(X̂) + g(S − X̂) =
minX⊆Sλf(X) + g(S −X) iff λf ⋄ T (X̂ ∩ T) + g(T − X̂ ∩ T) = minY ⊆T λf ⋄ T (Y) +
g(T − Y).

2. Let T ⊇ Xλ1 . Let λ ≥ λ1. Then, λf(X̂) + g(S − X̂) = minX⊆Sλf(X) + g(S −X) iff
λf/T (X̂) + g(T − X̂) = minY ⊆T λf/T (Y) + g(T − Y).

Proof.

i. For λ < λ1, we have Xλ ⊇ Xλ1 . We now have, for X̂ ⊇ Xλ1 ⊇ (S − T),
λf ⋄ T (X̂ ∩ T) + g(T − X̂ ∩ T) = λ[f(X̂ ∩ T ∪ (S − T))− f(S − T)] + g(S − X̂)
= λf(X̂) + g(S − X̂)− λf(S − T).

Next we have, minY ⊆T λf ⋄ T (Y) + g(T − Y) = minY ⊆T λ[f(Y ∪ (S − T)) − f(S −
T)] + g(S − (Y ∪ (S − T)))] = minY ⊆T λf(Y ∪ (S − T)) + g(S − (Y ∪ (S − T))) −
λf(S − T)] = minX⊆Sλf(X) + g(S − X) − λf(S − T) (noting that λ < λ1 implies
Xλ ⊇ Xλ1 ⊇ (S − T)).

Thus the LHS of the two equations as well as the RHS of the equations differ by
λf(S − T), which proves the result.

ii. We note that if λ ≥ λ1, Xλ ⊆ Xλ1 . So the first equation holds for X̂, only if X̂ ⊆
Xλ1 ⊆ T. The result follows by noting that the LHS of the two equations differ by
g(S − T) and so do the RHS of the two equations.

C5955–C0031.tex 904 2015/11/4 1:07pm

Matroids � 905

31.6.4 Principal Partition of the Dual

We next study the principal partition of the dual. We have the following result which summa-
rizes the relation between the PP of (f(·), g(·)) and that of (fj(·), g(·)). Essentially, critical
values of the dual are of the form λ

∗ ≡ (1− (λ)−1)−1, where λ are the critical values of the
original function and the minimizing sets in the dual corresponding to λ

∗ are complements
of those corresponding to λ in the original.

Theorem 31.36 Let f(·) be a submodular function on the subsets of S and let g(·) be a
positive weight function on subsets of S. Let Bλ,B∗

λ denote respectively the collection of min-
imizing sets corresponding to λ in the principal partitions of (f(·), g(·)), (f∗(·), g(·)), where
f∗(·) denotes the dual of f(·) with respect to g(·). Let λ∗ denote (1− (λ)−1)−1 ∀λ ∈ ℜ.

Then

1. A subset X of S is in Bλ iff S −X is in B∗
λ∗ ,

2. If λ1, . . ., λt is the decreasing sequence of critical values of (f(·), g(·)), then λ∗
t , . . ., λ∗

1 is
the decreasing sequence of critical values of (f∗(·), g(·)),

3. If the principal sequence of (f(·), g(·)) is ∅ = X0, . . ., Xt = S, then the principal se-
quence of (f∗(·), g(·)) is ∅ = S −Xt, . . ., S −X0 = S.

Proof.

i. We will show that Y minimizes λf(X)+g(S−X) iff S−Y minimizes λ∗f∗(X)+g(S−X).
We have

λ∗f∗(X) + g(S −X) = λ∗[g(X)− (f(S)− f(S −X))] + g(S −X)
= λ∗f(S −X) + (λ∗ − 1)g(X)− λ∗f(S) + g(S).

Minimizing this expression is equivalent to minimizing the expression λ∗(λ∗−1)−1f(S−
X)+g(X). Noting that λ∗(λ∗−1)−1 = λ we get the desired result. (We note that when
one of λ, λ∗ is 1, the other is to be taken as +∞.) �

The remaining sections of the theorem are now straightforward.

31.6.5 Principal Partition and the Density of Sets

The principal partition gives information about which subsets are densely packed relative
to (f(·), g(·)). Let us define the density of X ⊆ S relative to (f(·), g(·)) to be g(X)/f(X),
taking the value to be +∞ when f(X) is zero. For instance if f(·) is the rank function of a
graph and g(X) ≡| X |, the sets of the highest density correspond to subgraphs where we
can pack the largest (fractional) number of disjoint forests. As we see below, the sets of the
highest density will be the sets in Bλ1

, where λ1 is the highest critical value.
The problem of finding a subset T of S of highest density for a given g(T) value would

be NP hard even for very simple submodular functions.

Example: Let f(·) ≡ rank function of a graph, g(X) ≡| X |. In this case g(T) =| T | and
if we could find a set of branches of given size and highest density we can solve the problem
of finding the maximal clique subgraph of a given graph. However, as we show below in
Theorem 31.37, every set in the principal partition has the highest density for its g(T) value
and further is easy to construct. This apparent contradiction is resolved when we note that
there may be no set of the given value of g(T) in the principal partition.

C5955–C0031.tex 905 2015/11/4 1:07pm

906 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 31.37 Let f(·), g(·) be polymatroid rank functions on subsets of S with g(·), a
positive weight function. Let T be a set in the principal partition of (f(·), g(·)). If T ′ ⊆ S so
that g(T) = g(T ′) and T ′ not in the principal partition, then the density of T ⊆ S is greater
than that of T ′.

Proof. Suppose otherwise. Let λ be the density of T. We must have g(T ′) − λf(T ′) ≥
0 = g(T) − λf(T). Hence, g(S − T) + λf(T) ≥ g(S − T ′) + λf(T ′). But g(S − T) =
g(S − T ′). Hence, f(T) ≥ f(T ′), since λ > 0. Let T ∈ Bσ. Then T minimizes the expression
g(S−X)+σf(X) ∀X ⊆ S. But since σ > 0 (σ = 0 minimizes the expression g(S−X)+σf(X)
only at X = S), g(S − T) + σf(T) ≥ g(S − T ′) + σf(T ′), a contradiction, since T ′ is given
to be not a set in the principal partition (and therefore, not in Bσ). �

31.6.6 Outline of Algorithm for Principal Partition

We now present an informal algorithm for building the principal partition of a polymatroid
rank function f(·) on subsets of S with respect to a positive weight function g(·).

We assume that we have a subroutine ∫λ(f, g, P) for finding all sets X̂ which minimize
λf(X) + g(P −X), X ⊆ P , where f(·), g(·) are as above, λ ≥ 0 and P is the underlying set.
By property PP1 (Subsection 31.6.2), such sets are closed under union and intersection. This
enables them to be represented through a partial order on a suitable partition of P . (Details
may be found in [20].)

Step 1. Take λ = the density g(S)/f(S) and apply ∫λ(f, g, S). We obtain Xλ. Output
the family Fλ of sets X̂ − Xλ, where X̂ is in the family of sets output by ∫λ(f, g, S). By
Theorem 31.35, the sets in this family minimize λf̂(X)+g(S−Xλ−X), X ⊆ S−Xλ, where
f̂(·) ≡ f ⋄ (S −Xλ). If Xλ = ∅ and Xλ = S, (i.e., if λf(S) = g(S)) we stop.

Step 2. Now work with f1 ≡ f/Xλ, f2 ≡ f ⋄ (S − Xλ), g1 ≡ g/Xλ, g2 ≡ g/(S − Xλ).
Repeat with (f1(·), g1(·)), (f2(·), g2(·)) using ∫λ1

(f1, g1, Xλ), ∫λ2
(f2, g2, S −Xλ), respectively,

where λ1, λ2 are the corresponding densities.
The only λ’s in the above sequence of steps which are critical values are those for which

the sets Xλ, Xλ (fj(·), gj(·)) are the full set (at that stage of the algorithm) and the null
set, respectively.

At the end of the algorithm, we will have a number of families Fλ. In the process,
we will have a number of disjoint sets K1, K2, . . . Kj , . . ., and a corresponding sequence of
critical values such that ∫λj

(fj , gj , Kj) yields Kj , ∅, as the maximal and minimal minimizing
sets for λj . Let the critical values λj be reordered as a decreasing sequence λj , and let the
corresponding sets be K1, K2, . . . Kj ,

The principal sequence then is K1, K1 ∪K2, K1 ∪K2 ∪K3, . . ., S and the critical values
are λ1, λ2,

We have Xj as a minimizing set corresponding to λj , for f j(·), gj(·), Kj , where f j(·) ≡
f ⋄ (S − [

∪
i≤(j−1) Ki])/Kj , gj(·) ≡ g/Kj(·), iff Xj ∪ [

∪
i≤(j−1) Ki] is a minimizing set for

f(·), g(·), S corresponding to λj .
If we could take ∫λ(f, g, P) to output only the minimal set minimizing λf(X) + g(P −

X), X ⊆ P , the above algorithm would construct only the principal sequence instead of the
complete principal partition. The algorithm is justified through the use of Theorem 31.35.

31.6.7 Notes

An excellent overview of submodular functions (and therefore polymatroid rank functions) is
available in [21]. The principal partition of the polymatroid rank function can be generalized
to that of a pair of them. Details might be found in [22]. If the principal partitions of two

C5955–C0031.tex 906 2015/11/4 1:07pm

Matroids � 907

matroids on the same underlying set have common sets then this goes over also to the union
of the matroids under simple conditions. Details may be found in [20]. For the matroid case,
applications of the structural solvability kind may be found in the following representative
references [23–30], An up to date survey of principal partition and related ideas may be found
in [31].

31.7 MATROID UNION

In this section we give a self contained description of the matroid union concept and link it
to the principal partition of a matroid. We first give an informal algorithm for building a
maximal union of bases, one from a matroid M1 and the other from the matroid M2. We
show that in the process, we really are constructing the base of another matroid, which could
aptly be called the union of the two matroids. The algorithm is due to Edmonds [32]. It can
be easily modified to give the maximum size common independent set of two matroids. It
also allows us to discuss the structure of various standard objects associated with the matroid
union namely, f -circuit, the set of coloops, and so on.

31.7.1 Matroid Union Algorithm

In this subsection we give an informal description of the matroid union algorithm and jus-
tify it.

Let b1, b2 be bases of matroids M1, M2, respectively, on S. We aim to make b1 ∪ b2
a maximal such union (equivalently make b1, b2 maximally distant). If b1 ∪ b2 = S there
is nothing to be done. Otherwise let e ∈ S − (b1 ∪ b2). Now let L1(e, b1), L2(e, b2) be the
unique fundamental circuits that e forms with b1, b2 in the matroid M1, M2, respectively.
The elements in L1(e, b1) which do not intersect b2 in M2 form fundamental circuits with
b2 in M2 and similarly elements in L2(e, b2) with b1 in M1. Let the set of all elements in
the fundamental circuits obtained by repeatedly performing these operations be R(e, b1, b2)
which let us call R̂ temporarily. It is clear that bi ∩ R̂ spans the set R̂ in Mi.R̂ since all
elements in R̂ − bi form fundamental circuits with it. If b1 ∩ b2 ∩ R̂ is not null we will show
that b1 ∪ b2 can be enlarged.

Let ec ∈ b1∩b2∩R̂. We then must have a sequence e, e1, e2, . . ., ek = ec with property that
e1 ∈ L1(e, b1), e2 ∈ L2(e1, b2), . . ., ek ∈ Li(ek−1, bi) where i = 1 or 2 depending on whether
k is odd or even. We may, without loss of generality, assume that if er is in the sequence it
does not occur in a fundamental circuit of ej , j < r − 1. Now we update the bases b1, b2 as
follows. (Let ek ∈ L1(ek−1, b1) for notational convenience.)

b1
1 = b1 − ek + ek−1

b1
2 = b2 − ek−1 + ek−2

b2
1 = b1

1 − ek−2 + ek−3

...

The claim now is that each of the sets bj
1, bj

2 is actually a base of M1, M2, respectively, for
every j.

It is clear that b1
1, b1

2 are indeed such bases. Consider b2
1. This would be the base of M1

provided ek−2 ∈ L1(ek−3, b1
1). But this is so because in L1(ek−3, b1

1) we know that ek does not
lie so that L1(ek−3, b1

1) = L1(ek−3, b1).
Repeating this argument it is clear that bj

1, bj
2 is actually a base ofM1,M2, respectively,

for j.

C5955–C0031.tex 907 2015/11/4 1:07pm

908 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Suppose finally, bt
1 = bt−1

1 − e1 + e and bt−1
2 = bt−2

2 − e2 + e1,

bt
1 ∪ bt−1

2 = b1 ∪ b2 ∪ e.

Thus b1∪ b2 has been enlarged, by including e and making ec belong only to one of the bases
bt

1, bt−1
2 .

We repeat this procedure, which we shall call updating using reachability, with every
element e outside b1 ∪ b2 and stop when we can proceed no further, that is, till a stage is
reached where no element in b1 ∩ b2 can be reached from an element outside b1 ∪ b2. (We will
call the resulting bases b1, b2 maximally distant.) This is the matroid union algorithm.

Let b1, b2 be maximally distant and let R be the set of all such elements reachable from
elements of S − b1 ∪ b2 by using fundamental circuits in the matroids Mi, i = 1, 2 with b1,
b2 repeatedly as above. We then have the following lemma which also contains a justification
for the matroid union algorithm.

Lemma 31.6

1. For the matroids Mi.R, i = 1, 2, bi ∩R, i = 1, 2, respectively, are disjoint bases.

2. If b1, b2 are the output of the matroid union algorithm (i.e., are maximally distant), then
|b1 ∪ b2| has the maximum size among all unions of bases from M1,M2, respectively,
and this number is r1(R) + r2(R) + |S −R| which is minX⊆Sr1(X) + r2(X) + |S −X|.

3. Given an element e in R, it is possible to find maximally distant bases b1, b2 of Mi,
i = 1, 2, respectively, such that e /∈ b1 ∪ b2.

Proof. All elements in R − (bi ∩ R) form fundamental circuits with bi ∩ R in the matroid
Mi.R, i = 1, 2 (equivalently in Mi, i = 1, 2). When the algorithm terminates, the set of all
elements reachable from outside b1 ∪ b2, by taking repeated fundamental circuit operations
with respect to the two matroids, does not contain any element of b1 ∩ b2. This is so since,
otherwise, by using the algorithm, we can enlarge b1∪b2 by adding the external element, from
which the common element can be reached, to the union of the bases (making the common
element not a part of one of the bases). This proves that bi ∩R, i = 1, 2 are disjoint bases of
Mi.R, i = 1, 2, respectively.

We have |b1 ∪ b2| = r1(R) + r2(R) + |S − R|. If b′
1, b′

2 are bases of Mi, i = 1, 2, then
b′

i ∩ X, i = 1, 2, X ⊆ S, are contained in bases of Mi.X, i = 1, 2 and (b′
1 ∪ b′

2) ∩ (S −
X) ⊆ (S − X). So |b′

1 ∪ b′
2| ≤ r1(X) + r2(X) + |S − X|, for every subset X of S. This

proves that |b1 ∪ b2| is the maximum possible and r1(R) + r2(R) + |S −R| = minX⊆Sr1(X)
+ r2(X) + |S −X|.

Next, every element ein in bi ∩ R, i = 1, 2 is reachable from some element eout outside
b1 ∪ b2. If we use the updating using reachability procedure, eout would move into the union
of the updated bases and ein would move out. This proves that any element in R lies outside
some maximally distant pair of bases. �

Example 31.4 In Figure 31.1, consider the trees t1, t2 of the graph G. We illustrate the algo-
rithm using two trees of G and obtaining a maximally distant pair by using the matroid union
algorithm.

In the present case both the matroids are the same being the polygon matroids of G (i.e.,
independent set ≡ circuit free set). We have,

L(e0, t1) = {e0, e1, e2}

C5955–C0031.tex 908 2015/11/4 1:07pm

Matroids � 909

e1 e1

e2 e2
e3 e3

e0

e4 e4

e6

e8 e9

a

d

b c

g

f

a

d

b c

g

f

a

d

b c

g

f
e7

e5

e6

e8 e9

e7

e5e5

t1 t2

Figure 31.1 Example for matroid union algorithm.

L(e1, t2) = {e1, e8, e9}

L(e8, t1) = {e8, e3, e5, e2}.

Note that e5 belongs to both the trees.
So, we update the trees by,

t1
1 = t1 − e5 + e8

t1
2 = t2 − e8 + e1

t2
1 = t1

1 − e1 + e0.

Observe that t2
1 ∪ t1

2 = t1 ∪ t2 ∪ e0. Further e5 ∈ t1
2 and e5 /∈ t2

1.
For completeness, we give a formal description of the matroid union algorithm below.

We make use of a directed graph, G(b1, b2), associated with bases b1, b2 of matroidsM1,M2
respectively defined on S. The graph G(b1, b2) is built as follows: S is the vertex set of the
directed graph. Let v1, v2 be vertices. Then there is an edge (v1, v2, i) directed from v1 to
v2 iff v2 ∈ Li(v1, bi), that is, iff v2 lies in the fundamental circuit of v1 with respect to bi in
the matroid Mi. If v1 ∈ bi there is no edge of the kind (v1, v2, i). The notational difference
between the informal algorithm and the present description is that elements of S are here
denoted by v and the edges of the graph G(b1, b2) by e.

Algorithm 31.1 Matroid union algorithm

INPUT Matroids M1,M2 on S. Bases b1, b2 of M1,M2, respectively.

OUTPUT 1. Bases bf
1 , bf

2 of M1,M2 respectively such that bf
1 ∪ bf

2 has
maximum size (i.e., is a base of M1 ∨M2).

2. The set R of all element reachable from S − bf
1 ∪ bf

2 in
G(bf

1 , bf
2).

Initialize j ← 0
(COMMENT: j describes the current index of the base set.)
bj

1 ← b1, bj
2 ← b2.

STEP 1 Construct G(bj
1, bj

2). If S = bj
1 ∪ bj

2, GOTO STEP 7.

C5955–C0031.tex 909 2015/11/4 1:07pm

910 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

STEP 2 Mark all vertices which belong to both of the bj
i .

For each v ∈ S − bj
1 ∪ bj

2 in G(bj
1, bj

2), do
Starting from v do a bfs (breadth first search) and find
the set of all vertices reachable through directed paths
from v.

(COMMENT: The directed edges (va, vb, p), (vc, vd, q),
p ̸= q may be in the same directed path.)
If no marked vertex is reachable from v in G(bj

1, bj
2)

call v good. Otherwise v is bad.

STEP 3 If all v ∈ S − bj
1 ∪ bj

2 are good, GOTO STEP 7.

STEP 4 Let v be a bad vertex of G(bj
1, bj

2) and let vm be a marked vertex
reachable from v. Let v = vo, e1, v1, . . ., em, vm be the shortest
directed path from v to vm (where ei is the directed edge from vi−1
to vi).
For i = 0 to m− 1, do

If em−i ≡ (vm−i−1, vm−i, q)
bj

q ← (bj
q ∪ vm−i−1)− vm−i

(COMMENT: The union of the updated bases has size one more
than the union of the original bases since vo has moved into the
union by pushing vm out of one of the bases to which it belonged.)

STEP 5 For i = 1, 2, do
bj+1

i ← bj
i

STEP 6 j ← j + 1. GOTO STEP 1.

STEP 7 Declare: bf
1 = bj

1, bf
2 = bj

2
and R to be the set of all vertices reachable in G(bf

1 , bf
2) from

S − bf
1 ∪ bf

2 .

STOP

31.7.2 Complexity of the Matroid Union Algorithm

It is convenient to discuss the complexity of the algorithm in terms of the directed graph,
G(b1, b2), associated with bases b1, b2 of matroids M1,M2, respectively, defined on S.

Let us suppose that the matroids are available through the independence oracle which
would declare, once per call, whether a particular subset of S is independent in the specified
matroid Mi, i = 1, 2.

How many calls do we require to build G(b1, b2)? This requires the knowledge of the
f -circuits of an element outside bi with respect to it in the matroid Mi. To build Li(v, bi)
we check for each v′ ∈ bi whether v ∪ bi − v′ is independent in the matroid Mi. This
requires atmost r(Mi) calls to the independence oracle. Thus the total number of calls to
the independence oracle to build G(b1, b2) is atmost | S − b1 || b1 | + | S − b2 || b2 |.

Finding the reachable set from S − (b1 ∪ b2) requires O | E(G(b1, b2)) | elementary
steps, where | E(G(b1, b2)) | is the number of edges in G(b1, b2) treating parallel edges as a
single edge.

We may have started with (in the worst case) b1 = b2 and end with a base of the union
of size atmost |b1|+ |b2|. The graph G(b1, b2) has to be rebuilt after each update. Let us call

C5955–C0031.tex 910 2015/11/4 1:07pm

Matroids � 911

such graphs Gj . So the overall complexity is O|b1|(| b1 || S − b1 | + | b2 || S − b2 |) calls to
the independence oracle. If r, r′ are the maximum and minimum of the ranks of the matroids
this simplifies to O(r2(| S | −r′)) calls to the independence oracle.

There are O(r | E(Gj) |) elementary steps involved in building the reachable set for all
the Gj . Let us simplify | E(Gj) | to O(| S |2).

So the time complexity of the matroid union algorithm is O(r2(| S | −r′)) calls to the
independence oracle +O(r |S |2) elementary operations.

The space requirement is that of storing the updated version of the graph G(b1, b2).
This has at most |S |2 edges. So the space complexity of the matroid union algorithm
is O(| S |2).

31.7.3 Matroid Union Theorem

We now state and prove the matroid union theorem. Note that a less illuminating but brief
proof has been given in Theorem 31.3.

Theorem 31.38 Let M1 ≡ (S, I1), M2 ≡ (S, I2) be matroids with rank functions r1(.),
r2(.), respectively, and let I1 ∨ I2 be the collection of all sets X such that X = X1 ∪ X2,
where X1, X2 are independent sets respectively in M1, M2. Then M1 ∨M2 ≡ (S, I1 ∨ I2)
is a matroid with rank function

rv(K) = minX⊆K(r1 + r2)(X) + |K −X|, i.e., rv(·) = (r1 + r2)∗| · |.

Proof. It is clear that subsets of a set X ∈ I1 ∨I2 also belong to I1 ∨I2. We will verify that
maximal subsets belonging to I1 ∨ I2 which are contained in a given subset K ⊆ S have the
same size.

We first observe that if b1, b2 are bases of M1.K, M2.K respectively then for any set
X ⊆ K,

|(b1 ∪ b2) ∩X| ≤ r1(X) + r2(X)

|(b1 ∪ b2) ∩ (K −X)| ≤ |K −X|.

Hence,
|b1 ∪ b2| ≤ minX⊆K [(r1 + r2)(X) + |K −X|].

We will now construct a subset R of K where we have equality.
If we use the matroid union algorithm on bases ofM1.K andM2.K we will finally reach

bases b1, b2 respectively of these matroids which are maximally distant. At this stage one of
the following two situations will occur.

1. b1 ∪ b2 = K
In this case (r1 + r2)(ϕ) + |K| = |b1 ∪ b2|.

2. K − (b1 ∪ b2) = T ̸= ϕ.

By using the repeated fundamental circuit operation inM1,M2 starting from each element
e ∈ T , it should be impossible to reach any element e′ ∈ b1 ∩ b2 (i.e., there is no directed
path in G(b1, b2) from the vertex e to the vertex e′), since otherwise we can enlarge b1 ∪ b2.

Let R be the set of all such elements reachable from elements of T by using b1, b2. By
Lemma 7.1, bi ∩R are disjoint bases in the matroidsMi.R, i = 1, 2, respectively. (Note that
Mi.K.R =Mi.R and the rank function of the matroids Mi.R and Mi coincide on subsets
of R.) Thus

|(b1 ∪ b2) ∩R| = r1(R) + r2(R).

C5955–C0031.tex 911 2015/11/4 1:07pm

912 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The elements in K −R are covered by (b1 ∪ b2). Hence

|(b1 ∪ b2) ∩ (S −R)| = |K −R|.

Thus the size of the maximal union of independent sets is

= (r1 + r2)(X) + |K −X| for X = R.

Since we have already seen that it is less than or equal to minX⊆K(r1 + r2)(X) + |K −X|, it
follows that the size of any maximal union of independent sets of M1, M2 contained in K
equals minX⊆K(r1 + r2)(X) + |K −X| and is therefore always the same as required. Further
it is clear that rv(K) = minX⊆K(r1 + r2)(X) + |K −X|.

31.7.4 Fundamental Circuits and Coloops ofM1 ∨M2

Let us now understand details of the matroid union algorithm in the context of the fact that
M1∨M2 is a matroid. In particular we obtain a picture of fundamental circuits and coloops
(i.e., elements not in any circuit) of the matroid M1 ∨M2.

First if b1, b2 is a pair of maximally distant bases of M1,M2 (say as output by the
matroid union algorithm), then b1 ∪ b2 is a base of M1 ∨ M2. Consider the set R of all
elements reachable from elements of S − b1 ∪ b2 in the graph G(b1, b2) (equivalently by the
process of taking repeated fundamental circuits relative to b1, b2 in the matroids M1,M2,
respectively). By Lemma 31.6 we know that for each e ∈ R, there exist some pair of maximally
distant bases b′

1, b′
2 such that e /∈ b′

1 ∪ b′
2, that is, there exists a base of M1 ∨ M2 which

does not contain e. So R contains no coloops of M1 ∨ M2. Lemma 31.6 assures us that
r1(R) + r2(R) + |S −R| = minX⊆Sr1(X) + r2(X) + |S −X|. By Theorem 31.33, this means
that |S − R| is a set of coloops of the matroid whose rank function is (r1 + r2)∗| · |, that is,
of the matroid M1 ∨M2,

Thus the set R that we encounter in the matroid union algorithm is the set of all
noncoloops of the matroid M1 ∨M2 and is independent of the pair of maximally distant
bases b1, b2. Further, again by Theorem 31.33, R is the unique minimal set that minimizes
r1(X) + r2(X) + |S −X|, X ⊆ S.

Next let b1 ∪ b2 be a base of M1 ∨M2 and let e /∈ b1 ∪ b2. Consider the set Re of all
elements reachable from e in G(b1, b2). It is clear that all the elements of Re are spanned by
bi ∩ Re, i = 1, 2 in the matroid Mi.Re and further that bi ∩ Re, i = 1, 2 are disjoint. So the
union of no pair of maximally distant bases can contain Re. On the other hand, given any
e′ in bi ∩ Re, i = 1, 2, by using the updating through reachability process in the algorithm,
we can build a pair of maximally distant bases b′

1, b′
2 such that b′

1 ∪ b′
2 = b1 ∪ b2 ∪ e− e′. We

conclude, using Theorem 31.5, that Re is the fundamental circuit of e with respect to the
base b1 ∪ b2 ofM1 ∨M2. Note that if b1 ∪ b2 = b′′

1 ∪ b′′
2, Re would be the same using G(b1, b2)

or G(b1
′′, b′′

2).

31.7.5 Union of Matroids and the Union of Dual Matroids

It is natural to examine the relation between M1 ∨M2 and M∗
1 ∨M∗

2. We show in this
section that the complements of coloops of these matroids do not intersect and that this gives
a natural partition of S relative to M1,M2

Theorem 31.39
Let M1,M2 be matroids on S and let M∗

1,M∗
2 be their duals. Let r1(·), r2(·), r1

∗(·), r2
∗(·) be

the rank of functions of M1,M2,M∗
1,M∗

2, respectively. Let R, R∗ be the minimal sets that
minimize (r1 + r2)(X) + |S−X|, X ⊆ S and (r1

∗ + r2
∗)(X)+ | S−X |, X ⊆ S, respectively.

Then,

C5955–C0031.tex 912 2015/11/4 1:07pm

Matroids � 913

1. b1, b2 are maximally distant bases of M1,M2, respectively, iff S − b1, S − b2, are max-
imally distant cobases of the same matroids (equivalently maximally distant cobases of
M∗

1,M∗
2).

2. A set K ⊆ S minimizes (r1 + r2)(X)+ | S − X |, X ⊆ S iff S − K minimizes
(r1

∗ + r2
∗)(X)+ | S −X |, X ⊆ S.

3. S −R∗, S −R are the maximal sets that minimize

(r1 + r2)(X)+ | S −X |, X ⊆ S,

(r1
∗ + r2

∗)(X)+ | S −X |, X ⊆ S,

respectively.

4. R is the collection of non-coloops of M1 ∨M2 and is disjoint from R∗ which is the
collection of non-coloops of M∗

1 ∨M∗
2.

5. The set S−(R∪R∗) can be covered by disjoint bases ofMi.(S−R∗)×(S−(R∪R∗)), i =
1, 2 (equivalently by those of M∗

i .(S −R)× (S − (R ∪R∗)), i = 1, 2).

Proof.

i. This follows essentially by noting that b1∪b2 is of maximum size iff b1∩b2 is of minimum
size.

ii. We have
(r1

∗ + r2
∗)(X)+ | S −X |

= (2 | X | −(r1(S) + r2(S)− r1(S −X)− r2(S −X))+ | S −X |
= ((r1 + r2)(S −X)+ | S − (S −X) |) + (| S | −(r1 + r2)(S)).

It is thus clear that K minimizes (r1 + r2)(Y) + |S − Y |, Y ⊆ S iff (S −K) minimizes
(r1

∗ + r2)∗(Y)+ | S − Y |, Y ⊆ S.

iii. This is an immediate consequence of the above result when we note that R, R∗ are
the minimal sets which minimize respectively the expressions (r1 + r2)(X)+ | S −X |,
(r1

∗ + r2
∗)(X)+ | S −X |.

iv. We saw in subsection 31.7.4 that the collection of non-coloops ofM1∨M2 (M∗
1∨M∗

2) is
the minimal set R (R∗) that minimizes (r1+r2)(X)+ | S−X |, X ⊆ S((r1

∗+r2
∗)(X)+ |

S −X |, X ⊆ S).
However, the second part (above) shows that S −R ⊇ R∗.

v. From Lemma 31.6 we know that maximally distant bases ofM1,M2, respectively, must
intersect any set T which minimizes the expression (r1 + r2)(X)+ | S − X |, X ⊆ S
in disjoint bases of M1.T,M2.T , respectively, and the corresponding (maximally dis-
tant) cobases must cover T . Similarly maximally distant bases ofM∗

1,M∗
2, respectively,

must intersect any set P which minimizes the expression (r1
∗ + r2

∗)(X)+ | S − X |,
X ⊆ S in disjoint bases of M∗

1.P,M∗
2.P , respectively, and the corresponding (max-

imally distant) cobases must cover P . It follows that set P ∩ T is covered by any
pair of maximally distant bases of M1,M2 as well as M∗

1,M∗
2. Since by (i) above

S − P, S − T , respectively, minimize the expressions (r1 + r2)(X)+ | S − X |, X ⊆
S, (r1

∗ + r2
∗)(X)+ | S −X |, X ⊆ S, (since minimizing sets are closed under intersec-

tion) so do (S − P)∩ T, (S − T)∩ P , respectively. But this means, whenever b1, b2 are

C5955–C0031.tex 913 2015/11/4 1:07pm

914 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

maximally distant bases ofM1,M2 respectively they intersect (S −P)∩ T in disjoint
bases ofM1.((S−P)∩T),M2.((S−P)∩T), respectively, intersect T in disjoint bases
of M1.T,M2.T , respectively, and cover P ∩ T . It follows that b1 ∩ P ∩ T, b2 ∩ P ∩ T
are disjoint bases of M1.T × (P ∩ T),M2.T × (P ∩ T) which cover P ∩ T . The result
now follows substituting S − R for P and S − R∗ for T . The dual result follows by
working with dual matroids. Kishi and Kajitani’s principal partition for graphs [16] is
essentially the partition R, S − R ∪ R∗, R∗ where M1 = M2 = M(G), G being the
given graph.

31.7.6 Matroid Union and Matroid Intersection

The problem of matroid intersection (find the maximum size common independent set of two
given matroids) and its solution has received more attention in the literature than matroid
union. This is probably because Lawler based his well-known book [33] on matroid intersec-
tion. In this subsection we consider the relation between the two problems. These results are
due essentially to Edmonds [15].

Theorem 31.40 Let M1,M2 be matroids on S. Let b12 be the largest set independent in
M1 as well as in M2. Then

1. b12 can be represented as b12∗ − b∗
2 where b12∗ is a base of M1 ∨M∗

2 which is the union
of a base b1 of M1 and a base b∗

2 of M∗
2.

2. Every set of the form b12∗ − b∗
2 is a common independent set of M1,M2 of maximum

size.

3. | b12 |= r(M1 ∨M∗
2)− r(M∗

2) = minX⊆Sr(M1.X) + r(M2.(S −X)).

Proof.

i. Let b1, b2 be bases of M1,M2 so that b1 ∩ b2 = b12. Let b2
∗ ≡ S − b2. Then b12 =

b1 ∪ b2
∗− b2

∗. Next b1 ∪ b2
∗ is independent inM1 ∨M∗

2, since b2
∗ is a base ofM∗

2. Let
this be contained in the base b1n ∪ b∗

2n ofM1 ∨M∗
2. Now b1n ∪ b∗

2n− b∗
2n is independent

in M1 and M2. Further,

| b1n ∪ b∗
2n − b∗

2n |≥| b1 ∪ b2
∗ − b2

∗ |=| b12 | .

But b12 is the largest common independent set of M1 and M2. We conclude that
|b12| = |b1n ∪ b∗

2n − b∗
2n|, and | b1 ∪ b2

∗ |=| b1n ∪ b∗
2n | . Therefore b1 ∪ b2

∗ is a base of
M1 ∨M∗

2 and the result follows.

ii. If b12∗ is a base of M1 ∨M∗
2 with b12∗ = b1 ∪ b2

∗, where b1, b2
∗ are bases of M1,M∗

2
respectively, then b12∗− b2

∗ is independent inM1 as well as inM2 and further its size
equals r(M1 ∨M∗

2)− r(M∗
2).

iii. It is clear from the above that | b12 |= r(M1 ∨M∗
2) − r(M∗

2) = minX⊆S(r(M1.X) +
r(M∗

2.X) + |S −X|) − r(M∗
2). Now r(M∗

2.X) − r(M∗
2) = r(M2.(S −X)) − |S −X|

and the result follows. Note that the collection of maximal common independent sets
of two matroids do not form the bases of a matroid since they do not always have the
maximum size. �

We next show how to convert matroid union algorithm to an algorithm for finding the
maximum size common independent set of two matroids M1,M2.

C5955–C0031.tex 914 2015/11/4 1:07pm

Matroids � 915

We begin with two bases b1, b2 of matroids M1,M2 respectively on S. Let b2 = S − b∗
2,

where b∗
2 is a base ofM∗

2. We now try to push updated versions of b1, b∗
2 apart. However, we

would like to work with f -circuits ofM2 rather than with f -circuits ofM∗
2. For this it suffices

to observe that vp ∈ L∗
2(vq, b∗

2) iff vq ∈ L2(vp, b2), where L∗
2(·, ·), L2(·, ·) denote f -circuits of

M∗
2,M2, respectively. So while constructing G(b1, b∗

2) it is convenient to build edges of the
type (vp, vq, 2) at the node vq directed into vq (rather than at vp directed away from vp). If
b1, b∗

2 are maximally distant bases of M1,M∗
2, then b1 ∩ b2 is a common independent set of

M1,M2 of maximum size as we saw in Theorem 31.40 above.

31.7.7 Applications of Matroid Union and Matroid Intersection

31.7.7.1 Representability of Matroids

Horn [34] showed that k independent sets of columns can cover the set of all columns of a
matrix iff there exists no subset A of columns such that |A| > kr(A). He conjectured that
this might be correct only for representable matroids (i.e., for matroids which are associated
with column sets of matrices over fields). If the conjecture had been true then there would
have been a nice characterization of representability. It is clear that the problem for matroids
is to check if S is independent in the matroidM1∨ · · · ∨Mk, where all theMi are the same
matroidM. From Theorem 31.38, this happens iff minA⊆Skr(A) + |S −A| = |S|, that is, iff
|A| ≤ kr(A),∀A ⊆ S. So the result is true for arbitrary matroids.

31.7.7.2 Decomposition of a Graph into Minimum Number of Subforests

Tutte and Nash-Williams [35,36] characterized graphs which can be decomposed into k dis-
joint subforests as those which satisfy kr(X) ≥ |X|,∀X ⊆ E(G). This condition again fits
into the matroid union framework as described above.

We need some preliminary definitions to describe the following results. Let B ≡
(VL, VR, E) be a bipartite graph, which has all edges (members of E) with one endpoint
in (left vertex set) VL and another in (right vertex set) VR. If X ⊆ VL, (X ⊆ VR), then
ΓL(X)(ΓR(X)) denotes the set of vertices adjacent to X. A matching is a subset of edges
with no two incident on the same vertex. A cover is a subset of vertices containing atleast
one end point of every edge in E. We give below some fundamental results about bipartite
graph matching and derive them using matroid union or matroid intersection. Given a family
S1, . . ., Sk of S, a transversal of the family is a set {v1, . . ., vk} of k elements such that vi ∈ Si.
(Note that the definition of a family permits Si = Sj even if i /∈ j.) In a bipartite graph
VL(VR) can be regarded as a family of subsets of VR(VL), by identifying a vertex in VL(VR)
with the subset of vertices of VR(VL) it is adjacent to. Thus we could say VR has a transversal
whenever there is a subset T of VL such that a matching has T as its left end points and VR

as its right end points.
Transversal matroids [7]. For each vertex v ∈ VR, we define a matroid Mv on the set

VL. In this matroid the set of all vertices, say vl1, . . ., vlk, which are adjacent to v, has rank
one and contains no selfloops (rank zero elements). The complementary subset of vertices of
VL are all selfloops. Let its rank function be denoted by rv. The union of all the matroids
Mv, v ∈ VR is a matroid which has, as independent sets, the subsets of VL which are endpoints
of matchings. This matroid is called the transversal matroid Mtr. Its rank function, by
using Theorem 31.38, can be seen to be rtr(X) ≡ minY ⊆X(

∑
v∈VR

rv(Y) + |X − Y |) =
minY ⊆X(|ΓL(Y)|+ |X − Y |), X ⊆ VL.

König’s theorem [37]. Let B ≡ (VL, VR, E) be a bipartite graph. A cover meets the
edges of every matching. No two edges of any matching can meet the same vertex of any cover

C5955–C0031.tex 915 2015/11/4 1:07pm

916 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

and therefore the size of a matching can never exceed the size of any cover. The following
result is therefore remarkable.

Theorem 31.41 In a bipartite graph the sizes of a maximum matching and a minimum
cover are equal [37].

This follows naturally from the matroid intersection result in Theorem 31.40 part (ii). We
have the following matroids defined on E: ML where the independent sets are subsets of E
which do not meet any vertex of VL in more than one edge and MR where the independent
sets are subsets of E which do not meet any vertex of VR in more than one edge. (ML,MR

are easily seen to be matroids.) A subset of E is a matching iff it is independent in both
matroids. The size of the maximum matching is therefore minX⊆E(rL(X) + rR(E − X)),
where rL(·), rR(·) are the rank functions respectively of ML,MR. Now rL(X) (rR(E −X))
is the size of the left vertex subset vL(X) (vR(E −X)) meeting X (E −X). It is clear that
vL(X) ∪ vR(E −X) is a cover. The result now follows.

31.7.7.3 Rado’s Theorem

Theorem 31.42 [38]
Let B ≡ (VL, VR, E) be a bipartite graph. Let M be a matroid on VL with rank function f(·).
Then VR has a transversal that is independent in M iff

f(ΓR(Z)) ≥| Z | ∀Z ⊆ VR.

Here we consider the intersection of two matroids on VL, namely, M and the above men-
tioned transversal matroidMt. By Theorem 31.40 part (ii), the maximum size of a common
independent set in the two matroids is

minX⊆VL
(rt(X) + f(VL −X))

= minX⊆VL
(minY ⊆X(|ΓL(Y)|+ |X − Y |) + f(VL −X)))

= minX⊆VL
(|ΓL(X)|+ f(VL −X))

where we have used the fact that f(K) ≤ |K|, K ⊆ VL. Clearly the maximum size of
common independent set in the two matroids must become |VR| for VR to have an inde-
pendent transversal. This will happen iff minX⊆VL

(|ΓL(X)|+ f(VL −X)) = |VR|, that is, iff
minX⊆VL

(|ΓL(X)|+f(VL−X))−|VR| = 0 that is, iff f(VL−X)) ≥ |VR|−|ΓL(X)|, ∀X ⊆ VL.
(*) We claim that the condition (*) is equivalent to f(ΓR(Z)) ≥ |Z|, ∀Z ⊆ VR. (**)

To see this, first observe since ΓR(VR−ΓL(X)) ⊆ VL−X, and f(·) is an increasing function,
it follows that (**) implies (*). Next, define Z ≡ VR−ΓL(VL−ΓR(Z)). If (*) is true, taking
X ≡ VL − ΓR(Z), we have f(ΓR(Z)) ≥ |Z|, ∀Z ⊆ VR. But Z ⊇ Z and ΓR(Z) = ΓR(Z). So
(**) is true.

31.7.8 Algorithm for Construction of the Principal Sequence of a Matroid Rank Function

In this subsection we outline an algorithm for building the principal sequence of a matroid
rank function with respect to a positive rational weight function. The main subroutine is
the matroid union algorithm. The algorithm for the complete principal partition is along the
same lines and may be found, for instance, in [20]. This algorithm is elementary and handles
the weight function in a naive manner. The case of real weight function may be tackled by
using the methods in [39,40].

C5955–C0031.tex 916 2015/11/4 1:07pm

Matroids � 917

We need some preliminary ideas about parallel elements in a matroid for describing our
algorithm.

For a matroid M on S, two elements e1, e2 are in parallel iff {e1, e2} is a circuit or
e1, e2 are both selfloops. It is immediate that if e1 ∈ I, where I is independent in M and
e1, e2 are in parallel, then (I − e1) ∪ e2 is also independent. Given a matroid M on S,
and e ∈ S, we can create a new matroid M′ on S ∪ e′, e′ /∈ S, by making e, e′ parallel.
The independent sets of this new matroid are simply all the independent sets of M and in
addition sets of the form (I − e)∪ e′, where e ∈ I, I independent inM. This process can be
repeated by adding more than one element in parallel with a given element. In particular, we
could replace each element e ofM by k parallel elements {e1, . . ., ek}. The resulting matroid
Mk is on Sk ≡ {

∪
ej∈S P k(ej)}, where P k(ej) ≡ {e1

j , . . ., ek
j }. The sets P k(ej) constitute

a partition of Sk. We denote by P k(T), T ⊆ S, the set
∪

ej∈T P k(ej). If r(·), rk(·), are the
rank functions of M,Mk, then r(T) = rk(P k(T)), T ⊆ S. More generally, given a positive
integral weight function g(·) on subsets of S, we can build the g-copy Mg on Sg, of M on
S, with each element e ∈ S replaced by the set P g(e) of g(e) parallel elements in Sg. Here
again r(T) = rg(P g(T)), T ⊆ S, where P g(T) is defined as

∪
ej∈T P g(ej) and rg(·) is the rank

function of the matroid Mg.
The principal partition of r(·), g(·) is essentially the same as that of rg(·), |·|. This situation

basically does not change even if g(·) were divided by a positive integer. We formalize these
ideas in the following theorem.

Theorem 31.43 Let M be a matroid with rank function r(·). Let q be a positive and λ, a
nonnegative number.

1. Let g(·) be a positive integral weight function. Then, minX⊆Sλr(X) + g(S −X) occurs
at K iff minY ⊆Sg λrg(Y) + |Sg − Y | occurs at P g(K).

2. Let qg(·) be a positive integral weight function. Then, minX⊆S(λ/q)r(X) + g(S − X)
occurs at K iff minX⊆Sλr(X)+qg(S−X) occurs at K, equivalently, minY ⊆Sg λrqg(Y)+
|Sqg − Y | occurs at P qg(K).

Proof. Let ei, ej be in parallel and let ei ∈ X, ej /∈ X. Then λr(X) + g(S − X) > λr(X ∪
ej) + g(S − (X ∪ ej)). Thus a minimizing set of λr(X) + g(S −X) must contain all elements
parallel to e if it contains e.

Now consider the principal partition of (r(·), g(·)). If we replace every element e by g(e)
parallel elements λr(X) + g(S − X) = λrg(P g(X)) + |Sg − P g(X)|. Next if X̂ minimizes
minY ⊆Sg λrg(Y) + |Sg − Y |, it must be of the form P g(X) for some X ⊆ S.
This proves (i).
(ii) is a routine consequence. �
To build the principal sequence of (r(·), g(·)), where r(·) is a matroid rank function and g(·),
a positive integral weight function, the key step is the construction of ∫λ(r, g, Q), which we
will take as outputting the minimal minimizing set for λr(X) + g(Q − X). Since g(·), r(·)
are integral, the λs for which we need ∫λ(r, g, Q), are of the form p/q, where p, q are positive
integers. By Theorem 31.43, we need to build ∫p(rqg(·), | · |, P qg(Q)). The output of this
subroutine is simply the set of noncoloops of the matroidMp

qg, which is the union ofMqg with
itself p times. As we have seen in Theorem 31.43 this set, since it minimizes prqg(Y)+|Qqg−Y |
must have the form P qg(K), for some set K ⊆ P . The set K is the minimal minimizing set
for λr(X) + g(Q−X) and therefore the desired output of ∫λ(r, g, Q).

Algorithmically speaking, parallel elements can be handled by using just one of the ele-
ments and simply remembering how many elements are in parallel to it. So the underlying
size of set does not go up in an essential way.

C5955–C0031.tex 917 2015/11/4 1:07pm

918 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(a)

15

12

13 20
14

8 7
6

5 4 11

17

19

1810123

9
16

15

12

13

20

14

8 7
6

5 4
11

17

D

C

B

A

19

18

10

λ4 = 4/3

λ3 = 3/2

λ2 = 2

λ1 = 3

123

9

16

(b)

Figure 31.2 Example of principal sequence for a graph.

31.7.9 Example

31.7.9.1 Principal Sequence of (r(·), | · |) Where r(·) Is the Rank Function of a Graph

Consider the graph G in Figure 31.2. We have, E(G) ≡ {1, . . ., 20}. We need to compute the
principal sequence of (r(·), | · |). We trace the steps of the algorithm of Subsection 31.6.6 as
specialized in Subsection 31.7.8 for this purpose.

First we compute the density λ ≡ E(G)/r(G). This is 20/11. So we use the subroutine
∫λ(r, | · |, E(G)) which is essentially ∫20(r11, | · |, P 11(E(G))) ≡ ∫20(r11, | · |, E(G11)), where G11
is obtained by putting in place of each edge of G, 11 parallel edges. The subroutine does
its job by computing the set of noncoloop elements of the matroid M20

11 (where M11 is the
polygon matroid of G11 and M20

11 is the union of M11 with itself 20 times).
This set is the parallel copy of the subset {1, . . ., 13}. So we build the graphs Gα ≡

G · {1, . . ., 13} and Gβ ≡ G × {14, . . ., 20} and repeat the algorithm on Gα,Gβ. For Gα the
density is 13/6 and for Gβ, it is 7/5. So we build the parallel 6− copy of Gα and parallel 5−
copy of Gβ and find the set of noncoloops of (Mα)13

6 , (Mβ)7
5. This yields the appropriate

parallel copies of sets {1, 2, 3}, {14, 15, 16}, respectively.
We are now left with the graphs

Gα1 ≡ G · {1, 2, 3},Gα2 ≡ G · {1, . . ., 13} × {4, . . ., 13},
Gβ1 ≡ G × {14, . . ., 20} · {14, 15, 16},Gβ2 ≡ G × {17, . . ., 20}.

On these graphs when we apply our subroutine ∫λ(r, | · |, E(G′)), (G′ being the appro-
priate graph), we find the set of noncoloops is the null set which means that the null
set minimizes λr(X) + |E(G′) − X|. Further, we find that the full set also minimizes
λr(X) + |E(G′)−X| since λr(∅) + |E(G′)| = λr(E(G′)) + |∅|. So at this stage we get the sets
A ≡ {1, 2, 3}, B ≡ {4, . . ., 13}, C ≡ {14, 15, 16}, D ≡ {17, . . ., 20} with the corresponding

C5955–C0031.tex 918 2015/11/4 1:07pm

Matroids � 919

critical values 3, 2, 3/2, 4/3 (being the densities of the graphs G · {1, 2, 3},G · {1, . . ., 13} ×
{4, . . ., 13},G × {14, . . ., 20} · {14, 15, 16},G × {17, . . ., 20}). Thus the principal sequence is
E0 ≡ ∅ = Xλ1

, E1 = Xλ2
= A, E2 = Xλ3

= A ∪ B, E3 = Xλ4
= A ∪ B ∪ C, E4 = Xλ4 =

A ∪B ∪ C ∪D ≡ E(G). The critical values are λ1 = 3, λ2 = 2, λ3 = 3/2, λ4 = 4/3.

Further Reading

A good way of approaching matroid union is through submodular functions induced through
a bipartite graph [11]. Related material may be found in the survey paper by Brualdi [41]. A
book that emphasizes the algorithmic uses of matroid intersection is [33]. An important class
of applications of the matroid union, intersection, and its generalizations is in the structural
solvability of systems [30,42].

References

[1] H. Whitney: On the abstract properties of linear dependence. American Journal of
Mathematics 57 (1935), 509–533.

[2] B.L. van der Waerden: Moderne Algebra (2nd ed.), Springer, Berlin, Germany, 1937.

[3] S. Seshu and M.B. Reed: Linear Graphs and Electrical Networks, Addison-Wesley, Read-
ing, MA, 1961.

[4] J. Edmonds: Matroid partition. Mathematics of the Decision Sciences, Part I. Lectures
in Applied Mathematics. 11 (1968), 335–345.

[5] C. St. J.A. Nash-Williams: An application of matroids to graph theory. In: Theory of
Graphs Proceedings of the International Symposium, Rome, Italy, 1966, P. Rosenstiehl,
ed., Gordon & Breach, New York, 1967, 263–265.

[6] L. Mirsky: Transversal Theory, Academic Press, London, 1971.

[7] J. Edmonds and D.R. Fulkerson: Transversals and matroid partition. Journal of Research
of the National Bureau of Standards 69B (1965), 147–157.

[8] J.P.S. Kung: A Source Book in Matroid Theory, Birkhäuser, Boston, MA, 1986.

[9] W.T. Tutte: Lectures on matroids. Journal of Research of the National Bureau of Stan-
dards 69B (1965), 1–48.

[10] H.H. Crapo and G.C. Rota: On the Foundations of Combinatorial Theory—
Combinatorial Geometry, MIT Press, Cambridge, MA, 1970.

[11] D.J.A. Welsh: Matroid Theory, Academic Press, Cambridge, 1976.

[12] N.L. White: Theory of Matroids, Cambridge University Press, Cambridge, 1986.

[13] N. White: Combinatorial Geometries, N. White, ed., Encyclopedia of Mathematics and
Its Applications 29, Cambridge University Press, 1987.

[14] J.G. Oxley: Matroid Theory, Oxford University Press, New York, 1992.

[15] J. Edmonds: Submodular functions, matroids, and certain polyhedra. In: Proceedings of
the Calgary International Conference on Combinatorial Structures and Their Applica-
tions, R. Guy, H. Hanani, N. Sauer, and J. Schönheim, eds., Gordon & Breach, New
York, 1970, 69–87.

C5955–C0031.tex 919 2015/11/4 1:07pm

920 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[16] G. Kishi and Y. Kajitani: Maximally distant trees and principal partition of a linear
graph. IEEE Transactions on Circuit Theory CT-16 (1969), 323–329.

[17] H. Narayanan: Theory of Matroids and Network Analysis, PhD Thesis, Department of
Electrical Engineering, Indian Institute of Technology, Bombay, India, February 1974.

[18] N. Tomizawa: Strongly irreducible matroids and principal partition of a matroid into
irreducible minors (in Japanese). Transactions of the Institute of Electronics and Com-
munication Engineers of Japan 59A (1976), 83–91.

[19] S. Fujishige: Principal structures of submodular systems. Discrete Applied Mathematics
2 (1980), 77–79.

[20] H. Narayanan: Submodular Functions and Electrical Networks. Annals of Discrete Math-
ematics 54 North Holland, London, New York, Amsterdam, the Netherlands, 1997. Re-
vised version at http://www.ee.iitb.ac.in/hn/book/.

[21] L. Lovász: Submodular functions and convexity. In: Mathematical Programmming—The
State of the Art, A.Bachem. M. Grötschel, and B.Korte, eds., Springer, Berlin, Germany,
1983, 235–257.

[22] S. Fujishige: Submodular Functions and Optimization, Annals of Discrete Maths 47,
North Holland, Amsterdam, New York, Oxford,Tokyo, 1991.

[23] T. Ozawa: Topological conditions for the solvability of active linear networks. Interna-
tional Journal of Circuit Theory and Its Applications 4 (1976), 125–136.

[24] K. Sugihara and M. Iri: A mathematical approach to the determination of the structure
of concepts. Matrix and Tensor Quarterly 30 (1980), 62–75.

[25] M. Iri, J. Tsunekawa, and K. Murota: Graph theoretical approach to large-scale
systems—Structural solvability and block-triangularization. Transactions of Informa-
tion Processing Society of Japan 23 (1982), 88–95.

[26] M. Iri: Applications of matroid theory. In: Mathematical Programming—The State of
the Art, A. Bachem, M. Grötschel, and B. Korte, eds., Springer, Berlin, Germany, 1983,
158–201.

[27] K. Sugihara: A unifying approach to descriptive geometry and mechanisms. Discrete
Applied Mathematics 5 (1983), 313–328.

[28] K. Sugihara: Machine Interpretion of Line Drawings, MIT Press, Cambridge, MA, 1986.

[29] K. Murota and M. Iri: Structural solvability of systems of equations—A mathematical
formulation for distinguishing accurate and inaccurate numbers in structural analysis of
systems. Japan Journal of Applied Mathematics 2 (1985), 247–271.

[30] K. Murota: Systems Analysis by Graphs and Matroids—Structural Solvability and
Controllability, Algorithms and Combinatorics 3, Springer, 1987.

[31] S. Fujishige: Theory of principal partitions revisited. In: Research Trends in
Combinatorial Optimization, W. J. Cook, L. Lovász, and J. Vygen, eds., Springer, 2009,
pp. 127–162.

[32] J. Edmonds: Minimum partition of a matroid into independent subsets. Journal of
Research of the National Bureau of Standards 69B (1965), 67–72.

C5955–C0031.tex 920 2015/11/4 1:07pm

Matroids � 921

[33] E.L. Lawler: Combinatorial Optimization—Networks and Matroids, Holt, Rinehart &
Winston, New York, 1976.

[34] A. Horn: A characterization of unions of linearly independent sets. Journal of the London
Mathematical Society 30 (1955), 494–496.

[35] W.T. Tutte: On the problem of decomposing a graph into n−connected factors. Journal
of the London Mathematical Society 36 (1961), 221–230.

[36] C. St. J.A. Nash-Williams: Edge-disjoint spanning trees of finite graphs. Journal of the
London Mathematical Society 36 (1961), 445–450.

[37] D. König: Theorie der Endlichen und Unendlichen Graphen, Leipzig, Germany, 1936,
Reprinted New York, Chelsea, 1950.

[38] R. Rado: A theorem on independence relations. Quarterly Journal of Mathematics,
Oxford 13 (1942), 83–89.

[39] W.H. Cunningham: Testing membership in matroid polyhedra. Journal of Combinatorial
Theory B36 (1984), 161–188.

[40] H. Narayanan: A rounding technique for the polymatroid membership problem. Linear
Algebra and Its Applications 221 (1995), 41–57.

[41] R.A. Brualdi: Matroids induced by directed graphs–a survey. In: Recent Advances in
Graph Theory, Proceedings of the Symposium, Prague, Czech Republic, Academia
Praha, June 1974, 115–134.

[42] A. Recski: Matroid Theory and Its Applications in Electric Network Theory and in Stat-
ics, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.

C5955–C0031.tex 921 2015/11/4 1:07pm

C H A P T E R 32

Hybrid Analysis and
Combinatorial Optimization
H. Narayanan

CONTENTS

32.1 Introduction . 923
32.2 Preliminaries . 924
32.3 Topological Hybrid Analysis Procedure . 928
32.4 Proofs for Topological Hybrid Analysis . 931
32.5 Principal Partition Problem . 932

32.5.1 Topological Degree of Freedom of an Electrical Network 932
32.5.2 Shannon Switching Game . 933
32.5.3 Maximum Distance between Two Forests . 933
32.5.4 Forest of Minimum Size Hybrid Representation . 933
32.5.5 Maximum Rank of a Cobase Submatrix . 933

32.6 Building Maximally Distant Forests . 934
32.6.1 Algorithm Maximally Distant Forests . 934

32.7 Network Analysis Through Topological Transformation . 937
32.7.1 Fusion–Fission Method . 937
32.7.2 Solution of the Node Fusion–Fission Problem . 939

32.1 INTRODUCTION

In this chapter we discuss the hybrid analysis problem and sketch one of its natural generaliza-
tions. Focusing attention on these naturally leads to the study of fundamental combinatorial
optimization problems, which can be solved using the matroid union operation (see Chapter
31) and the Dilworth truncation operation (see Section 32.7).

Electrical network analysis is the process of finding pairs of vectors (v, i), such that v
satisfies Kirchhoff’s voltage law (KVL) for the graph G of the network, i satisfies Kirchhoff’s
current law (KCL) for G, and the pair (v, i) satisfies the device characteristic of the network.
For ease of discussion, we will assume that the network is static (no derivative terms in the
constraints) and has a unique solution, that is, a unique (v, i) pair satisfies the constraints
of the network. The basic methods of analysis reduce the constraints (KCL, KVL, device
characteristic) of the network to a more compact form involving node voltages or loop cur-
rents. In the former case, once the node voltages are obtained, by the use of KVL the branch
voltage vector can be obtained uniquely and thence using device characteristic, the branch
current vector. In the latter case, from the loop currents, the branch current vector can
be obtained through use of KCL and thence using device characteristic, the branch voltage

923

924 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

vector. A natural generalization of these procedures is to pick as unknowns some voltages
and some currents from which by the use of KCL and KVL either the voltage or current of
every branch can be obtained, after which the use of device characteristic will enable us to
obtain the remaining variable of the branch. This class of methods where the unknowns are
a mixture of current and voltage variables is called hybrid analysis.

Hybrid analysis is originally due to Kron [1,2] and was simplified by Branin [3]. A descrip-
tion very accessible to the general reader is available in Brameller et al. [4]. The development
presented here is however based on a topological version reported in Narayanan [5]. It has the
advantage of greater flexibility in the choice of unknowns and also advantages in storage. The
manner in which voltage and current variables are chosen in hybrid analysis can be viewed
in a general way as a process of transforming the given network through the operations of
node fusions and fissions into another simpler network. Such a general transformation can be
called topological transformation of electrical networks [6] and has applications particularly
in the parallel processing of network analysis.

Natural questions that arise are on how to choose the unknowns minimally. In the case
of hybrid analysis this leads to the question of principal partition and in the more general
case of topological transformations this leads to the principal lattice of partitions problem.
The former is discussed in Section 32.5 and the latter is sketched in Section 32.7.

32.2 PRELIMINARIES

We need a few preliminary definitions and results before we move on to a discussion of the
methods.

We assume familiarity with the notions of graph, subgraph, directed graph, path, circuit,
cutset, connectedness, connected components, (spanning) tree, cotree, and so on. A forest of
the graph is obtained by taking a tree for each component and a coforest is its complement.
For a graph G, which for us will invariably be directed, V (G) and E(G) denote the vertex set,
and edge set, respectively. The number of edges in a forest of G is its rank, denoted by r(G),
and that in a coforest is its nullity, denoted by ν(G). A separator of a graph is a subset of
edges with the property that there is no circuit of the graph containing an edge inside and an
edge outside the subset. Minimal separators are called elementary separators. Any connected
graph can be uniquely decomposed into subgraphs (called two-connected components) on
elementary separators, which will be linked to each other at hinges or cut vertices. A hinge
is the only vertex where two-connected subgraphs, whose edge sets are complements of each
other, meet. Electrically speaking, that is, in terms of KCL and KVL, it is as though these
subgraphs are disconnected.

Vectors are treated as functions from a set to a field, invariably that of real numbers.
Examples are voltage and current vectors defined on the set of edges of a graph and potential
vector defined on the set of nodes of a graph. If f is a vector on S and T ⊆ S, the restriction
of f to T denoted f/T , is the vector on T , whose values agree with the values of f on T .
Given a collection K of vectors on S which includes the zero vector, and a subset T ⊆ S,
the collection K · T is made up of all restrictions of vectors in K and the collection K × T
is the subset of K · T where each vector is the restriction of a vector that is zero on S − T .
If f, g are both vectors on a set S, the dot product < f, g > ≡ ∑

e∈S f(e).g(e). The vectors
f, g are said to be orthogonal if their dot product is zero. The collection of all vectors on
S orthogonal to vectors in K, is denoted as K⊥. When K is a vector space and T ⊆ S, it
can be shown directly that (K · T)⊥ = K⊥ × T . Using the fact that when S is finite and
K is a vector space, we have K⊥⊥ = K, it would then follow that (K × T)⊥ = K⊥ · T
(see Chapter 31).

Hybrid Analysis and Combinatorial Optimization � 925

The incidence matrix (usually denoted by A), of a directed graph, has one row per node
and one column per edge, with the (i, j) entry being +1(−1) if edge j is directed away
(toward) node i and zero otherwise. The matrix obtained from the incidence matrix, by
omitting one row per component of the graph, is called the reduced incidence matrix and has
the same row space as the incidence matrix. For a graph G, a current vector i is a vector on
E(G) that is orthogonal to the rows of the incidence matrix of G, equivalently, that satisfies
Kirchhoff’s current equations (KCEs): Ax = 0.

A voltage vector v of G is a vector on E(G) that is linearly dependent on the rows of the
incidence matrix of G, that is, vT = λT A for some vector λ.

The vector λ assigns a value to each node of G and s called a potential vector. We say v
is derived from the node potential vector λ.

Voltage vectors and current vectors form vector spaces denoted by Vv(G), Vi(G), and
called voltage space of G and current space of G, respectively. An immediate consequence of
the definition of the voltage and current spaces is the celebrated Tellegen’s theorem, which
states that (Vv(G))⊥ = Vi(G).

It is clear from the definition of voltage vector that we can assign, for the edges of any
tree of a connected graph, arbitrary voltage values and this would uniquely determine cotree
voltages. For, if tree voltages are given, we can assign a reference potential to some node and
by traversing the tree, assign to all other nodes an appropriate unique potential. Thus, the
tree voltages uniquely fix difference of potential between any pair of nodes and thence fix all
cotree voltages. In particular, we can assign to one branch e of the tree t, value 1 and to all
others in the tree, value 0. Let ve ≡ (ve

t |ve
t
) be the corresponding voltage vector. Note that

when the branch e is removed from the tree, the latter splits into two connected pieces with
vertex sets Ve+, Ve−, say, with Ve+ being the vertex set where the tail of e is incident. The set
of edges in the original graph between these two vertex sets is called the fundamental cutset
of e with respect to cotree t and denoted as L∗(e, t). The vector ve has nonzero values only
on the edges in L∗(e, t) with the value being +1(−1) if the tail is in Ve+(Ve−). The matrix,
which has as rows the voltage vectors constructed in the above manner for each edge in a
tree t, is called the fundamental cutset matrix Qt, with respect to the cotree t. Given any
voltage vector v̂ ≡ (v̂t|v̂t), we observe that the vector v̂ −∑

e∈t(v̂(e)ve) is a voltage vector but
has zero value on all tree branches. The above traversal through tree branches shows that it
must be a zero vector. It follows that the rows of the fundamental cutset matrix form a basis
for Vv(G).

Now if i ≡ (it|it) is any current vector, it is clear, since ve, i are orthogonal, that
< ve

t
, it > = − < ve

t , it > = −i(e). Thus cotree current values uniquely determine tree cur-
rent values and, if all cotree current values are zero, so will all tree currents be. In particular,
we can assign to one branch c of the cotree t, value 1 and to all others in the cotree, value 0.
Let ic ≡ (ic

t | ic
t
) be the corresponding current vector. Note that when the branch c is added

to the tree t, exactly one circuit is formed, called the fundamental circuit of c with respect
to the tree t denoted by L(c, t). The vector ic has non zero values only on the edges in
L(c, t), with the value being +1(−1) if the orientation of the edge in the circuit agrees with
(opposes) that of c. The matrix, which has as rows the current vectors constructed in the
above manner for each edge in a cotree, is called the fundamental circuit matrix Bt with
respect to the tree t. By using the argument that we used for voltage vectors, it follows that
the rows of the fundamental circuit matrix form a basis for Vi(G).

Let G be a graph, with E(G) ≡ E and let T ⊆ E. We now define some useful derived
graphs natural to circuit theory.

The graph Gopen (E − T) has the same vertex set as G but with the edges of (E − T)
removed. The graph G ·T is obtained from Gopen (E −T) by removing isolated (with no edges
incident) vertices.

926 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The vertex set of Gshort (E − T) is the set {V1, V2, . . . Vn}, where Vi is the vertex set of
the ith component of Gopen T , an edge e ∈ T being directed from Vi to Vj in Gshort (E − T),
if it is directed from a ∈ Vi to b ∈ Vj in G. The graph G × T is obtained from Gshort (E − T)
by removing isolated vertices. (The two are the same if G is connected.)

From the above construction of G · (E − T), G × T , we have the following theorem.

Theorem 32.1

1. Maximal intersection of forest (coforest) of G with T is a forest of G · T (coforest of
G × T).

2. Union of forests of G · (E − T) and G × T is a forest of G.

3. r(G) = r(G · (E − T)) + r(G × T).

4. ν(G) = ν(G · (E − T)) + ν(G × T). �

Graphs obtained from G, by opening some edges and shorting others, are called minors of G.
We note that, when some edges are shorted and others open-circuited, the order in which
these operations are performed does not affect the resulting graph. So we have the following
theorems.

Theorem 32.2 Let T1 ⊆ T2 ⊆ E. Then

1. G · T2 · T1 = G · T1.

2. G × T2 × T1 = G × T1.

3. G × T2 · T1 = G · (E − (T2 − T1)) × T1. �

We have the following important results on the voltage and current spaces associated with
minors of graphs.

Theorem 32.3

1. Vv(G · T) = (Vv(G)) · T .

2. Vv(G × T) = (Vv(G)) × T .

Proof.

i. Let vT ∈ Vv(G · T). Now Vv(G · T) = Vv(Gopen (E − T)).
Thus, vT ∈ Vv(Gopen (E − T)). Let vT be derived from the potential vector λ of
Gopen (E − T). Now for any edge e ∈ T , vT (e) = λ(a) − λ(b), where a, b are the
positive and negative end points of e. However, λ is also a potential vector of G. Let
the voltage vector v of G be derived from λ. For the edge e ∈ T , we have, as before,
v(e) = λ(a) − λ(b). Thus, vT = v/T and therefore, vT ∈ (Vv(G)) · T. Hence Vv(G · T) ⊆
(Vv(G)) · T . The reverse containment is proved similarly.

ii. Let vT ∈ Vv(G × T). We have Vv(G × T) = Vv(Gshort (E − T)).
The vertex set of Gshort (E − T) is, say, the set {V1, V2, . . ., Vn}, where Vi is the vertex
set of the ith component of Gopen T , an edge e ∈ T being directed from Vi to Vj in
Gshort (E − T), if it is directed from a ∈ Vi to b ∈ Vj in G.

Now, vT ∈ Vv(Gshort (E − T)). Let vT be derived from the potential vector λ̂ in
Gshort (E − T). The vector λ̂ assigns to each of the Vi, the value λ̂(Vi). Define a poten-
tial vector λ on the nodes of G as follows: λ(n) ≡ λ̂(Vi), n ∈ Vi. Since {V1, . . ., Vk} is a

Hybrid Analysis and Combinatorial Optimization � 927

partition of V (G), it is clear that λ is well defined. Let v be the voltage vector derived
from λ in G. Whenever e ∈ E − T we must have v(e) = 0 since both end points must
belong to the same Vi.

Next, whenever e ∈ T we have v(e) = |(a) − |(b) where a is the positive end point of
e and b, the negative endpoint. Let a ∈ Va, b ∈ Vb, where Va, Vb ∈ V (Gshort (E − T)).
Then the positive endpoint of e in Gshort (E − T) is Va and the negative end point, Vb.
By definition λ(a) − λ(b) = λ̂(Va) − λ̂(Vb). Thus v/T = vT . Hence, vT ∈ (Vv(G)) × T .
Thus, Vv(G × T) ⊆ (Vv(G)) × T .

The reverse containment is proved similarly, but using the idea, that if a voltage
vector is zero on all elements of E −T , then a potential vector from which it is derived,
must have the same value on all vertices of each Vi, since these are vertex sets of
components of Gopen T . �

Using duality we can now prove the following theorem.

Theorem 32.4 Let G be a directed graph on edge set E. Let T ⊆ E. Then,

1. Vi(G · T) = (Vi(G)) × T.

2. Vi(G × T) = (Vi(G)) · T.

Proof.

i. Vi(G·T) = (Vv(G·T))⊥ by Tellegen’s theorem. By Theorem 32.3, Vv(G·T) = (Vv(G))·T.
Hence, Vi(G · T) = ((Vv(G)) · T)⊥ = (Vv(G))⊥ × T = Vi(G) × T.

ii. The proof is similar. �

It is useful to note some elementary facts about coloops and self-loops. A coloop, by definition,
does not belong to any circuit and therefore must belong to every forest. Dually, a self-loop,
by definition, does not belong to any cutset and therefore must belong to every coforest. The
fundamental circuit and cutset matrices that result when coloop (self-loop) edges are shorted
or open circuited are the same. So we have the following theorems.

Theorem 32.5 Let T ⊆ E be a set of edges composed entirely of self-loops and coloops.
Then Vv(G · (E − T)) = (Vv(G × (E − T)) and Vi(G · (E − T)) = (Vi(G × (E − T)). �

We are now in a position to state and prove a result, which will enable us to give a topological
version of hybrid analysis.

Theorem 32.6 Let (A, B) be a partition of E(G). Let K be a forest and LA, a coforest of
G · A and tB be a forest and L, a coforest of G × B. Let GAL be the graph G × (A ∪ L) and
let GBK be the graph G · (B ∪ K). Then

1. iK |iLA
|itB

|iL is a current vector of G, iff there exist current vectors iK |iLA
|iL of GAL

and i′
K |itB

|iL of GBK .

2. vK |vLA
|vtB

|vL is a voltage vector of G, iff there exist voltage vectors vK |vLA
|v′

L of GAL

and vK |vtB
|vL of GBK . �

For ease of readability we relegate the proof of this result to Section 32.4.

928 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1

3

5

6

8

109

1

3

4
5

11
i11

v5

11

+
−

6 7

8

9 10

4

N

NAL

2

7

2

NBK

Figure 32.1 To illustrate the NAL − NBK method.

32.3 TOPOLOGICAL HYBRID ANALYSIS PROCEDURE

In this section we present a topological version of the hybrid analysis procedure. Essentially,
the network is decomposed into two subnetworks, whose simultaneous analysis, matching
certain boundary conditions, is equivalent to the analysis of the original network. The validity
of this procedure rests on Theorem 32.6 and requires only that the device characteristic of
the subsets of edges of the derived networks appear decoupled in the original network. In the
special case of resistive networks we could write nodal equations for one of the networks and
loop equations for the other and match boundary conditions. This yields hybrid analysis
equations with greater freedom in the choice of unknowns, which could translate to good
properties such as sparsity for the coefficient matrix.

Let N be a network on the graph G. (The reader may use Figure 32.1 to illustrate the
procedure.) Let (A, B) be a partition of E(G) such that in the device characteristic of N the
devices in A, B are independent of, that is, decoupled from, each other. (In Figure 32.1, A ≡
{1, 2, 3, 4, 5} and B, the complement.) Let K be a forest and LA, a coforest of G·A and tB be a
forest and L, a coforest of G × B. (K ≡ {1, 2, 5}, LA ≡ {3, 4}, tB ≡ {6, 8, 9}, L ≡ {7, 10, 11}.)
Let GAL be the graph G×(A∪L) and let GBK be the graph G·(B∪K). (In the present example,
G × (A ∪ L) would have 7, 10 as self-loops. In the figure, the graph shown with caption NAL

is this graph with the self-loops omitted. The graph G · (B ∪ K) would have 1, 2 as coloops.
In the figure, the graph shown with caption NBK is this graph with the coloops omitted.)

We now build two networks NAL and NBK as follows: NAL has graph GAL with edge set
A ∪ L built from G by short-circuiting (fusing the end points of) edges in tB and removing
them. The devices in A have the same characteristics as in N and L has no device character-
istic constraints. NBK has graph GBK with edge set B ∪ K built from G by open circuiting
edges (removing the edges but leaving the end points in place) in LA. The devices in B
have the same characteristics as in N and K has no device characteristic constraints. (Note
that the L, K edges are present in both networks.) Theorem 32.6 implies that solving N is

Hybrid Analysis and Combinatorial Optimization � 929

equivalent to solving NAL and NBK simultaneously keeping iL, vK the same in both net-
works [5]. It may be noted that, if branches in L contain selfloops in the graph GAL, they
may be deleted or contracted (endpoints fused and edge removed) from that graph and the
current matching between NAL and NBK be confined to the remaining L branches. Similarly,
if branches in K contain coloops in the graph GBK , they may be deleted or contracted from
that graph and the voltage matching between NAL and NBK be confined to the remaining
K branches.

Consider now the case where the device characteristic for the edges has the form

(i − J) = G(v − E), (32.1)

where G is a block diagonal matrix with principal diagonal submatrices GA, GB, where we
take GB to be invertible. In this case, hybrid analysis equations can be written as follows:

1. Write nodal analysis equations for NAL treating branches in L as current sources of
value iL.

2. Write loop analysis equations for NBK treating branches in K as voltage sources of
value vK .

3. Force the constraints that iL is the same in both networks and vK is the same in both
networks.

We now proceed formally. The reader is invited to refer to Figure 32.1.
Let [ArAArL] = [ArKAr(A−K)ArL] be a reduced incidence matrix of GAL. Let the device

characteristic of the edges in A be expressible as

(iA − JA) = GA(vA − EA). (32.2)

We then have, (since i ∈ Vi(G)),

ArAiA + ArLiL = 0 (32.3)

that is,
ArA(iA − JA) + ArLiL = −ArAJA (32.4)

that is,
ArAGA(vA − EA) + ArLiL = −ArAJA (32.5)

that is,
ArAGAvA + ArLiL = −ArAJA + ArAGAEA. (32.6)

Now,
[

vA

vL

]
=

[
AT

rA

AT
rL

]
vnA, (32.7)

for some vnA (since
[

vA

vL

]
∈ Vv(GAL)). We thus have,

(ArAGAAT
rA)vnA + ArLiL = −ArAJA + ArAGAEA. (32.8)

These are the nodal analysis equations of NAL. Note that we could have used any matrix
which has as its rows a basis of Vv(GAL), in place of (ArA|ArL), resulting in a valid set of
equations with voltage type of unknowns.

930 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Next for NBK , we choose the forest t for building the fundamental circuit matrix of
GBK . Let [BKBB] ≡ [BKBt∩BBL] ≡ [BKBt∩BIL] be the fundamental circuit matrix of GBK

with respect to forest t (where IL denotes the identity matrix with its columns corresponding
to L).

Let the device characteristic in B be expressible as vB − EB = RB(iB − JB). We then
have,

BKvK + BBvB = 0 (32.9)

that is,
BKvK + BB(vB − EB) = −BBEB (32.10)

that is,
BKvK + BBRB(iB − JB) = −BBEB (32.11)

that is,
BKvK + BBRBiB = −BBEB + BBRBJB. (32.12)

We have, [
iB

iK

]
=

[
BT

B

BT
K

]
y (32.13)

for some y, since
[

iB

iK

]
∈ Vi(GBK). Hence,

BKvK + BBRBBT
By = −BBEB + BBRBJB. (32.14)

Here again we could have used any matrix which has as its rows a basis of Vi(GBK), in place
of (BB|BK), resulting in a valid set of equations with current type of unknowns. Now we
impose the condition that vK is the same in both networks and so is iL. But this means,

AT
rKvnA = vK (32.15)

and,
IT

L y = iL. (32.16)

So we get the hybrid equations,

ArAGAAT
rAvnA + ArLiL = −ArAJA + ArAGAEA (32.17)

BKAT
rKvnA + BBRBBT

BiL = −BBEB + BBRBJB. (32.18)

The matrix
[

ArAGAAT
rA ArL

BKAT
rK BBRBBT

B

]
is positive definite if GA, RB are positive definite.

This matrix will usually not be very sparse unless GBK has a suitable basis for its current
space which makes BBRBBT

B sparse. In practice this may often be possible. The real power
of these methods, however, is revealed when we try to use iterative methods. We show in
Section 32.4 that BKAT

rK = −AT
rL. This fact is computationally useful. Indeed, this means

that we can use a variation of the conjugate gradient method to solve Equations 32.17 and
32.18 [7,8]. The advantage of such methods is that the matrix need not be stored explicitly
storing GAL, GBK and the device characteristic is adequate. The basic subroutine for the
conjugate gradient method only requires multiplication of the coefficient matrix by a given
vector, which arises at each iteration. This process can be carried out entirely by breaking it

Hybrid Analysis and Combinatorial Optimization � 931

down into graph theoretic operations and multiplication by the device characteristic matrix
(which would often be nearly diagonal).

We note that if in GAL, there are self-loops in L and in GBK there are coloops in K, then
in Equations 32.17 and 32.18, the matrix entries corresponding respectively to the current
and voltage variables associated with such branches would be zero. We would therefore be
justified in open circuiting or short-circuiting such edges before we write equations.

These methods were originally derived for parallelization of network analysis by G.Kron
and were called Diakoptics [1]. They exploit the fact that when GAL, GBK have several two-
connected components, the matrix

[
ArAGAAT

rA ArL

BKAT
rK BBRBBT

B

]

will have block diagonal structure within ArAGAAT
rA and BBRBBT

B.

32.4 PROOFS FOR TOPOLOGICAL HYBRID ANALYSIS

We need a preliminary lemma for the proof of Theorem 32.6.

Lemma 32.1 Let A, B, L, K be defined as in Theorem 32.6. Then,

1. Vi(GAL · A) = Vi(G · A) and dually, Vv(GAL · A) = Vv(G · A).
Vi(GBK × B) = Vi(G × B) and dually Vv(GBK × B) = Vv(G × B).

2. r(GAL) = r(G · A); ν(GBK) = ν(G × B).

Proof. It can be seen that K ∪tB is a forest and LA ∪L, a coforest of G. It follows that K ∪tB

is a forest of G · (A ∪ tB) and LA ∪ L is a coforest of G × (B ∪ LA). Since K ∪ tB is a forest
of G · (A ∪ tB) and K is a forest of G · (A ∪ tB) · A(= G · A), it follows that (using Theorem
32.1) r(G · (A ∪ tB) × tB) = r(G · (A ∪ tB)) − r(G · A) = |tB|. So ν(G · (A ∪ tB) × tB) = 0.
Thus the edges of tB are not part of any circuit in G · (A ∪ tB). Similarly, since LA ∪ L is
a coforest of G × (B ∪ LA) and L is a coforest of G × (B ∪ LA) × B(= G × B), it follows
that (using Theorem 32.1) ν(G × (B ∪ LA) · LA) = ν(G × (B ∪ LA)) − ν(G × B) = |LA|. So
r(G × (B ∪ LA) · LA) = 0. Thus the edges of LA are not part of any cutset in G × (B ∪ LA).

We observe that GAL ·A ≡ G × (A∪L) ·A = G · (A∪ tB)×A. But in the graph G · (A∪ tB),
tB is a set of coloops. Hence shorting or opening these edges will not affect the KCL or KVL
constraints of the resulting graph. Thus, Vi(GAL·A) = Vi(G×(A∪L)·A) = Vi(G·(A∪tB)×A) =
Vi(G · (A ∪ tB) · A) = Vi(G · A) and dually, Vv(GAL · A) = Vv(G · A).

Further, we note that GAL is obtained by shorting the branches tB in the forest K∪tB of G.
Hence K, which is a forest of G ·A is also a forest of GAL. This proves that r(GAL) = r(G ·A).

Next, GBK × B ≡ G · (B ∪ K) × B = G × (B ∪ LA) · B. But in the graph G × (B ∪ LA),
LA is a set of self-loops. Hence shorting or opening these edges will not affect the KCL
or KVL constraints of the resulting graph. Thus, Vi(GBK × B) = Vi(G · (B ∪ K) × B) =
Vi(G×(B∪LA)·B) = Vi(G×(B∪LA)×B) = Vi(G×B) and dually, Vv(GBK ×B) = Vv(G×B).

Further, we note that GBK is obtained by opening the branches LA in the coforest L∪LA

of G. Hence L, which is a coforest of G × B is also a coforest of GBK . This proves that
ν(GBK) = ν(G × B). �
Proof of Theorem 32.6.

1. iK |iLA
|itB

|iL is a current vector of G, iff there exist current vectors iK |iLA
|iL of GAL

and i′
K |itB

|iL of GBK .

932 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

2. vK |vLA
|vtB

|vL is a voltage vector of G, iff there exist voltage vectors vK |vLA
|v′

L of GAL

and vK |vtB
|vL of GBK .

Let iK |iLA
|itB

|iL be a current vector of G. From Theorem 32.4, it follows that iK |iLA
|iL

is a current vector of GAL and itB
|iL is a current vector of G × B. But Vi(GBK × B) =

(Vi(GBK)) · B = Vi(G × B). So there exists a current vector i′
K |itB

|iL of GBK . Next, suppose
there exist current vectors iK |iLA

|iL of GAL and i′
K |itB

|iL of GBK . Since i′
K |itB

|iL is a current
vector of GBK , it follows that itB

|iL is a current vector of GBK ×B and therefore of G×B. Now
L ∪ LA is a coforest of G. Hence for any arbitrary vector iLA

|iL, there exists a unique current
vector i′′

K |iLA
|i′′tB|iL of G. But then i′′

K |iLA
|iL is a current vector of GAL and i′′

tB
|iL is a current

vector of G × B, that is, of GBK × B. Now L is a coforest of G × B and L ∪ LA is a coforest
of GAL. So for any arbitrary vector iLA

|iL, there is a unique current vector i3
K |iLA

|iL of GAL

and i3
tB

|iL of G × B. But we already have seen that there exist current vectors iK |iLA
|iL of

GAL and itB
|iL of G ×B. It follows that iK = i′′

K and itB
= i′′

tB
and therefore iK |iLA

|itB
|iL is a

current vector of G. The voltage part of the theorem is dual to the above, that is, in the proof
above we interchange voltage and current, GAL and GBK

′·′ and ′×′, K and L, tB and LA. �
Proof of claim BKAT

rK = −AT
rL.

Observe that the rows of (BK |BtB
|IL) span the space Vi(GBK). Hence the rows of (BK |IL)

span the space (Vi(GBK)) · (K ∪ L) = Vi(GBK × (K ∪ L)), by Theorem 32.3. But GBK =
G ·(B ∪K). Hence the rows of (BK |IL) span the space Vi(G ·(B ∪K)×(K ∪L)) = Vi(G ×(A∪
L) · (K ∪L)). Next, we note that the rows of (ArK |ArL) span the space (Vv(GAL)) · (K ∪L) =
Vv(GAL · (K ∪ L)) = Vv(G × (A ∪ L) · (K ∪ L)). The claim follows since rows of (BK |IL) and
(ArK |ArL) are orthogonal.

32.5 PRINCIPAL PARTITION PROBLEM

In this section we relate the hybrid analysis problem to the principal partition of graphs.
The latter has played a fundamental role in the development of combinatorial optimization
in the context of matroids (Chapter 31) and submodular functions [9]. All the results in the
present section are best understood in a unified way as applications of the matroid union
theorem and the principal partition for polymatroid rank functions discussed in Chapter 31.
However, for readability we give a self-contained, graph based, treatment here while pointing
out connections to results of that chapter.

When the network N is linear, if we write nodal equations for NAL and loop equations for
NBK (defined as in Section 32.3), the total number of equations would be r(G ·A)+ν(G ×B).
So one could ask for the partition A, B for which the above expression reaches a minimum
value. More generally, given a partition (A, B) of E(G), by Theorems 32.3 and 32.4 we know
that there exists a current vector iA|iB of G iff iB is a current vector of G × B and that there
exists a voltage vector vA|vB of G iff vA is a voltage vector of G · A. Thus vA,iB of G can be
uniquely determined using only KVL and KCL from the forest voltage vector vtA

of G ·A and
the coforest current vector iLB

of G × B. Thus we have the first formulation of the hybrid
rank problem.

Given a graph G, partition E(G) into A and B such that r(G ·A)+ν(G ×B) is minimized.
Historically, the following problems, related to the first formulation, were solved at about
the same time. After stating them we give their solution in brief. Detailed solution may be
found in the references cited therein as well as in the works of Narayanan [9].

32.5.1 Topological Degree of Freedom of an Electrical Network

Please refer to [10]. This problem was posed by G. Kron. Select a minimum-sized set of branch
voltages and branch currents from which, by using Kirchchoff’s voltage equations and KCEs,

Hybrid Analysis and Combinatorial Optimization � 933

we can find either the voltage or the current associated with each branch. This minimum size
is called the topological degree of freedom of the network, equivalently, the hybrid rank of the
graph.

32.5.2 Shannon Switching Game

Please refer to [11]. G is a graph with one of its edges say eM marked. There are two players a
cut player and a short player. The cut player, during his turn, deletes (opens) an edge leaving
the end points in place. The short player, during his turn, contracts an edge, that is, fuses its
end points and removes it. Neither player is allowed to touch eM . The cut player wins if all
the paths between the end points of eM are destroyed (equivalently, all circuits containing
eM are destroyed). The short player wins if the end points of eM get fused (equivalently, all
cutsets containing eM are destroyed by shorting of edges). The problem is to analyze this
game and characterize situations where the cut or short player, playing second, can always
win and to determine the winning strategy.

32.5.3 Maximum Distance between Two Forests

Please refer to [12]. Define distance between two forests t1 and t2 as |t1 − t2|. Find two forests
in a given graph which have the maximum distance between them, that is, the size of their
union is the largest possible.

32.5.4 Forest of Minimum Size Hybrid Representation

Please refer to [12]. Let a forest t be represented by a pair of sets (At, Bt) where At ⊆ t,t∩Bt =
∅ such that (At1 , Bt1) = (At2 , Bt2) iff t1 = t2. Note that we can represent the same forest by
several pairs, for instance (t, ∅), (∅, E(G) − t) both represent t. We call |At

⋃
Bt| the size of

the representation (At, Bt). Find a forest, which has the representation of minimum size.

32.5.5 Maximum Rank of a Cobase Submatrix

Please refer to [13]. For a rectangular (m × n) matrix with linearly independent rows, let
us call an m × (n − m) submatrix a cobase submatrix iff the remaining set of columns are
from an identity matrix. The term rank of a matrix is the maximum number of nonzero
entries in the matrix, which belong to distinct rows and distinct columns. Find a cobase
matrix of maximum rank, and a cobase matrix of minimum term rank among all matrices
row equivalent to the given matrix.

For the above five problems the solution involves essentially the same strategy: Find a
set A (or a minimal set Amin or a maximal set Amax) which minimizes 2r(G · A) + |E(G) − A|.
That these sets are unique is proved in Theorems 32.7 and 32.8. The partition of the graph
into Amin, Amax − Amin, E(G) − Amax was called the Principal Partition of G by Kishi and
Kajitani [12]. This has been discussed in detail for the more general case of polymatroid rank
functions in Chapter 31. The essential ideas will be repeated for graphs in Section 32.6 of
this chapter. Below we have given a sketch of the solutions to the five problems. More details
may be found in the works of Narayanan [9].

Let tA be a forest of the subgraph on A. Let LA be a coforest of the graph on G ×
(E(G) − A). Select the branch voltages of tA and the branch currents of LA as the desired
set of variables.

If eM ∈ Amax, the short player can always win. If eM ∈ (E(G) − Amax) the cut player can
always win. If eM ∈ Amax − Amin, whoever plays first can always win. The winning strategies
involve the construction of appropriate maximally distant forests during every turn.

934 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Kishi and Kajitani gave an algorithm for building a pair of maximally distant forests
which is essentially the well-known algorithm for building a base of the union of two matroids
(see [14]) for the case where the matroids are identical–essentially the same algorithm works
for the general case.

Select a forest t which has maximal intersection with A. The representation (t ∩ A,
(E(G)−t)

⋂
(E(G)−A)) has the least size among all representations of all forests. As is easily

seen, the minimum size among all representations of forests of G is also the same as the
topological degree of freedom of G and the above maximum distance.

The solution is similar for the last problem. Let S be the set of all columns and let
r(·) be the rank function on the collection of subsets of S. Then the maximum rank of a
cobase matrix = the minimum term rank of a cobase matrix. Select two maximally distant
bases (bases ≡ maximally independent columns). In this case the matroid union algorithm
described in Chapter 31, essentially a generalization of the algorithm for building maximally
distant forests, has to be used. Perform row operations so that an identity matrix appears
coresponding to one of these. The submatrix corresponding to the complement of this base
is the desired cobase matrix, which has both maximum rank as well as minimum term
rank.

32.6 BUILDING MAXIMALLY DISTANT FORESTS

The five problems stated in the previous section were solved originally without reference to
the matroid union theorem. Indeed, the problems of finding maximally distant forests, of
minimal representation of forests and the topological degree of freedom were solved graph
theoretically. The algorithm for building maximally distant forests of a graph is essentially
the same as the above-mentioned matroid union algorithm except that both the matroids
whose union is sought are the polygon matroids of the same graph. We sketch this algorithm
informally in this section and also relate it to the principal partition of a graph as described
by Kishi and Kajitani [12]. We hope that this treatment helps in better visualization of the
more general matroid ideas.

We begin with a simple but useful observation in the following lemma.

Lemma 32.2 Let G be a graph. Let t1, t2 be two forests and let t1, t2 be the corresponding
coforests of G. Then the following are equivalent.

1. t1, t2 are maximally distant;

2. |t1 ∪ t2| is the maximum possible;

3. |t1 ∩ t2| is the minimum possible;

4. t1, t2 are maximally distant.

Proof. Since the sizes of all forests are the same, maximizing |t1−t2| is the same as maximizing
|t1 ∪ t2| and minimizing |t1 ∩ t2|. Sizes of all coforests are the same. So these hold also for
coforests. But maximizing |t1∪t2| is the same as minimizing |t1∩t2|. So t1, t2 being maximally
distant is the same as t1, t2 being maximally distant. �

32.6.1 Algorithm Maximally Distant Forests

Let t1, t2 be two forests of G = (V, E). Define a directed graph G(t1, t2) with E as the set of
vertices and with directed edges as described below.

Hybrid Analysis and Combinatorial Optimization � 935

Whenever in G, e /∈ tj , j = 1, 2, draw, in G(t1, t2), directed edges from the vertex e to all
vertices which are edges of G in the fundamental circuit L(e, tj) (formed when e of G is added
to tree tj) and mark each directed edge as a tj edge. From a given vertex es in G(t1, t2), it is
easy to determine the set of all vertices that can be reached through directed paths by using
breadth-first search. In the process, the shortest path (in terms of number of edges in the
path), from es to every vertex in G(t1, t2), can be determined.

The present algorithm starts from some pair of forests t1, t2 (which could even be the
same forest) and tries to build another pair t′

1, t′
2 for which the distance |t′

1 − t′
2| is greater

than the distance |t1 − t2|. Clearly, if t1 ∪ t2 covers all edges in E, the forests are maximally
distant. Suppose eout /∈ t1 ∪ t2. In G(t1, t2), we find the set of all vertices (which are edges of
G) reachable from vertex eout through directed paths. If no vertex in this set corresponds to
an edge common to both t1 and t2, we repeat the process with another such eout from which
an edge ecom common to both t1 and t2 may be reached. If no such vertex eout exists we stop
and output the current t1, t2 as maximally distant.

Let eout, (t1), e1, (t2), . . ., ei, (tj), ei+1, . . ., ek, (tj), ek+1, . . ., en−1, (tm), ecom be a shortest
path from eout to ecom, where er, (tp), er+1 indicates that from the vertex er there is a
directed edge to er+1, which is marked tp, where tp could be either t1 or t2 (the indices
used for trees and edges being unrelated). We will use this path to alter t1, t2. The key idea
we use is the following: L(ei, tj) does not have ek+1 as a member as otherwise we could have
shortened the path to eout, (t1), e1, (t2), . . ., ei, (tj), ek+1, . . ., en−1, (tm), ecom. Therefore in the
forest t̂j = tj ∪ ek − ek+1, the fundamental circuit L(ei, t̂j) will be the same as L(ei, tj).

We can therefore alter t1 and t2 as

tm ← tm ∪ en−1 − ecom
· · ·

tj ← tj ∪ ei − ei+1
· · ·

t1 ← t1 ∪ eout − e1

The result of the above alteration would be that eout would now move into t1 ∪ t2
while ecom /∈ t1 ∩ t2. Therefore the size |t1 ∪ t2| and the distance |t1 − t2| would have
increased.

We repeat the above step until from none of the eout we can reach any ecom and output
the current t1, t2 as maximally distant.

By Lemma 32.2, equivalently, t1, t2 may be output as maximally distant. More directly,
the above algorithm can be converted into one which finds maximally distant coforests by
working with coforest ti in place of forest ti and replacing L(ei, tj) wherever it occurs, by the
fundamental cutset L∗(ei, tj).

We know that ek ∈ L∗(ei, tj) iff ei ∈ L(ek, tj). This yields the relationship between
G(t1, t2) and G(t1, t2) stated in the following lemma.

Lemma 32.3 Reversing the direction of arrows in G(t1, t2) and marking tj edges by tj yields
G(t1, t2).

We justify the above algorithm through the following theorem. Here r(A), ν(A) denote,
respectively, r(G · A), ν(G × A). �

Theorem 32.7 Let t1, t2 denote forests of G on edge set E and let A ⊆ E. Then,

1. |t1 ∪ t2| ≤ 2r(A) + |E − A| and the inequality becomes an equality only if t1, t2 are
maximally distant and ti∩A, i = 1, 2, are disjoint forests of G·A and (t1∪t2)∩(E−A) =
(E−A).

936 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

2. The pair of forests t1, t2 output by maximally distant forests algorithm and the set of
all edges Amin in E corresponding to vertices in G(t1, t2) which can be reached from
E − (t1 ∪ t2) satisfy |t1 ∪ t2| = 2r(Amin) + |E − Amin| and hence t1, t2 are maximally
distant.

3. max |t1 ∪ t2| = min 2r(A) + |E − A|, where t1, t2 are forests of G(V, E) and A ⊆ E.

4. If t1, t2 denote coforests of G, then |t1 ∪t2| ≤ 2ν(A)+|E −A| and the inequality becomes
an equality iff t1, t2 are maximally distant, ti ∩A, i = 1, 2, are disjoint coforests of G ×A
and (t1 ∪ t2) ∩ (E − A) = (E − A).

Proof.

i. We have ti ∩ A, i = 1, 2, as a subforest of G · A and (t1 ∪ t2) ∩ (E − A) ⊆ (E − A).
So |t1 ∪ t2| ≤ 2r(A) + |E − A|. It is clear that if the inequality becomes an equality,
the corresponding t1, t2 must be such that |t1 ∪ t2| is a maximum and therefore be
maximally distant. The inequality becomes an equality iff the set A on the right-hand
side is such that |(t1 ∪ t2) ∩ A| = 2r(A), that is, ti ∩ A, i = 1, 2, are disjoint forests of
G · A and (t1 ∪ t2) ∩ (E − A) = (E − A).

ii. If the t1, t2 output by the algorithm are such that t1 ∪ t2 = E, the inequality will be
satisfied as an equality by taking Amin to be the null set. If on the other hand, the
algorithm outputs t1, t2 such that t1 ∪ t2
= E, then Amin has the following properties.
First, it contains E − (t1 ∪ t2), or equivalently, (t1 ∪ t2) ⊇ (E − Amin) and Amin does
not contain any edge in t1 ∩ t2. Next in G · Amin, every edge in ti ∩ Amin, i = 1, 2, can
be reached from an edge outside t1 ∪ t2 by repeatedly taking fundamental circuits with
respect to the two forests. Thus ti ∩ Amin, i = 1, 2, span both each other as well as
edges in E − (t1 ∪ t2). So ti ∩ Amin, i = 1, 2, are both forests of G · Amin and, further,
have no intersection since Amin does not contain any edge in t1 ∩ t2. Thus we have,
|t1 ∪ t2| = 2r(Amin) + |E − Amin|.

iii. Is now immediate from (i) and (ii).

iv. The proof for the coforest case is dual, that is, by replacing in the above argument,
forests by coforests, G(t1, t2) by G(t1, t2), Amin by A∗

min, G · Amin by G × A∗
min and

r(G · Amin) by ν(G × A∗
min).

Theorem 32.8 Let t1, t2 (t̄1, t̄2) be maximally distant forests (coforests) of graph G on edge
set E. Let Amin (Bmin) denote the set of all edges in E corresponding to vertices in G(t1, t2)
(G(t1, t2)) which can be reached from E − (t1 ∪ t2) (E − (t1 ∪ t2)).

1. Amin(Bmin) is the unique minimal set that minimizes 2r(A)+ | E − A | (2ν(A∗)+ |
E − A∗ |).

2. Â ⊆ E minimizes 2r(A)+ | E − A | iff E − Â minimizes 2ν(A∗)+ | E − A∗ |.

3. E − Bmin (E − Amin) is the unique maximal set that minimizes 2r(A)+ | E − A |
(2ν(A∗)+ | E − A∗ |).

4. An edge e belongs to Amin (e belongs to Bmin) iff there exist maximally distant forests
t1, t2 (coforests t̄1, t̄2) s.t. e ∈ (E − (t1 ∪ t2)), (e ∈ (E − (t̄1 ∪ t̄2))).

Hybrid Analysis and Combinatorial Optimization � 937

Proof.

i. We know by Theorem 32.7, that a subset Â minimizes 2r(A)+ | E − A |, A ⊆ E iff for
every pair of maximally distant forests t1, t2 |t1 ∪ t2| = 2r(Â) + |E − Â| and that this
happens iff ti∩Â, i = 1, 2, are disjoint forests of G·Â and (t1∪t2)∩(E−Â) = (E−Â), that
is, Â ⊇ E −(t1 ∪t2). Thus in G(t1, t2), we see that Â contains all vertices corresponding
to E − (t1 ∪ t2) and further it is not possible to reach outside Â from within since each
ti ∩ Â, i = 1, 2, is a forest of G · Â. Thus Amin ⊆ Â. However Amin itself minimizes
2r(A)+ | E − A |, A ⊆ E and so is the unique minimal minimizing set.

The proof for the dual statement follows by arguing with coforests t1, t2 and G(t1, t2).

ii. We have, t ∩ A is a forest of G · A iff t ∩ (E − A) is a coforest of G × (E − A) (Theorem
32.1 of Preliminaries). Next, ti ∩ A, i = 1, 2, are disjoint iff (E − A) ⊇ t1 ∩ t2, that is, iff
(E −A) ⊇ (E − (t1 ∪ t2)) and ti ∩ (E −A), i = 1, 2, are disjoint iff A ⊇ t1 ∩ t2, that is, iff
A ⊇ E − (t1 ∪ t2). From Theorem 32.8 we know that the expression 2r(A)+ | E − A |
reaches a minimum iff ti ∩ A, i = 1, 2, are disjoint forests of G · A and A ⊇ E − (t1 ∪ t2)
and the expression 2ν(A∗)+ | E − A∗ | reaches a minimum iff ti ∩ (E − A), i = 1, 2, are
disjoint coforests of G × (E − A) and (E − A) ⊇ (E − (t1 ∪ t2)). The result follows.

iii. This follows immediately from (i) and (ii) above.

iv. Observe that every e ∈ (t1 ∪ t2) ∩ Amin can be reached from some eout ∈
Amin − (t1 ∪ t2). In G(t1, t2) we therefore have a shortest path from eout to e,
say eout, (t1), e1, (t2), . . ., ei, (tj), ei+1, . . ., en−1, (tm), e. Modifying t1, t2 as in Algorithm
Maximally Distant Forests would give us a new pair of maximally distant forests
t′
1, t′

2, which would not contain e as a member. The result for Bmin follows by
using G(t1, t2). �

32.7 NETWORK ANALYSIS THROUGH TOPOLOGICAL TRANSFORMATION

We say that we use topological transformation while analyzing networks, if at intermediate
stages of the analysis, we modify the topology of the network. Instances of such transfor-
mations are the construction of two derived networks during topological hybrid analysis,
multiport decomposition, and so on. In this section we consider a fairly general class of
transformations which we may call the fusion fission method, and also sketch certain opti-
mization problems which arise naturally during this study and which generalize the prin-
cipal partition problem. Detailed description of these ideas may be found in the works of
Narayanan [9,15,16].

32.7.1 Fusion–Fission Method

Consider the network in Figure 32.2. Four subnetworks have been connected together to
make up the network. Assume that the devices in the subnetworks are decoupled. Clearly the
networks in Figures 32.2 and 32.3 are equivalent, provided the current through the additional
unknown voltage source and the voltage across the additional unknown current source are
set equal to zero. But the network in Figure 32.3 is equivalent to that in Figure 32.4 under
the additional conditions

iv1 + iv2 + i = 0

vi3 + vi4 − v = 0.

938 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

N2

b

a

N1

N3

1
6

11

16

N4

Figure 32.2 Network N to illustrate the fusion–fission method.

N1
N2

iv = 0 vi = 0

i

b

a1

a2

v

N3

N4

11

16

1

6

+
−

Figure 32.3 Network equivalent to N with virtual sources.

(The variables iv1, iv2, vi3, vi4 can be expressed in terms of currents and voltages of the original
graph so that the additional constraints will involve only old current and voltage variables
and the new variables i, v.)

As can be seen, the subnetworks of Figure 32.4 are decoupled except for the common
variables v and i and the additional conditions.

A natural optimization problem here is the following:
Given a partition of the edges of a graph into E1, . . ., Ek, what is the minimum size set

of node pair fusions and node fissions by which all circuits (equivalently cutsets) passing
through more than one Ei are destroyed?

In the present example the optimal set of operations is to fuse nodes a and b and cut
node a into a1, a2 as in Figure 32.3. Artificial voltage sources are introduced across the node
pairs to be fused and artificial current sources are introduced between two halves of a split
node.

The above formulation can be stated in a more convenient form as node fusion–fission
problem. Let G be a graph and let Πs be a specified partition of E(G) so that G · Ni is
connected for each Ni ∈ Πs. Find a minimum length sequence of node pair fusions and node

Hybrid Analysis and Combinatorial Optimization � 939

V

i

i

N3

N4

iv1 iv2

vi3

vi4

11

16

V

N2 N1

+
−

+
−

Figure 32.4 Network N decomposed by the fusion–fission method

fissions which, when performed on G, result in a graph Gnew in which each circuit intersects
only one of the blocks of Πs (equivalently each cutset intersects only one of the blocks of Πs).

Assuming each G · Ni to be connected is reasonable electrically speaking since, if they are
not, we can usually be working with their connected components rather than with themselves
while analyzing.

We will show that this problem generalizes the hybrid rank problem (see Section 32.5). We
first note that the result of a node fission followed by a node fusion can always be achieved by
a node fusion followed by a node fission. Thus whenever we have a sequence of node fissions
and fusions needed for converting a graph into another, the result can always be achieved by
a sequence of node fusions followed by a sequence of node fissions.

We think of the original network as being made up of a number of single edge networks
and the problem is to decouple them in the above manner. At the end of the fusions and
fissions no edges belonging to different networks should belong to the same circuit. Therefore
every edge should have become a self-loop or a coloop. Let A, B be the subsets of edges,
which are self-loops and coloops, respectively. Every edge in A has its endpoints fused. This
is exactly equivalent to fusing the endpoints of the edges of a forest of G · A. Thus with
r(G · A) node fusions all edges in A would have become self-loops. After these node fusions
the resulting graph would be G × B. In any graph, making all edges into coloops can be
achieved with minimum number of operations by cutting each coforest edge at one of its
end points. Therefore making all edges in B into coloops requires ν(G × B) node fissions.
Thus the minimizing of r(G · A) + ν(G × B) over all partitions A, B is equivalent to finding
a minimum length sequence of node fusions and fissions which will make every edge in the
graph into a self-loop or coloop.

32.7.2 Solution of the Node Fusion–Fission Problem

In this subsection we give a sketch of the ideas involved in the solution of the node fusion-
fission problem. Let G be a graph and Πs, a partition of E(G). The fusion rank of G relative

940 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

to Πs is the minimum length of a sequence of node pair fusions needed to destroy every
circuit that intersects more than one block of Πs. The fission rank of G relative to Πs is the
minimum length of a sequence of node fissions needed to destroy every circuit that intersects
more than one block of Πs. The hybrid rank of G relative to Πs is the minimum length of a
sequence of node pair fusions and node fissions needed to destroy every circuit that intersects
more than one block of Πs.

Now consider the situation where we use both fusions and fissions, with all the fusions
occurring first. Any sequence of node pair fusions would ultimately fuse certain groups of
nodes into single nodes. Hence, as far as the effect of these node pair fusions on the graph
is concerned, we may identify them with a partition of V (G) (with singleton blocks being
permitted) each block of which would be reduced to a single node by the fusions. The number
of node pair fusions required to convert a set of nodes V to a single node is (| V | −1). Hence,
if Π is a partition of V (G), the number of node pair fusions required to go from G to the
graph obtained from G by fusing blocks of Π into single vertices, which we shall denote by
Gfus·Π, is | V (G) | − | Π |. This number we would henceforth call, the fusion number of Π. The
fission rank of Gfus·Π relative to a partition Πs of E(G) would be called the fission number
of Π relative to Πs. The sum of the fusion number and the fission number of Π relative Πs

would be called the fusion–fission number of Π relative to Πs. Our task is to find a partition
of V (G) which minimizes this number.

We now define a bipartite graph which relates Πs to V (G). Let BG be the bipartite graph
associated with G, with left vertices VL ≡ V (G) and right vertices VR ≡ E(G), with e ∈ VR

adjacent to v ∈ V iff edge e is incident on v in G. Let B(Πs) be the bipartite graph obtained
from BG by fusing the right vertices in the blocks of Πs and replacing parallel edges by single
edges.

Let X ⊆ V (G). Let | ΓL | (X) denote the size of the set of right vertices adjacent to
vertices in X, (| ΓL | −λ)(X) denote | ΓL | (X) − λ. Let Π be a partition of V (G). We define
(| ΓL | −λ)(Π) to be the sum of the values of (| ΓL | −λ) on the blocks of Π. We then have
the following result whose proof we omit in the interest of brevity.

Theorem 32.9 Let G be a connected graph. Let Πs be a partition of E(G) so that G · Ni is
connected for each Ni ∈ Πs. Let Π be a partition of V (G). Then

1. The fusion–fission number of Π relative to Πs equals

(| ΓL | −2)(Π)+ | V (G) | − | Πs | +1.

2. The hybrid rank of G relative to Πs equals

min((| ΓL | −2)(Π)+ | V (G) | − | Πs | +1),

Π a partition of V (G). �

The problem of minimizing (| ΓL | −2)(Π) over partitions of V (G) falls under computing Dil-
worth truncation of a submodular function. The principal lattice of partitions problem is that
of computing all partitions which minimize (| ΓL | −λ)(·) for some λ. Strongly polynomial
algorithms are available for this purpose. Details are available in the works of Narayanan
[9,15,16].

There are strong analogies between the principal partition (minimize r(X) − λ|X|, r(·)
submodular, over subsets of a given set) and the principal lattice of partitions (minimize
(r − λ)(·), r(·) submodular, over partitions of a given set) problems. In the case of principal
partition, if λ1 > λ2, a minimizing set corresponding to the former is always a subset of

Hybrid Analysis and Combinatorial Optimization � 941

any minimizing set corresponding to the latter. In the case of principal lattice of partitions,
if λ1 > λ2, a minimizing partition corresponding to the former is always finer than any
minimizing partition corresponding to the latter [9]. In addition, in the case of graphs, the
principal partition problem of Kishi–Kajitani (on the edge set of a graph) can be posed, as
described earlier, as that of finding an optimal node fusion–fission problem and therefore
can actually be solved as a principal lattice of partitions problem on the vertex set of the
graph [9]. Indeed the current fastest principal partition algorithm for graphs is actually of
this type [17].

Further Reading

The hybrid analysis notion is peculiar to network theory giving rise naturally to the hybrid
rank problem. This problem and its generalizations can be regarded as unifiers for large parts
of combinatorial optimization including the theory of submodular functions. This theme has
been enlarged in the works of Narayanan [9]. The principal partition and principal lattice
of partitions have many practical applications particularly in building partitioners for large-
scale systems (see Chapter 30) and in structural solvability of systems [18,19] (see Chapter
31 for more references).

References

[1] G. Kron. Diakoptics—Piecewise Solution of Large Scale Systems (McDonald, London,
1963).

[2] G. Kron. Tensor Analysis of Networks (John Wiley & Sons, New York, 1939).

[3] F.H. Branin Jr. The relationship between Kron’s method and the classical methods of
network analysis. Matrix and Tensor Quarterly 12 (1962), 69–105.

[4] A. Brameller, M. John, and M. Scott. Practical Diakoptics for Electrical Networks
(Chapman & Hall, London, 1969).

[5] H. Narayanan. A theorem on graphs and its application to network analysis. Proceedings
of the IEEE International Symposium on Circuits and Systems (1979), 1008–1011.

[6] H. Narayanan. Topological transformations of electrical networks. International Journal
of Circuit Theory and Its Applications 15 (1987), 211–233.

[7] H. Narayanan. Mathematical programming and electrical network analysis II: Compu-
tational linear algebra through network analysis, International Symposium on Mathe-
matical Programming for Decision Making: Theory and Applications, ISI Delhi, India,
January 10–11, 2007.

[8] V. Siva Sankar, H. Narayanan, and S.B. Patkar: Exploiting Hybrid Analysis in Solving
Electrical Networks, 22nd International Conference on VLSI Design, New Delhi, India,
January 5–9, 2009, 206–210.

[9] H. Narayanan. Submodular functions and electrical networks. Annals of Discrete Math-
ematics 54 North Holland (London, New York, Amsterdam) (1997). (Revised version
at http://www.ee.iitb.ac.in/ hn/book/.)

[10] T. Ohtsuki, Y. Ishizaki, and H. Watanabe. Topological degrees of freedom and mixed
analysis of electrical networks. IEEE Transactions on Circuit Theory CT–17 (1970),
491–499.

942 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[11] J. Edmonds. Lehman’s switching game and a theorem of Tutte and Nash-Williams.
Journal of Research of the National Bureau of Standards 69B (1965), 73–77.

[12] G. Kishi and Y. Kajitani. Maximally distant trees and principal partition of a linear
graph. IEEE Transactions on Circuit Theory CT–16 (1969), 323–329.

[13] M. Iri. The maximum rank minimum term rank theorem for the pivotal transformations
of a matrix. Linear Algebra and Its Applications 2 (1969), 427–446.

[14] J. Edmonds. Minimum partition of a matroid into independent subsets. Journal of Re-
search of the National Bureau of Standards 69B (1965), 67–72.

[15] H. Narayanan. On the minimum hybrid rank of a graph relative to a partition of its
edges and its application to electrical network analysis. International Journal of Circuit
Theory and Its Applications 18 (1990), 269–288.

[16] H. Narayanan. The principal lattice of partitions of a submodular function. Linear Al-
gebra and Its Applications 144 (1991), 179–216.

[17] S. Patkar and H. Narayanan. Fast algorithm for the principal partition of a graph.
Proceedings of the 11th Annual Symposium on Foundations of Software Technology and
Theoretical Computer Science LNCS–560 (1991), 288–306.

[18] T. Ozawa. Topological conditions for the solvability of active linear networks. Interna-
tional Journal of Circuit Theory and Its Applications 4 (1976), 125–136.

[19] T. Ozawa and Y. Kajitani. Diagnosability of linear active networks. IEEE Transactions
on Circuits and Systems CAS–26 (1979), 485–489.

X
Probabilistic Methods, Random Graph Models,

and Randomized Algorithms

943

C H A P T E R 33

Probabilistic Arguments
in Combinatorics*
C.R. Subramanian

CONTENTS

33.1 Introduction . 946
33.2 Tools from Discrete Probability . 947
33.3 Basic Philosophy . 950

33.3.1 R1. Upper Bounding Pr(Ec): Pr(Ec) < 1 ⇒ Pr(E) > 0 950
33.3.2 R2. Lower Bounding Pr(E): Show Directly That Pr(E) > 0 951
33.3.3 R3. Determining the Expectation: E[X] ≥ b ⇒ Pr(X ≥ b) > 0 951
33.3.4 R4. Expectation and Tail Probabilities: Apply Bounds on Tail

Probabilities to Show Pr(X ≥ b) > 0 . 951
33.4 Applications to Graph Theory and Number Theory . 951

33.4.1 Lower Bound on Maximum Cut . 951
33.4.2 Lower Bounds on Independence Number . 953
33.4.3 Small Dominating Sets in Graphs . 954
33.4.4 Number of Minimum Cuts in Multigraphs . 955

33.4.4.1 Near-Minimum Cuts . 956
33.4.5 List Coloring of Graphs . 957
33.4.6 High Girth and High Chromatic Number . 960
33.4.7 Global Coloring and Local Coloring . 961
33.4.8 Tournaments of Specified Type . 962
33.4.9 Bounds on Oriented Chromatic Numbers . 964
33.4.10 Bounds on Constrained Colorings . 965

33.4.10.1 Frugal Colorings . 965
33.4.10.2 Acyclic Colorings . 966
33.4.10.3 Other Constrained Colorings . 967

33.4.11 Waring Bases . 968
33.4.12 Sum-Free Subsets . 970

33.5 Random Graphs . 971
33.5.1 Existence of Triangles . 972
33.5.2 Being Connected . 973
33.5.3 Emergence of a Giant Component in the Vicinity of 1/n 974
33.5.4 Diameter of Random Graphs . 977
33.5.5 Concentration of Invariants . 979

33.5.5.1 Concentration of diam(G) . 979
33.5.5.2 Concentration of ω(G) and α(G) . 979

∗Dedicated to my elder brother Dr. C.R. Seshan.

945

946 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

33.5.5.3 Concentration of χ(G) . 981
33.5.5.4 Concentration of Induced Paths and Induced Trees 982

33.6 Random Digraphs . 984
33.6.1 Induced Acyclic Tournaments . 984
33.6.2 Induced Acyclic Subgraphs . 985
33.6.3 Induced Tournaments . 986
33.6.4 Being Strongly Connected . 987
33.6.5 Emergence of a Giant Strongly Connected Component Around 1/n . 988

33.7 Conclusions . 989

U sing probabilistic arguments to prove statements in combinatorics is gaining pop-
ularity. A number of examples illustrate how this approach can be a powerful tool in

proving mathematical statements in combinatorics in general, and graph theory in particular.
This approach is based on applying (often simple) ideas, tools, and techniques from probabil-
ity theory to obtain and prove a mathematical statement. On the other hand, several specific
applications of this approach have also motivated and led to the development of powerful
results in probability theory, in particular, with respect to discrete probability spaces.

In this expository chapter, we illustrate this approach with some specific applications
from graph theory. A powerful tool employed is the notion of random graphs. We will also
elaborate on this topic with specific examples and their probabilistic analyses. We do not
necessarily present the best results (obtained using probabilistic arguments) since the main
purpose is to give an introduction to the beauty and elegance of the approach. Many of the
examples and the results are already known and published in the literature and have also
been improved further. Some of the results we present are new ones not published before in
the literature.

33.1 INTRODUCTION

Randomness is an important phenomenon that occurs in nature and in fact, scientists believe
that randomness is an inherent part of the nature of physical reality. Probability theory is
an axiomatic approach to model and infer conclusions about random phenomena. While
the theory may have its inspiraton from nature, it has been found to be a powerful tool in
obtaining and proving mathematical statements in combinatorics.

Combinatorics is the study of finite or countable structures in which we are interested in
questions on the existence, number, and interplay between structures satisfying some prop-
erty. The common idea underlying the application of probabilistic arguments is as follows:

Suppose U is a finite or countable set and let P ⊆ U be a property possibly satisfied by
some of the elements. Often, P is specified implicitly and we want to determine if P �= ∅.
Then, we introduce a suitable probability measure P so that (U , P) becomes a probability
space. Let ω ∈ U be a random element drawn according to P . It follows that P �= ∅ if one
can show that Pr(u ∈ P) > 0. If we also assume that P is uniform over U , then |P| can be
determined exactly or approximately from an exact or approximate knowledge of Pr(u ∈ P)
and |U|.

While this might look like nothing more than rephrasing the questions in the language
of probability theory, it becomes easier now because probability theory has a rich wealth of
tools, results and paradigms which can be employed on the rephrased questions to obtain a
resolution. Often the proof turns out to be very simple and leads to the resolution quickly.
This paradigm is known as the probabilistic method. There have been instances where this
method has been successfully employed before (see, for instance, the probabilistic proof

Probabilistic Arguments in Combinatorics � 947

obtained by Bernstein [1,2] for Weierstrass approximation theorem). But Paul Erdös was
the first person who fully understood the power of this method and pioneered its usage by
applying it to a number of problems in number theory and graph theory with surprising
conclusions. In that respect, one can as well call this as Erdös method. Also, he (in collabo-
ration with Alfred Renyi) founded the theory of random graphs.

In what follows, we illustrate this approach with examples from graph theory and number
theory. Some of the illustrations are based on random graphs the study of which is now a
theory by itself since random graphs exhibit several interesting and curious properties which
warrant a deep and detailed study by itself. With this view, we present an exposition on
random graphs also.

The chapter is organized as follows. In Section 33.2, we provide a brief exposition of basic
and necessary tools from discrete probability. In Section 33.3, we present and explain the
basic philosophy underlying the probabilistic method. In Section 33.4, we present several
applications of probabilistic arguments to graph theory and number theory. In Section 33.5,
we present an exposition of random graphs. In Section 33.6, we present an exposition of
random digraphs. Finally, in Section 33.7, we conclude with remarks. For a good introduction
to probabilistic method, see the book authored by Alon and Spencer [2]. For a comprehensive
introduction to random graphs, see the book authored by Bollobas [3] and also the one
authored by Janson et al. [4].

33.2 TOOLS FROM DISCRETE PROBABILITY

We first recall some basic facts from probability theory. We focus only on discrete probability
spaces. A discrete probability space (Ω, P) consists of a finite or countable set Ω of sample
points and a probability or distribution function P : Ω → [0, 1] which satisfies

∑
x∈Ω P (x) = 1.

An event E is any subset of Ω and its probability is defined as
∑

w∈E P (w). Also, for any
finite or countable collection E = {E1, E2, . . .} of events, it follows from the Union Law of
Probabilities that Pr(∪E∈EE) ≤ ∑

E∈E Pr(E) and the inequality becomes equality if the
events in E are pairwise disjoint.

A real valued random variable X is a function X : Ω → R defined over Ω. Any distribution
over Ω naturally induces a distribution on Range(X). We only consider real valued random
variables. From now on, for the sake of simplicity, we use R to denote Range(X) and not
the set of real numbers. Two random variables X and Y are said to be identically distributed
if Pr(X = a) = Pr(Y = a) for each a ∈ R.

For a random variable X, the expectation or mean of X, denoted by E[X] or μX , is
defined to be E[X] =

∑
x∈R x· Pr(X = x) whenever the sum is well-defined. An important

and very useful property of expectations is the following well-known fact.

Fact 33.1 (Linearity of expectation) For any two real valued random variables X and Y
defined over (Ω, P), we have E(X + Y) = E(X) + E(Y).

By induction, this holds for the sum of any finite number of variables. Note that this fact
does not depend on any assumption about the variables.

Two random variables X and Y defined over Ω are independent if

Pr(X = x, Y = y) = Pr(X = x) · Pr(Y = y), ∀x, y ∈ R

or equivalently, for any two events EX (which depends only on X) and EY (which depends
only on Y), we have

Pr(EX ∩ EY) = Pr(EX) · Pr(EY).

948 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

A collection X = {X1, . . ., Xn} of random variables are mutually or totally independent if

Pr(X1 = x1, . . ., Xn = xn) =
∏

1≤j≤n

Pr(Xj = xj), ∀x1, . . ., xn ∈ R.

X is pairwise independent if Pr(Xi = xi, Xj = xj) = Pr(Xi = xi) · Pr(Xj = xj) for every
i �= j. More generally, for 2 ≤ k ≤ n, X is k-wise independent if, for every 1 ≤ i1 < . . . <
ik ≤ n and xi1 , . . ., xik

∈ R, we have

Pr(Xi1 = xi1 , . . ., Xik
= xik

) =
∏

1≤j≤k

Pr(Xij = xij).

Note that total independence implies k-wise independence for every k.
The variance of X, denoted by Var(X), is defined to be Var(X) = E((X − μX)2) =

E(X2)−E(X)2. The positive square root of Var(X) is known as the standard deviation of X
and is denoted by σX . The following fact about independent random variables will be useful
later.

Fact 33.2 For any collection X = {X1, . . ., Xn} of n random variables, we have

• E(
∏

j Xj) =
∏

j E(Xj) if X is totally independent.

• Var(
∑

j Xj) =
∑

j Var(Xj) if X is pairwise independent.

For a random variable X, its lower tail probabilities are estimates of the form Pr(X ≤ a) for
some a ∈ R and its upper tail probabilities estimates are of the form Pr(X ≥ a) for some
a ∈ R. We recall some well-known upper bounds on such tail probabilities.

Fact 33.3 (Markov inequality) For any non-negative real valued random variable X and any
t > 0, we have Pr(X ≥ t) ≤ E(X)/t.

Fact 33.4 (Chebyschev inequality) For any random variable X with mean μX and standard
deviation σX and any t > 0, we have Pr(|X − μX | ≥ t) ≤ V ar(X)/t2. In particular, for
any t > 0, we have Pr(|X − μX | ≥ tσX) ≤ 1/t2.

An inequality of this type which bounds the probability of deviating from the mean on either
side is called a concentration inequality.

A random variable X which only takes values from {0, 1} is called an indicator random
variable. For an indicator variable X which takes the value 1 with probability p, it follows
that E(X) = p and V ar(X) = p(1 − p).

A sequence (X1, . . ., Xn) of n mutually independent and identically distributed (iid) in-
dicator random variables is said to form a Bernoulli trial. A Poisson trial is a sequence of
independent (need not be identically distributed) indicator random variables.

If (X1, . . ., Xn) forms a Poisson trial with respective means E(Xi) = pi, then for their
sum X = X1 + · · · + Xn, we have

μ = E(X) =
∑

1≤j≤n

pj ; V ar(X) =
∑

1≤j≤n

pj(1 − pj) ≤ μ.

As a result, for any ε > 0, it follows by applying Chebyschev’s inequality that

Pr(|X − μ| ≥ εμ) ≤ 1
ε2μ

.

Thus the probability of deviating from the mean decreases in an inversely linear fashion.
A relatively recent bound due to Chernoff and Hoeffding is tighter and the bound decreases
inversely exponentially in μ. This exponential dependence will play an important role in our
analyses later.

Probabilistic Arguments in Combinatorics � 949

Fact 33.5 (Chernoff–Hoeffding [CH] bounds) If X is the sum of the variables of a Poisson
trial (X1, . . ., Xn) with respective means E(Xi) = pi and μ = E(X), then for any 0 ≤ a ≤ μ,
we have

Pr(X ≤ μ − a) ≤ e− a2
2μ

Pr(X ≥ μ + a) ≤ e− a2
3μ

Pr(|X − μ| ≥ a) ≤ 2e− a2
3μ

Note that the dependence on μ is inversely exponential. Applying this to the sum of n
variables of a Bernoulli trial having a common mean of p, for 0 ≤ ε ≤ 1, CH bounds show
that

Pr(|X − np| ≥ εnp) ≤ 2e−ε2 (np)
3

whereas Chebyschev inequality only shows that

Pr(|X − np| ≥ εnp) ≤ 1
ε2(np) .

The CH-bounds provide tight concentration results but require that X is the sum of a finite
collection of independent 0/1 variables. There are situations where X cannot be expressed in
this way. For more general situations, another inequality based on the notion of martingales
is known.

A sequence (X0, X1, . . .) of variables forms a martingale sequence if

E[Xi|Xi−1, . . ., X0] = Xi−1, ∀i > 0.

It follows that E[Xi] = E[X0] for each i by an inductive argument.

Example 33.1 Suppose X = X1 + · · · + Xn where Pr(Xi = 1) = Pr(Xi = −1) = 1/2
for each i. Define Yi =

∑
j≤i Xj . Then, Yi = Yi−1 + Xi and hence E[Yi|yi−1, . . ., y0] =

yi−1 + E[Xi] = yi−1. Thus (Y0, . . ., Yn) forms a martingale sequence.

Example 33.2 Suppose (X1, . . ., Xn) forms a Poisson trial with Pr(Xi = 1) = pi for each
i. Let X = X1 + · · · + Xn. By an exposure of Xi, we refer to setting Xi = bi for some specific
bi ∈ {0, 1}. Define Y0 = E[X] and for i ≥ 1, define Yi as the expectation of E[X] conditioned
on the exposure of the first i variables X1, . . ., Xi. It is easy to see that Yjs are random
variables and also that each Yj is determined uniquely by the exposures of (X1, . . ., Xj).
Also, Yn is exactly X. It can also be verified that

Yj−1 = E[X|Xj−1, . . ., X1]
= pjE[X|Xj = 1, Xj−1, . . ., X1] + (1 − pj)E[X|Xj = 0, Xj−1, . . ., X1]
= EXj [E[X|Xj , Xj−1, . . ., X1]] = E[Yj |Yj−1, . . ., Y1]

Thus (Y0, . . ., Yn) forms a martingale sequence.

The following result bounds tail probabilities of variables from a martingale sequence with
bounded difference between consecutive variables. It was obtained by Azuma [2].

Fact 33.6 (Azuma’s bounds) If c = Y0, . . ., Ym form a martingale with |Yi+1 − Yi| ≤ 1 for
each i < m. Then, for any λ > 0, we have

Pr(Ym − c ≥ λ
√

m) ≤ e− λ2
2

Pr(Ym − c ≤ −λ
√

m) ≤ e− λ2
2

Pr(|Ym − c| ≥ λ
√

m) ≤ 2e− λ2
2

950 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

In the context of Example 33.2, c = Y0 = E(X), m = n, Ym = X and hence the three
inequalities provide bounds on the lower and upper tail probabilities. Even though Y (in this
example) is the sum of variables of a Poisson trial, we will later see applications of Azuma’s
result where this assumption is not true, yet Azuma’s bound provides tight concentration
results.

Unlike the previous tools, where we typiclly focus on proving that a certain event occurs
almost surely, the following lemma is a very powerful tool in proving the occurrence of an
event which occurs very rarely, provided it is implied by the simultaneous non-occurrence of
so-called bad events which are almost independent. The following lemma provides sufficient
conditions which guarantee the simultaneous non-occurrence of bad events. This lemma is
known as Lovász local lemma (LLL). We use the following non-symmetric form of LLL
(see [2,5]).

Lemma 33.1 [5] Let A = {A1, A2, ..., An} be a family of events in an arbitrary probability
space such that each event Ai is mutually independent of A\({Ai} ∪ Di) for some Di ⊂ A.

Then if there are reals 0 < yi < 1 such that for all i,

Pr(Ai) ≤ yi

∏

Aj∈Di

(1 − yj)

then
Pr(∩(Ai)) ≥

n∏

i=1
(1 − yi) > 0

so that with positive probability no event Ai occurs. �

For a more elaborate discussion on the probability tools presented in this section, the reader
is referred to any of the following references [2,6].

33.3 BASIC PHILOSOPHY

The main argument underlying the application of probabilistic arguments in combinatorics is
very simple. Suppose we want to show that a set Ω has a member w satisfying some property
E ⊆ Ω. In other words, given some description of E, we want to show that E �= ∅. Introduce
a probability distribution P (x) over Ω. Then, using some of the tools of probability theory,
show that Pr(E) > 0. This implies that there is a point x ∈ Ω satisfying E. If not, we will
have Pr(E) = 0. Note that the choice of the distribution P (.) is ours and also the choice of
the probabilistic tools we employ are also ours. We describe below some rules which help us
in this process. The rules themselves are straightforward but when applied they become a
very powerful tool.

33.3.1 R1. Upper Bounding Pr(Ec): Pr(Ec) < 1 ⇒ Pr(E) > 0

Ec is the complement event Ω \ E. It suffices to show that Pr(Ec) < 1. One can do this
by choosing events F1, F2, . . . such that whenever Ec holds, one of the Fi’s holds. Hence
Pr(Ec) ≤ ∑

i Pr(Fi). If this sum can be shown to be strictly less than 1, we are done.

Example: If n and k are such that f(n, k) =
(n

k

)
21−(k

2) < 1, then the edges of the complete
graph Kn can be 2-colored in such a way that there is there is no subgraph Kk (of Kn) all of
whose edges are colored with the same color. Here, Ω is the set of all 2-colorings of E(Kn).

Probabilistic Arguments in Combinatorics � 951

P (.) is the uniform distribution over Ω. Equivalently, color each edge of Kn independently
with (equal probability) one of the two colors {R, B}. Ec is the event that some E(Kk) is
monochromatically colored. We define an event ES for every S ⊆ V (Kn) with |S| = k. ES

is holds if the random coloring makes E(S) monochromatic and to 0 otherwise. We have
(n

k

)

such events. Note that Ec holds if and only if ES holds for some S. But Pr(ES) = 2/2(k
2)

for every S. Hence Pr(Ec) ≤ ∑
S,|S|=k Pr(ES) =

(n
k

)
21−(k

2) < 1. Hence Pr(E) > 0 and hence
there is a 2-coloring with no monochromatic Kk.

33.3.2 R2. Lower Bounding Pr(E): Show Directly That Pr(E) > 0

Choose a finite collection {F1, . . ., Fm} events such that if none of the Fi’s hold, then E holds.
Hence it suffices to show that Pr(∧iF

c
i) > 0 since Pr(E) ≥ Pr(∧iF

c
i). We can use powerful

tools like LLL or Janson inequalities to establish this. We will see examples of this approach
later.

33.3.3 R3. Determining the Expectation: E[X] ≥ b ⇒ Pr(X ≥ b) > 0

If the property to be established can be stated as (or be implied by) a statement of the form
“there exists a point w ∈ Ω with X(w) at least (or at most) b” for some random variable
X, then we can do this by determining E[X]. If E[X] ≥ b, then there is indeed a point
w ∈ Ω with X(w) ≥ b and P (w) > 0. Otherwise, E[X] =

∑
w∈Ω P (w)X(w) < b. Similarly, if

E[X] ≤ b, then Pr(X ≤ b) > 0.
Example: We again look at the example of 2-colorings E(Kn). By associating with each
event ES an indicator variable XS which is set to 1 if ES holds and to 0 otherwise, we see
that Ec holds if and only if X =

∑
S XS ≥ 1. In other words, E holds if and only if X < 1.

To show that Pr(X < 1) > 0, we calculate E[X] and notice that E[X] = f(n, k) < 1 and
deduce our statement.

33.3.4 R4. Expectation and Tail Probabilities: Apply Bounds on Tail Probabilities to
Show Pr(X ≥ b) > 0

Suppose the property to be established is equivalent to establishing X ≥ b (or X ≤ b) for some
random variable X. This is same as showing that Pr(X < b) = Pr(X < μ + (b − μ)) < 1
where μ = E[X]. One can achieve this by calculating E[X] and using some of the tail
probability results we have mentioned before. We will see examples of this later.

33.4 APPLICATIONS TO GRAPH THEORY AND NUMBER THEORY

We present some interesting observations mostly from graph theory and also a few ones from
number theory which are established by simple applications of probabilistic arguments. The
purpose is to illustrate the power and simplicity of probabilistic arguments in arriving at
interesting conclusions. Since this is an expository write-up, we do not bother to present the
best known results but focus more on the method.

33.4.1 Lower Bound on Maximum Cut

A simple and direct application is the following example. We study the maximum size
(= number of edges) of any spanning bipartite subgraph of a given undirected graph. More

952 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

precisely, we establish that: Every graph G = (V, E) with |V | = n and |E| = m has a vertex
bipartition V = A ∪ B such that e(A, B) ≥ m/2 where e(A, B) = |E(A, B)| = |{(u, v) ∈ E :
u ∈ A, v ∈ B}|. One can easily prove this as follows. Choose uniformly at random a biparti-
tion V = A ∪ B. Equivalently, include each u ∈ V independently and with equal probability
into one of the two parts. For each e = {u, v} ∈ E, let Xe denote the indicator variable which
takes 1 if e ∈ E(A, B) and 0 otherwise. For each e ∈ E, E(Xe) = 1/2 since 2 of the four
possible ways of including u and v into A or B will put the two vertices in different parts.
Let X =

∑
e∈E Xe denote the number of edges in E(A, B). Then E[X] = m/2 and hence by

R3, we have Pr(∃A, B : V = A ∪ B, e(A, B) ≥ m/2) > 0.
Consider the following deterministic argument: Start with an arbitrary bipartition V =

A ∪ B and repeat the following rule as long as possible. If there exists u ∈ A such that
u has more neighbors in A than in B, then shift u from A to B. Do similarly for B. Each
application of this rule takes us to another bipartition with at least one more edge in E(A, B)
than the previous bipartition. Hence this rule fails to be applicable after some iterations. At
that moment, if V = A ∪ B denotes the current bipartition, then each vertex has at least
as many neighbors in the other part than it has in its part. Hence, if we ignore edges falling
within a part, we deduce that the final bipartition has at least m/2 edges. Even though
this argument establishes a strengthening, it is not as simple and direct as the probabilistic
arguments given before. It actually proves something stronger.

In fact, one can show a stronger lower bound than m/2. Let μ(G) denote the maximum
size of any matching in G. Let M = {e1, . . ., eμ} where ei := (ui, vi) for each i = 1, . . .,μ, be
any such matching. Consider the following random experiment. For each ei ∈ M , with equal
probability, we choose one of the two possibilities: either ui ∈ A, vi ∈ B or ui ∈ B, vi ∈ A.
For the remaining vertices of V , we assign them randomly to either A or B with probability
1/2. The choices are totally independent of each other. It follows that for each i, Pr(ei ∈
E(A, B)) = 1. For every other edge e ∈ E(G)\M , we have Pr(e ∈ E(A, B)) = 0.5. Hence,
E[X] = μ + m − (μ/2) = m + (μ/2). Hence by R3, we have an edge-cut of size at least
m + μ/2.

Further improvements on the smaller additive term have been explored and tight esti-
mates have been obtained. For a graph G, let f(G) denote the size of the largest spanning
bipartite subgraph of G. Let f(m) denote the least value of f(G) as G ranges over all
graphs having m edges. Edwards [7,8] established that f(m) ≥ (m/2) + (

√
8m + 1 − 1)/8 for

every m. Erdös [9] conjectured that the gap between the f(m) and the above lower bound
can become arbitrarily large for large values of m. This was affirmatively settled by Noga
Alon [10] (using probabilistic arguments) by establishing that f(m) ≥ m/2 +

√
m/8 + cm1/4

(for some positive constant c), for infinitely many values of m. It was also established in
[10] that f(m) ≤ m/2 +

√
m/8 + c′m1/4 (for some positive constant c′), for every m. Thus,

f(m) has been essentially determined (upto constant multiplicative factors for the third
order small term) for infinitely many values of m. The cute proof of the upper bound was
based on exhibiting for every m a graph Gm defined as follows: Gm is the disjoint union
of k complete subgraphs Kni (i = 1, . . ., k) where ni’s are defined as follows: Let n0 = 1.
ni is the largest positive integer such that

(ni

2
) ≤ m − ∑

j<i

(nj

2
)
. It is easy to verify that

f(Gm) ≤ (m/2) +
√

(m/8) + O
(
m1/4

)
.

What happens if we focus only on triangle-free graphs? Let g(m) be the same as f(m)
except that G ranges over all triangle-free graphs having m edges. Improving the earlier
lower bounds of Erdös and Lovasz [11] and Poljak and Tuza [12], shearer [13] established
that g(m) ≥ m/2 + cm3/4 (for some positive constant c) for every m. Alon [10] improves this
further and shows that m/2 + c1m4/5 ≤ g(m) ≤ m/2 + c2m4/5 for every m, where c1, c2 are
some suitable positive constants. Shortly, we now know that g(m) = m/2 + Θ

(
m4/5

)
.

Probabilistic Arguments in Combinatorics � 953

33.4.2 Lower Bounds on Independence Number

For a graph G = (V, E) on n vertices, let α(G) denote the maximum size of an independent
set in G. If Δ denotes the maximum degree of any vertex in G, then any maximal solution
(and hence a maximum solution) should be of size at least n/(Δ+1). Hence α(G) ≥ n/(Δ+1).

A better bound can be obtained by a simple and elegant probabilistic argument. Let
d = (

∑
u du)/n denote the average degree of a vertex in G with d > 0. Choose a random

subset S of V by including each u independently with probability p = 1/d. Then, |S| =∑
u Xu where Xu indicates u ∈ S. Hence, we have E[|S|] = np. Let t denote the number

of edges in G[S]. Then, t =
∑

e∈E(G) Ye where Ye (for e = {u, v}) indicates u, v ∈ S. Also,
E[Ye] = p2 since the vertices defining e are included into S independently. Hence, we have
E[t] = |E(G)| · p2 = ndp2/2. Now, for each edge e ∈ E(G[S]), pick an arbitrary endpoint
of e and remove it. Let I denote the resulting set. I is clearly an independent set. Also,
|I| ≥ |S| − t always. Hence E[|I|] ≥ E[|S|] − E[t] = np − ndp2/2 = n/2d. Hence, by R3, it
follows that Pr(|I| ≥ n/2d) > 0 and hence α(G) ≥ n/2d. Equivalently, since nd = 2m where
m denotes the number of edges in G, it follows that α(G) ≥ n2/4m.

This later lower bound is at least as good as the first one whenever Δ+1 ≥ 2d. Also, there
are many examples where this gives a much better bound. For example, Δ(K1,n) = n and
hence we get α(K1,n) ≥ (n + 1)/(n + 1) = 1 from the first bound. But, d(K1,n) = 2n/(n + 1)
and the second bound gives α(G) ≥ (n + 1)2/4n ≥ n/4, which is much better than the first
bound. While we know that α(K1,n) = n, this comes from our knowledge of the structure of
K1,n. We are aiming to get as strong a lower bound on α(G) as possible in the context of
possessing very little information about G.

Later, Caro [14] and Wei [15] independently established that α(G) ≥ g(G) :=∑
u∈V 1/(du + 1) where du denotes the degree of a vertex u. This bound is always at least as

good as the previous two bounds (for connected graphs) and often yields much better results
also. Applying this to K1,n, we get α(K1,n) ≥ (n/2) + (1/(n + 1)) ≥ n/2.

We present below the beautiful probabilistic proof of this bound of Caro and Wei [14,15]
due to Boppana [2,11]. Without loss of generality, assume that V = {1, . . ., n}. Choose
uniformly at random a total order ‘<’ of V . There are n! such orders. Based on ‘<,’ define
a random set I as follows. I = {u ∈ V : u < v, ∀(u, v) ∈ E}. I is the set of those vertices
which come before their neighbors. Clearly, for every e = (u, v) ∈ E, either u �∈ I or v �∈ I.
Hence I is always an independent set in G. For every u ∈ V , define Iu to be the indicator
random variable for u ∈ I. Then |I| =

∑
u∈v Iu and hence E[|I|] =

∑
u∈V E[Iu]. But, for

any u, E[Iu] = Pr(Iu = 1) = (du)!/(du + 1)! = 1/(du + 1). The second equality follows
by noting that the required probability depends only on the relative ordering of u and its
neighbors and of these there are exactly (du)! orderings which enable u to become a member
of I. Hence, by R3, it follows that Pr(|I| ≥ g(G)) > 0 and hence there exists an ordering for
which |I| ≥ g(G). This implies that α(G) ≥ g(G).

Recently, this bound has been suitably generalized for k-uniform hypergraphs by Caro
and Tuza [17]. A k-uniform hypergraph on H = (V, E) is a collection E ⊆ (V

k

)
of distinct

k-element subsets of V . A subset S ⊆ V is independent in H if e �⊆ S for every e ∈ E. Caro
and Tuza [17] established that

α(H) ≥
∑

u∈V

(
du + 1

t

du

)−1

where t := k − 1 (A).

For graphs (corresponding to k = 2), this bound specializes to the Caro–Wei–Boppana
bound mentioned before. The proof of this bound is based on carefully chosen counting and
structural arguments. An easy consequence of (A) is the following result.

954 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 33.1 [17,18] For every k ≥ 3, there exists dk > 0 such that every k-uniform
hypergraph H has

α(H) ≥ dk ·
∑

u∈V

1
(du + 1)1/t

. (B). �

The simple probabilistic proof of Boppana (outlined before), together with some additional
ideas, can also be shown to yield a new short proof of (B) as has been done by Dutta
et al. [18].

33.4.3 Small Dominating Sets in Graphs

Let G = (V, E) be a graph whose minimum degree is δ. A subset D ⊆ V is a dominating
set in G if, for every u ∈ V , either u ∈ D or v ∈ D for some neighbor v of u. Let γ(G)
denote the minimum size of any dominating set in G. For graphs with minimum degree δ,
using probabilistic arguments, one can obtain (as shown in [2]) an upper bound on γ(G) as
γ(G) ≤ h(G) = n[(1 + ln(δ + 1))/(δ + 1)].

The proof is as follows. For p = ln(δ + 1)/(δ + 1), choose a random subset S of V by
including independently each u with probability p. Now, let S′ denote the set of vertices
u �∈ S such that u has no neighbor in S. Let D = S ∪ S′. Clearly, D is always a dominating
set in G. For every u ∈ V , let Xu denote the indicator variable for u ∈ S and let Yu denote
the variable for u ∈ S′. Note that Xu = 1 ⇒ Yu = 0 for each u. Also, |S| =

∑
u Xu and

|S′| =
∑

u Yu. Hence |D| =
∑

u Xu +
∑

u Yu. Also, E[|S|] = np and E[|S′|] =
∑

u E[Yu]. For
any u, E[Yu] = Pr(Yu = 1) = (1 − p)du+1 ≤ (1 − p)δ+1 ≤ e−p(δ+1) = 1/(δ + 1). Hence
E[|D|] ≤ np + n/(δ + 1) = n[(1 + ln(δ + 1))/(δ + 1)]. Hence, by R3, Pr(|D| ≤ h(G)) > 0.
Hence γ(G) ≤ h(G). It follows that larger the value of δ is, the smaller is the upper bound
on the size of a minimum dominating set. The proof yields a linear-time randomized algo-
rithm for computing such a D. It can also be derandomized to get an efficient, deterministic
algorithm.

Small size dominating sets play a useful role in designing faster algorithms for some NP-
hard problems. For example, linear minimum degree guarantees the existence of a dominating
set of size O(log n) and its efficient computation will help us decide 3-colorability (a NP-
complete problem) in polynomial time. Recently, Narayanaswamy and Subramanian [19]
exploited the presence of dominating sets of size guaranteed above to design faster exact and
exponential time algorithms for the 3-colorability problem. The results are also shown to be
tight in view of a widely held belief (known as exponential time hypothesis) that rules out
the existence of sub-exponential time algorithms for 3-colorability.

The above bound can also be interpreted as an upper bound on γ(G, d) (the minimum
size of a set which dominates all vertices of degree at least d in an arbitrary graph). It follows
that γ(G,

√
n) = O(

√
n(ln n)). A dominating set D of such a size can be used to compute a

shortest path (within an additive error of 2) between each pair of vertices in an unweighted,
undirected graph. The running time is O(n2.5(ln n)). This led to the first combinatorial
algorithm for computing 2-additive approximations to shortest paths. For details, see the
work of Aingwork et al. [20].

A natural and related problem is to find upper bounds on minimum size γc(G) of a con-
nected dominating set in a connected graph G. It was shown by Duchet and Meyniel [21])
that γc(G) ≤ 3γ(G) − 2. This was further sharpened (by employing a more careful proba-
bilistic analysis of the random experiment described before and also some simple structural
arguments) by Caro et al. [22] to γc(G) ≤ n[(1.45 + 0.5

√
ln δ1 + ln δ1)/δ1] where δ1 stands

for δ + 1. Combining this result with the observations in [19], one can now deduce that
3-colorability can be tested in O((1.245)n) time if δ ≥ 15 and in O((1.0905)n) time if δ ≥ 50.

Probabilistic Arguments in Combinatorics � 955

33.4.4 Number of Minimum Cuts in Multigraphs

Let G = (V, E) be a multigraph (without self-loops). G is allowed to have parallel edges
(i.e., multiple copies of an edge {u, v}, where u �= v) but has no self-loop. An edge-cut is any
subset F ⊆ E such that G \ F is disconnected. Every edge cut F is precisely the set of edges
joining vertices in different pieces of some bipartition V = A ∪ B into two non-empty sets.
It is possible that there is more than one such bipartition. We will often specify an edge cut
by one of the corresponding bipartitions. Given an edge cut (A, B), let e(A, B) denote the
number of edges in this cut. A minimum cut (or shortly a min-cut) of G is a cut (A, B) for
which e(A, B) is minimum. We describe below a proof (based on probabilistic arguments)
of the following claim. The proof is probabilistic and algorithmic in nature and follows from
the works of Karger and Stein [23–25].

Claim 33.1 The number of minimum cuts in a connected multi-graph G on n vertices is at
most

(n
2
)
.

Let m denote the number of all edges (counting the parallel ones also). Let c denote the
size of any minimum cut in G. It follows that δ(G) ≥ c where δ(G) denotes the minimum
degree of any vertex in G with the convention that the degree counts the number of edges
(including all parallel ones) incident at any vertex. This is because if du < c for some vertex
u, then ({u}, V \ {u}) is a cut of size less than c contradicting the optimality of c. As a
result, it follows that m = (

∑
u du)/2 ≥ (nc/2). Before we proceed further, we describe some

terminology which play an important role in our proof arguments.
By contracting an edge e (joining u and v) in a graph, we mean (1) removing u and v, (2)

add a new vertex labeled as, say, uv, and (3) for every edge f �= e which joins either u or v
with some w �= u, v, we add the edge {w, uv} . The addition of edges preserves multiplicities
also. For example, if there are 3 copies of the edge {u, w} and 2 copies of the edge {v, w}, then
we add 5 copies of the edge {uv, w}. Also, all multiple edges between u and v get destroyed.
The result is a graph with one vertex less. The newly added vertex represents the subset
{u, v}. It follows by an inductive argument that the result of repeated applications of the
contraction operation on a graph G is a multigraph G′ (without self-loops) such that

1. Each u ∈ V (G′) represents a subset Su of V (G) inducing a connected subgraph of G,

2. Each edge in G′ represents an edge in G joining the corresponding induced subgraphs,

3. The subsets {Su : u ∈ V (G′)} represented by V (G′) forms a partition of V (G),

4. G′ is connected if G is connected,

5. The minimum size of a cut in G′ is at least the size of a minimum cut in G. Hence, if no
edge of a minimum cut (A, B) of G is chosen for contraction, then (A, B) is also a cut
in G′ in the sense that Su ⊆ A or Su ⊆ B for each u ∈ V (G′) and hence a minimum
cut in G′ also. In that case, we say that (A, B) has survived the contraction process.

Hence, the result of n−2 applications of the contraction operation starting from a connected
multigraph on n vertices is a connected multigraph on 2 vertices which admits a unique
minimum cut.

The proof of the claim follows by analyzing the the following random process : Initialize
H = G. Repeatedly (for n − 2 times) pick uniformly (using independent choices) at random
an edge e of the current graph H and contract e to get a new graph H ′ with one vertex less.
Reset H to be H ′.

Let G0 denote the initial graph G stated in the Claim. For i ≤ n − 2, let Gi denote
the graph resulting after the first i random contractions. Fix an arbitrary minimum cut
(C, D) of G. Consider any 1 ≤ i ≤ n − 2. Suppose it is given that (C, D) has survived upto

956 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

the first i − 1 contractions and is a minimum cut in Gi−1. Then, δ(Gi−1) ≥ c and hence
|E(Gi−1)| ≥ (n − i + 1)c/2. Hence,

Pr(some e ∈ E(C, D) is used in the ith contraction step) = c

|E(Gi−1)| ≤ 2
n − i + 1 and

Pr((C, D) survives the ithcontraction) ≥ 1 − 2
n − i + 1 = n − i − 1

n − i + 1
For each i = 0, . . ., n − 2, let Ei denote the event that (C, D) has survived the first i random
contractions and hence is a minimum cut in Gi. From the previous inequality it follows that
Pr(Ei|Ei−1) ≥ (n − i − 1)/(n − i + 1). Also, Pr(E0) = 1 trivially. Hence,

Pr((C, D) survives each of the n−2 contractions) = Pr(En−2)
= Pr(En−2|En−3) . . . Pr(E1|E0) · Pr(E0)

≥ 1
3 · 2

4 · 3
5 . . .

n − 2
n

= 2
n(n − 1) =

(
n

2

)−1

Clearly, if (C, D) survives the random process in some execution, then it is the only minimum
cut of G that survives in this execution. In other words, the events En−2 corresponding to
different minimum cuts of G are mutually exclusive and hence all these probabilities should
sum to at most 1. But each of these probabilities is at least

(n
2
)−1. This implies that the

number of minimum cuts is at most
(n

2
)
.

Summary: What we have established is a statement in structural graph theory. But the proof
of this statement was accomplished by employing probabilistic arguments. We first obtained
a lower bound on the probability that any fixed (but arbitrary) minimum cut surviving a
sequence of random contractions. We also noticed that these events (for different minimum
cuts) are pairwise disjoint. Then we applied the union law on probabilities of events to obtain
the desired conclusion.

33.4.4.1 Near-Minimum Cuts

Suppose a real α ≥ 1 is a half-integer, that is, 2α is an integer. An edge cut (A, B) is an
α-min cut if e(A, B) ≤ αc where c denotes the size of the minimum cut. The proof (based on
probabilistic arguments) presented above can in fact be adapted to establish that the number
of α-min cuts in G is at most

(n
2α

)
22α ≤ n2α. If c = 1, then number of α-min cuts is at most

(n2

�α�
) ≤ n2α. Hence, for the rest of the section, we assume that c ≥ 2. The idea is to continue

the edge contractions only as long as the current multigraph has more than k := 2α vertices.
There are exactly n − k contractions before we reach a graph H on k vertices after which
we choose uniformly at random one of the 2k−1 − 1 non-trivial bipartitions of V (H). Fix
an α-min cut (C, D). Using arguments given before, it can be verified that the conditional
probability that (C, D) survives the ith contraction given that it has survived the first (i−1)
contractions is at least (n − i + 1 − k)/(n − i + 1).

Pr((C, D) survives the n − k contractions and chosen) = Pr(En−k) · 1
2k−1 − 1

≥ Pr(En−k|En−k−1) . . . Pr(E0) · 1
2k

≥ 1
k + 1 . . .

n − k

n
· 1

2k

=
(

n

k

)−1

· 2−k

Probabilistic Arguments in Combinatorics � 957

Since the events corresponding to different α-min cuts surviving and being chosen are mutu-
ally exclusive, we deduce that the number of α-min cuts is at most

(n
2α

)
22α ≤ n2α. What we

have established is a pure structural result on the number of α-min cuts using probabilistic
arguments. The union law on probabilities applied to mutually exclusive events helped us
obtain this upper bound.

This upper bound can be established even if α ≥ 1 is any real using generalized binomial
coefficients. Such a bound and enumeration of all such α-min cuts play an important role in
approximately determining the reliability of a dynamic network. For more details, see [26–28].

33.4.5 List Coloring of Graphs

Here, we obtain upper bounds on the choice number (also known as list chromatic number)
of undirected graphs. Given an undirected graph G = (V, E), a list-assignment L = {Lu :
u ∈ V } of colors is a map assigning (for every u) a list Lu of colors. We say that G is
L-colorable if there exists a proper coloring which assigns (for every u) a color f(u) ∈ Lu

such that f(u) �= f(v) for every (u, v) ∈ E. Otherwise, it is not L-colorable. The choice
number ch(G) (also denoted by χl(G)) is the minimum value of k such that G is L-colorable
for every list assignment L satisfying |Lu| ≥ k for every u ∈ V . When we restrict L to those
list-assignments in which Lu = Lv for every u, v ∈ V , the choice number specializes to the
standard chromatic number χ(G). Hence it follows that ch(G) ≥ χ(G).

For example, ch(K3,3) = 3, whereas χ(K3,3) = 2. Suppose G = K3,3 joins completely the
sets U = {u1, u2, u3} and V = {v1, v2, v3} and label each ui and vi with the set Si = {1, 2, 3}\
{i} and consider the list assignment L where Lui = Lvi = Si for every i, then it can be verified
easily that K3,3 is not L-colorable. and hence ch(G) ≥ 3. To prove ch(G) ≤ 3, consider any
list-assignment L where we assume, without loss of generality, that |Lui | = |Lvi | = 3 for every
i. Suppose there exist c and i �= j such that c ∈ Lvi ∩ Lvj , then we assign f(vi) = f(vj) = c
and f(vk) (k �= i, j) to be any d ∈ Lvk

, then Lul
\{c, d} �= ∅ for every l, there by leading to

a proper coloring. One can argue analogously by exchanging ul’s by vl’s. Hence, we assume
that Lui ∩ Luj = Lvi ∩ Lvj = ∅ for every i �= j. Of the 27 elements in

∏3
i=1 Lvi , at most

three of them can equal some Luj for some j. Any other 3-tuple can be extended to a proper
L-coloring of K3,3. This establishes that ch(K3,3) = 3.

Some natural questions that come to one’s mind are: (i) does there exist a function
f : N → N such that ch(G) ≤ f(χ(G)) for every G? (ii) how big can ch(G) be when
compared to χ(G)? First, we prove that the Question (i) has a negative answer. The following
example illustrates this. It is a generalization of the arguments for ch(K3,3) ≥ 3 and is
provided in detail below.

For any k ≥ 1, denote by [2k + 1] = {1, 2, . . ., 2k + 1}. Let S =
([2k+1]

k+1
)

denote the set
of all (k + 1)-sized subsets of [2k + 1]. Let n denote

(2k+1
k+1

)
. Consider the Kn,n which joins

completely the sets U = {us|s ∈ S} and V = {vs|s ∈ S} and the list-assignment L where
Lus = Lvs = s for every s ∈ S. We claim that Kn,n is not L-colorable. Suppose, on the
contrary, there exists a proper coloring admitted by L with CU and CV denoting respectively
the colors used by this coloring on the vertices of U and V . It follows that CU and CV are
disjoint . However, |CU | ≥ k + 1 since CU ∩ s �= ∅ for each s ∈ S. Analogously, we also
have |CV | ≥ k + 1. Since CU and CV are disjoint, this is not possible. This contradiction
establishes that Kn,n is not L-colorable. This establishes that ch(Kn,n) ≥ k + 2 = Ω(log n).

In view of this negative answer to Question (i), we wonder if there exists a function f(n,χ)
such that ch(G) ≤ f(n,χ(G)) for every G with n = |V (G)|?. Below, we present (by simple
probabilistic arguments) the following bound arrived at independently by several researchers.

Theorem 33.2 For every G on n vertices, we have ch(G) ≤ �f(n,χ(G))� where f(n,χ) =
2χ(ln n).

958 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Here ln(.) refers to the natural logarithmic function. By focussing on bipartite graphs
(corresponding to χ(G) = 2), the previous arguments on ch(Kn,n) imply that this upper
bound is tight upto a constant multiplicative factor for bipartite graphs.

Proof. Let G = (V, E) be a graph on n vertices with k = χ(G). Fix an arbitrary k-coloring
(C1, C2, . . ., Ck) of G. Let L = {Lu : u ∈ V } be any list-assignment of colors to vertices
with the assumption that |Lu| ≥ f(n, k) for each u. Without loss of generality, we assume
that f(n, k) is an integer and also that |Lu| = f(n, k) for every u. Define S = ∪u∈V Lu be
the union of all color lists in L. Choose a mapping f : S → [k] uniformly at random. This
random choice can be thought of as |S| independent random choices (one for each c ∈ S)
where each random choice is uniform over [k]. Now we use this random choice to define a
random truncation of each Lu as follows.

Define (for each u ∈ V) Ku = Lu ∩ f−1(j) where j is the index of the unique color class
Cj containing u. Now, for each u, choose an arbitrary member (if any) cu of Ku to define
a coloring {cu}u. Obviously, this is a proper coloring (if well-defined) admitted by L for all
choices of f . It is admitted by L because, for each u, cu ∈ Ku ⊆ Lu. It is proper because, for
every (u, v) ∈ E with u ∈ Vi and v ∈ Vj (for some i �= j), we have Ku∩Kv ⊆ f−1(i)∩f−1(j) =
∅ and hence cu �= cv. This shows that there exists a proper coloring admitted by L for any
L with each list having f(n, k) colors and hence ch(G) ≤ f(n, k).

By R2, it only remains to establish that, with positive probability, this is a well-defined
coloring. For any fixed (but arbitrary) u, we have

Pr(Ku = ∅) =
(

1 − 1
k

)f(n,k)
≤ e−2(ln n) ≤ 1

n2

and hence Pr(∃u ∈ V : Ku = ∅) ≤ 1
n

Thus, with positive probability, Ku �= ∅ for every u ∈ V and hence {cu}u will be a well-defined
coloring. �
This bound is tight within a constant (i.e., independent of n) multiplicative factor for
bipartite graphs as can be seen from the example of Kn,n. The tightness of this bound (for
the class of graphs with χ(G) ≥ nε, ε fixed but arbitrary) follows from the bounds (partic-
ularly, the lower bound) obtained by Alon [29]. Below, we adopt the following notation: For
r, m ≥ 1, let Km∗r denote the complete r-partite graph with m vertices in each part.

Theorem 33.3 [29] There exist two positive constants c1 and c2 such that for every m > 2
and for every r ≥ 2,

c1r(ln m) ≤ ch(Km∗r) ≤ c2r(ln m).

Proof. (sketch) We provide a sketch of the proof of the upper bound. The lower bound is
established by proving the existence of an explicit labeled graph Km∗r and also by proving
that its choice number is at least the stated lower bound. For the upper bound, the proof of
Theorem 33.3 is based on probabilistic arguments and proceeds as follows: Assume, without
loss of generality, that r is a power of 2. Let (C1, . . ., Cr) be the unique r-coloring of Km∗r.
Let L = {Lu}u (with |Lu| ≥ c2r(ln m) for each u) be any list-assignment. If r ≤ m, then
m ≥ √

n and hence we can apply Theorem 33.2 to deduce the upper bound.
Hence, we assume that r ≥ m. Define S as in the proof of Theorem 33.2 and choose

uniformly randomly a bipartition of S = S1 ∪S2. For each u ∈ ∪j≤r/2Cj , define Ku = Lu ∩S1
and for each u ∈ ∪j>r/2Cj , define Ku = Lu ∩ S2. It can be shown that, with high probability,
|Ku| ≥ |Lu|[1−o(1)]/2 for each u ∈ V . Since the subgraphs induced by the sets T1 = ∪j≤r/2Cj

and T2 = ∪j>r/2Cj are isomorphic, it reduces to proving the result for Km∗r/2 with the list-
assignment {Ku}u. Repeating this argument inductively, it reduces to proving the theorem

Probabilistic Arguments in Combinatorics � 959

for Km∗r′ for some r′ ≤ m which (as explained before) is taken care of by applying Theorem
33.2. The cumulative effect of the [1 − o(1)] factors introduced (in the lower bounds on list
sizes) in successive inductive steps can be taken care of by initially choosing c2 sufficiently
large. �

In the language of n and χ, the above theorem can be stated as c1χ(ln(n/χ)) ≤
ch(K(n/χ)∗χ) ≤ c2χ (ln(n/χ)). The lower bound of Theorem 33.3 establishes that the up-
per bound of Theorem 33.2 is tight within a constant multiplicative factor for any class of
k-colorable graphs as long as k = k(n) satisfies k = O(nδ) for some fixed δ < 1. However,
when χ is nearly linear (i.e., χ(G) ≥ n1−o(1)), Theorem 33.3 provides an asymptotically supe-
rior upper bound for the special graph Kn/r∗r, as against the bound of Theorem 33.2 which
works for any graph.

This naturally leads us to the question of whether the upper bound of Theorem 33.3 can
be extended to any arbitrary graph. Subramanian [30] established that this is indeed possible
even for a more general notion of list multicoloring (also known as list set coloring) and is
stated below. Below, ch(G, b) denotes the b-analogue of ch(G) in which each vertex has to
be given b distinct colors from its list so that adjacent vertices do not share any color in
common.

Theorem 33.4 [30] There exists a constant c > 0 such that for every graph G and for each
b ≥ 1,

ch(G, b) ≤ c(bχ)
[
ln

(
n

χ

)
+ 1

]

In particular, ch(G) ≤ cχ

[
ln

(
n

χ

)
+ 1

]
�

For graphs G whose chromatic number is lower bounded by a linear function of n, the upper
bound of the previous theorem shows that ch(G) = Θ(χ). The proof of this theorem is also
based on probabilistic arguments and its broad outline is the same as that of the proof of
Theorem 33.3. However, certain new complications arise when we consider an arbitrary G.
For example, an arbitrary G can have more than one χ(G)-coloring (unlike the case of Km∗r)
and the size of the two subgraphs induced by T1 and T2 need not be of equal sizes and can
differ very widely. Hence the random bipartition cannot be simply a uniform choice but a
careful random choice which ensures that sizes of the randomly truncated lists Ku have sizes
which are at least the respective guarantees required for further inductive reasoning. There
are few other issues which are skipped here and [30] addresses all these issues and establishes
Theorem 33.4. It also shows how these proof arguments can be made constructive leading
to an efficient algorithm which, given an arbitrary graph G together with an optimal or
nearly optimal coloring and a suitable list assignment L, produces a proper coloring of G
admitted by L.

In a related work, Subramanian [31] continues further and generalizes the results of
Theorem 33.4 in another direction to hereditary choice numbers. A hereditary property P
is a class of labeled graphs which is closed under isormorphism and which also satisfies
the property that for every G ∈ P and for every induced subgraph H of G, H is also
in P . A (k, P)-coloring of G is a vertex coloring of G using k colors such that each color
class induces a subgraph of G which is a member of P . The P-chromatic number (denoted
by χP(G)) is the minimum k such that G admits a (k, P)-coloring. The P-choice number
(denoted by chP(G)) is the list analogue of χP(G). Generalizing the proof arguments of [30],
the following bound on P-choice numbers was obtained in [31].

960 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 33.5 [31] There exists a constant c > 0 such that for every hereditary property P
and for every graph G with n = |V (G)|,

chP(G) ≤ cχP
(

ln
(

n

χP

)
+ 1

)

where χP = χP(G) denotes the P-chromatic number of G. Also, given lists L = {Lu}u of
this size and also an optimal P-coloring of G, one can efficiently find a P-coloring permitted
by L in polynomial time. �

Other related extensions and generalizations of Theorems 33.4 and 33.5 to hypergraphs and
hereditary properties are being presented in [32].

33.4.6 High Girth and High Chromatic Number

Some of the impressive applications of probabilistic arguments have been toward proving the
existence of counterexamples to conjectures which are proposed on the basis of known facts
and intuitive deductions. It follows from the definition of χ(G) that χ(G) ≥ ω(G) where
ω(G) denotes the maximum size of a clique (i.e., a complete subgraph) of G. Odd cycles
C2k+1 are examples showing that χ(G) can be larger than ω(G). If we define G to be the
graph obtained by taking n vertex disjoint odd cycles and joining any two vertices from
different cycles, then it is easy to verify that ω(G) = 2n and χ(G) = 3n. This shows that
χ(G) − ω(G) cannot be bounded by any fixed constant. However, cliques being among the
most dense subgraphs, it was believed for a long time and was also conjectured that there
exists a function f : N → N such that χ(G) ≤ f(ω(G)) for every G.

Erdös [33] refuted this conjecture using probabilistic arguments and showed the existence,
for every k ≥ 3, of triangle-free graphs (i.e., graphs for which ω(G) ≤ 2) having chromatic
number at least k. The simple proof of this statement is described below. For a graph G, we
use α(G) to denote the maximum size of an independent set in G.

For n ∈ N and p ∈ [0, 1], let G(n, p) denote the model of a random labeled graph G on
n vertices V = [n] where each undirected edge {i, j} ∈ (V

2
)

is chosen to be in E(G) with
probability p and the random choices for the

(n
2
)

2-sets are totally independent. Hence, for
any fixed graph H over V , Pr(G = H) = pm · (1 − p)(

n
2)−m where m = |E(H)|. For the proof

below, we fix p = n− 5
6 .

There are
(n

3
)

3-sets and for each 3-set S = {u, v, w} ∈ (V
3
)
, define an indicator random

variable XS as follows: XS = 1 if G[S] is a trianlge in G and XS = 0 otherwise. E[XS] =
Pr(XS = 1) = p3. Let X =

∑
S XS denote the number of triangles in G. Clearly, E[X] =∑

S E[XS] =
(n

3
)
p3 ≈ n1/2/6. By applying Markov Inequality (Fact 2.3), we have Pr(X >

n3/4) ≤ n−0.25/6 = o(1). Hence, X ≤ n0.75 with probability at least 1 − o(1). Let T be
a canonically defined minimum sized set which intersects with each of the X triangles in
G. Clearly, |T | ≤ X. Hence, (C1): with probability 1 − o(1), V \ T induces a triangle-free
subgraph of G and has at least n − n0.75 ≥ n/2 vertices.

Define a := �4(ln n)/p�. For every sufficiently large n, we have a ≥ 3(ln n)/p + 1. For any
fixed set S of a vertices, the probability that S induces an independent set in G is exactly
(1 − p)(

a
2) ≤ e−pa(a−1)/2 ≤ e−3a(ln n)/2 = n−3a/2. Hence,

Pr(α(G) ≥ a) = Pr(∃S ⊆ V : |S| = a, G[S] is an independent set in G)

≤
(

n

a

)
n− 3a

2 ≤
(
n · n− 3

2

)a ≤
(
n−0.5

)a
= o(1)

Probabilistic Arguments in Combinatorics � 961

Hence, (C2) with probability at least 1 − o(1), G (and hence every induced subgraph of G)
has no independent set of size at least a. Combining (C1) and (C2), we have with probability
1 − o(1),

χ(G[V \ T]) ≥
n
2

a − 1 ≥ np

8(ln n) = n
1
6

8(ln n) .

Thus, with positive probability, for every k ≥ 3, there exists an infinite family of graphs,
each of which is triangle-free and has chromatic number at least k.

In fact, Erdös [33] proved something stronger: for every l, k ≥ 3, there are graphs G
having no cycle of length less than l, and having chromatic number at least k. For this claim,
X would be defined as the number of all cycles of length less than l and p would also be
defined suitably.

33.4.7 Global Coloring and Local Coloring

Another natural and seemingly correct hypothesis to conjecture is as follows: There exists a
positive constant k such that any graph G is k-colorable provided every induced subgraph
of G on n/(ln n) vertices is 3-colorable. The guarantee of 3-colorability of every n/(ln n)-
sized subgraph might lead one to hope that this is possible perhaps through a sequence of
local color changes. The following theorem of Erdös [34] rules out such possibilities even if
we employ stronger assumptions about 3-colorability of induced subgraphs. This shows that
chromatic number cannot be determined from local properties. More precisely, the following
result is established.

Theorem 33.6 [34] For every k, there exists an ε > 0 such that for every sufficiently large
n, there exists a graph G on n vertices such that χ(G) > k but χ(G[S]) ≤ 3 for every S with
|S| ≤ εn.

Proof. Let k be any fixed (but arbitrary) positive integer. The proof is based on random
graphs. Consider a random graph G drawn from the model G(n, p) with p = c

n where c is a
sufficiently large positive constant. We assume that ε > 0 is a sufficiently small constant.

Claim 33.2 χ(G) > k with probability 1 − o(1).

Proof. Suppose, on the contrary, that χ(G) ≤ k. Then G has an independent set of size
at least n/k. For the sake of simplicity, we assume that n/k is an integer. Then, for each
sufficiently large n,

Pr(χ(G) ≤ k) ≤ Pr(α(G) ≥ n/k)
≤ Pr(∃S : |S| = n/k, S is independent in G)

≤
(

n

n/k

)
· (1 − p)(

n/k
2) ≤ (ek)n/k · e− pn(n−k)

2k2

≤ e
n(ln k+1)

k · e− cn

3k2 ≤ e−n(c−3k(ln k+1)
3k2) = o(1)

In the last line, we have used our assumptions: (1) k is fixed; (2) c and n are sufficiently
large. �

Claim 33.3 Every graph F with χ(F) > l has an induced subgraph H with δ(H) ≥ l.

Proof. Suppose not. We construct a linear ordering of the vertices of F by repeatedly removing
an arbitrary vertex of minimum degree in the current remaining graph. Every vertex will

962 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

have at most l − 1 neighbors among vertices that come after it. Hence, a simple inductive
argument starting from the last vertex establishes that F is l colorable contradicting our
assumption.
Hence existence of an induced subgraph F on at most εn vertices with χ(F) > 3 would
imply the existence of an induced subgraph H on at most t ≤ εn vertices with δ(H) ≥ 3
and consequently, having at least 3t/2 edges. As a result,

Pr(∃S : |S| ≤ εn,χ(G[S]) > 3) ≤ Pr(∃T : |T | ≤ εn, |E(G[T])| ≥ 3|T |/2)

≤
∑

t≤εn

(
n

t

) [(t
2
)

3t
2

] (
c

n

) 3t
2

≤
∑

t≤εn

[
en

t
·
(

et

3 · c

n

) 3
2
]t

=
∑

t≤εn

[
e

5
2 c

3
2

3 3
2

·
(

t

n

) 1
2
]t

=
∑

t≤εn

Xt

where X denotes the expression within the parentheses. For t ≤ n1/2, we have X = O(1/n1/4)
and hence

∑
t≤n1/2 Xt = o(1). For n1/2 ≤ t ≤ εn, by choosing ε sufficiently small, we have

X ≤ 1/2 and hence
∑

n1/2≤t≤εn Xt = O(2−n1/2) = o(1). Hence, for every sufficiently large n,
with probability 1 − o(1), the random graph G is such that χ(G) > k and χ(G[S]) ≤ 3 for
every S with |S| ≤ εn. �

33.4.8 Tournaments of Specified Type

An oriented graph is obtained by orienting each edge of an undirected graph. A tournament
T = (V, A) is an oriented graph obtained by orienting the edges of complete undirected graph
on V . They can be used to model outcomes of games between players in a tournament. Each
vertex represents a player and each edge represents the outcome of the play between the
players. u → v means that u has won v in the unique game played between u and v.
A natural question that arises and which was raised by Schuttle, is : given a k, is it true that
there exists a tournament in which for every set of k players, there is a player who beats
each of them? Erdös [35] has shown that this question can be answered quite easily using
probabilistic arguments. For a given k, we say that a tournament T satisfies property Sk if,
for every set of k players, there is some player who defeats each of the k players.
Theorem 33.7 [35] For every k, there exists a N such that for every n ≥ N , there is a
tournament on n vertices satisfying Sk.
Proof. Consider a random tournament T on V = [n] obtained by orienting independently each
undirected edge {i, j} in one of the two directions with equal probability. Fix an arbitrary S ⊂
V of size k. An arbitrary v �∈ S beats each member of S with probability 2−k. Equivalently,
v is won over by some u ∈ S with probability 1 − 2−k. The events (of losing to some member
of S) associated with different v ∈ V \ S are independent since the edge sets determining
any two such events are pairwise disjoint. Thus, for any fixed S,

Pr(no player can defeat each u ∈ S) = Pr(∀v ∈ V \S, ∃u ∈ S : u → v) =
(
1 − 2−k

)n−k

Hence,

Pr(T does not satisfy Sk) = Pr(∃S, |S| = k, no player can defeat each u ∈ S)

≤
(

n

k

)
·
(
1 − 2−k

)n−k
:= t(n, k)

Probabilistic Arguments in Combinatorics � 963

For a given k, the ratio t(n + 1, k)/t(n, k) = (1 + k/(n − k + 1)) · (1 − 2−k) ≤ 1 − 2−(k+1) for
every sufficiently large n. This implies that for some suitably large N , t(n, k) < 1 for every
n ≥ N . By (R1), the theorem is proved. �
We can significantly strengthen the definition of the above property and also prove the
existence of tournaments satisfying the strengthening. A special case of such a strengthening
and the associated existence was in fact employed by Kostochka et al. [36] in proving their
upper bounds on oriented chromatic numbers of undirected graphs. A more careful analysis
of these arguments by Aravind and Subramanian [37] led to further improved bounds. See
the subsection on oriented chromatic numbers for further details. We recall the following
notation from [36]. For an oriented graph G = (V, A), and a subset I = {x1, . . ., xi} of
V and a vertex v �∈ I such that v is adjacent to each xj , we use F (I, v, G) to denote
the vector a = (a1, . . ., ai) where, for each j ≤ i, aj = 1 if (v, xj) ∈ A and aj = −1 if
(xj , v) ∈ A. We have assumed and used the ordering of I induced by the natural ordering
on [n].

Given d, s ≥ 1, we say that a tournament T = (V, A) satisfies property Td,s if, for every
I ⊆ V, |I| = i ≤ d and for every a ∈ {−1, 1}i, there are more than s vertices v ∈ V \ I with
F (I, v, T) = a. We prove (using probabilistic arguments) the following theorem not known
before.
Theorem 33.8 There exists a N = N(d, s) such that for every d, s ≥ 1, there is a tourna-
ment T = (V, A) on n vertices satisfying the property Td,s, for every n ≥ N(d, s).
Proof. Consider a random tournament T = (V, A) on n vertices obtained by randomly and
independently orienting each edge of Kn in one of the two directions with equal probability.
We assume that n ≥ 2d so that we can write n as n = d2dX + d where X ≥ 0 is a
real. We will specify later how big X should be. It follows that (n − d)/2d = dX and
n/d = 2dX + 1 ≤ 2d+1X.

Fix an i ≤ d and fix any I ⊆ V of size i. Also, fix a vector a ∈ {1, −1}i. Define the
random variable

XI,a = |{u ∈ V \ I : F (I, u, T) = a }|.
It is easy to verify that XI,a is the sum of n − i independent and identically distributed
indicator random variables each having the common expectation 2−i. Hence it follows that

μI,a = E(XI,a) = (n − i)2−i ≥ (n − d)2−d.

Also, by the well-known Chernoff–Hoeffding bounds (see Section 2), it follows from choosing
X so large that (n − d)2−d = dX ≥ 10s ≥ (2s)/(2 − √

3),

Pr(XI,a ≤ s) = Pr(XI,a − μI,a ≤ s − μI,a)
≤ e−μI,a(1−s/μI,a)2/3 ≤ e−μI,a/4 ≤ e−(n−d)/(4·2d)

Hence, for the event E defined by E = ∃I, a : |I| ≤ d, XI,a ≤ s, we have

Pr(E) ≤ d ·
(

n

d

)
· 2d · e−(n−d)/(4·2d)

≤ e− n−d

4·2d +d(ln 2e)+ln d+d(ln n
d)

≤ e− dX
4 +d(ln 2e)+ln d+d(d+1)(ln 2)+d(ln X)

≤ e−d(X
4 −(ln 2e)− ln d

d
−(d+1)(ln 2)−(ln X)) < 1

where the last strict inequality follows by assuming that X is suitably large, say, X ≥ 64d.
Thus, for X0 = max{64d, 10s/d}, we infer that with positive probability, there exists a
tournament on n vertices (for every n ≥ d2dX0 + d) satisfying Td,s. We have not made any
attempt to optimize the value X0 and it can be brought down further. �

964 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

33.4.9 Bounds on Oriented Chromatic Numbers

An oriented graph is a graph obtained from a simple undirected graph by orienting each
edge in one of the two possible ways. Thus, from an undirected graph on m edges, we get
2m oriented graphs. Sopena, in [38], introduced the notion of oriented chromatic number for
oriented graphs. Let �G and �H be two oriented graphs. A homomorphism of �G to �H is a
mapping φ from V (�G) to V (�H) such that for every arc (x, y) in E(�G), (φ(x),φ(y)) is an arc
in E(�H). This mapping is also called an oriented coloring of �G using �H.

The oriented chromatic number of an oriented graph �G is the smallest order |V (�H)| of a
�H for which a homomorphism φ : �G → �H exists. Note that we can assume, without loss of
generality, that �H is a tournament (an oriented graph in which there is an arc between any
two distinct vertices). Equivalently, χo(�G) is the smallest k ≥ 1 such that there is a proper
k-coloring (V1, . . ., Vk) of V (�G) such that for every i �= j, all edges joining Vi and Vj are
oriented in the same way.

Sopena [38] also extended this definition to undirected graphs. The oriented chromatic
number χo(G) of an undirected graph G is the maximum value of χo(�G) where the maximum
is over all orientations �G of G. Upper and lower bounds for the oriented chromatic number
have been obtained in terms of the maximum degree and upper bounds have been obtained
for various special families of graphs such as trees, planar graphs, partial k-trees, grid graphs
[39], and so on.

We present below an upper bound on χo(G) in terms of its maximum degree Δ(G). Even
though better bounds are known, we present this one because it can be established by simple
structural arguments not seen before. It is not straightforward to see that such a bound
exists. For a graph G, we use χ2(G) to denote its distance-2 chromatic number, that is, the
minimum k such that G admits a proper k-coloring f such that f(u) �= f(v) whenever u and
v share a common neighbor. Note that χ2(G) ≤ min{Δ2, n} always.

Theorem 33.9 For any undirected G with Δ(G) = d and χ2(G) = k, χo(G) ≤ k2k+d if k ≤
2d and χo(G) ≤ kd

(k
d

)
2d if k > 2d. Both of these can be upper bounded as χo(G) ≤ d3(6d)d.

Proof. Fix any orientation �G of G. Let (V1, . . ., Vk) be a distance-2 coloring of G. For every
i �= j, each u ∈ Vi has at most one neighbor in Vj . We capture this neighbor information
alongwith the direction of edges by associating a k-vector αu with each u as follows. Suppose
u ∈ Vi has l ≤ d neighbors one each in Vj1 , . . ., Vjl

. Then, αu is defined to be αu(j) = 0
if u has no neighbor in Vj , αu(j) = 1 if u has a neighbor v ∈ Vj and {u, v} is directed
as u → v in �G and αu(j) = −1 if u has a neighbor v ∈ Vj where {u, v} is directed as
v → u. The total number L of possible values for αu are at most

∑
0≤l≤d

(k
l

)
2l which itself

is upper bounded by 2k+d if k ≤ 2d and d
(k

d

)
2d if k > 2d. For every possible k-vector α

such that α = αu for some u ∈ V , define Cα = {u ∈ V : αu = α}. Now, for each Vi, color
each u ∈ Vi with f(u) = (i,αu). For each i and for each of the L possible vectors a, define
Ci,a = {u : f(u) = (i, a)}. Since each Ci,a is a subset of Vi, it is independent.

Claim 33.4 {Ci,a}(i,a) forms an oriented coloring of �G.

Proof. Suppose there are (i, a) �= (j, b), x, w ∈ Ci,a, y, z ∈ Cj,b such that x → y, z → w ∈
E(�G). Clearly, i �= j. We have αx = αw = a and αy = αz = b. We also have αx(j) = αz(i) = 1
and αy(i) = αw(j) = −1. Since αx = αw, this is a contradiction. This establishes the
claim.

The total number of different colors used is kL. Using the upper bounds on L, we get the
desired bounds stated before. �

Probabilistic Arguments in Combinatorics � 965

The above bound is based on counting and structural aspects of graphs. However, the worst-
case value of this bound has a dd factor and this can be brought down to a 2d factor by
employing probabilistic arguments. By setting d = Δ and s = Δ2, Theorem 33.8 guarantees
the existence of a tournament on O(Δ22Δ) vertices satisfying TΔ,Δ2 . As mentioned before,
we did not optimize on the constant hidden in O() notation and in fact, one can show
the existence of such a tournament T (as was shown in [36]) on at most 2Δ22Δ vertices.
Kostochka et al. [36] demonstrated how to obtain a coloring of any orientation of G using
vertices of T thereby establishing that χo(G) ≤ 2Δ22Δ for any graph G.

We present below a brief sketch of the proof of this bound. Fix any orientation �G of G.
Choose an arbitrary linear ordering vn, . . ., v2, v1 of the vertices. For each i, let Gi denote
the induced subgraph G[{v1, . . ., vi}]. Color the vertices inductively in the order v1, v2, . . ., vn

always maintaining the the following property after every coloring of a vertex.
Suppose vertices v1, . . ., vm have been colored with f(v1), . . . f(vm) ∈ V (T), respectively.

Then,

1. f restricted to �Gm is an oriented coloring of �Gm.

2. For any j > m, all neighbors of vj in �Gm are colored with distinct colors.

Now consider v = vm+1 and let I = {vj1 , . . ., vji} (i ≤ Δ) be the neighbors of v in �Gm+1
and let �a denote F (I, v, �Gm+1). Let IT = {f(vj1), . . ., f(vji)}. Since T satisfies TΔ,Δ2 , there
are at least Δ2 + 1 vertices w ∈ V (T) such that F (IT , w, T) = �a. Among these, at most Δ2

vertices u are such that if vm+1 is colored with u, (ii) might be violated for some j > m + 1.
Hence, there exists a color u ∈ V (T) \ IT such that f(vm+1) = u extends the partial oriented
coloring of �Gm to a partial oriented coloring of �Gm+1. Continuing this, we get an oriented
coloring of �G using V (T). Since �G was arbitrary, this establishes that χo(G) ≤ 2Δ22Δ.

The proof of this bound was further refined by Aravind and Subramanian [37] to yield a
better bound. Here, you set d = d(G) and s = dΔ where d(G) denotes the degeneracy of G,
that is, the maximum value of the minimum degree of any induced subgraph of G. This led
to an upper bound of 16Δd2d on χo(G). Note that this replaces a factor Δ2Δ in the previous
bound by d2d and will result in a significant improvement for those G having d � Δ. As a
consequence, we get an O(Δ) bound on graphs of bounded degeneracy, like planar graphs.

33.4.10 Bounds on Constrained Colorings

A proper k-coloring of an undirected G = (V, E) is a labeled partition (V1, . . ., Vk) of V such
that each Vi is an independent set. Vi’s are known as color classes. The minimum value of k
for which G admits such a k-coloring is the chromatic number of G and is denoted by χ(G).
We look at the application of probabilistic arguments to obtain bounds on colorings with
some constraints added between color classes. We study a few examples of such colorings.

33.4.10.1 Frugal Colorings

Suppose, for a proper k-coloring, we also require that no vertex has more than b neighbors
in any color class. Such a coloring is called a b-frugal k-coloring. The minimum k for which
such a coloring exists is known as the b-frugal chromatic number of G and is denoted by
χfr

b (G). A 1-frugal coloring is also known as a distance-2 coloring since any two vertices
which are either adjacent or share a common neighbor are colored distinctly. The following
bound follows from a simple application of LLL.

Theorem 33.10 There exists an absolute constant c > 0 such that χfr
b (G) ≤ cd (b+1)/b for

any integer b ≥ 1 and for any graph G with maximum degree d.

966 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. We assume that c is sufficiently large. Let C = cd (b+1)/b. We assume that C is an
integer for simplifying the arguments. If not, we redefine C to the ceiling of the expression
on right-hand side. Ignoring the ceiling can be easily justified. Choose uniformly at random
a coloring f : V → [C]. We will show that f is a proper, b-frugal coloring with positive
probability, thereby showing the existence of such a coloring. This, in turn, establishes the
claim of the theorem. We define the following collection of bad events and provide their
associated probabilities.

Type 1: For every uv ∈ E, let Euv denote the event that f(u) = f(v) ; Pr(Euv) = 1/C.

Type 2: For every u and for every S ⊆ N(u) with |S| = b + 1, let Eu,S denote the event that
f(v) = f(w) for all v, w ∈ S. Pr(Eu,S) = 1/Cb.

f is a b-frugal coloring if and only if no event of each of Types 1 and 2 occurs. Also, each
event E of any of the two types is mutually independent of all other events which do not
share any vertex with event E. Thus, E is mutually independent of all other events but at
most kd events of Type 1 and kd

(d
b

)
events of Type 2 where k denotes the number of vertices

defining E. We now define the reals yE required by the LLL as follows: yE = (2/C)k−1 where
k was defined before. It now only suffices to verify the associated set of inequalities and this
is achieved by verifying that

1 ≤ 2 ·
(

1 − 2
C

)2d

·
(

1 − 2b

Cb

)2d(d
b)

.

Using (1 − 1
x)x ≥ 1/4 for all x ≥ 2, this is true if

1 ≤ 2 · 4− 4
cd1/b · 4− 2b+1

cb

which is clearly true if we choose c = 16. �
We have not tried to optimize the constant c. When b = 1, χfr

1 (G) ≤ d2 + 1 by a simple
inductive way of coloring. The notion of frugal colorings was introduced by Hind et al. [40]
as a tool to bound the total chromatic number of a graph. They also obtained the result of
Theorem 33.10 but with a weaker constant c = e3. It was also estblished in [40] that the
bound is nearly tight in the following sense: For any β ≥ 1 and for infinitely many values of d,
there are explicit bipartite graphs (based on a (β+2)-dimensional projective geometry) with
maximum degree d having β-frugal chromatic number at least d (β+1)/β/(2β). It was also
established that any graph G with a sufficiently large maximum degree d admits a (ln d)8-
frugal coloring using d + 1 colors. In their subsequent work on total colorings, Hind et al.
[41] improved the frugality to (ln d)5 again using d + 1 colors.

33.4.10.2 Acyclic Colorings

Suppose, in a proper k-coloring (V1, . . ., Vk) of G, we require that the induced subgraph
G[Vi ∪Vj] be acyclic for every i �= j. Equivalently, we require that there is no 2-colored cycle.
The minimum k such that G admits such a k-coloring is known as its acyclic chromatic
number and is denoted by a(G). It might be tempting to conclude that an acyclic coloring
can be obtained from a proper coloring by performing suitable local operations to take care
of 2-colored cycles and thereby establish that a(G) is close to χ(G). The futility of this
approach is illustrated by Kn,n := (A ∪ B, A × B). In any acyclic coloring of Kn,n, either
each vertex of A is a color class by itself or each vertex of B is a color class by itself. Hence
a(Kn,n) ≥ n+1. In fact a(Kn,n) = n+1 by keeping each vertex of A as a color class and B as

Probabilistic Arguments in Combinatorics � 967

another color class. This shows that a(G) cannot bounded by a function of χ(G). However, a
1-frugal coloring of G is also an acyclic coloring and hence a(G) ≤ d2 + 1 for any graph with
maximum degree d. This raises the question of how tightly one can bound a(G) as a function
of d. In fact, Alon et al. [42] have shown that there is a positive constant c > 0 such that
a(G) ≤ cd4/3 for any G. The proof of this bound is based on an application of LLL. They
also show that this upper bound is nearly tight in the sense that for each of infinitely many
values of d, there is a graph G with maximum degree d and a(G) ≥ cd4/3/(ln d)1/3 where c
is a positive constant independent of d. To keep the arguments simple, we present the proof
of a weaker upper bound in what follows.

Theorem 33.11 There exists a positive constant c > 0 such that : a(G) ≤ cd3/2 for any
graph G with maximum degree d.

Proof. Let C = cd3/2 and as before assume, without loss of generality, that C is an integer. Let
f : V → [C] be uniformly chosen. Consider the following bad events with their probabilities.

Type 1: For every uv ∈ E, let Euv denote the event that f(u) = f(v) ; Pr(Euv) = 1/C.

Type (2,k): For every k ≥ 2 and for every cycle C of length 2k in G, let EC,2k denote the
event that C is properly 2-colored. Pr(EC,2k) ≤ 1/C2k−2.

f is an acyclic coloring if no event of each of Types 1 and 2 occurs. Each event E is mutually
independent of all other events but at most ld events of Type 1 and ld2k−1 events of Type
(2, k) where l denotes the number of vertices defining E. We now define the reals yE required
by the LLL as follows : yE = 2/C if E is of Type 1 and yE = (2/C)2k−2 if E is of Type
(2, k). To prove the theorem, it only suffices to verify the associated set of inequalities and
this is achieved by verifying that

1 ≤ 2 ·
(

1 − 2
C

)2d

·
∏

j≥2

(
1 −

(2
C

)2j−2
)2d2j−1

and

1 ≤ 2 ·
(

1 − 2
C

)(kd)/(k−1)
·

∏

j≥2

(
1 −

(2
C

)2j−2
)(kd2j−1)/(k−1)

Using (1 − 1
x)x ≥ 1/4 for all x ≥ 2, this is true if

1 ≤ 2 · 4− 4
c
√

d · 4−
∑

j≥2
22j−1d

c2j−2dj−1

which is clearly true if we choose c = 16. �

33.4.10.3 Other Constrained Colorings

Likewise, one can also require that G[Vi ∪ Vj] is a star forest for every i �= j. This is a more
restricted version of acyclic coloring and is known as a star coloring of G. The associated
chromatic number is known as the star chromatic number of G (denoted by χs(G)). Obviously,
χs(G) ≥ a(G) but it is also upper bounded by 16d3/2 (as can be seen from the proof of
Theorem 33.11). This bound is also tight within a multiplicative factor of

√
ln d as was

shown by Fertin et al. [43]. The notions of acyclic coloring and star coloring were introduced
by Grünbaum [44].

The above two bounds raise the question of whether one can obtain similar upper bounds
for other types of constrained colorings. This was raised and studied in a generalized frame-
work by Aravind and Subramanian in [45]. For a family F of graphs, we say that G is F -free

968 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

if G does not have any subgraph which is isomorphic to some H ∈ F . Given j ≥ 2 and a
family F of connected j-colorable graphs H on more than j vertices each, a (j, F)-coloring
of G is a proper vertex coloring such that the union of any j color classes induces a F -free
subgraph. The minimum number of colors required in any such coloring is known as the
(j, F)-chromatic number of G and is denoted by χj,F (G). Reference [45] establishes that this
number is upper bounded by cd(k−1)/(k−j) where c > 0 is a constant depending only on j and
F . A star coloring is a (2, F)-coloring with F = {P4} (P4 is a path on four vertices) and a
b-frugal coloring is a (2, F)-coloring where F = {K1,b+1}. As a result, the respective upper
bounds (provided before) on these numbers are derived as special cases of this general result.
Bounds on other interesting variants of constrained colorings can also be derived and the
details can be found in [45]. For example, one can obtain bounds on the chromatic numbers
with two or more restrictions required to be satisfied simultaneously.

Aravind and Subramanian also studied the edge analogues of constrained colorings in [46]
and obtained bounds on the corresponding chromatic indices. Again, we study proper edge
colorings satisfying that union of any j color classes (matchings here) is F -free. For example,
acyclic edge coloring is a proper edge coloring with no 2-colored cycle. The acyclic chromatic
index a′(G) is upper bounded by 16d for any graph. This is in contrast with a(G) which
can become nearly d4/3. Reference [46] presents upper bounds on such chromatic indices.
As a consequence of these bounds, some interesting conclusions like the following are also
presented: With O(d) colors, any graph G (of maximum degree d) can be properly edge
colored so that the coloring satisfies simultaneously (1) union of any three color classes is an
outerplanar graph, (2) union of any four color classes is a partial 2-tree, (3) union of any five
color classes is planar, and so on. For more details, see [46].

All of these bounds (for both vertex and edge colorings) were obtained using probabilistic
arguments. Analogous derivations which are as simple as the probabilistic ones and which are
based on structural arguments are currently not known. These bounds and their derivations
illustrate the power and applicability of the probabilistic method.

33.4.11 Waring Bases

This is an example which involves an uncountable probability space and a probability mea-
sure. Still, we present it because of the simplicity of the solution obtained by Erdös. Let N
denote the set of all positive integers. A subset X ⊆ N is an asymptotic basis of order k if
every sufficiently large n ∈ N can be represented as an ordered sum of k distinct elements
from X. We use Rk

X(n) to denote the number of such representations of n using elements
of X. A trivial upper bound is nk−1. There are bases which achieve this bound within a
constant multiplicative factor. For example, set X = N . For the ease of presentation, assume
that k divides n and let m := n/k (otherwise, define m := �n/k�). Now consider the set
R := {(ni)k

i=1 : 1 ≤ n1 < n2 < · · · < nk−1 ≤ m, nk = n − (n1 + · · · + nk−1)}. Since
|R| =

(m
k−1

)
= Θ(nk−1), we have that Rk

X(n) = Θ(nk−1), for every fixed k ≥ 2.
An interesting question to ask is: are there bases having fewer representations? In partic-

ular, one wishes to know if there is a basis X with Rk
X(n) ≤ no(k). In 1932, Sidon posed the

question of whether there exists a basis X of order 2 for which R2
X(n) ≤ no(1), to Erdös. Erdös

hoped to solve it within a few days but it took more than two decades to answer it positively.
The wait was worth since the solution obtained by Erdös [47] was much stronger and was
a very simple probabilistic one. We present below this beautiful application of probabilistic
method.

Theorem 33.12 [47] There exists a subset X ⊆ N such that R2
X(n) = Θ(ln n).

Proof. For some sufficiently large constant c > 0 (whose value can be chosen easily later)
and for any m ∈ N , define pm := c

√
ln m/m if the RHS expression is less than 1 and

Probabilistic Arguments in Combinatorics � 969

pm := 1 otherwise. For all sufficiently large m, pm < 1. Now choose a random subset X ⊆ N
by including each m into X with probability pm. The choices are independent for different
m’s. Let tm denote the indicator variable for m ∈ X. It follows that Xn := R2

X(n) =∑
i+j=n,i<j titj . Each 1 ≤ i ≤ n − 1 is part of exactly one pair and hence Xn is a sum of

�(n − 1)/2� independent indicator variables each with expectation E[titj] = pipj . Hence,
μn := E[Xn] =

∑
i+j=n,i<j c2√

(ln i)(ln j)/ij + o(1). Using standard approximations, it can
be shown easily that μn = Θ(ln n). By choosing c sufficiently large, we can ensure that
μn/12 ≥ 2(ln n).

Applying Chernoff bounds (Fact 2.5 of Section 33.2) to Xn, we deduce that Pr(|Xn−μn| ≥
μn/2) ≤ 2e−μn/12 ≤ 2/n2. Thus, for every sufficiently large n, with probability at least
1 − 2n−2, we have μn/2 ≤ Xn ≤ 3μn/2. Since

∑
n 2n−2 converges, an application of Borel-

Cantelli Lemma (see [3]) shows that Xn ∈ [μn/2, 3μn/2] for every sufficiently large n, with
probability 1 (with respect to the probability measure governing X). This proves the existence
of a Waring basis X such that R2

X(n) = Θ(ln n). �

For k = 3, by redefining pm := c
(
ln m/m2)1/3, we have Xn := R3

X(n) =
∑

i<j<k:i+j+k=n titjtk

is the number of representations of n as a sum of terms from X. We can again show that
μn := E[R3

X(n)] = Θ(ln n) but Xn is no longer a sum of independent indicator variables, it
is a sum of O(n2) variables which are dependent. Hence, Chernoff bounds cannot be applied
as before. However, Erdös and Tetali found a way of analyzing Yn and established that Yn

is concentrated it around its mean with a very small failure probability. As a result, arguing
as before, one can show that R3

X(n) = Θ(ln n). In fact, the same was shown for any fixed
k ≥ 3. See [48] for more details.

By interpreting Rk
X(n) as a homogeneous degree-k polynomial in variables t1, . . ., tn and

applying the concentration results for such variables, Vu [49] provided an alternative proof
of the Θ(ln n) bound of [48]. In fact, Vu obtained something stronger in the sense that the k
integers from X (whose sum equals n) need not be distinct and the same number can be used
more than once. The number T k

X(n) of such representations is certainly as large as Rk
X(n)

but for some X, we have T k
X(n) = Θ(ln n). A still further generalization was also established

in [49]. Suppose a1, . . ., ak are k fixed positive integers such that gcd(a1, . . ., ak) = 1. Let
Qk

X(n) be the number of representations such that n = a1x1 + · · · + akxk where xi ∈ X for
each i. Again, Vu [49] established by probabilistic arguments the existence of a X ⊆ N such
that Qk

X(n) = Θ(ln n).
For a subset X ⊆ W and a positive integer s, we say that X is a basis of order s

if T s
X(n) ≥ 1 for every n ≥ 1. W denotes the set of all nonnegative integers. Another

generalization considered by Vu is related to the classical Hilbert–Waring theorem (see the
survey by Vaughan and Wooley [50]) which asserts that for every fixed k, there exists a
g = g(k) such that Wk is a basis of order g (and hence of order s for every s ≥ g). Here,
Wk denotes the set {nk : n ∈ W}. The theorem was first conjectured by Waring in 1770 and
was proved by Hilbert [51] in 1909. Exact determination of g(k) has been done for all values
of k (see [50] for details). For example, it is now known that g(2) = 4, g(3) = 9, g(4) = 19
[52], g(5) = 37, g(6) = 73 [53], and so on. Vinogradov and also others (see [54]) established
the asymptotic order to be T s

Wk(n) = Θ
(
n

s
k

−1
)

for every s ≥ g(k). Thus, the number of
representations is quite large for the standard basis Wk.

Any subset X ⊆ Wk satisfying T s
X(n) ≥ 1 (for every n) is referred to as a subbasis of

Wk of order s. A natural question that arises is whether, for every sufficiently large s, there
exists a subbasis X of Wk of order s admitting fewer representations. Vu [55] establishes
the existence of such a subbasis : ∀k ≥ 2 ∃g(k) : ∀s ≥ g(k), there exists a subbasis (of
order s) X ⊆ Wk for which T s

X(n) = Θ (ln n). The proof is based on studying a random
sequence X = (ai)i of kth powers obtained by choosing each nk ∈ Wk with probability

970 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

pn = cn−1+ k
s (ln n)1/s for some suitable constant c > 0 and p0 = 0. Analyzing this random

sequence for the number of representations, using recent concentration results (obtained by
Vu himself) on random variables which are degree-s polynomials over indicator variables for
various mk, the above-stated claim is established in [55].

In another direction, one can also focus on the density Y (n) of a basis Y , instead of the
number of representations. The density Y (n) (for every n) is defined as |{m ≤ n : m ∈ Y }|.
As noticed in [55], for the random sequence X mentioned before, by applying a simple double
counting argument (based on the Θ(ln n) bound), it follows that X(n) = O

(
n1/s(ln n)1/s

)

answering affirmatively a question of Nathanson [56] who asked if there exists a subbasis Y

of Wk of order s for which Y (m) = O(m 1
s

+o(1)). It is also easy to see that the density of any
such subbasis Y ⊆ Wk of order s should satisfy Y (n) = Ω(n1/s) thereby establishing that
density of X is best possible upto the no(1) factor.

33.4.12 Sum-Free Subsets

This is again an application involving a probability space which is not finite or countable. We
present it for the sake of its beauty. A set A of integers is sum-free if (A + A) ∩ A = ∅ where
A + A := {a + b : a, b ∈ A}. That is, no two (not necessarily distinct) members of A add
up to another member of A. For a set A of non-zero integers, let s(A) denote the maximum
size of a sum-free subset of A. Using simple probabilistic arguments, Erdös [57] obtained a
lower bound on s(A) in terms of |A|. We present below this bound and a very simple proof
argument of this (due to [58]).

Theorem 33.13 For any A of n non-zero integers, s(A) ≥ n/3.

Proof. For a real x, let f(x) denote the fractional part of x, that is, f(x) = x − �x� =
x (mod 1). Choose μ ∈ [0, 1) uniformly at random. Define μA := {a ∈ A : 1/3 ≤ f(μa) <
2/3}. We claim that μA is sum-free. Suppose there exist a, b, c ∈ μA with a + b = c. Then,

f(μc) = f(μ(a + b)) = f(μa + μb) = f(μa) + f(μb)

where the last addition is a (mod 1) addition. Since this is impossible by the choice of a, b, c,
it follows that μA is sum-free. Since Pr(a ∈ μA) = 1/3 for any a ∈ A, the expected size
of μA is n/3. Hence, for some μ ∈ [0, 1), we have |μA| ≥ n/3. This establishes the lower
bound. �

For every fixed A (of size n), f(εa) �∈ [1/3, 2/3) for every a ∈ A if ε ≤ 1/5mA or if
ε ≥ 1 − 1/5mA where mA := max{|a| : a ∈ A}. This implies that Pr(μA = ∅) ≥ 2/5mA.
Since mA is a positive constant for a fixed A and since E[|μA|] = n

3 , this implies that there
exists an ε > 0 such that |εA| > n/3. Since |εA| is integer valued, this implies the existence
of a sum-free subset of size at least (n + 1)/3. Thus, we actually have s(A) ≥ (n + 1)/3 for
any A as pointed out by Alon and Kleitman [59]. The currently best known lower bound is
due to Bourgain [60] who proved that s(A) ≥ (n + 2)/3 for any A ⊆ N .

Define f(n) := min{s(A) : |A| = n}. As pointed out in [58], f(n) is subadditive (meaning
f(m + n) ≤ f(m) + f(n)) which is known to imply that limn→∞f(n)/n exists and equals
infn f(n)/n. We denote this limit (known as the sum-free subset constant) by δ. Erdös [57]
obtained that δ ≤ 3/7. That δ ≤ 1/2 can be seen by considering the sets [n] = {1, . . ., n}.
Further improved estimates of δ were obtained later, like 12/29 by Alon and Kleitman [59]
and 11/28 by Lewko [61]. Recently, Eberhard et al. [58] established that δ = 1/3 thereby
determining the constant exactly. Even so, it is still not known if f(n) ≥ (n/3) +ω for some
ω → ∞ and remains a challenging problem.

Probabilistic Arguments in Combinatorics � 971

Alon and Kleitman [59] also generalized the problem to sets of non-zero elements of finite
abelian groups. Precisely, it was shown that any subset A of non-zero elements of a finite
abelian group admits a subset A′ ⊆ A such that (i) A′ is sum-free and (ii) |A′| > 2|A|/7.
They also observed (based on a result of Rhemtulla and Street [62]) that the constant 2/7 is
optimal. In fact, [59] even extends the bound 1/3 to measurable subsets of one-dimensional
torus T (the group of reals [0, 1) under (mod 1) addition). It is shown that for every ε > 0
and for every measurable A ⊆ T , there is a measurable and sum-free A′ ⊆ A such that
μ(A′) > (1/3 − ε)μ(A).

Bourgain [60] also looks at the k-sum-free extension, for arbitrary but fixed k but for sets
of positive integers. A set of positive integers A is k-sum-free if for any multi-set of k elements
from A, their sum is not in A. sk(A) is the maximum size of a k-sum-free subset of A. One can
generalize the probabilistic arguments of Theorem 33.13 to obtain that sk(A) > |A|/(k + 1).
Using tools from harmonic analysis, [60] establishes that s3(A) > |A|/4+ c log |A|/ log log |A|
for some positive constant c. It is also established that for any choice of δk satisfying sk(A) >
δk|A| (for every finite A), it should be that Limk→∞δk = 0.

33.5 RANDOM GRAPHS

Random graphs have become a powerful tool in the hands of researchers to study the prop-
erties of a typical graph. They can also be used as test inputs to compare different algorithms
for their performances. They are also used to model the random and dynamic nature of real-
life networks like communication networks. The study of random graphs was inspired by the
work of Erdös and Renyi [63] which is generally considered to be the most influential work
in the area of random graphs. This work brought out several surprising and interesting prop-
erties of random graphs and helped in inspiring further work in this area. In this exposition,
we will focus mainly on a model introduced by Gilbert [64] and which is often referred to as
Erdös–Renyi model of random graphs and is denoted by G(n, p).

G(n, p) model. Assume, without loss of gnerality, that V = {1, 2, . . ., n}. In this model,
a random graph G = (V, E) is drawn as follows. For each e ∈ (V

2
)
, include e ∈ E with

probability p, that is Pr(e ∈ E) = p. The random choices are independent for different
e ∈ (V

2
)
. We use G ∈ G(n, p) to denote a random graph drawn in this way. For any F ⊆ (V

2
)

with |F | = m, the probability that G equals (V, F) is exactly pm · (1 − p)(
n
2)−m.

While studying random graphs, we are interested in the typical behavior of a n-vertex
random graph in the asymptotic (as n → ∞) scenario. We consider a fixed but arbitrary
infinite sequence of random graphs on n vertices for each n ≥ 1. Precisely, for any p = p(n) :
N → [0, 1], consider the infinite sequence of random graphs {Gn ∈ G(n, p)|n ≥ 1}. One
is usually interested in knowing the typical properties, a phrase which captures properties
which hold with a probability very close to 1. Also, one is usually interested in the asymptotic
scenario, that is, we wish to study the typical properties possessed by random graphs on
all sufficiently large number of vertices. An example of such a question would be : Given
{Gn ∈ G(n, p)}n, is it true that Pr(χ(G) ≤ 3) → 1 as n → ∞. Sometimes, it is possible that
the limit may not exist or it may approach a value other than 1, say 0 or 0.75. This is still an
asymptotic study but is not about a typical property. For every n, an event En is any set of
graphs over V = [n]. For a sequence {E = En}n of events, we say that G ∈ G(n, p) satisfies
E asymptotically almost surely (a.a.s.) if Pr(Gn satisfies En) → 1 as n → ∞.

The classic work [63] was mostly focussed on another related and equivalent (in a quan-
tifiable sense) model, denoted by G(n, m), defined below.

G(n, m) model. V = {1, . . ., n}. Choose uniformly at random E ⊆ (V
2
)

with |E| = m. For

any F ⊆ (V
2
)

with |F | = m, the probability that G = (V, E) equals (V, F) is exactly
((n

2)
m

)−1
.

972 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

One can also view this model as G(n, p) model conditioned on |E(G)| = m. Again, one can
fix an infinite sequence of models {G ∈ G(n, m)}n for some m = m(n) : N → N with
m(n) ≤ (n

2
)

always and analyze this sequence for the asymptotic behavior of its members.
The two models are related to each other and often proving statements for one model is
reduced to proving similar statements for the other model. Below, we focus mostly on the
G(n, p) model for analyzing some graph properties.

The following technical observation will be often applied in several of derivations below.

Lemma 33.2 Suppose X1, . . ., Xm be a sequence of indicator variables with respective means
μ1, . . .,μm and let X = X1 + · · · + Xm. Let μ := E[X] =

∑
i μi. Then,

V ar(X) = E[(X −μ)2] =
∑

i,j

E[(Xi −μi)(Xj −μj)] =
∑

i

V ar(Xi)+
∑

i�=j

E[XiXj]−μiμj .

Here, the second summation is over ordered pairs (i, j) with i �= j. �

In what follows, we present (with formal justifications) some interesting properties possessed
by random graphs. For more details and for a comprehensive treatment of the mathematical
theory of random graphs, the reader is referred to the following excellent books [2–4]. For an
exposition of different models of random graphs, the reader is referred to the book by Rick
Durrett [65].

33.5.1 Existence of Triangles

Assume that p = p(n) is such that p = x/n where x = x(n) is an arbitrary function. We want
to determine the asymptotic limit (if it exists) of the probability of Gn containing a triangle
K3. For every S ∈ (V

3
)
, let XS denote the indicator variable for S inducing a K3 in G. We have

μS := E[XS] = p3 for every S. Let X =
∑

S XS denote the number of K3’s in G. Then, G has
a triangle if and only if X > 0. We have μ := E[X] =

∑
S E[XS] =

∑
S p3 =

(n
3
)
p3 ≈ (np)3/6.

If x(n) → 0 then μ → 0 and hence Pr(G has a K3) ≤ μ → 0 by Markov’s inequality. Hence,
with probability approaching 1 (as n → ∞), G has no triangle.

Suppose x(n) → ∞. By Chebyschev Inequality, it follows that Pr(X = 0) ≤ V ar(X)/μ2.
We also have, by applying Lemma 33.2,

V ar(X) =
∑

S

V ar(XS) +
∑

S �=T

E(XSXT) − μSμT

≤
∑

S

μS +
∑

S

μS

⎛

⎝
∑

T :|S∩T |=2
E(XT |XS = 1)

⎞

⎠

= μ + μ ·
⎛

⎝
∑

T :|S∩T |=2
E(XT |XS = 1)

⎞

⎠

= μ + 3μ · (n − 3)p2

The first inequality uses the fact that when S and T share at most one vertex, XS and
XT are independent and hence E[XSXT] = μSμT . The second last equality relies on the
homogeneous nature of the model, that is, the parenthesized quantity in the second sum-
mation is uniformly the same for all S. This quantity is the sum of 3(n − 3) (one for each
pair of an edge in S and a vertex outside S) identically distributed indicator variables with
common expectation p2. Thus, V ar(X)/μ2 ≤ μ−1 + 3μ−1np2 = o(1) since μ → ∞ and
μ−1np2 ≈ 6/(n2p) = o(1) using our assumption p = x(n)/n. This shows that with probabil-
ity approaching 1 (as n → ∞), we have X > 0 and hence G has a triangle.

Probabilistic Arguments in Combinatorics � 973

Note 1: (i) For a graph property P , a function q(n) ∈ [0, 1] is a threshold function for
satisfying P if it satisfies: (i) Pr(G ∈ G(n, p)) satisfies P) → 0 for any p(n) = o(q(n)) and
(ii) Pr(G ∈ G(n, p)) satisfies P) → 1 for any p(n) = ω(q(n)), or vice versa. The previous
analysis shows that q = 1/n is a threshold for G having a K3.

Note 2: A slight modification of the previous arguments actually prove the following: If
p ≥ ω(n)/n, then for every fixed ε > 0, with probability 1 − o(1), the number X of triangles
in G satisfies X ∈ [(1 − ε)μ, (1 + ε)μ]. This is an example of a typical property satisfied by
Gn in the asymptotic setting.

33.5.2 Being Connected

Below, we show that there are probability functions q = q(n) and r = r(n) such that a.a.s.:
either G is not connected if p ≤ q−r or G is connected if p ≥ q+r. q(n) is known as a threshold
probability for G being connected. q is considered as a sharp threshold if r(n) = o(q(n)).

Theorem 33.14 Let ω = ω(n) → ∞ be any sufficiently slowly growing function. Define
q(n) = (ln n)/n and r(n) = ω(n)/n. Then, with probability 1 − o(1), the following holds:

1. If p ≥ q + r, then G is connected.

2. If p ≤ q − r, then G is not connected.

Moreover, q(n) is a sharp threshold since ω(n) can be arbitrarily small compared to ln n.

Proof. Without loss of generality, we assume that p = q + r (or p = q − r) depending
on whether we want to prove (1) (or (2)). We first prove (1). Equivalently, we show that
Pr(G is not connected) → 0. G is not connected if and only if there exists a S ⊆ V , |S| ≤
n/2, such that there is no edge in G between S and V \ S. For 1 ≤ k ≤ n/2, let Ek denote
the event that there exists such a S with |S| = k. We have

Pr(Ek) ≤
(

n

k

)
(1 − p)k(n−k) ≤

(
en

k
(1 − p)n−k

)k

≤
(

en

k
e−np(1− k

n
)
)k

≤
(

en

k
e−(ln n+ω)(1− k

n
)
)k

≤
(

en
k
n

k
e−ω(1− k

n
)
)k

≤
(
e

(
n

k
n

− ln k
ln n

)
e−ω

2

)k ≤
(1
ω

)k

In the above derivation, we have used (i)
(n

k

) ≤ (en/k)k, (ii) k ≤ n/2 and (iii) ln m/m is a
decreasing function of m. As a result, we have

Pr(G is not connected) = Pr(∃k ≤ n/2 : Ek) ≤
∑

1≤k≤ n
2

ω−k = o(1)

We now prove (2). For each u ∈ V , let Xu denote the indicator variable for u being isolated
in G. Then, for any u, μu := E[Xu] = (1 − p)n−1. If X :=

∑
u Xu denotes the number of

isolated vertices, then μ := E[X] = n(1 − p)n−1 ≥ n(1 − p)n. We have

μ ≥ n(1 − p)n = ne−np[1+O(p)] ≥ ne−(ln n−ω)[1+O(p)] ≥ n−O(p)eω ≥ [1 − o(1)] · eω → ∞.

Also,

Var(X) =
∑

u

Var(Xu) +
∑

u�=v

E(XuXv) − μuμv

≤
∑

u

μu + n2
(
(1 − p)2n−3 − (1 − p)2n−2

)

= μ + μ2 ·
(
(1 − p)−1 − 1

)
= μ + μ2 ·

(
p

1 − p

)

974 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Hence,

Pr(G has no isolated vertex) = Pr(X = 0) ≤ Var(X)
μ2 ≤ μ−1 + p

1 − p
= o(1)

using μ → ∞ and p/1 − p = o(1) due to our assumption about p. This shows that

Pr(G is not connected) ≥ Pr(G has an isolated vertex) = 1 − o(1).

Thus, ln n/n is a sharp threshold for being connected. �

33.5.3 Emergence of a Giant Component in the Vicinity of 1/n

In their seminal paper, Erdös and Renyi [63] studied the asymptotical evolution of G ∈
G(n, m) as m = m(n) goes from 0 to N :=

(n
2
)
. They discovered that there are several critical

regions during which a sudden and surprising change occurs. Using standard reductions, it
follows that similar phenomena occur as G ∈ G(n, p) evolves from p(n) = 0 to p(n) = 1. We
focus on the G(n, p) model. As an example, for every fixed ε > 0, with probability 1 − o(1),
there is a sudden jump in the structure of G during the interval [(1 − ε)/n, (1 + ε)/n] from
having no connected component of size more than O(log n) to having a unique connected
component of size Θ(n) with every other component of size at most O(log n). The sudden
emergence of a giant component (in the language of Erdös–Renyi) around p = 1/n is similar
to the sudden change in the physical form of water around freezing point or around its
boiling point and hence is often referred to as a phase transition. This sudden emergence
or vanishing of a property around specific choices of p(n) is one of the most interesting and
curious phenomena about random graphs.

In what follows, we provide a formal derivation of this phase transition around p = 1/n.
On account of the importance of this phenomenon, several proofs (some of these based on
Galton–Watson branching processes) have been obtained before but we present below a sim-
ple and elegant proof due to Krivelevich and Sudakov [66] which exploits the basic properties
of a well-known graph exploration heuristic known as depth-first search (DFS) whose usage
was pioneered by Hopcroft and Tarjan to design efficient graph algorithms (see, e.g., [67]).

DFS. W.l.o.g. assume that V = {1, 2, . . ., n}. The DFS is an algorithm which, starting
from vertex 1, traverses the edges of the graph and visits all vertices reachable from 1 and
thereby discovers the component containing 1. If there are vertices still unvisited, it picks
the smallest of these and repeats the procedure again and continues until all vertices have
been visited. At any point of time, DFS maintains three sets of vertices S (vertices whose
exploration is over), T (vertices which have not been visited yet) and U = V \(S∪T) (vertices
which have been visited but the exploration is not complete yet). U is maintained as a stack
(last-in and first-out data structure which maintains elements in a top-down fashion in the
reverse order of their arrivals and access is only for the top element always). T is always
maintained in the sorted order. DFS starts with S = U = ∅ and T = V and goes on until
T ∪U = ∅. The algorithm works in rounds. During each round, if u is the last vertex added to
U , it finds the smallest neighbor v (in T) of u and shifts it from T to top of the stack. If u has
no neighbor in T , then u is shifted from U to S. This completes a round and the algorithm
proceeds to the next round. When U becomes empty, it starts again from the smallest vertex
in T and shifts it to U . The following observations can be inferred about DFS.

1. Consider the time period between two instants when a vertex is about to be added
to an empty U and the next time it has become empty. We call this an epoch of the
execution. The sets of vertices which have been shifted from T to U and then from U
to S during an epoch constitute a connected component of G.

Probabilistic Arguments in Combinatorics � 975

2. The set of vertices in U at any instant are part of some connected component of G.
Also, they constitute a path (in the order in which they were added).

3. At any instant, the sets S and T are such that there is no edge joining a vertex in S
with a vertex in T .

To find the smallest neighbor (in T) of u, the algorithm needs to make queries about edges
(in the form of neighbor queries) joining u and vertices in T until it obtains a YES answer.
The random outcomes of these queries are independent with each outcome being a YES
with probability p. We capture these random answers by a N =

(n
2
)
-length vector (Xi)N

1 of
identical and independent random bits. The ith bit corresponds to the ith query posed by the
algorithm. By studying the properties of such a vector of random bits, we can infer properties
about the random graph. Since every YES answer to a query results in a vertex being moved
from T to U , we notice that (A) after the first t queries, we have |S ∪ U | ≥ ∑t

i=1 Xi. The
inequality is in fact strict since the first vertex of each component discovered so far has
been added to S ∪ U without posing any query. It also follows that (B) |U | ≤ 1 +

∑t
i=1 Xi

after t queries. The analysis exploits the following simple observation about (Xi)i whose
proof (based on an application of Chernoff bounds and Chebyschev inequality) can be found
in [66].
Lemma 33.3 [66] Let ε > 0 be a sufficiently small constant. The sequence (Xi)N

i=1 of iid
indicator variables each with probability p satisfies the following:

1. Let p = (1 − ε)/n. Then, for k = k(n) := 7(ln n)ε−2, with probability 1 − o(1), for
every subsequence of kn consecutive variables in (Xi)i, less than k of these are set to
1.

2. Let p = (1 + ε)/n and N0 = εn2/2. Then, with probability 1 − o(1),

i.
∑n7/4

i=1 Xi ≤ n5/6, and

ii. For every t : n7/4 ≤ t ≤ N0, | ∑t
i=1 Xi − (1 + ε)t/n| ≤ n2/3.

The above lemma leads to the following threshold for the existence of a giant (whose size is
linear in n) component.
Theorem 33.15 [66] Let ε > 0 be fixed and sufficiently small. Let G ∈ G(n, p). Define
ql(n) = (1 − ε)/n and qh(n) = (1 + ε)/n. k = k(n) is as defined in Lemma 33.3. Then, with
probability 1 − o(1), the following holds:

1. If p ≤ ql, then every connected component of G is of size at most k(n).

2. If p ≥ qh, then G contains a connected component on at least εn/2 vertices.
Proof. For each of the cases (1) and (2), one can assume, without loss of generality, that p = ql

and p = qh respectively. Also, we assume that the sequence (Xi)i which defines G ∈ G(n, p)
and guides the DFS satisfies respectively the conclusions (i) and (ii) of Lemma 33.3.

We first prove (1). Suppose that G contains a component C of size more than k. Consider
the epoch which discovers C and consider the time instant just before the (k + 1)-st addition
of a vertex of C. Each (except the first) of the k vertices of C which have already made to
S ∪ U have been added on account of a YES answer to a query to (Xi)i. Each such query
(successful or not) corresponds to an edge incident at one of these k vertices and the number
of such edges is at most

(k
2
)

+ k(n − k) < kn. This implies that (Xi)i has a subsequence of
at most kn consecutive bits in which there are at least k 1’s present, a contradiction to (i)
of Lemma 33.3.

976 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

We now prove (2). Applying Lemma 33.3, we obtain the following observations:

O1: Applying (B) and (ii) of Lemma 33.3, we deduce that |U | ≤ 3εn/4 throughout the
execution till we reach the first N0 queries.

O2: |S| cannot decrease as the execution of DFS evolves. Also, |S| < n/3 just after the
first N0 queries. Otherwise, at the time instant immediately after |S| becomes n/3, we
have |T | = n − |S| − |U | ≥ n/3 (since ε is sufficiently small) and hence DFS would
have queried all of the |S||T | ≥ n2/9 > N0 potential edges within the first N0 queries,
a contradiction.

O3: Applying (A) and (ii) of Lemma 33.3, we have |S ∪ U | ≥ (1 + ε)t/n − n2/3 just after
the first t queries, for every n7/4 ≤ t ≤ N0.

O4: For every n7/4 ≤ t ≤ N0, U cannot be empty just after the first t queries because then
that would imply that |S| = |S ∪ U | and also (using |S| < n/3) that DFS will have
made at least

|S||T | = |S|(n − |S|) ≥
((1 + ε)t

n
− n

2
3

) (
n − (1 + ε)t

n
+ n

2
3

)

≥ (1 + ε)t − (1 + ε)2 t2

n2 − 2n
5
3 ≥

(
1 + ε

2 − ε2 − ε3

2

)
t − 2n

5
3 > t

queries within the first t queries, a contradiction.

Hence, U is not empty after every t ∈ [n7/4, N0] queries. This means that vertices added to
U during this interval are part of the same connected component and the number of such
vertices is at least

N0∑

i=n
7
4

Xi ≥ (1 + ε)N0
n

− n
2
3 − n

5
6 ≥ εn

2 for all large n.

This establishes that, with probability 1 − o(1), there is some component on at least εn/2
vertices. �
The dependence on ε in both regimes (i) Θ(ε−2)(ln n) being the order of the maximum size
of any connected compoennt in the regime p ≤ (1 − ε)/n and (ii) Θ(ε)n being the order of
the size of the largest connected component in the regime p ≥ (1 + ε)/n, are both of correct
order of magnitude (see [3] and [4]). Also, for p ≥ (1+ε)/n, there is a path on at least ε2n/5
vertices in G and this also follows from analyzing the DFS algorithm as shown in [66].

What happens when p = (1 ± o(1))/n? Alon and Spencer [2] (based on the extensive
published work on this topic like those of [68–72]) identify within the range Θ (1/n) five
subregions of p = c/n where the connected components of G exhibit some interesting phe-
nomena. In particular, they focus on L1 where Lk (for k ≥ 1) stands for the size of the
kth largest connected component of G. They also study the complexities of the components
where the complexity of a component is the excess number of edges it has in addition to the
edges of any spanning tree. A component is simple if it is either a tree or is unicyclic. Below
we present a very brief sketch of these subregions and state their properties (which hold with
probability 1 − o(1)). For more details, the reader is referred to [2] and the related references
therein.

1. Very subcritical: c = 1 − ε, ε is any sufficiently small positive constant. In this regime,
L1 = Θ

(
ln n/ε2)

(upper bound shown in Theorem 33.15) and all components are
simple.

Probabilistic Arguments in Combinatorics � 977

2. Barely subcritical: c = 1 − ε where ε = λn−1/3 for some 0 ≤ λ = o(n1/3) and λ → ∞.
In this regime, all components are simple, L1 = Θ(n2/3λ−2 ln λ) and also Lk ≈ L1 for
every fixed k.

3. Critical: c = 1 ±ε where ε = λn−1/3 for some constant real λ. In this regime, for every
fixed k ≥ 1, Lk = Θ(n2/3).

4. Barely supercritical: c = 1 + ε where ε = λn−1/3 for some 0 ≤ λ = o(n1/3) and
λ → ∞. In this regime, every component other than the largest is simple and the
largest component has a complexity approaching infinity. Also, L1 ≈ 2λn2/3 and L2 =
Θ(n2/3λ−2(ln λ)).

5. Very supercritical: c = 1+ε, ε is any sufficiently small positive constant. In this regime,
L1 = Θ(εn) and L2 = Θ(ln n). Further, every component (except the largest) is simple
and the largest component has a complexity approaching infinity.

It is interesting to note that the largest component has size Θ(n2/3) throughout the criti-
cal regime on both sides of the threshold 1/n. See also [73] for a discussion on the barely
supercritical regime.

33.5.4 Diameter of Random Graphs

The random graph G ∈ G(n, p) has a small diameter. If p(n) ≥ 4(ln n)/n, then diam(G) ≤
c(ln n)/ ln ln n with probability 1 − o(1) for some positive constant c, as shown by Subrama-
nian in [74]. For denser random graphs, the diameter is at most 2 a.a.s. Below, we state and
prove a sharp threshold for the property of diam(G) ≤ 2.

Theorem 33.16 Let ω = ω(n) → ∞ be any suitably growing function. Define qh(n) =√
2(ln n) + ω/

√
n and ql(n) =

√
2(ln n) − ω/

√
n. Then, with probability 1 − o(1), the fol-

lowing holds:

1. If p ≥ qh, then diam(G) ≤ 2.

2. If p ≤ ql, then diam(G) ≥ 3.

Moreover, q(n) =
√

2(ln n)/
√

n is a sharp threshold since qh − ql can be made arbitrarily
small (by appropriately choosing ω(n)) compared to q(n).

Proof. We first prove (1). Without loss of generality, assume that p = qh. For every u �= v,
let Eu,v denote the event that u and v do not share a common neighbor. We have

Pr(Eu,v) = (1 − p2)n−2 ≈ (1 − p2)n ≤ e−np2 = e−2(ln n)−ω ≤ 1
n2eω

for every u �= v. Hence,

Pr(diam(G) ≥ 3) ≤ Pr(∃u �= v : Eu,v) ≤
(

n

2

)
1

n2eω
→ 0

Thus, when p ≥ qh, diam(G) ≤ 2 with probability 1 − o(1).
We now prove (2). Without loss of generality, assume that p = ql. For every u �= v, let

Xuv denote the indicator variable for the event that u and v are not joined by a path on at
most 2 edges. Then, μuv := E[Xuv] = (1 − p)(1 − p2)n−2 ≈ eω/n2 for every u �= v. Define
X =

∑
u�=v Xuv denote the number of such pairs. It follows that diam(G) ≥ 3 if and only if

X > 0. Also, E[X] =
∑

u�=v μuv =
(n

2
)
μ12 ≈ eω

2 → ∞ as n → ∞.

978 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

To calculate the variance, fix any u �= v. Consider any w �= x such that {u, v} �= {w, x}.
There are two cases, namely, |{u, v} ∩ {w, x}| = 0 or 1. We first consider the case {u, v} ∩
{w, x} = ∅. The number of such {w, x}’s is

(n−2
2

)
. We have

E2 := E[XuvXwx] = (1 − p)2 · (1 − p2)2n−8 ·
(
(1 − p)4 + 4p(1 − p)3 + 2p2(1 − p)2

)

E2
1 := E[Xuv]E[Xwx] = (1 − p)2 · (1 − p2)2n−4

E2 − E2
1 = (1 − p)2 · (1 − p2)2n−8 ·

(
4p3 − 7p4 + 4p6 − p8

)

≈ (1 − p)2 · (1 − p2)2n−8 · 4p3 = O

(
p3e2ω

n4

)

We now consider the case {u, v} ∩ {w, x} �= ∅. The number of such {w, x}’s is 2(n − 2).
Assume, without loss of generality, that w = u. We have

E2 := E[XuvXux] = (1 − p)2 ·
(
(1 − p) + p(1 − p)2

)n−3

= (1 − p)2 ·
(
1 − 2p2 + p3

)n−3

≈ (1 − 2p2)n ·
(
1 + O(np3)

)
· (1 − O(p))

= e2ω

n4 ·
(
1 + O(np3)

)

E2
1 := E[Xuv]E[Xux] = (1 − p)2 · (1 − p2)2n−4 ≈ (1 − p2)2n · (1 − O(p))

= e2ω

n4 · (1 − O(p))

E2 − E2
1 = e2ω

n4 · O(np3) = O

(
p3e2ω

n3

)

Summing E2 − E2
1 over all possible choices of {u, v} �= {w, x}, we obtain that

∑

{u,v}�={w,x}
E2 − E2

1 ≤ n4 · O

(
p3e2ω

n4

)
+ n3 · O

(
p3e2ω

n3

)
= O

(
p3e2ω

)

Hence, Pr(X = 0) ≤ Var(X)
μ2 ≤ μ−1 + O

(
p3) → 0 since μ → ∞.

It follows that diam(G) ≥ 3 with probability 1 − o(1). �

Similar thresholds can be shown to exist for (every fixed l ≥ 2) for G ∈ G(n, p) to have
diameter at most l. This follows from the works of [3,75]. We state the result without proof.
See [76] for an earlier work on weaker results on diameter of random graphs.

Theorem 33.17 Let ω = ω(n) → ∞ be any growing function. For any fixed l ≥ 2, define
ql

H(n) =
(
(2(ln n) + ω)/nl−1)1/l and ql

L(n) =
(
(2(ln n) − ω)/nl−1)1/l. Then, with probability

1 − o(1), the following holds:

1. If p ≥ ql
H , then diam(G) ≤ l.

2. If p ≤ ql
L, then diam(G) ≥ l + 1.

Moreover, ql(n) =
(
2(ln n)/nl−1)1/l is a sharp threshold since ql

H −ql
L can be made arbitrarily

small (by appropriately choosing ω(n)) compared to ql(n).

Probabilistic Arguments in Combinatorics � 979

33.5.5 Concentration of Invariants

Another type of phenomenon that repeatedly occurs is the concentration of the likely values of
a graph invariant in a narrow band. Let f(G) ∈ N be a nonnegative integral valued graph in-
variant. Examples of such invariants are: (1) the maximum size ω(G) of a clique, (2) the max-
imum size α(G) of an independent set in G, (3) the chromatic number χ(G), (4) the maximum
size p(G) of an induced path, (5) the maximum size T (G) of an induced tree, (6) the diameter
diam(G), and so on. Even though the set of values that an invariant (say ω(G)) potentially
takes can be large (like ω(G) ∈ {1, . . ., n}), the actual values are highly concentrated in a
very small band of consecutive integers (like ω(G) ∈ {k, k + 1} for some k = k(n, p)), with
probability 1−o(1). This is known as the concentration phenomena. This is another interest-
ing and surprising fact about random graphs whose study has been influenced by powerful
tools from probability theory and which has also motivated the development of new tools in
probability theory. In what follows, we illustrate this phenomenon with few examples.

33.5.5.1 Concentration of diam(G)

It follows from Theorem 33.17 that for every fixed l ≥ 2, diam(G) is exactly l (with proba-
bility 1 − o(1)) provided p satisfies ql

H(n) ≤ p ≤ ql−1
L (n). For p satisfying ql

L(n) < p < ql
H(n),

with probability 1 − o(1), diam(G) ∈ {l, l + 1}. As a consequence, it follows that for ev-
ery fixed ε > 0, there exists a definition of f(n) = 1 − o(1) such that for every suffi-
ciently large n, diam(G ∈ G(n, p)) is a single value with probability at least f(n) as long as
p ∈ In ⊆ [n−1+ε, 1] where In is a set whose Lebseque measure approaches 1 asymptotically.

As for sparser random graphs are concerned, we set p = n−1+o(1). Bollobas [77] showed
that diam(G) is concentrated on at most four values provided np = (ln n)+ω and ω → ∞. He
further strengthened (see [3], Chapter 10) and showed that the value is in fact concentrated on
at most two values provided np = ω·(ln n) for some ω → ∞. In a later work, Chung and Lu
[78] established that diameter is concentrated on at most three values provided np = c(ln n)
for some constant c > 2. It was also shown that the concentration is in a band of two values
if c > 8. If np = c(ln n) for δ ≤ c ≤ 1 (where δ > 0 is any positive constant), then G is not
necessarily connected and we redefine diam(G) to be the diameter of its largest connected
component. In this case, it is shown in [78] that diam(G) is concentrated in a band of at most
2�δ−1�+4 values. Note that this regime corresponds to the scenario where G is not connected
but has a unique giant component of linear size. For some related work on diameter when
np < 1, see the work of Luczak [79].

33.5.5.2 Concentration of ω(G) and α(G)

We first focus on ω(G). Consider G ∈ G(n, 1/2). Consider any 1 ≤ k ≤ n. For each k-subset
S, let XS be the indicator variable for S inducing a complete subgraph of G. Let X =

∑
S XS .

For each S, we have νS := E[XS] = 2−(k
2) and μk := E[X] =

∑
S νS =

(n
k

)
2−(k

2).
Let ε > 0 be any small constant. Define kh := �2(log2 n) − 2(log2 log2 n) + 2ε+

2(log2 e) − 1�. Also, define kl := �2(log2 n) − 2(log2 log2 n) − 2ε + 2(log2 e) − 1�. We have,
for k = kh,

μk ≤
(

en

(2 − o(1))(log2 n) · 2−(log2 n)+(log2 log2 n)−ε−log2 e+1
)k

≤
(
2−ε/2

)k → 0

Hence, Pr(ω(G) ≥ kh) = Pr(X > 0) ≤ μk → 0.

980 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

But for k = kl,

μk ≥ 1 − o(1)√
2πk

·
(

en

(2 − o(1))(log2 n) · 2−(log2 n)+(log2 log2 n)+ε−log2 e+1
)k

≥ 1 − o(1)√
2πk

· 2kε → ∞

We now establish that Pr(ω(G) < kl) → 0. As in the case of triangles (discussed before),
it reduces to establishing that the common value (i.e., independent of S ∈ (V

k

)
) of ΔS :=∑

T :2≤|S∩T |≤k−1 E(XT |XS = 1) satisfies ΔS = o(μk). Note that

ΔS =
∑

2≤l≤k−1

(
k

l

)(
n − k

k − l

)
2−(k

2)+(l
2)

≤ μk ·
⎛

⎝
∑

2≤l≤k−1

(k)2
l

(n)l · l! · 2(l
2)

⎞

⎠

= μk · [1 + o(1)] ·
⎛

⎝
∑

2≤l≤k−1
Al

⎞

⎠ where Al := (k)2
l

nl · l! · 2(l
2)

Defining (as is done in [80])

tl := Al+1
Al

= (k − l)2 · 2l

n(l + 1) for 2 ≤ l ≤ k − 2

sl := tl+1
tl

=
(

k − l − 1
k − l

)2
· l + 1

l + 2 · 2 for 2 ≤ l ≤ k − 3

it can be verified that sl ≥ 1 for 2 ≤ l ≤ k − 4 and hence max{Al : 2 ≤ l ≤ k − 2} =
max{A2, Ak−2} and also that tk−2 > 1. This implies that maxl Al = max{A2, Ak−1} =
o (n−ε). As a result, we have ΔS = o(μk). Hence, with probability 1 − o(1), kl ≤ ω(G) < kh.
The number of integers in the range [kl, kh) is exactly kh − kl < 4ε + 2. By choosing ε

sufficiently small, we note that kh − kl is at most 2. This shows that ω(G) is concentrated
in a band of at most 2 integers, even though it can potentially take one of n possible values.
It can also be shown that the set of values of n for which [kl, kh) consists of just one integer
(and hence ω(G) takes a unique value) is a subset of density 1 in the set of natural numbers.
In an ongoing work [81], it has been shown that a similar two-point concentration result can
be established for any p = p(n) as long as p ≤ 1 − n−ε where ε < 1/3 is any constant.

Since the complement of G ∈ G(n, p) is distributed as G(n, 1 − p), we deduce (from our
discussion on ω(G)) that α(G) (for G ∈ G(n, p)) is concentrated in at most two values
provided p ≥ n−ε where ε < 1/3 is any constant. However, for smaller values of p (like
p = n−0.75), α(G) has not been shown to be sharply concentrated but has only been shown
to be concentrated in a band of Θ

(
p−1)

. It is shown in the work of Alan Frieze [82] that
α(G) is concentrated as follows.

Theorem 33.18 For every ε > 0, there exists a wε such that for any p satisfying wε ≤
w := np = o(n), we have with probability 1 − o(1),

|α(G) − 2
p

(ln w − ln ln w − ln 2 + 1) | ≤ ε

p
. �

This result establishes α(G) is concentrated in a band of Θ(1/p) for a wide range of p.

Probabilistic Arguments in Combinatorics � 981

It can also be established that with high probability α(G) is concentrated on a single
value k0 provided k = k0 satisfies

k = O(n1/3),
(

n

k

)
(1 − p)(

k
2) → ∞ and

(
n

k + 1

)
(1 − p)(

k+1
2) → 0.

Thus, we see that α(G) is concentrated in a very narrow band for large enough values of p
but is not sharply concentrated for small values of p.

In the case of sparse random graphs (those with d = np being a constant), following can
be said: For every d ∈ (0, ∞), there exists αd > 0 satisfying Pr(α(G) ≥ βn) → 1 for every
β < αd and Pr(α(G) ≥ βn) → 0 for every β > αd. The work of Frieze [82] determines αd

to within a o(1/d) additive factor, provided d is sufficiently large. For further work in this
direction, the reader is referred to the work of Dani and Moore [83].

33.5.5.3 Concentration of χ(G)

Let G ∈ G(n, 1/2). Since χ(H) ≥ n/α(H) for any graph H, it follows from upper bounds on
α(G) that

χ(G) ≥ n

2(log2 n) − log2 log2 n
= n

2(log2 n)[1 − o(1)] .

Grimmett and McDiarmid [84] proved that the analysis of a simple greedy algorithm yields
an upper bound χ(G) ≤ n/(log2 n)[1−o(1)]. while this established that χ(G) is concentrated
in a band of sub-linear (i.e., o(n)) size, the upper is still nearly twice the lower bound.

It was suspected by many researchers that the upper bound should be actually closer
to the lower bound. The first improvement in this direction was obtained by Matula [85]
who proved that χ(G) ≤ (2n/3(log2 n))[1 + o(1)]. This was finally settled by Bollobas [85]
who proved that χ(G) ≤ (n/2(log2 n))[1 + o(1)]. The proof of this result required obtaining
exponentially low upper bounds on the probability of not having an independent set of size
which is only away from α(G) by a constant. The powerful Azuma’s inequality based on
martingales was employed for this purpose. The proof of Bollobas was in fact motivated by
the proof of a result of Shamir and Spencer [87] which (by employing Azuma’s inequality)
shows that χ(G) (for arbitrary p) is concentrated around its mean (even though no knowledge
of the mean was employed) within a band of size ω(n)

√
n (where ω → ∞ is arbitrary).

In addition, for p = n−5/6−ε, ε > 0 fixed, Shamir and Spencer showed that there exists
u = u(n, p) such that u ≤ χ(G) ≤ u+4 with probability 1−o(1). Thus, χ(G) is concentrated
in five consecutive integers. It is interesting that one can obtain a very sharp concentration
without knowing the location of the most likely values of χ(G). This is consistent with a
similar nature of Azuma’s inequality employed in the proof. Below, we provide a sketch of
the weaker upper bound (due to [84]) for the sake of exposition.

Fix the ordering σ = (1, 2, . . ., n) on V . Consider the greedy algorithm which starts with
coloring vertex 1 with color 1 and colors vertices as per σ. Suppose colors from [c] = {1, . . ., c}
have been used when it comes to coloring vertex i. It tries to use an already used color (if
possible), otherwise it borrows a new color c + 1 and colors i with c + 1. Let χg(G) be the
number of colors used by the greedy algorithm on G. We establish the following bound (with
the justifiable assumption that the expression used is an integer for the ease of exposition).
The exposition is essentially the one presented by Krivelevich [88].

Theorem 33.19 [84] χg(G) ≤ u := n/(log2 n − 2(log2 log2 n)) = n/((log2 n)[1 − o(1)]) with
probability 1 − o(1).

Proof. Let E denote the event that greedy uses more than u colors. If E occurs, then there
is a special vertex on which color u + 1 is used for the first time. For every i > u, let Ei

982 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

denote the event that i is the first vertex on which u + 1 is used. Then, E occurs if and
only if Ei occurs for some i > u. Also, events Ei’s are pairwise mutually exclusive. Hence,
Pr(E) =

∑
i>u Pr(Ei). It suffices to establish that Pr(Ei) = o(1/n) for any i > u.

Fix any i > u. Suppose that each of the colors in [u] is used on at least one vertex from
{1, . . ., i − 1}. Fix any such coloring (C1, . . ., Cu) obtained by exposing only edges between
vertices in [i − 1]. For Ei to occur, it is necessary that i has a neighbor in each Cj . Thus,
conditioned on the choice of (Cj)j ,

Pr(Ei|(Cj)j) =
u∏

j=1

(
1 − 2−|Cj |

)
≤

(
1 − 2− 1

u

∑u

j=1 |Cj |
)u

≤
(
1 − 2− i−1

u

)u ≤ exp
(
−u2−n/u

)

= exp

(
−

(
n

log2 n − 2 log2 log2 n

)
2− log2 n+2 log2 log2 n

)

≤ exp(−(1 + o(1))(log2 n)) = o

(1
n

)

Hence, Pr(Ei) = o

(1
n

)

Thus, Pr(χg(G) > u) = Pr(E) = o(1) as required to be proved. �
The sharp 5-point concentration presented in [87] was strengthened to a 2-point concentration
(for p = n−5/6−ε, ε > 0 fixed) by Luczak [89]. The 2-point concentration result was further
extended to p = n−1/2−ε by Alon and Krivelevich [90]. It is still not known if similar sharp
concentration can be established for denser random graphs (like for p = n−1/2+ε), perhaps
it is not possible. However, for general p, the value of χ(G) (upto asymptotically smaller
additive terms) was determined by Luczak [91] who established that

d

2(ln d)

(
1 + ln ln d − 1

ln d

)
≤ χ(G) ≤ d

2(ln d)

(
1 + 30(ln ln d)

ln d

)

with probability 1 − o(1), provided p ≥ C/n for a suitable constant C. Here d is a short
notation for np.

As for the concentration width of sparse random graphs (those characterized by p = d/n
for some arbitrary but fixed d ∈ (0, ∞)) are concerned, there was a large gap between
what is guaranteed (namely, a 2-point concentration due to [89,90]) and what is explicitly
achieved (namely, a width (due to [91]) of 29d(ln ln d)/2(ln d)2 provided d ≥ C). This gap
was finally resolved by Achlioptas and Naor [92] who established that: For every d ∈ (0, ∞),
with probability 1 − o(1), χ(G(n, d/n)) ∈ {kd, kd + 1} where kd is the smallest k satisfying
d < 2k(ln k). In addition, it is also shown that : for every k ≥ 2, if d ∈ [(2k−1)(ln k), 2k(ln k)),
with probability 1− o(1), χ(G(n, d/n)) = k + 1. This, in turn, is shown to imply that χ(G) is
exactly determined for every d ∈ S where S ⊆ (0, ∞) is a subset of asymptotic density 1/2.
In a recent work, Coja-Oghlan and Vilenchik [93] strengthen further by showing that χ(G) is
determined exactly for every d ∈ S′ where S′ is a set of asymptotic density 1, by sharpening
the thresholds for k-colorability.

33.5.5.4 Concentration of Induced Paths and Induced Trees

Another parameter which has been well-studied and closely related to independence number
is the maximum size of an induced path in a graph G. We denote this parameter by mip(G).
Similarly, we use h(G) to denote the maximum size of a hole (an induced cycle) in G. We also

Probabilistic Arguments in Combinatorics � 983

use T (G) to denote the maximum size of an induced tree in G. From definition, it follows that
T (G) ≥ mip(G) always. While each of these parameters has been studied in great detail for
very sparse random graphs (those having p = c/n for some fixed but arbitrary c > 1), there
has been little (comparatively) attention paid to the case of dense random graphs (those
having large p).

In a recent work [94], Dutta and Subramanian studied mip(G) for dense random graphs
and obtained a 2-point concentration for mip(G). Precisely, it was established that: For
G ∈ G(n, p) with p ≥ n−1/2(ln n)2, with probability 1 − o(1), mip(G) ∈ {b∗, b∗ + 1} where b∗

is the largest b such that μb ≥ np/(ln ln n). Here μb denotes the expected number of induced
paths on b vertices. It is also shown that �2(logq np) + 2� ≤ b∗ ≤ �2(logq np) + 3� where
q = (1 − p)−1.

As a corollary, it follows that T (G) ≥ b∗ a.a.s. When this is combined with an improved
upper bound obtained from a more careful analysis of the proof of an earlier bound of Erdös
and Palka [95], it is established that T (G) = 2(logq np) + O (1/ ln q) a.a.s. This significantly
improves the gap O(ln n/ ln q) between earlier (and 25-year old) lower and upper bounds
obtained in [95]. The precise statement of the result of [95] is: For every ε > 0 and for
every fixed p, with probability 1 − o(1), G ∈ G(n, p) satisfies (2 − ε)(logq np) ≤ T (G) ≤
(2 + ε)(logq np).

Similarly, it is also established in [94] that: G ∈ G(n, p) satisfies (with probability 1−o(1))
h(G) ∈ {h∗, h∗ + 1} provided p ≥ n−0.5(ln n)2. The proofs for the bounds on mip(G) and
h(G) are based on bounding the variance. While it might look like it will be essentially the
standard proof for α(G), several complications arise when handling-induced paths and holes
while computing the second moment. For example, the intersection of two independent sets
is also independent. But the intersection of two induced paths need not be an induced path
but will only be an induced linear forest.

For very sparse random graphs, Erdös and Palka [95] conjectured that for every c > 1,
G ∈ G(n, c

n) contains an induced tree of size α(c)n where α(c) depends only on c. This was
affirmatively established de la Vega [96] and several others including Frieze and Jackson [97],
Kucera and Rödl [98], and Luczak and Palka [99]. In particular, de la Vega [96] established
that G almost surely contains an induced tree of size αcn[1 − o(1)] where αc is the positive
root of the equation αc = ln(1 + αc2). It can be verified that αc = [1 − o(1)](ln c)/c. Here,
o(1) is with respect to increasing c. Later on, de la Vega [100] established that T (G) ≥ βcn
where βc := (2/c) (ln c − ln ln c − 1). This bound is nearly tight (for large c) in view of
an assertion established by Luczak and Palka [99] that: for every fixed ε > 0, for every
sufficiently large c, with probability 1 − o(1), T (G) ≤ 2(1 + ε)(ln c)n/c. In this context, we
note that Palka and Rucinski [101] have obtained the following: If p = c(ln n)/n where c ≥ e
is any constant and G ∈ G(n, p), then for any fixed ε > 0, (1/c − ε) n(ln ln n)/ ln n ≤ T (G) ≤
(2/c + ε) n(ln ln n)/ ln n with probability 1 − o(1).

As for induced paths and holes, Frieze and Jackson [102] studied the maximum size of a
hole and obtained that: For every ε > 0 and for every sufficiently large c > 0, G ∈ G(n, p)
with p = c/n contains a hole of size at least (n/4c)

(
1 − c6e−c

) (
1 − q ln(1 + q−1) − ε

)
with

probability 1 − o(1). Here, q := (8c − 3)(8c − 2). Note that for large c, we can approximate
the above expression as n/O(c3). Since a hole of size m contains an induced path on m − 1
vertices, this also yields a lower bound on mip(G). In a related work, Suen [103] also studied
induced paths and obtained the following significant improvement : For G ∈ G(n, p) with
p = c/n (where c > 1 is any fixed constant) and for any ε > 0, a.a.s. G has an induced path
of size at least (1 − ε)h(c)n, where

h(c) = c−1
∫ c

1

1 − y(ζ)
ζ

dζ

984 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

and y(ζ) is the smallest positive root of y = eζ(y−1). As c → ∞, h(c) → (ln c)/c and hence
a.a.s., mip(G) ≥ (1 − ε)(n ln c)/c. Suen [103] also establishes that G contains a hole of size
at least (1 − ε)(n ln c)/c.

33.6 RANDOM DIGRAPHS

A digraph D = (V, A) is a graph in which we orient each edge and also allow both edges of
the form i → j and j → i. Also, there is at most one copy of each directed edge. It is simple if
at most one directed edge is allowed between any unordered pair of vertices. Simple digraphs
can also be thought of as the result of orienting the edges of an undirected graph. Random
models of digraphs have also been studied (for both simple and non-simple digraphs). It is
possible to have directed 2-cycles in a non-simple digraph while this is impossible in the case
of a simple digraph. We use D(n, p) and D2(n, p) to denote respectively the random models
for simple and non-simple digraphs over V = [n]. Let N :=

(n
2
)
.

D(n, p) model. The model is defined for every p ≤ 0.5. Choose a random G ∈ G(n, 2p)
and then orient each e ∈ E(G) independently in one of the two directions equiprobably.
This results in a D ∈ D(n, p). For any F = (V, A) having m edges, we have Pr(D = F) =(N

m

)
pm(1 − 2p)N−m.
D2(n, p) model. The model is defined for every p ≤ 1. For each of the n(n − 1) ordered

pairs (u, v) (with u �= v), include u → v in E(D) with probability p. The choices are
independent for different pairs. For any F = (V, A) having m edges, we have Pr(D = F) =(2N

m

)
pm(1 − p)2N−m.

The D(n, p) model was introduced by Subramanian in [104] to study the size of maximum
induced acyclic subgraphs and the D2(n, p) model was introduced by Karp in [105] to study
the maximum size of a strongly connected component. There are other models for random
digraphs like Dk-out(n) (introduced by Fenner and Frieze in [106]) in which each u ∈ V
uniformly randomly and independently chooses k out-neighbors from other vertices. We focus
only on D(n, p) and D2(n, p) models.

33.6.1 Induced Acyclic Tournaments

Given a digraph D = (V, A), let mat(D) denote the maximum size (meaning |U |) of U ⊆ V
such that U induces an acyclic tournament in D. The problem of determining this invariant
was posed and studied by Dutta and Subramanian [80] for a random digraph D (drawn from
either of the D(n, p) and D2(n, p) models) and they obtained a 2-point concentration on its
size (for every p). In particular, the following is established: If D ∈ D(n, p) with p ≥ 1/n, then
(with probability 1 − o(1)) mat(D) ∈ {b∗, b∗ + 1} where b∗ = �2(logr n) + 0.5� and r = p−1.
Also, sufficient conditions were obtained which guarantee that mat(D) actually takes just
one value. As a consequence, it is also shown that for every fixed p and every definition of
f(n) = 1 − o(1), mat(D) takes just one value with probability at least f , for every n ∈ Nf,p

where Nf,p is a subset of natural numbers having asymptotic density 1. Analogous results
are also established if D ∈ D2(n, p).

For the sake of exposition, we present below the simpler derivation of 2-point concen-
tration of mat(D) (where D ∈ D(n, p)) for the case p = 1/2. When p = 1/2, D becomes a
random tournament on V chosen uniformly.

Theorem 33.20 If D = (V, A) is a uniformly chosen tournament, then, with probability
1 − o(1), mat(D) ∈ {b∗, b∗ + 1} where b∗ = �2(log2 n) + 0.5�.

Probabilistic Arguments in Combinatorics � 985

Proof. Let b = b∗ + 2. For each S ⊆ V of size b, let XS indicate if D[S] is acyclic or not. We
have E[XS] = b! ·2−(b

2). Hence if Xb =
∑

S XS denotes the number of acyclic subtournaments
of size b, then

Pr(Xb > 0) ≤ μb := E[Xb] =
(

n

b

)
· b! · 2−(b

2) ≤
(
n · 2− b−1

2

)b ≤
(
2−1/4

)b → 0 as n → ∞

Thus, mat(D) ≤ b∗ + 1 a.a.s. Now we set b = b∗ and note that

E[Xb] = [1 − o(1)] ·
(
n · 2− b−1

2

)b ≥
(
21/4

)b → ∞ as n → ∞

We now establish that Pr(mat(D) < b) → 0. As in the case of cliques (discussed before),
it reduces to establishing that the common value (i.e., independent of S ∈ (V

b

)
) of ΔS :=∑

T :2≤|S∩T |≤b−1 E(XT |XS = 1) satisfies ΔS = o(μb). Note that

ΔS =
∑

2≤l≤b−1

(
b

l

)(
n − b

b − l

)
b!
l! · 2−(b

2)+(l
2)

= μb ·
⎛

⎝
∑

2≤l≤b−1

b!
(n)b · l! · (b)l

l! · (n − b)b−l

(b − l)! · 2(l
2)

⎞

⎠

≤ μb ·
⎛

⎝
∑

2≤l≤b−1

(
b

l

)2

· 2(l
2)

(n)l

⎞

⎠

= μb · [1 + o(1)] ·
⎛

⎝
∑

2≤l≤b−1
Al

⎞

⎠ where Al :=
(

b

l

)2

· 2(l
2)

nl

Defining

tl := Al+1
Al

= (b − l)2 · 2l

n(l + 1)2 for 2 ≤ l ≤ b − 2

sl := tl+1
tl

=
(

b − l − 1
b − l

· l + 1
l + 2

)2
· 2 for 2 ≤ l ≤ b − 3

it can be verified that sl ≥ 1 for 2 ≤ l ≤ b − 4 and hence max{Al : 2 ≤ l ≤ b − 2} =
max{A2, Ab−2} and also that tb−2 > 1. This implies that maxl Al = max{A2, Ab−1} =
o

(
n−1)

. As a result, we have ΔS = o(μb). Hence, with probability 1 − o(1), b∗ ≤ mat(D) ≤
b∗ + 1. �

33.6.2 Induced Acyclic Subgraphs

For a given digraph H = (V, A), let mas(H) denote the maximum size (|U |) of a subset U
of V such that U induces an acyclic subgraph of H. Subramanian [104] analyzed this invari-
ant mas(D) for a random graph D ∈ D(n, p) and obtained that mas(D) ≤ �2(lnq n) + 1�
for any p ≤ 0.5 where q := (1 − p)−1. It was also observed that Pr(mas(D) ≥ b) ≥
Pr(α(G) ≥ b) for any b ≥ 1 and for G ∈ G(n, p). Combining this fact with the lower
bounds on α(G) presented in [82,107,108], it was established that, for any ε > 0, mas(D) ≥
(2/ ln q) (ln w − ln ln w − O(1)) provided w = np ≥ wε for some wε depending only on ε.
While for larger values of p, the upper and lower bounds are the same (upto constant multi-
plicative factors), for p = n−1+o(1), the lower bound is asymptotically smaller than the above

986 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

upper bound. It was conjectured in [104] that the upper bound is also essentially the lower
bound (upto asymptotically negligible additive terms) and this was affirmatively established
by Spencer and Subramanian in [109] by improving the upper bound to (2/ ln q) (ln w + 3e).
As a result, we now know that: for every p ≤ 0.5 satisfying w = np = ω(1), with probability
1 − o(1), we have mas(D) = (2(ln w)/ ln q)[1 ± o(1)].

Still, the gap between lower and upper bounds is at least (2(ln ln w) + 6e)/ ln q. A simple
application of Azuma’s inequality (based on the fact that mas(D) is a 1-Lipschitz function)
establishes that |mas(D) − μ| ≤ ω

√
n (for any ω → ∞) for every choice of p = p(n).

Here, μ denotes the expectation of mas(D). But this does not tell us the location of the
concentration and is also weak (when compared to the gap obtained from known bounds) for
p ≥ n−1/2+ε. Similarly, an application of Talagrand’s inequality establishes that |mas(D) −
m| ≤ ω

√
logq np (for any ω → ∞) for every choice of p = p(n). Here, m denotes any median

value of mas(D). This gives a better concentration gap (when compared to that guaranteed
by Azuma’s inequality) and even beats the gap between known bounds for all p such that
p = o

(
(ln ln n)2/ ln n

)
. Again, the location of the concentration is not known.

Recently, Dutta and Subramanian [110–112] improved the lower bound as follows:
mas(D) ≥ �2(logq np) − X� where X = 1 if p ≥ n−1/3+ε (ε > 0 is any constant) and
X = W/ ln q if p ≥ C/n where W > 4 is any constant (and C = C(W) is any suitably large
constant). While this is a significant improvement (of the second-order additive term) over
the previous lower bound, the asymptotics of the gap between known and best lower and
upper bounds remain as they are. The first improvement to X = 1 was based on analyzing
the total number of acyclic orderings of induced sub-digraphs of the stated size and is based
on bounding the variance.

When p becomes smaller, the variance becomes larger and the variance-based approach
does not work. Hence, the authors of [111,112] employ an approach which exploits the follow-
ing fact: For every b1 < b2, Talagrand’s inequality leads to an exponentially low upper bound
on the product Pr(mas(D) ≤ b1) ·Pr(mas(D) ≥ b2) where the exponent directly depends on
(b2 −b1)2 and inversely depends on the sparsity of the certifiability of mas(D). If mas(D) ≥ b
is certified by the set of edges incident on at most f(b) vertices, then we say that mas(D) is
f -certifiable. It can be seen that mas(D) is linearly certifiable. We combine this fact with a
weaker lower bound on Pr(mas(D) ≥ b2) to get an o(1) upper bound on Pr(mas(D) < b1).
By choosing b1 and b2 appropriately, [112] establishes the second improvement mentioned
above. The weak lower bound on the second term of the product was established using the
well-known Paley–Zigmund inequality which says that Pr(X > 0) ≥ E[X]2/E[X2] for any
nonnegative random variable X.

33.6.3 Induced Tournaments

For a digraph D, let ω(D) denote the maximum size of an induced tournament in D. Clearly,
ω(D) ≥ mat(D) for any D. It follows from the definitions of the respective random models
that ω(D1) (for D1 ∈ D(n, p)) and ω(G1) (for G1 ∈ G(n, 2p)) are identically distributed.
Similarly, ω(D2) (for D2 ∈ D2(n, p)) and ω(G2) (for G2 ∈ G(n, 2p(1 − p))) are identically
distributed. Since 2p(1 − p) ≤ 0.5 for any p, it follows that ω(G2) and hence ω(D2) are con-
centrated in two consecutive values for any p. This follows from the two-point concentration
of ω(G) discussed in Section 33.5.5.2.

However, ω(D1) is known to be two-point concentrated only for p ≤ 0.5 − n−δ where
δ is a suitably small positive constant. For larger values of p which are closer to 0.5 like
p = 0.5 − 100n−1, ω(G1) and hence ω(D1) are only known to be concentrated in a band
of size Θ((1 − 2p)−1). Thus, the concentration behaviors of ω(D1) and ω(D2) differ. Recall

Probabilistic Arguments in Combinatorics � 987

that both mat(D1) and mat(D2) are two-point concentrated for any p = p(n). For a more
detailed discussion on this topic, we refer the reader to [80].

33.6.4 Being Strongly Connected

A digraph D = (V, A) is strongly connected if, for every ordered pair (u, v) of vertices, there
is a directed path from u to v. Strongly connected components of a digraph are analogues
of connected components of an undirected graph. Given a digraph D = (V, A), a strongly
connected component (shortly, a strong component) of D is a maximal (with respect to
vertex inclusion) induced subdigraph which is also strongly connected. They are precisely
the equivalence classes of an equivalence relation R over V where R is the relation: for every
u, v ∈ V , (u, v) ∈ R if and only if u and v are reachable from each other by a directed
path in D.

Below, we present and prove a sharp threshold function for D ∈ D2(n, p) being strongly
connected.

Theorem 33.21 Let ω = ω(n) → ∞ be any sufficiently slowly growing function. Define
q(n) = (ln n)/n and r(n) = ω(n)/n. For D ∈ D2(n, p), with probability 1−o(1), the following
holds:

1. If p ≥ q + r, then D is strongly connected.

2. If p ≤ q − r, then D is not strongly connected.

Moreover, q(n) is a sharp threshold since r(n) can be arbitrarily small compared to q(n).

Proof. The arguments are similar to those employed in the proof of Theorem 33.14. Without
loss of generality, we assume that p = q + r (or p = q − r) depending on whether we want to
prove (1) (or (2)). We first prove (1). We show that Pr(D is not strongly connected) → 0.
D is not strongly connected if and only if there exists a S ⊆ V , |S| ≤ n/2, such that there is
no edge in one of the two directions (S → V \ S, V \ S → S). For 1 ≤ k ≤ n/2, let Ek denote
the event that there exists such a S with |S| = k. We have

Pr(Ek) ≤ 2
(

n

k

)
(1 − p)k(n−k) ≤ 2

(
en

k
(1 − p)n−k

)k

≤ 2
(

en

k
e−np(1− k

n
)
)k

≤ 2
(

en

k
e−(ln n+ω)(1− k

n
)
)k

≤ 2
(

en
k
n

k
e−ω(1− k

n
)
)k

≤ 2
(
e

(
n

k
n

− ln k
ln n

)
e−ω/2

)k ≤2
(1
ω

)k

In the above derivation, we have used (i)
(n

k

) ≤ (en/k)k, (ii) k ≤ n/2, and (iii) ln m/m is a
decreasing function of m. As a result, we have

Pr(D is not strongly connected) = Pr(∃k ≤ n

2 : Ek) ≤ 2

⎛

⎝
∑

1≤k≤ n
2

ω−k

⎞

⎠ = o(1)

We now prove (2). For each u ∈ V , let Xu denote the indicator variable for u being isolated in
D. We say that u is isolated if either there is no edge of the form u → v or there is no edge of
the form v → u in D. Then, for any u, μu := E[Xu] = 2(1−p)n−1 −(1−p)2n−2 ≈ 2(1−p)n−1.
If X :=

∑
u Xu denotes the number of isolated vertices, then μ := E[X] ≈ 2n(1 − p)n−1 ≥

2n(1 − p)n. We have

μ ≥ 2n(1 − p)n = 2ne−np[1+O(p)]≥2ne−(ln n−ω)[1+O(p)]≥2n−O(p)eω≥2[1 − o(1)] · eω → ∞.

988 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Also,

V ar(X) =
∑

u

V ar(Xu) +
∑

u�=v

E(XuXv) − μuμv

≤ μ + n2
(
4(1 − p)2n−2+2p(1 − p)2n−3−4(1−p)2n−2−(1 − p)4n−4+4(1 − p)3n−3

)

≈ μ + μ2

2 ·
(

p

1 − p
− (1 − p)2n−2

2 + 2(1 − p)n−1
)

= μ + μ2

2 · p[1 + o(1)]

Hence,

Pr(D has no isolated vertex) = Pr(X = 0) ≤ V ar(X)
μ2 ≤ μ−1 + p[1 + o(1)] = o(1)

using μ → ∞ and p = o(1). This shows that

Pr(D is not strongly connected) ≥ Pr(D has an isolated vertex) = 1 − o(1).

Thus, ln n/n is a sharp threshold for being strongly connected. �

Remark 33.1 Theorem 33.21 holds true even if we replace our assumption D ∈ D2(n, p) to
D ∈ D(n, p). The same proof arguments work with this assumption also except the following
two changes:

μu = 2(1 − p)n−1 − (1 − 2p)n−1, ∀u ; E[XuXv] ≤ (4 − 6p)(1 − p)2n−4, ∀u �= v.

33.6.5 Emergence of a Giant Strongly Connected Component Around 1/n

What happens when p = c/n with c = 1±ε where ε is a small positive constant or ε = o(1)?
Phase transition phenomena, similar to those which occur in the case of random graphs, are
witnessed in the case of random digraphs also. In particular, the size of the largest strongly
connected component makes a huge jump from being very small to a giant size as p makes
a transtion from being less than 1/n to being more than 1/n. Palasti [113] was the first to
study the strongly connectedness property of random directed graphs for the D(n, m) model
(the directed analogue of the G(n, m) model). Here, a directed graph on [n] with m edges
is chosen uniformly randomly with probability

(n(n−1)
m

)−1
. By establishing an equivalence

(in a quantifiable sense) between the D(n, m) and D2(n, p) models, Graham and Pike [114]
adapted the work of Palasti to the D2(n, p) model and established p = 1/n as a threshold
for strong connectivity. A detailed study of the phase transition phenomenon was carried out
(for giant-size strong components of D ∈ D2(n, p)) by Richard Karp (in [105]), by Luczak (in
[115]), and by Luczak and Seierstad (in [116]). We present a brief and consolidated overview
of the interesting observations presented in the above mentioned references.

As before, the focus is on L1 where L1 stands for the size of the largest strong component
of D ∈ D2(n, p) with p = c/n. Below we identify some subregions of p and state the behavior
of L1 (which holds with probability 1−o(1)) without any formal justification. For a constant
c > 1, let Θ = Θ(c) be the unique root in (0, 1) of the equation 1 − x − e−cx = 0.

1. Very subcritical. c = 1 − ε where ε is a positive constant. In this regime, each of the
strong components is of size at most C(ε)(ln n) where C(ε) is a constant depending
only on ε. In addition, if D ∈ D(n, m) where m = (1 −ε)n, then for every ω(n) → ∞,
every strong component of D is a cycle of length less than ω.

Probabilistic Arguments in Combinatorics � 989

2. Barely subcritical. c = 1 − ε for some ε such that ε → 0 and εn1/3 → ∞. Then, for
every ω → ∞, each strong component of D is either an isolated vertex or or a directed
cycle of length at most ω · ε−1. We have L1 = o(n1/3) throughout this regime.

3. Critical. c = 1 ±ε where ε = λn−1/3 for some constant real λ. No detailed study seems
to have been done for this regime.

4. Barely supercritical. c = 1 + ε where ε → 0 and εn1/3 → ∞. Then, for every ω → ∞,
D has a unique strong component of size (4 + o(1))ε2n and every other component is
of size at most ω · ε−1. We have L1 = ω(n2/3) throughout this regime.

5. Very supercritical. c = 1 + ε where ε is a positive constant. For some constant A =
A(c), for every ω = ω(n) → ∞, we have |L1 − Θ2n| ≤ ω

√
n(ln n) and every other

strong component is of size at most A(ln n). Thus, there exists a unique giant strong
component of linear size. In the recent work [66], by analyzing the DFS algorithm (as
was done for the G(n, p) model), it was established that D ∈ D2(n, p) has in fact a
directed cycle of length Θ(ε2)n. Also, for every ε > 0, there exists a α = α(ε) such
that for every ω → ∞, D ∈ D(n, m) (where m = (1 + ε)n) contains a unique strong
component of size larger than αn and every other component is a cycle length less
than ω. If m/n → ∞, then D contains a unique strong component of size (1 − o(1))n.

33.7 CONCLUSIONS

Several interesting applications of probabilistic techniques to obtain and prove results on
combinatorial structures have been presented or introduced. For several of these applica-
tions, there is no known proof other than the probabilistic one which first established it.
For example, there is no known constructive proof of Theorem 33.12 except the probabilistic
one obtained by Erdös nearly 60 years ago. This illustrates the power of this approach to
resolving questions in combinatorics. There are a number of other interesting applications
which have not been introduced in this exposition and the interested reader can find them
in books (and their references) and other references listed below.

While the applications of probabilistic arguments in combinatorics have mostly been in
the context of obtaining existence proofs, many of these applications can actually be trans-
lated to constructive proofs which actually produce an object of the type whose existence is
being sought to be established. Also, under some assumptions about the random experiment,
the constructive proof can be made efficient. The method of conditional expectations and
pessimistic estimators are some of the techniques that can be applied to successfully pro-
duce a desired structure. See the books [2] and [6] for a comprehensive introduction to these
approaches. Recently, Moser and Tardos [117] have presented a randomized polynomial time
algorithm which (under some assumptions about the underlying probability space) finds a
desired object guaranteed by LLL.

References

[1] S.N. Bernstein. Demonstration du theoreme de weierstrass fondee sur le calcul des
probabilites. Comm. Soc. Math. Kharkov, 13 (1912), 1–2.

[2] Joel H. Spencer and Noga Alon. The Probabilistic Method, Third Edition. John Wiley
& Sons, New York, 2008.

[3] Bela Bollobas. Random Graphs, Second Edition. Cambridge University Press, United
Kingdom, 2001.

990 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[4] Tomasz Luczak, Svante Janson, and Andrzej Rucinski. Random Graphs. John Wiley
& Sons, New York, 2000.

[5] Paul Erdös and Laszlo Lovasz. Problems and results on 3-chromatic hypergraphs and
some related questions, in: Infinite and Finite Series (A. Hajnal, R. Rado, and V.T. Sos,
eds.), pages 609–628, 1975.

[6] Prabhakar Raghavan and Rajeev Motwani. Randomized Algorithms. Cambridge Uni-
versity Press, United Kingdom, 1995.

[7] C.S. Edwards. Some extremal properties of bipartite subgraphs. Canadian Journal of
Mathematics, 3 (1973), 475–485.

[8] C.S. Edwards. An improved lower bound for the number of edges in a largest bipartite
subgraph. Proceedings of the 2nd Czechoslovak Symposium on Graph Theory, Prague,
Czech Republic, 167–181, 1975.

[9] Paul Erdös. Some recent problems in combinatorics and graph theory. Proceedings of
the 26th Southeastern International Conference on Graph Theory, Combinatorics and
Computing, Boca Raton, FL, 1995.

[10] Noga Alon. Bipartite subgraphs. Combinatorica, 16 (1996), 301–311.

[11] P. Erdös. Problems and results in graph theory combinatorial analysis. Proceedings
of the Conference on Graph Theory and Related Topics, Waterloo, Canada, 153–163,
1979.

[12] S. Poljak Zs. Tuza. Bipartite subgraphs of triangle-free graphs. SIAM Journal of Dis-
crete Mathematics, 37 (1988), 130–143.

[13] J.B. Shearer. A note on bipartite subgraphs of triangle-free graphs. Random Structures
and Algorithms, 3 (1992), 223–226.

[14] Y. Caro. New Results on the Independence Number. Technical Report, 1979.

[15] V.K. Wei. A lower bound on the stability number of a simple graph. Technical Report,
1981.

[16] R. Bopanna. comment #1. Comment on Lance Fortnow’s blog, 2010.

[17] Z. Tuza and Y. Caro. Improved lower bounds on k-independence. Journal of Graph
Theory, 15 (1991), 99–107.

[18] Kunal Dutta, Dhruv Mubayi, and C.R. Subramanian. New lower bounds for the inde-
pendence number of sparse graphs and hypergraphs. SIAM Journal on Discrete Math-
ematics, 26(3) (2012), 1134–1147.

[19] N.S. Narayanaswamy and C.R. Subramanian. Dominating set based exact algorithms
for 3-coloring. Information Processing Letters, 111(6) (2011), 251–255.

[20] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM Journal on Computing, 82
(1999), 1167–1181.

[21] P. Duchet and H. Meyniel. On hadwiger’s number and stability numbers. Annals of
Discrete Mathematics, 13 (1982), 71–74.

Probabilistic Arguments in Combinatorics � 991

[22] Y. Caro, D.B. West, and R. Yuster. Connected domination and spanning trees with
many leaves. SIAM Journal on Discrete Mathematics, 13(2) (2000), 202–211.

[23] D. Karger. Global min-cuts in rnc and other ramifications of a simple min-cut algo-
rithm. Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms, Austin,
TX, 21–30, 1993.

[24] D. Karger and C. Stein. An O(n2) algorithm for minimum cuts. Proceedings of the 25th
ACM Symposium on Theory of Computing, San Diego, CA, 757–765, 1993.

[25] D. Karger and C. Stein. A new approach to the minimum cut problem. Journal of the
ACM, 43(4) (1996), 601–640.

[26] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, Germany, 2001.

[27] D. Karger. A randomized fully polynomial approximation scheme for the all terminal
network reliability problem. Proceedings of the 27th ACM Symposium on Theory of
Computing, Las Vegas, NV, 11–17. ACM, 1995.

[28] D. Karger. A randomized fully polynomial approximation scheme for the all terminal
network reliability problem. SIAM Journal on Computing, 29(2) (1999), 492–514.

[29] Noga Alon. Choice numbers of graphs: A probabilistic approach. Combinatorics, Prob-
ability and Computing, 1(2) (1992), 107–114.

[30] C.R. Subramanian. List set coloring: Bounds and algorithms. Combinatorics, Proba-
bility and Computing, 16(1) (2007), 145–158.

[31] C.R. Subramanian. List hereditary colorings. Proceedings of the 2nd International Con-
ference on Discrete Mathematics, India, June 6–10, 2008, RMS Lecture Note Series No.
13, Ramanujan Mathematical Society, 191–205, 2010.

[32] C.R. Subramanian. List hereditary colorings of graphs and hypergraphs. Manuscript,
2014.

[33] Paul Erdös. Graph theory and probability. Canadian Journal of Mathematics, 11
(1959), 34–38.

[34] Paul Erdös. On circuits and subgraphs of chromatic graphs. Mathematika, 9 (1962),
170–175.

[35] Paul Erdös. On a problem in graph theory. Mathematical Gazette, 47 (1963), 220–223.

[36] A.V. Kostochka, E. Sopena, and X. Zhu. Acyclic and oriented chromatic numbers of
graphs. Journal of Graph Theory, 24(4) (1997), 331–340.

[37] N.R. Aravind and C.R. Subramanian. Forbidden subgraph colorings and the oriented
chromatic number. European Journal of Combinatorics, 34 (2013), 620–631.

[38] E. Sopena. The chromatic number of oriented graphs. Journal of Graph Theory, 25(2)
(1997), 191–205.

[39] G. Fertin, A. Raspaud, and A. Roychowdhury. On the oriented chromatic numbers of
grids. Information Processing Letters, 85(5) (2003), 261–266.

[40] H. Hind, M. Molloy, and B. Reed. Colouring a graph frugally. Combinatorica, 17(4)
(1997), 469–482.

992 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[41] H. Hind, M. Molloy, and B. Reed. Total coloring with δ + poly(log δ) colors. SIAM
Journal on Computing, 28(3) (1998), 816–821.

[42] Noga Alon, Colin McDiarmid, and Bruce Reed. Acyclic coloring of graphs. Random
Structures and Algorithms, 2(3) (1991), 277–288.

[43] G. Fertin, A. Raspaud, and B. Reed. Star coloring of graphs. Journal of Graph Theory,
47(3) (2004), 163–182.

[44] B. Grünbaum. Acyclic colorings of planar graphs. Israel Journal of Mathematics, 14(3)
(1973), 390–408.

[45] N.R. Aravind and C.R. Subramanian. Bounds on vertex colorings with restrictions on
the union of color classes. Journal of Graph Theory, 66(3) (2011), 213–234.

[46] N.R. Aravind and C.R. Subramanian. Bounds on edge colorings with restrictions on the
union of color classes. SIAM Journal of Discrete Mathematics, 24(3) (2010), 841–852.

[47] Paul Erdös. Problems and results in additive number theory. Colloque sur le Theorie
des Nombres (CBRM, Bruselles, Belgium), 127–137, 1956.

[48] Paul Erdös and Prasad Tetali. Representations of integers as the sum of k terms.
Random Structures and Algorithms, 1(3) (1990), 245–261.

[49] V.H. Vu. On the concentration of multivariate polynomials with small expectation.
Random Structures and Algorithms, 16 (2000), 344–363.

[50] R.C. Vaughan and T.D. Wooley. Waring’s problem: A survey. www.personal.psu.edu/
rcv4/Waring.pdf, pages 1–40.

[51] D. Hilbert. Beweis für di darstellbarkeit der ganzen zahlen durch eine feste anzahl n-ter
potenzen (waringsches probelm). Mathematische Annalen, 67 (1909), 281–300.

[52] R. Balasubramanian, J.-M. Deshouillers, and F. Dress. Problme de waring pour les
bicarrs. i. schma de la solution (French. English summary) [Waring’s problem for bi-
quadrates. i. sketch of the solution]. C.R. Academy of Science Paris Series of Mathe-
matics I, 303(4) (1986), 85–88.

[53] S.S. Pillai. On Waring’s problem. g(6) = 73. Proceedings of the Indian Academy of
Sciences, 12A:30–40, 1940.

[54] M. Nathanson. Additive Number Theory: Classical Bases. Graduate Texts in Mathe-
matics 164, Springer, New York, 1996.

[55] V.H. Vu. On a refinement of waring’s problem. Duke Mathematical Journal, 105(1)
(2000), 107–134.

[56] M.B. Nathanson. Waring’s problem for sets of density zero, in: Analytic Number The-
ory, Lecture Notes in Mathematics 899, Temple University, PA, pages 301–310, 1981.

[57] Paul Erdös. Extremal problems in number theory. Proceedings of the Symosium in Pure
Mathematics, American Mathematical Society, VIII (1965), 181–189.

[58] S. Eberhard, B. Green, and F. Manners. Sets of integers with no large sum-free subsets.
arXiv:1301.4579v2 [math.CO], 31, 2013.

Probabilistic Arguments in Combinatorics � 993

[59] Noga Alon and D.J. Kleitman. Sum-free subsets. Proceedings of a Tribute to Paul
Erdös, 13–26. Cambridge University Press, 1990.

[60] Jean Bourgain. Estimates related to sum-free subsets of sets of integers. Israel Journal
of Mathematics, 97(1) (1997), 71–92.

[61] Mark Lewko. An improved upper bound for the sum-free subset constant. Journal of
Integer Sequences, 13(8) (2010), Article 10:8:3.

[62] A.H. Rhemtulla and Ann Penfold Street. Maximum sum-free sets in elementary abelian
p-groups. Canadian Mathematical Bulletin, 14 (1971), 73–80.

[63] Paul Erdös and Alfred Renyi. On the evolution of random graphs. Publications of the
Mathematical Institute of the Hungarian Academy of Sciences, 5 (1960), 17–61.

[64] Edgar Gilbert. Random graphs. Annals of Mathematical Statistics, 30(4) (1959),
1141–1144.

[65] Rick Durrett. Random Graph Dynamics. Cambridge University Press, United Kingdom,
2007.

[66] M. Krivelevich and B. Sudakov. The phase transition in random graphs: A simple
proof. Random Structures and Algorithms, 43 (2013), 131–138.

[67] John Hopcroft and Robert E. Tarjan. Efficient planarity testing. Journal of the ACM,
21(4) (1974), 549–568.

[68] B. Bollobas. The evolution of random graphs. Transactions of the American Mathe-
matical Society, 286(1) (1984), 257–274.

[69] R. van der Hofstad and Joel H. Spencer. Counting connected graphs asymptotically.
European Journal of Combinatorics, 27(8) (2006), 1294–1320.

[70] T. Luczak. Component behavior near the critical point of the random graph process.
Random Structures and Algorithms, 1(3) (1990), 287–310.

[71] S. Janson, D.E. Knuth, T. Luczak, and B. Pittel. The birth of the giant component.
Random Structures and Algorithms, 4(3) (1993), 233–358.

[72] E.M. Wright. The number of connected sparsely edged graphs. Journal of Graph
Theory, 1(4) (1977), 317–330.

[73] B. Bollobas and O. Riordan. A simple branching process approach to the phase tran-
sition in G(n, p). The Electronic Journal of Combinatorics, 19(4) (2012), #P21.

[74] C.P. Schnorr and C.R. Subramanian. Almost optimal (on the average) algorithms
for boolean matrix product witnesses, computing diameter. Proceedings of the 2nd
International Workshop on Randomization and Approximation Techniques in Com-
puter Scienc, Barcelona, Spain, October 1998, LNCS 1518, 218–231. Springer-Verlag,
Germany, 1998.

[75] B. Bollobas. The diameter of random graphs. Transactions of the American Mathemat-
ical Society, 267(1) (1981), 41–52.

[76] V. Klee and D. Larman. Diameters of random graphs. Canadian Journal of Mathemat-
ics, XXXIII(3) (1981), 618–640.

994 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[77] B. Bollobas. The evolution of sparse graphs. Graph Theory and Combinatorics, 35–57,
Univeristy of Cambridge, 1984.

[78] F. Chung and L. Lu. The diameter of sparse random graphs. Advances in Applied
Mathematics, 26 (2001), 257–279.

[79] T. Luczak. Random trees and random graphs. Random Structures and Algorithms,
13(13) (1998), 485–500.

[80] Kunal Dutta and C.R. Subramanian. Induced acyclic tournaments in random digraphs:
Sharp concentration, thresholds and algorithms. Discussiones Mathematicae Graph
Theory, 34(3) (2014), 467–495.

[81] C.R. Subramanian. Sharp concentration of independence number in random graphs.
Manuscript, 2014.

[82] A.M. Frieze. On the independence number of random graphs. Discrete Mathematics,
81(2) (1990), 171–175.

[83] Varsha Dani and Cristopher Moore. Independent sets in random graphs from the
weighted second moment method. In Proceedings of the 15th International Workshop
RANDOM, Princeton, NJ, LNCS Series No. 6845, 472–482. Springer-Verlag, Germany,
2011.

[84] G.R. Grimmett and C.J.H. McDiarmid. On colouring random graphs. Mathematical
Proceedings of the Cambridge Philosophical Society, 77(2) (1975), 313–324.

[85] D. Matula. Expose-and-merge exploration and the chromatic number of a random
graph. Combinatorica, 7(3) (1987), 275–284.

[86] B. Bollobas. The chromatic number of random graphs. Combinatorica, 8(1) (1988),
49–55.

[87] E. Shamir and Joel H. Spencer. Sharp concentration of the chromatic number on ran-
dom graphs gn,p. Combinatorica, 7(1) (1987), 121–129.

[88] M. Krivelevich. Topics in random graphs. Lecture Notes, ETH Zurich, 2010.

[89] T. Luczak. A note on the sharp concentration of the chromatic number of random
graphs. Combinatorica, 11(3) (1991), 295–297.

[90] N. Alon and M. Krivelevich. The concentration of the chromatic number of random
graphs. Combinatorica, 17(3) (1997), 303–313.

[91] T. Luczak. The chromatic number of random graphs. Combinatorica, 11(1) (1991),
45–54.

[92] D. Achlioptas and A. Naor. The two possible values of the chromatic number of a
random graph. Annals of Mathematics, 162(3) (2005), 1335–1351.

[93] A. Coja-Oghlan and D. Vilenchik. Chasing the k-colorability threshold. Proceedings of
the 54th IEEE Symposium on Foundations of Computer Science, 380–389, Berkeley,
CA, 2013.

[94] Kunal Dutta and C.R. Subramanian. On induced paths, holes and trees in random
graphs. Manuscript, 23, 2014.

Probabilistic Arguments in Combinatorics � 995

[95] Paul Erdös and Z. Palka. Trees in random graphs. Discrete Mathematics, 46 (1983),
145–150.

[96] W. Fernandez and de la Vega. Induced trees in random graphs. Graphs and Combina-
torics, 2(1) (1986), 227–231.

[97] A.M. Frieze and B. Jackson. Large induced trees in sparse random graphs. Journal of
Combinatorial Theory, Series B, 42 (1987), 181–195.

[98] L. Kucera and V. Rödl. Large trees in random graphs. Commentationes Mathematicae
Universitatis Carolinae, 28 (1987), 7–14.

[99] T. Luczak and Z. Palka. Maximal induced trees in sparse random graphs. Discrete
Mathematics, 72 (1988), 257–265.

[100] W. Fernandez and de la Vega. The largest induced tree in a sparse random graph.
Random Structures and Algorithms, 9(1–2) (1996), 93–97.

[101] Z. Palka and A. Rucinski. On the order of the largest induced tree in a random graph.
Discrete Applied Mathematics, 15 (1986), 75–83.

[102] A.M. Frieze and B. Jackson. Large holes in sparse random graphs. Combinatorica, 7
(1987), 265–284.

[103] W.C. Suen. On large induced trees and long induced paths in sparse random graphs.
Journal of Combinatorial Theory, Series B, 56(2) (1992), 250–262.

[104] C.R. Subramanian. Finding induced acyclic subgraphs in random digraphs. The Elec-
tronic Journal of Combinatorics, 10 (2003), #R46.

[105] R.M. Karp. The transitive closure of a random digraph. Random Structures and Algo-
rithms, 1(1) (1990), 73–93.

[106] T.I. Fenner and A.M. Frieze. On the connectivity of random m-orientable graphs and
digraphs. Combinatorica, 2 (1982), 347–359.

[107] B. Bollobas and P. Erdös. Cliques in random graphs. Mathematical Proceedings of the
Cambridge Philosophical Society, 80(3) (1976), 419–427.

[108] D. Matula. The largest clique size in a random graph. Technical Report, 1976.

[109] J.H. Spencer and C.R. Subramanian. On the size of induced acyclic subgraphs in ran-
dom digraphs. Discrete Mathematics and Theoretical Computer Science, 10(2) (2008),
47–54.

[110] Kunal Dutta and C.R. Subramanian. Induced acyclic subgraphs in random digraphs:
Improved bounds. DMTCS Proceedings of the 21st International Meeting on Probabilis-
tic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, 159–174,
2010.

[111] Kunal Dutta and C.R. Subramanian. On induced acyclic subgraphs in sparse random
digraphs. Electronic Notes in Discrete Mathematics, Proceedings of the 6th European
Conference on Combinatorics, Graph Theory and Applications, 38 (2011), 319–324.

[112] Kunal Dutta and C.R. Subramanian. Improved bounds on induced acyclic subgraphs
in random digraphs. Accepted by SIAM Journal of Discrete Mathematics, 17, 2014.

996 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[113] I. Palasti. On the strong connectedness of directed random graphs. Studia Scientiarum
Mathematicarum Hungarica, 1 (1966), 205–214.

[114] A.J. Graham and D.A. Pike. The critical behavior of random digraphs. Atlantic Elec-
tronic Journal of Mathematics, 3(1) (2008), 1–5.

[115] T. Luczak. The phase transition in the evolution of random digraphs. Journal of Graph
Theory, 14(2) (1990), 217–223.

[116] T. Luczak and T.G. Seierstad. The critical behavior of random digraphs. Random
Structures and Algorithms, 35(3) (2009), 271–293.

[117] R.A. Moser and G. Tardos. A constructive proof of the general Lovász local lemma.
Journal of the ACM, 57(2) (2010), Article no. 11, 15 pp.

C H A P T E R 34

Random Models and Analyses
for Chemical Graphs
Daniel Pascua

Tina M. Kouri

Dinesh P. Mehta

CONTENTS

34.1 Introduction . 997
34.2 Background . 998

34.2.1 Graph Representation of Molecules . 998
34.2.2 Graph Isomorphism and Canonical Labeling . 999
34.2.3 Random Graph Models . 999
34.2.4 Random Graph Isomorphism . 1000
34.2.5 Practical Canonical Naming Algorithms for Chemical Graphs 1000

34.3 Random Graph Models for Chemistry . 1002
34.3.1 Definitions . 1002
34.3.2 Random Pair Model . 1003
34.3.3 Molecule Build Model . 1004

34.4 Bound on Failure Rate of Canonical Labeling Algorithms . 1005
34.4.1 Class of Hydrocarbons C . 1005
34.4.2 Reasonable Canonical Labeling Algorithms . 1005

34.5 Discussion . 1008

This chapter∗ describes a random model for chemical graphs that captures the notion
of valence along with algorithms to generate chemical graphs using this model. The

model is also used to provide theoretical bounds on the accuracy of a class of canonical
labeling algorithms for a class of hydrocarbons.

34.1 INTRODUCTION

Biological processes involve reactions between molecules. While many computational biology
problems are able to abstract out knowledge of chemicals (e.g., a DNA sequence may be
viewed as a string with an alphabet of size four even though the underlying A, C, T, and

∗This chapter is an edited version of [1].

C5955–C0034.tex 997 2015/11/4 1:08pm

997

998 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

G are chemicals), others such as pharmaceutical applications depend on the knowledge of
chemical structure of the drug and its interaction with biomolecules. This chapter focuses
on the fundamental entity of these chemical processes, the chemical graph, and proposes a
randomized framework for working with chemical graphs.

Randomized techniques have been traditionally used to enhance simplicity and speed.
Motwani and Raghavan [2] state that “For many applications, a randomized algorithm is
the simplest algorithm available, or the fastest, or both.” In a well-designed randomized
algorithm, the price for the gains in simplicity and speed is that there is a (very small)
probability that the algorithm is incorrect or inefficient. This is considered to be a reasonable
trade-off for many applications. Further, analyses of randomized algorithms are closely related
to probabilistic analyses of related deterministic algorithms. Probabilistic analyses have been
used to explain the phenomenon that provably difficult problems (e.g., NP-hard problems),
while intractable for pathological inputs, usually admit fast solutions on most real-world
inputs.

Although there is a significant body of work in random graphs, existing models in the
random graph literature such as Gn,p, G[n,N] [3], and scale-free networks [4] do not satisfacto-
rily model chemical graphs. Our first contribution (Section 34.3) is to define a random model
to model chemical graphs. More precisely, we describe two intuitive graph models (random
pair and molecule build) that respect atom valences and show that these two models are
mathematically equivalent.

Our focus in this chapter is on a fundamental problem in cheminformatics; that of com-
puting a canonical label or name for a molecule [5]. The objective is to uniquely and efficiently
represent a chemical graph using a linear text string, which can then be conveniently used
to determine whether two molecules are the same or to find a molecule in a database of
molecules. If a unique canonical label can be computed efficiently in general, this would
represent a significant theoretical breakthrough because it would imply that an efficient
(polynomial time) solution exists for graph isomorphism (an open problem for which no
polynomial time algorithm has yet been found). The literature indicates that graph isomor-
phism/canonical labeling can be solved in polynomial time for the special case of chemical
graphs [6], but no practical software that takes polynomial time has been implemented [7].
In practice, however, the cheminformatics community uses several naming algorithms in
software systems and databases [7–13]. These algorithms usually fall in one of two cate-
gories: Type 1—the naming algorithm is efficient, but names are not always unique (i.e.,
two different molecules can have the same name) or Type 2—the naming algorithm is ineffi-
cient for pathological inputs but results in unique names. In both scenarios, the likelihood of
failure (non-unique name in the former and an inefficient algorithm in the latter) has been
empirically found to be low. We are able to show through a probabilistic analysis based on
our random model that reasonable Type 1 canonical naming algorithms generate non-unique
names with exponentially small probabilities on a class of hydrocarbons. We begin with a
review of the technical background for this chapter in the next section.

34.2 BACKGROUND

34.2.1 Graph Representation of Molecules

A chemical graph may be used to represent a molecule where the vertices and edges represent
atoms and bonds, respectively. Definition 34.1 provides a formal definition of a chemical graph.

In Figure 34.1, the H2O molecule has two bonds. Each bond is formed by joining the
oxygen atom with a hydrogen atom. A chemical graph has bounded degree or valence
since each atom has a limited number of valence electrons, which is a constant value for
each atom.

C5955–C0034.tex 998 2015/11/4 1:08pm

Random Models and Analyses for Chemical Graphs � 999

O

H H

Figure 34.1 H2O molecule.

Definition 34.1 (chemical graph) A chemical graph is a graph G(V,E), where each vertex
v has an associated label l(v) ∈ [a1, . . ., at]. Each label denotes a chemical atom (e.g., C, O, H).
Each edge in E corresponds to a chemical bond [14].

A chemical multigraph may have more than one edge between vertices to represent mul-
tiple bonds between atoms (e.g., atoms may be joined by a double or triple bond). In this
chapter, we focus on chemical multigraphs (and use the term chemical graphs to mean chem-
ical multigraphs).

34.2.2 Graph Isomorphism and Canonical Labeling

No efficient algorithm has been found to determine if two general graphs are isomorphic
[15]. There are special cases for which graph isomorphism can be solved in polynomial time
including triconnected planar graphs [16], planar graphs [17], interval graphs [18], and trees
[19]. Chemical graphs may not meet these special cases and therefore we cannot use these
algorithms.

The problem of finding a canonical name for a graph is closely related to the graph
isomorphism problem.

Definition 34.2 (canonical name) A canonical naming is a function over all graphs map-
ping a graph G to a canonical name CN(G) such that for any two graphs, G1 and G2, G1 is
isomorphic to G2 if and only if CN(G1) = CN (G2).

If canonical names can be found for two graphs, the graphs can easily be checked for iso-
morphism by comparing their canonical names [5]. The problem of determining whether two
graphs are isomorphic can be performed at least as fast as the problem of finding a canonical
name for a graph. Algebraic methods for testing for graph isomorphism involve determin-
ing the automorphic groups of vertices. Babai and Luks [5] bridged the gap between the
canonical naming problem and the graph isomorphism problem by showing that knowledge
of automorphic groups of vertices can lead to a canonical name of a graph.

Luks provide a theoretical polynomial time solution for graphs of bounded valence [6],
but does not describe an algorithm for determining graph isomorphism. Fürer et al. provide
a polynomial time solution for graphs of bounded valence with a worst-case time complexity
of O

(
nτ(d)

)
, for a suitable integer τ(d), where d is the valence of the graph [20]. Although

these polynomial time solutions exist for graphs of bounded valence, no practical, polynomial
time algorithm has yet been implemented [7].

34.2.3 Random Graph Models

A random graph model is used to generate a graph using a random process. Two of the most
well-known random graph models are the Gn,p and G[n,N] models. Random graph models
provide a probabilistic setting for studying a variety of graph problems [3].

Definition 34.3 In the Gn,p random graph model, start with an undirected graph with n
vertices and no edges. Consider each of the (n2) possible edges and add it to the undirected
graph with probability p [3].

C5955–C0034.tex 999 2015/11/4 1:08pm

1000 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Definition 34.4 In the G[n,N] random graph model, we consider all undirected graphs on n
vertices with exactly N edges. Each graph with exactly N edges is equally likely to be chosen [3].

Scale-free networks are characterized by their degree distributions P (k), which describes the
proportion of nodes in a graph with degree k.

Definition 34.5 In a scale-free network, P(k) = ck−λ, where λ is a constant generally
between 2 and 3 and c is the normalization constant for the distribution.

Barabasi and Albert have shown that many real-life networks can be modeled by scale-free
networks [4]. Some examples include internet graphs, scientific collaboration graphs, social
networking graphs, and paper citation graphs. A key property of scale-free networks is that
the majority of nodes have a low degree; however, unlike Gn,p, the probability of a node with
a large degree does not decrease exponentially, and as such, there are likely to be a few nodes
(called hubs) that have a large degree.

Chemical graphs have no nodes with degree greater than a constant (typically 4), making
all of the models above (all of which permit nodes with high degrees) unsuitable for modeling
chemical graphs. Note that these models also preclude the generation of double and triple
bonds.

34.2.4 Random Graph Isomorphism

Simple polynomial time graph canonical labeling algorithms have been developed for deter-
mining isomorphism on random graphs. These algorithms have been proven to produce a
unique canonical label for most graphs generated under the Gn,p random graph model. The
algorithms are designed with failure criteria to ensure that only unique canonical labels are
generated.

Babai et al. present a simple isomorphism testing algorithm based on vertex degree dis-
tributions [21]. They use degree distributions to determine a canonical name for the input
graph. The worst-case complexity of their algorithm is quadratic in the number of vertices.
The algorithm fails if the largest vertex degrees are not unique. This approach cannot be
used for chemical graphs because many vertices will have the same largest degree.

Babai and Kucera present an algorithm (which the authors state is not meant to be
practicable) for random graphs that are selected from the uniform distribution over all 2(n

2)
graphs on a set of n labeled vertices [22]. (We note that this is a special case of the Gn,p

model with p = 0.5.) The algorithm, which is also based on classifying vertices based on their
degree distributions, improves upon the result of Babai et al. [21] by reducing the probability
of failure. Similarly, Czajka and Pandurangan present a linear-time algorithm for the canon-
ical labeling of a random graph, which is invariant under isomorphism [23]. The basic idea
of their algorithm is to distinguish the vertices of a graph using the degree of the neighbors.
The algorithm fails if the degree neighborhoods (DNs) are not distinct. Many vertices in
chemical graphs can have identical DNs making this approach inapplicable as well.

34.2.5 Practical Canonical Naming Algorithms for Chemical Graphs

Several methods for labeling molecules have been developed in the literature for use in chem-
informatics systems. These methods may also be used to solve the chemical graph isomor-
phism problem. Some graph isomorphism algorithms are designed for simple chemical graphs,
but can be modified to support chemical multigraphs, either directly or by using Faulon’s
algorithm to convert a chemical multigraph into a simple chemical graph in polynomial
time [24].

C5955–C0034.tex 1000 2015/11/4 1:08pm

Random Models and Analyses for Chemical Graphs � 1001

Morgan’s algorithm: One of the first canonical labeling algorithms for chemical graphs was
proposed by H.L. Morgan [8]. The algorithm is based on node connectivity and the
creation of unambiguous strings, which describe a molecule. Morgan’s algorithm may
fail on highly regular graphs since it results in oscillatory behavior [25].

Nauty: One of the most well-known and fastest algorithms for determining chemical graph
isomorphism is Nauty [26], which is based on finding the automorphism groups of
a graph [9]. The worst-case complexity of Nauty was analyzed and found to be
exponential [27], but in practice Nauty is much faster.

Bliss: The authors of Bliss improve the Nauty algorithm using an advanced data structure
and incremental computations. The worst-case complexity of Bliss remains exponential,
but the authors have shown that Bliss performs better than Nauty on benchmark
tests [10].

Signature: Another well-known canonical naming algorithm for chemical graph isomorphism
is Signature [7], which finds a canonical name using extended valence sequences. The
authors state that the algorithm has exponential worst-case complexity, but in practice
it appears to run much faster.

SMILES : SMILES is a chemical notation system commonly used to describe the structure
of a molecule [11–13]. However, the SMILES string used to describe a molecule is not
necessarily unique [28].

DN : DN is a simple labeling algorithm that does not guarantee uniqueness, that is, two
non-isomorphic molecules may have the same DN name (i.e., there may be a Type 1
error) [29,30]. DN assigns each atom a name based on its label and degree and the label
and degree of each of its neighbors. The names of each atom are then used to assign a
name to the molecule. For example, consider the CH3O molecule in Figure 34.2a. We
first label each atom, using its symbol and degree (Figure 34.2b). We then add to each
atom’s name the symbol and degree of its neighbors lexicographically (Figure 34.2c).
Now that each atom is named, we lexicographically sort the atom names to create the
name for the molecule. The resulting name is therefore:

[[C4][H1H1H1O1]][[H1][C4]][[H1][C4]][[H1][C4]][[O1][C4]]

Algorithm 34.1: Degree neighborhood canonical labeling

Input: Molecule (M) as an adjacency matrix and list of n atoms
Output: Canonical Name (C)

1 for i = 1 to n do
2 labels[i] = LabelVertexWithSymbolAndDegree(i);
3 end
4 for i = 1 to n do
5 dLabels[i] = CreateArrayOfConnectedLabels(i);
6 Sort(degreeLabels[i])
7 canonicalV ertexLabels[i] = “[[”+ labels[i]+“][”+ArrayToString(dLabels[i])+“]]”
8 end
9 Sort(canonicalV ertexLabels)

10 C = ArrayToString(canonicalV ertexLabels)
11 Return C

Although the DN algorithm is not 100% accurate, it is a very practical algorithm that may
be used as a preliminary check when determining if two molecules are isomorphic. DN was
used to speed up automated reaction mapping (an important tool in bioinformatics and

C5955–C0034.tex 1001 2015/11/4 1:08pm

1002 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

H C

H

H

O H1 C4

H1

H1

O1 [H1][C4] [C4][H1H1H1O1]

[H1][C4]

H1][C4][

[O1][C4]

(a) (b) (c)

Figure 34.2 (a–c) Degree neighborhood canonical labeling.

TABLE 34.1 Automated Reaction Mapping Type 1
Error Probability

Mechanism Type 1 Error Probability
CSM 0.14%
LLNL 0.02%
KEGG/LIGAND 0.02%

cheminformatics) computations [29–31]. The automated reaction mapping algorithms, which
utilize the DN were tested on a variety of mechanisms, including a Colorado School of Mines
(CSM) mechanism, a Lawrence Livermore National Laboratory (LLNL) [32] mechanism,
and the KEGG/LIGAND v57 database [33]. In practice we found that the DN algorithm
was able to correctly distinguish isomorphic and non-isomorphic molecules over 98% of the
time. Table 34.1 summarizes the results and shows the probability of Type 1 error for each
mechanism tested.

34.3 RANDOM GRAPH MODELS FOR CHEMISTRY

In this section, we introduce two random graph models as a means to model chemical graphs.
We then show that these two random graph models are equivalent and are guaranteed to
produce chemically valid graphs (defined later). Note that these models do not necessarily
capture the chemistry perfectly, but do so better than the previous random graph models
described earlier.

34.3.1 Definitions

Definition 34.6 (atom type) An atom type refers to each element type (e.g., hydrogen,
carbon, and oxygen are different atom types).

Definition 34.7 (half-edge) A half-edge is a potential bond for an atom. The number of
half-edges an atom has is determined by its number of valence electrons (e.g., hydrogen has
one half-edge, oxygen has two half-edges, and carbon has four half-edges). A bond joins two
half-edges to create an edge in the resulting graph.

Definition 34.8 (chemically valid graph) In a chemically valid graph no atom has more
edges than its number of available half-edges.

Definition 34.9 (equally-likely bond assumption) Given a collection of atoms and
their half-edges, the equally-likely bond assumption is that the probability that any pair of
half-edges forms a bond is equal. If there are 2e half-edges, this means that the probablility
that a given half-edge forms a bond with one of the remaining 2e−1 half-edges is 1/ (2e − 1).

C5955–C0034.tex 1002 2015/11/4 1:08pm

Random Models and Analyses for Chemical Graphs � 1003

Definition 34.10 (molecule M’s probability) A molecule M’s probability, Pr (M), is the
probability that the half-edges in a collection of atoms combine to form molecule M under the
equally-likely bond assumption.

34.3.2 Random Pair Model

The random pair model starts with the set of all available half-edges and repeatedly chooses
(and removes from the set) two half-edges at random until there are no half-edges left in
the set. The pair of half-edges removed at each stage are joined to form an edge. Clearly the
random pair model satisfies the equally-likely bond assumption and may be implemented
with a worst-case running time of O(e), where e is the number of edges in the graph. Note
that the resulting graph may not be connected. It is easy to see that the random pair model
creates a chemically valid graph. Note that it may be possible for an atom to have fewer than
its maximum number of bonds since its half-edges may bond with each other.

An alternative (equivalent) implementation of the random pair model is obtained by
generating a uniform random permutation of the list of half-edges and pairing half-edges
from left to right to form edges.

We present pseudocode for two algorithms, which may be used to implement the random
pair model: PairHalfEdges (Algorithm 34.2) and PermuteHalfEdges (Algorithm 34.3).

Algorithm 34.2: PairHalfEdges

Input: the set of atoms, A
Output: chemical graph of a given atoms, G

1 availableHalfEdges= GetHalfEdges(A)
2 e = NumEdges(A) /* The number of edges in resulting graph */
3 for i = 1 to e do
4 index1 = Random(availableHalfEdges)
5 Remove(availableHalfEdges, index1)
6 index2 = Random(availableHalfEdges)
7 Remove(availableHalfEdges, index2)
8 AddEdge(G, index1, index2)
9 end

10 Return G

Algorithm 34.3: PermuteHalfEdges

Input: the set of atoms, A
Output: chemical graph of a given atoms, G

1 availableHalfEdges= GetHalfEdges(A)
2 RandomPermute(availableHalfEdges)
3 e = NumEdges(A) /* The number of edges in resulting graph */
4 for i = 1 to e do
5 index1 = NextAvailable(availableHalfEdges)
6 index2 = NextAvailable(availableHalfEdges)
7 AddEdge(G, index1, index2)
8 end
9 Return G

C5955–C0034.tex 1003 2015/11/4 1:08pm

1004 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

34.3.3 Molecule Build Model

The molecule build model starts with an arbitrarily chosen atom.∗ Each half-edge of this atom
is then connected to a randomly chosen half-edge from the list of available half-edges. When
all half-edges associated with the current atom are used up, another atom with available
half-edges from the connected molecule built so far is arbitrarily chosen and the process
repeated. If the molecule has no remaining half-edges and there are atoms remaining with
unpaired half-edges, a new molecule is started.

It is easy to see that the molecule build model creates a chemically valid graph. (The
maximum number of half-edges available for each atom is its maximum number of connec-
tions. It is not possible for an atom to exceed its maximum number of connections.) Note
again that it may be possible for an atom to have fewer than its maximum number of bonds
since it may bond with itself.

We present pseudocode for the molecule build model in Algorithm 34.4.

Algorithm 34.4: MoleculeBuild

Input: the set of atoms, A
Output: chemical graph of a given atoms, G

1 availableHalfEdges= GetHalfEdges(A)
2 index1 = GetArbHalfEdge(availableHalfEdges)
3 e = NumEdges(A) /* The number of edges in resulting graph /*
4 for i = 1 to e do
5 index2 = Random(availableHalfEdges)
6 AddEdge(G, index1, index2)
7 if AllEdgesUsedInConnectedMolecule(index1)
8 index1 = GetArbHalfEdge(availableHalfEdges)
9 else

10 index1 = GetArbHalfEdgeFromConnectedMolecule(availableHalfEdges)
11 end
12 end
13 Return G

Theorem 34.1 Algorithm MoleculeBuild satisfies the equally-likely bond assumption.

Proof. The behavior of the molecule build algorithm can be modeled as a sequence of e rounds
that act on a set of 2e objects. In each round, one object is chosen arbitrarily while the other
is chosen uniformly at random from the remaining objects. We now show by induction that
Pe, the probability that a pair of objects A and B are chosen in the same round in one of
the e rounds, is 1/ (2e − 1).

Basis: When e = 1, the two objects A and B are guaranteed to be chosen; so P1 = 1 =
1/ [2(1) − 1].

We next consider two cases when e > 1.

Case 1. A is arbitrarily chosen in Round 1. The probability that B is chosen in the random
phase of Round 1 is the probability of choosing one object uniformly at random from among
2e−1 objects and is given by 1/ (2e − 1). (The case where B was arbitrarily chosen in Round
1 is identical.)

∗Note that an arbitrary choice is different from a uniform random choice in that the former can be
deterministic or biased.

C5955–C0034.tex 1004 2015/11/4 1:08pm

Random Models and Analyses for Chemical Graphs � 1005

Case 2. Neither A nor B was chosen in the arbitrary phase of Round 1. The probability that
A and B are chosen in the same round is the product of (1) the probability that neither A
nor B are chosen in the random phase of Round 1 multiplied by (2) the probability that A
and B are in the same round in one of the remaining e − 1 rounds. The first probability is
given by (2e−3)/(2e−1). The second probability is Pe−1 which, by induction, is 1/(2e−3).
Multiplying gives 1/(2e−1), proving the result. �

Corollary 34.1 The molecule build model generates a molecule with the same probability as
the random pair model.

Proof. We need to only show that any two arbitrary half-edges have the same probability of
being joined as any other half-edges in both models. This follows from Theorem 34.1. �
Note that Theorem 34.1 implies that the random pair model and the molecule build model are
equivalent. Although all three algorithms described above ultimately implement equivalent
models, it is more practical to use MoleculeBuild than the two RandomPair algorithms
outlined above because it is easier to manage data structures when joining half-edges.

34.4 BOUND ON FAILURE RATE OF CANONICAL LABELING ALGORITHMS

In this section, we provide a theoretical bound on the failure rate of a class of canonical
labeling algorithms (such as the DN naming algorithm we have described previously) on a
class of hydrocarbon molecules under the RandomPair model. In our analysis, we consider two
molecules. Molecule M1 belongs to the class of hydrocarbons C defined below. Molecule M2 is
a chemical graph generated by our random graph model with the same set of atoms as M1. We
will show that the probability that the canonical names are the same (CN(M1) = CN(M2))
decreases exponentially with size.

34.4.1 Class of Hydrocarbons C

Connected hydrocarbons have two properties:

1. Molecules are of the form CnHΘ(n), n > 0.

2. Molecules are of the form CnH2n−2i, where −1 ≤ i < n.

The first property simply requires that the number of H atoms grows linearly with the number
of C atoms. The second property includes a number of familiar hydrocarbons. For example,
when i = −1, we obtain molecules of the form CnH2n+2, which is the class of acyclic alkanes
(or saturated hydrocarbons). This includes linear chains (e.g., methane, ethane, propane,
etc.) and branched chains. When i = 0, we have the general formula CnH2n for alkenes
(unsaturated hydrocarbons containing one double-bond), which includes ethylene and propy-
lene or cycloalkanes (saturated hydrocarbons with a cycle). When i > 0, we further include
hydrocarbons with one or more triple bonds or two or more double bonds. Although our proof
below is restricted to the class of hydrocarbons described here to simplify the presentation, the
underlying mathematics can be extended to other classes of organic compounds.

34.4.2 Reasonable Canonical Labeling Algorithms

We define a reasonable canonical labeling algorithm to be one whose (1) runtime is at least
linear in the size of the chemical graph (i.e., Ω(|G|)) and (2) one that generates a canonical
name such that it is possible to determine whether the chemical graph is connected in linear
time with respect to the length of the name. Our justification for condition (1) is that

C5955–C0034.tex 1005 2015/11/4 1:08pm

1006 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

any reasonable naming algorithm must visit each vertex and edge in the chemical graph at
least once. Whether condition (2) is satisfied depends on details of the canonical naming
algorithm. However, we argue that condition (2) can be trivially satisfied by modifying the
naming algorithm so that it adds a prefix of 1 to the name if the chemical graph is connected
and 0 otherwise. Such a connectivity check can be accomplished in Θ(|G|) time and clearly
does not violate condition (1). Based on these conditions, we make the following observations.

Observation 34.1 CN(M1) always begins with a 1, while CN(M2) begins with a 1 if it is
connected and with a 0 if it is not.

Observation 34.2 The probability of failure (M1 ̸= M2, but CN(M1) = CN(M2)) is
bounded by the probability that M2 is connected.

The failure rate of a randomized algorithm is typically bounded by an expression of proba-
bility of the form 1/f(n), where n is the size of the input and f(n) is a function that can take
many forms; that is, f(n) could be a constant greater than 1 (e.g., 1000), a polynomial in n
(e.g., n2), or exponential in n (e.g., en). Clearly, the larger (asymptotically faster growing)
f(n) is, the better randomized algorithm. In the following we show that the failure proba-
bility does indeed decrease exponentially with respect to n; that is, there is a constant c > 1
such that the probability of failure is bounded by c−n. We make the following additional
observations.

Observation 34.3 If there are one or more H–H bonds in M2, then M2 is disconnected.
However, the converse is not true (i.e., a disconnected graph does not imply that there are
one or more H–H bonds in the chemical graph).

Observation 34.4 Pr (M2 has > 0 H−H bonds) ≤ Pr (M2 is disconnected) or equivalently
Pr (M2 is connected) ≤ Pr (M2 has 0 H−H bonds).

Theorem 34.2 Under the random-pair model, the failure rate of a reasonable canonical
labeling algorithm on M2 whose composition is of the form in C decreases exponentially in n.

Proof. We have already shown that the failure rate is bounded by the probability of no H–H
bonds.

Recall that we are considering hydrocarbons of the form CnH2n−2i. The probability of 0 H–H
bonds is the probability that each hydrogen half-edge bonds with a carbon half-edge. The
first hydrogen atom has 4n carbon half-edges to choose from out of 6n − 2i − 1 half-edges,
the second has 4n − 1 out of 6n − 2i − 3, and so on, until the last hydrogen atom has
4n − (2n − 2i) + 1 carbon half-edges to choose from out of (6n − 2i) − 2 ∗ (2n − 2i) + 1
total half-edges left, which is 2n + 2i + 1 out of 2n + 2i + 1. The probability of all of these
occurring can be written as a product of the individual probabilities, so the probability of
no H–H bonds is

4n

6n − 2i − 1
4n − 1

6n − 2i − 3
. . .

2n + 2i + 1
2n + 2i + 1

= (4n)!/(2n + 2i)!
(6n − 2i − 1)!!/(2n + 2i − 1)!!

= (4n)!(2n + 2i − 1)!!
(2n + 2i!)(6n − 2i − 1)!!

C5955–C0034.tex 1006 2015/11/4 1:08pm

Random Models and Analyses for Chemical Graphs � 1007

where the double factorial of x for odd x, written x!!, is the product over all positive odd
integers less than or equal to x. The double factorials can be changed to single factorials, as
x!! = x!/

{
((x − 1)/2)!2(x−1)−2

}
. Using this fact gives the probability of no H–H bonds as

(4n)!
(2n + 2i)!

(2n + 2i − 1)!
2n+i−1(n + i − 1)!

23n−i−1(3n − i − 1)!
(6n − 2i − 1)!

Some terms can be canceled:

= 22n−2i

2n + 2i

(4n)!(3n − i − 1)!
(n + i − 1)!(6n − 2i − 1)!

and, multiplying by (2n + 2i)/2∗(n + i):

= 22n−2i−1 (4n)!(3n − i − 1)!
(n + i)!(6n − 2i − 1)!

Now, using Stirling’s inequality
√

2πnn+(1/2)e−n ≤ n! ≤ e ∗ nn+(1/2)e−n to provide an upper
bound for the terms in the numerator and a lower bound for the terms in the denominator,
an upper bound for the desired probability is:

≤ 22n−2i−1e2

2π
e−7n+i+1

e−7n+i+1
(4n)4n+(1/2)(3n − i − 1)3n−i−(1/2)

(n + i)n+i+(1/2)(6n − 2i − 1)6n−2i−(1/2)

= 22n−2i−2e2

π
44n+(1/2)n4n+(1/2) (3n − i − 1)3n−i−(1/2)

(n + i)n+i+(1/2)(6n − 2i − 1)6n−2i−(1/2)

Rearranging terms and combining the powers of 2:

= 210n−2i−1e2n4n+(1/2)

π

((3n − i − 1)
(n+i)(6n−2i−1)

)n+i+(1/2) ((3n−i−1)
(6n−2i−1)

)2n−2i−1 (1
(6n−2i−1)

)3n−i

Upper bounding by decreasing the denominator:

≤ 210n−2i−1e2n4n+(1/2)

π

((3n − i − 1)
(n+i)(6n−2i−2)

)n+i+(1/2) ((3n−i−1)
(6n−2i−2)

)2n−2i−1 (1
(6n−2i−1)

)3n−i

= 210n−2i−1e2n4n+(1/2)

π

(1
2 ∗ (n+i)

)n+i+(1/2) (1
2

)2n−2i−1 (1
(6n−2i) ∗ {1− (1/(6n−2i))}

)3n−i

= 27n−i−(1/2)e2n4n+(1/2)

π

(1
n + i

)n+i+(1/2) (1
(6n − 2i) ∗ {1 − (1/(6n − 2i))}

)3n−i

The term
1

1 − (1/ (6n − 2i))
= 6n − 2i

6n − 2i − 1
= 1 + 1

6n − 2i − 1
Using 1 + x ≤ ex for all x, 1 + (1/ (6n − 2i − 1)) ≤ (6n − 2i − 1):

≤ 27n−i−(1/2)e2n4n+(1/2)

π

(1
n + i

)n+i+(1/2) (1
2 ∗ (3n − i)

)3n−i

e(3n−i)/(6n−2i−1)

e(3n−i)/(6n−2i−1) is roughly e1/2, but can be bounded by the constant e.

≤ 24n−(1/2)e2n4n+(1/2)

π
(n + i)−(n+i+(1/2))(3n − i)−(3n−i)e

= 24ne3n4n+(1/2)

π
√

2
(n + i)−(n+i+(1/2))(3n − i)−(3n−i)

C5955–C0034.tex 1007 2015/11/4 1:08pm

1008 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Let us assume that the number of hydrogen atoms grows linearly as k ∗ n (0 ≤ k ≤ 2), where
n is the number of carbon atoms. This means that 2n − 2i = kn and i = (1 − (k/2)) ∗ n.
Then, the bound on the probability of no H–H bonds becomes

24ne3n4n+(1/2)
√

2π
((2 − k/2)n)−((2−k/2)n+(1/2)) ((2 + k/2)n)−((2+k/2)n)

= e3√
2 ∗ (2 − k/2)π

{
24

(2 − (k/2))2−(k/2)(2 + (k/2))2+(k/2)

}n

For k > 0, define
1
c

= 24

(2 − (k/2))2−(k/2)(2 + (k/2))2+(k/2) < 1

which means that as long as the number of hydrogen atoms grows as the molecule increases
in size, then the probability of having 0 H–H bonds will decrease exponentially. �

34.5 DISCUSSION

We have described a model for the random generation of graphs that are significantly closer
to chemical graphs than previous random graph models. Three practical algorithms for gener-
ating molecules based on these models are provided, giving the programmer ample flexibility
based on the nature of the underlying data structures used in a system. We use this model to
prove a theoretical result related to graph isomorphism similar in spirit to results by Babai
et al. [21] and Czajka and Pandurangan [23].

We also contrast this work with that of Goldberg and Jerrum [34], which presents a theo-
retical (i.e., no implementation is provided and the algorithm appears to be too complicated
to implement) polynomial time algorithm that generates and selects a connected isomer from
a set of isomers with equal probability. In contrast, our approach does not aim to generate an
isomer with equal probability. Instead, we present a simple model that is easy to implement
and to use or to perform probabilistic analyses. Our approach may be seen as similar (but
chemically more relevant than) the Gn,p model, which is used for probabilistic analysis but
does not generate all graphs with equal probability.

References

[1] T.M. Kouri, D. Pascua, and D.P. Mehta. Random models and analyses for chemical
graphs. Int. J. Found. Comput. Sci., 26 (2015), 269–291.

[2] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
New York, 1995.

[3] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, New York, 2005.

[4] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286(5439) (1999), 509–512.

[5] L. Babai and E. Luks. Canonical labeling of graphs. In Proceedings of the 15th Annual
ACM Symposium on Theory of Computing, New York, 1983.

[6] E.M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
J. Comput. Syst. Sci., 25(1) (1982), 42–65.

C5955–C0034.tex 1008 2015/11/4 1:08pm

Random Models and Analyses for Chemical Graphs � 1009

[7] J.-L. Faulon, M. Collins, and R. Carr. The signature molecular descriptor. 4. Canon-
izing molecules using extended valence sequences. J. Chem. Inf. Model., 44(2) (2004),
427–436.

[8] H.L. Morgan. The generation of a unique machine description for chemical structures—
A technique developed at chemical abstracts service. J. Chem. Doc., 5(2) (1965),
107–113.

[9] B. McKay. Practical graph isomorphism. Congr. Numer., 30 (1981), 45–87.

[10] T. Junttila and P. Kaski. Engineering an efficient canonical labeling tool for large
and sparse graphs. In Proceedings of the 9th Workshop on Algorithm Engineering
and Experiments and the 4th Workshop on Analytic Algorithms and Combinatorics,
D. Applegate, G.S. Brodal, D. Panario, and R. Sedgewick, editors, SIAM, New Orleans,
LA, pp. 135–149, 2007.

[11] D. Weininger. Smiles—A chemical language and information system. 1. Introduction to
methodology and encoding rules. J. Chem. Inf. Comp. Sci., 28(1) (1988), 31–36.

[12] D. Weininger, A. Weininger, and J.L. Weininger. Smiles. 2. Algorithm for generation of
unique smiles notation. J. Chem. Inf. Comp. Sci., 29(2) (1989), 97–101.

[13] D. Weininger. Smiles. 3. DEPICT—Graphical depiction of chemical structures. J. Chem.
Inf. Comp. Sci., 30(3) (1990), 237–243.

[14] J. Crabtree and D. Mehta. Automated reaction mapping. J. Exp. Algorithmics, 13
(2009), 15:1.15–15:1.29.

[15] S. Pemmaraju and S. Skiena. Computational Discrete Mathematics: Combinatorics and
Graph Theory with Mathematica. Cambridge University Press, New York, 2003.

[16] J.E. Hopcroft and R.E. Tarjan. A V log V algorithm for isomorphism of triconnected
planar graphs. J. Comput. Syst. Sci., 7 (1973), 323–331.

[17] J.E. Hopcroft and J.K. Wang. Linear time algorithm for isomorphism of planar graphs
(preliminary report). In Proceedings of the 6th Annual ACM Symposium on Theory of
Computing, New York, pp. 172–184, 1974.

[18] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman & Co., New York, 1990.

[19] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1974.

[20] M. Fürer, W. Schnyder, and E. Specker. Normal forms for trivalent graphs and graphs
of bounded valence. In Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, New York, pp. 161–170, 1983.

[21] L. Babai, P. Erdös, and S. Selkow. Random graph isomorphism. SIAM J. Comput., 9(3)
(1980), 628–635.

[22] L. Babai and L. Kucera. Canonical labelling of graphs in linear average time. In Proceed-
ings of the 20th Annual Symposium on Foundations of Computer Science, Washington,
DC, pp. 39–46, 1979.

C5955–C0034.tex 1009 2015/11/4 1:08pm

1010 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[23] T. Czajka and G. Pandurangan. Improved random graph isomorphism. J. Discrete
Algorithms, 6(1) (2008), 85–92.

[24] J.-L. Faulon. Isomorphism, automorphism partitioning, and canonical labeling can be
solved in polynomial-time for molecular graphs. J. Chem. Inf. Comput. Sci., 38(3)
(1998), 432–444.

[25] J. Gasteiger and T. Engel, editors. Chemoinformatics: A Textbook. Wiley, New York,
2003.

[26] B. McKay. No automorphisms, yes? http://cs.anu.edu.au/ bdm/nauty/.

[27] T. Miyazaki. The complexity of Mckay’s canonical labeling algorithm. Groups and Com-
putation II, DIMACS Ser. Discret. M., 28 (1997), 239–256.

[28] G. Neglur, R.L. Grossman, and B. Liu. Assigning unique keys to chemical compounds
for data integration: Some interesting counter examples. In Data Integration in the Life
Sciences, Lecture Notes in Computer Science 3615, B. Ludascher and L. Raschid, editors,
Springer, Berlin, Germany, pp. 145–157, 2005.

[29] T. Kouri and D. Mehta. Improved automated reaction mapping. In Experimental
Algorithms, Lecture Notes in Computer Science 6630, P.M. Pardalos and S. Rebennack,
editors, Springer, Berlin, Germany, pp. 157–168, 2011.

[30] T.M. Kouri and D.P. Mehta. Faster reaction mapping through improved naming tech-
niques. J. Exp. Algorithmics, 18 (2013), 2.5:2.1–2.5:2.32.

[31] T.M. Kouri, M. Awale, J.K. Slyby, J.-L. Reymond, and D.P. Mehta. Social network of
isomers based on bond count distance: Algorithms. Journal of Chemical Information
and Modeling, 54(1) (2014), 57–68.

[32] H.J. Curran, P. Gaffuri, W.J. Pitz, and C.K. Westbrook. A comprehensive modeling
study of n-heptane oxidation. Combust. Flame, 114(1/2) (1998), 149–177.

[33] S. Goto, T. Nishioka, and M. Kanehisa. LIGAND: Chemical database of enzyme reac-
tions. Bioinformatics, 14(7) (1998), 591–599.

[34] L.A. Goldberg and M. Jerrum. Randomly sampling molecules. SIAM J. Computing,
29(3) (2000), 834–853.

C5955–C0034.tex 1010 2015/11/4 1:08pm

C H A P T E R 35

Randomized Graph Algorithms:
Techniques and Analysis
Surender Baswana

Sandeep Sen

CONTENTS

35.1 Introduction . 1011
35.2 Linear Time MST . 1012

35.2.1 Algorithm . 1013
35.3 Global Min-Cut . 1014

35.3.1 Contraction Algorithm . 1014
35.4 Estimating the Size of Transitive Closure . 1016

35.4.1 Idea of Randomization . 1016
35.4.2 Monte Carlo Algorithm . 1017
35.4.3 How Accurate the Estimate τ̂(v) Is to τ(v)? . 1018

35.5 Decremental Algorithm for Maintaining SCCs . 1019
35.5.1 Handling Deletion of Edges . 1019

35.6 Approximate Distance Oracles . 1021
35.6.1 3-Approximate Distance Oracle . 1021

35.6.1.1 Expected Size of the Data Structure . 1022
35.6.1.2 Answering a Distance Query . 1022

35.6.2 Recent and Related Work on Approximate Distance Oracles 1023

35.1 INTRODUCTION

Although the first significant application of randomized techniques in algorithm design
happened in mid-1970s in the celebrated primality testing algorithms of Miller–Rabin and
Solovay–Strassen, its impact in graph algorithms was felt more than a decade later. Arguably,
the first non-trivial applications were in the area of parallel graph algorithms like connectiv-
ity [1], depth-first search (DFS) [2], and matching [3]. Luby’s work [4] on parallel maximal
matching inspired a new line of work in derandomization. Seidel’s work [5] in shortest paths
was soon followed by some very innovative approaches to global min-cuts and minimum span-
ning trees (MSTs) by Karger et al. [6,7] that consolidated the use of randomization in the
area of mainstream graph algorithms. Subsequently, randomization has been used very effec-
tively in dynamic graph algorithms such as connectivity [8], transitive closure, and shortest
path maintenance problems, some of which have no matching deterministic counterparts.

The above line of work must be clearly distinguished from a related but a fundamentally
different model, namely, the random graph model of Erdős–Rényi that has a very long and
rich history. However, these results are obtained by analyzing the expected performance of

1011

1012 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

an algorithm on a random instance of a graph in the Gn,p, a class of graphs with n vertices
where each of the (n

2) edges occur with probability p. Our focus is on algorithms that use
random choices and work for any input instance. Traditionally randomized algorithms come
in two flavors, namely Monte Carlo and Las Vegas. The former denotes a class of algorithms
whose output may contain errors (with probability bounded below 1/2) whereas the Las
Vegas algorithms always output the correct result. While Monte Carlo algorithms terminate
in some predictable number of steps, the running time of a Las Vegas is a random variable
whose expected value must be analyzed. For efficiency consideration, we are interested in
polynomial time randomized algorithms (in case of Las Vegas algorithms the expected run-
ning time is bounded by a polynomial in size of the input). The class of polynomial time
Monte Carlo algorithms are called RP (one-sided error∗ randomized polynomial), whereas
the (expected) polynomial time Las Vegas algorithms are known as ZPP (zero error prob-
abilistic polynomial). As the reader might have suspected, the Las Vegas algorithms is the
more desirable kind and it is known that the complexity classes are related as ZPP ⊆ RP ,
but not known in the reverse direction.

In this chapter we will focus on Las Vegas randomized algorithms that always produce the
correct answer, but manifest some variation in the running times. The most common measure
is the expected running time of the algorithm, where the expectation is over the choice of
random bits in the algorithm and not the input distribution. The natural concern is what is
an acceptable probability of deviating from the expected running time by a certain amount—
say a small constant factor. Roughly speaking, the expected running time implies that the
probability of exceeding twice the expected time is 1/2. If the hardware itself is subjected
to a similar scrutiny, there is empirical evidence that it has a failure probability as high as
1/2k where k is a constant. Therefore it is not unreasonable to aim for a success probability
for randomized algorithms that is about an order of magnitude smaller than this. Over the
past decade, the notion of high probability bound has gained wide acceptance. An algorithm
is said to have a running time f(n) with high probability (whp), if the following holds

Pr (T (n) > cαf(n)) ≤ 1
nα

for some constant c and any α, where T (n) is the running time for an input of size n. This
is also referred to as inverse polynomial probability of success. It must be noted that there
is an implicit trade-off between the success probability and the running time. An inverse-
exponential probability is even better, namely,

Pr (T (n) > cf(n)) ≤ 1
2n

However, randomized algorithms that succeed with high probability are considered as reliable
as any deterministic algorithm.

In this chapter, we shall discuss five problems on graph algorithms and present ran-
domized algorithms for them. The particular choice of these problems has been due to the
following reasons. These problems are simple as well as some of the well-researched problems.
Moreover, they employ simple randomization ideas in a powerful way to achieve efficiency in
the time complexity.

35.2 LINEAR TIME MST

The basic idea for obtaining a faster algorithm for MST is very intuitive. We first randomly
sample a set of edges S ⊂ E and construct a minimum spanning forest F (may not be

∗There is a more general class called BPP that allows two-sided errors.

Randomized Graph Algorithms � 1013

connected). Using F , we can filter some of the edges using the red rule, that is, the heaviest
edge in any cycle cannot belong to the final MST. However, the technical lemma that achieves
a provable bound on the number of edges that can be eliminated based on the sampling is
quite subtle.

Lemma 35.1 Given an undirected graph G = (V, E), with a weight function w : E → R, let
G(p) = (V, E(p)) denote the subgraph where each edge of G is included in G(p) independently
with probability p. If F (p) is a minimum spanning forest of G(p), we define an edge (u, v) ∈
E − E(p) to be heavy if each edge on the path from u to v in F (p) has weights smaller than
w(u, v). Since the heavy edges cannot be part of the MST of G, we retain only the remaining
edges, that are called light and this set is denoted by L. Then E[L] = O(|V |/p). �

The proof is based on an useful observation called principle of deferred decision. We pre-
tend that the sampling is happening online on a predetermined sequence using independent
Bernoulli trials (with success probability p). This principle states that the sequence in which
we do the Bernoulli trials is indistinguishable from independent offline sampling and there-
fore the bounds that we prove using some convenient online ordering will hold for the offline
sampling.

We first sort the edges in increasing order of their weights and divide the sampling into
|V | − 1 phases—in each phase we discover an additional edge of F . Note that F may not
be connected and may have less than |V | − 1 edges. We will prove that in each phase, the
expected number of light edges is O(1/p). We argue using induction. Suppose we are currently
in the ith phase, that is, the corrent size of F is i − 1 and Ei is the remaining sequence for
which we have not yet sampled. The (partial) F categorizes Ei into two distinct classes—
those edges that are light (on the basis of the current F) and those that are not, call them
heavy. The outcome of the sampling on the heavy edges of Ei is not relevant, since they
will be discarded. So we only focus on the subsequence E�

i of the light edges. The first edge
that is selected from E�

i terminates the ith phase. What is the expected number of edges in
E�

i that are not sampled before the first one? This is upperbounded by a geometric random
variable that has expectation 1/p. In fact, we observe that the number of light edges in each
phase is independent and so we can obtain concentration bounds (that holds with probability
approaching 1) on the total number of light edges over all the phases.

35.2.1 Algorithm

The algorithm first applies two rounds of Boruvka’s algorithm, that is, each vertex v chooses
its nearest neighbor u = N(v) and includes (u, v) in the final MST∗. Now contract these
edges, and the resultant graph has no more than |V |/2 vertices (after contraction, every
merged group has at least two vertices). Therefore after two rounds, the contracted graph,
which is denoted by G2 has at most |V |/4 vertices and each round takes O(|E|) time. In G2
we sample every edge with probability 1/2 and in the resultant graph G2(1/2), we construct
the MST of G2(1/2) recursively, denote this by F (G2(1/2)). Using F (G2(1/2)) to filter out
those edges that cannot contribute to F (G2), we are left with a set of edges E′ where the
expected size of E′ is ≤ 2 · |V |/4 = |V |/2. We again run the algorithm recursively on this
graph G′ = (V ′, E) and output the edges in F (G′).

The running time of the algorithm depends on the procedure by which we detect the light
edges. Let the time complexity of this procedure be L(m, n). The entire algorithm can be
viewed in terms of the (binary) recursion tree where the left nodes correspond to the sampling
and filtering step and the right node corresponds to the second recursive. Let us first bound
the cost of applying Boruvka’s algorithm to all nodes of the recursion tree. For this, it suffices
to count the total number of vertices and edges in all the subproblems. Since the number of
vertices decrease by a factor of 4 at each level, the total number of nodes can be bounded by

1014 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

∑∞
d=0

(
n/4d

) · 2d ≤ ∑
d

(
n/2d

) ≤ 2n. The sum total of edges can be bound by looking at the
(disjoint) union of the edges belonging to all the maximal length left paths from each node.
Since the expected number of edges in successive left nodes decrease by a factor of 2, the
expected total number of edges is no more than a factor of 2 of the number of edges in the
starting node. At the root level, there is only one starting node that contributes 2m edges.
In level d, there are 2d−1 starting nodes (that are right children), each with 2

(
n3hd

)
edges,

that yields a total of
∑

d

(
n/2d

)
edges in these nodes and therefore the maximal left paths

starting from these have a total of twice this quantity, that is, 2n. So the overall (expected)
number of edges in all subproblems combined is O(m + n) which is also the asymptotic cost
of Boruvka’s iterations. Moreover if L(m, n) is O(m + n)∗, then, the expected running time
of the algorithm is O(m + n).

35.3 GLOBAL MIN-CUT

A cut of a given (connected) graph G = (V, E) is a set of edges that when removed disconnects
the graph. An s − t cut must have the property that the designated vertices s and t should
be in separate components. A min-cut is the minimum number of edges that disconnects a
graph and is sometimes referred to as global min-cut to distinguish it from s − t min-cut.
The weighted version of the min-cut problem is the natural analogue when the edges have
non-negative associated weights. A cut can also be represented by a set of vertices S where
the cut edges are the edges connecting S and V − S.

It was believed for a long time that the min-cut is a harder problem to solve than the
s − t min-cut—in fact the earlier algorithms for min-cuts determined the s − t min-cuts for
all pairs s, t ∈ V . The s − t min-cut can be determined from the s − t max-flow algorithms
and over the years, there have been improved reductions of the global min-cut problem to
the s − t flow problem, such that it can now be solved in one computation of s − t flow.

In a remarkable departure from this line of work, first Karger and Stein [7], followed by
Karger [9] developed faster algorithms (than max-flow) to compute the min-cut with high prob-
ability. The algorithms produce a cut that is very likely the min-cut, that is, these are Monte
Carlo algorithms. Unfortunately, there is yet no known matching verification algorithms. We
will describe an algorithm that runs in time O(n2polylog(n)), (n = |V |) which is nearly best
possible for dense graphs.∗ This algorithm exploits some properties of branching processes.

35.3.1 Contraction Algorithm

The basis of the algorithm is the procedure contraction described below. The fundamental
operation contract(v1, v2) replaces vertices v1 and v2 by a new vertex v and assigns the set of
edges incident on v by the union of the edges incident on v1 and v2. We do not merge edges
from v1 and v2 with the same end point but retain them as multiple edges. Notice that by
definition, the edges between v1 and v2 disappear.

Procedure Contraction(t)
Input: A multigraph G = (V, E)
Output: A t partition of V

Repeat until t vertices remain

choose an edge (v1, v2) at random
contract (v1, v2)

∗A more recent algorithm of Karger improves this to O(|E|polylog(n)) using a more sophisticated Monte
Carlo algorithm.

Randomized Graph Algorithms � 1015

Procedure Contraction(2) produces a cut. Using the observation that, in an n-vertex graph
with a min-cut value k, the minimum degree of a vertex is k, the following can be shown
quite easily.

Lemma 35.2 The probability that a specific min-cut C survives at the end of Contraction(t)
is at least (t(t − 1)/n(n − 1)). �

Therefore Contraction(2) produces a min-cut with probability Ω
(
1/n2)

.

Lemma 35.3 A single iteration of the procedure contraction can be carried out in O(n)
steps. �

This is done by using an adjacency graph representation (see Karger and Stein [7] for details).
Therefore using the procedure contract to produce min-cut is somewhat expensive since
we need to repeat it about n2 times. Instead, we run procedure Contraction (

√
n/2) twice

independently and repeat it recursively on the contracted graphs. The algorithm is described
below.

Algorithm Fastmincut
Input: A multigraph G = (V, E)
Output: A cut C
1. Let n := |V |.
2. If n ≤ 6 then compute mincut of G directly else

2.1 t := �1 + n/
√

2	.
2.2 Call Contraction(t) twice (independently) to produce to

graphs H1 and H2.
2.3 Let C1 = Fastmincut (H1) and C2 = Fastmincut (H2).
2.4 C = min{C1, C2}

The running time of algorithm Fastmincut satisfies the following recurrence

T (n) = 2T
(
�1 + n/

√
2	

)
+ O(n2)

which yields T (n) = O(n2 log n). Perhaps a more interesting question is to ascertain the
probability with which Fastmincut returns a min-cut. The probability that a min-cut survives
in H1 after Step 2.2 is

(�1 + n/
√

2)(�1 + n/
√

2	 − 1)
n(n − 1) ≥ 1

2

from Lemma 35.2. The same argument applies to H2 independently. Therefore, we can view
the recursive algorithm as a branching process where any node can have zero, one, or two
children depending on the fact if the min-cut survived in zero, one, or two children. The
distribution function at each node can be approximated by a binomial distribution with two
trials, each with success probability greater than 1/2 (i.e., mean μ ≥ 1). Since the algorithm
has roughly 2 log n levels of recursion, we can restate the survival probability of the min-cut
as the complement of the extinction probability at the 2 log n generation.

1016 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The extinction probability of a branching process∗ with mean μ > 1 converges to the
solution of x = P (x) where P is the generating function of the probability distribution.
Here, we can approximate P (s) by (1/4) + (1/2) s2 + (1/4) s2. Solving for x yields x = 1,
which is an asymptotic solution but does not give us much information about the rate of
convergence. For this, we need to solve the recurrence

xn = P (xn−1)

where xi is the extinction probability of the ith generation. Substituting our generating
function and simplifying yields

xn = 1
4(1 + xn−1)2

The solution to this recurrence is xn = Θ (1/n). So the survival probability of the min-cut
(after 2 log n) levels of recursion is Ω (1/ log n). Repeating the procedure (with indepen-
dently chosen random bits) m log n times increases the probability of finding the min-cut to
1 − exp−m.

35.4 ESTIMATING THE SIZE OF TRANSITIVE CLOSURE

Let G = (V, E) be a directed graph on n = |V | vertices and m = |E| edges. For each vertex v,
let τ(v) be the number of vertices reachable from v in the given graph. Consider the problem
of computing a very accurate estimate of τ(v) for each v ∈ V . We can compute τ trivially by
executing a breadth-first or depth-first traversal from each vertex and this will take O(mn)
time. We can also use repeated squaring of the adjacency matrix and this approach will
achieve O(nω log n) time, where ω is the exponent of the best-known algorithm for multi-
plying two n × n integer matrices. Currently best bound on ω is 2.317 due to Coppersmith
and Winograd [10]. These are the only two deterministic algorithms known for this problem.
We shall now discuss an O(m log n) time randomized Monte Carlo algorithm by Cohen [11]
which, for any given constant c1, c2 > 1, computes τ̂(v) for each vertex v ∈ V satisfying

τ(v)
c1

< τ̂(v) < c2τ(v)

with high probability. Here c1, c2 can be chosen arbitrarily close to 1. Notice that the constant
in O(m log n) running time will depend upon the values c1, c2 and the desired probability of
success.

In addition to being a problem of independent theoretical interest, this problem has
applications in databases. Before answering a database query, one would like to estimate the
size of the query–answer set to be reported. This prior knowledge may sometimes help in
optimizing query processing time.

35.4.1 Idea of Randomization

Suppose we select k numbers uniformly independently from the interval [0, 1]. Let X be the
random variable defined as the smallest of these k numbers.

Lemma 35.4 Expected value of X is 1/(k + 1).

Proof. Notice that selecting k numbers splits the interval [0, 1] into k + 1 intervals. Taking
this viewpoint, X is equal to the length of the leftmost of the k + 1 intervals formed.

∗The reader is referred to standard textbooks, for example, Feller [12] for theoretical analysis of branching
process.

Randomized Graph Algorithms � 1017

To calculate E[X], we shall pursue this viewpoint. Consider a circle of circumference 1.
Suppose we select k + 1 points randomly uniformly and independently from the circum-
ference of this circle. This will split the circumference into k + 1 intervals. Exploiting the
uniformity in sampling the points and the symmetry of the circle conclude that the lengths of
these k+1 intervals have identical probability distribution (though they are not independent).
This implies that the expected length of any interval would be 1/(k+1). Let us straighten the
circle to form a line interval [0, 1] by cutting the circle at any of the k +1 selected point. This
creates an instance of our original experiment of selecting k points from interval [0, 1]. Hence
E[X] = 1/(k + 1). �
The fact that the expected value of the smallest number among the k numbers selected
uniformly independently from [0, 1] is 1/(k +1) conveys the following important observation:
the number of random variables k is related to E[X] very closely. We can use X to infer the
number of random variables, which define it. In particular, if X takes value a, we may return
1/a − 1 as the estimate of the number of random variables. This randomization idea is the
underlying idea of the algorithm for estimating the value τ(v) for each v ∈ V . However, to
improve the accuracy of our estimate and the associated probability, we shall use the idea of
multiple sampling.

35.4.2 Monte Carlo Algorithm

Though there is no deterministic algorithm to compute τ(v) for all v ∈ V in O(m) time, there
are many problems on directed graphs which can be solved in O(m) time (e.g., computing
the strongly connected components [SCC] of the graph). One such problem is the following.
Let each vertex stores some key which is a real number and the aim is to compute, for each
v ∈ V : the key of the smallest key vertex reachable from v. There is a deterministic O(m)
time algorithm for this problem based on DFS of the graph. We shall use this algorithm
and the randomization idea described above to solve the problem of estimating τ(v) for each
v ∈ V .

The algorithm will perform � iterations. In ith iteration, we assign a key to each vertex
in the graph by selecting a number uniformly randomly from the interval [0, 1]. After this we
execute O(m) time algorithm which computes, for each v ∈ V , ki[v]: the key of the smallest
key vertex reachable from v. At the end of l iterations, we shall have a set {k1[v], . . . , k�[v]}
of � such labels for each v ∈ V . It follows from Lemma 35.4 that the expected value of any
element of the set is 1/τ(v). (Actually, it is 1/ (τ(v) + 1), but for simplicity and clarity of
exposition we ignore the additive term of 1 from the denominator.) In order to accurately
estimate τ(v), we should select that element from {k1[v], . . . , k�[v]} which is going to be closest
to 1/τ(v) most likely. For this purpose, we state Lemma 35.5 whose proof is elementary.

Lemma 35.5 If we select j numbers uniformly independently from interval [0, 1], the prob-
ability that the smallest number is greater than c is (1 − c)j for any 0 < c < 1. �

0 1
.

1
τ(v)

c1
τ(v)

�
eth largest sample point

more than �/e samples

Figure 35.1 The event when (�/e)th largest element happens to be greater than c1/τ(v)

1018 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

It follows from Lemma 35.5 that the probability ki[v], for any i ≤ �, takes value greater than
1/τ(v) and is given by

P
(

ki (v) >
1

τ(v)

)
=

(
1 − 1

τ(v)

)τ(v)
≈ 1/e (35.1)

The above equation implies that out of � iterations of the algorithm, roughly �/e times the
sample will be greater than 1/τ(v). Therefore, from the set {k1(v), . . . , k�(v)} the (�/e)th
largest element is most likely to be closest to 1/τ(v). Let this element be denoted as k∗

v . So
the algorithm finally reports 1/k∗

v as the estimate τ̂(v) of τ(v).

35.4.3 How Accurate the Estimate τ̂(v) Is to τ(v)?

We shall try to get a bound on the probability for the event τ(v)/c1 < τ̂(v) < c2τ(v) for any
given constants c1, c2 > 1. For this purpose we need to calculate a bound on the probability
for the event τ̂(v) < τ(v)/c1 and a bound on the probability for the event τ̂(v) > c2τ(v)
separately. Let us focus on bounding the probability of τ̂(v) < τ(v)/c1.

τ̂(v) < τ(v)/c1 means that the (�/e)th largest element from {k1(v), k2(v), ..., k�(v)}
happened to be greater than c1/τ(v). This means that at least �/e of the elements from
{k1(v), k2(v), ..., kt(v)} turned out to be greater than even c1/τ(v) (see Figure 35.1).

Let us introduce random variables Xi, i ≤ t at this moment. Xi takes value 1 if ki[v]
is greater than c1/τ(v) and zero otherwise. Note that each of Xi, i ≤ � chooses its value
independent of other Xj ’s j �= i since every iteration of the algorithm assigns labels to
vertices independent of other iterations. Let X =

∑
i Xi. So we can see that the event

X > �/e is necessary for happening of the event τ̂(v) < τ(v)/c1. So we shall now calculate
the probability of event X > �/e.

Using Lemma 35.5 and linearity of expectation, it is easy to observe that E[X] is
(1 − c1/τ(v))τ(v)�, which is at most e−c1 l since 1 + α < eα, ∀α > 0. So the situation is
the following. Compared to its expected value of �/ec1 , the random variable X took value
greater than �/e which is quite large (depending upon c1).

Let us compute the probability for this event using Chernoff bound. Convince yourself
that X fulfills all requirements for applying Chernoff bound. Let us, for the sake of clarity of
exposition, assume the value of c1 such that e−c1 = (1/2e) (the value of c1 is close to 1.7).
So the expected value of X is �/(2e). Since the value taken by X is at least �/e, it implies
that δ > 1. Hence applying the Chernoff bound

P
(

X >
�

e

)
< e−[(�/2e)/4] = e−(�/8e)

If we choose � = 24e ln n, that is, if we repeat the main iteration of the algorithm more than
24e ln n times, the probability that τ(v) takes value less than τ(v)/1.7 is less than 1/n3. Using
Boole’s inequality (union theorem) we can thus state Lemma 35.6.

Lemma 35.6 If we repeat the main iteration of the algorithm at least 24e ln n times, the
probability that τ(v) is less than τ(v)/1.7 for any v is less than 1/n2. �

In a similar fashion, we can calculate the probability of the event τ̂(v) > c2τ(v). We can thus
conclude with the following theorem.

Theorem 35.1 Given a directed graph G on n vertices and m edges, and any two constants
c1, c2 > 1, there is a Monte Carlo randomized algorithm which takes O(m log n) time to
compute τ̂(v) for each v such that with probability exceeding 1 − 1/n2,

τ(v)
c1

≤ τ̂(v) ≤ c2τ(v) �

Randomized Graph Algorithms � 1019

35.5 DECREMENTAL ALGORITHM FOR MAINTAINING SCCs

Given a directed graph G = (V, E), two vertices u, v ∈ V are said to be strongly connected
if there is a path from u to v as well as a path from v to u. A SCC in a graph is a maximal
subset of strongly connected vertices. The problem of maintaining SCCs under deletion of
edges can be stated formally as follows:

There is an online sequence of edge deletions interspersed with the queries are u and v
strongly connected for any u, v ∈ V . The aim is to maintain a data structure which can
answer each query in O(1) time and can be updated efficiently upon any edge deletion.

In addition to being a problem of independent interest, an efficient algorithm for this
problem provides efficient decremental algorithm for maintaining all-pairs reachability.

Let us start with a simple-minded solution for this problem. This solution will use the
well-known static O(m) time algorithm to compute SCCs of a given graph. In order to answer
any query in O(1) time, we may keep an array A such that A[u] = A[v] if u and v belong to
the same SCC. For this purpose, we may select a unique vertex REP(c) called representative
vertex of c. For each v ∈ c, A[v] store REP(c). This ensures O(1) query time. In order to
handle any edge deletion, we may execute the static O(m) time algorithm to recompute
SCC, and hence update A, after each edge deletion. This is a trivial decremental algorithm
for maintaining SCCs while ensuring O(1) query time. However, this algorithm will take a
total of O(m2) update time to process any sequence of edge deletions.

We shall now discuss a very simple randomized Las Vegas algorithm by Roditty and
Zwick [13] for maintaining SCCs under deletion of edges. The expected time taken by this
algorithm to process any arbitrary sequence of edge deletions will be O(mn log n) only. Let us
introduce a couple of notations here. For a SCC c, we shall use G(c) to denote the subgraph
of G induced by c and E(c) to denote the edges of G(c). Let Gr denote the graph obtained
by reversing all the edge directions in G.

We basically need an efficient mechanism to maintain the array A under deletion of
edges which bypasses the need of recomputing SCCs after each edge deletion. In particular,
whenever an edge is deleted, we need to determine if it has indeed split an SCC into multiple
SCCs. For this objective, for each SCC c, the following data structure is maintained:

• Tout(c): the breadth-first search (BFS) tree rooted at REP(c) in graph G(c).

• Tin(c): the BFS tree rooted at REP(c) in graph Gr(c).

We now provide an overview of a simple algorithm for maintaining a BFS tree rooted at
a vertex under deletion of edges. This algorithm maintains the level of each vertex. As the
edges are being deleted, vertices may fall from their level to lower levels. Upon deletion of
an edge, this algorithm takes O(1) time to determine if it has caused fall of one or more
vertices. The algorithm computes new levels of each vertex which falls. In doing so, for each
vertex x which has fallen from its level i to level j, the algorithm incurs O((j − i) deg(x))
computation cost in processing x. For the sake of clarity of our analysis, we charge the total
computation performed during any sequence of edge deletions to the respective vertices,
which the algorithm processes. Since a vertex can only fall during edge deletions, and the
lowest level is n, the total computation cost charged to x during any sequence of edge deletion
will be O(n deg(x)). This implies a total of O(mn) update time for maintaining a rooted BFS
tree in a graph. Next, we describe the procedure for handling deletion of an edge.

35.5.1 Handling Deletion of Edges

Consider deletion of an edge (u, v). If u and v belong to different SCCs, nothing needs to
be done except deletion of (u, v) from the graph. But, if u and v belong to the same SCC,

1020 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

say c, we update the data structures associated with c. If the deletion leads to any vertex
leaving Tin(c) or Tout(c), it implies that SCC c has split. We execute O(|E(c)|) time algo-
rithm to determine the new SCCs. For all vertices which leave the old SCC c, we delete
them and all their edges from Tin(c) and Tout(c). For each new SCC c′, we select the rep-
resentative REP (c′), and build BFS trees Tin(c′) and Tout(c′). We now state an important
observation.

Observation 35.1 Suppose deletion of an edge splits a SCC c into SCCs c1, . . . , ck with
REP(c) belonging to some SCC, say c1. Each vertex of c1 will not be charged any addi-
tional computation cost. But any vertex x ∈ ci, i > 1 will be charged a computation cost of
O(|ci| deg(x)) in building and maintaining the data structure associated with ci. �

The algorithm described above is deterministic and its worst-case running time can still be
O(m2). To achieve efficiency, we now add the following simple randomization ingredient to
this algorithm. Each SCC c, at the moment of its creation, selects its REP(c) randomly uni-
formly from c. It will turn out that this simple randomization leads to an efficient decremental
algorithm for maintaining SCC. Let us analyze its running time.

There are two major computational tasks, which are performed by the algorithm for
any sequence of edge deletions. The first task is the execution of the static algorithm for
determining new SCC. This task is executed whenever some SCC gets split and hence will
be executed at most n − 1 times during any sequence of edge deletions. A single execution
of this algorithm takes O(m) time, so overall O(mn) computation time is spent in this task.
Another computation task is associated with maintaining the data structures for various
SCCs that get created during a sequence of edge deletions. To analyze this major task, we
shall take vertex-centric approach.

Consider any arbitrary sequence of edge deletions and focus on any vertex v. Let ver-
tex v changed its SCC a total of t times and let c1, c2, . . . , ct be the respective connected
components. Notice that ci ⊂ ci−1 for all 1 < i ≤ t. Let ni = |ci| and n1 = n. We shall
show that the expected computation cost charged to v while maintaining the data structures
associated with c1, . . . , ct will be O(n deg(v)) only. Recall Observation 35.1. Let Xi be the
random variable which takes value 1 if during transition from ci to ci+1, vertex v is charged
O(|ni| deg(v)) computation cost, and zero otherwise.

Note that Xi = 1 if REP(ci) belonged to ci\ci+1. Since REP(ci) was selected randomly
uniformly from ci, hence

P(Xi = 1) = ni − ni+1
ni

So the expected computation cost charged to v during any sequence of edge deletion is of
the order of

t−1∑

i=1
P(Xi = 1)ni deg(v) =

t−1∑

i=1

ni − ni+1
ni

ni deg(v)

= deg(v)
t−1∑

i=1
(ni − ni+1) = deg(v)(n − 1) = O(n deg(v)).

So the expected total computation performed by the decremental algorithm of SCC for
processing any sequence of edge deletions is O(mn).

Theorem 35.2 For any directed graph G = (V, E), there is a randomized decremental algo-
rithm for maintaining SCCs with O(1) query time and expected O(mn) total update time.�

Randomized Graph Algorithms � 1021

35.6 APPROXIMATE DISTANCE ORACLES

The all-pairs shortest paths problem is one of the most fundamental algorithmic graph prob-
lem. This problem is commonly phrased as follows: Given a graph on n vertices and m edges,
compute shortest-paths/distances between each pair of vertices.

In many applications the aim is not to compute all distances, but to have a mechanism
(data structure) through which we can extract distance/shortest-path for any pair of vertices
efficiently. Therefore, the following is a useful alternate formulation of the all pairs shortest
paths (APSP) problem.

Preprocess a given graph efficiently to build a data structure that can answer a shortest-
path query or a distance query for any pair of vertices.

The objective is to construct a data structure for this problem such that it is efficient
both in terms of the space and the preprocessing time. There is a lower bound of Ω(n2) on
the space requirement of any data structure for APSP problem, and space requirement of
all the existing algorithms for APSP match this bound. However, this quadratic bound on
the space is too large for many graphs, which appear in various large-scale applications. In
most of these graphs, it is usual to have m = n2, hence a table of Θ(n2) size is too large
to be kept. This has motivated researchers to design a subquadratic space data structures,
which may report approximate instead of exact distance between any two vertices. A path
from u to v in a graph is said to be t-approximate if its length is at most t times the length
of the shortest path from u to v. Thorup and Zwick [14] presented a novel data structure
for all-pairs approximate shortest paths, called approximate distance oracles. They showed
that any given weighted undirected graph can be preprocessed in subcubic time to build a
data structure of subquadratic size for answering a distance query with stretch 3 or more.
Note that 3 is also the least stretch for which we can achieve subquadratic space for APSP
(see [15]). There are two very impressive features of their data structure. First, the trade-off
between stretch and the size of data structure is essentially optimal assuming a 1963 girth
lower bound conjecture of Erdös [16] and second, in spite of its subquadratic size their data
structure can answer any distance query in constant time, hence the name oracle. In precise
words, Thorup and Zwick [14] achieved the following result.

Theorem 35.3 [14] For any integer k ≥ 1, an undirected weighted graph on n vertices and
m edges can be preprocessed in expected O(kmn1/k) time to build a data structure of size
O(kn1+1/k) that can answer any (2k − 1)-approximate distance query in O(k) time. �

We provide below description of 3-approximate distance oracle.

35.6.1 3-Approximate Distance Oracle

In order to achieve subquadratic space, the 3-approximate distance oracle is based on the
following idea.

From each vertex v, we store distance and shortest paths to a small set of vertices lying
within small vicinity of v. This will take care of distance queries from v to its nearby vertices.
For querying distance to a vertex, say w, lying outside the vicinity of v, we may do the
following. We may have a small set S of special vertices and we store distance between each
special vertex and every vertex of the graph. In order to report (approximate) distance between
v and w, we may report the sum of the distances from some (carefully defined) special vertex
to v and w.

The above idea, though looks intuitively appealing, appears difficult to materialize. In
particular, how do we define vicinity around a vertex and ensure a finite stretch, while

1022 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

having only a small set of special vertices? Randomization in selecting S plays a crucial role
to achieve all these goals simultaneously. The following terminology captures the notion of
vicinity of a vertex in terms of the special vertices.

Definition 35.1 Given a graph G = (V, E), a vertex v ∈ V , and any subset S ⊂ V of
vertices, we define Ball(v, V, S) as a set in the following way.

Ball(v, V, S) = {x ∈ V |δ(v, x) < δ(v, Y)}

Let p(v, S) denote the vertex from set S which is nearest to v. In simple words, Ball(v, V, S)
consists of all those vertices of the graph whose distance from v is less than the distance of
p(v, S) from v. The 3-approximate distance oracle is built as follows:

1. Let S ⊆ V be formed by selecting each vertex uniformly and independently with
probability 1/

√
n.

2. From each vertex S, store distance to all the vertices.

3. From each vertex v ∈ V \S, compute p(v, S) and build a hash table which stores all
the vertices of Ball(v, V, S) and their distance from v.

See Figure 35.2 to get a better picture of the 3-approximate distance oracle.

35.6.1.1 Expected Size of the Data Structure

The expected size of the data structure computed as described above depends upon the
expected size of Ball(v, V, S) which turns out to be O(

√
n) as follows. Consider the sequence

〈(v =)x0, x1, x2, · · · 〉 of vertices V arranged in non-decreasing order of their distances from v.
The vertex xi will belong to Ball(v, V, S) only if none of x1, · · · , xi are selected in the set S.
Therefore, xi ∈ Ball(v, V, S) with probability at most (1 − 1/

√
n)i. Hence using linearity of

expectation, the expected number of vertices in Ball(v, V, S) is at most
∑

i(1−1/
√

n)i <
√

n.
Hence the expected size of the data structure will be O(n

√
n).

35.6.1.2 Answering a Distance Query

Let u, v ∈ V be any two vertices whose approximate distance is to be computed. First it is
determined whether or not u ∈ Ball(v, V, S), and if so, the exact distance δ(u, v) is reported.
Note that u /∈ Ball(v, V, S) would imply δ(v, p(v, S)) ≤ δ(v, u). In this case, report the

v

p(v, S)

Ball(v, V, S)
∈ S

Figure 35.2 The oracle keeps distance information between v and all the vertices pointed by
arrows.

Randomized Graph Algorithms � 1023

distance δ(v, p(v, S)) + δ(u, p(v, S)), which is at least δ(u, v) (using the triangle inequality)
and upperbounded by 3δ(u, v) as shown below.

δ(v, p(v, S)) + δ(u, p(v, S)) ≤ δ(v, p(v, S)) + {δ(u, v) + δ(v, p(v, S))}
= 2δ(v, p(v, S)) + δ(u, v) (35.2)
≤ 2δ(u, v) + δ(u, v) = 3δ(u, v)

35.6.2 Recent and Related Work on Approximate Distance Oracles

Thorup and Zwick [14] presented an expected O(kmn1/k) time algorithm for computing a
(2k − 1) spanner. There has been a lot of work [17,18] in designing faster algorithms for
computing a (2k − 1)-approximate distance oracle. Currently, the best bounds for const-
ructing these oracles is O(n2). Interestingly, these fast algorithms also employ simple
randomization ideas.

An equally interesting question is to explore the possibility of approximate distance ora-
cles for stretch better than 3. Recently Patrascu and Roditty [19] presented a positive answer
to this question. They designed a 2-approximate distance oracle of size O(n5/3) for unweighted
graphs. They also generalize it for weighted graphs, though the size bounds depend on the
number of edges of the graph: For graphs with edges n2/α, they design a 2-approximate
distance oracle with O(n2/ 3

√
α).

A related structure in graph theory, similar to the approximate distance oracles, is a
graph spanner. A spanner is a subgraph which is sparse and yet preserves all-pairs distances
approximately: Given an undirected graph G = (V, E) and positive integer k, a (2k − 1)-
spanner is a subgraph (V, ES), such that the distance between any pair of vertices u, v in the
subgraph is at most (2k − 1)δ(u, v). An interesting by-product of the (2k − 1)-approximate
distance oracle of Thorup and Zwick [14] is a (2k − 1)-spanner with O(kn1+1/k) edges. In
fact 3-approximate distance oracle described above leads to 3-spanner as follows. From each
special vertex v ∈ S, include all the edges of the shortest path tree rooted at v in the spanner.
For every nonspecial vertex v ∈ V \S, just store the edges of the shortest path tree from v to
only those vertices that belong to Ball(v, V, S). It follows that the subgraph defined by these
edges is indeed a 3-spanner. Interestingly, there has been a Las Vegas randomized algorithm
[20] to compute a (2k − 1)-spanner with O(kn1+1/k) edges in expected O(km) time.

References

[1] H. Gazit. An optimal randomized parallel algorithm for finding connected components
in a graph. SIAM J. Comput. 20(6) (1991), 1046–1067.

[2] A. Aggarwal, R. J. Anderson, and M.-Y. Kao. Parallel depth-first search in general
directed graphs. SIAM J. Comput., 19(2) (1990), 397–409.

[3] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1) (1987), 105–113.

[4] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
J. Comput., 15(4) (1986), 1036–1053.

[5] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. J.
Comput. Syst. Sci., 51(3) (1995), 400–403.

[6] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to
find minimum spanning trees. J. ACM, 42(2) (1995), 321–328.

1024 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[7] D. R. Karger and C. Stein. A new approach to the minimum cut problem. J. ACM,
43(4) (1996), 601–640.

[8] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with poly-
logarithmic time per operation. J. ACM, 46(4) (1999), 502–516.

[9] D. R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1) (2000), 46–76.

[10] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
J. Symb. Comput., 9(3) (1990), 251–280.

[11] E. Cohen. Size-estimation framework with applications to transitive closure and reach-
ability. J. Comput. Syst. Sci., 55(3) (1997), 441–453.

[12] W. Feller. An Introduction to Prabability Theory and Its Applications, John Wiley &
Sons, 1957.

[13] L. Roditty and U. Zwick. Improved dynamic reachability algorithms for directed graphs.
SIAM J. Comput., 37(5) (2008), 1455–1471.

[14] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52(1) (2005), 1–24.

[15] E. Cohen and U. Zwick. All-pairs small-stretch paths. J. Algorithms, 38(2) (2001),
335–353.

[16] P. Erdös. Extremal problems in graph theory. In Theory of Graphs and Its Applications,
Publishing House of the Czechoslovak Academy of Sciences, Prague, Czech Republic,
pp. 29–36, 1964.

[17] S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in expected
O(n2) time. ACM Trans. Algorithms, 2(4) (2006), 557–577.

[18] S. Baswana and T. Kavitha. Faster algorithms for all-pairs approximate shortest paths
in undirected graphs. SIAM J. Comput., 39(7) (2010), 2865–2896.

[19] M. Patrascu and L. Roditty. Distance oracles beyond the Thorup-Zwick bound. In
FOCS, Las Vegas, NV, IEEE, pp. 815–823, 2010.

[20] S. Baswana and S. Sen. A simple and linear time randomized algorithm for computing
sparse spanners in weighted graphs. Random Struct. Algorithms, 30(4) (2007), 532–563.

XI
Coping with NP-Completeness

1025

C H A P T E R 36

General Techniques for
Combinatorial Approximation*
Sartaj Sahni

CONTENTS

36.1 Introduction . 1027
36.2 Rounding . 1029
36.3 Interval Partitioning . 1031
36.4 Separation . 1032

36.1 INTRODUCTION

Many combinatorial optimization problems are known to be NP-complete† [1–4]. An
NP-complete problem can be solved in polynomial time iff all other NP-complete problems
can also be solved in polynomial time. The class of NP-complete problems includes such diffi-
cult problems as the traveling salesman, multicommodity network flows, integer programming
with bounded variables, set cover, and node cover problems. There is no known polynomial
time algorithm for any of these problems. Moreover, mounting empirical evidence (i.e., the
identification of more and more NP-complete problems) suggests that it is very likely that
no polynomial time algorithms exist for any of these problems. This realization has led many
researchers to develop polynomial time approximation algorithms for some NP-complete
optimization problems. An approximation algorithm for an optimization problem is gener-
ally a heuristic that attempts to obtain a solution whose value is close to the optimal value.
For many problems the data themselves are only an estimate. The exact values may be
slightly different from these estimates. In such case it is probably just as meaningful to find
a solution whose value is close to the optimal value as it is to find an optimal value (as the
optimal solution may not remain so once the exact data values are known). For the case
of NP-complete problems, the study of approximation algorithms derives an even stronger
motivation from the fact that all known optimization algorithms for these problems require
an exponential amount of time (measured as a function of problem size) and the expectation
that these problems will never be solvable by polynomial time algorithms. Even on the fastest
computers, exponential time algorithms are feasible only for relatively small problem sizes.
It is better to be able to obtain an approximately optimal solution than no solution at all.

∗This chapter is an edited version of the paper, Sartaj Sahni, “General Techniques for Combinatorial
Approximation,” Operations Research, 25(6) (1977), 920–936.

†We use the term NP-complete somewhat loosely here, as strictly speaking only decision problems may
be NP-complete and their optimization counterparts are NP-hard.

C5955–C0036.tex 1027 2015/11/4 1:09pm

1027

1028 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Many researchers have presented heuristics that obtain reasonably good solutions. The
performance of these heuristics is usually measured only through computational tests.
A major thrust of research on approximation algorithms has been the insistence on per-
formance guarantees for heuristics. This involves the establishment of bounds on maximum
difference between the value of an optimal solution and the value of the solution generated
by the heuristic. While performance bounds were obtained as early as 1966 by Graham [5]
for certain scheduling heuristics, the development of the class of NP-complete problems has
led to an increased interest in approximation methods that are guaranteed to get solutions
with value within some specified fraction of the optimal solution value.

Definition 36.1 An algorithm will be said to be an ε-approximate algorithm for a problem
P iff it is the case that for every instance I of P , |F ∗(I) − F̂ (I)|/F ∗(I) ≤ ε. F ∗(I) > 0
is the value of an optimal solution to I, F̂ (I) is the value of the solution generated by the
algorithm, and ε is some constant. For a maximization problem we require 0 ≤ ε < 1 and for
a minimization problem ε ≥ 0.

Many known polynomial time approximation algorithms are also ε-approximation algorithms.
Thus while it seems necessary to spend, in the worst case, a nonpolynomial amount of time
to obtain optimal solutions to NP-complete problems, we can get to within an ε factor of
the optimal for some such problems in polynomial time. For yet others [4] it is known that
the problem of obtaining ε-approximate solutions is also NP-complete.

In some cases it is possible to obtain an approximation algorithm that for every ε > 0
generates solutions that are ε-approximate [6–10]. In the terminology of Garey and Johnson
[11,12] such an algorithm is called an approximation scheme. Definitions 36.2 through 36.4
are due to Garey and Johnson.

Definition 36.2 An approximation scheme for a problem P is an algorithm that, given
an instance I and a desired degree of accuracy ε > 0, constructs a problem solution with
value F̂ (I), such that, if F ∗(I) > 0 is the value of an optimal solution to I, then |F ∗(I) −
F̂ (I)|/F ∗(I) ≤ ε.

Definition 36.3 An approximation scheme is a polynomial time approximation scheme if
for every fixed ε > 0 it has a polynomial computing time. (References [6–10] present such
schemes for some NP-complete problems.)

While the existence of polynomial time approximation schemes for NP-complete problems
may appear surprising, for some problems one can in fact obtain approximation schemes with
a computing time polynomial in both the input size and 1/ε. Such schemes are called fully
polynomial time approximation schemes.

Definition 36.4 A fully polynomial time approximation scheme is a polynomial time ap-
proximation scheme whose computing time is a polynomial in both the input size and 1/ε.

Garey and Johnson [11] present an annotated bibliography of research on combinatorial
approximation. Ibarra and Kim [7] present an O(n/ε2 + n log n) fully polynomial time
approximation scheme for the 0-1 knapsack problem. Sahni [10] and Horowitz and Sahni [6]
present O(n2/ε) fully polynomial time approximation schemes for several machine-scheduling
problems. In this chapter, we present a tutorial on two of the techniques used in [6,7,10] to
obtain these schemes. These techniques are called rounding [7] and interval partitioning [10].
Both techniques are very general and applicable to a wide variety of optimization problems.
Next we present a third technique, called separation, which is a modification of interval

C5955–C0036.tex 1028 2015/11/4 1:09pm

General Techniques for Combinatorial Approximation � 1029

partitioning. This technique is as general as the others. While it results in approximation
schemes with the same worst-case complexity as those obtained when interval partitioning is
used, intuition backed by experimental results indicates that it performs better than interval
partitioning. These three general methods for combinatorial optimization have the added
advantage that heuristics, which could be applied to the exact algorithm, can also be used
with the approximation, scheme.

36.2 ROUNDING

We state the three approximation techniques in terms of maximization problems. The exten-
sion to minimization problems is immediate. We shall assume the maximization problem to
be of the form

max
n∑

i=1
cixi

n∑
i=1

aijxi ≤ bj , 1 ≤ j ≤ m

xi = 0 or 1, 1 ≤ i ≤ n,

(36.1)

where ci, aij ≥ 0 for all i and j. Without loss of generality, we will assume that aij ≤ bj , 1 ≤
i ≤ n, and 1 ≤ j ≤ m.

If 1 ≤ k ≤ n, then the assignment xi = yi, 1 ≤ i ≤ k will be said to be a feasible
assignment iff there exists at least one feasible solution to (36.1) with xi = yi, 1 ≤ i ≤ k.
A completion of a feasible assignment xi = yi, 1 ≤ i ≤ k, is any feasible solution to (36.1)
with xi = yi, 1 ≤ i ≤ k. Let xi = yi, 1 ≤ i ≤ k, and xi = zi, 1 ≤ i ≤ k, be two feasible
assignments such that for at least one j, 1 ≤ j ≤ k, yj ̸= zj . Let

∑
ciyi =

∑
cizi. We shall

say that y1, . . . , yk dominates z1, . . . , zk iff there exists a completion y1, . . . , yk, yk+1, . . . , yn

such that
∑n

i=1 ciyi is greater than or equal to
∑n

i=1 cizi for all completions z1, . . . , zn of
z1, . . . , zk. The approximation techniques to be discussed will apply to those problems that
can be formulated as (36.1) and for which simple rules can be found to determine when
one feasible assignment dominates another. Such rules exist, for example, for many problems
solvable by dynamic programming [12–14].

One way to solve problems stated as above is to systematically generate all feasible assign-
ments starting from the null assignment. Let S(i) represent the set of all feasible assignments
for x1, . . . , xi. Then S(0) represents the null assignment and S(n) the set of all completions.
The answer to our problem is an assignment in S(n) that maximizes the objective function.
The solution approach is then to generate S(i+1) from S(i), 1 ≤ i < n. If an S(i) contains
two feasible assignments y1, . . . , yi and z1, . . . , zi such that

∑
cjyj =

∑
ckzk, then use of

the dominance rules enables us to discard that assignment which is dominated. (In some
cases the dominance rules may permit the discarding of a feasible assignment even when∑

cjyj ̸=
∑

ckzk. This happens, for instance, in the knapsack problem [2,15].) Following the
use of the dominance rules, it is the case that for each feasible assignment in S(i) ∑i

j=1 cjxj

is distinct. However, despite this, it is possible for each S(i) to contain twice as many feasible
assignments as S(i−1). This results in a worst-case computing time that is exponential
in n. The approximation methods we are about to discuss will restrict the number of distinct∑n

i=1 cjxj to be only a polynomial function of n. The error introduced will be within some
prespecified bound. The methods are computationally efficient only when there exist efficient
dominance rules to eliminate all but one of a set of assignments that yield the same profit
(i.e., objective function value

∑
cjxj).

C5955–C0036.tex 1029 2015/11/4 1:09pm

1030 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The aim of rounding is to start from a problem instance I, formulated as in (36.1), and
to transform it to another problem instance I ′ that is easier to solve. This transformation is
carried out in such a way that the optimal solution value of I ′ is close to the optimal solution
value of I. In particular, if we are provided with a bound ε on the fractional difference between
the exact and approximate solution values, then we require that |(F ∗(I)−F ∗(I ′))/F ∗(I)| ≤ ε,
where F ∗(I) and F ∗(I ′) represent the optimal solution values of I and I ′, respectively. The
transformation from I to I ′ is carried out in the following way: First we observe that the
feasible solutions to I are independent of the ci, 1 ≤ i ≤ n. Thus if I ′ has the same constraints
as I and the ci

′ differ from the ci by small amounts the optimal solution to I will be a
feasible solution to I ′. In addition, the solution value in I ′ will be close to that in I. For
example, if the ci in I have the values (c1, c2, c3, c4) = (1.1, 2.1, 1001.6, 1002.3), then if we
construct I ′ with (c1

′, c2
′, c3

′, c4
′) = (0, 0, 1000, 1000) it is easy to see that the value of any

solution in I is at most 7.1 more than the value of the same solution in I ′. This worst-case
difference is achieved only when xi = 1, 1 ≤ i ≤ 4, is a feasible solution for I (and hence
also for I ′). Since aij ≤ bj , 1 ≤ i ≤ n and 1 ≤ j ≤ m, it follows that F ∗(I) ≥ 1002.3 (as
one feasible solution is x1 = x2 = x3 = 0 and x4 = 1). But F ∗(I) − F ∗(I ′) ≤ 7.1 and so
(F ∗(I)− F ∗(I ′))/F ∗(I) ≈ 0.007.

Solving I by using the procedure outlined above, the feasible assignments in S(i) could
have the following distinct profit values: S(0) = {0}, S(1) = {0, 1.1}, S(2) = {0, 1.1, 2.1, 3.2},
S(3) = {0, 1.1, 2.1, 3.2, 1001.6, 1002.7, 1003.7, 1004.8}, and S(4) = {0, 1.1, 2.1, 3.2, 1001.6,
1002.3, 1002.7, 1003.4, 1003.7, 1004.4, 1004.8, 1005.5, 2003.9, 2005, 2006, 2007.1}. Thus, bar-
ring any elimination of feasible assignments resulting from the dominance rules or from any
heuristic, the solution I using the procedure outlined above would require the computation
of

∑n
i=0 |S(i)| = 31 feasible assignments. The feasible assignments for I ′ have the following

values: S(0) = {0}, S(1) = {0}, S(2) = {0}, S(3) = {0, 1000}, S(4) = {0, 1000, 2000}. Note
that

∑n
i=0 |S(i)| is only 8. Hence I ′ can be solved in about one-fourth the time needed for I.

An inaccuracy of at most 0.7% is introduced.
Given the ci

,s and an ε, what should the c′,
i s be so that (F ∗(I)− F ∗(I ′))/F ∗(I) ≤ ε and∑n

i=0 |S(i)| ≤ p(n) for some polynomial in n and 1/ε? Once we can figure this out we will
have a fully polynomial time approximation scheme for our problem since it is possible to go
from S(i−1) to S(i) in time proportional to O(|S(i−1)|). (We shall see this in greater detail in
the examples.)

Let LB be an estimate for F ∗(I) such that F ∗(I) ≥ LB. Clearly, we may assume LB ≥
maxi{ci}. If

∑n
i=1 |ci− ci

′| ≤ εF ∗(I), then it is clear that (F ∗(I)−F ∗(I ′))/F ∗(I) ≤ ε. Define
ci

′ = ci − rem(ci, (LBε)/n), where rem(a, b) is the remainder of a/b, that is, a − ⌊a/b⌋b
(e.g., rem(7,6)=1/6 and rem(2.2,1.3)=0.9).∗ Since rem(ci, LBε/n) < LBε/n, it follows that∑
|ci − ci

′| < LBε ≤ F ∗ε. Hence, if the optimal solution to I ′ is used as an optimal solution
for I, the fractional error is less than ε. In order to determine the time required to solve I ′

exactly, it is useful to introduce another problem I ′′ with ci
′′, 1 ≤ i ≤ n, as its objective

function coefficients. Define ci
′′ = ⌊(cin)/(LBε)⌋, 1 ≤ i ≤ n. It is easy to see that ci

′′ =
(ci

′n)/(LBε). Clearly, the S(i) ′s corresponding to the solutions of I ′ and I ′′ will have the
same number of tuples. (p1, t1) is a tuple in an S(i) for I ′ iff [(p1n)/(LBε), t1] is a tuple in
the S(i) for I ′′. Hence the time needed to solve I ′ is the same as that needed to solve I ′′.
Since ci ≤ LB, it follows that ci

′′ ≤ ⌊n/ε⌋. Hence |S(i)| ≤ 1 +
∑i

j=1 cj
′′ ≤ 1 + i⌊n/ε⌋ and

so
∑n−1

i=0 |S(i)| ≤ n +
∑n−1

i=0 i⌊n/ε⌋ = O(n3/ε). Thus, if we can go from S(i−1) to S(i) in
O(|S(i−1)|) time, then I ′′ and hence I ′ can be solved in O(n3/ε) time. Moreover, the solution
for I ′ would be an ε-approximate solution for I and we would thus have a fully polynomial

∗⌊x⌋ is the largest integer not greater than x.

C5955–C0036.tex 1030 2015/11/4 1:09pm

General Techniques for Combinatorial Approximation � 1031

time approximation scheme. When using rounding, we will actually solve I ′′ and use the
resulting optimal solution as the solution to I.

Example 36.1 The 0-1 knapsack problem is formulated as

max
n∑

i=1
cixi

n∑
i=1

wixi ≤M

xi = 0 or 1, 1 ≤ i ≤ n.

While solving this problem by successively generating S(0), S(1), . . . , S(n), the feasible assign-
ments for S(i) may be represented by tuples of the form (p, t), where p =

∑i
j=1 cjxj and

t =
∑i

j=1 wjxj . One may easily verify the validity of the following dominance rule [2,16]: The
assignment corresponding to (p1, t1) dominates that corresponding to (p2, t2) iff t1 ≤ t2 and
p1 ≥ p2.

Let us solve the following instance of the 0-1 knapsack problem: n = 5, M = 1112 and
(c1, c2, c3, c4, c5) = (w1, w2, w3, w4, w5) = {1, 2, 10, 100, 1000}. Since ci = wi, 1 ≤ i ≤ 5, the
tuples (p, t) in S(i), 0 ≤ i ≤ 5 will have p = t. Consequently, it is necessary to retain only
one of the two coordinates p, t. The S(i) obtained for this instance are S(0) = {0}; S(1) =
{0, 1}; S(2) = {0, 1, 2, 3}; S(3) = {0, 1, 2, 3, 10, 11, 12, 13}; S(4) = {0, 1, 2, 3, 10, 11, 12, 13,
100, 101, 102, 103, 110, 111, 112, 113}; and S(5) = {0, 1, 2, 3, 10, 11, 12, 13, 100, 101, 102, 103,
110, 111, 112, 113, 1000, 1001, 1002, 1003, 1010, 1011, 1012, 1013, 1100, 1101, 1102, 1103, 1110,
1111, 1112}. The optimal solution has value

∑
cixi = 1112.

Now let us use rounding on the above problem instance to find an approximate
solution with value at most 10% less than the optimal value. We thus have ε = 1/10.
Also, we know that F ∗(I) ≥ LB ≥ max{ci} = 1000. The problem I ′ to be solved is
n = 5, M = 1112, (c1

′′, c2
′′, c3

′′, c4
′′, c5

′′) = (0, 0, 0, 5, 50) and (w1, w2, w3, w4, w5) = (1, 2,
10, 100, 1000). Hence S(0) = S(1) = S(2) = S(3) = {(0, 0)}; S(4) = {(0, 0), (5, 100)}; S(5) =
{(0, 0), (5, 100), (50, 1000), (55, 1100)}.

The optimal solution is (x1, x2, x3, x4, x5) = (0, 0, 0, 1, 1). Its value in I ′′ is 55 and in the
original problem 1100. The error (F ∗(I)− F̂ (I))/F ∗(I) is therefore 12/1112 < 0.011 < ε. At
this time we see that the solution may be improved by setting either x1 = 1 or x2 = 1 or
x3 = 1.

Rounding as described in its full generality results in O(n3/ε) time approximation
schemes. It is possible to specialize this technique to the specific problem being solved. Thus
Ibarra and Kim [7] obtain an O(n/ε2 +n log n) ε-approximate algorithm for the 0-1 knapsack
problem and an O(n/ε2) ε-approximate algorithm for the unrestricted nonnegative integer
knapsack problem. Both their algorithms use rounding. See also Hassin [17] and Lorenz and
Raz [18] where ε-approximation algorithms have been developed for the constrained shortest
path problem. For further details see Chapter 37.

36.3 INTERVAL PARTITIONING

Unlike rounding, interval partitioning does not transform the original problem instance into
one that is easier to solve. Instead, an attempt is made to solve the problem instance I by
generating a restricted class of the feasible assignments for S(0), S(1), · · · , S(n). Let Pi be
the maximum

∑i
j=1 cjxj among all feasible assignments generated for S(i). Then the profit

interval [0, Pi] is divided into subintervals each of size Piε/n (except possibly the last interval,
which may be a little smaller). All feasible assignments in S(i) with

∑i
j=1 cjxj in the same

C5955–C0036.tex 1031 2015/11/4 1:09pm

1032 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

subinterval are regarded as having the same
∑i

j=1 cjxj and the dominance rules are used to
discard all but one of them. The S(i) resulting from this elimination is used in the generation
of S(i+1). Since the number of subintervals for each S(i) is at most ⌈n/ε⌉+1, |S(i)| ≤ ⌈n/ε⌉+1.
Hence

∑n
i=1 |S(i)| = O(n2/ε). The error introduced in each feasible assignment due to this

elimination in S(i) is less than the subinterval length. This error may, however, propagate
from S(1) up through S(n). However, the error is additive. If F̂ (I) is the value of the optimal
generated by interval partitioning and F ∗(I) is the value of a true optimal, it follows that
F ∗(I)− F̂ (I) ≤ (ε

∑n
i=1 Pi)/n. Since Pi ≤ F ∗(I), it follows that (F ∗(I)− F̂ (I))/F ∗(I) ≤ ε,

as desired.
In many cases the algorithm may be speeded up by starting with a good estimate, LB for

F ∗(I) such that F ∗(I) ≥ LB. The subinterval size is then LBε/n rather than Piε/n. When
a feasible assignment with value greater than LB is discovered, the subinterval size can be
chosen as described above.

Example 36.2

Consider the same instance of the 0-1 knapsack problem as in Example 36.1. ε = 1/10
and F ∗ ≥ LB ≥ 1000. We can start with a subinterval size of LBε/n = 1000/50 = 20.
Since all tuples (p, t) in S(i) have p = t, only p will be explicitly retained. The intervals are
[0, 20), [20, 40), [40, 60), · · · and so on. Using interval partitioning we obtain S(0) = S(1) =
S(2) = S(3) = {0}; S(4) = {0, 100}; S(5) = {0, 100, 1000, 1100}.

The optimal generated by interval partitioning is (x1, x2, x3, x4, x5) = (0, 0, 0, 1, 1) and the
value F̂ (I) = 1100. (F ∗(I)− F̂ (I))/F ∗(I) = 12/1112 < 0.011 < ε. Again, the solution value
may be improved by using a heuristic to change some of the xi

,s from 0 to 1.
See Hassin [17] for an application of interval partitioning in developing an ε-approximation

algorithm for the constrained shortest path problem.

36.4 SEPARATION

Assume that in solving a problem instance I, we have obtained an S(i) with feasible solutions
having the following values of

∑i
j=1 cjxj : 0, 3.9, 4.1, 7.8, 8.2, 11.9, 12.1. Further assume that

the interval size Piε/n is 2. Then the subintervals are [0, 2), [2, 4), [4, 6), [6, 8), [8, 10), [10, 12),
and [12, 14). Each value falls in a different subinterval and so no feasible assignments are
eliminated. However, there are three pairs of assignments with values within Piε/n. If the
dominance rules are used for each pair, only four assignments will remain. The error intro-
duced is at most Piε/n. More formally, let a0, a1, a2, . . . , ar be the distinct values of

∑i
j=1 cjxj

in S(i). Let us assume a0 < a1 < a2 · · · < ar. We will construct a new set J from S(i) by
making a left-to-right scan and retaining a tuple only if its value exceeds the value of the
last tuple in J by more than Piε/n. This is described by the following algorithm:

J ← assignment corresponding to a0; XP ← a0
for j ← 1 to r do

if aj > XP + Piε/n then
[put assignment corresponding to aj into J , XP ← aj]

end if
end for

The analysis for this strategy is the same as that for interval partitioning. The same comments
regarding the use of a good estimate for F ∗(I) hold here too.

C5955–C0036.tex 1032 2015/11/4 1:09pm

General Techniques for Combinatorial Approximation � 1033

Intuitively, one may expect separation always to work better than interval partitioning.
The following example illustrates that this need not be the case. However, empirical studies
with one problem (see [19]) indicate that interval partitioning is inferior in practice.

Example 36.3

Using separation on the data of Example 36.1 yields the same S(i) as obtained using
interval partitioning. We have already seen an instance where separation performs bet-
ter than interval partitioning. Now we shall see an example where interval partitioning
does better than separation. Assume that the subinterval size LBε/n is 2. Then the in-
tervals are [0, 2), [2, 4), [4, 6) Assume further that (c1, c2, c3, c4, c5) = (3, 1, 5.1, 5.1, 5.1).
Then, following the use of interval partitioning, we have S(0) = {0}; S(1) = {0, 3}; S(2) =
{0, 3, 4}; S(3) = {0, 3, 4, 8.1}; S4 = {0, 3, 4, 8.1, 13.2}; and S(5) = {0, 3, 4, 8.1, 13.2, 18.3}.

Using separation with LBε/n = 2 we have S(0) = {0}; S(1) = {0, 3}; S(2) = {0, 3};
S(3) = {0, 3, 5.1, 8.1}; S(4) = {0, 3, 5.1, 8.1, 10.2, 13.2}; and S(5) = {0, 3, 5.1, 8.1, 10.2, 13.2,
15.3, 18.3}. The three methods for obtaining fully polynomial time approximation schemes
can be applied to a wide variety of problems. Some of these problems are 0-1 knapsack
problem [7]; integer knapsack problem [7]; job sequencing with deadlines [10]; minimizing
weighted mean finish time [6,10]; finding an optimal SPT schedule [10]; and finding minimum
finish time schedules on identical, uniform, and nonidentical machines [6,10].

Summary

Over the past two decades, there have been a number of significant advances in the area of
approximation algorithms for combinatorial optimization. See Vazirani [20] and Hochbaum
[21].

References

[1] M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pp. 85–103. Plenum Press,
New York, 1972.

[2] G. Nemhauser and Z. Ullman. Discrete dynamic programming and capital allocation.
Management Sci., 15 (1969), 494–505.

[3] S. Sahni. Computationally related problems SIAM J. Computing, 3 (1974), 277–292.

[4] S. Sahni and T. Gonazalez. P-complete approximation problems. J. Assoc. Comput.
Machinery, 23 (1976), 555–556.

[5] R. Graham. Bounds for certain multiprocessing anomalies. Bell Systems Tech., 4 (1966),
1563–1581.

[6] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling nonidentical
processors. J. Assoc. Comput. Machinery, 23 (1976), 317–327.

[7] O. Ibarra and C. Kim. Fast approximation algorithms for the knapsack and sum of
subsets problems. J. Assoc. Comput. Machinery, 22 (1975), 463–468.

[8] D. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Sys.
Sci., 9 (1974), 256–278.

C5955–C0036.tex 1033 2015/11/4 1:09pm

1034 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[9] S. Sahni. Approximate algorithms for the 0/1 knapsack problem. J. Assoc. Comput.
Machinery, 22 (1975), 115–124.

[10] S. Sahni. Algorithms for scheduling independent tasks. J. Assoc. Comput. Machinery,
23 (1976), 114–127.

[11] M. Garey and D. Johnson. Approximation algorithm for combinatorial problems: An
annotated bibliography. In J. Traub, editor Algorithms and Complexity, pp. 41–52.
Academic Press, New York, 1976.

[12] M. Garey and D. Johnson. Approximation algorithms for combinatorial problems:
Prospects and limitations. Lecture by D. Johnson presented at the Symposium on
Algorithms and Complexity, Carnegie Mellon Institute, Pittsburgh, PA, 1976.

[13] R. Bellman and S. Dreyfus. Applied Dynamic Programming. Princeton University Press,
Princeton, NJ, 1962.

[14] G. Nemhauser. Introduction to Dynamic Programming. John Wiley & Sons, New York,
1966.

[15] E. Horowitz and S. Sahni. Computing partitions with applications to the knapsack
problem. J. Assoc. Comput. Machinery, 21 (1974), 277–292.

[16] E. Horowitz and S. Sahni. Fundamentals of Data Structures. Computer Science Press,
Woodland Hills, CA, 1976.

[17] R. Hassin. Approximation schemes for the restricted shortest path problem. Math. Oper.
Res., 17 (1992), 36–42.

[18] D. H. Lorenz and Danny Raz. A simple efficient approximation scheme for the restricted
shortest path problem. Operations Research Letters, 28 (2001), 213–219.

[19] S. Sahni. General techniques for combinatorial approximation. Operations Research,
25(6) (1977), 920–936.

[20] V. V. Vazirani. Approximation Algorithms. Springer, Berlin, Germany, 2003.

[21] D. S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publishing,
Boston, MA, 1998.

C5955–C0036.tex 1034 2015/11/4 1:09pm

C H A P T E R 37

ε-Approximation Schemes for
the Constrained Shortest Path
Problem
Krishnaiyan “KT” Thulasiraman

CONTENTS

37.1 Introduction . 1035
37.2 Lorenz–Raz Approach . 1035

37.1 INTRODUCTION

In this chapter we present an ε-approximation algorithm for the constrained shortest path
(CSP) problem. Recall from Chapter 36 that the CSP problem is to determine, from among
all s − t paths, a minimum cost path that has a delay less than or equal to a specified value.
Also, an ε-approximation algorithm for the CSP problem constructs a path with cost c̃ such
that |(c∗−c̃)|/c∗ ≤ ε for any ε > 0, where c∗ is the cost of the optimum solution. Warburton [1]
was the first to develop an ε-approximation algorithm for the CSP problem when the given
graph is acyclic. This result was improved later by Hassin [2] that resulted in a fully polyno-
mial time approximation algorithm with complexity of O(mn2/ε log(n/ε)) using scaling and
rounding of edge costs, a dynamic programming-based test procedure to determine if the op-
timum value OPT ≥ v or not for a given value of v and binary search in a logarithmic scale.
Hassin first developed an approximation algorithm of complexity O((mn/ε) log log(UB/LB))
where UB and LB are valid upper and lower bounds, respectively for the optimum solution.
He also showed how to refine this algorithm resulting in a fully polynomial time approxima-
tion algorithm. To achieve this Hassin used the interval partitioning technique [3] (see also
Chapter 35). Subsequently Lorenz and Raz [4] achieved an algorithm which improves Hassin’s
ε-approximation algorithm by a factor of n. This is done by showing how to find UB and
LB such that UB/LB ≤ n. We call this improved algorithm as Hassin–Lorenz–Raz (HLR)
algorithm. Through Section 37.2 the HLR algorithm is developed. We follow the treatment
in Lorenz and Raz [4].

37.2 LORENZ–RAZ APPROACH

Consider a directed graph G = (V, E) with each edge e ∈ E associated with a cost ce ≥ 0
and a delay de ≥ 0. Let T be a positive integer and s, t ∈ V be the source and destination
nodes. The CSP problem is to find a path p from s to t such that delay(p) on this path is
less than or equal to T and the cost c(p) of p is minimum. We denote the optimum cost

1035

1036 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Scaled Pseudopolynomial Plus [SPPP] (G(V, E), {dl, cl}l∈E , T, L, U, ε)
1: S ← Lε

n+1
2: for each l ∈ E
3: define c̃l ≡ �cl/S� + 1
4: Ũ ← �U/S� + n + 1
5: for all v 	= s
6: D(v, 0) ← ∞
7: D(s, 0) ← 0
8: for i = 1, 2, . . . , Ũ
9: for v ∈ V

10: D(v, i) ← D(v, i − 1)
11: for l ∈ {(u, v) | c̃(u,v) ≤ i}
12: D(v, i) ← min{D(v, i), dl + D(u, i − c̃l)}
13: if D(t, i) ≤ T
14: return the corresponding path and cost
15: return FAIL

Figure 37.1 Scaled pseudopolynomial plus algorithm. (Data from D. H. Lorenz and Danny
Raz. A simple efficient approximation scheme for the restricted shortest path problem.
Operations Research Letters, 28 [June 2001], 213–219.)

by c∗ and an optimum path by p∗. The main idea in Lorenz and Raz’s approach is to scale
the costs and then apply the dynamic programming-based algorithm in Figure 37.1 to find
a path with the smallest delay for each cost. We denote by D(v, i) the minimum delay on
a path from s to node v with cost bounded by i. Note that the scaled cost c̃l ≥ 1 for every
edge l ∈ E. Also, c̃(p) will denote the cost of p with scaled values.

Lemma 37.1 For any path p and the scaled costs c̃s defined in Figure 37.1, c(p) ≤ c̃(p)S ≤
c(p) + nS.

Proof. It follows from the definition of scaled costs that for each l ∈ E

cl/S ≤ c̃l ≤ cl/S + 1. (37.1)

So
cl ≤ c̃lS, (37.2)

c̃lS ≤ cl + S, (37.3)
and

c(p) =
∑

l∈p

cl

≤ S
∑

l∈p

c̃l, from (37.2)

= c̃(p)S
≤ c(p) + nS, from (37.3). �

Lemma 37.2 Any path p returned by the Scaled Pseudopolynomial Plus (SPPP) algorithm
satisfies

c∗ ≤ c(p) ≤ U + (n + 1)S = U + Lε.

ε-Approximation Schemes for the Constrained Shortest Path Problem � 1037

Proof. Since c∗ is the optimum cost, c∗ ≤ c(p). Since p is returned by SPPP algorithm,
c̃(p) ≤ Ũ . So

c̃(p)S ≤ ŨS

≤ U + (n + 1)S, from the definition of Ũ

= U + Lε, from the definition of S.

(37.4)

Since c(p) ≤ c̃(p)S, by Lemma 37.1, we have c(p) ≤ U + Lε by (37.4). �

Theorem 37.1 If Ũ ≥ c∗ SPPP algorithm returns a feasible path p with cost c(p) ≤ c∗ +Lε.
The complexity of the algorithm is O(m(n/ε)(U/L)), if ε ≤ 1 and U > L.

Proof. For each l ∈ E, c̃l ≤ cl/S + 1. So

c̃(p∗) ≡
∑

l∈p∗
c̃l ≤ c∗

S
+ |p∗|

≤ U

S + n

≤ Ũ ,

(37.5)

where |p∗| is the number of edges in p∗. If c̃(p∗) < c̃(p), it follows from (37.5) that SPPP algo-
rithm will encounter p∗ earlier than p and would have returned p∗, instead of p, contradicting
our assumption. So c̃(p∗) ≥ c̃(p). Then

c(p) ≤ c̃(p)S, by Lemma 37.1
≤ c̃(p∗)S
≤ c(p∗) + nS, by Lemma 37.1
≤ c∗ + Lε, from the definition of S.

As regards the complexity of SPPP algorithm, each edge is examined at most once dur-
ing each iteration i, 1 ≤ i ≤ Ũ . So the overall complexity of the algorithm is O(mŨ) =
O(m(n/ε)(U/L) + n). If ε ≤ 1 and U > L, the overall complexity of SPPP algorithm is
O(m(n/ε)(U/L)). �
We are now ready to define T (ε, B), a test procedure to determine if c∗ ≥ B for a given value
of ε > 0. For an instance of the CSP problem, an ε-test procedure T (ε, B) for a given value B
and ε > 0 is defined as follows:

1. If T (ε, B) answers Yes, then c∗ ≥ B.

2. If T (ε, B) answers No, then c∗ ≤ B(1 + ε).

Theorem 37.2 The test

T (1, B) =
{

Y ES, if SPPP(T, B, B, 1) returns FAIL
NO, otherwise

is a 1-test and requires O(mn) steps.

Proof. If c∗ ≤ B, then by Theorem 37.1, SPPP(T, B, B, 1) returns a feasible path. So if
SPPP(T, B, B, 1) returns FAIL, c∗ > B. In other words, if T (1, B) answers YES, then c∗ > B.
If c∗ ≤ B, then SPPP(T, B, B, 1) returns a feasible path p with c(p) ≤ U + Lε ≤ 2B. Thus
T (1, B) as defined satisfies the requirement of a 1-test and has complexity O(mn) because
L = B and ε = 1. �

1038 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Hassin–Lorenz–Raz (G(V, E), {dl, cl}l∈E , T, LB, UB, ε)
1: BL ← LB
2: BU ← �UB/2�
3: while BU /BL > 2
4: B ← (BL · BU)1/2;
5: if T (1, B) = YES then BL ← B
6: else (T (1, B) = NO) BU ← B;
7: return SPPP(G(V, E), {dl, cl}l∈E , T, BL, 2BU , ε)

Figure 37.2 Hassin–Lorenz–Raz algorithm. (Data from D. H. Lorenz and Danny Raz. A simple
efficient approximation scheme for the restricted shortest path problem. Operations Research
Letters, 28 [June 2001], 213–219.)

Lorenz and Raz (LR algorithm) ε-approximation algorithm for the CSP problem combines
the T (1, B) test with SPPP algorithm, and is given in Figure 37.2. We will call this HLR
algorithm since many of its ideas have their origins in Hassin’s work [2].

Theorem 37.3 The HLR algorithm is an ε-approximation algorithm for the CSP problem
with time complexity O((mn/ε) + mn log log(UB/LB)), where LB and UB are, respectively,
valid lower and upper bounds on the cost of the optimum solution.

Proof. The HLR algorithm in Figure 37.2 starts with valid lower and upper bounds LB and
UB, respectively. The algorithm looks for a lower bound BL and a value for BU such that
BU /BL ≤ 2 and 2BU is a valid upper bound. This is achieved by a binary search on log BL,
log BU in the range log LB . . . log(UB/2). In each iteration a value B = (BU BL)1/2 is selected
and the test T (1, B) is applied. Depending on the outcome of the test, the search interval is
updated. It is easy to show that the value of log(BU /BL) after each iteration is half its value
in the previous iteration. So the binary search will terminate after log log(UB/LB) tests and
the time complexity of the binary search is O(mn log log(UB/LB)).

The T (1, B) test guarantees that at each iteration BL is a valid lower bound and 2BU

is a valid upper bound on c∗ (see lines 5 and 6 in the algorithm). After the binary search is
completed, the algorithm applies SPPP(T, BL, 2BU , ε) and determines a feasible path p with
cost c(p) ≤ c∗ + BLε ≤ c∗(1 + ε) (Theorem 37.1). So HLR algorithm is an ε-approximation
algorithm. Since U/L = 2BU /BL = O(1) in this case, SPPP(T, BL, 2BU , 1) (line 7) requires
O(mn/ε) steps (see Theorem 37.1). So the overall complexity of this algorithm is O((mn/ε)+
mn log log(UB/LB)). �
The complexity of the HLR algorithm involves UB and LB and so is not a fully polynomial
time approximation scheme (FPTAS). To achieve a FPTAS, Lorenz and Raz propose a
method to find UB and LB such that UB/LB = n. Let c1 < c2 < . . . < cl be all the distinct
costs of edges in the given graph G(V, E). Let Gj be the induced subgraph of all the edges
with cost no greater than cj and G0 defined as ∅. We have Gi ⊂ Gi+1 for 0 ≤ i ≤ l − 1.
Note that Gl = G. Then there is a unique j such that Gi, i < j has no feasible s − t path and
Gj has a feasible s − t path. Since Gj has a feasible s − t path, the cost of such a path will
be at most ncj . So c∗ ≤ ncj . Since Gj−1 has no feasible s − t path, every s − t feasible path
must have at least one edge with cost greater than or equal to cj . So c∗ ≥ cj . So, once cj is
determined, we can apply HLR algorithm with LB = cj and UB = ncj . Then we would get a
fully polynomial time approximation time algorithm of complexity O((mn/ε)+mn log log n).
Note that cj can be determined using binary search and applying a shortest path algorithm

ε-Approximation Schemes for the Constrained Shortest Path Problem � 1039

Simple Efficient Approximation [SEA] (G, T, ε)
1: low ← 0; high ← l;
2: while low < high − 1
3: j ← �(high + low)/2�
4: if shortests,tpath(Gj) < T then high ← j;
5: else low ← j
6: UB = nchigh; LB ← chigh;
7: return Hassin–Lorenz–Raz (G, {dl, cl}l∈E , T, LB, UB, ε)

Figure 37.3 Simple efficient approximation (SEA) algorithm. (Data from D. H. Lorenz and
Danny Raz. A simple efficient approximation scheme for the restricted shortest path problem.
Operations Research Letters, 28 [June 2001], 213–219.)

at each iteration (see Figure 37.3). The complexity of such a search is O(log m) times the
complexity of a shortest path algorithm, which is O(n log n + m). So the HLR algorithm
remains the dominant part of the simple efficient algorithm in Figure 37.3.

Theorem 37.4 Algorithm simple efficient approximation (Figure 37.3) is a FPTAS for the
CSP problem with time complexity O(mn(log log n + 1/ε)).

We conclude by drawing attention to the work by Cynthia Phillips [5]. The work uses
Dijkstra’s shortest path algorithm as a building block to find an ε-approximation solu-
tion. The complexity of this algorithm is O((mn/ε)+(n2/ε) log(n2/ε) log log(UB/LB)). Goel
et al. [6] deal with another variant of the CSP problem. Xue et al. [7] discuss approximation
schemes for the CSP problem under multiple additive constraints.

References

[1] A. Warburton. Approximation of Pareto Optima in Multiple-Objective Shortest Path
Problems. Oper. Res., 35 (1987), 70–79.

[2] R. Hassin. Approximation Schemes for the Restricted Shortest Path Problem. Math.
Oper. Res., 17 (1992), 36–42.

[3] S. Sahni. General Techniques for Combinatorial Approximations. Oper. Res., 25 (1977),
920–936.

[4] D. H. Lorenz and D. Raz. A Simple Efficient Approximation Scheme for the Restricted
Shortest Path Problem. Operations Research Letters, 28 (June 2001), 213–219.

[5] C. Phillips. The Network Inhibition Problem. In Proceedings of the 25th Annual Sympo-
sium on Theory of Computing, San Diego, CA, pp. 776–785, May 1993.

[6] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis. Efficient Computation
of Delay-sensitive Routes from One Source to All Destinations. In Proceedings of IEEE
International Conference on Computer Communications, Anchorage, AK, pp. 854–858,
2001.

[7] G. Xue, A. Sen, W. Zhang, J. Tang, and K. Thulasiraman. Finding a Path Subject to
Many Additive QoS Constraints. IEEE/ACM Trans. Netw., 15(1) (2007), 201–211.

C H A P T E R 38

Constrained Shortest Path
Problem: Lagrangian
Relaxation-Based Algorithmic
Approaches
Ying Xiao

Krishnaiyan “KT” Thulasiraman

CONTENTS

38.1 Introduction . 1041
38.2 CSP Problem and Generality of the LARAC Algorithm . 1042

38.2.1 CSP and DUAL-RELAX CSP Problems . 1042
38.2.2 LARAC Algorithm . 1043
38.2.3 MCRT Problem . 1044
38.2.4 Equivalence of LARAC and MCRT Algorithms . 1045

38.3 An Algebraic Study of the RELAX-CSP Problem and Its Generalization 1046
38.4 LARAC-BIN: A Binary Search-Based Approach

to the DUAL-RELAX CSP Problem . 1049
38.5 GEN-LARAC: A Generalized Approach to the CSP Problem

Under Multiple Additive Constraints . 1052
38.5.1 Formulation of the CSP(k) Problem and Its Relaxation 1052
38.5.2 A Strongly Polynomial Time Approximation Algorithm for CSP(1)

Problem . 1054
38.5.3 GEN-LARAC for the CSP(k) Problem . 1056

38.5.3.1 Optimality Conditions . 1056
38.5.3.2 GEN-LARAC: Coordinate Ascent Method 1056
38.5.3.3 Verification of Optimality of Λ . 1057

38.1 INTRODUCTION

Shortest path, minimum cost flow, and maximum flow computation are fundamental prob-
lems in operations research. Though interesting in their own right, algorithms for these
problems also serve as building blocks in the design of algorithms for complex problems

1041

1042 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

encountered in large-scale industrial applications. So, over the years an extensive literature
on various aspects of these problems emerged, which helped in problem solving in polynomial
time. However, adding one or more additional additive constraints makes them intractable.

In this chapter, we focus on the constrained shortest path (CSP) problem. This problem
requires determination of a minimum cost path from a source node to a destination node of
a network subject to the condition that the total delay of the path be less than or equal to a
specified value. The CSP problem has attracted considerable attention from different research
communities: operations research, computer science, and telecommunication networks. The
interest from the telecommunications community arises from a great deal of emphasis on the
need to design communication protocols that deliver certain performance guarantees. This
need, in turn, is the result of an explosive growth in high bandwidth real-time applications
that require stringent quality of service guarantees.

This chapter is organized as follows. In Section 38.2, we present the CSP problem and the
general class of optimization problems, namely, the minimum cost-restricted time combina-
torial optimization (MCRT) problem [1]. We also present the Lagrangian Relaxation-based
Aggregated Cost (LARAC) algorithm of [2] for the CSP and MCRT problems. We point
out the equivalence of the LARAC and the MCRT algorithms. In Section 38.3 we present an
algebraic study of the integer relaxation of the CSP problem. In view of the equivalence of the
LARAC and the MCRT algorithms, the results to be presented, although originally intended
for the CSP problem, hold true for the MCRT problem too. We establish these results and
certain new results for the general case without involving the properties of shortest paths.
In Section 38.4, we present a binary search-based approach for the CSP problem and also
show that both the LARAC algorithm and this algorithm can be embedded with a tuning
parameter whose value can be specified in advance depending on the allowable deviation of
the cost of the path produced from the optimal cost. In Section 38.5, we develop a strongly
polynomial time algorithm for the integer relaxation of the CSP problem. This is based on
the parametric search approach developed by Megiddo [3] for fractional combinatorial opti-
mization problems. In Sections 38.6 through 38.8 we develop GEN-LARAC, a generalization
of the LARAC algorithm for the CSP problem with multiple additive constraints.

38.2 CSP PROBLEM AND GENERALITY OF THE LARAC ALGORITHM

First we give a formal definition of the CSP problem. We use the terms links and nodes for
edges and vertices, respectively, following the convention in the networking literature.

38.2.1 CSP and DUAL-RELAX CSP Problems

Consider a directed network G(V, E). Each link (u, v) ∈ E is associated with two weights
cuv > 0 (say, cost) and duv > 0 (say, delay). Also are given two distinguished nodes s and t
and a real number Δ > 0. Let Pst denote the set of all directed s − t paths and for any s − t
path p, define

c(p) =
∑

(u,v)∈p

cuv and d(p) =
∑

(u,v)∈p

duv.

All paths considered in this chapter are directed paths. Let Pst(Δ) be the set of all the
s − t paths p such that d(p) ≤ Δ. A path in the set Pst(Δ) is called a feasible path. The
CSP problem is to find a path p∗ = arg min{c(p)| p ∈ Pst(Δ)}. In other words, the CSP
problem is to find a minimum cost feasible s − t path. It can be formulated as the following
integer linear program.

Constrained Shortest Path Problem � 1043

CSP:
Minimize

∑

(u,v)∈E

cuvxuv

subject to ∀u ∈ V,

∑

{v|(u,v)∈E}
xuv −

∑

{v|(v,u)∈E}
xvu =

⎧
⎪⎨

⎪⎩

1, for u = s
−1, for u = t

0, otherwise
∑

(u,v)∈E

−duv · xuv − w = −Δ, w ≥ 0

xuv = 0 or 1, ∀(u, v) ∈ E.

The CSP problem is known to be NP-hard [4,5]. The main difficulty lies with the inte-
grality condition that requires that the variables xuv be 0 or 1. Removing or relaxing this
requirement from the above integer linear program and letting xuv ≥ 0 leads to RELAX-CSP,
the relaxed CSP problem. It is often convenient to solve the dual of the relaxed form of the
CSP problem which we present below.

The dual involves s− t paths and a variable λ ≥ 0. For each link (u, v), let the aggregated
cost cλ be defined as cuv + λ duv. For a given λ, let cλ(p) denote the aggregated cost of the
path p. Finally define L(λ) as:

L (λ) = min{cλ (p) |p ∈ Pst} − λΔ. (38.1)
Note that in the above, min{cλ(p)| p ∈ Pst} is the same as the minimum aggregated cost

of an s − t path with respect to a given value of λ. This can be easily obtained by applying
Dijkstra’s algorithm using aggregated link costs. Let the s − t path which has minimum
aggregated cost with respect to a given λ be denoted as pλ. Then L(λ) = cλ (pλ) − λΔ and
the dual of the RELAX CSP can be presented in the following form.

DUAL-RELAX CSP:

Find L∗ = max{L(λ) | λ ≥ 0}.
We note that the problem of maximizing L(λ) as above is also called the Lagrangian dual

problem. The value of λ that achieves the maximum L(λ) in DUAL-RELAX CSP will be
denoted by λ∗. Note that L∗, the optimum value of DUAL-RELAX CSP is a lower bound
on the optimum cost of the path solving the corresponding CSP problem. The key issue
in solving DUAL-RELAX CSP is how to search for the optimal λ and determining the
termination condition for the search. The LARAC algorithm of [2] presented in Figure 38.1
is one such efficient search procedure.

38.2.2 LARAC Algorithm

In the LARAC algorithm Dijkstra (s, t, c), Dijkstra (s, t, d), and Dijkstra (s, t, cλ) denote,
respectively, Dijkstra’s shortest path algorithm using link costs, link delays, and aggregated
link costs with respect to the multiplier λ.

1. In the first step, the algorithm calculates the shortest path on link costs. If the path
found meets the delay constraint, this is surely the optimal path. Otherwise, the
algorithm stores the path as the latest infeasible path, simply called the pc path. Then
it determines the shortest path on link delays denoted as pd. If pd is infeasible, there is
no solution to this instance.

1044 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Procedure LARAC (s, t, d, Δ)

pc := Dijkstra (s, t, c)

If d (pc) ≤ Δ then return pc

pd := Dijkstra (s, t, d)

if d (pd) > Δ then return there is no solution

repeat

λ := c (pc) − c (pd)
d (pd) − d (pc)

r := Dijkstra (s, t, cλ)

if cλ (r) = cλ (pc) then return pd

else if d(r) ≤ Δ then pd := r else pc := r

end repeat

end procedure

Figure 38.1 LARAC algorithm.

2. Set λ = (c(pc) − c(pd))/(d(pd) − d(pc)). With this value of λ, we can find a new
cλ-minimal path r. If cλ(r) = cλ(pc)(= cλ(pd)), we have obtained the optimal λ

according to Theorem 38.2 to be proved in Section 38.3. Otherwise, set r as the new
pc or pd according to whether r is infeasible or feasible.

We next define the minimum cost restricted time (MCRT) problem studied in [1].

38.2.3 MCRT Problem

Given a finite set P , a finite collection S of subsets of P , a non-negative threshold h, and
two non-negative real-valued functions y : P → R+ (say, cost) and x : P → R+ (say, delay).
The MCRT problem is to seek a solution F ∗ = arg min{y(F)| F ∈ S, x(F) ≤ h}, where
z(G) =

∑
g∈G z(g) for z ∈ {x, y} and G ∈ S.

Evidently, the CSP problem is a special case of the MCRT problem and so the MCRT
problem is also NP-hard. Therefore, we consider solving the integer relaxation of the MCRT
problem. This is achieved by the MCRT algorithm given in [1] and presented in Figure 38.2. In
this algorithm, it is assumed that there is an effective algorithm A(a, b) for the corresponding
minimum cost problem with respect to ax(p) + by(p), p ∈ S, where a, b are the multipliers.
For instance, in the case of the CSP problem, Dijkstra’s algorithm for the minimum cost
path problem can play the role of algorithm A. In Figure 38.2, algorithm A(a, b) returns
p = arg min{ax(r) + by(r)|r ∈ S}.

Constrained Shortest Path Problem � 1045

Procedure MCRT (h)

F := A (0, 1)

if x (F) ≤ h then return F .

H := A (1, 0)

if x (H) > h then return no solution

repeat

a := y (H) − y (F)

b := x (F) − x (H)

c := x (F) y (H) − x (H) y (F) (a)

G := A (a, b)

if c = ax (G) + by (G) then (b)

if x (G) ≤ h then return G else return H

if c > ax (G) + by (G) then (c)

if x (G) ≤ h then H := G else F := G

end repeat

end procedure

Figure 38.2 MCRT algorithm.

38.2.4 Equivalence of LARAC and MCRT Algorithms

Following the definition of the variables in Figures 38.1 and 38.2, it can be seen that H
corresponds to pd while F corresponds to pc and λ corresponds to a/b because

a

b
= y(H) − y(F)

x(F) − x(H) .

Furthermore,
c

b
= x(F)y(H) − x(H)y(F)

x(F) − X(H) = y(H) − y(F)
x(F) − x(H)x(F) + y(F) = y(F) + a

b
x(F).

If the expressions (a)–(c) in procedure MCRT are scaled by b, the MCRT algorithm
reduces to the LARAC algorithm. In view of the equivalence of the LARAC algorithm and the
MCRT algorithm, in the rest of the chapter we shall refer to both these algorithms as simply
LARAC.

1046 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

38.3 AN ALGEBRAIC STUDY OF THE RELAX-CSP PROBLEM
AND ITS GENERALIZATION

The LARAC algorithm was originally intended for the CSP problem. In view of its generality
as discussed in the previous section, one would expect that the claims in [2] (stated without
proof) on which the LARAC algorithm is based do not depend on the properties of shortest
paths. In other words, we would like to establish these claims without invoking properties
of shortest paths. Furthermore, in the following section we also establish certain other new
results that throw much insight into the structure of the solutions of the DUAL-RELAX
CSP problem. Though our proofs below do not involve shortest paths or their properties, we
have decided to retain the terms such as minimal path whose interpretation in the general
context should be obvious.

Claim 38.1 [2] Let L(λ) = min{cλ(p)| p ∈ Pst} − λ Δ. Then L(λ) is a lower bound to the
optimum objective of the CSP problem for any λ ≥ 0.

Claim 38.2 [2] L is a concave piecewise linear function, namely, the minimum of the linear
functions c(p) + λ(d(p) − Δ) for all p ∈ Pst.

Claim 38.3 [2] For any λ ≥ 0 and cλ-minimal path pλ, d(pλ) is a subgradient of L in the
point λ.

Theorem 38.1 [2] If λ < λ∗, then d(pλ) ≥ Δ, and if λ > λ∗, then d(pλ) ≤ Δ for each
cλ-minimal path pλ.

Proof. Let p and p∗ denote a cλ-minimal path and a cλ∗-minimal path, respectively.

L(λ∗) = c (p∗) + λ∗d (p∗) − λ∗Δ ≤ c (p) + λ∗d (p) − λ∗Δ = L(λ) + (λ∗ − λ)(d(p) − λ).

Since L(λ∗) ≥ L(λ), (λ∗ − λ)(d(p) − Δ) ≥ 0.
Therefore, if λ < λ∗ then d(pλ) ≥ Δ, and if λ > λ∗ then d(pλ) ≤ Δ for each cλ-minimal

path pλ. �

Theorem 38.2 [2] A value λ > 0 maximizes the function L(λ) if and only if there are paths
pc and pd which are both cλ-minimal and for which d(pc) ≥ Δ and d(pd) ≤ Δ. (pc and pd

can be the same, in this case d(pd) = d(pc) = Δ.)

Proof.

a. Proof of only if part: Suppose λ is the optimal value that maximizes L(λ). Let p be
the corresponding cλ-minimal path and thus L(λ) = c(p) + λ(d(p) − Δ). Without loss
of generality, we only consider the case d(p) > Δ. If the λ is slightly increased to
λ′(> λ), c(p) + λ(d(p) − Δ) is also increased. Since L(λ) is optimal, p cannot be the
cλ′-minimal path any more; otherwise L(λ′) > L(λ). Let p′ be the new cλ′-minimal
path. If |λ− λ′| is small enough, p′ is also the cλ−minimal path because there are only
a finite number of paths. It follows that c(p′) + λ′(d(p′) − Δ) = L(λ′) ≤ L(λ) =
c(p′) + λ(d(p′) − Δ).
Hence λ′(d(p′) − Δ) ≤ λ(d(p′) − Δ) ⇒ d(p′) ≤ Δ since λ′ > λ. Let pc = p and pd = p′

completing the proof of the only if part.

b. Proof of if part: Let pc and pd be two cλ-minimal paths and d(pc) ≥ Δ and d(pd) ≤ Δ.
Without loss of generality, assume λ∗ maximizes the function L(λ∗) and λ∗ > λ.

Since λ < λ∗, d(pc) ≥ Δ and d(pd) ≤ Δ, it follows that d(pd) = Δ.

Constrained Shortest Path Problem � 1047

Let p∗ denote the cλ∗-minimal path. Then,

L(λ∗) = c(p∗) + λ∗d(p∗) − λ∗Δ ≤ c(pd) + λ∗d(pd) − λ∗Δ
= L(λ) + (λ∗ − λ)(d(pd) − Δ) ≤ L(λ)

Therefore, L(λ) = L(λ∗), which proves that λ maximizes L(λ). �

Theorem 38.3 [2] Let 0 ≤ λ1 < λ2, and pλ1 , pλ2 ∈ Pst be cλ1-minimal and cλ2-minimal
paths. Then c(pλ1) ≤ c(pλ2) and d(pλ1) ≥ d(pλ2).

Proof. Note that cλ(p) = c(p) + λd(p).
Because pλ1 , pλ2 ∈ Pst are cλ1-minimal and cλ2-minimal paths

cλ1(pλ1) ≤ cλ1(pλ2) ⇔ c(pλ1) + λ1d(pλ1) ≤ c(pλ2) + λ1d(pλ2),

and
cλ2(pλ1) ≥ cλ2(pλ2) ⇔ c(pλ1) + λ2d(pλ1) ≥ c(pλ2) + λ2d(pλ2).

Then

(λ1 − λ2)d(pλ1) ≤ (λ1 − λ2)d(pλ2) ⇒ d(pλ1) ≥ d(pλ2),
and

c(pλ1) ≤ c(pλ2) + λ1[d(pλ2) − d(pλ1)] ≤ c(pλ2).
Hence the theorem. �
The convergence of the LARAC algorithm is guaranteed by the following result.

Theorem 38.4 [2]. Let p1
c , p2

c , p3
c , ... and p1

d, p2
d, p3

d, ... denote the sequences of paths generated
by the LARAC algorithm. Then

d(p1
c) > d(p2

c) > d(p3
c) > · · · > Δ and d(p1

d) < d(p2
d) < d(p3

d) < · · · ≤ Δ.

Proof. Suppose pc and pd are the current paths in the LARAC algorithm with λc and λd

as the corresponding λ values. Suppose that neither of these two λ values is the maximizing
value.

Let λ = (c(pc) − c(pd)) (d(pd) − d(pc)) and pλ be the corresponding cλ-minimal path.
Evidently, cλ(pc) = cλ(pd) (recalling that cλ(p) = c(p) + λ d(p)).

Suppose λ is not the maximizing value either; otherwise, the algorithm stops immediately.
We also have

c (pc) + λcd (pc) ≤ c (pd) + λcd (pd) ,

c (pc) + λdd (pc) ≥ c (pd) + λdd (pd) .

In fact, the equality cannot hold because neither λc nor λd is the maximizing multiplier.
So

λc <
c(pc) − c(pd)
d(pd) − d(pc)

= λ < λd.

Consider 2 cases:

1. d(pλ) ≤ Δ: In this case, because d(pλ) ≥ d(pd) by Theorem 38.3, it suffices to show
that d(pλ) 	= d(pd).
Assume d(pλ) = d(pd). Consider the following inequalities.

c(pλ) + λd(pλ) ≤ c (pd) + λd (pd) and c(pλ) + λdd(pλ) ≥ c (pd) + λdd (pd) .

1048 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Because d(pλ) = d(pd), it follows that c(pλ) = c(pd). Hence cλ(pc) = cλ(pd) = cλ(p),
which implies that λ is the maximizing value. This contradiction establishes the
theorem.

2. d(pλ) > Δ: Proof in this case follows along the same lines as above. �

Theorem 38.5 Consider the problem:

Minimize yc (pd) + (1 − y) c(pc) (38.2)
subject to yd (pd) + (1 − y) d (pc) = Δ and 0 ≤ y ≤ 1, (38.3)

where pc and pd are two s − t paths such that d(pd) > Δ and d(pc) < Δ.
Let λ = (c (pd) − c(pc))/ (d(pc) − d(pd)) and suppose that for all s − t path p, d(p) 	= Δ.
Then pd and pc minimize (38.2) if and only if they are both cλ-minimal.

Proof. First, we prove that

yc (pd) + (1 − y) c (pc) ≥ L(ξ), ξ ∈ R+. (38.4)

In fact,

L(ξ) = min{cξ(p)|p ∈ Pst} − ξΔ
≤ y cξ(pd) + (1 − y) cξ(pc) − ξ (y d(pd) + (1 − y) d(pc))

= y (cξ(pd) − ξ d(pd)) + (1 − y) (cξ(pc) − ξ d(pc))
= y c(pd) + (1 − y) c(pc).

Using (38.3), (38.2) can be rewritten as:

yc (pd) + (1 − y) c (pc) = c (pc) + λ(d (pc) − Δ) = c (pd) + λ(d (pd) − Δ). (38.5)

Evidently, d(pc) 	= Δ and d(pd) 	= Δ.

a. Proof of the if part: Suppose pd and pc are cλ-minimal paths. Then

L(λ) = c (pc) + λ(d (pc) − Δ) = yc (pd) + (1 − y) c (pc) ,

where yd(pd) + (1 − y) d(pc) = Δ, 0 ≤ y ≤ 1. So (38.2) is minimized.

b. Proof of the only if part: Suppose pd and pc minimize (38.2) or rather (38.5). Assume
p is a cλ-minimal path and pd and pc are not cλ-minimal. Consider the case when p is
infeasible (if p is feasible, the theorem can be proven similarly). We have

c (p) + λd (p) < c (pd) + λd (pd) . (38.6)

Then
λ′ = c(pd) − c(p)

d(p) − d(pd) > λ.

Thus

y′c(pd) + (1 − y′) c(p) = c(pd) + λ′(d(pd) − Δ)
< c(pd) + λ (d(pd) − Δ) = y c(pd) + (1 − y) c(pc),

where y′d(pd) + (1 − y′) d(p) = y d(pd) + (1 − y) d(pc) = Δ.
The contradiction above proves that pc andpd are cλ-minimal paths. �

Constrained Shortest Path Problem � 1049

From the above proof, it can be shown that the value of λ defined by the optimal solution
pc and pd of (38.2) is equal to the maximizing λ searched by LARAC algorithm. Also the
optimum value of RELAX-CSP is equal to the optimum value L(λ∗) of DUAL-RELAX CSP.

There may be more than one maximizing λ. Assume that there is some multiplier λ such
that the delay of the corresponding path pλ is equal to the delay bound. In this case, an
interval will serve as the maximizing multiplier and we can find the actual optimal path for
the original CSP problem with that λ, recalling that c(pλ) = L(λ) which is the lower bound
on the cost of the actual optimal path.

Theorem 38.6 If ∃ λ and the corresponding path pλ such that d(pλ) = Δ, the maximizing
λ is one unique interval (maybe just one point); Otherwise, the maximizing λ∗ is unique.

Proof. This is a direct consequence of the concavity of the function L(λ) as stated in
Claim 38.2. �

Summarizing the discussions thus far we have the following theorem.

Theorem 38.7 Given λ1, λ2 such that d(pλ1) > Δ ≥ d(pλ2). If we start the LARAC algo-
rithm by initializing pc and pd as pλ1 and pλ2, respectively, then the LARAC algorithm finds
a maximizing multiplier λ∗ satisfying λ1 < λ∗ ≤ λ2. �

38.4 LARAC-BIN: A BINARY SEARCH-BASED APPROACH
TO THE DUAL-RELAX CSP PROBLEM

In this section we present a new algorithm called LARAC-BIN that uses the binary search
technique to find the maximizing multiplier. LARAC-BIN as presented in Figure 38.3 stops
when L(λ∗) − L(λ) < τ, for a given value of τ. The parameter τ serves as a tuning parameter
and can be specified in advance depending on the allowable deviation of the cost of the
produced solution from the optimum value. We also establish an optimality condition. This
criterion can be used to terminate the algorithm and at termination the optimum value of
L(λ) will be obtained.

In effect, the goal of LARAC-BIN is to find the minimum λ with which we can obtain a
feasible path because the smaller the λ, the smaller the cost of the path obtained. This goal
is compatible with that of the LARAC algorithm searching for the maximizing λ∗ and L(λ∗).
To put it formally, we have the following theorem.

Theorem 38.8 Let λ∗ denote the smallest maximizing value for L(λ) and pλdenote a path
corresponding to λ. Then c(pλ∗) ≤ c(pλ) for all λ such that d(pλ) ≤ Δ.

Proof. According to Theorem 38.3, if λ∗ ≤ λ, c(pλ∗) ≤ c(pλ). So assume λ∗ > λ.
In this case, d(pλ) ≤ Δ implies d(pλ) = Δ by Theorem 38.1. Hence L(λ) = L(λ∗) according
to Theorem 38.2, which is impossible because λ∗ is the smallest maximizing value for L(λ).

The above contradiction proves the theorem. �

The initial values of λbegin and λend in Figure 38.3 are to be selected such that pbegin is
infeasible and pend is feasible. We can initialize λend as in the following theorem.

Theorem 38.9 If λ = c(pd)−c(pc)
Δ−d(pd) , d(pd) < Δ and c(pd) > c(pc), then the cλ-minimal path is

feasible, where pc and pd are the minimal cost and minimal delay path, respectively.

1050 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Procedure LARAC-BIN (s, t, Δ, τ)

pc : Dijkstra (s, t, c)

if d (pc) ≤ Δ then return pc

pd := Dijkstra (s, t, d)

if d (pd) > Δ then return there is no solution

if d (pd) = Δ or c (pd) = c (pc) then return pd

λbegin := 0, λend := (c (pd) − c (pc)) / (Δ − d (pd))

while (λend − λbegin) (Δ − d (pd)) > τ

λ := (λbegin + λend) /2

r := Dijkstra (s, t, cλ)

if d (r) = Δ then return r

else if d (r) < Δ then λend := λ else λbegin : = λ

end while

return r := Dijkstra (s, t, cλend)

end procedure

Figure 38.3 LARAC-BIN algorithm.

Proof. Assume that p is a cλ-minimal path and d(p) > Δ. It follows that

c (pd) + λd (pd) ≥ c (p) + λd (p) .

Then

0 ≤ c (pd) − c (p) − c(pd) − c(pc)
Δ − d(pd) (d (p) − d (pd))

< c (pd) − c (p) − (c (pd) − c (pc)) = c (pc) − c (p) ≤ 0

The above contradiction proves the theorem. �

Theorem 38.10 Let λ∗ denote the smallest maximizing Lagrangian multiplier of L(λ) and
p∗ be the resulting path. Let pbegin and pend be the minimal aggregated cost paths with respect
to λbegin and λend, where λbegin and λend are as defined in the LARAC-BIN algorithm in
Figure 38.3. Here pbegin is infeasible and pend is feasible. Then

0 ≤ L(λ∗) − L(λend) ≤ (λend − λbegin)(Δ − d(pend)).

Constrained Shortest Path Problem � 1051

Proof. The left inequality holds because L(λ∗) is the maximum value.
Evidently, d(pend) ≤ Δ, λbegin ≤ λ∗ ≤ λend, and

c(p∗) + λ∗d(p∗) ≤ c(pend) + λ∗d(pend).

It follows that

L(λ∗) − L(λend) = c(p∗) + λ∗d(p∗) − λ∗Δ − [c(pend) + λendd(pend) − λendΔ]
= {c(p∗) + λ∗d(p∗) − [c(pend) + λ∗d(pend)]} − (λend − λ∗) d(pend)

+ (λend − λ∗)Δ
≤ (λend − λ∗)[Δ − d(pend)] ≤ (λend − λbegin)[Δ − d(pend)]. �

Note that we have used the result of the above theorem in the termination of the LARAC-BIN
algorithm (Figure 38.3).

Since a number of optimization problems only involve integer values (integer prob-
lems) or can be converted to integer problems, we now derive a termination condition for
the LARAC-BIN algorithm when all the link costs and delays are integers. If terminated
according to this condition, the algorithm computes the maximizing λ∗ with polynomial time
complexity.

Consider the set of rational numbers Q(D) = {p/q |GCD(p, q) = 1, q ≤ D, and p, q,
D ∈ N+}. Define the density of Q(D) as DENS(Q(D)) = min{|x1 − x2| : x1,x2 ∈ Q(D)
and x1 �=x2}. It is easy to show that DENS(Q(D)) = 1/D2 and that for x, y ∈ Q(D), x = y
if |x − y| < DENS(Q(D)).

Suppose that we modify LARAC-BIN so that it terminates when | λbegin − λend| < 1/D2

and that the paths at termination are pend and pbegin, where D = |d(pbegin) − d(pend)|. Let

λ = λ′ = c(pend) − c(pbegin)
d(pbegin) − d(pend) .

Theorem 38.11 λ′ defined as above is a maximizing multiplier.

Proof. Consider Q(D), where D = |d(pbegin) − d(pend)|. Because

c(pbegin) + λbegind(pbegin) ≤ c(pend) + λbegind(pend)

and

c(pbegin) + λendd(pbegin) ≥ c(pend) + λendd(pend),

λbegin ≤ λ′ = c(pend) − c(pbegin)
d(pbegin) − d(pend) ≤ λend.

Suppose that λbegin ≤ λ∗ ≤ λend, where λ∗ is the maximizing multiplier obtained by
LARAC-BIN algorithm initialized with pc = pbegin and pd = pend.

Clearly λ∗ = (c(pλ1) − c(pλ2))/(d(pλ2) − d(pλ1)) for some paths pλ1 and pλ2 with respect
to the multipliers λ1 and λ2. Following the similar argument as above it can be seen that λ1
and λ2 ∈ [λbegin, λend]. Hence |d(pλ2) − d(pλ1)| ≤ D according to Theorem 38.3, that is,
λ∗ ∈ Q(D).

Evidently |d(pbegin) − d(pend)| = D ≤ D and thus λ ∈ Q(D).
Because | λ′ − λ∗| < |λbegin − λend| < 1/D2 = DENS(Q(D)), the only possibility is that

λ′ = λ∗. �
For the CSP problem, the size of D is bounded as D ≤ n max {dij |(i, j) ∈ E}, where n is
the number of nodes in the network. If the LARAC-BIN algorithm is terminated using the
condition given above, then we have the following complexity result.

1052 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 38.12 LARAC-BIN terminates in O((m+n log n)(log(COST ×DELAY 2))) time
where COST is the cost of the minimum delay path and DELAY is the delay of the minimum
cost path in the network. �

38.5 GEN-LARAC: A GENERALIZED APPROACH TO THE CSP PROBLEM
UNDER MULTIPLE ADDITIVE CONSTRAINTS

In this section we study the CSP(k) problem that requires determination of s − t paths that
satisfy k > 1 additive constraints. We develop a new approach using Lagrangian relaxation.
We use the LARAC algorithm as a building block in the design of this approach.

38.5.1 Formulation of the CSP(k) Problem and Its Relaxation

Consider a directed graph G(V, E) where V is the set of nodes and E is the set of links in
G. Each link (u, v) is associated with a set of k + 1 additive non-negative integer weights
Cuv = (cuv, w1

uv, w2
uv, . . ., wk

uv). Here cuv is called the cost of link (u, v) and wi
uv is called the

ith delay of (u, v). Given two nodes s and t, an s − t path in G is a directed simple path
from s to t. Let Pst denote the set of all s − t paths in G. For an s − t path p define

c(p) ≡
∑

(u,v)∈p

cuv and di(p) ≡
∑

(u,v)∈p

wi
uv, i = 1, ...k.

The value c(p) is called the cost of path p, and di(p) is called the ith delay of path p. Given
k positive integers r1, r2 . . ., rk, an s − t path is called feasible (respectively, strictly feasible)
if di(p) ≤ ri (respectively, di(p) < ri), for all i = 1, 2 . . . k (ri is called the bound on the ith
delay of a path).

The CSP(k) problem is to find a minimum cost feasible s − t path. An instance of the
CSP(k) problem is strictly feasible if all the feasible paths are strictly feasible. Without loss
of generality, we assume that the problem under consideration is always feasible. In order to
guarantee strict feasibility, we do the following transformation.

For i = 1, 2 . . ., k, transform the ith delay of each link (u, v) such that the new weight
vector C ′

uv is given by
C ′

uv =
(
cuv, 2w1

uv, 2w2
uv, . . ., 2wk

uv

)
.

Also transform the bounds ri’s so that the new vector of bounds R′ is given by

R′ = (2r1 + 1, 2r2 + 1, . . ., 2rk + 1) .

In the rest of the section, we only consider the transformed problem. Thus all link delays
are even integers, and delay bounds are odd integers. We will use symbols with capital or bold
letters to represent vectors. Also, for a matrix A, AT denotes its transpose. For simplicity of
presentation, we will use Cuv and R instead of C ′

uv and R′ to denote the transformed weight
vector and the vector of bounds.

Two immediate consequences of this transformation are stated below.

Lemma 38.1 ∀ p ∈ Pst, ∀i ∈ {1, 2 . . ., k}, di(p) 	= ri in the transformed problem. �

Lemma 38.2 An s− t path in the original problem is feasible (resp. optimal) iff it is strictly
feasible (resp. optimal) in the transformed problem. �

Constrained Shortest Path Problem � 1053

Starting with an integer linear programming (LP) formulation of the CSP(k) problem
and relaxing the integrality constraints we get the RELAX-CSP(k) problem below. In this
formulation, for each s − t path p, we introduce a variable xp.

RELAX-CSP(k)

Minimize
∑

p

c(p)xp (38.7)

subject to
∑

p

xp = 1 (38.8)
∑

p

di(p)xp ≤ ri, i = 1, . . ., k (38.9)

xp ≥ 0, ∀p ∈ Pst (38.10)

The Lagrangian dual of RELAX-CSP(k) is given below.

DUAL-RELAX CSP(k)

Maximize w − λ1r1 . . . − λkrk (38.11)
subject to w − d1 (p) λ1 . . . − dk (p) λk ≤ c (p) , ∀p ∈ Pst (38.12)
λi ≥ 0, i = 1, . . ., k (38.13)

In the above dual problem λ1, λ2 . . ., λk and w are the dual variables, with w corresponding
to (38.8) and each λi corresponding to the ith constraint in (38.9).

It follows from (38.12) that w ≤ c(p) + d1(p) λ1 . . . + dk(p) λk ∀ p ∈ Pst. Since we want
to maximize (38.11), the value of w should be as large as possible, that is,

w = minp∈Pst {c (p) + d1 (p) λ1 + · · · + dk (p) λk} .

With the vector Λ defined as Λ = (λ1,λ2, . . ., λk), define

L(Λ) = minp∈Pst {c (p) + λ1 (d1 (p) − r1) · · · + λk (dk (p) − rk)} (38.14)

Notice that L(Λ) is called the Lagrangian function in the literature and is a concave contin-
uous function of Λ [6].

Then DUAL-RELAX CSP(k) can be written as follows.

Maximize L(Λ)
subject to Λ ≥ 0

(38.15)

The Λ∗ that maximizes (38.15) is called the maximizing multiplier and is defined as

Λ∗ = arg maxΛ≥0L (Λ) (38.16)

Claim 38.4 If an instance of the CSP(k) problem is feasible and a path popt is an optimal
path, then ∀Λ ≥ 0, L(Λ) ≤ c(popt). �

We shall use L(Λ) as a lower bound of c(popt) to evaluate the quality of the approximate
solution obtained by our algorithm. Given p ∈ Pst and Λ, define

C (p) ≡ (c (p) , d1 (p) , d2 (p) , . . ., dk (p)) ,

D (p) ≡ (d1 (p) , d2 (p) , . . ., dk (p)) ,

R ≡ (r1, r2, . . ., rk) ,

cΛ (p) ≡ c (p) + d1 (p) λ1 + · · · + dk (p) λk,

1054 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

and
dΛ (p) ≡ d1 (p) λ1 + · · · + dk (p) λk.

Here cΛ(p) and dΛ(p) are called the aggregated cost and the aggregated delay of path
p, respectively. We shall use PΛ to denote the set of s − t paths attaining the minimum
aggregated cost with respect to Λ. A path pΛ ∈ PΛis called a Λ-minimal path.

38.5.2 A Strongly Polynomial Time Approximation Algorithm for CSP(1) Problem

The key issue now is to search for the maximizing multiplier and determine termination
conditions. If there is only one delay constraint, that is, k = 1, we have the following claim
from Theorem 38.2 repeated below for ease of reference.

A value λ > 0 maximizes the function L(λ) if and only if there are paths pc and pd

which are both cλ-minimal and for which d(pc) ≥ r and d(pd) ≤ r. (pc and pd can
be the same. In this case d(pd) = d(pc) = r.)

Theorem 38.13 DUAL-RELAX CSP(1) is solvable in O((m + n log n)2) time.

Proof. We prove this theorem by presenting an algorithm with O((m + n log n)2) time com-
plexity. The algorithm called PSCSP (parametric search-based CSP) algorithm is based on
a methodology first proposed by Megiddo [3] to solve fractional combinatorial optimization
problems.

Assume node 1 is the source and node n is the target. In Figure 38.4, we present
algorithm PSCSP for computing a CSP using lexicographic order on a pair of link weights
(luv, cuv) ∀(u, v) ∈ E and based on parametric search, where luv = cuv + λ∗duv and λ∗ is
unknown. The algorithm is the same as the BFM (Bellman–Ford–Moore) algorithm except
for Step 4 which needs special care. We use BFM algorithm here because it is easy to explain.
Actually we use Dijkstra’s algorithm for better time complexity results.

In Figure 38.4, we need extra steps (Oracle test) to evaluate the Boolean expression in
the if statement in Step 4 since λ∗ ≥ 0 is unknown. If xv = ∞, yv = ∞, then the inequality
holds. Assume xv and yv are finite (non-negative) values. Then it suffices to evaluate the
following Boolean expression.

p + qλ∗ ≤ 0?, where p = xu + cuv − xv and q = (yu + duv − yv) .

If p · q ≥ 0, then it is trivial to evaluate the Boolean expression. Without loss of generality,
assume p · q < 0, that is, −p/q > 0. The Oracle test algorithm is presented in Figure 38.5.

The time complexity of the Oracle test is O(m + n log n). On the other hand, we can
revise the algorithm in Figure 38.4 using Dijkstra’s algorithm and the resulting algorithm
will have time complexity O((m + n log n)2).

Next, we show how to compute the value of λ∗ and L(λ∗). The algorithm in
Figure 38.4 computes a λ∗-minimal path p with minimal cost. Similarly, we can compute a
λ∗-minimal path q with minimal delay. Then the value of λ∗ is given by the following equa-
tion: c(p) + λ∗d(p) = c(q) + λ∗d(q) and L(λ∗) = c(p) + λ∗(d(p) − Δ), where Δ is the path
delay constraint (here k = 1). Notice that d(q) 	= d(p) is guaranteed by the transformation
in Section 38.5.1. �

Because PSCSP and LARAC algorithms are based on the same methodology and obtain
the same solution, we shall also call PSCSP as LARAC. In the rest of the chapter, we shall

Constrained Shortest Path Problem � 1055

Step 1. Mv = (Xv, Yv) = (+∞, +∞) for v = 2, 3, . . ., n and M1 = (0, 0)

Step 2. i ← 1

Step 3. u ← 1

Step 4. ∀ v, (u, v) ∈ E, if (Xv + λ∗Yv > Xu + λ∗Yv + Cuv + λ∗duv) or

(Xv + λ∗Yv = Xu + λ∗Yu + Cuv + λ∗duv) and (Xv > Xu + Cuv))

Mv ← (Xv + Cuv, Yu + duv)

Step 5. u ← u + 1 and if u ≤ n, go to Step 4.

Step 6. i ← i + 1 and if i ≤ n, go to Step 3.

Figure 38.4 PSCSP algorithm for CSP(1) problem.

Δ : Path delay constraint

Step 1. Let λ = −p/q > 0 for each link (u, v) ∈ E,

define its length luv = Cuv + λ duv.

Step 2. Compute two shortest paths pc and pd using the lexicographic order on

(luv, Cuv) and (luv, duv), respectively.

Step 3. Obviously, d(pc) ≥ d(pd). Only four cases are possible:

a. d(pc) > Δ and d(pd) > Δ : By Theorem 38.1, λ < λ∗

and thus p + qλ∗ < 0 if q < 0 and p + qλ∗ > 0 otherwise.

b. d(pc) < Δ and d(pd) < Δ : By Theorem 38.1, λ < λ∗

and thus p + qλ∗ > 0 if q < 0 and p + qλ∗ > 0 otherwise.

c. d(pc) > Δ and d(pd) < Δ : By Theorem 38.1, λ < λ∗ and p + qλ∗ = 0.

d. d(pc) > Δ or d(pd) < Δ : By Lemma 38.1, this is impossible.

Figure 38.5 Oracle test algorithm.

1056 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

discuss how to extend it for k > 1. In particular we develop an approach that combines the
LARAC algorithm as a building block with certain techniques in mathematical programming.
We shall call this new approach as GEN-LARAC.

38.5.3 GEN-LARAC for the CSP(k) Problem
38.5.3.1 Optimality Conditions
Theorem 38.14 Given an instance of a feasible CSP(k) problem, a vector Λ ≥ 0 maximizes
L(Λ) if and only if the following problem in the variables uj is feasible.

∑

pj∈PΛ

uj · di(pj) = ri, ∀i, λi > 0 (38.17)

∑

pj∈PΛ

uj · di(pj) ≤ ri, ∀i, λi = 0 (38.18)

∑

pj∈PΛ

uj = 1 (38.19)

uj ≥ 0, ∀pj ∈ PΛ (38.20)

Proof. Sufficiency: Let x = (u1 . . ., ur, 0, 0 . . .) be a vector of size |Pst|, where r = |PΛ|.
Obviously, x is a feasible solution to RELAX-CSP(k). It suffices to show that x and Λ satisfy
the complementary slackness conditions.

According to (38.12), ∀p ∈ Pst, w ≤ c(p) + d1(p) λ1 . . . + dk(p) λk. Since we need
to maximize (38.11), the optimal w = c(pΛ) + d1(pΛ) λ1 . . . + dk(pΛ) λk ∀pΛ ∈ PΛ. For
all other paths p, w − c(p) + d1(p) λ1 . . . + dk(p) λk. < 0. So x satisfies the complemen-
tary slackness conditions. By (38.17) and (38.18), Λ also satisfies complementary slackness
conditions.

Necessary: Let x∗ and (w, Λ) be the optimal solution to RELAX-CSP(k) and DUAL-
RELAX CSP(k), respectively. It suffices to show that we can obtain a feasible solution to
(38.17) through (38.20) from x∗.

We know that all the constraints in (38.12) corresponding to paths in Pst − PΛ are strict
inequalities, and w = c(pΛ)+d1(pΛ) λ1 . . . + dk(pΛ)λk ∀pΛ ∈ PΛ. So, from complementary
slackness conditions we get xp = 0, ∀p ∈ Pst − PΛ.

Now let us set uj corresponding to path p in PΛ equal to xp, and set all other uj ’s corre-
sponding to paths not in PΛ equal to zero. The u′

is so elected will satisfy (38.17) and (38.18)
since these are complementary conditions satisfied by (w, Λ). Since xi’s satisfy (38.8), uj ’s
satisfy (38.19). Thus we have identified a solution satisfying (38.17) through (38.20). �

38.5.3.2 GEN-LARAC: Coordinate Ascent Method
Our approach for the CSP(k) problem is based on the coordinate ascent method called
GEN-LARAC (Figure 38.6) and proceeds as follows. Given a multiplier Λ, in each iteration
we try to improve the value of L(Λ) by updating one component of the multiplier vector.
If the objective function is not differentiable, the coordinate ascent method may get stuck
at a corner Λs not being able to make progress by only changing one component. We call
Λs a pseudo optimal point which requires updates of at least two components to achieve
improvement in the solution. Our simulations show that the objective value attained at
pseudo optimal points is usually very close to the maximum value of L(Λ).

Constrained Shortest Path Problem � 1057

Step 1: Λ0 ← (0, 0..., 0); t ← 0; flag ← true; B ← 0
Step 2: (Coordinate ascent steps)

while (flag)

flag ← false

for i = 1 to k

γ ← arg maxξ≥0 L(λt
1..., λt

i−1, ξ, λt
i−1..., λt

k).

If (γ 	= λt
i) then

flag ← true

λt+1
j =

{
γ j = i,
λt

j j 	= i.
, j = 1, 2..., k

t ← t + 1

end if

end for

end while

Step 3: If Λt is optimal then return Λt.

Step 4: B ← B + 1 and go to Step 5 if B < Bmax (Bmax is the maximum number of
iteration allowed); Otherwise, stop.

Step 5: Compute a new vector Λ∗ such that L(Λ∗) > L(Λt).

Step 6: t ← t + 1, Λt ← Λ∗, and go to Step 2.

Figure 38.6 GEN-LARAC: Coordinate ascent algorithm for the CSP(k) problem.

38.5.3.3 Verification of Optimality of Λ

In Step 3 we need to verify if a given Λ is optimal. We show that this can be accomplished by
solving the following LP problem, where PΛ = {p1, p2, . . ., pr} is the set of Λ-minimal paths.

Maximize 0 (38.21)
subject to

∑

pj∈PΛ

uj · di(pj) = ri, ∀i, λi > 0 (38.22)

∑

pj∈PΛ

uj · di(pj) ≤ ri, ∀i, λi = 0 (38.23)

∑

pj∈PΛ

uj = 1 (38.24)

uj ≥ 0, ∀pj ∈ PΛ (38.25)

1058 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

By Theorem 38.14, if the above linear program is feasible then the multiplier Λ is a maxi-
mizing multiplier.

Let (y1 . . ., yk, δ) be the dual variables corresponding to the above problem. Let Y =
(y1, y2, . . ., yk). The dual of (38.21) through (38.25) is as follows

Minimize RY T + δ (38.26)
subject to D (pi) Y T + δ ≥ 0, i = 1, 2, . . ., r (38.27)

yi ≥ 0, ∀i, λi > 0 (38.28)

Evidently the LP problem (38.26) through (38.28) is feasible. From the relationship be-
tween primal and dual problems, it follows that if the linear program (38.21) through (38.25)
is infeasible, then the objective of (38.26) is unbounded (−∞). Thus, if the optimum ob-
jective of (38.26) through (38.28) is 0, then the linear program (38.21) through (38.25) is
feasible and by Theorem 38.14 the corresponding multiplier Λ is optimal. In summary, we
have the following lemma.

Lemma 38.3 If (38.21) through (38.25) is infeasible, then ∃Y = (y1, y2, . . ., yk) and δ satis-
fying (38.27) through (38.28) and RYT + δ < 0. �

The Y in Lemma 38.3 can be identified by applying any LP solver on (38.26) through (38.28)
and terminating it once the current objective value becomes negative.

Let Λ be a non-optimal Lagrangian multiplier and Λ(s, Y) = Λ + Y/s for s > 0.

Theorem 38.15 If a multiplier Λ ≥ 0 is not optimal, then

∃M > 0, ∀s > M, L(Λ (s, Y)) > L(Λ).

Proof. If M is big enough, PΛ ∩ PΛ(s, Y) 	= ∅. Let pj ∈ PΛ ∩ PΛ(s, V).

L[Λ (s, Y)] = c (pj) + (D (pj) − R)(Λ + Y/s)T

= c (pj) + (D (pj) − R)ΛT + (D (pj) − R) (Y/s)T

= L(Λ) + (D (pj) Y T − RY T)/s.

Since D(pj)Y T + δ ≥ 0 and R Y T + δ < 0, D(pj)Y T − RY T > 0.
Hence L(Λ(s, Y)) > L(Λ). �

We can find the proper value of M by binary search after computing Y . The last issue is to
compute PΛ. It can be expected that the size of PΛ is usually very small. In our experiments,
|PΛ| never exceeded 4 even for large and dense networks. The k-shortest path algorithm can
be adapted easily to computing PΛ.

A detailed convergence analysis of the GEN-LARAC algorithm may be found in [20].

Summary and Related Works

The literature on the CSP problem is vast. So in this section we survey only a subset of
published works in this area. It has been shown in [4,5] that the CSP problem is NP-hard even
for acyclic networks. So, in the literature, heuristic approaches and approximation algorithms
have been proposed. Heuristics, in general, do not provide performance guarantees on the
quality of the solution produced, though they are usually fast in practice. On the other hand,
ε-approximation algorithms (subject matter of Chapter 37) deliver solutions with cost within
(1 + ε) time the optimal cost for all ε > 0, but are usually very slow in practice because they
guarantee the quality of the solutions.

Constrained Shortest Path Problem � 1059

As regards heuristics, a number of them have appeared in the literature providing different
levels of performance with regard to the quality of the solution as well as the computation
time required. For instance, the LHWHM algorithm [7] is a very simple heuristic which is
very fast requiring only two invocations of Dijkstra’s shortest path algorithm for a feasible
problem. Reference [8] also discusses further enhancements of the LHWHM algorithm as
well as a heuristic based on the BFM algorithm for the shortest path problem. It should be
emphasized that in all these cases, only simulations are used to evaluate the performance of
the algorithms. A comprehensive overview of a number of quality of service (QoS) routing
algorithms may be found in [9].

There are heuristics that are based on sound theoretical foundations. These algorithms
are based on solutions to the integer relaxation or the dual of the integer relaxation of the
CSP problem. To the best of our knowledge, the first such algorithm was reported in [10] by
Handler and Zhang. This is based on the geometric approach (also called the hull approach
[11,12]). More recently, in an independent work, Jüttner et al. [2] developed the LARAC
algorithm which solves the Lagrangian relaxation of the CSP problem. In another indepen-
dent work, Blokh and Gutin [1] defined a general class of combinatorial optimization problems
(that are called the MCRT problems, namely, MCRT problems) of which the CSP problem is
a special case, and proposed an approximation algorithm to this problem. Xiao et al. [13] drew
attention to the fact that the algorithms in [1] and [2] are equivalent. Mehlhorn and Ziegel-
mann [11] and Ziegelmann [12] have also observed this equivalence and have developed several
insightful results. In view of this equivalence, we refer to these algorithms as the LARAC
algorithm. The work in [13] also establishes certain results using the algebraic approach.
These results also hold true in the case of the general optimization problem considered in
[1]. In another independent work, Xue [14] also arrived at the LARAC algorithm using the
primal-dual method of LP. Usually, approximation algorithms are developed using the dual
of the relaxed version of the CSP problem. Xiao et al. [15] described an efficient approxima-
tion algorithm for the CSP problem using the primal simplex method of LP. In [16], Jüttner
proved the strong polynomiality of the LARAC algorithm, both for the general case and
for the CSP problem. He has used certain results from the general area of fractional com-
binatorial optimization. Jüttner [17] gave a general method to solve budgeted optimization
problems in strongly polynomial time. An application of the parametric search method to the
general class of combinatorial optimization problems involving two additive parameters may
be found in [18]. Radzik [19] gives an excellent exposition of approaches to fractional com-
binatorial optimization problems. The LARAC-BIN algorithm discussed in this chapter was
developed in [13]. The GEN-LARAC algorithm also discussed in this chapter was developed
in [20]. Multiconstrained routing problem and the constrained disjoint path problem have
been considered in [14,21–26]. Several interesting algorithms related to the CSP problem and
motivated by applications have appeared in the literature. For examples, see [27–36].

References

[1] D. Blokh and G. Gutin, “An approximation algorithm for combinatorial optimization
problems with two parameters,” Australasian Journal of Combinatorics, 14 (1996),
157–164.

[2] A. Jüttner, B. Szviatovszki, I. Mécs, and Z. Rajkó, “Lagrange relaxation based method
for the QoS routing problem,” in Proceedings of the IEEE International Conference on
Computer Communications, Anchorage, AK, (2001), 859–868.

[3] N. Megiddo, “Combinatorial optimization with rational objective functions,” Mathemat-
ics of Operations Research, 4(4) (1979), 1–12.

1060 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman Press, San Francisco, CA, 1979.

[5] Z. Wang and J. Crowcroft, “Quality-of-Service routing for supporting multimedia appli-
cations,” IEEE JSAC, 14(7) (1996), 1228–1234.

[6] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cam-
bridge, 2003.

[7] G. Luo, K. Huang, C. Hobbs, and E. Munter, “Multi-QoS constraints based routing for
IP and ATM Networks,” in Proceedings of the IEEE Workshop on QoS Support for Real
Time Internet Applications, Vancouver, Canada, June 1999.

[8] R. Ravindran, K. Thulasiraman, A. Das, K. Huang, G. Luo, and G. Xue, “Quality of
service routing: heuristics and approximation schemes with a comparative evaluation,”
in Proceedings of the IEEE International Symposium on Circuits and Systems, 2002,
pp. 775–778.

[9] F.A. Kuipers, T. Korkmaz, M. Krunz, and P. Van Mieghem, “An overview of constraint-
based path selection algorithms for QoS routing,” IEEE Communications Magazine, 40
(2002), 50–55.

[10] G. Handler and I. Zhang, “A dual algorithm for the constrained shortest path problem,”
Networks, Saarbrücken, Germany, 10 (1980), 293–310.

[11] K. Mehlhorn and M. Ziegelmann, “Resource constrained shortest path,” in Proceed-
ings of the 8th European Symposium on Algorithms, Saarbrücken, Germany, 2000,
pp. 326–337.

[12] M. Ziegelmann, “Constrained shortest paths and related problems,” PhD thesis, Max-
Planck-Institut für Informatik, Saarbrücken, Germany, 2001.

[13] Y. Xiao, K. Thulasiraman, and G. Xue, “The constrained shortest path problem: algo-
rithmic approaches and an algebraic study with generalization,” AKCE International
Journal of Graphs and Combinatorics, 2(2) (2005), 63–86.

[14] G. Xue, “Minimum-cost QoS multicast and unicast routing in communication networks,”
IEEE Transactions on Communications, 51 (2003), 817–827.

[15] Y. Xiao, K. Thulasiraman, and G. Xue, “QoS routing in communication networks: Ap-
proximation algorithms based on the primal simplex method of linear programming,”
IEEE Transactions on Computers, 55 (2006), 815–829.

[16] A. Jüttner, “On resource constrained optimization problems,” in 4th Japanese–
Hungarian Symposium on Discrete Mathematics and Its Applications, Budapest, Hun-
gary, 2005.

[17] A. Jüttner, “On budgeted optimization problems,” SIAM Journal on Discrete Mathe-
matics, 20(4) (2006), 880–892.

[18] A. Jüttner. “Optimization with additional variables and constraints,” Operations
Research Letters, 33(3) (2005), 305–311.

[19] T. Radzik, Fractional combinatorial optimization, in Handbook of Combinatorial Opti-
mization, Editors, DingZhu Du and Panos Pardalos, vol. 1, Kluwer Academic Publishers,
Dordrecht, the Netherlands, 1998.

Constrained Shortest Path Problem � 1061

[20] Y. Xiao, K. Thulasiraman, G. Xue, and M. Yadav, “QoS routing under additive con-
straints: A generalization of the LARAC algorithm,” in IEEE Transactions on Emerging
Topics in Computing, May 2015.

[21] J. M. Jaffe, “Algorithms for finding paths with multiple constraints,” Networks, 14
(1984), 95–116.

[22] T. Korkmaz and M. Krunz, “Multi-constrained optimal path selection,” Proceedings of
the IEEE INFOCOM, 2 (2001), 834–843.

[23] T. Korkmaz, M. Krunz, and S. Tragoudas, “An efficient algorithm for finding a path
subject to two additive constraints,” Computer Communications Journal, 25(3) (2002),
225–238.

[24] G. Xue, A. Sen, W. Zhang, J. Tang, and K. Thulasiraman, “Finding a path subject to
many additive QoS constraints,” IEEE/ACM Transactions on Networking, 15 (2007),
201–211.

[25] G. Xue, W. Zhang, J. Zhang, and K. Thulasiraman, “Polynomial time algorithms for
multiconstrained QoS routing,” IEEE/ACM Transactions on Networking, 16 (2008),
656–669.

[26] X. Yuan, “Heuristic algorithms for multiconstrained quality-of-service routing,”
IEEE/ACM Transactions on Networking, 10 (2003), 244–256.

[27] Y. Bejerano, Y. Breitbart, A. Orda, R. Rastogi, and A. Sprintson, “Algorithms for com-
puting QoS paths with restoration,” IEEE Transactions on Networking, 13(3) (2005),
648–661.

[28] A. Chakrabarti and G. Manimaran, “Reliability constrained routing in QoS networks,”
IEEE Transactions on Networking, 13(3) (2005), 662–675.

[29] T. Korkmaz and M. Krunz, “Bandwidth-delay constrained path selection under inaccu-
rate state information,” IEEE/ACM Transactions on Networking, 11 (2003), 384–398.

[30] P. Van Mieghem, H. De Neve, and F. Kuipers, “Hop-by-hop quality of service routing,”
Computer Networks, 37(3/4) (2001), 407–423.

[31] P. Van Mieghem and F. Kuipers, “Concepts of exact QoS routing algorithms,”
IEEE/ACM Transactions on Networking, 12 (2004), 851–864.

[32] H. De Neve and P. Van Mieghem, “TAMCRA: A tunable accuracy multiple constraints
routing algorithm,” Computer Communications, 23 (2000), 667–679.

[33] J. L. Sobrinho, “Algebra and algorithms for QoS path computation and hop-by-hop
routing in the internet,” IEEE/ACM Transactions on Networking, 10(4) (2002), 541–
550.

[34] A. Warburton, “Approximation of pareto optima in multiple-objective shortest path
problems,” Operations Research, 35 (1987), 70–79.

[35] Y. Xiao, K. Thulasiraman, X. Fang, D. Yang, and G. Xue, “Computing a most probable
delay constrained path: NP-hardness and approximation schemes,” IEEE Transactions
on Computers, 61 (2012), 738–744.

[36] Y. Xiao, K. Thulasiraman, and G. Xue, “Constrained shortest link-disjoint paths se-
lection a network programming based approach,” IEEE Transactions on Circuits &
Systems I, 53 (2006), 1174–1187.

C H A P T E R 39

Algorithms for Finding Disjoint
Paths with QoS Constraints*
Alex Sprintson

Ariel Orda

CONTENTS

39.1 Introduction . 1063
39.2 Model and Problem Definition . 1064

39.2.1 Minimum Cost Disjoint Paths Problem . 1064
39.2.2 Restricted Shortest Paths Problem . 1064
39.2.3 Restricted Disjoint Paths Problem . 1065

39.3 Network Flows . 1065
39.4 Algorithm for the Minimum Cost Disjoint Paths Problem . 1066
39.5 Disjoint Paths with a Delay Constraint . 1067
39.6 Minimizing Path Delays . 1068
39.7 Algorithm Analysis . 1069
39.8 Minimizing the Computational Complexity . 1071
39.9 Computing Upper and Lower Bounds . 1072
39.10 Conclusion . 1073

39.1 INTRODUCTION

Finding a set of disjoint paths is one of the basic problems in graph theory. This problem
appears in many settings in different areas such as communication networks, circuit design,
transportation, and many others. Disjoint paths can be used to increase throughput, mitigate
failures of network elements, and minimize congestion. Network operators can use disjoint
paths to improve resilience to failures, spread the traffic evenly across the network, and
maximize the rate of data transfer. For example, to minimize packet loss during an edge
failure event, a copy of each packet can be sent along two disjoint paths, which allows the
receiver to recover at least one copy of the packet if the failure occurs [2].

The need to find disjoint paths that satisfy quality of service (QoS) constraints leads to a
broad range of interesting problems. The QoS constrains can be of additive type, such as delay
or jitter, or of bottleneck type such as bandwidth. For example, a network operator might
be interested in finding two disjoint paths such that both of the paths satisfy a given delay
requirement. Another interesting problem in this domain is to find a set of disjoint paths
that satisfy a given QoS constraint at minimum cost. In general, additive QoS constraints
are harder to handle than bottleneck constraints. The problems that involve multiple criteria
such as cost and delay pose additional algorithmic challenges.

∗This chapter closely follows the treatment of the topic in [1].
1063

1064 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

While the basic problem of finding k disjoint paths can be solved in polynomial time,
that is, through Suurballe–Tarjan algorithm [3], many of the problems related to finding
disjoint paths that satisfy QoS constraints are intractable. In particular, the problem of
finding two disjoint paths that satisfy a given delay constraint is NP-hard [4]. The problems
that include multiple criteria, such as cost and delay, are typically NP-hard as well. Indeed,
even the basic problem of finding a single path of minimum cost that satisfies an additive
QoS constraint is NP-hard [5]. Accordingly, for many problems approximation algorithms are
of interest. An approximation algorithm may relax the cost optimality constraint, relax the
QoS constraints, or both. With the former approach, an approximation algorithm returns a
set of disjoint paths that satisfy the QoS constraints at a cost that is slightly higher than the
optimum. Alternatively, an algorithm can return a set of paths that slightly violate the QoS
constraint, but whose cost is less than or equal to the optimum. This approach is acceptable
for applications that tolerate slight delay violations. In addition, there is a trade-off between
the quality of the paths and the computational complexity of the algorithm, since typically
the quality of the paths can be improved through successful iterations.

The goal of this chapter is to present several algorithmic techniques for finding disjoint
paths. We begin by introducing the classical Suurballe–Tarjan algorithm that finds a required
number of disjoint paths of minimum total cost. Then, we present solutions for bi-criteria
settings with an additive QoS constraint and cost minimization requirements.

39.2 MODEL AND PROBLEM DEFINITION

We focus on the problem of finding a set of disjoint paths between a source node s and a
destination node t in a graph G(V, E). For clarity, we assume that the graph G(V, E) is a
directed graph, however, all algorithms discussed in this chapter can be used for undirected
graphs as well. We say that edges e′ and e′′ are interlacing if they connect the same endpoints
in opposite directions, that is, e′ = (u, v) and e′′ = (v, u). We assume that each edge e ∈ E is
associated with a positive cost ce and a QoS parameter de. The cost ce of an edge e typically
captures the amount of network resources consumed if e is selected by the algorithm. The
QoS parameter captures the guarantee provided by the edge in terms of the QoS metric. For
clarity, we refer to de as an edge delay, but it can be any other additive QoS metric. An (s, t)-
path is a sequence of distinct nodes P = (s = v0, v1, . . ., t = vn), such that, for 0 ≤ i ≤ n − 1,
(vi, vi+1) ∈ E. A path W with identical source and destination nodes is referred to as a cycle.
We denote by E(P) the set of edges that belong to path P . The total cost C(P) of a path P is
equal to the sum of the costs of the individual edges along the path, that is, C(P) =

∑
e∈P ce.

Similarly, the total delay D(P) of P is defined as D(P) =
∑

e∈P de. We also define the delay
D(Ê) of a set Ê ⊆ E to be the total delay of all edges in Ê. In this chapter we focus on the
following problems.

39.2.1 Minimum Cost Disjoint Paths Problem

An instance of the minimum cost disjoint paths (MCDP) problem includes a graph G(V, E),
a source node s, a destination node t, and the number k of disjoint paths. The goal is to find
a set of k edge disjoint (s, t)-paths P = {P1, P2, . . . , Pk} of minimum total cost

∑
Pi∈P C(Pi).

39.2.2 Restricted Shortest Paths Problem

An instance of the restricted shortest path (RSP) problem includes a graph G(V, E), a source
node s, a destination node t, and a delay constraint D. The goal is to find an (s, t)-path P
with minimum cost C(P) that satisfies the delay constraint D(P) ≤ D.

Algorithms for Finding Disjoint Paths with QoS Constraints � 1065

The RSP problem is in general NP-hard, but it admits a fully polynomial approximation
scheme (FPAS), that is, it is possible to find a polynomial time algorithm whose cost is
at most (1 + ε) times more than the optimum. There are several exact and approximation
algorithms proposed for the RSP problem [6–10]. The fastest approximation algorithm, due
to Raz and Lorentz [8], has a computational complexity of O(|E||V |((1/ε) + log log|V |)).

39.2.3 Restricted Disjoint Paths Problem

An instance of the RSP problem includes a graph G(V, E), a source node s, a destination
node t, and a delay constraint D. The goal is to find two edge disjoint paths P1 and P2 of
minimum total cost, C(P1) + C(P2), that satisfy the delay constraint, that is, D(P1) ≤ D
and D(P2) ≤ D.

Restricted disjoint paths (RDP) problem is hard since it generalizes the RSP problem as
well as the problem of finding two disjoint paths with minimum maximal weight, which was
shown to be NP-hard by Li et al. [11] (it is straightforward to construct a reduction from
either of these problems). The reduction from the latter problem also implies that it is NP-
hard to find a solution to the RDP problem that satisfies the delay constraint. Accordingly,
our goal is to find an (α,β)-approximate solution that both relaxes the delay constraint as
well as the cost optimality condition. With an (α,β)-approximate solution, our goal is to
identify two paths, P1 and P2, that satisfy the following conditions:

• The delay of each of the paths P1 and P2 is at most α times the delay constraint, that
is, D(P1) ≤ αD and D(P2) ≤ αD.

• The total cost of paths P1 and P2 is at most β times the optimum, that is,
C(P1) + C(P2) ≤ βOPT.

39.3 NETWORK FLOWS

Disjoint paths in networks are closely related to network flows. An (s, t)-flow f is a mapping
that assigns each edge e ∈ E a value fe. The flow value fe cannot exceed the capacity of the
edge e. In this chapter we assume that each edge has unit capacity and that flow values are
either zero or one, that is, fe ∈ {0, 1}. In addition, the flow values satisfy flow conservation
constraints, that is, for each v ∈ V \{s, t}, it holds that

∑

(w,v)∈E

f(w,v) =
∑

(v,w)∈E

f(v,w).

The value of a flow f is defined as the sum of values of the outgoing edges of s:

|f |=
∑

(s,v)∈E

f(s,v). (39.1)

Note that |f | is also equal to the sum of flow values of the incoming edges of t.
The cost C(f) and delay D(f) of a flow f are defined as

C(f) =
∑

e∈E

ce · fe (39.2)

and
D(f) =

∑

e∈E

de · fe, (39.3)

respectively.

1066 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

An (s, t)-flow can be decomposed into a set of disjoint paths between s and t and a set of
cycles by using the flow decomposition algorithm [12]. Note that a minimum cost flow only
contains a set of disjoint paths. Indeed, removal of a cycle from the flow minimizes its cost,
but does not affect the value of the flow.

Note that the problem of finding a minimum cost set of k disjoint paths is related to the
problem finding a minimum cost (s, t)-flow of value k.

39.4 ALGORITHM FOR THE MINIMUM COST DISJOINT PATHS PROBLEM

In this section we focus on the MCDP problem. This problem can be solved by using the
algorithm due to Suurballe and Tarjan [3]. The detailed description of the algorithm is
presented in Figure 39.1.

In Step 1, we find a shortest path P ′ between the source s and destination t and form a set
Ê ⊆ E that includes the edges of P ′. The goal of Step 2 is to compute, for each node v ∈ V ,
the minimum cost π(v) of the shortest path between s and v in G. The values {π(v)} are
then used in Step 3 to modify or reduce the cost c(e) for each edge e ∈ E. The reduced edge
costs have several important properties: the reduced cost of each edge e ∈ E is non-negative
and the cost of each edge that belongs to the shortest path P ′ is zero. Note that the cost of
any (s, t)-path with respect to the reduced costs is π(t) units lower than its cost with respect
to the original edge costs. Thus, the ordering of the paths with respect to reduced costs is
the same as with respect to the original edge costs. The first two steps can be accomplished
by a single invocation of a shortest path algorithm, such as Dijkstra’s.

The goal of Step 4 is to construct an auxiliary graph G′ that will be used for finding the
second (s, t)-path, P ′′. Graph G′ is formed from G by reversing the edges in Ê. This way,
a path in G′ can use edges of P ′′ in the reverse direction. In Step 5, we identify a shortest
path P ′′ between s in t in the auxiliary graph G′. Finally, in Step 6 we combine Ê and
E(P), excluding the interlacing edges of both sets. We refer to this step as augmenting set Ê
along P ′′.

The algorithm can be extended to a k-disjoint paths algorithm by performing additional
iterations. In each iteration, we find a shortest path P ′′ in the auxiliary graph formed from
G by reversing edges in Ê and then augmenting set Ê along P ′′.

Algorithm MCDP (G(V, E), s, t)
1: Find a minimum cost path P ′ between source s and destination t;

form a subset Ê of E that includes all edges in P ′,
i.e., Ê ← E(P ′)

2: For each node v ∈ V do
determine the minimum cost π(v) of a shortest path in G that connects s and v;

3: For each edge e(u, v) ∈ E do
modify the cost c(e) as follows:

c(e) ← c(e) + π(u) − π(v)

4: Construct an auxiliary graph G′ formed from G by reversing all edges that belong to Ê
5: Find a minimum cost (s, t)-path P ′′ in G′

6: For each edge (u, v) of P ′′: do
if there exists an interlacing edge (v, u) ∈ Ê then remove (v, u) from Ê,
otherwise add (u, v) to Ê

Figure 39.1 Algorithm for minimum cost disjoint paths (MCDP) problem.

Algorithms for Finding Disjoint Paths with QoS Constraints � 1067

This algorithm belongs to the general class of successive shortest paths algorithms for
the minimum cost flow problems [12]. Note that the set Ê corresponds to an (s, t)-flow f
that assigns the value fe = 1 for each edge e ∈ Ê and fe = 0 otherwise. Each iteration
of the algorithm increases the value of the flow by one unit. Therefore, at the end of the
algorithm, set Ê can be decomposed into k edge-disjoint (s, t)-paths, for example, using the
flow decomposition algorithm [12]. The algorithm requires k invocations of Dijkstra’s shortest
path algorithm, hence its complexity is O(k(|E| + |V | log(|V |))).

The following lemma establishes the correctness of the MCDP algorithm. We present
a sketch of the proof that is slightly different from the standard approach. We will use a
similar proof technique for establishing the correctness of approximation algorithms for the
RDP problem below.

Lemma 39.1 The algorithm finds an optimal solution to the minimum cost disjoint paths
problem.

Proof. (sketch) Let P opt
1 and P opt

2 be an optimal pair of disjoint (s, t)-paths and let OPT be
their total cost. Since the cost of each of those paths with respect to the reduced costs is
C(P ′) units lower than that of the original cost, the total cost of these two paths with respect
to the reduced cost is OPT − 2C(P ′). Now, let us consider the subgraph G′′ of G′ induced
by edges in E(P opt

1), E(P opt
2), as well as edges of P ′ in the reverse direction. It is easy to

verify that G′′ contains an (s, t)-path whose reduced cost is bounded by OPT−2C(P ′). Since
G′′ is a subgraph of G′, it holds that G′ has an (s, t)-path whose reduced cost is at most
OPT − 2C(P ′). Since P ′′ is a shortest path in G′′, its cost with respect to the reduced edge
costs is also at most OPT − 2C(P ′), hence its cost with respect to the original costs is at
most OPT − C(P ′). This implies that the total cost of all edges in Ê (with respect to the
original costs) is bounded by OPT. Note that the cost of some of the edges in P ′′ can be
negative with respect to the original costs, but these edges do not appear in Ê because they
are canceled by interlacing edges in P ′. As mentioned above, Ê can be decomposed into two
disjoint (s, t)-paths. We conclude that the total cost of these paths is bounded by OPT. �

Node-disjoint paths algorithms. With a small extension, the MCDP algorithm can be used
for finding two node-disjoint paths. The basic idea is to construct an auxiliary graph G′

formed from G by splitting each node v ∈ V into two nodes, v′ and v′′ connected by an edge
(v′, v′′). Each incoming edge (w, v) of v in G will be substituted by an edge (w, v′) in G′;
every outgoing edge (v, w) of v in G will be substituted by edge (v′′, w) in G′. It is easy to
verify that for every pair of node disjoint (s, t)-paths in G there exists a pair of edge disjoint
(s, t)-paths in G′ and vice versa.

39.5 DISJOINT PATHS WITH A DELAY CONSTRAINT

In this section we focus on the approximation solutions for the RDP problem, for different
values of (α,β). We begin with a simple algorithm, referred to as Algorithm RDP1, depicted
in Figure 39.2.

Similar to the MCDP algorithm we use the path augmentation approach. The first step
is to identify an (s, t)-path P ′ that satisfies a given delay constraint D, whose cost is at most
(1+ε) more than the optimum. In Step 2, we construct an auxiliary graph G′ formed from G
by reversing all edges in E(P ′) and setting their delay and cost to zero. The auxiliary graph
is then used in Step 3 for finding an (s, t)-path P ′′. To that end we invoke Algorithm RSP to
find a path P ′′ that satisfies the delay constraint 2D. Next we augment set Ê along P ′′ by con-
structing a set Ê that includes all edges in E(P ′) and E(P ′′), except for the interlacing edges.

1068 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Algorithm RDP1 (G(V, E), s, t, D)
1: Invoke Algorithm RSP to find an (s, t)-path P ′ that satisfies the delay constraint D
2: Construct an auxiliary graph G′ by reversing all edges in G that belong to P ′ and

assigning them zero delay and zero cost
3: Invoke Algorithm RSP to find an (s, t)-path P ′′ that satisfies the delay constraint 2D
4: Construct a set of edges Ê by combining E(P ′) and E(P ′′) and removing all interlacing

edges from the resulting set
5: Decompose the set Ê into two disjoint paths P1 and P2

Figure 39.2 Algorithm RDP1 for restricted disjoint paths problem.

Lemma 39.2 Algorithm RDP1 identifies a (3, 1.5(1 + ε)) solution to the RDP problem.

Proof. First, we note that D(P ′) ≤ D and that the cost C(P ′) of P ′ is less than or equal to
(1 + ε) min{C(P opt

1), C(P opt
2)} ≤ (1 + ε)(OPT/2).

Next, let P opt
1 and P opt

2 be an optimal solution to the RDP problem, that is, D(P opt
1) ≤ D,

D(P opt
2) ≤ D, and C(P opt

1) + C(P opt
2) = OPT. Let G′′ be a subgraph of G that includes

edges in E(P opt
1), E(P opt

2), as well as edges of P ′ in reverse direction. It is easy to verify that
graph G′′ contains an (s, t)-path whose delay is at most D(P opt

1) + D(P opt
2) ≤ 2D and whose

cost is at most OPT. This implies that the cost of path P ′′ is at most (1 + ε)OPT.
We conclude that the total delay of the edges in Ê is at most 3D and total cost of at

most 1.5(1 + ε)OPT. Since both P1 and P2 are constructed using the edges in Ê, it holds
that D(P1) ≤ 3D, D(P2) ≤ 3D, and

C(P1) + C(P2) ≤ 1.5(1 + ε)OPT.

We conclude that paths P1 and P2 constitute a (3, 1.5(1+ε)) solution to the RDP problem. �

We observe that Lemma 39.2 implies a stronger result, namely, that the total delay
D(P1) + D(P2) of two paths, P1 and P2 is bounded by 3D. Thus, the minimum delay path
among P1 and P2 violates the delay constraint by at most 50%. The algorithm includes two
invocations of the RSP algorithm, hence its computational complexity is bounded by the
standard notation is O(|E||V |((1/ε) + log log|V |)).

39.6 MINIMIZING PATH DELAYS

Algorithm RDP1 presented in the previous section identifies two paths P1 and P2 whose
total delay is at most 3D and whose cost is at most 1.5(1+ε) times more than the optimum.
In this section we show how to reduce the delay of the disjoint paths through an iterative
procedure that includes augmentation along negative delay cycles in the auxiliary graph. In
particular, we present Algorithm RDP2 that identifies two disjoint paths whose total delay
is at most 2D(1 + ε), and with cost at most 2.5 + 1.5ε + 2 log(1/2ε)OPT. The parameter ε

captures the trade-off between the accuracy of the algorithm (in terms of delay violation),
the cost of the paths, and its running time. We refer to this algorithm as Algorithm RDP2
and present its detailed description in Figure 39.3.

In Step 1 we invoke Algorithm RDP1 to find two disjoint (s, t)-paths P1 and P2 that
satisfy D(P1)+D(P2) ≤ 3D. We also denote by Ê the set of edges that belong to P1 and P2.
In Step 2, we construct an auxiliary graph G′ by reversing edges in Ê, and setting the cost of
each of the reversed edges to zero. The delay of a reverse edge ê is set to d(ê) = −d(e), where
d(e) is the delay of the original edge. Thus, all of the reversed edges have negative delays.

Algorithms for Finding Disjoint Paths with QoS Constraints � 1069

Algorithm RDP2 (G(V, E), s, t, D, ε)
1: Invoke Algorithm RDP1 with parameter ε to find two disjoint (s, t)-paths P1 and P2,

define Ê = E(P1) ∪ E(P2);
2: Construct an auxiliary graph G′ from G by reversing the edges of Ê, i.e., for each edge

e(u, v) ∈ Ê, add an edge ê(v, u) to G′ with cost c(ê) = 0 and delay d(ê) = −d(e)
3: Find a negative delay cycle W in G′ that minimizes D(W)

C(W)
4: Augment Ê along W , i.e., add edges in E(W) to Ê and then remove all interlacing edges
5: If

∑
e∈Ê d(e) ≤ 2D(1 + ε) then proceed to the next step,

else repeat steps 2–5
6: Decompose Ê into two edge disjoint paths P ′

1 and P ′
2

Figure 39.3 Algorithm RDP2 for restricted disjoint paths problem.

The intuition behind this assignment is that if a reversed edge is included in the augmenting
cycle, then the original edge will be excluded from Ê, which will result in reducing the value
of D(Ê).

The key idea of the algorithm is to find cycles in G′ that have negative delays and then
use these cycles to minimize the total delay of edges in Ê. Since we maintain the requirement
that the edges in Ê can always be decomposed into two disjoint (s, t)-paths, we are able to
iteratively minimize the delay violation until the total delay of the paths is less than or equal
to 2D(1 + ε).

More specifically, in Step 3, we find a negative delay cycle W that minimizes the ratio
D(W)/C(W). This cycle can be determined by using the minimum cost-to-time ratio cycle
algorithm [12]. In Step 4 we augment set Ê along cycle W . This is accomplished by adding
the set of edges in E(W) to Ê and then removing all pairs of interlacing edges. Since for each
edge e ∈ W with a negative delay d(e), we remove an edge from Ê whose delay is equal to
|d(e)|, after Step 4 the total delay of all edges in Ê decreases by |D(W)|. It is easy to verify
that after the set of disjoint paths is augmented by a cycle or a set of cycles, the resulted set
of edges can still be decomposed into two disjoint (s, t)-paths.

We perform several iterations until the total delay of edges in Ê is less than or equal to
2D(1 + ε). Finally, set Ê is decomposed into two edge disjoint paths P ′

1 and P ′
2 whose total

delay D(P ′
1) + D(P ′

2) is less than or equal to 2D(1 + ε).

39.7 ALGORITHM ANALYSIS

In this section we present a detailed analysis of Algorithm RDP2. Our analysis is based
on the augmenting cycle theorem [12]. Let Ê be the set of edges maintained by algo-
rithm and let Eopt be a set of edges that corresponds to the optimal solution to Prob-
lem RDP. Note that Ê and Eopt correspond to two (s, t)-flows of value two. Also, let G′

be an auxiliary graph formed from G by reversing edges in Ê. The theorem implies that
there exists a set of cycles W = {W1, W2, . . . } in G′ such that Eopt corresponds to an
(s, t)-flow obtained by augmenting Ê along cycles in W. The set W has the following
properties:

∑

Wi∈W
D(Wi) = D(Eopt) − D(Ê) ≤ −(D(Ê) − 2D);

∑

Wi∈W
C(Wi) = C(Eopt) − C(Ê) ≤ OPT.

1070 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Note that the total delay of cycles in W is negative (since D(Ê) ≥ 2D) and its total cost is
positive. Thus, the ratio of the total delay to the total cost for all cycles in W is negative
and bounded by ∑

Wi∈W D(Wi)∑
Wi∈W C(Wi)

≤ −D(Ê) − 2D

OPT .

By the averaging argument, there must be a cycle W̄ ∈ W for which it holds that

D(W̄)
C(W̄)

≤ −D(Ê) − 2D

OPT . (39.4)

Since the cycle W identified in Step 3 of the algorithm minimizes D(W)/C(W), it holds that

D(W)
C(W) ≤ −D(Ê) − 2D

OPT . (39.5)

We proceed to bound the number of iterations performed by the algorithm. Note that the cost
C(W) of every augmenting cycle W is at least one, hence by Equation 39.5, each iteration
decreases D(Ê) by at least

(
D(Ê) − 2D

)
/OPT units. The algorithm makes an improvement

in the objective value, which is proportional to the difference between the objective value at
the current operation and the optimal solution. We use the following theorem, which is an
extension of the geometric improvement theorem [12].

Theorem 39.1 Suppose that z0 is the objective value in the beginning of a minimization
algorithm, zi is the objective value at the ith iteration of the algorithm, and z∗ is the minimum
objective value. Suppose that the cost of each iteration is ci. Furthermore, suppose that the
algorithm guarantees that for every iteration i,

zi − zi+1 ≥ ζci(zi − z∗) (39.6)

for some constant ζ, 0 < ζ < 1. For a given integer k ≥ 2, let i∗ be the first iteration for
which it holds that

i∗∑

i=0
ci ≥ 2k

ζ
.

Then, the objective value zi∗ at iteration i∗ satisfies

zi∗+1 − z∗ ≤ z0 − z∗

2k
.

Proof. For the analysis purposes, we divide each iteration into ci steps, each step decreases
the objective value of the function by (zi−zi+1)/ci. We denote by yj the value of the objective
function at the jth step. Note that the possible improvement yj − yj+1 at each step, is lower
bounded by

yj − yj+1 = zij − zij+1

ci
≥ ζ(zij − z∗) ≥ ζ(yj − z∗).

where ij is the iteration that includes step j.
Then, we apply the geometric improvement theorem [12] to show that after at most 2/ζ

steps, the algorithm reduces the value of the total possible improvement by a factor of
a least 2. This implies, in turn, that after 2k/ζ steps, that is, j ≥ 2k/ζ, it holds that
yj − z∗ ≤ (z0 − z∗)/2k. Since the first i∗ iterations include at least 2k/ζ steps it holds that
zi∗ − z∗ ≤ (z0 − z∗)/2k. �

Algorithms for Finding Disjoint Paths with QoS Constraints � 1071

Let z0 be the value of D(Ê) in the beginning of the algorithm. Note that z0 ≤ 3D since
the total delay of the paths returned by Algorithm RDP1 is bounded by 3D. We also let
ζ = (1/OPT), and z∗ = 2D. Equation 39.5 implies that at each iteration the algorithm
improves the objective function by at least

(
C(W)(D(Ê) − 2D)

)
/OPT. Thus, the conditions

of Theorem 39.13 are satisfied when ζ = (1/OPT), z∗ = 2D, and when zi is equal to the
value of D(Ê) at iteration i.

Let i∗ be the first iteration for which it holds that the cost of all augmenting cycles
identified in iterations 1, . . . , i∗ is greater than

2
ζ

log
(1

2ε

)
= 2OPT log

(1
2ε

)
.

For k = log(1/2ε), the total cost of all augmenting cycles identified at or before iteration i∗

is at least 2k/ζ, hence the theorem implies that

D(Ê) − 2D ≤ D

2k
= 2Dε,

or, equivalently,
D(Ê) ≤ 2D + 2Dε = 2D(1 + ε).

Note that the total additional cost incurred at all iterations of Algorithm RDP2 is at most
OPT(2 log(1/2ε) + 1). Since the initial cost of C(Ê) is bounded by 1.5(1 + ε)OPT, the total
cost of the solution is bounded by (2.5 + 1.5ε + 2 log(1/2ε))OPT.

Since the cost of the cycle identified at each iteration is at least one, the algorithm
performs O(OPT log(1/ε)) iterations. The running time for each iteration is dominated by
the time required to find a cycle W that minimizes the delay to cost ratio D(W)/C(W).
The complexity of this procedure is equal to O(|E||V | log(CD)), where C is the maximum
cost of an edge in E. We conclude that the computational complexity of Algorithm RDP2 is
O(|E||V | log(CD)OPT log(1/ε)).

We conclude that Algorithm RDP2 provides a (2(1 + ε), 2.5 + 1.5ε + 2 log(1/2ε)) solution
to Problem RDP. We note that the delay of the minimum path is at most D(1+ε) so it only
slightly violates the delay constraint.

39.8 MINIMIZING THE COMPUTATIONAL COMPLEXITY

While Algorithm RDP2 provides good quality paths, its computational complexity is pro-
portional to the cost OPT of the optimal solution to Problem RDP. Thus, the algorithm can
only be applicable for settings in which the costs the edges in the networks edge are limited
to small values. However, the complexity of the algorithm can be high for settings with large
cost and delay values of network edges. More precisely, the complexity of Algorithm RDP2
is not polynomial in the size of the input. Algorithm RDP2 belongs to the class of pseudo-
polynomial algorithms, since its complexity depends on the values of the edge parameters
(delays and costs).

To reduce the computational complexity of the algorithm, we apply the cost scaling ap-
proach [7]. With this approach, the cost of each edge is scaled by scaling factor Δ. Specifically,
we reduce the cost c(e) of each edge e ∈ E, replacing it by

c′(e) =
⌊

c(e)
Δ

⌋
+ 1. (39.7)

The scaling approach requires to obtain sufficiently tight bounds L and U on the value OPT
of the optimal solution. In Section 39.9 below we show how to identify bounds L and U that

1072 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Algorithm RDP3 (G(V, E), s, t, D, ε)
1: Obtain lower and upper bounds, L and U , on the cost of the optimal solution to Prob-

lem RDP
2: Δ ← Lε

2|V |
3: For each edge e ∈ E do

c′(e) ←
⌊

c(e)
Δ

⌋
+ 1.

4: Invoke Algorithm RDP2 with respect to scaled costs to find two disjoint (s, t)-paths P1
and P2

Figure 39.4 Algorithm RDP3 for the restricted disjoint paths problem.

satisfy (U/L) ≤ 2|V | through a simple procedure. The lower bound L is then used in order
to determine the scaling factor Δ,

Δ = Lε

2|V | .

With this assignment, the scaling factor is large enough to reduce the edge costs, but it also
ensures that the scaling procedure does not result in a significant increase in the overall cost
of the solution. The detailed description of Algorithm RDP3 appears in Figure 39.4.

We proceed to show that the scaling procedure increases the cost of each pair P1 and P2
by a factor of at most (1 + ε). Equation 39.7 implies that, the cost of each edge increases by
at most Δ. Since two disjoint paths include at most 2|V | edges, the total cost of P1 and P2
with respect to scaled edge cost is bounded by

C(P1) + C(P2) + 2|V |Δ = C(P1) + C(P2) + Lε ≤ (C(P1) + C(P2))(1 + ε).

We conclude that the approximation solution provided by Algorithm RDP3 is similar to that
provided by Algorithm RDP2, with a slightly increased cost (by a factor of (1 + ε)).

We proceed to analyze the computational complexity of the algorithm. Let P opt
1 and P opt

2
be two disjoint (s, t)-paths that constitute an optimal solution to Problem RDP. Since P opt

1
and P opt

2 contain at most 2|V | edges, their cost OPT′ with respect to scaled edge cost is
bounded by

OPT′ ≤ 2|V | · OPT
ε · L

+ 2|V |.
Since (U/L) ≤ 2|V |, it holds that

L ≥ U

2|V | ≥ OPT
2|V | ,

hence
OPT′ ≤ 2|V |2

ε
+ 2|V | = O

(
|V |2
ε

)
.

By applying Algorithm RDP2 with respect to scaled costs we can reduce its complexity to
O((1/ε) log(1/ε)|E||V |3 log(CD)). A further improvement in the computational complexity
is discussed in [1].

39.9 COMPUTING UPPER AND LOWER BOUNDS

We denote by c1 < c2 < · · · < cr the distinct costs values of the edges. Our goal is to find
the maximum cost value c∗ ∈ {ci} such that the graph G′ derived from G by omitting all
edges whose cost is greater than c∗, does not contain two disjoint paths P1 and P2 such that

Algorithms for Finding Disjoint Paths with QoS Constraints � 1073

D(P1) + D(P2) ≤ 2D. Clearly, a feasible solution contains at least one edge whose cost is c∗

or more, hence c∗ is a lower bound on OPT. In addition, there exists a feasible solution P1
and P2 with D(P1)+D(P2) ≤ 2D that comprises edges whose cost is c∗ or less. Since P1 and
P2 include at most 2|V | edges, it holds that 2|V | · c∗ is an upper bound on OPT

We perform a binary search on the values c1, c2, · · · , cr. At each iteration, we need to
check whether c ≤ c∗, where c is the current estimate of c∗. For this purpose, we remove
from G all edges whose cost is more than c, and assign the unit cost to the remaining edges.
Then, we find a pair of disjoint paths of minimum delay (e.g., using the MCDP algorithm)
in the resulting graph. If this algorithm returns a feasible flow, then we set c ≥ c∗; otherwise,
c < c∗. This procedure requires O(log|V |) iterations.

39.10 CONCLUSION

This chapter focused on two basic disjoint paths problems, namely, finding a set of disjoint
paths of minimum total cost and finding a pair of edge disjoint paths that satisfy a given
delay constraint at minimum cost. For the minimum cost disjoint paths problem we described
the classical Suurballe–Tarjan algorithm. For the problem of finding QoS paths with a delay
constraint, we presented three approximation algorithms. The first algorithm is simple and
efficient, but it provides only a loose bound on the delay requirement. The second algorithm
computes paths with tight delay guarantees at the price of higher cost. The third algorithm
allows to compute the paths in a computationally efficient manner.

Finding a set of disjoint paths that satisfy QoS constraints have received a significant
attention from the research community. The related studies focused on finding disjoint paths
subject to multiple additive QoS constraints [13,14], improving network reliability [15,16], the
hardness of the disjoint paths problem [17], extending the problem to the realm of disjoint
spanning trees [18], and the trade-off between reliability and QoS constraints [19,20].

References

[1] A. Orda and A. Sprintson. Efficient Algorithms for Computing Disjoint QoS Paths. In
23rd Annual Joint Conference of the IEEE Computer and Communications Societies,
Hong Kong, China, March 2004.

[2] E. Mannie and D. Papadimitriou (editors). Recovery (Protection and Restoration)
Terminology for Generalized Multi-Protocol Label Switching (GMPLS). Internet draft,
Internet Engineering Task Force, May 2003.

[3] J. Suurballe and R. Tarjan. A Quick Method for Finding Shortest Pairs of Disjoint
Paths. Networks, 14 (1984), 325–336.

[4] A. Itai, Y. Perl, and Y. Shiloach. The Complexity of Finding Maximum Disjoint Paths
with Length Constraints. Networks, 12 (1982), 277–286.

[5] M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San Francisco,
CA, 1979.

[6] F. Ergun, R. Sinha, and L. Zhang. An Improved FPTAS for Restricted Shortest Path.
Information Processing Letters, 83 (2002), 237–293.

[7] R. Hassin. Approximation Schemes for the Restricted Shortest Path Problem. Mathe-
matics of Operations Research, 17 (1992), 36–42.

1074 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[8] D.H. Lorenz and D. Raz. A Simple Efficient Approximation Scheme for the Restricted
Shortest Path Problem. Operations Research Letters, 28 (2001), 213–219.

[9] Y. Xiao, K. Thulasiraman, and G. Xue. QoS Routing in Communication Networks:
Approximation Algorithms Based on the Primal Simplex Method of Linear Program-
ming. IEEE Transactions on Computers, 55 (2006), 815–829.

[10] Y. Xiao, K. Thulasiraman, and G. Xue. Constrained Shortest Link-Disjoint Paths
Selection: A Network Programming Based Approach. IEEE Transactions on Circuits
and Systems, 53 (2006), 1174–1187.

[11] C.L. Li, T. McCormick, and D. Simchi-Levi. The Complexity of Finding Two Disjoint
Paths with Min-Max Objective Function. Discrete Applied Mathematics, 26 (1990), 105–
115.

[12] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Networks Flows. Prentice Hall, Upper Saddle
River, NJ, 1993.

[13] G. Xue, A. Sen, W. Zhang, J. Tang, and K. Thulasiraman. Finding a Path Subject to
Many Additive QoS Constraints. IEEE/ACM Transactions on Networking, 15 (2007),
201–211.

[14] G. Xue, W. Zhang, J. Tang, and K. Thulasiraman. Polynomial Time Approximation
Algorithms for Multi-Constrained QoS Routing. IEEE/ACM Transactions on Network-
ing, 16 (2008), 656–669.

[15] G. Kuperman, E. Modiano, and A. Narula-Tam. Network Protection with Multiple
Availability Guarantees. In IEEE International Conference on Communications, pp.
6241–6246. IEEE, Ottawa, ON, 2012.

[16] R. Chze Loh, S. Soh, and M. Lazarescu. Addressing the Most Reliable Edge-Disjoint
Paths with a Delay Constraint. IEEE Transactions on Reliability, 60 (2011), 88–93.

[17] M. Andrews and L. Zhang. Hardness of the Undirected Edge-Disjoint Paths Problem. In
Proceedings of the 7th annual ACM Symposium on Theory of Computing, pp. 276–283.
ACM, Baltimore, MD, 2005.

[18] J. Yallouz, O. Rottenstreich, and A. Orda. Tunable Survivable Spanning Trees. SIG-
METRICS Performance Evaluation Review, 42 (2014), 315–327.

[19] R. Banner and A. Orda. The Power of Tuning: A Novel Approach for the Efficient Design
of Survivable Networks. IEEE/ACM Transactions on Networking, 15 (2007), 737–749.

[20] J. Yallouz and A. Orda. Tunable QoS-Aware Network Survivability. In Proceedings of
the INFOCOM, pp. 944–952. IEEE, Turin, Italy, April 2013.

C H A P T E R 40

Set-Cover Approximation
Neal E. Young

CONTENTS

40.1 Greedy Set-Cover Algorithm . 1075
40.2 Analysis . 1075
40.3 Vertex Cover . 1076
40.4 Generalizations and Variants . 1077

The Weighted Set-Cover Problem: given a collection S of sets over a universe U , and a
weight ws ≥ 0 for each set s ∈ S, find a collection C ⊆ S of the sets whose union is

U—a set cover—of minimum weight
∑

s∈C ws.

40.1 GREEDY SET-COVER ALGORITHM

This algorithm, due to Johnson [1], Lovász [2], and Chvátal [3], computes an approximately
optimal cover as follows: It chooses a set s to minimize the price per element—the weight
ws divided by the number of elements in s not yet covered by chosen sets. It repeats this
step until the chosen sets cover all elements, then stops and returns the chosen sets. The
algorithm is in Figure 40.1.

40.2 ANALYSIS

The standard linear-program relaxation for weighted set cover, and its dual, are shown in
Figure 40.2. Let Hk = 1 + (1 /2) + (1 /3) + · · · + (1 /k) ∼ ln k denote the kth harmonic
number.

Theorem 40.1 Fix any instance (S , w) of weighted set cover and any solution x to the
linear-program relaxation. Let C be the set cover returned by the greedy-set-cover (S , w).
Then C has weight at most

∑
s H|s|wsxs. �

Before we prove the theorem, observe that the standard performance guarantee for the algo-
rithm follows as a corollary:

Corollary 40.1 [1–3] Greedy set-cover (S , w) returns a set cover C of weight at most Hk
times the minimum weight of any set cover, where k = maxs∈S |s| is the maximum set size.

Proof of Theorem 40.1. For each element e ∈ U , define ye to be the price per element (as
defined in Figure 40.1) during the iteration of the algorithm that covers e. Then sum

∑
e∈U ye

is the cost of the cover C returned by the algorithm. To complete the proof we show that∑
e∈U ye is at most

∑
s H|s|wsxs.

1075

1076 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Greedy-set-cover(S, w)
1. Initialize C ← ∅. Define f(C) .= | ∪s∈C s|.
2. Repeat until f(C) = f(S):
3. Choose s ∈ S minimizing the price per element

ws/[f(C ∪ {s}) − f(C)].

4. Let C ← C ∪ {s}.
5. Return C.

Figure 40.1 Greedy set-cover algorithm.

Minimize
∑

s∈S wsxs subject to
∑

s�e xs ≥ 1 ∀e ∈ U,
xs ≥ 0 ∀s ∈ S.

Maximize
∑

e∈U ye subject to
∑

e�s ye ≤ we ∀s ∈ S,
ye ≥ 0 ∀e ∈ U.

Figure 40.2 Linear-program relaxation for set cover, and its dual.

We claim that the vector y satisfies
∑

e�s ye ≤ H|s|ws for all s ∈ S. Indeed, consider any
such set s = {ek, ek−1, . . . , e1} ∈ S, where ek was the first element covered by the algorithm,
ek−1 was the second, and so on (breaking ties arbitrarily). Since greedy-set-cover minimizes
the price per element, when an element ei was covered, the price per element yei was at least
ws/i. Summing over i proves the claim.

Since
∑

e�s ye ≤ H|s|ws for all s ∈ S, the vector y is feasible for the dual of the linear
program with modified cost vector w′ where w′

s = H|s|ws. Hence, by weak duality,
∑

e∈U ye

is at most
∑

s∈S w′
sxs =

∑
s∈S H|s|wsxs, as desired. �

40.3 VERTEX COVER

The weighted vertex-cover problem is: given an undirected graph G = (V, E) and a weight
wv ≥ 0 for each vertex v ∈ V , find a vertex cover (a collection C ⊆ V of the vertices whose
union touches all edges of the graph) of minimum weight

∑
v∈C wv.

Weighted vertex cover reduces to set cover by creating a set sv for each vertex v, containing
the edges incident to v, and having weight wv. Applied to this instance, greedy-set-cover yields
an Hk-approximate solution, where k is the maximum degree of any vertex in G.

For applications such as this, where the set sizes can be large but no element occurs
in many sets (at most two for vertex cover), the algorithm in Figure 40.3 gives a better
approximation. The algorithm chooses any maximal solution y to the dual of the linear-
program relaxation, then returns the sets whose constraints are tight in the dual.

Set-cover-2(S, w)
1. Let y be any maximal solution to the dual of the linear-program relaxation. (For

example, initialize each ye equal to zero, then consider the elements e ∈ U in any
order, and raise ye as much as possible without violating some dual constraint.)

2. Return the cover C = {s ∈ S :
∑

e∈s ye = ws}.

Figure 40.3 Other set-cover algorithm.

Set-Cover Approximation � 1077

Theorem 40.2 [4,5] Set-cover-2(S,w) returns a cover of cost at most Δ times the minimum
weight of any set cover, where Δ is the maximum number of sets that any element is contained
in, Δ = max{|{s ∈ S : e ∈ s| : e ∈ U}.

For vertex cover, Δ = 2.

Proof of Theorem 40.2. First observe that the set C returned by the algorithm is a cover,
because otherwise the vector y would not be maximal (if e ∈ U is not covered by S, then ye

is not in any tight constraint, so ye could be raised).
Next observe that the cost of the cover C is at most Δ

∑
e�U ye:

∑

s∈C

ws =
∑

s∈C

∑

e∈s

ye ≤ Δ
∑

e�U

ye (40.1)

(The last inequality holds because each element e occurs in at most Δ sets.)
Since y is a feasible dual solution of cost

∑
e∈U ye, weak duality implies that the value of

the linear-program relaxation is at least
∑

e∈U ye. The theorem follows. �

40.4 GENERALIZATIONS AND VARIANTS

Greedy-set-cover and its analysis generalize naturally to minimizing a linear function subject
to a submodular constraint [6] (Theorem 9.4).

Set-cover-2 generalizes to arbitrary covering problems with submodular cost [7], and has
polylog-time parallel/distributed variants [8]. Broadly, it belongs to the class of local-ratio
algorithms [9].

References

[1] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Com-
puter and System Sciences, 9(3) (1974), 256–278.

[2] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Math, 13(4)
(1975), 383–390.

[3] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3) (1979), 233–235.

[4] D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover prob-
lems. SIAM Journal on Computing, 11(3) (1982), 555–556.

[5] R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the weighted
vertex cover problem. Journal of Algorithms, 2(2) (1981), 198–203.

[6] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization, volume 18.
Wiley, New York, 1988.

[7] C. Koufogiannakis and N. E. Young. Greedy Δ-approximation algorithm for covering
with arbitrary constraints and submodular cost. Algorithmica, 66(1) (2013), 113–152.

[8] C. Koufogiannakis and N. E. Young. Distributed algorithms for covering, packing and
maximum weighted matching. Distributed Computing, 24(1) (2011), 45–63.

[9] R. Bar-Yehuda, K. Bendel, A. Freund, and D. Rawitz. Local ratio: A unified framework
for approximation algorithms. ACM Computing Surveys, 36(4) (2004), 422–463.

C H A P T E R 41

Approximation Schemes for
Fractional Multicommodity
Flow Problems
George Karakostas

CONTENTS

41.1 Multicommodity Flow Problems . 1079
41.2 Maximum Concurrent Flow . 1082

41.2.1 Analysis of the Approximation Guarantee . 1085
41.2.2 Running Time . 1088
41.2.3 Explicit Case . 1090

41.3 Minimum Cost Concurrent Flow . 1092
41.4 Application: Maximum Concurrent Flow for Lossy Networks 1093

41.1 MULTICOMMODITY FLOW PROBLEMS

Flow problems are the basis of many optimization problems. Their efficient solution has been
studied intensively ever since the breakthrough treatise by Ford and Fulkerson [1] established
the field of network flows and introduced novel algorithmic ideas for calculating them (such as
the famous Ford–Fulkerson augmenting paths algorithm, and the modeling of dynamic flows
as static ones). Usually the input to such a problem consists of a directed network modeled
as a graph G = (V, E), an edge capacity function u : E → R

+ and a source–sink pair (s, t)
(single commodity flow) or, more generally, a set of k source–sink pairs (si, ti), 1 ≤ i ≤ k
(multicommodity flow). We want to calculate flows f i from si to ti that would optimize
an objective function, subject to flow conservation, and the constraint that the sum of flows
through an edge cannot exceed the capacity of the edge. Each origin–destination pair (and its
corresponding flow f i) is usually called a commodity. More formally, given the graph G, the
edge capacities u, and the k source–sink pairs above, the flows f i : E → R

+ for i = 1, . . . , k
must satisfy the following sets of constraints:

Capacity constraints: For all edges e ∈ E, we require
∑k

i=1 f i(e) ≤ u(e).

Flow conservation: For all commodities i = 1, . . . , k, and for all vertices u ∈ V \ {si, ti},
we require ∑

v:(v,u)∈E

f i(v, u) =
∑

v:(u,v)∈E

f i(u, v).

There may be additional constraints to be satisfied by the flows, such as lower bounds for
the edge flows (instead of only upper bounds in the form of capacities), and integrality

1079

1080 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

requirements for the routing of the flow through network paths (e.g., each commodity can
use only a single path). In what follows, we will assume that there are no edge flow lower
bounds, that is, they are all assumed to be 0, and each commodity can be split at every node
without any restrictions, that is, the flows we need to compute are fractional.

The simplest multicommodity flow problem is the maximum multicommodity flow prob-
lem: the objective is the maximization of the total flow.

Maximum Multicommodity Flow (MAX-MF)

INPUT: A directed graph G = (V, E), an edge capacity function u : E → R
+, and a set

of k source–sink pairs (si, ti), 1 ≤ i ≤ k.

OUTPUT: Flows f i : E → R
+ for i = 1, . . . , k that maximize

∑k
i=1

∑
v:(si,v)∈E f i(si, v).

An additional constraint that flows must satisfy in many cases is the satisfaction of demand
requirements. These are lower bounds on the total flow amount of a commodity routed over
the network.
Demand constraints: Given demands di ≥ 0 for i = 1, . . . , k, we require that for all

commodities i ∑

v:(si,v)∈E

f i(si, v) ≥ di.

Note that while the capacity and flow conservation constraints can always be satisfied, for
example, by the zero flow, the addition of demands may render any flow infeasible for the
given network. In what follows, a flow that satisfies its demand constraints (and any additional
constraints we may introduce) will be called feasible.

A natural question that arises is the minimum-cost multicommodity problem: given a set
of demands over a network with per unit of flow costs on its edges, we look for a routing of the
demands with minimum total cost. More specifically, in addition to a network G, capacities
u, commodities i = 1, . . . , k, and demands d, we are also given edge costs c : E → R

+.
If the flow through an edge e ∈ E is f(e) :=

∑k
i=1 f i(e), then the cost of the flow through

e is c(e)f(e), and the total cost of the flow on G is
∑

e∈E c(e)f(e). Therefore, we can pose
the minimum-cost multicommodity flow problem as the optimization problem of finding
a feasible flow f i, i = 1, . . . , k that minimizes

∑
e∈E c(e)f(e). In fact, we can reduce this

minimization problem to the feasibility question on a series of budget-constrained problems.
In such problems, we are given a budget B ≥ 0 and we ask for a flow routing that satisfies
the demands, and its total cost is at most B.
Budget constraint: Given a budget B ≥ 0, we require that a feasible flow satisfies

∑

e∈E

[
c(e)

k∑

i=1
f i(e)

]
≤ B.

Budget Multicommodity Flow (BUDGET-MF)

INPUT: A directed graph G = (V, E), an edge capacity function u : E → R
+, an edge

cost function c : E → R
+, a set of k source–sink pairs (si, ti), 1 ≤ i ≤ k, and a set of

demands di ≥ 0 for i = 1, . . . , k.

OUTPUT: Feasible flow f i : E → R
+ for i = 1, . . . , k, that is, a flow that satisfies the

demand and budget constraints.

Approximation Schemes for Fractional Multicommodity Flow Problems � 1081

In what follows, we will always assume that all numbers given as input (capacities, edge
costs, demands, etc.) are integers. If they are not, we first transform them by multiplying all
of them with a sufficiently large number.

If we can solve BUDGET-MF, then we can obviously come very close to the solution
of the minimum-cost multicommodity flow problem, by performing a binary search for the
optimal budget BOPT in the range [0, DC], where D =

∑k
i=1 di is the total demand, and

C =
∑

e∈E c(e). We will need to run BUDGET-MF at most O(log D + log C) times (each
time with a new budget) to get to within a (fixed) accuracy of the minimum cost.

Another question one can ask when a network and demands for commodities are given,
is the following: what is the maximum fraction (throughput) of demands that can be routed
on the given network? This problem is the maximum concurrent flow problem, and as before,
it also has a budgeted (cost) version. The term concurrent means that we are trying to
satisfy the same fraction from each commodity, introducing a notion of fairness in demand
satisfaction. Also note that this fraction (or throughput) may be bigger than 1, in which case
we are able to route multiples of the given demands. More formally, the maximum concurrent
flow problem is defined as follows:

Maximum Concurrent Flow (MCF)

INPUT: A directed graph G = (V, E), an edge capacity function u : E → R
+, a set of k

source–sink pairs (si, ti), 1 ≤ i ≤ k, and a set of demands di ≥ 0 for i = 1, . . . , k.

OUTPUT: Maximum λ such that there is feasible flow that satisfies at least demand λdi

for each i = 1, . . . , k.

The budgeted version is defined as follows:

Budgeted Concurrent Flow (BCF)

INPUT: A directed graph G = (V, E), an edge capacity function u : E → R
+, an edge

cost function c : E → R
+, a set of k source–sink pairs (si, ti), 1 ≤ i ≤ k, a set of

demands di ≥ 0 for i = 1, . . . , k, and budget B ≥ 0.

OUTPUT: Maximum λ such that there is feasible flow that satisfies at least demand λdi

for each i = 1, . . . , k and the budget constraint.

The output of MCF and BCF can be one of two possibilities: either we need to output
just the value of λ we calculate, or we need to output λ and a feasible flow that achieves
this λ. In the former case, the problem we solve will be called implicit, while in the latter it
will be called explicit. In the explicit case, it is enough to enumerate only the non-zero flow
on every edge and for every commodity. Simple examples of networks with n nodes and k
commodities can be used to show that this explicit representation can be of size Ω(nk). One
such example is shown in Figure 41.1, where each commodity is routed through a path of
length Θ(n). This gives a trivial lower bound of Ω(nk) on the dependency of the running
time of any algorithm that produces an explicit representation on k.

Note that we can assume that at most one commodity corresponds to a single source–sink
pair of nodes, since we can combine commodities with the same origin and destination into
a single commodity with demand equal to the summation of the individual demands. If a

1082 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

S1

S2

Sk

t1

t2

tk

n−2k nodes

… …

…

Figure 41.1 Simple example of k commodities, each with a flow path of length Θ(n).

fraction λ of the demand of this aggregated commodity is satisfied, then a fraction λ of the
demand of each one of its constituent commodities is satisfied as well.

In what follows, G will always represent the underlying network (directed) graph for the
flow routing, n will be its number of nodes and m its number of edges. We will assume
that G is always connected, so m = Ω(n). Otherwise, we work on the connected components
of G. We use the notation Õ(f) to denote a quantity that is O(f logO(1) n), that is, to hide
polylogarithmic factors. We will first focus on polynomial time approximation algorithms for
MCF and BCF, and then extend them to more general versions of these problems. By ap-
proximation we mean approximation by a positive multiplicative factor ρ ≤ 1, that is, our
algorithms will guarantee that if SOL and OPT are the values of the produced solution and
the optimum value, respectively, then we have SOL ≥ ρ · OPT. If for every positive constant
ε< 1, we can present a polynomial time approximation algorithm with approximation fac-
tor 1 − ε, then this family of algorithms is called a polynomial time approximation scheme
(PTAS).∗ If, moreover, the PTAS running time depends polynomially on 1/ε then it is called
a fully polynomial time approximation scheme (FPTAS).

Example 41.1 An approximation scheme with running time O(ε−3 · n2/ε) is a PTAS, while
a scheme with running time O(ε−3 · n2) is an FPTAS (and also a PTAS).

Note that, from a practical point of view, for small values of ε, that is, better approximations,
an FPTAS is much more preferable than a PTAS. The approximation algorithms we will
develop will be FPTASs. This is important for their practicality, since MCF and BCF (like
all fractional multicommodity problems we defined) can be formulated as linear problems
(LPs), and thus can be solved exactly in polynomial time by general LP algorithms such as
the ellipsoid or interior point methods (see, e.g., [2]). We will also use the LP formulations,
but in order to find good approximate solutions much faster than these general LP solvers.

41.2 MAXIMUM CONCURRENT FLOW

It is well known that any flow can be decomposed into a set of path flows, that is, flows that
use a single path from the source to the sink. Let Pi be the set of paths between si and ti

in G, and let P := ∪iPi be the set of all possible source–sink paths. Then the feasible flow
f can be decomposed into path flows ∪k

i=1{x(P) : P ∈ Pi}, where x(P) is the non-negative
amount of flow that is routed through path P . We will solve MCF by computing path flows
x(P) and the maximum throughput λ. Then, we will output λ (in the implicit case), or λ

and f i(e), e ∈ E (in the explicit case).
By using a variable λ for the throughput, and variables x(P), P ∈ P for the

amount of flow sent along path P , for every P ∈ P, the path flow LP formulation of

∗Note that we define the approximation factor for a maximization problem. The definitions for a mini-
mization problem are analogous, and the approximation factor is of the form 1 + ε, with ε > 0.

Approximation Schemes for Fractional Multicommodity Flow Problems � 1083

MCF is the following:

maximize λ s.t.∑
P :e∈P x(P) ≤ u(e) ∀e ∈ E∑
P ∈Pi

x(P) ≥ λd(i) ∀i = 1, . . . , k
x(P) ≥ 0 ∀P ∈ P

λ ≥ 0

(MCF)

In MCF, the first set of constraints enforce the capacity constraints, and the second fact that
at least a multiple (or fraction) of λ must be satisfied for each commodity. Since x(P) are
path flows, the flow conservation constraints are automatically satisfied. Note that MCF has
an exponential number of variables x(P) since the number of paths in P is exponential on n
and m, but this will not bother us because we will never need to explicitly write MCF down.

The dual∗ LP of MCF has a variable l(e) for each capacity constraint of the primal and
a variable z(i) for every commodity demand constraint:

minimize
∑

e∈E u(e)l(e) s.t.∑
e∈P l(e) ≥ z(i) ∀i, ∀P ∈ Pi∑k

i=1 d(i)z(i) ≥ 1
l(e) ≥ 0 ∀e
z(i) ≥ 0 ∀i

(DMCF)

Note that DMCF has a polynomial number of variables, but the number of constraints is
exponential.

Let D(l) :=
∑

e u(e)l(e) be the quantity minimized by DMCF. We define disti(l) as the
distance of the shortest path from si to ti in G under the length function l. Let α(l) :=∑

i d(i)disti(l).

Lemma 41.1 Finding edge lengths l(e) and z(i) that minimize D(l) under the constraints of
DMCF is equivalent to computing lengths l(e) for the edges and z(i) that minimize D(l)/α(l).

Proof. Let l(e), z(i) be an optimal solution for DMCF, and l′(e) an edge length function that
minimizes D(l)/α(l). Note that by constraints

∑
e∈P l(e) ≥ z(i) for each commodity i, we

have disti(l) ≥ z(i). Therefore, we have

α(l) =
∑

i

d(i)disti(l) ≥
k∑

i=1
d(i)z(i) ≥ 1

and therefore
D(l′)
α(l′) ≤ D(l)

α(l) ≤ D(l).

Also, note that (l′/α(l′), disti(l)/α(l′)) is a feasible solution of DMCF. Hence,

D(l) ≤ D

(
l′

α(l′)

)
= D(l′)

α(l′)

and the lemma follows. �
Let β := minl D(l)/α(l). We will make the following assumption, which we will lift later.

∗We assume basic knowledge of linear programming and its terminology, such as duality, the weak- and
strong-duality theorems, and so on. A good reference is [3].

1084 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Assumption 41.1 We assume that β ≥ 1.

The algorithm is described in Figure 41.2.

Input: Graph G = (V, E), capacities u(e), pairs (si, ti) with demands d(i),
1 ≤ i ≤ k, accuracy w < 1.

Output: Throughput λ.

Initialize l(e) := δ/u(e), ∀e, x(P) := 0, ∀P .
while D(l) < 1 do
for i = 1 to |S| do
d′(cq) := d(cq), q = 1, . . . , r
while D(l) < 1 and d′(cq) > 0 for some q do

Pcq := shortest path in Pcq using l, q = 1, . . . , r with d′(cq) > 0
fcq := d′(cq), q = 1, . . . , r with d′(cq) > 0

σ := max
{

1, maxe∈Pc1 ∪...∪Pcr

{∑
cq :e∈Pcq

fcq

u(e)

}}

fcq := fcq /σ
d′(cq) := d′(cq) − fcq

x(Pcq) := x(Pcq) + fcq

⎫
⎪⎬

⎪⎭
q = 1, . . . , r with d′(cq) > 0

l(e) := l(e)
(

1 + ε ·
∑

cq :e∈Pcq
fcq

u(e)

)
, ∀e ∈ Pc1 ∪ . . . ∪ Pcr

end while /* end of step */
end for /* end of iteration */

end while /* end of phase */
x(P) := x(P)/log1+ε

1+ε
δ

, ∀P

λ := mini

∑
P εPi

x(P)
d(i)

Output λ

Figure 41.2 Maximum concurrent flow FPTAS for β ≥ 1.
In this algorithm, δ is a parameter that we will define exactly later. It computes variables

x, λ for MCF and lengths l(e), e ∈ E for the problem of minimizing D(l)/α(l) (or, equiva-
lently, solving DMCF). Note that the algorithm has three nested loops. The iterations of each
loop, from the outer to the inner, will be called phases, iterations, and steps. A new phase is
entered if D(l) < 1 (for the current values of l). Each phase will run through |S| iterations,
with S being the set of sources (notice that this is not necessarily the number of commodities
k). In the ith iteration of the current phase, we consider all the commodities with the same
source si ∈ S. Let c1, c2, . . . , cr be these commodities. Within the current iteration we try to
route d(cq), q = 1, . . . , r units of commodity cq in a series of steps, until either all demand
d(cq) is routed for all commodities cq, or at some point D(l) ≥ 1. Inside each step, commodi-
ties cq that still have leftover demand (d′(cq) > 0) route some of this demand on the single
shortest path in the shortest path tree rooted at the common source si, which is computed by
running Dijkstra’s algorithm once, and using the current edge lengths l. The amount of flow
routed on the shortest path tree is calculated so that no capacities are violated in the current
step. Therefore, each phase goes through all distinct sources in a round-robin fashion in its
iterations, and each iteration except possibly the last, routes the whole demand of each com-
modity; this may result in over-routing of flow (oversaturation of some capacities), but this
is taken care of right after exiting the outermost loop, when variables x(P) are appropriately
scaled down by a factor of log1+ε((1 + ε)/δ). Finally, we calculate and output λ.

Approximation Schemes for Fractional Multicommodity Flow Problems � 1085

41.2.1 Analysis of the Approximation Guarantee

Let li,j,s be the length function at the end of the sth step of the jth iteration of the ith
phase. Initially l1,1,0(e) = δ/u(e) for all edges e. At every step we compute the shortest
path tree from sj to the sinks of commodities cq, q = 1, . . . , r. Let P

cq

i,j,s be the path in
this tree from sj to the sink of commodity cq, that is P

cq

i,j,s has length distcq li,j,s−1. It is
crucial to our running time that the shortest path tree for all commodities with a common
source sj can be computed with only one call to Dijkstra’s algorithm. Let d

cq

i,j,s > 0 be
the amount of commodity cq that has not been routed yet at step s (obviously d

cq

i,j,0 =
d(cq)). Notice that we consider only commodities with strictly positive remaining demand,
and we ignore commodities whose demand has already been completely routed. Then at
step s we route f

cq

i,j,s = (dcq

i,j,s−1)/σ units of each commodity cq along path P
cq

i,j,s, where
σ is a scaling factor that ensures we do not push through an edge flow greater than its
capacity. After this we have that d

cq

i,j,s = d
cq

i,j,s−1 − f
cq

i,j,s, and for every edge e on these paths
we set

li,j,s(e) := li,j,s−1(e)
(

1 + ε · total new flow through e

u(e)

)

= li,j,s−1(e)

⎛

⎝1 + ε ·
∑

cq :e∈P
cq
i,j,s

f
cq

i,j,s

u(e)

⎞

⎠ .

Note that for every saturated edge e its length l(e) increases by a factor of 1 + ε, and that in
each iteration, during each step except possibly the last one, at least one edge is saturated,
that is, gets u(e) units of flow. After the last step s d

cq

i,j,s = 0 for all commodities cq.
In the following calculations we abuse our notation a bit by writing Pcq instead of P

cq

i,j,s.
After step s of the jth iteration of the ith phase, we have

D(li,j,s) = D(li,j,s−1) + ε ·
∑

e∈Pc1 ∪...∪Pcr

li,j,s−1(e)
∑

q:e∈Pcq

f
cq

i,j,s

= D(li,j,s−1) + ε ·
∑

e∈Pc1 ∪...∪Pcr

∑

q:e∈Pcq

li,j,s−1(e) · f
cq

i,j,s

= D(li,j,s−1) + ε ·
r∑

q=1
f

cq

i,j,s ·
∑

e∈Pcq

li,j,s−1(e)

= D(li,j,s−1) + ε ·
r∑

q=1
f

cq

i,j,s · distcq li,j,s−1

where the third equality is a simple rearrangement of terms, and the fourth equality holds
because Pcq is by definition the shortest path for commodity cq under the length function of
the previous step.

Let slast denote the last step of an iteration. By taking into account all the steps of the
iteration we get

D(li,j,slast
) =D(li,j,0) + ε ·

slast∑

s=1

r∑

q=1
f

cq

i,j,s · distcq li,j,s−1

≤ D(li,j,0) + ε ·
r∑

q=1
distcq li,j,slast

slast∑

s=1
f

cq

i,j,s

=D(li,j,0) + ε ·
r∑

q=1
distcqli,j,slast

d(cq)

1086 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

where the second inequality holds because l is a monotonically increasing function. Using the
facts D(li,j,slast

) = D(li,j+1,0) and li,j,slast
= li,j+1,0, we have proven that

D(li,j,0) ≤ D(li,j−1,0) + ε ·
r∑

q=1
distcq li,j,0d(cq).

Using the same arguments for the iterations, we can show that

D(li,1,0) ≤ D(li−1,1,0) + ε · α(li,1,0). (41.1)

By definition β = minl (D(l)/α(l)) ≤ (D(li,1,0)/α(li,1,0)), so from (41.1) we have

D(li,1,0) ≤ D(li−1,1,0)
1 − ε/β

and from the fact that D(l1,1,0) = mδ because of the initialization of l1,1,0, we have

D(li,1,0) ≤ mδ

(1 − ε/β)(i−1)

≤ mδ

1 − ε/β
e

ε(i−2)
β−ε

≤ mδ

1 − ε
e

ε(i−2)
β(1−ε)

where in the last inequality we use the hypothesis β ≥ 1, and assume i ≥ 2. The procedure
stops after D(lt,j,s) ≥ 1 in the step s of iteration j in some phase t. Hence

1 ≤ D(lt,j,s) ≤ D(lt+1,1,0) ≤ mδ

1 − ε
e

ε(t−1)
β(1−ε)

where D(lt+1,1,0) is computed using the edge lengths l right after we exit the last phase t.
Therefore

β ≤ ε(t − 1)
(1 − ε) ln

(
(1−ε)

mδ

) . (41.2)

Lemma 41.2 If β ≥ 1 the algorithm terminates after at most t := �β log1+ε
1+ε
δ

	 phases.

Proof. In order to bound the throughput λ produced by the algorithm, we first prove the
following claim, that also provides the reason for scaling by σ in line 9 of the algorithm in
Figure 41.2.

Claim 1 λ > t−1
log1+ε((1+ε)

δ) .

Proof. Since after each phase we route d(i) units of commodity i, after t − 1 phases we
have routed (t − 1)d(i) units of flow. This flow may be infeasible (it may violate capacity
constraints), hence in the end we scale it down to make it feasible. Since we scale down the
flow through a path by σ in every step so that no edge is overflowed, for every u(e) units of flow
routed through edge e we increase the length l(e) by a factor of at least 1+ε. At the beginning
l1,1,0(e) = δ/u(e) and by the end of phase t − 1 we have lt−1,|S|,slast

(e) = lt,1,0 < 1/u(e) (since
D(lt,1,0) < 1). Hence at the end of the algorithm lt,jlast,slast

(e) < (1 + ε)/u(e) (each step of
the last phase increases l(e) by at most a factor of 1 + ε, and the algorithm stops as soon as
D(lt,jlast,slast

) ≥ 1; at this point D(lt,jlast,slast
) ≤ 1 + ε). Therefore the total amount of flow

through e in all t phases is strictly less than

log1+ε

(1 + ε)/u(e)
δ/u(e) = log1+ε

1 + ε

δ

Approximation Schemes for Fractional Multicommodity Flow Problems � 1087

times its capacity. So by scaling the flow by log1+ε((1 + ε)/δ) we get the claimed feasible
primal solution x, and we have routed a fraction of at least (t − 1)/(log1+ε(1 + ε/δ)) of each
demand.
This implies that

1 ≤ β

λ
<

β

t − 1 log1+ε

1 + ε

δ
(41.3)

which, in turn, implies the lemma. �
From (41.3) and (41.2) we have

β

λ
<

ε log1+ε((1 + ε)/δ)
(1 − ε) ln((1 − ε)/mδ) = ε

(1 − ε) ln(1 + ε) · ln((1 + ε)/δ)
ln((1 − ε)/mδ)

By setting

δ := 1
(1 + ε)((1−ε)/ε) ·

(1 − ε

m

) 1
ε

(41.4)

the dual-primal solution ratio becomes less than (1 − ε)−3 and we can pick ε so that β/λ ≤
1 + z for any z > 0, or λ ≥ (1 − w)OPT for any 1 > w > 0. Hence we have proven the
following.

Lemma 41.3 The proposed algorithm for the concurrent multicommodity flow problem is an
approximation scheme, provided β ≥ 1.

The algorithm in Figure 41.2 calculates an approximation of the value λ of a maximum
concurrent flow. With the same algorithm and in the same running time we can also output
an implicit representation of a flow that achieves this value: all we have to do is to store the
shortest path tree computed in every step, together with the amount of flow routed through
each path in this tree (the x(Pcq)’s in Figure 41.2). The problem with this representation is
that it may produce many more paths than needed, because the same path may belong to
many shortest path trees. In order to aggregate the flow x(P) through path P we will need
to be keeping track of the flow through each path. If we have a data structure that supports
such update operations quickly, then maybe this representation of the flow may suffice for
our needs. In the explicit case, we will show how to modify the algorithm in order to output
the edge flow values as well without burdening the running time of our algorithm by much
more than the time needed to just output all non-zero edge flows.

Next, we describe how to modify the algorithm, so that we get the same approximation
guarantee even when Assumption 41.1 does not hold initially. In this case β < 1.

If ζ(i) is the maximum flow of commodity i that can be routed in G when no other
commodity is routed, the value ζ = mini{ζ(i)/d(i)} is an upper bound of the optimal solution
for MCF (at best, all maximum single commodity flows for all commodities can be routed
simultaneously). The solution that routes a fraction of 1/k of each flow ζ(i) is then a feasible
solution, so ζ/k is a lower bound of the optimal solution. Hence for the optimal λ we have
ζ/k ≤ λ ≤ ζ, or, because of Lemma 41.1,

ζ/k ≤ β ≤ ζ. (41.5)

If we multiply the initial demands by k/ζ, the optimal throughput λ′ of the new problem will
be λ′ = kλ/ζ, or, equivalently, we will have from (41.5) that for the new scaled problem
1 ≤ β′ ≤ k. Therefore, we can now apply the algorithm of Figure 41.2 on this scaled
problem, and output the throughput λ we compute multiplied by ζ/k.

The problem with this approach is that we do not want to calculate the ζ(i)’s in order
to calculate ζ, since flow computations are too expensive. Instead, we are going to use the
following simple fact about single-commodity flows.

1088 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Fact 41.1 Any single commodity flow on a network with m edges can be decomposed into at
most m path flows.

This is due to the fact that we can decompose the flow using a maximum capacity path
on the edges that still carry flow, after we have removed the flow on the previous paths of
the decomposition. Such a path will saturate at least one edge, and there are at most m
of those. Each path of this decomposition will be the maximum remaining capacity path,
where we start with initial edge capacities equal to the edge flow, and reduce the capacities
accordingly after the next path of the decomposition has been found. Note that a saturating
flow ζ̂ routed through a maximum capacity path in the original network is at least (1/m)f ,
where f is the flow we decomposed, that is, ζ̂ ≥ (1/m)f . Flow ζ̂ can be calculated by doing
a binary search on the m (sorted) capacities: for each capacity C we test whether there is
a source–sink path in the network we get from the original one after we remove all edges
with capacity smaller than C in time O(m), for an overall time of O(m log m). Therefore,
by applying this insight to each commodity of MCF and its flow ζ(i), we get the following
bounds

ζ̂(i) ≥ 1
m
ζ(i) for each commodity i = 1, . . . , k (41.6)

in total time O(min{n, k}m log m) time, if we always group together commodities with a
common source node. Let ζ̂ = mini{ζ̂(i)/d(i)}. Note that ζ̂ ≤ ζ. Therefore, we get from (41.5)

1 ≤ ζ

ζ̂
≤ kβ

ζ̂
≤ kζ

ζ̂
≤ km.

Hence, if we multiply the initial demands by k/ζ̂, we will have that for the new scaled problem
1 ≤ β′ ≤ km. We could now apply the algorithm of Figure 41.2. Unfortunately, for δ as in
(41.4), the number of phases can be as large as �β/ε log1+ε(1+ε)m/(1−ε)	, and the new β′

can be as large as km, affecting the number of phases (and, eventually, the running time of
the algorithm). As a result, we do not run directly the algorithm, but initially we run it in the
following manner, in order to first compute a 2-approximation of β′: We set the constant δ

(and the corresponding ε) so that the algorithm computes a 2-approximation of β. If the
algorithm does not stop after T = �(2/ε) log1+ε{((1 + ε)m)/(1 − ε)}	 = O(log m) phases,
we know that β ≥ 2. We double the demands of all commodities, so that β is halved and
still β ≥ 1, and continue running the algorithm for another T phases. If the algorithm does
not stop we double again the demands and continue doing this until the algorithm ends.
Since every time β is halved, this doubling can happen at most log(km) times, the total
number of phases is at most T log(km) = O(log2 m + log m log k), and we have produced a
2-approximation β̂ of the optimal β. Since β ≤ β̂ ≤ 2β, or, equivalently, (β̂/2) ≤ β ≤ 2(β̂/2),
if we multiply all the demands by 2/β̂ (as we did in (41.5)), only at most O(ε−2 log m)
additional phases are needed to get an ε-approximation for any 0 < ε < 1, because now
1 ≤ β ≤ 2. After the end of the algorithm, we multiply back our computed flow∗ and λ by a
factor β̂/2.

41.2.2 Running Time

The number of iterations in each phase is bounded by the number of sources, which is
at most min{n, k}. Since we need O(log2 m + log m log k) phases to reduce β to less than
2, and at most T = O(ε−2 log m) additional phases to get an ε-approximation, the total
number of iterations is O(min{n, k} log m(log m + log k + ε−2)). In order to compute the
total running time, we need to calculate the number of steps in the algorithm. At every step

∗That is, in case we want to explicitly output the edge flows. We will need this in the explicit case.

Approximation Schemes for Fractional Multicommodity Flow Problems � 1089

other than the last step in an iteration, the length of an edge increases by a factor of at least
1 + ε. At the beginning of the algorithm each edge has length δ/u(e) and at the end of the
algorithm its length is at most (1 + ε)/u(e). So the number of steps exceeds the number of
iterations by at most m log1+ε((1 + ε)/δ) = O(ε−2m log m). Note that this estimate holds
for both the first part of the algorithm that reduces β to β ≤ 2 and the second part that
computes the final solution. Hence the total number of steps is at most Õ(ε−2(m+min{n, k}))
= Õ(ε−2m).∗

Lemma 41.4 Each step involves one run of Dijkstra’s algorithm that takes time O(n log
n + m) using Fibonacci heaps, and other computations that take at most O(m) time, for a
total of O(m + n log n) time per step.

Proof. The only part of the inner while-loop of Figure 41.2 whose running time requires some
explaining is the calculation of quantities

F (e) :=
∑

cq :e∈Pcq

fcq , ∀e ∈ Pc1 ∪ . . . ∪ Pcr

where Pcq is the current shortest path for commodity cq, q = 1, . . . , r. Note that all these
paths start from the same source and they form a shortest path tree. It will be easier for
the exposition to assume that the sinks of the commodities cq are the leaves of this tree
(if a sink is at an internal node of the shortest path tree, we can connect this sink to this
node via a new artificial edge of infinite capacity). For each one of these commodities we
are routing fcq units of flow through the tree path Pcq . The calculation of F (e) is done as
follows:

Step 0: Set F (e) := fcq for all edges e that connect the sink of cq to the tree.

Step 1: Repeat the following steps until all the tree nodes have been processed:

• Pick a tree node v which is connected to its children u1, . . . , ud via edges e1 =
(v, u1), . . . , ed = (v, ud) and such that all F (ei), i = 1, . . . , d have already been
calculated. Set G(v) :=

∑d
i=1 F (ei).

• Let e = (w, v) be the edge that connects v to its tree ancestor w. Set F (e) := G(v).

It is clear that the running time of this procedure is O(n), and once we have the F (e)’s, we
can calculate easily σ and l(e) for all the tree edges in time O(n).

In addition, note that variables x(P) do not need to be stored, and therefore we do not
need to find a sophisticated data structure that would allow us efficient storage and updates
of x. They are used (scaled in the end) to calculate the total demand of each commodity
routed by the algorithm, in order to calculate λ. Instead, we can just keep a record of the total
demand routed so far for each commodity, and use that (scaled by a factor of log1+ε(1+ε)/δ)
to calculate λ. �
Putting all these together with the scaling procedure we get an algorithm that runs in time
Õ(ε−2m2).

Theorem 41.1 The algorithm described above is a FPTAS for the maximum concurrent
multicommodity flow problem, that runs in Õ(ε−2m2) time.

∗Recall that the Õ notation hides the logarithmic factors in the running time bound.

1090 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

41.2.3 Explicit Case

In most applications it is important to output an explicit description of a flow that achieves
the near-optimal λ. Let xe(q) be the amount of flow of commodity q ∈ {1, . . . , k} that passes
through edge e ∈ E. We would like our algorithm to output the explicit enumeration of
xe(q), ∀q, e. As we have already seen, even for very simple examples of networks with n
nodes and k commodities like the one in Figure 41.1 this explicit representation can be of
size Ω(nk). This gives a trivial lower bound of Ω(nk) on the dependency of the running time
of any algorithm that produces an explicit representation on the number of commodities k.

We will alter the algorithm of Figure 41.2 so that it computes explicitly a flow that achieves
an almost optimal value for λ in time whose dependence on the number of commodities k is
at most O(nk) (times polylogarithmic factors). The crucial observation is that as long as in
every step we route enough flow to either saturate an edge or so that no more flow remains
to be routed by the current iteration (this will happen in the last step of this iteration),
our analysis of correctness remains the same. We will route the whole remaining flow for a
commodity until we get to a commodity whose remaining flow can be routed only partially
and saturates an edge. The modified algorithm is shown in Figure 41.3.

Note that the only change in the algorithm is the way flow is distributed to paths during
a step. The correctness analysis carries over to this modified algorithm exactly as is in the
implicit case.

The modifications do not change the estimates for the number of phases and iterations
within each phase. Therefore there are at most O(log m(log m + log k + ε−2)) phases. This
results in at most O(min{n, k} log m(log m + log k + ε−2)) iterations (min{n, k} iterations
per phase). As was the case before the modification of the algorithm, each step will saturate
an edge, unless it is the last step of an iteration. Therefore, the number of steps will exceed
the number of iterations by the maximum possible edge saturations. Each such saturation
increases the length function of the saturated edge by a factor at least 1+ε. Just as before, the
total number of steps is Õ(ε−2m). In every step we route as many whole remaining demands
of commodities considered in the current iteration as possible, until an edge is saturated (if all
commodities are wholly routed, the current iteration finishes). Hence the commodities routed
during the current step are finished with (for the current iteration) except possibly the last
one that may have some demand left to be routed in a subsequent step. We charge the path
update cost (the cost of an iteration of the inner for-loop) to the commodity itself if the
whole remaining demand for this commodity was routed through this path, and we charge
the path cost to the saturated edge if only a part of the remaining demand for this commodity
was routed through this path (resulting to the saturation of the edge). The cost for a single
path update is at most O(n). How many such updates are there? Note that inside a phase
a commodity demand can be partially routed many times but can be wholly routed only
once (this would be the last time we deal with this commodity in the current phase). Hence
there are at most as many whole routings in the current phase as there are commodities (k),
for a total of O(k(# of phases)) = O(k log m(log m + log k + ε−2)) path updates. The total
number of partial routings is at most the number of edge saturations, which is O(ε−2m log m)
as calculated in Section 41.2.2. In total we have at most O(ε−2(m+k) log m+k log m(log m+
log k)) = Õ(ε−2(m + k)) path updates, for a total cost of Õ(ε−2(m + k)n).

The cost of the rest of the operations (Dijkstra’s algorithm, etc.) can be estimated as in
the implicit case. But in order not to inflate the running time of the algorithm by the update
calculation for l and by the need to scale x(P) in the end of the algorithm in Figure 41.2,
we apply the following two further modifications:

• The update of the length l(e) for every edge e in the modified algorithm presented in
Figure 41.3 can be implemented by keeping track of the flow that was routed through
every edge during one step. We can use one variable f(e) for every edge e, that is

Approximation Schemes for Fractional Multicommodity Flow Problems � 1091

Input: Graph G = (V, E), capacities u(e), pairs (si, ti) with demands d(i),
1 ≤ i ≤ k, accuracy ε.

Output: Explicit solution x, λ.

Initialize l(e) := δ/u(e), xe(q) := 0, ∀e ∈ E, q = 1, . . . , k.
while D(l) < 1 do
for i = 1 to |S| do
d′(cq) := d(cq), q = 1, . . . , r
while D(l) < 1 and d′(cq) > 0 for some q do
Pcq := shortest path in Pcq using l, q = 1, . . . , r with d′(cq) > 0
u′(e) := u(e), ∀e ∈ Pc1 ∪ . . . ∪ Pcr

for q = 1 to r do
c := mine∈Pcq

u′(e)
if d′(cq) ≤ c then

xe(cq) := xe(cq) + d′(cq)
u′(e) := u′(e) − d′(cq)

}
∀e ∈ Pcq

fcq := d′(cq)
d′(cq) := 0

else
xe(cq) := xe(cq) + c, ∀e ∈ Pcq

fcq := c
d′(cq) := d′(cq) − c
break /* out of the inner for-loop */

end for

l(e) := l(e)(1 + ε ·
∑

cq :e∈Pcq
fcq

u(e)), ∀e ∈ Pc1 ∪ . . . ∪ Pcr

end while /* end of step */
end for /* end of iteration */

end while /* end of phase */
xe(q) := xe(q)/ log1+ε

1+ε
δ

, ∀e ∈ E, q = 1, . . . , k

λ := mini
flow(si,ti)

d(i)
Output λ, x

Figure 41.3 Modified maximum concurrent flow FPTAS for β ≥ 1 that produces an ex-
plicit flow.

updated every time the edge is in a flow path in the inner for-loop (at the beginning
of the current step we set f(e) := 0). Then, the update of the length will be as follows:

l(e) := l(e)
(

1 + ε
f(e)
u(e)

)
.

• The last two lines of the algorithm scale down the solution so that it is feasible, and
compute λ. Since we know the scaling factor even before the algorithm starts executing,
we can scale down the amount by which the variable xe(q) is increased in the inner
for-loop. If we do this then the second to last step of scaling x is not needed. Also it
is very easy to keep track of the total flow routed so far for every commodity, and this
can be used to calculate λ.

With these modifications the running time of all operations outside the inner for-loop is at
most Õ(ε−2m2), and when added to the cost of the inner for-loop which is Õ(ε−2(m + kn)),

1092 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

the total running time is Õ(ε−2(m2 + kn)). Note that the commodity dependent part of the
running time bound comes exclusively from the explicit calculation of the flow that achieves
value λ.

Theorem 41.2 The modified algorithm is a FPTAS for the maximum concurrent multi-
commodity flow problem that runs in Õ(ε−2(m2 + kn)) time and outputs a throughput value
together with the flow that achieves it. �

41.3 MINIMUM COST CONCURRENT FLOW

In this section we extend the ideas for MCF to solving its budgeted version BCF. It is
clear that if we have a FPTAS for this problem, we have a FPTAS for the minimum cost
concurrent flow, by just using binary search in the same way we used it to solve the minimum
cost multicommodity flow problem if we can solve BUDGET-MF at the beginning of this
chapter. This search increases the running time by a factor of at most log M , where M is
the biggest number used to specify capacities, demands, or costs. Note that we can have
different costs for different commodities, since there is a different primal variable for every
commodity-path pair as the following LP formulation of BCF shows:

maximize λ s.t.∑
P :e∈P x(P) ≤ u(e) ∀e ∈ E∑
P ∈Pi

x(P) ≥ λd(i) ∀i = 1, . . . , k∑
e∈E

∑
P :e∈P c(e)x(P) ≤ B

x(P) ≥ 0 ∀P ∈ P
λ ≥ 0

(BCF)

If φ is the dual variable associated with the budget onstraint in BCF, then its dual is

minimize
∑

e∈E u(e)l(e) + Bφ s.t.∑
e∈P (l(e) + c(e)φ) ≥ z(i) ∀i, ∀P ∈ Pi∑k

i=1 d(i)z(i) ≥ 1
l(e) ≥ 0 ∀e
z(i) ≥ 0 ∀i
φ ≥ 0

(DBCF)

The algorithm is the same as in the maximum concurrent flow case, but instead of l the length
function we use is l′ := l + c · φ. Hence, in this case we have D(l,φ) :=

∑
e l(e)u(e) + φB,

and α(l,φ),β are defined as before but using l′ as the edge distance.

Exercise 41.1 Verify that Lemma 41.1 holds.

The algorithm initializes φ = δ/B. The flow sent through at every step is the flow calculated
above but scaled down (if necessary) so that its total cost is not more than B. In the explicit
case, we route commodities wholly except possibly the last one considered, until (1) an edge
becomes saturated, (2) the cost reaches B, or (3) all commodities are routed. Lengths l are
updated as before, and the new φ becomes φ := φ(1 + ε · (cost of flow sent)/B). Again, the
algorithm ends when D(l,φ) ≥ 1. Since the analysis of the approximation guarantee and
running time is almost identical to MCF, we leave its details as a series of exercises.

Exercise 41.2 Prove that the algorithm achieves an (1−ε)-approximation for any 0 < ε < 1
in both the implicit and explicit cases.

Approximation Schemes for Fractional Multicommodity Flow Problems � 1093

Observe that at every step either the length l of an edge or φ increases by a factor of at least
1 + ε (and, in the explicit case, we charge the path cost of partially routed commodities to
the saturated edge or the saturated cost respectively). Also φ can be at most (1 + ε)/B at
the end of the algorithm (recall that the algorithm ends when D(l,φ) ≥ 1 and D(l,φ) :=∑

e l(e)u(e)+φB). For the case β < 1, we perform a binary search on the m capacities exactly
as before, in order to find the maximum possible capacity of a path that meets the budget;
the latter check can be done in every binary search step in time O(m log m) by running a
shortest path computation.

Exercise 41.3 Prove that the running time of the algorithm for the MINIMUM COST
CONCURRENT FLOW problem is Õ(ε−2m2 log M) in the implicit case.

Exercise 41.4 Prove that the running time of the algorithm for the MINIMUM COST
CONCURRENT FLOW problem is Õ(ε−2(m2 log M + kn)) in the explicit case. (Hint:
Notice that the log M factor is due to the binary search for the right budget B. How many
of these O(log M) iterations need to output the edge flow explicitly?)

41.4 APPLICATION: MAXIMUM CONCURRENT FLOW FOR LOSSY NETWORKS

A generalization of the flow problems discussed so far involves the introduction of one more
network parameter, the gain factor γ : E → R

+. An edge e with gain factor γ(e) > 0
allows a fraction γ(e) of the flow that enters e to exit. Hence, in case γ(e) > 1, γ(e) = 1 or
γ(e) < 1, the edge increases, conserves or leaks the flow that passes through it. A network
with a gain factor γ is a generalized network and the obvious extensions of flow problems to
such networks are generalized flow problems. In the special case of γ(e) ≤ 1 for all edges, the
network is called lossy.

The analysis above applies directly to lossy networks, with two modifications: an
appropriate (more general) definition of a shortest path, and the computation of a maxi-
mum capacity path, both of which we use when we compute estimates ζ̂(i), i = 1, . . . , k.

A simple modification of Dijkstra’s algorithm works for a lossy network. Recall that our
distances are still l, but now if we send one unit of flow from a source s to a sink t along
an s − t path, the amount of flow arriving at t is the product of the gain factors along the
path, and this product is at most 1. Similarly, if a unit of flow is send from u to v on edge
(u, v), then only γ(u, v) ≤ 1 units arrive. This means that in order to get a unit of flow to v
from u, we must send 1/γ(u, v) units from u. Hence, while, in the problems discussed so far,
the unit of flow arriving to v from u experiences cost l(u, v) (see the definition of α), in a
lossy network it experiences cost l(u, v)/γ(u, v). Therefore, in the case of lossy networks, the
distance labels π(v), v ∈ V calculated by Dijkstra’s algorithm are now updated as follows: if
we are currently relaxing edge (u, v) then

π(v) := min
{
π(v), π(u) + l(u, v)

γ(u, v)

}
.

Note that the running time of the algorithm remains O(m + n log n).
Fact 41.1 continues to hold in the case of lossy networks, see [4]. We need to find the

maximum capacity∗ path, and use the flow ζ̂(i) we can send on this path as an estimate just
like we did in (41.6). Again, a modified Dijkstra’s algorithm can be used, where the labels
π(v), v ∈ V computed are the algorithm’s current estimates for the maximum capacity of a

∗Maximum capacity in this case means the path that can deliver the most flow to sink t, when we can
send as much flow as we want from source s and always respecting the edge capacities.

1094 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

path from source s to v for all v ∈ V . Then the capacity of a path reaching node v from node
u through edge (u, v) is min{u(u, v),π(u)} · γ(u, v). Therefore, if we are currently relaxing
edge (u, v) then

π(v) := max
u:(u,v)∈E

{min{u(u, v),π(u)} · γ(u, v)} .

After the algorithm finishes, the estimates we output are ζ̂(j) := π(tj), j = 1, . . . , k. Note
that the running time of the algorithm remains O(m+n log n), for a total of O(min{n, k}(m+
n log n)) when we compute all estimates for all commodities.

By introducing these modifications to our algorithm for the maximum concurrent flow
problem we get the following theorem.

Theorem 41.3 There is a FPTAS that computes the maximum concurrent flow for lossy
networks implicitly in time Õ(ε−2m2) and explicitly in time Õ(ε−2(m2 + nk)). �

Further Reading

A general book on flows is the one by Ahuja et. al. [5]. The presentation of the chapter was
based on the work by Garg and Könemann [6], which achieved the same running time for
minimum-cost multicommodity flow as the earlier work of Grigoriadis and Khachiyan [7], and
subsequent improvements by Fleischer [8] and Karakostas [9]. The currently best running time
of Õ(ε−2mn) for maximum multicommodity flow and Õ(ε−2(m + k)n log M) for maximum-
and minimum-cost concurrent flow problems was presented by Madry [10]; his algorithm
uses a Monte Carlo (i.e., randomized) data structure for the calculation of approximate
shortest paths. This is the culmination of a whole line of research starting with the seminal
paper by Shahrokhi and Matula [11] (cf., e.g., [12–18]) based on Lagrangian relaxation and
linear programming decomposition techniques that led to ever decreasing running times for
multicommodity flow problems. The extension of these techniques to the case of generalized
flows was done by Fleischer and Wayne [19].

References

[1] L. R. Ford, Jr., and D. R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, NJ, 1962.

[2] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization. MPS-SIAM
Series on Optimization, SIAM, 2001.

[3] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Dover Publications, New York, 1998.

[4] A. V. Goldberg, S. A. Plotking, and R. E. Tarjan. Combinatorial algorithms for
the generalized circulation problem. Mathematics of Operations Research, 16 (1991),
351–379.

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[6] N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and
other fractional packing problems. SIAM Journal on Computing, 37(2) (2007), 630–652.

[7] M. D. Grigoriadis and L. G. Khachiyan. Approximate minimum-cost multicommodity
flows in Õ(knm/ε2) time. Mathematical Programming, 75 (1996), 477–482.

Approximation Schemes for Fractional Multicommodity Flow Problems � 1095

[8] L. Fleischer. Approximating fractional multicommodity flow independent of the number
of commodities. SIAM Journal on Discrete Mathematics, 13 (2000), 505–520.

[9] G. Karakostas. Faster approximation schemes for fractional multicommodity flow prob-
lems. ACM Transactions on Algorithms, 4(1) (2008).

[10] A. Madry. Faster approximation schemes for fractional multicommodity flow problems
via dynamic graph algorithms. In Proceedings of the 42nd ACM STOC. Cambridge,
MA, pp. 121–130, 2010.

[11] F. Shahrokhi and D. W. Matula. The maximum concurrent flow problem. JACM, 37
(1990), 318–334.

[12] P. Klein, S. Plotkin, C. Stein, and É. Tardos. Faster approximation algorithms for the
unit capacity concurrent flow problem with applications to routing and finding sparse
cuts. SIAM Journal on Computing, 23 (1994), 466–487.

[13] T. Leighton, F. Makedon, S. Plotkin, C. Stein, É. Tardos, and S. Tragoudas. Fast
approximation schemes for multicommodity flow problems. JCSS 50 (1995), 228–243.

[14] M. D. Grigoriadis and L. G. Khachiyan. Fast approximation schemes for convex pro-
grams with many blocks and coupling constraints. SIAM Journal on Optimization, 4
(1994), 86–107.

[15] S. Plotkin, D. Shmoys, and É. Tardos. Fast approximation algorithms for fractional
packing and covering problems. Mathematics of Operations Research, 20 (1995),
257–301.

[16] T. Radzik. Fast deterministic approximation for the multicommodity flow problem. In
Proceedings of the 6th ACM/SIAM SODA. San Francisco, CA, pp. 486–492, 1995.

[17] D. Karger and S. Plotkin. Adding multiple cost constraints to combinatorial optimiza-
tion problems, with applications to multicommodity flows. In Proceedings of 27th ACM
STOC. Las Vegas, NV, pp. 18–25, 1995.

[18] P. Klein and N. Young. On the number of iterations for Dantzig-Wolfe optimization and
packing-covering approximation algorithms. In Proceedings of 7th Integer Programming
and Combinatorial Optimization Conference, 1610 (1999), 320.

[19] L. Fleischer and K.D. Wayne. Fast and simple approximation schemes for generalized
flow. Mathematical Programming Ser. A, 91(2) (2002), 215–238.

C H A P T E R 42

Approximation Algorithms
for Connectivity Problems
Ramakrishna Thurimella

CONTENTS

42.1 Introduction . 1097
42.2 Definitions and Notation . 1098
42.3 Simple 2-Approximation . 1099

42.3.1 Trivial Lower Bound . 1099
42.3.2 Non-Algorithmic Upper Bounds . 1100
42.3.3 Edge Connectivity . 1100
42.3.4 Vertex Connectivity . 1100
42.3.5 Time Complexity . 1103

42.4 Linear-Time 2-Approximation . 1104
42.4.1 Time Complexity . 1105

42.5 Beating 2 for the Edge Case . 1105
42.5.1 Khuller–Raghavachari Algorithm . 1106
42.5.2 Approximation Guarantee . 1108
42.5.3 Time Complexity . 1110

42.6 Approximating Minimum-Size Spanning Subgraphs via Matching 1110
42.6.1 Time Complexity . 1112

42.7 Conclusion . 1112

42.1 INTRODUCTION

The edge connectivity of an undirected graph G is the minimum number of edges that must
be removed to disconnect G. For example, the edge connectivity of a tree is 1, and the
edge connectivity of a simple cycle is 2. Similarly, the vertex connectivity of a graph is the
minimum number of vertices that must be removed to disconnect it.

It is not hard to see why these concepts are fundamental and have applications to network
reliability and distributed computing. For instance, a graph could be used to model a network
such as the Internet where vertices correspond to routers and edges represent the connections
between them.

In distributed computing, one of the measures of complexity is the message complexity—
the number of messages that need to be exchanged in order to compute something in a
distributed manner. A key building block for these algorithms is the broadcast operation. To
broadcast, each vertex after receiving, or generating in the case of the vertex that wants to
broadcast, the message can send out copies of that message on every outgoing link, that is,

1097

1098 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

flood the network. This is expensive, costing m messages. To make this operation efficient,
one can use a spanning tree and send the message out on every link of the tree. Since a
spanning tree has only n − 1 edges, the number of messages used is also n − 1. For a dense
graph, defined as m = Ω(n2), the savings are substantial.

The problem with using a spanning tree is that it is too fragile: single vertex or edge
failure causes the broadcast to fail. Hence, we seek a subgraph with high connectivity that
has the fewest number of edges. Unfortunately, finding such a subgraph is NP-complete for
all connectivity values greater than 1 [1]. Therefore, we turn to approximation algorithms
for this problem—the focus of this chapter.

Given the importance of the problem, it was extensively studied [2–4]. It is not sur-
prising that there exist many flavors of this basic problem and multitude of solutions. For
example, each of the following assumptions and different combinations of them give rise to a
number of variations: the presence or absence of directions/weights on edges, same connec-
tivity between every pair of vertices—known as the uniform connectivity requirement—or
possibly different connectivity values between vertex pairs, whether the graphs under con-
sideration are simple or multigraphs, and finally if the special structure present for small
constant values of connectivity, for example k = 1, 2, or 3, can be exploited to design efficient
algorithms.

The algorithms given in this chapter are limited for the most part to simple, undirected,
unweighted graphs with uniform connectivity requirements. Rest of the chapter is organized
as follows. Section 42.2 defines some common graph-theoretic terms that are used in this
chapter; definitions that are specific to algorithms of this chapter are deferred to the respective
sections. As a warm up, we present a simple 2-approximation in Section 42.3. Section 42.4
presents a different algorithm that also achieves the same factor, but runs in linear time. Next
we show in Section 42.5 how to beat the factor of 2 for some specific values of connectivity.
Section 42.6 presents the most technical result of this chapter, culminating in an algorithm
that subsumes all the results from the previous sections. We end the chapter with some
concluding remarks in Section 42.7.

42.2 DEFINITIONS AND NOTATION

For the most part, we use standard graph theory notation. Refer to Diestel [5] for definitions
not covered here. The vertex set and edge set of a graph G are denoted by V (G) and E(G),
respectively. The number of vertices and the number of edges are denoted by n and m,
respectively. The degree of a vertex v in G is designated by δG(v).

We will only be dealing with undirected graphs. A path in a graph G = (V, E) is a sequence
of vertices v1, v2, ..., vp from V such that for all i, 1 ≤ i < p, (vi, vi+1) ∈ E. v1 and vp are
called the end vertices. A cycle is a path that starts and ends at the same vertex. A tree is a
connected graph that does not have any cycles. The level of a vertex v in a rooted tree with
root r is the number of edges between the v and r. Thus, the root is at level 0, its children
are at level 1, and so on. A forest is a collection of trees. For a graph G = (V, E), a maximal
spanning forest F = (V, EF) is a subgraph such that EF has no cycles. Furthermore, EF is
maximal in the sense that EF ∪e contains a cycle for all edges e ∈ E −EF . The cycle created
by the addition of a nontree edge e to a maximal spanning forest is called the fundamental
cycle created by e. Notice that when G is connected, F is a spanning tree and denoted by T
depending on the context.

A simple path is a path in which if a vertex appears once, it cannot appear again. The
parent of a vertex v in a rooted tree T with root r is the vertex that immediately follows v
on the unique path from v to r in T . Two paths are internally disjoint if they share only the
end vertices.

Approximation Algorithms for Connectivity Problems � 1099

A subgraph Gs = (Vs, Es) of a graph G = (V, E) is a graph whose vertex and edge sets are
subsets of G, that is Vs ⊆ V and Es ⊆ E, and if (x, y) ∈ Es, x ∈ Vs and y ∈ Vs. A subgraph
Gs = (Vs, Es) of G = (V, E) is said to be a spanning subgraph if Vs = V and Es ⊆ E, that
is Gs has the same vertex set as G, but not necessarily the same edge set. If Gi = (V, Ei)
and Gj = (V, Ej) are spanning subgraphs of G = (V, E), then Gi + Gj is shorthand for
the spanning subgraph (V, Ei ∪ Ej). Similarly, if Gi = (V, Ei) is a spanning subgraphs of
G = (V, E), then G − Gi refers to the spanning subgraph (V, E − Ei).

A connected component of an undirected graph is a subgraph C = (Vc, Ec) in which any
two vertices are connected to each other by paths, and which is connected to no additional
vertices in V − Vc.

Given k > 0, a connected graph G = (V, E) with at least k + 1 vertices is called k-edge
(respectively, k-vertex) connected if the deletion of any k − 1 edges (respectively, vertices)
leaves the graph connected. If a connected graph contains a single vertex whose removal
disconnects the graph, then that vertex is called an articulation point. A graph is called
biconnected if it has no articulation points.

By connectivity, we mean both vertex and edge connectivity. An edge e ∈ E in a
k-connected graph (V, E) is critical, if (V, E − {e}) is not k-connected. In a minimally
k-connected graph, every edge is critical.

For a subset of vertices V ′ ⊆ V , the subgraph G′ induced by V ′ is (V ′, E′) where E′ =
{(x, y) ∈ E | x ∈ V ′ and y ∈ V ′}. Also, the neighborhood of V ′, denoted N(V ′), is the subset
of vertices {y | ∃(x, y) ∈ E such that x ∈ V ′ and y ∈ V − V ′}

For a connected graph G = (V, E), a subset Z ⊂ V is called a vertex cut if G − Z has
at least two connected components. The size of a vertex cut Z is defined by |Z|. We are
generally interested in minimum size vertex cuts.

A certificate for the k-connectivity of G is a subgraph (V, E′), E′ ⊆ E, that is k-connected
if G is k-connected. A certificate for k-connectivity is sparse if it has O(kn) edges. For
example, a spanning tree is a sparse certificate for 1-connectivity of a connected graph. In
our analysis of sparse certificate heuristics, we represent a k-connected subgraph of G that
has the optimum number of edges by G∗.

42.3 SIMPLE 2-APPROXIMATION

In this section, we show how to find sparse certificates that have no more than twice the
number of edges from the optimum. How do we know the optimum, given that the problem
we are tackling is NP-complete? We do not. Instead, we bound the optimum from below
and compute the ratio of upper and lower bounds. Obviously, the closer the lower and upper
bounds, the better the approximation ratio.

42.3.1 Trivial Lower Bound

In order for a graph to be k-connected, notice that every vertex v must have degree at least
k. Otherwise, if there exists a v such that δ(v) < k, deleting the all edges incident on v, we
can disconnect v from the rest of the graph. Similarly, N({v}) constitutes a vertex cut whose
size is less than k. From this observation, we can conclude that in order for a graph to be
k-connected, each vertex must have degree at least k. In any graph, the sum of the degrees
of all the vertices is twice the number of edges, as every edge is counted twice, once from
each end. Therefore, in order for a graph to be k-connected, the sum of the degrees should
be at least kn. In other words, every k-connected graph must have at least (kn)/2 edges. It
is often referred to as the degree lower bound. This lower bound is sufficient to get a factor 2
approximation for the algorithms presented in the rest of this section.

1100 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

42.3.2 Non-Algorithmic Upper Bounds

Note that any minimally k-edge connected graph has at most k(n − k) edges [6–8]. This
upper bound combined with the degree lower bound from Section 42.3.1 immediately yields a
2-approximation algorithm, as minimally k-edge connected graphs can be found in polynomial
time.

Recent algorithmic work, the subject of the rest of this chapter, gives alternate, easy, and
efficient methods for finding a k-connected spanning subgraph whose size (i.e., number of
edges) is at most kn.

42.3.3 Edge Connectivity

Consider Algorithm 42.1 for finding edge certificates that operates iteratively. In the ith
iteration, it computes a sparse certificate for i connectivity Gi. The desired k-connected
subgraph Gk is the output at the end of the kth iteration.

Algorithm 42.1 Edge certificate

Require: G = (V, E) and an integer k > 0
Ensure: A sparse certificate Gk = (V, Ek) for k edge connectivity
1: procedure EC(G, k)
2: G0 ← (V, ∅)
3: for i ← 1, k do
4: Find a maximal spanning forest Fi in G − Gi−1
5: Gi ← Gi−1 + Fi

6: end for
7: return Gk

8: end procedure

The following theorem proves the correctness of Algorithm 42.1 [9].

Theorem 42.1 If G is k-edge connected, then Gk is k-edge connected.

Proof. Denote the spanning forests found in the for loop of the algorithm by F1, F2, . . ., Fk.
Note that as k > 0 and G is connected, F1 is a spanning tree. Hence Gk is connected. Assume
for contradiction that Gk is not k-edge connected, but G is. Then, there must exist a set of
edges K fewer than k in number whose removal disconnects Gk, but does not disconnect G.
Let C1 and C2 be the two connected components of Gk −K. Since |K| < k, by the Pigeonhole
Principle, there must exist an Fi, 1 ≤ i ≤ k, such that Fi does not have any edges in common
with K. Let e be an edge in G that has one end in C1 and the other in C2. Such an edge must
exist as E − K is connected. Now, adding e to Fi would not create a cycle, contradicting
that each of the k spanning forests found in line 4 of Algorithm 42.1 is maximal. �

42.3.4 Vertex Connectivity

While Algorithm 42.1 is sufficient to find edge certificates, as shown in Figure 42.1, it can fail
for vertex certificates. This is because a pair of vertices x and y are connected in maximal
spanning forests Fi and Fj by paths Pi and Pj , respectively, where Fi and Fj are some
maximal spanning forests found in Algorithm 42.1, then all we can say is that Pi and Pj are
edge disjoint. But for vertex connectivity, we need these paths to be vertex disjoint.

However, by finding a specific kind of spanning forests in line 4 of Algorithm 42.1, we
can make the same algorithm work for vertex certificates. For example, using breadth-first
spanning forests, one can show that the resulting sparse subgraph preserves vertex

Approximation Algorithms for Connectivity Problems � 1101

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

G F1 F2 F1 + F2

Figure 42.1 Algorithm edge certificate may not work for vertex certificates.

connectivity. We show in the rest of this section that the full power of breadth-first search
(BFS) is not even needed. A less restrictive form of search called scan-first search (SFS) is
sufficient. The algorithm presented in this section is due to Cheriyan et al. [10]. The earliest
work that employed a similar notion is due to Doshi and Varman [11] though their method
is limited to biconnected graphs.

Algorithm 42.2 Scan-first search

Require: A connected graph G = (V, E) and a root r ∈ V
Ensure: A spanning tree T = (V, ET) where ET ⊆ E
1: procedure: SFS(G, r)
2: Initialize all vertices of G as unmarked and unscanned
3: ET ← ∅
4: mark r
5: while there exist a marked, but unscanned vertex u do
6: for every unmarked neighbor v of u do
7: mark(v)
8: add (u, v) to ET

9: end for � u is now considered scanned
10: end while
11: return T = (V, ET)
12: end procedure

Starting from a given root r or an arbitrary root, BFS explores the graph in a systematic
way satisfying the following two conditions:

1. When a vertex is being explored, all its unvisited neighbors are marked visited and
added to a collection Q, and

2. The next vertex to be explored is taken from Q using the first-in-first-out (FIFO) order.

SFS is less restrictive than BFS. In SFS, we require only the first condition. In other words,
SFS chooses the next vertex to be scanned from Q, but not necessarily in the FIFO order.

The spanning tree implied by a search, whether breadth-first or scan-first, is the one that
results from each vertex v, v
= r, choosing the edge (v, u) where u is the vertex that was
responsible for marking v as visited. Such a tree is called BFS or SFS spanning tree as the
case may be (see Algorithm 42.2).

Therefore, every BFS spanning tree is an SFS spanning tree, but the converse need not be
true. The following property of BFS and SFS is noteworthy. The nontree edges with respect
to a BFS tree are all cross edges (i.e., no back edges) and if (x, y) is one such nontree edge

1102 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

then |level(x)−level(y)| ≤ 1. The nontree edges with respect to an SFS tree are also all cross
edges, but the level difference can be arbitrary. The reason for the absence of back edges is
the first condition. If a nontree edge (u, v), level(u) < level(v), is present in a tree T , then
while scanning u, its unvisited neighbor v was not added as a child in T . Hence T does not
satisfy the first condition and it cannot be an SFS tree. It is also worth pointing out that not
all spanning trees in which back edges are absent are not necessarily SFS trees, as the first
condition still needs to be satisfied, i.e when a vertex is scanned all its unscanned neighbors
must be added to the collection of vertices to be scanned. Equivalently, if a vertex u of a
scan-first tree T has a nontree edge (u, v) incident on it, then the tree edge (t, v) incident on
v must be such that t appears before u in the scan order that was used to construct T .

Here are some more examples that illustrate the difference between BFS and SFS span-
ning trees. Consider a graph that is a simple cycle C on 7 vertices v0, v2, . . ., v6. Denote the
edge between vi, v(i+1) mod 7 as ei. Then, C −{e3} is the only BFS tree starting from vertex v0
whereas C −{e1}, C −{e2}, C −{e3}, C −{e4}, and C −{e5} are all valid SFS spanning trees.

Since the only vertex marked initially is r and at the time scanning r all neighbors of r
get marked, the edges incident on r get added to the SFS spanning tree.

Proposition 42.1 If r is the root of a SFS, the all edges incident on r are part of the
spanning tree resulting from that search.

We would like to prove the following theorem.

Theorem 42.2 Let G be a k-vertex connected graph and Gk be F1 + F2 + . . . + Fk where
Fi is a scan-first spanning forest in G − Gi−1, 1 ≤ i ≤ k, where G0 = (V, ∅). Then, Gk is
k-vertex connected.

Before we present the proof, we propose the following fact which follows from the previous
proposition.

Proposition 42.2 If a vertex v is used as a root in Fi, then all edges incident on it are
selected by Gi.

We prove Theorem 42.2 along the same lines as Theorem 42.1, that is by contradiction,
while keeping in mind a key difference between edge and vertex connectivity: assuming the
size of the separator minimal, removal of an edge separator always results in two connected
components. On the other hand, removal of a minimal vertex separator could result in more
than two components. Such separators are called shredders [12]. This characteristic of vertex
separators makes the proof considerably more technical. To keep the discussion simple, we
will only prove the theorem for k = 2 and refer the reader to Cheriyan et al. [10] for the
general case.
Proof of Theorem 42.2 Assume G is biconnected but G2 is not. Then there exists an artic-
ulation point v in G2. However, as G is biconnected, G − {v} is connected. Therefore, there
exists an edge (x, y) ∈ E(G) − E(G2), such that x and y are in different components in
G2 − {v}.

If v is the root of F1, then by Proposition 42.1, all edges incident on v belong to F1. But,
since all paths between two vertices that belong to different components of G2 − {v} must
go through v, as v is an articulation point, there is no path between x and y in G − F1. But,
F2 is a maximal spanning forest in G − F1 to which we can add (x, y) and not create a cycle,
thus contradicting the maximality of F2.

If on the other hand v is not the root of F1, then let r be the root of F1 and let C1 be the
component that contains r in G2 −{v}. Pick any other component of G2 −{v} and call it C2.

Approximation Algorithms for Connectivity Problems � 1103

Notice that G − {v} must contain an edge (x, y), from a vertex of C1 to a vertex C2, as we
assumed G to be biconnected. Without loss of generality, let x ∈ V (C1) and y ∈ V (C2). We
now show that adding (x, y) to F2 does not create a cycle contradicting that F2 is maximal.
Notice that the SFS corresponding to F1 starts in the component C1 at root r and scans v
before it scans any vertex of C2. If the search does not proceed this way, there would be a
path from a vertex of C1 to a vertex in C2 that does not go through v, contradicting our
assumption that v is an articulation point in G2. When scanning v, the spanning tree F1
selects all edges (v, w) such that w ∈ V (C2). In other words, there is no path between x and
y in G − F1, that is adding (x, y) to F2 does not create a cycle, a contradiction. �

42.3.5 Time Complexity

Algorithm 42.1 is very easy to implement, as formalized in the theorem below:

Theorem 42.3 Given G and Gi−1, each maximal spanning forest Fi in G−Gi−1, 1 ≤ i ≤ k,
where G0 = (V, ∅) can be found in linear time sequentially. Therefore, a sparse certificate for
k-edge connectivity Gk can be found in O(k(m + n)) time.

Proof. Discard the edges of Gi−1 from G and run any standard spanning forest algorithm
[13]. Since finding a maximal spanning forest takes time linear in the size of the graph [13],
the theorem follows. �
Algorithm 42.2 can be implemented to run in linear time, implying that a sparse certificate
of k-connectivity can be found in O(kn) time.

Theorem 42.4 Given G and Gi−1, each maximal scan-first spanning forest Fi in G − Gi−1,
1 ≤ i ≤ k, where G0 = (V, ∅) can be found in linear time sequentially. Therefore, a sparse
certificate for k-vertex connectivity Gk can be found in O(k(m + n)) time.

Proof. Discard the edges of Gi−1 from G and run any linear-time breadth-first algorithm
[13]. Since every BFS spanning forest is an SFS spanning forest, the theorem follows. �
Note that there are no efficient methods to execute BFS in parallel. Fortunately, SFS lends
itself to an efficient parallel implementation [10]:

Theorem 42.5 For graph G with m edges and n vertices, an SFS forest can be found in
O(log n) time using using C(n, m) processors on a CRCW PRAM, where C(n, m) is the
number of processors required to compute a spanning tree in each component in O(log n) time.

Proof. One easy way to find an SFS tree T in parallel is to first find an arbitrary spanning
tree T ′ rooted at some vertex r and rearrange the edges so that it becomes an SFS tree.
First, label each vertex of T ′ with respect to preorder labeling. To obtain an SFS tree T from
T ′, make each v, v
= r, choose one edge (v, u) where u is a neighbor of v with the lowest
preorder label. To see that T is indeed an SFS tree, treat the preorder labels as the order in
which the vertices are scanned in some SFS. For an order to be a valid SFS order, when a
vertex needs to be chosen to be scanned, it should be selected from the neighborhood of the
vertices already scanned. Hence preorder is a valid scan-first order. With this interpretation,
if a vertex v has a nontree edge (v, w) incident on v in T , then the preorder label of the
parent of w in T is less than that of v, consistent with the meaning of scanning a vertex in
that w should be attached to the first neighbor of w marks it.

The complexity bound follows because the preorder numbers and the minimum labeled
neighbor can be found in O(log n) time using (n + m)/log n processors [14]. The spanning

1104 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

tree computation dominates the resource bounds as the processor bound is C(n, m) =
Ω((n + m)/log n) for O(log n) parallel time. �

42.4 LINEAR-TIME 2-APPROXIMATION

In this section, we present an algorithm that computes a sparse k-connected spanning
subgraph that is within a factor 2 from the optimal in a single scan of the graph. This
elegant algorithm is due to Nagamochi and Ibaraki [15].

We need a few definitions first. Let Vi denote {v1, v2, . . ., vi}. An ordering σ = (v1, v2, . . .,
vn) of vertices in G is called a maximum adjacency ordering (MA ordering, for short) if for
all i, 2 ≤ i < n, vi+1 is one of the vertices from N(Vi) that has the highest degree in the
subgraph induced by Vi ∪ N(Vi).

An MA ordering can be found sequentially by starting with an arbitrary edge and desig-
nating its ends points as v1 and v2, thus defining V2. Next, v3 is selected from N(V2) based
on the number of connections to the vertices in V2. In general, Vi is extended to Vi+1 by
adding vi+1 where vi+1 is any vertex from N(Vi) that has the maximum number edges to the
vertices in Vi. Figure 42.2 illustrates MA labeling.

Next, we extend the MA labeling to edges. For each 2 ≤ i ≤ n, assume there are j
edges between {v1, v2, . . ., vi−1} and vi. Consider the neighbors of vi in Vi−1 in the increasing
order of σ labeling and assign labels ei,1, ei,2, . . ., ei,j . Figure 42.1 on the right shows an
example for edge labeling. For instance in Figure 42.2, the vertex labeled 4 has two edges to
V3 = {v1, v2, v3}, to v2 and v3. Edge labeling would label (v4, v2) and (v4, v3) as e4,1 and e4,2,
respectively.

Edge labeling defines a partition on E. We could use the second component of the sub-
script of an edge label as the partition number. Specifically, define a partition of E to be
(F1, F2, . . ., Fn) where Fi = {e2,i, e3,i, . . ., en,i} for i = 1, 2, . . ., n.

Note that some partitions Fi may be empty. See Figure 42.3 for an example. As before,
define Gi to be F1 + F2 + · · · + Fi for 1 ≤ i ≤ n.

Theorem 42.6 Each (V, Fi), 1 ≤ i ≤ n, is a maximal scan-first spanning forest in G−Gi−1.

Proof: For every vertex v, there can be at most one edge ev,i present in Fi. Furthermore,
there must be a unique vertex in every connected component C of Fi that does not have
such an edge—the vertex with the smallest σ number in that component. Assume that there
are nc vertices in C. As every vertex v, with the exception of one, has a unique ev,i incident
on it, C has nc − 1 edges. Since any connected graph with nc vertices and nc − 1 edges is
necessarily a tree, Fi is a spanning forest.

It remains to show that Fi is a scan-first spanning forest. The proof is similar to that
of Theorem 42.5. Notice that the σ order is a valid scan-first order. This is because in
SFS, starting from an arbitrary vertex, the next vertex to be scanned is chosen from the

1

2

6

73

4

5

1

2

6

73

4

5

e4,1

e5,1e2,1

e3,1

e4,2
e5,2

e6,2

e7,2

e7,1e3,2

e6,1

Figure 42.2 MA labeling example.

Approximation Algorithms for Connectivity Problems � 1105

1

2

6

73

4 1

2

6

7

5

3

4

5

e4,1

e5,1
e2,1

e3,1

e3,2

e5,2

e4,2 e6,2

e7,2

e7,1

e6,1

F1 F2

Figure 42.3 Edge partitions.

neighborhood of the vertices that have already been scanned and all its unmarked neighbors
are marked. Interpreting the σ labeling as the scan-first order in G − Gi−1, the tree implied
in each component of G−Gi−1 is an SFS tree. Therefore, Fi is a maximal scan-first spanning
forest in G − Gi−1. �
Combining Theorem 42.2 with Theorem 42.6, we have the following corollary.

Corollary 42.1 For any k, F1 + F2 + · · · + Fk is a sparse certificate for k-connectivity.

42.4.1 Time Complexity

It turns out that MA labeling and the corresponding edge labeling can be computed in almost
linear time, specifically in O(m + n log n) time [4]. Note that this bound is independent of k.

Theorem 42.7 For graph G with m edges and n vertices, MA labeling can be computed in
O(m + n log n) time.

Proof. We will sketch an algorithm and allude to its implementation using Fibonacci heaps.
(See Chapter 19 from [13] for a detailed description of Fibonacci heaps.) The algorithm,
starting from an arbitrary vertex, scans one vertex at a time until all n vertices are processed.
Assume inductively i vertices have been processed and an integer d(v), 0 ≤ d(v) ≤ n − 1,
is associated with each of the n − i unprocessed vertices v. The integer d(v) represents the
number of v’s processed neighbors. The next vertex to be processed, (i+1)th vertex, is picked
from one of the unprocessed vertices that has a maximum d value. Say, x is one such vertex.
Processing vertex x entails incrementing the d value for all unprocessed neighbors of x and
designating x as processed. Increment operation is performed once for each edge. Moving
a vertex from unprocessed to processed involves using the delete max operation. This is
done at most n − 1 times. Using Fibonacci heaps increment key can be performed in O(1)
amortized time and delete max takes O(log n) time. From these observations, the theorem
follows. �
The above algorithm, while efficient, is inherently sequential as it processes one vertex at a
time. However, Algorithm 42.2 lends itself to an efficient parallel implementation as proved
in Theorem 42.5.

42.5 BEATING 2 FOR THE EDGE CASE

Khuller and Vishkin [16] gave the first approximation algorithm for the special case of k = 2
with a performance ratio less than 2. Their algorithm is based on depth-first search (DFS)
and has a performance guarantee of 3/2. A simple generalization of their algorithm has
a performance guarantee of 2 − 1/k for all k. Unfortunately, for higher values of k, this
expression approaches 2.

1106 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

In this section we provide a different algorithm due to Khuller and Raghavachari [17].
This is the first algorithm that achieves an approximation factor 1.85 for all values of k, for
unweighted k-edge connectivity. For smaller values of k, their bounds are actually better:
1.66, 1.75, and 1.733 for k = 3, 4, and 5, respectively. The structure of this algorithm is
similar to the one shown in the previous sections where the connectivity of the solution is
increased incrementally in stages.

42.5.1 Khuller–Raghavachari Algorithm

For the sake of clarity, we assume that k is even; if k is odd, first find a sparse (k−1)-connected
spanning subgraph Gk−1 by using the algorithm given in this section and add to it a maximal
DFS spanning forest Fi from G−Gk−1, thus obtaining a k-edge connected spanning subgraph
Gk of G. Proofs from this section can be used for the odd case with minor modifications.

Algorithm 42.3 KR edge certificate

Require: G = (V, E) and an even integer k > 0
Ensure: A sparse certificate Gk = (V, Ek) for k edge connectivity
1: procedure: KR(G, k)
2: G0 ← (V, ∅)
3: for i ← 0, k/2 − 1 do
4: Find a maximal DFS forest F2i+1 in G − G2i with arbitrary root(s)
5: G2i+1 ← G2i + F2i+1
6: Post-order label each edge of F2i+1
7: Build a forest F2i+2 as follows. Process each edge e = (x, y), level(x) < level(y),
8: of F2i+1 in post-order and add be (see Definition 42.3) to F2i+2 if the number
9: of edge-disjoint paths between x and y in G2i+1 + F2i+2 is less than 2i + 2.

10: (Note that the edge (x, y) constitutes a path by itself.)
11: G2i+2 ← G2i+1 + F2i+2
12: end for
13: return Gk

14: end procedure

We use the following notation throughout this section.

Definition 42.1 Let e be an edge in a DFS spanning forest F2i+1 with x and y as its ends
points. We will assume that x is the parent of y in F2i+1.

Definition 42.2 Let e be a critical edge in G2i+1, that is G2i+1 is 2i + 1 edge connected but
G2i+1 −{e} is not, and let K be a cut of size 2i in G2i+1 −{e}. Since G is connected, G2i+1 is
connected for all i as it contains F1, which is a spanning tree of G. Denote the two connected
components that result when K ∪ {e} is deleted from G2i+1 by C1 and C2 where x ∈ C1 and
y ∈ C2.

See Figure 42.4 for an illustration of this definition.

Definition 42.3 With every critical edge e ∈ F2i+1, associate a back edge be ∈ G − G2i+1
that satisfies two properties:

• The fundamental cycle Ce created by be in F2i+1 contains e, and

• Of all fundamental cycles that contain e, Ce contains a vertex v with a smallest level(v)
value.

Approximation Algorithms for Connectivity Problems � 1107

C2

Cut K
1 2 2i

x

y

e

C1

Graph G2i+1

Figure 42.4 Illustration of Definition 42.2.

Definition 42.4 Denote the set of edges that connect a vertex in C1 to a vertex in C2,
excluding K ∪ {e}, by Be.

In the following lemma, assume that G2i is a 2i connected spanning subgraph of a k-connected
graph G, for k > (2i + 1) and i ≥ 0. Let G2i+1 = G2i + F2i+1 where F2i+1 is a maximal DFS
spanning search forest in G − G2i.

See Figure 42.5 for an illustration of these definitions.

Lemma 42.1 If G2i+1 has an edge cut K ′ of size 2i + 1, then there is exactly one edge e
from F2i+1 in the cut, that is K ′ ∩ E(F2i+1) = {e}.

Proof. We first show that K ′ must contain at least one edge from F2i+1. Consider the two
connected components C1 and C2 that result when K ′ is deleted from G2k+1. Since G is k
connected for some k > (2i + 1), there exists an edge (a, b) in G − G2i+1 that connects a
vertex from C1 to a vertex in C2. Since F2i+1 is maximal, every edge in G − G2i+1, including
(a, b), creates a cycle when added to F2i+1. Let the path between a and b in F2i+1 be P . The
path P cannot survive when the cut K ′ is deleted from G2i+1, for otherwise C1 would be
connected to C2 by P in G2i+1 − K ′. Therefore, K ′ should contain at least one edge from
F2i+1. Denote K ′ as K ∪ {e} where e ∈ F2i+1. To finish the proof, notice that K cannot
contain any edges from F2i+1, as it would mean that G2i contains a cut smaller than 2i. �

Corollary 42.2 Let e, e ∈ F2i+1, be a critical edge G2i+1 that belongs to a cut K of size
2i + 1. Then, the edge be associated with each critical edge e = (x, y) goes between a vertex
from the subtree rooted at y, that is a descendant of y, and a vertex that is on the path from
x to the root of F2i+1, that is an ancestor of x.

Proof. From the maximality of F2i+1, we know that every edge from G − G2i+1, including
be, creates a cycle in F2i+1. As F2i+1 is a DFS spanning forest, all such edges are back edges.
From Lemma 42.1, we know that there is only one forest edge in K. Therefore, all edges from

1108 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

F2i+1
root

C2

Cut K
1 2 2i

x

Highest reaching
back edge

y

e

C1

Be

be

Fundamental cycle
in F2i+1 containing eG

Figure 42.5 Illustration of Definitions 42.3 and 42.4.

G − G2i+1 that go between C2 and C1 are back edges that connect a descendant of y to an
ancestor of x. �

Theorem 42.8 Let G be a graph which is at least k-edge connected for some k > 0. Then,
Algorithm 42.3 with input G outputs a subgraph Gk of G that is k-edge connected.

Proof. We prove this by induction on k. The theorem clearly holds for k = 1. Assume it
holds for all values j, j < k. We will show that it holds for j + 1 as well. If j is even, then
Fj+1 is a maximal spanning forest in G − Gj . In this case, the fact that Gj + Fj+1 is j + 1
connected can be proved in a manner similar to the proof of Theorem 42.1.

Next consider the case when j is odd. Let j = 2x + 1 for some x. Then, F2x+2 is the set
of back edges be for each critical edge e added in lines 7–9. We claim that every edge cut
K in Gj + F2x+2 is of size at least 2x + 2. Note that the presence of a cut of size less than
2x + 1 would violate the inductive hypothesis. If a cut K of size 2x + 1 were to exist, one of
the cut edges, say e, must come from F2x+1 by Lemma 42.1. This edge e would be a critical
edge in Gj as it is part of a j cut. Therefore, the algorithm would add be to F2x+2 and make
e non-critical. Hence no such cut K can exist in Gj + F2x+2. �

42.5.2 Approximation Guarantee

Let be be a back edge added in lines 7–9 to F2i+2 corresponding to the critical edge e in G2i+1
and recall that Be (see Definition 42.4) is the set of back edges whose fundamental cycles
contain e.

Remark: It is important to note that F2i+2 changes as back edges associated with critical
edges are added and it is this updated F2i+2 that is used when the criticality of a tree edge
is checked in G2i+1 + F2i+1 in lines 8–9.

Let d be another tree edge detected to be critical in the post-order corresponding to which
bd is added from the set of edges Bd whose fundamental cycles contains d (see Lemma 42.2).

Approximation Algorithms for Connectivity Problems � 1109

Lemma 42.2 Bd ∩ Be = ∅.

Proof. Assume without loss of generality that e comes before d in the post-order traversal.
Let d = (s, t) and e = (x, y). Then, by Corollary 42.2 the edges of Bd (resp. Be) are all
back edges and have one end point in the subtree rooted at t (resp. y). Therefore, if d is
not an ancestor of e, the lemma follows immediately. Let us now consider the case when d is
an ancestor of e. Assume, for contradiction, that there is an edge f that is in both Bd and
Be. Note that adding f to G2i+1 makes both d and e non-critical. But, when e is processed
in lines 7–9, either f is added or another edge whose span includes the span of f is added,
rendering d non-critical, contradicting the assumption that d was critical at the time it was
examined in the updated G2i+1. �
Recall that G∗ denotes a subgraph of G with the optimum number of edges. The following
lower bound is crucial for our analysis.

Lemma 42.3 For any phase i, 0 ≤ i < k/2, |G∗| ≥ (k − 2i)|F2i+2|.
Proof. At the beginning of phase i, G2i is 2i connected. By the end of the iteration, the
algorithm increases the connectivity by 2 and outputs G2i+2. Corresponding to every edge
be ∈ F2i+2, there exists a critical edge e in G2i+1 that is part of a 2i + 1 cut K ∪ {e}. Since
G∗ is k-connected, every cut is of size at least k. As Be ∪ K ∪ {e} is a cut that disconnects
C1 from C2, |Be ∪ K ∪ {e}| ≥ k (see Definition 42.2 for the definition of C1 and C2). That
is, |Be ∪ {e}| ≥ k − 2i. Furthermore, corresponding to every edge be of F2i+2 there is an
edge e, e ∈ F2i+1, and a set of back edges Be, Be ⊆ G − G2i+1. By Lemma 42.2, the sets
corresponding to two distinct edges from F2i+2 do not intersect with each other. Therefore
G∗ must contain at least (k − 2i)|F2i+2| edges. �
Using the bounds from Lemma 42.2, we can finally establish the following theorem.

Theorem 42.9 The ratio of the number of edges of Gk output by Algorithm 42.3 to that of
G∗ is at most (3 + ln 2)/2.

Proof. As in the algorithm, we restrict our attention to even k; minor adaptation of the proof
is required for the odd case. Note that since F2i+1 is a forest, it has at most n edges. This
holds F2i+2 as well. Also, from the degree lower bound given Section 42.3.1, we know that
|G∗| ≥ kn/2. Thus,

k/2−1∑

i=0

(|F2i+1| + |F2i+2|)
|G∗| ≤

Σk/2−1
i=0 |F2i+1| + Σ(k/4−1)

i=0 |F2i+2| + Σ(k/2−1)
i=k/4 |F2i+2|

max{kn/2, maxi{(k − 2i)|F2i+2|}}

≤ 3kn/4 + Σ(k/4−1)
i=0 |F2i+2|

max{kn/2, maxi{(k − 2i)|F2i+2|}}

≤ 3kn/4
kn/2 + Σ(k/4−1)

i=0 |F2i+2|
maxi{(k − 2i)|F2i+2|}

≤ 3
2 + 1

2

(k/4−1)∑

i=0

1
(k/2 − i)

(42.1)

Using variable substitution we can rewrite the second term as

= 3
2 + 1

2

k/2∑

x=k/4+1

1
x

1110 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Since 1/x is a monotonically decreasing function, we can set the upper bound of the sum
using an integral (see Appendix A.2 from [13]) by reducing the bottom limit by 1:

≤ 3
2 + 1

2

k/2∫

x=k/4

1
x

= 3
2 + 1

2

(
ln

(
x

2

)
− ln

(
x

4

))

= 3
2 + ln 2

2 < 1.85 �

As mentioned before this analysis assumes that k is even. By substituting k = 4 in (42.1), one
can see that the bound is actually 1.75, which is somewhat better than 1.85. By a different
analysis, it can be shown when k is 3 and 5, the approximation factors are 1.66 and 1.733,
respectively, again better than 1.85.

42.5.3 Time Complexity

It turns out that analyzing the running time of Algorithm 42.3 is rather easy. There are k/2
iterations of the for loop. In each loop, we find a DFS spanning forest which takes linear
time [13]. Similarly, post-order labeling can be performed in linear time [13]. Rest of the loop
involves checking whether a given edge e is critical and finding be if it is determined that e
is indeed critical. Karzanov and Timofeev show that in O(n2i) time we can find all min-cuts
of an i-connected graph [18]. Furthermore, they also show how to store all min-cuts using a
compact tree-like representation. Given this representation, it is easy to check whether there
exists a cut of size less than 2i + 2 between x and y in G2i+1 + F2i+2 in constant time. This
will reveal whether e is critical. If it is, we can perform a DFS of the tree T containing the
edge e in linear time and see which back edge be from the subtree rooted at y comes closest
to the root of T . Therefore, the dominant step is the construction of the cut representation
of Karzanov–Timofeev which takes O(n2i) time. Summing this over k/2 iterations, we get a
time bound of O(k2n2). Note that as back edges be are added, the cut in which be participates
definitely gets destroyed. Also some other (2i + 1)-cuts might get destroyed by the addition
of be. One assumption that is made in Khuller and Raghavachari [17], though not explicitly
stated, is that the Karzanov–Timofeev cut representation can be updated in linear time
under edge additions.

42.6 APPROXIMATING MINIMUM-SIZE SPANNING SUBGRAPHS VIA MATCHING

We conclude this chapter with the best-known algorithm for finding minimum-size
k-connected spanning subgraphs. The algorithm presented in this section is extremely simple
and for the vertex connectivity case, it meets or beats all other algorithms for all values of k.
For undirected edge connectivity, it matches or improves the known bounds for values of k ≥
3. In particular, the algorithm presented in this section, due to Cheriyan and Thurimella [12],
finds a k-vertex connected spanning subgraph of k-vertex connected graph, directed or other-
wise, whose size is at most 1+(1/k) times the optimal. For edge connectivity, the approxima-
tion factors are 1+(2/(k + 1)) and 1+(4/

√
k) for undirected and directed graphs, respectively.

For clarity of exposition, we limit our discussion to the undirected, vertex case. Before we
present the algorithm, the following background is required on generalized matching. Given
a graph G = (V, E), a matching M , M ⊆ E, is set of pairwise non-adjacent edges, that is,
no two edges share a common vertex. A maximum matching is a matching M that contains
the largest number of edges. Notice that in any matching M , the degree of any vertex v is at
most 1. The maximum matching can be generalized wherein the degree of each vertex is at
most d. Additionally, the degree requirement can be made non-uniform, that is each vertex

Approximation Algorithms for Connectivity Problems � 1111

v can have its own degree constraint ranging from 1 to δ(v). This generalization is known as
the b-matching problem.

A b-matching M of G = (V, E) is really a subgraph with most number edges satisfy-
ing certain degree requirements. In particular, we are interested in a b-matching M where
δM (v) ≤ δG(v) − (k − 1). Denote E − M by M̃ . Then (V, M̃) is another subgraph of G with
the least number of edges wherein δ

M̃
(v) ≥ (k − 1) for each v. Denote this subgraph by M̃ .

Algorithm 42.4 CT vertex certificate

Require: An integer k > 0 and k-vertex connected graph G = (V, E)
Ensure: A sparse certificate Gk = (V, Ek) for k vertex connectivity
1: procedure CT(G, k)
2: Find M̃ , a smallest subgraph of G where δ(v) ≥ (k − 1) for each v ∈ G
3: F ← ∅
4: for each edge e = (u, v) in G − M̃ do
5: if (no. of vertex disjoint paths between u and v, including uv, in M̃ + F is ≤ k)
6: then F ← F ∪ {e}
7: end for
8: return Gk = M̃ + F
9: end procedure

Let us now analyze the algorithm above to see how many edges Gk contains in relation to the
best possible G∗. We first show that |F | < (n − 1), a fact that follows easily from a theorem
of Mader ([7]; [8], Theorem 1). (For an English translation of the proof of Mader’s theorem
see Lemma 1.4.4 and Theorem 1.4.5 in [6].)

Theorem 42.10 ([8], Theorem 1) In a k-vertex connected graph, a cycle consisting of
critical edges must be incident to at least one vertex of degree k. �

Lemma 42.4 |F | ≤ (n − 1)

Proof. We claim that F cannot have any cycles. Assume otherwise. Since all edges of F are
critical in M̃ + F , from Mader’s theorem we know that this cycle must have a vertex v such
that δ

M̃+F
(v) = k. See Figure 42.6. Equivalently, δ

M̃
(v) < (k − 1), contradicting that M̃ is

a subgraph of G in which every vertex has degree at least (k − 1). �
We now establish the performance guarantee.

Theorem 42.11
(
(|M̃ + F |)/|G∗|) < (1 + (2/k)

)

Proof. From the degree lower bound given in Section 42.3.1, we know that |G∗| ≥ kn/2.
Therefore

|M̃ + F |
|G∗| ≤ |M̃ |

|G∗| + n − 1
(kn/2) <

|M̃ |
|G∗| + 2

k

Since G∗ is a subgraph in which every vertex v has δ(v) ≥ k, any subgraph of G that has the
smallest number edges in which δ(v) ≥ (k − 1) will have no more than |G∗| edges. Therefore,
the first term is at most 1, thus establishing the theorem. �
Algorithm 42.4 performs significantly better and can be shown to have to an approximation
ratio of 1+(1/k) as mentioned at the beginning of this section. To show this improved bound,
notice that there is some slack in our analysis in the proof of our theorem where we argue

1112 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Degree k
1 2

3
k

Critical edges

Figure 42.6 Illustration of Mader’s theorem.

that the first term is at most 1, that is when we compare the degrees of vertices in G∗ to
those in M̃ .

It turns out that |M̃ | ≤ |G∗| − n/2. Using this fact in conjunction with Lemma 42.4, we
see that |M̃ + F | < |G∗| + n/2 which implies an approximation ratio of 1 + (1/k).

The fact |M̃ | ≤ |G∗| − n/2 follows quite easily when G∗ has a perfect matching M ,
because in that case G∗ − M would be a subgraph in which every vertex v has δ(v) ≥ k − 1.
Proof of this fact is considerably technical when G∗ does not have a perfect matching and is
omitted here.

42.6.1 Time Complexity

Finding M̃ is the same as finding a b-factor and removing the edges found, leaving a subgraph
in which every vertex v satisfies δ(v) ≥ k − 1. Gabow and Tarjan [19] give a O(m1.5 log2 n)
algorithm for finding a b-factor.

To find a set of critical edges F whose addition to M̃ would yield a k-connected subgraph,
examine each edge e = (u, v) of G − M̃ in an arbitrary order (line 4). To see whether the
if condition is satisfied in line 5, attempt to find k + 1 internally disjoint (vertex or edge
as the case may be) paths between u and v. Each path can be found in linear time by an
augmenting path algorithm [13]. Therefore each iteration of the for loop takes km time for
a total of km2 time. At termination, the subgraph M̃ + F is k-vertex connected, and every
edge e ∈ F is critical.

The running time of finding F can be improved to O(k3n2) by first executing a linear-
time preprocessing step to compute a sparse certificate of G for k-vertex connectivity and
using that sparse certificate find k disjoint paths.

42.7 CONCLUSION

Approximation algorithms for graph connectivity are surprisingly elegant and have many
useful applications. In this chapter, we have presented heuristics for finding k-connected
spanning subgraphs of k-connected graphs. These polynomial-time heuristics are reasonably
efficient and have provable performance guarantees. In some cases the approximation ratios

Approximation Algorithms for Connectivity Problems � 1113

come very close to the optimal. For example, the algorithm presented in the last section is
provably within 5% from the optimal, that is < 1.05 ∗ OPT , if one is interested in finding a
k-vertex connected subgraph of a k-vertex connected graph for k = 20.

References

[1] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, 1979.

[2] D. S. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS Pub-
lishing Co., Boston, MA, 1997.

[3] H. Nagamochi and T. Ibaraki. Graph connectivity and its augmentation: applications
of MA orderings. Discrete App. Math., 123(1–3) (2002), 447–472.

[4] H. Nagamochi. Graph algorithms for network connectivity problems. J. Op. Res., 47(4)
(2004), 199–223.

[5] R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer-Verlag,
Heidelberg/Berlin, Germany, 2006.

[6] B. Bollobás. Extremal Graph Theory. Dover Books on Mathematics. Dover Publications,
Mineola, NY, 2004.

[7] W. Mader. Minimale n-fach kantenzusammenh ngende graphen. Math. Ann., 191 (1971),
21–28.

[8] W. Mader. Ecken vom grad n in minimalen n-fach zusammenh ngenden graphen. Arch.
Math. (Basel), 23 (1972), 219–224.

[9] R. Thurimella. Techniques for the Design of Parallel Graph Algorithms. PhD thesis,
University of Texas Austin, TX, 1989.

[10] J. Cheriyan, M. Kao, and R. Thurimella. Scan-first search and sparse certificates: An
improved parallel algorithms for k-vertex connectivity. SIAM J. Comput., 22(1) (1993),
157–174.

[11] K. A. Doshi and P. J. Varman. Optimal graph algorithms on a fixed-size linear array.
IEEE Transac. Comput., C-36(4) (April 1987), 460–470.

[12] J. Cheriyan and R. Thurimella. Fast algorithms for k-shredders and k-node connectivity
augmentation. J. Algorithms, 33(1) (1999), 15–50.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 3rd edition, Cambridge, MA, 2009.

[14] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley Longman, Redwood
City, CA, 1992.

[15] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph. Algorithmica, 7(5/6) (1992), 583–596.

[16] S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings. J. ACM,
41(2) (March 1994), 214–235.

1114 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[17] S. Khuller and B. Raghavachari. Improved approximation algorithms for uniform
connectivity problems. J. Algorithms, 21(2) (1996), 434–450.

[18] A. V. Karzanov and E. A. Timofeev. Efficient algorithm for finding all minimal edge
cuts of a nonoriented graph. Cybernetics, 22 (1986), 156–162.

[19] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph matching
problems. J. ACM, 38 (1991), 815–853.

C H A P T E R 43

Rectilinear Steiner Minimum
Trees
Tao Huang

Evangeline F. Y. Young

CONTENTS

43.1 Introduction . 1115
43.1.1 SMT Problem . 1116

43.2 Steiner Ratio (RSMT vs. ESMT) . 1116
43.2.1 MST Problem . 1116
43.2.2 Euclidean Steiner Ratio . 1117
43.2.3 Rectilinear Steiner Ratio . 1117

43.3 Heuristics . 1120
43.3.1 RMST-Based Heuristics . 1120
43.3.2 Iterated 1-Steiner . 1121
43.3.3 Batched Iterated 1-Steiner . 1122
43.3.4 FLUTE . 1123

43.4 Exact Algorithms . 1124
43.4.1 FST Generation . 1125
43.4.2 FST Concatenation . 1127

43.4.2.1 Backtrack Search . 1128
43.4.2.2 Dynamic Programming . 1128
43.4.2.3 Integer Linear Programming . 1129

43.5 Obstacle-Avoiding RSMT . 1129
43.5.1 Heuristics . 1130

43.5.1.1 Sequential Approach . 1130
43.5.1.2 Maze Routing–Based Approach . 1130
43.5.1.3 Connection Graph-Based Approach . 1131

43.5.2 Exact Algorithms . 1131
43.6 Applications . 1135
43.7 Summary . 1136

43.1 INTRODUCTION

The Steiner minimum tree (SMT) problem asks for a shortest network that spans a set of
given points in a metric space. The set of given points are usually referred to as terminals and
new auxiliary Steiner points can be introduced so that the total length of the network can be
reduced. The history of the SMT problem started with Fermat (1601–1665) who proposed the

1115

1116 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

problem: given three points in a plane, find a fourth point such that the sum of its distances
to the three given points is a minimum. Courant and Robbins [1] in their famous book What
Is Mathematics? first named the problem after Steiner (1796–1863) who solved the problem
of joining three villages by a system of roads having minimum total length. The popularity
of this book has raised the research interests in the SMT problem. The formulation of the
SMT problem is as follows.

43.1.1 SMT Problem

Given a set V of n terminals in the space Lp.∗ Find a shortest tree embedded in the space
that spans V .

The original SMT problem considers the Euclidean space (i.e., L2 space). The rectilinear
Steiner tree problem (i.e., in L1 space) is first attacked by Hanan [2]. The problem is equiva-
lent to find a tree connecting all the terminals by using only horizontal and vertical lines. An
optimal solution to this problem is called a rectilinear SMT (RSMT). Hanan proved that there
is at least one RSMT that is contained in the Hanan grid. The Hanan grid can be obtained by
constructing horizontal and vertical lines through each terminal and the intersections of these
lines are thus candidate Steiner points. Although there is a finite number of candidate Steiner
points in the Hanan grid, it is still a very difficult problem to select a subset of them to con-
struct a RSMT. In fact, the RSMT problem is shown to be NP-complete by Garey and John-
son [3]. Moreover, they also showed that the Euclidean SMT (ESMT) problem is NP-hard.

This chapter discusses the RSMT problem, its properties, solutions, and applications.
Section 43.2 of this chapter presents the Steiner ratio of the RSMT problem comparing
with the ESMT problem. Section 43.3 introduces several heuristics for the RSMT prob-
lem. Section 43.4 describes the exact algorithms for the RSMT problem. In Section 43.5,
a variant of the RSMT problem considering obstacles is discussed. Section 43.6 gives the
applications of RSMT in very large-scale integration (VLSI) design. A conclusion is drawn in
Section 43.7.

43.2 STEINER RATIO (RSMT VS. ESMT)

The RSMT problem is NP-complete which means that an efficient polynomial time algorithm
for the problem may not exist. Therefore, finding a RSMT is usually of high computational
cost. An alternative to the SMT is the minimum spanning tree (MST). The MST problem
can be formulated as follows:

43.2.1 MST Problem

Given a set V of n terminals in the space Lp. Find a shortest tree embedded in the space
that spans V using only edges connecting vi and vj where vi, vj ∈ V .

As we can see from the problem formulation, the only difference between the SMT prob-
lem and the MST problem is usage of the auxiliary points. Since the MST problem disallows
any auxiliary point, it is much simpler than the SMT problem. In fact, the MST problem
is polynomially solvable. Both Prim’s algorithm and Kruskal’s algorithm can find a MST
in O(nlogn) time. However, it is obvious that the length of a MST is always longer than
its SMT counterpart, since the MST is also a candidate solution in the SMT problem. Let
|SMT (V)| and |MST (V)| be the length of the SMT and MST over V , respectively,

|SMT (V)| ≤ |MST (V)| (43.1)

∗The distance between two points in the Lp space can be calculated by d(u; v) = (|ux−vx|p+|uy−vy|p)1/p.

Rectilinear Steiner Minimum Trees � 1117

for any V . The question is, if we construct a MST instead of a SMT, how close can this
approximation be. We define the Steiner ratio to be

ρ(Lp) = infV

{ |SMT (V)|
|MST (V)|

}
(43.2)

where V is a set of points in Lp. That is, the Steiner ratio is the largest possible ratio between
the length of a SMT and the length of a MST in the Lp space.

Since many of the SMT heuristics are based on improving a MST, their performances
are closely related to the Steiner ratio. Therefore, it is of partical interest to determine the
Steiner ratio. In this section, we will first give a brief introduction of the Euclidean Steiner
ratio problem for a comparison with its rectilinear counterpart.

43.2.2 Euclidean Steiner Ratio

Early researches on the Steiner ratio in L2 space mainly focus on special cases of V, or
obtaining a lower bound of ρ.

Halton et al. [4] gave the first lower bound 0.5 on the Steiner ratio. Graham and Hwang [5]
improved the low bound to 0.57. Later, the bound was pushed up to 0.74 by Chung and
Hwang [6], and to 0.8 by Du and Hwang [7]. Finally, the lower bound was improved by
Chung and Graham [8] to 0.824. Further improvement on the lower bound is possible, but it
turns out that the decrease is marginal and it is not likely that the exact Steiner ratio can
be found along this line.

Along another line, Gilbert and Pollak [9] verified that the Steiner ratio is
√

3/2 for
special cases when the number of terminals n = 3. Based on a large number of simulations,
they further conjectured that the Steiner ratio is

√
3/2 for general cases. This is known as

the Steiner ratio Gilbert–Pollak conjecture. Pollak [10] proved that the conjecture is true for
n = 4. By using a different approach, Yao et al. [11] also verified that the Steiner ratio is√

3/2 for n = 4. They further extended this approach to prove the conjecture for n = 5.
Rubinstein and Thomas [12] derived the variational approach and verified the conjecture for
n = 6.

Finally, in 1990, Du and Hwang [13, 14] proposed some novel ideas and claimed that
they proved the Steiner ratio Gilbert–Pollak conjecture. However, the proof is shown to
be incorrect later by Ivanov and Tuzhilin [15]. Therefore, the Steiner ratio Gilbert–Pollak
conjecture is still an open problem.

43.2.3 Rectilinear Steiner Ratio

The Steiner ratio in L1 space was originally settled by Hwang [16] by first characterizing
Steiner trees and then obtaining the Steiner ratio. Later, another simpler proof is provided
by Salowe [17].

Both of these two approaches make use of the unique decomposition of a SMT into full
Steiner trees (FSTs). Let V ′ be a set of points in the plane, and T be a SMT spanning V ′.
T is said to have a full topology if every point in V ′ is a leaf node in T . A terminal set V ′ is
a full set if every SMT for V ′ has a full topology. An FST is a SMT that spans a full set of
terminals. It can be easily verified that any SMT can be uniquely decomposed into a set of
edge-disjoint FSTs by splitting at the terminals with degree∗ more than one. This fact brings
out the importance of studying the characteristics of FSTs.

In the rectilinear plane, Hwang [16] first characterized the structures of FSTs.
Two operations—flipping and shifting as shown in Figure 43.1—are defined. Shifting a

∗The degree of a terminal is the number of edges connecting it.

1118 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Figure 43.1 (a) Shifting and (b) flipping.

line means moving a line between two parallel lines to a new position. Flipping an edge with
two perpendicular lines meeting at a corner means moving these two lines to flip the corner
to the opposite side diagonally. These two operations will not change the length of a RSMT.
By using shiftings and flippings, Hwang developed a series of lemmas to reach Theorem 43.1.

Theorem 43.1 For a full set of n > 4 terminals in the rectilinear plane, there exists a cor-
responding FST that either consists of a single line with n − 1 alternating incident segments,
or a corner with n − 3 alternating segments incident to one leg and a single segment incident
to the other leg. �

The two FST structures described in Theorem 43.1 are shown in Figure 43.2. Hwang also
showed that Theorem 43.1 holds for n = 2, 3, or 4. The only exception is when n = 4 and the
four terminals are the endpoints of a cross as shown in Figure 43.3. By using Theorem 43.1,
Hwang obtained the following theorem that determines a lower bound of the rectilinear
Steiner ratio.

Theorem 43.2 The rectilinear Steiner ratio ρ(L1) ≥ 2/3.

Proof. Any RSMT can be partitioned into a set of edge-disjoint FSTs each of which corre-
sponds to a full set. Therefore, we only need to establish the lower bound for each full set,
because the sum of the length of the rectilinear minimum spanning trees (RMSTs) for each
full sets is lower bounded by the length of RMST for the whole set of terminals.

Let V ′ be a full set of n terminals. The proof is by induction on n.

Figure 43.2 (a,b) Two generic forms for a FST when n > 4.

Figure 43.3 Only exception to Theorem 43.1.

Rectilinear Steiner Minimum Trees � 1119

If n = 2, then RSMT (V ′) = RMST (V ′).
For 2 ≤ n ≤ 4, let L and W be the length and width of the enclosing rectangle of V ′.

Obviously, RSMT (V ′) ≥ L + W . Let R be the boundary of the enclosing rectangle and
|R| = L+W . Since deleting any edge between two adjacent terminals on R yields a spanning
tree of V ′, we have

|RMST (V ′)| ≤ (1 − 1
4)|R| = 3

2(L + W) ≤ 3
2 |RSMT (V ′)|. (43.3)

Consider the case when n > 4. In any FST with n > 4, we can always find a subtree as shown
in Figure 43.4 where |ae| ≤ |cg| and |dh| ≤ |bf |. Let A be the set of terminals above a, B
be the set of terminals below d, and C = {a, b, c, d}. Let sA be the total length of the edges
above ef , sB be the total length of the edges below gh, and sC = |ef |+|bf |+|fg|+|gc|+|gh|.
Obviously, |RSMT (V ′)| = sA +sB +sC . By considering the enclosing rectangle of C, we can
show that RMST (C) ≤ (3/2)sC . Moreover, by inductive hypothesis, RMST (A) ≤ (3/2)sA

and RMST (B) ≤ (3/2)sB. Therefore,

|RMST (V ′)| ≤ |RMST (A)| + |RMST (B)| + |RMST (C)| ≤ 3
2 |RSMT (V ′)|. (43.4)

�
It is also easy to verify that 2/3 is an upper bound of the rectilinear Steiner ratio, by
considering a set of four terminals with x and y coordinates {(1, 0), (−1, 0), (0, 1), (0, −1)}.
The corresponding RSMT and RMST are shown in Figure 43.5. Clearly, the length of the
RSMT is 4 and the length of the RMST is 6, which establish an upper bound of 2/3. Note
that by clustering more terminals arbitrarily close to any of the four terminals in Figure 43.5,
the 2/3 bound can be attained for any value of n. As a result, we have the following theorem
for the rectilinear Steiner ratio.

Theorem 43.3 The rectilinear Steiner ratio is 2/3. �

f

g c

e a

b

hd

Figure 43.4 Subtree structure in a FST with n > 4.

Figure 43.5 Example of a RSMT and a RMST of four terminals.

1120 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

43.3 HEURISTICS

The RSMT problem is NP-complete. This means that efficient polynomial time exact
algorithm may not exist. Therefore, many researches of the RSMT problem have been fo-
cused on the development of heuristics. Early heuristics are mainly based on improving over
a RMST. Starting in 1990s, new class of RSMT heuristics that do not rely on the RMST
construction has been proposed. Two typical examples are iterated one Steiner and batched
iterated one Steiner. Recently, a look up table based algorithm called FLUTE is proposed.
Comparing with the other heuristics, FLUTE can provide the best tradeoff between run-
time and accuracy, and therefore is the state-of-the-art algorithm. In this section, a brief
introduction to these approaches is presented.

43.3.1 RMST-Based Heuristics

In Section 43.2, we have shown that the rectilinear Steiner ratio is 2/3. It means that any
heuristic based on improving over a RMST can guarantee a worst-case performance ratio of
3/2. Therefore, many RSMT heuristics in the literature use RMST-based strategies.

A RMST can be computed in O(nlogn) time. The first RMST algorithm with this com-
plexity is proposed by Hwang [18] and the algorithm is based on the construction of the
rectilinear Voronoi diagram. Hwang showed that the rectilinear Voronoi diagram can be
built in O(nlogn) time. It can also be verified that a RMST can be computed in O(n) time
by using the Voronoi diagram, and therefore the complexity of finding a RMST is O(nlogn).
However, the computation of Voronoi diagram can be tedious. A simpler way is to use the
nearest neighbors of each terminal. For each terminal we divide its surrounding area into
eight regions separated by lines that intersect at a 45-degree angle, as shown in Figure 43.6.
The following theorem is first proposed by Yao [19].

Theorem 43.4 In a RMST, if two terminals v and u are connected, then v is the nearest
to u in one of the eight regions of u.

Proof. Assume the contrary that, in a RSMT, terminal v is connected to u, but v is not the
closest point to u in one region. Let w be the terminal that is closer to u than v in the region.
Therefore, d(w, u) < d(v, u). It is also easy to verify that d(w, v) < d(v, u). By deleting the
edge connecting v and u, the RMST is divided into two subtrees with u and v belonging to
different components. Despite which subtree w belongs to, a shorter spanning tree can be
obtained by connecting either w and v or w and u, a contradiction. �
Theorem 43.4 shows that for the construction of RMST, only the edges connecting nearest
neighbors in the eight regions need to be considered. Finding the nearest neighbor of all

R1

R4

R8

R5

R2

R3

R7

R6

Figure 43.6 Eight regions of a terminal.

Rectilinear Steiner Minimum Trees � 1121

terminals in all eight regions can be done in O(nlogn) time [20, 21]. Since there are at most
8n edges, a RMST can be therefore found in O(nlogn) time by using either the Prim’s or
Kruskal’s algorithm.

With a RMST as a starting point, a direct way to improve and obtain a RSMT is to
remove overlapping segments by introducing Steiner points. These approaches are called
Steinerization. Early overlap removal schemes all make use of simple heuristics. A pair of
edges sharing a common terminal are chosen arbitrarily. If there is overlap, they are embedded
by adding a Steiner point. This process terminates until all pairs of neighboring edges are
explored. A comparison between different ways on selecting pairs of edges to process is done
by Richards [22]. Later, Vijayan et al. [23] gave a polynomial time algorithm to find optimal
embedding when starting with a special RMST called separable RMST. A RMST is separable
if and only if for any pair of nonadjacent edges in the tree, any staircase layouts of the two
edges will not intersect or overlap. They first gave a O(n2) time algorithm for the construction
of a separable RMST. Based on the separable RMST, an O(n) time optimal algorithm is
proposed with the assumption that each edge has at most one corner (i.e., L-shaped). The
algorithm starts by making a terminal as the root of the tree and solve the problem in a
bottom-up fashion. The key observation is that the optimal solution of a subtree depends
only on how the edge connecting the root node of the subtree and its parent is embedded.
Since only L-shaped edges are considered, there are two options for embedding. Therefore,
an O(n) dynamic programming algorithm can find an optimal solution. Ho et al. further
extended the algorithm to handle the case when each edge has at most two corners (i.e.,
Z-shaped). The difference is that there can be more embedding options for each subtree. Ho
et al. showed that the corresponding dynamic programming algorithm has a time complexity
of O(n7). Finally, they proved that the resulting RSMT after optimal Z-shaped embedding
is also optimal when there is no restriction on edge shapes.

Another way to improve over a RMST is to add some new edges to replace longer ones
repeatedly. These approaches are called edge-substitution. Borah et al. [24] proposed an edge-
based heuristic that starts with a RMST and incrementally improves the cost by connecting
a node∗ to a neighboring edge and removing the longest edge in the loop thus formed. The
reduction in the cost of the tree due to this operation is the gain. The algorithm works in
an iterative manner. In each iteration, a set of (node, edge) pairs are found and updates are
applied to the tree starting from the (node, edge) pairs with the largest gain. Borah et al.
showed that finding all possible (node, edge) pairs with positive gain can be done in O(nlogn)
time and applying the updates to the tree requires only O(n) time. They further showed that
a number of three iterations are sufficient in most cases. Therefore, the complexity of the
algorithm is O(nlogn). Zhou et al. [25] extended the edge-based heuristic by using a spanning
graph [21]. A spanning graph is an undirected graph over the points that contain at least one
MST. They showed that finding potential (node, edge) pairs in the spanning graph can be
more efficient. They also proposed a simpler way to find the longest edge on the loop formed
by connecting a node to an edge by using a merging binary tree. Although, the run time is
dominated by the spanning graph and RMST generation, which take O(nlogn) time, a good
practical performance can be achieved.

43.3.2 Iterated 1-Steiner

While the RMST-based heuristics can guarantee a worst case performance ratio of 3/2, it is
still a problem to find such a heuristic method with performance ratio strictly less than 3/2.
Kahng and Robins [26] showed that the 3/2 bound is tight for a large number of RMST-based
methods. Motivated by this fact, Kahng and Robins [27] proposed a heuristic called iterative

∗A node can be a terminal or a Steiner point.

1122 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

1-Steiner that does not, implicitly or explicitly, make use of a RMST. The algorithm is based
on the answer to the following question. If at most one more Steiner point is allowed, what
is the optimal Steiner tree and where should the Steiner point be placed? This is called the
1-Steiner problem.

In the Euclidean plane, Georgakopoulos and Papadimitriou [28] are the first to give an
O(n2) algorithm to solve the 1-Steiner problem and Kahng and Robins adapted this method
for the rectilinear plane. The algorithm makes use of the concept of nearest neighbor for the
construction of RMST to partition the plane into O(n2) isodendral regions. An important
property of isodendral regions is that introducing any point in a given region will result in a
constant RMST topology. Therefore, after an O(n2) preprocessing step, updating the RMST
to include a new point requires only constant time. Moreover, the optimal Steiner point in
each region can also be determined in constant time. As a result, the 1-Steiner problem can
be solved in O(n2) time by iterating through the isodendral regions and selecting the point
with the lowest cost.

The iterative 1-Steiner heuristic works by iteratively calculating optimal 1-Steiner points
and include them into the point set. Accepted Steiner points are deleted if they become
useless, that is, if their degree becomes 1 or 2 in the tree. The algorithm terminates when
no improvement can be achieved by adding new Steiner points or the maximum number
of iterations has been reached. An example of the iterative 1-Steiner heuristic is shown in
Figure 43.7. In [27], the maximum number of iterations is set to be the number of terminals n.
Therefore, the overall time complexity of iterative 1-Steiner is O(n3).

43.3.3 Batched Iterated 1-Steiner

Kahng and Robins [27] proposed several variants to the iterative 1-Steiner. Among those
variants, the most promising one makes use of batched processing to include Steiner points.
Instead of adding one Steiner point per iteration, a maximal independent set of Steiner points
are included.

The heuristic starts by evaluating every candidate Steiner points in the Hanan grid.
By preprocessing the O(n2) isodendral regions as a planar subdivision, the planar region

Figure 43.7 Example of the iterative 1-Steiner algorithm.

Rectilinear Steiner Minimum Trees � 1123

in which a given point lies can be determined in O(logn) time. This preprocessing requires
O(n2logn) time. Since the MST of a planar-weighted graph can be maintained using O(logn)
time per addition of a point, the RMST cost savings for all the candidate Steiner point can
be calculated in O(n2logn) time. Then, the Steiner point candidates are sorted according
to their gains on cost savings in decreasing order. Next, all the candidates are processed in
order. Each candidate with a positive gain are added, as long as it is independent of all the
Steiner points previously added in the same round. The criterion for independence is that
no candidate is allowed to reduce the potential MST cost savings of any other candidate in
the added set. This process iterates until no Steiner point can be included. The total time
required for one iteration is O(n2logn). Since Steiner point candidates are added in batch,
the number of iterations required grows much more slowly than the number of Steiner points
considered. Empirical study showed that batched iterated 1-Steiner performs close to iterated
1-Steiner, but the computational cost is much lower.

Although batched iterated 1-Steiner can be implemented to run in O(n2logn) per it-
eration, the computational geometric methods have a large hidden constant and are also
difficult to code. Therefore, an O(n4logn) implementation is used in [27]. A more efficient
O(n3) implementation is later presented by Griffith et al. [29]. Experimental results showed
that a speedup factor of three orders of magnitude over previous implementation can be
achieved.

43.3.4 FLUTE

As will be discussed in Section 43.6, the RSMT problem has many applications in VLSI
design. In VLSI circuits, many of the nets have a small number of terminals. Therefore, it is
more important for RSMT algorithms to be simple and efficient for small problems. Based
on this observation, Chu and Wong [30] proposed a RSMT algorithm called fast lookup table
estimation (FLUTE).

Given a set of n terminals, the Hanan grid can be built by drawing horizontal and vertical
lines through each terminal. Let xi be the x-coordinates of the vertical grid lines such that
x1 ≤ x2 ≤ . . . ≤ xn, and yi be the y-coordinates of the horizontal grid lines such that
y1 ≤ y2 ≤ . . . ≤ yn. Label the terminal in ascending order of the y-coordinates and let si

be the rank of terminal i in ascending order of the x-coordinates. The sequence s1s2 . . . sn is
called the position sequence. An example is shown in Figure 43.8 where the position sequence
of the net is 3142. Let vi = yi+1 − yi and hi = xi+1 − xi be the distance between adjacent
Hanan grid lines. Since a Steiner tree in the Hanan grid is a union of Hanan grid edges,
the length of any Steiner tree can always be written as a linear combination of edge lengths
in which every coefficient is a positive integer. For example, the length of the three Steiner
trees can be expressed by h1 + 2h2 + h3 + v1 + v2 + 3v3, h1 + h2 + h3 + v1 + 2v2 + 3v3, and
h1 + 2h2 + h3 + v1 + v2 + v3 (Figure 43.9). Therefore, a lookup table can be used to store
the lengths of all possible Steiner trees as linear combinations of hi and vi. For simplicity,
only the vectors of the coefficients are stored, for example, (1, 2, 1, 1, 1, 3), (1, 1, 1, 1,
2, 3), and (1, 2, 1, 1, 1, 1). It is also easy to find that some vectors are suboptimal, for
example, the length induced by (1, 2, 1, 1, 1, 3) cannot be shorter than (1, 2, 1, 1, 1, 1).
A vector that can potentially produce the optimal length is called a potentially optimal
wirelength vector (POWV). For each POWV, a set of corresponding RSMTs called potentially
optimal Steiner tree (POST) are also stored. A key observation is that, if two nets have
the same position sequence, then every Steiner tree of one net is topologically equivalent
to a Steiner tree of the other net. This means that nets with the same position sequence
can be grouped together to share the set of POWVs and the following theorem can be
stated.

1124 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

s4 = 2

s3 = 4

s2 = 1

s1 = 3
h1 h2 h3

v3

v2

v1

4

2

1

3

Figure 43.8 Example of the position sequence of a net.

Figure 43.9 Example of different Steiner trees for a net.

Theorem 43.5 The set of all nets with n terminals can be divided into n! groups according
to the position sequence such that all nets in each group share the same set of POWVs. �

FLUTE makes use of precomputed lookup table of POWVs and POSTs. Given a net, its
position sequence is first determined and the corresponding POWVs are extracted from the
table. The tree length of each POWV is computed according to the values of hi and vi and
the POWV with the minimum length is selected. The corresponding POSTs are the RSMTs
for the net.

The precomputation of the lookup table for small nets can be done by enumerating all
possible Steiner trees in the Hanan grid. For larger nets, a boundary-compaction technique
is proposed to efficiently generate all possible POWVs and POSTs. Some reductions are also
applied to reduce the size of the lookup table. It is reported that the total table size is only
9.00 MB for all nets with up to 9 terminals.

FLUTE is able to generate optimal RSMTs for small nets (e.g., with up to 9 terminals)
by using the lookup table. However, for large nets, the lookup table approach is impractical
because of the high cost in both space and time. Therefore, a large net is divided into small
nets with only the breaking terminals in common by using a net breaking heuristic. Each
small net is then solved by using the lookup table and the resulting RSMTs are combined to
form a RSMT for the original net. Finally, some refinement schemes are applied to eliminate
overlapping segments or further reduce the length of the tree.

The total run time complexity of FLUTE is O(nlogn). Empirical results on VLSI design
showed that FLUTE is more accurate than the batched 1-Steiner heuristic and is almost as
fast as a very efficient implementation of the Prim’s RMST algorithm.

43.4 EXACT ALGORITHMS

In previous sections, we mentioned that at least one RSMT can be found in the Hanan grid
graph. Therefore, exact algorithms for the Steiner problem in networks [31] can also be used
to solve the RSMT problem. However, these approaches are considered to be less effective

Rectilinear Steiner Minimum Trees � 1125

for the RSMT problem because they do not exploit the geometric of the problem. Therefore,
in this section, we will focus on the geometric approaches.

In Section 43.2, we showed that any RSMT can be uniquely decomposed into a set of
FSTs that have only two possible structures as shown in Figure 43.2. We refer these FST
topologies as Hwang’s topology in this section. Since FSTs are much simpler to construct
than RSMTs, a straightforward strategy to construct RSMTs is to use a two-phase approach.
The first phase is to generate a set of FSTs such that there is at least one RSMT composed
of the FSTs in the set only. This phase is called the FST generation phase. In the second
phase, a subset of FSTs with minimum total length are selected and combined such that all
terminals are connected. This phase is called the FST concatenation phase.

43.4.1 FST Generation

Salowe and Warme [32] gave the first rectilinear FST generation algorithm. The algorithm
generates FST by considering all pairs (a, b) of terminals as backbone in the Hwang’s topology.
The backbone is the complete corner in the Hwang’s topology as described in Theorem 43.1.
In the corner, the leg with alternating incident segments is called the long leg, and the other
is called the short leg. For each pair (a, b), all candidate terminals that can be attached to the
backbone are found. Then, the algorithm will recursively try to attach candidate terminals
to the backbone and test if a FST can be formed. Some screening tests are developed to
eliminate those FSTs that cannot be in any RSMT. The algorithm is able to generate FSTs
for 100 terminals in a short time. However, it is impractical for larger instances because of the
high computational cost. Later, Warme [33] improved this algorithm to handle 1000-terminal
instance in hours.

The state-of-the-art rectilinear FST generation algorithm is presented by Zachariasen [34].
Let the root of a FST be the terminal incident to the long leg. For a given root z, the algorithm
works by growing the long legs in four possible directions. For a given direction, the algorithm
recursively tries to attach terminals to the long leg. A series of necessary conditions are used
to prune away useless FSTs.

The empty diamond property states that no other points of the RSMT can lie in L(u, v),
where uv is a horizontal or vertical segment and L(u, v) is an area on the plane such that all
the points in this area are closer to both u and v than u and v are to each other. The empty
diamond region of a segment is shown in Figure 43.10. This is because if there is a terminal
w inside the empty region of segment uv, we can simply delete uv and connect either uw or
vw to reduce the length of the tree. The empty diamond regions with respect to a FST are
shown in Figure 43.11.

v

u

Figure 43.10 Empty diamond.

1126 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Figure 43.11 Empty diamond regions with respect to an FST.

Let uw and vw denote two perpendicular segments sharing a common endpoint w. The
empty corner rectangle property states that no other points of the RSMT can lie in the interior
of the smallest axis-aligned rectangle containing u and v. The empty corner rectangle region
is shown in Figure 43.12. Assume that there is a terminal x inside the empty rectangle region.
The unique path P from x to w in the RSMT visits either u or v first, or none of them,
before reaching w. If P visits u(v) first, we can delete uw(vw) and add a vertical (horizontal)
segment from x to a point on vw(uw), forming a tree with shorter length. If P reaches
neither u nor v before reaching w, we can delete uw or vw and add ux or vx depending on
the location of x to obtain a shorter tree. The empty corner rectangle regions with respect
to a FST are shown in Figure 43.13.

The empty inner rectangle property can be used to prune away useless FSTs. A FST
can be transformed to its corner-flipped version by shifting segments and flipping corners
as shown in Figure 43.14. The empty inner rectangle property states that no terminal can

w v

u

Figure 43.12 Empty corner rectangle.

Figure 43.13 Empty corner rectangle regions with respect to an FST.

Rectilinear Steiner Minimum Trees � 1127

Figure 43.14 Transformation of an FST to its corner-flipped version.

Figure 43.15 Empty inner rectangle in an FST.

be in between the backbone of the origin topology and that of the corner-flip topology
(Figure 43.15). Assume that there is a terminal inside the empty inner rectangle region. We
can shift some segments and flip some corners to align with the terminal such that splitting
at this terminal will result in two smaller FSTs.

The bottleneck Steiner distance, which is analogous to that of the Steiner tree problem in
networks, can also be used to eliminate useless rectilinear FSTs. Let Tr(V) be a tree spanning
the terminal set V . We use δT r(vivj) to denote the length of the longest edge on the unique
path between vi and vj in Tr(V). Let RMST(V) be a RMST of the terminal set V , then the
bottleneck Steiner distance is equal to δRMST (vivj). It can be proved that if RMST(V) and
RSMT(V) are respectively a MST and a Steiner minimal tree on a set of vertices V , then
δRMST (vivj) ≥ δRSMT (vivj) for any vi, vj ∈ V . Therefore, for a FST to be part of a RSMT, we
require that δRMST (vivj) ≥ δF ST (vivj) for any vi, vj ∈ V .

The above conditions are used to prune away those FSTs that cannot be part of any
RSMT. Empirical study showed that most of the FSTs can be pruned away by one of these
tests and the number of resulting FSTs grows almost linear with respect to the number of
terminals. The algorithm is able to generate FSTs for 1000 terminals in less than a minute.

43.4.2 FST Concatenation

Let F = {f1, f2, . . . , fm} be the set of FSTs generated in the first phase. The second phase
is to select a subset such that all terminals are spanned. Different from the FST genera-
tion phase, the FST concatenation phase is purely combinatorial and metric-independent.

1128 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Therefore, early FST concatenation algorithms proposed for the ESMT problem can also be
applied for the rectilinear case. These approaches include backtrack search, dynamic pro-
gramming, and integer linear programming (ILP).

43.4.2.1 Backtrack Search

A straightforward way to combine FSTs is to use backtrack search. Starting from a single
FST, recursively add new FSTs into the solution until the solution spans all terminals or it
can be verified that the solution cannot be optimal. In these cases, the search backtracks to
try to add some other FSTs.

Winter [35] proposed the first FST concatenation algorithm by backtrack search for the
ESMT problem. Simple tests such as length test, degree tests, and cycle tests are employed
during the search. The algorithm is able to solve, in a reasonable amount of time, problems
with less than or equal to 15 terminals. Experimental results showed that, for the instances
with more than 15 terminals, the computation time of the concatenation phase dominates
that of the generation phase. Cockayne and Hewgill [36, 37] presented an improved version
of Winter’s algorithm. Problem decomposition is applied to divide the initial concatenation
problem into several subproblems. If the set of all FSTs can be divided into biconnected com-
ponents, then each biconnected component corresponds to a subproblem on which concatena-
tion can be done separately. They also proposed to use an incompatibility matrix to speedup
the search. Two FSTs are incompatible if they cannot appear simultaneously in any of the
SMTs (e.g., if they have more than one terminal in common, a cycle will be formed). This in-
formation is precomputed and stored in a matrix. The incompatibility matrix can be used to
guide backtrack search. For example, only the FSTs that are compatible with every FST in the
current solution can be added. This can significantly reduce the solution space with almost no
computational overhead. In comparison with the savings in searching, the time required for
computation of the incompatibility matrix is negligible. They reported a solvable range of 32
terminals. Salowe and Warme [32] proposed to select and add the most promising FST during
the search. They also gave a more powerful graph decomposition theorem to decompose the
problem. More recently, Winter and Zachariasen [38] improved FST compatibility and FST
pruning substantially and report solutions for 140-terminal instances in Euclidean space.

43.4.2.2 Dynamic Programming

Ganley and Cohoon [39] presented a dynamic programming approach to combine FSTs. From
Theorem 43.1, it is clear that any RSMT for any set of terminals is either a FST itself or it can
be divided into two smaller RSMTs joining at a terminal. Therefore, dynamic programming
is applicable. Subsets of terminals are processed in increasing order of their cardinality. For
subsets of more than two terminals, the algorithm first tries to construct a FST according
to Theorem 43.1. Then, several trees are produced by joining the RSMTs of every pair of
disjoint subsets having exactly one terminal in common. Since the subsets are enumerated
in increasing order of cardinality, the RSMTs of the smaller subsets are already computed
and stored. Among all the generated trees, the one with minimum length is remembered in a
lookup table. The time complexity of this algorithm is O(n3n). By proving that the number
of candidate FSTs for a set of n terminals is at most O(n1.62n), Ganley and Cohoon improved
the time complexity of the algorithm to O(n22.62n). Based on this dynamic programming
algorithm, Fößmeier and Kaufmann [40] make use of the empty region properties to reduce
the number of candidate FSTs. An O(n1.38n) bound is derived which lead to an algorithm
with O(n22.38n) time complexity.

Although dynamic programming algorithms can provide the best theoretical worst-case
time bound, their practical performance are inferior to the backtrack search.

Rectilinear Steiner Minimum Trees � 1129

43.4.2.3 Integer Linear Programming

Despite the substantial efforts made to improve the performance, backtrack search and
dynamic programming algorithms can only handle problems with around 100 terminals.
A breakthrough in the concatenation algorithm is achieved by Warme [33,41] who observed
that the FST concatenation problem is equivalent to find a MST in hypergraph and formu-
lated the problem as an ILP.

Let V be the set of terminals to be connected and n be the number of terminals in the
set. Let m be the number of FSTs in F . Each FST fi ∈ F is associated with a binary variable
xi indicating whether fi is taken as a part of the RSMT. We use |fi| to denote the size of fi,
that is, the number of terminals connected by fi, and use li to denote the length of fi. In the
following, (A : B) means {fi ∈ F : fi ∩A �= ∅∧fi ∩B �= ∅}. The ILP formulation is as follows.

Minimize:
m∑

i=1
li × xi. (43.5)

Subject to:
m∑

i=1
xi(|fi| − 1) = n − 1, (43.6)
∑

i:fi∈(X:V −X)
xi ≥ 1 ∀X ⊂ V (43.7)

∑

i:fi∩X �=∅
xi(|fi ∩ X| − 1) ≤ |X| − 1 ∀X ⊂ V ∧ |X| ≥ 2. (43.8)

In the ILP, the objective function (43.5) is to minimize the total length of selected FSTs.
Constraint (43.6) is the total degree constraint that requires the right number of FSTs in
order to span V . Constraints (43.7) are the cutset constraints. The constraints ensure that
for any cut (X : V − X) of the terminal set, there should be at least one selected FST to
connect them. Constraints (43.8) are the subtour elimination constraints that eliminate any
cycle in the solution. Since there is an exponential number of cutset constraints and subtour
elimination constraints, they are considered in an incremental way and the ILP is solved
by a branch-and-cut algorithm with the lower bound provided by linear programming (LP)
relaxation, that is by relaxing integrality of variable xi to 0 ≤ xi ≤ 1. At the beginning of
the algorithm, only some simple constraints are considered. Other constraints are added by
separation methods. The separation problems can be solved in polynomial time by finding
minimum cuts in some graphs. It is shown in [41] that Warme’s FST concatenation algorithm
combined with Zachariasen’s FST generation algorithm can solve instances with as many as
2000 terminals in a reasonable amount of time.

More recently, Polzin and Daneshmand [42] presented an efficient alternative for the
concatenation phase. The set of FSTs are further decomposed into a set of edges. An algorithm
which is originally designed for general graphs can then be applied to construct a RSMT.
Polzin and Daneshmand showed that their algorithm, in most cases, is faster than Warme’s
algorithm. They claimed that the superiority is due to the sophisticated reduction techniques
they developed to reduce the size of the problem instance.

43.5 OBSTACLE-AVOIDING RSMT

A more general version of the RSMT problem is to consider obstacles. We consider rectilinear
obstacles that have all its boundary edges either horizontal or vertical. The obstacle-avoiding
RSMT (OARSMT) problem asks for a rectilinear Steiner tree with minimum total length

1130 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

that connects all the given terminals in the presence of obstacles. No edge in the tree can
intersect with any obstacle, but it can be point-touched at a corner or line-touched on an edge
of an obstacle. The OARSMT problem is of practical interest because such obstacles exist
in VLSI designs (e.g., macro cells, IP blocks, and pre-routed nets). The OARSMT problem
is NP-complete as it is a generalization of the RSMT problem.

Analogous to the Hanan grid for the RSMT problem, Ganley and Cohoon [43] proposed
the escape graph for the OARSMT problem. The escape graph consists of two types of
segments. The first type is the segments that extend from the terminals in the vertical and
horizontal directions, until an obstacle boundary is met. The second type of segments can
be obtained by extending boundary segments of each obstacle until an obstacle boundary is
met. An example of the escape graph is shown in Figure 43.16. It is proven in [43] that for
any OARSMT problem, there is at least one optimal solution composed only of the escape
segments in the escape graph. Therefore, by using the escape graph, the geometric OARSMT
problem can be transferred into a graph problem.

43.5.1 Heuristics

Since the OARSMT problem is NP-complete, most of the previous works have been focused
on the development of heuristics. These heuristics can be generally classified into three cat-
egories, namely sequential approach, maze routing–based approach, and connection graph
based approach.

43.5.1.1 Sequential Approach

The sequential approach, also called the construction-by-correction approach, consists of two
steps. In the first step, a RSMT is constructed without considering any of the obstacles.
This step can be done by using any of the aforementioned RSMT algorithms. In the second
step, edges that overlap with obstacles are found and replaced by edges going around the
obstacles. Yang et al. [44] proposed a complicated 4-step heuristics to remove the overlaps
in the second step. The sequential approach is popular in industry due to its simplicity and
efficiency. However, this approach usually cannot provide solution with good quality because
it lacks a global view of the obstacles.

43.5.1.2 Maze Routing–Based Approach

The maze-routing approach is originally proposed by Lee [45] for making connection between
two points. Since then, several multiterminal variants have been proposed. Despite early
works that incur unsatisfiable solution quality, recent developments on maze-routing demon-
strate its effectiveness on the OARSMT problem. Hentschke et al. [46] presented AMAZE,
a fast maze routing–based algorithm to build Steiner trees. The algorithm starts from a

Figure 43.16 Escape graph.

Rectilinear Steiner Minimum Trees � 1131

particular terminal and grow the tree by connecting one terminal at a time by using A*
search. Li and Young [47] proposed another maze routing-based approach for the OARSMT
problem. Similar to Hentschke’s algorithm, during the construction of the tree, terminals
are added one by one to the existing tree. The key difference is that, in the work by Li
and Young, instead of adding only one path between terminals, multiple paths will be kept
and the path selection is delayed until all the terminals are reached. During this process, a
number of candidate Steiner points can be generated. A MST is then constructed to connect
all the Steiner points and the terminals. By deleting dangling Steiner points, an OARSMT
can be obtained. Although this approach can provide solutions with high quality, the space
and time complexities are relatively high which limit its applications to large-scale problems.
Recently, Liu et al. [48] extended Li’s work by using a simpler graph and showed a very
competitive performance in both solution quality and run time.

43.5.1.3 Connection Graph-Based Approach

Most of the recent approaches on the OARSMT problem are graph-based algorithms where an
OARSMT is built based on a connection graph (not necessary rectilinear) that captures the
global blockage information. Shen et al. [49] proposed to use the obstacle-avoiding spanning
graph. The obstacle-avoiding spanning graph can be formed by making connections between
terminals and obstacle corners. Shen et al. showed that the graph contains only O(n) edges
and is much simpler than the escape graph. A MST in the graph can be easily found. The
OARSMT can then be generated by rectilinearize and steinerize the MST. Lin et al. [50]
extended Shen’s approach by identifying many essential edges, which can lead to more desir-
able solutions in the construction of the obstacle-avoiding spanning graph. They proved the
existence of a rectilinear shortest path between any two terminals in the new graph. With this
property, their algorithm is able to find solutions with higher quality. However, the number
of edges, in the worst case, is increased to O(n2). Therefore, the time complexity of their
algorithm is O(n3). Long et al. [51] presented an efficient O(nlogn) four-step algorithm to
construct an OARSMT. They proposed a sparser graph model and efficient local and global
refinements to improve the solution quality. Liu et al. [52] proposed another O(nlogn)
algorithm based on the generation of critical paths. Recently, Ajwani et al. [53] presented the
FOARS, an FLUTE-based top-down approach for the OARSMT problem. They apply the
obstacle avoiding spanning graph to partition the problem and construct the OARSMT by
using the obstacle-aware version of FLUTE. The time complexity of their algorithm is also
O(nlogn).

43.5.2 Exact Algorithms

In comparison with heuristics, there has been relatively less research on exact algorithms
for the OARSMT problem. Maze-routing [45] can give optimal solutions to two-terminal
instances. Along with the escape graph, Ganley and Cohoon [43] presented a topology enu-
meration scheme to construct optimal three-terminal and four-terminal OARSMTs.

For multiterminal instances, a natural idea is to make use of the two-phase exact algorithm
(i.e., generate FSTs in the first phase and then concatenate them in the second phase)
which is originally proposed for the RSMT problem. However, this algorithm cannot be
directly applied when obstacles exist in the plane. An example is shown in Figure 43.17.
In the absence of obstacles, FST has some specific topology, as characterized by Hwang,
which consists of a backbone and alternating incident segments connecting the terminals. In
contrast, the structures of FSTs in the presence of obstacles can be very different. Therefore,
the construction of FSTs in the presence of obstacles can itself be a difficult problem, which
limits the application of the two-phase algorithm for the OARSMT problem.

1132 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Figure 43.17 Example of FST in the presence of an obstacle.

Li et al. [54,55] presented a pioneer work to extend the two-phase approach to solve the
OARSMT problem. The key observation is that, by adding the so-called virtual terminals,
the structures of FSTs can be greatly simplified. For each obstacle, four virtual terminals are
added to its four corners as shown in Figure 43.18. We use T to denote the set of virtual
terminals added. The direct impact of adding virtual terminals is that FSTs can be further
decomposed into smaller FSTs by splitting at these virtual terminals. In Figure 43.19, the
FST can be decomposed into a set of five smaller FSTs each of which is of simple structure.
These smaller FSTs are called FSTs with blockages.

Let t be a rectilinear Steiner tree. A tree t′ is equivalent to t if and only if t′ can be
obtained from t by shifting or flipping some edges which have no nodes on them. With the
concept of equivalent trees, a FST f with blockage over a set of terminals Tf ⊆ (V + T) can
be defined as follows:

1. f is an OARSMT over Tf .

2. Every terminal in Tf has degree one in f and all its equivalent trees.

3. All the equivalent trees of f cannot contain forbidden edges as shown in Figure 43.20.
(Otherwise, splitting can be done to further decompose the FST.)

With the definition, it can be easily verified that an OARSMT is a union of FSTs with
blockages. An important theoretical result is that the structures of FSTs with blockages
are the same as those of FSTs in the absence of obstacles. This indicates that, by adding
virtual terminals, we can use the two-phase approach to construct an OARSMT efficiently.

Virtual terminal

Figure 43.18 Locations of virtual terminals of an obstacle.

Figure 43.19 Decomposition of an FST.

Rectilinear Steiner Minimum Trees � 1133

Edge

Edge Edge

Figure 43.20 Forbidden edges in a FST with blockages.

In the first phase, we generate a sufficient set of FSTs with blockages. In the second phase, we
identify and combine a subset of FSTs with minimum total length such that all real terminals
are interconnected. For simplicity, we will use FSTs to denote FSTs with blockages in the
following.

To generate FSTs with more than two terminals, a modified version of the Zachariasen’s
algorithm [34] is used. For the empty diamond property, when there are obstacles and virtual
terminals, the points, which cannot lie in the empty region are the real terminals only. For the
empty corner rectangle, we only need to consider those real terminals that can be projected
on the two segments of the corner without intersecting with any obstacle.

To generate FSTs with exactly two terminals, a more efficient method is proposed. These
FSTs can be divided into two types. The first type is FSTs connecting two real terminals. The
second type is the FSTs connecting at least one virtual terminal. The first type of FSTs can
be generated based on the OARMST. The second type of FSTs can be generated as follows.
For each virtual terminal u, we divide its surrounding area into eight regions as shown in
Figure 43.6. In every region, we find the real terminal v that has the shortest Manhattan
distance (duv) from u and the rectangular area covered by u and v has no obstacles. Then, the
edge connecting v and u is a two-terminal FST candidate. In this region, we also find those
virtual terminals w with distance duw ≤ duv and the rectangular area covered by u and w is
obstacle free. Then, the edge connecting u and w will also be included as a FST candidate.

For the FST concatenation phase, it can be formulated as an ILP. In the following, let
F be the set of all FSTs found. Let V be the set of all real terminals and T be the set of
all virtual terminals that survive after pruning. Let n be the number of real terminals, m
be the number of FSTs in F and p be the number of virtual terminals. Each FST fi ∈ F is
associated with a binary variable xi indicating whether fi is taken as a part of the OARSMT.
Besides, there are binary variables yi for i = 1 . . . p indicating whether virtual terminal vi ∈ T
is connected in the OARSMT. We use |fi| to denote the size of fi, that is, the number of
terminals (including virtual ones) connected by fi, and use li to denote the length of fi. The
ILP formulation is as follows.

Minimize:
m∑

i=1
li × xi. (43.9)

Subject to:
m∑

i=1
xi(|fi| − 1) = n − 1 +

p∑

i=1
yi, (43.10)

2yj ≤
∑

i:tj∈fi

xi ∀tj ∈ T , (43.11)

4yj ≥
∑

i:tj∈fi

xi ∀tj ∈ T , (43.12)

1134 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

∑

i:fi∈(X:V +T −X)
xi ≥ 1 (43.13)

∀X s.t. (X ⊆ V + T) ∧ (X ∩ V �= V) ∧ (X ∩ V �= ∅)∑

i:fi∩X �=∅
xi(|fi ∩ X| − 1) ≤ |X ∩ V | +

∑

i:ti∈X

yi − 1 (43.14)

∀X s.t. (X ⊂ V + T) ∧ (X ∩ V �= ∅) ∧ (|X| ≥ 2)∑

i:fi∩X �=∅
xi(|fi ∩ X| − 1) ≤

∑

i:ti∈X

yi − max
i:ti∈X

yi (43.15)

∀X s.t. (X ⊆ T) ∧ (|X| ≥ 2)

Constraint (43.9) is the total degree constraint.
∑p

i=1 yi is added to indicate the number of
selected virtual terminals. Constraints (43.11) and (43.12) bound the degree of any selected
virtual terminal to be two, three, or four. Constraints (43.13) are the cutset constraints.
We require X ∩ V �= ∅ and X ∩ V �= V , because we do not need to ensure the connectivity of
the virtual terminals. Constraints (43.14) and (43.15) are the subtour elimination constraints.
In (43.14), we consider those sets X ∩ V �= ∅. Since yi tells whether ti is selected, |X ∩V |+∑

i:ti∈X yi gives the exact number of selected terminals including virtual ones in X. In (43.15),
we use

∑
i:ti∈X yi to indicate the number of selected terminals in X. Since it is possible that

the number of selected terminals in X is equal to zero, we do not simply subtract one from
the right hand side of the inequality. Instead, the term maxi:ti∈X(yi) is used to ensure that the
inequality is not binding when the number of selected terminals in X is zero.

Warme’s branch-and-cut algorithm [33] is extended to solve the ILP. Efficient polynomial
time separation algorithms are also developed to identify violated constraints. Experimental
results showed that the proposed method is able to handle problems with hundreds of termi-
nals in the presence of multiple obstacles, generating optimal solution in a reasonable amount
of time. However, the performance is severely affected by the number of obstacles and all
the solvable test cases contain less than one hundred obstacles. Moreover, the algorithm can
only handle rectangular obstacles.

Recently, Huang and Young [56,57] extended this approach to handle complex rectilinear
obstacles. Virtual terminals are added to the so-called essential edges of the obstacles. They
proved that, after adding virtual terminals, the FSTs will follow four simple structures as
shown in Figure 43.21. The first two structures are exactly the same as those in [16] and [55].
However, in the presence of complex obstacles, the FSTs have two additional structures.
A main characteristic of these two additional structures is that the last corner connecting
two Steiner points or one Steiner point and one terminal is blocked by some obstacles. The
similarities in FSTs indicate that the two-phase approach can be used to solve the OARSMT

Figure 43.21 (a,b) FST structures in the presence of complex rectilinear obstacles.

Rectilinear Steiner Minimum Trees � 1135

problem in the presence of complex obstacles. Huang and Young further proposed to use
an incremental way to handle obstacles. At the beginning of the algorithm, a RSMT with-
out considering any obstacle is constructed. Then, check for obstacles that overlap with the
solution. All such obstacles will be added into consideration and a new iteration begins to
construct an OARSMT that avoid all these obstacles. This process iterates until no overlap-
ping obstacle can be found. Empirical study showed that the algorithm is able to generate
optimal solutions for test cases with up to two thousand obstacles.

43.6 APPLICATIONS

The RSMT problem has many applications in VLSI physical design. Although there are other
applications such as heating system in building design [58]. They are not as popular as those
in VLSI design.

In the VLSI physical design flow, one important step is routing. The specification of a
routing problem usually consists of a set of modules, a netlist, and the area available for
routing. Each module is with a set of terminals and has a fixed position. A netlist is a set of
nets. Each net consists of a set of terminals that need to be made electronically equivalent (i.e.,
connected by wires). In modern VLSI design, there exist multiple routing layers, and each
routing layer has a predefined direction (either horizontal or vertical) and routing capacity.
Connectivity between layers can be achieved by vias. The objective of routing is to create
an interconnection among the terminals of same nets such that the total wire length (i.e.,
routing resource) is minimized. For high performance design, it is also necessary to consider
other requirements such as timing budget, signal integrity, and manufacturability issues. An
example of the routing problem is shown in Figure 43.22.

In VLSI deign, routing is usually performed in two stages: global routing followed by
detailed routing. The task of global routing is to first partition the routing region into tiles
and then determine a loose tile-to-tile route for each net. In this stage, terminals within the
same tile are assumed to be at the center of the tile. It is also common to represent a 3D
routing problem as a 2D problem and perform layer assignment as a post-processing step.
Therefore, the routing of a net can be realized by constructing a RSMT. A common approach
for global routing algorithms is to first generate RSMTs for all the nets [59]. Since, RSMT
only minimizes the wire length, it is possible that in some tiles, the number of wires may
exceed the routing capacity creating some congested regions. In such cases, nets that are
routed through the congested region will be ripped up and rerouted by using congestion-
aware RSMT [60] or maze-routing algorithm. In the routing region, there can be routing
obstacles such as macro cells, IP blocks, and pre-routed nets. Any route across an obstacle
will lead to a violation to the capacity constraint. In such cases, OARSMT algorithms can be

Module

Terminal

Layer

Figure 43.22 Example of routing problem.

1136 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

used to deal with the obstacles. Given a global routing solution, detailed routing determines
the actual geometric layout of each net (i.e., exact tracks, via position, and layer) within the
assigned routing regions. In this stage, the RSMTs can also be used to guide the routing [61]
to minimize the wire length and via usage.

Despite extensive applications in the routing stage, RSMTs can also find its application
in an even earlier stage in VLSI design flow, such as floorplanning and placement. In floor-
planning and placement, modules are not fixed and their positions are to be determined.
A solution to the problem is a layout that specifies the location of each module such that
there is no overlap. A good floorplanning or placement solution should be routable (i.e., be
successfully routed in the later routing stage) by using the smallest amount of routing re-
sources. This necessitates congestion and wire length estimations during floorplanning and
placement. The estimation can be done by performing routing, but it is computationally too
expensive. Therefore, using RSMTs as an approximation becomes an efficient alternative and
is adopted by many estimation approaches [62]. Another target of floorplanning and place-
ment is to achieve good timing. As deep submicron technology advances, interconnect delay
is becoming increasingly dominant over transistor and logic delay. Timing estimation has
to consider both interconnect and gate delays in order to be accurate. This requires actual
topology of each net which is usually approximated by using RSMTs [63].

43.7 SUMMARY

In this chapter, we presented a survey of the RSMT problem. Ever since its first proposal,
the problem has been of both theoretical and practical interests for nearly half a century.
Substantial efforts have been made to develop efficient algorithms, prove performance bound
of approximations, and solve the problem exactly. Being a premier application of the RSMT
problem, the increasing demand on the design automation of VLSI has greatly promoted the
research development of the problem. Recent algorithmic studies on the RSMT problem have
resulted in a series of algorithms with excellent performance. For a single net with hundreds
of terminals, these algorithms have demonstrated excellent tradeoffs between runtime and
solution quality. As the process technology advances, the number of nets in a design can easily
be millions and is still growing. Highly efficient RSMT algorithms are still in great demand.
Besides minimizing the wire length, future research on RSMT should also be adapted to
the new requirements of VLSI design, such as obstacle avoidance, timing constraints, signal
integrity, and manufacturability issues.

References

[1] R. Courant and H. Robbins. What is Mathematics? Oxford University Press, New York,
1941.

[2] M. Hanan. On steiner minimal trees with rectilinear distance. SIAM J. Appl. Math., 14
(1966), 225–265.

[3] M. Garey and D. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM
J. Appl. Math., 32 (1977), 826–834.

[4] J. H. Halton J. Beardwood, and J. M. Hammersley. The shortest path through many
points. Proc. Cambridge Phil. Soc., 55 (1959), 299–327.

[5] R. L. Graham and F. K. Hwang. Remarks on Steiner minimal trees I. Bull. Inst. Math.
Acad. Sinica, 4 (1976), 177–182.

Rectilinear Steiner Minimum Trees � 1137

[6] F. R. K. Chung and F. K. Hwang. A lower bound for the Steiner tree problem. SIAM
J. Appl. Math., 34 (1978), 27–36.

[7] D. Z. Du and F. K. Hwang. A new bound for the Steiner ratio. Trans. Am. Math. Soc.,
278 (1983), 137–148.

[8] F. R. K. Chung and R. L. Graham. A new lower bound for the Steiner minimal trees.
Ann. N. Y. Acad. Sci., 440 (1985), 325–346 .

[9] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM J. Appl. Math., 16 (1968),
323–345.

[10] H. O. Pollak. Some remarks on the Steiner problem. J. Comb. Theory, Ser. A, 24 (1978),
278–295.

[11] E. N. Yao, D. Z. Du, and F. K. Hwang. A short proof of a result of Pollak on Steiner
minimal trees. J. Comb. Theory, Ser. A, 32 (1982), 356–400.

[12] J. H. Rubinstein and D. A. Thomas. The Steiner ratio conjecture for six points. J. Comb.
Theory, Ser. A, 58 (1991), 54–77.

[13] D. Z. Du and F. K. Hwang. The Steiner ratio conjecture of Gilbert-Pollak is true. Proc.
Natl. Acad. Sci. USA, 87 (1990), 9464–9466.

[14] D. Z. Du and F. K. Hwang. A proof of Gilbert-Pollak conjecture on the Steiner ratio.
Algorithmica, 7 (1992), 121–135.

[15] A. O. Ivanov and A. A. Tuzhilin. The Steiner ratio Gilbert-Pollak conjecture is still
open: Clarification statement. Algorithmica, 62 (2012), 630–632.

[16] F. K. Hwang. On Steiner minimal trees with rectilinear distance. SIAM J. Appl. Math.,
30 (1976), 104–114.

[17] J. S. Salowe. A simple proof of the planar rectilinear Steiner ratio. Oper. Res. Lett., 12
(1992), 271–274.

[18] F. K. Hwang. An O(nlogn) algorithm for rectilinear minimal spanning trees. J. Assoc.
Comput. Mach., 26 (1979), 177–182.

[19] A. C. C. Yao. On constructing minimal spanning trees in k-dimensional spaces and
related problems. SIAM J. Comput., 11 (1982), 721–736.

[20] L. J. Guibas and J. Stolfi. On computing all north-east nearest neighbor in the L1 metric.
Inf. Process. Let., 17 (1983), 219–223.

[21] H. Zhou, N. Shenoy, and W. Nicholls. Efficient spanning tree construction without de-
launay triangulation. Inf. Process. Let., 81 (2002), 271–276.

[22] D. S. Richards. On the effectiveness of greed heuristics for the rectilinear steiner tree
problem. Technical report, University of Virginia, Charlottesville, VA, 1991.

[23] G. Vijayan, J. M. Ho, and C. K. Wong. New algorithms for the rectilinear steiner tree
problem. IEEE Trans. Comput.-Aided Des., 9 (1990), 185–193.

[24] M. Borah, R. M. Owens, and M. J. Irwin. An edge-based heuristic for Steiner routing.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 13 (1994), 1563–1568.

1138 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[25] H. Zhou. Efficient Steiner tree construction based on spanning graphs. In Proc. Int.
Symp. Phys. Des., pages 152–157. ACM, Monterey, CA, (2003).

[26] A. Kahng and G. Robins. On performance bounds for two rectilinear Steiner tree heuris-
tics in arbitrary dimension. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 11
(1992), 1462–1465.

[27] A. Kahng and G. Robins. A new class of iterative Steiner tree heuristics with good
performance. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 11 (1994), 893–
902.

[28] G. Georgakopoulos and C. H. Papadimitriou. The 1-Steiner tree problem. 8 (1987),
122–130.

[29] J. Griffith, G. Robins, J. S. Salowe, and T. Zhang. Closing the gap: Nearoptimal Steiner
trees in polynomial time. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 13
(1994), 1351–1365.

[30] C. Chu and Y. C. Wong. FLUTE: Fast lookup table based rectilinear Steiner minimal
tree algorithm for VLSI design. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
27 (2008), 70–83.

[31] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. Number 53.
Elsevier, Amsterdam, the Netherlands, 1992.

[32] J. S. Salowe and D. M. Warme. Thirty-five-point rectilinear Steiner minimal trees in a
day. Networks, 25 (1995), 69–87.

[33] D. M. Warme. A new exact algorithm for rectilinear steiner minimal trees. Technical
report, System Simulation Solutions, Alexandria, VA, 1997.

[34] M. Zachariasen. Rectilinear full Steiner tree generation. Networks, 33 (1999), 125–143.

[35] P. Winter. An algorithm for the Steiner problem in the euclidean plane. Networks, 15
(1985), 323–345.

[36] E. J. Cockayne and D. E. Hewgill. Exact computation of Steiner minimal trees in the
plane. Inf. Process. Lett., 22 (1986), 151–156.

[37] E. J. Cockayne and D. E. Hewgill. Improved computation of plane Steiner minimal trees.
Algorithmica, 7 (1992), 219–229.

[38] P. Winter and M. Zachariasen. Euclidean Steiner minimum trees: an improved exact
algorithm. Networks, 30 (1997), 149–166.

[39] J. L. Ganley and J. P. Cohoon. Optimal rectilinear Steiner minimal trees in O(n22.62n)
time. In Proc. Canad. Conf. Comput. Geo., pages 308–313. Saskatoon, Saskatchewan,
Canada, 1994.

[40] U. Fößmeier and M. Kaufmann. On exact solutions for the rectilinear Steiner tree prob-
lem part I: Theorectical results. Algorithmica, 26 (2000), 68–99.

[41] D. M. Warme, P. Winter, and M. Zachariasen. Exact algorithms for plane steiner tree
problems: A computational study. In D. Z. Du, J. M. Smith, and J. H. Rubinstein,
editors, Advances in Steiner Trees, pages 81–116. Kluwer Academic Publishers, Boston,
MA, 2000.

Rectilinear Steiner Minimum Trees � 1139

[42] T. Polzin and S. V. Daneshmand. On Steiner trees and minimum spanning trees in
hypergraphs. Oper. Res. Lett., 31 (2003), 12–20.

[43] J. L. Ganley and J. P. Cohoon. Routing a multi-terminal critical net: Steiner tree con-
struction in the presence of obstacles. In Proc. of IEEE ISCAS, pages 113–116. IEEE,
London, 1994.

[44] Y. Yang, Q. Zhu, T. Jing, X. Hong, and Y. Wang. Rectilinear Steiner minimal tree
among obstacles. In Proc. Intl. Conf. ASIC, pages 348–351, 2003.

[45] C. Y. Lee. An algorithm for connections and its application. IRE Trans. Electron. Com-
put., EC-10(3) (1961), 346–365.

[46] R. Hentschke, J. Narasimham, M. Johann, and R. Reis. Maze routing Steiner trees with
effective critical sink optimization. In Proc. Int. Symp. Phys. Des., pages 135–142. ACM,
Austin, TX, 2007.

[47] L. Li and Evangeline F. Y. Young. Obstacle-avoiding rectilinear Steiner tree construc-
tion. In Proc. Int. Conf. Comput.-Aided Des., pages 523–528. IEEE, San Jose, CA,
2008.

[48] C. H. Liu, S. Y. Kuo, D. T. Lee, C. S. Lin, J. H. Weng, and S. Y. Yuan. Obstacle-avoiding
rectilinear Steiner tree construction: A steiner-point-based algorithm. IEEE Trans. on
Comput.-Aided Des. Integr. Circuits Syst., 31 (2012), 1050–1060.

[49] Z. Shen, C. Chu, and Y. Li. Efficient rectilinear Steiner tree construction with rectilinear
blockages. In Proceedings ICCD, pages 38–44. IEEE, San Jose, CA, 2005.

[50] C. W. Lin, S. Y. Chen, C. F. Li, Y. W. Chang, and C. L. Yang. Efficient obstacle-
avoiding rectilinear Steiner tree construction. In Proc. Int. Symp. Phys. Des., pages
380–385. ACM, Austin, TX, 2007.

[51] J. Y. Long, H. Zhou, and S. O. Memik. EBOARST: An efficient edge-based obstacle-
avoiding rectilinear Steiner tree construction algorithm. IEEE Trans. on Comput.-Aided
Des. Integr. Circuits Syst., 27 (2008), 2169–2182.

[52] C. H. Liu, S. Y. Yuan, S. Y. Kuo, and Y. H. Chou. An O(n log n) path-based obstacle-
avoiding algorithm for rectilinear Steiner tree construction. In Proc. Des. Autom. Conf.,
pages 314–319. ACM, San Francisco, CA, 2009.

[53] G. Ajwani, C. Chu, and W. K. Mak. FOARS: FLUTE based obstacle-avoiding rectilin-
ear Steiner tree construction. In Proc. Int. Symp. Phys. Des., pages 27–34. ACM, San
Francisco, CA, 2010.

[54] L. Li, Z. Qian, and Evangeline F. Y. Young. Generation of optimal obstacle-avoiding
rectilinear Steiner minimum tree. In Proc. Int. Conf. Comput.-Aided Des., pages 21–25,
2009.

[55] T. Huang, L. Li, and Evangeline F. Y. Young. On the construction of optimal obstacle-
avoiding rectilinear Steiner minimum trees. IEEE Trans. on Comput.-Aided Des. Integr.
Circuits Syst., 30 (2011), 718–731.

[56] T. Huang and Evangeline F. Y. Young. Obstacle-avoiding rectilinear Steiner minimum
tree construction: An optimal approach. In Proc. Int. Conf. Comput.-Aided Des., pages
610–613. IEEE, San Jose, CA, 2010.

1140 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[57] T. Huang and Evangeline F. Y. Young. An exact algorithm for the construction of
rectilinear Steiner minimum trees among complex obstacles. In Proc. Des. Autom. Conf.,
pages 164–169. ACM, San Diego, CA, 2011.

[58] J. M. Smith and J. S. Liebman. Steiner trees, Steiner circuits and the interference
problem in building design. Eng. Opt., 4 (1979), 15–36.

[59] M. D. Moffitt, J. A. Roy, and I. L. Markov. The coming of age of (academic) global
routing. In Proc. Int. Symp. Phys. Des., pages 148–155. ACM, Portland, OR, 2008.

[60] M. Pan and C. Chu. FastRoute: A step to integrate global routing into placement. In
Proc. Int. Conf. Comput.-Aided Des., pages 464–471. IEEE, San Jose, CA, 2006.

[61] Y. Zhang and C. Chu. RegularRoute: An efficient detailed router with regular routing
patterns. In Proc. Int. Symp. Phys. Des., pages 45–52. ACM, Santa Barbara, CA, 2011.

[62] J. A. Roy and I. L. Markov. Seeing the forest and the trees: Steiner wirelength
optimization in placement. IEEE Trans. on Comput.-Aided Des. Integr. Circuits Syst.,
26(4) (2007), 632–644. ACM, San Diego, CA.

[63] H. Chen, C. Qiao, F. Zhou, and C. K. Cheng. Refined single trunk tree: A rectilinear
Steiner tree generator for interconnect prediction. In Proc. Int. Work. Sys. Interc. Pred.
pages 85–89, 2002.

C H A P T E R 44

Fixed-Parameter Algorithms
and Complexity
Venkatesh Raman

Saket Saurabh

CONTENTS

44.1 Introduction . 1142
44.2 Algorithmic Techniques to Prove FPT . 1144

44.2.1 Kernelization . 1145
44.2.1.1 Vertex Cover . 1146
44.2.1.2 Kernel via Crown Decomposition—Max-SAT 1147
44.2.1.3 Other Recent Upper Bounds . 1149
44.2.1.4 Kernelization Lower Bounds . 1149

44.2.2 Bounded Search Trees . 1152
44.2.2.1 Vertex Cover . 1153
44.2.2.2 Feedback Vertex Set . 1153
44.2.2.3 Vertex Cover above LP . 1154

44.2.3 Iterative Compression . 1156
44.2.4 Randomized Fixed-Parameter Algorithms . 1157

44.2.4.1 α-Covering Based Randomized Algorithms 1158
44.2.4.2 Color Coding . 1159
44.2.4.3 Chromatic Coding . 1160

44.2.5 Important Separators . 1162
44.2.5.1 Important Vertex Separators in Undirected Graphs 1162
44.2.5.2 Algorithm for Multiway Cut . 1165

44.2.6 Well-Quasi-Ordering . 1166
44.2.7 Bounded Treewidth Machinery . 1168
44.2.8 Subexponential Algorithms and Bidimensionality . 1170

44.3 Ecology of Parameters . 1171
44.3.1 Parameterizing beyond the Guarantee Bounds . 1171
44.3.2 Structural Parameters . 1172
44.3.3 Backdoors to Satisfiability . 1173

44.4 Parameterized Intractability . 1173
44.4.1 Example Reductions . 1174
44.4.2 Exponential Time Hypothesis and Stronger Lower Bounds 1178

44.4.2.1 Exponential Time Hypothesis . 1178
44.4.2.2 Strong Exponential Time Hypothesis: s∞=1 1181
44.4.2.3 Lower Bound on FPT Algorithms . 1181
44.4.2.4 W [1]-Hard Problems . 1183
44.4.2.5 Problems Parameterized by Treewidth . 1183

C5955–C0044.tex 1141 2015/11/4 8:22pm

1141

1142 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

44.5 FPT and Approximation . 1185
44.5.1 Approximation in FPT Time for W -Hard Problems . 1186
44.5.2 Approximation Parameterized by Cost . 1186

44.6 Conclusions . 1186

The theory of parameterized computational complexity, pioneered by Downey and
Fellows, is motivated by the observation that many NP-complete problems have as input

several parameters, some of which are likely to be small in practice. While the classical notion
of feasible computation is associated with an algorithm whose running time is a polynomial
in the input size, parameterized complexity strengthens it by allowing exponential running
time in the (small) parameters associated with the input.

Since the advent of this paradigm, a number of developments have happened in the last
30 years. For example, the theory has helped explain to some extent, why some problems are
solvable reasonably well in practice despite being NP-complete. The theory has also led to
the development of interesting new algorithmic techniques, new combinatorial, computational
and complexity theoretic questions and answers. While showing NP-completeness has been
a classical direction to show that a problem is unlikely to have a polynomial time algorithm,
parameterized complexity and connections to exponential time hypothesis provide a method
to show tighter lower bounds for such problems.

In this chapter, we survey the recent developments in the area starting from the basic
notions. We highlight algorithmic techniques including iterated compression, kernelization,
and separator–based algorithms. We also outline how the same problem can have different
complexities when parameterized differently and also discuss connections to approximation.
The notions of fixed-parameter intractability, including connections to the exponential time
hypothesis on satisfiability, and lower bounds on kernelizations are also discussed.

44.1 INTRODUCTION

It is a widely held notion that polynomial-time computability captures feasible computa-
tion and NP-completeness identifies hard problems in this framework. However, the NP-hard
problems can not be wished away and have to be handled algorithmically. One prominent
approach to dealing with NP-hard optimization problems is to settle for polynomial-time
computable (good) approximate solutions. Another, more classical, approach is to identify
subclasses of instances of NP-hard problems, which are feasibly solvable. Both approaches
have attained a reasonable degree of success [1–3]. Parameterized complexity can be consid-
ered as a refinement of the latter approach. Here exact solutions are sought for, and that the
structure in the input is parameterized. Algorithms are designed and analyzed as a function
of both the input size and the parameter.

It is not hard to see that useful parameters (besides the input size) are abound in an
input in practice. Typical graph parameters include a measure of how close the graph is to
a tree or a bipartite graph or a planar graph, the maximum degree of the graph, or the
size of the solution sought for. An instance for the satisfiability problem has a number of
parameters including the number of variables, the number of clauses, the number of 1s in
a satisfying assignment sought for, the maximum number of variables in any clause, a mea-
sure of how close the instance is to a polynomially solvable instance and so on. In short,
every input instance comes with a number of parameters besides the input size, and param-
eterized complexity provides a framework to perform a multivariate algorithmic complexity
analysis.

C5955–C0044.tex 1142 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1143

The central notion of feasibility in parameterized complexity is fixed-parameter tractabil-
ity. A computational problem with input x of size n, and a parameter k (k can, in practice
represent multiple parameters) is said to be fixed-parameter tractable (FPT) if it can be
solved by an algorithm running in time f(k)+nc where c is a constant independent of k, and
f is a (typically exponential or worse) function of k alone (Algorithms with running time
f(k)nc are also said to be fixed-parameter tractable, and both notions are equivalent). If the
instances occurring in practice have some small parameters and if the problem is FPT under
those parameterizations, then they can be solved well in practice.

Since the advent of the paradigm of parameterized complexity, there have been significant
progress in obtaining practical algorithms for problems with multiple parameterization. The
following is a sample of such algorithms (some of these have been discovered earlier than
parameterized complexity came into picture as a paradigm).

• Simplex algorithm gives an O(nd) (assuming d < n) algorithm for the linear pro-
gramming problem on d variables and n constraints. However, Megiddo [4] gave an
algorithm for the problem that takes O(22O(d)

n) time, which makes the problem FPT
when parameterized by the number of variables.

• Given an undirected graph G, the achromatic number is the largest number of colors
that can be assigned to the vertices of G so that adjacent vertices are assigned different
colors and any two different colors are assigned to some pair of adjacent vertices. Given
a graph G and an integer k, it is NP-complete to determine whether G has achromatic
number at least k. However, it can be determined in O(f(k) + |E(G)|) time whether
G has achromatic number at least k for some function f(k) [5].
Note that such a result is not conceivable for the chromatic number problem as even for
a fixed k > 2, it is NP-complete to check whether the graph has chromatic number k.

• Given an undirected graph G on n vertices, and an integer k, it is NP-complete [6] to
determine whether G has a vertex cover of size at most k; however there is now an
O(kn + (1.2738)k) [7] algorithm to answer this question.
Furthermore, in polynomial (in n and k) time, one can reduce the graph G to a graph
G′ with at most 2k vertices such that G has a vertex cover of size at most k if and only
if G′ has one such. G′ is said to be a kernel for vertex cover.

• Given an undirected graph G on n vertices, and an integer k, it is NP-complete [6] to
determine whether G has a feedback vertex set (FVS; a subset of vertices whose deletion
makes G acyclic) of size at most k; however there is now an O(3.83kn) [8] algorithm to
answer this question. As in the case of vertex cover, undirected FVS problem has an
O(k2)-sized kernel.
The corresponding version for the directed graph has an O(4kk!n) algorithm. It is still
open whether the directed FVS has a polynomial-sized kernel.

The (first) linear programming example shows that the paradigm is applicable even for
polynomially solvable problems. In the other examples above, the parameter is the solution
size. The following are some examples where the parameter is different from the solution size.

• Consider the decision version of the maximum cut problem which asks whether a given
undirected graph has a partition of the vertex set into two such that at least k edges
go across the partition (such edges are said to form a cut).
It can be shown that in any graph on m edges, it is easy to find a partition such that
at least m/2 edges go across the partition. Hence the decision version of the problem

C5955–C0044.tex 1143 2015/11/4 8:22pm

1144 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

becomes trivial if k ≤ m/2 and for larger values of k, m ≤ 2k and hence any brute
force algorithm becomes a FPT algorithm.

However a more natural parameterization is to parameterize above the guaranteed
bound of m/2, and it is known [9] that it is FPT to determine whether the graph has
a cut of size at least m/2 + k.

• For the satisfiability problem where the input is a propositional formula, we discussed
a number of parameters earlier in this section. One parameter is how far (in terms of
number of variables that need to be fixed) the instance is from an instance which is
satisfiable by an all 0 assignment (also called 0-valid formula). It can be determined in
O(2.85k +nO(1)) time [10] whether a given propositional formula in conjunctive normal
form (CNF) form has at most k variables, setting of whom to 1 can result in a 0-valid
formula.

• A natural parameter for graphs is how far the input is from a tree. This measure is
captured by a notion called treewidth (see Section 44.2.7 for definitions). It is known
that if the treewidth of a graph is w, then the independent set problem can be solved
in 2w + nO(1) time [11] (see also Section 44.4.2). Hence independent set is FPT when
parameterized by treewidth of the given graph.

Some of the FPT results above are obtained through techniques that have been developed
during the last few years to deal with parameterized problems. Some of these techniques are
elementary but powerful while others are based on the deep Robertson Seymour graph minor
theorems and bounded treewidth machinery (see Section 44.2).

Parameterized versions of the dominating set problem and the clique problem, on the
other hand, have only an nΩ(k) algorithm where k is the size of the solution being sought
and n is the size of the input. A completeness theory [12] in this framework explains this
qualitative difference (of dominating set and clique compared to other problems mentioned
before) that have been developed over the years to prove.

One of the main goals of this chapter is to survey some of the algorithmic techniques, and
the lower bound and completeness theory. While we try to be as comprehensive as possible,
due to the explosion of work in the area, and our own biases, we are bound to omit some
of the research in the area. We refer to the recent monographs [11,13,14], surveys and the
community wiki (http://fpt.wikidot.com/fpt-races) for other avenues to read more about the
area.

Section 44.2 illustrates the algorithmic techniques through several examples. This section
covers major algorithmic techniques including kernelization, bounded search trees, random-
ization, important separators, automata-based algorithms that use graph minor theory, and
algorithms using bounded treewidth machinery. Section 44.3 discusses recent results on mul-
tiple parameterizations of the given input. In Section 44.4 we look at the completeness theory
of which includes various complexity classes and parameterized reductions. We also discuss
lower bound connections to exponential time hypothesis. In Section 44.5, we look at the rela-
tionship between fixed-parameter tractability and approximability of optimization problems.
In Section 44.6, we conclude with recent developments.

Throughout this chapter, sometimes we refer to f(k)nO(1) as O∗(f(k)).

44.2 ALGORITHMIC TECHNIQUES TO PROVE FPT

Demonstrations of FPT sometimes uses novel approaches that shift the complexity burden
onto the parameter. Some of these approaches run counter to our established practices of

C5955–C0044.tex 1144 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1145

thought in designing polynomial time algorithms. In the parameterized setting, as Downey
and Fellows [13] say, “the parameter can be ‘sacrificed’ in interesting ways.”

44.2.1 Kernelization

Kernelization or preprocessing is a commonly used paradigm by practitioner while imple-
menting algorithms. Parameterized complexity gives a formal framework to analyze such
preprocessing algorithms. This is a paradigm where a lot of recent exciting progress has
happened, in proving both upper and lower bounds.

The idea of this method is to reduce (but not necessarily solve) the given problem instance
to an equivalent smaller-sized instance in time polynomial in the input size. Note, however
that the input instance of a NP-hard problem can not always be reduced (in size of the
input) in polynomial time, for we could use such a reduction algorithm repeatedly to actually
solve the problem in polynomial time. However, the parameter plays a valuable secondary
measure and kernelization talks about reducing the input size to a function of the parameter
in polynomial time.

We now turn to the formal notion that captures the notion of kernelization, which is what
most heuristics do when applied to a problem. A data reduction rule for a parameterized
language L is a function ϕ : Σ∗ ×N → Σ∗ ×N that maps an instance (x, k) of L to an
equivalent instance (x′, k′) of L such that

1. ϕ is computable in time polynomial in |x| and k;

2. |x′| ≤ |x|.

Two instances of L are equivalent if (x, k) ∈ L if and only if (x′, k′) ∈ L.
In general, a kernelization algorithm consists of a finite set of data reduction rules such

that by applying the rules to an instance (x, k) (in some specified order) one obtains an
instance (x′, k′) with the property that |x′| ≤ g(k) and k′ ≤ g(k), for some function g only
depending on k. Such a reduced instance is called a problem kernel and g(k) is called the
kernel size. Formally, this is defined as follows.

Definition 44.1 Kernelization, Kernel [15] A kernelization algorithm for a parameterized
problem Π ⊆ Σ∗ ×N is an algorithm that, given (x, k) ∈ Σ∗ ×N, outputs, in time polynomial
in (|x| + k), a pair (x′, k′) ∈ Σ∗ ×N such that (a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π and
(b) |x′|, k′ ≤ g(k), where g is some computable function. The output instance x′ is called the
kernel, and the function g is referred to as the size of the kernel. If g(k) = kO(1), then we
say that Π admits a polynomial kernel.

It is important to mention here that the early definitions of kernelization required that k′ ≤ k.
On an intuitive level this makes sense, as the parameter k measures the complexity of the
problem—thus the larger the k, the harder the problem. This requirement was subsequently
relaxed, notably in the context of lower bounds. An advantage of the more liberal notion of
kernelization is that it is robust with respect to polynomial transformations of the kernel.
However, it limits the connection with practical preprocessing. All the kernels mentioned in
this survey respect the fact that the output parameter is at most the input parameter, that
is, k′ ≤ k.

If we have a kernelization algorithm for a problem for which there is some (with any
running time) algorithm to decide whether (x, k) is a YES instance, then clearly the problem
is FPT, as the reduced instance x is simply a function of k (and independent of the input
size n). However, a surprising result is that the converse is also true.

C5955–C0044.tex 1145 2015/11/4 8:22pm

1146 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Lemma 44.1 [16] If a parameterized problem Q is FPT via a computable function then it
admits kernelization.

Proof. Suppose that there is an algorithm deciding if x ∈ Q in time f(k) + |x|c for some
computable function f and constant c. If |x|c ≥ f(k), then we run the decision algorithm on
the instance in time f(k)+|x|c ≤ 2|x|c. If the decision algorithm outputs yes, the kernelization
algorithm outputs a constant size yes instance, and if the decision algorithm outputs no, the
kernelization algorithm outputs a constant size no instance. On the other hand, if |x|c < f(k),
then the kernelization algorithm outputs x. This yields a kernel of size (f(k))1/c for the
problem. �

Thus, in a sense, kernelizability can be another way of defining FPT. However, kernels
obtained by this theoretical result are usually of exponential (or even worse) size, while
problem-specific data reduction rules often achieve quadratic (g(k) = O(k2)) or even linear-
size (g(k) = O(k)) kernels. So a natural question for any concrete FPT problem is whether it
admits polynomial-time kernelization to a problem kernel that is bounded by a polynomial
function of the parameter (g(k) = O(kO(1))).

We first illustrate the method of kernelization very briefly on two problems: vertex
cover and Max-SAT. Then we outline recent research on upper bounds as well as lower
bounds.

44.2.1.1 Vertex Cover

In this section we give two kernels for vertex cover, one of the quadratic size and the other
having a linear number of vertices. Formally, the problem is defined as follows.

Vertex Cover
Instance: A graph G = (V, E), and a non-negative integer k.

Parameter: k.
Problem: Decide whether G has a vertex cover of size at

most k.

Quadratic (O(k2)) vertex kernel : Clearly if there is a vertex cover of size at most k, it should
have all vertices of degree more than k in the graph (otherwise we need too many vertices to
cover edges incident on any of them).

So the preprocessing algorithm [17] is to delete all vertices of degree more than k after
including them in the solution, and to delete any isolated vertices created in the process.
We repeat this step until no longer possible, at which time we have a graph with maximum
degree at most k. If the resulting graph has more than k2 edges, then the graph can not have
a vertex cover of size at most k and so we stop giving a NO answer (or a trivial NO instance).
Otherwise, the resulting graph is a kernel having at most k2 edges and 2k2 vertices, and we
are to find a vertex cover of size at most k minus the number of vertices we have already
picked in the solution.

Remark 44.1 Note that if we also want the subset of vertices in the solution (vertex cover) to
induce a connected subgraph, then that is the connected vertex cover problem, and the above
kernelization algorithm breaks down. In fact, it turns out that under complexity theoretic
assumptions, connected vertex cover does not have polynomial-sized kernel. See Section 44.2.1
for lower bounds on kernel size.

C5955–C0044.tex 1146 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1147

Linear (O(k)) vertex kernel : A kernel for the problem having linear number of vertices can
be obtained using linear programming techniques.
The well-known integer linear programming (ILP) formulation for vertex cover is as follows.

ILP formulation of Minimum Vertex Cover – ILPVC
Instance: A graph G = (V, E).

Feasible Solution: A function x : V → {0, 1} satisfying edge constraints
x(u) + x(v) ≥ 1 for each edge (u, v) ∈ E.

Goal: To minimize w(x) = Σu∈V x(u) over all feasible solutions x.

In the linear programming relaxation of the above ILP, the constraint x(v) ∈ {0, 1} is replaced
with x(v) ≥ 0, for all v ∈ V . For a graph G, we call this relaxation LPVC(G). Clearly, every
integer feasible solution is also a feasible solution to LPVC(G).

It is known [18] that

• There exists an optimum solution to the LPVC(G) where each variable takes value 0,
1/2 or 1, and that

• There exists an optimum integral solution that contains all the vertices having value 1
in the LP optimum and none of the vertices having value 0 in the LP optimum.

So, the preprocessing algorithm first solves the LP relaxation and returns a NO answer (or
a trivial no instance) if the LP optimum value is more than k (as then the integral optimum
can not be at most k). Then, it deletes all the vertices whose values are 1 or 0 in the LP
optimum, after including in the solution, all vertices whose values are 1. The kernel is the
induced subgraph on the vertices with LP value 1/2, and it is clear that there can not be
more than 2k of them.

2k − c log k vertex kernel : Recently, a few papers [19–21] independently observed a kernel
for vertex cover of size at most 2k − c log k for some constant c. In Narayanaswamy et al.
[21], an algorithm with running time O∗(dk−LP) has been reported for the vertex cover,
where LP is the optimum value of the LP relaxation, and d is a constant [22]. Hence if
k − LP ≤ (c log k)/2, then one can solve the problem (and hence output a trivial kernel) in
polynomial time. Otherwise k − LP > (c log k)/2 which implies that LP < k − (c log k)/2
which implies that the number of vertices (that remain in the kernel) with LP value 1/2 is
at most 2k − c log k.

Note that the number of edges in the reduced graph remains O(k2), and it is known that
this bound can not be improved to O(k2−ϵ) (see Section 44.2.1 on lower bounds for kernels).
Kernels with smaller number of vertices remains open even for special classes of graphs (like
planar graphs).

44.2.1.2 Kernel via Crown Decomposition—Max-SAT

Crown decomposition is a general kernelization technique that can be used to obtain kernels
for many problems. The technique is based on the classical matching theorems of König [23]
and Hall [24].

Definition 44.2 A crown decomposition of a graph G = (V, E) is a partitioning of V as C,
H, and R, where C and H are nonempty and the partition satisfies the following properties.

1. C is an independent set.
2. There are no edges between vertices of C and R, that is, H separates C and R.

C5955–C0044.tex 1147 2015/11/4 8:22pm

1148 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

3. Let E′ be the set of edges between vertices of C and H. Then E′ contains a matching
of size |H|.

Set C can be seen as a crown put on head H of the remaining part R of the royal body. Let us
remark that the fact that E′ contains a matching of size |H| implies that there is a matching
of H into C, that is, a matching in the bipartite subgraph G′ = (C ∪ H, E′) saturating all
the vertices of H.

The following lemma, which establishes that crown decompositions can be found in poly-
nomial time, is the basis for kernelization algorithms using crown decompositions.

Lemma 44.2 (Crown lemma) [25] Let G be a graph without isolated vertices and with at
least 3k + 1 vertices. There is a polynomial time algorithm that either finds a matching of
size k + 1 in G or finds a crown decomposition of G.

We demonstrate the application of crown decompositions on kernelization for Max-SAT.

Maximum satisfiability. Our next example concerns Max-SAT. We are interested in the
following parameterized version of Max-SAT.

Max-SAT
Instance: A CNF formula F , and a non-negative integer k.

Parameter: k.
Problem: Decide whether F has a truth assignment satisfying

at least k clauses.

Theorem 44.1 [26] Max-SAT admits a kernel with at most k variables and 2k clauses.

Proof. Let F be a CNF formula with n variables and m clauses. If we assign values to the
variables uniformly at random, linearity of expectation yields that the expected number of
satisfied clauses is at least m/2. Since there has to be at least one assignment satisfying
at least the expected number of clauses this means that if m ≥ 2k then (F, k) is a yes
instance. In what follows we show how to give a kernel with n < k variables. Whenever
possible we apply a cleaning rule; if some variable does not occur in any clauses, remove the
variable.

Let GF be the variable-clause incidence graph of F . That is, GF is a bipartite graph with
bipartition (X, Y). The set X corresponds to the variables of F and Y corresponds to the
clauses. For a vertex x ∈ X we will refer to x as both the vertex in GF and the corresponding
variable in F . Similarly, for a vertex c ∈ Y we will refer to c as both the vertex in GF and
the corresponding clause in F . In GF there is an edge between a variable x ∈ X and a clause
c ∈ Y if and only if either x, or its negation is in c. If there is a matching of X into Y in GF ,
then there is a truth assignment satisfying at least |X| clauses. This is true because we can
set each variable in X in such a way that the clause matched to it becomes satisfied. Thus
at least |X| clauses are satisfied. Hence, in this case if k ≤ |X| then (F, k) is a yes instance.
Else, k > |X| = n, which is the desired kernel. We now show that if F has at least n ≥ k
variables, then we can in polynomial time, either reduce F to an equivalent smaller instance
or find an assignment to the variables satisfying at least k clauses.

Suppose F has at least k variables. Using Hall’s theorem and a polynomial time algorithm
computing maximum-size matching, we can in polynomial time find either a matching of X
into Y or an inclusion minimal set C ⊆ X such that |N(C)| < |C|. If we found a matching

C5955–C0044.tex 1148 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1149

we are done, as we can satisfy at least |X| ≥ k clauses. So suppose we found a set C as
described. Let H be N(C) and R = V (GF) \ (C ∪ H). Clearly, N(C) ⊆ H, N(R) ⊆ H and
G[C] is an independent set. Furthermore, for a vertex x ∈ C we have that there is a matching
of C \ x into H since |N(C ′)| ≥ |C ′| for every C ′ ⊆ C \ x. Since |C| > |H|, we have that
the matching from C \ x to H is in fact a matching of H into C. Hence (C, H, R) is a crown
decomposition of GF .

We prove that all clauses in H are satisfied in every truth assignment to the variables
satisfying the maximum number of clauses. Indeed, consider any truth assignment t that
does not satisfy all clauses in H. For every variable y in C \ {x} change the value of y such
that the clause in H matched to y is satisfied. Let t′ be the new assignment obtained from t
in this manner. Since N(C) ⊆ H and t′ satisfies all clauses in H, more clauses are satisfied
by t′ than by t. Hence t can not be an assignment satisfying the maximum number of clauses.

The argument above shows that (F, k) is a yes instance to Max-SAT if and only if
(F \ H, k − |H|) is. This gives rise to a simple reduction rule: remove H from F and decrease
k by |H|. This completes the proof of the theorem. �

44.2.1.3 Other Recent Upper Bounds

For vertex cover, the rule that takes high degree vertices into the solution immediately reduces
the maximum degree of the resulting graph, yielding a kernel. It turns out that such a (albeit
more involved) degree reduction rule can be designed for the FVS problem in undirected
graphs (which asks for a set of k vertices whose removal results in a forest), to obtain an
O(k2) kernel for the problem [27]. Improving this bound (at least on the number of vertices)
and the existence of a polynomial-sized kernel for the directed version of the problem are
important open problems.

One of the earliest breakthrough results in kernelization was a linear kernel for the planar
dominating set problem [28]. While the constants in the bound have seen some improvements,
Bodlaender et al. [29] obtains a meta algorithmic results in kernelization that give linear
kernels for a number of other problems in larger classes of graphs. For example, problems
like vertex cover, FVS, and dominating set have linear kernels in a class of graphs called
H-minor free graphs [29,30].

A recent breakthrough result in the area of kernelization is a randomized polynomial-
sized kernel for the odd cycle traversal problem using representations of matroids. See [31,
32] for details. This approach was also used to develop randomized polynomial-sized kernel
for vertex cover above LP (see Section 44.2.2.3 for the definition of the problem).

44.2.1.4 Kernelization Lower Bounds

Lemma 44.1 implies that a problem has a kernel if and only if it is FPT. However, we
are interested in kernels that are as small as possible, and a kernel obtained using Lemma
44.1 has size that equals the dependence on k in the running time of the best-known FPT
algorithm for the problem. The question is—can we do better? In particular, can we get
polynomial-sized kernels for problems that admit FPT algorithms? The answer is that quite
often we can, as we saw in the previous section, but it turns out that there are a number
of problems, which are unlikely to have polynomial kernels. It is only very recently that a
methodology to rule out polynomial kernels has been developed [15,33]. The existence of
polynomial kernels are ruled out, in this framework, by linking the existence of a polynomial
kernel to an unlikely collapse in classical complexity. These developments have deepened the
connection between classical and parameterized complexity.

C5955–C0044.tex 1149 2015/11/4 8:22pm

1150 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

In this section we survey the techniques that have been developed to show kernelization
lower bounds. To begin with, we consider the following problem.

Longest Path
Instance: An undirected graph G = (V, E) and a non-negative integer k.

Parameter: k.
Problem: Does G have a path of length k?

It is well known that the longest path problem can be solved in time O(cknO(1)) using
the method of color-coding [34] (see Section 44.2.4). Is it feasible that it also admits a
polynomial kernel? We argue that intuitively this should not be possible. Consider a large
set (G1, k), (G2, k), . . ., (Gt, k) of instances to the longest path problem. If we make a new
graph G by just taking the disjoint union of the graphs G1, . . ., Gt we see that G contains a
path of length k if and only if Gi contains a path of length k for some i ≤ t. Suppose the
longest path problem had a polynomial kernel, and we ran the kernelization algorithm on
G. Then this algorithm would in polynomial time return a new instance (G′ = (V ′, E′), k′)
such that |V ′| = kO(1), a number potentially much smaller than t. This means that in some
sense, the kernelization algorithm considers the instances (G1, k), (G2, k), . . ., (Gt, k) and in
polynomial time figures out which of the instances are the most likely to contain a path of
length k. However, at least intuitively, this seems almost as difficult as solving the instances
themselves and since the longest path problem is NP-complete, this seems unlikely. We now
formalize this intuition.

Definition 44.3 (Distillation [15])

• An OR-distillation algorithm for a language L ⊆ Σ∗ is an algorithm that receives as
input a sequence x1, . . ., xt, with xi ∈ Σ∗ for each 1 ≤ i ≤ t, uses time polynomial
in

∑t
i=1 |xi|, and outputs y ∈ Σ∗ with (a) y ∈ L ⇐⇒ xi ∈ L for some 1 ≤ i ≤ t

and (b) |y| is polynomial in maxi≤t |xi|. A language L is OR-distillable if there is a
OR-distillation algorithm for it.

• An AND-distillation algorithm for a language L ⊆ Σ∗ is an algorithm that receives as
input a sequence x1, . . ., xt, with xi ∈ Σ∗ for each 1 ≤ i ≤ t, uses time polynomial
in

∑t
i=1 |xi|, and outputs y ∈ Σ∗ with (a) y ∈ L ⇐⇒ xi ∈ L for all 1 ≤ i ≤ t

and (b) |y| is polynomial in maxi≤t |xi|. A language L is AND-distillable if there is an
AND-distillation algorithm for it.

Observe that the notion of distillation is defined for unparameterized problems. Bodlaender
et al. [15] conjectured that no NP-complete language can have an OR-distillation or an
AND-distillation algorithm.

Conjecture 1. (OR-Distillation conjecture [15]) No NP-complete language L is OR-
distillable.

Conjecture 2. (AND-Distillation conjecture [15]) No NP-complete language L is AND-
distillable.

One should notice that if any NP-complete language is distillable, then so are all of them.
Fortnow and Santhanam [33] were able to connect the OR-distillation conjecture to a well-
known conjecture in classical complexity. In particular they proved that if the OR-distillation
conjecture fails, then coNP ⊆ NP/poly, implying that the polynomial time hierarchy [35]
collapses to the third level, a collapse that is deemed unlikely. Until very recently, establishing
a similar connection for the AND-distillation conjecture was one of the central open problems

C5955–C0044.tex 1150 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1151

of the area. It is now established that both conjectures hold up to reasonable complexity-
theoretic assumptions.

Theorem 44.2 [33,36]

• If the OR-distillation conjecture fails, then coNP ⊆ NP/poly.

• If the AND-distillation conjecture fails, then coNP ⊆ NP/poly. �

We are now ready to define the parameterized analogue of distillation algorithms and connect
this notion to the Conjectures 1 and 2.

Definition 44.4 (Composition [15])

• A composition algorithm (also called OR-composition algorithm) for a parameter-
ized problem Π ⊆ Σ∗ × N is an algorithm that receives as input a sequence
((x1, k), . . ., (xt, k)), with (xi, k) ∈ Σ∗ ×N+ for each 1 ≤ i ≤ t, uses time polynomial in∑t

i=1 |xi|+k, and outputs (y, k′) ∈ Σ∗ ×N+ with (a) (y, k′) ∈ Π ⇐⇒ (xi, k) ∈ Π for
some 1 ≤ i ≤ t and (b) k′ is polynomial in k. A parameterized problem is compositional
(or OR-compositional) if there is a composition algorithm for it.

• An AND-composition algorithm for a parameterized problem Π ⊆ Σ∗ ×N is an algo-
rithm that receives as input a sequence ((x1, k), . . ., (xt, k)), with (xi, k) ∈ Σ∗ ×N+ for
each 1 ≤ i ≤ t, uses time polynomial in

∑t
i=1 |xi| + k, and outputs (y, k′) ∈ Σ∗ ×N+

with (a) (y, k′) ∈ Π ⇐⇒ (xi, k) ∈ Π for all 1 ≤ i ≤ t and (b) k′ is polynomial
in k. A parameterized problem is AND-compositional if there is an AND-composition
algorithm for it.

Composition and distillation algorithms are very similar. The main difference between the two
notions is that the restriction on output size for distillation algorithms is replaced by a restric-
tion on the parameter size for the instance the composition algorithm outputs. We define the
notion of the unparameterized version of a parameterized problem L. The mapping of param-
eterized problems to unparameterized problems is done by mapping (x, k) to the string x#1k,
where # < Σ denotes the blank letter and 1 is an arbitrary letter in Σ. In this way, the unpa-
rameterized version of a parameterized problem Π is the language Π̃ = {x#1k | (x, k) ∈ Π}.
The following theorem yields the desired connection between the two notions.

Theorem 44.3 [15,36] Let Π be a compositional parameterized problem whose unparameter-
ized version Π̃ is NP-complete. Then, if Π has a polynomial kernel then coNP ⊆ NP/poly.
Similarly, let Π be an AND-compositional parameterized problem whose unparameterized ver-
sion Π̃ is NP-complete. Then, if Π has a polynomial kernel, coNP ⊆ NP/poly. �

We can now formalize the discussion from the beginning of this section.

Theorem 44.4 [15] Longest path does not admit a polynomial kernel unless coNP ⊆
NP/poly. �

Proof. The unparameterized version of longest path is known to be NP-complete [6]. We
now give a composition algorithm for the problem. Given a sequence (G1, k), . . ., (Gt, k) of
instances we output (G, k) where G is the disjoint union of G1, . . ., Gt. Clearly G contains a
path of length k if and only if Gi contains a path of length k for some i ≤ t. By Theorem 44.3
longest path does not have a polynomial kernel unless coNP ⊆ NP/poly. �

C5955–C0044.tex 1151 2015/11/4 8:22pm

1152 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

An identical proof can be used to show that the longest cycle problem does not admit
a polynomial kernel unless coNP ⊆ NP/poly. For many problems, it is easy to give
AND-composition algorithms. For instance, the disjoint union trick yields AND-composition
algorithms for the treewidth, pathwidth, and cutwidth problems (see Section 44.2.7 for
definitions), among many others. Coupled with Theorem 44.3 this implies that these problems
do not admit polynomial kernels unless coNP ⊆ NP/poly.

For some problems, obtaining a composition algorithm directly is a difficult task. Instead,
we can give a reduction from a problem that provably has no polynomial kernel unless
coNP ⊆ NP/poly to the problem in question such that a polynomial kernel for the problem
considered would give a kernel for the problem we reduced from. We now define the notion
of polynomial parameter transformations.

Definition 44.5 [37] Let P and Q be parameterized problems. We say that P is polynomial
parameter reducible to Q, written P ≤ppt Q, if there exists a polynomial time computable
function f : Σ∗ ×N → Σ∗ ×N and a polynomial p, such that for all (x, k) ∈ Σ∗ ×N (a)
(x, k) ∈ P if and only if (x′, k′) = f(x, k) ∈ Q and (b) k′ ≤ p(k). The function f is called
polynomial parameter transformation.

Proposition 44.1 [37] Let P and Q be the parameterized problems and P̃ and Q̃ be the
unparameterized versions of P and Q, respectively. Suppose that P̃ is NP-complete and Q̃ is
in NP. Furthermore if there is a polynomial parameter transformation from P to Q, then if
Q has a polynomial kernel then P also has a polynomial kernel.

Proposition 44.1 shows how to use polynomial parameter transformations to show kerneliza-
tion lower bounds. A notion similar to polynomial parameter transformation was indepen-
dently used by Fernau et al. [38] albeit without being explicitly defined. We now give an
example of how Proposition 44.1 can be useful for showing that a problem does not admit a
polynomial kernel. In particular, we show that the path packing problem does not admit a
polynomial kernel unless coNP ⊆ NP/poly. In this problem you are given a graph G together
with an integer k and asked whether there exists a collection of k mutually vertex-disjoint
paths of length k in G. This problem is known to be FPT [34] and is easy to see that for this
problem the disjoint union trick discussed earlier does not directly apply. Thus we resort to
polynomial parameter transformations.

Theorem 44.5 Path packing does not admit a polynomial kernel unless coNP ⊆ NP/poly.

Proof. We give a polynomial parameter transformation from the longest path problem. Given
an instance (G, k) to longest path we construct a graph G′ from G by adding k − 1 vertex
disjoint paths of length k. Now G contains a path of length k if and only if G′ contains k
paths of length k. This concludes the proof. �

Dom et al. [39] provides a set of tools combined with colors, ids, compositions, and parameter
preserving reductions to prove a large range of FPT problems do not have a polynomial-
sized kernel. A further refinement to the lower bound technique was proved in Dell and
van Melkebeek [40] where they show that problems like vertex cover and FVS who have
polynomial-sized kernels can not have subquadratic (O(k2−ϵ))-sized kernels under the same
complexity theoretic assumptions. See the works of Bodlaender et al. [41], Dell and Mark [42],
Hermelin and Wu [43], and Kratsch [44] for variations of these techniques. �

44.2.2 Bounded Search Trees

Branching is a classical systematic way of exploring the search space of solutions to obtain
exponential algorithms. The idea here is to first identify, in polynomial time, a small (typically

C5955–C0044.tex 1152 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1153

a constant or some f(k), but even logarithmically many is also fine) subset of elements of
which at least one (or a subset of smaller size) must be in any feasible solution of the
problem. Then we include one of them at a time and recursively solve the remaining prob-
lem with the reduced parameter value. Such search trees are analyzed by measuring the
drop of the parameter in each branch. If we ensure that the parameter (or some measure
bounded by a function of the parameter) drops in each branch, then we will be able to bound
the depth of the search tree by a function of the parameter, resulting in a fixed-parameter
algorithm.

We illustrate this technique with two parameterizations of vertex cover and FVS.

44.2.2.1 Vertex Cover

Let G = (V, E) be the input to the vertex cover and k be the parameter. Our algorithm is
based on the following two simple observations.

• For a vertex v, any vertex cover must contain either v or all of its neighbors N(v).

• Vertex cover can be solved optimally in polynomial time when the maximum degree of
a graph is at most 2.

So our algorithm recursively solves the problem by finding a vertex v of maximum degree in
the graph and if d(v) ≥ 3 then recursively branching on two cases by considering either v in
the vertex cover or N(v) in the vertex cover. When we consider two cases like this, we say
we branch according to v and N(v). And when the maximum degree of the graph is 2, we
solve the problem in polynomial time.

The time complexity of the algorithm can be described by the following recurrence in k.

T (k) =
{

T (k − 1) + T (k − 3) + nO(1) if k ≥ 2
nO(1) if k ≤ 1 .

The above recursive function bounds the size of the search tree and the time spent at each
node in the tree. The above recursive function can be solved by finding the largest root of
the characteristic polynomial λk = λk−1 + λk−3. Using standard mathematical techniques
(and/or symbolic algebra packages) the root is estimated to 1.466.

We could apply this branching step after applying the preprocessing steps outlined in
Section 44.2.1 so that they are applied on a graph on at most 2k vertices.

This gives us the following theorem.

Theorem 44.6 Vertex cover can be solved in O(1.466kkO(1) + nO(1)). �

This simple algorithm also suggests that one could branch on more complex structures
(instead of one containing simply a vertex and its neighbors) and obtain better algo-
rithms. A sequence of improvements have been made resulting in the current best bound
of O(1.2718k + kn) [7].

44.2.2.2 Feedback Vertex Set

In this subsection we study the FVS problem which is formally defined below.

Feedback Vertex Set (FVS)
Instance: An undirected graph G = (V, E), and a non-negative integer k.

Parameter: k.
Problem: Decide whether G has a set of at most k vertices whose removal makes

the graph acyclic.

C5955–C0044.tex 1153 2015/11/4 8:22pm

1154 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

We start with some simple reduction rules that simplifies the input instance. The following
is well known in the literature on FVS problems.

Lemma 44.3 Let G be an undirected multigraph. Perform the following steps as long as
possible.

1. If G has a vertex of degree ≤ 1, remove it (along with the incident edge if any).

2. If G has a vertex x of degree 2 adjacent to vertices y and z, y , x and z , x, short
circuit by removing x and joining y and z by a new edge (even if y and z were adjacent
earlier)

Let G′ be the resulting multigraph. Then G has a FVS of size at most k if and only if G′ has
a FVS of size at most k. �

Clearly the graph G′ is such that each component of G′ has minimum degree at least three
unless that component is either an empty graph or a graph on one vertex with a self-loop (in
which case that component has a FVS of size 1). In the last case we include that vertex in
the FVS and remove it from the graph and decrease the parameter by 1. Thus, the reduced
graph has minimum degree 3. Erdös and Pósa [45] observed that the girth of any undirected
graph G with minimum degree at least 3 is bounded by 2 log n +1. Given such a graph, one
can find in O(n) time a cycle of length at most 2 log n by growing a breadth-first search
(BFS) tree till the first non-tree edge is encountered.

Now clearly any FVS in the graph must have at least one of the vertices in this cycle.
Once a vertex is included in the FVS, all edges incident on it can be removed. Thus iter-
atively pick one of the vertices of the cycle at a time, and recursively check whether the
resulting graph has a FVS of size k − 1. Since the reduction in each step to remove ver-
tices of degree 1 and 2, and to find the short cycle can be performed in O(m + n) time,
it can be verified that the entire algorithm takes O((2 lg n)kn + m) time. Now, though this
running time does not make the algorithm look like a fixed-parameter algorithm as the
exponent k is on top of log n, this should be allowed as a tractable algorithm under practical
considerations. Fortunately,

(2 log n)k ≤ (4k log k)k + n

for all n and k ≤ n, and thus the algorithm is a fixed-parameter algorithm. This gives us the
following theorem.

Theorem 44.7 FVS can be solved in time O((2 lg n)kn + m), or in O((4k log k)kn + nm)
time. �

The bound in Theorem 44.7 has seen systematically improved [8,46–49], resulting in the
current best bound of O∗(3.83k). The best-known algorithms use a clever combination of
the iterated compression (see Subsection 44.2.3) and branching techniques. However, if we
are willing to allow randomization then the problem admits an algorithm with running time
O∗(3k) [19] (see also Subsection 44.2.4).

44.2.2.3 Vertex Cover above LP

Recall the ILP formulation of vertex cover discussed in Section 44.2.1.1.
If the minimum value of LPVC(G) is vc∗(G) then clearly the size of a minimum vertex

cover is at least vc∗(G). This leads to the following parameterization of vertex cover.

C5955–C0044.tex 1154 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1155

Vertex Cover above LP
Instance: An undirected graph G, positive integers k and ⌈vc∗(G)⌉,

where vc∗(G) is the minimum value of LPVC(G).
Parameter: k − ⌈vc∗(G)⌉.

Problem: Does G have a vertex cover of size at most k?

Observe that since vc∗(G) ≥ m, where m is the size of a maximum matching of G, we have
that k − vc∗(G) ≤ k − m.

Before we describe the algorithm we fix some notations. By the phrase an optimum
solution to LPVC(G), we mean a feasible solution with x(v) ≥ 0 for all v ∈ V minimizing
the objective function w(x)=

∑
u∈V x(u). It is well known that for any graph G, there exists

an optimum solution to LPVC(G), such that x(u) ∈ {0, 1/2, 1} for all u ∈ V [50]. Such a
feasible optimum solution to LPVC(G) is called a half integral solution and can be found in
polynomial time [50]. In this section we always deal with half integral optimum solutions to
LPVC(G). Thus, by default whenever we refer to an optimum solution to LPVC(G) we will
be referring to a half integral optimum solution to LPVC(G). Let V C(G) be the set of all
minimum vertex covers of G and vc(G) denote the size of a minimum vertex cover of G. Let
V C∗(G) be the set of all optimal solutions (including non-half integral optimal solution) to
LPVC(G). By vc∗(G) we denote the value of an optimum solution to LPVC(G). We define
V x

i = {u ∈ V : x(u) = i} for each i ∈ {0, 1/2, 1} and define x ≡ i, i ∈ {0, 1/2, 1}, if x(u) = i
for every u ∈ V . Clearly, vc(G) ≥ vc∗(G) and vc∗(G) ≤ |V |/2 since x ≡ 1/2 is always a
feasible solution to LPVC(G). We also refer to the x ≡ 1/2 solution simply as the all 1/2
solution.

To obtain an algorithm for this problem we will use the following well-known reduction
rules that were also useful for linear vertex kernel for vertex cover.

Lemma 44.4 [18,51] For a graph G, in polynomial time, we can compute an optimal so-
lution x to LPVC(G) such that all 1/2 is the unique optimal solution to LPVC(G[V x

1/2]).
Furthermore, there is a minimum vertex cover for G which contains all the vertices in V x

1
and none of the vertices in V x

0 . �

The Lemma 44.4 brings us to the following reduction rule.

Preprocessing Rule 44.1 Apply Lemma 44.4 to compute an optimal solution x to
LPVC(G) such that all 1/2 is the unique optimum solution to LPVC(G[V x

1/2]). Delete the
vertices in V x

0 ∪ V x
1 from the graph after including V x

1 in the vertex cover we develop, and
reduce k by |V x

1 |.
In the discussions in the rest of the section, we say that Preprocessing Rule 44.1 applies if
all 1/2 is not the unique solution to LPVC(G) and that it does not apply if all 1/2 is the
unique solution to LPVC(G).

Our algorithm for vertex cover above LP is same as the one described for vertex cover
in Section 44.2.2.1. After the preprocessing rule is applied exhaustively, we pick an arbitrary
vertex u in the graph and branch on it. In other words, in one branch, we add u into the
vertex cover, decrease k by 1, and delete u from the graph, and in the other branch, we add
N(u) into the vertex cover, decrease k by |N(u)|, and delete {u}∪N(u) from the graph. The
correctness of this algorithm follows from the soundness of the preprocessing rules and the
fact that the branching is exhaustive.

In order to analyze the running time of our algorithm, we define a measure µ = µ(G, k) =
k − vc∗(G). We will first show that our preprocessing rules do not increase this measure.

C5955–C0044.tex 1155 2015/11/4 8:22pm

1156 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Following this, we will prove a lower bound on the decrease in the measure occurring as a
result of the branching, thus allowing us to bound the running time of the algorithm in terms
of the measure µ. For each case, we let (G′, k′) be the instance resulting by the application
of the rule or branch, and let x′ be an optimum solution to LPVC(G′).

Consider the application of Preprocessing Rule 1. We know that k′ = k − |V x
1 |. Since

x′ ≡ 1/2 is the unique optimum solution to LPVC(G′), and G′ comprises precisely the
vertices of V x

1/2, the value of the optimum solution to LPVC(G′) is exactly |V x
1 | less than

that of G. Hence, µ(G, k) = µ(G′, k′).
We now consider the branching step. Consider the case when we pick u in the vertex

cover. In this case, k′ = k − 1. We claim that w(x′) ≥ w(x) − 1/2. Suppose that this is not
the case. Then, it must be the case that w(x′) ≤ w(x)−1. Consider the following assignment
x′′ : V → {0, 1/2, 1} to LPVC(G). For every vertex v ∈ V \ {u}, set x′′(v) = x′(v) and set
x′′(u) = 1. Now, x′′ is clearly a feasible solution and has a value at most that of x. But
this contradicts our assumption that x ≡ 1/2 is the unique optimum solution to LPVC(G).
Hence, w(x′) ≥ w(x) − 1/2, which implies that µ(G′, k′) ≤ µ(G, k) − 1/2. Similarly, we can
also show that in the other case we have that µ(G′, k′) ≤ µ(G, k) − 1/2. We have thus shown
that the preprocessing rules do not increase the measure µ(G, k) and the branching step
results in a (1/2, 1/2) decrease in µ(G, k) = µ, resulting in the recurrence T (µ) ≤ 2T (µ −
1/2) which solves to 4µ = 4k−vc∗(G). Thus we get a 4(k−vc∗(G)) algorithm for vertex cover
above LP.

Theorem 44.8 Vertex cover above LP can be solved in time O∗(4k−vc∗(G)). �

A more involved application of the linear programming paradigm given above results in an
algorithm running in time O∗(2.32k) for vertex cover above LP [22]. The above algorithm
is not only an example of use of linear programming in parameterized algorithms but also
an example of technique called measure and conquer. In a more sophisticated use of this
technique, one comes up with a measure, which is a function of the input and the parameter to
measure the progress in each branching step. We refer to Fomin et al. [52] for an introduction
to measure and conquer as well as its application in obtaining non-trivial exact algorithms
for vertex cover and dominating set.

44.2.3 Iterative Compression

This is a powerful technique that has helped solve several (minimization) problems FPT in
the last decade. In the compression step, one gets hold of a solution of size larger than k (but
still of size a function of k), and the goal is to look for a k-sized solution. Somehow having
the larger sized solution provides a structure to the problem, which one can exploit. Now to
get the larger sized solution, one approach is to appeal to an approximation algorithm for the
problem. The other idea is to iterate on subgraphs of the graph. That is, we find a larger size
solution to a subgraph of the problem (e.g., k +1 vertices form a vertex cover on any induced
subgraph on k + 2 vertices) and if we can not compress the solution to a k-sized solution
for the subgraph, then we can return a NO answer. If we can compress for the subgraph,
then we can include one more vertex to get a large solution for a larger subgraph now. This
process stops when we have considered the entire subgraph.

We illustrate it again on the FVS problem.
Let G be an undirected graph and let v1, . . ., vn be an arbitrary ordering of its vertices.

We use Gi to denote the graph induced on first i vertices, that is, Gi = G[v1, . . ., vi]. Let S
be the set containing the first k + 1 vertices. This set is a FVS for the induced subgraph

C5955–C0044.tex 1156 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1157

Gk+2 on the first k + 2 vertices. In the following compression step, we determine whether
Gk+2 has a FVS of size at most k. Note that if there is such a vertex subset, it will intersect
S in some set Y ⊆ S which could even be empty, but is of size at most k. We guess (i.e., try
all possible such subsets) such a subset Y , delete it from the graph. Now the goal is to find
a FVS of size at most k − |Y | in H = Gk+2 \ Y and disjoint from S \ Y . We delete degree 0
and 1 vertices of H (as they can not be part of any solution). If there is a degree 2 vertex in
H \ S with at least one end point in H \ S, then delete this vertex by making its neighbors
adjacent (even if they were adjacent before; the graph could become a multigraph now). It
is easy to see that these reduction rules produce an equivalent instance.

Note that H \ S is a forest as S is a FVS for H, and hence it has a vertex x whose degree
is at most 1. Also x has at least two neighbors in S \ Y (otherwise any of the reduction rules
would have applied). If x has two neighbors in the same component of G[S \ Y], then x must
be in any FVS we are seeking, and so we include it in the solution, decrease the parameter by
1 and delete it from the graph and continue. Otherwise x connects at least two components of
G[S\Y]. Now branch by including x in the solution in one branch and excluding it in the other
branch. In the branch we include k decreases by 1. In the branch we exclude it, x is added to
S \ Y (these are vertices which are excluded from the proposed FVS), and as x connects at
least two components of G[S \Y], the number of components in G[S \Y] decreases by at least
1. So if we use a measure µ = k−|Y |+c where c is the initial number of components in G[S\Y],
then µ decreases by at least 1 in each branch resulting in a 2µ = 2k−|Y |+c algorithm for this
step. Clearly, c is at most k − |Y |. Thus, the overall running time for the compression step is
bounded by

k∑
i=0

(
k+1
i

)
22k−2ind

is at most 5k+1nd where d is a constant. The nd bound is the time spent in each branching
step, which is primarily the time for deleting the selected vertices.

Now if there is no FVS of size at most k in H, then there is no such FVS in G and so we
can return a NO answer. If we do get a FVS of size at most k in H, then we can add to that
set the vertex k + 3 to get a new S, a FVS of size at most k + 1 in Gk+3, and we repeat the
compression step on Gk+3. This process stops when we applied the compression step on Gn

or we return a NO answer in between. Clearly this algorithm takes 5knd+1. This bound has
been improved to 3.83knc for some constant c in Cao et al. [8].

This idea of compression and iterating was first introduced by Reed et al. [53] to prove the
odd cycle traversal problem (are there k vertices whose deletion results in a bipartite graph)
FPT. This idea has been used to prove a number of minimization problems FPT. These
include directed FVS [54] and almost-2-SAT [55]. See [56] for an application of iterated
compression for the above guarantee vertex cover problem which asks whether there is a
vertex cover of size at most k more than the size of the maximum matching in a given graph.
See [57] for an application of iterated compression for determining whether a given perfect
graph has cochromatic number (the minimum number of cliques and independent sets, the
graph can be partitioned into) at most k.

44.2.4 Randomized Fixed-Parameter Algorithms

Randomization is a powerful paradigm in algorithms and complexity. It has also been useful
in designing FPT algorithms. In this section we touch upon three commonly used approaches
to design-randomized FPT algorithms.

C5955–C0044.tex 1157 2015/11/4 8:22pm

1158 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

44.2.4.1 α-Covering Based Randomized Algorithms

Consider the following simple randomized algorithm for the vertex cover problem on a graph
on n vertices and m edges.

Repeat for k steps (or until the resulting graph has no edges, whichever is
earlier).

• Choose an edge of the graph uniformly at random (i.e., each edge is
chosen with probability 1/m).

• Choose one of the two vertices of the edge uniformly at random into
the solution S, and delete it from the graph.

Vertex cover : Let X be a vertex cover G of size at most k, if exists. Then, it is clear that
the probability that the above randomized algorithm will pick a vertex of X in one step, is
at least 1/2 (note that this applies even if we pick an arbitrary, but not a random, edge, in
the first step), and hence will pick X in k steps is at least 1/2k. Thus the probability that
the algorithm will pick a vertex cover of size at most k is at least 1/2k. Hence, if we just
repeat the algorithm until it finds a vertex cover of size at most k, then this algorithm will
find one such vertex cover in expected O∗(2k) time.

Feedback vertex set : It turns out that the above algorithm, after the standard preprocessing
rules described in Lemma 44.3, also picks a feedback vertex cover of size at most k if there
exists one, though in slightly worse expected time.

Let X be a FVS of size k. Note that G[V \ X] is a forest, and hence has at most n − k − 1
edges. Thus, there are at least m − n + k + 1 ≥ n/2 + k + 1 edges that have at least one end
point in X (as the graph has minimum degree 3, m ≥ 3n/2). That is, at least one-third of the
edges has at least one end point in X, and hence our algorithm will pick these edges in the
first step with probability at least 1/3 and will pick a vertex in X with probability at least
1/6. Hence, repeating these two steps k times, our algorithm will find X with probability
at least 1/6k. Thus if we repeat these k steps until we find a set whose deletion results in a
forest, the algorithm will take an expected O∗(6k) time. With a careful analysis, this can be
made to run in O∗(4k) time [58]. Note that we needed the preprocessing rules to ensure this
bound.

The algorithm described above not only works for vertex cover and FVS but for a large
collection of problems. These problems are best described as follows. Let G be the set of all
finite connected undirected graphs and let L be the family of all finite subsets of G . Thus
every element F ∈ L is a finite set of connected graphs. Also assume that F is explicitly
given. Then one can define the following F -deletion problem.

F-Deletion
Instance: A graph G and a non-negative integer k.

Parameter: k.
Question: Does there exist S ⊆ V (G), |S| ≤ k,

such that G \ S contains no graph from F as a minor?

See Section 44.2.6 for definitions of a minor.
Here, we would be only interested in the case when F ∈ L contains at least one

planar graph. This problem encompasses a number of the well-studied instances of F -

C5955–C0044.tex 1158 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1159

deletion. For example, when F = {K2}, a complete graph on two vertices, this is the vertex
cover problem. When F = {C3}, a cycle on three vertices, this is the FVS problem. An-
other fundamental problem, which is a special case of F -deletion, is treewidth η-deletion
or η-transversal which is to delete at most k vertices to obtain a graph of treewidth at
most η. Since any graph of treewidth η excludes a (η + 1) × (η + 1) grid as a minor, we
have that the set F of forbidden minors of treewidth η graphs contains a planar graph.
Among other examples of F -deletion that can be found in the literature on approxima-
tion and parameterized algorithms, are the cases of F being {K2,3, K4}, {K4}, {θc}, and
{K3, T2}, which correspond to removing vertices to obtain an outerplanar graph, a series-
parallel graph, a diamond graph, and a graph of pathwidth one, respectively. See [59] for
more details.

It turns out that the algorithm described for vertex cover and FVS above works for
F -deletion when F ∈ L contains a planar graph. But observe that to get the desired
probability computation for FVS, it was important that the input graphs was preprocessed to
have a minimum degree 3. We need similar kind of preprocessing for F -deletion. Observe that
we already have a notion of preprocessing in terms of kernelization. The goal of kernelization
is to apply reduction rules such that the size of the reduced instance can be upper bounded
by a function of the parameter. However, if we want to use preprocessing for approximation
or FPT algorithms, it is not necessary that the size of the reduced instance has to be upper
bounded. What we need is a preprocessing procedure that allows us to navigate the solution
search space efficiently. Toward this a notion of α-cover is introduced in Fomin et al. [60].
For 0 < α ≤ 1, we say that a vertex subset S ⊆ V (G) is an α-cover, if the sum of vertex
degrees

∑
v∈S d(v) is at least 2α|E(G)|. For example, every vertex cover of a graph is also a

1-cover. The defining property of this preprocessing is that the equivalent simplified instance
of the problem admits some optimal solution, which is also an α-cover. If we succeed with
this goal, then for an edge selected uniformly at random, with a constant probability at least
one of its endpoints belongs to some optimal solution. Using this as a basic step, we can
construct FPT algorithms for F -deletion. The preprocessing for these problems is captured
by protrusion reduction described in Bodlaender et al. [29]. A detailed algorithm is described
in Fomin et al. [60].

44.2.4.2 Color Coding

Alon et al. [34] developed a generic randomized technique called color coding, that works for a
number of parameterized problems. We demonstrate this on the longest path problem. Note
that the problem is NP-complete as it is simply the decision version of the well-known NP-
complete Hamiltonial path problem. Finding a simple path directly involves keeping track of
the vertices already visited, and this search may require nk searches which is precisely what
we are trying to avoid. The work around Alon et al. came up with, was to color the vertices
randomly from 1 to k, and find a path on k vertices, if exists, whose colors are distinct. Now,
finding such a path involves only keeping track of the colors and they argued (see [34] for
details) that this can be done in O(2km) time using simple dynamic programming techniques.
Note, however that the graph may have a simple path of length k, but all its vertices may not
be colored distinctly by this random coloring and hence we may miss finding it in the first
step. But the probability of this happening is at most 1 − k!/kk which is at most 1 − (e−k).
That is, the algorithm finds a simple path of length k, if exists, with probability at least
e−k. Hence, if we repeat this algorithm until we find a path will all colors distinct, then in
O∗((2e)k) expected time, we can find a simple path of length k if exists.

More generally, this algorithm can be modified to finding a subset of k vertices that form
a cycle or a tree or a subgraph of treewidth at most constant. Furthermore, this algorithm

C5955–C0044.tex 1159 2015/11/4 8:22pm

1160 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

can be derandomized by using functions from a (n, k) perfect hash family, which are of size
2O(k) log n. See [34] for more details. Also see [61] for polynomial space implementation of
algorithms based on color-coding.

This idea of color coding has been generalized to divide and color [62], chromatic-coding
[63] and randomized monomial testing [64] to obtain faster parameterized algorithms for
finding a k-sized subgraph of bounded treewidth in an input graph. Also see [65] for the
best-known deterministic algorithm for finding a k-sized subgraph of bounded treewidth in
an input graph.

44.2.4.3 Chromatic Coding

The idea of chromatic coding or color and conquer as it is sometimes referred to in litera-
ture, is intuitively based on the idea that in the yes instances of edge deletion/modification
problems, the number of edges in the solution is bounded and therefore, using a sufficiently
large number of colors and a random coloring of vertices, the edges in the solution set can
be guaranteed to be properly colored with sufficiently large probability. Once this random
coloring step is successfully completed, the problem instance seems to have a nice structure,
which can be exploited for algorithmic applications. In particular, after a successful coloring,
we can observe the following:

1. The subgraph induced on each color class is an element of the graph class for which
the edge modification problem has to be solved.

2. All the solution edges go across color classes.

The next step is typically an algorithm to solve the problem on this colored instance. The
next step of course would be to repeat the coloring procedure sufficiently large number of
times to obtain a constant error probability. In Alon et al. [63], the authors also present a
scheme to derandomize the algorithm using Universal Coloring Families at the cost of some
increase in running time. The description and presentation of this section is taken from Ghosh
et al. [66]. We demonstrate the paradigm by obtaining a subexponential time algorithm for
the following problem.

Split Edge Deletion (SED)
Instance: An undirected graph G = (V, E), and a non-negative integer k.

Parameter: k.
Problem: Does there exist a set of edges of size at most k whose deletion from G

results in a split graph?

This algorithm consists of three steps. In the first step, we reduce the instance (G, k) to
an equivalent instance (G′, k′) with at most O(k2) vertices. In the second step, we color
the vertices of the graph uniformly at random and we prove that with a sufficiently high
probability, all the edges of some k-sized solution (if one exists) are non-monochromatic.
Finally, we give an algorithm to check if a colored instance of split edge deletion (SED) has
a non-monochromatic SED set of size at most k.

Kernelization. We first apply the kernelization algorithm described in Ghosh et al. [66]
which, given an instance (G, k) of SED, in polynomial time, returns an equivalent instance
(G′, k′) of SED such that the number of vertices in G′ is O(k2) and k′ ≤ k. The instance
(G′, k′) is called a reduced instance. In the rest of this section, we will assume that the given
instance of SED is a reduced instance.

C5955–C0044.tex 1160 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1161

Probability of a good coloring. We now color the vertices of G independently and uni-
formly at random with

√
8k colors and let Ac be the set of non-monochromatic edges.

Suppose that (G = (V, E), k) is a Yes instance and let A ⊆ E be a solution to this
instance. We now show that the probability of A being contained in Ac is at least 2−O(

√
k).

We begin by estimating the probability of obtaining a proper coloring (making all the
edges non-monochromatic) when applying the above random experiment on a graph with
k edges.

Lemma 44.5 [63] If the vertices of a graph on q edges are colored independently and uni-
formly at random with

√
8q colors then the probability that G is properly colored is at least

(2e)−
√

q/8. �

Now, since we colored each vertex of the graph G independently, the graph induced on the
set A, of size at most k, will be properly colored with probability at least 2−O(

√
k), which

gives us the following lemma.

Lemma 44.6 Let (G = (V, E), k) be a Yes instance of SED which is colored by the random
process described above, and let A ⊆ E be a solution for this instance. The probability that
no edge in A is monochromatic is at least 2−O(

√
k). �

Solving a colored instance. We now present an algorithm to test if there is a colorful (all
edges non-monochromatic) SED set in a given colored instance of SED. In the colored
instance, every vertex is colored with one of

√
8k colors. We start with the following simple

observation.

Observation 44.1 Let G = (V1
∪

V2
∪

. . .
∪

Vt, E) be a t-colored graph. If there exists a
colorful SED set A in G, then G[Vi] is a split graph for every Vi.

Proof. Since A is a colorful set, each of the subgraphs G[Vi] is an induced subgraph of G \ A.
But G \ A is a split graph, and every induced subgraph of a split graph is also split. Hence,
G[Vi] is a split graph. �

We now proceed to the description of the algorithm. Suppose the given instance had a
colorful SED set A. Observation 44.1 implies that G[Vi] is a split graph and it remains a
split graph in G \ A. Hence, we enumerate the split partitions of G[Vi] for each i. Fixing
a split partition for each G[Vi] results in a combined split partition for the vertices in V .
There are O(k2) split partitions for each Vi and O(

√
k) such sets. Hence, there are kO(

√
k)

many combined split partitions. Now, it simply remains to check if there is a combined split
partition (C ⊎ I) such that the number of edges in the graph G[I] is at most k and return
Yes if and only if there is one such combined split partition. Hence, we have the following
lemma.

Lemma 44.7 Given a colored instance (G, k) of SED of size O(k2), we can test if there is
a colorful SED set of size at most k in time 2O(

√
k log k). �

Combining Lemmas 44.6 and 44.7, we get the following theorem.

Theorem 44.9 There is a randomized FPT algorithm for SED running in time
2O(

√
k log k) + nO(1) with a success probability of at least 2−O(

√
k). �

C5955–C0044.tex 1161 2015/11/4 8:22pm

1162 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

S1
S4

S5

S2

S3

x1

X

(a)

Y

x2

x3

y1

y2

y3

S1
S4

S5

S2

S3

x1

X

Y

x2

x3

y1

y2

y3

(b)

Figure 44.1 S1 = {s1, s2, s3} and S2 = {s3, s4, s5} are two X − Y vertex separators. But S2
also separates vertices of Y while S1 does not.

44.2.5 Important Separators

Given a graph G = (V, E) disjoint vertex sets X and Y , suppose we would like to find a
minimum set of vertices in G whose removal disconnects X from Y and also disconnects every
pair of vertices in Y . In such cases, if chosen carefully, the set of vertices which we choose
to separate X from Y will also help us in separating some pairs of vertices in Y . Intuitively,
the closer the vertices are to Y , the better the chance of them separating vertices in Y and
hence some separators seem to be more important than others. The sets S1 = {s1, s2, s3}
and S2 = {s3, s4, s5} (see Figure 44.1) are sets of the same size which separate X and Y .
But by our intuition, S2 is more important for us since it also separates the vertices in Y .
This intuition was formalized in Marx [67] and was used to give an FPT algorithm for the
multiway cut problem defined below. The same concept was used implicitly in Chen et al.
[68] to give an improved algorithm for the same problem. The same concept was used by
Chen et al. [54] to resolve the fixed-parameter tractability of the directed FVS problem and
by Razgon and O’Sullivan [55] to prove the fixed-parameter tractability of the almost 2-Sat
problem.

Multiway Cut
Instance: A graph G = (V, E), T ⊆ V of terminals and a non-negative integer k.

Parameter: k.
Question: Does there exist S ⊆ V \ T , |S| ≤ k,

such that in G \ S there is no path between any pair of vertices in T?

44.2.5.1 Important Vertex Separators in Undirected Graphs

Definition 44.6 Let G = (V, E) be an undirected graph and let X ⊆ V . We denote by δ(X)
the vertices of G \ X which have a neighbor in X. We define the function f̃ : 2V → N as
f̃(X) = |δ(X)|.

C5955–C0044.tex 1162 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1163

Definition 44.7 Let G = (V, E) be an undirected graph, let X ⊆ V and S ⊆ V \ X. We
denote by RG(X, S) the set of vertices of G reachable from X in G\S. We drop the subscript
G if it is clear from the context.

Definition 44.8 Let Z be a finite set. A function f : 2Z → R is submodular if for all subsets
A and B of Z, f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B).

Lemma 44.8 Let G = (V, E) be an undirected graph and let f̃ : 2V → N be a function
defined as above. Then the function f̃ is submodular.

Definition 44.9 [67] Let G = (V, E) be an undirected graph and let X, Y ⊂ V be two
disjoint vertex sets. A subset S ⊆ V \ (X ∪ Y) is called an X − Y vertex separator in G
if RG(X, S) ∩ Y = ϕ or in other words there is no path from X to Y in the graph G \ S.
We denote by λG(X, Y) the size of the smallest X − Y vertex separator in G. An X − Y
separator S1 is said to dominate an X − Y separator S with respect to X if |S1| ≤ |S| and
R(X, S1) ⊃ R(X, S). If the set X is clear from the context, we just say that S1 dominates S.
An X − Y vertex separator is said to be inclusionwise minimal if none of its proper subsets
is an X − Y vertex separator.

Proposition 44.2 If R ⊇ X is any vertex set disjoint from Y such that δ(R) ∩ Y = ϕ then
δ(R) is an X − Y vertex separator.

Proof. This is because any path from X to Y in G must contain a vertex of δ(R). Consider
a path P from u ∈ X to v ∈ Y in G. Since u ∈ R and v < R, P must contain a vertex w
which is outside R and is neighbor to a vertex in R implying that w ∈ δ(R). �

Definition 44.10 [67] Let G = (V, E) be an undirected graph, X, Y ⊂ V be disjoint vertex
sets and S ⊆ V \ (X ∪ Y) be an X − Y vertex separator in G. We say that S is an important
X −Y vertex separator if it is inclusionwise minimal and there does not exist another X −Y
vertex separator S1 such that S1 dominates S with respect to X. If S ⊂ V is an important
X − Y vertex separator then the set R(X, S) is called an important set and the subgraph
G[R(X, S)] is called an important component if it is connected.

Lemma 44.9 [67] Let G = (V, E) be an undirected graph, X, Y ⊂ V be disjoint vertex sets.
There exists a unique important X − Y vertex separator S∗ of size λG(X, Y).

Proof. Consider a minimum size X −Y vertex separator of size λG(X, Y). Since it is minimal,
this separator is either important or there is another that dominates it. Hence, there is at
least one important X − Y vertex separator of size λG(X, Y). Now we show that there can
not be two such important X − Y vertex separators.

Suppose S1 and S2 are two important X − Y vertex separators of size λG(X, Y) where
S1 , S2 and let R1 = R(X, S1) and R2 = R(X, S2). We know that R1, R2 ⊃ X, and by
the minimality of S1 and S2, δ(R1) = S1 and δ(R2) = S2. But S1, S2 ∩ Y = ϕ. Hence by
Proposition 44.2 the sets δ(R1 ∪ R2) and δ(R1 ∩ R2) are also X − Y vertex separators and
hence f̃(R1 ∪ R2), f̃(R1 ∩ R2) ≥ λG(X, Y). By the submodularity of f̃ (Lemma 44.8), we
have that

f̃(R1)︸ ︷︷ ︸
=λG(X,Y)

+ f̃(R2)︸ ︷︷ ︸
=λG(X,Y)

≥ f̃(R1 ∪ R2)︸ ︷︷ ︸
≥λG(X,Y)

+ f̃(R1 ∩ R2)︸ ︷︷ ︸
≥λG(X,Y)

which implies that f̃(R1 ∪ R2) = λG(X, Y). But this contradicts our assumption that S1 and
S2 were important X − Y vertex separators since δ(R1 ∪ R2) is an X − Y vertex separator
which dominates both S1 and S2.

C5955–C0044.tex 1163 2015/11/4 8:22pm

1164 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Note: In future we will continue to refer to the unique smallest important X − Y vertex
separator as S∗ without explicit reference to Lemma 44.9. �

Lemma 44.10 [69] Let G = (V, E) be an undirected graph, X, Y ⊂ V be disjoint vertex sets
and let S be an important X − Y vertex separator. Then R(X, S) ⊇ R(X, S∗).

Proof. Suppose that this is not the case and let R1 = R(X, S) and R2 = R(X, S∗) where
S , S∗. We know that R1, R2 ⊃ X and the minimality of S and S∗ implies that δ(R1) = S
and δ(R2) = S∗. But S, S∗ ∩ Y = ϕ. Hence, by Proposition 44.2, the sets δ(R1 ∪ R2) and
δ(R1 ∩ R2) are also X − Y vertex separators and hence f̃(R1 ∪ R2), f̃(R1 ∩ R2) ≥ λG(X, Y).
By the submodularity of f̃ (Lemma 44.8) we have that

f̃(R1) + f̃(R2)︸ ︷︷ ︸
=λG(X,Y)

≥ f̃(R1 ∪ R2) + f̃(R1 ∩ R2)︸ ︷︷ ︸
≥λG(X,Y)

which implies that f̃(R1 ∪ R2) ≤ f̃(R1). But this contradicts our assumption that S was
an important X − Y vertex separator since δ(R1 ∪ R2) is an X − Y vertex separator which
dominates S. �

Lemma 44.11 Let G = (V, E) be an undirected graph, X, Y ⊂ V be disjoint vertex sets and
S be an important X − Y vertex separator.

a. S is a {v} − Y vertex separator for every v ∈ R(X, S).

b. For every v ∈ S, S \ {v} is an important X − Y vertex separator in G \ {v}.

c. If S is an X ′ − Y vertex separator for some X ′ ⊃ X such that X ′ is reachable from X
in G[X ′], then S is also an important X ′ − Y vertex separator.

Proof.

1. Suppose this were not the case. Since v ∈ R(X, S) there is a path from X to v in G\S.
Now since there is also a path from v to Y , this implies the existence of a path from
X to Y in G \ S. But, this is not possible since S is an X − Y vertex separator.

2. Suppose S′ = S \ {v} is not an important X − Y vertex separator in G′ = G \ {v}.
Then there is an X − Y vertex separator S1 in G′ which dominates S′ in G′. Consider
the set S2 = S1 ∪ {v}. Observe that S2 is also an X − Y vertex separator in G. This is
because any path from X to Y which does not contain v exists in G′ and hence must
contain a vertex of S2. Now, since S1 dominates S′ in G′, S2 dominates S in G which
contradicts our assumption that S is an important X − Y vertex separator.

3. Assume that this is not the case. Since S is a minimal X −Y vertex separator, S is also
a minimal X ′−Y vertex separator. Therefore, if S is not an important X ′−Y separator
it must be the case that there is an X ′ − Y vertex separator S1 which dominates S
with respect to X ′. We will show that S1 also dominates S with respect to X, which
contradicts our assumption that S is an important X − Y vertex separator. Clearly,
|S1| ≤ |S|. Hence it is enough for us to show that R(X, S) ⊂ R(X, S1).

First we prove that R(X, S) ⊆ R(X, S1). Consider a vertex v in R(X, S). Clearly R(X ′, S) ⊇
R(X, S), which means that v ∈ R(X ′, S) and since S1 dominates S with respect to X ′, v is

C5955–C0044.tex 1164 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1165

in R(X ′, S1). By our assumption we have that the vertices reachable from X in G \ S1 and
those reachable from X ′ in G \ S1 are the same implying that v ∈ R(X, S1).

Now consider some vertex u ∈ S \ S1. By the minimality of S, u has a neighbor w in
R(X, S). But w is also in R(X, S1) which implies that u ∈ R(X, S1) and hence R(X, S) ⊂
R(X, S1). �
The following lemma is implicit in Chen et al. [68].

Lemma 44.12 [68] Let G = (V, E) be an undirected graph, X, Y ⊂ V be disjoint vertex sets
of G. For every k ≥ 0 there are at most 4k important X − Y vertex separators of size at
most k.

Proof. Given G, X, Y, k ≥ 0 we define a measure µ(G, X, Y, k) = 2k − λG(X, Y). We prove
by induction on µ(G, X, Y, K) that there are at most 2µ(G,X,Y,k) important X − Y vertex
separators of size at most k.

For the base case, if 2k − λG(X, Y) < k then λG(X, Y) > k and hence the number of im-
portant separators of size at most k is 0. If λG(X, Y) = 0, it means that there is no path from
X to Y and hence the empty set alone is the important X−Y vertex separator. For the induc-
tion step, consider G, X, Y, k ≥ 0 such that µ = µ(G, X, Y, k) ≥ k, λG(X, Y) > 0 and assume
that the statement of the Lemma holds for all G′, X ′, Y ′, k′ where µ(G′, X ′, Y ′, k′) < µ.

By Lemma 44.9, there is a unique important X −Y vertex separator S∗ of size λG(X, Y).
Since we have assumed λG(X, Y) to be positive, S∗ is non empty. Consider a vertex v ∈ S∗.
Any important X − Y vertex separator S either contains v or does not contain v. For any
important X − Y vertex separator S which contains v, S \ {v} is an important X − Y
vertex separator in G\{v} (Lemma 44.11(b)). Hence the number of important X −Y vertex
separators containing v, of size at most k in G is at most the number of important X − Y
vertex separators of size at most k −1 in G\{v}. Observe that λG\{v}(X, Y) = λG(X, Y)−1
which implies that µ(G \ {v}, X, Y, k − 1) < µ and by induction hypothesis, the number of
important X −Y vertex separators of size at most k −1 in G\{v} is bounded by 2µ−1 which
is also a bound on the number of important X − Y vertex separators in G which have size
at most k and contain v.

Now let S be an important X − Y vertex separator of size at most k which does not
contain v. By Lemma 44.10 we know that R(X, S) ⊇ R(X, S∗) and by the minimality of
S∗, v has a neighbor in R(X, S) which implies that R(X, S) ⊇ R(X, S∗) ∪ {v}. We now set
X ′ = R(X, S∗)∪{v}. By Lemma 44.11(c) we know that S is also an important X ′ −Y vertex
separator. Thus a bound on the number of important X ′ − Y vertex separators of size at
most k is also a bound on the number of important X −Y vertex separators of size at most k
which do not contain v. First note that λG(X ′, Y) > λG(X, Y) since otherwise we would have
an X − Y vertex separator which dominates S∗ with respect to X. Now, µ(G, X ′, Y, k) < µ

and by induction hypothesis, the number of important X ′ − Y vertex separators of size at
most k is bounded by 2µ−1.

Summing up the bounds we get that the number of important X − Y separators of size
at most k is bounded by 2 · 2µ−1 = 2µ ≤ 22k. �

44.2.5.2 Algorithm for Multiway Cut

In this section we give a FPT algorithm for multiway cut. Next we show a lemma that proves
that important separators are sufficient to separate a terminal from the set of terminals.

Lemma 44.13 [67] Let (G = (V, E), T, k) be an instance of multiway cut. If (G, T, k) is a
Yes instance then it has a solution Ŝ such that a minimal subset of Ŝ separating t1 from
T \ {t1} is an important t1 − T \ {t1} vertex separator.

C5955–C0044.tex 1165 2015/11/4 8:22pm

1166 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. Let S ⊆ V be a minimal solution and let S1 be a minimal subset of S such that G \ S
has no t1 − T \ {t1} path. If S1 is the empty set, it must be the case that there is no path
from t1 to T \ {t1} in G. By definition, S1 is an important t1 − T \ {t1} vertex separator
and we are done by setting Ŝ = S. Hence, we will assume that S1 is non-empty. If S1 is an
important t1 − T \ {t1} vertex separator, we are done by setting Ŝ = S. Suppose that this is
not the case.

Since S1 is a minimal t1 − T \ {t1} vertex separator which is not important, there is a
t1 − T \ {t1} vertex separator S2 which dominates S1. Set Ŝ = (S \ S1) ∪ S2. We claim that
Ŝ is a solution of this instance, which satisfies the statement of the lemma. Clearly |Ŝ| ≤ |S|
and the minimal part of Ŝ separating t1 from T \ {t1} is S2 which by our assumption is an
important t1 − T \ {t1} vertex separator.

It remains for us to prove that Ŝ is a multiway cut of T . Suppose this is not so and let
there be a path P from ti to tj in G \ Ŝ. Since S was a multiway cut of T , P contains a
vertex v ∈ S1 \ S2 and hence there is a path P ′ from v to T . Since S1 was minimal, v has a
neighbor u in R(t1, S1). Now, R(t1, S1) ⊂ R(t1, S2) and v < S2. Hence, it must be the case
that v ∈ R(t1, S2). But then, S2 is a t1 − T \ {t1} vertex separator and there is a path from
v ∈ R(t1, S2) to T which is not possible by Lemma 44.11(a). This concludes the proof of the
lemma. �

Theorem 44.10 Multiway cut can be solved in time 4k2
nO(1). �

Proof. The algorithm for multiway cut works as follows. Given a set T of terminals, let ti

be a terminal such that there is a path from ti to T \ {ti}. Now we try to separate ti from
the rest of terminals. By Lemma 44.13 we know that if there is a solution S that separates
all pairs in T then there is one that contains an important ti − T \ {ti} separator. So for
the algorithm we enumerate all the ti − T \ {ti} important separators using Lemma 44.12
(observe that the proof can be made algorithmic by making it a recursive algorithm). Since
there is a path from ti to T \ {ti} we have that each important separators has size at
least one. For each important separator X, we delete X from G and try to separate the
remaining terminals from each other as described above with at most k − |X| vertices. Since
in each branch k drops by at least one we have that the search tree has depth at most k.
Since the branching factor is at most 4k, we have that the branching algorithm runs in time
4k2

nO(1). �

A refined analysis of the algorithm described in Theorem 44.10 results in an algorithm with
running time 4knO(1). The best-known algorithm for multiway cut runs in time 2knO(1) [70]
and is based on ideas similar to the one described for the algorithm for veretx cover above
LP. Marx and Razgon [69] showed that multicut is FPT using the ideas described in this
section and a technique called randomized selection of important separators.

44.2.6 Well-Quasi-Ordering

The set of natural numbers is well-ordered since every two natural numbers are comparable,
that is, for any two numbers a and b such that a , b, either a < b or b < a. An unusual way
to describe a well-ordered set is to say that it contains no anti-chain of length at least 2,
where an anti-chain is a sequence a1, a2, . . ., ak such that for every i , j we have ai , aj and
neither ai < aj nor ai > aj . We can relax the notion of well-ordering, and say that a set S
is well-quasi-ordered under a relation < if every anti-chain in S is finite.

C5955–C0044.tex 1166 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1167

Robertson and Seymour (2004) proved in their graph minors project that the set of graphs
is well-quasi-ordered under the minor relation, thereby proving the graph minor theorem and
resolving Wagner’s conjecture [71]. This gives a very powerful and interesting way to prove
a variety of parameterized problems FPT.

We start with some definitions. A graph H is a minor of a graph G, written H ≤m G
if a graph isomorphic to H can be obtained from G by a sequence of the operations: (1)
taking a subgraph, and (2) contracting an edge. While contracting an edge, its both end
points become identified to a single vertex which is made adjacent to all the vertices that
were adjacent to the end points of the edge.

A family of graphs F is closed under the minor order if G ∈ F and H ≤m G imply
H ∈ F .

Proposition 44.3 (Graph minor theorem [72]) The set of graphs is well-quasi-ordered
under the minor relation.

Consider a graph class G that is closed under taking minors. That is, if G ∈ G and H ≤m G
then H ∈ G as well. Consider the set of graphs F consisting of all graphs not in G such
that all their minors are in G. We call this set the set of forbidden minors of G. Notice
that every graph G that is not in G must have some minor in F . Notice also that by def-
inition, F is an antichain, and that by the graph minor theorem F is finite. Hence, to
check whether G belongs to G it is sufficient to check for every H ∈ F whether G con-
tains H as a minor. To this end, the following theorem, also from the graph minors project,
is useful.

Proposition 44.4 [73] For every fixed graph H there is an O(n3) time algorithm to check
for an input graph G whether H ≤M G.

Combining the graph minors theorem with Proposition 44.4 yields that every minor closed
graph class G can be recognized in O(n3) time, where the constant hidden in the big-Oh
notation depends on G. To put this in terms of parameterized algorithms—the problem of
deciding whether G belongs to a minor closed class G is FPT parameterized by G.

Corollary 44.1 [74] Vertex cover is FPT.

Proof. We prove that if a graph G has a vertex cover C of size at most k then so do all the
minors of G. For any edge e ∈ E(G), C is a vertex cover of G\e. Similarly for any v ∈ V (G),
C \ {v} is a vertex cover of G \ v. Finally, for an edge uv ∈ E(G) let Guv be the graph
obtained by contracting the edge uv and let u′ be the vertex obtained from u and v during
the contraction. Then, every edge in E(G) with u or v being one of its endpoints will have
u′ as its endpoint in Guv. Hence, if neither u nor v is in C then C is a vertex cover of Guv.
If u ∈ C or v ∈ C then (C \ {u, v}) ∪ {u′} is a vertex cover of size at most k of Guv. Hence,
for a fixed integer k ≥ 0 the class Ck of graphs that have a vertex cover of size at most k is
closed under taking minors.

By Theorem 44.3 Ck has a finite set Fk of forbidden minors. By Proposition 44.4, for
each H ∈ Fk we can decide whether G contains H as a minor in time O(f(|H|)n3) for some
function f : N→ N. Let h be the size of the largest graph in Fk. Then deciding whether a
particular graph G is in Ck can be done in time O(|Fk|f(h)n3). �

For a fixed minor closed graph class G, consider the following problem. Input is graph G and
integer k. The parameter is k and the objective is to determine whether there exists a set

C5955–C0044.tex 1167 2015/11/4 8:22pm

1168 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

vertex set S of size at most k such that G \ S ∈ G. The proof of Corollary 44.1 can easily be
modified to show that for any fixed minor closed graph class G this problem is FPT.

Though this technique puts a lot of problems (some of which were not even known
to be decidable earlier, see [74, 75] in FPT, there are two drawbacks with this approach.
First, the minor testing algorithm of Robertson and Seymour has really huge constant of
proportionality. The second, the more major, drawback is that the graph minor theorem
is non-constructive. That is, the theorem simply guarantees the existence of a finite ob-
struction set without giving any means of identifying the elements of the set, the cardi-
nality of the set, or even the order of the largest graph in the set. To handle these prob-
lems for which only an existence of a fixed-parameter algorithm is known, Downey and
Fellows calls these problems nonuniformly FPT (these are problems for which there is a
constant α and a sequence of algorithms Φx such that, for each x ∈ N , Φx computes Lx

in time O(nα)).
Fortunately, for some of these problems, uniform fixed-parameter tractability is known

using our earlier techniques. Furthermore, Fellows and Lungston [74–77] have developed
some general techniques using self-reducibility and a graph theoretic generalization of Myhill
Nerode theorem of formal language theory [76], to algorithmically construct the obstruction
set along the way, for some of these problems thereby proving them uniformly FPT.

We refer to the survey of Downey and Thilikos [78] for a detailed overview of this method.

44.2.7 Bounded Treewidth Machinery

The notion of treewidth which is a measure of the graph to indicate how tree-like the graph
is, was introduced by Robertson and Seymour [79].

Definition 44.11 Let G = (V, E) be a graph. A tree decomposition of G is a pair ({Xi|i
∈ I}, T = (I, F)) with {Xi|i ∈ I} a family of subsets of V , and T a tree, with the following
properties:

•
∪

i∈I Xi = V .

• Every edge e = (v, w) ∈ E, there is an i ∈ I with v ∈ Xi and w ∈ Xi.

• For every v ∈ V , the set {i|v ∈ Xi} forms a connected subtree of T .

The treewidth of a tree decomposition ({Xi|i ∈ I}, T) is max{i∈I}(|Xi|−1). The treewidth of
G, denoted by treewidth(G), is the minimum treewidth of a tree decomposition of G, taken
over all possible tree decompositions of G.

There are several alternative ways to characterize the class of graphs with treewidth
≥ k, for example, as partial k-trees [80]. A large number of NP-complete (and other) graph
problems can be solved in polynomial and even linear time when restricted to graphs with
constant treewidth [81,82] especially if the tree decomposition is given.

Parameterized problems where the parameter is the treewidth of the input graph G are
often tackled by doing dynamic programming over the tree decomposition of G. In partic-
ular it has been shown that independent set, vertex cover, and dominating set in graphs of
treewidth at most k can be solved in time O(2kkO(1)n), O(2kkO(1)n), and O(4kn), respec-
tively [11]. Many other problems admit fast dynamic programming algorithms in graphs of
bounded treewidth.

A very useful tool for showing that a problem is FPT parameterized by treewidth is
the celebrated Courcelle’s theorem, which states that every problem expressible in Monadic
second-order logic is FPT parameterized by the treewidth of the input graph. For a graph
predicate ϕ expressed in MSO2 let |ϕ| be the length of the MSO2 expression for ϕ.

C5955–C0044.tex 1168 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1169

Theorem 44.11 (Courcelle’s theorem [83]) There is a function f : N ×N → N and
an algorithm that given a graph G together with a tree-decomposition of G of width t and a
MSO2 predicate ϕ decides whether ϕ(G) holds in time f(|ϕ|, t)n. �

To apply Courcelle’s theorem on a specific problem we need to show that the problem is
expressible in monadic second-order logic. For example, consider the independent set problem.
Here we are given as input a graph G, a tree-decomposition of G of width t and an integer k.
The objective is to decide whether G has an independent set of size at least k. We formulate
the independent set problem in MSO2. That is, a graph G has an independent set of size k
if and only if the following predicate holds:

ϕ(G) = ∃v1, v2, . . ., vk ∈ V (G) : v1 , v2 ∧ ¬adj(v1, v2), v1 , v3 ∧ ¬adj(v1, v3),
. . . v2 , v3 ∧ ¬adj(v2, v3), . . . vk−1 , vk ∧ ¬adj(vk−1, vk).

Observe that the length of the predicate ϕ depends only on k, and not on the size of the
graph G. Hence, by Theorem 44.11, there is an algorithm that given a graph G together
with a tree-decomposition G of width at most t and an integer k decides whether G has an
independent set of size at least k in time f(k, t)n for some function f . In fact, it is not really
necessary that the tree-decomposition of G is given. Due to a result of Bodlaender [84], a
tree-decomposition of width t of a graph G of treewidth t can be computed in time f(t)n for
some function f .

Theorem 44.12 (Bodlaender’s theorem [84]) There is a function f : N → N and an
f(t)n time algorithm that given a graph G and integer t decides whether G has treewidth at
most t, and if so, constructs a tree-decomposition of width at most t. �

Hence, combining Theorems 44.11 and 44.12 yields that there is a function f :N×N→N
and an algorithm that given a graph G of treewidth t and a MSO2 predicate ϕ decides
whether ϕ(G) holds in time f(|ϕ|, t)n. For example, by the discussion in the previous
paragraph there is an algorithm that given a graph G of treewidth t and an integer k
decides whether G has an independent set of size at least k in time f(t, k)n for some
function f .

Theorem 44.11 has been generalized even further. For instance it has been shown that
MSO2-optimization problems are FPT parameterized by the treewidth of the input graph.
In a MSO2-minimization problem you are given a graph G and a predicate ϕ in MSO2
that describes a property of a vertex (edge) set in a graph. The objective is to find a vertex
(edge) set S of minimum size such that ϕ(G, S) holds. In a MSO2-maximization problem
the objective is to find a set S of maximum size such that ϕ(G, S) holds.

Theorem 44.13 [85,86] There is a function f : N ×N → N and an algorithm that given
a graph G of treewidth t and a MSO2 predicate ϕ finds a largest (smallest) set S such that
ϕ(G, S) holds in time f(|ϕ|, t)n. �

Turning our attention back to the independent set problem, we can observe that by applying
Theorem 44.13 we can obtain a stronger result than from Theorem 44.11. In particular, the
independent set can be expressed as a MSO2-maximization problem as follows:

max |S| s.t:ϕ(G, S) = ∀v1, v2v1 = v2 ∨ ¬adj(v1, v2) holds

Hence, by Theorem 44.13 there is an algorithm that given a graph G of treewidth t as input
can find a maximum size independent set in time f(t)n for some function f .

Another way to generalize Theorem 44.11 is to consider larger classes of graphs than
graphs of bounded treewidth. In particular, if we restrict the predicate ϕ to MSO1 logic,
Theorem 44.13 can be extended to graphs of bounded cliquewidth.

C5955–C0044.tex 1169 2015/11/4 8:22pm

1170 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 44.14 [87] There is a function f : N × N → N and an algorithm that given
a graph G and a clique-expression G of width t and a MSO1 predicate ϕ finds a largest
(smallest) set S such that ϕ(G, S) holds in time f(|ϕ|, t)n. �

There are natural problems expressible in MSO2 but not in MSO1. Examples include Hamil-
tonian cycle and max cut.

Treewidth concept has also been used to prove some parameterized problems FPT in the
following way. For these parameterized problems, fixing the parameter k implies that the yes-
instances (or sometimes the no-instances) have treewidth bounded by a function of k. We first
use Theorem 44.12 for such problems to identify whether the treewidth of the given graph
is that bounded function of k (otherwise it will be a no or yes instance appropriately) and if
so we get the tree decomposition as well from Theorem 44.12. Given the tree decomposition,
we apply the polynomial time algorithm for the problem for bounded treewidth graphs, thus
obtaining a FPT algorithm.

We illustrate this technique through the longest cycle problem. That is, given an undi-
rected graph G, and an integer parameter k, does G have a cycle of length at least k? We
first need the following result.

Theorem 44.15 [88] There exists an O(cknO(1)) algorithm to find the longest cycle (or
longest path) in a given graph G that is given together with a tree decomposition of G with a
treewidth ≤ k. �

Now to find whether a given graph G has a cycle of length at least k, first grow a depth-
first tree rooted at any vertex noting the depth-first number for each vertex. When a back
edge is encountered, if the difference between the two DFS numbers is at least k − 1, we
have already encountered a cycle of length at least k. Otherwise, once the DFS tree T is
constructed, for all v ∈ V , let Xv be the set containing v and its at most k − 2 direct pre-
decessors in T . Then ({Xv|v ∈ V }, T) is a T -based tree decomposition of G of treewidth
at most k − 2. Thus, we have that the no instances of the problem have treewidth at most
k − 2. Thus (by using Theorem 44.12 or by the DFS tree method above) we can find a
cycle of length at least k or find a tree decomposition of width at most k − 2. In the
latter case, we apply the above theorem to test for the existence of a cycle of length k
or more.

We refer to the book by Courcelle and Engelfriet [89] for an interplay between algebraic
graph transformations and logic.

44.2.8 Subexponential Algorithms and Bidimensionality

Many parameterized problems are optimization problems parameterized by the objective
function value. The objective function is said to be bidimensional, if the optimal value of
an n × m-grid is O(nm), and if the optimal value of any minor H of G is at most the
optimal value o¡/comment¿f G. A parameterized problem is bidimensional if the input is a
graph G and an integer k which is the parameter, and the objective is to determine whether
the optimal value of a bidimensional objective function on G is at most k. Most bidimensional
problems exhibit nice algorithmic properties on planar graphs. In particular, it was proved by
Demaine et al. [90] that any bidimensional problem which can be solved in time 2O(t+k)nO(1)

on graphs of treewidth t admits a 2O(
√

k)nO(1) time algorithm in planar graphs. The results
proved in Demaine et al. [90] are for more general classes of graphs and more general classes
of problems than considered here. We demonstrate how these ideas apply to vertex cover in
planar graphs. We will need two propositions about treewidth and graph minors that we will

C5955–C0044.tex 1170 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1171

use as black boxes. Notice that if a minor of G has treewidth at least t then the treewidth
of G is also at least t.

Proposition 44.5 (Excluded grid theorem [91]) Every planar graph G of treewidth at
least t contains a t/4 × t/4-grid as a minor.

Proposition 44.6 [92] The treewidth of planar graphs can be 3/2-approximated in polyno-
mial time.

We explain how to exploit the above propositions to show that vertex cover in planar graphs
can be solved in time 2O(

√
k). As observed in Section 44.2.6, if a graph has a vertex cover

of size at least k, then so do all its minors. Observe also that the size of a minimum vertex
cover of a k × k grid is at least k2/2.

Theorem 44.16 [90,93,94]. There is an 2O(
√

k)nO(1) time algorithm for vertex cover on
planar graphs.

Proof. On an input instance (G, k) we perform a test in polynomial time—we run the 3/2-
approximation for treewidth on G, and let t be the width of the decomposition returned by the
approximation algorithm. We have two possible outcomes, either (2t/3 ∗ 4)2/2 = t2/72 > k

or not. If not, then we can find an optimal vertex cover in time O(2tnO(1)) ≤ 2O(
√

(k)nO(1)

by applying the 2tnO(1) time dynamic programming algorithm for vertex cover in graphs
of bounded treewidth [11]. If t2/72 > k then G contains a (

√
2k + 1 ×

√
2k + 1) grid as a

minor. The size of the minimum vertex cover of this grid is more than k and hence (G, k) is
a no-instance. �

Algorithms of the above type can be given for any bidimensional problem which can be solved
efficiently in graphs of bounded treewidth, and several survey papers have been written on
bidimensionality [90,93–97].

44.3 ECOLOGY OF PARAMETERS

Parameterized complexity grew out of the realization that most problem inputs come with
some natural parameters that are likely to be small. However, much of the early work on
parameterized complexity focused on the solution size as the parameter (barring the ex-
ceptions of treewidth and some problems on strings; see [11]). Here we outline some recent
paradigms that have departed from this parameterization.

44.3.1 Parameterizing beyond the Guarantee Bounds

For a number of optimization problems, there is some (upper or lower) bound for the optimum
solution, and hence the problem becomes trivial for small values of k, the solution size (see
examples below).

• In any graph on n vertices and maximum degree ∆, any vertex cover must have size
at least n/∆. Any dominating set must have size at least n/(∆ + 1).

• In any Boolean CNF formula on m clauses, there is an assignment that satisfies at least
m/2 clauses.

• In any graph on m edges, there is a cut with at least m/2 edges; that is, there is a
partition of the vertex set into two such that at least m/2 edges go between the two
parts.

C5955–C0044.tex 1171 2015/11/4 8:22pm

1172 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

• In any planar graph on n vertices, there is an independent set of size at least n/4 (as
the graph can be properly colored with 4 colors).

• In any graph, the size of the vertex cover is at least the size of the maximum matching,
In particular, if the graph on n vertices has a perfect matching, then any vertex cover
must have size at least n/2.

Hence the parameterized versions of these problems become trivial when k is small (e.g., for
the parameterized version of the cut problem which asks where there is a cut of size at least
k, the answer is trivially YES if k ≤ m/2), and when k is large, the input itself becomes
a trivial kernel, and the standard brute force algorithm becomes a FPT algorithm. But
these algorithms are not practical, as k, for the situation when these algorithms are applied,
is large.

To deal with this anomaly, Mahajan and Raman [9] introduced the notion of parameter-
izing beyond the guarantee. So the parameter is not the solution size, but the value of the
solution minus the lower bound, which can range from small to moderate values for most
instances.

At the other extreme, one can also obtain trivial upper bounds for the solution size for
most of these problems, and one can parameterize away from those upper bounds (e.g., a cut
of size at least m−k, a vertex cover of size at most n−k). Such parameterizations are similar to
what Niedermierr [11] calls the distance from triviality. See [98] for more examples and some
hardness results even for such parameterizations. See [99] for an extensive study on such pa-
rameterizations for a number of problems, in particular, for constraint satisfaction problems.

Most optimization problems can be formulated as ILP problems. And for such minimiza-
tion problems, the optimum value of the linear programming relaxation gives a lower bound
on the solution size. Cygan et al. [70] introduced the idea of parameterizing above this LP
lower bound and Narayanaswamy et al. [21] and Lokshtanov et al. [22] have carried this
forward to obtain impressive bounds for vertex cover above the maximum matching bound.
In addition, by showing reductions from a number of problems (with standard parameteriza-
tion) to this problem, Narayanaswamy et al. [21] and Lokshtanov et al. [22] obtain improved
bounds for a number of vertex deletion problems including odd cycle traversal and split
vertex deletion. See [31, 32] for randomized polynomial-sized kernel for these problems.

44.3.2 Structural Parameters

Another way to parameterize the distance from triviality is to look at the input instance
itself and see how far it is from a trivial (or a simpler class of) input(s).

For example, graphs having small vertex covers are, in some sense, close to edgeless
graphs. Graphs having small FVS are close to forests. Graphs having small odd cycle traver-
sals are close to bipartite graphs. This suggests using some structural parameter (like the size
of a vertex cover or a FVS or an odd cycle traversal) as the given parameter. For example,
while treewidth as a measure of how tree-like the graph was, worked for generalizing the
dynamic programming algorithms on trees, the size of the FVS can be another useful mea-
sure for how close to a forest the graph is.

An early work on this due to Cai [100] on graph coloring has been revived recently.
See [101] for parameterized algorithms for problems parameterized by vertex cover or the
size of the maximum leaf-spanning tree. Fellows et al. [102] has explored this in multiple
directions including obtaining polynomial kernels for problems parameterized by other struc-
tural parameters.

C5955–C0044.tex 1172 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1173

44.3.3 Backdoors to Satisfiability

As was mentioned in the introduction, one area where parameterized complexity has played a
major role is in explaining how practical solvers for satisfiability could solve, in a few seconds,
instances having millions of variables while the problem is NP-complete and hence a feasible
algorithm for general instances is unlikely. The answer lies in formally identifying hidden
structures in practical input instances. A relevant notion in that direction is the notion of a
backdoor set, a set of variables of a propositional formula such that fixing the truth value of
the variables places the formula into some polynomially solvable class. See [103] for various
parameterized complexity results for identifying small backdoor sets in different types of
propositional formula.

44.4 PARAMETERIZED INTRACTABILITY

In this section we outline the parameterized interactability theory. How can we show that
a problem does not have an algorithm with running time f(k) · nO(1)? One approach would
be to show NP-hardness. For an example, consider coloring—given an input graph G and a
positive integer k, test whether the graph G can be properly colored with at most k colors—
parameterized by the number of colors. However, it is well known that the problem of testing
whether a graph can be properly colored with at most 3 colors is NP-complete. Thus, this
implies that coloring can not have even nf(k) algorithm leave alone an algorithm with running
time f(k) · nO(1). But with this method, we can not distinguish between problems that are
solvable in time nf(k) from problems solvable in time f(k) · nO(1). To be able to do this,
Downey and Fellows [13] introduced the W -hierarchy. The hierarchy consists of a complexity
class W [t] for every integer t ≥ 1 such that W [t] ⊆ W [t+1] for all t. Downey and Fellows [13]
proved that

FPT ⊆ W [1] ⊆ W [2] . . . ⊆ W [t]

and conjectured that strict containment holds.
In particular, the assumption FPT , W [1] is the fundamental complexity theoretic

assumption in parameterized complexity. The reason for this is that the assumption is a
natural parameterized analogue of the conjecture that P , NP . The assumption P , NP
can be reformulated as “The non-deterministic turing machine problem can not be solv-
able in polynomial time.” In this problem we are given a non-deterministic Turing machine
M , a string s and an integer k coded in unary. The question is whether M can make its
non-deterministic choices in such a way that it accepts s in at most k steps. The intu-
ition behind the P , NP conjecture is that this problem is so general and random that it
is not likely to be in P. Similarly, one would not expect the problem parameterized by k
to be FPT.

We start with a few simple definitions from parameterized complexity to formalize some
of the notions. We mainly follow the notation of Flum and Grohe [14]. We describe decision
problems as languages over a finite alphabet Σ.

Definition 44.12 Let Σ be a finite alphabet.

1. A parameterization of Σ∗ is a polynomial time computable mapping κ : Σ∗ →N.
2. A parameterized problem (over Σ) is a pair (Q, κ) consisting of a set Q ⊆ Σ∗ of strings

over Σ and a parameterization κ of Σ∗.

For a parameterized problem (Q, κ) over alphabet Σ, we call the strings x ∈ Σ∗ the instances
of Q or (Q, κ) and the number of κ(x) the corresponding parameters.

C5955–C0044.tex 1173 2015/11/4 8:22pm

1174 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

A common way to obtain lower bounds is by reductions. A reduction from one problem
to another is just a proof that a too fast solution for the latter problem would transfer to
a too fast solution for the former. The specifics of the reduction varies based on what we
mean by too fast. The next definition is of a kind of reduction that preserves fixed-parameter
tractability.

Definition 44.13 Let (Q, κ) and (Q′, κ′) be two parameterized problems over the alphabet
Σ and Σ′, respectively. An FPT reduction (more precisely FPT many-one reduction) from
(Q, κ) to (Q′, κ′) is a mapping R : Σ∗ → (Σ′)∗ such that

1. For all x ∈ Σ∗ we have x ∈ Q if and only if R(x) ∈ Q′.

2. R is computable by an FPT-algorithm (with respect to κ).

3. There is a computable function g : N → N such that κ′(R(x)) ≤ g(κ(x)) for all
x ∈ Σ∗.

It can be verified that FPT reductions work as expected: if there is an FPT reduction from
(Q, κ) to (Q′, κ′) and (Q′, κ′) ∈ FPT, then (Q, κ) ∈ FPT as well.

The class W [1] is the set of all parameterized problem that are FPT-reducible to
the parameterized non-deterministic turning machine acceptance problem. A parameterized
problem is said to be W [1]-hard if all problems in W [1] FPT-reduce to it. The following
theorem follows directly from Definition 44.13.

Theorem 44.17 [13] Let P and Q be parameterized problems. If P ≤F P T Q and Q is in FPT
then P is in FPT. Furthermore, if P ≤F P T Q and P is W [1]-hard then Q is W [1]-hard. �

Theorem 44.17 implies that a W [1]-hard problem can not be in FPT unless FPT = W [1].
As mentioned above, it was proved in Downey and Fellows [13] that independent set is W [1]-
hard. We now give two examples of FPT-reductions. First, we show that the multicolor clique
problem is W [1]-hard.

44.4.1 Example Reductions

From an engineering viewpoint, how can we use the assumption that FPT ⊂ W [1] to rule out
f(k) · nO(1) time algorithms for a particular problem? Downey and Fellows showed that the
independent set problem is not in FPT unless FPT = W [1]. If we can show for a particular
parameterized problem Π, that if Π is FPT then so is independent set, then this implies that
Π < FPT. The approach for using the multicolor clique problem in reductions is described
in Fellows et al. [104], and has been proven to be very useful in showing hardness results in
parameterized complexity.

Multicolor Clique
Instance: An undirected graph G = (V [1] ∪ V [2] · · · ∪ C[k], E) such that for every i

the vertices of V [i] induce an independent set, and a positive integer k.
Parameter: k.

Problem: Does there exist a k-sized clique C in G?

Theorem 44.18 Multicolor clique is W [1]-hard. �

C5955–C0044.tex 1174 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1175

Proof. We reduce from the independent set problem. Given an instance (G, k) to independent
set we construct a new graph G′ = (V ′, E′) as follows. For each vertex v ∈ V (G) we make k
copies of v in V ′ with the ith copy being colored with the ith color. For every pair u,v ∈ V (G)
such that uv < E(G) we add edges between all copies of u and all copies of v with different
colors. It is easy to see that G has an independent set of size k if and only if G′ contains a
clique of size k. This concludes the proof. �

One should notice that the reduction produces instances to multicolor clique with a quite
specific structure. In particular, all color classes have the same size and the number of edges
between every pair of color classes is the same. It is often helpful to exploit this fact when
reducing from multicolor clique to a specific problem. We now give an example of a slightly
more involved FPT-reduction.

Theorem 44.19 Dominating set is W [1]-hard. �

Proof. We reduce from the multicolor clique problem. Given an instance (G, k) to multicolor
clique we construct a new graph G′. For every i ≤ k let Vi be the set of vertices in G colored
i and for every pair of distinct integers i, j ≤ k let Ei,j be the set of edges in G[Vi ∪ Vj]. We
start making G′ by taking a copy of Vi for every i ≤ k and making this copy into a clique.
Now, for every i ≤ k we add a set Si of k + 1 vertices and make them adjacent to all vertices
of Vi. Finally, for every pair of distinct integers i, j ≤ k we consider the edges in Ei,j . For
every pair of vertices u ∈ Vi and v ∈ Vj such that uv < Ei,j we add a vertex xuv and make it
adjacent to all vertices in Vi \{u} and all vertices in Vj \{v}. This concludes the construction.
We argue that G contains a k-clique if and only if G′ has a dominating set of size at most k.

If G contains a k-clique C then C is a dominating set of G′. In the other direction,
suppose G′ has a dominating set S of size at most k. If for some i, S ∩ Vi = ∅ then Si ⊆ S,
contradicting that S has size at most k. Hence for every i ≤ k, S ∩Vi , ∅ and thus S contains
exactly one vertex vi from Vi for each i, and S contains no other vertices. Finally, we argue
that S is a clique in G. Suppose that vivj < Ei,j . Then there is a vertex x in V (G′) with
neighborhood Vi \{u} and Vj \{v}. This x is not in S and has no neighbors in S contradicting
that S is a dominating set of G′. �

In fact, it was an FPT-reduction from independent set to dominating set that was the starting
point of the complexity part of parameterized algorithms and complexity. In 1989, Fellows
realized that one could give a FPT-reduction from independent set to dominating set, but
that it did not seem plausible to give a reduction in the other direction. Later, Downey and
Fellows proved that the dominating set problem in fact is complete for the class W [2] while
independent set is complete for W [1] [13]. It is therefore unlikely that an FPT-reduction
from dominating set to independent set can exist. The theorem 44.19 is due to Downey and
Fellows. The proof presented here is somewhat simpler than the original proof and due to
Daniel Lokshtanov.

Even though it was shown by Downey and Fellows that dominating set is complete for
W [2] while independent set is complete for W [1] [13], there are problems for which it is easier
to give FPT-reductions from dominating set than from independent set. A typical example
is the Steiner tree problem, parameterized by the number of non-terminals in the solution.
In the Steiner tree problem we are given a connected graph G together with a subset X of
V (G) and an integer k. The vertices in the X are called terminals. The objective is to find
a subtree T of G containing all terminals and at most k non-terminals. Such a tree is called
a Steiner tree of G. Here we give a proof that the Steiner tree problem parameterized by the
number of non-terminals in the Steiner tree is W [2] hard. The proof of the following theorem
first appeared in Bodlaender and Kratsch [105].

C5955–C0044.tex 1175 2015/11/4 8:22pm

1176 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 44.20 [105] The Steiner tree problem parameterized by |V (T) \ X| is W [2]-hard.

Proof. We reduce from the dominating set problem. For an instance (G, k) we build a graph
G′ as follows. We make two copies of V (G), call them X ′ and N . The copy x ∈ X ′ of each
vertex v ∈ V (G) is made adjacent to the copies in N of the vertices in N(v). Finally the
vertex set X is obtained from X ′ by adding a single vertex uX and making it adjacent to all
vertices in N . This concludes the construction of G′. We prove that G has a dominating set
of size at most k if and only if G′ has a Steiner tree with at most |X| + k vertices.
In one direction, suppose G has a dominating set S on k vertices. Let S′ be the copy of S in
N . Then the graph G′[X ∪ S′] is connected. Let T be a spanning tree of G′[X ∪ S′], then T
is a Steiner tree of G′ with at most |X| + k vertices. In the other direction, suppose G′ has a
Steiner tree T on at most |X| + k vertices and let S′ = V (T) ∩ N . Then |S′| ≤ k and since
X is an independent set in G′ every vertex in X has a neighbor in S′. Thus, if we let S be
the copy of S′ in V (G) then S is a dominating set of G of size at most k. �

Just to give a flavor of a real parameterized completeness result, we will now show that
the dominating set problem is W [2]-complete for tournaments (complete directed graphs)
[106,107], given that it is W [2]-complete for general directed graphs [13].

Theorem 44.21 [106,107] Dominating set is W [2]-complete on tournaments. �

Proof. Given a directed graph G = (V, E), and an integer k, we construct a tournament T
using a FPT algorithm such that G has a dominating set of size k if and only if T has a
dominating set of size k + 1.
Recall that a dominating set D in a directed graph G is a set of vertices of G such that
for every other vertex of G, there is an outgoing edge from some vertex of D. A vertex x
dominates a vertex y if x = y or there is a directed edge from x to y. The set of vertices
dominated by a set S of vertices is simply S union the set of outneighbors of vertices of S.
First we will show that the (decision version of) the minimum dominating set problem is
NP-complete for directed acyclic graphs.

Lemma 44.14 Given a directed acyclic graph G, and an integer k, the problem of testing
whether G has a dominating set of size k is NP-complete.

Proof. Our reduction is from the same problem on general directed graphs. Let G(V, E) be a
directed graph. We construct a directed acyclic graph G from G as follows. G consists of two
vertices vo, and vi for every vertex v of G with a directed edge from vo to vi. Furthermore,
there is a directed edge from vo to ui for all vertices u dominated by v in G. There is a
special vertex d which dominates all vertices of the form vo. More specifically, the vertex set
V ′ = O ∪ I ∪ S where O = {vo, v ∈ V }, I = {vi, v ∈ V } and S = {d}. The edge set E′ of G
is given by E′ = {(uo, vi)|(u, v) ∈ E or u = v} ∪ {(d, uo)|uo ∈ O}.

G is acyclic because the edges are directed from the vertex d to the vertices in O and from
some of the vertices in O to some vertices in I. Also if G has a dominating set D of size k,
then the set {vo|v ∈ D} ∪ {d} is a dominating set in G of size k + 1. Conversely if G has a
dominating set D of size k + 1, then clearly d ∈ D as no other vertex dominates it. Without
loss of generality we can assume that no vertex of I is in D. Otherwise, choose instead the
corresponding vertex of O in D if it is not already in D.

Thus we have a set of at most k vertices of O that dominates all of I. By our construction
of E′, the corresponding set {u|uo ∈ D} is a dominating set G of size at most k. �

Now, we complete the above construction to a weighted tournament and prove that the
problem remains NP-complete on weighted tournaments.

C5955–C0044.tex 1176 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1177

Lemma 44.15 Given a tournament with each vertex having a non-negative integer weight,
and an integer k, the problem of testing whether G has a dominating set of weight (the sum
of the weights of its vertices) k is NP-complete.

Proof. Our reduction is from the problem on general directed graphs. We start from the
directed graph G(V, E) where we are interested in finding whether there is a dominating set
of size k. We first construct the acyclic graph G obtained in the proof of Lemma 44.14. We
assign a weight of 1 to the vertices in O and to the vertex d. The remaining vertices (those
in I) get a weight of k + 2. To complete it into a tournament T , we have to specify the
directions of the missing edges. They are arbitrary for those pairs of vertices in O or pairs
of vertices in I. The remaining edges of the tournament are from I to O; that is, they are
{(ui, vo)|(ui, vo) < E′ and (vo, ui) < E′} ∪ {(ui, d)|ui ∈ I}.

Now, as before, if there is a dominating set of size k in G, then the corresponding vertices
in O along with the vertex d give a dominating set of weight k + 1 in T . Conversely if there
is a dominating set D of weight k + 1 in T , then no vertex of I can be in D as each one of
them has weight k + 2. Consequently the vertex d is in D, as no vertex of O dominates it.
Thus a set of k vertices of O dominates all vertices of I. Hence by our construction of E′,
there is a dominating set of size k in G.

Now we convert the weighted tournament into an unweighted one by replacing each vertex of
weight k + 2 by a tournament M in which the size of the minimum dominating set is at least
k+2. Such tournaments exist [108,109] and were used by Megiddo and Vishkin [110] to reduce
the LOG2-CNF satisfiability problem to minimum dominating set problem in tournaments.
The tournament M has O(22kk2) vertices and can be constructed in O(24k) time. Let V (M)
be the vertex set of M and E(M) give the edge orientations of M . Then the new unweighted
tournament T ′ has its vertex set S ∪ O ∪ I where S and O are as in Lemma 44.14 and I =
{[v, x]|v ∈ V (G) and x ∈ V (M)} where G is the original directed graph. Note that there is a
copy of the tournament M for each element of O, that is, for every vertex of G. Let the vertices
of G be labeled from 1 to n arbitrarily. As before, the edge directions for pairs of vertices in
the set O are arbitrary, the vertex d dominates all vertices in O, and all vertices in I dominate
d. The edge directions in each copy of M is dictated by the orientations of M . Between two
copies of M (corresponding to vertices v and u of G, v , u), there is an edge ([v, x], [u, y])
if and only if (x, y) ∈ M or x = y and v < u. And as before, there is an edge from uo ∈ O
to all vertices [v, x] ∈ I (for a fixed v, and for all x ∈ V (M)) if and only if (u, v) ∈ E(G)
or u = v.

It can be easily seen that to dominate vertices of any one copy of M by vertices in I,
k + 2 vertices are required. Now it is easy to check that the original directed graph has a
dominating set of size k if and only if the resulting tournament has a dominating set of size
k + 1. Since we have reduced a general directed graph to a tournament consisting of O(n22k)
vertices in FPT time and the resulting tournament has the desired property, the theorem
follows. �

Corollary 44.2 The minimum dominating set problem in tournaments is W [2]-complete.

Papadimitriou and Yannanakis [111] have shown that the log dominating set problem for
directed graphs is complete for the class LOGSNP introduced by them. This basically means
if we can test whether a directed graph has a dominating set of size at most k ≤ log n, in
polynomial time, then every problem in the class LOGSNP has a polynomial time algorithm.
They have also shown by a reduction from a generic problem in LOGSNP that the tournament
dominating set problem is also LOGSNP-complete. Since the function f(k) used in our
reduction is simply 2O(k), this result also follows as a corollary.

C5955–C0044.tex 1177 2015/11/4 8:22pm

1178 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Corollary 44.3 The minimum dominating set problem in tournaments is LOGSNP-
complete.

Note that the number of vertices in the resulting tournament has grown exponential in k.
If it had remained polynomial in k, the reduction would have proved that the tournament
dominating set problem is NP-complete. But this is unlikely as the minimum dominating
set problem can be solved in nO(log n) time for tournaments, as every tournament has a
dominating set of size at most log n.

For a thorough introduction to the W -hierarchy we refer the reader to the books of
Downey and Fellows [13] and Flum and Grohe [14].

44.4.2 Exponential Time Hypothesis and Stronger Lower Bounds

In this section we outline an alternate approach to proving lower bound on parameterized
problems. This approach gives us more refined and tighter lower bounds on the form of
running time of the algorithm. We first define the notion of subexponential time algorithms.

Definition 44.14 SUBEPT is the class of parameterized problems (P, κ) where P can be
solved in time 2κ(x)/s(κ(x))|x|O(1) = 2o(κ(x))|x|O(1). Here, s(k) is a monotonically increasing
unbounded function. A problem P in SUBEPT is said to have subexponential algorithms.

A useful observation is that an arbitrarily good exponential time algorithm implies a subex-
ponential time algorithm and vice versa.

Proposition 44.7 [14] A parameterized problem (P, κ) is in SUBEPT if and only if there
is an algorithm that for every fixed ϵ > 0 solves instances x of P in time 2ϵκ(x)|x|c where c
is independent of x and ϵ.

The r-CNF-Sat problem is a central problem in computational complexity, as it is the
canonical NP-complete problem. We will use this problem as a basis for our complexity
assumptions.

r-CNF-Sat
Instance: A r-CNF formula F on n variables and m clauses.

Parameter 1: n.
Parameter 2: m.

Problem: Decide whether there exists a {0, 1} assignment to the
variables of F such that it is satisfiable?

It is trivial to solve 3-CNF-Sat it time 2n · (n + m)O(1). There are better algorithms for
3-CNF-Sat, but all of them have running time of the form cn · (n + m)O(1) for some
constant c > 1 (the current best algorithm runs in time O(1.30704n) [112]. Our first com-
plexity hypothesis, formulated by Impagliazzo et al. [113], states that every algorithm
for 3-CNF-Sat has this running time, that is, the problem has no subexponential time
algorithms.

44.4.2.1 Exponential Time Hypothesis

There is a positive real s such that 3-CNF-Sat with parameter n can not be solved in time
2sn(n + m)O(1) [113].

In particular, Exponential time hypothesis (ETH) states that 3-CNF-Sat with parameter
n can not be solved in 2o(n)(n+m)O(1) time. We will use this assumption to show that several

C5955–C0044.tex 1178 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1179

other problems do not have subexponential-time algorithms either. To transfer this hardness
assumption to other problems, we need a notion of reduction that preserves solvability in
subexponential time. It is easy to see that a polynomial-time FPT-reduction that increases
the parameter only linearly (i.e., κ′(R(x)) = O(κ(x)) holds for every instance x) preserves
subexponential-time solvability: if the target problem (Q′, κ′) is in SUBEPT, then so is the
source problem (Q, κ). Most of the reductions in this survey are on this form. However, it turns
out that sometimes a more general form of subexponential time reductions, introduced by
Impagliazzo et al. [113], are required. Essentially, we allow the running time of the reduction
to be subexponential and the reduction to be a Turing reduction rather than a many-one
reduction:

Definition 44.15 A SERF-T reduction from parameterized problem (A1, κ1) to a param-
eterized problem (A2, κ2) is a Turing reduction M from A1 to A2 that has the following
properties.

1. Given an ϵ > 0 and an instance x of A1, M runs in time O(2ϵκ1(x)|x|O(1)).

2. For any query M(x) makes to A2 with the input x′,

a. |x′| = |x|O(1),
b. κ2(x′) = ακ1(x).

The constant α may depend on ϵ while the constant hidden in the O()-notation in the bound
for |x′| may not.

It can easily be shown that SERF-T reductions are transitive. We now prove that SERF-T
reductions work as expected and indeed preserve solvability in subexponential time.

Proposition 44.8 If there is a SERF-T reduction from (A1, κ1) to (A2, κ2) and A2 has a
subexponential time algorithm then so does A1.

Proof. By Proposition 44.7 there is an algorithm for (A2, κ2) that for every ϵ > 0 can solve
an instance x in time O(2ϵκ2(x)|x|c) for some c independent of x and ϵ. We show that such
an algorithm also exists for (A1, κ1).

Given an ϵ > 0 we need to make an algorithm running in time O(2ϵκ1(x)|x|c′) for some c′

independent of x and ϵ. We choose ϵ′ = ϵ/2 and run the SERF-T reduction from (A1, κ1) to
(A2, κ2) with parameter ϵ′. This reduction makes at most O(2ϵ′κ1(x)|x|O(1)) calls to instances
x′ of A2, each with |x′| ≤ |x|O(1) and κ2(x′) ≤ ακ1(x). Each such instance can be solved
in time 2ϵκ1(x)/2|x|O(1). Hence the total running time for solving x is 2ϵκ1(x)|x|c′ for some c′

independent of x and ϵ. By Proposition 44.7 this means that (A1, κ1) is in SUBEPT.

Since every variable appears in some clause it follows that n ≤ rm, and hence r-CNF-Sat
with parameter m (the number of clauses) is SERF-T reducible to r-CNF-Sat with
parameter n. However, there is no equally obvious SERF-T reduction from r-CNF-Sat
with parameter n to r-CNF-Sat with parameter m. Nevertheless, Impagliazzo et al. [113]
established such a reduction, whose core argument is called the sparsification lemma stated
below.

Lemma 44.16 (Sparsification) [114] For every ϵ > 0 and positive integer r, there is a
constant C = O((r/ϵ)3r) so that any r-CNF formula F with n variables, can be expressed as
F = ∨t

i=1Yi, where t ≤ 2ϵn and each Yi is an r-CNF formula with every variable appearing
in at most C clauses. Moreover, this disjunction can be computed by an algorithm running
in time 2ϵnnO(1). �

C5955–C0044.tex 1179 2015/11/4 8:22pm

1180 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Lemma 44.16 directly gives a SERF-T reduction from r-CNF-Sat with parameter n to
r-CNF-Sat with parameter m. Thus the following proposition is a direct consequence of the
sparsification lemma.

Proposition 44.9 [113] Assuming ETH, there is a positive real s′ such that 3-CNF-Sat
with parameter m can not be solved in time O(2s′m). That is, there is no 2o(m) algorithm for
3-CNF-Sat with parameter m.

Proposition 44.9 has far-reaching consequences: as we shall see, by reductions from 3-CNF-
Sat with parameter m, we can show lower bounds for a wide range of problems. Moreover, we
can even show that several NP-complete problems are equivalent with respect to solvability
in subexponential time. For an example, every problem in SNP and size-constrained SNP (see
[113] for definitions of these classes) can be shown to have SERF-T reductions to r-CNF-Sat
with parameter n for some r ≥ 3. The SNP and size-constrained SNP problem classes contain
several important problems such as r-CNF-Sat with parameter n and independent set,
vertex cover, and clique parameterized by the number of vertices in the input graph. This
gives some evidence that a subexponential time algorithm for r-CNF-Sat with parameter
n is unlikely to exist, giving some credibility to ETH.

It is natural to ask how the complexity of r-CNF-Sat evolves as r grows. For all r ≥ 3,
define,

sr = inf
{
δ : there exists an O∗(2δn) algorithm solving r-CNF-Sat

with parameter n
}

.

s∞ = lim
r→∞

sr.

Since r-CNF-Sat easily reduces to (r + 1)-SAT it follows that sr ≤ sr+1. However, saying
anything else non-trivial about this sequence is difficult. ETH is equivalent to conjecturing
that s3 > 0. Impagliazzo et al. [113] present the following relationships between the sr’s and
the solvability of problems in SNP in subexponential time. The theorem below is essentially
a direct consequence of Lemma 44.16

Theorem 44.22 [113] The following statements are equivalent

1. For all r ≥ 3, sr > 0.
2. For some r, sr > 0.
3. s3 > 0.
4. SNP * SUBEPT. �

The equivalence above offers some intuition that r-CNF-Sat with parameter n may not have
a subexponential time algorithm and thus strengthens the credibility of ETH. The known
NP-hardness proof combined with Proposition 44.9 implies the following theorem.

Theorem 44.23 Assuming ETH, there is no 2o(n) time algorithm for vertex cover, domi-
nating set, Hamiltonian path, 3-coloring, and independent set on a n vertex graph. �

Similarly, we can show the following.

Theorem 44.24 Assuming ETH, there is no 2o(
√

n) time algorithm for vertex cover, domi-
nating set, Hamiltonian path, and independent set on a n vertex planar graph. �

C5955–C0044.tex 1180 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1181

Impagliazzo et al. [113] and Calabro et al. [115] studied the sequence of sr’s and obtained
the following results.

Theorem 44.25 [113,115] Assuming ETH, the sequence {sr}r≥3 is increasing infinitely of-
ten. Furthermore, sr ≤ s∞(1 − d/r) for some constant d > 0. �

A natural question to ask is what is s∞? As of today the best algorithms for r-CNF-Sat
all use time O(2n(1−c/r)) for some constant c independent of r and n. This, together with
Theorem 44.25 hints at s∞ = 1. The conjecture that this is indeed the case is known as the
strong exponential time hypothesis.

44.4.2.2 Strong Exponential Time Hypothesis: s∞=1

An immediate consequence of strong exponential time hypothesis (SETH) [113,115] is that
strong exponential time hypothesis (SAT) with parameter n (here the input formula F could
have arbitrary size clauses) can not be solved in time (2 − ϵ)n(n + m)O(1).

Now we give a few lower bounds based on ETH and SETH,

44.4.2.3 Lower Bound on FPT Algorithms

Cai and Juedes [116] were first to examine the existence of 2o(k) or 2o(
√

k) algorithms for
various parameterized problems solvable in time 2O(k) or 2O(

√
k), respectively. They showed

that for variety of problems assuming ETH, there is no 2o(k) or 2o(
√

k) algorithms possible.
In this section, we survey how ETH can be used to obtain lower bounds on the function f
for various FPT problems.

Since k ≤ n, a 2o(k)nc time algorithm directly implies a 2o(n) time algorithm for
vertex cover. However, by Theorem 44.24 we know that vertex cover does not have an
algorithm with running time 2o(n) unless ETH fails. This immediately implies the following
theorem.

Theorem 44.26 [116] Assuming ETH, there is no 2o(k)nO(1) time algorithm for vertex
cover. �

Similarly, assuming ETH, we can show that several other problems parameterized by the
solution size, such as FVS or longest path do not have 2o(k)nO(1) time algorithms.

Similar arguments yield tight lower bounds for parameterized problems on special graph
classes, such as planar graphs. As we have seen in the previous section, for many problems
we can rule out algorithms with running time 2o(

√
n) even when the input graph is restricted

to be planar. If the solution to such a problem is a subset of the vertices (or edges), then
the problem parameterized by solution size can not be solved in time 2o(

√
k)nO(1) on planar

graphs, unless ETH fails.

Theorem 44.27 [116] Assuming ETH, there is no 2o(
√

k)nO(1) time algorithm for planar
vertex cover. �

Results similar to Theorem 44.27 are possible for several other graph problems on planar
graphs. It is worth to mention that many of these lower bounds on these problems are tight.
That is, many of the mentioned problems admit both 2O(k)nO(1) time algorithms on general
graphs and 2O(

√
k)nO(1) time algorithms on planar graphs.

Obtaining lower bounds of the form 2o(k)nO(1) or 2o(
√

k)nO(1) on parameterized problems
generally follows from the known NP-hardness reduction. However, there are several parame-
terized problems where f(k) is slightly superexponential in the best-known running time: f(k)
is of the form kO(k) = 2O(k log k). Algorithms with this running time naturally occur when

C5955–C0044.tex 1181 2015/11/4 8:22pm

1182 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

a search tree of height at most k and branching factor at most k is explored, or when all
possible permutations, partitions, or matchings of a k element set are enumerated. Recently,
for a number of such problems lower bounds of the form 2o(k log k) were obtained under ETH
[117]. We show how such a lower bound can be obtained for an artificial variant of the clique
problem. In this problem the vertices are the elements of a k × k table, and the clique we are
looking for has to contain exactly one element from each row.

k × k Clique
Input: A graph G over the vertex set [k] × [k].

Parameter: k.
Question: Is there a k-clique in G with exactly one element from each row?

Note that the graph G in the k × k clique instance has O(k2) vertices at most O(k4) edges,
thus the size of the instance is O(k4).

Theorem 44.28 [117] Assuming ETH, there is no 2o(k log k) time algorithm for k×k clique. �

Lokshtanov et al. [117] first define other problems similar in flavor to k × k clique: basic
problems artificially modified in such a way that they can be solved by brute force in time
2O(k log k)|I|O(1). It is then shown that assuming ETH, these problems do not admit a 2o(k log k)

time algorithm. Finally, combining the lower bounds on the variants of basic problems with
suitable reductions one can obtain lower bounds for natural problems. One example is the
bound for the closest string problem.

Closest String
Input: Strings s1, . . ., st over an alphabet Σ of length L each, an integer d.

Parameter: d.
Question: Is there a string s of length L such d(s, si) ≤ d for every 1 ≤ i ≤ t?

Here d(s, si) is the Hamming distance between the strings s and si, that is, the number
of positions where s and si differ. Gramm et al. [118] showed that closest string is FPT
parameterized by d: they gave an algorithm with running time O(dd·|I|). The algorithm works
over an arbitrary alphabet Σ (i.e., the size of the alphabet is part of the input). For fixed
alphabet size, single-exponential dependence on d can be achieved: algorithms with running
time of the form |Σ|O(d) ·|I|O(1) were presented in Ma and Sun [119], Wang and Zhu [120], and
Chen et al. [121]. It is an obvious question if the running time can be improved to 2O(d)·|I|O(1),
that is, single-exponential in d, even for arbitrary alphabet size. However, the following result
shows that the running times of the cited algorithms have the best possible form.

Theorem 44.29 [117] Assuming ETH, there is no 2O(d log d) · |I|O(1) or 2O(d log |Σ|) · |I|O(1)

time algorithm for closest string. �

Using similar methods one can also give tight running time lower bounds for the distortion
problem. Here we are given a graph G and parameter d. The objective is to determine whether
there exists a map f from the vertices of G to N such that for every pair of vertices u and
v in G, if the distance between u and v in G is δ then δ ≤ |f(u) − f(v)| ≤ dδ. This problem
belongs to a broader range of metric embedding problems where one is looking for a map from
a complicated distance metric into a simple metric while preserving as many properties of the
original metric as possible. Fellows et al. [122] give a O(ddnO(1)) time algorithm for distortion.
The following theorem shows that under ETH the dependence on d of this algorithm can not
be significantly improved.
Theorem 44.30 [117] Assuming ETH, there is no 2o(d log d) · nO(1) time algorithm for
distortion. �

C5955–C0044.tex 1182 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1183

44.4.2.4 W[1]-Hard Problems

The complexity assumption ETH can be used not only to obtain running time lower bounds
on problems that are FPT, but also on problems that are known to be W [1]-hard in pa-
rameterized complexity. For an example independent set and dominating set are known to
be W [1]-complete and W [2]-complete, respectively. Under the standard parameterized com-
plexity assumption that FPT , W [1], this immediately rules out the possibility of having
an FPT algorithm for clique, independent set, and dominating set. However, knowing that
no algorithm of the form f(k)nO(1) exists, that these results do not rule out the possibility
of an algorithm with running time, say, nO(log log k). As the best-known algorithms for these
problems take nO(k) time, there is huge gap between the upper and lower bounds obtained
this way.

Chen et al. [123] were the first to consider the possibility of showing sharper running time
lower bounds for W [1]-hard problems. They show that lower bounds of the form no(k) can
be achieved for several W [2]-hard problems such as dominating set, under the assumption
that FPT , W [1]. However, for problems that are W [1]-hard rather than W [2]-hard, such as
independent set, we need ETH in order to show lower bounds. Later, Chen et al. [124,125]
strengthened their lower bounds to also rule out f(k)no(k) time algorithms (rather than just
no(k) time algorithms).

We outline one such lower bound result here and then transfer it to other problems using
earlier reductions.

Theorem 44.31 [123,125] Assuming ETH, there is no f(k)no(k) time algorithm for clique
or independent set. �

Proof. We give a proof sketch. We will show that if there is an f(k)no(k) time algorithm for
clique, then ETH fails. Suppose that clique can be solved in time f(k)nk/s(k), where s(k)
is a monotone increasing unbounded function. We use this algorithm to solve 3-coloring on
an n-vertex graph G in time 2o(n). Let f−1(n) be the largest integer i such that f(i) ≤ n.
Function f−1(n) is monotone increasing and unbounded. Let k := f−1(n). Split the ver-
tices of G into k groups. Let us build a graph H where each vertex corresponds to a proper
3-coloring of one of the groups. Connect two vertices if they are not conflicting. That is,
if the union of the colorings corresponding to these vertices corresponds to a valid color-
ing of the graph induced on the vertices of these two groups, then connect the two ver-
tices. A k-clique of H corresponds to a proper 3-coloring of G. A 3-coloring of G can
be found in time f(k)nk/s(k) ≤ n(3n/k)k/s(k) = n3n/s(f−1(n)) = 2o(n). This completes the
proof.

Since a graph G has a clique of size k if and only the complement of G has an independent
set of size k. Thus, as a simple corollary to the result of clique, we get that independent set
does not have any f(k)no(k) time algorithm unless ETH fails. �

Using the parameter preserving reduction established in Theorems 44.18 and 44.19, we get
the following theorem.

Theorem 44.32 Assuming ETH, there is no f(k)no(k) time algorithm for dominating set. �

44.4.2.5 Problems Parameterized by Treewidth

It is well known that several graph problems parameterized by the treewidth of the input
graph are FPT. See Table 44.1 for the time complexity of some known algorithms for problems
parameterized by the treewidth of the input graph. Most of the algorithms on graphs of
bounded treewidth are based on simple dynamic programming on the tree decomposition,

C5955–C0044.tex 1183 2015/11/4 8:22pm

1184 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

TABLE 44.1 f(t) Bound in the Running Time of Various Problems
Parameterized by the Treewidth of the Input Graph

Problem Name f(t) in the Best-Known Algorithms
Vertex cover 2t

Dominating set 3t

Odd cycle transversal 3t

Partition into triangles 2t

Max cut 2t

Chromatic number 2O(t log t)

Disjoint paths 2O(t log t)

Cycle packing 2O(t log t)

although for some problems a recently discovered technique called fast subset convolution
[126,127] needs to be used to obtain the running time shown in Table 44.1.

An obvious question is whether these algorithms can be improved. We can easily rule
out the existence of 2o(t) algorithm for many of these problems assuming ETH. Recall that,
Theorem 44.23 shows that assuming ETH, the independent set problem parameterized by the
number of vertices in the input graph does not admit a 2o(n) algorithm. Since the treewidth
of a graph is clearly at most the number of vertices, it is in fact a stronger parameter, and
thus the lower bound carries over. Thus, we trivially have that independent set does not
admit a subexponential algorithm when parameterized by treewidth. Along the similar lines
we can show the following theorem.

Theorem 44.33 Assuming ETH, independent set, dominating set, and odd cycle transversal
parameterized by the treewidth of the input graph do not admit an algorithm with running
time 2o(t)nO(1). Here, n is the number of vertices in the input graph to these problems. �

For the problems chromatic number, cycle packing, and disjoint paths, the natural dynamic
programming approach gives 2O(t log t)nO(1) time algorithms. As these problems can be solved
in time 2O(n) on n-vertex graphs, the easy arguments of Theorem 44.33 can not be used
to show the optimality of the 2O(t log t)nO(1) time algorithms. However, as reviewed in Sec-
tion 44.4.2, Lokshtanov et al. [117] developed a machinery for obtaining lower bounds of the
form 2o(k log k)nO(1) for parameterized problems and we can apply this machinery in the case
of parameterization by treewidth as well.

Theorem 44.34 [19,117] Assuming ETH, chromatic number, cycle packing, and disjoint
paths parameterized by the treewidth of the input graph do not admit an algorithm with
running time 2o(t log t)nO(1). Here, n is the number of vertices in the input graph to these
problems. �

The lower bounds obtained by Theorem 44.33 are quite weak: they tell us that f(t) can not
be improved to 2o(t), but they do not tell us whether the numbers 2 and 3 appearing as the
base of exponentials in Table 44.1 can be improved. Just as we saw for exact algorithms, ETH
seems to be too weak an assumption to show a lower bound that concerns the base of the
exponent. Assuming the SETH, however, much tighter bounds can be shown. In Lokshtanov
et al. [128] it is established that any non-trivial improvement over the best-known algorithms
for a variety of basic problems on graphs of bounded treewidth would yield a faster algorithm
for SAT.

C5955–C0044.tex 1184 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1185

Theorem 44.35 [128] If there exists an ϵ > 0 such that

• Independent set can be solved in (2 − ϵ)tw(G)nO(1) time, or
• Dominating set can be solved in (3 − ϵ)tw(G)nO(1) time, or
• Max cut can be solved in (2 − ϵ)tw(G)nO(1) time, or
• Odd cycle transversal can be solved in (3 − ϵ)tw(G)nO(1) time, or
• There is a q ≥ 3 such that q-Coloring can be solved in (q − ϵ)tw(G)nO(1)) time, or
• If partition into triangles can be solved in (2 − ϵ)tw(G)nO(1) time, then SETH fails. �

Thus, assuming SETH, the known algorithms for the mentioned problems on graphs of
bounded treewidth are essentially the best possible. We refer to Lokshtanov et al. [129] for
more detailed survey on lower bounds based on ETH and SETH.

44.5 FPT AND APPROXIMATION

Though the study of parameterized complexity is not confined to parameterized versions of
NP-complete problems alone, it could be considered as one way of coping with intractability
of NP-complete problems. In this section, we will look at some relationship known between
FPT and the other way of coping with NP-completeness - approximation.

A typical NP optimization problem Q is either a minimization or a maximization problem
given by the 4-tuple (I, S, f, opt) where I is the set of input instances for the problem, S(x)
is the set of feasible solutions for the input x ∈ I, f(x, y) ∈ N is the objective function value
for each x ∈ I and y ∈ S(x), and opt ∈ {max, min} so that opt(x) is the optimum value of
the instance x. See [130] for a precise definition of an NP optimization problem.

The natural parameterized version of the NP optimization problem is: given an instance
x ∈ I, and an integer parameter k is there a y ∈ S(x) of size at least (at most, for a
minimization problem) k?

An NP optimization problem has a ratio r approximation algorithm if there is a polyno-
mial time algorithm that for every instance x of the problem, produces a feasible solution y
such that max{f(x, y)/opt(x), opt(x)/f(x, y)} ≤ 1 + r. The approximation algorithm is said
to be an approximation scheme (PTAS) if given any ϵ > 0, the algorithm runs in polyno-
mial time and is an ϵ approximation algorithm. A PTAS is called a fully polynomial time
approximation scheme (FPTAS) if its running time is polynomial in the input size as well as
1/ϵ. It is called an efficient polynomial time approximation scheme (EPTAS) if its running
time is of the form f(1/ϵ) + nc where f is some function of 1/ϵ and n is the input size.

The following easy observation is due to Cai and Chen [131].

Theorem 44.36 If an integer valued NP optimization problem has a fully polynomial time
approximation scheme, then the corresponding parameterized problem is in FPT.

Proof. Without loss of generality, let Q be an NP maximization problem having a FPTAS,
and let Qk be its corresponding parameterized problem. Given the parameterized instance
x of Q, let y be the approximate solution obtained by the approximate scheme with the
approximation ratio 1/2k. That is, opt(x)/y ≤ 1+1/2k. Now it is easy to check that opt(x)> k
if and only if y > k. Furthermore as the algorithm takes time polynomial in 2k and the size
of x, Qk is in FPT. �

This result shows that the decision versions of several knapsack-like and scheduling problems
FPT [2].

It is easy to see that the above result can be strengthened to deduce the same result
assuming the NP optimization problem has an EPTAS.

C5955–C0044.tex 1185 2015/11/4 8:22pm

1186 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Cai and Chen [131] also observed that the parameterized versions of all maximization
problems in MaxSNP are in FPT, from the result that the parameterized MaxcSat is FPT
for any constant c, and that MaxcSat is MaxSNP-complete. Furthermore, using a branching
algorithm similar to that for vertex cover, they could show that any minimization problem
in the class MINF +Π1 [132] is in FPT.

The contrapositive consequences of these results are more interesting. For example, the
parameterized dominating set problem (even for tournaments) is W [2]-hard implies that the
minimum dominating set problem can not have FPTAS algorithm unless FPT=W [2]. Thus
proving W -hardness could be one way of showing non-approximability of an optimization
problem. One should also note that there are problems like the longest path problem that is
hard to approximate [133] though its parameterized version is FPT as we saw in Section 2.4.

The notion of EPTAS suggests using the approximation ratio as a parameter. Marx [134]
suggests the following additional ways in which approximation and parameterized complexity
can be combined for better understanding of a problem.

44.5.1 Approximation in FPT Time for W-Hard Problems

This is a rather unexplored territory in fixed-parameter algorithms. The idea is, as in the case
of classical approximation algorithms, to design an approximation algorithm in FPT time for
a parameterized intractable problem. There are two views based on what we approximate.

• The parameter can be an instance parameter (e.g., genus of the graph, treewidth of the
graph) and the value to be optimized is the solution size (which is known to be fixed-
parameter intractable when parameterized by the instance parameter). For example,
finding the minimum number of colors in a proper coloring of vertices in a bounded
genus graph. This, for example, has a 2-approximation algorithm that runs in time
f(g)|x| where f is some function of the genus g, and |x| is the input size.

• The parameter can be the solution size (like dominating set) which is known to be
W -hard. And we would like an FPT 2-approximation algorithm to output that the
given graph has no dominating set of size at most k or produce a dominating set of
size at most 2k. It is an open problem whether such an approximation algorithm exists
for dominating set. See [135] for a related result.

44.5.2 Approximation Parameterized by Cost

Here the aim is to use the optimized value as the parameter and try to design an algorithm
that finds the optimum value OPT or a small approximation to it using f(OPT)|x|c time.
See [134] for some results and problems along these lines.

44.6 CONCLUSIONS

Parameterized complexity has emerged as an important practical direction to pursue for
problems where a small range of parameter values is of particular interest. The study of
parameterized complexity has given rise to novel and interesting algorithmic techniques to
solve some difficult problems exactly. Kernelization, which started off as a direction to design
fixed-parameter algorithms, has given rise to surprising connections to classical complexity
theory. Iterated compression has turned out to be a novel technique that has been useful to
show several long-standing problems FPT.

While NP-completeness is a useful direction to show problems that are unlikely have
polynomial time algorithms, by using parameterized reductions, one can show stronger lower

C5955–C0044.tex 1186 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1187

bounds. The large compendium of W -hard problems [13] gives support to the conjecture that
they are unlikely to be FPT.

In this chapter, we have surveyed algorithmic techniques, hardness theory and various
connections in parameterized complexity. For parameterized complexity applications in
artifical intelligence, see [136] and in database theory, see [137].

For parameterized complexity applications in strings and biology, see [138]. For parame-
terized complexity applications in coding theory, see [139].

Given the pace of recent development in the area, we almost certainly have omitted some
recent research areas, but we hope that this survey is comprehensive enough to motivate new
entrants to the field. We also hope that development of new techniques in the area will bridge
the theory and practice of computationally hard problems, and explain why some heuristic
solutions to NP-complete problems work so well in practice.

References

[1] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS
Publishing, Boston, MA, 1997.

[2] Vijay V Vazirani. Approximation Algorithms. Springer, Berlin, Germany, 2004.

[3] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57.
North Holland Publishing, New York, 2004.

[4] Nimrod Megiddo. Linear programming in linear time when the dimension is fixed.
J. ACM, 31(1) (1984), 114–127.

[5] Martin Farber, Gena Hahn, Pavol Hell, and Donald J. Miller. Concerning the achro-
matic number of graphs. J. Comb. Theory, Ser. B, 40(1) (1986), 21–39.

[6] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, 1990.

[7] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and
further improvements. J. Algorithms, 41(2) (2001), 280–301.

[8] Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set: New measure and new
structures. In SWAT, volume 6139 of Lecture Notes in Computer Science, pp. 93–104.
Springer, Bergen, Norway, 2010.

[9] Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed values:
Maxsat and maxcut. J. Algorithms, 31(2) (1999), 335–354.

[10] Venkatesh Raman and Balsri Shankar. Improved fixed-parameter algorithm for the
minimum weight 3-SAT. In Proceedings of the Workshop on Algorithms and Computa-
tion, volume 7748 of Lecture Notes in Comput. Sci., pp. 265–273, 2013.

[11] Rolf Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture
Series in Mathematics and Its Applications. Oxford University Press, Oxford, 2006.

[12] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and com-
pleteness I: Basic results. SIAM J. Comput., 24(4) (1995), 873–921.

[13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complex-
ity. Monographs in Computer Science. Springer, New York, 1999.

[14] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, Germany, 2006.

C5955–C0044.tex 1187 2015/11/4 8:22pm

1188 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[15] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8) (2009), 423–434.

[16] Rodney G. Downey, Michael R. Fellows, and Ulrike Stege. Computational tractability:
The view from Mars. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, 69 (1999), 73–97.

[17] Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. SIAM J. Comput.,
22(3) (1993), 560–572.

[18] George L. Nemhauser and Leslie E. Trotter. Vertex packings: Structural properties and
algorithms. Math. Program., 8 (1975), 232–248. doi:10.1007/BF01580444.

[19] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van
Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized
by treewidth in single exponential time. In FOCS, pp. 150–159, IEEE FOCS, Palm
Springs, CA, 2011.

[20] Michael Lampis. A kernel of order 2 k-c log k for vertex cover. Inf. Process. Lett.,
111(23–24) (2011), 1089–1091.

[21] N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Lp
can be a cure for parameterized problems. In STACS, pp. 338–349, 2012.

[22] Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and
Saket Saurabh. Faster parameterized algorithms using linear programming. CoRR,
abs/1203.0833, 2012.

[23] Dénes König. Über Graphen und ihre Anwendung auf Determinantentheorie und Men-
genlehre. Math. Ann., 77(4) (1916), 453–465.

[24] Philip Hall. On representatives of subsets. J. London Math. Soc., 10 (1935), 26–30.

[25] Benny Chor, Mike Fellows, and David W. Juedes. Linear kernels in linear time, or how
to save k colors in O(n2) steps. In Proceedings of the 30th Workshop on Graph-Theoretic
Concepts in Computer Science, Bad Honnef, Germany, volume 3353 of Lecture Notes
in Comput. Sci., pp. 257–269. Springer, 2004.

[26] Daniel Lokshtanov. New Methods in Parameterized Algorithms and Complexity. PhD
thesis, University of Bergen, Norway, 2009.

[27] Stéphan Thomassé. A quadratic kernel for feedback vertex set. ACM Transac. Algo-
rithms, 6(2) (2010).

[28] Jochen Alber, Henning Fernau, and Rolf Niedermeier. Parameterized complexity:
Exponential speed-up for planar graph problems. J. Algorithms, 52(1) (2004), 26–56.

[29] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket
Saurabh, and Dimitrios M. Thilikos. (Meta) kernelization. IEEE Conference on Foun-
dations of Computer Science, pp. 629–638, 2009.

[30] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Linear
kernels for (connected) dominating set on h-minor-free graphs. In SODA, pp. 82–93,
2012.

[31] Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices:
New tools for kernelization. CoRR, abs/1111.2195, 2011.

C5955–C0044.tex 1188 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1189

[32] Stefan Kratsch and Magnus Wahlström. Compression via matroids: a randomized
polynomial kernel for odd cycle transversal. In ACM-SIAM Symposium on Discrete
Algorithms, pp. 94–103, Kyoto, Japan, 2012.

[33] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and suc-
cinct PCPs for NP. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, pp. 133–142. ACM, 2008.

[34] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. Assoc. Comput. Mach.,
42(4) (1995), 844–856.

[35] Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comp. Sci., 3 (1976),
1–22.

[36] Andrew Drucker. On the hardness of compressing an AND of SAT instances.
Theory Lunch, Center for Computational Intractability, February 17, 2012.
http://intractability.princeton.edu/blog/2012/03/theory-lunch-february-17/.

[37] Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Analysis of data reduction:
Transformations give evidence for non-existence of polynomial kernels. Technical Re-
port CS-UU-2008-030, Department of Information and Computer Sciences, Utrecht
University, Utrecht, the Netherlands, 2008.

[38] Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Daniel Raible, Saket Saurabh,
and Yngve Villanger. Kernel(s) for problems with no kernel: On out-trees with
many leaves. In STACS, pp. 421–432. Schloss Dagstuhl—Leibniz-Zentrum fuer Infor-
matik, 2009.

[39] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through col-
ors and ids. In ICALP, volume 5555 of Lecture Notes in Comput. Sci., pp. 378–389,
Springer, Rhodes, Greece, 2009.

[40] Holge Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsifica-
tion unless the polynomial-time hierarchy collapses. In ACM Symposium on Theory of
Computing, pp. 251–260, Cambridge, MA, 2010.

[41] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Cross-composition: A new
technique for kernelization lower bounds. In Proceedings of the 28th International Sym-
posium on Theoretical Aspects of Computer Science, volume 9 of LIPIcs, pp. 165–176.
Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, 2011.

[42] Holger Dell and Dániel Marx. Kernelization of packing problems. In SODA, pp.
68–81, 2012.

[43] Danny Hermelin and Xi Wu. Weak compositions and their applications to polynomial
lower bounds for kernelization. In SODA, pp. 104–113, 2012.

[44] Stefan Kratsch. Co-nondeterminism in compositions: a kernelization lower bound for a
Ramsey-type problem. In ACM-SIAM Symposium on Discrete Algorithms, pp. 114–122,
Kyoto, Japan, 2012.

[45] Pál Erdös and L. Pósa. On the maximal number of disjoint circuits of a graph. Publ.
Math. Debrecen, 9 (1962), 3–12.

[46] Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston, Frances A. Rosamond,
and Kim Stevens. An O(2O(k)n3) FPT algorithm for the undirected feedback vertex

C5955–C0044.tex 1189 2015/11/4 8:22pm

1190 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

set problem. In Proceedings of the 11th Annual International Conference on Computing
and Combinatorics, volume 3595 of Lecture Notes in Comput. Sci., pp. 859–869, Berlin,
Germany, 2005. Springer.

[47] Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke.
Compression-based fixed-parameter algorithms for feedback vertex set and edge bipar-
tization. J. Comput. Syst. Sci., 72(8) (2006), 1386–1396.

[48] Venkatesh Raman, Saket Saurabh, and C. R. Subramanian. Faster fixed parameter
tractable algorithms for finding feedback vertex sets. ACM Transac. Algorithms, 2(3)
(2006), 403–415.

[49] Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for feedback vertex set problems. J. Comput. Syst. Sci., 74(7) (2008),
1188–1198.

[50] George L. Nemhauser and Leslie E. Trotter. Properties of vertex packing and indepen-
dence system polyhedra. Math. Program., 6 (1974), 48–61.

[51] Jean-Claude Picard and Maurice Queyranne. On the integer-valued variables in the
linear vertex packing problem. Math. Program., 12(1) (1977), 97–101.

[52] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer
approach for the analysis of exact algorithms. J. ACM, 56(5), (2009).

[53] Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper.
Research Lett., 32(4) (2004), 299–301.

[54] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-
parameter algorithm for the directed feedback vertex set problem. J. ACM, 55(5), 2008.

[55] Igor Razgon and Barry O’Sullivan. Almost 2-SAT is fixed-parameter tractable. J. Com-
put. Syst. Sci., 75(8) (2009), 435–450.

[56] Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Paths, flowers and vertex
cover. In Algorithms—ESA, volume 6942 of Lecture Notes in Comput. Sci., pp. 382–393.
2011.

[57] Pinar Heggernes, Dieter Kratsch, Daniel Lokshtanov, Venkatesh Raman, and Saket
Saurabh. Fixed-parameter algorithms for cochromatic number and disjoint rectangle
stabbing. In SWAT, volume 6139 of Lecture Notes in Computer Science, pp. 334–345.
Springer, 2010.

[58] Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Random algorithms for the loop
cutset problem. J. Artif. Intell. Res., 12 (2000), 219–234.

[59] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket
Saurabh. Hitting forbidden minors: Approximation and kernelization. In Proceedings
of the 28th International Symposium on Theoretical Aspects of Computer Science,
volume 9 of LIPIcs, pp. 189–200. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik,
Dortmund, Germany, 2011.

[60] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar
f-deletion: Approximation, kernelization and optimal FPT algorithms. In IEEE Foun-
dations of Computer Science conference, pp. 470–479, New Jersey, 2012.

C5955–C0044.tex 1190 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1191

[61] Omid Amini, Fedor V. Fomin, and Saket Saurabh. Counting subgraphs via homomor-
phisms. SIAM J. Discrete Math., 26(2) (2012), 695–717.

[62] Jianer Chen, Joachim Kneis, Songjian Lu, Daniel Mölle, Stefan Richter, Peter Ross-
manith, Sing-Hoi Sze, and Fenghui Zhang. Randomized divide-and-conquer: Improved
path, matching, and packing algorithms. SIAM J. Comput., 38(6) (2009), 2526–2547.

[63] Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast fast. ICALP, 1 (2009), 49–58.

[64] Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In ICALP
(1), volume 5125 of Lecture Notes in Comput. Sci., pp. 575–586. Springer, 2008.

[65] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of
representative sets with applications in parameterized and exact algorithms. CoRR,
abs/1304.4626, 2013.

[66] Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan,
Ashutosh Rai, and M. S. Ramanujan. Faster parameterized algorithms for deletion
to split graphs. In SWAT, volume 7357 of Lecture Notes in Comput. Sci., pp. 107–118.
Springer, 2012.

[67] Dániel Marx. Parameterized graph separation problems. Theoret. Comput. Sci., 351(3)
(2006), 394–406.

[68] Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for
the minimum node multiway cut problem. Algorithmica, 55(1) (2009), 1–13.

[69] Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized
by the size of the cutset. SIAM Journal on Computing, 43(2) (2014), 355–388.

[70] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk.
On multiway cut parameterized above lower bounds. In IPEC, number 7112 in Lecture
Notes in Comput. Sci., pp. 1–12. Springer, 2011.

[71] Klaus Wagner. Uber einer eigenschaft der ebener complexe. Mathematische Annalen,
14 (1937), 570–590.

[72] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjecture.
J. Comb. Theory, Ser. B, 92(2) (2004), 325–357.

[73] Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths problem.
J. Combin. Theory Ser. B, 63(1) (1995), 65–110.

[74] Michael R. Fellows and Michael A. Langston. Nonconstructive advances in polynomial-
time complexity. Inf. Process. Lett., 26(3) (1987), 155–162.

[75] Michael R. Fellows and Michael A. Langston. Nonconstructive tools for proving
polynomial-time decidability. J. ACM, 35(3) (1988), 727–739.

[76] Michael R. Fellows and Michael A. Langston. An analogue of the Myhill-Nerode the-
orem and its use in computing finite-basis characterizations (extended abstract). In
FOCS, pp. 520–525, IEEE, North Carolina, 1989.

[77] Michael R. Fellows and Michael A. Langston. On search, decision and the efficiency
of polynomial-time algorithms (extended abstract). In ACM Symposium on Theory of
Computing, pp. 501–512, Washington, DC, 1989.

C5955–C0044.tex 1191 2015/11/4 8:22pm

1192 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[78] Rodney G. Downey and Dimitrios M. Thilikos. Confronting intractability via parame-
ters. Comput. Science Rev., 5(4) (2011), 279–317.

[79] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. J. Algorithms, 7(3) (1986), 309–322.

[80] Jan van Leeuwen, editor. Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity. Elsevier and MIT Press, Cambridge, MA, 1990.

[81] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. J. Algorithms, 12(2) (1991), 308–340.

[82] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard prob-
lems restricted to partial k-trees. Discrete Applied Math, 23(1) (1989), 11–24.

[83] Bruno Courcelle. The monadic second-order logic of graphs. III. Tree-decompositions,
minors and complexity issues. RAIRO Inform. Théor. Appl., 26(3) (1992), 257–286.

[84] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6) (1996), 1305–1317.

[85] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of linear-
time algorithms from predicate calculus descriptions of problems on recursively con-
structed graph families. Algorithmica, 7(5/6) (1992), 555–581.

[86] Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and Detlef Seese. An algebraic
theory of graph reduction. J. ACM, 40(5) (1993), 1134–1164.

[87] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimiza-
tion problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2) (2000),
125–150.

[88] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Solving
weighted and counting variants of connectivity problems parameterized by treewidth
deterministically in single exponential time. CoRR, abs/1211.1505, 2012.

[89] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order
Logic: A Language-Theoretic Approach. Number 138 in Encyclopedia of Mathematics
and Its Application. Cambridge University Press, Cambridge, 2012.

[90] Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M.
Thilikos. Subexponential parameterized algorithms on graphs of bounded genus and
H-minor-free graphs. J. ACM, 52(6) (2005), 866–893.

[91] Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar
graph. J. Combin. Theory Ser. B, 62(2) (1994), 323–348.

[92] Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica,
14(2) (1994), 217–241.

[93] Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and
its algorithmic applications. Comput. J., 51(3) (2008), 292–302.

[94] Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. Subexponential parameter-
ized algorithms. Comput. Science Rev., 2(1) (2008), 29–39.

C5955–C0044.tex 1192 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1193

[95] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Subex-
ponential algorithms for partial cover problems. Inf. Process. Lett., 111(16) (2011),
814–818.

[96] Frederic Dorn, Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket
Saurabh. Beyond bidimensionality: Parameterized subexponential algorithms on
directed graphs. Symposium on Theoretical Aspects of Computer Science, 5 (2010),
251–262.

[97] Daniel Lokshtanov, Saket Saurabh, and Magnus Wahlström. Subexponential parame-
terized odd cycle transversal on planar graphs. FSTTCS, 18 (2012), 424–434.

[98] Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Parameterizing above or
below guaranteed values. J. Comput. Syst. Sci., 75(2) (2009), 137–153.

[99] Gregory Gutin and Anders Yeo. Constraint satisfaction problems parameterized above
or below tight bounds: A survey. In The Multivariate Algorithmic Revolution and
Beyond, 7370 (2012), 257–286.

[100] Leizhen Cai. Linear time solvable optimization problems on graphs of bounded clique-
width. Discrete Applied Mathematics, 127(3) (2003), 415–429.

[101] Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Matthias Mnich, Frances A.
Rosamond, and Saket Saurabh. The complexity ecology of parameters: An illustration
using bounded max leaf number. Theory Comput. Syst., 45(4) (2009), 822–848.

[102] Michael R. Fellows, Bart M. P. Jansen, and Frances A. Rosamond. Towards fully multi-
variate algorithmics: Parameter ecology and the deconstruction of computational com-
plexity. Eur. J. Comb., 34(3) (2013), 541–566.

[103] Serge Gaspers and Stefan Szeider. Backdoors to satisfaction. In The Multivariate
Algorithmic Revolution and Beyond, 7370 (2012), 287–317.

[104] Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette.
On the parameterized complexity of multiple-interval graph problems. Theor. Comput.
Sci., 410(1) (2009), 53–61.

[105] Hans L. Bodlaender and Dieter Kratsch. A note on fixed parameter intractability of
some domination-related problems. 1994.

[106] Rodney G. Downey and Michael R. Fellows. Parameterized computational feasibility. In
P. Clote and J. Remmel, editors, Proceedings of the 2nd Cornell Workshop on Feasible
Mathematics, Feasible Mathematics II, pp. 219–244, Birkhauser, Boston, MA, 1995.

[107] Venkatesh Raman. Some hard problems in (weighted) tournaments. In Proceedings of
the 5th National Seminar on Theoretical Computer Science, Bombay, India, 1995.

[108] Ronald L. Graham and Joel H. Spencer. A constructive solution to a tournament
problem. Canad. Math. Bull., 14(1) (1971), 45–48.

[109] Noga Alon and Joel H. Spencer. The Probabilistic Method, 3rd edition, July 2008, John
Wiley.

[110] Nimrod Megiddo and Uzi Vishkin. On finding a minimum dominating set in a tourna-
ment. Theoret. Comput. Sci., 61 (1988), 307–316.

C5955–C0044.tex 1193 2015/11/4 8:22pm

1194 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[111] Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism and
the complexity of the v-c dimension. J. Comput. Syst. Sci., 53(2) (1996), 415–429.

[112] Timon Hertli. 3-SAT faster and simpler—Unique-SAT bounds for PPSZ hold in general.
To appear in FOCS, abs/1103.2165, 2011.

[113] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? J. Comput. System Sci., 63(4) (2001), 512–530.

[114] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause
width and clause density for sat. In IEEE Conference on Computational Complexity,
pp. 252–260, Prague, Czech Republic, 2006.

[115] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satis-
fiability of small depth circuits. In IWPEC, pp. 75–85, 2009.

[116] Liming Cai and David W. Juedes. On the existence of subexponential parameterized
algorithms. J. Comput. Syst. Sci., 67(4) (2003), 789–807.

[117] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential pa-
rameterized problems. In Proceedings of the 22nd Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 760–776, 2011.

[118] Jens Gramm, Rolf Niedermeier, and Peter Rossmanith. Fixed-parameter algorithms
for closest string and related problems. Algorithmica, 37(1) (2003), 25–42.

[119] Bin Ma and Xiaoming Sun. More efficient algorithms for closest string and substring
problems. SIAM J. Comput., 39(4) (2009), 1432–1443.

[120] Lusheng Wang and Binhai Zhu. Efficient algorithms for the closest string and distin-
guishing string selection problems. In Proceedings of the 3rd International Workshop,
Frontiers in Algorithms, Hefei, China, pp. 261–270, Springer, 2009.

[121] Zhi-Zhong Chen, Bin Ma, and Lusheng Wang. A fixed-parameter algorithm for the
directed feedback vertex set problem. A three-string approach to the closest string
problem, Proceedings of 16th Annual International Conference on Computing and Com-
binatorics 2010, Nha Treng, Vietnam, July 2010, Springer LNCS 6196, 449–458.

[122] Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Elena Losievskaja, Frances
A. Rosamond, and Saket Saurabh. Distortion is fixed parameter tractable. ICALP, 1
(2009), 463–474.

[123] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A.
Kanj, and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems.
Inf. Comput., 201(2) (2005), 216–231.

[124] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. On the computational hard-
ness based on linear FPT-reductions. J. Comb. Optim., 11(2) (2006), 231–247.

[125] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8) (2006), 1346–1367.

[126] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and M. Koivisto. Fourier meets
Möbious: Fast subset convolution. In Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, New York, 2007. ACM Press.

C5955–C0044.tex 1194 2015/11/4 8:22pm

Fixed-Parameter Algorithms and Complexity � 1195

[127] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic pro-
gramming on tree decompositions using generalised fast subset convolution. In ESA,
pp. 566–577, 2009.

[128] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. In Proceedings of the 22nd Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 777–789, ACM-SIAM, San Fansisco,
CA, 2011.

[129] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the
exponential time hypothesis. Bulletin of the EATCS, 105 (2011), 41–72.

[130] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchetti
Spaccamela, and Marco Protasi. Complexity and Approximation: Combinatorial Opti-
mization Problems and Their Approximability Properties. Springer, 1999.

[131] Liming Cai and Jianer Chen. On fixed-parameter tractability and approximability of
NP optimization problems. J. Comput. Syst. Sci., 54(3) (1997), 465–474.

[132] Phokion G. Kolaitis and Madhukar N. Thakur. Approximation properties of NP min-
imization classes. J. Comput. Syst. Sci., 50(3) (1995), 391–411.

[133] David R. Karger, Rajeev Motwani, and G. D. S. Ramkumar. On approximating the
longest path in a graph. Algorithmica, 18(1) (1997), 82–98.

[134] Dániel Marx. Parameterized complexity and approximation algorithms. Comput. J.,
51(1) (2008), 60–78.

[135] Rodney G. Downey, Michael R. Fellows, Catherine McCartin, and Frances A. Rosa-
mond. Parameterized approximation of dominating set problems. Inf. Process. Lett.,
109(1) (2008), 68–70.

[136] Georg Gottlob and Stefan Szeider. Fixed-parameter algorithms for artificial intel-
ligence, constraint satisfaction and database problems. Comput. J., 51(3) (2008),
303–325.

[137] Martin Grohe. Parameterized complexity for the database theorist. SIGMOD Record,
31(4) (2002), 86–96.

[138] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, Michael Hallett, and
Harold T. Wareham. Parameterized complexity analysis in computational biology.
Computer Applications in the Biosciences, 11(1) (1995), 49–57.

[139] Rodney G. Downey, Michael R. Fellows, Alexander Vardy, and Goeff Whittle. The
parameterized complexity of some fundamental problems in coding theory. SIAM J.
Comput., 22(2) (1999), 545–570.

C5955–C0044.tex 1195 2015/11/4 8:22pm

C5955

w w w . c r c p r e s s . c o m

Editor-in-Chief

Krishnaiyan “KT” Thulasiraman

Edited by

Subramanian Arumugam
Andreas Brandstädt

Takao Nishizeki

Thulasiram
an, A

rum
ugam

,
B

randstädt, and N
ishizeki

Chapman & Hall/CRC
Computer & Information Science Series

Chapman & Hall/CRC
Computer & Information Science Series

The fusion between graph theory and combinatorial optimization has led to theoretically profound
and practically useful algorithms, yet there is no book that currently covers both areas together.
Handbook of Graph Theory, Combinatorial Optimization, and Algorithms is the first to present a
unified, comprehensive treatment of both graph theory and combinatorial optimization.

Divided into 11 cohesive sections, the handbook’s 44 chapters focus on graph theory, combinatorial
optimization, and algorithmic issues. The book provides readers with the algorithmic and theoretical
foundations to

• Understand phenomena as shaped by their graph structures
• Develop needed algorithmic and optimization tools for the study of graph structures
• Design and plan graph structures that lead to certain desirable behavior

With contributions from more than 40 worldwide experts, this handbook equips readers with the
necessary techniques and tools to solve problems in a variety of applications. Readers gain expo-
sure to the theoretical and algorithmic foundations of a wide range of topics in graph theory and
combinatorial optimization, enabling them to identify (and hence solve) problems encountered in
diverse disciplines, such as electrical, communication, computer, social, transportation, biological,
and other networks.

Features
• Gives a broad, integrated account of graph theory, combinatorial optimization, and related

algorithmic issues
• Describes well-tested algorithms, techniques, and tools for solving computationally intractable

problems
• Covers numerous topics of interest in applications in computer science, electrical and com-

puter engineering, very large-scale integrated (VLSI) circuit design, industrial and systems
engineering, telecommunication networks, network science and engineering, transportation
networks, machine intelligence, and data mining

• Provides the theoretical foundation for further advances
• Includes a survey section at the end of each chapter that offers pointers for exploring related

advances and issues

Handbook of
Graph Theory,
Combinatorial

Optimization, and
Algorithms

H
andbook of G

raph Theory,
C

om
binatorial O

ptim
ization, and A

lgorithm
s

Computer Science

C5955_cover.indd 1 11/3/15 8:58 AM

	Front Cover
	Contents
	Preface
	Editors
	Contributors
	SECTION I - Basic Concepts and Algorithms
	CHAPTER 1 - Basic Concepts in Graph Theory and Algorithms
	CHAPTER 2 - Basic Graph Algorithms
	CHAPTER 3 - Depth-First Search and Applications

	SECTION II - Flows in Networks
	CHAPTER 4 - Maximum Flow Problem
	CHAPTER 5 - Minimum Cost Flow Problem
	CHAPTER 6 - Multicommodity Flows

	SECTION III - Algebraic Graph Theory
	CHAPTER 7 - Graphs and Vector Spaces
	CHAPTER 8 - Incidence, Cut, and Circuit Matrices of a Graph
	CHAPTER 9 - Adjacency Matrix and Signal Flow Graphs
	CHAPTER 10 - Adjacency Spectrum and the Laplacian Spectrum of a Graph
	CHAPTER 11 - Resistance Networks, Random Walks, and Network Theorems

	SECTION IV - Structural Graph Theory
	CHAPTER 12 - Connectivity
	CHAPTER 13 - Connectivity Algorithms
	CHAPTER 14 - Graph Connectivity Augmentation
	CHAPTER 15 - Matchings
	CHAPTER 16 - Matching Algorithms
	CHAPTER 17 - Stable Marriage Problem
	CHAPTER 18 - Domination in Graphs
	CHAPTER 19 - Graph Colorings

	SECTION V - Planar Graphs
	CHAPTER 20 - Planarity and Duality
	CHAPTER 21 - Edge Addition Planarity Testing Algorithm
	CHAPTER 22 - Planarity Testing Based on PC-Trees
	CHAPTER 23 - Graph Drawing

	SECTION VI - Interconnection Networks
	CHAPTER 24 - Introduction to Interconnection Networks
	CHAPTER 25 - Cayley Graphs
	CHAPTER 26 - Graph Embedding and Interconnection Networks

	SECTION VII - Special Graphs
	CHAPTER 27 - Program Graphs
	CHAPTER 28 - Perfect Graphs
	CHAPTER 29 - Tree-Structured Graphs

	SECTION VIII - Partitioning
	CHAPTER 30 - Graph and Hypergraph Partitioning

	SECTION IX - Matroids
	CHAPTER 31 - Matroids
	CHAPTER 32 - Hybrid Analysis and Combinatorial Optimization

	SECTION X - Probabilistic Methods, Random Graph Models, and Randomized Algorithms
	CHAPTER 33 - Probabilistic Arguments in Combinatorics
	CHAPTER 34 - Random Models and Analyses for Chemical Graphs
	CHAPTER 35 - Randomized Graph Algorithms: Techniques and Analysis

	SECTION XI - Coping with NP-Completeness
	CHAPTER 36 - General Techniques for Combinatorial Approximation
	CHAPTER 37 - ε-Approximation Schemes for the Constrained Shortest Path Problem
	CHAPTER 38 - Constrained Shortest Path Problem: Lagrangian Relaxation-Based Algorithmic Approaches
	CHAPTER 39 - Algorithms for Finding Disjoint Paths with QoS Constraints
	CHAPTER 40 - Set-Cover Approximation
	CHAPTER 41 - Approximation Schemes for Fractional Multicommodity Flow Problems
	CHAPTER 42 - Approximation Algorithms for Connectivity Problems
	CHAPTER 43 - Rectilinear Steiner Minimum Trees
	CHAPTER 44 - Parameter Algorithms and Complexity

	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2016-01-08T19:35:36+0000
	Preflight Ticket Signature

